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Preface

This book is a graduate-level textbook on data structures. A data structure is
a method1 to realize a set of operations on some data. The classical example
is to keep track of a set of items, the items identified by key values, so that
we can insert and delete (key, item) pairs into the set and find the item with a
given key value. A structure supporting these operations is called a dictionary.
Dictionaries can be realized in many different ways, with different complexity
bounds and various additional operations supported, and indeed many kinds of
dictionaries have been proposed and analyzed in literature, and some will be
studied in this book.

In general, a data structure is a kind of higher-level instruction in a virtual
machine: when an algorithm needs to execute some operations many times, it
is reasonable to identify what exactly the needed operations are and how they
can be realized in the most efficient way. This is the basic question of data
structures: given a set of operations whose intended behavior is known, how
should we realize that behavior?

There is no lack of books carrying the words “data structures” in the title, but
they merely scratch the surface of the topic, providing only the trivial structures
stack and queue, and then some balanced search tree with a large amount of
handwaving. Data structures started receiving serious interest in the 1970s, and,
in the first half of the 1980s, almost every issue of the Communications of the
ACM contained a data structure paper. They were considered a central topic,
received their own classification in the Computing Subject Classification,2

1 This is not a book on object-oriented programming. I use the words “method” and “object” in
their normal sense.

2 Classification code: E.1 data structures. Unfortunately, the Computing Subject Classification is
too rough to be useful.

xi



xii Preface

and became a standard part of computer science curricula.3 Wirth titled a
book Data Structures + Algorithms = Programs, and Algorithms and Data
Structures became a generic textbook title. But the only monograph on an al-
gorithmic aspect of data structures is the book by Overmars (1983) (which is
still in print, a kind of record for an LNCS series book). Data structures re-
ceived attention in a number of application areas, foremost as index structures
in databases. In this context, structures for geometric data have been studied in
the monographs of Samet (1990, 2006); the same structures were studied
in the computer graphics context in Langetepe and Zachmann (2006). Re-
cently, motivated by bioinformatics applications, string data structures have
been much studied. There is a steady stream of publications on data structure
theory as part of computational geometry or combinatorial optimization. But
in the numerous textbooks, data structures are only viewed as an example ap-
plication of object-oriented programming, excluding the algorithmic questions
of how to really do something nontrivial, with bounds on the worst-case com-
plexity. It is the aim of this book to bring the focus back to data structures as a
fundamental subtopic of algorithms. The recently published Handbook of Data
Structures (Mehta and Sahni 2005) is a step in the same direction.

This book contains real code for many of the data structures we discuss and
enough information to implement most of the data structures where we do not
provide an implementation. Many textbooks avoid the details, which is one
reason that the structures are not used in the places where they should be used.
The selection of structures treated in this book is therefore restricted almost
everywhere to such structures that work in the pointer-machine model, with
the exception of hash tables, which are included for their practical importance.
The code is intended as illustration, not as ready-to-use plug-in code; there is
certainly no guarantee of correctness. Most of it is available with a minimal
testing environment on my homepage.

This book started out as notes for a course I gave in the 2000 winter semester
at the Free University Berlin; I thank Christian Knauer, who was my assistant
for that course: we both learned a lot. I offered this course again in the fall
semesters of 2004–7 as a graduate course at the City College of New York
and used it as a base for a summer school on data structures at the Korean
Advanced Institute of Science and Technology in July 2006. I finished this
book in November 2007.

3 ABET still lists them as one of five core topics: algorithms, data structures, software design,
programming languages, and computer architecture.
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I thank Emily Voytek and Günter Rote for finding errors in my code ex-
amples, Otfried Cheong for organizing the summer school at KAIST, and
the summer school’s participants for finding further errors. I thank Christian
Knauer and Helmut Brass for literature from excellent mathematical libraries at
the Free University Berlin and Technical University Braunschweig, and János
Pach for access to the online journals subscribed by the Courant Institute. A
project like this book would not have been possible without access to good
libraries, and I tried to cite only those papers that I have seen.

This book project has not been supported by any grant-giving agency.

Basic Concepts

A data structure models some abstract object. It implements a number of
operations on this object, which usually can be classified into

– creation and deletion operations,
– update operations, and
– query operations.

In the case of the dictionary, we want to create or delete the set itself, update the
set by inserting or deleting elements, and query for the existence of an element
in the set.

Once it has been created, the object is changed by the update operations.
The query operations do not change the abstract object, although they might
change the representation of the object in the data structure: this is called an
adaptive data structure – it adapts to the query to answer future similar queries
faster.

Data structures that allow updates and queries are called dynamic data
structures. There are also simpler structures that are created just once for
some given object and allow queries but no updates; these are called static
data structures. Dynamic data structures are preferable because they are more
general, but we also need to discuss static structures because they are useful
as building blocks for dynamic structures, and, for some of the more complex
objects we encounter, no dynamic structure is known.

We want to find data structures that realize a given abstract object and are
fast. The size of structures is another quality measure, but it is usually of less
importance. To express speed, we need a measure of comparison; this is the
size of the underlying object, not our representation of that object. Notice that
a long sequence of update operations can still result in a small object. Our
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usual complexity measure is the worst-case complexity; so an operation in a
specific data structure has a complexity O(f (n)) if, for any state of the data
structure reached by a sequence of update operations that produced an object of
size n, this operation takes at most time Cf (n) for some C. An alternative but
weaker measure is the amortized complexity; an update operation has amortized
complexity O(f (n)) if there is some function g(n) such that any sequence of
m of these operations, during which the size of the underlying object is never
larger than n, takes at most time g(n) + mCf (n), so in the average over a long
sequence of operations the complexity is bounded by Cf (n).

Some structures are randomized, so the data structure makes some random
choices, and the same object and sequence of operations do not always lead
to the same steps of the data structure. In that case we analyze the expected
complexity of an operation. This expectation is over the random choices of the
data structure; the complexity is still the worst case of that expectation over all
objects of that size and possible operations.

In some situations, we cannot expect a nontrivial complexity bound of type
O(f (n)) because the operation might give a large answer. The size of the answer
is the output complexity of the operation, and, for operations that sometimes
have a large output complexity, we are interested in output-sensitive methods,
which are fast when the output is small. An operation has output-sensitive
complexity O(f (n) + k) if, on an object of size n that requires an output of
size k, the operation takes at most time C(f (n) + k).

For dynamic data structures, the time to create the structure for an empty
object is usually constant, so we are mainly interested in the update and query
times. The time to delete a structure of size n is almost always O(n). For static
data structures we already create an object of size n, so there we are interested
in the creation time, known as preprocessing time, and the query time.

In this book, loga n denotes the logarithm to base a; if no base is specified,
we use base 2.

We use the Bourbaki-style notation for closed, half-open, and open intervals,
where [a, b] is the closed interval from a to b, ]a, b[ is the open interval, and
the half-open intervals are ]a, b], missing the first point, and [a, b[, missing the
last point.

Similar to the O(·)-notation for upper bounds mentioned earlier, we also use
the �(·) for lower bounds and �(·) for simultaneous upper and lower bounds.
A nonnegative function f is O(g(n)), or �(g(n)), if for some positive C and all
sufficiently large n holds f (n) ≤ Cg(n), or f (n) ≥ Cg(n), respectively. And
f is �(g(n)) if it is simultaneously O(g(n)) and �(g(n)). Here “sufficiently
large” means that g(n) needs to be defined and positive.
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Code Examples

The code examples in this book are given in standard C. For the readers used
to some other imperative programming language, most constructs are self-
explanatory.

In the code examples, = denotes the assignment and == the equality test.
Outside the code examples, we will continue to use = in the normal way.

The Boolean operators for “not,” “and,” “or” are !, &&, ||, respectively,
and % denotes the modulo operator.

Pointers are dereferenced with *, so if pt is a pointer to a memory location
(usually a variable), then *pt is that memory location. Pointers have a type to
determine how the content of that memory location should be interpreted. To
declare a pointer, one declares the type of the memory location it points to, so
“int *pt;” declares pt to be a pointer to an int. Pointers are themselves
variables; they can be assigned, and it is also possible to add integers to a
pointer (pointer arithmetic). If pt points to a memory object of a certain type,
then pt+1 points to the next memory location for an object of that type; this is
equivalent to treating the memory as a big array of objects of that type. NULL
is a pointer that does not point to any valid memory object, so it can be used as
a special mark in comparisons.

Structures are user-defined data types that have several components. The
components themselves have a type and a name, and they can be of any type,
including other structures. The structure cannot have itself as a type of a
component, because that would generate an unbounded recursion. But it can
have a pointer to an object of its own type as component; indeed, such structures
are the main tool of data structure theory. A variable whose type is a structure
can be assigned and used like any other variable. If z is a variable of type C,
and we define this type by

typedef struct { float x; float y; } C,

then the components of z are z.x and z.y, which are two variables of type
float. If zpt is declared as pointer to an object of type C (by C *zpt;),
then the components of the object that zpt points to are (*zpt).x and
(*zpt).y. Because this is a frequently used combination, dereferencing a
pointer and selecting a component, there is an alternative notation zpt->x
and zpt->y. This is equivalent, but preferable, because it avoids the operator
priority problem: dereferencing has lower priority than component selection,
so (*zpt).x is not the same as *zpt.x.

We avoid writing the functions recursively, although in some cases this might
simplify the code. But the overhead of a recursive function call is significant
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and thus conflicts with the general aim of highest efficiency in data structures.
We do not practice any similar restrictions for nonrecursive functions; a good
compiler will expand them as inline functions, avoiding the function call, or
they could be written as macro functions.

In the text we will also frequently use the name of a pointer for the object
to which it points.



1

Elementary Structures

Elementary data structures usually treated in the “Programming 2” class are
the stack and the queue. They have a common generalization, the double-
ended queue, which is also occasionally mentioned, although it has far fewer
applications. Stack and queue are very fundamental structures, so they will
be discussed in detail and used to illustrate several points in data structure
implementation.

1.1 Stack

The stack is the simplest of all structures, with an obvious interpretation: putting
objects on the stack and taking them off again, with access possible only to the
top item. For this reason they are sometimes also described as LIFO storage:
last in, first out. Stacks occur in programming wherever we have nested blocks,
local variables, recursive definitions, or backtracking. Typical programming
exercises that involve a stack are the evaluation of arithmetic expressions with
parentheses and operator priorities, or search in a labyrinth with backtracking.

The stack should support at least the following operations:

{ push( obj ): Put obj on the stack, making it the top item.
{ pop(): Return the top object from the stack and remove it from the stack.
{ stack empty(): Test whether the stack is empty.

Also, the realization of the stack has, of course, to give the right values,
so we need to specify the correct behavior of a stack. One method would be
an algebraic specification of what correct sequences of operations and return
values are. This has been done for simple structures like the stack, but even
then the specification is not very helpful in understanding the structure. Instead,
we can describe a canonical implementation on an idealized machine, which
gives the correct answer for all correct sequences of operations (no pop on an

1
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empty stack, no memory problems caused by bounded arrays). Assuming that
the elements we want to store on the stack are of type item t, this could look
as follows:

int i=0;
item_t stack[∞];

int stack_empty(void)
{ return( i == 0 );
}

void push( item_t x)
{ stack[i++] = x ;
}

item_t pop(void)
{ return( stack[ --i] );
}

This describes the correct working of the stack, but we have the problem
of assuming both an infinite array and that any sequence of operations will be
correct. A more realistic version might be the following:

int i=0;
item_t stack[MAXSIZE];

int stack_empty(void)
{ return( i == 0 );
}

int push( item_t x)
{ if ( i < MAXSIZE )

{ stack[i++] = x ; return( 0 );
}
else

return( -1 );
}

item_t pop(void)
{ return( stack[ --i] );
}
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This now limits the correct behavior of the stack by limiting the maximum
number of items on the stack at one time, so it is not really the correct stack
we want, but at least it does specify an error message in the return value if
the stack overflow is reached by one push too many. This is a fundamental
defect of array-based realizations of data structures: they are of fixed size,
the size needs to be decided in advance, and the structure needs the full size
no matter how many items are really in the structure. There is a systematic
way to overcome these problems for array-based structures, which we will see
in Section 1.5, but usually a solution with dynamically allocated memory is
preferable.

We specified an error value only for the stack overflow condition, but not
for the stack underflow, because the stack overflow is an error generated by
the structure, which would not be present in an ideal implementation, whereas
a stack underflow is an error in the use of the structure and so a result in the
program that uses the stack as a black box. Also, this allows us to keep the
return value of pop as the top object from the stack; if we wanted to catch
stack underflow errors in the stack implementation, we would need to return
the object and the error status. A final consideration in our first stack version
is that we might need multiple stacks in the same program, so we want to
create the stacks dynamically. For this we need additional operations to create
and remove a stack, and each stack operation needs to specify which stack it
operates on. One possible implementation could be the following:

typedef struct {item_t *base; item_t *top;
int size;} stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc( sizeof(stack_t) );
st->base = (item_t *) malloc( size *

sizeof(item_t) );
st->size = size;
st->top = st->base;
return( st );

}

int stack_empty(stack_t *st)
{ return( st->base == st->top );
}
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int push( item_t x, stack_t *st)
{ if ( st->top < st->base + st->size )

{ *(st->top) = x; st->top += 1; return( 0 );
}
else

return( -1 );
}

item_t pop(stack_t *st)
{ st->top -= 1;

return( *(st->top) );
}

item_t top_element(stack_t *st)
{ return( *(st->top -1) );
}

void remove_stack(stack_t *st)
{ free( st->base );

free( st );
}

Again, we include some security checks and leave out others. Our policy
in general is to include those security checks that test for errors introduced
by the limitations of this implementation as opposed to an ideal stack, but
to assume both that the use of the stack is correct and that the underlying
operating system never runs out of memory. We included another operation
that is frequently useful, which just returns the value of the top element without
taking it from the stack.

Frequently, the preferable implementation of the stack is a dynamically
allocated structure using a linked list, where we insert and delete in front of
the list. This has the advantage that the structure is not of fixed size; therefore,
we need not be prepared for stack overflow errors if we can assume that the
memory of the computer is unbounded, and so we can always get a new node.
It is as simple as the array-based structure if we already have the get node
and return node functions, whose correct implementation we discuss in
Section 1.4.

typedef struct st_t { item_t item;
struct st_t *next; } stack_t;
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stack_t *create_stack(void)
{ stack_t *st;

st = get_node();
st->next = NULL;
return( st );

}

int stack_empty(stack_t *st)
{ return( st->next == NULL );
}

void push( item_t x, stack_t *st)
{ stack_t *tmp;

tmp = get_node();
tmp->item = x;
tmp->next = st->next;
st->next = tmp;

}

item_t pop(stack_t *st)
{ stack_t *tmp; item_t tmp_item;

tmp = st->next;
st->next = tmp->next;
tmp_item = tmp->item;
return_node( tmp );
return( tmp_item );

}

item_t top_element(stack_t *st)
{ return( st->next->item );
}

void remove_stack(stack_t *st)
{ stack_t *tmp;

do
{ tmp = st->next;

return_node(st);
st = tmp;

}
while ( tmp != NULL );

}

Notice that we have a placeholder node in front of the linked list; even an
empty stack is represented by a list with one node, and the top of the stack is
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only the second node of the list. This is necessary as the stack identifier returned
by create stack and used in all stack operations should not be changed by
the stack operations. So we cannot just use a pointer to the start of the linked
list as a stack identifier. Because the components of a node will be invalid after
it is returned, we need temporary copies of the necessary values in pop and
remove stack. The operation remove stack should return all the remain-
ing nodes; there is no reason to assume that only empty stacks will be removed,
and we will suffer a memory leak if we fail to return the remaining nodes.

next

item

next

item

next

item

next

item

placeholder top of stack

Stack Realized as List, with Three Items

The implementation as a dynamically allocated structure always has the
advantage of greater elegance; it avoids stack overflow conditions and needs
just the memory proportional to the actually used items, not a big array of a size
estimated by the programmer as upper bound to the maximum use expected
to occur. One disadvantage is a possible decrease in speed: dereferencing a
pointer does not take longer than incrementing an index, but the memory
location accessed by the pointer might be anywhere in memory, whereas the
next component of the array will be near the previous component. Thus, array-
based structures usually work very well with the cache, whereas dynamically
allocated structures might generate many cache misses. So if we are quite certain
about the maximum possible size of the stack, for example, because its size is
only logarithmic in the size of the input, we will prefer an array-based version.

If one wants to combine these advantages, one could use a linked list of
blocks, each block containing an array, but when the array becomes full, we
just link it to a new node with a new array. Such an implementation could look
as follows:

typedef struct st_t { item_t *base;
item_t *top;
int size;

struct st_t *previous;} stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc( sizeof(stack_t) );
st->base = (item_t *) malloc( size *

sizeof(item_t) );
st->size = size;
st->top = st->base;
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st->previous = NULL;
return( st );

}

int stack_empty(stack_t *st)
{ return( st->base == st->top &&

st->previous == NULL);
}

void push( item_t x, stack_t *st)
{ if ( st->top < st->base + st->size )

{ *(st->top) = x; st->top += 1;
}
else
{ stack_t *new;

new = (stack_t *) malloc( sizeof(stack_t) );
new->base = st->base;
new->top = st->top;
new->size = st->size;
new->previous = st->previous;
st->previous = new;
st->base = (item_t *) malloc( st->size *

sizeof(item_t) );
st->top = st->base+1;
*(st->base) = x;

}
}

item_t pop(stack_t *st)
{ if( st->top == st->base )

{ stack_t *old;
old = st->previous;
st->previous = old->previous;
free( st->base );
st->base = old->base;
st->top = old->top;
st->size = old->size;
free( old );

}
st->top -= 1;
return( *(st->top) );

}

item_t top_element(stack_t *st)
{ if( st->top == st->base )

return( *(st->previous->top -1) );
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else
return( *(st->top -1) );

}

void remove_stack(stack_t *st)
{ stack_t *tmp;

do
{ tmp = st->previous;

free( st->base );
free( st );
st = tmp;

}
while( st != NULL );

}

In our classification, push and pop are update operations and
stack empty and top element are query operations. In the array-based
implementation, it is obvious that we can do all the operations in constant
time as they involve only a constant number of elementary operations. For the
linked-list implementation, the operations involve the external get node and
return node functions, which occur in both push and pop once, so the
implementation works only in constant time if we can assume these functions
to be constant-time operations. We will discuss the implementation of this
dynamic node allocation in Section 1.4, but we can assume here (and in all later
structures) that this works in constant time. For the block list we allocate large
parts of memory for which we used here the standard memory management
operations malloc and free instead of building an intermediate layer, as
described in Section 1.4. It is traditional to assume that memory allocation and
deallocation are constant-time operations, but especially with the free there
are nontrivial problems with a constant-time implementation, so one should
avoid using it frequently. This could happen in the block list variant if there
are many push/pop pairs that just go over a block boundary. So the small
advantage of the block list is probably not worth the additional problems.

The create stack operation involves only one such memory alloca-
tion, and so that should be constant time in each implementation; but the
remove stack operation is clearly not constant time, because it has to de-
stroy a potentially large structure. If the stack still contains n elements, the
remove stack operation will take time O(n).

1.2 Queue

The queue is a structure almost as simple as the stack; it also stores items,
but it differs from the stack in that it returns those items first that have been
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entered first, so it is FIFO storage (first in, first out). Queues are useful if there
are tasks that have to be processed cyclically. Also, they are a central structure
in breadth-first search; breadth-first search (BFS) and depth-first search (DFS)
really differ only in that BFS uses a queue and DFS uses a stack to store the
node that will be explored next.

The queue should support at least the following operations:

{ enqueue( obj ): Insert obj at the end of the queue, making it the last
item.

{ dequeue(): Return the first object from the queue and remove it from the
queue.

{ queue empty(): Test whether the queue is empty.

The difference between queue and stack that makes the queue slightly
more difficult is that the changes occur at both ends: at one end, there are
inserts; at the other, deletes. If we choose an array-based implementation for
the queue, then the part of the array that is in use moves through the array. If
we had an infinite array, this would present no problem. We could write it as
follows:

int lower=0; int upper=0;
item_t queue[∞];

int queue_empty(void)
{ return( lower == upper );
}

void enqueue( item_t x)
{ queue[upper++] = x ;
}

item_t dequeue(void)
{ return( queue[ lower++] );
}

A real implementation with a finite array has to wrap this around, using
index calculation modulo the length of the array. It could look as follows:

typedef struct {item_t *base;
int front;
int rear;
int size;} queue_t;



10 1 Elementary Structures

queue_t *create_queue(int size)
{ queue_t *qu;

qu = (queue_t *) malloc( sizeof(queue_t) );
qu->base = (item_t *) malloc( size *

sizeof(item_t) );
qu->size = size;
qu->front = qu->rear = 0;
return( qu );

}

int queue_empty(queue_t *qu)
{ return( qu->front == qu->rear );
}

int enqueue( item_t x, queue_t *qu)
{ if ( qu->front != ((qu->rear +2)% qu->size) )

{ qu->base[qu->rear] = x;
qu->rear = ((qu->rear+1)%qu->size);
return( 0 );

}
else

return( -1 );
}

item_t dequeue(queue_t *qu)
{ int tmp;

tmp = qu->front;
qu->front = ((qu->front +1)%qu->size);
return( qu->base[tmp] );

}

item_t front_element(queue_t *qu)
{ return( qu->base[qu->front] );
}

void remove_queue(queue_t *qu)
{ free( qu->base );

free( qu );
}
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Again this has the fundamental disadvantage of any array-based structure –
that it is of fixed size. So it possibly generates overflow errors and does not
implement the structure correctly as it limits it this way. In addition, it always
reserves this expected maximum size for the array, even if it never needs it. The
preferred alternative is a dynamically allocated structure, with a linked list. The
obvious solution is the following:

typedef struct qu_n_t {item_t item;
struct qu_n_t *next; } qu_node_t;

typedef struct {qu_node_t *remove;
qu_node_t *insert; } queue_t;

queue_t *create_queue()
{ queue_t *qu;

qu = (queue_t *) malloc( sizeof(queue_t) );
qu->remove = qu->insert = NULL;
return( qu );

}

int queue_empty(queue_t *qu)
{ return( qu->insert ==NULL );
}

void enqueue( item_t x, queue_t *qu)
{ qu_node_t *tmp;

tmp = get_node();
tmp->item = x;
tmp->next = NULL; /* end marker */
if ( qu->insert != NULL ) /* queue nonempty */
{ qu->insert->next = tmp;

qu->insert = tmp;
}
else /* insert in empty queue */
{ qu->remove = qu->insert = tmp;
}

}

item_t dequeue(queue_t *qu)
{ qu_node_t *tmp; item_t tmp_item;

tmp = qu->remove; tmp_item = tmp->item;
qu->remove = tmp->next;
if( qu->remove == NULL ) /* reached end */

qu->insert = NULL; /* make queue empty */
return_node(tmp);
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return( tmp_item );
}

item_t front_element(queue_t *qu)
{ return( qu->remove->item );
}

void remove_queue(queue_t *qu)
{ qu_node_t *tmp;

while( qu->remove != NULL)
{ tmp = qu->remove;

qu->remove = tmp->next;
return_node(tmp);

}
free( qu );

}

Again we assume, as in all dynamically allocated structures, that the op-
erations get node and return node are available, which always work
correctly and in constant time. Because we want to remove items from the front
of the queue, the pointers in the linked list are oriented from the front to the end,
where we insert items. There are two aesthetical disadvantages of this obvious
implementation: we need a special entry point structure, which is different from
the list nodes, and we always need to treat the operations involving an empty
queue differently. For insertions into an empty queue and removal of the last
element of the queue, we need to change both insertion and removal pointers;
for all other operations we change only one of them.

remove insert

next

item

next

item

next

item

next

item

Queue Realized as List, with Four Items

The first disadvantage can be avoided by joining the list together to make it
a cyclic list, with the last pointer from the end of the queue pointing again to
the beginning. We can then do without a removal pointer, because the insertion
point’s next component points to the removal point. By this, the entry point to
the queue needs only one pointer, so it is of the same type as the queue nodes.

The second disadvantage can be overcome by inserting a placeholder node
in that cyclic list, between the insertion end and the removal end of the cyclic
list. The entry point still points to the insertion end or, in the case of an empty
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list, to that placeholder node. Then, at least for the insert, the empty list is no
longer a special case. So a cyclic list version is the following:

typedef struct qu_t { item_t item;
struct qu_t *next; } queue_t;

queue_t *create_queue()
{ queue_t *entrypoint, *placeholder;

entrypoint = (queue_t *) malloc( sizeof(queue_t) );
placeholder = (queue_t *) malloc( sizeof(queue_t) );
entrypoint->next = placeholder;
placeholder->next = placeholder;
return( entrypoint );

}

int queue_empty(queue_t *qu)
{ return( qu->next == qu->next->next );
}

void enqueue( item_t x, queue_t *qu)
{ queue_t *tmp, *new;

new = get_node(); new->item = x;
tmp = qu->next; qu->next = new;
new->next = tmp->next; tmp->next = new;

}

item_t dequeue(queue_t *qu)
{ queue_t *tmp;

item_t tmp_item;
tmp = qu->next->next->next;
qu->next->next->next = tmp->next;
if( tmp == qu->next )

qu->next = tmp->next;
tmp_item = tmp->item;
return_node( tmp );
return( tmp_item );

}

item_t front_element(queue_t *qu)
{ return( qu->next->next->next->item );
}

void remove_queue(queue_t *qu)
{ queue_t *tmp;

tmp = qu->next->next;
while( tmp != qu->next )
{ qu->next->next = tmp->next;

return_node( tmp );
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tmp = qu->next->next;
}
return_node( qu->next );
return_node( qu );

}
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item
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placeholder
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front of queue

Queue Realized as Cyclic List, with Three Items

Or one could implement the queue as a doubly linked list, which requires no
case distinctions at all but needs two pointers per node. Minimizing the number
of pointers is an aesthetic criterion more justified by the amount of work that
has to be done in each step to keep the structure consistent than by the amount of
memory necessary for the structure. Here is a doubly linked list implementation:

typedef struct qu_t { item_t item;
struct qu_t *next;
struct qu_t *previous; } queue_t;

queue_t *create_queue()
{ queue_t *entrypoint;

entrypoint = (queue_t *) malloc( sizeof(queue_t) );
entrypoint->next = entrypoint;
entrypoint->previous = entrypoint;
return( entrypoint );

}

int queue_empty(queue_t *qu)
{ return( qu->next == qu );
}

void enqueue( item_t x, queue_t *qu)
{ queue_t *new;

new = get_node(); new->item = x;
new->next = qu->next; qu->next = new;
new->next->previous = new; new->previous = qu;

}

item_t dequeue(queue_t *qu)
{ queue_t *tmp; item_t tmp_item;

tmp = qu->previous; tmp_item = tmp->item;
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tmp->previous->next = qu;
qu->previous = tmp->previous;
return_node( tmp );
return( tmp_item );

}

item_t front_element(queue_t *qu)
{ return( qu->previous->item );
}

void remove_queue(queue_t *qu)
{ queue_t *tmp;

qu->previous->next = NULL;
do
{ tmp = qu->next;

return_node( qu );
qu = tmp;

}
while ( qu != NULL );

}
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end
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end

entry point

Queue Realized as Doubly Linked List, with Four Items

Which of the list-based implementations one prefers is really a matter of taste;
they are all slightly more complicated than the stack, although the two structures
look similar.

Like the stack, the queue is a dynamic data structure that has the update
operations enqueue and dequeue and the query operations queue empty
and front element, all of which are constant-time operations, and the
operations create queue and delete queue, which are subject to the
same restrictions as the similar operations for the stack: creating an array-
based queue requires getting a big block of memory from the underlying system
memory management, whereas creating a list-based queue should require only
some get node operations; and deleting an array-based queue just involves
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returning that memory block to the system, whereas deleting a list-based queue
requires returning every individual node still contained in it, so it will take O(n)
time to delete a list-based queue that still contains n items.

1.3 Double-Ended Queue

The double-ended queue is the obvious common generalization of stack
and queue: a queue in which one can insert and delete at either end. Its
implementation can be done as an array, or as a doubly linked list, just like a
queue; because it does not present any new problems, no code will be given
here. The double-ended queue does not have many applications, but at least
a “one-and-a-half ended queue” sometimes is useful, as in the minqueue dis-
cussed in Section 5.11.

1.4 Dynamical Allocation of Nodes

In the previous sections we used the operations get node and return node
to dynamically create and delete nodes, that is, constant-sized memory objects,
as opposed to the generic operations malloc and free provided by the stan-
dard operating-system interface, which we used only for memory objects of
arbitrary, usually large, size. The reason for this distinction is that although the
operating-system memory allocation is ultimately the only way to get memory,
it is a complicated process, and it is not even immediately obvious that it is
a constant-time operation. In any efficient implementation of a dynamically
allocated structure, where we permanently get and return nodes, we cannot
afford to access this operating-system-level memory management in each op-
eration. Instead, we introduce an intermediate layer, which only occasionally
has to access the operating-system memory management to get a large memory
block, which it then gives out and receives back in small, constant-sized pieces,
the nodes.

The efficiency of these get node and return node operations is really
crucial for any dynamically allocated structure, but luckily we do not have
to create a full memory management system; there are two essential simpli-
fications. We deal only with objects of one size, as opposed to the malloc
interface, which should provide memory blocks of any size, and we do not re-
turn any memory from the intermediate level to the system before the program
ends. This is reasonable: the amount of memory taken by the intermediate layer
from the system is the maximum amount taken by the data structure up to that
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moment, so we do not overestimate the total memory requirement; we only fail
to free it earlier for other coexisting programs or structures.

This allows us to use the free list as a structure for our dynamical allocation
of nodes. The free list contains all the nodes not currently in use; whenever
a return node is executed, the node is just added to the free list. For the
get node, the situation is slightly more complicated; if the free list is not
empty, we may just take a node from there. If it is empty and the current
memory block is not used up, we take a new node from that memory block.
Otherwise, we have to get a new memory block with malloc and create the
node from there.

An implementation could look as follows:

typedef struct nd_t { struct nd_t *next;
/*and other components*/ } node_t;

#define BLOCKSIZE 256
node_t *currentblock = NULL;
int size_left;
node_t *free_list = NULL;

node_t *get_node()
{ node_t *tmp;

if( free_list != NULL )
{ tmp = free_list;

free_list = free_list -> next;
}
else
{ if( currentblock == NULL || size_left == 0)

{ currentblock =
(node_t *) malloc( BLOCKSIZE *

sizeof(node_t) );
size_left = BLOCKSIZE;

}
tmp = currentblock++;
size_left -= 1;

}
return( tmp );

}

void return_node(node_t *node)
{ node->next = free_list;

free_list = node;
}
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Dynamical memory allocation is traditionally a source of many program-
ming errors and is hard to debug. A simple additional precaution to avoid some
common errors is to add to the node another component, int valid, and
fill it with different values, depending on whether it has just been received
back by return node or is given out by get node. Then we can check
that a pointer does indeed point to a valid node and that anything received by
return node has indeed been a valid node up to that moment.

1.5 Shadow Copies of Array-Based Structures

There is a systematic way to avoid the maximum-size problem of array-based
structures at the expense of the simplicity of these structures. We simultaneously
maintain two copies of the structure, the currently active copy and a larger-sized
structure which is under construction. We have to schedule the construction of
the larger structure in such a way that it is finished and ready for use before
the active copy reaches its maximum size. For this, we copy in each operation
on the old structure a fixed number of items from the old to the new structure.
When the content of the old structure is completely copied into the new, larger
structure, the old structure is removed and the new structure taken as the active
structure and, when necessary, construction of an even larger copy is begun.
This sounds very simple and introduces only a constant overhead to convert
a fixed-size structure into an unlimited structure. There are, however, some
problems in the details: the structure that is being copied changes while the
copying is in progress, and these changes must be correctly done in the still
incomplete larger copy. To demonstrate the principle, here is the code for the
array-based stack:

typedef struct { item_t *base;
int size;
int max_size;
item_t *copy;
int copy_size; } stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc( sizeof(stack_t) );
st->base = (item_t *) malloc( size *

sizeof(item_t) );
st->max_size = size;
st->size = 0; st->copy = NULL; st->copy_size = 0;
return( st );

}
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int stack_empty(stack_t *st)
{ return( st->size == 0);
}

void push( item_t x, stack_t *st)
{ *(st->base + st->size) = x;

st->size += 1;
if ( st->copy != NULL ||
st->size >= 0.75*st->max_size )
{ /* have to continue or start copying */

int additional_copies = 4;
if( st->copy == NULL )
/* start copying: allocate space */
{ st->copy =

(item_t *) malloc( 2 * st->max_size *
sizeof(item_t) );

}
/* continue copying: at most 4 items

per push operation */
while( additional_copies > 0 &&

st->copy_size < st->size )
{ *(st->copy + st->copy_size) =

*(st->base + st->copy_size);
st->copy_size += 1; additional_copies -= 1;

}
if( st->copy_size == st->size)
/* copy complete */
{ free( st->base );

st->base = st-> copy;
st->max_size *= 2;
st->copy = NULL;
st->copy_size = 0;

}
}

}

item_t pop(stack_t *st)
{ item_t tmp_item;

st->size -= 1;
tmp_item = *(st->base + st->size);
if( st->copy_size == st->size) /* copy complete */
{ free( st->base );

st->base = st-> copy;
st->max_size *= 2;
st->copy = NULL;
st->copy_size = 0;

}
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return( tmp_item );
}

item_t top_element(stack_t *st)
{ return( *(st->base + st->size - 1) );
}

void remove_stack(stack_t *st)
{ free( st->base );

if( st->copy != NULL )
free( st->copy );

free( st );
}

For the stack, the situation is especially easy because we can just copy
from the base until we reach the current top; in between, nothing changes.
The threshold when to start copying (here, at 0.75*size), the size of the new
structure (here, twice the previous size), and the number of items copied in
each step (here, four items) must, of course, be chosen in such a way that
copying is complete before the old structure overflows. Note that we can reach
the situation when the copying is finished in two ways: by actual copying in
the push and by deleting uncopied items in the pop.

In general, the connection between copying threshold size, new maximum
size, and number of items copied is as follows:

{ if the current structure has maximum size smax,
{ and we begin copying as soon as its actual size has reached αsmax (with

α ≥ 1
2 ),

{ the new structure has maximum size 2smax, and
{ each operation increases the actual size by at most 1,

then there are at least (1 − α)smax steps left to complete the copying of at most
smax elements from the smaller structure to the new structure. So we need to
copy � 1

1−α
� elements in each operation to finish the copying before the smaller

structure overflows. We doubled the maximum size when creating the new
structure, but we could have chosen any size βsmax, β > 1, as long as αβ > 1.
Otherwise, we would have to start copying again before the previous copying
process was finished.

In principle, this technique is quite general and not restricted to array-based
structures. We will use it again in Sections 3.6 and 7.1. We can always try to
overcome the size limitation of a fixed-size structure by copying its content to a
larger structure. But it is not always clear how to break this copying into many
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small steps that can be executed simultaneously with the normal operations on
the structure, as in our example. Instead, we have to copy the entire structure
in one step, so we cannot get a worst-case time bound, but only an amortized
bound.

A final example of this technique and its difficulties is the realization of an
extendible array. Normal arrays need to be declared of a fixed size, they are
allocated somewhere in memory, and the space that is reserved there cannot be
increased as it might conflict with space allocated for other variables. Access
to an array element is very fast; it is just one address computation. But some
systems also support a different type of array, which can be made larger; for
these, accessing an element is more complicated and it is really an operation
of a nontrivial data structure. This structure needs to support the following
operations:

{ create array creates an array of a given size,
{ set value assigns the array element at a given index a value,
{ get value returns the value of the array element at a given index,
{ extend array increases the length of the array.

To implement that structure, we use the same technique of building shadow
copies. There is, however, an additional problem here, because the structure
we want to model does not just grow by a single item in each operation; the
extend array operation can make it much larger a single operation. Still,
we can easily achieve an amortized constant time per operation.

When an array of size s is created, we allocate space for it, but more than
requested. We maintain that the size of the arrays we actually allocate is always
a power of 2, so we initially allocate an array of size 2�log s� and store the
start position of that array, as well as the current and the maximum size, in a
structure that identifies the array. Any access to an array element first has to
look up that start position of the current array. Each time an extend array
operation is performed, we first check whether the current maximum size is
larger than the requested size; in that case we can just increase the current size.
Else, we have to allocate a new array whose size is the next number 2k larger
than the requested size, and copy every item from the old array to the new
array. Thus, accessing an array element is always done in O(1) time; it is just
one in the direction of the pointer; but extending the array can take linear time
in the size of the array. But the amortized complexity is not that bad; if the
ultimate size of the array is 2�log k�, then we have at worst copied arrays of size
1, 2, 4, . . . , 2�log k�−1, so we spent in total time O(1 + 2 + · · · + 2�log k�−1) =
O(k) with those extend array operations that did copy the array, and O(1)
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with each extend array operation that did not copy the array. Thus, we
have the following complexity:

Theorem. An extendible array structure with shadow copies performs any
sequence of n set value, get value, and extend array operations on
an array whose final size is k in time O(n + k).

If we assume that each element of the array we request is also accessed
at least once, so that the final size is at most the number of element access
operations, this gives an amortized O(1) complexity per operation.

It would be natural to distribute the copying of the elements again over
the later access operations, but we have no control over the extend array
operations. It is possible that the next extension is requested before the copying
of the current array is complete, so our previous method does not work for this
structure. Another conceptual problem with extendible arrays is that pointers
to array elements are different from normal pointers because the position of the
array can change. Thus, in general, extendible arrays should be avoided even
if the language supports them. A different way to implement extendible arrays
was discussed in Challab (1991).
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Search Trees

A search tree is a structure that stores objects, each object identified by a key
value, in a tree structure. The key values of the objects are from a linearly
ordered set (typically integers); two keys can be compared in constant time and
these comparisons are used to guide the access to a specific object by its key.
The tree has a root, where any search starts, and then contains in each node
some key value for comparison with the query key, so one can go to different
next nodes depending on whether the query key is smaller or larger than the
key in the node until one finds a node that contains the right key.

This type of tree structure is fundamental to most data structures; it allows
many variations and is also a building block for most more complex data
structures. For this reason we will discuss it in great detail.

Search trees are one method to implement the abstract structure called
dictionary. A dictionary is a structure that stores objects, identified by keys, and
supports the operations find, insert, and delete. A search tree usually supports at
least these operations of a dictionary, but there are also other ways to implement
a dictionary, and there are applications of search trees that are not primarily
dictionaries.

2.1 Two Models of Search Trees

In the outline just given, we supressed an important point that at first seems
trivial, but indeed it leads to two different models of search trees, either of
which can be combined with much of the following material, but one of which
is strongly preferable.

If we compare in each node the query key with the key contained in the
node and follow the left branch if the query key is smaller and the right branch

23
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if the query key is larger, then what happens if they are equal? The two models
of search trees are as follows:

1. Take left branch if query key is smaller than node key; otherwise take the
right branch, until you reach a leaf of the tree. The keys in the interior node
of the tree are only for comparison; all the objects are in the leaves.

2. Take left branch if query key is smaller than node key; take the right branch
if the query key is larger than the node key; and take the object contained
in the node if they are equal.

This minor point has a number of consequences:

{ In model 1, the underlying tree is a binary tree, whereas in model 2, each
tree node is really a ternary node with a special middle neighbor.

{ In model 1, each interior node has a left and a right subtree (each possibly a
leaf node of the tree), whereas in model 2, we have to allow incomplete
nodes, where left or right subtree might be missing, and only the
comparison object and key are guaranteed to exist.

So the structure of a search tree of model 1 is more regular than that of a tree
of model 2; this is, at least for the implementation, a clear advantage.

{ In model 1, traversing an interior node requires only one comparison,
whereas in model 2, we need two comparisons to check the three
possibilities.

Indeed, trees of the same height in models 1 and 2 contain at most approximately
the same number of objects, but one needs twice as many comparisons in model
2 to reach the deepest objects of the tree. Of course, in model 2, there are also
some objects that are reached much earlier; the object in the root is found
with only two comparisons, but almost all objects are on or near the deepest
level.

Theorem. A tree of height h and model 1 contains at most 2h objects.
A tree of height h and model 2 contains at most 2h+1 − 1 objects.

This is easily seen because the tree of height h has as left and right subtrees a
tree of height at most h − 1 each, and in model 2 one additional object between
them.

{ In model 1, keys in interior nodes serve only for comparisons and may
reappear in the leaves for the identification of the objects. In model 2, each
key appears only once, together with its object.
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It is even possible in model 1 that there are keys used for comparison that
do not belong to any object, for example, if the object has been deleted. By
conceptually separating these functions of comparison and identification, this
is not surprising, and in later structures we might even need to define artificial
tests not corresponding to any object, just to get a good division of the search
space. All keys used for comparison are necessarily distinct because in a model
1 tree, each interior node has nonempty left and right subtrees. So each key
occurs at most twice, once as comparison key and once as identification key in
the leaf.

Model 2 became the preferred textbook version because in most textbooks
the distinction between object and its key is not made: the key is the object.
Then it becomes unnatural to duplicate the key in the tree structure. But in
all real applications, the distinction between key and object is quite important.
One almost never wishes to keep track of just a set of numbers; the numbers
are normally associated with some further information, which is often much
larger than the key itself.

In some literature, where this distinction is made, trees of model 1 are called
leaf trees and trees of model 2 are called node trees (Nievergelt and Wong
1973). Our preferred model of search tree is model 1, and we will use it for all
structures but the splay tree (which necessarily follows model 2).
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Search Trees of Model 1 and Model 2

A tree of model 1 consists of nodes of the following structure:

typedef struct tr_n_t {key_t key;
struct tr_n_t *left;
struct tr_n_t *right;

/* possibly additional information */
} tree_node_t;

We will usually need some additional balancing information, which will be
discussed in Chapter 3. So this is just an outline.
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From nodes of this type, we will construct a tree essentially by the following
recursive definition: each tree is either empty, or a leaf, or it contains a special
root node that points to two nonempty trees, with all keys in the left subtree
being smaller than the key in the root and all keys in the right subtree being larger
than or equal to the key in the root. This still needs some details; especially
we have to specify how to recognize leaves. We will follow here the following
convention:

{ A node *n is a leaf if n->right = NULL. Then n->left points to the
object stored in that leaf and n->key contains the object’s key.

We also need some conventions for the root, especially to deal with empty
trees. Each tree has a special node *root.

{ If root->left = NULL, then the tree is empty.
{ If root->left �= NULL and root->right = NULL, then root is a

leaf and the tree contains only one object.
{ If root->left �= NULL and root->right �= NULL, then

root->right and root->left point to the roots of the right and left
subtrees. For each node *left node in the left subtree, we have
left node->key < root->key, and for each node *right node in
the right subtree, we have right node->key ≥ root->key.

Any structure with these properties is a correct search tree for the objects and
key values in the leaves.

With these conventions we can now create an empty tree.

tree_node_t *create_tree(void)
{ tree_node_t *tmp_node;

tmp_node = get_node();
tmp_node->left = NULL;
return( tmp_node );

}

2.2 General Properties and Transformations

In a correct search tree, we can associate each tree node with an interval, the
interval of possible key values that can be reached through this node. The
interval of root is ]–∞,∞[, and if *n is an interior node associated with
interval [a, b[, then n->key ∈ [a, b[, and n->left and n->right have as
associated intervals [a, n->key[ and [n->key, b[. With the exception of the
intervals starting in −∞, all these intervals are half-open, containing the left
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endpoint but not the right endpoint. This implicit structure on the tree nodes is
very helpful in understanding the operations on the trees.
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Intervals Associated with Nodes in a Search Tree

The same set of (key, object) pairs can be organized in many distinct correct
search trees: the leaves are always the same, containing the (key, object) pairs in
increasing order of the keys, but the tree connecting the leaves can be very differ-
ent, and we will see that some trees are better than others. There are two opera-
tions – the left and right rotations – that transform a correct search tree in a differ-
ent correct search tree for the same set. They are used as building blocks of more
complex tree transformations because they are easy to implement and universal.

Suppose *n is an interior node of the tree and n->right is also an
interior node. Then the three nodes n->left, n->right->left, and
n->right->right have consecutive associated intervals whose union is
the associated interval of *n. Now instead of grouping the second and third
intervals (of n->right->left and n->right->right) together in node
n->right, and then this union together with the interval of n->left in
*n, we could group the first two intervals together in a new node, and that
then together with the last interval in *n. This is what the left rotation does:
it rearranges three nodes below a given node *n, the rotation center. This is
a local change done in constant time; it does not affect either the content of
those three nodes or anything below them or above the rotation center *n. The
following code does a left rotation around *n:

void left_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
tmp_node = n->left;
tmp_key = n->key;
n->left = n->right;
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n->key = n->right->key;
n->right = n->left->right;
n->left->right = n->left->left;
n->left->left = tmp_node;
n->left->key = tmp_key;

}

Note that we move the content of the nodes around, but the node *n still
needs to be the root of the subtree because there are pointers from higher levels
in the tree that point to *n. If the nodes contain additional information, then
this must, of course, also be updated or copied.

The right rotation is exactly the inverse operation of the left rotation.

void right_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
tmp_node = n->right;
tmp_key = n->key;
n->right = n->left;
n->key = n->left->key;
n->left = n->right->left;
n->right->left = n->right->right;
n->right->right = tmp_node;
n->right->key = tmp_key;

}
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Left and Right Rotations

Theorem. The left and right rotations around the same node are inverse oper-
ations. Left and right rotations are operations that transform a correct search
tree in a different correct search tree for the same set of (key, object) pairs.
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The great usefulness of the rotations as building blocks for tree operations
lies in the fact that they are universal: any correct search tree for some set of
(key, object) pairs can be transformed into any other correct search tree by a
sequence of rotations. But one needs to be careful with the exact statement of
this property because it is obviously false: in our model of search trees, we can
change the key values in the interior nodes without destroying the search tree
property as long as the order relation of the comparison keys with the object
keys stays the same. But the rotations, of course, do not change the key values.
The important structure is the combinatorial type of the tree; any system of
comparison keys is transformed correctly together with the tree.

Theorem. Any two combinatorial types of search trees on the same system
of (key, object) pairs can be transformed into each other by a sequence of
rotations.

But this is easy to see: if we apply right rotations to the search tree as long as
any right rotation can be applied, we get a degenerate tree, a path going to the
right, to which the leaves are attached in increasing order. So any search tree
can be brought into this canonical shape using only right rotations. Because
right and left rotations are inverse, this canonical shape can be transformed into
any shape by a sequence of left rotations.

The space of combinatorial types of search trees, that is, of binary trees with
n leaves, is isomorphic to a number of other structures (a Catalan family). The
rotations define a distance on this structure, which has been studied in a number
of papers (Culik and Wood 1982; Mäkinen 1988; Sleator, Tarjan, and Thurston
1988; Luccio and Pagli 1989); the diameter of this space is known to be 2n − 6
for n ≥ 11 (Sleator et al. 1988). The difficult part here is the exact value of the
lower bound; it is simple to prove just �(n) bounds (see, e.g., Felsner 2004,
Section 7.5).

2.3 Height of a Search Tree

The central property which distinguishes the different combinatorial types of
search trees for the same underlying set and which makes some search trees
good and others bad is the height. The height of a search tree is the maximum
length of a path from the root to a leaf – the maximum taken over all leaves.
Usually not all leaves are at the same distance from the root; the distance of
a specific tree node from the root is called the depth of that node. As already
observed in Section 2.1, the maximum number of leaves of a search tree of
height h is 2h. And at the other end, the minimum number of leaves is h + 1
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because a tree of height h must have at least one interior node at each depth
0, . . . , h − 1, and a tree with h interior nodes has h + 1 leaves. Together, this
gives the bounds.

Theorem. A search tree for n objects has height at least �log n� and at most
n − 1.

It is easy to see that both bounds can be reached.
The height is the worst-case distance we have to traverse to reach a specific

object in the search tree. Another related measure of quality of a search tree
is the average depth of the leaves, that is, the average over all objects of the
distance we have to go to reach that object. Here the bounds are:

Theorem. A search tree for n objects has average depth at least log n and at
most (n−1)(n+2)

2n
≈ 1

2n.

To prove these bounds, it is easier to take the sum of the depths instead of the
average depth. Because the sum of depths can be divided in the depth of the
a leaves to the left of the root and the depth of the b leaves to the right of
the root, these sums satisfy the following recursions:

depthsummin(n) = n + min
a,b≥1
a+b=n

depthsummin(a) + depthsummin(b)

and

depthsummax(n) = n + max
a,b≥1
a+b=n

depthsummax(a) + depthsummax(b);

with these recursions, one obtains

depthsummin(n) ≥ n log n

and

depthsummax(n) = 1

2
(n − 1)(n + 2)

by induction. In the first case, one uses that the function x log x is convex, so
a log a + b log b ≥ (a + b) log (a + b)/2.
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2.4 Basic Find, Insert, and Delete

The search tree represents a set of (key, object) pairs, so it must allow some
operations with this set. The most important operations that any search tree
needs to support are as follows:

{ find( tree, query key): Returns the object associated with
query key, if there is one;

{ insert( tree, key, object ): Inserts the (key, object) pair in the
tree; and

{ delete( tree, key): Deletes the object associated with key from
the tree.

We will now describe here the basic find, insert, and delete operations
on the search trees, which will be extended in Chapter 3 by some rebalancing
steps. The simplest operation is the find: one just follows the associated
interval structure to the leaf, which is the only place that could hold the right
object. Then one tests whether the key of this only possible candidate agrees
with the query key, in which case we found the object, or not, in which case
there is no object for that key in the tree.
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Search Tree and Search Path for Unsuccessful find(tree, 42)

object_t *find(tree_node_t *tree,
key_t query_key)

{ tree_node_t *tmp_node;
if( tree->left == NULL )

return(NULL);
else
{ tmp_node = tree;

while( tmp_node->right != NULL )
{ if( query_key < tmp_node->key )

tmp_node = tmp_node->left;
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else
tmp_node = tmp_node->right;

}
if( tmp_node->key == query_key )

return( (object_t *) tmp_node->left );
else

return( NULL );
}

}

The descent through the tree to the correct level is frequently written
as recursive function, but we avoid recursion in our code. Even with good
compilers, a function call is much slower than a few assignments. Just as
illustration we also give here the recursive version.

object_t *find(tree_node_t *tree,
key_t query_key)

{ if( tree->left == NULL ||
(tree->right == NULL &&

tree->key != query_key ) )
return(NULL);

else if (tree->right == NULL &&
tree->key == query_key )

return( (object_t *) tree->left );
else
{ if( query_key < tree->key )

return( find(tree->left, query_key) );
else

return( find(tree->right, query_key) );
}

}

The insert operation starts out the same as the find, but after it finds the
correct place to insert the new object, it has to create a new interior node and
a new leaf node and put them in the tree. We assume, as always, that there are
functions get node and return node available, as described in Section 1.4.
For the moment we assume all the keys are unique and treat it as an error if there
is already an object with that key in the tree; but in many practical applications
we need to deal with multiple objects of the same key (see Section 2.6).
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int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)

{ tree_node_t *tmp_node;
if( tree->left == NULL )
{ tree->left = (tree_node_t *) new_object;

tree->key = new_key;
tree->right = NULL;

}
else
{ tmp_node = tree;

while( tmp_node->right != NULL )
{ if( new_key < tmp_node->key )

tmp_node = tmp_node->left;
else

tmp_node = tmp_node->right;
}
/* found the candidate leaf. Test whether

key distinct */
if( tmp_node->key == new_key )

return( -1 );
/* key is distinct, now perform the insert */
{ tree_node_t *old_leaf, *new_leaf;

old_leaf = get_node();
old_leaf->left = tmp_node->left;
old_leaf->key = tmp_node->key;
old_leaf->right = NULL;
new_leaf = get_node();
new_leaf->left = (tree_node_t *)
new_object;
new_leaf->key = new_key;
new_leaf->right = NULL;
if( tmp_node->key < new_key )
{ tmp_node->left = old_leaf;

tmp_node->right = new_leaf;
tmp_node->key = new_key;

}
else
{ tmp_node->left = new_leaf;

tmp_node->right = old_leaf;
}

}
}
return( 0 );

}
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Insertion and Deletion of a Leaf

The delete operation is even more complicated because when we are deleting
a leaf, we must also delete an interior node above the leaf. For this, we need
to keep track of the current node and its upper neighbor while going down in
the tree. Also, this operation can lead to an error if there is no object with the
given key.

object_t *delete(tree_node_t *tree,
key_t delete_key)

{ tree_node_t *tmp_node, *upper_node,
*other_node;
object_t *deleted_object;
if( tree->left == NULL )

return( NULL );
else if( tree->right == NULL )
{ if( tree->key == delete_key )

{ deleted_object =
(object_t *) tree->left;

tree->left = NULL;
return( deleted_object );

}
else

return( NULL );
}
else
{ tmp_node = tree;
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while( tmp_node->right != NULL )
{ upper_node = tmp_node;

if( delete_key < tmp_node->key )
{ tmp_node = upper_node->left;

other_node = upper_node->right;
}
else
{ tmp_node = upper_node->right;

other_node = upper_node->left;
}

}
if( tmp_node->key != delete_key )

return( NULL );
else
{ upper_node->key = other_node->key;

upper_node->left = other_node->left;
upper_node->right = other_node->right;
deleted_object = (object_t *)
tmp_node->left;
return_node( tmp_node );
return_node( other_node );
return( deleted_object );

}
}

}

If there is additional information in the nodes, it must also be copied or
updated when we copy the content of the other node into the upper node.
Note that we delete the nodes, but not the object itself. There might be other
references to this object. But if this is the only reference to the object, this will
cause a memory leak, so we should delete the object. This is the responsibility
of the user, so we return a pointer to the object.

2.5 Returning from Leaf to Root

Any tree operation starts at the root and then follows the path down to the
leaf where the relevant object is or where some change is performed. In all
the balanced search-tree versions we will discuss in Chapter 3, we need to
return along this path, from the leaf to the root, to perform some update or
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rebalancing operations on the nodes of this path. And these operations need to
be done in that order, with the leaf first and the root last. But without additional
measures, the basic search-tree structure we described does not contain any
way to reconstruct this sequence. There are several possibilities to save this
information.

1. A stack: If we push pointers to all traversed nodes on a stack during
descent to the leaf, then we can take the nodes from the stack in the correct
(reversed) sequence afterward. This is the cleanest solution under the
criterion of information economy; it does not put any additional
information into the tree structure. Also, the maximum size of the stack
needed is the height of the tree, and so for the balanced search trees, it is
logarithmic in the size of the search tree. An array-based stack for 200
items is really enough for all realistic applications because we will never
have 2100 items. This is also the solution implicitly used in any recursive
implementation of the search trees.

2. Back pointers: If each node contains not only the pointers to the left and
right subtrees, but also a pointer to the node above it, then we have a path
up from any node back to the root. This requires an additional field in each
node. As additional memory requirement, this is usually no problem
because memory is now large. But this pointer also has to be corrected in
each operation, which makes it again a source of possible programming
errors.

3. Back pointer with lazy update: If we have in each node an entry for the
pointer to the node above it, but we actually enter the correct value only
during descent in the tree, then we have a correct path from the leaf we just
reached to the root. We do not need to correct the back pointers during all
operations on the tree, but then the back pointer field can only be assumed
to be correct for the nodes on the path along which we just reached the
leaf.

Any of these methods will do and can be combined with any of the balancing
techniques. Another method that requires more care in its combination with
various balancing techniques is the following:

4. Reversing the path: We can keep back pointers for the path even without an
extra entry for a back pointer in each node by reversing the forward
pointers as we go down the tree. While going down in each node, if we go
left, the left pointer is used as back pointer and if we go right, the right
pointer is used as back pointer. When we go up again, the correct forward
pointers must be restored.
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This method does not use any extra space, so it found interest when space
limitations were an important concern. In the early years of data structures,
methods to work with trees without space for either back pointers or a stack
have been studied in a number of papers (Lindstrom 1973; Robson 1973; Dwyer
1974; Burkhard 1975; Clark 1975; Soule 1977; Morris 1979; Chen 1986; Chen
and Schott 1996). But this method causes many additional problems because
the search-tree structure is temporarily destroyed. Space is now almost never
a problem, so we list this method only for completeness, but advise against
its use.

2.6 Dealing with Nonunique Keys

In practical applications, it is not uncommon that there are several objects with
the same key. In database applications, we might have to store many objects
with the same key value; there it is a quite unrealistic assumption that each
object is uniquely identified by each of its attribute values, but there are queries
to list all objects with a given attribute value. So any realistic search tree has to
deal with this situation. The correct reaction is as follows:

{ find returns all objects whose key is the given query key in
output-sensitive time O(h + k), where h is the height of the tree and k is the
number of elements that find returns.

{ insert always inserts correctly in time O(h), where h is the height of the
tree.

{ delete deletes all items of that key in time O(h), where h is the height of
the tree.

The obvious way to realize this behavior is to keep all elements of the same
key in a linked list below the corresponding leaf of the search tree. Then find
just produces all elements of that list; insert always inserts at the beginning
of the list; only delete in time independent of the number of deleted items
requires additional information. For this, we need an additional node between
the leaf and the linked list, which contains pointers to the beginning and to the
end of the list; then we can transfer the entire list with O(1) operations to the
free list of our dynamic memory allocation structure. Again, this way we only
delete the references to the objects contained in this tree. If we need to delete
the objects themselves, we can do it by walking along this list, but not in O(1)
time independent of the number of objects.
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2.7 Queries for the Keys in an Interval

Up to now we have discussed only the query operation find, which, for a
given key, retrieves the associated object. Frequently, a more general type of
query is useful, in which we give a key interval [a, b[ and want to find all keys
that are contained in this interval. If the keys are subject to small errors, we
might not know the key exactly, so we want the nearest key value or the next
larger or next smaller key. Without such an extension, our find operation just
answers that there is no object with the given key in the current set, which is
correct but not helpful.

There are other types of dictionary structures, which we will discuss in
Chapter 9 on hash tables that cannot support this type of query. But for search
trees, it is a very minor modification, which can be done in several ways.

1. We can organize the leaves into a doubly linked list and then we can move
in O(1) time from a leaf to the next larger and the next smaller leaf. This
requires a change in the insertion and deletion functions to maintain the
list, but it is an easy change that takes only O(1) additional time. The query
method is also almost the same; it takes O(k) additional time if it lists a
total of k keys in the interval.

2. An alternative method does not change the tree structure at all but changes
the query function: we go down the tree with the query interval instead of
the query key. Then we go left if [a, b[< node->key; right if
node->key ≤ [a, b[; and sometimes we have to go both left and right if
a < node->key ≤ b. We store all those branches that we still need to
explore on a stack. The nodes we visit this way are the nodes on the search
path for the beginning of the query interval a, the search path for its end b,
and all nodes that are in the tree between these paths. If there are i interior
nodes between these paths, there must be at least i + 1 leaves between
these paths. So if this method lists k leaves, the total number of nodes
visited is at most twice the number of nodes visited in a normal find
operation plus O(k). Thus, this method is slightly slower than the first
method but requires no change in the insert and delete operations.

Next we give code for the stack-based implementation of interval find.
To illustrate the principle, we write here just the generic stack operations; these
need, of course, to be filled in. The output of the operation is potentially long,
so we need to return many objects instead of a single result. For this, we create
a linked list of the (key, object) pairs found in the query interval, which is linked
here by the right pointers. After use of the results, the nodes of this list need
to be returned to avoid a memory leak.
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tree_node_t *interval_find(tree_node_t *tree,
key_t a, key_t b)

{ tree_node_t *tr_node;
tree_node_t *result_list, *tmp;
result_list = NULL;
create_stack();
push(tree);
while( !stack_empty() )
{ tr_node = pop();

if( tr_node->right == NULL )
{ /* reached leaf, now test */

if( a <= tr_node->key &&
tr_node->key < b )

{ tmp = get_node();
/* leaf key in interval */
tmp->key = tr_node->key; /*
copy to output list */
tmp->left = tr_node->left;
tmp->right = result_list;
result_list = tmp;

}
} /* not leaf, might have to follow down */
else if ( b <= tr_node->key )
/* entire interval left */

push( tr_node->left );
else if ( tr_node->key <= a )
/* entire interval right */

push( tr_node->right );
else /* node key in interval,

follow left and right */
{ push( tr_node->left );

push( tr_node->right );
}

}
remove_stack();
return( result_list );

}

Listing the keys in an interval is a one-dimensional range query. Higher-
dimensional range queries will be discussed in Chapter 4. In general, a range
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query gives some set, the range, of a specific type, here intervals, and asks for all
(key, object) pairs whose key lies in that range. For more complex ranges, such
as rectangles, circles, halfplanes, and boxes, this is an important type of query.

2.8 Building Optimal Search Trees

Occasionally it is useful to construct an optimal search tree from a given set
of (key, object) pairs. This can be viewed as taking search trees as static data
structure: there are no inserts and deletes, so there is no problem of rebalancing
the tree, but if we build it, knowing the data in advance, then we should build it
as good as possible. The primary criterion is the height; because a search tree
of height h has at most 2h leaves, an optimal search tree for a set of n items has
height �log n�, where the log, as always, is taken to base 2.

We assume that the (key, object) pairs are given in a sorted list, ordered
with increasing keys. There are two natural ways to construct a search tree of
optimal height from a sorted list: bottom-up and top-down.

The bottom-up construction is easier: one views the initial list as list of
one-element trees. Then one goes repeatedly through the list, joining two
consecutive trees, until there is only one tree left. This requires only a bit
of bookkeeping to insert the correct comparison key in each interior node.
The disadvantage of this method is that the resulting tree, although of optimal
height, might be quite unbalanced: if we start with a set of n = 2m + 1 items,
then the root of the tree has on one side a subtree of 2m items and on the other
side a subtree of 1 item.

Next is the code for the bottom-up construction. We assume here that the
list items are themselves of type tree node t, with the left entry pointing
to the object, the key containing the object key, and the right entry pointing
to the next item, or NULL at the end of the list. We first create a list, where all
the nodes of the previous list are attached as leaves, and then maintain a list
of trees, where the key value in the list is the smallest key value in the tree
below it.

tree_node_t *make_tree(tree_node_t *list)
{ tree_node_t *end, *root;

if( list == NULL )
{ root = get_node(); /* create empty tree */

root->left = root->right = NULL;
return( root );

}
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else if( list->right == NULL )
return( list ); /* one-leaf tree */

else /* nontrivial work required: at least
two nodes */

{ root = end = get_node();
/* convert input list into leaves below

new list */
end->left = list;
end->key = list->key;
list = list->right;
end->left->right = NULL;
while( list != NULL )
{ end->right = get_node();

end = end->right;
end->left = list;
end->key = list->key;
list = list->right;
end->left->right = NULL;

}
end->right = NULL;
/* end creating list of leaves */
{ tree_node_t *old_list, *new_list, *tmp1,

*tmp2;
old_list = root;
while( old_list->right != NULL )
{ /* join first two trees from

old_list */
tmp1 = old_list;
tmp2 = old_list->right;
old_list = old_list->right->right;
tmp2->right = tmp2->left;
tmp2->left = tmp1->left;
tmp1->left = tmp2;
tmp1->right = NULL;
new_list = end = tmp1;
/* new_list started */
while( old_list != NULL )
/* not at end */
{ if( old_list->right == NULL )
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/* last tree */
{ end->right = old_list;

old_list = NULL;
}
else /* join next two trees of

old_list */
{ tmp1 = old_list;

tmp2 = old_list->right;
old_list =

old_list-> right->right;
tmp2->right = tmp2->left;
tmp2->left = tmp1->left;
tmp1->left = tmp2;
tmp1->right = NULL;
end->right = tmp1;
end = end->right;

}
} /* finished one pass through

old_list */
old_list = new_list;

} /* end joining pairs of trees
together */

root = old_list->left;
return_node( old_list );

}
return( root );

}
}

Theorem. The bottom-up method constructs a search tree of optimal height
from an ordered list in time O(n).

The first half of the algorithm, duplicating the list and converting all the orig-
inal list nodes to leaves, takes obviously O(n); it is just one loop over the
length of the list. The second half has a more complicated structure, but in
each execution of the body of the innermost loop, one of the n interior nodes
created in the first half is removed from the current list and put into a fin-
ished subtree, so the innermost part of the two nested loops is executed only n

times.
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Bottom-Up Construction of an Optimal Tree from a Sorted List

The top-down construction is easiest to describe recursively: divide the data
set in the middle, create optimal trees for the lower and the upper halves, and
join them together. This division is very balanced; in each subtree the number
of items left and right differs by at most one, and it also results in a tree of
optimal height. But if we implement it this way, and the data is given as list, it
takes �(n log n) time, because we get an overhead of �(n) in each recursion
step to find the middle of the list. But there is a nice implementation with O(n)
complexity using a stack. We write here the generic stack operations push,
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pop, stack empty, create stack, remove stack to illustrate how
this method works. In a concrete implementation they should be replaced by
one of the methods discussed in Chapter 1. In this case an array-based stack is
the best method, and one should declare the stack as local array in the function,
avoiding all function calls.

Bottom-Up and Top-Down Optimal Tree with 18 Leaves

The idea of our top-down construction is that we first construct the tree “in
the abstract,” without filling in any key values or pointers to objects. Then we
do not need the time to find the middle of the list; we just need to keep track of
the number of elements that should go into the left and right subtrees. We can
build this abstract tree of the required shape easily using a stack. We initially
put the root on the stack, labeled with the required tree size; then we continue,
until the stack is empty, to take nodes from the stack, attach them to two newly
created nodes labeled with half the size, and put the new nodes again on the
stack. If the size reaches one, we have a leaf, so node should not be put back
on the stack but should be filled with the next key and object from the list. The
problem is to fill in the keys of the interior nodes, which become available only
when the leaf is reached. For this, each item on the stack needs two pointers,
one to the node that still needs to be expanded and one to the node higher up in
the tree, where the smallest key of leaves below that node should be inserted as
comparison key. Also, each stack item contains a number, the number of leaves
that should be created below that node.

When we perform that step of taking a node from the stack and creating
its two lower neighbors, the right-lower neighbor should and always go first
on the stack, and then the left, so that when we reach a leaf, it is the leftmost
unfinished leaf of the tree. This pointer for the missing key value propagates
into the left subtree of the current node (where that smallest node comes from),
whereas the smallest key from the right subtree should become the comparison
key of the current node.
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For this stack, an array-based stack of size 100 will be entirely sufficient
because the size of the stack is the height of the tree, which is log n, and we
can assume n < 2100.

tree_node_t *make_tree(tree_node_t *list)
{ typedef struct { tree_node_t *node1;

tree_node_t *node2;
int number; }
st_item;

st_item current, left, right;
tree_node_t *tmp, *root;
int length = 0;
for( tmp = list; tmp != NULL;
tmp = tmp->right )

length += 1; /* find length of list */
create_stack(); /* stack of st_item:

replace by array */
root = get_node();
/* put root node on stack */
current.node1 = root;
current.node2 = NULL;
/* root expands to length leaves */
current.number = length;
push( current );
while( !stack_empty() )
/* there is still unexpanded node */
{ current = pop();

if( current.number > 1 )
/* create (empty) tree nodes */
{ left.node1 = get_node();

left.node2 = current.node2;
left.number = current.number / 2;
right.node1 = get_node();
right.node2 = current.node1;
right.number = current.number -

left.number;
(current.node1)->left = left.node1;
(current.node1)->right = right.node1;
push( right );
push( left );
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}
else /* reached a leaf, must be filled

with list item */
{ (current.node1)->left = list->left;

{/* fill leaf from list */}
(current.node1)->key = list->key;
(current.node1)->right = NULL;
if( current.node2 != NULL )

/* insert comparison key in
interior node */

(current.node2)->key = list->key;
tmp = list;
/* unlink first item from list */
list = list->right;
/* content has been copied to */
return_node(tmp);
/* leaf, so node is returned */

}
}
return( root );

}

To analyze this algorithm, we just observe that in each step on the stack,
we create either two new nodes, and there are only n − 1 new nodes created in
total, or we attach a list item as leaf, and there are only n list items. So the total
complexity is O(n).

Theorem. The top-down method constructs a search tree of optimal height
from an ordered list in time O(n).

Several other methods to construct the top-down optimal tree from a list or
to convert a given tree in a top-down optimal tree have been discussed in Martin
and Ness (1972), Day (1976), Chang and Iyengar (1984), Stout and Warren
(1986), Gerasch (1988), Korah and Kaimal (1992), and Maelbráncke and Olivié
(1994). They differ mostly in the amount of additional space needed, which in
our algorithm is the stack of size

⌈
log2 n

⌉
. Because this is a very minor amount,

it is not an important consideration. One cannot avoid a worst-case complexity
of �(n) if one wants to maintain an optimal search tree under insertions and
deletions.
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Top-Down Construction of an Optimal Tree from a Sorted List
First Steps, until the Left Half Is Finished

2.9 Converting Trees into Lists

Occasionally one also needs the other direction, converting a tree into an
ordered list. This is very simple, using a stack for a trivial depth-first search
enumeration of the leaves in decreasing order, which we insert in front of
the list. This converts in O(n) time a search tree with n leaves into a list of n
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elements in increasing order. Again we write the generic stack functions, which
in the specific implementation should be replaced by the correct method. If one
knows in advance that the height of the tree is not too large, an array is the
preferred method; the size of the array needs to be at least as large as the height
of the tree.

tree_node_t *make_list(tree_node_t *tree)
{ tree_node_t *list, *node;

if( tree->left == NULL )
{ return_node( tree );

return( NULL );
}
else
{ create_stack();

push( tree );
list = NULL;
while( !stack_empty() )
{ node = pop();

if( node->right == NULL )
{ node->right = list;

list = node;
}
else
{ push( node->left );

push( node->right );
return_node( node );

}
}
return( list );

}
}

2.10 Removing a Tree

We also need to provide a method to remove the tree when we no longer need it.
As we already remarked for the stacks, it is important to free all nodes in such a
dynamically allocated structure correctly, so that we avoid a memory leak. We
cannot expect to remove a structure of potentially large size in constant time,
but time linear in the size of the structure, that is, constant time per returned
node, is easily reached. An obvious way to do this is using a stack, analogous



2.10 Removing a Tree 49

to the previous method to covert a tree into a sorted list. A more elegant method
is the following:

void remove_tree(tree_node_t *tree)
{ tree_node_t *current_node, *tmp;

if( tree->left == NULL )
return_node( tree );

else
{ current_node = tree;

while(current_node->right != NULL )
{ if( current_node->left->right == NULL )

{ return_node( current_node->left );
tmp = current_node->right;
return_node( current_node );
current_node = tmp;

}
else
{ tmp = current_node->left;

current_node->left = tmp->right;
tmp->right = current_node;
current_node = tmp;

}
}
return_node( current_node );

}
}

This essentially performs rotations in the root till the left-lower neighbor is
a leaf; then it returns that leaf, moves the root down to the right, and returns the
previous root.
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Balanced Search Trees

In the previous chapter, we discussed search trees, giving find, insert, and
delete methods, whose complexity is bounded by O(h), where h is the height
of the tree, that is, the maximum length of any path from the root to a leaf. But
the height can be as large as n; in fact, a linear list can be a correct search tree,
but it is very inefficient. The key to the usefulness of search trees is to keep
them balanced, that is, to keep the height bounded by O(log n) instead of O(n).
This fundamental insight, together with the first method that achieved it, is due
to Adel’son-Vel’skiı̆ and Landis (1962), who in their seminal paper invented
the height-balanced tree, now frequently called AVL tree. The height-balanced
tree achieves a height bound h ≤ 1.44 log n + O(1). Because any tree with n

leaves has height at least log n, this is already quite good. There are many other
methods that achieve similar bounds, which we will discuss in this chapter.

3.1 Height-Balanced Trees

A tree is height-balanced if, in each interior node, the height of the right subtree
and the height of the left subtree differ by at most 1. This is the oldest balance
criterion for trees, introduced and analyzed by G.M. Adel’son-Vel’skiı̆ and
E.M. Landis (1962), and still the most popular variant of balanced search trees
(AVL trees). A height-balanced tree has necessarily small height.

Theorem. A height-balanced tree of height h has at least(
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leaves.

A height-balanced tree with n leaves has height at most⌈
log 1+√

5
2

n
⌉

= ⌈cFib log2 n
⌉ ≈ 1.44 log2 n,

where cFib = (log2( 1+√
5

2 ))−1.

50
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Proof. Let Fh denote a height-balanced tree of height h with minimal number
of leaves. Either the left or the right subtree of root(Fh) must have height
h − 1, and because the tree is height balanced, the other subtree has height at
least h − 2. So the treeFh has at least as many leaves as the treesFh−1 andFh−2

together. And one can construct recursively a sequence of height-balanced trees
F ibh, the Fibonacci trees, for which equality holds: just choose as left subtree
of F ibh a tree F ibh−1 and as right subtree a tree F ibh−2. Thus, the number
of leaves leaves(h) of the height-balanced trees with minimum number of
leaves satisfies the recursion leaves(h) = leaves(h − 1) + leaves(h − 2), with
the initial values leaves(0) = 1 and leaves(1) = 2. Such recursions can be
solved by a standard technique described in the Appendix; this recursion has

the solution leaves(h) =
(
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)h

−
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) (
1−√

5
2

)h

.

Fibonacci Trees of Height 0 to 5

Thus, a height-balanced search tree is, at least for find operations, only a
small factor (less than 3

2 ) slower than an optimal search tree. But we need to
explain how to maintain this property of height balancedness under insert
and delete operations.

For this, we need to keep an additional information in each interior node of
the search tree – the height of the subtree below that node. So the structure of
a node is as follows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
int height;

/* possibly other information */
} tree_node_t;

The height of a node *n is defined recursively by the following rules:

{ if *n is a leaf (n->left = NULL), then n->height = 0,
{ else n->height is one larger than the maximum of the height of the left

and right subtrees:
n->height = 1 + max(n->left->height, n->right->height).
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The height information must be corrected whenever the tree changes and must
be used to keep the tree height balanced.

7

6 5

4 5 3 4

3 2 4 3 2 2 3 2

1 2 0 1 3 2 1 2 1 1 1 0 1 2 0 1

0 0 1 1 0 0 2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0

Height-Balanced Tree with Node Heights

The tree changes only by insert and delete operations, and by any such
operation, the height can change only for the nodes that contain the changed
leaf in their subtree, that is, only for the nodes on the path from the root to the
changed leaf. As discussed in Section 2.5, we need to follow this path from the
leaf back upward to the root and recompute the height information and possibly
restore the balance condition.

At the leaf that was changed, or in the case of an insert, the two neighboring
leaves, the height is 0. Now following the path up to the root, we have in each
node the following situation: the height information in the left and right subtrees
is already correct, and both subtrees are already height balanced: one because
we restored balance in the previous step of going up and the other because
nothing changed in that subtree. Also, the heights of both subtrees differ by at
most 2 because previous to the update operation, the height differed by at most
1 and the update changed the height by at most 1. We now have to balance this
node and update its height before we can go further up.

If *n is the current node, there are the following possibilities:

1. |n->left->height − n->right->height| ≤ 1.
In this case, no rebalancing is necessary in this node. If the height also did
not change, then from this node upward nothing changed and we can finish
rebalancing; otherwise, we need to correct the height of *n and go up to
the next node.

2. |n->left->height − n->right->height| = 2.
In this case, we need to rebalance *n. This is done using the rotations
introduced in Section 2.2. The complete rules are as follows:
2.1 If n->left->height = n->right->height + 2 and

n->left->left->height = n->right->height + 1.
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Perform right rotation around n, followed by recomputing the height
in n->right and n.

2.2 If n->left->height = n->right->height + 2 and
n->left->left->height = n->right->height.
Perform left rotation around n->left, followed by a right rotation
around n, followed by recomputing the height in n->right,
n->left, and n.

2.3 If n->right->height = n->left->height + 2 and
n->right->right->height = n->left->height + 1.
Perform left rotation around n, followed by recomputing the height in
n->left and n.

2.4 If n->right->height = n->left->height + 2 and
n->right->right->height = n->left->height.
Perform right rotation around n->right, followed by a left rotation
around n, followed by recomputing the height in n->right,
n->left, and n.
After performing these rotations, we check whether the height of n
changed by this: if not, we can finish rebalancing; otherwise we
continue with the next node up, till we reach the root.

[a,b[

h+1

[b,c[

h or h+1

[c,d[

h

left right

key heightb h+2

left right

key heightc ?

[a,b[

h+1

[b,c[

h or h+1

[c,d[

h

left right

key heightb h+2 or h+3

left right

key heightc h+1 or h+2

right rotation

Rebalancing a Node in a Height-Balanced Tree: Case 2.1

Since we do only O(1) work on each node of the path, at most two rotations and
at most three recomputations of the height, and the path has length O(log n),
these rebalancing operations take only O(log n) time. But we still have to show
that they do restore the height balancedness.

We have to show this only for one step and then the claim follows for the
entire tree by induction. Let *nold denote a node before the rebalancing step,
whose left and right subtrees are already height balanced but their height differs
by 2, and let *nnew be the same node after the rebalancing step. By symmetry
we can assume that

nold->left->height = nold->right->height + 2.
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Rebalancing a Node in a Height-Balanced Tree: Case 2.2

Let h = nold->right->height. Because nold->left->height =
h + 2, we have max(nold->left->left->height, nold->left->right
->height) = h + 1, and because nold->left is height balanced, there are
the following cases:

(a) nold->left->left->height = h + 1 and
nold->left->right->height ∈ {h, h + 1}.
By rule 2.1 we perform a right rotation around nold.
By this nold->left->left becomes nnew->left,
nold->left->right becomes nnew->right->left, and
nold->right becomes nnew->right->right.
So nnew->left->height = h + 1,
nnew->right->left->height ∈ {h, h + 1},
nnew->right->right->height = h.
Thus, the node nnew->right is height-balanced, with
nnew->right->height ∈ {h + 1, h + 2}.
Therefore, the node nnew is height-balanced.

(b) nold->left->left->height = h and
nold->left->left->height = h + 1.
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By rule 2.2 we perform left rotation around nold->left, followed by a
right rotation around nold. By this
nold->left->left becomes nnew->left->left,
nold->left->right->left becomes nnew->left->right,
nold->left->right->right becomes nnew->right->left, and
nold->right becomes nnew->right->right.
So nnew->left->left->height = h,
nnew->left->right->height ∈ {h − 1, h},
nnew->right->left->height ∈ {h − 1, h},
nnew->right->right->height = h.
Thus, the nodes nnew->left and nnew->right are height-balanced,
with nnew->left->height = h + 1 and
nnew->right->height = h + 1.
Therefore, the node nnew is height balanced.

This completes the proof that rebalancing can be done for height-balanced trees
after insertions and deletions in O(log n) time.

Theorem. The height-balanced tree structure supports find, insert, and
delete in O(log n) time.

A possible implementation of the insert in height-balanced trees is now as
follows:

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)
{ tree_node_t *tmp_node;

int finished;
if( tree->left == NULL )
{ tree->left = (tree_node_t *) new_object;

tree->key = new_key;
tree->height = 0;
tree->right = NULL;

}
else
{ create_stack();

tmp_node = tree;
while( tmp_node->right != NULL )
{ push( tmp_node );
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if( new_key < tmp_node->key )
tmp_node = tmp_node->left;

else
tmp_node = tmp_node->right;

}
/* found the candidate leaf. Test whether

key distinct */
if( tmp_node->key == new_key )

return( -1 );
/* key is distinct, now perform

the insert */
{ tree_node_t *old_leaf, *new_leaf;

old_leaf = get_node();
old_leaf->left = tmp_node->left;
old_leaf->key = tmp_node->key;
old_leaf->right = NULL;
old_leaf->height = 0;
new_leaf = get_node();
new_leaf->left = (tree_node_t *)
new_object;
new_leaf->key = new_key;
new_leaf->right = NULL;
new_leaf->height = 0;
if( tmp_node->key < new_key )
{ tmp_node->left = old_leaf;

tmp_node->right = new_leaf;
tmp_node->key = new_key;

}
else
{ tmp_node->left = new_leaf;

tmp_node->right = old_leaf;
}
tmp_node->height = 1;

}
/* rebalance */
finished = 0;
while( !stack_empty() && !finished )
{ int tmp_height, old_height;

tmp_node = pop();
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old_height= tmp_node->height;
if( tmp_node->left->height -

tmp_node->right->height == 2 )
{ if( tmp_node->left->left->height -

tmp_node->right->height == 1 )
{ right_rotation( tmp_node );

tmp_node->right->height =
tmp_node->right->left->height + 1;
tmp_node->height =

tmp_node->right->height + 1;
}
else
{ left_rotation( tmp_node->left );

right_rotation( tmp_node );
tmp_height =

tmp_node->left->left->height;
tmp_node->left->height =

tmp_height + 1;
tmp_node->right->height =

tmp_height + 1;
tmp_node->height = tmp_height + 2;

}
}
else if( tmp_node->left->height -

tmp_node->right->height == -2 )
{ if( tmp_node->right->right->height -

tmp_node->left->height == 1 )
{ left_rotation( tmp_node );

tmp_node->left->height =
tmp_node->left->right->height + 1;
tmp_node->height =

tmp_node->left->height + 1;
}
else
{ right_rotation( tmp_node->right );

left_rotation( tmp_node );
tmp_height =

tmp_node->right->right->height;
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tmp_node->left->height =
tmp_height + 1;

tmp_node->right->height =
tmp_height + 1;

tmp_node->height = tmp_height + 2;
}

}
else /* update height even if there

was no rotation */
{ if( tmp_node->left->height >

tmp_node->right->height )
tmp_node->height =
tmp_node->left->height + 1;

else
tmp_node->height =
tmp_node->right->height + 1;

}
if( tmp_node->height == old_height )

finished = 1;
}
remove_stack();

}
return( 0 );

}

The basic delete function needs the same modifications, with the same
rebalancing code while going up the tree. There is, of course, no change at all
to the find function. Because we know that the height of the stack is bounded
by 1.44 log n and n < 2100, this is a situation where an array-based stack of
fixed maximum size is a reasonable choice.

In our implementation we chose to have in each node a field with the
height of the node as balance information. It is possible to maintain height-
balanced trees with less information in each node; each node really needs as
balance information only the difference of left and right height, so one of three
states. In older literature, various methods to minimize this space per node were
discussed, but because space stopped being an important issue, it is now always
preferable to have some explicit (and easily checkable) information.

Further analysis of the rebalancing transformation shows that the rotations
can occur during an insert only on at most one level, whereas during a
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delete they might occur on every level if, for example, a leaf of minimum
depth in a Fibonacci tree is deleted. The number of rotations or changed nodes
has been studied by a number of papers, but it is of little significance for the
actual performance of the structure. Also, even if there is only one level that
requires rebalancing during an insert, there are many levels in which the nodes
change because the height information must be updated.

The average depth of the leaves in a Fibonacci tree with n leaves is even bet-
ter than 1.44 log n. By the recursive definition of the tree F ibh, it is easy to see
that the sum depthsum(h) of the depths of the leaves of F ibh satisfies the recur-
sion depthsum(h) = depthsum(h − 1) + depthsum(h − 2) + leaves(h), where
leaves(h) is the number of leaves of F ibh, which we determined from the
recursion leaves(h) = leaves(h − 1) + leaves(h − 2) in the beginning of this
section. One can eliminate the function leaves from these two linear recursions
to obtain

depthsum(h) − 2 depthsum(h − 1) − depthsum(h − 2)

+ 2 depthsum(h − 3) + depthsum(h − 4) = 0.

The initial values are depthsum(0) = 0, depthsum(1) = 2, depthsum(2) = 5,
and depthsum(3) = 12. This recursion can be solved with standard methods
(see Appendix) to give
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+ o(1).

Thus the average depth of F ibh is very near to the optimal depth of any binary
tree with that number of leaves: depthsum(h)

leaves(h) ≈ 1.04 log2 (leaves(h)) + O(1).
This, however, is not true for height-balanced trees in general. In 1990,

R. Klein and D. Wood constructed height-balanced trees whose average depth
is almost the same as the worst-case depth of height-balanced trees (Klein and
Wood 1990). So we cannot hope for any average-case improvement. They gave
strong bounds for the maximum average depth of a height-balanced tree with n

leaves. We will demonstrate here only the construction of ‘bad’ height-balanced
trees.

Theorem. There are height-balanced trees with n leaves and average depth
cFib log2 n − o(log n), where cFib = (log( 1+√

5
2 ))−1.
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Proof. Let Binh denote the complete binary tree of height h. In Binh, the
left and right subtrees of the root are both Binh−1; in F ibh, the left subtree
is F ibh−1 and the right subtree is F ibh−2. We now define a new family of
height-balanced trees Gk,h by replacing a subtree of height h − k containing
the vertices of maximum depth by a complete binary tree of the same height.
A recursive construction of these trees is the following:

{ for k = 0, we define G0,h = Binh, and
{ for k ≥ 1, we define Gk,h as the tree with left subtree Gk−1,h−1 and right

subtree F ibh−2.

The tree Gk,h is a height-balanced tree of height h with

leaves(Gh,k) = leaves(F ibh) − leaves(F ibh−k) + leaves(Binh−k)

= leaves(h) − leaves(h − k) + 2h−k
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+ 2h−k + o(1),

and the sum of the depths of the leaves is

depthsum(Gh,k) = depthsum(F ibh)

− depthsum(F ibh−k) − k · leaves(F ibh−k)

+ depthsum(Binh−k) + k · leaves(Binh−k)

= depthsum(h) − depthsum(h − k) − k leaves(h − k)

+ (h − k)2h−k + k2h−k.

Denote φ = 1+√
5

2 and γ = 2+√
5

5 , δ = 3
5
√

5
and then we have

leaves(Gh,k) = φh − φh−k + 2h−k + o(1)

= φh + 2h−k + o(φh−k),

depthsum(Gh,k) = γ hφh + δφh − γ (h − k)φh−k − δφh−k − kφh−k

+h2h−k + o(1)

= γ hφh + h2h−k + O(φh).

We choose k = k(h) = (1 − log2 φ)h − log2 h; then, h − k = (log2 φ)h +
log2(h) and 2h−k = hφh. Then,

leaves(Gh,k(h)) = hφh + O(φh),

depthsum(Gh,k(h)) = h2φh + O(hφh).
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Therefore,

log2

(
leaves(Gh,k(h))

) = log2(hφh) + o(1) = (log2 φ)h + log2 h + o(1),

so with n = leaves(Gh,k(h)),

depthsum(Gh,k(h)) = 1

log2 φ
n log2 n ≈ 1.44n log2 n.

Several variants of the height-balanced trees were proposed relaxing the
balance condition to some larger (but still constant) upper bound for the height
difference in each node (Foster 1973; Karlton et al. 1976) or strengthening
it to require that the nodes two levels below still have only height difference
at most one (Guibas and Sedgewick 1978), but neither gives any interesting
advantage. One-sided height-balanced trees, in which additionally the height
of the right subtree is never smaller than the height of the left subtree, were
subject of considerable study (Hirschberg 1976; Kosaraju 1978; Ottmann and
Wood 1978; Zweben and McDonald 1978; Räihä and Zweben 1979), because
it was not obvious how to update this structure in O(log n) time. But once that
problem was solved, they lost interest, because they do not give any algorithmic
advantages over the usual height-balanced trees.

3.2 Weight-Balanced Trees

When Adel’son-Vel’skiı̆ and Landis invented the height-balanced search trees
in 1962, computers were extremely memory limited, so the applicability of the
structure at that time was small and only very few other papers on balanced
search trees1 appeared in the 1960s. But by 1970, technological development
made it a feasible and useful structure, generating much interest in the topic,
and several alternative ways to maintain search trees at O(log n) height were
proposed. One natural alternative balance criterion is to balance the weight,
that is, the number of leaves, instead of the height of the subtrees. Weight-
balanced trees were introduced as “trees of bounded balance” or BB[α]-trees
by Nievergelt and Reingold (1973) and Nievergelt (1974), and further studied
in Baer (1975) and Blum and Mehlhorn (1980). Another variant of weight
balance was proposed in Cho and Sahni (2000).

The weight of a tree is the number of its leaves, so in a weight-balanced tree,
the weight of the left and right subtrees in each node should be “balanced”.

1But there was a fashion of analyzing the height distribution of search trees without rebalancing
under random insertions and deletions.
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The top-down optimal search trees constructed in Section 2.7 are in this way
as balanced as possible, with the left and right weights differing by at most
1; but we cannot maintain such a strong balance condition only with O(log n)
rebalancing work during insertions and deletions. Instead of bounding the
difference, the correct choice is to bound the ratio of the weights. This gives
an entire family of balance conditions, the α-weight-balanced trees, where for
each subtree the left and right sub-subtrees have each at least a fraction of
α of the total weight of the subtree (and at most a fraction of (1 − α)). An
α-weight-balanced tree has necessarily small height.

Theorem. An α-weight-balanced tree of height h ≥ 2 has at least
(

1
1−α

)h
leaves.

An α-weight-balanced tree with n leaves has height at most log 1
1−α

n =(
log2

(
1

1−α

))−1
log2 n.

Proof. Let Th be an α-weight-balanced tree of height h with minimum number
of leaves. Either left or right subtree of Th must be of height h − 1, so the
weight of that subtree is at least leaves(Th−1) and at most (1 − α) leaves(Th).

38
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1 1 1 1

0.29-Weight-Balanced Tree with Node Weights

So the proof of the O(log n) height bound is even simpler than for the
height-balanced trees. But the analysis of the rebalancing algorithm is more
complicated and we cannot maintain the α-weight-balanced condition for all
α. Already Nievergelt and Reingold (1973) observed α < 1 − 1√

2
as necessary

condition for the rebalancing algorithm to work. But α should also not be chosen
very small, otherwise rebalancing fails for small cases. Blum and Mehlhorn
gave 2

11 < α as lower bound (Blum and Mehlhorn 1980), but indeed if we
are willing to use a different rebalancing method for small trees, we could
choose α smaller. In our model, we restrict ourselves to the small interval
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α ∈ [ 2
7 , 1 − 1√

2
] ⊃ [0.286, 0.292], but with additional work for the rebalancing

of the trees of small weight, one could choose α arbitrary small.
To describe the rebalancing algorithm in this class, we first need to choose an

α and a second parameter ε subject to ε ≤ α2 − 2α + 1
2 . As in height-balanced

trees, we need to keep some additional information in each interior node of the
search tree – the weight of the subtree below that node. So the structure of a
node is as follows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
int weight;

/* possibly other information */
} tree_node_t;

The weight of a node *n is defined recursively by the following rules:

{ If *n is a leaf (n->left = NULL), then n->weight = 1.
{ Else n->weight is the sum of the weight of the left and right subtrees:

n->weight = n->left->weight + n->right->weight.

The node *n is α-weight-balanced if
n->left->weight ≥ α n->weight and n->right->weight ≥
α n->weight,
or equivalently α n->left->weight ≤ (1 − α) n->right->weight
and (1 − α) n->left->weight ≥ α n->right->weight.

Again the weight information must be corrected whenever the tree is changed
and is used to keep the tree weight balanced. And the information changes only
by insert and delete operations, and only in those nodes on the path from the
changed leaf to the root, and there only by at most 1. So, as in the height-
balanced trees (Section 3.1) we use one of the methods of Section 2.5 to follow
the path up to the root and restore in each node the balance condition, using
inductively that below the current node the subtrees are already balanced.

If *n is the current node and we already corrected the weight of *n, there
are the following cases for the rebalancing algorithm:

1. n->left->weight ≥ α n->weight and
n->right->weight ≥ α n->weight.
In this case, no rebalancing is necessary in this node; we go up to the next
node.
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2. n->right->weight < α n->weight
2.1 If n->left->left->weight > (α + ε)n->weight.

Perform a right rotation around n, followed by recomputing the weight
in n->right.

2.2 Else perform a left rotation around n->left, followed by a right
rotation around n, followed by recomputing the weight in n->left
and n->right.

3. n->left->weight < α n->weight
3.1 If n->right->right->weight > (α + ε)n->weight.

Perform a left rotation around n, followed by recomputing the weight
in n->left.

3.2 Else perform a right rotation around n->right, followed by a left
rotation around n, followed by recomputing the weight in n->left
and n->right.

Notice that, different from the height-balanced trees, we must always follow the
path up to the root and cannot stop early because the weight information, unlike
the height information, changes necessarily along the whole path. Because we
do only O(1) work on each node of the path, at most two rotations and at most
three recomputations of the weight and the path has length O(log n), these
rebalancing operations take only O(log n) time. But again we still have to show
that they do restore the α-weight-balancedness.

Let *nold be the node before the rebalancing step and *nnew the same
node after the rebalancing step. Denote the weight nold->weight = nnew->
weight by w. We need to analyze only case 2; in case 1, the node is already
balanced, and case 3 follows from case 2 by symmetry. In case 2, we have
nold->right->weight < αw, but the weight changed only by 1 and before
that the node was balanced; so nold->right->weight = αw − δ for some
δ ∈]0, 1]. We now have to check for cases 2.1 and 2.2 that all nodes changed
in that step are balanced afterwards.

2.1 We have nold->left->left->weight > (α + ε)w and perform a
right rotation around nold. By this

nold->left->left becomes nnew->left,
nold->left->right becomes nnew->right->left, and
nold->right becomes nnew->right->right.

Because nold->left was balanced, with
nold->left->weight = (1 − α)w + δ, we have

nnew->right->left->weight ∈
[α(1 − α)w + αδ, (1 − 2α − ε)w + δ],

nnew->right->right->weight = αw − δ,
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nnew->right->weight ∈ [α(2 − α)w − (1 − α)δ, (1 − α − ε)w],
nnew->left->weight ∈ [(α + ε)w, (1 − α)2w + (1 − α)δ].

Now for nnew->right the balance conditions are
a. α nnew->right->left->weight

≤ (1 − α) nnew->right->right->weight, so
α((1 − 2α − ε)w + δ) ≤ (1 − α)(αw − δ),
which is satisfied for (α2 + αε)w ≥ δ; and

b. (1 − α) nnew->right->left->weight
≥ α nnew->right->right->weight, so

(1 − α) (α(1 − α)w + αδ ) ≥ α (αw − δ ),
which is satisfied for 0 ≤ α ≤ 3−√

5
2 .

And for nnew the balance conditions are
c. α nnew->left->weight ≤ (1 − α) nnew->right->weight, so

α((1 − α)2w + (1 − α)δ) ≤ (1 − α)(α(2 − α)w − (1 − α)δ),
which is satisfied for αw ≥ δ; and

d. (1 − α) nnew->left->weight ≥ α nnew->right->weight, so
(1 − α) ((α + ε)w) ≥ α ((1 − α − ε)w),

which is satisfied for all α, with strict inequality for ε > 0. Together this
shows that in the interesting interval α ∈ [0, 1 − 1√

2
], at least if the

subtree is not too small (for α2w ≥ 1) in case 2.1, the α-weight-balance is
restored.

2.2 We have nold->left->left->weight ≤ (α + ε)w and perform a
left rotation around nold->left, followed by a right rotation around nold.
By this

nold->left->left becomes nnew->left->left,
nold->left->right->left becomes nnew->left->right,
nold->left->right->right becomes nnew->right->left,

and
nold->right becomes nnew->right->right.

Because nold->left was balanced, with
nold->left->weight = (1 − α)w + δ, we have by the assumption of
case 2.2

nnew->left->left->weight ∈ [α(1 − α)w + αδ, (α + ε)w],
nold->left->right->weight ∈

[(1 − 2α − ε)w + δ, (1 − α)2w + (1 − α)δ],
nnew->left->right->weight, nnew->right->left->weight

∈ [α(1 − 2α − ε)w + αδ, (1 − α)3w + (1 − α)2δ],
nnew->right->right->weight = αw − δ,
nnew->left->weight ∈
[(2α − 3α2 + α3)w + α(2 − α)δ, (1 − 2α + 2α2 + αε)w + (1 − α)δ],
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nnew->right->weight ∈
[(2α − 2α2 − αε)w − (1 − α)δ, (1 − 2α + 3α2 − α3)w + α(α − 2)δ].
Then the balance conditions for nnew->left are
a. α nnew->left->left->weight

≤ (1 − α) nnew->left->right->weight, so
α ((α + ε)w) ≤ (1 − α) (α(1 − 2α − ε)w + αδ) ,

which is satisfied for α ∈ [0, 1 − 1√
2
[ and ε ≤ α2 − 2α + 1

2 ; and
b. (1 − α) nnew->left->left->weight

≥ α nnew->left->right->weight, so
(1 − α) (α(1 − α)w + αδ) ≥ α

(
(1 − α)3w + (1 − α)2δ

)
,

which is satisfied for α ∈ [0, 1].
The balance conditions for nnew->right are
c. α nnew->right->left->weight

≤ (1 − α) nnew->right->right->weight, so
α
(
(1 − α)3w + (1 − α)2δ

) ≤ (1 − α) (αw − δ) ,

which is satisfied at least for (2 − α)α2w ≥ (1 + α − α2)δ; and
d. (1 − α) nnew->right->left->weight

≥ α nnew->right->right->weight, so
(1 − α) (α(1 − 2α − ε)w + αδ) ≥ α (αw − δ),
which is satisfied for α ∈ [0, 1 − 1√

2
[ and ε ≤ 2α2 − 4α + 1.

And the balance conditions for nnew are
e. α nnew->left->weight ≤ (1 − α) nnew->right->weight, so

α
(
(1 − 2α + 2α2 + αε)w + (1 − α)δ

)
≤ (1 − α)

(
(2α − 2α2 − αε)w − (1 − α)δ

)
,

which is satisfied for α(1 − 2α − ε)w ≥ 1, and
f. (1 − α) nnew->left->weight ≥ α nnew->right->weight, so

(1 − α)
(
(2α − 3α2 + α3)w + α(2 − α)δ

)
≥ α
(
(1 − 2α + 3α2 − α3)w + α(α − 2)δ

)
,

which is satisfied for α ∈ [0, 3−√
5

2 ].
Together this shows that in the interesting interval α ∈ ]0, 1 − 1√

2
[ with

ε ≤ α2 − 2α + 1
2 , at least if the subtree is not too small (for α2w ≥ 1,

which implies (2 − α)α2w ≥ (1 + α − α2)δ), and α(1 − 2α − ε)w ≥ 1
in the interval of interest) in case 2.2, the α-weight-balance is restored.

But we still have to show that the rebalancing algorithm works for w < α−2.
This, unfortunately, is in general not the case. It is, however, true for α ∈] 2

7 , 1 −
1√
2
[; here we need to check it only for w ≤ 12 and n->right->weight =

�αw
.
In case 2.1, we have additionally nold->left->left->weight ≥

�αw�, and there is only one balance inequality (a) that could
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fail: we have to check that nnew->right->right->weight >

α nnew->right->weight, so �αw
 > α (w − �αw�), which is easily
tested.

In case 2.2, we have additionally nold->left->left->weight ≤
�αw
. Because nold->left->weight = w − �αw
, the balance condi-
tion in n->left determines the weights of nold->left->left and
nold->left->right, and it is easily tested for these trees that the balance is
restored.

This completes the proof that rebalancing can be done for weight-balanced
trees after insertions and deletions in O(log n) time.

Theorem. The weight-balanced tree structure supports find, insert, and
delete in O(log n) time.

A possible implementation of the insert in weight-balanced trees is now
as follows:

#define ALPHA 0.288
#define EPSILON 0.005

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)

{ tree_node_t *tmp_node;
if( tree->left == NULL )
{ tree->left = (tree_node_t *) new_object;

tree->key = new_key;
tree->weight = 1;
tree->right = NULL;

}
else
{ create_stack();

tmp_node = tree;
while( tmp_node->right != NULL )
{ push( tmp_node );

if( new_key < tmp_node->key )
tmp_node = tmp_node->left;

else
tmp_node = tmp_node->right;

}
/* found the candidate leaf. Test whether
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key distinct */
if( tmp_node->key == new_key )

return( -1 ); /* key alreay exists,
insert failed */

/* key is distinct, now perform
the insert */

{ tree_node_t *old_leaf, *new_leaf;
old_leaf = get_node();
old_leaf->left = tmp_node->left;
old_leaf->key = tmp_node->key;
old_leaf->right = NULL;
old_leaf->weight = 1;
new_leaf = get_node();
new_leaf->left = (tree_node_t *)
new_object;
new_leaf->key = new_key;
new_leaf->right = NULL;
new_leaf->weight = 1;
if( tmp_node->key < new_key )
{ tmp_node->left = old_leaf;

tmp_node->right = new_leaf;
tmp_node->key = new_key;

}
else
{ tmp_node->left = new_leaf;

tmp_node->right = old_leaf;
}
tmp_node->weight = 2;

}
/* rebalance */
while( !stack_empty())
{ tmp_node = pop();

tmp_node->weight =
tmp_node->left->weight
+ tmp_node->right->weight;

if( tmp_node->right->weight
< ALPHA*tmp_node->weight )

{ if(tmp_node->left->left->weight >
(ALPHA+EPSILON) *tmp_node->weight)
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{ right_rotation( tmp_node );
tmp_node->right->weight =
tmp_node->right->left->weight
+ tmp_node->right->right->weight;

}
else
{ left_rotation( tmp_node->left );

right_rotation( tmp_node );
tmp_node->right->weight =
tmp_node->right->left->weight
+ tmp_node->right->right->weight;
tmp_node->left->weight =
tmp_node->left->left->weight
+ tmp_node->left->right->weight;

}
}
else if ( tmp_node->left->weight

< ALPHA*tmp_node->weight )
{ if( tmp_node->right->right->weight

> (ALPHA+EPSILON)
*tmp_node->weight )

{ left_rotation( tmp_node );
tmp_node->left->weight =
tmp_node->left->left->weight
+ tmp_node->left->right->weight;

}
else
{ right_rotation( tmp_node->right );

left_rotation( tmp_node );
tmp_node->right->weight =
tmp_node->right->left->weight
+ tmp_node->right->right->weight;
tmp_node->left->weight =
tmp_node->left->left->weight
+ tmp_node->left->right->weight;

}
}

} /* end rebalance */
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remove_stack();
}
return( 0 );

}

Again the basic delete function needs the same modifications, with the
same rebalancing code while going up the tree, and there is no change to
the find function. Because we know that the height of the stack is bounded
by (log 1

1−α
)−1 log n, which is less than 2.07 log n for our interval of α, and

n < 2100, again an array-based stack of fixed maximum size is a reasonable
choice.

The rebalancing algorithm described here was similar to the rebalancing of
height-balanced trees in two phases: going down to the leaf and then rebal-
ancing bottom-up. In principle, weight-balanced trees also allow a top-down
rebalancing, which takes place while going down to the leaf and makes the sec-
ond phase unnecessary. This is possible because we already know the correct
weight of a subtree while going down, so we see whether it will need rebalanc-
ing, whereas the height of a subtree is available only when we reach the leaf.
The algorithm was originally outlined for BB[α] trees that way (Nievergelt and
Reingold 1973) and discussed in Lai and Wood (1993), but a correct analysis
that balance is restored is even more work for top-down rebalancing because
the assumption we have below the current node is weaker: the node below is
not necessarily balanced, because we have not performed rebalancing below,
but at most one off from balance.

With respect to the maximum height, the weight-balanced trees are not
as good as the height-balanced trees; for our interval of α, the coefficient
(log 1

1−α
)−1 is approximately 2 instead of 1.44, and for larger α, it would get

even worse. It was already observed in Nievergelt and Reingold (1973) that the
average depth of the leaves is slightly better than for the height-balanced trees.

Theorem. The average depth of an α-weight-balanced tree with n leaves is at
most −1

α log α+(1−α) log(1−α) log n.

For our interval of α, this coefficient is approximately 1.15, whereas for height-
balanced trees we had also 1.44.

Proof. We again use the maximal depthsum instead of the average depth. It
satisfies the recursive bound depthsum(n) ≤ n + depthsum(a) + depthsum(b)
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for some a, b with a + b = n, a, b ≥ αn. We show depthsum(n) ≤ cn log n for
the above c by induction, using that

depthsum(n) ≤ n + ca log a + cb log b

= cn
(

1
c

+ a
n

log a + b
n

log b
)

= cn log n + cn
(

1
c

+ a
n

log a
n

+ b
n

log b
n

)
.

Because the function x log x + (1 − x) log(1 − x) is negative and decreasing
on x ∈ [0, 0.5], the second term is nonpositive for c = −1

α log α+(1−α) log(1−α) .

A more remarkable property of weight-balanced trees is the following:

Theorem. In the time from one rebalancing of a specific node to the next
rebalancing of this node, a positive fraction of all leaves below that node are
changed.

This is remarkable because it forces almost all rebalancing operations to occur
near the leaves. This was observed in Blum and Mehlhorn (1980).

Proof. It is easy to check that the rebalancing operations leave each of the
changed nodes not only α weight balanced, but even α∗ weight balanced for
some α∗(α, ε) > α. But then the weight must change by a positive fraction
to violate the balance condition, so a positive fraction of the leaves must be
inserted or deleted before that node needs to be rebalanced again. This is
the reason for the additional ε > 0 used in the rebalancing algorithm; with-
out it, in case 2.1 one of the nodes would not have this stronger balance
property.

For the height-balanced trees, we bounded the difference of the heights,
whereas for weight-balanced trees, we bounded the ratio of the weights.
Because in any sort of balanced tree the height will be logarithmic in the
weight, it is not surprising that these conditions have the same effect. The
much weaker condition of bounding the ratio of the heights was studied in
Gonnet, Olivié, and Wood (1983). It turns out that this condition is not strong
enough to give a logarithmic height; the maximum height of a height-ratio
balanced tree with n leaves is 2�(

√
log n) instead of �(log n) = 2log log n+�(1).
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3.3 (a, b)- and B-Trees

A different method to keep the height of the trees small is to allow tree nodes
of higher degree. This idea was introduced as B-trees by Bayer and McCreight
(1972) and turned out to be very fruitful. It was originally intended as external
memory data structure, but we will see in Section 3.4 that it has interesting
uses also as normal main memory data structure. The characteristic of external
memory is that access to it is very slow, compared to main memory, and is done
in blocks, units much larger than single main memory locations, which are
simultaneously transferred into main memory. In the 1970s, computers were
still very memory limited but usually already had a large external memory, so
that it was a necessary consideration how a structure operates when a large part
of it is not in main memory, but on external memory. This situation is now less
important, but it is still relevant for database applications, where B-tree variants
are still much used as index structures.

The problem with normal binary search trees as external memory structure
is that each tree node could be in a different external memory block, which
becomes known only when the previous block has been retrieved from the
external memory. So we might need as many external memory block accesses
as the height of the tree, which is more than log2(n), and would be interested
in each of these blocks, which are large enough to hold many nodes, in just a
single node. The idea of B-trees is to take each block as a single node of high
degree. In the original version, each node has degree between a and 2a − 1,
where a is chosen as large as possible under the condition that a block must
have room for 2a − 1 pointers and keys. Then balance was maintained by the
criterion that all leaves should be at the same depth.

The degree interval a to 2a − 1 is the smallest interval for which the re-
balancing algorithm from Bayer and McCreight (1972) works. Because each
block has room for at most 2a − 1 elements and is at least half full this way,
it sounded like a good choice to optimize the space utilization. But then it was
discovered by Huddleston and Mehlhorn (1982) and independently by Maier
and Salveter (1981) that choosing the interval a bit larger makes an important
difference for the rebalancing algorithm; if one allows node degrees from a to
b for b ≥ 2a, then rebalancing changes only amortized O(1) blocks, whereas
for b = 2a − 1, the original choice, �(log n) block changes can be necessary.
For a main memory data structure, the number of changes in rebalancing makes
little difference, although it has been studied in many papers; but for an external
memory structure it is essential because all changed blocks have to be written
again to the external memory device. So these trees, known as (a, b)-trees, are
the method of choice.
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An (a, b)-tree is a nonbinary search tree in which all leaves have the same
depth; each nonroot node has degree between a and b, with b ≥ 2a, and the
root has degree at most b and at least 2 (unless the tree is empty or has only
one leaf). An (a, b)-tree has necessarily small height.

Theorem. An (a, b)-tree of height h ≥ 1 has at least 2ah−1 and at most bh

leaves. An (a, b)-tree with n ≥ 2 leaves has height at most⌈
loga(n) + (1 − loga 2)

⌉ ≈ 1
log2 a

log n.

This follows immediately from the definition.
Because these trees are not binary search trees, they do not fall in the

framework described in Chapter 2, and we have to define their structure and
our conventions for their representation in addition to the rebalancing algorithm.
A node has the following structure:

typedef struct tr_n_t { int degree;
int height;
key_t key[B];

struct tr_n_t * next[B];
/* possibly other information */

} tree_node_t;

We describe the (a, b)-tree here as a main memory structure; for an external-
memory version, we would need to establish a correspondence between the
main memory nodes and the external memory blocks, and would need functions
to recover a node from external memory and write it back.

The node structure contains the degree of the node, which is at most B, and
space for up to B outgoing edges. It also contains space for B key values. Usually
we need only one key value less than the degree to separate the outgoing edges,
but in the node at the lowest level, we avoid having separate leaf nodes and
instead place the object references together with their associated key values
in that node. We need a convention to identify the nodes on the lowest level;
for this reason we include the height of the node above the lowest level in the
node.

As in the case of binary search trees, we associate with each node a half-
open interval of the possible key values that can be reached through that node
or pointer. If *n is a node with associated interval [a, b[, then the associated
intervals of the nodes referenced to by next pointers are as follows:

{ for n->next[0], the interval [a, n->key[1][;
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A (4, 8)-Tree

{ for n->next[i], with 1 ≤ i ≤ n->degree − 2, the interval
[n->key[i], n->key[i + 1][; and

{ for n->next[n->degree-1] the interval
[n->key[n->degree-1], b[.

Then the find operation looks as follows:

object_t *find(tree_node_t *tree,
key_t query_key)

{ tree_node_t *current_node;
object_t *object;
current_node = tree;
while( current_node->height >= 0 )
{ int lower, upper;

/* binary search among keys */
lower = 0; upper = current_node->degree;
while( upper > lower +1 )
{ if( query_key <

current_node->key[(upper+lower)/2 ] )
upper = (upper+lower)/2;
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else
lower = (upper+lower)/2;

}
if( current_node->height > 0)

current_node =
current_node->next[lower];

else
{ /* block of height 0, contains the

object pointers */
if( current_node->key[lower] ==

query_key )
object = (object_t *)
current_node->next[lower];

else
object = NULL;

return( object );
}

}
}

By performing binary search on the keys within the node, the find operation
is as fast as a find in a binary tree.

Now we finally have to describe the insert and delete operations and
the rebalancing that keeps the structure of the (a, b)-tree. Insert and delete
begin straightforward as in the binary search-tree case: first one goes down in
the tree to find the place where a new leaf should be inserted or an old one should
be deleted. This is in a node of height 0. If there is still room in the node for the
new leaf or after the deletion the leaf still contains at least a objects, there is no
problem, but the node could overflow during an insertion or become underfull
during a deletion. In these cases we have to change something in the structure
of the tree and possibly propagate the structure upward. The restructuring rules
for these situations are as follows:

{ For an insertion: if the current node overflows

a. If the current node is the root, create two new nodes, copy into each half
the root entries, and put into the root just pointers to these two new nodes
together with the key that separates them. Increase the height of the root
by 1.
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b. Else create a new node and move half the entries from the overflowing
node to the new node. Then insert the pointer to the new node into the
upper neighbor.

The case b is known as “splitting.”

{ For a deletion: if the current node becomes underfull

a. If the current node is the root, it is underfull if it has only one remaining
pointer. Copy the content of the node to which the pointer points into the
root node and return the node to the system.

b. Else find the block of the same height that immediately precedes or
follows it in the key order and has the same upper neighbor. If that block
is not already almost underfull, move a key and its associated pointer
from that block and correct the key value separating these two blocks in
the upper neighbor.

c. Else copy entries of the current node into that almost underfull
neighboring node of the same height, return the current node to the
system, and delete the reference to it from the upper neighbor.

The cases b and c are known as “sharing” and “joining,” respectively.

It is clear that this method does restore the (a, b)-tree property; if the node is
overfull, then it contains enough entries to be split into two nodes, and if the node
is underfull and its neighbor does not have an element to spare, then they can be
joined together into a single node. These operations work even for b = 2a − 1
(the original B-trees) and because we change at most two blocks on each level,
it is also clear that the number of changed blocks is O(loga(n)). For the original
B-trees, this bound is also best possible: if b = 2a − 1, then both new blocks
obtained from splitting an overflowing block (with b + 1 = 2a entries) are at
the lower degree limit, so deleting the element that was just inserted forces
them to be joined again. It is easy to construct an example where along the
entire path every block is split by an insertion; so by deleting the same element
each of these block pairs is joined again.

It was the remarkable observation of Huddleston and Mehlhorn (1982) and
Maier and Salveter (1981) that if we allow at least one position more space
(b ≥ 2a), we get a much better bound with only amortizedO(1) blocks changed.
To prove this amortized bound, we define a potential function on the search
tree and analyze how this potential changes during the changes by the various
operations of an insert or delete. We follow the development of the structure
always immediately before the next operation (split, share, join, etc.), so the
node degrees a − 1 (after a delete) and b + 1 (after an insert) are possible. We
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do not count the operation on the root: creating a new root or deleting the old
root, but there is only at most one root operation per insertion or deletion.

We define the potential of the tree as the sum of the potentials of its nodes,
where the potential of node *n is defined as

pot(∗n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 if n->degree = a − 1 and ∗n is not the root
1 if n->degree = a and ∗n is not the root
0 if a < n->degree < b or ∗n is the root
3 if n->degree = b and ∗n is not the root
6 if n->degree = b + 1 and ∗n is not the root.

Now each operation starts with an insert or delete on the lowest level; before
any restructuring operations are done, this is just a change of the degree of a
single node by one, so the potential of the tree increases by at most three.

We claim now that each restructuring operation decreases the potential of
the tree by at least two; because the potential of the tree is nonnegative and
initially bounded by 6n, this implies that each insert or delete can on the average
cause at most 3

2 restructuring operations, plus possibly one root operation. We
have to check this claim for each of the following restructuring operations:

{ For insertions the current node has degree b + 1.

a. We do not count the root operation.
b. A splitting operation takes the current node of degree b + 1 and splits it

into two nodes of degree
⌈

b+1
2

⌉
and
⌊

b+1
2

⌋
. Also, it increases the degree

of the upper neighbor node. This removes a node of potential 6 and
creates two new nodes, of which at most one has potential 1 (degree a)
and the other has potential 0 (degree between a + 1 and b − 1), and it
increases the degree of the upper neighbor node by 1 and so its potential
by at most 3: in total the potential decreases by at least 2.

{ For deletions the current node has degree a − 1 if it is not the root.

a. Again we do not count the root operation.
b. A sharing operation takes the current node of degree a − 1 and its

neighbor of degree at least a + 1 and at most b, and creates two new
nodes, each of degree at least a and less than b. This removes a node of
potential 4 and a node of nonnegative potential, and creates two new
nodes, each with potential at most 1: in total the potential decreases by at
least 2.

c. A joining operation takes the current node of degree a − 1 and its
neighbor of degree a, and creates one new node of degree 2a − 1 < b,
and decreases the degree of the upper neighbor node by one. This
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removes two nodes of potential 4 and 1, and creates one new node of
potential 0 and increases the potential of the upper neighbor by at most
3: in total the potential decreases by at least 2.

Together this proves that the (a, b)-tree structure can be maintained efficiently.

Theorem. The (a, b)-tree structure supports find, insert, and delete
with O(loga n) block read or write operations and needs only an amortized
O(1) block writes per insert or delete.

We finally have to show one possible implementation of this structure.

tree_node_t *create_tree()
{ tree_node_t *tmp;

tmp = get_node();
tmp->height = 0;
tmp->degree = 0;
return( tmp );

}

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)

{ tree_node_t *current_node, *insert_pt;
key_t insert_key;
int finished;
current_node = tree;
if( tree->height == 0 && tree->degree == 0 )
{ tree->key[0] = new_key;

tree->next[0] = (tree_node_t *) new_object;
tree->degree = 1;
return(0); /* insert in empty tree */

}
create_stack();
while( current_node->height > 0 )
/* not at leaf level */
{ int lower, upper;

/* binary search among keys */
push( current_node );
lower = 0; upper = current_node->degree;
while( upper > lower +1 )
{ if( new_key <
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current_node->key[(upper+lower)/2 ] )
upper = (upper+lower)/2;

else
lower = (upper+lower)/2;

}
current_node = current_node->next[lower];

} /* now current_node is leaf node in which
we insert */

insert_pt = (tree_node_t *) new_object;
insert_key = new_key;
finished = 0;
while( !finished )
{ int i, start;

if( current_node->height > 0 )
start = 1;
/* insertion in non-leaf starts at 1 */

else
start = 0;
/* insertion in non-leaf starts at 0 */

if( current_node->degree < B )
/* node still has room */

{ /* move everything up to create
the insertion gap */
i = current_node->degree;
while((i > start)&&
(current_node->key[i-1] > insert_key))
{ current_node->key[i] =

current_node->key[i-1];
current_node->next[i] =
current_node->next[i-1];
i -= 1;

}
current_node->key[i] = insert_key;
current_node->next[i] = insert_pt;
current_node->degree +=1;
finished = 1;

} /* end insert in non-full node */
else /* node is full, have to split
the node*/
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{ tree_node_t *new_node;
int j, insert_done=0;
new_node = get_node();
i= B-1; j = (B-1)/2;
while( j >= 0 )
/* copy upper half to new node */
{ if( insert_done ||

insert_key < current_node->key[i] )
{ new_node->next[j] =

current_node->next[i];
new_node->key[j--] =
current_node->key[i--];

}
else
{ new_node->next[j] = insert_pt;

new_node->key[j--] = insert_key;
insert_done = 1;

}
} /* upper half done, insert in lower
half, if necessary*/
while( !insert_done)
{ if( insert_key < current_node->key[i]

&& i >= start )
{ current_node->next[i+1] =

current_node->next[i];
current_node->key[i+1] =
current_node->key[i];
i -=1;

}
else
{ current_node->next[i+1] =

insert_pt;
current_node->key[i+1] =
insert_key;
insert_done = 1;

}
} /*finished insertion */
current_node->degree = B+1 - ((B+1)/2);
new_node->degree = (B+1)/2;
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new_node->height = current_node->height;
/* split nodes complete, now insert the
new node above */
insert_pt = new_node;
insert_key = new_node->key[0];
if( ! stack_empty() )
/* not at root; move one level up*/
{ current_node = pop();
}
else /* splitting root: needs copy to
keep root address*/
{ new_node = get_node();

for( i=0; i < current_node->degree;
i++ )

{ new_node->next[i] =
current_node->next[i];
new_node->key[i] =
current_node->key[i];

}
new_node->height =
current_node->height;
new_node->degree =
current_node->degree;
current_node->height += 1;
current_node->degree = 2;
current_node->next[0] = new_node;
current_node->next[1] = insert_pt;
current_node->key[1] = insert_key;
finished =1;

} /* end splitting root */
} /* end node splitting */

} /* end of rebalancing */
remove_stack();
return( 0 );

}

object_t *delete(tree_node_t *tree,
key_t delete_key)
{ tree_node_t *current, *tmp_node;



82 3 Balanced Search Trees

int finished, i, j;
current = tree;
create_node_stack(); create_index_stack();
while( current->height > 0 ) /* not
at leaf level */
{ int lower, upper;

/* binary search among keys */
lower = 0; upper = current->degree;
while( upper > lower +1 )
{ if( delete_key <

current->key[ (upper+lower)/2 ] )
upper = (upper+lower)/2;

else
lower = (upper+lower)/2;

}
push_index_stack( lower );
push_node_stack( current );
current = current->next[lower];

} /* now current is leaf node from
which we delete */
for( i=0; i < current->degree ; i++ )

if( current->key[i] == delete_key )
break;

if( i == current->degree )
{ return( NULL ); /* delete failed;

key does not exist */
}
else /* key exists, now delete from
leaf node */
{ object_t *del_object;

del_object = (object_t *) current->next[i];
current->degree -=1;
while( i < current->degree )
{ current->next[i] = current->next[i+1];

current->key[i] = current->key[i+1];
i+=1;

} /* deleted from node, now rebalance */
finished = 0;
while( ! finished )
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{ if(current->degree >= A )
{ finished = 1; /* node still full

enough, can stop */
}
else /* node became underfull */
{ if( stack_empty() )

/* current is root */
{ if(current->degree >= 2 )

finished = 1; /* root
still necessary */

else if ( current->height == 0 )
finished = 1; /* deleting
last keys from root */

else /* delete root, copy to
keep address */
{ tmp_node = current->next[0];

for( i=0; i< tmp_node->degree;
i++ )

{ current->next[i] =
tmp_node->next[i];
current->key[i] =
tmp_node->key[i];

}
current->degree =
tmp_node->degree;
current->height =
tmp_node->height;
return_node( tmp_node );
finished = 1;

}
} /* done with root */
else /* delete from non-root node */
{ tree_node_t *upper, *neighbor;

int curr;
upper = pop_node_stack();
curr = pop_index_stack();
if( curr < upper->degree -1 )
/* not last*/
{ neighbor = upper->next[curr+1];
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if( neighbor->degree >A )
{ /* sharing possible */

i = current->degree;
if( current->height > 0 )

current->key[i] =
upper->key[curr+1];

else /* on leaf level,
take leaf key */
{ current->key[i] =

neighbor->key[0];
neighbor->key[0] =
neighbor->key[1];

}
current->next[i] =
neighbor->next[0];
upper->key[curr+1] =
neighbor->key[1];
neighbor->next[0] =
neighbor->next[1];
for( j = 2; j <
neighbor->degree; j++)
{ neighbor->next[j-1] =

neighbor->next[j];
neighbor->key[j-1] =
neighbor->key[j];

}
neighbor->degree -=1;
current->degree+=1;
finished =1;

} /* sharing complete */
else /* must join */
{ i = current->degree;

if( current->height > 0 )
current->key[i] =
upper->key[curr+1];

else /* on leaf level,
take leaf key */

current->key[i] =
neighbor->key[0];
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current->next[i] =
neighbor->next[0];
for( j = 1;
j < neighbor->degree; j++)
{ current->next[++i] =

neighbor->next[j];
current->key[i] =
neighbor->key[j];

}
current->degree = i+1;
return_node( neighbor );
upper->degree -=1;
i = curr+1;
while( i < upper->degree )
{ upper->next[i] =

upper->next[i+1];
upper->key[i] =
upper->key[i+1];
i +=1;

} /* deleted from upper,
now propagate up */
current = upper;

} /* end of share/joining
if-else*/

}
else /* current is last entry
in upper */
{ neighbor = upper->next[curr-1];

if( neighbor->degree >A )
{ /* sharing possible */

for( j = current->degree;
j > 1; j--)
{ current->next[j] =

current->next[j-1];
current->key[j] =
current->key[j-1];

}
current->next[1] =
current->next[0];
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i = neighbor->degree;
current->next[0] =
neighbor->next[i-1];
if( current->height > 0 )
{ current->key[1] =

upper->key[curr];
}
else /* on leaf level,
take leaf key */
{ current->key[1] =

current->key[0];
current->key[0] =
neighbor->key[i-1];

}
upper->key[curr] =
neighbor->key[i-1];
neighbor->degree -=1;
current->degree+=1;
finished =1;

} /* sharing complete */
else /* must join */
{ i = neighbor->degree;

if( current->height > 0 )
neighbor->key[i] =
upper->key[curr];

else /* on leaf level,
take leaf key */

neighbor->key[i] =
current->key[0];

neighbor->next[i] =
current->next[0];
for( j = 1;
j < current->degree; j++)
{ neighbor->next[++i] =

current->next[j];
neighbor->key[i] =
current->key[j];

}
neighbor->degree = i+1;
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return_node( current );
upper->degree -=1;
/* deleted from upper,
now propagate up */
current = upper;

} /* end of share/joining
if-else */

} /* end of current is (not)
last in upper if-else*/

} /* end of delete root/non-root
if-else */

} /* end of full/underfull if-else */
} /* end of while not finished */
return( del_object );

} /* end of delete object exists if-else */
}

We used here in the delete operation two stacks, one for the node and one for
the index within the node. Again all stacks in the insert and delete operations
should be chosen as arrays; the necessary size is the maximum height, so it
depends on a, the minimum degree of the nodes. But in a normal application, the
disk blocks are currently chosen as 4–8 kB, so a value in the range a ≈ 500 is
reasonable, in which case our assumption n < 2100 implies a maximum height
of 12. In most real applications, a height of 3 is already large. Because accessing
a single disk block is slow but accessing many consecutive disk blocks takes
only slightly longer, the size of the nodes can also be chosen much larger than
the blocks in which the disk is organized if the operating system allows to keep
these groups of consecutive blocks together.

The (a, b)-tree structure allows for b ≥ 2a, also a top-down rebalancing
method, where all the rebalancing is done on the way from the root to the leaf
and no pass back from the leaf to the root is necessary. This sounds convenient
and it avoids the use of a stack, but it has the disadvantage that the number of
changed nodes is larger. The idea is simple: for insertion, we split any node of
degree b we encounter along the path down. This splitting does not propagate
up because the node above was already split before, so it still has room for
an additional entry. And at the bottom level, we arrive with a node that still
has room for the new leaf that we insert. In the same way, for deletion, we
perform joining or sharing for each node on the path down that has degree a;
again this does not propagate up because the node above already has degree at
least a + 1, and on the bottom level we arrive with a node that can spare the
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entry that we delete. Thus we perform a preemptive splitting or joining; we still
change only O(loga n) nodes, but the amortized O(1) bound no longer holds.
Also, we require b ≥ 2a, so this method does not apply to classical B-trees
(with b = 2a − 1). A potential useful aspect of the top-down method is that it
requires only a lock on the current node and its neighbors, instead of the entire
path to the root.

A number of alternative solutions have been proposed for the problem of
blockwise memory access. Instead of creating a new tree structure like the
(a, b)-trees that is explicitly adapted to the memory block setting, one could
use any normal binary tree structure, like height-balanced trees, and try to group
their nodes into blocks in such a way that the maximum number of distinct
blocks along any path from root to leaf becomes small (Knuth 1973; Sprugnoli
1981; Diwan et al. 1996; Gil and Itai 1999). Because the implicit representation
of a subtree in an (a, b)-tree node as an array of keys and an array of pointers is
very dense, they have a slight advantage over any method that stores a subtree
explicitly in a block. But a method that takes any tree and groups the tree nodes
into blocks can reuse the results on the underlying tree structure and can also
be applied to overlay structures on trees, as described in Chapter 4. Replicating
tree nodes so that they occur in several blocks improves the query performance
but makes updates difficult (Hambrusch and Liu 2003).

A different balance criterion for the same type of block nodes as (a, b)-
trees was proposed in Culik, Ottmann, and Wood 1981; their r-dense m-ary
multiway trees also have all leaves at the same depth, but balancing is achieved
by the property that any nonroot node that is not of maximum degree (which
is m) has at least r nodes with the same upper neighbor that are of maximum
degree. This criterion is similar to the brother trees (Ottmann and Six 1976;
Ottmann, Six, and Wood 1978; Ottmann et al. 1984) and inherits from there an
inefficiency in the deletion algorithm (O((log n)m−1) for m-ary trees instead of
O(log n)).

A method proposed for small block size is to use search trees following
the second model, with the objects in the nodes, but keep several consecutive
keys and objects in each node (Jung and Sahni 2003). Then each node still
has only two lower neighbors – one for all keys less than the smallest node
key and one for all keys larger than the largest node key. Because it is essen-
tially still a binary tree, it can be combined with any rebalancing scheme like
height-balanced trees. The motivation given for this structure was that the pro-
cessor cache is organized in the same way as the external memory, only with
much smaller blocks. But a single block in the cache might still have room for
more than a normal tree node, so packing more information in the node requires
fewer cache load operations. But this improvement could as well have been



3.4 Red-Black Trees and Trees of Almost Optimal Height 89

reached by taking an (a, b)-tree with small b like a (4, 8)-tree. For large block
size this method is clearly less efficient than the (a, b)-tree because the depth
of the tree is between log2(n/b) and 1.4 log2(n/a) (for the height-balanced
version) instead of between logb(n) and loga(n).

3.4 Red-Black Trees and Trees of Almost Optimal Height

As already observed in the previous section, the idea of trees with variable-
degree nodes is also a useful idea for normal main memory binary search trees.
A node of an (a, b)-tree can be resolved into a small binary search tree with a

to b leaves. This was already observed by Bayer (1971) simultaneously with
the definition of B-trees as external memory structure (Bayer and McCreight
1972). He proposed the smallest special case, (2, 3)-trees, as a binary search
tree, where any node of degree 3 is replaced by two binary nodes connected
by an edge, which he called a “horizontal” edge, because it connected two
nodes on the same level of the underlying (2, 3)-tree. In Bayer (1972a) he then
extended the idea to (2, 4)-trees as underlying structure and called the derived
binary search trees “symmetric binary B-trees” (SBB-trees). In these binary
search trees, the edges are labeled as “downward” or “horizontal” with the
restrictions:

{ the paths from the root to any leaf have the same number of downward
edges, and

{ there are no two consecutive horizontal edges.

This structure directly corresponds to (2, 4)-trees; if we take such a tree and
collapse all edges at the lower end of a horizontal edge into the previous node,
we obtain a search tree with nodes of degree ranging from 2 to 4, in which all
leaves are on the same level. We know from the previous chapter that such trees
have height at most log2 n, so the derived binary search tree has height at most
2 log2 n. And we inherit from the underlying (2, 4)-tree structure a rebalancing
algorithm.

A further reformulation was done by Guibas and Sedgewick (1978), who
labeled the nodes instead of the edges, making the top node of each small binary
tree replacing a (2, 4)-node black and the other nodes red. This is the red-black
tree now used in many textbooks: a binary search tree with nodes colored red
and black such that

{ the paths from the root to any leaf have the same number of black nodes,
{ there are no two consecutive red nodes, and
{ the root is black.
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We also assign colors to the leaves; this breaks the complete analogy to
(2, 4)-trees but is convenient for the rebalancing algorithm.

bl bl
r

or bl
r

bl
r r

Replacement of (2, 4)-Nodes to Red-Black-Labeled Binary Trees

We can collapse any red node in the black node above it and obtain a
(2, 4)-tree apart from the nodes on leaf level. So a red-black tree has height
at most 2 log n + 1. And we have from the underlying (2, 4)-tree structure a
rebalancing algorithm with O(log n) worst-case complexity and that changes
amortized only O(1) nodes. The only disadvantage with regard to our previous
framework is that this rebalancing algorithm uses instead of rotations the more
complex operations of split, share, and join. But there is also a rotation-based
algorithm with the same properties that we will describe later.

Red-Black Tree with Node Colors

Other equivalent versions of the same structure are the half-balanced trees
by Olivié (1982), characterized by the property that for each internal node, the
longest path to a leaf is at most twice as long as the shortest path, whose equiv-
alence to the red-black trees was noticed by Tarjan (1983a) and the standard
son-trees by Ottmann and Six (1976) and Olivié (1980), which are trees with
unary and binary nodes, whose all leaves are at the same depth, and there are
no unary nodes on the even levels. Several alternative rebalancing algorithms
for these structures have been proposed in Tarjan (1983a), Zivani, Olivié, and
Gonnet (1985), Andersson (1993), Chen and Schott (1996).

Guibas and Sedgewick (1978) also observed that several other rebalancing
schemes could be expressed as color labels on the vertices associated with
certain rebalancing actions. For the height-balanced trees, it was already long
known that one need not store the height in each node but just the information
whether the two subtrees have equal height, or the left or the right height is
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smaller (by one). This was originally intended as memory-saving encoding,
but it brings the height-balanced trees also into the node-coloring framework.
In a height-balanced tree if one colors every node of odd height whose upper
neighbor is of even height red and all other nodes black, then it satisfies the
conditions of a red-black tree. But not all red-black trees are height-balanced;
an additional restriction is that if a node is black and both of its lower neighbors
are black, then at least one of their lower neighbors must be red. Under these
conditions, it is possible to reconstruct the height balance of a node from the
colors of the lower neighbors and their lower neighbors, and with this infor-
mation one can restore the height balance of the tree. Guibas and Sedgewick
(1978) gave several other rebalancing schemes based on red-black colorings of
vertices, most interesting among them top-down rebalancing methods, which
can be executed already while going down from the root to the leaf, making
the second pass back to the root unnecessary.

A different development derived from the main memory reinterpretation of
(a, b)-trees is trees of small height. We have seen in Chapter 2 that the height of
a binary search tree with n leaves is at least log n, and we can maintain an upper
height bound of 1.44 log n using the height-balanced trees. The bounds for the
weight-balanced trees and for the red-black trees are both somewhat worse –
2 log n for the red-black tree and at least 2 log n (depending on the choice of
α) for the weight-balanced trees. This suggests the question whether we can
do better than 1.44 log n while keeping the O(log n) update time. Without that,
we could just rebuild an optimal tree after each update. The first scheme that
reached (1 + 1

k
) log n for any k ≥ 1 (the algorithms depending on k) were the

k-trees by Maurer, Ottmann, and Six (1976), but a much simpler solution was
discovered by Andersson et al. (1990). They just take a (2k, 2k+1)-tree as un-
derlying structure and replace each of the high-degree nodes by a small search
tree of optimal height (which is k + 1). For the underlying tree, we have again
the general rebalancing algorithm of (a, b)-trees, using split, join, and share
operations, and on the embedded binary trees these transformations can be
reproduced by rotations because we showed in Section 2.2 that any transfor-
mation of search trees on the same set of leaves can be realized by rotations. So
this search tree structure has height at most (k + 1) log2k (n) = (1 + 1

k
) log2 n,

with fixed k rebalancing done in O(log n), with amortized only O(1) rotations.
Choosing k = log log n, they get further down to height (1 + o(1)) log2 n, and
Andersson and Lai reduced in their dissertations and a series of papers with
varying coauthors the o(log n) term further. The last word seems to be that
height

⌈
log2 n

⌉
cannot be maintained with o(n) rebalancing work, because for

n = 2k , the unique search trees of height k for {1, . . . , n} and {2, . . . , n + 1} dif-
fer in �(n) positions; but height

⌈
log2 n

⌉+ 1 can be maintained with O(log n)
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rebalancing work (Andersson 1989a; Lai and Wood 1990; Fagerberg 1996a).
All this is, of course, irrelevant for practical applications; the algorithms are too
complicated to code, and the small gain in the query time for the find operations
(which do not get more complex) would not be justified by the large loss in the
update operations.

We already mentioned the height bound of 2 log n + 1.

Theorem. A red-black tree of height h has at least 2(h/2)+1 − 1 leaves for h

even and at least
(

3
2

)
2(h−1)/2 − 1 leaves for h odd.

The maximum height of a red-black tree with n leaves is 2 log n − O(1).

Proof. We already observed that the height bound follows from the height
bound on the (a, b)-trees: a (2, 4)-tree with n leaves has height at most log n

and each (2, 4)-node is replaced by a binary tree of height 2, so the underlying
binary tree has at most height 2 log n. But we have to show that this does not
overestimate the height: the (2, 4)-tree of height log n has only nodes of degree
2, so the binary tree underlying the extremal (2, 4)-tree also has height only
log n. But we can determine the extremal red-black tree. Let T red−black

h be the
red-black tree of height h with minimal number of leaves. Then there is a
path from the root to a leaf of depth h, and all red nodes have to occur along
this path; otherwise we can reduce the number of leaves. So the structure of
T red−black

h is that there is this path of length h, and off this path there are only
complete binary trees, colored all black, of height i, so with 2i leaves. Because
the height of the binary tree, together with the number of black nodes along the
path above the tree, is the same for all these binary trees, the total number of
leaves is of the form

1 + 2i1 + 2i2 + 2i3 + · · · + 2ih ,

where ij ≤ ij+1 and each exponent occurs at most twice, once below a red node
and once below its black upper neighbor. So for h even the number of leaves
of T red−black

h is

1 + 2(20 + 21 + 22 + · · · + 2(h/2)−1) = 2(h/2)+1 − 1,

and for h odd it is

1 + 2(20 + 21 + 22 + · · · + 2((h−1)/2)−1) + 2(h−1)/2 = 3

2
2(h−1)/2 − 1.

So the worst-case height of a red-black tree is really 2 log n − O(1).
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Red-Black Tree of Height 8 with Minimum Number of Leaves

As in the case of height-balanced trees, not only this worst-case height
bound is tight, but it is possible that almost all leaves are at that depth; such a
red-black tree was constructed in Cameron and Wood (1992).

We will describe now the red-black tree with its standard bottom-up re-
balancing method because it is classical textbook material, and in Section 3.5
an alternative top-down rebalancing method. Both work on exactly the same
structure. The node of a red-black tree contains as rebalancing information just
that color entry.

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
enum {red, black} color;

/* possibly other information */
} tree_node_t;

We have to maintain the following balancedness properties:

(1) each path from the root to a leaf contains the same number of black nodes,
and

(2) if a red node has lower neighbors, they are black.

It is also convenient to add the condition

– the root is black.
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This is no restriction because we can always color the root black without
affecting the other conditions; but this assumption guarantees that each red
node has an upper neighbor that is black, so we can conceptually collapse all
red nodes into their upper neighbors to get the isomorphism with (2, 4)-trees.

The rebalancing operations are different for insert and delete operations. For
insert, we perform the basic insert and color both new leaves red. This possibly
violates condition (2), but preserves condition (1); so the rebalancing after the
insert starts with a red node with red lower neighbors and moves this color
conflict up along the path to the root till it disappears.

For delete, we perform the basic delete but retain the colors of the nodes; if
the deleted leaves were black, this violates condition (1) but preserves condition
(2); again we will move this violation up along the path to the root till it
disappears.

The insert-rebalance method works as follows: If the violation of (2) occurs
in the root, we color the root black. Else let *upper be a node with lower
neighbors *current and *other, where *current is the upper node of a
pair of red nodes violating (2). Because there is only one pair of nodes violating
(2), *upper is a black node. Now the rules are as follows:

1. If other is red, color current and other black and upper red.
2. If current = upper->left

2.1 If current->right->color is black,
perform a right rotation around upper and color upper->right
red.

2.2 If current->right->color is red,
perform a left rotation around current followed by a right rotation
around upper, and color upper->right and upper->left
black and upper red.

3. If current = upper->right
3.1 If current->left->color is black,

perform a left rotation around upper and color upper->left red.
3.2 If current->left->color is red,

perform a right rotation around current followed by a left rotation
around upper, and color upper->right and upper->left
black and upper red.

It is easy to see that condition (1) is preserved by these operations, and the
violation of condition (2) is moved two nodes up in the tree for cases 1, 2.2,
and 3.2 and disappears for cases 2.1 and 3.1 or if it was in the root. Because
we need only O(1) work on each level along the path to the root of length
O(log n), this rebalancing takes O(log n) time.
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Situation and Cases 1, 2.1, and 2.2 of Insert-Rebalance
current Has a Red Lower Neighbor

Indeed, with the same argument as for (a, b)-trees in general, we can show
that the amortized number of rotations is only O(1). Associate with each black
node the number of red nodes for which this node is the next black node
above it, and give black nodes potential 1, 0, 3, 6 if they are associated with
0, 1, 2, 3 red nodes, respectively. Then each basic insert increases the sum of
potentials by at least 3, whereas operations 1, 2.2, and 3.2 decrease the sum of
potentials by at least 2, and operations 2.1 and 3.1 can occur only once during
the rebalancing. This same analysis works although the rebalancing method by
rotations is not equivalent to the rebalancing by split, join, and share.

By a slight complication of the rebalancing rules, we could even get a worst-
case number of four rotations in an insert rebalancing. In the cases 2.2 and 3.2,
which are the only rotation cases that propagate the color conflict, we need to
color upper->right and upper->left black because it is possible that
both lower neighbors of current are red; but that can happen only once on
the leaf level. After that, there is always at most one red lower neighbor. Then
we could color in the cases 2.2 and 3.2 upper->right and upper->left
red and upper black; with that change, all rotation cases above the leaf level
would remove the color conflict.

The delete rebalance is unfortunately much more complicated.2 In this
situation we have a violation of property (1): a node *current for which all
paths through that node to a leaf contain one black node less than they should.
There are two simple situations:

1. If current is red, we color it black.
2. If current is the root, then (1) holds anyway.

2It is very easy to make an error among these many cases; in a well-known algorithms textbook,
one of the delete-rebalance cases is wrong.
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Otherwise we can assume that *current is black and it has an upper neighbor
*upper, which itself has another lower neighbor *other. Because all paths
from *other to a leaf contain at least two further black vertices, all vertices
below *other referenced in the following cases do indeed exist. The cases
and transformation rules are the following:

3. If current = upper->left
3.1 If upper is black, other is black, and other->left is black,

perform a left rotation around upper and color upper->left red
and upper black. Then the violation of (1) occurs in upper.

3.2 If upper is black, other is black, and other->left is red,
perform a right rotation around other, followed by a left rotation
around upper, and color upper->left, upper->right and
upper black. Then (1) is restored.

3.3 If upper is black, other is red, and other->left->left is
black, perform a left rotation around upper, followed by a left
rotation around upper->left, and color upper->left->left
red, upper->left and upper black. Then (1) is restored.

3.4 If upper is black, other is red, and other->left->left is red,
perform a left rotation around upper, followed by a right rotation
around upper->left->right, and a left rotation around
upper->left, and color upper->left->left and
upper->left->right black, upper->left red, and upper
black. Then (1) is restored.

3.5 If upper is red, other is black, and other->left is black,
perform a left rotation around upper and color upper->left red
and upper black. Then (1) is restored.

3.6 If upper is red, other is black, and other->left is red,
perform a right rotation around other, followed by a left rotation
around upper, and color upper->left and upper->right
black and upper red. Then (1) is restored.

4. If current = upper->right
4.1 If upper is black, other is black, and other->right is black,

perform a right rotation around upper and color upper->right
red and upper black. Then the violation of (1) occurs in upper.

4.2 If upper is black, other is black, and other->right is red,
perform a left rotation around other, followed by a right rotation
around upper, and color upper->left, upper->right and
upper black. Then (1) is restored.

4.3 If upper is black, other is red, and other->right->right is
black, perform a right rotation around upper, followed by a right
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rotation around upper->right, and color upper->right->
right red, upper->right and upper black. Then (1) is restored.

4.4 If upper is black, other is red, and other->right->right is
red, perform a right rotation around upper, followed by a left rotation
around upper->right->left, and a right rotation around
upper->right, and color upper->right->right and
upper->right->left black, upper->right red, and upper
black. Then (1) is restored.

4.5 If upper is red, other is black, and other->right is black,
perform a right rotation around upper and color upper->right
red and upper black. Then (1) is restored.

4.6 If upper is red, other is black, and other->right is red,
perform a left rotation around other, followed by a right rotation
around upper, and color upper->left and upper->right
black and upper red. Then (1) is restored.
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Situation and Cases 3.1 to 3.6 of Delete Rebalance:
The Paths through current Have One Black Node too Few
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Again we perform only O(1) work per level along the path from the leaf to the
root, so O(log n) in total. Only the operations 3.1 and 4.1 can occur more than
once, but these can indeed occur �(log n) times, as one can see when one starts
with a complete binary tree, colored entirely black, and removes one vertex.
This completes the proof that rebalancing can be done for red-black trees after
insertions and deletions in O(log n) time.

Theorem. The red-black tree structure supports find, insert, and
delete in O(log n) time.

Again we give an implementation of insert in red-black trees.

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)
{ tree_node_t *current_node;

int finished = 0;
if( tree->left == NULL )
{ tree->left = (tree_node_t *) new_object;

tree->key = new_key;
tree->color = black;
/* root is always black */
tree->right = NULL;

}
else
{ create_stack();

current_node = tree;
while( current_node->right != NULL )
{ push( current_node );

if( new_key < current_node->key )
current_node = current_node->left;

else
current_node =
current_node->right;

}
/* found the candidate leaf.

Test whether key distinct */
if( current_node->key == new_key )

return( -1 );
/* key is distinct,

now perform the insert */
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{ tree_node_t *old_leaf, *new_leaf;
old_leaf = get_node();
old_leaf->left = current_node->left;
old_leaf->key = current_node->key;
old_leaf->right = NULL;
old_leaf->color = red;
new_leaf = get_node();
new_leaf->left = (tree_node_t *)
new_object;
new_leaf->key = new_key;
new_leaf->right = NULL;
new_leaf->color = red;
if( current_node->key < new_key )
{ current_node->left = old_leaf;

current_node->right = new_leaf;
current_node->key = new_key;

}
else
{ current_node->left = new_leaf;

current_node->right = old_leaf;
}

}
/* rebalance */
if( current_node->color == black ||

current_node == tree )
finished = 1;

/* else: current_node is upper node of
red-red conflict*/
while( !stack_empty() && !finished )
{ tree_node_t *upper_node, *other_node;

upper_node = pop();
if(upper_node->left->color ==

upper_node->right->color)
{ /* both red, and upper_node black */

upper_node->left->color = black;
upper_node->right->color = black;
upper_node->color = red;

}
else /* current_node red,
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other_node black */
{ if( current_node == upper_node->left)

{ other_node = upper_node->right;
/* other_node->color == black */
if( current_node->right->color ==
black )
{ right_rotation( upper_node );

upper_node->right->color = red;
upper_node->color = black;
finished = 1;

}
else /* current_node->right->color
== red */
{ left_rotation( current_node );

right_rotation( upper_node );
upper_node->right->color =
black;
upper_node->left->color =
black;
upper_node->color = red;

}
}
else /* current_node ==
upper_node->right */
{ other_node = upper_node->left;

/* other_node->color == black */
if( current_node->left->color ==
black )
{ left_rotation( upper_node );

upper_node->left->color = red;
upper_node->color = black;
finished = 1;

}
else /* current_node->left->color
== red */
{ right_rotation( current_node );

left_rotation( upper_node );
upper_node->right->color =
black;
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upper_node->left->color =
black;
upper_node->color = red;

}
} /* end current_node left/right
of upper */
current_node = upper_node;

} /*end other_node red/black */
if( !finished && !stack_empty() )
/* upper is red, conflict possibly
propagates upward */
{ current_node = pop();

if( current_node->color == black )
finished = 1;
/* no conflict above */

/* else: current is upper node of
red-red conflict*/

}
} /* end while loop moving back to root */
tree->color = black; /* root is
always black */

}
remove_stack();
return( 0 );

}

We do not give code for the delete function, which works in the same way
but with the numerous cases given in the delete rebalance description. Again,
as in the previous chapter, the stack should be chosen as array.

3.5 Top-Down Rebalancing for Red-Black Trees

The method of the previous section was again very similar to the height-
balanced and weight-balanced trees discussed in Sections 3.1 and 3.2; it sepa-
rates the finding of the leaf from the rebalancing, which is done in a bottom-up
way, returning from the leaf back to the root. But red-black trees also al-
low a top-down rebalancing, as did weight-balanced trees and (a, b)-trees,
which performs the rebalancing on the way down to the leaf, without the
need to return to the root. This method is a special case of the method we
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mentioned in Section 3.3, but we will describe it now in detail for the red-black
trees.

For insertion, we go down from the root to the leaf and ensure by some
transformations that the current black node has at most one red lower neighbor.
So each time we meet a black node with two red lower neighbors, we have to ap-
ply some rebalancing transformation; this corresponds to the splitting of (2, 4)-
nodes of degree 4. Thus, at the leaf level we always arrive at a black leaf, so we
can insert a new leaf below that black node without any further rebalancing.

For deletion, we go down from the root to the leaf and ensure by some
transformations that the current black node has at least one red lower neighbor.
So each time we meet a black node with two black lower neighbors, we have
to apply some rebalancing transformation; this corresponds to the joining or
sharing of (2, 4)-nodes of degree 2. Thus we arrive at the leaf level in a black
node that has at least one red lower neighbor, so we can delete a leaf below that
black node without any further rebalancing.

The following are the rebalancing rules for the top-down insertion: Let
*current be the current black node on the search path and *upper be
the black node preceding it (with perhaps a red node between these two
black nodes). By our rebalancing, *upper has already at most one red lower
neighbor.

1. If at least one of current->left and current->right is black, no
rebalancing is necessary.

2. If current->left and current->right are both red, and
current->key < upper->key
2.1 If current = upper->left

color current->left and current->right black and
current red.
If upper->left->key < new key
{ set current to upper->left->left, else
{ set current to upper->left->right.

2.2 If current = upper->left->left
perform a right rotation in upper, and color upper->left and
upper->right red, and upper->left->left and
upper->left->right black.
If upper->left->key < new key
{ set current to upper->left->left, else
{ set current to upper->left->right.

2.3 If current = upper->left->right
perform a left rotation in upper->left followed by a right rotation
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in upper, and color upper->left and upper->right red, and
upper->left->right and upper->right->left black.
If upper->key < new key
{ set current to upper->left->right, else
{ set current to upper->right->left.

3. Else current->left and current->right are both red, and
current->key ≥ upper->key
3.1 If current = upper->right

color current->left and current->right black and
current red.
If upper->right->key < new key
{ set current to upper->right->left, else
{ set current to upper->right->right.

3.2 If current = upper->right->right
perform a left rotation in upper, and color upper->left and
upper->right red, and upper->right->left and
upper->right->right black.
If upper->right->key < new key,
{ set current to upper->right->left, else
{ set current to upper->right->right.

3.3 If current = upper->right->left
perform a right rotation in upper->right, followed by a left
rotation in upper, and color upper->left and upper->right
red, and upper->left->right and upper->right->left
black.
If upper->key < new key,
{ set current to upper->left->right, else
{ set current to upper->right->left.

The new current in cases 2 and 3 was previously a red node, so both
its lower neighbors are black. After this rebalancing transformation, we set
upper to current and move current further down along the search path
until it meets either a black node or a leaf. If it meets a black node, we
repeat the rebalancing transformation, and if it meets a leaf, we perform the
insertion. The insertion creates a new interior node below upper, which we
color red. If upper is the upper neighbor of that new red node, we are finished,
else the single red node below upper is the node above the new node; then
we perform a rotation around upper, and have restored the red-black tree
property.
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Cases 2.1 to 2.3 of Top-Down Insertion:
upper and current Are Marked with current Moving Down

Next we give an implementation of insert in red-black trees with top-
down rebalancing.

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)

{ if( tree->left == NULL )
{ tree->left = (tree_node_t *) new_object;

tree->key = new_key;
tree->color = black;
/* root is always black */
tree->right = NULL;

}
else
{ tree_node_t *current, *next_node, *upper;

current = tree;
upper = NULL;
while( current->right != NULL )
{ if( new_key < current->key )

next_node = current->left;
else

next_node = current->right;
if( current->color == black )
{ if( current->left->color == black ||

current->right->color == black )
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{ upper = current;
current = next_node;

}
else /* current->left
and current->right red */
{ /* need rebalance */

if( upper == NULL )
/* current is root */
{ current->left->color = black;

current->right->color = black;
upper = current;

}
else if (current->key <
upper->key )
{ /* current left of upper */

if( current == upper->left )
{ current->left->color =

black;
current->right->color =
black;
current->color = red;

}
else if( current ==
upper->left->left )
{ right_rotation( upper );

upper->left->color = red;
upper->right->color = red;
upper->left->left->color =
black;
upper->left->right->color =
black;

}
else /* current ==
upper->left->right */
{ left_rotation

(upper->left );
right_rotation( upper );
upper->left->color = red;
upper->right->color = red;
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upper->right->left->color =
black;
upper->left->right->color =
black;

}
}
else /* current->key >=
upper->key */
{ /* current right of upper */

if( current == upper->right )
{ current->left->color =

black;
current->right->color =
black;
current->color = red;

}
else if( current ==
upper->right->right )
{ left_rotation( upper );

upper->left->color = red;
upper->right->color = red;
upper->right->left->color =
black;
upper->right->right->color =
black;

}
else /* current ==
upper->right->left */
{ right_rotation(

upper->right );
left_rotation( upper );
upper->left->color = red;
upper->right->color = red;
upper->right->left->color =
black;
upper->left->right->color =
black;

}

} /* end rebalancing */
current = next_node;
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upper = current;
/*two black lower neighbors*/

}
}
else /* current red */
{ current = next_node; /*move down */
}

} /* end while; reached leaf. always
arrive on black leaf*/
/* found the candidate leaf. Test
whether key distinct */
if( current->key == new_key )

return( -1 );
/* key is distinct, now perform the
insert */
{ tree_node_t *old_leaf, *new_leaf;

old_leaf = get_node();
old_leaf->left = current->left;
old_leaf->key = current->key;
old_leaf->right = NULL;
old_leaf->color = red;
new_leaf = get_node();
new_leaf->left = (tree_node_t *)
new_object;
new_leaf->key = new_key;
new_leaf->right = NULL;
new_leaf->color = red;
if( current->key < new_key )
{ current->left = old_leaf;

current->right = new_leaf;
current->key = new_key;

}
else
{ current->left = new_leaf;

current->right = old_leaf;
}

}
}
return( 0 );

}
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The rebalancing rules for the top-down deletion are again more complicated.
Let *current be the current black node on the search path and *upper be
the black node preceding it (with perhaps a red node between these two black
nodes). We need to maintain that below that at least one of upper->left
and upper->right is red.

1. If at least one of current->left and current->right is red, no
rebalancing is necessary. Set upper to current and move current
down the search path to the next black node.

2. If current->left and current->right are both black, and
current->key < upper->key
2.1 If current = upper->left, and

2.1.1 upper->right->left->left and
upper->right->left->right are both black:
Perform a left rotation in upper and color upper->left
black, and upper->left->left and
upper->left->right red, and set current and upper
to upper->left.

2.1.2 upper->right->left->left is red:
Perform a right rotation in upper->right->left, followed
by a right rotation in upper->right and a left rotation in
upper, and color upper->left and
upper->right->left black, and
upper->right and upper->left->left red, and set
current and upper to upper->left.

2.1.3 upper->right->left->left is black and
upper->right->left->right is red:
Perform a right rotation in upper->right, followed by a left
rotation in upper, and color upper->left and
upper->right->left black, and upper->right and
upper->left->left red, and set current and upper to
upper->left.

2.2 If current = upper->left->left, and
2.2.1 upper->left->right->left and

upper->left->right->right are both black: Color
upper->left->left and upper->left->right red,
and upper->left black, and set current and upper to
upper->left.

2.2.2 upper->left->right->right is red:
Perform a left rotation in upper->left, and color
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upper->left->left and upper->left->right black,
and upper->left and upper->left->left->left red,
and set current and upper to upper->left->left.

2.2.3 upper->left->right->left is red and
upper->left->right->right is black: Perform a right
rotation in upper->left->right, followed by a left
rotation in upper->left, and color upper->left->left
and upper->left->right black, and upper->left and
upper->left->left->left red, and set current and
upper to upper->left->left.

2.3 If current = upper->left->right, and
2.3.1 upper->left->left->left and

upper->left->left->right are both black: Color
upper->left->left and upper->left->right red,
and upper->left black, and set current and upper to
upper->left.

2.3.2 upper->left->left->left is red:
Perform a right rotation in upper->left, and color
upper->left->left and upper->left->right black
and upper->left and upper->left->right->right
red, and set current and upper to
upper->left->right.

2.3.3 upper->left->left->left is black and
upper->left->left->right is red: Perform a left
rotation in upper->left->left, followed by a right
rotation in upper->left, and color upper->left->left
and upper->left->right black, and upper->left and
upper->left->right->right red, and set current
and upper to upper->left->right.

3. Else current->left and current->right are both black, and
current->key ≥ upper->key
3.1 If current = upper->right, and

3.1.1 upper->left->right->right and
upper->left->right->left are both black:
Perform a right rotation in upper, and color upper->right
black, and upper->right->right and
upper->right->left red, and set current and upper
to upper->right.

3.1.2 upper->left->right->right is red:
Perform a left rotation in upper->left->right, followed
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by a left rotation in upper->left and a right rotation in
upper, and color upper->right and
upper->left->right black,
and upper->left and upper->right->right red,
and set current and upper to upper->right.

3.1.3 upper->left->right->right is black and
upper->left->right->left is red:
Perform a left rotation in upper->left, followed by a right
rotation in upper, and color upper->right and
upper->left->right black, and upper->left and
upper->right->right red, and set current and upper
to upper->right.

3.2 If current = upper->right->right, and
3.2.1 upper->right->left->right and

upper->right->left->left are both black:
Color upper->right->right and
upper->right->left red, and
upper->right black, and set current and upper to
upper->right.

3.2.2 upper->right->left->left is red:
Perform a right rotation in upper->right and color
upper->right->right and upper->right->left
black, and upper->right and
upper->right->right->right red, and set current
and upper to upper->right->right.

3.2.3 upper->right->left->right is red and
upper->right->left->left is black:
Perform a left rotation in upper->right->left, followed
by a right rotation in upper->right, and color
upper->right->right and upper->right->left
black, and upper->right and
upper->right->right->right red,
and set current and upper to upper->right->right.

3.3 If current = upper->right->left, and
3.3.1 upper->right->right->right and

upper->right->right->left are both black:
Color upper->right->right and
upper->right->left red, and
upper->right black, and set current and upper to
upper->right.



3.5 Top-Down Rebalancing for Red-Black Trees 111

2.1 bl

bl r

bl bl bl bl

2.1.1 bl

bl r

bl bl bl bl

bl bl

bl

bl bl

r r

bl bl bl bl

2.1.2 bl

bl r

bl bl bl bl

r ?

bl bl

bl

bl r

r bl bl bl

bl bl bl ?

2.1.3 bl

bl r

bl bl bl bl

bl r

bl

bl r

r bl bl bl

bl bl

2.2 bl

r ?

bl bl

bl bl

2.2.1 bl

r ?

bl bl

bl bl bl bl

bl

bl ?

r r

bl bl bl bl

2.2.2 bl

r ?

bl bl

bl bl ? r

bl

r ?

bl bl

r ?

bl bl

2.2.3 bl

r ?

bl bl

bl bl r bl

bl bl

bl

r ?

bl bl

r bl bl bl

bl bl

2.3 bl

r ?

bl bl

bl bl

2.3.1 bl

r ?

bl bl

bl bl bl bl

bl

bl ?

r r

bl bl bl bl

2.3.2 bl

r ?

bl bl

r ? bl bl

bl

r ?

bl bl

? r

bl bl

2.3.3 bl

r ?

bl bl

bl r bl bl

bl bl

bl

r ?

bl bl

bl bl bl r

bl bl

Cases 2.1 to 2.3 and Their Subcases of Top-Down Deletion:
upper and current Are Marked



112 3 Balanced Search Trees

3.3.2 upper->right->right->right is red:
Perform a left rotation in upper->right, and color
upper->right->right and upper->right->left
black, and upper->right and
upper->right->left->left red, and set current and
upper to upper->right->left.

3.3.2 upper->right->right->right is black and
upper->right->right->left is red:
Perform a right rotation in upper->right->right,
followed by a left rotation in upper->right, and
color upper->right->right and
upper->right->left black,
and upper->right and
upper->right->left->left red, and set current and
upper to upper->right->left.

After this rebalancing transformation, we move current further down along
the search path until it either meets a black node or a leaf. If it meets a black
node, we repeat the rebalancing transformation, and if it meets a leaf, we
perform the deletion. The deletion removes a leaf and an interior node below
upper, but there is at least one red node below upper. If the leaf is below that
red node, we just delete it and the red node; otherwise, we perform a rotation
around upper to bring the red node above the leaf and then we delete the leaf
and the red node. By this, we have maintained the red-black tree property.

3.6 Trees with Constant Update Time at a Known Location

We have seen that (a, b)-trees need only an amortized constant number of
node changes during any update. This essentially also holds for the structures
derived from them like red-black trees, but here we have to distinguish between
structural changes, that is, rotations, and recolorings. In the bottom-up rebal-
ancing algorithms described in the previous section, we need only an amortized
constant number of rotations but still have to recolor nodes all along the path.
With another rebalancing algorithm, Tarjan (1983a) managed to reduce the
number of rotations for the update of red-black trees from amortized O(1) to
worst-case O(1), but this disregards the time spent in finding the nodes that
should be rotated and the recoloring of nodes along the path, so even if we
know the leaf where we performed the update, it is not a constant update time,
not even in the amortized sense.
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Overmars (1982) observed a very simple argument that converts any binary
search tree with an O(log n) query and update time in a tree with an amortized
O(1) update time for updates at a known location, while keeping the O(log n)
query time, with just some increase in the multiplicative constant. The technique
he introduced is bucketing in the leaves; instead of storing individual elements
in the leaves, he stores consecutive elements in a sorted linked list, so the
lowest levels of the search tree are replaced by a sorted list. The length of
these lists is limited by log n. Then the search time is still O(log n) because
the search consists of going to the correct leaf of the original tree and then
following the linked list. The insertion of an element consists of inserting it
in the correct ordered list, in time O(log n), followed by a splitting of the list
if the length of the list is above the threshold log n, and a rebalancing of the
tree to insert the new list as new leaf, also in time O(log n). Because the lists
overflow on the average only every 1

2 log n insertions, the rebalancing of the tree
happens amortized only every �(log n) steps and costs each time O(log n), so
the amortized cost of the rebalancing of the tree after an insertion is O(1). This
assumes, of course, that we already know the exact place where the insertion
happens.

The same method cannot be used for deletions because a list can become
short but all its neighboring lists remain too long to join it to them. Instead,
there is a much stronger transformation, also invented by Overmars (Overmars
and van Leeuwen 1981b; Overmars 1983), a global rebuilding analog to the
shadow copies of array-based structures that we introduced in Section 1.5. The
important insight is that in any balanced search treelike structure the rebal-
ancing after deletions, unlike insertions, can be deferred quite a lot. Without
rebalancing, a sequence of l insertions in a balanced search tree with m leaves
might increase the height of the tree from c log m to l + c log m, where the
rebalanced height should increase only to c log(m + l). But a sequence of l

deletions without rebalancing does not increase the height at all, and the re-
balanced height should decrease to c log(m − l). Thus, we can delete half the
elements of the tree without any rebalancing and have still at most only an error
c = O(1) in the height of the tree. Thus, we can set a threshold for the number
of deletions, for example, 1

2m, and when the threshold is met, we start building
a new tree, while still working with the old tree, copying O(1) elements at a
time, for example, four, so that the new tree is finished while the old tree still
contains more than, for example, 1

4m elements. Then we switch the tree and
start unbuilding and returning the nodes of the old tree, again only a constant
number of nodes at a time. This way we have only a worst-case overhead of
O(1) for deletion of a known leaf. And again this technique can be combined
with any balanced search tree, and indeed with a much more general class of



114 3 Balanced Search Trees

objects like the tree with �(log n)-buckets for the leaves described earlier for
which we have m = �( n

log n
). The main implementation difficulty is that the

current tree changes while we copy it.
So worst-case constant-time deletion in balanced search trees is in principle

no problem, but worst-case constant insertion was an open problem for some
time, finally solved by Levcopoulos and Overmars (1988) using a two-level
bucketing scheme, and by Fleischer (1996) using (a, 4a)-trees with a single-
level bucketing scheme and a deferred splitting of nodes, which become eligible
for splitting as soon as they contain at least 2a + 1 elements. Both methods are
quite complicated especially because they have to be combined with the global
rebuilding technique for deletions, so we do not give their details.

3.7 Finger Trees and Level Linking

The underlying idea of finger trees is that searching for an element should be
faster if the position of a nearby element is known. This nearby element is
known as the “finger.” The search time should not depend on the total size
of the underlying set S, but only on the neighborhood or distance from the
finger f to the element q that is searched. The reasonable way to measure the
distance is the number of elements between the finger and the query element.
And the best we can hope for is a search time that is logarithmic in that distance,
O (log |S ∩ [f, q]|). Because finger search contains the usual find operation as
special case (we could just add −∞ to any set and take it as finger), it cannot
be faster, but the logarithmic query time can be reached.

This needs, however, some additional structure on the search tree. As we
have defined it, there is no connection from the leaf to any other node in the
tree. We even had to keep the path back to the root on the stack because it was
not recoverable from the leaf alone. But adding back pointers is no solution to
the problem either because we still may have to go all the way back to the root
to come from one leaf to its neighbor, as in the case of the rightmost leaf of the
left subtree of root to its right neighbor. We need even more connections in the
tree – a structure known as level linking.

Finger trees were invented by Guibas et al. (1977) for a structure based on
B-trees and later discussed by Brown and Tarjan (1980) and Kosaraju (1981)
for (2, 3)-trees, and the concept of level linking is really easiest to explain in
the context of (a, b)-trees. In an (a, b)-tree, all leaves are at the same depth.
Suppose now we create for each depth i a doubly linked list of nodes at depth
i and also add back pointers to each node. Then a finger search method could
have the following outline: go from the finger leaf several levels up, move in
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the list of nodes at level i in the right direction till the subtree with the query
element is found, and then go down in the tree again to the query element. The
importance of the level lists is that the higher up the list, the larger the distance
between consecutive entries in the list: they give views of the set at various
resolutions and allow moving large distances with few steps if one chooses the
right list.

This idea does not directly transfer to binary search trees because the paths
from the root to the leaves have different lengths. But we do not need to assign
each node to some level – many nodes can be between levels. We need to
maintain two conditions:

1. within each level, the intervals associated with the nodes form a partition
of ]−∞,∞[; and

2. along each path from the root to a leaf, the number of nodes between two
nodes of consecutive levels is bounded by a constant C.

These conditions are obviously satisfied for (a, b)-trees: there condition (2) is
empty. They are also satisfied for red-black trees because the black nodes are
arranged in levels, and between two black nodes in consecutive levels there is
at most one red node. Because we observed in the previous chapter that height-
balanced trees allow a red-black coloring, we can also perform level linking on
height-balanced trees (Tsakalidis 1985). So many of the balanced search trees
we have discussed allow level linking. The structure of a node in a level linked
tree is as follows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
struct tr_n_t *up;
struct tr_n_t *level_left;
struct tr_n_t *level_right;
/* some balancing information */
/* possibly other information */

} tree_node_t;

So in addition to the left and right pointers going downward, we have
an up pointer and two pointers level left and level right that are
the links for the doubly linked list within the level. We use the convention
that level left = NULL and level right = NULL for nodes between
levels, and one of them is NULL for nodes at the beginning or end of the level
lists. For the root, the up pointer is NULL.
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Example of a Level-Linked Search Tree:
All Edges Correspond to Pointers in Both Directions

The strategy for the finger search is now that we go up from the finger as
long as on each level the next node in the level list in the direction of the query
key separates the finger key and the query key. Then below this separating node
there is a subtree whose all leaves are between the finger leaf and the query
leaf, and this subtree has a number of leaves that is exponential in its height,
which is proportional to the length of the search path.

By property (1), each path from a leaf to the root intersects each level. Let
ni be the node on the ith level from the leaf on the path from the finger to the
root. We have for each level that

ni->level left->key < finger->key < ni->level right->key

{ If finger->key < query key, let i be the last level for which
ni->level right->key ≤ query key, then all leaves of the subtree
below ni->level right->left have key values between
finger->key and query key. So there are at least 2i−1 leaves between
the finger and the query. Now one level higher, we have
query key < ni+1->level right->key, so the query key falls either
in the subtree below ni+1 or in the subtree below
ni+1->level right->left.
Each of these trees has by property (2) height at most C(i + 1). Together
with the path from the finger up to ni+1 and all the neighbor comparisons
on the levels, we have used O(i) work to find a query key whose distance to
the finger is at least 2i−1, giving the
O(log (distance(finger, query)))-bound we claimed.

{ Similarly, if finger->key > query key, let i be the last level for
which ni->level left->key > query key, then all leaves of
subtree below ni->level left->right have key values between
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finger->key and query key. So there are at least 2i−1 leaves between
the finger and the query. Now one level higher, we have
ni+1->level left->key ≤ query key, so the query key falls either
in the subtree below ni+1->level left->right or in the subtree
below ni+1. Each of these trees has by property (2) height at most C(i + 1).
Together with the path from the finger up to ni+1 and all the neighbor
comparisons on the levels, we again used O(i) work to find a query key
whose distance to the finger is at least 2i−1, giving the
O (log (distance(finger, query)))-bound we claimed.

finger key query key
finger

n

n

n ->right

n ->right

i

i+1

i

i+1

Finger Search in a Level-Linked Tree

Theorem. A level-linked tree supports finger search in time
O (log (distance(finger, query))).

Next we give code for the finger search. In addition, the tree should of course
also support the normal find, insert, and delete operations, and when imple-
menting these, one needs to keep track of the level-linking information. In our
finger search implementation, we use the normal find function, which, for this
application, should be changed not to return the object pointer but the pointer
to the leaf node, otherwise we have no method to obtain the finger pointers.

tree_node_t *finger_search(tree_node_t *finger,
key_t query_key)

{ tree_node_t *current_node, *tmp_result;
current_node = finger;
if (finger->key == query_key )

return( finger );
else if( finger->key < query_key )
{ while( current_node->up != NULL &&

( (current_node->level_right == NULL
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&&
current_node->level_left == NULL )
||
(current_node->level_right!= NULL

&&
current_node->level_right->
key < query_key) ) )

current_node = current_node->up;
/* end of while */
if( (tmp_result = find( current_node,
query_key ) ) != NULL )

return( tmp_result );
else if (current_node->level_right != NULL )

return( find( current_node->level_right,
query_key ) );

else
return( NULL );

} /* end of: if query is right of finger */
else /* query_key < finger->key */
{ while( current_node->up != NULL &&

( (current_node->level_right == NULL
&&
current_node->level_left == NULL )
||
(current_node->level_left != NULL

&&
query_key < current_node->
level_left->key) ) )

current_node = current_node->up;
/* end of while */
if( (tmp_result = find( current_node,
query_key ) ) != NULL )

return( tmp_result );
else if (current_node->level_left != NULL )

return( find( current_node->level_left,
query_key ) );

else
return( NULL );

} /* end of: if query is left of finger */
}
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Finger search has been studied in a number of papers; for any search-tree
structure or property, one can ask how to combine it with finger search and
what the update cost of the finger structure is. This was finally optimally solved
in Brodal (1998) and Brodal et al. (2002), where all update operations were
done in O(1) time in addition to the time to find the relevant leaf. But in truth,
finger search has little practical relevance unless the access is extremely local,
for instead of going once down from the root, we go up from the finger to some
turning point and then down again (in a most optimistic estimate, the work is
really about four times that distance). So this can be more effective than going
down from the top only if the way we went up from the bottom is less than
half the total height. So if there are in total ch = n leaves and we go up at
most to h/2, then the distance between finger and query should be less than
n1/2 (really much smaller). Otherwise, the trivial find is more efficient than the
finger search.

A final problem with the use of finger trees as described here is that the finger
is a pointer into the structure, so it is only valid as long as the structure, at least
in the memory location of the leaves, does not change. So if one wants the
pointers to be valid after any insert, additional care has to be taken to keep the
leaf node as leaf. This is different from what we did, which was just splitting
the old leaf on insertion. To keep the leaf as leaf, one would have to change
the pointer in the upper neighbor of the old leaf. Keeping the fingers valid after
deletion introduces the additional problem that the finger element could have
been deleted.

A variant proposed in Blelloch, Maggs, and Woo (2003) replaces the finger
by a larger structure and instead does not need all those pointers added to the
tree itself, making it more space efficient. In our level-linked trees, we really
needed only the path back to the root for the evaluation of a finger query, and
the level neighbors of that path on all levels; apart from that, we just used the
normal pointers of the underlying tree. So the main problem is to make an
efficient update of that access structure after a finger query.

3.8 Trees with Partial Rebuilding: Amortized Analysis

An entirely different method to keep the search trees balanced is to rebuild
them. Of course, rebuilding the entire tree takes �(n) time, so it is no reasonable
alternative to the update methods of O(log n) complexity if we do it in each
update for the entire tree. But it turns out to be comparable in the amortized
complexity if we only occasionally rebuild and rebuild only subtrees. This was
first observed by Overmars, who studied partial rebuilding as a very general
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method to turn static data structures (not allowing updates) into dynamic data
structures (supporting update operations) (Overmars 1983). We lose by this the
worst-case guarantee on the update time but still have an amortized bound over
a sequence of updates. Every single one of them could, however, take �(n)
time.

The use of partial rebuilding for balanced search trees was rediscovered
in a different context by Andersson (1989b, 1990, 1999) and Galperin and
Rivest (1993). They were interested in the question how little information is
sufficient to rebalance the tree. The red-black trees still needed one bit per
node, but indeed no information in the nodes is necessary. One can keep the
tree balanced with only the total number of leaves as balancing information
because this is sufficient to detect when a leaf is too low.

Given the number n of elements, one can set a height threshold c log n for
some c sufficiently large. Then we can decide, whenever we go down the tree
to a leaf, whether the depth of this leaf is too large for the current number of
elements. In that case some subtree containing the leaf requires rebalancing, but
we do not know where this subtree starts. It could be possible that the next log n

levels above the leaf are a complete binary tree; only this perfectly balanced tree
is attached by a long path to the root. So we have to go up along the path from
the leaf to the root and check for each node whether the subtree below that node
is sufficiently unbalanced that rebalancing will give a significant improvement.
This sounds very inefficient, but because the subtrees we are looking at are
exponentially growing in size, the total work is really determined by the last
subtree – the one which we decide to rebalance.

Our measure for the balancedness is α-weight-balance. Because we use
a different rebalancing strategy, the restrictions on α of Section 3.2 do not
apply here. We are here interested in α < 1

4 . For α-weight-balance, our depth

bound is
(
log 1

1−α

)−1
log n, as in Section 3.2: if along the path all nodes are α-

weight-balanced, then this is an upper bound for the length of the path. But we
cannot directly use the violation of α-weight-balance as criterion for rebuilding
because it is not sufficient to guarantee a height reduction by optimal rebuilding.
The bottom-up optimal tree with 2k + 1 leaves is extremely unbalanced in the
root, but it is still of optimal height. Instead, we accept a subtree as requiring
rebuilding if its height is larger than the maximum height of an α-weight-
balanced tree with the same number of leaves or equivalently if its number
of leaves is less than the minimum number of leaves of an α-weight-balanced
tree with the same height, which is ( 1

1−α
)h. This guarantees that rebuilding

decreases the height.
So the method for insertion is the following: We perform the basic insertion,

keeping track of the depth and the path up. If after the insertion the depth of
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the leaf is still below the threshold, no rebalancing is necessary. If the leaf has
a depth above the threshold, we again go up the path and convert the subtree
below the current node into a linked list. When we move up to the next node, we
convert the other subtree of that node also into a linked list, using the method
from Section 2.8, and concatenate the two lists of the left and right subtrees. If
the node is the ith node along the path from the leaf and the number of leaves
in this list is greater than ( 1

1−α
)i , we move up to the next node on the path to the

root, else convert the list into an optimal tree using the top-down method from
Section 2.7 and finish rebalancing. Because the length of the path is above the
threshold of

(
log 1

1−α

)−1
log n, there must be a node along the path where the

number of leaves is too small for the height (at latest, the root).
We observe that the height bound

(
log 1

1−α

)−1
log n is maintained by this

method over any sequence of insertions. If the height bound was satisfied before
the insertion, then after the insertion it is violated by at most one; but if it is
violated, then an unbalanced subtree will be found and optimally rebuilt, which
will decrease the height of that subtree by at least one.

Now we prove that the amortized complexity of an insertion is O(log n). For
this we introduce a potential function on the search trees. The potential of a tree
is the sum over all interior nodes of the absolute value of the difference of the
weights of the left and right subtrees. The potential of any tree is nonnegative,
and a single insertion will change only the potential of the nodes along its
search path, each by at most one, so it will increase the potential of the tree
by at most

(
log 1

1−α

)−1
log n. But the subtree that gets rebalanced is the first

along the path that has height too large to be α-weight-balanced, so it is not
α-weight-balanced in its root. So this subtree has potential at least (1 − 2α)w
if it has w leaves. If we select this tree for rebalancing, we perform O(w) work
to obtain a top-down optimal tree on these w nodes.

Theorem. A top-down optimal tree with w leaves has potential at most 1
2w.

Proof. In a top-down optimal tree, any interior node has potential 0 or 1,
depending on whether the number of leaves in the subtree is even or odd. But
one of the lower neighbors of an odd node must be even, so there are at least
as many even nodes as odd nodes.

So the rebalancing reduces the potential from at least (1 − 2α)w to at most
1
2w. So if α < 1

4 , we have an �(w) decrease in potential using O(w) work.
But the average decrease over a sequence of insertions cannot be larger than
the average increase, so the average work per rebalancing after an insertion is
O(log n).
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For deletions, the situation is even simpler; deletions do not increase the
height of the tree, but decrease very slowly our reference measure for the
maximum allowable height. So in order to keep the height restriction even after
deleting many elements, we occasionally completely rebuilt the tree, whenever
sufficiently many elements have been deleted that the required height would
be decreased by one. For this we keep a second counter, which is set to αn

after completely rebuilding the tree when it has n leaves. Each time we perform
a basic delete, we decrease this counter, and when it reaches 0, we again
completely rebuilt the tree as top-down optimal tree. When the counter reaches
0, there are still at least (1 − α)n leaves, possibly more if there were insert
operations. So the height bound cannot have decreased by more than one
since the last rebuilding. So this operation preserves the height bound. But its
amortized complexity is very small, only O(1) per delete operation, because we
are performing one complete rebuild, taking O(n) time, every �(n) operations.
Of course, an amortized O(1) deletion cost does not imply any advantage over
O(log n) because the amortized insertion cost is O(log n) and there are at least
as many insertions as there are deletions. But we get this amortized O(log n)
update time with very simple tools, just top-down optimal complete rebuilding
and counting the leaves of subtrees, together with two global counters for the
number of leaves and the number of recent deletions.

Theorem. We can maintain by partial rebuilding search trees of height at
most

(
log 1

1−α

)−1
log n, for α ∈]0, 1

4 [, with amortized O(log n) insert and
delete operations, without any balance information in the nodes.

Saving the bits of balancing information in the nodes is not a serious practical
consideration, so this structure should not be seen as an alternative to height-
balanced trees. But it is a demonstration of the power of occasional rebuilding,
which gives only amortized bounds, but which is also available on much more
complex static data structures, and in many cases the best tool we have to make
static structures dynamic.

3.9 Splay Trees: Adaptive Data Structures

The idea of an adaptive data structure is that it adapts to the queries so that
queries that occur frequently are answered faster. So an adaptive structure
changes not only by the update operations, but also while answering a query.
The first adaptive search tree was developed by Allen and Munro (1978), who
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showed that a search tree of model 2 that moves after each query the queried
element to the root will behave on a sequence of independent queries that
are generated according to a fixed distribution, only a constant factor worse
than the optimal search tree for that distribution. Similar structures were also
found by Bitner (1979) and Mehlhorn (1979), whose D-trees combine the
adaptivity with regard to queries with a reasonable behavior under updates.
The D-trees, as well as biased search trees (Bent, Sleator, and Tarjan 1985),
and Vaishnavi’s weighted AVL trees (Vaishnavi 1987) achieve this performance
also for individual operations with explicitly given access probabilities, as well
as supporting updates on those probabilities.

The most famous adaptive structures are the splay trees invented by Sleator
and Tarjan (1985); they also move the queried element to the top in a slightly
more complicated way and have several additional adaptiveness properties.
A number of other structures with similar properties were found (Mäkinen
1987; Hui and Martel 1993; Schoenmakers 1993; Iacono 2001), as well as
some general classes of transformation rules that generate the same properties
(Subramanian 1996; Georgakopoulos and McClurkin 2004); also there are
versions with block nodes similar to B-trees (Martel 1991; Sherk 1995).

Splay trees have a number of adaptiveness properties; perhaps the most
natural is that if the queries come according to some fixed distribution on the
set of keys, then the expected query time for a splay tree is only a constant factor
worse than the expected query time of a tree that is optimal for that distribution.
Of course, as with the finger trees, to make up for the loss of a constant factor,
the distribution must be far from uniform, otherwise any balanced search tree
has that property.

The other remarkable property of splay trees is that they are simple and do
not have any balance information, neither in the nodes nor any global counters.
They just follow some simple transformation rules that miraculously balance
the tree, at least in the amortized sense.

Splay trees are unlike all other trees in this book in that they necessarily
follow the model 2 for search trees, with the objects together with the keys in
the nodes. For the various other balancing criteria, we could combine them with
either model, but this is not possible for the standard model of splay trees. The
adaptiveness of splay trees hinges on the use of the fact that in a model 2 tree,
some objects are encountered much earlier than the average depth suggests.
There is an object in the root which, if queried, is already found after two
comparisons. And the splay tree query moves the queried object to the root,
performing some rearrangements on the way, so that if this object is queried
again not too much later, it will still be in some node near the root.
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A node of a splay tree contains just the key, the pointer to the associated
object, and the usual left and right pointers; no balancing information is neces-
sary. So its structure is as follows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
object_t *object;

/* possibly other information */
} tree_node_t;

The left and right rotations must be adapted that they move not only the key,
but also the object pointer. We keep the convention to mark the leaves by using
NULL as right pointer. The intervals associated with the nodes are now open
intervals. The insert and delete operations are just the basic insert and delete
with the appropriate changes for this tree model. There is no rebalancing after
insert or delete; the only place where the tree structure changes is the find
operation.

The rules for find are as follows: We first go down to the node containing the
object, keeping track of the way up. Let current initially denote this node.
We repeat the following steps, which always keep current as the node that
contains the queried object, until current becomes the root and we return
the queried object.

1. If current is the root, we return current->object.
2. Else current has an upper neighbor upper.

If upper is the root, and
2.1 if current = upper->left,

perform a right rotation in upper, set current to upper, and
return current->object,

2.2 else current = upper->right,
perform a left rotation in upper, set current to upper, and return
current->object.

3. Else upper itself has an upper neighbor upper2.
3.1 If current = upper->left and upper = upper2->left,

perform two consecutive right rotations in upper2 and set current
to upper2.

3.2 If current = upper->left and upper = upper2->right,
perform a right rotation in upper, followed by a left rotation in
upper2, and set current to upper2.
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3.3 If current = upper->right and upper = upper2->left,
perform a left rotation in upper, followed by a right rotation in
upper2, and set current to upper2.

3.4 If current = upper->right and upper = upper2->right,
perform two consecutive left rotations in upper2 and set current
to upper2.

The cases 2.1 and 2.2 are known as “zig,” 3.1 and 3.4 as “zig-zig,” and 3.2 and
3.3 as “zig-zag” operations.
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The Rebalancing Operations 2.1, 3.1, and 3.2 on a Splay Tree

We have to show now that these operations restructure the tree in a way
that is efficient in the amortized sense. We will obtain several such results by
a single proof choosing different weight functions. The weight function w is
defined on the objects with the sum of all weights normalized to n and all
weights nonnegative.

For any given weight function and search tree, we define several derived
functions:

{ the weight sum s(n) of node n is the sum of all weights of objects in the
subtree below n;

{ the rank r(n) of node n is the logarithm of the weight sum:
r(n) = log(s(n)); and

{ the potential pot of the tree is the sum of all ranks of the nodes of the tree.

Now the central tool is the following lemma that describes the potential change
by the rebalancing of a query operation. In the following we use potbefore, rbefore,
sbefore and potafter, rafter, safter to denote, respectively, the potential, rank function,
and weight sum before and after rebalancing.

Lemma 3.1 If the query operation accessing node v used k rotations, then
we have

k + (potafter − potbefore) ≤ 1 + 3 (rafter(v) − rbefore(v)) .
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Proof. The rebalancing consists of a sequence of operations, and by the tele-
scoping structure of the claimed inequality, it is sufficient to prove

2 + (potafter − potbefore) ≤ 3 (rafter(v) − rbefore(v))

for any operation of type 3.1, 3.2, 3.3, and 3.4, which take two rotations each,
and

1 + (potafter − potbefore) ≤ 1 + 3 (rafter(v) − rbefore(v))

for the operation of type 2.1 or 2.2, which occurs at most once and which takes
one rotation.

{ For operations of type 2.1 and 2.2, let u be the upper neighbor of v.
Because rbefore(u) = rafter(v), rafter(v) ≥ rafter(u), and rafter(v) ≥ rbefore(v),
the claimed inequality follows:

potafter − potbefore = rafter(v) − rbefore(v) + rafter(u) − rbefore(u)

= rafter(u) − rbefore(v)

≤ rafter(v) − rbefore(v)

≤ 3 (rafter(v) − rbefore(v)) .

{ For operations of type 3.1 and 3.4, let u be the upper neighbor of v and t be
the upper neighbor of u. Then we note that

sbefore(t) = safter(v) ≥ sbefore(v) + safter(t),

so

(rbefore(v) − rafter(v)) + (rafter(t) − rafter(v))

= log

(
sbefore(v)

safter(v)

)
+ log

(
safter(t)

safter(v)

)
≤ max

α,β>0
α+β≤1

(log α + log β) ≤ −2.

Using this, and rbefore(v) ≤ rbefore(u) and rafter(u) ≤ rafter(v), we again
obtain the claimed inequality:

potafter − potbefore = rafter(v) + rafter(u) + rafter(t)

−rbefore(v) − rbefore(u) − rbefore(t)

= rafter(u) + rafter(t) − rbefore(v) − rbefore(u)

= 3 (rafter(v) − rbefore(v))

+ (rbefore(v) − rafter(v)) + (rafter(t) − rafter(v))
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+ (rbefore(v) − rbefore(u)) + (rafter(u) − rafter(v))

≤ 3 (rafter(v) − rbefore(v)) − 2.

{ For operations of type 3.2 and 3.3, let u be the upper neighbor of v and t be
the upper neighbor of u. Then we note that

sbefore(t) = safter(v) ≥ safter(u) + safter(t),

so

(rafter(u) − rafter(v)) + (rafter(t) − rafter(v))

= log

(
safter(u)

safter(v)

)
+ log

(
safter(t)

safter(v)

)
≤ max

α,β>0
α+β≤1

(log α + log β) ≤ −2.

Using this, and rbefore(v) ≤ rafter(v) and rbefore(v) ≤ rbefore(u), we again
obtain the claimed inequality:

potafter − potbefore = rafter(v) + rafter(u) + rafter(t)

−rbefore(v) − rbefore(u) − rbefore(t)

= rafter(u) + rafter(t) − rbefore(v) − rbefore(u)

= 3 (rafter(v) − rbefore(v))

+ (rafter(u) − rafter(v)) + (rafter(t) − rafter(v))

+ (rbefore(v) − rafter(v)) + (rbefore(v) − rbefore(u))

≤ 3 (rafter(v) − rbefore(v)) − 2.

This completes the proof of the lemma.

Now we can use the lemma to prove amortized bounds on the complexity
of any sequence of find operations. The complexity of the operations is
proportional to the number of rotations made in these operations. According to
the lemma, the number of rotations in a single find operation is bounded by the
potential change of the tree, plus three times the difference of the rank of the
root minus the rank of the queried node before it became the new root, plus 1.
Over a sequence of operations this becomes

number of rotations ≤
∑

operations

(potbefore − potafter)

+
∑

operations

(r(root) − rbefore(queried node))

+ number of operations.
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The first sum is a telescoping sum, which reduces to the potential in the
beginning minus the potential in the end, and can be bounded independent of
the sequence of operations by the maximum potential of a tree with the given
weights minus the minimum potential of such a tree. For an amortized bound
on the complexity of a find operation, that is, the number of rotations it uses,
we have to bound the other sum.

If we give each of the n objects in the tree the weight 1, then the weight of
the root is n and the weight of any node is at least 1. So the ranks are numbers
between 0 and log n, and the rank difference of the root and the queried node
is at most log n. Also, the tree has n nodes, so its potential, that is, the sum of
its ranks, is between 0 and n log n and any potential difference is O(n log n).
This gives an amortized O(log n) bound.

Theorem. Any sequence of m find operations in a splay tree with n objects
needs time O(m log n + n log n).

A different model is that the queries come according to some probability
distribution (pi)ni=1 on the objects. Then we give object i as weight pin. Again
the sum of weights is n, so the rank of the root is log n, and with probability pi

the queried object has rank log(pin) = log(pi) + log n, so the expected rank
difference is

n∑
i=1

pi (log n − log(pin)) = −
n∑

i=1

pi log pi = : H (p1, . . . , pn),

which is the entropy of the distribution. The maximum and minimum poten-
tial of a tree with these weights depends on the distribution (pi)ni=1, and we
have no simple bound on them but that maximal potential difference is some
number 	potmax(p1, . . . , pn) that is independent of the sequence of the find
operations. This gives the following bound:

Theorem. The expected complexity of a sequence of m find operations in
a splay tree if the queries are chosen independently at random according to a
distribution (pi)ni=1 is O (	potmax(p1, . . . , pn) + m(1 + H (p1, . . . , pn))).

But the entropy H (p1, . . . , pn) = −∑n
i=1 pi log pi is essentially the expected

depth of the optimal tree with the given distribution. It is a lower bound even in
a weaker model, when we are using a tree of model 1, and are allowed to change
the order of the keys and only have to keep the probability distribution; that is,
the situation in variable-length codes and the lower bound is a consequence of
Kraft’s inequality. In that model, that depth, plus at most one, can be reached
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by Huffman or Shannon-Fano trees. By changing from model 1 to model 2
trees, we lose at most a factor 2 because each model 2 tree can be transformed
in a model 1 tree by replacing each model 2 node by two model 1 nodes.
Constructing optimal or near-optimal search trees, especially of model 2, was
a much-studied subject (see Knuth (1973) or Mehlhorn (1979) for numerous
references). So the splay tree needs an average expected access time within
a constant factor of the optimum expected access time for that distribution
for which H (p1, . . . , pn) is a lower bound. The splay tree achieves this by
adapting to the query sequence without knowing the distribution. We used
the distribution only in the analysis to define the weight function, not in the
algorithm.

Yet another model of the adaptiveness is the finger search. Splay trees
support finger search without knowing the finger. Consider a fixed element
finger and assign each element x the weight n

distance(finger, x)2+1
, where

distance(finger, x) denotes the number of elements between finger and
x. Then the weight sum is �(n) because

∑∞
ν=1

1
ν2 = π2

6 < ∞, so the rank of
the root is log n − O(1) and the rank of the query element q is

log

(
n

distance(finger, q)2 + 1

)
= log n − O(log(distance(finger, q))).

So the rank difference is O(log(distance(finger, q))). Because each node
has a rank between log n and log n

(n−1)2+1 > − log n, the potential of the tree
is between n log n and −n log n, so any potential difference is O(n log n). This
implies the following:

Theorem. A sequence of m find operations for elements q1, . . . , qm in a splay
tree with n elements requires time
O(n log n +∑m

i=1 log(distance(finger, qi))).

So the splay tree adapts to nonuniformness or locality of the queries in a number
of ways at least in amortized sense.

Up to now we have only analyzed sequences of queries for a fixed set,
implicitly excluding the update operations. We can perform updates by the
basic insert and delete, possibly followed by the same moving to the top done
for the queries. And if we use a constant weight one, the same amortized
analysis applies, because there is really no difference between the query and
the insert or delete. For the adaptive analysis, however, even the model becomes
less clear, because we cannot change the weight function whenever the current
set changes.
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We finally give the code for the find in splay trees together with the basic
insert and delete for these trees of model 2. Our conventions need to
be changed for this node-tree model; because every node contains the object
together with the key, the rotations need to move the object and the key, and we
use a NULL pointer in the object field to encode the empty tree. The deletion
is more complicated than in our preferred leaf tree model because keys from
interior nodes can be deleted; in that case, it is necessary to move another key
up to replace it.

object_t *find(tree_node_t *tree,
key_t query_key)

{ int finished = 0;
if( tree->object == NULL )

return(NULL); /* tree empty */
else
{ tree_node_t *current_node;

create_stack();
current_node = tree;
while( ! finished )
{ push( current_node );

if( query_key < current_node->key
&& current_node->left != NULL )

current_node = current_node->left;
else if( query_key > current_node->key

&& current_node->right != NULL )
current_node = current_node->right;

else
finished = 1;

}
if( current_node->key != query_key )

return( NULL );
else
{ tree_node_t *upper, *upper2;

pop(); /* pop the node containing
the query_key */
while( current_node != tree )
{ upper = pop(); /* node

above current_node */
if( upper == tree )
{ if( upper->left == current_node )
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right_rotation( upper );
else

left_rotation( upper );
current_node = upper;

}
else
{ upper2 = pop(); /* node

above upper */
if( upper == upper2->left )
{ if( current_node ==

upper->left )
right_rotation( upper2 );

else
left_rotation( upper );

right_rotation( upper2 );
}
else
{ if( current_node ==

upper->right )
left_rotation( upper2 );

else
right_rotation( upper );

left_rotation( upper2 );
}
current_node = upper2;

}
}

return( current_node->object );
}

}
}

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)
{ tree_node_t *tmp_node, *next_node;

if( tree->object == NULL )
{ tree->object = new_object;

tree->key = new_key;
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tree->left = NULL;
tree->right = NULL;

}
else /* tree not empty: root contains a key */
{ next_node = tree;

while( next_node != NULL )
{ tmp_node = next_node;

if( new_key < tmp_node->key )
next_node = tmp_node->left;

else if( new_key > tmp_node->key )
next_node = tmp_node->right;

else /* new_key == tmp_node->key:
key already exists */

return(-1);
}
/* next_node == NULL. This should
point to new leaf */
{ tree_node_t *new_leaf;

new_leaf = get_node();
new_leaf->object = new_object;
new_leaf->key = new_key;
new_leaf->left = NULL;
new_leaf->right = NULL;
if( new_key < tmp_node->key )

tmp_node->left = new_leaf;
else

tmp_node->right = new_leaf;
}

}
return( 0 );

}

object_t *delete(tree_node_t *tree,
key_t delete_key)
{ tree_node_t *tmp_node, *upper_node,

*next_node, *del_node;
object_t *deleted_object;
if( tree->object == NULL )

return( NULL ); /* delete from empty tree */
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else
{ next_node = tree; tmp_node = NULL;

while( next_node != NULL )
{ upper_node = tmp_node;

tmp_node = next_node;
if( delete_key < tmp_node->key )

next_node = tmp_node->left;
else if( delete_key > tmp_node->key )

next_node = tmp_node->right;
else /* delete_key == tmp_node->key */

break; /* found delete_key */
}
if( next_node == NULL )

return( NULL );
/* delete key not found */

else /* delete tmp_node */
{ deleted_object = tmp_node->object;

if( tmp_node->left == NULL
&& tmp_node->right == NULL )
{ /* degree 0 node: delete */

if( upper_node != NULL )
{ if( tmp_node == upper_node->left )

upper_node->left = NULL;
else

upper_node->right = NULL;
return_node( tmp_node );

}
else /* delete last object,
make tree empty */

tmp_node->object = NULL;
}
else if ( tmp_node->left == NULL )
{ tmp_node->left =

tmp_node->right->left;
tmp_node->key =
tmp_node->right->key;
tmp_node->object =
tmp_node->right->object;
del_node = tmp_node->right;



134 3 Balanced Search Trees

tmp_node->right =
tmp_node->right->right;
return_node( del_node );

}
else if ( tmp_node->right == NULL )
{ tmp_node->right =

tmp_node->left->right;
tmp_node->key = tmp_node->left->key;
tmp_node->object =
tmp_node->left->object;
del_node = tmp_node->left;
tmp_node->left =
tmp_node->left->left;
return_node( del_node );

}
else /* interior node needs to
be deleted */
{ upper_node = tmp_node;

del_node = tmp_node->right;
while( del_node->left != NULL )
{ upper_node = del_node;

del_node = del_node->left;
}
tmp_node->key = del_node->key;
tmp_node->object = del_node->object;
if( del_node = tmp_node->right )

tmp_node->right = del_node->right;
else

upper_node->left =
del_node->right;

return_node( del_node );
}
return( deleted_object );

}
}

}

Here we cannot use an array-based stack because the depth of the element can
be n − 1 in the worst case. We have to use one of the linked-list implementations
for the stack. In fact, using back pointers instead of a stack to keep track of
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the path up would be preferable, but then we cannot claim that we do not use
additional space in the nodes for rebalancing.

3.10 Skip Lists: Randomized Data Structures

The skip list is based on the idea that adding forward pointers to a sorted linked
list that skip many in-between elements may allow a fast access to any element
of the list. If we have just a sorted linked list of length n, then finding a query
element will take up to n comparisons. If we add a second list on the same
items that contains only every second item of the first list, we need at most⌈

1
2n
⌉

comparisons on the second list, plus one additional comparison on the
first list. If we iterate the construction, adding lists that contain only every 2i th
element for i = 1, . . . , k to the original sorted list, then we need at most

⌈
1
2k n
⌉

comparisons on the kth list, plus one additional comparison on each of the
lower lists. For k = log n, this gives a log n find operation. Indeed, this system
of lists is very similar to the bottom-up optimal search tree turned sideways,
with a step down to a lower-order list corresponding to a left pointer, and a
step to the next item on the current list corresponding to a right pointer. But, of
course, we cannot maintain this structure in O(log n) time under insertions and
deletions. Because updates change the distance between elements, we would
have to rebuild all those lists from the changed item on.

The idea by which Pugh made this a useful structure, the skip list (Pugh
1990), is that we do not need to maintain the distances that the higher-level
lists jump as exactly 2i on the ith level, but just maintain the average. Here
the average is an expectation over a sequence of random choices that the
data structure makes; the skip list is a randomized data structure that achieves
O(log n) complexity for the find, insert, and delete operations in the expected
value. This expected value is for a fixed sequence of operations, so the same
sequence of operations will take varying time depending on the random choices
made by the structure.

The skip list assigns each item a level i ≥ 1 during the insertion of that item.
This level will not change while it exists and the item will be included in all lists
up to that level. The distribution of the levels is a geometric distribution with
Prob(level = i) = (1 − p)pi−1. A simple interpretation for this distribution is
that each item starts with level 1 and then repeats throwing a coin with success
probability p to increase its level until it fails, so Prob(level ≥ i) = pi−1.

Now any access to an item, given a query key, starts on the list of maximum
level that currently exists. On this list we move until the key of the next
item on the list will be past the query key; then we go down a level and
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repeat the procedure until we are at the bottom level. There we either find the
queried item, or, when the next item is already past the query key, no such item
exists.
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A Skip List

To analyze the structure, we first observe that if there are n elements, then the
expected number of items on level i and above is pi−1n, so the maximum level
where we still expect to meet an item is 1 + log 1

p
n = 1 + −1

log p
log n, suggesting

an expected height of the structure of O(log n). To make this argument precise,
we need the expectation of the maximum level of n elements of the skip list,
that is, the maximum of n independent random variables Xj with Prob(Xj ≥
i) = pi . Then we obtain, using Bernoulli’s inequality (1 − x)n ≥ 1 − nx for
x ∈ [0, 1], the following bound:

Exp(maximum level of skip list with n items)

= Exp

(
max

j=1,...,n
Xj

)
=

∞∑
i=1

i Prob

(
max

j=1,...,n
Xj = i

)

=
∞∑
i=1

Prob

(
max

j=1,...,n
Xj ≥ i

)
=

∞∑
i=1

(
1 − Prob

(
max

j=1,...,n
Xj < i

))

=
∞∑
i=1

(1 − (1 − pi)n) <

log 1
p

n∑
i=1

1 +
∞∑

i=log 1
p

n+1

(1 − (1 − pi)n)

< log 1
p
n +

∞∑
i=log 1

p
n+1

(1 − (1 − npi)) = log 1
p
n +

∞∑
i=log 1

p
n+1

pin

= log 1
p
n + p

log 1
p

n
n

∞∑
i=1

pi = log 1
p
n + p

1 − p
.

Within each of these log 1
p
n + O(1) levels, the expected number of steps is

bounded from above by the distance in that level to the next element of higher
level, for within a level we will never go past an element of higher level.
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Because we are on a lower-level list, all items on the higher-level lists must be
beyond the query key. But each item on a list has probability p to reach the
next higher level, so the number of steps on the list before we meet an item of
higher level is negative exponentially distributed, with j steps with probability
p(1 − p)j−1. This argument also bounds the length of the top-level list because
there is no element of higher level. Thus, on each level, the expected number of
steps is 1

p
= O(1) and the expected number of levels is −1

log p
log n = O(log n),

so the expected total number of steps is O(log n) for any choice of p ∈]0, 1[.
The coefficient −1

p log p
has a minimum for p = 1

e
≈ 0.3678 for which we get

an expected number of 1.88 log n comparisons, but the choice does not matter
much, 1

2 , 1
3 , or 1

4 are good choices for p.
By this we find an element, given its key, or find the place where the element

should be. To insert an element, we just need to make the random choice of
its level and then insert it in all lists up to that level. To delete the element, we
just have to unlink it from all the lists up to its level. Both operations use O(1)
work on each level, so O(log n) in total.

Theorem. The skip list structure supports find, insert, and delete op-
erations on an n-element set in expected time O(log n).

We still need to describe how the element is represented in the various lists.
In the original paper, Pugh (1990) proposed fat nodes that have links for all
the lists we might require up to some predetermined maximum level. This,
of course, suffers from all the drawbacks of array-based fixed-size structures:
if we limit the number of levels of the skip list, then for sufficiently large n

it really degenerates in a linked list with a few shortcuts, which give only a
constant-factor speedup to the �(n) search time in a sorted list. So instead we
represent the element itself by a linked list, which starts on the list whose level is
the level of the element, and then connects by down pointers to the lower-level
lists, until at the bottom we reach the element itself. This does not significantly
increase the space requirements of the structure because the expected length
of a list is the expected level of the element, that is 1

1−p
. We duplicate the key

of the object in each node on this downgoing list. We attach leaf nodes for the
objects below the level 1 list. Each of these downgoing lists belonging to the
same object ends in a leaf node with NULL as down pointer and the object
pointer in the next field; and each of the level lists ends in a node with NULL
as the next pointer. At the beginning of each level list, there is a placeholder
node that just serves as entry point with connection to the lower-order lists. The
structure of the node is as follows:
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typedef struct tr_n_t { key_t key;
struct tr_n_t *next;
struct tr_n_t *down;

/* possibly other information */
} tree_node_t;

Now the code for find, insert, and delete in skip lists could look like
this.

object_t *find(tree_node_t *tree,
key_t query_key)

{ tree_node_t *current_node;
int beyond_placeholder = 0;
if( tree->next == NULL ) /* empty skip list */

return(NULL);
else
{ current_node = tree;

while( current_node->down != NULL )
{ while( current_node->next != NULL

&& current_node->next->key
<= query_key )

{ current_node = current_node->next;
beyond_placeholder = 1;

}
current_node = current_node->down;

}
if( beyond_placeholder
&& current_node->key == query_key )

return( (object_t *)
current_node->next );

else
return( NULL );

}
}

tree_node_t *create_tree(void)
{ tree_node_t *tree;

tree = get_node();
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tree->next = NULL;
tree->down = NULL;
return( tree );

}

int insert(tree_node_t *tree, key_t new_key,
object_t *new_object)

{ tree_node_t *current_node,
*new_node, *tmp_node;
int max_level, current_level, new_node_level;
/* create downward list for new node */
{ new_node = get_node();

new_node->key = new_key;
new_node->down = NULL;
new_node->next = (tree_node_t *)
new_object;
new_node_level = 0;
do
{ tmp_node = get_node();

tmp_node->down = new_node;
tmp_node->key = new_key;
new_node = tmp_node;
new_node_level += 1;

}
while( random(P) );
/* random choice, probability P */

}
tmp_node = tree;
/* find the current maximum level */
max_level = 0;
while( tmp_node->down != NULL )
{ tmp_node = tmp_node->down;

max_level +=1;
}
while( max_level < new_node_level )
/* no entry point */
{ tmp_node = get_node();

tmp_node->down = tree->down;
tmp_node->next = tree->next;
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tree->down = tmp_node;
tree->next = NULL;
max_level += 1;

}
{ /* find place and insert at all

relevant levels */
current_node = tree;
current_level = max_level;
while( current_level >= 1 )
{ while( current_node->next != NULL

&& current_node->next->key
< new_key )

current_node = current_node->next;
if( current_level <= new_node_level )
{ new_node->next = current_node->next;

current_node->next = new_node;
new_node = new_node->down;

}
if( current_level >= 2 )

current_node = current_node->down;
current_level -= 1;

}
}
return( 0 );

}

object_t *delete(tree_node_t *tree,
key_t delete_key)

{ tree_node_t *current_node, *tmp_node;
object_t *deleted_object = NULL;
current_node = tree;
while( current_node->down != NULL )
{ while( current_node->next != NULL

&& current_node->next->key
< delete_key )

current_node = current_node->next;
if( current_node->next != NULL

&& current_node->next->key ==
delete_key )
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{ tmp_node = current_node->next;
/*unlink node */
current_node->next = tmp_node->next;
if( tmp_node->down->down == NULL )
/* delete leaf */
{ deleted_object = (object_t *)

tmp_node->down->next;
return_node( tmp_node->down );

}
return_node( tmp_node );

}
current_node = current_node->down;

}
/* remove empty levels in placeholder */
while( tree->down != NULL &&

tree->next == NULL )
{ tmp_node = tree->down;

tree->down = tmp_node->down;
tree->next = tmp_node->next;
return_node( tmp_node );

}
return( deleted_object );

}

We could have included a level field in each node; then, we could have put the
object pointers in the level 1 list instead of creating leaf nodes for them, and
the insert would have been slightly simplified. Instead, we chose the greater
regularity of NULL-terminated lists in both directions.

Notice that the insert does not test whether the inserted key already
exists; it is always successful. Dealing with multiple identical keys correctly in
the skip list is inconvenient for several reasons: if we insert top-down as here,
we find out only in the last level whether the key already exists. We could, of
course, put the relevant nodes on a stack, and then we could remove them again
if the key was already there. Or we could make the insert bottom-up, keeping
all relevant nodes on the stack on all levels and inserting nodes in the level lists
and making random choices only on the way up again. Unlike the other search
trees, the delete operation is simpler than the insert.

This version of the skip list is related to our model 1 trees; a skip-list variant
similar to model 2 trees was proposed in Cho and Sahni (1998). Another similar
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structure, which avoids the multiple levels of lists, is the jump lists sketched in
Brönnimann, Cazals, and Durand (2003).

The running time distribution of the skip list has been subject of a number
of papers (Sen 1991; Devroye 1992; Papadakis, Munro, and Poblete 1992;
Kirschenhofer and Prodinger 1994), but it is quite well-behaved. The skip list
also allows simple adaptation to known access probability distributions: if we
skew the assignment of levels accordingly, we can make objects queried with
high probability have shorter access paths (Ergun et al. 2001; Bagchi, Buchs-
baum, and Goodrich 2002). Also, if we add backward pointers in both direc-
tions, the skip list is easily adapted for finger search. So if we are satisfied with
good behavior in the expected case, the skip list is a very convenient structure.

The skip list can also be derandomized (Munro, Papadakis, and Sedgewick
1992); we only need to maintain the property that on each ith level list, the
number of items of level i between two items of higher level is between lower
and upper bounds a and b. If we insert an element, we insert it on level 1, and
if the number of level 1 items between two items of level at least 2 becomes
too large, we insert it in level 2, and so on. And the same in the other direction
for deletion. This is very similar to an (a, b)-tree, but worse because we cannot
do binary search within the (a, b)-nodes, but must use linear search. For the
general similarity of the skip list to (a, b)-trees, note that during find operations
we never follow the link in the ith level list that leads to an element of a higher
level, so when breaking those links, we really get an (a, b)-tree, but the links are
necessary during update operations. By derandomizing the skip list, we lose the
simplicity of the random choice, so there is no advantage to the deterministic
skip list.

Another randomized search-tree structure is the treap invented by Seidel and
Aragon (1996) that is a search tree where the elements are assigned random
priorities upon insertion. Then in each subtree the root contains the key of the
element of the highest priority in the subtree. This essentially corresponds to
taking a uniformly random cut in the elements in that subtree, which on the
average distributes the elements sufficiently well to give an O(log n) expected
depth. In the original version, this is described as a tree following model 2, but
again the idea can be combined with either model. This structure is represented
by a tree in which each node has two values: the key and the randomly chosen
priority. With respect to the key values, the nodes are in search-tree order, and
with respect to the priorities they are in heap order, which will be defined in
Section 5.3; this combination of tree and heap gave the name. As a structure
on pairs, so with given priorities instead of randomly chosen, this type of tree
was named Cartesian tree by Vuillemin (1980); if n pairs are given in sorted
order according to the key component, the structure can be build in O(n) time
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(Weiss 1994). Yet another randomized search tree was proposed in Martinez
and Roura (1998).

Randomized variants of the splay tree with the same adaptivity properties
were analyzed in Fürer (1999) and Albers and Karpinski (2002).

3.11 Joining and Splitting Balanced Search Trees

Up to now we have discussed only the find, insert, and delete operations
on the sets stored by balanced search trees. There are some additional useful
operations that can be supported by most of the search trees described in this
chapter. We already mentioned in Section 2.7 the interval find query to
list all keys in a query interval and the related queries for the next smaller or
next larger key. The methods described there also work for any of the balanced
search trees.

Theorem. Any balanced search tree can be extended with O(1) overhead in
the find, insert, and delete operations to support additionally the op-
erations find next larger and find next smaller in time O(log n)
and interval find in output-sensitive time O(log(n) + k) if there are k

objects in the query interval.

Level-linked trees have the links for the doubly linked list of leaves anyway;
they are the lowest level. Skip lists have these links in one direction, which is
sufficient. So these structures do not need any modification to support interval
queries.

More complex operations are the splitting of a set at a given threshold into
the set of smaller elements and the set of larger elements, and in the other
direction the joining of two sets whose keys are separated by a threshold. Both
operations, split and join, can be implemented for most balanced search
trees described in this chapter in time O(log n).

This is easiest for the skip list because the elements of the skip list are
assigned their levels independently. To split, we just find the point to split and
insert a new placeholder element for the lists that extend past the splitting
threshold, and insert NULL pointers to terminate all those level lists we have
cut. And the other direction, joining two skip lists where all keys in the first are
smaller than all keys in the second, is just as easy; we remove the placeholder
elements in the beginning of the second skip list and connect all level lists,
possibly inserting additional placeholder elements in the first skip list if its
maximum level was smaller than the maximum level of the second skip list.
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The total work in either operation is just O(log n): we have to find the point
where to split and then perform O(1) work on each level.

Theorem. The skip list structure supports splitting at a threshold and joining
two separated skip lists in expected time O(log n).

For the worst-case balanced trees, splitting and joining require a bit more
thought, but the splitting follows once we have the joining. In the case of height-
balanced trees, it works as follows. Suppose we have two height-balanced
search trees T1 and T2 of height h1 and h2, which are separated, with all keys
in T1 smaller than all keys in T2.

1. If h1 and h2 differ by at most one, we can add a new common root, whose
key is the key of the leftmost leaf in T2.

2. If h1 ≤ h2 − 2, we follow the leftmost path in T2, keeping track of the way
back up to the root until we find a node whose height is at most h1.
Because any two consecutive nodes on this path differ in height by one or
two, the following cases are possible:
2.1 The node on the leftmost path of T2 has height h1 and its upper

neighbor has height h1 + 2: Then we just create a new node with
height h1 + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height h1 on the path, as left lower
neighbor the root of T1, and as key the key of the leftmost leaf in T2.
The new tree is again height-balanced.

2.2 The node on the leftmost path of T2 has height h1 and its upper
neighbor has height h1 + 1: Then we just create a new node with
height h1 + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height h1 on the path, as left lower
neighbor the root of T1, and as key the key of the leftmost leaf in T2.
Then we correct the height of the upper neighbor to h1 + 2 and
perform the rebalancing, going up to the root.

2.3 The node on the leftmost path of T2 has height h1 − 1 and its upper
neighbor has height h1 + 1: Then we just create a new node with
height h1 + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height h1 − 1 on the path, as left lower
neighbor the root of T1, and as key the key of the leftmost leaf in T2.
Then we correct the height of the upper neighbor to h1 + 2 and
perform the rebalancing, going up to the root.

3. If h2 ≤ h1 − 2, we follow the rightmost path in T1, keeping track on the
way back up to the root until we find a node whose height is at most h2.



3.11 Joining and Splitting Balanced Search Trees 145

Because any two consecutive nodes on this path differ in height by one or
two, the following cases are possible:
3.1 The node on the rightmost path of T1 has height h2 and its upper

neighbor has height h2 + 2: Then we just create a new node with
height h2 + 1 below the upper neighbor on the path, which has as left
lower neighbor the node of height h2 on the path, as right lower
neighbor the root of T2, and as key the key of the leftmost leaf in T2.
The new tree is again height-balanced.

3.2 The node on the rightmost path of T1 has height h2 and its upper
neighbor has height h2 + 1: Then we just create a new node with
height h2 + 1 below the upper neighbor on the path, which has as left
lower neighbor the node of height h2 on the path, as right lower
neighbor the root of T2, and as key the key of the leftmost leaf in T2.
Then we correct the height of the upper neighbor to h2 + 2 and
perform the rebalancing, going up to the root.

3.3 The node on the leftmost path of T1 has height h2 − 1 and its upper
neighbor has height h2 + 1: Then we just create a new node with
height h2 + 1 below the upper neighbor on the path, which has as left
lower neighbor the node of height h2 − 1 on the path, as right lower
neighbor the root of T2, and as key the key of the leftmost leaf in T2.
Then we correct the height of the upper neighbor to h2 + 2 and
perform the rebalancing, going up to the root.

So the idea is just to insert a new node branching off to the smaller tree on the
correct outermost path of the higher tree and use the rebalancing methods to
restore the balance condition. We need to go to the bottom of the right tree only
to recover the key value we use to separate the trees; if that key value is already
known, the complexity is just O (|h1 − h2| + 1).

Theorem. Two separated height-balanced search trees can be joined in
time O(log n). If the separating key is already known, this time reduces to
O(| height(T1) − height(T1)| + 1).

We can reduce the splitting of a single search tree at a given threshold into a
split along the search path into two sets of search trees, followed by sequence
of join operations to collect these trees together into the left and right trees of
the split. This works as follows: Given keysplit, we follow the search path for
this key from the root to the leaf. Each time we follow the left pointer, we
insert the right pointer in front of the right tree list, together with the key that
separated the right subtree from everything to the left in the original tree. And
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each time we follow the right pointer, we insert the left pointer in front
of the left tree list, together with the key that separated the left subtree from
everything to the right in the original tree.

When we reach the leaf with this splitting along keysplit, we have created
two lists of balanced search trees of increasing search trees. We now join
these search trees in order of increasing size (as they are on the list), using as
separating key the key associated with the next tree we take from the list. The
key of the first tree on the list is discarded. Then the complexity of constructing
the two lists is O(log n) because we just follow the path down to the leaf, and
the total complexity of the join operations is O(log n) as it is a telescoping sum
of the heights of the trees on the list. Here we use that the height of the join
of two trees is at least the height of the larger tree. Together this implies the
following:

Theorem. A height-balanced search tree can be split at a given key value into
two balanced search trees in time O(log n).

For red-black trees and (a, b)-trees, a similar method works.
A final variant that has been studied in a number of papers is the separation

of the update and the rebalancing, known as relaxed balance. This is motivated
by the external memory model: In order to minimize the number of block
transfers and to move them to a time when the system load is otherwise small,
one would like to perform just the necessary insertions and deletions but perform
the rebalancing later in a decoupled “clean-up” run (Nurmi, Soisalon-Soininen,
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and Wood 1987). The algorithmic problem here is that in the description and
analysis of the rebalancing methods, we always assumed that previous to the
insertion, the tree was balanced, so in order to apply those methods, we need
to rebalance before making the next insertion (Larsen and Fagerberg 1996).
Relaxed balance versions exist for most of the trees discussed here (Nurmi et
al. 1987; Nurmi and Soisalon-Soininen 1996; Soisalon-Soininen and Widmayer
1997; Larsen 1998, 2000, 2002, 2003), although for main memory structures
this question is only of theoretical interest because problems with rebalancing
would occur only in parallel system where several processors act on a search
tree stored in shared memory. Related is also the lazy rebalancing, performed
only during following queries, proposed in Kessels (1983).
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Tree Structures for Sets of Intervals

The importance of balanced search trees does not come primarily from the
importance as dictionary structures – they are just the most basic applica-
tion. Balanced search trees provide a scaffolding on which many other useful
structures can be built. These other structures can then take advantage of the
logarithmic depth and the mechanisms that preserve it, without going into the
details of studying the underlying search-tree balancing methods. In this chapter
we describe several structures that are built on top of a balanced search tree and
that implement different queries or even an entirely different abstract structure.

4.1 Interval Trees

The interval tree structure stores a set of intervals and returns for any query
key all the intervals that contain this query value. The structure is in a way dual
to the one-dimensional range queries we mentioned in Section 2.7: they keep
track of a set of values and return for a given query interval all key values in
that interval, whereas we now have a set of intervals as data and a key value
as query. In both cases the answer can be potentially large, so we have to
aim for an output-sensitive complexity bound. Interval trees were invented by
Edelsbrunner1 and McCreight.2

The idea of the interval tree structure is simple. Suppose the underlying set
of intervals is the set {[a1, b1], [a2, b2], . . . , [an, bn]}. Let T be any balanced

1 In the frequently cited but almost inaccessible technical report, H. Edelsbrunner: Dynamic Data
Structures for Orthogonal Intersection Queries, Report F59, Institut für Informationsverarbei-
tung, Technische Universität Graz, Austria, 1980. The first published reference is their use in
Edelsbrunner and Maurer (1981).

2 Again only in an inaccessible technical report, E.M. McCreight: Efficient Algorithms for
Enumerating Intersecting Intervals and Rectangles, Report CSL-80-9, Xerox Palo Alto
Research Center, USA, 1980.
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search tree for the set of interval endpoints {a1, a2, . . . , an, b1, . . . , bn}. With
each interior node of this search tree we associate, as described in Section 2.2,
the interval of possible key values that can reach this node. Each interval [ai, bi]
of our set is now stored in a node that satisfies

1. the key of the node is contained in [ai, bi], and
2. the interval [ai, bi] is contained in the interval associated with the node.

Such a node is easy to find: given [ai, bi] and T , we start with the root as
current node. The interval associated with the root is ] − ∞,∞[, so property
2 is initially satisfied by the current node. If the key in the current node is
contained in [ai, bi], then this node satisfies both properties and we choose it;
otherwise, [ai, bi] is either entirely to the left or entirely to the right of the key
of the current node, so it is contained in the interval associated with the left or
right lower neighbor, which we choose as new current node. Thus, each interval
moves down in the search tree till we find a node for which properties 1 and 2
are satisfied. This node might not be unique; if during this descent the key of
the current node occurs as endpoint of the interval, then some node below the
current node will also satisfy both properties. For the interval tree structure, it
makes no difference which node we choose.
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System of Intervals and Its Interval Tree

Within the node there might be multiple intervals that should be stored in
that node. We keep the intervals in two lists – one list of the left endpoints in
increasing order and one list of the right endpoints in decreasing order. Each
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interval stored in that node appears on both lists. All left endpoints are smaller
than or equal to the key in the node, and all right endpoints are larger than or
equal to the key in the node.

By this we have specified the abstract structure of an interval tree. To
implement it, we need two different types of nodes: the search-tree nodes
augmented by the left and right list pointers, and the list nodes. The list nodes
contain, in addition to the interval endpoint, a pointer to the object associated
with the interval. The nodes have the following structure:

typedef struct ls_n_t { key_t key;
struct ls_n_t *next;
object_t *object;

} list_node_t;

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
list_node_t *left_list;
list_node_t *right_list;
/* balancing information */

} tree_node_t;

Given the interval tree, we can now describe the query algorithm. For a
given value query key, we follow the underlying search-tree structure with
its usual find algorithm. In each tree node *n we visit, we output intervals as
follows:

1. If query key < n->key
we set list to n->left list,
while list �= NULL and list->key ≤ query key.
1.1 We output list->object and set list to list->next.

2. Else query key ≥ n->key
we set list to n->right list,
while list �= NULL and list->key ≥ query key.

2.1 We output list->object and set list to list->next.

In each tree node, we perform O(1) work for each object we list, so the total
time is O(h + k), where h is the height of the tree and k is the number of
objects listed, so using any balanced search tree as underlying structure, we get
an output-sensitive complexity of O(log n + k).

We still have to show that the output given by this method is correct. For
this we observe that if an interval [ai, bi] contains the query key, then it will be
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stored in one of the tree nodes along the path followed by the query key. On
each level there is at most one node whose associated interval contains [ai, bi],
and if the query key is in that interval, this path will pass through that node.
But for each node, we need to consider only those intervals for which the query
key is between the interval endpoint and the node key. Because the node key is
contained in all intervals stored in that node, we do not need to check the other
interval endpoint. Thus

1. If the query key is less than the node key,
1.1 and the list item key is less than the query key, we have

left endpoint ≤ query key < node key ≤ right endpoint,

1.2 if the list item key is larger than the node key, this holds by the
increasing order of the left list also for all following keys, so none of
the remaining intervals contains the query key.

2. If the query key is larger than the node key,
2.1 and the list item key is larger than the query key, we have

left endpoint ≤ node key ≤ query key ≤ right endpoint,

2.2 if the list item key is smaller than the node key, this holds by the
decreasing order of the right list also for all following keys, so none of
the remaining intervals contains the query key.

So this algorithm lists exactly the intervals (or associated objects) that contain
the query key.

So far we gave only the structure and the query algorithm. The interval tree
is a static data structure, we can build it once, but there is no update operation;
insertion and deletion of intervals are not possible. To build it from a given
list of n intervals, we first build the search tree for the interval endpoints in
O(n log n) time. Next we construct a list of the intervals sorted in decreasing
order of their left interval endpoints, in O(n log n), and find for each interval
the node where it should be stored, and insert it there in front of the left list,
in O(log n) per interval. Finally, we construct a list of the intervals sorted in
increasing order of their right interval endpoints, in O(n log n), and find for
each interval the node where it should be stored, and insert it there in front of
the right list, in O(log n) per interval. By this initial sorting and inserting in that
order, all node lists are in the correct order. The total work needed to construct
the interval tree structure is O(n log n). The total space needed by the interval
tree is O(n) because the search tree needs O(n) space and each interval occurs
only on two lists. This completes the analysis of the interval tree structure.
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Theorem. The interval tree structure is a static data structure that can be built
in time O(n log n) and needs space O(n). It lists all intervals containing a given
query key in output-sensitive time O(log n + k) if there are k such intervals.

Before we now give the code for the query function find intervals, we
need to decide how to return multiple results – a question that occurs whenever
our query operation has potentially many results. Our preferred solution is to
construct a list of all results and return that list as answer. This has the advantage
of conceptual clarity, but it depends on the list nodes being correctly returned
by the program that gets this list to avoid a memory leak. The alternative would
be to divide the query function in two: one to start the query and one to get the
next result.

list_node_t *find_intervals(tree_node_t *tree,
key_t query_key)
{ tree_node_t *current_tree_node;

list_node_t *current_list, *result_list,
*new_result;

if( tree->left == NULL )
return(NULL);

else
{ current_tree_node = tree;

result_list = NULL;
while( current_tree_node->right != NULL )
{ if( query_key < current_tree_node->key )

{ current_list =
current_tree_node->left_list;

while( current_list != NULL
&& current_list->key
<= query_key )

{ new_result = get_list_node();
new_result->next = result_list;
new_result->object =

current_list->object;
result_list = new_result;
current_list = current_list->next;

}
current_tree_node =
current_tree_node->left;

}
else
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{ current_list =
current_tree_node->right_list;

while( current_list != NULL
&& current_list->key
>= query_key )

{ new_result = get_list_node();
new_result->next = result_list;
new_result->object =

current_list->object;
result_list = new_result;
current_list = current_list->next;

}
current_tree_node =
current_tree_node->right;

}
}

return( result_list );
}

}

There are several problems in making this static data structure dynamic.
The simpler problem is that to insert a new interval at the correct node, we
need to insert it in the two ordered lists of left and right endpoints. The length
of this ordered list can be anything up to n and inserting in an ordered list of
length l takes up to �(l) time. This could be reduced to O(log l) if we represent
the left and right endpoints in a balanced search tree with a doubly connected
list of leaves and a pointer to the first and last leaf: then we still have O(k)
time to list the first k elements of the list and insertion or deletion time of
O(log l) = O(log n).

The other, essentially unsolved, problem consists of the restructuring of the
underlying tree. The interval tree structure depends on each interval containing
some key of a tree node. So although not every interval endpoint needs to be
a key of the underlying search tree because many tree nodes will not store any
intervals, we can be forced to add keys to the underlying search tree. And the
tree can become unbalanced by this. But if we wish to rebalance the tree, for
example, by rotations, we have to correct the associated lists and this requires
that we join two ordered lists which are not separated and that we take apart an
ordered list in two, depending on whether the intervals associated with the list
items contain some key value. There is no known way to do this in sublinear
time.
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If we know in advance some superset of all the interval endpoints that might
occur during our use of the structure, we can, of course, build the underlying
tree for that superset and that tree will never need to be restructured. This
can be a quite efficient solution if that superset is not too large. For the left
and right lists in each node, we still need search trees to efficiently insert and
delete new intervals.

Several external-memory versions of the interval tree structure were pro-
posed in Ang and Tan (1995) and Arge and Vitter (2003).

4.2 Segment Trees

The primary task performed by a segment tree is the same as that done by an
interval tree: keeping track of a set of n intervals, here assumed to be half-
open, and listing for a given query key all the intervals that contain that key in
output-sensitive time O(log n + k) if the output consisted of k intervals. It is
slightly worse at this task than the interval tree having a space requirement of
O(n log n) instead of O(n). But the segment tree, or the idea of the canonical
interval decomposition on which it is based, is really a framework on which
a number of more general tasks can be performed. Again it is a static data
structure. Segment trees were invented by Bentley.3

Assume a set X = {x1, . . . , xn} of key values and a search treeT for {−∞} ∪
X. As usual, with each node of T we associate the interval of all key values for
which the query path would go through that node. Any interval [xi, xj [ can be
expressed in many ways as union of node intervals,4 so it can be represented
by subsets of the tree nodes. In any such representation, a node that is in the
tree below some other node is redundant because its node interval is contained
in that higher-up node. Among all such representations there is one that is
highest: just take all nodes whose intervals are contained in the interval [xi, xj [
we want to represent and eliminate the redundant nodes. This representation
consists of all those nodes whose node interval is contained in [xi, xj [, but the
node interval of their upper neighbor is not contained in [xi, xj [. This is the
canonical interval decomposition of the interval [xi, xj [ relative to that search
tree T .

Theorem. The canonical interval decomposition is a representation of the
interval as union of disjoint node intervals. Any search path for a value in the

3 In another frequently cited inaccessible technical report, J.L. Bentley: Solution to Klee’s
Rectangle Problems, Technical Report, Carnegie-Mellon University, Pittsburgh, USA, 1977.

4 Here we need the key −∞ as leaf of the search tree; otherwise there would be no node interval
starting at x1.
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interval will go through exactly one node that belongs to the canonical interval
decomposition.

The canonical interval decomposition is easy to construct. We start with the
interval [xi, xj [ at the root:

1. Each time the node interval of the current node is entirely contained in
[xi, xj [, we take that node into our representation and stop following that
path down because all nodes below are redundant;

2. Each time the node interval of the current node partially overlaps [xi, xj [,
we follow both paths down;

3. Each time the node interval of the current node is disjoint from [xi, xj [, we
stop following that path down.

-∞ 1 [1,2[

1

2 3

3 [2,4[

2

4 5

5

6 7

7

6 [4,8[

8 9

9 [8,10[

10 11

11

10

12 13

13

14 15

15

14

4 12

8

Canonical Interval Decomposition for Interval [1, 10]

It is easy to see that this operation selects exactly the nodes of the canonical
interval decomposition. It remains to bound the size of the decomposition and
the time necessary to construct it. For this we look at case 2, because it is the
only case that does not immediately terminate. Case 2 happens only for those
nodes whose node interval contains an endpoint of the interval [xi, xj [ that
we wish to represent, so the nodes for which case 2 is followed are the nodes
along the search paths of xi and xj . Each of these nodes causes both its lower
neighbors to be visited. Because the only way a node that belongs to case 1
or case 3 can be visited is by being lower neighbor of a node of case 2, the
total number of visited nodes is less than 4 height(T ) and the total number of
selected nodes is less than 2 height(T ).

Theorem. Let X = {x1, . . . , xn} be a set of key values and T a search tree for
{−∞} ∪ X. Then for any interval bounded by values from X, the canonical
decomposition has size at most 2 height(T ) and can be constructed in time
O (height(T )). If T is of height O(log n), the canonical interval decomposition
has size O(log n) and can be found in time O(log n).

Now we have the canonical interval decomposition; the segment tree struc-
ture that represents a set of intervals {[a1, b1[, [a2, b2[, . . . , [an, bn[} is easy
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to describe. It consists of some balanced search tree T for the extended set of
interval endpoints {−∞, a1, a2, . . . , an, b1, . . . , bn} in which each node carries
a list of all those intervals [ai, bi[ for which this node is part of the canonical
interval decomposition.

1  2  3  4  5  6  7  8  9 10 11 12 13 14

-∞ 1 2 3 4 5 7 8 9 10 11 12 13 14

1 3 5 6 8 10 12 14

2 6 9 13

4 11

7
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[1,8[ [2,7[

[5,6[

[1,8[ [3,14[ [2,7[

[1,8[

[7,10[

[7,10[

[9,12[

[3,14[

[9,12[ [3,14[ [11,14[

[3,14[ [11,14[ [11,13[

System of Intervals and Its Segment Tree

With this structure, the interval containment queries are very easy: given a query
key, we follow the search-tree structure down and for each node on the search
path, we output all intervals on its list. All these intervals contain the query key,
and each interval that contains the query key is met in exactly one node. Thus,
the output does not contain any duplicates and the query time is O(log n + k) to
follow the search path down and list k intervals. This would work just the same
for any other interval decomposition that does not contain redundant elements,
but we need the canonical interval decomposition because it is small and easy to
build. Unlike the interval tree, each interval is stored in the segment tree many
times, so the required space is not only O(n). Each interval generates at most
O(log n) parts in its canonical interval decomposition, so the total required
space is O(n log n). And the segment tree structure can be built in O(n log n)
time, first building the balanced search tree and then inserting the n intervals,
constructing the canonical interval decomposition of each in O(log n).

Theorem. The segment tree structure is a static data structure that can be built
in time O(n log n) and needs space O(n log n). It lists all intervals containing
a given query key in output-sensitive time O(log n + k) if there are k such
intervals.

To implement the segment tree structure, we again need two types of nodes –
the tree nodes and the interval lists attached to each tree node.

typedef struct ls_n_t { key_t key_a, key_b;
/* interval [a,b[ */
struct ls_n_t *next;
object_t *object;

} list_node_t;
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typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
list_node_t *interval_list;
/* balancing information */

} tree_node_t;

Then the query algorithm is as follows:

list_item_t *find_intervals(tree_node_t *tree,
key_t query_key)

{ tree_node_t *current_tree_node;
list_node_t *current_list, *result_list,

*new_result;
if( tree->left == NULL ) /* tree empty */

return(NULL);
else /* tree nonempty, follow search path */
{ current_tree_node = tree;

result_list = NULL;
while( current_tree_node->right != NULL )
{ if( query_key < current_tree_node->key )

current_tree_node =
current_tree_node->left;

else
current_tree_node =
current_tree_node->right;

current_list =
current_tree_node->interval_list;

while( current_list != NULL )
{ /* copy entry from node list to

result list */
new_result = get_list_node();
new_result->next = result_list;
new_result->key_a =

current_list->key_a;
new_result->key_b =

current_list->key_b;
new_result->object =

current_list->object;
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result_list = new_result;
current_list = current_list->next;

}
}
return( result_list );

}
}

Notice that neither the root nor any node on the left or right boundary path of
the tree can have any intervals of the canonical interval decomposition attached
to it because their node intervals are unbounded and we are representing only
finite intervals. Typically, nodes near the leaf level will have nonempty lists,
whereas in the interval tree, the intervals tended to be stored in higher-up
nodes.

The construction of the segment tree structure has two phases. First the
underlying balanced search tree is built for which we can choose any method
from the previous chapter or a method to build optimal trees from Section 2.8.
We assume that initially all the interval list fields of the tree nodes are
NULL. Then the intervals are inserted one after another. Next is code for the
insertion of an interval [a, b[ in the tree; the insertion of an interval into the
interval list of a node is written as separate function.

void attach_intv_node(tree_node_t *tree_node,
key_t a, key_t b,
object_t *object)

{ list_node_t *new_node;
new_node = get_list_node();
new_node->next = tree_node->interval_list;
new_node->key_a = a; new_node->key_b = b;
new_node->object = object;
tree_node->interval_list = new_node;

}

void insert_interval(tree_node_t *tree,
key_t a, key_t b,
object_t *object)

{ tree_node_t *current_node, *right_path,
*left_path;
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list_node_t *current_list, *new_node;
if( tree->left == NULL )

exit(-1); /* tree incorrect */
else
{ current_node = tree;

right_path = left_path = NULL;
while( current_node->right != NULL )
/* not at leaf */
{ if( b < current_node->key )

/* go left: a < b < key */
current_node = current_node->left;

else if( current_node->key < a)
/* go right: key < b < a */

current_node = current_node->right;
else if( a < current_node->key &&

current_node->key < b )
/* split: a < key < b */

{ right_path = current_node->right;
/* both right */
left_path = current_node->left;
/* and left */
break;

}
else if( a == current_node->key )
/* a = key < b */
{ right_path = current_node->right;

/* no left */
break;

}
else /* current_node->key == b, so a
< key = b */
{ left_path = current_node->left;

/* no right */
break;

}
}
if( left_path != NULL )
{ /* now follow the path of the left

endpoint a*/
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while( left_path->right != NULL )
{ if( a < left_path->key )

{ /* right node must be
selected */

attach_intv_node(left_path->
right, a,b,object);
left_path = left_path->left;

}
else if ( a == left_path->key )
{ attach_intv_node(left_path

->right, a,b,object);
break; /* no further descent
necessary */

}
else

/* go right, no node selected */
left_path = left_path->right;

}
/* left leaf of a needs to be selected

if reached */
if( left_path->right == NULL &&

left_path->key == a )
attach_intv_node(left_path,
a,b,object);

} /* end left path */
if( right_path != NULL )
{ /* and now follow the path of the right

endpoint b */
while( right_path->right != NULL )
{ if( right_path->key < b )

{ /* left node must be selected */
attach_intv_node(right_path->
left, a,b, object);
right_path = right_path->right;

}
else if ( right_path->key == b)
{ attach_intv_node(right_path->

left, a,b, object);
break; /* no further descent
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necessary */
}
else /* go left, no node selected */

right_path = right_path->left;
}

/* on the right side, the leaf of b is
never attached */

} /* end right path */
}

}

Again, like the interval tree, the segment tree is a static structure, and we
face the same problems in making it dynamic: we have to allow insertion
and deletion in each node, and we have to support the restructuring of the
underlying tree. For the insertion and deletion in the nodes, we can again
use a search tree. But we have to insert or delete the O(log n) fragments of
the canonical interval decomposition for a single insert or delete; so it would
be efficient to use a search tree only for the first fragment and then have
the remaining fragments on a linked list from the first fragment. Then each
tree node would need two structures: a search tree for all those intervals whose
canonical interval decomposition has its first fragment in that node and a
doubly linked list, allowing O(1) insertion and deletion, for those intervals that
started somewhere else. This shows that we can perform O(log n) insertion
and deletion of intervals as long as the underlying tree does not change. A
rebalancing of the underlying tree by rotations again causes changes in the lists
attached to the tree nodes that can be resolved only by looking at the entire
list and so this is no efficient solution. The situation here is better than that
for interval trees because the sequence of the intervals attached to a tree node
does not matter. This allows a representation of the sets of intervals attached
to nodes, which will be described in Section 6.2, which makes segment trees
truly dynamic (van Kreveld and Overmars 1989, 1993).

In the aforementioned discussion we have always used half-open intervals
because they mirror the structure of the node intervals. It is easy to adapt the
segment tree structure to open or closed intervals, but for interval trees, the
same is even easier.

An external memory version of the segment tree structure was discussed in
Blankenagel and Güting (1994).
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4.3 Trees for the Union of Intervals

Several of the early papers on intervals were motivated by a problem posed
by Klee in a note in the American Mathematical Monthly (Klee 1977), which
became known as “Klee’s Measure Problem.” He asked whether it is possible
to determine the measure (length) of a union of n intervals in time better than
�(n log n).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

System of Intervals and Their Union

A simple solution in O(n log n) would be to sort the interval endpoints and
then sweep from the smallest endpoint up, keeping track of the number of
intervals that the current point belongs to. This number increases by 1 each
time we pass a left interval endpoint and decreases by 1 each time we pass a
right endpoint, and we compute the sum of the lengths from one endpoint to
the next larger one for those points that belong to at least one interval.

The original question was answered in Fredman and Weide (1978), where an
�(n log n) lower bound in the decision tree model with linear comparisons was
proved.5 The higher-dimensional analog of this question, computing the area of
a union of axis-aligned rectangles, or the measure of a union of d-dimensional
orthogonal boxes was also stated by Klee (1977). The two-dimensional problem
was solved by Bentley, who gave an O(n log n) algorithm for it,6 and for d ≥ 3,
the best current result is an O(nd/2 log n) algorithm by Overmars and Yap
(1991), improving an earlier result in van Leeuwen and Wood (1980b).

All methods for the higher-dimensional measure problem are based on the
idea of sweeping the arrangement by a coordinate hyperplane, which inter-
sects the arrangement of d-dimensional boxes in an arrangement of (d − 1)-
dimensional boxes. That induced arrangement changes whenever the hyper-
plane passes the beginning or end of a d-dimensional box, in which case a
(d − 1)-dimensional box is inserted into or deleted from the induced arrange-
ment. If we have a structure that maintains the (d − 1)-dimensional measure of
the union of a system of (d − 1)-dimensional boxes under insertion and dele-
tion of these boxes, then we can use it to answer the d-dimensional measure
problem.

5 But this bound generalizes to the stronger algebraic decision tree model (Ben-Or 1983).
6 In the same unpublished notes in which he invented the segment tree.
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For the two-dimensional measure problem, we need a structure that main-
tains the measure of a union of intervals under insertion and deletion of intervals.
Bentley’s solution to this was based on his segment trees. As additional infor-
mation, each node n contains the measure n->measure of the union of all
node intervals of nodes in the subtree below n that have a nonempty list of
intervals attached to them, that is, that are part of the canonical interval decom-
position of some interval in the current set. For any node n, this information
can easily be reconstructed from its lower neighbors:

{ if n->interval list �= NULL,
then n->measure is the length of the node interval of n;

{ if n is a leaf and n->interval list = NULL, then n->measure
is 0;

{ if n is an interior node and n->interval list = NULL, then
n->measure = n->left->measure + n->right->measure.

So after any insertion or deletion of an interval, we just have to update the mea-
sure information in all nodes that were changed or that are above a changed
node. These nodes are the nodes along the search path for the left interval
endpoint, with their right lower neighbors, and the nodes on the search path
for the right interval endpoint, with their left lower neighbors. This gives
a structure with an insertion and deletion time of O(log n), which has the
measure of the union of the current intervals in the root, so it can answer
measure queries in O(1) time. It has, however, a restriction that is inher-
ited from the segment tree structure: we cannot change the underlying search
tree, so all the interval endpoints must be known in advance. For the ap-
plication in the measure problem, this is the case because all the rectangles
are given.

A fully dynamic structure to maintain the measure of a union of intervals is
the measure tree defined by Gonnet, Munro, and Wood (1983). That structure
maintains a set ofn intervals under insertion and deletion of intervals inO(log n)
and measure queries in O(1).

The construction of the measure tree begins with any balanced search tree
on the endpoints of all intervals in the current set and −∞. The associated
intervals of a node are all those intervals in the current set that have at least
one endpoint in the node interval; like the node interval, we do not store the
associated intervals in the node, but just need them as concept. Notice that an
interval that properly contains a node interval is not associated with the node;
the interval [a, b[ is associated with exactly those nodes that are on the search
paths of a or b.
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Each node n of the search tree contains three additional fields:

{ n->measure is the measure of the intersection of the node interval of n
with the union of all its associated intervals.

{ n->rightmax is the maximum right endpoint of all intervals associated
with n.

{ n->leftmin is the minimum left endpoint of all intervals associated
with n.

node interval

associated intervals

contributed measure

leftmin rightmax

Node Interval and Its Associated Intervals

For any interior node n, this information can be reconstructed from its lower
neighbors. Two of the fields are easy:

{ n->rightmax =
max(n->left->rightmax, n->right->rightmax), and

{ n->leftmin = min(n->left->leftmin, n->right->leftmin).

The measure, however, needs several cases. Let x be any number in the node
interval of n, which is contained in the union of the intervals associated with n,
so it contributes to n->measure. Suppose x < n->key, so x is in the node
interval of n->left. If x is contained in an interval associated with n->left,
then it already contributed to n->left->measure. But it is also possible
that x is contained in an interval associated with n, but not in an interval
associated with n->left; in that case that interval must be associated with
n->right, and contain the entire node interval of n->left. So the contri-
bution of n->left to n->measure is either the length of the entire node
interval of n->left, if n->right->leftmin is smaller than the left end-
point of the node interval of n->left, or it is n->left->measure. The
corresponding situation holds for the contribution of n->right. Thus, if l

and r are the left and right endpoints of the node interval of n, we have

1. if n->right->leftmin < l and n->left->rightmax ≥ r,

n->measure = r − l;
2. if n->right->leftmin ≥ l and n->left->rightmax ≥ r,

n->measure = (r − n->key) + n->left->measure;
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3. if n->right->leftmin < l and n->left->rightmax < r,

n->measure = n->right->measure + (n->key − l); and
4. if n->right->leftmin ≥ l and n->left->rightmax < r,

n->measure = n->right->measure + n->left->measure.

l                                                                       r

l                       r

n

n->left n->right

n->key

n->left->rightmax

n->right->leftmin

n->left->rightmax

n->right->leftmin

n->left->rightmax

n->right->leftmin

n->left->rightmax

n->right->leftmin

node intervals

1.

2.

3.

4.

Four Situations for Computation of n->measure

With these rules, we can now perform updates, inserting or deleting an in-
terval [a, b[; we first update the leaves containing a and b, possibly inserting or
deleting as necessary; then we go up to the root, rebalancing along the way and
recomputing the three additional fields for each node we changed. Thus we get
an O(log n) update time for any choice of the underlying balanced search tree;
and the total measure of the union is in the root, so we have an O(1) query time.
If there are several intervals in the current set that have the same endpoint, the
update of the leaf might become nontrivial because there might be many inter-
vals associated with the same leaf; but we can arrange them again into a search
tree, which gives an O(log n) update of the leaf, which does not change the total
complexity. So we can summarize the performance of this structure as follows:

Theorem. The measure tree structure is a dynamic data structure that keeps
track of a set of n intervals, supporting insertion and deletion of intervals in
time O(log n), and that answers queries for the measure of the union of the
intervals in O(1) time. The structure has size O(n).

Another related problem is to list the union of intervals instead of computing
its measure. Here we want an output-sensitive query complexity: if the union is
just one long interval, we want that answer fast, whereas if the union consists
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of many intervals, we cannot avoid the time required to list them all. But
adding or deleting a single interval can change the structure of the union much.
An optimal structure for this union-listing problem was given by Cheng and
Janardan (1991); it supports insertions and deletions of intervals in O(log n)
time and lists the union in output-sensitive time O(k) if the union consists of k

components.
The union tree structure we describe here is based on this structure in Cheng

and Janardan (1991). We again start with any balanced search tree for the set
{−∞, x1, . . . , xn} of all interval endpoints and −∞. As in the measure tree,
we associate with each node all intervals in the current interval set that have
at least one end point in the node interval. For a fixed node n, we consider
the union of all intervals associated with that node; this union consists of
connected components, which themselves are intervals with endpoints from
the underlying set of intervals. Let [xi, xj [ be the leftmost component of the
union and [xk, xl[ be the rightmost component. These intervals might coincide.
Then the node n has the following additional fields:

{ n->leftmin is the pointer to the leaf with key xi .
{ n->leftmax is the pointer to the leaf with key xj .
{ n->rightmin is the pointer to the leaf with key xk .
{ n->rightmax is the pointer to the leaf with key xl .

There are also two further fields that are defined only if n is a leaf.

{ n->next is the pointer to the leaf with the next larger key.
{ n->transfer is the pointer to the highest node v with

v->left->rightmin = n and
v->left->rightmax->key ≥ v->key if such a node exists. A
transfer pointer can exist only for those leaf nodes n that occur as
v->left->rightmin for some node v.

With these definitions, the query algorithm is now easy, based on the ob-
servation that if [xi, xj [ is a connected component of the union of all intervals
in the current set and n is the leaf node with key xi , then n->transfer is
defined and n->transfer->rightmax is the leaf node with key xj . So if
we know the beginning of a component of the union, then we find its end using
the transfer pointers; and if we know the end of a component, then the
next component must start at the next larger key, found by following the next
pointer, because each key is beginning or end of some interval in the current
interval set. The smallest key in the current set must be the beginning of the first
component, so we can start at that node and work our way upward, with O(1)
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time for each component we found. This gives the claimed output-sensitive
O(k) query time if the union of the current set consists of k components.

Intervals

Union
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-∞ 2 4 6 8 10 12 14

1 5 9 13

3 11

7

Union of Intervals with Search Tree and transfer Pointers

The main difficulty is the update. To insert or delete an interval [a, b[, we
first have to perform the insertion or deletion in the underlying tree, deleting a
node only if there is no other interval in the current set with the same endpoint.
We can also update the next pointer at this stage, that is, just maintaining a
linked list of the leaves, as we mentioned in Section 3.11. Then we go back to
the root, perform the rebalancing, and finally make a second upward pass over
the nodes we passed on the search path and those neighboring nodes that were
changed during the rebalancing to reconstruct all the other fields in a bottom-up
way.

For this, we observe that the fields leftmin to rightmax can change only
for those nodes for which the set of associated intervals changed, which are the
nodes on the search path for a and b. For these nodes, bottom-up reconstruction
is easy: if n->left and n->right already contain the correct information,
then the information for n is given by the following rules:

1. n->leftmin
1.1 if n->left->leftmin->key < n->right->leftmin->key,

then set n->leftmin to n->left->leftmin;
1.2 else set n->leftmin to n->right->leftmin.

2. n->leftmax
2.1 if n->left->leftmax->key < n->right->leftmin->key,

then set n->leftmax to n->left->leftmax;
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2.2 else if
n->left->rightmax->key < n->right->leftmax->key,
then set n->leftmax to n->right->leftmax;

2.3 else if n->left->rightmax->key <

n->right->rightmax->key, then set n->leftmax to
n->left->rightmax;

2.4 else set n->leftmax to n->right->rightmax.
3. n->rightmin

3.1 if n->left->rightmax->key <

n->right->rightmin->key, then set n->rightmin to
n->right->rightmin;

3.2 else if
n->left->rightmin->key < n->right->leftmin->key,
then set n->rightmin to n->left->rightmin;

3.3 else if
n->left->leftmax->key < n->right->leftmin->key,
then set n->rightmin to n->right->leftmin;

3.4 else set n->rightmin to n->left->leftmin.
4. n->rightmax

4.1 if n->left->rightmax->key <

n->right->rightmax->key, then set n->rightmax to
n->right->rightmax;

4.2 else set n->rightmax to n->left->rightmax.

The update of the transfer pointer is more difficult because this happens
not in the nodes along the search path, but in leaves. If n is a leaf, then
n->transfer is a pointer to a node v with v->left->rightmin = n,
so the only leaves that possibly need update of their transfer pointer are
those that are reached as v->left->rightmin from a node v that is on the
search path or changed during rebalancing. We take these O(log n) nodes v in
sequence of decreasing depth, that is from the leaf to the root, and for each we
perform the following step:

{ if v->left->rightmax->key > v->key, then
set v->left->rightmin->transfer to v.

If for a leaf n there are several interior nodes v with v->left->rightmin
= n and v->left->rightmax->key > v->key, then the highest of
these overwrites all earlier entries in n->transfer, so we get the required
property that n->transfer points to the highest node with these properties.
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The complexity of any update is again only O(log n) because we spent a
constant time on each level of the underlying balanced search tree. And the
space requirement is O(n) because we only augmented each of the O(n) nodes
of the search tree by six pointers. In total, this gives the following performance:

Theorem. The union tree is a dynamic data structure that keeps track of a set
of n intervals, supporting insert and delete in time O(log n), and that lists the
union of these intervals in output-sensitive time O(k) if that union consists of
k components. The structure has size O(n).

4.4 Trees for Sums of Weighted Intervals

A simple but useful application of the canonical interval decomposition idea
is a structure that keeps track of a piecewise constant function represented as
sum of weighted intervals. We can identify an interval [a, b[ with its indicator
function, which is 1 for x ∈ [a, b[ and 0 for x /∈ [a, b[; with this convention, it
is natural to define weighted intervals

interval [a, b[ with weight c ≡ f (x) =
{

c x ∈ [a, b[
0 x /∈ [a, b[

and we can use the sum of weighted intervals, whose value at x is the sum of
the weights of the intervals that contain x. A typical use of this structure would
be to keep track of the use of some resource like electricity; the resource is
used by various systems, each for some time interval at a constant level, and
the total amount used is at each moment the sum of the demands of all those
systems active at that moment.

0.3 1.1
-0.3 0.4 0.7

1.9 1.4 -1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.3 0.0 1.9 0.0 1.4 1.7 0.3 0.7 0.4 1.5 1.1 0.6 -0.5 0.7

System of Weighted Intervals and Its Sum Function

To construct the structure, we begin with the segment trees described in the
previous section, but instead of requiring to report all covering intervals we
ask only for the number of covering intervals. This way we do not need to
keep in each tree node a list of the intervals, but just a single number. For a
query we just go down the search path and sum up all the numbers in nodes
we have visited. This gives us a structure of size O(n), built in O(n log n), with
query time O(log n), which gives for any query key the number of intervals
that contain that key. Now we are not restricted to just counting the intervals;
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we could give them arbitrary positive or negative weights and determine in the
same way the sum of all the weights of intervals that contain the query key.
This way we keep track of a piecewise constant function, with at most n jumps,
and can evaluate this function at a given point in time O(log n). And we can
easily make this data structure dynamic, for unlike the segment tree, where we
needed to update the potentially large structures associated with each node in
any rotation, here we just need to adjust the partial sums.

0.3 1.1
-0.3 0.4 0.7

1.9 1.4 -1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-∞ 1 0.3 2 3 1.9 4 5 1.4 6 1.4 7 8 0.3 9 10 0.4 11 12 1.1 13 14 0.7 15

1 3 5 -0.3 7 9 0.4 11 1.1 13 -0.5 15

2 6 0.3 10 14

4 12

8

System of Weighted Intervals and Its Tree Representation:
Summand Field of Nodes with Weight 0 Left Empty

We arrive at the following structure: a search tree on the interval endpoints,
or the places where the piecewise constant function jumps, with a number
associated with each node. The value of the function at a query key is the
sum of the numbers associated with nodes on the search path for that key. To
increase the function on the interval [a, b[ by the value w, we find all nodes
belonging to the canonical interval decomposition of [a, b[ and increase their
associated numbers by w. If a, b were already keys of the underlying search
tree, no further work is necessary during an insert; otherwise, we need to update
the underlying search tree and adjust the numbers in the nodes in such a way
that the sum along each path stays the same. To delete an interval, we just insert
it with negative weight and delete unnecessary leaves. In total, this gives the
following properties:

Theorem. There is a dynamic data structure that keeps track of a set of n

weighted intervals, supporting insert and delete in time O(log n), and that
evaluates the sum of the weights of all intervals containing a query point x in
time O(log n). The structure has size O(n).

The implementation of this structure is quite easy because we need to store
and update only a single number in the tree nodes. So the structure of each tree
node is the following:
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typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
number_t summand;

/* some balancing information */
} tree_node_t;

As in the previous structures, we always need a node of key −∞ in the
underlying search tree, so we insert it when the tree is created. In this search
tree, we do not use any objects associated with the keys, but we need a non-
NULL object pointer to satisfy our search-tree convention. Here we just use the
pointer to the tree root as object pointer.

tree_node_t *create_tree(void)
{ tree_node_t *tree;

tree = get_node();
tree->left = NULL;
tree->summand = 0;
/* need key -infty. use root as non-NULL

object ptr */
insert( tree, NEGINFTY, (object_t *) tree );
return( tree );

}

Then the query algorithm is as follows:

number_t evaluate_sum(tree_node_t *tree,
key_t query_key)
{ tree_node_t *current_tree_node;

number_t sum;
if( tree->left == NULL )

return(0);
else
{ current_tree_node = tree;

sum = tree->summand;
while( current_tree_node->right != NULL )
{ if( query_key < current_tree_node->key)

current_tree_node =
current_tree_node->left;

else
current_tree_node =



172 4 Tree Structures for Sets of Intervals

current_tree_node->right;
sum += current_tree_node->summand;

}
return( sum );

}
}

To insert a weighted interval, we first insert the interval endpoints into the
underlying search tree if they are not there already. For this, we might have to
split a previous leaf node, then the summand previously in the leaf nodes stays
with that now-inner node, and the two new leaf nodes contain the summand
0, so that the sum along all the paths is not changed. Then we perform the
necessary rebalancing, where we have to change the rotation code in such a
way that the sums along the paths stay constant. But that is easy because we can
push down summands in the search tree: given an interior node n, if we increase
n->left->summand and n->right->summand each by n->summand
and then set n->right->summand to 0, then along any path through n the
sum has not changed.

summand

summand summand

a

b c

summand

summand summand

0

a+b a+c

Pushing Down the Summand of a Node

So before the rotation, we push down the summands from the two nodes
changed in the rotation, so their summands become 0. Then we can rotate
without changing the sums along the paths because the nodes changed by the
rotation do not contribute to the sums anyway. The following is the adapted
code for the left rotation:

void left_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
/* push down summand from n */
n->left->summand += n->summand;
n->right->summand += n->summand;
n->summand = 0;
tmp_node = n->right;
/* push down summand from n->right */
tmp_node->left->summand += tmp_node->summand;
tmp_node->right->summand += tmp_node->summand;
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tmp_node->summand = 0;
tmp_node = n->left;
/* perform normal left rotation */
tmp_key = n->key;
n->left = n->right;
n->key = n->right->key;
n->right = n->left->right;
n->left->right = n->left->left;
n->left->left = tmp_node;
n->left->key = tmp_key;

}

Now we give the code for the insertion of an interval [a, b[ with weight w.

void insert_interval(tree_node_t *tree,
key_t a, key_t b, number_t w)

{ tree_node_t *tmp_node;
if ( find(tree, a) == NULL )
{ insert( tree, a, (object_t *) tree );
} /* used treenode itself as non-NULL object

pointer*/
if ( find(tree, b) == NULL )
{ insert( tree, b, (object_t *) tree );
}
tmp_node = tree;
/* follow search path for a,*/
while( tmp_node->right != NULL )
{ /* add w to everything right of path */

if( a < tmp_node->key )
{ tmp_node->right->summand += w;

tmp_node = tmp_node->left;
}
else

tmp_node = tmp_node->right;
}
tmp_node->summand += w; /* leaf with key a */
tmp_node = tree;
/* follow search path for b, */
while( tmp_node->right != NULL )
{ /* subtract w from everything right of

path */
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if( b < tmp_node->key )
{ tmp_node->right->summand -= w;

tmp_node = tmp_node->left;
}
else

tmp_node = tmp_node->right;
}
tmp_node->summand -= w; /* leaf with key b */

}

Here we reuse the find and insert functions of any of our balanced
search trees, with the minor modification that the summand field of any newly
created leaf is initialized to 0.

The deletion is just an insertion with weight −w. But this does not remove
any leaves that became unnecessary. In a minimal tree representation, there
should be leaves only for the places where the sum function changes. So, after
the insertion of the interval [a, b[, we could evaluate the sum function for the
leaf preceding a and the leaf following b. It is not sufficient to compare the
summand fields of these leaves because they might be reached over different
paths. If two consecutive leaves with the same sum are found, we push down
the summands along the path to the leaf with the larger key and then delete that
key from the tree, with the normal rebalancing.

A problem that looks similar but is more complicated is to maintain the
maximum instead of the sum: given a set of weighted intervals, we want to
find for a query key the maximum weight of an interval that contains the
key. The problem here is to make the structure dynamic; as a static structure,
we could reuse the canonical interval decomposition idea and store in each
node the maximum weight of all intervals for which this node is part of the
canonical interval decomposition. Then for a query, we would answer the
maximum of all node values along the search path. This can be adapted to
support insertions, but not for deletions. A structure that supports insertions
and deletions with O(log n) amortized update time and O(log n) worst-case
query time was described in Agarwal, Arge, and Yi (2005), improving an
earlier structure in Kaplan, Molad, and Tarjan (2003).

4.5 Trees for Interval-Restricted Maximum Sum Queries

A structure on the same objects, piecewise constant functions or sets of weigh-
ted intervals, but supporting even stronger queries, was described in Bose et al.
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(2003). Let σ be the current piecewise constant function, then this structure
answers queries for the maximum value of σ in a query interval [a, b[, as
well as for the argument x for which this maximum of σ (x) is reached. This
contains the evaluation queries supported by the previous structure as a special
case when the interval degenerates to a single point. The update operation for
structure is to increase or decrease σ for all x ∈ [t,∞[ by c.
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Sum of Weighted Intervals and Tree for Interval Maximum Queries:
In Each Node, Left Is key; Top Right Is summand;

Bottom Right Is partial sum; Empty Fields Have Value 0

This is again a dynamic data structure that consists of a balanced search
tree, with the jumps of σ as keys, in which the nodes carry some additional
information – the numbers partial sum and summand. The central prop-
erty of this structure is that for each node *n, the maximum of σ over the
interval associated with this node equals n->partial sum plus the sum of
m->summand over all nodes *m on the path from the root to *n, including
n->summand.

Thus, if the query interval [a, b[ is the interval associated with a node, we
can answer the maximum value query simply by going down in the search
tree to that node and adding up the correct terms. If the query interval is not a
node interval, we use the canonical interval decomposition of the query interval:
the maximum over the entire interval must occur in one of the subintervals of the
canonical interval decomposition. We find the intervals of the decomposition,
and the maximum values in them, again by going down in the tree and summing
up the correct node values.
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The structure of a node in this tree is the following:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
number_t summand;
number_t partial_sum;
/* balancing information */

} tree_node_t;

With this structure, the query algorithm is now similar to the insertion in
segment trees: we just check for each node of the canonical interval decompo-
sition whether it contributes a larger sum than the current maximum. The query
function can be written as follows:

int max_value_interval(tree_node_t *tree,
key_t a, key_t b)
{ tree_node_t *current_node, *right_path,

*left_path;
number_t sum, left_sum, right_sum, tmp_sum,

current_max;
int first = 1;
if( tree->left == NULL )

exit(-1); /* tree incorrect */
else
{ current_node = tree;

sum = 0;
right_path = left_path = NULL;
while( current_node->right != NULL )
/* not at leaf */
{ sum += current_node->summand;

if( b < current_node->key )
/* go left: a < b < key */

current_node = current_node->left;
else if( current_node->key < a)
/* go right: key < b < a */

current_node = current_node->right;
else if( a < current_node->key &&

current_node->key < b )
/* split: a < key < b */
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{ right_path = current_node->right;
/* both right */
left_path = current_node->left;
/* and left */
break;

}
else if( a == current_node->key )
/* a = key < b */
{ right_path = current_node->right;

/* no left */
break;

}
else /* current_node->key == b, so a
< key = b */
{ left_path = current_node->left;

/* no right */
break;

}
}
if( left_path == NULL &&

right_path == NULL)
current_max = sum

+ current_node->summand
+ current_node->partial_sum;

left_sum = right_sum = sum;
if( left_path != NULL )
{ /* now follow the path of the left

endpoint a*/
while( left_path->right != NULL )
{ left_sum += left_path->summand;

if( a < left_path->key )
{ /* right node possibly

contributes */
tmp_sum = left_sum

+ left_path->right->summand
+ left_path->right->partial_sum;

if( first ||
tmp_sum > current_max )

{ current_max = tmp_sum;
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first = 0;
}
left_path = left_path->left;

}
else if ( a == left_path->key )
{ tmp_sum = left_sum

+ left_path->right->summand
+ left_path->right->partial_sum;

if( first ||
tmp_sum > current_max)

{ current_max = tmp_sum;
first = 0;

}
break; /* no further descent
necessary */

}
else /* go right, no node selected */

left_path = left_path->right;
}
/* left leaf of a needs to be checked

if reached */
if( left_path->right == NULL )
{ tmp_sum = left_sum

+ left_path->summand
+ left_path->partial_sum;

if( first || tmp_sum > current_max )
{ current_max = tmp_sum; first = 0;
}

}
} /* end left path */
if( right_path != NULL )
{ /* and now follow the path of the right

endpoint b */
while( right_path->right != NULL )
{ right_sum += right_path->summand;

if( right_path->key < b )
{ /* left node possibly

contributes */
tmp_sum = right_sum
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+ right_path->left->summand
+ right_path->left->partial_sum;

if( first ||
tmp_sum > current_max)

{ current_max = tmp_sum;
first = 0;

}
right_path = right_path->right;

}
else if ( right_path->key == b)
{ tmp_sum = right_sum

+ right_path->left->summand
+ right_path->left->partial_sum;

if( first ||
tmp_sum > current_max )

{ current_max = tmp_sum;
first = 0;

}
break; /* no further descent
necessary */

}
else /* go left, no node selected */

right_path = right_path->left;
}
if( right_path->right == NULL &&
right_path->key < b)
{ tmp_sum = right_sum

+ right_path->summand
+ right_path->partial_sum;

if( first || tmp_sum > current_max )
{ current_max = tmp_sum; first = 0;
}

}
} /* end right path */
return( current_max );

}
}
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This determines the maximum value of the current function σ over the query
interval [a, b[, but does not tell us where this maximum is reached. The simplest
way to implement the query for the argument x, which maximizes σ (x), is to
first perform a maximum value query and then make a second pass down. When
we know the maximum value, we can find the interval of the canonical interval
decomposition for which this value is reached and then go down in that interval
to the leaf, always choosing that lower neighbor in whose associated interval
we still find that maximum value.

We now need to describe the update, which is similar to the update in the
previous section. To insert [a, b[ with weight w, we add w to the current function
σ for all x ∈ [a,∞[ and then add −w for all x ∈ [b,∞[. We first insert a and
b in the underlying search tree, with any of our balanced search-tree insert
functions. This, as in the previous section, needs a modification for new leaves.
If we split a leaf, both summand and partial sum of the previous leaf
stay with this now-interior node; the partial sum is also copied to both new
leaves, and the summand of the new leaves is 0. This preserves the sum property
along the paths to the root. For the rebalancing of the underlying search tree,
the standard rotations again need to be modified, pushing summands down and
recomputing the partial sum fields from the lower neighbors. An example
code for the modified left rotation is as follows:

void left_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
number_t tmp1, tmp2;
tmp1 = n->summand;
n->summand = 0;
n->partial_sum += tmp1;
tmp2 = n->right->summand;
n->right->summand = 0;
n->left->summand += tmp1;
n->right->left->summand += tmp1 + tmp2;
n->right->right->summand += tmp1 + tmp2;
tmp_node = n->left;
tmp_key = n->key;
n->left = n->right;
n->key = n->right->key;
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n->right = n->left->right;
n->left->right = n->left->left;
n->left->left = tmp_node;
n->left->key = tmp_key;
tmp1 = n->left->left->summand

+ n->left->left->partial_sum;
tmp2 = n->left->right->summand

+ n->left->right->partial_sum;
n->left->partial_sum = (tmp1 > tmp2) ?
tmp1 : tmp2 ;

}

These operations have up to now not changed the function σ represented
by the tree and have preserved the sum property. To perform the actual update
of the function, we proceed in a similar way as in the previous section. We
add w to the summand for any node that belongs to the canonical interval
decomposition of [a,∞[. Then the path to any node whose associated interval
lies entirely within [a,∞[ will contain exactly one of these nodes. Because σ

changed by w over the entire interval of the node, the maximum of σ (x) over
that interval will have changed by w, so the sum property is preserved for all
these nodes.

For the nodes whose associated interval lies entirely outside the interval
[a,∞[ on which we changed the function σ , nothing changes; so only the
nodes whose interval contains a remain. These are the nodes on the search
path to a. For these we restore the sum property bottom-up by recomputing the
partial sum field from the lower neighbors.

Finally, we repeat the same steps to add −w on the interval [b,∞[.
This update does not remove leaves that have become unnecessary, at whose

key the sum function σ does not change. The technique described in the previous
section can also be used for this structure.

All the operations of the structure we have described take O(h) time if h

is the height of the underlying search tree. Choosing any balanced search tree
from Chapter 3, we obtain an O(log n) time bound. The global maximum of
the underlying function can even be determined in constant time; it is just the
sum of the summand and partial sum fields of the root. We could even add
some further operations if they are supported by the underlying search tree, like
splitting the function at a threshold or joining together two functions whose
jumps are separated.
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Theorem. There is a structure that keeps track of a piecewise constant function
σ with n jumps, which supports interval-restricted maximum queries and max-
imum argument queries in O(log n) time and supports updates of the function
by adding w to σ (x) for all x ≥ [a, b[ in time O(log n). It can answer queries
for the global maximum in time O(1).

4.6 Orthogonal Range Trees

We have already met the one-dimensional problem of range searching in Section
2.7: given a query interval, list all key values of the current set that lie in
that interval. The higher-dimensional analog is the orthogonal range-searching
problem: given an axis-aligned rectangle, or in general a box in d-dimensional
space, list all the points in the current set that lie in that rectangle or box.

Orthogonal range searching has been much studied, not only for geometric
applications, but indeed rather more for database index structures. In a database,
there are frequently tuples with many number components, and there higher-
dimensional range queries are quite normal, like “list all employees with salary
between $50,000 and $75,000, age above 50, who made more than $500,000
sales in each of the last three years”: this is a five-dimensional orthogonal range
query. Orthogonal range searching is also useful as preprocessing for queries,
which really depend only on the neighborhood of the query point, to isolate the
small subset of relevant points and then answer the query based on these points.

So the general situation is that we have a set of data points p1, . . . , pn

given by their coordinates in d-dimensional space, pi = (pi1, . . . , pid ), which
is in some way stored by the data structure. We receive a d-dimensional query
interval [a1, b1[× · · · × [ad, bd [ and want to list all points pi contained in
that interval, so a1 ≤ pi1 < b1, . . . , ad ≤ pid < bd in output-sensitive time
O(fd (n) + k) if there are k such points, with fd (n) as slow-growing as possible.
Many solutions have been proposed for data structures supporting this type of
query. The canonical interval decomposition allows a particularly nice recursive
construction, the orthogonal range trees, which were independently discovered
by Bentley (1979), Lee and Wong (1980), Lueker (1978), and Willard.7

The idea of the orthogonal range tree is that in order to solve the d-
dimensional orthogonal range-searching problem, we build a balanced search
tree for the key values that occur in the first coordinate of the data points. Each
node of the search tree has its associated interval for the first coordinate, and
we store in that node all points whose first coordinate falls into that interval

7 In an inaccessible technical report, D.E. Willard: The Super-B-Tree Algorithm, Report
TR-03-79, Aiken Computer Laboratory, Harvard University, USA, 1979.



4.6 Orthogonal Range Trees 183

in a structure that allows d − 1-dimensional range searching on the remaining
d − 1 coordinates.

Recursive Structure of Three-Dimensional Orthogonal Range Tree:
Each Tree Node Has Associated Two-Dimensional Tree, in Which

Each Node Has Associated One-Dimensional Tree

If we have this structure, then the query for the d-dimensional interval
[a1, b1[× · · · × [ad, bd [ is simple: we find the O(log n) nodes that correspond
to the canonical interval decomposition of [a1, b1[. In each of these nodes, we
perform d − 1-dimensional range searching for [a2, b2[× · · · × [ad, bd [. Each
data point that occurs in the d-dimensional query interval occurs in exactly
one of these nodes, where it will be found by the d − 1-dimensional query.
And all the points that occur in the nodes have a first coordinate that lies in
the interval [a1, b1[, so within the nodes we can disregard the first coordinate.
Suppose now there are r nodes that belong to the canonical interval decom-
position of [a1, b1[, with r = O(log n), and the ρth node returns kρ matching
points in time O(fd−1(n) + kρ); then the total time is O(log n) for finding the
canonical interval decomposition, plus O(

∑r
ρ=1(fd−1(n) + kρ)) for the d − 1-

dimensional queries in the nodes. Because the total output size is just the
sum of the output sizes of the subproblems, k =∑r

ρ=1 kρ , we have in total an
output-sensitive complexity of O(fd (n) + k), with fd (n) = O(fd−1(n) log n).
If we use for the one-dimensional problem any balanced search tree, with any
of the interval-query methods from Section 2.7, we get f1(n) = O(log n), so
fd (n) = O

(
(log n)d

)
. Thus, orthogonal range trees are a static structure that

supports d-dimensional orthogonal range queries in a set of d-dimensional
points in output-sensitive time O

(
(log n)d + k

)
if the output consists of

k points. To build the structure for d ≥ 2, we first build the tree on the
first coordinates and insert each of the n points in all the O(log n) nodes
along the search path for its first coordinate. Within each node, we build a
d − 1-dimensional range tree structure. This gives a building time of
O
(
n(log n)d

)
. The space requirement of this structure is O

(
n(log n)d−1

)
be-

cause the one-dimensional structure needs an O(n) space.



184 4 Tree Structures for Sets of Intervals

Theorem. Orthogonal range trees are a static structure that supports
d-dimensional orthogonal range queries in a set of d-dimensional points in
output-sensitive time O

(
(log n)d + k

)
if the output consists of k points. They

can be built in O
(
n(log n)d

)
time using O

(
n(log n)d−1

)
space.

0 {(0,1)}

1 {(1,5)} 2 {(2,8)}

2 {(1,5),(2,8)} 3 {(3,3)} 5 {(5,0)} 6 {(6,4)} 7 {(7,6)} 8 {(8,7)} 9 {(9,9)}

1 {(0,1),(1,5),(2,8)} 5 {(3,3),(5,0)} 7 {(6,4),(7,6)} 9 {(8,7),(9,9)}

3 {(0,1),(1,5),(2,8),(3,3),(5,0)} 8 {(6,4),(7,6),(8,7),(9,9)}

6
{(0,1),(1,5),(2,8),(3,3),(5,0),

(6,4),(7,6),(8,7),(9,9)}

Set of Nine Points, with Search Tree for First Coordinate.
Each Node Has Set of Points with First Coordinate in Node Interval;

For These, a Search Structure for Second Coordinate Is Built

Because the structure is defined inductively using a lower-dimensional struc-
ture in the nodes, we can improve the performance in all dimensions if we
have a better low-dimensional range-searching structure to start the induc-
tion. The one-dimensional structure, the normal binary search tree, does not
leave any room for improvement; at least in the comparison-based model as-
sumed here, the �(n log n) lower bound for comparison-based sorting implies
a �(log n) lower bound for one-dimensional range searching. But the two-
dimensional structure can be improved, reducing the O((log n)2 + k) query
time to O(log n + k) using the technique of fractional cascading. This method
was discovered by Willard8 and Hart.9

The general idea of fractional cascading is that when we have to make a
sequence of searches in different, but related, sets, we should avoid having
to start each search from anew, but create links between these sets so that
we can use the information from the previous search in the next set. A sim-
ilar situation occurs in the two-dimensional orthogonal range tree because in
each node of the canonical interval decomposition of the query interval in
the first coordinate, we have to search among the second-coordinate values of
points stored in that node for the second-coordinate query interval. The frac-
tional cascading idea occurs in a number of other algorithms. The method was

8 Another inaccessible technical report from 1978 is usually cited, but that dates the improved
method before the basic method. The first published reference is Willard (1985).

9 Another technical report, J.H. Hart: Optimal Two-Dimensional Range Queries Using Binary
Range Lists, Technical Report 76–81, Department of Computer Science, University of
Kentucky, USA, 1981.
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discussed in a more general setting by Chazelle and Guibas (1986a, b), and
later in Sen (1995).

In the two-dimensional orthogonal range tree, the searches we need to do
are not themselves related in the required way: the sets in the nodes of the
canonical interval decomposition are disjoint, so searching in one set does not
give any information about the position in another set. But if we also search for
the same second-coordinate query interval in all nodes along the search paths
for the first-coordinate query interval, we find the structure we need.

For each node, we organize the points stored in that node into a list, sorted
by increasing second coordinate. If the node is not a leaf, then each point on
the list of the node occurs either on the list of the left lower neighbor or on the
list of the right lower neighbor. We link each point on this sorted list

{ to the same point on the list of the left or the right lower neighbor, where it
occurs;

{ to the point with the next smaller second coordinate if the point is missing
on that list; or

{ to the first point on the list if there is no point with a smaller coordinate.

With this information, we can follow down an interval, given in the list of
the root, through all nodes we visit while determining the canonical interval
decomposition of the first-coordinate interval. In each node, we have the first
and last points of the interval, restricted to the list in the node, and we find in
O(1) time the first and last points in the list of the left or right lower neighbor,
just following the pointers between the lists and possibly going one node up on
the list. Thus, if we perform the search in the top node in O(log n) time, then
each level of going down the tree takes only O(1) time. There are two types of
going down a level we need, following the path of the query interval endpoint,
where we just keep track of the current position, which takes O(1), and listing
the contents of a node belonging to the canonical interval decomposition, which
takes O(1 + k) if there are k elements in that interval. So in total, the query
takes O(log n + k) time if the output consists of k points.

Using this structure for the two-dimensional orthogonal range queries, we
improve the bound by one log n factor.

Theorem. Orthogonal range trees with fractional cascading are a static data
structure that supports d-dimensional orthogonal range queries in a set of
d-dimensional points, d ≥ 2, in output-sensitive time O

(
(log n)d−1 + k

)
if the

output consists of k points. They can be built in O
(
n(log n)d−1

)
time using

O
(
n(log n)d−1

)
space.
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6 {(5,0), (0,1), (3,3), (6,4), (1,5), (7,6), (8,7), (2,8), (9,9)}

3 {(5,0), (0,1), (3,3), (1,5), (2,8)} 8 {(6,4), (7,6), (8,7), (9,9)}

1 ({0,1), (1,5), (2,8)} 5 {(5,0), (3,3)}

0 {(0,1)} 2 {(1,5), (2,8)}

1 {(1,5)} 2 {(2,8)}

3 {(3,3)} 5 {(5,0)}

7 {(6,4), (7,6)}

6 {(6,4)} 7 {(7,6)}

7 {(8,7), (9,9)}

8 {(8,7)} 9 {(9,9)}

Set of Nine Points: Orthogonal Range Search Tree with
Fractional Cascading

To decribe the orthogonal range tree in more detail, we first give code
for the general recursive structure and then discuss the improvement of the
two-dimensional case by fractional cascading. In general, the d-dimensional
orthogonal range tree consists of any balanced search tree, with an addi-
tional pointer to a d − 1-dimensional orthogonal range tree in each node.
The one-dimensional orthogonal range tree is just a balanced search tree that
supports interval queries as in Section 2.7, so that one-dimensional range
queries can be answered. So a node of the d-dimensional tree looks as
follows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
struct tr_n_t *l_dim_tree;
/* balancing information */

} tree_node_t;

The points stored in the tree are given by an array of coordinates and possibly
a pointer to some object associated with that point. We assume the dimension
to be a globally defined constant.

typedef struct { key_t coordinate[DIMENSION];
object_t object; } point_t;

We need again a list type to collect the output.



4.6 Orthogonal Range Trees 187

typedef struct p_ls_n_t { struct p_ls_n_t *next;
point_t *point;

} p_list_node_t;

For our recursive algorithms, it is always convenient to use the coordinates
in backward order, evaluating the last coordinate first. So each point has an
array of coordinates of unknown length, of which we look only at the first
dimension entries.

Next is the code that constructs the orthogonal range tree from a list of points.
It first creates a list of the key values in the last coordinate, then sorts these, build
a search tree on the key values, augmented by −∞, attaches to each search-
tree node the list of all points that should go into that lower-dimensional tree,
and finally calls itself to build all these lower-dimensional trees. The sorting
function produces a sorted list of key values occurring in the last coordinate,
with the list of points of that key value attached to each node of the sorted list.
The function to build the search tree can be one of the functions of Section 2.8.

tree_node_t *build_or_r_tree(p_list_node_t
*pt_list, int dim )
{ if( pt_list == NULL )

return( NULL );
/* should not be called for empty tree*/

else
{ tree_node_t *o_tree, *t_tmp;

tree_node_t *key_list, *k_tmp;
p_list_node_t *p_tmp, *p_tmp2;
/* create list of key values in dimension

dim */
key_list = NULL; p_tmp = pt_list;
while( p_tmp != NULL )
{ k_tmp = get_node();

k_tmp->key =
(p_tmp->point->coordinate)[dim];

p_tmp2 = get_p_list_node();
p_tmp2->point = p_tmp->point;
p_tmp2->next = NULL;
k_tmp->left = (tree_node_t *) p_tmp2;
k_tmp->right = key_list;
key_list = k_tmp;
p_tmp = p_tmp->next;
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} /* made copy of point list */
/* sort and remove duplicates*/
key_list = sort( key_list );
if( dim >=1 ) /* for interval decomposition,
need -infty key*/
{ k_tmp = get_node();

k_tmp->key = NEGINFTY;
k_tmp->right = key_list;
k_tmp->left = NULL;
key_list = k_tmp;

}
/* create search tree */
o_tree = make_tree( key_list );
/* initialize all lower-dimensional trees

to NULL */
create_stack();
push( o_tree );
while( !stack_empty() )
{ t_tmp = pop();

t_tmp->l_dim_tree = NULL;
if( t_tmp->right != NULL )
{ push( t_tmp->left );

push( t_tmp->right );
}

}
remove_stack();
if( dim == 0 )

return( o_tree );
/* for dimension one:finished */

else /* need to construct lower-dimensional
trees */
{ /* insert each point, initially attach as

list to nodes */
while( pt_list != NULL )
{ t_tmp = o_tree; /* tree not empty */

while( t_tmp!= NULL )
{ p_tmp = get_p_list_node();

p_tmp->next = (p_list_node_t *)
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t_tmp->l_dim_tree;
p_tmp->point = pt_list->point;
t_tmp->l_dim_tree = (tree_node_t *)
p_tmp;
if( t_tmp->right != NULL &&
pt_list->point->coordinate[dim] <
t_tmp->key)

t_tmp = t_tmp->left;
else

t_tmp = t_tmp->right;
} /* attached point to each node

on its search path */
pt_list = pt_list->next; /* go to next
point */

}
/* now create lower-dimensional trees for

all nodes */
create_stack();
push( o_tree );
while( !stack_empty() )
{ t_tmp = pop();

if( t_tmp->l_dim_tree != NULL )
t_tmp->l_dim_tree =
build_or_r_tree((p_list_node_t *)
t_tmp->l_dim_tree, dim-1);

if( t_tmp->right != NULL )
{ push( t_tmp->left );

push( t_tmp->right );
}

}
remove_stack();
/* finished */
return( o_tree );

}
}

}
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The keys of the query interval [a1, b1[× · · · × [ad, bd [ are given as two
pointers to arrays a[] and b[] of keys. For dimension greater than one,
the query function is based on the canonical interval decomposition that we
already used several times. One difference is that the query interval is not
necessarily spanned by key values occurring in the tree, so at the left and
right leaves, we need to test whether the key values really belong to our query
interval. For dimension one, we call a different function, which is the one-
dimensional range-searching function described in Section 2.7 adapted to the
current situation.

p_list_node_t *find_points_1d(tree_node_t *tree,
key_t *a, key_t *b)

{ tree_node_t *tr_node;
p_list_node_t *result_list, *tmp, *tmp2;
result_list = NULL;
create_stack();
push( tree );
while( !stack_empty() )
{ tr_node = pop();

if( tr_node->right == NULL )
{ /* reached leaf, now test */

if( a[0] <= tr_node->key &&
tr_node->key < b[0] )

{ /* must attach all points below this
leaf */

tmp = (p_list_node_t *)
tr_node->left;
while( tmp != NULL )
{ tmp2 = get_p_list_node();

tmp2->point = tmp->point;
tmp2->next = result_list;
result_list = tmp2;
tmp = tmp->next;

}
}

}
else if ( b[0] <= tr_node->key )

push( tr_node->left );
else if ( tr_node->key <= a[0])

push( tr_node->right );
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else
{ push( tr_node->left );

push( tr_node->right );
}

}
remove_stack();
return( result_list );

}

p_list_node_t *join_list(p_list_node_t *a,
p_list_node_t *b)

{ if( b == NULL )
return(a);

else
{ p_list_node_t *tmp;

tmp = b;
while( tmp->next != NULL )

tmp = tmp->next;
tmp->next = a;
return(b);

}
}

p_list_node_t *find_points(tree_node_t *tree,
key_t *a, key_t *b, int dim)

{ tree_node_t *current_node, *right_path,
*left_path;

p_list_node_t *current_list, *new_list;
current_list = NULL;
if( tree->left == NULL )

exit(-1); /* tree incorrect */
else if( dim == 0 )

return( find_points_1d( tree, a, b ) );
else
{ current_node = tree;

right_path = left_path = NULL;
while( current_node->right != NULL )
/* not at leaf */
{ if( b[dim] < current_node->key )
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/* go left: a < b < key */
{ current_node = current_node->left;
}
else if( current_node->key < a[dim])
/* go right: key < b < a */
{ current_node =

current_node->right;
}
else if( a[dim] < current_node->key &&

current_node->key < b[dim] )
/* split: a < key < b */

{ right_path = current_node->right;
/* both right */
left_path = current_node->left;
/* and left */
break;

}
else if( a[dim] == current_node->key )
/* a = key < b */
{ right_path = current_node->right;

/* no left */
break;

}
else

/* current_node->key == b, so a < key = b */
{ left_path = current_node->left;

/* no right */
break;

}
}
if( left_path != NULL )
{ /* now follow the path of the left

endpoint a */
while( left_path->right != NULL )
{ if( a[dim] < left_path->key )

{ /* right node must be selected */
new_list = find_points(

left_path->right->l_dim_tree,
a, b, dim-1);
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current_list = join_list(
new_list, current_list);

left_path = left_path->left;
}
else if ( a[dim] == left_path->key )
{ new_list = find_points(

left_path->right->l_dim_tree,
a, b, dim-1);

current_list = join_list(
new_list, current_list);

break; /* no further descent
necessary */

}
else /* go right, no node

selected */
left_path = left_path->right;

}
/* left leaf needs to be selected if

reached in descent*/
if( left_path->right == NULL &&

left_path->key == a[dim] )
{ new_list = find_points(

left_path->l_dim_tree,
a, b, dim-1);

current_list = join_list( new_list,
current_list);

}
} /* end left path */
if( right_path != NULL )
{ /* and now follow the path of the right

endpoint b */
while( right_path->right != NULL )
{ if( right_path->key < b[dim] )

{ /* left node must be selected */
new_list = find_points(

right_path->left->l_dim_tree,
a, b, dim-1);

current_list = join_list(
new_list, current_list);
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right_path = right_path->right;
}
else if ( right_path->key == b[dim])
{ new_list = find_points(

right_path->left->l_dim_tree,
a, b, dim-1);

current_list = join_list(
new_list, current_list);

break; /* no further descent
necessary */

}
else /* go left, no node selected */

right_path = right_path->left;
}
if( right_path->right == NULL &&

right_path->key < b[dim])
{ new_list = find_points(

right_path->l_dim_tree,
a, b, dim-1);

current_list = join_list( new_list,
current_list);

}
} /* end right path */

}
return( current_list );

}

Notice that we must insert the results from the subproblems in front of the
current result list. To concatenate the two lists, we have to follow one list to its
end, so if we always follow the list of new results to the end, we touch each
result on each level of the recursion only once and spend only O(k) time on the
k results. An alternative way would be to give back from the lower-dimensional
subproblems pointers to front and rear of the list.

The two-dimensional range searching with fractional cascading is more
difficult. We have a search tree for the first coordinate, where we have to select
the nodes corresponding to the canonical interval decomposition of the query
interval in the first coordinate. Attached to each node of the first tree is a
structure for the search in the second coordinate, but these structures are linked
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together as needed for the fractional cascading, so that we need to search only
in the set associated with the first node and then can reuse that information in
all later searches.

It is sufficient to attach to each node of the first tree just a linked list of
all points in the set of that node, ordered with increasing second coordinate,
and each list item containing two pointers to the next list item in the two lists
associated with the lower neighbors of the node. We also need a second tree,
a search tree for the second coordinates of all points, to get the fractional
cascading started by locating the query interval endpoints in the list of all
points.

We have up to now only described the query algorithms for this data structure.
To build the structure, we list all coordinate values in the last coordinate and
build a search tree for these key values. Each node should contain a lower-
dimensional search structure for all those points whose last coordinate lies in
the interval associated with that node. Thus, each point occurs in all the sets
of nodes along the search path of its last coordinate, and we can assign the
n points to the nodes in O(n log n) time. Then we visit each node and build
there the lower-dimensional search structure in the same way until we arrive
at dimension one, in the simple structure, or dimension two, in the fractional
cascading structure.

In the simple one-dimensional structure, we just build a normal balanced
search tree whose leaves are connected in a linked list in time O(n log n).

In the two-dimensional fractional cascading structure, we first build the
search tree for the second coordinates, whose leaves are arranged in a linked
list, and the search tree for the first coordinates. The list of leaves of the second-
coordinate tree is linked to the root of the first-coordinate tree. Then we go down
the first-coordinate tree, and for each node, the list associated with that node is
entirely copied and the items distributed over the list of the lower neighbors of
the tree node, with pointers added from the list nodes to the copies or their next
successors in the lists of the lower neighbors. Because the depth of the tree is
O(log n) and we meet each of the n points on each level only in one list, the
total time to build this structure is O(n log n).

Together with the recursion, the total time to build this structure is
O(n(log n)d ) for the simple version and O(n(log n)d−1) for the fractional cas-
cading version.

The structure, as described, is a static structure. One can make it dynamic,
with amortized bounds, using the technique of partial rebuilding (Edelsbrunner
1981; Lueker and Willard 1982; Overmars 1983). If we do not ask for a list
of points in our range, but only for their number (range counting), one can
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make the structure fully dynamic, with worst-case update bounds (Willard and
Lueker 1985). If we are interested only in range-counting queries, we need to
store in the nodes of the range tree only the numbers of points in the associated
intervals, which are easier to update, because they can be added and subtracted.
The maximum number of distinct range queries possible for a set of n points
in d-dimensional space was studied by Saxe (1979). It is between 1

2dd2d n
2d and

1
2(2d)!n

2d + O(n2d−1).

4.7 Higher-Dimensional Segment Trees

In the previous section we studied the orthogonal range-searching problem:
given a set of n points and a query range (a d-dimensional interval), list
all points that lie in that range. The inverse problem is also quite natural:
given a set of n ranges (d-dimensional intervals) and a query point, list all
ranges that contain that point. This problem can be solved by d-dimensional
segment trees, which are a straightforward generalization of the segment tree
structure.

Like the orthogonal range tree, the d-dimensional segment tree is defined
recursively; we have a balanced search tree whose keys are the first coordinates
of the d-dimensional intervals, and each node of that tree contains a d − 1-
dimensional segment tree. In this (d − 1)-dimensional segment tree associated
with the node *n, all those d-dimensional intervals [ai1, bi1[× · · · × [aid, bid [
are stored for which *n is part of the canonical interval decomposition of
[ai1, bi1[. Because there are at most 2n keys in the first coordinate, the canoni-
cal interval decomposition has size O(log n), so each d-dimensional interval is
stored in O(log n) (d − 1)-dimensional segment trees. Thus the space require-
ment, and the time to construct the d-dimensional segment tree of n intervals,
is O(n(log n)d ).

Now for the query, we follow the search path of the first coordinate of
the query point, and in each node we perform a (d − 1)-dimensional query
with the remaining coordinates in the structure associated with the node.
By the properties of the canonical interval decomposition, we will meet any
d-dimensional interval that contains this point in exactly one of the associated
structures. Because the search path contains O(log n) nodes, we perform that
number of (d − 1)-dimensional queries, each of which takes an output-sensitive
time O((log n)d−1 + kj ) if it lists kj intervals. By induction it follows that the
query time of the d-dimensional segment tree of n intervals is output-sensitive



4.7 Higher-Dimensional Segment Trees 197

O((log n)d + k). This is again a static structure that can be made dynamic in
the amortized sense by the technique of partial rebuilding.

Theorem. The d-dimensional segment tree structure is a static data structure
that can be built in time O(n(log n)d ) and needs space O(n(log n)d ). It lists all
d-dimensional intervals containing a given query key in output-sensitive time
O((log n)d + k) if there are k such intervals.

Again this allows an improvement for the two-dimensional case, which re-
duces the query time from O((log n)2 + k) to O(log n + k). This can then
be used in the recursive construction for the d-dimensional structure to get
O((log n)d−1 + k) output-sensitive query time for d ≥ 2. This structure, the S-
tree, was developed by Vaishnavi (1982) and uses again a fractional cascading-
like technique.

To describe this method for the two-dimensional problem, we start with the
two-dimensional segment tree as described before. In a query, we follow the
segment tree for the first coordinate, with the first coordinate qx of the query
point, and in each of the O(log n) nodes along this search path we make a query
in the segment tree for the second coordinate qy and list all the rectangles we
found along that path. So this second-coordinate query goes again in a search
tree down from the root to a leaf and gathers the rectangles listed in the nodes.
If we knew which leaf we would end up in, we could also take the same path
backward, going up from the leaf. And this is indeed easier because we always
end in the same leaf: that one which contains the second-coordinate qy of the
query point.

So the first idea is to orient each second-coordinate tree backward, from
leaves to root, and join the leaves of different trees together according to the
first-coordinate tree; then we visit O(log n) second-coordinate trees, but in each
we just follow a path upward and list all rectangles found on the way. With the
upward pointers along these O(log n) paths, we can skip the empty nodes, so the
time we spend on the ith path is O(1 + ki) if we list ki rectangles on that path,
which gives an O(log n + k) output-sensitive query time, k =∑i ki , if we can
visit the O(log n) leaves of the second-coordinate trees in O(log n) time, instead
of the O((log n)2) time we need if we locate each leaf in its tree individually.

The problem here is that, although in each tree we need the leaf that contains
the second coordinate qy of the query point, the individual trees might look
quite different, because they do not use the same keys, but only those that
are second coordinates of rectangles that are inserted in that specific second-
coordinate tree. Thus it could happen that going down the first-coordinate tree,
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some of the second-coordinate trees have only one leaf, and then there are
again big ones. If we want to go in O(1) time from one leaf containing qy to
the corresponding leaf of the next tree, the interval associated with the previous
leaf should intersect only O(1) intervals of leaves in the next tree.

Because the leaf intervals are the intervals between the consecutive key
values in the tree, we can achieve this if the set of key values that occur in the
next second-coordinate tree is a subset of the key values used in the current
tree. Then each leaf interval in the current tree is contained in a unique leaf
interval in the next tree, and we can just create a pointer from the leaf in the
current to the leaf in the next tree, for each of the two possible next trees we
get from the first-coordinate tree.

To achieve this subset property for the key values, we need to enter the second
coordinates of each rectangle not only in the second-coordinate trees, where it
occurs by the canonical interval decomposition of its first coordinate, but also
in the trees above it in the first-coordinate tree. But there are only another two
nodes on each level where the rectangle is entered, so each rectangle occurs
still in only O(log n) second-coordinate trees, where it contributes O(log n)
occurences each, so the total size of the structure is still only O(log n). And the
query time, as described earlier, is O(log n + k).

The construction we now ultimately arrived at is the following: given the
rectangles [ai, bi[×[ci, di[, for i = 1, . . . , n,

1. Create a balanced search tree T1 for {a1, b1, a2, b2, . . . , an, bn}.
2. Attach to each node v of this tree an initially empty secondary search tree

T2(v).
3. For each i = 1, . . . , n,

3.1 Start at the root of T1 and put it on a stack. Then, as long as the stack is
not empty, repeat.

3.2 Take the current node v from the stack.
Insert {ci, di} as keys into the tree T2(v).
If the interval of the current node v is not contained in [ai, bi[, check
for v->left and v->right whether their intervals have nonempty
intersection with [ai, bi[; if yes, put them on the stack.

4. For each i = 1, . . . , n,
4.1 Insert rectangle [ai, bi[×[ci, di[ into the segment tree T2(v) for all

those nodes v that belong to the canonical interval decomposition of
[ai, bi[ in T1.

5. For each node v of T1,
5.1 Create pointers from each leaf of T2(v) to the corresponding leaves of

T2(v->left) and T2(v->right).
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6. For each node v of T1,
6.1 For each node w of T2(v) create a pointer to the next node above w in

T2(v) that has some rectangle associated with it.

This is already a quite complicated structure. The key insight for the analysis
is that each pair {ci, di} is inserted in step 3 only O(log n) times, so the
associated segment trees T2(v) together have only O(n log n) nodes. Each
rectangle will again be inserted in at most O((log n)2) node lists, so the total
size and preprocessing time is O(n(log n)2): the construction time is dominated
by step 4; all others need only O(n log n). To summarize the performance of
this structure see the following:

Theorem. The S-tree is a static data structure that keeps track of a set of n

rectangles, using O(n(log n)2) space and preprocessing time, and lists for a
given query point all rectangles that contain this point in time O(log n + k) if
there are k such intervals.

4.8 Other Systems of Building Blocks

In many of the preceding algorithms we used the canonical interval decomposi-
tion induced by a search tree on a set of numbers. The underlying abstract idea
is to decompose an interval in a union of a small number of building blocks. If
we want to answer a query for an arbitrary query interval, then we decompose
that query interval into a union of building blocks and execute the query on
those building blocks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 4 5 6 7 9 10 11 12 13 14
Intervals in a Canonical Interval Decomposition of {1, . . . , 14}:

Any Interval Can Be Expressed as Union of Five Blocks

This requires that we can decompose the queries and reconstruct the answer
for the entire interval from the answers for the building blocks into which we
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decomposed the query.10 Also, we need some structure that answers the query
for a fixed block. And finally we need to be able to represent each interval as
union of a small number of blocks.

The prototype of this situation is orthogonal range queries. With the canon-
ical interval decomposition, we need only n distinct building blocks, of total
size O(n log n), and a query for an arbitrary interval is reduced to O(log n)
lower-dimensional queries to building blocks. There is a trade-off in the choice
of building blocks: if we want to reduce our arbitrary interval query to a small
number of block queries, then we need many building blocks, and for each
block we have to build a structure to answer queries. In the extreme case,
we can build a structure for each possible query interval. In the orthogonal
range query example, there are

(
n

2

) = �(n2) possible query intervals for the
first coordinate, and we could build for each of them a structure for the lower-
dimensional query. Then we would need just one lower-dimensional query,
instead of �(log n), but would need much more preprocessing time to con-
struct all these lower-dimensional structures.

This idea was first used by Bentley and Maurer in 1980 for d-dimensional
orthogonal range searching, where they showed that one can reach an output-
sensitive query time of O(f (d, ε) log n + k) with O(n1+ε) preprocessing time.
The same idea can be applied to many other problems, although the details
depend, of course, on what we need to do with the building blocks.

To describe the method in more detail, we notice first that we need not
deal with those arbitrary n coordinate values; we can always assume they
are 1, . . . , n. We achieve this normalization by building a search tree for the
coordinate values, which translate a query coordinate in its rank, that is, i for
the ith smallest. This adds O(log n) to the query time, but as the query time is
at least �(log n), this is insignificant.

The system of blocks used in Bentley and Maurer (1980) is an r-level
structure that can be interpreted as writing the numbers to the base n

1
r . On the

top level, the blocks are the intervals

[
an1− 1

r , bn1− 1
r

]
with 0 ≤ a < b ≤ n

1
r .

On the j th level, the blocks are intervals

[
an1− j

r + cn1− j−1
r , bn1− j

r + cn1− j−1
r

] with 0 ≤ a < b ≤ n
1
r and

0 ≤ c < n
j−1

r , for 2 ≤ j ≤ r .

10 This is different from the decomposable searching problems we discuss in Section 7.1. There,
we decompose the underlying set; here, we decompose the query interval.
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This gives
(
n

1
r

2

) = O(n
2
r ) blocks on the top level, each of size at most n, and

n
j−1

r

(
n

1
r

2

) = O(n
j+1

r ) blocks on the j th level, each of size at most n1− j−1
r . To

answer a query, we need at most one block on the top level and two blocks each
on the lower levels, which gives a total of 2r − 1 queries on blocks. If the time
to build the query-answering structure for a block of size m is preproc(m), we
need in total

O

( r∑
j=1

n
j+1

r preproc
(
n1− j−1

r

))
= O

(
rn1+ 2

r
preproc(n)

n

)

time to build this structure.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 5 6 7 9 10 12 13

2 3 4 6 7 8 10 11 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 6 7

1 2 3 4 5 6 7 8

Top-level
blocks

Second-level
blocks

Intervals in a Two-Level Bentley–Maurer Structure of {1, . . . , 14}:
Any Interval Can Be Expressed as Union of Three Blocks

In the case of d-dimensional orthogonal range queries (Bentley and Maurer
1980), any normal balanced search tree gives us a structure that performs the
one-dimensional queries in output-sensitive time O(log n + k), with prepro-
cessing time preproc1(n) = O(n log n). If we now use this r-level structure
for the possible query intervals in the second coordinate, we obtain a structure
that performs two-dimensional queries in output-sensitive time O(r log n + k)
and requires preprocessing time preproc2(n) = O(rn1+ 2

r log n). We again use
an r-level structure for the possible query intervals in the third coordinate, and
the two-dimensional structure for the queries on each third-coordinate block in
the first two coordinates, we obtain a structure that performs three-dimensional
queries in output-sensitive time O(r2 log n + k) and requires preprocessing
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time preproc3(n) = O(r2n1+ 4
r log n). Iterating this construction, we obtain

a structure that performs d-dimensional orthogonal range searching in time
O(rd log n + k) and requires preprocessing time O(rdn1+ 2d−2

r log n). We
now choose r large enough to obtain O(f (d, ε) log n + k) output-sensitive
query time with O(n1+ε) preprocessing time. Unfortunately, this method is
advantageous only for very large n, because the multiplicative constants in
those O(·) bounds are very large (Falconer and Nickerson 2005).

The same technique can be applied to other interval-based problems; indeed,
the technique of decomposing a query domain into few building blocks and
preprocessing the answers for all blocks is not restricted to intervals as query
domains. But we must be able to find the block decomposition of the query
domain fast and to answer the query from the answers on the blocks.

4.9 Range-Counting and the Semigroup Model

The range-counting problem asks just for the number of points in a range,
instead of a list of these points. So in the complexity bound, we do not need any
output-sensitive term; the output is always just one number. The orthogonal
range tree idea can be directly adapted to that question instead of concatenating
lists; we just add up the numbers contributed from the subproblems in the
canonical interval decomposition. This can be immediately generalized, giving
the points weights and asking for the total weight of the points in a query range
or for the maximum weight. Indeed, if we have a commutative semigroup
(like +, or max) and each point has an associated value, we can determine
the semigroup sum of all points in the query range in exactly the same way,
constructing the canonical interval decomposition of the first-coordinate query
interval, executing lower-dimensional queries, and computing the semigroup
sum of their results. In the one-dimensional version, this just asks for the
number of keys in an interval, or the semigroup sum of their keys, which can
be directly answered from the canonical interval decomposition, if those values
are stored in the tree nodes. A special case is to maintain an array a1, . . . , an,
together with the partial sums of its subarrays ai + · · · + aj , under updates of
the array elements ak , a problem studied in various versions and models in
Fredman (1979, 1982), Yao (1982, 1985c), Hampapuram and Fredman (1998),
Burghardt (2001), and Pǎtraşcu and Demaine (2004).

There are two things that make range-counting problem interesting and
different from range searching. First, it allows to make the structure dynamic,
allowing insertions and deletions, as we can rebalance the trees. This was
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not possible in the range-searching problem because the structures associated
to the tree nodes were large structures, which would have to be rebuilt; but
for the range counting, it is just a single number, which can be recomputed
from its lower neighbors. This was already observed by Lueker (1978) and
Willard.11 This structure performs insert, delete, and range count
all in amortized O((log n)d ) on a set of n points. More remarkable, however,
is that in this model one can show lower bounds on the complexity of any
algorithm solving this range-counting problem. In the range-searching model,
the output-sensitive term hides some effects. This study of lower bounds was
started by Fredman (1979, 1981a, b) and Yao (1982). For a lower bound, one
needs to be specific about the model assumptions, which are rather strong and
in each of these papers somewhat different. And the results show that details do
matter. In the model of Fredman (1981a), any structure that solves the dynamic
range-counting problem, supporting insert, delete, and range count
for any commutative semigroup, will need �(n(log n)d ) for some sequence
of n operations, starting from an empty set; and he gives one structure that
gives O((log n)d ) worst-case complexity. But this complexity model is quite
different from either pointer machines or algebraic decision trees because only
arithmetic operations of a specific type are allowed and only these are counted.
As an example, if we have a static array a1, . . . , an and want to evaluate partial
sums of subarrays ai + ai+1 + · · · + aj , and are interested in the additional
storage and the query time, then there is a trivial algorithm with n cells of
additional storage, and O(1) query time, if we are allowed to use subtractions:
we just store all partial sums starting in a1, then ai + · · · + aj = (a1 + · · · +
aj ) − (a1 + · · · + ai−1). But if we are not allowed subtractions, and our query
algorithm can only add some subset of the additional storage cells together, and
these storage cells contain only nonnegative linear combinations of the ai , then a
bound on the complexity of the query related to the inverse Ackermann function
of n and the number of additional storage cells was given in Yao (1982).12 But
this complexity then counts only the number of arithmetic operations, taking
the sum of cells, not the time to select the cells, in dependence of the query,
of which the sum is taken. Thus, the complexity results in these measures
are not comparable to our other complexity bounds. The most important of
these papers is Fredman (1981b), where a general technique for complexity
bounds for dynamic range-counting problems in a class of arithmetic models is

11 In a technical report mentioned earlier in Footnote 7.
12 A related technical report, N. Alon, and B. Schieber: Optimal Preprocessing for Answering

On-line Product Queries, Tel Aviv University, Israel, 1987, gives a similar result for partial
products of static sequence of semigroup elements, using yet another relative of the inverse
Ackermann function.
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introduced. Many other models have been developed since; a survey of lower
bounds in various models is given in Pǎtraşcu (2007). The space-query time
trade-off in static d-dimensional range-query models was studied in Vaidya
(1989), Chazelle (1990a, b) and in a quite different type of model in Hellerstein,
Koutsoupias, and Papadimitriou (1997), Koutsoupias and Taylor (1998), and
Samoladas and Miranker (1998).

4.10 kd-Trees and Related Structures

The kd-tree is another structure that supports orthogonal range searching. It
is quite popular in practical applications and conceptually easy to understand
and implement; but it is unsatisfactory because its worst-case performance is
much worse than orthogonal range trees. In the two-dimensional version, the
worst-case query time is O(

√
n + k) instead of O((log n)2 + k), and the d-

dimensional analog is even worse, with O(n(1− 1
d

) + k) instead of O((log n)d +
k). The empirical performance in database examples seems better than this
worst-case complexity, so in database literature, this and related structures
have been widely studied and used.

The kd-tree was invented by Bentley (1975)13 as a direct analog of the
normal balanced search tree, which is viewed as a one-dimensional tree: the
name kd-tree was originally meant as k-dimensional tree. The lower bound for
the query time was given by Lee and Wong (1977), and a first comparative
analysis of several range-searching structures, among them the kd-tree, the
orthogonal range tree (see Section 4.6), and the Bentley–Maurer structures
(see Section 4.8), appears in Bentley and Friedman (1979). The bad worst-case
query time places the kd-tree in any comparison far behind these structures,
only under strong assumptions like uniformly distributed data points and small,
“relatively square” query rectangles; its performance becomes comparable to
them. Square query rectangles occur when we really aim at a nearest-neighbor
query, or at least some filter for the neighborhood of the query point. Variants
of the kd-tree structure are analyzed in numerous papers under input and query
distribution assumptions (Silva-Filho 1979; Cunto, Lau, and Flajolet 1989;
Gardy, Flajolet, and Puech 1989; Duch, Estivill-Castro, and Martinez 1998;
Chanzy, Devroye, and Zamora-Cura 2001; Duch and Martinez 2002). Other
aspects of the classical kd-tree structure have been studied in Silva-Filho (1981)
and Hoshi and Yuba (1982). Much work went into making kd-trees a dynamic
structure, allowing insertions and deletions of points starting with kd-trees

13 Winning the second prize in an ACM best student paper competition.
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(Robinson 1981), semidynamic kd-trees (Bentley 1990), divided kd-trees (van
Kreveld and Overmars 1991), O-trees (Ravi Kanth and Singh 1999), and the
structure in Grossi and Italiano 1997. External memory efficiency has also been
a major consideration in these structures; further related structures supporting
various types of range-restricted queries have been developed in the database
community (Guttman 1984; Beckmann et al. 1990; Lomet and Salzberg 1990;
Freeston 1995; Agarwal et al. 2002; Bozanis, Nanopoulas, and Manolopoulos
2003; Arge et al. 2004; Procopiuc et al. 2003); see also the books by Samet
(1990, 2006) and the surveys by Gaede and Günther (1998) and Nievergelt and
Widmayer (1999).

The idea of the kd-tree is that we have a search tree, where in each node we
make a comparison and enter the left or right subtree, but unlike the normal
search trees, we can compare in different nodes against different coordinates.
The simplest choice is to cycle through the coordinates; in the root, we compare
against the first coordinate, in the nodes below, we compare against the second
coordinate, and so on. In each node, we choose as comparison key a value
that divides the set of points below that node in a balanced way. As in the
normal search trees, this defines a node interval for each node, which is now a
d-dimensional half-open box – the set of all possible query points whose search
path would go through that node. The comparison with the node key then divides
the box by a hyperplane in the direction of that coordinate which we used in the
comparison. So we get a hierarchy of possibly unbounded orthogonal boxes. In
the two-dimensional version, these are rectangles alternatingly divided in the
horizontal and vertical directions.

Set of Nine Points with kd-Tree Structure:
All Rectangles Are Half-Open to the Right and the Top

If we have this structure, a range query can be answered just as in the
one-dimensional case: starting in the root, we descend into each node whose
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node interval has a nonempty intersection with the query region and stop
following any branch when that intersection becomes empty. This is a very
natural and generic query algorithm that can be applied for any type of query
ranges, not only for rectangles. This is a great strength of this type of structure,
but it is not very efficient, for the number of leaves we visit without actually
finding a point that should belong to the answer can be as large as �(

√
n). And

this is not only for specific bad point sets, or bad subdivision structures; it is
a problem that always occurs: there is always a query rectangle that intersects
�(

√
n) of the cells without containing any point of the underlying set.

Very Regular kd-Tree Subdivision with Bad Query Rectangle:
Each Point Belongs to Rectangle Above or to the Right of It

We now assume that all point coordinates are distinct, and that the kd-tree
is constructed in such a way that in each node the key divides the number of
points in both subtrees as evenly as possible, with horizontal and vertical cuts
alternating. The tree has then height �log n�.

To show that O(
√

n + k) query time is indeed the worst case that can happen
in this tree, we have to bound the number of nodes we visit in a query. We visit
only such nodes whose node interval (rectangle) has nonempty intersection
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with the query interval (rectangle). Of these, the nodes whose node interval
contains the query interval are few, only at most one per level of the tree,
for the node intervals at each level form a partition of the plane. Because the
tree has height �log n�, there are only O(log n) such nodes. Nodes whose node
interval is contained in the query interval are potentially more, but each of these
contributes at least one point to the answer, so there are at most k such nodes.
The only problem are those nodes whose node interval partially overlaps with
the query interval. These nodes intersect one of the sides of the query interval,
so we can bound the number of these nodes by four times the maximum
number of times an axis-parallel line segment can be cut by node intervals.
Let ai be the number of such nodes at level i. Because the cutting direction
alternates horizontal and vertical, in every second level this number does not
increase at all, and in the other levels, it at most doubles. Thus ai ≤ 2�(1/2)i
,
and a0 + a1 + · · · + alog n ≤ 2 ∗ 2(1/2) log n = O(

√
n).

Note that at this point we really needed the optimal height �log n�; a weaker
balance criterion in the nodes, with height O(log n), would not be enough to
show the O(

√
n) bound on the sum. For this height bound, it was necessary that

we could always divide the point sets in almost equal parts, which is enforced
by assuming that all coordinates are distinct. This strong assumption can be
removed by making each node a ternary comparison, with separate equality
case; we can always choose the comparison key in such a way that both
< and > cases contain at most half the remaining points and the = case is a
one-dimensional problem, which can be solved directly in O(log n) time.

To see that the O(
√

n) bound cannot be improved, we show that there is
always a query rectangle that intersects �(

√
n) leaf intervals without containing

any point. We just follow the previous argument again. Take any horizontal or
vertical line; let bi be the number of nodes at level i of the tree that are intersected
by the line. Then we have b2 = 2 and bi+2 = 2bi for i + 2 < log n. So at the
leaf level, we have blog n = �(

√
n). If we select a thin rectangle around this

line, we have thus a very bad query rectangle, which forces us to visit �(
√

n)
leaves without containing any point.

A Horizontal Line Intersects 2i Cells at Level 2i
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We summarize the performance of the structure for the d-dimensional
analog.

Theorem. kd-trees are a static structure that supports d-dimensional or-
thogonal range queries in a set of d-dimensional points in output-sensitive

time O
(
n1− 1

d + k
)

if the output consists of k points. They can be built in

O (n(log n)) time using O(n) space.
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Heaps

Heaps are, after the search trees, the second most studied type of data structure.
As abstract structure they are also called priority queues, and they keep track
of a set of objects, each object having a key value (the priority), and support the
operations to insert an object, find the object of minimum key (find min),
and delete the object of minimum key (delete min). So unlike the search
trees, there are neither arbitrary find operations nor arbitrary delete operations
possible. Of course, we can replace everywhere the minimum by maximum;
where this distinction is important, one type is called the min-heap and the
other the max-heap. If we need both types of operations, the structure is called
a double-ended heap, which is a bit more complicated.

The heap structure was originally invented by Williams1 (1964) for the very
special application of sorting, although he did already present it as a separate
data structure with possibly further applications. But it was recognized only
much later that heaps have many other, and indeed more important, applica-
tions. Still, the connection to sorting is important because the lower bound of
�(n log n) on comparison-based sorting of n objects implies a lower bound on
the complexity of the heap operations. We can sort by first inserting all objects
in the heap and then performing find min and delete min operations to
recover the objects, sorted in increasing order. So we can sort by performing
n operations each of insert, find min, and delete min; thus, at least
one of these operations must have (in a comparison-based model) a complexity
�(log n). This connection works in both directions; there is an equivalence
between the speed of sorting and heap operations in many models – even those

1Usually Floyd (1964) is also cited, but his contribution is the adaptation of the heap to in-place
sorting, continuing the line of development of his Treesort algorithm (Floyd 1962) previously
improved by Kaupe (1962).

209
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in which the comparison-based lower bound for sorting does not hold (Thorup
2002).

The various methods to realize the heap structure differ mainly by the
additional operations they support. The most important of these are the merging
of several heaps (taking the union of the underlying sets of objects), which is
sometimes also called melding, and the change of the key of an object (usually
decreasing the key), which requires a finger to the object in the structure.

The most important applications of heaps are all kinds of event queues, as
they occur in many diverse applications: sweeps in computational geometry,
discrete event systems (Evans 1986), schedulers, and many classical algorithms
such as Dijkstra’s shortest path algorithm.

5.1 Balanced Search Trees as Heaps

Because we have already studied balanced search trees in detail, it is easy
to see that they also support the heap operations. They have the same under-
lying abstract structure, a set of objects associated with keys; but instead of
find and delete of arbitrary objects, given by their keys, we need find
and delete for the object with the smallest key. To find that object, we just
need to always follow the left pointer in a search tree, and in the same way we
find the largest key by always following the right pointer. Thus, we can use any
balanced search tree to obtain a heap in which each of the operations insert,
find min, and delete min takes O(log n) time. The find min operation
can even be made in O(1) time: we just need to store the current minimum
in a variable, and when we perform the next delete min, we also look up
the new current minimum in the same O(log n) time that the delete min
operation takes anyway. Indeed, it is a double-ended heap; we get find max,
delete max in the same way, as well as all additional operations that are
perhaps supported by the search tree (e.g., split).

min

Search Tree Used as Heap

Thus, it is trivial to reach O(log n) performance for all the heap opera-
tions by reusing balanced search trees, with the query operation find min
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becoming even a constant-time operation. This is the standard of comparison:
any interesting heap structure should perform better than this in some respect
or support some type of operation not supported by balanced search trees.

Theorem. The heap structure can be realized using any balanced search tree
with time O(log n) for insert and delete min and O(1) for find min
operations.

In addition to the normal balanced trees, splay trees and skip lists have been
frequently used this way. Next is the code for this trivial heap implementation
if we already have a balanced search tree available.

typedef struct {key_t key;
object_t *object;

}heap_el_t;
typedef struct {heap_el_t current_min;

tree_node_t *tree;
}heap_t;

heap_t *create_heap(void)
{ heap_t *hp;

hp = (heap_t *) malloc( sizeof(heap_t) );
hp->tree = create_tree();
return( hp );

}

int heap_empty(heap_t *hp)
{ return( hp->tree->left == NULL );
}

heap_el_t find_min(heap_t *hp)
{ return( hp->current_min );
}

void insert_heap( key_t new_key,
object_t *new_obj, heap_t *hp)

{ if( hp->tree->left == NULL ||
new_key < hp->current_min.key )

{ hp->current_min.key = new_key;
hp->current_min.object = new_obj;
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}
insert(hp->tree, new_key, new_obj );

}

object_t *delete_min(heap_t *hp)
{ object_t *del_obj;

tree_node_t *tmp_node;
if( hp->tree->left == NULL )

return( NULL ); /* heap empty */
else
{ del_obj = hp->current_min.object;

delete(hp->tree, hp->current_min.key );
tmp_node = hp->tree;
if( tmp_node->left != NULL )
/* update current_min */
{ while( tmp_node->right != NULL )

tmp_node = tmp_node->left;
hp->current_min.key = tmp_node->key;
hp->current_min.object = (object_t *)
tmp_node->left;

}
return( del_obj );

}
}

void remove_heap(heap_t *hp)
{ remove_tree( hp->tree );

free( hp );
}

As explained in the beginning, we cannot expect both delete min and
insert to be faster thanO(log n). But it is possible to use balanced search trees
to get the delete min operation in O(1) time. For this, we need to arrange
the leaves in a linked list, and the underlying search tree has to support the
split operation in O(log n), with splitting in the root in O(1), as it is the case
for height-balanced or red-black trees. Then we keep a pointer to the current
minimal element in this list and just advance this pointer in the list when we
perform the delete min operation, without actually deleting the tree nodes.
Such a strategy is called lazy deletion. Of course, at some point we must really
delete all the invalid objects and return the nodes. But in principle any balanced
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binary search tree that supports a split operation and whose leaves are arranged
in a linked list can be used to implement a heap with O(1) find min and
delete min operations, and O(log n) insert. This method was essentially
already discovered in Guibas et al. (1977); it is best possible, and this is the
reason why most later heap implementations proposed in literature discuss the
other extremum – O(1) insert and O(log n) delete min.

min

invalid

Search Tree Used as Heap with Lazy Deletion:
Invalid Elements Are Already Deleted from Heap

In more detail, we need a balanced search-tree structure that supports the
splitting operation and whose leaves are arranged in a linked list from smallest to
largest key, or, which is easier to update, a doubly linked list in both directions.
We also need a pointer current min to the current minimum in this list.
Finally, we need an invalid nodes structure that allows us to add an entire
subtree of nodes whose keys and objects have already been deleted, but which
still need to be returned to the free list one by one. Then the heap operations
are implemented as follows:

{ find min: return current min->key and current min->object.
{ insert:

1. Split the search tree at current min->key, and add the lower tree to
the invalid nodes structure.

2. Insert the new key in search tree.
3. If the new key is below current min->key, set current min to

the new key and object.

{ delete min:

1. Delete the object current min->object.
2. Move current min to the next list position.
3. If current min->key is now larger than the key in the root of the

balanced search tree, add the left subtree of the balanced search tree to
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the invalid nodes structure; take the right subtree as new search tree; and
return the node of the old root to the free list.

4. Return several nodes from the invalid nodes structure to the free list.

This still leaves unspecified how to realize the invalid nodes structure. It has
to allow adding a subtree and removing a node both in constant time. The
simplest way to do this is to build a stack whose entries are pointers to roots of
the subtrees. To add a new subtree, one just puts it on the stack; to remove a node,
one takes the top root from the stack, puts both left and right subtrees on the
stack, if it was not a leaf, and returns that root to the free list. These operations
work in constant time; the only disadvantage is that they need additional storage
for the stack, possibly again as much as the total size of the trees on the stack.
So the stack can certainly not be implemented as an array. But if space is not an
essential restriction, this is only a constant-factor overhead, in the worst case
an increase of the space requirement by a factor of less than four.

It is obvious that the find min operation takes only O(1) time. The in-
sert operation takes O(log n) for steps 1 and 2 each, and O(1) for step 3, so
a total of O(log n). And each step of the delete min operation takes only
O(1). We observe that the current min is always in the left subtree of the
search tree, so height of the search tree with all the invalid nodes is never more
than one larger than the height of a search tree without these nodes.

To summarize the performance of this structure, we obtained the following:

Theorem. The heap structure can be realized using a balanced search tree
with lazy deletion in time O(log n) for insert and O(1) for find min and
delete min operations if the heap contains n elements.

An alternative way to reach the same performance is to use a search tree with
a constant time deletion of an element at a known location, as described in
Section 3.6.

5.2 Array-Based Heaps

The classical heap version that was originally invented for heapsort and that
is described in most algorithms textbooks is the array-based heap. By using
the array index instead of explicit pointers, it is a very compact representation
(an implicit data structure). In the heapsort application, it even fits exactly in
the space of the array to be sorted and does not require any additional space.
It supports insert and delete min operations in time O(log n) and O(1)
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find min, and the number of key comparisons in the sorting application
(n inserts followed by n deletes) is near the theoretical minimum, so it is a
rather fast heap version, at the price of having a fixed maximum size and not
supporting additional operations. Thus, the array-based heap is most important
for the sorting application.

This heap works by embedding a complete binary tree structure in the array
elements, establishing a key ordering called the heap order. Given a big array
heap key[MAX SIZE], a correct heap satisfies the following conditions:

1. The entries used by the heap are a beginning interval of the array; if the
heap currently contains n elements, it uses the array positions 0 to n − 1.

2. For all i ≥ 0 have
heap key[i] < heap key[2i + 1] if 2i + 1 < n and
heap key[i] < heap key[2i + 2] if 2i + 2 < n.

An immediate consequence of this is that the minimum key is always in index
position 0, and the first unused entry of the array is the index position n.
Each array element is subject to three heap-order conditions: the element at
position i is smaller than the elements at positions 2i + 1 and 2i + 2, its upper2

neighbors, if they exist, and larger than the element at position
⌊

1
2 (i − 1)

⌋
, its

lower neighbor, if it exists. This defines a binary tree of height log n on the
array elements.

heap[0]

heap[1] heap[2]

heap[3] heap[4] heap[5] heap[6]

heap[7] heap[8] heap[9] heap[10] heap[11] heap[12] heap[13] heap[14]

heap[15] heap[16] heap[17]

Array-Based Heap with Order Relation among Array Elements

The insert now works as follows: put the new element into position n and
increase n; in this way, property 1 is maintained, but the new element might
violate property 2, so we need to compare and possibly exchange it with the
lower neighbor. If we do exchange the new element at position i with its lower
neighbor at position

⌊
1
2 (i − 1)

⌋
, this decreases the key value in that position,

so the order conditions from there upward, in which this should be the smaller

2When visualizing an array, we always put the start of the array to the left, or to the bottom, and
then number left to right, or from the bottom-up. This convention has as a consequence that the
root of the implicit tree of the array heap is at the bottom, the only trees in this book, which
grow in the right direction.
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value, still hold; but again the order condition downward must be checked and
possibly corrected by an exchange. This stops at the latest in position 0, if the
new element is the new minimum, as there is no downward condition. This
takes at most one comparison on each level, so at most log n key comparisons
per insert operation.
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10 20 30 15 11 19 24 33

34 44 5
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34 44 20
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34 44 20
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5 4

7 14 6 8

10 9 30 15 11 19 24 33

34 44 20

Array-Based Heap: Insertion of New Element with Key 5.
The New Element Is Placed in the Last Position and Moves Down

For the delete min, we have to delete the element at position 0 and fill
this gap by moving elements into it. The problem with the trivial strategy,
moving down the smaller of the two upper neighbors, is that this way we move
up the gap and restore the order property 2, but the gap will not end up in
position n − 1, so property 1 will be violated.

The classical method to avoid this problem is to move in the first step that
last element from position n − 1 to position 0 and then have it move up to its
correct place. Because we have to restore the two upward conditions in each
step of moving up, we need two comparisons: we compare the upper neighbors
and then the smaller of the upper neighbors with the current element. If the
smaller upper neighbor has a smaller key than the current element, we exchange
them, moving the current element up. This uses two comparisons per level, one
to decide which of the upper neighbors should possibly move down and another
to decide whether it should move down. This will almost always be the case
because we moved the last element, which will be large, to the place of the
smallest, so we probably have to move it back a long way. Thus, an alternative
is to skip the second comparison and always exchange the current element with
the smaller of its upper neighbors, moving the gap up to the top, fill in the last
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element, and then move that element in a second pass down to its proper place.
In the worst case, this does not gain anything, but in the application of sorting,
it was shown that this indeed decreases the total number of comparisons. This
is known as bottom-up heapsort (Wegener 1993; Fleischer 1994). A similar
method that gives a general improvement of the number of comparisons in the
deletion was proposed in Xunrang and Yuzhang (1990); they move the gap
up to 2

3 of the possible height, insert the last element, and then move it up or
down as necessary. This decreases the worst-case number of key comparisons
in delete min operation from 2 log n to 4

3 log n.
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Array-Based Heap: Deletion of Minimum Element, Classical Method.
The Last Element Is Placed into the Gap and Moves Up

A very small improvement can be gained by avoiding elements with two
lower neighbors on the highest level as long as possible, not filling the highest
level sequentially, but first the odd and then the even positions. This requires a
change of the order property 2 (Carlsson 1984) and saves one key comparison
for half the values of n. Yet another possible modification is to use binary search
in that process of moving down an element (Gonnet and Munro 1986; Carlsson
1987). By careful analysis it is even possible to find the exact minimum number
of key comparisons for insert and delete (Gonnet and Munro 1986; Carlsson
1991), as well as bounds for some other operations, like constructing a heap
from an unordered array (McDiarmid and Reed 1989; Carlsson and Chen
1992) or merging of two heaps (Sack and Strothotte 1985; Khoong and Leong
1994). But the number of key comparisons is not that important as a realistic
measure of speed; this example of making a binary search on the path, but
then having to move all elements in the path to perform the actual insertion
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at the correct place, shows that reducing the number of comparisons from
log n to log log n is not useful if the number of data movements does not also
decrease. In a good implementation we should also avoid unnecessary data
movements.

Yet another variant of the standard array-heap was proposed by Herman and
Masuzawa (2001) and allows partial recovery of the heap structure even from
corrupted states. An extension of array-heaps to other partially ordered sets
was outlined by Noltemeier (1981).

Next is an implementation of this standard array-based heap structure, with
a given maximum size. Each element of the heap consists of a key and a pointer
to an object, and this is what we return with the query:

typedef struct {key_t key; object_t *object;
}heap_el_t;

typedef struct {int max_size;
int current_size;
heap_el_t *heap; } heap_t;

heap_t *create_heap(int size)
{ heap_t *hp;

hp = (heap_t *) malloc( sizeof(heap_t) );
hp->heap = (heap_el_t *)
malloc( size * sizeof(heap_el_t) );
hp->max_size = size;
hp->current_size = 0;
return( hp );

}

int heap_empty(heap_t *hp)
{ return( hp->current_size == 0 );
}

heap_el_t *find_min(heap_t *hp)
{ return( hp->heap );
}

int insert( key_t new_key, object_t *new_object,
heap_t *hp)

{ if ( hp->current_size < hp->max_size )
{ int gap;
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gap = hp->current_size++;
while(gap > 0 &&

new_key < (hp->heap[(gap-1)/2]).key )
{ (hp->heap[gap]).key =

(hp->heap[(gap-1)/2]).key;
(hp->heap[gap]).object =
(hp->heap[(gap-1)/2]).object;
gap = (gap-1)/2;

}
(hp->heap[gap]).key = new_key;
(hp->heap[gap]).object = new_object;
return( 0 ); /* insert successful */

}
else

return( -1 ); /* Heap overflow */
}

object_t *delete_min(heap_t *hp)
{ object_t *del_obj;

int reached_top = 0;
int gap, newgap, last;
if( hp->current_size == 0 )

return( NULL );
/*failed: delete from empty heap */

del_obj = (hp->heap[0]).object;
gap = 0;
while( ! reached_top )
{ if( 2*gap + 2 < hp->current_size )

{ if( (hp->heap[2*gap+1]).key <
(hp->heap[2*gap+2]).key)

newgap = 2*gap + 1;
else

newgap = 2*gap + 2;
(hp->heap[gap]).key =
(hp->heap[newgap]).key;
(hp->heap[gap]).object =
(hp->heap[newgap]).object;
gap = newgap;

}
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else if ( 2*gap + 2 == hp->current_size )
{ newgap = 2*gap + 1;

(hp->heap[gap]).key =
(hp->heap[newgap]).key;
(hp->heap[gap]).object =
(hp->heap[newgap]).object;
hp->current_size -= 1;
return(del_obj);
/* finished, came out exactly

on last element */
}
else

reached_top = 1;
}
/* propagated gap to the top, now move

gap down again to insert last object in
the right place */

last = --hp->current_size;
while(gap > 0 &&

(hp->heap[last]).key <
(hp->heap[(gap-1)/2]).key )

{ (hp->heap[gap]).key =
(hp->heap[(gap-1)/2]).key;
(hp->heap[gap]).object =
(hp->heap[(gap-1)/2]).object;
gap = (gap-1)/2;

}
(hp->heap[gap]).key = (hp->heap[last]).key;
(hp->heap[gap]).object =
(hp->heap[last]).object;
/* filled gap by moving last element in it*/
return( del_obj );

}

void remove_heap(heap_t *hp)
{ free( hp->heap );

free( hp );
}
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This heap version again has all the disadvantages of any structure of fixed
size, so it should only be used if the maximum size of the heap is known
in advance, as it is for sorting or Dijkstra’s algorithm. Neither of the update
operations is O(1), but it is still considered a fast implementation of the heap
structure. To summarize the performance of this structure, we obtained the
following:

Theorem. The heap structure of fixed maximum size can be realized using an
array in time O(1) for find min and O(log n) for insert and delete min
operations.

We described here an array-based heap that is essentially a binary tree
encoded in the array indices. One could construct in just the same way a k-ary
tree (Luk 1999). Then the comparison condition 2 has to be replaced by

2′. For all i ≥ 0 have
heap key[i] < heap key[ki + 1] if ki + 1 < n,
heap key[i] < heap key[ki + 2] if ki + 2 < n, . . . up to
heap key[i] < heap key[ki + k] if ki + k < n.

This decreases the height of the tree and makes, therefore, the insert faster,
but the degree k of each node increases and therefore the delete min gets
slower. In Johnson (1975) it was proposed to keep the height of the heap
constant and instead increase the degree of the vertices if the number of items
n on the heap gets larger. That would give a constant time insert operation,
but for a heap of height h and n elements, one would need a degree of n

1
h and

therefore a delete min operation of time �(n
1
h ).

5.3 Heap-Ordered Trees and Half-Ordered Trees

Instead of an array-based implementation, we can again use a dynamically
allocated structure. The heap is essentially just a tree, but there is an important
difference, which actually makes the structure much simpler than a search tree.
Each node contains a key and two pointers to other nodes, which itself are
roots of some subheaps. But the key does not separate the keys in the subheaps;
instead, it is smaller than either of them. There is no required relation between
the nodes in the subheaps, and when we insert an element, we are free to
choose either of them. This order condition is called a heap-ordered tree, and
it is different from the search-tree order.

A consequence of heap order is that the key we are looking for is always
in the root, and keys are not repeated further down in the tree. Thus, each key
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has to occur together with its object: there are no two possible models like they
existed for search trees, but each node contains a key with its object. Thus, the
structure of a node of a (binary) heap-ordered tree is as follows:

typedef struct hp_n_t {
key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;

/* possibly additional information */
} heap_node_t;

We named the two pointers again left and right, but different from the
search tree, there is no order relation between them. Again we define a heap-
ordered tree recursively: the heap-ordered tree is either empty or contains in
the root node a key, an object, and two pointers, each of which might be either
NULL or point to another heap-ordered tree in which all keys are larger than
the key in the root node.

Any structure with these properties is a heap-ordered tree for its objects and
key values.
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Heap-Ordered Tree

We have to establish some convention to mark the empty heap; this is
different from the situation in the search trees, where we could use NULL fields
in left and right pointers; but in a heap-ordered tree, both pointers might
legitimately be NULL pointers. We could use the object field, but there might
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be legitimate uses with some NULL objects. Thus, we will decide on the empty
heap convention only later in the specific structures, but it should always be
something that can be tested just from the root node in time O(1).

With these conventions we can now write down the functions cre-
ate heap, heap empty and find min – all of which are very simple
constant-time operations. The find min function is split in two operations
find min key and find min object, which is more convenient than re-
turning a structure.

heap_node_t *create_heap(void)
{ heap_node_t *tmp_node;

tmp_node = get_node();
tmp_node->object = NULL;
/* or other mark for empty heap */
return( tmp_node );

}

int heap_empty(heap_node_t *hp)
{ return( hp->object == NULL );

/* or other test for empty heap*/
}

key_t find_min_key(heap_node_t *hp)
{ return( hp->key );
}

object_t *find_min_object(heap_node_t *hp)
{ return( hp->object );
}

For the insert and delete min we need, however, more structure. In
the array-based heap, we had the advantage that all paths from the root to a leaf
were almost of the same length and we knew which of the paths would have
to be lengthened or shortened by one when we insert or delete an element. For
the heap-ordered tree, any operation has to start at the root because we do not
have any direct access to a leaf.

The obvious method for insert would be to start at the root, select any
path to a leaf by making arbitrary left-right choices, insert the new key and
object in a new node at the right place on this path, and attach everything that
was previously at this place as a subtree below this new node.
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Heap-Ordered Tree: Simple Generic Insertion Method.
The Entire Subtree at the Inserted Node Is Moved Down

This way, we do not even need to go down until we reach a leaf, but
we increase the depth of everything below the newly inserted node by 1.
Alternatively, we could insert the new key in the existing node and then push
every following key one step downward to the leaf on this path, creating a new
leaf in the end. Here the depth of the nodes stays the same; only the final leaf is
a new node with possibly high depth. We do not violate the heap-order property
by this pushing down along any path, because in each node we exchange the
current key for a smaller key. The complexity of this operation is the length of
the path taken, so we just need to be able to find one short path. Any tree with
n nodes must contain some path of length �log(n + 1)
; we just have to find it.
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Heap-Ordered Tree: Alternative Generic Insertion Method.
The Elements along the Arbitrary Chosen Path Are Pushed Down

For the delete min operation, the situation is more difficult; the obvious
method would be to remove the key and object from the root, compare the keys
of its left and right lower neighbors, and move the smaller one down, deleting
it recursively from its subtree. Thus we have no choice; we have to take the
path from the root to a leaf that we get when we always take the smaller key,
and along this path we move everything one step up to the root, deleting the
last, now empty, node. Because we have no control over the path we take, this
works only in O(log n) time if all paths from the root to any leaf have length
O(log n).
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Heap-Ordered Tree: Generic Deletion Method.
The Root Is Deleted, and the Hole Moves Down to a Leaf

We thus need some sort of balancing information. We could attempt to
reuse any of the balancing methods of the search trees, for example, creating
a height-balanced heap-ordered tree. Because the height of the tree would be
bounded by O(log n), we would support all the update operations in O(log n)
time. The problem here is that the rotations cannot be applied to heap order.
If we want to rotate a subtree, the key in the root of the subtree must stay the
same by the heap-order condition, so the key in the other node of the rotation
also stays the same. But this other node receives a new lower neighbor and that
lower neighbor might violate the heap-order condition. Thus, we cannot just
reuse the balancing methods we developed for search trees.

An alternative with a weaker order condition is the half-ordered trees. These
are the same trees as before, but we demand only that for each node, ev-
ery key in its right subtree should be larger. For the left subtree, there is no
condition.

x                                                       x

>x >x >x
no

restriction

Order Conditions below a Node: Heap Order and Half Order



226 5 Heaps

This way the minimum key need not be in the root, but it could be in any
node along the leftmost path. This weaker structure is easier to maintain. It is
possible to adapt the standard rotations to these structures, so we can reuse any
form of balancing we used for search trees also for half-ordered trees. Because
the tree then has depth O(log n), we can perform find min by following the
leftmost path, as well as insert and delete min, in O(log n) time, for any
method of balancing (Høyer 1995).
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Leftmost Path in Half-Ordered Tree:
Maximum Must Be on Leftmost Path by Implied Order Conditions

But the most important reason why this structure is used is that it is one
representation for heap-ordered trees with nodes of arbitrary large degree. Many
heaps, starting with the binomial heap, are presented in literature in that way,
but to implement them, one has to represent them with binary (or fixed-size)
nodes. The classical method to achieve this is to keep the lower neighbors of a
node as a linked list, linked by their left pointer. The right pointer points
to the first node on the list. By this representation, there is no order condition
along left edges, because they are all just lower neighbors of the same node,
but they are all in the right subtree of that node. A minor difference is that
in any heap-ordered tree, the root will contain the smallest element, which is
not the case in half-ordered trees. Indeed, the classical description of binomial
and related heaps is that they are a list of heap-ordered trees with nodes of
arbitrary large degree, so the common root is missing. And the half-ordered
trees are isomorphic to these lists of heap-ordered trees with nodes of arbitrary
degrees.
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5.4 Leftist Heaps

One of the simplest and earliest methods is the leftist heaps. Leftist heaps
were probably invented by C.A. Crane3 and revised and named by D.E. Knuth
(1973). They support insert and delete min both in O(log n) time, which
is not remarkable, but they support an additional operation, the merging of two
heaps, also in O(log n). This we cannot do with either the search-tree-based
heaps or the array heaps.

Leftist heaps are heap-ordered trees that use the distance to the nearest leaf,
called rank, as balancing information. This is different from the height, which
is the distance to the farthest leaf. Each node contains an additional field, the
rank, which is defined by

{ n->rank = 1 if n->left = NULL or n->right = NULL.
{ n->rank = 1 + min (n->left->rank, n->right->rank) if

n->left �= NULL and n->right �= NULL.
If we have this additional rank field, we can also use it to identify the root
of an empty heap by rank = 0.

The leftist heap is characterized by the property that in each node the shortest
path on the left side is at least as long as that on the right side:

{ n->left->rank ≥ n->right->rank if both are defined; and
{ if they are not both defined, then if one of them exists, it is the left one:

n->left = NULL only if n->right = NULL.

Thus a leftist heap may be very unbalanced on the left side when always going
to the left, but going always to the right, a heap with n elements contains a path
of length at most �log(n + 1)
.

3

2 2

3 1 1 1

2 2 1

1 1 2 1 1

1 1 1 1 1

Tree Underlying a Leftist Heap with Nodes Labeled by Rank

3In the technical report, C.A. Crane: Linear Lists and Priority Queues as Balanced Binary Trees,
CS-72-259, Stanford University, USA, 1972.
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This structure is easy to restore after we have changed some node because we
just have to follow the path back to the root, recompute the rank of each node,
and exchange left and right fields wherever necessary. For an insertion,
we follow the rightmost path down to the correct place for the new node and
insert the node there, moving the rest of the rightmost path to the left below
the new node. The new node has then rank 1. We then follow the path upward
again, recomputing the ranks and restoring the leftist property along the path.
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Insertion in a Leftist Heap: Four Examples

The first phase is essentially the generic strategy for heap-ordered tree
insertion, but for the second phase we need a method to return to the root of
the tree, as we discussed in Section 2.5. Because we know that the length of
the rightmost path is at most �log(n + 1)
, we can safely use a stack to keep
that return path and realize the stack as an array of size 100. We can now write
down the code for the insert and other basic operations.

typedef struct hp_n_t {
int rank;
key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;

} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tmp_node;

tmp_node = get_node();
tmp_node->rank = 0;
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return( tmp_node );
}

int heap_empty(heap_node_t *hp)
{ return( hp->rank == 0 );
}

key_t find_min_key(heap_node_t *hp)
{ return( hp->key );
}

object_t *find_min_object(heap_node_t *hp)
{ return( hp->object );
}

void remove_heap(heap_node_t *hp)
{ heap_node_t *current_node, *tmp;

if( hp->rank == 0)
return_node( hp );

else
{ current_node = hp;

while(current_node != NULL )
{ if( current_node->left == NULL )

{ tmp = current_node->right;
return_node( current_node );
current_node = tmp;

}
else
{ tmp = current_node;

current_node = current_node->left;
tmp->left = current_node->right;
current_node->right = tmp;

}
}

}
}

int insert( key_t new_key, object_t *new_obj,
heap_node_t *hp)
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{
if(hp->rank ==0) /* insert in empty heap */
{ hp->object = new_obj;

hp->key = new_key;
hp->left = hp->right = NULL;
hp->rank = 1;

}
else if( new_key < hp->key )
/* new minimum, replace root */
{ heap_node_t *tmp;

tmp = get_node();
tmp->left = hp->left;
tmp->right = hp->right;
tmp->key = hp->key;
tmp->rank = hp->rank;
tmp->object = hp->object;
hp->left = tmp;
hp->right = NULL;
hp->key = new_key;
hp->object = new_obj;
hp->rank = 1;

}
else /* normal insert */
{ heap_node_t *tmp, *tmp2, *new_node;

tmp = hp;
create_stack();
/* go down right path to the

insertion point */
while( tmp->right != NULL &&
tmp->right->key < new_key)
{ push( tmp ) ;

tmp = tmp->right;
}
/* now create new node */
new_node = get_node();
new_node->key = new_key;
new_node->object = new_obj;
/* insert new node in path,

everything below goes left */
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new_node->left = tmp->right;
new_node->right = NULL;
new_node->rank = 1;
if( tmp->left == NULL )

/* possible only at the end */
tmp->left = new_node;
/* here tmp->right == NULL */

else /* insert right, restore
leftist property */

{ tmp->right = new_node;
tmp->rank = 2;
/* has rank at least one also left */
/* completed insert, now move up,

recompute rank and exchange left and
right where necessary */

while( !stack_empty() )
{ tmp = pop();

{ if(tmp->left->rank <
tmp->right->rank )

{ tmp2 = tmp->left;
tmp->left = tmp->right;
tmp->right = tmp2;

}
tmp->rank = tmp->right->rank +1;

}
}

} /* end walking back to the root */
remove_stack();

}
return(0); /* insert always successful */

}

The key idea of leftist heaps is the merging; it is then easy to reduce the
delete min to merging: just delete the root and merge the left and right
subtrees. For the merge, one just merges the right paths of both trees and then
does the same cleanup as in the insert: recomputing the rank and restoring
the leftist heap property by exchanging left and right pointers wherever
necessary.
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Merging Two Leftist Heaps: Merge the Right Paths and
Recompute Ranks and Restore Leftist Property along Merged Path

Again, both right paths have length at most �log(n + 1)
, so we can safely
use an array of size 200 as stack. Next is the code for merge and delete min.

heap_node_t *merge( heap_node_t *hp1,
heap_node_t *hp2)

{ heap_node_t *root, *tmp1, *tmp2, *tmp3;
if( hp1->rank == 0 ) /* heap 1 empty */
{ return_node( hp1 );

return( hp2 );
}
if( hp2->rank == 0 ) /* heap 2 empty */
{ return_node( hp2 );

return( hp1 );
} /* select new root, setup merging */
if( hp1->key < hp2->key )
{ tmp1 = root = hp1;

tmp2 = hp1->right;
tmp3 = hp2;

}
else
{ tmp1 = root = hp2;

tmp2 = hp2->right;
tmp3 = hp1;
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}
create_stack();
while( tmp2 != NULL && tmp3 != NULL )
{ if( tmp2->key < tmp3->key )

{ tmp1->right = tmp2;
push( tmp1 );
tmp1 = tmp2;
tmp2 = tmp2->right;

}
else
{ tmp1->right = tmp3;

push( tmp1 );
tmp1 = tmp3;
tmp3 = tmp3->right;

}
}
if( tmp2 == NULL)

tmp1->right = tmp3;
else

tmp1->right = tmp2;
/* merging of right paths complete,

now recompute rank and restore leftist
property */

push( tmp1 );
while( !stack_empty() )
{ tmp1 = pop();

if( tmp1->left == NULL ||
( tmp1->left != NULL &&

tmp1->right != NULL &&
tmp1->left->rank <
tmp1->right->rank ) )

{ tmp2 = tmp1->left;
tmp1->left = tmp1->right;
tmp1->right = tmp2;

}
if( tmp1->right == NULL )

tmp1->rank = 1;
else

tmp1->rank = tmp1->right->rank +1;
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}
remove_stack();
return( root );

}

object_t *delete_min(heap_node_t *hp)
{ object_t *del_obj;

heap_node_t *heap1, *heap2, *tmp;
del_obj = hp->object;
heap1 = hp->left;
heap2 = hp->right;
if( heap1 == NULL && heap2 == NULL )

hp->rank = 0;
else
{ if ( heap2 == NULL )

tmp = heap1;
else

tmp = merge( heap1, heap2);
/* now they are merged, need to copy

root to correct place */
hp->key = tmp->key;
hp->object = tmp->object;
hp->rank = tmp->rank;
hp->left = tmp->left;
hp->right = tmp->right;
return_node( tmp );

}
return( del_obj );

}

To summarize the performance of this structure, we have the following:

Theorem. The leftist heap structure supports the operations find min in
O(1) time and insert, merge, and delete min in O(log n) time.

Leftist heaps use a balance criterion similar to the height; as with balanced
search trees, one could instead use a weight balance. Weight-based leftist heaps,
in which the number of nodes in the left subtree is always at least as large as in
the right subtree, were studied in Cho and Sahni (1998). A related, but slower
heap structure was developed by Jonassen and Dahl (1975).
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5.5 Skew Heaps

The skew heaps were introduced by Sleator and Tarjan (1986) as an analog of the
leftist heaps, but without balancing information. The interesting property here
is that, as in the splay trees, one can do without this information if one accepts
amortized bounds instead of worst-case bounds. And by omitting the balancing
information, in principle the structure becomes simpler; we just always perform
the same sequence of operations. The memory advantage of doing without
balancing information is insignificant; memory is never a problem, and in the
bottom-up variant of skew heaps, we actually need several additional pointers
per node.

Without balancing information, one cannot decide whether the rank on the
left or on the right is larger, so whether to exchange left and right subtree to
restore the leftist heap property. In skew heaps, the strategy is just to exchange
always. This leads to simpler code. We do not need a stack because there is
no information propagated back to the root. Next is the code for insert and
merge; the other operations are the same as before, and only the references
to the rank field must be removed. For this reason, we must use the object
field as mark for an empty heap.

typedef struct hp_n_t {
key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;

} heap_node_t;

int insert( key_t new_key, object_t *new_obj,
heap_node_t *hp)

{
if(hp->object == NULL)

/* insert in empty heap */
{ hp->object = new_obj;

hp->key = new_key;
hp->left = hp->right = NULL;

}
else if( new_key < hp->key )

/* new minimum, replace root */
{ heap_node_t *tmp;

tmp = get_node();
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tmp->left = hp->left;
tmp->right = hp->right;
tmp->key = hp->key;
tmp->object = hp->object;
hp->left = tmp;
hp->right = NULL;
hp->key = new_key;
hp->object = new_obj;

}
else /* normal insert */
{ heap_node_t *current, *tmp, *new_node;

current = hp;
/* go down right path to the insertion

point */
while( current->right != NULL &&

current->right->key < new_key)
{ tmp = current->right; /* exchange */

current->right = current->left;
current->left = tmp;
current = tmp; /* and go down */

}
/* now create new node */
new_node = get_node();
new_node->key = new_key;
new_node->object = new_obj;
/* insert new node in path, everything

below goes left */
new_node->left = current->right;
new_node->right = NULL;
current->right = new_node;

}
return(0);

}

heap_node_t *merge( heap_node_t *hp1,
heap_node_t *hp2)

{ heap_node_t *root, *tmp1, *tmp2, *tmp3;
if( hp1->object == NULL ) /* heap 1 empty */
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{ return_node( hp1 );
return( hp2 );

}
if( hp2->object == NULL ) /* heap 2 empty */
{ return_node( hp2 );

return( hp1 );
} /* select new root, setup merging */
if( hp1->key < hp2->key )
{ tmp1 = root = hp1;

tmp3 = hp2;
}
else
{ tmp1 = root = hp2;

tmp3 = hp1;
}
tmp2 = tmp1->right;
/* tmp1 is end of already merged right path

tmp2 and tmp3 are next nodes in remaining
right paths */

while( tmp2 != NULL && tmp3 != NULL )
{ tmp1->right = tmp1->left;

/* exchange on the merged path*/
if( tmp2->key < tmp3->key )
{ /* attach tmp2 next, move down */

tmp1->left = tmp2;
tmp1 = tmp2;
tmp2 = tmp2->right;

}
else
{ /* attach tmp3 next, move down */

tmp1->left = tmp3;
tmp1 = tmp3;
tmp3 = tmp3->right;

}
} /* now one of the paths empty,

attach the other */
if( tmp2 == NULL)

tmp1->right = tmp3;
else
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tmp1->right = tmp2;
return( root );

}

Both insert and merge exchange left and right in each node along
the path they visit; their complexity is O(1 + k) if they exchanged left and
right in k nodes.

The interesting part is now the analysis; as usual in an amortized analysis,
we need a potential function on the trees, indeed on sets of trees, because we
include the merge operation. The potential used by Sleator and Tarjan is the
number of nodes that are “right-heavy”: the right subtree contains more nodes
than the left subtree. The key insight is now that on a right path there are at
most log n “left-heavy” nodes because going right in a left-heavy node reduces
the number of nodes in the subtree below the current node to less than half
their previous number. So there are not too many left-heavy nodes on the right
paths of the trees, but each time we touch them in any operation, left-heavy
and right-heavy exchange, so there should be not too many right-heavy nodes
either.

To make this idea precise, we keep track of the potential. For the analysis,
we decompose both insert and merge in two phases: first the change of the
right path, performing the insertion of the new element or the merging of the
right paths, and then the exchange operation in all nodes of the right path that
we visited.

In the first phase of either insert or merge, all nodes on the right path
that were right-heavy stay right-heavy, because some nodes might be added in
their right subtree whereas nothing changes in their left subtree. It is possible
that left-heavy nodes on the right path become right-heavy, but there are only
O(log n) such nodes, so this increases the potential by at most O(log n). The
nodes that are not on the right path do not change their status.

In the second phase of either insert or merge, we exchange left
and right in each node we visited. So these nodes exchange left-heavy and
right-heavy status. Each left-heavy node that becomes right-heavy increases
the potential by 1, but there are only log n left-heavy nodes among the nodes
we visited. Each right-heavy node becoming left-heavy decreases the potential
by 1. Thus, the second phase of either insert or merge also increases the
potential by at most O(log n).

The delete min finally just removes the root, generating two trees, which
does not increase the potential, and then merges these two trees, so it increases
the potential by at most as much as a merge operation.
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If we have a sequence of m insert, merge, or delete min operations,
each of them exchanging left and right in ki nodes, of which kLi are left-
heavy and kRi are right-heavy, then the total time is O(m +∑m

i=1 ki) = O(m +∑m
i=1 kLi +∑m

i=1 kRi ) = O(m + m log n) + O(
∑m

i=1 kRi ). To bound the last
sum, we notice that the potential is initially at most n, in the end it is at least 0, we
subtract

∑m
i=1 kRi and add

∑m
i=1 kLi ≤ m log n; thus,

∑m
i=1 kRi ≤ n + m log n.

The total time of m operations on n elements is therefore O(n + m log n).
Together this shows the following:

Theorem. The skew heap structure supports the operations find min in O(1)
time and insert, merge, and delete min in amortized O(log n) time on
a heap with n elements.

A more complicated variant, the bottom-up skew heaps, was also described
in Sleator and Tarjan (1986); they achieve insert and merge in O(1) amor-
tized time. Because they contain additional pointers that need to be updated
in a delete min operation, for bottom-up skew heaps we cannot use the
reduction of delete min to merge; the delete min operation still has
O(log n) amortized complexity. None of these complexities are worst case; at
worst they could be �(n). The structure was somewhat further studied in Jones
(1987), Kaldewaij and Schoenmakers (1991), and Schoenmakers (1997).

5.6 Binomial Heaps

Binomial heaps are another classical, although somewhat complicated, method
to achieve all heap operations including merge in O(log n) time. In contrast
to the previous structure, the find min operation also needs �(log n) time.
Binomial heaps were invented by Vuillemin (1978) and are mainly interesting
for another type of additional operation, the change of key values, which will
require a separate discussion in a later section.

Binomial heaps can again be written as binary trees with keys and objects
in each node, but they are not heap-ordered trees, but only half-ordered trees:

1. If node w is in the right subtree of node v, then v->key < w->key.

This is a weaker condition than heap order: keys get larger to the right, but on a
left path keys might appear in any order. The minimum key itself might occur
anywhere along the path from the root to the left. This weaker order condition
is coupled with a stronger balance condition.
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2. If v is a node on the path from the root to the left, then v->right is root
of a complete binary tree. The height of these trees is strictly decreasing
along the path from the root to the left.

Thus the binomial heap consists of blocks of the following structure, which are
put together on the left path: a node ni on the path, whose right pointer points
to a complete binary tree of height hi , where this hi is decreasing along the
path. The complete binary tree of height h contains 2h+1 − 1 nodes, so together
with the node on the leftmost path the block has 2hi+1 nodes. We also allow
the empty tree as complete binary tree of height −1, so there might also be a
block of 20 = 1 node, just consisting of the node on the path. If the block sizes
along the path are 2h1 > 2h2 > · · · > 2hk , then 2h1 + 2h2 + · · · + 2hk = n, so
the block decomposition corresponds to the binary expansion of the total size
n of the heap.

Binomial Heap Structure, with Blocks of Size 20, 21, 22, 24, and 26

The central property of these blocks is that one can combine in time O(1)
two blocks of the same size 2h into one block of size 2h+1: if n and m are the top
nodes of two blocks, for which both n->right and m->right are complete
binary trees of height h and n->key < m->key, then we can make n the new
top node, whose right field points to m, and m becomes root of a complete
binary tree of height h + 1, with the tree previously below n->right now
below m->left. This is the point where the weaker order condition 1 is
needed; if we required heap order, we could not just join these trees together
because the heap-order relation between m and the new m->left could be
violated, but condition 1 does not require any order along the left paths.

With this “adding” of two individual blocks in O(1) time, we can merge two
binomial heaps by performing an addition with carry of the two left paths.

The other operations, insert and delete min, can be reduced to
merge. An insert is just a merge with a single-node heap. For a
delete min, we have to find the minimum node from the leftmost path
of the root, unlink that block, and delete its top node. Then the remaining block
is a complete binary tree, which itself is a binomial heap, so it can be merged
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Combining Two Blocks of Size 2h into One Block of Size 2h+1

back with the original heap from which it was removed to get the heap resulting
from the deletion.

One Block Minus its Root Is Again a Binomial Heap

We get an O(log n) bound for all operations, insert, merge, and
delete min, from observing that the binary addition with carry of two log n-
bit numbers requires O(log n) bit additions. This bound can be improved, in the
amortized sense, for long sequences of insert operations, which correspond
to repeated adding of 1 or counting in binary numbers. The total number of
bits flipped while counting in binary from n to n + i is O(i + log n), so the
complexity of i consecutive insertions in a heap of initial size n is O(i + log n).
Consider now a sequence of a insert and b merge or delete min op-
erations on a set of heaps with initial total size n, which at the end consists
of k heaps. For each heap, each delete min or merge operation, of com-
plexity O(log n), is preceded by some sequence of aj insert operations, of
complexity O(aj + log n). There are also some afinal insert operations that
are not followed by any delete min or merge involving that heap; these
take at most O(afinal + k log n) time. Because a = afinal +∑j aj , this gives a
total complexity of O(a + b log n + k log n). Because k ≤ n, this shows that
the amortized complexity of the insert operation is O(1).

Next we give the code for the merge of two binomial heaps, as well as some
elementary operations. Because the size of the blocks is decreasing along the
paths, but we have to add starting from the blocks of smallest size, we put in a
first phase just all blocks on a stack to invert the order. An alternative solution
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would be to put the blocks in increasing size on the leftmost path; in that case
the blocks themselves would not be complete binary trees but very skewed
objects of twice the height. The total work is the same, and it is preferable to
use standard binary trees. The required height of the stack is only 2 log n.

typedef struct hp_n_t {
int height;
key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;

} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tmp_node;

tmp_node = get_node();
tmp_node->height = -1;
tmp_node->left = tmp_node->right = NULL;
return( tmp_node );

}

int heap_empty(heap_node_t *hp)
{ return( hp->height == -1 );
}

key_t find_min_key(heap_node_t *hp)
{ heap_node_t *tmp;

key_t tmp_key;
tmp = hp;
tmp_key = hp->key;
while( tmp->left != NULL )
{ tmp = tmp->left;

if( tmp->key < tmp_key )
tmp_key = tmp->key;

}
return( tmp_key );

}

heap_node_t *merge( heap_node_t *hp1,
heap_node_t *hp2)
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{ heap_node_t *tmp1, *tmp2, *current, *next;
if( hp1->height == -1 ) /* heap 1 empty */
{ return_node( hp1 );

return( hp2 );
}
if( hp2->height == -1 ) /* heap 2 empty */
{ return_node( hp2 );

return( hp1 );
}
/* put all the blocks on the stack */
create_stack();
tmp1 = hp1; tmp2 = hp2;
while( tmp1 != NULL && tmp2 != NULL )
{ if( tmp1->height > tmp2->height )

{ push( tmp1 );
tmp1 = tmp1->left;

}
else
{ push( tmp2 );

tmp2 = tmp2->left;
}

}
/* one list is empty, push the rest

of the other */
while( tmp1 != NULL )
{ push( tmp1 );

tmp1 = tmp1->left;
}
while( tmp2 != NULL )
{ push( tmp2 );

tmp2 = tmp2->left;
}
/* now all the blocks are on the stack */
/* put them together, performing addition */
current = pop();
while( !stack_empty )
{ next = pop();

if( next->height > current->height )
{ next->left = current;
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/* add in front of left list */
current = next;

}
else if( next->height ==

current->height )/* add blocks */
{ if( next->key < current->key )

{ next->left = current->left;
current->left = next->right;
next->right = current;
next->height += 1;
current = next;

}
else
{ next->left = current->right;

current->right = next;
current->height +=1;

}
}
else /* next->height < current->height */
{ next->left = current->left;

/* exchange current, next*/
current->left = next;
/* insert next just below current */

}
}
return( current );

}

The delete min code needs some care, because we have to preserve the
address of the root node, and the result of the merge could be a different
node. The same problem exists for the insert. Here we just copy the root
to a different node and then copy the result back. This could be avoided if
we used a placeholder node above the root. The placeholder could also point
to the current minimum node on the leftmost path, making find min an
O(1) operation by moving the minimum update time to the insert and
delete min operations. For the greater regularity of the structure, we decided
to avoid a placeholder node. Next we give the code for the delete min and
insert operations.
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object_t *delete_min(heap_node_t *hp)
{ object_t *del_obj;

heap_node_t *tmp1, *tmp2, *min1, *min2;
key_t tmp_key;
if( hp->height == 0 )

/* delete last object, heap now empty */
{ hp->height = -1;

return( hp->object );
} /* can assume now that heap will

not become empty */
tmp1 = tmp2 = hp;
tmp_key = hp->key;
min1 = min2 = hp;
while( tmp1->left != NULL )
{ tmp2 = tmp1;

/* tmp2 node above tmp1 on left path */
tmp1 = tmp1->left;
if( tmp1->key < tmp_key)
{ tmp_key = tmp1->key;

/* min1 is minimum node */
min1 = tmp1; min2 = tmp2;
/* min2 node above min1 */

}
}
del_obj = min1->object;
if( min1 != min2 ) /* min1 not root,
so node above exists */
{ min2->left = min1->left;

/* unlinked min1 */
if( min1->height > 0 )

/* min1 has right subtree */
{ tmp1 = min1->right;

/* save its right tree */
min1->key = hp->key;
/* copy root into min1 */
min1->object = hp->object;
min1->height = hp->height;
min1->left = hp->left;
min1->right = hp->right;
tmp2 = merge( min1, tmp1 );
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/* and merge */
}
else /* min1 is leaf on left path */
{ return_node( min1 );

return( del_obj );
}

} /* min1 is root node, has left
and right subtrees */

else if ( min1->left != NULL )
tmp2 = merge( min1->left, min1->right );

else /* min1 is root node, has only
right subtree */

tmp2 = min1->right;
/* merge completed, now copy new root back */

hp->key = tmp2->key;
hp->object = tmp2->object;
hp->height = tmp2->height;
hp->left = tmp2->left;
hp->right = tmp2->right;
return_node( tmp2 );
return( del_obj );

}

int insert( key_t new_key, object_t *new_obj,
heap_node_t *hp)

{ heap_node_t *new_node, *tmp, *tmp2;
new_node = get_node();
/* create one-element heap */
new_node->height = 0;
new_node->key = new_key;
new_node->object = new_obj;
new_node->left = new_node->right = NULL;
tmp = get_node();
/* copy root into tmp_node */
tmp->left = hp->left;
tmp->right = hp->right;
tmp->key = hp->key;
tmp->object = hp->object;
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tmp->height = hp->height;
tmp2 = merge( new_node, tmp );
/* merge the heaps */
hp->left = tmp2->left;
/* merge completed, copy root back */
hp->right = tmp2->right;
hp->key = tmp2->key;
hp->object = tmp2->object;
hp->height = tmp2->height;
return_node( tmp2 );
return( 0 );

}

To summarize the performance of this structure, we have the following:

Theorem. The binomial heap structure supports the operations insert,
merge, find min, and delete min in O(log n) time.
The amortized complexity of the insert operation is O(1); any sequence of a

insert and b delete min or merge operations on a set of heaps of initial
total size n, with k heaps remaining at the end, takes O(a + b log n + k log n)
time.

The key idea of the binomial heap structure is this decomposition of the
heap into these blocks of canonical size (2i for some i) that are guaranteed to
have small height and that can be combined to the next larger size in constant
time. With this block structure, we can then merge two heaps by performing
binary addition on the lists of blocks. Several other implementations of this
idea are possible, and some were discussed in Brown (1978). An array-based
representation of the binomial heap structure was given in Strothotte and Sack
(1985). One could also change the system of canonical sizes as long as we
specify the block structure and the combination of a set of equal-sized blocks
to a block of the next larger size; this gives a trade-off between the insert and
the delete min complexities that was studied in Fagerberg (1996b). Also the
binomial heap structure formed the base of several other heaps, among them
the Fibonacci heap (Fredman and Tarjan 1987) described in Section 5.8, the
pairing heap (Fredman et al. 1986), and the relaxed heap (Driscoll et al. 1988).
The pairing heap was especially popular for some time because it is easier
to code; it is essentially related to the binomial heap in the same way as
the skew heap is related to the leftist heap: a self-adjusting version in which
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no balance conditions are checked and updated. It has amortized O(log n)
bounds instead of the worst-case bounds of the binomial heap. The pairing
heap was the object of several experimental studies as well as theoretical
bounds (Stasko and Vitter 1987; Liao 1992; Fredman 1998, 1999a; Iacono
2000; Pettie 2005). A parametrized variant of these structures was discussed
in Elmasry (2004). A general transformation of binomial-heap-like structures
that defers comparisons and sometimes makes the structure more efficient by
this was studied in Fredman (1999b).

All these structures used half-ordered trees, or equivalently heap-ordered
trees of variable degree, as the underlying model. A structure that combines
this idea of a list of canonical building blocks with (binary) heap-ordered trees
instead is the M-heaps (Bansil, Sreekanth, and Gupta 2003), which use a list of
complete binary heap-ordered trees as block structure, with the block heights
in increasing order and all distinct except possibly the first two. Then in an
insert, one joins together the two blocks of the same height, if they exist, or
creates a new block of height 0, if not. This structure again allows an O(log n)
worst-case insert and delete min.

Any of these heaps based on binary addition of blocks again allows the
amortized analysis that gives an O(1) amortized complexity for the insert
operation.

5.7 Changing Keys in Heaps

There is an additional operation on heaps that received much interest and
was the main motivation for the interest in binomial heaps and their various
relatives, which is to change the keys of elements, especially to decrease keys,
which is necessary for Dijkstra’s single-source shortest path algorithm and
many combinatorial optimization algorithms.

This operation is different from the other operations we discussed so far
because we have to identify the element that we want to change. A heap does
not support a find operation, so we need a pointer into the structure to the
element, a finger as in the finger search trees. This finger is returned by the
insert operations and must refer to the element until it is deleted. In any
actual implementation this requires some care because the node that contains
the element possibly changes during the operations on the heap:

{ In the array-based heap, the item moves through the array.
{ If we use rotations as rebalancing method on half-ordered trees, our

standard rotations copy the item to a different node.
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{ Even the binomial heap implementation we just described moved at one
point the item to a different node, although that could easily be changed.

Possible solutions to this problem of keeping the fingers correct are to

{ Introduce one level of indirection: the finger points to a node that itself
contains a pointer to the current node that contains the element; and the
node that contains the element contains a pointer back to that indirection
node, so the position can be updated.

{ Rewrite the code in such a way that the content of a node is never copied to
another node, but only the pointers are changed.

Especially the first solution can be combined with any heap, even with the
array-based heap, for which the second solution would be impossible.

If we have solved the problem of identifying the element, the work necessary
to change the key of an element depends on the heap we use. In the first solution
we discussed, the use of balanced search trees as heaps, we can just delete the
element with the old key and insert it with the new key, which gives an O(log n)
change-key operation. This reduction of change-key to delete followed by
insert works in any heap that allows the deletion of arbitrary elements.
Indeed, the inverse reduction also exists: if the heap supports a decrease key
operation, we can also delete arbitrary elements: we decrease the key to the
minimum possible key value and then perform a delete min.

The classical array-based heap also supports key changes in O(log n), just
moving the elements up or down as the heap-order condition demands until
heap order is restored. This was already discussed in Johnson (1975), but no
information is given on how to identify the element, a tradition followed by all
later papers.

Any heap-ordered tree would support key changes if we introduced back-
ward pointers in the nodes. Then we could move elements up or down, as
required by the heap-order condition. The complexity of this, however, would
be the length of the path along which we had to move the element, so at worst
the height of the tree. Neither leftist heaps nor skew heaps allow a sublinear
height bound, so they cannot be used to get efficient key change operations.

The binomial heap, however, does have a good height bound; as we described
it, it even maintains the optimal height �log(n + 1)
. We again need back
pointers to allow an element to move in the direction of the root. Because
the order condition of binomial heaps is not quite the heap order, there is
a difference between increase and decrease of keys. If the key of a node is
decreased, we follow the path back to the root, but we need to check the order
condition and possibly exchange the nodes only for those nodes for which the
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next edge is a right edge; no restrictions apply along the left edges. Thus, a
decrease key operation takes O(log n) time. But if we increase a key, we
need to check the order condition for all nodes that can be reached by a single
right edge followed by a left path, and possibly exchange with the node with
smallest key among them and repeat until these left path conditions are all
satisfied. This takes O((log n)2) time, so decreasing the key to the minimum
possible value, deleting the element, and reinserting it with the new key value
would be faster than an increase key operation. But because the applications
usually need only to decrease keys, that operation is more important. Thus, a
binomial heap does all the usual heap operations, and in addition to that merge
and decrease key, in O(log n) time.

5.8 Fibonacci Heaps

The importance of the decrease key operation in various combinatorial
optimization algorithms motivated the development of a number of heap struc-
tures with a decrease key operation that aim to be constant time instead of
O(log n). These structures did not quite achieve their aim, insofar as the bounds
were amortized, instead of worst case, but for the application of these structures
in other algorithms, where we know how often the individual operations will be
called, and especially that the decrease key operation will be called more
often than insert of delete min, such amortized bounds for the struc-
tures are still sufficient to give worst-case bounds for the algorithm that uses
them.

The oldest and best known of these structures is the Fibonacci heap (Fredman
and Tarjan 1987). The Fibonacci heap is related to the binomial heap described
in Section 5.6; it is again a half-ordered tree, and like a binomial heap, it
consists of blocks arranged on the leftmost path, but the structure of the blocks
is weaker and they are not necessarily of distinct size, and in decreasing order,
as they were in binomial heaps. During the updates, almost all rebalancing of
the structure will be deferred to the next delete min operation; the leftmost
path is a holding area where we can place blocks until that rebalancing phase
and where they are subject to neither order conditions nor structural conditions.

The structure that we maintain in a Fibonacci heap is as follows: Each node
n carries an integer field n->rank, as well as a state n->state, which can
be either complete or deficient. Then the defining properties are:

F1. For any node n with n->rank > 1, or n->rank = 1 and
n->state = complete, holds n->right �= NULL, and
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F1.1 If n->state = complete, then on the left path below
n->right there are n->rank nodes, which have rank at least
n->rank − 1, n->rank − 2, . . . , 0, in some sequence.

F1.2 If n->state = deficient, then on the left path below
n->right there are n->rank − 1 nodes, which have rank at
least n->rank − 2, n->rank − 3, . . . , 0, in some sequence.

F2. For any node n with n->rank = 0, or n->rank = 1 and
n->state = deficient, holds n->right = NULL.
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Fibonacci Heap Structure:
The Nodes Are Labeled by Rank and Deficiency Status

If we allow no deficient nodes, demand strictly decreasing rank along the
leftmost path, and strengthen F1 to the following property:

B1. For any node n of with n->rank > 0, holds n->right �= NULL, and
on the left path below n->right, there are n->rank nodes, which
have rank exactly n->rank − 1, n->rank − 2, . . . , 0, in decreasing
sequence.

We get the binomial heap structure, so the Fibonacci heap is a structural relax-
ation of the binomial heap.

A block again consists of a node n and the subtree below n->right; then
we can add, exactly as in the case of binomial heaps, two blocks of rank k to
one block of rank k + 1 in O(1) time.

A block of rank k consists of the top node n and at least k − 2 further blocks,
or k − 1, if n->state = complete that are arranged on the left path below
n->right and have rank at least 0, 1, . . . , k − 2. So the minimum number
f (k) of nodes in a block of rank k satisfies the recursion

f (k) = f (k − 2) + f (k − 3) + · · · + f (1) + f (0) + 1.
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Using

f (k − 1) = f (k − 3) + · · · + f (1) + f (0) + 1,

we can rewrite this recursion as f (k) = f (k − 1) + f (k − 2), which is the
same recursion we already met in Section 3.1. Here the starting values are
f (0) = f (1) = 1, so f is the classical sequence of Fibonacci numbers, which
gives the name to this heap. By the methods of Section 10.4, we can solve this
recursion and obtain

f (k) = 1√
5

(
1 + √

5

2

)k+1

− 1√
5

(
1 − √

5

2

)k+1

.

The key elements of the Fibonacci heap are the methods by which we
maintain this structure. For that, each node needs two further fields: a normal
back pointer up and another pointer upward in the tree structure, r up, which
for any node n not on the leftmost path points to that node m for which n
is on the left path below m->right. If n is on the leftmost path, we set
n->r up to NULL. So the structure of a node in the Fibonacci heap is as
follows:

typedef struct hp_n_t { key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;
struct hp_n_t *up;
struct hp_n_t *r_up;
int rank;

enum {complete, deficient} state;
} heap_node_t;

Both the up and the r up pointers can be adjusted in O(1) time when adding
two blocks of equal rank; although there are possibly many nodes whose r up
pointers point to the root nodes of the blocks we add, these nodes stay in the
correct r up relationship after adding and do not need to be changed.

In addition to the tree structure of the Fibonacci heap, we maintain a pointer
to the node with the minimum element and a pointer to the last node on the
leftmost path. Because the Fibonacci heap is a half-ordered tree, the node
with the minimum element occurs somewhere on the leftmost path. With this
minimum pointer, we can answer find min queries in O(1) time.
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Fibonacci Heap: r up Pointers and Normal Tree Pointers

The insert operation is now very simple: we create a new node of rank 0,
with the new key and object, and place it on top of the leftmost path. Then we
check whether the new key is smaller than the previous minimum and adjust
the minimum pointer, if necessary.

In the same way we realize the merge operation by just concatenating the
leftmost paths; for this we need the left end pointer to the end of the leftmost
path.

For the decrease key operation, the situation is more complicated. The
algorithm to decrease the key in node n works as follows:

1. Decrease the key in n as requested. If the new key is smaller than the
previous minimum, we adjust the minimum pointer.

2. If n->r up = NULL, then n is already on the leftmost path, so it is not
subject to any condition and we are finished.

3. Else the half-ordered tree condition might be violated in n->r up and
possibly some nodes above. Set u to n->r up. Unlink n from the left path
to which it belongs, using the back pointer n->up, and place n on the
leftmost path.

4. Now the property F1 is violated for u because it lost one node on the left
path below u->right.
4.1 If u->r up = NULL, then u is on the leftmost path. Decrease

u->rank by 1. Then property F1 is restored, and we are finished.
4.2 Else if u->state = complete, then set u->state to

deficient. Then property F1 is restored, and we are finished.
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4.3 Else u->state = deficient. Decrease u->rank by 2, or only 1
if it becomes negative, and then set u->state to complete. By
this F1 is restored for node u.
Unlink u from the left path to which it belongs, using the back pointer
u->up, and place u on the leftmost path. Set u to u->r up and
repeat step 4.

This upward propagation of the unlinking is called a “cascading cut”; it happens
during the decrease key of n if the nodes n->r up, n->r up->r up, . . .
are all deficient. We spend O(1) time for each iteration of the unlinking
process. The upward propagation of the unlinking process ends when a node
n->r up->· · ·->r up is reached that is complete, which is then changed
to deficient, or when a node on the leftmost path is reached. This is the
only node changed to deficient, and all unlinked nodes are changed to
complete. So in each decrease key operation, if we perform k unlinking
operations, we need time O(k), change one node from complete to defi-
cient, and change k − 1 nodes from deficient to complete. Because
each deficient node must have been created by an earlier decrease key
operation, any sequence of operations that contains n decrease key opera-
tions, and that starts on a heap with a deficient nodes and ends on a heap with
b deficient nodes, takes O(n + a − b) time and places O(n + a − b) nodes
on the leftmost path. This gives an amortized complexity of O(1) for the
decrease key operation.

This speed is achieved by delaying all rebalancing, placing items without
any structure update on the leftmost list. So if we have sufficiently many
decrease key operations, all items will finally be placed on that list in any
order. The difficult step is then to find a new minimum after the delete min
operation. The new minimum can be in any node on the leftmost path, so
we have to go through all of them. We use this opportunity to shorten the
the leftmost path and perform the rebalancing, so that the next delete min
operation does not again meet a very long leftmost path. In this operation, we
use that the maximum rank of any node occurring in this structure is O(log n),
because if there is a node of rank k, then its block contains at least 1√

5
( 1+√

5
2 )k+1

nodes.
The delete min operation works as follows:

1. Unlink the current minimum node n, identified by the minimum pointer,
from the leftmost path. Then place the nodes on the left path of
n->right on top of the leftmost path and delete n.

2. Create an array of node pointers of size �(log n), with an entry for each
possible rank value.
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3. Go down the leftmost path. Set n to the next node on the leftmost path.
3.1 If the array does not contain an entry of rank n->rank, store n in the

array and repeat step 3.
3.2 Else remove the node m of that same rank and add the blocks below n

and m. Set n to the node at the top of the new block and repeat
step 3.1.

4. Now all nodes that were on the leftmost path are either stored in the array
or have become part of blocks. Go through the array and link the nodes
together to form the new leftmost path. Set the minimum pointer to the
node of minimum key among them and the leftend pointer to the last node
of the leftmost path.

Here, step 1 takes O(log n) time because that is the length of the left path below
n->right. Step 2 takes O(1) time. Step 4 takes O(log n) time because that
is the size of the array. The key to the analysis of the complexity is the loop in
step 3; in each iteration of this loop, we use up one node from the leftmost path,
so if the length of the leftmost path was l before the delete min operation,
then step 3 takes O(l) time. So the delete min operation takes O(l + log n)
time and leaves a heap structure with a leftmost path of length O(log n).

To analyze the total complexity of a sequence of operations on a heap with n

elements, among these i insert operations, k decrease key operations,
and d delete min operations, we observe

{ Each insert takes O(1) time and places one node on the leftmost path.
{ Each decrease key takes O(1) time per item it places on the leftmost

path, and the sequence of decrease key operations places at most
O(k + n) times an item on the leftmost path.

{ Each delete min takes O(log n) time, plus O(1) time per item it
removes from the leftmost path.

So we can summarize the performance of this structure.

Theorem. The Fibonacci heap structure supports the operations find min,
insert, merge, delete min, and decrease key, with find min,
insert, and merge in O(1) time, decrease key in amortized O(1) time,
and delete min in amortized O(log n) time.
Any sequence of m operations on a set of heap with a total of n elements,
among which are d delete min operations, takes O(n + m + d log n).

The Fibonacci heap does not fit in our pointer-machine model because we
need the array to efficiently collect the nodes of equal rank; if we took a search
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tree on the ranks instead, the amortized complexity of decrease key would
increase to O(log log n). But as we know the required array size in advance and
it is not large, this is no signficant obstacle in the efficient use.

We finally give an implementation of a Fibonacci heap. We use a placeholder
node that does not contain any key as entry point, with left pointing to the
current minimum, up pointing to the end of the leftmost path, and right
pointing to the root of the heap if the heap is not empty.

typedef struct hp_n_t { key_t key;
object_t *object;
struct hp_n_t *left;
struct hp_n_t *right;
struct hp_n_t *up;
struct hp_n_t *r_up;
int rank;

enum {complete, deficient} state;
} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tmp_node;

tmp_node = get_node();
tmp_node->right = NULL;
return( tmp_node );

}

int heap_empty(heap_node_t *hp)
{ return( hp->right == NULL );
}

key_t find_min_key(heap_node_t *hp)
{ return( hp->left->key);
}

heap_node_t *insert(key_t new_key,
object_t *new_obj, heap_node_t *hp)

{ heap_node_t *new_node;
new_node = get_node(); /* create new node */
new_node->right = NULL;
new_node->key = new_key;
new_node->object = new_obj;
new_node->rank = 0;
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new_node->state = complete;
if( hp->right == NULL )

/* insert in empty heap */
{ hp->right = hp->left = hp->up = new_node;

new_node->left = NULL;
}
else /* heap nonempty, put on top

of leftmost path */
{ new_node->left = hp->right;

hp->right = new_node;
new_node->left->up = new_node;
if( hp->left->key > new_key) /*
update min-pointer */

hp->left = new_node;
}
return( new_node );

}

heap_node_t *merge(heap_node_t *hp1,
heap_node_t *hp2)

{ if( hp1->right == NULL ) /* hp1 empty */
{ return_node(hp1); return(hp2);
}
else if( hp2->right == NULL ) /* hp2 empty */
{ return_node(hp2); return(hp1);
}
else /* both heaps nonempty */
{ hp1->up->left = hp2->right;

/* concatenate leftmost paths */
hp2->right->up = hp1->up;
/* join their up-pointers */
hp1->up = hp2->up;
/* restore leftend pointer */
if(hp1->left->key > hp2->left->key)

hp1->left = hp2->left;
/* update min-pointer */

return_node(hp2); return(hp1);
}

}
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void decrease_key( key_t new_key, heap_node_t *n,
heap_node_t *hp)

{ heap_node_t *u, *tmp; int finished = 0;
n->key = new_key; /* decrease key in n */
if( new_key < hp->left->key )
/* update min-pointer */

hp->left = n;
while( n->r_up != NULL && !finished )
{ u = n->r_up;

/* n on left path of u->right: unlink n */
if( n == u->right )

/* n on top of left path of u->right */
{ u->right = n->left;

if( n->left != NULL )
n->left->up = u;

}
else /* n further down on left

path of u->right */
{ n->up->left = n->left;

if( n->left != NULL )
n->left->up = n->up;

} /* unlink n complete, now insert
n on leftmost path */

n->r_up = NULL;
n->left = hp->right; n->left->up = n;
hp->right = n;
/* now repair u; if necessary, repeat cut */
if( u->r_up == NULL )

/* u already on leftmost path */
{ u->rank -= 1;

finished = 1;
}
else if( u->state == complete )
/* u becomes deficient */
{ u->state = deficient;

finished =1;
}
else /* u deficient and not

on leftmost path */
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{ if( u->rank >= 2 )
u->rank -= 2;

else
u->rank = 0;

u->state = complete;
/* u rank information correct */

} /* in this case, have to cut u from
left list */

n = u; /* so repeat unlink operation */
}/* end of while loop, finished with

‘cascading cut’ */
}

object_t *delete_min( heap_node_t *hp)
{ heap_node_t *min, *tmp, *tmp2;

object_t *del_obj;
heap_node_t *rank_class[100]; int i;
key_t tmp_min;
if( hp->right == NULL)

/* heap empty, delete failed */
return( NULL );

min = hp->left;
/* unlink min node from leftmost path */
del_obj = min->object;
if( min == hp->right )

/* min on top of leftmost path */
{ if( min->left != NULL )

/* path continues after min */
{ hp->right = min->left;

min->left->up = hp;
}
else /* min only vertex on leftmost path */
{ if( min->right != NULL )

/* min not last node */
{ hp->right = min->right;

min->right->up = hp;
min->right = NULL;

}
else /* min last node, heap now empty */
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{ hp->right = NULL;
return_node( min );
return( del_obj );

}
}

}
else /* min further down on leftmost path */
{ min->up->left = min->left;

if( min->left != NULL )
/* min not last vertex */

min->left->up = min->up;
} /* unlink min complete */
/* now move left path of min->right

to leftmost path */
if( min->right != NULL ) /* path nonempty */
{ tmp = min->right;

while( tmp->left != NULL )
/* find end of path */

tmp = tmp->left;
tmp->left = hp->right; tmp->left->up = tmp;
hp->right = min->right;
min->right->up = hp;

}
/* now path below min->right

linked to leftmost path */
return_node( min ); /* minimum deleted */
/* now starts clean-up phase */
for( i = 0; i < 100; i++)

rank_class[i] = NULL;
/* now unbuild leftmost path, collect

nodes of equal rank*/
tmp = hp->right;
/* take first node from leftmost path */
hp->right = hp->right->left;
/* unlink that node */
while( tmp != NULL )
{ if( rank_class[tmp->rank] == NULL )

{ /* no node of same rank found:
store node */
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rank_class[tmp->rank] = tmp;
tmp = hp->right; /* take new node */
if( tmp != NULL)

hp->right = hp->right->left;
/* unlink that node */

}
else /* two nodes of same rank found,

add blocks */
{ tmp2 = rank_class[tmp->rank];

rank_class[tmp->rank] = NULL;
if( tmp->key < tmp2->key )
{ tmp2->left = tmp->right;

tmp->right = tmp2;
}
else /* tmp->key >= tmp2->key */
{ tmp->left = tmp2->right;

tmp2->right = tmp;
tmp = tmp2;

}
tmp->rank += 1;
/* increase rank of sum block */

}
} /* all remaining blocks now

in rank_class[] */
/* now rebuild the leftmost path */
hp->right = NULL;
for( i = 0; i < 100; i++)
{ if( rank_class[i] != NULL )

{ tmp = rank_class[i];
tmp->left = hp->right;
hp->right = tmp;

}
}
/* recompute pointers on new leftmost path */
hp->left = hp->right; tmp_min = hp->left->key;
for( tmp = hp->right; tmp->left !=NULL;

tmp = tmp->left)
{ tmp->left->up = tmp;

/* new up pointers */
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if( tmp->left->key < tmp_min )
{ hp->left = tmp->left;

/* new min pointer */
tmp_min = tmp->left->key;

}
}
hp->up = tmp; /* end of leftmost path */
/* finished with clean-up phase */
return( del_obj );

}

5.9 Heaps of Optimal Complexity

We already noted in Section 5.1 that we cannot get all heap operations in
sublogarithmic time. For the search trees with lazy deletion, we showed that
delete min is possible in constant time, together with insert in O(log n).
Because there are necessarily more insert than delete min operations, it
became a much-studied question whether one could get insert and all other
operations but deletion, in constant time, and delete min in O(log n).

The answer to this question somewhat depends on the exact details of
the question, but is “yes” (almost), with the best structures due to Brodal
(1995, 1996a). The first step in this direction was the Fibonacci heap
(Fredman and Tarjan 1987), which supported insert, find min, and
merge in O(1) amortized time and delete min, indeed arbitrary deletions,
in O(log n) amortized time. The special importance of this structure comes
from the fact that although the time bounds are only amortized, they are suffi-
cient to obtain worst-case time bounds in algorithms where we know that the
number of heap operations is large, for example, in Dijkstra’s algorithm. Other
developments are the pairing heap (Fredman et al. 1986) and the relaxed heap
(Driscoll et al. 1988), and the 2-3-heap (Takaoka 2003). One reason for the pair-
ing heap’s popularity, besides the simpler implementation, was that although
it has only O(log n) amortized bounds for the usual heap operations, it was
conjectured to have an O(1) time decrease key; but finally an �(log log n)
amortized lower bound was found (Fredman 1998). The relaxed heaps came
in two variants, of which the run-relaxed heaps achieved O(1) worst-case in-
sert and decrease key and O(log n) find min and delete min; but
Fibonacci heaps and relaxed heaps are somewhat unsatisfactory because they
do not work in the pointer-machine model but require dynamically allocated
arrays of size �(log n).
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The almost final answer is the two structures of Brodal (1995, 1996a),
of which the first works in the pointer-machine model and supports worst-
case bounds of O(1) for insert, find min, and merge and O(log n) for
delete min and decrease key. The second structure additionally reduces
the complexity of decrease key to constant time, but leaves the pointer-
machine model and needs dynamically allocated arrays of size �(log n). Other
structures with the same performance are the ternary heap (Takaoka 2000) and
the heaps based on the black-box transformation of Alstrup et al. (2005). We
will describe here the first structure.

The underlying structure is again a heap-ordered tree with nodes of poten-
tially large degree, but to allow an insert in constant time while keeping
this structure and a delete min in O(log n) time, we need a lot of additional
structure, especially several additional pointers per node to reach all those other
nodes that have to be corrected in constant time.

The structure is as follows:

{ Each node has a smaller key than all its lower neighbors (a heap-ordered
tree).

{ Each node n has a nonnegative rank as balancing information.
{ Each node has at most one special lower neighbor, which might be of

arbitrary rank, and a number of normal lower neighbors, whose rank is
smaller than the rank of the node.

{ The normal lower neighbors are arranged in order of increasing rank in a
doubly linked list. The ranks of the normal lower neighbors of n satisfy the
following properties:

1. Each rank less than the rank of n occurs at least once, and at most three
times.

2. Between two ranks that occur three times there is a rank that occurs only
once.

3. Before the first rank that occurs three times, there is a rank that occurs
only once.

{ For each node, the first-lower neighbors of each rank that occurs three times
are arranged in a linked list, in increasing order.

{ The root has rank 0.

To provide the necessary information, the structure of a node is the following:

typedef struct hp_n_t {
int rank;
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key_t key;
object_t *object;
struct hp_n_t *first; /* lower neighbors */
struct hp_n_t *last; /* lower neighbors */
struct hp_n_t *next; /* same level list */
struct hp_n_t *previous; /* same level list */
struct hp_n_t
*thrice_repeated;
struct hp_n_t *special;

} heap_node_t;

By the heap order, the root contains the smallest key, so the find min oper-
ation is trivial and in constant time. The insert operation is reduced in the
standard way to merge, creating a new one-element heap for the new element
and merging that heap with the old heap.

The merge is the main operation and it works as follows: let r1 and r2 be
the roots of the heaps we want to merge. Because the root has rank 0, it has
only one lower neighbor, the special lower neighbor that may be of arbitrary
rank, r1->special and r2->special. We want to insert the root of one
heap in the list of normal lower neighbors of the special lower neighbor of the
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root of the other heap at the beginning of that list because it already has rank
0. But we have to preserve heap order and the rank sequence conditions on
that list.

For the rank sequence, we observe that it is easy to combine the subtrees
below two nonroot nodes of the same rank into one subtree below a rank one
higher: just increase the rank of the node with the larger key and insert the node
with the smaller key at the end of the sequence of lower neighbors, as new
maximum-rank node.

The steps of the merge operation are as follows:

1. Compare r1->key and r2->key if necessary, exchange, so that r1 is the
root with smaller key. Then it must become the root of the merged tree.

2. Compare r1->special->key and r2->key, exchange, so that
r1->key < r1->special->key < r2->key.

3. If the list of three-time occurring ranks below r1->special is not empty,
go to the first rank on the list and convert two of its nodes into the next
higher rank. Remove that rank from the list of three-time occurring ranks,
and if the next higher rank now occurs three times, add that to the list.
3.1 If that next higher rank is now the same as the rank of r1->special,

increase the rank of r1->special by one.
4. Insert r2 into the list of normal lower neighbors of r1->special at

r1->special->first.
4.1 If there were already two nodes of rank 0 on that list, combine them

into one node of rank 1.
4.2 If the rank of r1->special was 1, increase it to 2.
4.3 If there are now three nodes of rank 1 on the list, insert the first of them

in front of the list of ranks occurring three times.

These operations restore the rank conditions; step 3 moves the first three-time
repeated rank one step on, or destroys that repetition, while preserving that
alternation of some rank occurring only once between any two ranks that occur
three times and before the first such rank. This especially guarantees that rank
1 occurs at most two times, so we can combine two elements of rank 0, if
necessary, because there is still room at rank 1.

The delete min operation is more complicated. The general strategy is
clear; one removes the root, moves the one lower neighbor of the root up, and
finds among its lower neighbors the one of minimum key, and moves that up,
and somehow merges the lists of all lower neighbors. There are, however, a
number of difficulties along the way.
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We observe first that the rank sequence conditions enforce that each node
has only O(log n) lower neighbors. A node of rank k has at least one lower
neighbor of each rank 0, . . . , k − 1, from this follows by induction that the
subtree with a node of rank k as root contains at least 2k nodes.

Let r be the original root, n = r->special its unique lower neighbor,
and m1, . . . , ml the normal lower neighbors of n. The first step is to integrate
n->special into the list of normal lower neighbors of n. The difficulty here
is that n->special might violate the rank restriction for a normal lower
neighbor of n. If n->special->rank ≥ n->rank, we cut the list of nor-
mal lower neighbors of n->special at the rank n->rank and attach the
top half, those nodes with rank at least n->rank, to the top end of the list
of lower neighbors of n. Then we can reduce the rank of n->special to
n->rank by which the rank condition for the subtree below n->special
is restored and correct n->special->thrice repeated. Then we insert
n->special at the correct place in the list of normal lower neighbors of n.
Thus, n has no special lower neighbor any more, but the list of normal lower
neighbors violates the rank condition. The ranks on that list are still in increas-
ing order, and each rank up to the maximum occurs at least once, but they might
occur more than three times and the alternation might be lost. Still, there are
at most O(log n) nodes on the list because each node was previously a normal
lower neighbor either of n or of n->special. We now go once through that
list, from n->first to n->last, and whenever there are three consecutive
nodes of the same rank, we combine two of them to the next larger rank, so
that in the end each rank occurs either one or two times. Then we increase the
rank n->rank to n->last->rank + 1, and the rank condition in n is re-
stored. Finally we clear n->thrice repeated. All this took O(log n) time
and merely integrated n->special into the list of normal lower neighbors
of n.

We now go once through that list, from n->first to n->last, and
find and unlink the node with the smallest key. Let this node be m. We copy
key and object from n to r, deleting the previous minimum, and from
m to n. Then we merge the list of normal lower neighbors of m into that
list for n, and copy m->special to n->special, and delete the node
m. The list of normal lower neighbors of n is now again a list of O(log n)
nodes, in order of increasing rank, which possibly violates the rank sequence
condition, and also there might be a missing rank: if m was the only node of
that rank on the list of n, this rank is now missing. In that case we take the
next node on the list and split it, inverting the combining of two nodes into at
most four nodes of one rank smaller. If this leaves again a missing rank, we
repeat this until we reach the end of that list. Finally, we go again through the
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list from n->first to n->last, and whenever there are three consecutive
nodes of the same rank, we combine them to the next larger rank, so that
in the end each rank occurs either one or two times. Then we set the rank
n->rank to n->last->rank + 1. After this, the heap again satisfies all
the conditions. In total all these operations for the delete min took O(log n)
time.

To summarize the performance of this structure, we have the following:

Theorem. Brodal’s heap structure supports the operations insert, merge,
find min in worst-case O(1) and delete min in worst-case O(log n)
time.

If one adds upward pointers, one can also get the operations decrease
key and arbitrary deletions in O(log n) time. Some care is required; however,
the structure does not give an O(log n) height bound, because a list of nodes of
rank 0, which each have the special neighbor, would be a correct heap structure.
The strategy is therefore to bubble up until one meets a special neighbor link,
and then clear the special neighbor of r->special as described before, and
insert the current node there instead.

An array-based heap of the same performance, O(1) worst-case insert
and find min, and O(log n) delete min, was developed in Carlsson,
Munro, and Poblete (1988). As always in array-based heaps, we cannot merge
two heaps in this structure, but the space requirement is significantly smaller
by the implicit representation than in Brodal’s heap, where we need at least six
pointers per element.

5.10 Double-Ended Heap Structures
and Multidimensional Heaps

The heap structures that we discussed so far allow fast access to one end of the
set of keys to the minimum key element in the current set, the way we have pre-
sented it here, or the maximum key element if we reverse all the inequality con-
ditions. This is sufficient for all natural applications, but an obvious generaliza-
tion is to ask for fast access both to the minimum and to the maximum element.
That structure is called a double-ended heap, and it must support at least the
operations insert, find min, find max, delete min, delete max,
and possibly additional operations like merge or change key.

If we use balanced search trees as heap, as described in Section 5.1, we
immediately get a double-ended heap with the heap operations all in O(log n),
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and with the lazy deletion improvement we can get insert and change key
in O(log n), and find min, find max, delete min, delete max in
O(1) worst-case time. And all this requires not much extra effort beyond the
balanced search tree with leaves arranged in a doubly linked list.

Nonetheless, a large number of other double-ended heaps have been pro-
posed.4 The most obvious solution would be to have two heaps – a min-heap
and a max-heap – and insert each element in both, linking the two copies to-
gether by pointers. This requires that the underlying heap structure supports not
only delete min, but deletion of arbitrary elements, given a pointer to that
element. This element duplication reduces an insert to two insert operations
in the underlying heaps, and a delete min or delete max to the corre-
sponding deletion in one of the underlying heaps, and an arbitrary deletion in
the other. A merge operation reduces to two merges of the underlying heaps,
when these are supported, but decrease key fails to generalize, unless the
underlying heap allows key changes in both directions, because the min-heap
and the max-heap have opposite preferred orientations. We discussed this in
Section 5.7.

An alternative to element duplication is to group the elements into pairs,
again linked by pointers, and the smaller element of each pair is inserted into the
min-heap and the larger element into the max-heap. Then any delete min in
the min-heap or delete max in the max-heap does indeed delete the global
minimum or maximum, it breaks only one of these pairs, which has to be
corrected. This might again require deletion of arbitrary elements from one
heap, if that heap contained several unmatched elements, of which half have to
be moved to the other heap. If the underlying structure is a heap-ordered tree,
this can be avoided by matching only the leaves.

This idea, combined with array-based heaps, was already observed in Knuth
(1973) and Carlsson (1987/88), also Carlsson, Chen, and Strothotte (1989),
van Leeuwen and Wood (1993), Chang and Du (1993), Chen (1995), and
Jung (2005). These structures differ essentially only in the way these heaps
are mapped into an array and how the pairing between them is established;
this influences the multiplicative constant in the O(log n) bound per operation.
Because these structures are all based on the array-based heaps, they achieve
O(log n) per insert, delete min, delete max, or even arbitrary dele-
tions of elements with known positions, and O(1) find min and find max.
Arbitrary key changes of elements at known position can be done in O(log n)
time by deleting and reinserting it.

4Frequently, the original note by Williams (1964), in which he first defined the heap, is also cited
as the source of the first double-ended heap, but this is not true.
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Array-based heaps are combined with a different order structure in Atkinson
et al. (1986) and Arvind and Rangan (1999) to implement double-ended heaps.
They again achieve the same O(log n) time for all operations supported by
array-based heaps; the only differences are the multiplicative constants in the
number of comparisons and possibly the difficulty of the implementation.

The idea of pairing elements in a min-heap and a max-heap structure is,
of course, not restricted to array-based heaps. It is applied to binomial heaps
in Khoong and Leong (1993) and to leftist heaps in Cho and Sahni (1999),
where all three variants – element duplication, global element pairing, and
leaves-only pairing – are discussed. The method is studied as general con-
struction principle in Chong and Sahni (2000) and Makris, Tsakalidis, and
Tsichlas (2003). If we have any underlying heap that supports merge and
deletion of arbitrary elements, the derived double-ended heap consists of the
following parts:

{ at most one unmatched element,
{ a min-heap,
{ a max-heap, and
{ a pairing of the elements of the min-heap and the max-heap, so that for each

pair, the min-heap element is smaller than the max-heap element, and from
any element we can access the other half of its pair in O(1).

Now the operations work as follows:
{ insert: If there is an unmatched element, the new element is paired with

it, and the smaller part of the pair is inserted into the min-heap, the larger
into the max-heap. If there is no unmatched element, the new element
becomes the unmatched element.

{ find min: Performs a find min in the min-heap and compares the
result with the unmatched element if there is one and returns the smaller.

{ find max: Performs a find max in the max-heap and compares the
result with the unmatched element if there is one and returns the larger.

{ delete min: Performs a find min in the min-heap and compares the
result with the unmatched element if there is one. If the unmatched element
is smaller, it deletes and returns the unmatched element. Otherwise it
performs a delete min in the min-heap, a general delete of the
matched element in the max-heap, and again an insert of that element
from the max-heap.

{ delete max: Performs a find max in the max-heap and compares the
result with the unmatched element if there is one. If the unmatched element
is larger, it deletes and returns the unmatched element. Otherwise it
performs a delete max in the max-heap, a general delete of the
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matched element in the min-heap, and again an insert of that element
from the min-heap.

{ merge: Performs a merge for the two min-heaps and another merge for
the two max-heaps, and if there are two unmatched elements, one from each
of the merged heaps, it matches them and inserts the smaller into the
min-heap, the larger into the max-heap.

If we apply this construction to the heap invented by Brodal (1995) that we
described in the previous section, which supported insert and merge in
O(1) and delete min as well as arbitrary deletions in O(log n), we obtain a
double-ended heap with insert, find min, find max, merge in O(1) and
delete min, delete max in O(log n) time (Chong and Sahni 2000; Makris
et al. 2003). Brodal (1995) himself proposed element duplication instead, which
gives exactly the same performance, but needs twice the space for the heap. But
if the objects associated with the keys are larger, this does not matter because
the objects themselves are not duplicated.

Theorem. There is a double-ended heap that supports insert, find min,
find max, merge in O(1) and delete min, delete max in O(log n)
worst-case time.

Further pointer-based double-ended heaps were proposed in Olariu, Over-
street, and Wen (1991) and Ding and Weiss (1993), which reuses the alternative
order structure of min-layers and max-layers developed in Atkinson et al. (1986)
for array-based heaps. The heaps of Atkinson et al. (1986) were also studied in
Hasham and Sack (1987) and Strothotte, Eriksson, and Vallner (1989).

A further generalization of the double-ended heap is the d-dimensional
interval heaps proposed in van Leeuwen and Wood (1993) and discussed further
by Ding and Weiss (1994). They model a set of objects, where to each object a d-
tuple of key values is attached, and one can query for the objects with minimum
or maximum ith coordinate for each i = 1, . . . , d. This looks somewhat similar
to range searching, and indeed van Leeuwen and Wood (1993) observed that
their structure allows to solve complementary orthogonal range queries, that
is, listing the points outside a given box in output-sensitive time O(log n + k).
They are realized as array-based heaps, with insert, delete min, and
delete max for each coordinate in O(log n) time.

A d-dimensional min-heap is the natural generalization of all these struc-
tures: a set of objects, each with d key values, in a structure that allows inserts,
and query for and deletion of the object with minimum ith coordinate. A
double-ended heap is a special case of a two-dimensional heap because we can
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replace each key by the pair (key,−key). Then the maximum queries translate
into minimum queries for the second coordinate. In the same way, the queries
supported by a d-dimensional interval heap are a special case of the queries in
a 2d-dimensional min-heap.

Again, one can implement this using several heaps whose elements are
linked, one heap for each coordinate (Brass 2007). The main difference is that
we cannot group the elements into d-tuples and insert one in each heap, because
it is possible that the same element is minimal for each coordinate and has thus
to be entered in each heap. The simplest way to realize this structure is element
duplication. We have d min-heaps, one for each coordinate, and we insert each
element in each heap, joining the nodes that refer to the same element in a
cyclic linked list. Then each insert reduces to d insertions in the underlying
heaps, and each delete min in one coordinate reduces to one delete min
in one heap, which gives us the beginning of the list of copies, and d − 1
general deletions at known places in the other heaps. And for a merge, we
just merge the d coordinate-heaps. Using again Brodal’s heap as the underlying
heap structure, we obtain the following bounds:

Theorem. There is a d-dimensional min-heap that supports insert, merge,
and find min in each coordinate in O(1) and delete min in each coordi-
nate in O(log n) worst-case time.

5.11 Heap-Related Structures with Constant-Time
Updates

Several structures have been studied that keep track of the minimum key in
a dynamically changing set if the changes are subject to some restrictions. In
general, because we can use a search tree to allow arbitrary insertions and
deletions in O(log n) and find the minimum in O(1), we are interested in such
situations where the updates are significantly faster than O(log n), at best in
time O(1).

The simplest example of such a structure is to keep track of the minimum
value of elements on a stack. One can view the stack as a set that changes in
a very restricted way: if y is inserted after x, then it must be deleted before
x. For the minimum of the key values of the current set, this implies that
either the insertion of y decreases the minimum, then the previous minimum
becomes irrelevant until y is deleted, or the minimum stays the same. So we
can keep track of the current minimum by using a second stack, which contains
the current minimum. For each push on the stack, we compare the current
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minimum, that is, the top of the second stack, with the new element and push
the smaller value on the second stack. For each pop, we also pop the element
of the second stack. And for a find min, we return the value on top of the
second stack. All these operations take only constant time.

Theorem. The doubled stack structure supports push, pop, and find min
in O(1) worst-case time.

5 5 5 5
3 3

5 5
3 3
7 3

5 5
3 3
7 3
8 3

5 5
3 3
7 3
8 3
2 2

5 5
3 3
7 3
8 3

5 5
3 3
7 3

Doubled Stack to Maintain the Minimum Element on the Stack:
Left Stack Contains Element, Right Stack the Current Minimum

The same problem for a queue instead of a stack is more difficult, but
also more important. A minqueue is a structure that supports the operations
enqueue, dequeue, and find min. It models a sliding window over a
sequence of items, where we want to keep track of the smallest key value in
that window. One application of a minqueue is to partition a sequence of objects
into groups of consecutive objects such that each group has a certain size and
the breakpoints have small values. There, each potential breakpoint defines
an interval of potential next breakpoints, which is a queue, and we need the
minimum value of the next breakpoint as function of the previous breakpoint.
This type of problem was first discussed by McCreight (1977) in the context
of choosing page breaks in an external-memory index structure; there, normal
heaps were used (Diehr and Faaland 1984). The same problem occurs in many
other contexts, for example, in text formatting, breaking text into lines.

A simple version of a minqueue with amortized O(1) time works as follows:
We have a queue for the objects and additionally a double-ended queue for the
minimum key values (it really needs only one-and-a-half ends). The operations
are as follows:

{ enqueue: Enqueue the object in the rear of the object queue; remove from
the rear of the minimum key queue all keys that are larger than the key of the
new object, and then add the new key in the rear of the minimum key queue.

{ dequeue: Dequeue and return the object from the front of the object
queue; if its key is the same as the key in front of the minimum key queue,
dequeue that key.

{ find min: Return the key value in front of the minimum key queue.
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Doubled Queue to Maintain the Minimum Element in a Queue:
Top Queue Contains Element, Bottom Queue the Current Minimum

This doubled queue structure takes amortized O(1) time because each object
and each key is just inserted and deleted once; but in a single enqueue operation,
there are possibly many key values removed from the minimum key queue. Here
is an implementation of the doubled queue structure.

typedef struct qu_t { key_t key;
object_t *object;
struct qu_t *next;
struct qu_t *prev; } queue_t;

queue_t *create_minqueue()
{ queue_t *entrypoint;

entrypoint = get_node();
/* create empty object queue below

entrypoint->next */
entrypoint->next = get_node();
entrypoint->next->next = entrypoint->next;
entrypoint->next->prev = entrypoint->next;
/* create empty minkey queue below

entrypoint->prev */
entrypoint->prev = get_node();
entrypoint->prev->next = entrypoint->prev;
entrypoint->prev->prev = entrypoint->prev;
/* minimum over empty set is +infty */
entrypoint->prev->key = POSINFTY;
/* empty minqueue created */
return( entrypoint );

}

int queue_empty(queue_t *qu)
{ return( qu->next->next == qu->next );
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}

key_t find_min_key(queue_t *qu)
{ return( qu->prev->prev->key );
}

object_t *find_min_obj(queue_t *qu)
{ return( qu->prev->prev->object );
}

void enqueue( object_t *new_obj, key_t new_key,
queue_t *qu)

{ queue_t *new, *tmp; tmp = NULL;
/* create and fill new node with new

object and key */
new = get_node();
new->object = new_obj; new->key = new_key;
/* insert node in rear of object queue,

as qu->next->next */
new->prev = qu->next;
qu->next->next->prev = new;
new->next = qu->next->next;
qu->next->next = new;
/* remove all larger keys from rear

of minkey queue */
while( qu->prev->next != qu->prev &&

qu->prev->next->key > new_key)
{ if( tmp != NULL )

/* return node only if we get another*/
return_node( tmp );

tmp = qu->prev->next;
/* now unlink tmp */
qu->prev->next = tmp->next;
qu->prev->next->prev = qu->prev;

}
/* create node with new key */
new = ( tmp != NULL ) ? tmp : get_node();
new->object = new_obj; new->key = new_key;
/* insert node in rear of minkey queue,
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as qu->prev->next */
new->prev = qu->prev;
qu->prev->next->prev = new;
new->next = qu->prev->next;
qu->prev->next = new;

}

object_t *dequeue(queue_t *qu)
{ queue_t *tmp; object_t *tmp_object;

if( qu->next->next == qu->next)
return( NULL );
/* dequeue from empty queue */

else
{ /* unlink node from front of

object queue */
tmp = qu->next->prev;
tmp_object = tmp->object;
qu->next->prev = tmp->prev;
qu->next->prev->next = qu->next;
/* test front of minqueue,

unlink node if equal */
if( tmp->key == qu->prev->prev->key )
{ return_node( tmp );

tmp = qu->prev->prev;
qu->prev->prev = tmp->prev;
qu->prev->prev->next = qu->prev;

}
return_node( tmp );
return( tmp_object );

}
}

void remove_minqueue(queue_t *qu)
{ queue_t *tmp;

/* link all queues together
to a list connected by next */

qu->next->prev->next = qu->prev;
qu->prev->prev->next = NULL;
/* follow the next pointers
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and return all nodes*/
do
{ tmp = qu->next;

return_node( qu );
qu = tmp;

}
while ( qu != NULL );

}

Theorem. The doubled queue is a minqueue that supports enqueue, de-
queue, and find min in O(1) amortized time.

A structure that supports all double-ended queue operations and find min
in O(1) worst-case time is described in Gajewska and Tarjan (1986), and a
further extension to allow concatenation, but only in amortized O(1) time,
occurs in Buchsbaum, Sundar, and Tarjan (1992). A different O(1) worst-case
generalization is a min-heap that discards on each insert all those elements that
have a larger key than the new element (Sundar 1989). That is exactly what
the minimum key queue did in the previously described version of a minqueue;
replacing it by the structure (Sundar 1989) gives another O(1) worst-case
minqueue. A minqueue that additionally supports key change operations, also
in O(1) amortized time, was given, together with some applications in Suzuki,
Ishiguro, and Nishizeki (1992).

Some heap structures have been proposed that support the general heap
operations, but take advantage of some special update pattern if it is present.
The queaps of Iacono and Langerman (2002) give O(1) time insert and
amortized O(log k) time delete min, where k is the number of items in
the heap that are in it longer than the current minimum item. Thus, the queap
is fast if the minimum item is always one of the oldest, so the items are
inserted approximately in increasing order. This is achieved by having separate
structures for “old” and “new” elements, converting all “new” to “old” whenever
the current minimum lies in the “new” part. This way, a delete min operation
needs to look up the minimum in both parts, but in most cases it has to perform
the deletion only on the small “old” part.

The fishspear structure by Fischer and Paterson (1994) performs better in
the opposite case, when current minimum usually is in the heap only for a
short time. This will happen if the inserted elements are chosen from a fixed
distribution. The fishspear takes an amortized O(log m) time for an insert,
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where m is the maximum number of elements smaller than the inserted element
that exist at any moment before it is deleted again, and amortized O(1) time
for a delete min.

A similar property was proved by Iacono (2000) for pairing heaps: the
amortized complexity of delete min in a pairing heap is O(log min(n,m)),
where n is the size of the heap at the time of the deletion, and m is the number
of operations between the insertion and the deletion of the element.

As with finger trees and splay trees, this advantage for special update patterns
given by a queap or a fishspear is too small to perform better than a good ordinary
heap unless the update pattern is extremely strong.



6

Union-Find and Related Structures

The problem known as “union-find” is to keep track of a partition of a set,
in which partition classes may be merged, and we want to answer queries
whether two elements are in the same class. This problem was first discussed
in Arden, Galler, and Graham (1961)1 and Galler and Fisher (1964) with the
motivation of keeping track of the equivalence of identifiers, because in Fortran
and several other early languages it was possible to give several names to the
same variable. Later, much more important applications were found, and this
step of keeping track of a partition of a set whose classes grow together can be
found, for example, in the minimum-spanning-tree algorithms of Kruskal and
Borůvka.

The large number of papers generated by this problem and its relatives are
not so much motivated by the difficult structures they use, but by the difficulties
of the analysis. Also, it turned out that the correct answer very much depends on
the exact question and the computational model. This is one of the two places
in algorithms2 where the inverse Ackermann function occurs, an extremely
slow-growing function, and it not only occurs as a technical device, but also
gives the correct order of the amortized complexity of the classical solution to
this problem.

The structures related to the union-find problem are again, like the binary
search trees, useful building blocks in the construction of more complicated
data structures. But here one has to be more careful about which operations
exactly need to be supported.

1 One of the earliest algorithms paper in our references.
2 And almost the rest of mathematics. The other place is in Davenport–Schinzel sequences,

which occur by their application to the complexity of arrangements in a number of
computational geometry results.
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6.1 Union-Find: Merging Classes of a Partition

The classical version of the union-find structure works in the following model:
there is a set of items on which some partition is maintained. Items can be
inserted into that set, each initially forming a one-element partition class. Items
are identified by a pointer, a finger into the structure, which is obtained from the
insertion operation. This makes access to an item a constant-time operation;
there is no key involved in this structure. The underlying partition can be
changed by joining two classes, the classes identified by giving items in these
classes. And the partition can be queried by asking whether two items are in
the same class. So we have the following operations:

{ insert: Takes an item, returns pointer to the node representing the item,
and creates a one-element class for it.

{ join: Takes two pointers to nodes and joins the classes containing these
items.

{ same class: Takes two pointers to nodes and decides whether their items
are in the same class.

One could implement these operations in many different ways. One possibility
would be to keep a table with the class for each item; then one could query
fast, just looking up two table entries and checking whether they are the same,
but to join two classes, one would have to change all entries in one class. Or
one could just keep the graph of pairs of items that were joined, allowing very
fast updates by inserting one edge, and then decide at query time whether two
items are in the same connected component.

But a much better class of methods is based on the following idea, which
occurred first in Galler and Fisher (1964). We represent each class by a directed
tree, with all edges oriented to the root. Then each node representing an item

a b c d e f g h i

j k l m n o p q r

Classes {a, b}, {c, d, e, f, k, l,m}, {g, h, i, o, p, q, r}, {j }
with Marked Root Nodes
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needs just one outgoing pointer to that neighbor in the tree that is nearer to the
root; for the root itself we use the NULL pointer.

Given this representation, we can query whether two items are in the same
class by following from both nodes the path to their respective roots; they are
in the same class if they reach the same root. And we can join two classes by
connecting the root of one tree to the root of the other tree.

a b c d e f g h i

j k l m n o p q r

Joining Two Classes by Connecting One Root to the Other

This outline still leaves a lot of freedom: we have to decide on joining two
trees, which of the two roots should become the root of the union. And we
can restructure the tree, ideally making all vertices point directly to the root,
because the time taken by the query is the length of the path to the root. In the
best-known solution, we use the following two techniques:

{ Union by rank: Each node has another field, the rank, which starts on
insertion as 0. Each time we join two classes, the root with the larger rank
becomes the new root, and if both roots have the same rank, we increase the
rank in one of them.

{ Path compression: In each query and each update, when we followed a path
to the root, we go along that path a second time and make all the nodes
point directly to the root.

Both heuristics were introduced separately, but simultaneously, in several pa-
pers,3 for example, Bayer (1972b), they were combined in Hopcroft and Ullman
(1973).

With this, we can now write down an implementation of this very simple
structure.

3 And inaccessible technical reports and personal communications.
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a b c d e f g h i

j k l m n o p q r

a b c d e f g h i

j k l m n o p q r

a b c d e f g h i

j k l m n o p q r

Joining the Classes with Elements a and c:
Union by Rank Followed by Path Compression

typedef struct uf_n_t {
int rank;
item_t *item;
struct uf_n_t *up; } uf_node_t;

uf_node_t *insert(item_t *new_item)
{ uf_node_t *new_node;

new_node = get_node();
new_node->item = new_item;
new_node->rank = 0;
new_node->up = NULL;
return( new_node );

}
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int same_class( uf_node_t *node1,
uf_node_t *node2 )

{ uf_node_t *root1, *root2, *tmp;
/* find both roots */
for( root1 = node1; root1->up != NULL;
root1 = root1->up)

; /* follow path to root for node1 */
for( root2 = node2; root2->up != NULL;
root2 = root2->up)

; /* follow path to root for node2 */
/* make both paths point directly to
their respective roots */
tmp = node1->up;
while( tmp != root1 && tmp != NULL )
{ node1->up = root1;

node1 = tmp; tmp = node1->up;
}
tmp = node2->up;
while( tmp != root2 && tmp != NULL )
{ node2->up = root2;

node2 = tmp; tmp = node2->up;
}
/* return result */
return( root1 == root2 );

}

void join( uf_node_t *node1, uf_node_t *node2 )
{ uf_node_t *root1, *root2, *new_root, *tmp;

/* find both roots */
for( root1 = node1; root1->up != NULL;
root1 = root1->up)

; /* follow path to root for node1 */
for( root2 = node2; root2->up != NULL;
root2 = root2->up)

; /* follow path to root for node2 */
/* perform union by rank */
if( root1->rank > root2->rank )
{ new_root = root1; root2->up = new_root;
}
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else if( root1->rank < root2->rank )
{ new_root = root2; root1->up = new_root;
}
else /* same rank */
{ new_root = root1; root2->up = new_root;

new_root->rank += 1;
}
/* make both paths point directly to
the new root */
tmp = node1->up;
while( tmp != new_root && tmp != NULL )
{ node1->up = new_root;

node1 = tmp; tmp = node1->up;
}
tmp = node2->up;
while( tmp != new_root && tmp != NULL )
{ node2->up = new_root;

node2 = tmp; tmp = node2->up;
}

}

The complexity of each of these operations is of the order of the length of the
path taken to reach the root, so its worst-case complexity is the height of the
trees that result from these operations. It is easy to see that the height of these
trees, even without path compression, is O(log n). When constructing bad trees
by a sequence of these operations, we can avoid path compression if we always
perform the join operations on the roots. By this we can construct trees
of height �(log n), so the worst-case performance of this structure is indeed
O(log n). Union by rank is just one of several very similar rules, as union by
height or union by weight, to select in a join operation which of the roots to
become the new root; any of these rules has the same effect: a tree of height h

has at least 2h nodes.
This O(log n) upper bound on the complexity of an operation in this structure

is tight, but only for a single operation: after we performed an operation in which
we took a long time, we leave the tree representation in a much better state by
the path compression. We cannot have a long sequence of operations, each of
them taking �(log n) time. This suggests that a better amortized bound should
be possible, and indeed it is. After earlier bounds in Fischer (1972), Hopcroft
and Ullman (1973), and Lao (1979), Tarjan (1975) obtained a famous result
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that expresses the amortized complexity in a version of the inverse Ackermann
function.

The inverse Ackermann function is an extremely slow-growing function.
The classical Ackermann function was defined by Ackermann as an example
of an extremely fast-growing function for a problem in computability by

A(m, 0) = 0 for m ≥ 1,

A(m, 1) = A(m − 1, 2) for m ≥ 1,

A(0, n) = 2n for n ≥ 0,

A(m, n) = A (m − 1, A(m, n − 1)) for m ≥ 1, n ≥ 2.

Because this Ackermann function has two variables, it is unfortunately not quite
as clear what its inverse is. Several distinct functions exist under this name,
some of them for technical reasons quite strange (e.g., Tarjan (1975) used
αTarjan(m, n) = min{k | A(k, 4�m

n
� > log n}). We define as inverse Ackermann

function the function

α(n) = min{i | A(i, 1) > n}.

With this function, we can now state the performance of the given union-find
structure.

Theorem. The union-find structure with union by rank and path compression
supports the operations insert in O(1) and same set and join in O(log n)
time on a set with n elements. A sequence of m same set or join operations
on a set with n elements takes O((m + n)α(n)) time.

We have already observed the first part; the maximum length of any path
on a set with n elements is O(log n), so the time of any single operation is
O(log n).

To prove the second part, the amortized bound, we define a sequence of
partitions (Bi)∞i=0 of IN. EachBi is a partition of IN into blocks that are intervals;
the j th block in Bi is the interval [A(i, j ), A(i, j + 1) − 1]. Each block in the
ith partition is a union of blocks in the (i − 1)th partition, because

[A(i, 0), A(i, 1) − 1] = [A(i − 1, 0), A(i − 1, 2) − 1]
= [A(i − 1, 0), A(i − 1, 1) − 1]
∪ [A(i − 1, 1), A(i − 1, 2) − 1]
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and

[A(i, j ), A(i, j + 1) − 1] = [A(i − 1, A(i, j − 1)), A(i − 1, A(i, j )) − 1]

= [A(i − 1, A(i, j − 1)), A(i − 1, A(i, j − 1) + 1) − 1]

∪ · · · ∪ [A (i − 1, A(i, j ) − 1) , A (i − 1, A(i, j )) − 1] .

Let bij denote the number of blocks in Bi−1 that together form the j th block
of Bi , then bi0 = 2 and bij = A(i, j ) − A(i, j − 1). Now α(n) is the smallest i

such that {1, . . . , n} is contained in the 0th block of Bi .
Define the level of a node v at a moment in our sequence of operations by

level (v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if v->next = NULL

min

⎧⎨
⎩i |

v->rank and
v->next->rank are in
the same class of Bi

⎫⎬
⎭ else.

If we follow a node v over a sequence of operations, initially its rank is 0 and
then it increases by some join operations, but only while v is still the root of
its tree. Once v becomes a nonroot node, its rank cannot change further and
it is not possible for a nonroot node to become root again. So the rank of v is
monotone increasing while it is a root node, and then becomes fixed. Up to that
moment, the level (v) is 0; once v becomes a nonroot node, level (v) increases.
Now v->next->rank exists, and by further operations, it can only increase.
Because v->rank is now fixed, level (v) can only increase.

To measure the total work done with a node v over a sequence of m opera-
tions, we first observe that the work done with v while v is a root node is O(1)
in each operation and each operation touches at most two root nodes, and so
the part of the work done on root nodes by the m operations is O(m). The main
contribution is the work on nonroot nodes, that is, the path compression.

Consider a path being compressed; this requires O(1) work for each node
on the path. Classify the nodes on the path in two groups as follows:

{ v belongs to group 1 if there is a node w on the same path, nearer to the
root, with level (v) = level (w).

{ Else v is the last node with its level on the path and belongs to group 2.

Each operation performs at most two path compressions, and on each path there
are at most α(n) nodes of group 2 because there are only α(n) distinct levels.
So the total work spent in m operations on group 2 nodes is O(mα(n)).

It remains to bound the work done on nodes during path compression while
they belong to group 1. Suppose x is such a node and at the moment of this path
compression level (x) = i. Thus, x->rank and x->next->rank belong to
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the same class in Bi , but not in Bi−1. Because x is of group 1, there is another
node y on the path, nearer to the root, which also has level (y) = i. Let z be
the root. Because along the path the ranks are increasing, we have

x->rank < x->next->rank ≤ y->rank < y->next->rank ≤ z->rank,

and along this chain we move at least twice in Bi−1 one class on. So z->rank
and x->next->rank are not in the same class ofBi−1. Because after the path
compression z will be x->next, this implies that in each path compression in
which x participates as vertex of group 1, and while being on level i, the rank
of x->next moves to a higher class in Bi−1, but stays in the same class of Bi .

If x is a nonroot node for which x->rank is contained in the j th class of
Bi , then x can participate as vertex of group 1, while being on level i, in at
most bij − 1 path compressions.

Let nij be the number of nodes whose rank is in the j th class of Bi when
they become nonroot nodes and the rank becomes fixed. Then the total work
done by our m operations on these nodes by path compressions in which they
belong to group 1 is

α(n)∑
i=0

∑
j

nij (bij − 1).

To bound the nij , we observe that there are at most n
2k nodes of rank k; for any

node that reaches rank k is root of a tree of at least 2k nodes, and these node
sets are disjoint. So

nij ≤
A(i,j+1)−1∑
k=A(i,j )

n

2k
<

∞∑
k=A(i,j )

n

2k
= n

2A(i,j )−1
.

Putting these bounds, and the trivial ni0 ≤ n, together, we obtain for the work
on group 1 nodes

α(n)∑
i=0

∑
j≥0

nij (bij − 1) =
α(n)∑
i=0

ni0(bi0 − 1) +
α(n)∑
i=0

∑
j≥1

nij (bij − 1)

≤ (α(n) + 1)n +
α(n)∑
i=0

∑
j≥1

n

2A(i,j )−1
(A(i, j ) − A(i, j − 1) − 1)

≤ (α(n) + 1)n +
α(n)∑
i=0

2n
∑
j≥1

1

2A(i,j )
(A(i, j ))

≤ (α(n) + 1)n +
α(n)∑
i=0

2n
∑

k≥A(i,1)

k

2k
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= (α(n) + 1)n +
α(n)∑
i=0

2n
A(i, 1) + 1

2A(i,1)−1

= (α(n) + 1)n + 8n

α(n)∑
i=0

A(i, 1) + 1

2A(i,1)+1

< (α(n) + 1)n + 8n

∞∑
i=0

A(i, 1) + 1

2A(i,1)+1

< (α(n) + 1)n + 8n
A(0, 1) + 2

2A(0,1)
= n(α(n) + 1 + 8).

Together with the O(m) work done in the roots and the O(mα(n)) work done
in group 2 nodes, this gives a total complexity of O((m + n)α(n)).

This proof followed Tarjan (1975, 1983b). Alternative methods of analysis
of this structure were proposed in Harfst and Reingold (2000) and Seidel and
Sharir (2005); they all lead to the same result. Path compression is, like union
by rank, just one of several rules that have the same effect and lead to the
same bounds, but require different proofs (Tarjan and van Leeuwen 1984).
This amortized bound is, subject to some restrictions on m, n, known to be best
possible in several computation models (Tarjan 1979a, b; Banachowski 1980;
Tarjan and van Leeuwen 1984; Fredman and Saks 1989; La Poutré 1990a,
b), so the occurrence of the inverse Ackermann function is not an artifact of
the proof.

The amortized bound, as it is stated, is useful only if the number of operations
m is at least as large as the number of elements n. But the number of nontrivial
join operations is at most n − 1, so the interesting case is the diagonal case.
Our model differs from the model underlying the published papers on this
problem because they create a separate find operation to find the root and
perform path compression and then allow the join operation only on roots.
The amortized bound is certainly not best possible if the number of operations
is small compared to the size of the set.

The amortized complexity of the classical union-find structure is best pos-
sible, but the single-operation complexity is not. Structures with a worst-case
complexity of O( log n

log log n
) for a join or same set operation were proposed

in Blum (1986) and Smid (1990). Again these complexities are best possible
in some sense. An attempt to simultaneously achieve optimal amortized and
worst-case complexity was made in Alstrup, Ben-Amram, and Rauhe (1999).

To reduce the worst-case complexity of the union-find operations, while
keeping the same representation as set of trees oriented to their roots, we need
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to reduce the height of the trees. The height is essentially determined by the
number of nodes and the indegree of the nodes. So we need to increase the
indegree of the nodes. The idea used in Smid (1990) to achieve this is that
in those join operations in which both roots have the same height and a
small indegree, we redirect all incoming edges of one root to the other root,
so that the new root has the sum of the previous indegrees and the height is still
the same. For this, we need a list of all nodes whose outgoing edge points to
the root because we need to change all these edges. So the time of a join is
proportional to the length of this list (indegree of the root) plus the height of
the tree. Because the height of a tree with n interior nodes, all interior nodes
of degree k, is �(logk(n)) = �( log n

log k
), we cannot do better than O( log n

log log n
) with

this representation, which corresponds to k = �( log n

log log n
).

There are a number of problems to realize that structure. Our indegree
requirement for the nodes changes with n, so we cannot keep this property in
the lower nodes if n increases. Also, we specified only the way to join two trees
of the same height. We do not want to insert a tree of smaller height in the list
of lower neighbors of the root, because it would increase the length of the list
without giving many new nodes in its subtree. We overcome the first problem
by requiring that a node at height h that is not a root has at least h! nodes in its
subtree. If we maintain this condition, which is independent of n, for all nodes,
the height bound is satisfied because the total number of nodes is at most n

and h! ≤ n implies that h = O( log n

log log n
). The second problem we overcome by

making the root of small trees point not to the root of the large tree, but to some
node on the list, which points to the root of the large tree. This way, the list
does not get any longer, and if the smaller tree has height at most h − 2, the
height does not increase, either.

To give the structure in more detail now, each node has two pointers:

{ up, which is NULL for a root, points to the next node on the path to the root
for all other nodes.

{ list, which points to its list of lower neighbors for a root, points to the
next on that list for a node that is lower neighbor of the root and is
unspecified otherwise.

The node also contains two numbers: the height and the indegree. Then
the rules for joining two components with roots r and s are as follows: Let
r->height ≥ s->height ≥ 2, then

{ If r->height > s->height, all lower neighbors of s, as well as s
itself, are made to point to a lower neighbor of r.
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{ Else r->height = s->height. All lower neighbors of s are added to
the list of lower neighbors of r,
{ If r->height > r->indegree, s is made to point to one lower

neighbor of r.
{ Else s becomes the new root, with r as its only lower neighbor.

a b c d

r

x y z

s

a b c d

r

x y z s

or

a b c d x y z

r

s

or

a b c d x y z

r

s

Three Cases for Joining the Classes with Roots r and s

With these definitions, we can now give the code for the operations of the
structure.

typedef struct uf_n_t {
int height;
int indegree;
item_t *item;
struct uf_n_t *up;
struct uf_n_t *list; } uf_node_t;

uf_node_t *uf_insert(item_t *new_item)
{ uf_node_t *new_node;

new_node = get_uf_node();
new_node->item = new_item;
new_node->height = 0;
new_node->indegree = 0;
new_node->up = NULL;
new_node->list = NULL;
return( new_node );

}
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int same_class( uf_node_t *node1,
uf_node_t *node2 )

{ uf_node_t *tmp1, *tmp2;
/* find both roots */
for( tmp1 = node1; tmp1->up != NULL;

tmp1 = tmp1->up)
; /* follow path to root for node1 */

for( tmp2 = node2; tmp2->up != NULL;
tmp2 = tmp2->up)

; /* follow path to root for node2 */
/* return result */
return( tmp1 == tmp2 );

}

void join( uf_node_t *node1, uf_node_t *node2 )
{ uf_node_t *root1, *root2, *tmp;

int i;
/* find both roots */
for( root1 = node1; root1->up != NULL;

root1 = root1->up)
; /* follow path to root for node1 */

for( root2 = node2; root2->up != NULL;
root2 = root2->up)

; /* follow path to root for node2 */
if( root1->height < root2->height )
{ tmp = root1; root1 = root2; root2 = tmp;
} /* now root1 is the larger subtree */
if( root1->height >=2 )
{ /* inserting two levels below root 1,
height stays the same */

if( root2->height < root1->height )
{ tmp = root2->list;

/* go through list below root2 */
while( tmp != NULL )
{ tmp->up = root1->list;

/* point to node on root1 list */
tmp = tmp->list;

}
root2->up = root1->list;
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/* also point root2 to that node */
}
else /* root2->height == root1->height */
{ /* join root2 list to root1 list,

pointing to root1 */
tmp = root2->list; tmp->up = root1;
while( tmp->list != NULL )
{ tmp = tmp->list;

/* move to end of root2 list */
tmp->up = root1;

}
tmp->list = root1->list;
root1->list = root2->list;
/* linked lists */
root1->indegree += root2->indegree;
/* now lists joined together
below root 1 */
if( root1->indegree <= root1->height )

root2->up =root1->list;
/* point to node on root1 list */

else /* root2 becomes new root,
root1 goes below */
{ root1->up = root2;

root1->list = NULL;
root2->height += 1;
root2->indegree = 1;
root2->list = root1;

}
}

}
else /* root1->height <= 1*/
{ if( root1->height == 0 )

{ root1->height = 1;
root1->indegree = 1;
root1->list = root2;
root2->up = root1;
/* root1 is new root */

}
else /* root1->height == 1 */
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/* any root at height 1 has exactly
one lower neighbor */
{ if( root2->height == 1 )

/* both height 1 */
root2->list->up = root1;

/* now make root1 lower neighbor
of root2 */
root2->height = 2;
root2->indegree = 1;
root2->list = root1;
root1->list = NULL;
root1->up = root2;
/* now root2 is the new root */

}
}

}

In this structure, each node at height h has indegree at least h once it becomes
a nonroot node and has indegree at most h while it is the root. All the lower
neighbors of a root, which has height h, themselves have height h − 1, although
later further subtrees get attached that might have smaller height. So each
nonroot node that is at height h has at any time at least h lower neighbors that are
at height h − 1, in addition to some possible lower neighbors at smaller height.
This implies that a tree of height h in this structure contains at least (h − 1)!
nodes; so with (h − 1)! ≤ n we have the claimed bound h = O( log n

log log n
). To

summarize the performance of this structure, we state the following theorem:

Theorem. The union-find structure described before supports the operations
insert in O(1) and same set and join in O( log n

log log n
) time on a set with n

elements.

There have been many attempts to extend the structures for the union-find
problem, but even deleting an item from a class is less trivial than expected
if we expect the complexity to depend on the current size of the set after the
deletions (Kaplan, Shafrir, and Tarjan 2002a). Both the worst-case and the
amortized bounds can be adapted.4 A survey of related results and variants is

4 But Tarjan’s cryptic two-variable inverse Ackermann function gains a third variable.
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given in Galil and Italiano (1991). For special sequences of operations or if
the sequence of unions is known in advance, algorithms with linear amortized
bounds have been given in Gabow and Tarjan (1985) and Loebl and Nešetřil
(1997). A version in which some unions might be undone, returning to an
earlier state before those unions, was studied in Mannila and Ukkonen (1986),
Gambosi, Italiano, and Talamo (1988, 1991), Westbrook and Tarjan (1989);
there is an �( log n

log log n
) lower bound on the amortized complexity in a restricted

variant of the pointer machine, and this bound matches the worst-case bound
of an algorithm (Apostolico et al. 1994). A variant of union-find in which the
same-set queries are replaced by queries testing whether item x is in set Y was
discussed in Kaplan et al. (2002b).

6.2 Union-Find with Copies and Dynamic Segment Trees

A structure that kept track of general set systems would be very useful. Up to
now, our model is very restricted, the sets have to be disjoint, and we can take
only unions of them. So we keep track of a sequence of coarser and coarser
partitions until after n − 1 unions everything is in the same class. Another less
obvious, but equally important, restriction is that our elements are presented
by fingers, not by keys. There is no search-tree variant that supports the union
of two sets. Of course, we can use a search tree to keep track of the fingers and
then we get an O(log n) overhead on every operation, so the trivial O(log n)
bound for the union-find structure would be sufficient.

It turns out that the details matter very much to decide what extension of
union-find is possible and what not. If we want to keep track of a system of sets,
allowing unions and copies (or nondestructive unions), and listing of the sets,
as long as the unions occur only between disjoint sets, we can essentially keep
the speed of the union-find structure (van Kreveld and Overmars 1993). On the
other hand, if we allow arbitrary unions, there is a lower bound of �(n2) for a
sequence of n operations in a reasonable model (Lipton, Martino, and Neitzke
1997). So by allowing unions of overlapping sets, the complexity per operation
increases from sublogarithmic to at least linear; a linear-time implementation
using linked lists is trivial.

The assumption of disjointness of the sets of which unions are formed at
first seems difficult to guarantee, but it has interesting applications.

The union-copy structure by van Kreveld and Overmars keeps track of a
set of items, represented by fingers, and sets, also represented by fingers. It
supports the following operations, which are symmetric with respect to the role
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of items and sets:

{ create item: Creates representation for a new item and returns a finger
to it.

{ create set: Creates representation for a new set and returns a finger to it.
{ insert: Inserts a given item in a given set. Requires that the item was not

already contained in the set.
{ list sets: Lists all sets containing a given item.
{ list items: Lists all items contained in a given set.
{ join sets: Replaces the first set by the union of two given sets and

destroys the other set. Requires the two sets to be disjoint.
{ join items: Replaces the first item by an item that is contained in all sets

which contained one of the two given items, and destroys the other item.
Requires that there is no set that contains both items.

{ copy set: Creates representation for a new set, which is a copy of the
given set, and returns a finger to it.

{ copy item: Creates representation for a new item, which is a copy of the
given item, and returns a finger to it.

{ destroy set: Destroys the given set.
{ destroy item: Destroys the given item.

Of these operations, the creation and insertion operations are O(1), and the
complexity of the others depends on the complexity of the underlying union-
find structure, which is used as a building block of the union-copy structure. That
structure, however, cannot be directly plugged in – we need some modification.
The underlying union-find structure must also perform – in addition to the
normal operation of returning the current name (root) of the set containing a
given element – the reverse operation, listing all the elements of a set with a
given root. This is easy to add because we perform only disjoint unions: we
must attach to the root a list of pointers to the elements. These lists are just put
together in a union operation; to avoid pointers to beginning and end, we can
just use a cyclic linked list.

works
as

set
union

and

list

Building Block: Extended Union-Find Structure:
One Direction: Finds Union, Other Direction: Lists Elements
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The underlying representation of the set system is as follows: The data
structure consists of item nodes, set nodes, and sets in two extended union-find
structures – labeled A and B – which allow both normal and listing queries.
It is symmetric, like the operations supported by it, but because pointers are
necessarily directed graph edges and the two union-find structures exchange
their roles, we describe both directions.

If we wish to go from the items to the sets, the structure is as follows:

1. Each item node has exactly one outgoing edge.
2. Each set in the union-find structure A has at least two incoming edges (the

elements of the set) and exactly one outgoing edge (the current name of the
set).

3. Each set in the union-find structure B has exactly one incoming edge (the
current name of the set) and at least two outgoing edges (the elements of
the set).

4. Each set node has exactly one incoming edge.
5. An item belongs to a set if there is a directed path from the item node to the

set node.
6. Between any item node and any set node there is at most one directed path.
7. There are no edges between sets in the same structure (from A to A or from

B to B).

If we wish to go from the sets to the items, the properties 1–4 are replaced by
their reflected versions:

1′. Each set node has exactly one outgoing edge.
2′. Each set in the union-find structure B has at least two incoming edges (the

elements of the set) and exactly one outgoing edge (the current name of
the set).

3′. Each set in the union-find structure A has exactly one incoming edge (the
current name of the set) and at least two outgoing edges (the elements of
the set).

4′. Each item node has exactly one incoming edge.

So the items are connected by unique alternating paths through structures A
and B to their sets. The alternation property will be maintained in the updates
by performing a set union whenever a set is directly connected to another set
in the same structure; this preserves the existence and uniqueness of the paths
between the item nodes and the set nodes.
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A

B

B

A A

B

A

A

1 2 3 4 5 6 7

A B C D E

Structure Representing the Set System:
A = {1, 2, 3}, B = {1, 2, 3, 4}, C = {3, 5}, D = {3, 6}, E = {6, 7}

The alternation property is central because it allows us to bound the total
number of edges between the structures and make our listing queries output
sensitive. Consider all the items contained in a given set; they correspond to
a set of directed paths, which by the uniqueness of these paths has to form a
directed tree, from the set node through the nodes in A and B to the item nodes.
In this tree, each node has only one incoming edge, and each node in B has also
only one outgoing edge (by property 2′). There are no two consecutive B nodes
(alternation property), so if we contract the incoming and outgoing edges of
each B node to one edge, we get a graph on the A and item nodes, in which each
A node has at least two outgoing edges (by property 3′). So if the total number
of leaves in this tree, that is, item nodes corresponding to items contained in the
set, is k, then total number of A nodes is at most k − 1. Because each B node
subdivides an edge of this graph and each edge is subdivided at most once,
there are at most 2k − 1 B nodes in this tree. So if the set contains k elements,
there are at most 3k − 2 nodes in structures A and B that are traversed by
the tree.

If we take the sum over all sets, this gives an immediate bound on the
the total number of edges between the structures A and B and the set and
item nodes: it is of the order of the total size of the set system. Let n be
that total size, that is, the sum of the sizes of the sets in the system. Then
both structures A and B are union-find structures on an underlying set of
size n.

From this description follows immediately the algorithm for list
items. To list all items for a given set, we perform the following steps:

0. Put the initial outgoing edge of the set node on the stack.
1. While the stack is not empty, take the next edge from the stack.

1.1 If this edge goes to an item node, list that item.
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1.2 If this edge goes to union-find structure A, perform a listing query and
put all outgoing edges listed in the answer on the stack.

1.3 If this edge goes to union-find structure B, perform a naming query
and put the one outgoing edge in the answer on the stack.

If we execute this algorithm and it lists k items that are contained in the set,
we perform k times step 1.1, each taking O(1), and by the aforementioned
argument, at most 2k − 1 times step 1.3, which is a normal naming (find) query
in a set union structure. If the time for queries in the structure is uf(n), then we
need at most k uf(n) for those queries. And we perform some j ≤ k − 1 listing
queries in step 1.2, which produce a1, . . . , aj elements, with a listing query
reporting a elements taking O(1 + a) and

∑j

i=1 ai = 2k − 1. Thus, step 1.2
takes in total O(k). Thus, the total complexity of a list items query that
returns k items is output-sensitive O(k uf(n)).

The same holds for the exactly symmetrical list sets query.

A

B

B

A A

B

A

A

1 2 3 4 5 6 7

A B C D E

Listing the Items in Set B

The copy set operation is also easy and takes only constant time. Given
the set node, we follow the outgoing edge. There are only two cases:

1. The outgoing edge of the set node directly goes to an item node or to the
structure A: We create a new set node and a set with two new elements in
structure B. The two set nodes are joined to the elements in B, and the
name of the set in B is the previous outgoing pointer of the node to be
duplicated. Then we return the new set node.

2. The outgoing edge of the set node goes to the structure B: We create a new
set node and a new element in B, join the set node to the element, and
insert the element in the set that the previous outgoing edge pointed to.

Here we again need to be careful with the union-find structure because in
our original description inserting a new element in a set was no elementary
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operation, just creating a new one-element set and merging it, and the general
merge is certainly not a constant time operation. But it is easy to modify the
structure as to allow constant time insert into the same set that a given element
belongs to: just copy the up pointer without doing any path compression. We
also need to adapt all the pointers in the opposite direction. Still, all this can be
done in O(1) time. The same holds, of course, for the symmetrical operation
copy item.

A

X

A

B

X X’ X

B

X X’

B

X

B

X X’

Creating a Copy of a Set Node

The key operation is join sets. Here we are given two set nodes. The
following cases are possible for their outgoing pointers:

1. Both go to nodes in structure A: We perform a union in structure A of the
sets they point to and adjust the pointer from the union set to the set node
now representing the union.

2. The first set node points to a node in structure A and the second to a node
in structure B: We create a new element in A and make it element of the set
to which the first set node points. This new element then points to the
element in B to which the second set node pointed. The first set node now
represents the union and the second set node is discarded.

3. Both set nodes point to nodes in structure B or item nodes: We create two
new elements in structure A and join them to a new set. The elements point
to the nodes in structure B or item nodes to which the set nodes previously
pointed, the set in structure A points to the set node representing the union.

4. The first set node points to a node in structure A and the second to an item
node: We create a new element in A and make it element of the set to
which the first node points. The new element then points to the item node.

These operations require in the worst case one set union and O(1) additional
work. So the complexity of join sets and its dual join elements is
O(uf(n)).

Then we need the insert operation to insert an item in a set that up to
now does not contain it. We are given an item node and a set node, and then
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A

X

A

Y

A

X+Y

A

X

B

Y

A

X+Y

B

B

X

B

Y

B

X+Y

B

A

A

X Y

A

X+Y

Creating the Union of Two Set Nodes X and Y

the following cases are possible for their outgoing pointers:

1. The set node points to a node in structure A, and the item node points to a
node in structure A or a set node: We create two new elements in structure
B and join them to a new set. The set is then connected to the item node,
and one of the new elements points to the element in A or the set node to
which the item node previously pointed. Then we create a new element in
A, join it to the set to which the set node points, and join this new
A-element to the other new B-element.

2. The set node points to a node in structure A, and the item node points to a
node in structure B: We create a new element in A, and join it to the set to
which the set node points, and a new element in B, and join it to the set, to
which the item node points. Then we point the two new elements to each
other.

3. The set node points to a node in structure B or an item node, and the item
node points to a node in structure A or a set node: We create two new
elements in A and join them together to a set. This new set points to the set
node, and one of the new A-elements points to the B node or item node that
the set node previously pointed to. We also create two new elements in B
and join them together to a set. This new set points to the item node, and
one of the new B-elements points to the A-node or set node that the item
node previously pointed to. Then we point the two new elements to each
other.

4. The set node points to a node in structure B or an item node, and the item
node points to a node in structure B: We create two new elements in
structure A and join them to a new set. The set is then connected to the set
node, and one of the new elements points to the element in B or the item
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node to which the set node previously pointed. Then we create a new
element in B, join it to the set to which the item node points, and join this
new B-element to the other new A-element.

These operations only require to create new elements in A and B, join them
to existing sets, and adjust some pointers. So the insert operation has com-
plexity O(1).
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Inserting Item y in Set X

Finally, we need an operation to destroy a set. Again this needs some modi-
fication of the underlying union-find structure, and we need to be able to delete
an element in it. The necessary modifications for that are nontrivial if one
wants to keep the optimal complexity (Kaplan et al. 2002a) in the amortized or
worst-case optimal bounds. For destroy set, we are given a set node. The
algorithm is similar to the listing of the set and also takes time depending on
the size of the set to be destroyed.

0. Put the initial outgoing edge of the set node on the stack.
1. While the stack is not empty, take the next edge from the stack.

1.1 If this edge goes to an item node, remove that edge.
1.2 If this edge goes to union-find structure A, perform a listing query and

put all outgoing edges listed in the answer on the stack.
1.3 If this edge goes to union-find structure B and the set containing this

element contains at least two further elements, just delete the element
from B.

1.4 If this edge goes to union-find structure B and the set containing this
element contains only one other element, connect the node pointed to
by this other element directly to the node pointed to by the set in B. If
both these nodes are nodes in A, perform a union of these sets in A.
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We follow here essentially the same tree we follow during the list items
operation, but have to perform some set unions along the way. If the set we
destroy contains k elements, we visit O(k) nodes in which we perform O(k) set
unions, so the complexity of destroy set, applied to a set with k elements,
is O(k uf(n)).

So we can summarize the performance of this structure. If we use an under-
lying union-find structure that supports unions, deletions, and naming queries
in uf(n) time, insert of a new element in a set in O(1), and listing queries in
output-sensitive O(k) time, we have the following:

Theorem. The union-copy structure keeps track of a system of sets of total
size n, supporting the operations
{ create item, create set, insert, copy set, copy item in

O(1);
{ list sets, list items in output-sensitive O(k uf(n)) time if the

output has size k;
{ join sets, join items in O(uf(n)) time; and
{ destroy set, destroy item in O(k uf(n)) time if the size of the

destroyed object was k.
Here, union is allowed only for disjoint sets, and inserts may be performed
only when the item is not already contained in the set.

The structure is easiest to implement if we do not need the deletion operations
delete set and delete item and are satisfied with uf(n) = O(log n) in
the above complexity bounds. Then we can just use trees with union-by-rank for
the union-find operation. We support the node listing operation of the extended
union-find structure either by keeping a list of the nodes for each tree or by
connecting the lower neighors of each tree node into a list, and then traversing
that tree using a stack of size O(log n). In any case, we obtain a structure that
supports create item, create set, insert, copy set, copy item
in O(1), list sets, list items in output-sensitive O(k log n) time, if the
output has size k, and join sets, join items in O(log n) time.

If we wish to realize the destroy set and destroy item operations,
we must be able to remove nodes from the trees and still keep the trees balanced.
For this, we can use a set union structure with deletions, as in Kaplan et al.
(2002a), or, again slightly worse than optimal but simpler, use height-balanced
trees for the sets in the union-find structure.

We now apply the structure to segment trees. The segment trees we described
in Chapter 4 were a static structure: given a set of intervals, they were once
constructed and then answered queries. We can use the union-copy structure to
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allow at least insertion of new intervals. The idea here is that in the segment
trees we associated with each node a set of intervals, and in this set, no further
structure was required.5 In the segment trees, we just needed to be able to insert
an interval in the set associated with a node while building the tree, and at
query time to list the set associated with a node. The problem with making the
structure dynamic is that we cannot change the underlying tree; if we want to
insert an interval whose endpoints are not already existing, we should extend
the underlying tree by these new key values, which is no problem on the leaf
level, but then we need to rebalance, and the attached sets in the nodes do not
transform well under rotations.

We can solve the problem with the rotations by choosing a different repre-
sentation of the sets attached to the tree nodes, by using the above union-copy
structure. Because we only need to keep the sets we meet along a path from the
root to a leaf invariant and these sets are disjoint by their construction, we can
move a set down in the tree. We remove it from its current node, create a copy,
and join these two copies to the sets in the two lower neighbors of the node.
Creating the copy takes O(1), and the two unions take O(uf(n)). By this we
reached that the set attached to the node is empty and thus creates no problem
in a rotation. So for each rotation we need an additional O(uf(n)) time, but
there are search trees that need only O(1) rotations per insert. Because we need
O(log n) anyway to perform an insert of a new key value in the tree and uf(n)
is O(log n), this is no problem. Then the new interval has to be inserted in the
search tree, which now contains the new intervals as key values in leaves. The
new interval is inserted in the O(log n) nodes corresponding to its canonical
interval decomposition. In each of these nodes, we need to perform one insert
in the union-copy structure, which takes O(1). So the total complexity of the
insert operations in this semidynamic segment tree is O(log n). We lose some-
what in the query complexity because listing a set takes O(k uf(n)) instead of
O(k) output-sensitive time; thus, the query time becomes O(k uf(n)) to list k

intervals.

Theorem. A segment tree that uses the union-copy structure to represent the
sets associated with the tree nodes supports insert into a tree already con-
taining n intervals in O(log n) time and list intervals for a query value
contained in k intervals in O(log n + k uf(n)) output-sensitive time.

5 Different from the situation in interval trees, where the elements of the sets associated with the
tree nodes were ordered so that we could list the first k of them in O(k) time. This method
does not generalize to interval trees.
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In principle this structure is even fully dynamic. We can also delete an inter-
val if the interval is given by a finger, because our union-copy structure supports
deletion of items. The problem here is that the time of the deletion depends
on the number of nodes in which the interval is represented. This is initially
O(log n), the size of its canonical interval decomposition, but it increases each
time we copy one of the node sets in the process of a rotation. One solution
to that is to rebuild the tree sufficiently often. By this and choosing different
structures for the underlying union-find structures A and B, van Kreveld and
Overmars (1993) managed to support deletions and remove the uf(n) factor in
the query time, making the segment tree fully dynamic.

The same structure was also used to construct segment trees that allow
splitting at a key value or joining if the intervals are separated, just as in search
trees (van Kreveld and Overmars 1989).

6.3 List Splitting

In the model of the union-find data structure, we started with a very fine
partition and continued to join classes until all elements were in one class.
This suggests a dual problem: start with one class containing all elements and
iteratively split it. One conceptual problem is that we do not know how to split
a class: we have to specify which elements go into which part, but if we specify
this by enumerating all elements, the problem becomes trivial. The problem
becomes interesting only if we have a compact way to represent the split we
selected.

This is achieved in the list-splitting problem by assuming the elements are
linearly ordered, that is, given in a list. The items are identified by fingers to
the items, and a split is specified by an item: cut immediately to the right of
the given item. This way, the list is cut into smaller and smaller sublists, and
we want to answer again the question whether two given items are in the same
sublist. This problem was first stated in Hopcroft and Ullman (1973) as inverse
of the union-find problem, and then in Gabow (1985, 1990) for a problem
in combinatorial optimization and in Hoffmann et al. (1986) for sorting the
intersections of two Jordan curves. In the model of Gabow (1985), the items
also have key values, and the query for the maximum key value in the current
list of the query item is supported.

Thus, for the list-splitting problem, our model is initially an ordered list of
n items, each of them with a weight. Later this is replaced by a set of lists,
which partition the items into intervals in the original ordering. The items are
identified by fingers. The structure should, after some preprocessing, support
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the following operations:

{ split: Splits into two lists the current list containing the given item
directly to the left of the given item.

{ same list: Decides whether two given items are in the same list.
{ max weight: Returns a finger to the item of maximum weight in the same

list as the given item.

max 8

a 4 b 3 c 1 d 5 e 6 f 1 g 2 h 1 i 7 j 8 k 4 l 4

max 6 max 8

a 4 b 3 c 1 d 5 e 6 f 1 g 2 h 1 i 7 j 8 k 4 l 4

max 6 max 2 max 8

a 4 b 3 c 1 d 5 e 6 f 1 g 2 h 1 i 7 j 8 k 4 l 4

max 5 max6 max 2 max 8

a 4 b 3 c 1 d 5 e 6 f 1 g 2 h 1 i 7 j 8 k 4 l 4

List-Splitting Process, with Splits After e, h, and d

These operations can easily be supported by some balanced search trees
that support splitting, for example, height-balanced trees or red-black trees.
We build a single balanced tree from the list in O(n) time as preprocessing
and include in each node a pointer to the maximum weight item in its subtree.
Then each splitting operation splits the current tree in two trees: for each
same list query we just go up to the root of the current tree and check
whether both nodes arrive at the same root, and for the max weight query
we go to the root and report the pointer stored in it. Each of these operations
takes just O(log n) worst-case time. This is even a dynamic data structure: we
can insert new elements in a sublist as neighbor of a given element, and we can
delete elements and join lists again if the tree supports this.

Theorem. Using any balanced search tree that supports split and join, we can
build a dynamic structure that supports list splitting, with operations split,
same list, max weight, join, insert, and delete, all in O(log n)
worst-case time on a list of initial length n.

Several improvements in the amortized complexity have been proposed for
special applications; it is important here to know what exactly we need.

An improvement that gives amortized O(1) insertions, deletions, and split-
tings over a sequence of n operations initially starting with an empty list was
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used in Hoffmann et al. (1986). They observed that a level-linked (2, 4)-tree,
as described in Section 3.7, has amortized insertion and deletion cost O(1) in
this setting, as discussed in Section 3.3. Also, the splitting is amortized faster;
splitting a tree of size k into parts of size k1 and k2 takes O(log min(k1, k2)) plus
an amortized O(1) rebalancing time instead of the worst-case O(log(k1 + k2))
for arbitrary splittable balanced search trees. This is a small, but useful, differ-
ence, because these O(log min(k1, k2)) terms can themselves be amortized over
a sequence of splitting operations. This follows from a potential argument. We
use as potential of the current family of lists the sum of the potentials of the
individual lists, with the potential of a list of length k being k − log k. Then, if
we split a list of length k in two lists of length k1, k2, in time O(log min(k1, k2)),
the change of potential is

potbefore − pot after = (k − log k) − (k1 − log(k1) + k2 − log(k2))

= − log(k) + log (max(k1, k2)) + log (min(k1, k2))

= log

(
max(k1, k2)

k

)
+ log (min(k1, k2))

≥ log
1

2
+ log (min(k1, k2)) .

Performing a sequence of n − 1 splits on a list of initial size n, splitting off list
of size k1, . . . , kn−1, in time O(log k1), . . . , O(log kn−1), we get

potbeginning − pot end = (n − log n) − n(1 − log 1) = − log n

≥
(

log k1 + log
1

2

)
+ · · · +

(
log kn−1 + log

1

2

)
,

so
log k1 + · · · + log kn−1 ≤ n log 2 − log n = O(n).

Thus, over a sequence of n − 1 splits of a list, which is initially of length n, we
get an amortized time bound of O(1) per split in this setting.

In this structure, it is important that the nodes for the queries are identified
by fingers; otherwise we cannot avoid �(log n) time just to find the node. This
problem did not exist in the splittable search-tree version of the structure; there
we could, for example, identify nodes by their number in the original list. For
the queries, we can take some advantage of the finger search allowed by a
level-linked tree, so we can answer same list queries for two items given
by fingers in time O(log d), where d is their distance in the original list, before
the splitting, or the length of the list currently containing either of the items.

A different strategy of amortized improvement was followed by Hopcroft
and Ullman (1973) and Gabow (1985); they increase the degree of the nodes
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in the tree model used to represent the lists. This decreases the height of
the trees and allows by this faster same list queries. Because we need to
split all nodes along the path to the root if we split a list represented as tree,
nodes of large degree are expensive in the worst case. But if we start with a
list of length n and do not allow any insertions or deletions, only n − 1 split
operations, then the amortized performance is better. Gabow (1985) used a
blocking scheme related to the partitions Bi , which we used in Section 6.1,
to obtain a total complexity of O(nα(n)) for such a sequence of operations.
This gives an amortized O(α(n)) complexity for the splitting and a worst-case
complexity O(α(n)) for the same set queries. If we want a uniform bound
on the splits and queries, la Poutré (1990b) showed that Gabow’s structure has
optimal amortized complexity.

If we may view the lists as subintervals of a fixed interval, it is also natural
to join the intervals again so as to join sublists that were consecutive in the
original list. This is the union-split–find problem; it was studied by van Emde
Boas, Kaas, and Zijlstra (1977) and Mehlhorn, Näher, and Alt (1988). The
algorithm from van Emde Boas et al. (1977) solves this problem with an
O(log log n) worst-case complexity for each operation, which was shown to be
optimal (Mehlhorn et al. 1988). An interesting side issue is that the “separation
assumption” here makes a big difference. This is a technical assumption on the
algorithms in a pointer machine that was introduced by Tarjan and used as added
condition in all his lower bounds for the union-find and related problems; only
la Poutré (1990a, b) showed that this assumption can be removed from those
lower bounds. But for the union-split-find problem, Mehlhorn et al. (1988)
showed that any algorithm that satisfies the “separation assumption” needs
�(log n) time, whereas the optimal algorithm has complexity �(log log n).

6.4 Problems on Root-Directed Trees

The structures we used for the union-find structure were directed trees with
all edges directed to the root. For the union-find structures, these were just a
tool for defining the data structure, but there are also problems for which this
type of tree is the underlying abstract object. The best-studied problem here
concerns least common ancestor (lca) queries on such a tree: given two nodes
of the tree, each node defines a path to the root, what is the first node that lies
on both paths? One can interpret the underlying tree as a family tree, then this
node is the first common ancestor, or one could interpret the tree as an ordered
set, then this node is the meet (or join) of the given nodes. Root-directed tree
can represent many kinds of things, for example, Sharir (1982) used them to
represent sparse functions on a finites and their concatenation.
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x

y

lca(x,y)

Root-Directed Tree with Two Nodes x, y, and Their lca(x, y)

This structure was first studied in Aho, Hopcroft, and Ullman (1976); at
the same time they also studied the union-find structure. This problem has
developed many variants, depending on the extent to which we may change the
tree, adding only leaves or linking entire subtrees, linking subtrees anywhere or
only to the root; also there are offline variants in which all the operations must
be announced in advance before the queries have to be answered. Numerous
possible combinations of this with the relevant literature are listed in Alstrup
and Thorup (2000).

The structure keeps track of a set of root-directed trees and supports at least
the following operations:

{ create tree: Creates a new tree with just one node, the root, and returns
a pointer to that root.

{ add leaf: Adds a new leaf that is linked to a given node and returns a
pointer to that new leaf node.

{ lca: Returns a pointer to the least common ancestor of the two given nodes
or NULL if they are not in the same tree.

Much stronger than simply adding leaves is the linking of entire subtrees, but
not all structures support it.

{ link: Takes two nodes x and y and different subtrees, of which x is root of
its subtree, and links the subtrees by introducing an edge from x to y.

There are also reverse operations to add leaf and link, but again they are
more difficult to realize.

{ delete leaf: Removes a given node, which must be a leaf.
{ cut: Removes the link from a given node to its upper neighbor, making the

given node the root of a new tree.

There are several additional operations that might be useful and are supported
by some structures:

{ find root: Returns a pointer to the root of a given node.
{ depth: Returns the distance to the root of a given node.
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An optimal method for create tree, link, and lca was found by Alstrup
and Thorup (2000), in the pointer-machine model, where it matches a lower
bound by Harel and Tarjan (1984), improving earlier structures in Aho et al.
(1976), Maier (1979), Harel and Tarjan (1984), and Tsakalidis (1988). Related
problems were also studied in Gabow (1990), Gambosi, Protasi, and Talamo
(1993), Buchsbaum et al. (1998), Cole and Hariharan (2005), and Georgiadis,
Tarjan, and Werneck (2006). The method of Alstrup and Thorup (2000)
performs a sequence of n link and m lca operations on a set of n nodes in
time O(n + m log log n), so with O(log log(n)) amortized time per operation.
We will describe here only several simpler structures, which were combined
by Alstrup and Thorup to overcome the limitations of the individual structures.

One of these structures allows lca queries in time O(log h), where h is
the height of the underlying tree. So if the tree, of height O(log n), itself is
balanced, this already gives us the O(log log n) performance we aim for. But
the structure does not support the general link operation, only add leaf,
and additionally find root, depth, and delete leaf.

The idea of this structure is binary search on the paths from the given nodes
to the root. Suppose first that both nodes are at the same depth and then they
are joined by paths of equal length to the root, and we ask for the smallest i

such that the ith node on both paths is the same. If we add for each node a
list of forward pointers up to the 2j th node along the path to the root, we can
find that first common node by binary search. To achieve O(log h) time, the
forward pointers should be tested in the sequence from largest to smallest, so
each pointer length will be tested only once.

x y

lca

Root-Directed Tree, with Nodes x, y, lca(x, y),
and Forward Pointers of Length 2j from x and y
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If the given nodes are not at the same depth, but one at depth k1, k2 with
k1 > k2, then we can use the same forward pointers to replace the node at
depth k1 by the node along its path to the root k1 − k2 steps on, reducing
the general case to the equal depth case. This idea of binary search on the
paths was already introduced in Aho et al. (1976) and extended and adapted in
Tsakalidis (1988) and Alstrup and Thorup (2000). We need in each node that
list of O(log h) forward pointers. The depth of the node could be recovered
again by binary search with the forward pointers, but it is as easy to store it
in the node. This gives a query time of O(log h) and a space requirement of
O(n log h); the space requirement can be reduced to O(n) by attaching the list
of forward pointers not to all nodes, but only to a fraction of 1

log h
of them: then

each query starts by moving upward to the next node with forward pointers.
The fundamental limitation of this structure is that there is no way to update
all the lists after a link operation. Adding a new leaf and constructing its list
from the available lists is easy, but for a link we would have to extend many
lists. So the performance of this structure is the following:

Theorem. The lca structure based on trees with lists of exponential forward
pointers attached to the nodes supports create tree, depth in O(1) and
add leaf, delete leaf, lca, and find root in time O(log h), where
h is the maximum height of the trees in the underlying set.

This structure is easy to implement. We use an up pointer to represent the
edges in the underlying tree and a next pointer to connect the list of forward
pointers, with a prev pointer to make it a doubly linked list. The tree node
is simultaneously also the first list node; in the later list nodes, the up pointer
is used to point to the corresponding list item for the node 2j steps ahead. A
minor problem with this arrangement is that we need the existence of list nodes
as target of the incoming edges even if there are no outgoing edges, and the
number of list nodes needed for incoming edges depends not on the depth of
the tree node itself but on the maximum depth of tree nodes below the current
node. The solution used here is to add list nodes to the target list as they are
required. An alternative would be to immediately create for each tree node a
list with list nodes of all orders 2j less than the depth of the node. Then all but
the last one of these list nodes would have a correct target node for their up
pointers; the last node would have only incoming, but no outgoing, edges.

typedef struct lca_n_t {
int depth;
item_t *item;
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struct lca_n_t *up;
struct lca_n_t *next;
struct lca_n_t *prev;

} lca_node_t;

lca_node_t *create_tree(item_t *new_item)
{ lca_node_t *new_node;

new_node = get_lca_node();
new_node->item = new_item;
new_node->depth = 0; new_node->prev = NULL;
new_node->up = NULL; new_node->next = NULL;
return( new_node );

}

lca_node_t *add_leaf(lca_node_t *node,
item_t *new_item)

{ lca_node_t *new_node;
/* create tree node */
new_node = get_lca_node();
new_node->item = new_item;
new_node->depth = node->depth + 1;
new_node->up = node; new_node->prev = NULL;
/* now create new list of forward pointers */
{ lca_node_t *tmp; int i;

tmp = new_node;
for( i = new_node->depth; i>1 ; i /=2 )
{ /* add node to new_node list */

tmp->next = get_lca_node();
tmp->next->prev = tmp;
tmp->next->depth = tmp->depth;
if( tmp->up->up->next == NULL )
{ /* create new target node */

tmp->up->up->next = get_lca_node();
tmp->up->up->next->prev =
tmp->up->up;
tmp->up->up->next->depth =
tmp->up->up->depth;
tmp->up->up->next->next = NULL;
tmp->up->up->next->up = NULL;
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} /* now set forward pointer */
tmp->next->up = tmp->up->up->next;
tmp = tmp->next;

} /* and finish list */
tmp->next = NULL;

}
return( new_node );

}

int depth(lca_node_t *node)
{ return( node->depth );
}

lca_node_t *lca(lca_node_t *node1,
lca_node_t *node2 )

{ lca_node_t *tmp; int diff;
if( node1->depth < node2->depth )
{ tmp = node1; node1 = node2; node2 = tmp;
} /* now node1 has larger depth. Move up to
the same depth */
{ int diff;

diff = node1->depth - node2->depth;
while( diff > 1 )
{ if( diff% 2 == 1 )

node1 = node1->up->next;
else

node1 = node1->next;
diff /= 2;

}
if( diff == 1 )

node1 = node1->up;
while( node1->prev != NULL )

node1 = node1->prev; /* move
back to beginning of list */

} /* now both nodes at same depth */
if( node1 == node2 )

return( node1 );
/* if not the same, perform exponential
search */
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{ int current_depth, step_size;
current_depth = node1->depth;
step_size = 1;
while( current_depth >= 2* step_size )
{ node1 = node1->next;

node2 = node2->next;
step_size *= 2;

} /* maximum stepsize, now go up,
and decrease stepsize */
while( current_depth >= 1 )
{ if( step_size > current_depth )

{ node1 = node1->prev;
node2 = node2->prev;
step_size /= 2; /* steps too large,
halve size */

}
else if( node1->up != node2->up )
{ node1 = node1->up; /* step up

still below lca */
node2 = node2->up;
current_depth -= step_size;

}
else /* node1->up == node2->up */
{ if( step_size > 1) /* upper bound

for lca */
{ node1 = node1->prev;

node2 = node2->prev;
step_size /= 2;

}
else /* immediately below lca */

return( node1->up );
}

}
return( NULL ); /* different trees */

}
}

We used explicit numbers for the depth in this lca code; we could instead
just have tested the existence of pointers.
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This structure also supports a different type of query, the level
ancestor query: given a node, what is the node k steps nearer to the root?
This is just the same binary search on the path to the root, using the list of
forward pointers, so this query can again be answered in O(log h) time. Level
ancestor queries were studied in Berkman and Vishkin (1994), Alstrup and
Holm (2000), and Bender and Farach-Colton (2004). Maier (1979) and Alstrup
and Holm (2000) used a different scheme of forward pointers. Instead of at-
taching to each node n a list of pointers to the nodes 2i steps up from n, for all
possible i, they attach two groups of pointers to each node: one containing a
list of pointers to the nodes j steps up for all j ≤ 2r(n) and another containing
pointers to the next nodes up that have larger values of r(n). Then the second
group of pointers is used to reach in O(1) steps a node for which the pointer
to the searched-for node is in the first group of pointers. The first group of
pointers is quite large for some nodes, but by the proper choice of the function
r(n), it is only O(1) on the average. If the groups of pointers can be realized
as arrays, this allows one to answer the level ancestor queries in O(1)
time. In our pointer-machine model, we would have to use a tree to find the
j th pointer of a group, which gives again the worst-case time of O(log h) we
already had with the simple list of exponential-steps forward pointers. And sup-
porting updates in this structure is again quite complicated. Tsakalidis (1988)
uses yet another system of pointers, which gives again O(log h) query time,
but supports adding leaves and deleting arbitrary nodes in amortized constant
time. The structure described in Bender and Farach-Colton (2004) also supports
answers to level ancestor queries in O(1), but it again needs arrays of
pointers, and it is a static structure not allowing any updates.

The performance of the aforementioned structures depends on the height h

of the tree being small. To reach the O(log log n) performance instead of the
O(log h), one can transform the underlying tree. This technique was introduced
by Sleator and Tarjan (1983) and used in Harel and Tarjan (1984) and Alstrup
and Thorup (2000). The idea is to partition the root-oriented tree into oriented
paths. The compressed graph has these paths as vertices, each path represented
by the node nearest to the root, which is called the apex of the path. Two vertices
in the compressed tree are connected by an edge if there is some edge in the
original tree between the paths, that is, going from the apex of one path to some
node on the other path. If we can answer lca queries on the compressed tree,
we can almost recover the lca query on the original tree.

We need slightly more information from the query in the compressed tree:
to find the lca of nodes x and y, we find first the path p that contains that lca
which is a usual lca query in the compressed tree. The paths from x and y to
the root in the original tree enter the path p at vertices x̂ and ŷ and then follow
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p to the apex of p. So the lca, which is the first common node of these paths,
is that node of x̂ and ŷ which is nearer to the root, so has smaller depth.

One method to get this additional information is to use as representation
of the compressed tree the following structure: an oriented tree with all the
original nodes and one additional node as representative for each path; within
each path, all nodes point to the representative of the path and that itself points
to the node to which the apex of the path pointed. On this tree, any lca query
of the original tree will give one of the path representatives as answer because
all original nodes have indegree 1. But if we extend our lca query code to
give back the two nodes immediately preceding the first common node on the
two paths, as is easily done, then the correct lca is that of the two nodes that
in the original graph has smaller depth.

The usefulness of this compression depends on whether it actually decreases
the height. But this is easy. To define the partition into paths, we have to choose
for each node one of its incoming edges. If a large part of the subtree below
the current node, for example, more than 2

3 of it, is below one of its lower
neighbors, then we choose the edge to that lower neighbor; otherwise we are
free to choose any edge to a lower neighbor. Then the compressed tree has
height O(log n) because each edge in the compressed tree corresponds to an
edge in the original tree along which the size of the subtree decreased by at
least a factor of 2

3 .
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Root-Directed Tree, Partitioned into Paths, and Compressed Tree
Edges Entering a Path Vertex Are Labeled by the Depth in the Path

Using only this compressed tree representation, combined with a trivial
search for the lca by walking along the paths to the root and looking for the
first common vertex, one obtains a structure with O(log n) query time. We have
to store in each tree node the distance on the path to the apex of the path; then
we can compute the depth of a node in O(log n) by following the path in the
compressed tree and summing up the distances. After we have the depth of
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both query nodes, we can go up again this path of length O(log n) and find the
first common node of both paths, which must be at the same depth. Then we
know the compressed node that contains the answer to the lca query and can
select the right node in original tree by going one step back in the compressed
tree and comparing the depth of the upper neighbors.

When we want to use this structure to link two trees, we have the problem
that we might have to change the path structure in the nodes that are linked,
and possibly all paths above; and this can force us to visit all nodes of those
paths to update the compressed tree. One solution is to realize the compressed
nodes not only by pointers to the path representative but build a balanced search
tree within each compressed node for the path nodes with their depth as key.
This allows split and join of individual nodes in O(log n), but then the time to
traverse a single compressed node also becomes �(log n).

Theorem. The lca structure based on compressed trees, with compressed tree
nodes realized as search trees, supports create tree in O(1), and lca,
link, depth, find root in worst-case time O((log n)2) on a set with n

elements.

Sleator and Tarjan (1983) outline a reduction of this complexity from worst-
case O((log n)2) to amortized O(log n) using biased search trees (Bent et al.
1985), or in Tarjan (1983b) using splay trees.

The completely static version of this problem also received some attention:
given a root-directed tree of size n, preprocess it in time O(n) such that lca
queries, or at least comparison queries, can be answered fast. Already Harel and
Tarjan (1984) gave a method for this, on a word-based RAM, which answered
lca queries in O(1). There it is related to the problem of preprocessing an array
of numbers such that for any index range the minimum number in that range can
be found in O(1) (Wen 1994). Some claimed applications (Kaplan, Milo, and
Shabo 2002) motivated further study in the constants involved, specifically for
labeling schemes such that based on the labels alone one can decide comparison
queries; labels of size log n + O(

√
log n) are sufficient for that (Alstrup and

Rauhe 2002), improving Abiteboul, Kaplan, and Milo (2001). A survey of
related results is given in Alstrup et al. (2002).

Asking lca queries naturally extend from root-directed tree-structured
orders to more general orders. Arbitrarily directed trees were discussed in
Nykänen and Ukkonen (1994); if we do not require all edges to be directed to
the root, two elements might not have any common ancestor, but if they have
one, it is unique, and the techniques for the root-directed trees generalize to
this situation. The natural models for lca queries, in which the lca always
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exists and is unique, are semilattices and lattices. For these, there is no rea-
sonable dynamic variant, there is no local change to lattices that preserves the
lattice property, and especially the existence of an lca for any pair of elements.
So in that setting, one can ask only for a static structure. If we allow �(n2)
preprocessing and storage, we can just precompute and tabulate all answers.
If we may use an array to store the answers, this gives O(1) queries, using a
search tree we get O(log n) query time. A static structure with subquadratic
space complexity supporting the lattice operations was constructed in Talamo
and Vocca (1997, 1999).

Another type of query and operation on root-directed trees was discussed
in Alstrup, Husfeldt, and Rauhe (1998). They considered a tree in which some
nodes were marked, with these marks dynamically changing, and the queries
ask for the next marked node on the path to the root. So here we have the
operations as follows:

{ mark: Marks a given node.
{ unmark: Removes the mark from a given node.
{ marked ancestor: Returns the next node on the path from the given

node to the root which is marked.

If the underlying tree is just a path, this is just the union-split-find problem
mentioned in Section 6.3 again: the marked nodes are the ends of the sublists,
so marking a node splits the sublist, unmarking joins it to the next, and by
comparing the marked ancestor we can check whether two nodes are in the
same sublist (Mehlhorn et al. 1988).

For this problem we can again use the partition of the given tree into paths
as well as the compressed tree, and represent the paths by search trees with
the depth of the nodes as keys. We subdivide the paths at the marked vertices,
splitting the trees at these points and joining them together again when the
vertices become unmarked. Then each path in the compressed tree is a union
of subpaths, of which all but possibly the highest have a marked vertex as
apex. So to find the nearest marked ancestor, we have to traverse at most
O(log n) paths whose apex is not marked and one whose apex is marked,
each time taking O(log n) in the search-tree representation of the paths to
reach the apex. This gives an O((log n)2) query time, with O(log n) time per
mark or unmark operation, which is just a split or join of search trees. This
structure also supports the general link of trees, as earlier, by updating the
path decomposition, in O((log n)2) time. The structure in Alstrup et al. (1998)
supports mark, unmark, and marked ancestor in time O( log n

log log n
), but it

needs a stronger computation model; they also proved a matching lower bound.
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6.5 Maintaining a Linear Order

The problem of maintaining a linear order under insertions and deletions has
been discussed in a number of papers under the description of maintaing order
in a list. This might be misleading because the structure we are implementing is
not necessarily a linked list; the underlying abstract model is a set with a linear
order, which can be visualized by a list. The operation we want to support is the
comparison in the linear order: is element x smaller (to the left in the list) than
element y? The set changes by insertion of new elements, and possibly also
by deletion, where the position of a new element is identified by its immediate
neighbor in the linear order. The elements are identified by fingers. So we want
to support the following operations:

{ insert(x,y): Inserts x as immediate smaller neighbor of y and returns
a finger to x.

{ delete(x): Deletes element x.
{ compare(x,y): Decides whether x is smaller than y in the current linear

order.

This problem would be easy if the elements came with a key and the order
was the order of the keys. Then we needed just a key comparison to check the
order relation. Our problem is that we have to assign these keys based on the
neighbor information at the insertion time. If the keys were real numbers, this
would again be easy, assigning each element on insertion the average of the keys
of its neighbors. But in a reasonable computation model, we can only assume
integers here, and our integers are bounded in size. Certainly, our problem size
n must be in the range of admissible integers and perhaps even n2, but not much
more. So we cannot just start with 2n, which would allow us to insert n times
in the middle of the interval of the new element’s neighbors.

There is a simple solution that does not need any assignment of key values,
but instead uses a balanced search tree. If the elements are the leaves of the
search tree, we can compare two elements in the left-to-right order of the leaves
by going the paths up to the root and checking the order in which the paths
enter their first common vertex. If the nodes carry depth information, this is
easily realized and takes time O(log n) for a comparison, as well as for any
insertion or deletion. We can even reduce the update time to O(1) using a tree
that allows constant time update at a known location. So the simple search
tree–based solution has the following performance:

Theorem. Using a balanced search tree that allows constant time update at a
known location, we can maintain a linear order with O(1) worst-case time of
insert and delete and O(log n) worst-case time of compare.
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If we had key values, we could perform the comparison in O(1) time. Dietz
(1982) used the tree to construct the key values. If we use an (a, b)-tree or
any tree with all leaves at the same depth and nodes of degree at most b,
we can label the outgoing edges of any interior node in their natural order
by 1, . . . , b (at most, perhaps fewer). Then the sequence of edge labels along
the path from the root to a node gives a key value for the node, written in
base b, that is compatible with the natural order of the leaves. The problem
with this is that when we change a node, we need to relabel all the leaves in
its subtree. Dietz used a modified (2, 3)-tree to obtain an amortized O(log n)
bound for the time of relabeling: any sequence of n insertions on an initially
empty tree takes O(n log n) time. One can use instead a weight-balanced tree;
then one can reuse the property that between two rebalancings in the same
node, a positive fraction of the leaves in its subtree has been changed, which
allows to amortize the relabeling of that subtree over those node updates. But
in the weight-balanced tree, not all leaves are at the same depth, so one needs
a different labeling scheme (Tsakalidis 1984). Both solutions give an O(log n)
amortized update time and an O(1) worst-case comparison time.

In that first paper (Dietz 1982), this construction is then iterated; if the lower
levels of the tree are grouped in copies of the structure, then any query first tests
whether the elements are in the same lower-level structure and compares them
there if possible, else it goes up to the next higher-level structure and compares
there. For this we need as many elementary comparisons as there are levels of the
structure, but most inserts need to be performed only on the low-level structures
and propagate up only when the lower-level structures overflow. Using log∗(n)
levels, Dietz obtained an O(log∗(n)) worst-case query time and an O(log∗(n))
amortized insertion time. Here log∗ is the iterated logarithm function defined
by the recursion log∗(n) = 1 + log∗(log n), which grows extremely slow, but
still faster than the Ackermann function (see Appendix 10.5).

But we can avoid the multiple levels. Two are sufficient if we use a different
method for the lower-level structure. This is possible if the individual sets in
the lower-level structure are small, less than log n. On these small sets, we
can assign integer key values less than n, giving in each insertion as key the
average of the neighboring keys. If we initially start with the keys 0 and 2k ,
we can perform k such averaging steps before we get a difference less than
1. So for sets of size �log n
, we can assign integer keys bounded by n in
time O(1) per insertion and O(1) per key comparison. We now cut the entire
set of n elements into O( n

log n
) groups of consecutive elements, each group of

size at most �log n
, and use the numbering scheme within each group and a
structure with O(1) comparisons and amortized O(log n) insertion to represent
the order relation between the groups. Then each comparison takes O(1): one
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comparison between the groups and one comparison within the group. And
each insertion takes an amortized O(1) time: if the insertion is possible in
the group, it is performed there in O(1) time; else the group overflows and
has to be split into two groups, which are renumbered in O(log n) time, and
the new group is inserted in the structure on the groups, in O(log n) amor-
tized time, but it needs log n insertions to make a new group overflow. This
argument with a different top-level structure was introduced by Tsakalidis
(1984) and used again, with a different top-level structure that avoids ex-
plicit use of trees, in Dietz and Sleator (1987),6 and again with yet another
top-level structure in Bender et al. (2002).7 A minor difficulty is that in the
lower-level numbering we assumed n to be known in the assignment of the
initial numbers; but as we have to rebuild the lists anyway, we can addition-
ally rebuild them whenever n passes another power of two; this gives only
O(1) amortized additional work per insertion. Adding deletions on the lower
level is trivial, and on the upper level depends on the structure we chose, but
is possible.

Theorem. Using a two-level structure, we can maintain a linear order with
O(1) amortized time of insert and delete and O(1) worst-case time of
compare.

A special case of this problem that is of independent interest concerns
maintaining dynamic dense sequential files. A sequential file is a set of items
with a linear order, which have to be mapped on addresses in a way that
preserves this order and that does not use too many addresses: only a small
constant factor more than the number of items. If items are inserted or deleted,
this might require renumbering, which corresponds to moving the item to a
different memory address. We want to keep the number of data movements
small or, if the addresses are grouped in disk blocks, keep the number of block
changes small. An important difference to our previous problem is that here the
order has to be encoded in a single integer key and the range of available keys
is small. This problem was studied by Willard (1982, 1986, 1992), who gave
an amortized O((log n)2) algorithm and then a complicated deamortization of
it; but his model is not quite compatible because he assumes the maximum size
to be given in advance. The deamortized version was used with some further

6 With a cryptic explanation of the lower-level numbering idea. It is really described only in the
technical report D.D. Sleator and P.F. Dietz: Two Algorithms for Maintaining Order in a List,
CMU-CS-88-113, Carnegie-Mellon University, September 1988, which dates after Dietz and
Sleator (1987).

7 Which references Dietz and Sleator (1987) for the details of the lower-level structure.
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complications, running the algorithm in small steps to distribute the time of
an update and adding multiple versions to the underlying structures, because
queries must be answered consistently on partially performed updates in Dietz
and Sleator (1987) to deamortize their structure for maintaining a linear order
with O(1) update and query time. Another deamortization was announced in
Bender et al. (2002).8

8 Which postpones the details to the full version.



7

Data Structure Transformations

Up to now we have described many specific data structures. There are also
some general methods that add some additional capabilities or properties to a
given data structure. Without any further knowledge about the structure, there
is not much we can do, so in each case we need some further assumptions
about the operation supported by the structure or its implementation. The two
well-studied problems here are how to make a static structure dynamic and how
to allow queries in old states of a dynamic data structure.

7.1 Making Structures Dynamic

Several of the structures we have discussed were static structures, like the
interval trees: they are built once and then allow queries, but no changes of
the underlying data. To make them dynamic, we want to allow changes in the
underlying data. In this generality, there is not much we can do, but with some
further assumptions, there are efficient construction methods that take the static
data structure as a black box, which is used to build the new dynamic structure.

The most important such class is the decomposable searching problems.
Here, the underlying abstract object is some set X, and in our queries we wish to
evaluate some function f (X, query), and this function has the property that for
any partition X = X1 ∪ X2, the function value f (X, query) can be constructed
from f (X1, query) and f (X2, query). If the function value is not a constant-size
object, we also need that this construction happens in constant time. This is a
property of the underlying abstract problem, and the transformation can then
be applied to any structure that solves it.

The one-dimensional dual-range searching, that is, given a set of intervals,
list for a query value all intervals that contain this value, is just one such
problem; for that the interval trees are one static solution to which we can
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apply the methods developed in this section to obtain a dynamic solution. The
segment trees are a different static solution to this problem, to which we could
also apply this methods, but we already saw in Section 6.3 a different method
to make segment trees dynamic.

There are many problems with this property. The nearest-neighbor problem,
to find for a given query point the nearest point in a set, is perhaps the most
interesting, but finding an element of given key (dictionary), or finding the
smallest element (heap), or the sum of elements, or range searching, are all of
this type. But there are also problems that do not fit in this class; the problems on
root-oriented trees discussed in Section 6.4 do not even have a set as underlying
object; and finding the smallest element in a set is decomposable, but finding
the second-smallest element, or the median, is not. Thus it is a restricted, but
important class.

The notion of decomposable search problems, and the idea of a static-to-
dynamic transformation, goes back to Bentley (1979). Initially, the structures
allowed only insertions and had only amortized bounds, but soon deletions
were added; bounds were made worst case, and trade-offs between query time,
insertion time, and deletion time were introduced (Bentley and Saxe 1980;
van Leeuwen and Wood 1980a; Mehlhorn and Overmars 1981; Overmars and
van Leeuwen 1981a, b; Edelsbrunner and Overmars 1985; Rao, Vaishnavi, and
Iyengar 1988). The canonical reference to all methods of dynamization is the
monograph by Overmars (1983).

The underlying idea is always that the current set is partitioned in a number of
blocks X = X1 ∪ · · · ∪ Xm. Each block is stored by one static structure; queries
are answered by querying each of these static structures and reconstructing the
answer for the entire set, and updates are performed by rebuilding one or several
blocks. The differences between the methods are the size restrictions for the
blocks and the details of the rebuilding policy.

The original method in Bentley (1979) uses only blocks whose size is a
power of two, and only one block of each size. So if the underlying set X has
n elements, then the blocks Xi correspond to 1s in the binary expansion of n.
Thus there are at most log n blocks. For each query on X we perform at most
log n queries on the Xi , so the query time increases by at most the factor log n.
To insert a new element, a block of size 1, we create a block of size 1 and then
perform binary addition on the blocks until each block size exists at most once.
To add two blocks of the same size, the structures are taken apart to recover the
elements and then one new structure is built.

This gives a bad worst-case complexity because we might have to rebuild
everything into one structure; but the structure of size 2i is rebuilt only when
the ith bit of n changes, which is every 2i−1th step. If preproc(k) is the time to
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build a static structure of size k, then the total time of the first n inserts is

�log n
∑
i=0

n

2i
preproc(2i).

Thus the amortized insertion time in a set of n elements is

ins(n) =
�log n
∑
i=0

preproc(2i)

2i
=
⎧⎨
⎩

O(log n) if preproc(n) = O(n)
O((log n)c+1) if preproc(n) = O(n(log n)c)
O(nε) if preproc(n) = O(n1+ε).

Some further fine-tuning by using other systems of block sizes is possible,
and in many instances the rebuilding of a block with an additional element, or
the merging of two blocks, is slightly easier than building the static structure
from scratch because one can reuse some order information. Many details were
discussed in Bentley and Saxe (1980); this frequently allows to gain a log n

factor. The systems of block sizes and their implications for the bounds were
further analyzed in Overmars and van Leeuwen (1981a) and Mehlhorn and
Overmars (1981). But we can summarize the most important special case of
the basic method.

Theorem. Given a static structure for a decomposable searching problem that
can be built in time O (n(log n)c) and that answers queries in time O(log n) for
an n-element set, the exponential-blocks transformation gives a structure for
the same problem that supports insertion in amortized O((log n)c+1) time and
queries in worst-case O((log n)2) time.

If we apply this to the interval tree structure, which can be built in O(n log n)
time, we get a structure that supports insertions and queries in O((log n)2) time,
where the insertion bound is only amortized.

This method is not useful for deletion; if we delete an element from the
largest block, we have to rebuild everything, so we can easily construct a
sequence of alternating insert and delete operations, in which each time
the entire structure has to be rebuilt.

A method that also supports deletion partitions the set in �(
√

n) blocks of
size O(

√
n) and uses fingers or an additional search tree or other dictionary to

keep track of the information about in which block each element is stored (van
Leeuwen and Wood 1980a). Then for each insert or delete, we have to touch
only one block, using O(preproc(

√
n)) time, and for each query, we have to

perform O(
√

n) queries in the blocks of size O(
√

n).
This is a lot worse than the previous structure: if the static structure had

preprocessing time O(n(log n)c) and query time O(log n), then the first dynamic
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structure has update time O((log n)c+1) and query time O((log n)2), whereas
the second dynamic structure has update time O(

√
n(log n)c) and query time

O(
√

n log n), but in the first structure updates were only insertions and the time
was amortized, whereas in the second structure we have both insertions and
deletions, and the time is worst case.

But this is about best possible if we can use our static structure only this
way, by rebuilding and querying (Bentley and Saxe 1980). Because any query
has to be performed on all blocks, to achieve a query time O(

√
n) we may have

at most O(
√

n) blocks, so the largest of the blocks has size at least �(
√

n).
An adversary that alternatingly inserts an element and deletes an element from
the currently largest block forces each delete to rebuild a block of size �(

√
n).

Thus, although there are some trade-offs between the query time and the update
time, and a log n factor that can be reduced, we cannot get update and query
time below �(

√
n) in this model. We again summarize the performance in the

most important special case.

Theorem. Given a static structure for a decomposable searching problem that
can be built in time O (n(log n)c) and that answers queries in time O(log n) for
an n-element set, the

√
n-blocks transformation gives a structure for the same

problem that supports insertion and deletion in O(
√

n(log n)c) time and queries
in O(

√
n log n) time, all times worst case.

If we want a better performance in a structure that supports deletion, we need
more information about the structure. A useful property here is that the static
structure supports “weak deletion” (Overmars and van Leeuwen 1981b; Over-
mars 1981b). A weak deletion deletes the element, so that the queries are
answered correctly, but the time bound for subsequent queries and weak dele-
tions does not decrease. The prototype of this situation is the deletion without
rebalancing in search trees: the element is deleted, but even though the number
of items in the tree decreased, the height, and by this the time for later tree
operations, does not decrease. Supporting weak deletions is a property of the
static structure, not of the underlying problem.

If we combine the weak deletion with the exponential-blocks idea, we get
the following structure: The current set is partitioned into blocks, where each
block has a nominal size and an actual size. The nominal size is a power of 2,
with each power occurring at most once. The actual size of a block with nominal
size 2i is between 2i−1 + 1 and 2i . The operations then work as follows:

{ To delete an element, we find its block and perform a weak deletion,
decreasing the actual size. If by this the actual size of the block becomes
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2i−1, we check whether there is a block of nominal size 2i−1; if there is
none, we rebuild the block of actual size 2i−1 as block of nominal size 2i−1.
Else, we rebuild the block of actual size 2i−1 together with the elements of
the block of nominal size 2i−1 as block of nominal size 2i .

{ To insert an element, we create a block of size 1 and perform the binary
addition of the blocks, based on their nominal size.

{ To query, we perform the query for each block.

With this method, we get again only amortized bounds. The amortized analysis
is slightly more complicated. We have to keep track of two potentials. The
deletion potential is the sum over all blocks of the difference between the
nominal and actual size. Each time we perform a weak deletion, it increases
by 1 and an insertion does not change it. If we rebuild a block of size 2i as a
result of a deletion, the deletion potential decreases by 2i−1. So the decrease in
potential is proportional to the size of the structure we rebuild. So if the time
of this rebuilding is preproc(2i), then we can amortize the cost over 2i weak
deletions to get an amortized deletion cost of 1

2i preproc(2i) ≤ preproc(n)
n

plus the
cost of the weak deletion.

For the analysis of the insertion, we give a block of nominal size 2i a weight
of (�log n� − i)2i−1 and use as insertion potential the sum of the weights of all
blocks. Here n is an upper bound for the maximum size of the underlying set
over the sequence of operations, so i ≤ �log n� and all the weights are positive.
Then during the insertion, we create a new block of size 1 = 20, increasing the
potential by �log n�, and then, if there are now two blocks of size 20, we destroy
two blocks of size 20 and one each of size 21 up to 2i−1, and build a new block
of size 2i . By this, we change the potential by

−2�log n� −
i−1∑
j=1

(�log n� − j )2j−1 + (�log n� − i)2i−1

=
⎛
⎝ i−1∑

j=1

j2j−1

⎞
⎠− i2i−1 = ((i − 2)2i−1 + 1

)− i2i−1 = −2i+1 + 1,

so the potential decreases by an amount proportional to the size of the block
we build. Only insertions increase the potential by �log n�; deletions can only
decrease the nominal size of a block, and by this its weight and the potential.
Thus, we get for insertions a set of size at most n and amortized complexity of
(log n) preproc(n)

n
. We again summarize the performance of this structure.

Theorem. Given a static structure for a decomposable searching problem
that can be built in time preproc(n) and that supports weak deletion in time
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weakdel(n), and answers queries in time query(n) for an n-element set, the
exponential-blocks transformation with weak deletion gives a structure for the
same problem that supports insertion in amortized O((log n) preproc(n)

n
) time,

deletions in amortized O(weakdel(n) + preproc(n)
n

) time, and queries in worst-
case O(log n query(n)) time.

Again some further refinements to this basic scheme are possible. One can
remove the amortization from the deletions by concurrent rebuilding of shadow
copies, but this requires further access to the internal structure of the rebuilding
method, so that instead of being executed once in full during a delete operation,
it is executed in small fragments over a sequence of delete operations (Overmars
and van Leeuwen 1981b).

The methods discussed up to now were based on complete rebuilding of
the static structure, which was just a black box, supporting some operations.
With more information, we can do better. One class of problems where we get
an outline for building the dynamic structure out of lower-level black boxes
are the order-decomposable problems discussed by Overmars (1981a, 1983)
as an abstraction of divide-and-conquer algorithms. A problem is order de-
composable if the underlying abstract object is some set X, and we wish to
evaluate some function f (X) with the property that the elements of the set
can be ordered X = {x1, . . . , xn} in such a way that f (X) can be computed
from f ({x1, . . . , xi}) and f ({xi+1, . . . , xn}). Note that, different from the de-
composable searching problems, the function f does not have any additional
parameters given by the query. So the static case is not a structure that answers
queries, but an algorithm that once computes f (X), and we want to update that
function value under changes of the underlying set.

The strategy here is to maintain a balanced search tree on the underlying set,
with the elements in the leaves in that order that allows decomposition. Then
each interior node corresponds to the subset of all leaves in its subtree, which
is an interval {xi, xi+1, . . . , xj } in that order, and in each interior node we store
the function value f ({xi, . . . , xj }) for that set. For a query, we just read the
function value stored in the root. To update, we insert or delete a leaf and then
go the path up to the root, rebalancing and recomputing the function value in
each node along the way.

Suppose computing f (A ∪ B) from f (A) and f (B), where A and B are
consecutive intervals in the decomposition order, takes at most merge(|A ∪ B|)
time. Then the time for an insert or delete is O(

∑m
i=1 merge(ni)), where (ni)mi=1

are the sizes of the subtrees below the nodes for which the function had to be
recomputed. These are the nodes along the path to the root, and for each node
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possibly the other lower neighbor, which might have changed by a rotation.
That lower neighbor has a smaller subtree, so we really need to bound only the
sizes of the subtrees along the path from the leaf to the root. This is especially
convenient if we choose a weight-balanced tree, as described in Section 3.2,
as underlying balanced tree. In the weight-balanced tree, a node whose subtree
has k leaves has lower neighbors whose subtrees contain at most (1 − α)k
leaves. So the size of the subtrees along a path from the root to a leaf decreases
at least geometrically. Thus the time for an update in a tree with n leaves is

O
(∑O(log n)

i=0 merge
(
(1 − α)in

))
. We additionally need to find the correct place

in the decomposition order before we can start to insert or delete, but that can
usually be done by binary search in O(log n).

But there is a nonobvious problem with this nice technique in case the func-
tion we wish to compute has a value that is not of constant size. An important
example, for which the technique was used in Overmars and van Leeuwen
(1980) before it was stated in the more abstract setting, is the dynamic convex
hull computation of a set of points in the plane with insertions and deletions. If
the points are ordered according to their first coordinate, then it is, in principle,
possible to merge the convex hulls of two sets with separated first coordinates
in time O(log n), although this also requires a nontrivial representation of the
convex hulls. But if we perform this merging, we destroy the individual struc-
tures we merge, so we cannot reuse them in the next update. The obvious
alternative, copying the structure, requires time proportional to the size of the
structure, so in the convex hull example it increases the complexity of merging
from O(log n) to �(n), but in that time we could have computed the convex
hull of a sorted set anyway. To make use of the technique, we need a second
function, which is the inverse of the merging function: it splits the structure in
the node and restores the structures in its lower neighbors. Then for any update,
we perform the splits while going down from the root to the leaf where we
perform the update and then after the update we go up again and merge along
the way. For each rotation, we might have to perform yet another split merge
pair. So the update time is

O(log n)∑
i=0

merge
(
(1 − α)in

) =
⎧⎨
⎩

O(log n) if merge(n) = O(1)
O((log n)c+1) if merge(n) = O((log n)c)
O(nε) if merge(n) = O(nε),

if either the merge is nondestructive or there is a split inverting the merge that
runs with the same time bound. We summarize again the performance of this
structure in its most important special case.
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Theorem. Given an order-decomposable problem for which we can find the
correct place of an item in the decomposition order in O(log n), and for which
we have either a nondestructive merge operation or a complementary pair
of merge and split operations that work in time O((log n)c), then we can
maintain the function value for that problem under insertion and deletion in the
underlying set in worst-case time O((log n)c+1) per update.

The fundamental restrictions of this model are the order-decomposition prop-
erty, and the fact that we are looking only for a single value, not for a function
depending on the query. This allows us to precompute the answer in the tree
nodes. It can be extended slightly if we choose the function values itself to
be functions of constant description complexity, but it is inherent to the model
that, to answer a query, we have to look only at the data found in the root node.
Many structures we discussed were similar to this: they are built on a balanced
search tree by adding some information to the nodes. But to evaluate a query
in those structures, we have to follow this search tree down and combine the
information in the nodes along the path to answer the query.

There is a general dynamization method for this type of data structure which
is based on partial rebuilding. The canonical reference is again the monograph
by Overmars (1983), where partial rebuilding methods are studied systemati-
cally. Special instances of this were already used slightly earlier, such as Lueker
and Willard (1982) for the dynamization of range counting with orthogonal
range trees. The model assumption here is that we have a static structure that
can be built using any underlying search tree; it adds some additional informa-
tion to the nodes, and queries are answered by following a path down in the
tree and combining the information in the nodes. For this structure we must
have an update method that keeps this additional structure correct, so queries
are still answered correctly, but it changes the tree structure only by performing
basic inserts and deletes, so the tree might become unbalanced. And we need a
method to rebuild entire subtrees optimally balanced.

The fundamental insight here is that if we use weight-balanced trees as
underlying search trees, then large subtrees will become unbalanced only after
many updates. In Section 3.2, we had a theorem that there is an ε > 0 such
that between one rebalancing of the subtree below a fixed node and the next
rebalancing, at least an ε-fraction of the leaves of that subtree have been
inserted or deleted. This can be used for an amortized complexity bound for
the updates. Each update of a leaf node contributes unit cost to each subtree
that contains it, that is, to each of the O(log n) nodes on the path from the
root to that leaf node. If we rebuild a subtree with k leaves, then there are
εk updates that contributed to it. If the cost of rebuilding of a subtree with
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k leaves is rebuild(k), then we can amortize this cost over these updates and
get an amortized cost of rebuilding per update of O( log n

k
rebuild(k)), which is

O( log n

n
rebuild(n)). In addition to this, we of course need the time to perform the

basic insert or delete and adjust the structure; this is some time basic update(n),
which is at least �(log n) to perform the update of the tree, but it might be larger
because the additional information in the nodes also needs to be updated. The
query time does not change by these updates because we always maintain a
correct weight-balanced tree. We again summarize the performance of this
method.

Theorem. Given a static data structure, which consists of a balanced search
tree with additional node information and that allows basic inserts and deletes
without rebalancing in a tree with n leaves in time basic update(n), and optimal
rebuilds of a subtree with k leaves in time rebuild(k), we can keep this tree
balanced in amortized time per insert or delete

O

(
basic update(n) + log n

n
rebuild(n)

)
.

If the query time in this structure for a tree of height h is query(h), we maintain
a worst-case query time query(log n).

In Section 3.8 we have already used the partial rebuilding technique for
rebalancing in search trees with a different balance criterion and amortized
analysis, but they can also be viewed as the simplest special case of this
method.

Another class of problems allowing some dynamization are the two-
variable minimization problems studied by Dobkin and Suri (1991) and
Eppstein (1995). Here the underlying model is that we have a function f (x, y)
and want to maintain the minimum over all pairs from a cartesian prod-
uct min{f (x, y) | x ∈ X, y ∈ Y } under insertions and deletions in the sets
X and Y . Without additional information on f , there is no hope for a non-
trivial algorithm: when we insert a new point xnew in X, we would have to
evaluate f (xnew, y) for all y ∈ Y . The additional structure we need is a dy-
namic structure that, for a set Y and a query point xquery, finds the y ∈ Y

for which f (xquery, y) is minimal. Then maintaining the minimum, if only
insertions are allowed, is trivial: we just need to check whether the new
point generates a smaller minimum than the previous minimizing pair. But
that approach does not support deletions. Eppstein (1995) found a method
that maintains the two-variable minimum under insertions and deletions,
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with an amortized factor log n overhead on the complexity of the underlying
minimum-query structure for insertions and an amortized (log n)2 overhead for
deletions.

7.2 Making Structures Persistent

A dynamic data structure changes over time, and sometimes it is useful if we can
access old versions of it. Besides the obvious interpretation of answering queries
about the past, this is useful as a tool for geometric algorithms that perform a
sweep; in such algorithms one typically has a structure that keeps track of the
state on the current position of the sweepline, but sometimes we have to access
regions we have already passed over. Another obvious application is revision
control and the implementation of the “undo” command in editors (Myers 1984;
Fraser and Myers 1987; Dannenberg 1990), multiple file versions (Burton,
Huntbach, and Kollias 1985; Burton et al. 1990), and error recovery (Mullin
1981a). One can construct special-purpose structures for such applications, but
the success in finding general techniques for dynamization motivated a search
for similar techniques to solve this problem.

The question how to access past versions of a dynamic data structure was
first studied by Dobkin and Munro1 and Overmars.2 The first papers (Dobkin
and Munro 1985; Chazelle 1985) were motivated by the geometric applications,
which allowed them to make the additional assumption that the underlying uni-
verse was known in advance, which is reasonable for sweep algorithms, where
we know the entire set even if it has not been passed over by the sweepline.
Indeed, the sequence in which the objects are passed by the sweepline is known
in advance, so for that application it is only the question of preprocessing the
set so that queries for various positions of the sweepline can be answered. For
search trees, the problem of queries in the past was also discussed in Field
(1987).

The main progress was the paper by Driscoll et al. (1989), in which general
techniques were discussed that transform a given dynamic data structure into a
dynamic data structure allowing access to earlier versions. They define several
grades of access. The most natural persistence, which they called “partial
persistence,” allows queries to previous versions. There is a current version to
which the next update will be applied to generate a new current version, but

1 In a paper in FOCS 1980, whose journal version appeared only five years later (Dobkin and
Munro 1985).

2 In two preprints, M.H. Overmars: Searching in the Past I, II, Rijksuniversiteit Utrecht preprints
RUU-CS-81-7 and RUU-CS-81-9, April and May 1981, which are amazingly still available
online.
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we can also query old versions, which could be identified by timestamps or
version numbers.

They also studied a more general scheme they called “full persistence,” in
which past versions can also be changed, giving rise to a version tree without
any special current version. Here even identifying the version one wishes to
reference is nontrivial; for this they produced a numbering of the versions
compatible with the partial order of the version tree. Even more general, but
applicable only to structures that support a join operation, is the “confluent
persistence” studied first for double-ended queues (Driscoll, Sleator, and Tarjan
1994; Buchsbaum and Tarjan 1995; Kaplan, Okasaki, and Tarjan 2000) and then
in general in Fiat and Kaplan (2003); in a confluently persistent structure, one
may also join different versions. But these stronger variants of persistence seem
only of theoretical interest.

More important, but much less deep, is a transformation that allows back-
tracking, that is, setting the current version back to an old version and discarding
all changes since then. The use of a stack for old versions predates all persis-
tence considerations.

Again, as in the dynamization of data structures, we need some information
on the underlying structure. Some general models similar to those discussed for
the dynamization were discussed by Overmars.3 If the structure is just a black
box allowing some operations, we can copy that black box to preserve an old
state or keep a list of performed update operations that we can execute again
to reconstruct a state. These two methods can be mixed: if we have a structure
of size at most n with query time query(n) and update time update(n), if we
copy the structure after every kth update, we get an amortized update cost of
O( n

k
+ update(n)); and for any query we first copy the nearest saved state and

perform the at most k − 1 updates on it, before finally executing the query on the
reconstructed state. This gives a query time of O(n + k update(n) + query(n)).
The largest component here is the time O(n) for the initial copying of the
structure before we can apply the updates. This can be avoided if the update
operations come in inverse pairs, like insertion and deletion. Then for any
query, we take the nearest saved state, perform the at most k − 1 updates on
it, perform the query, and then the sequence of inverse updates to recover the
saved state. This gives a query time O(k update(n) + query(n)). The choice
of k as a function of n allows trade-offs between update and query time, but
without further knowledge of the structure, we cannot get update and query
simultaneously below O(

√
n).

3 In the preprint, M.H. Overmars: Searching in the Past II, Rijksuniversiteit Utrecht preprint
RUU-CS-81-9, May 1981.
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The big progress achieved in Driscoll et al. (1989) are two structures that
work in the pointer-machine model, the first of which works on any structure in
the pointer-machine model, but carries an O(log n) factor worst-case overhead,
and the second, which has only an O(1) amortized overhead, but requires that
the nodes in the pointer structure have bounded indegree. The amortized O(1)
of the second structure was improved to O(1) worst case in Dietz and Raman
(1991) and Brodal (1996b), but with the same indegree condition. That indegree
restriction is satisfied, for example, for all search trees, but it is not satisfied for
the union-find structure. The leftist heap satisfies that restriction, while Brodal’s
heap does not, so the indegree property is a nontrivial restriction.

The first transformation, called the “fat nodes” method, replaces each node
of the pointer-based structure by a search tree for the correct version of the node,
using the query time as key. Each time the underlying structure is modified,
any “fat” node whose content is modified just receives a new version entry in
its search tree; and newly created nodes contain new search trees, initially with
one version only. Thus, any query is executed on a simulation of the underlying
structure, where finding the value of some field of a node that is correct for the
query time requires a query in a search tree, so O(log n) time per elementary
operation in the underlying structure, giving an O(log n) factor increase of the
query time. For updates, the same argument holds – we are simulating the
underlying structure, but we can do better than the O(log n) time bound per
simulation step. Because in the update, all accesses and changes happen at the
maximum key end of the search tree, we can use a tree that supports insert and
find at the end in constant time, as does a finger tree with constant update time.
By this, we get a simulation of the underlying structure with O(1) time per
simulated step. This gives the following performance:

Theorem. Any dynamic structure in the pointer-machine model that supports
queries in time query(n) and updates in time update(n) on a set with n elements
can be made persistent, allowing queries to past versions, with a query time
O(log n query(n)) for past versions, O(query(n)) for the current version, and
update time O(update(n)), using the “fat nodes” method combined with a
search tree that allows constant-time queries and updates at the maximum
end.

If we want to add backtracking to our structure, we need to be able to go back to
a previous version in time and discard all updates since then. We can do this for
any pointer-based structure, again using fat nodes, which this time just contain
a stack of values together with their version numbers. Each time we perform an
update, we push a new value on the stack of all nodes we change, and each time
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we perform a query, we use the top value of the stack. Both of these changes
generate only a constant-factor overhead for each update or query operation. To
perform a backtrack operation, we need to pop from each stack all the values
of discarded versions, so we need a list of all fat nodes. The backtrack time can
be very long in the worst case if we return to the beginning and have to clear
all stacks. But the amortized complexity of the backtrack operation is constant,
hidden by the update operations, because each item removed from a stack by
the backtrack operation was previously put there by an update operation.

Theorem. Any dynamic structure in the pointer-machine model that supports
queries in time query(n) and updates in time update(n) on a set with n elements
can be made to support backtracking, using stacks for “fat nodes,” with a query
time O(query(n)), update time O(update(n)), and backtrack time amortized
O(1), with a sequence of a updates, b queries, and c backtracks, starting on an
initially empty set, taking O(a update(a) + b query(a) + c).

To make the amortized complexity of backtracking worst case, we could use
splittable search trees in all fat nodes, but then an O(log n) factor overhead
applies to the update and query times.

Because in each fat node we have a search tree over essentially the same
object, a set of version dates, we are performing very similar searches again
and again; this suggests to try to connect the search trees in such a way that
the result of the search in the previous node can be reused to find the correct
version in the current node. This is again a form of the fractional cascading
idea, but the problem is that we do not have the same version dates in each
node, and so it is not really the same search. If in the underlying structure the
update time is O(log n), then in each update we add a new version date only to
O(log n) of the �(n) nodes, so the set of all version dates is much larger than
the sets we encounter in the individual nodes.

The idea of the second structure of Driscoll et al. (1989), called “node
copying method,” is to replace the search tree in each fat node by a list of
constant-sized nodes, each holding only a few versions and linked to the nodes
with the corresponding versions in the lists in neighboring fat nodes. The
problem here is that if we add a new version at time t to the last list node and
it overflows, so we have to create a new list node, then we have to update all
the incoming pointers to this new node. In the lists of all fat nodes that point
to the fat node we just updated, we have to add a new version for this time t ,
pointing to the new node. This can cause those lists themselves to overflow and
force to create new nodes, so this creation of new nodes propagates through
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the structure and stops only in those places where the node still has room for
a new version. By making the nodes large enough, it finally stops; in Driscoll
et al. (1989) an amortized O(1) bound for the number of newly created nodes
was shown. Using a good strategy when to create a new node, occasionally
also creating new nodes before forced to do so, this was reduced to worst-
case O(1) new nodes per update step by Brodal (1996b) following Dietz and
Raman (1991). But all this is possible only if the indegree of each node in
the underlying structure is bounded because we have to propagate the creation
of new versions along all incoming edges. The necessary number of versions
per list node depends on this indegree and is quite large. To summarize the
performance of this transformation we have the following:

Theorem. Any dynamic structure in the pointer-machine model that has
bounded indegree and that supports queries in time query(n) and updates
in time update(n) on a set with n elements can be made persistent, allow-
ing queries to past versions with a query time O(query(n)) and update time
O(update(n)) using the “node copying” method combined with Brodal’s node
copying strategy.

A property related to persistence is the retroactivity proposed in Demaine,
Iacono, and Langerman (2004); they call a structure retroactive if it allows
the change of updates in the past while keeping all the updates that followed
the changed update. A fully persistent structure would allow the change in the
past, starting a new branch in the version tree, but would not include the later
updates in the branch. The concept of retroactivity is motivated by the idea
that one wants to correct an erroneous update in the past without having to
perform all the later updates again; but this involves many conceptual problems
because the later updates might depend on the earlier updates and queries. So,
unlike persistence, there is no general technique for adding retroactivity to a
data structure.
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Data Structures for Strings

Up to now we always assumed that the data items are of constant size, and key
values can be compared in constant time, so essentially that they are numbers.
A very important class of objects for which these assumptions fail are strings.
In real applications, text processing is more important than the processing of
numbers, and text fragments have a length; they are not elementary objects
that the computer can process in a single step. So we need different structures
for strings than for numeric keys; especially the balanced binary search trees,
our most useful previous tool, require a key comparison in each node and are
quite inefficient as dictionary structure for strings. Also, for strings we will ask
different questions. Even though strings can be ordered lexicographically, this
order does not reflect the similarity of strings, for two strings that differ in the
first character only are closer related than two strings that differ from the third
to the tenth character. Thus, range searching makes little sense for strings.

The concept of strings is not entirely uniform and therefore requires some
attention. We have an underlying alphabet A, for example, the ASCII codes,
and strings are sequences of characters from this alphabet. But for use in the
computer, we need an important further information: how to recognize where
the string ends. There are two solutions for this: we can have an explicit
termination character, which is added at the end of each string, but may not
occur within the string, or we can store together with each string its length.
The first solution is the ’\0’-terminated strings used in the C language,
and the other model is followed, for example, in the Pascal language and
its descendants.1 The use of the special termination character ’\0’ has a

1 Some languages have a different string concept in which higher-level operations such as
deleting an interval from a string are considered elementary operations (Housden 1975).
Current examples of this are the C++ and Java string classes. But these are not constant-time
operations, so these systems are not suitable for the type of efficient operation that we study.

335
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number of advantages in simplifying code, but it has the disadvantage of having
one reserved character in the alphabet that may not occur in strings. If the strings
are really fragments of text, this is no problem; there are many nonprintable
ASCII codes that should never occur in a text and ’\0’ (ASCII code 0) is
just one of them. But there are also many applications in which the strings
do not represent text, but, for example, machine instructions, and in such
applications we cannot assume that the strings do not contain this reserved
character. In the following we will use ’\0’-terminated strings in our code
examples, but one must be aware of the limitation of this model and the possible
alternative.

Strings, especially over a small alphabet, recently found much interest in
the context of bioinformatics because a type of data obtained there in large
amounts is DNA/RNA or protein sequence data, with alphabet sizes of 4 and
20, respectively. This presents challenges that motivate most of the newer
papers on string data structures and algorithms. Books entirely dedicated to
algorithmic problems on strings are the seminal books by Gusfield (1997) and
Crochemore and Rytter (2003).

8.1 Tries and Compressed Tries

The basic tool for string data structures, similar in role to the balanced bi-
nary search tree, is called “trie,” which is said to derive from “retrieval.” This
structure was invented by de la Briandais (1959); the first easily accessible
reference, which also introduced this unfortunate name, is Fredkin (1961). The
underlying idea is very simple – again a tree structure is used to store a set of
strings. But in this tree, the nodes are not binary; instead, they contain poten-
tially one outgoing edge for each possible character, so the degree is at most
the alphabet size |A|. Each node in this tree structure corresponds to a prefix of
some strings of the set; if the same prefix occurs several times, there is only one
node to represent it. The root of the tree structure is the node corresponding
to the empty prefix. The node corresponding to the prefix σ1 contains for each
character a ∈ A a pointer to the node corresponding to the prefix σ1a if such a
node exists, that is, if there is a string σ1aσ2 in the set.

To perform a find operation in this structure, we start in the node corre-
sponding to the empty prefix and then read the query string, following for each
read character the outgoing pointer corresponding to that character to the next
node. After we read the query string, we arrived at a node corresponding to that
string as prefix. If the query string is contained in the set of strings stored in
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Trie over Alphabet {a, v, e} with Nodes for the Words
aaa, aaccee, ac, cc, cea, cece, eee, and Their Prefixes

the trie, and that set is prefix-free, then this node belongs to that unique string.
And we can assume that the set of strings is prefix free if we use the model
of ’\0’-terminated strings: if the character ’\0’ occurs only as termination
character in the last position of each string, then no string can be a prefix of
another string. With this assumption, we can now write the basic version of the
trie structure. Each node has the following form:

typedef struct trie_n_t {
struct trie_n_t *next[256];

/* possibly additional information*/
} trie_node_t;

We now implement the same dictionary structure that we also assumed for
the search trees: we are keeping track of a set of (key, object) pairs under
operations insert, delete, and find, but now the key is a string. We
use the next[(int)’\0’] field to hold the pointer to the object because
for ’\0’ terminated strings we will never need that field to point to another
node. If we need a string model without a specific termination character, we
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must use an extra field in the node for that. An implementation of the trie for
’\0’-terminated strings can look as follows:

trie_node_t *create_trie(void)
{ trie_node_t *tmp_node;

int i;
tmp_node = get_node();
for( i=0; i<256; i++)

tmp_node->next[i] = NULL;
return( tmp_node );

}

object_t *find(trie_node_t *trie,
char *query_string)

{ trie_node_t *tmp_node;
char *query_next;
tmp_node = trie; query_next = query_string;
while(*query_next != ’\0’)
{ if( tmp_node->next[(int)(*query_next)] ==

NULL)
return( NULL ); /* query string
not found */

else
{ tmp_node =
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tmp_node->next[(int) (*query_next)];
query_next += 1; /* move to next
character of query */

}
}
return((object_t *)
tmp_node->next[(int)’\0’]);

}

int insert(trie_node_t *trie,
char *new_string, object_t *new_object)

{ trie_node_t *tmp_node, *new_node;
char *query_next;
tmp_node = trie; query_next = new_string;
while(*query_next != ’\0’)
{ if( tmp_node->next[(int)(*query_next)] ==

NULL)
{ new_node = get_node();

/* create missing node */
for( i=0; i<256; i++)

new_node->next[i] = NULL;
tmp_node->next[(int)(*query_next)]
= new_node;

}
/* move to next character */
tmp_node = tmp_node->next[(int)(*query_next)];
query_next += 1; /* move to
next character */

}
if( tmp_node->next[(int)’\0’] != NULL )

return( -1 ); /* string already exists,
has object */

else
tmp_node->next[(int)’\0’]
= (trie_node_t *) new_object;

return( 0 );
}

object_t *delete(trie_node_t *trie,
char *delete_string)

{ trie_node_t *tmp_node;
object_t *tmp_object;
char *next_char;
int finished = 0;
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create_stack();
tmp_node = trie; next_char = delete_string;
while(*next_char != ’\0’)
{ if( tmp_node->next[(int)(*next_char)] ==

NULL)
return( NULL ); /* delete_string
does not exist */

else
{ tmp_node =

tmp_node->next[(int) (*next_char)];
next_char += 1; /* move to next
character */
push( tmp_node );

}
}
tmp_object = (object_t *)
tmp_node->next[(int)’\0’];
/* remove all nodes that became unnecessary */
/* the root is not on the stack, so it is
never deleted */
while( !stack_empty() && !finished )
{ tmp_node = pop();

tmp_node->next[(int)(*next_char)] = NULL;
for( i=0; i<256; i++)

finished ||= (tmp_node->next[i] != NULL );
/* if tmp_node is all NULL,
it should be deleted */
if( !finished )
{ return_node( tmp_node );

next_char -= 1;
}

}
return( tmp_object );

}

void remove_trie(trie_node_t *trie)
{ trie_node_t *tmp_node;

create_stack();
push( trie );
while( !stack_empty() )
{ int i;

tmp_node = pop();
for( i=0; i<256; i++)
{ if( tmp_node->next[i] != NULL
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&& i != (int)’\0’ )
push( tmp_node->next[i] );

}
return_node( tmp_node );

}
}

This structure looks very simple and extremely efficient; the one problem
is the dependence on the size of the alphabet that determines the size of the
nodes. In this basic implementation, each node contains 256 pointers, one for
each character, and a pointer might be 4–8 bytes, so the size of each node is at
least 1 kB. And, unless the strings we wish to store have very much overlap, we
need approximately as many nodes as the total length of all strings together is:
almost all nodes will contain only one valid pointer because almost all prefixes
have only one possible continuation. So the space requirement is enormous.
But even if we have unbounded space available, the alphabet size enters here
in the insert and delete operations because new nodes must be initialized
with NULL pointers, and when deleting nodes we must check whether they are
still used. The performance of the basic trie structure given here is as follows:

Theorem. The basic trie structure stores a set of words over an alphabet
A. It supports a find operation on a query string q in time O(length(q))
and insert and delete operations in time O(|A| length(q)). The space
requirement to store n strings w1, . . . , wn is O(|A|∑i length(wi)).

We can get rid of the |A|-dependence in the delete operation by using
reference counts. Then all nodes that are returned to the free list are correctly
filled with NULL pointers, so the insert operation does not need to initialize
them if they are reused. But all new nodes do have to be initialized, so the
|A|-dependence in the insert operation does not disappear.

There are several ways to reduce or avoid the problem of the alphabet size,
and the mostly empty nodes. In each method, we trade some loss in the query
time against an improvement in space and update time.

A simple method, which is most efficient exactly in those cases where the
basic implementation was most wasteful, if almost all nodes are almost empty,
is to replace the big nodes by linked lists of all the entries that are really used.
That technique was already suggested in the first paper by de la Briandais
(1959) and discussed again in Sussenguth (1963).

In the next implementation, the empty string, represented by the ’\0’-
character, is already contained in the empty trie when we create it. We use this
as entry point to the structure because any list node must contain at least one
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entry, whereas in the array implementation, we could have an initial array node
with only NULL pointers. Of course, we could use separate list-head nodes, but
they would increase the path length.

typedef struct trie_n_t { char this_char;
struct trie_n_t *next;
struct trie_n_t *list;
/* possibly additional information*/

} trie_node_t;

trie_node_t *create_trie(void)
{ trie_node_t *tmp_node;

tmp_node = get_node();
tmp_node->next = tmp_node->list = NULL;
tmp_node->this_char = ’\0’;
return( tmp_node );

}

object_t *find(trie_node_t *trie,
char *query_string)

{ trie_node_t *tmp_node;
char *query_next;
tmp_node = trie; query_next = query_string;
while(*query_next != ’\0’)
{ while( tmp_node->this_char != *query_next )

{ if( tmp_node->list == NULL )
return( NULL );
/* query string not found */

else
tmp_node = tmp_node->list ;

}
tmp_node = tmp_node->next;
query_next += 1;

}
/* reached end of query string */
while( tmp_node->this_char != ’\0’ )
{ if( tmp_node->list == NULL )

return( NULL );
/* query string not found */

else
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tmp_node = tmp_node->list ;
}
return( (object_t *) tmp_node->next);

}

int insert(trie_node_t *trie,
char *new_string, object_t *new_object)

{ trie_node_t *tmp_node;
char *query_next; int finished = 0;
tmp_node = trie; query_next = new_string;
/* first go as far as possible in
existing trie */
while( !finished )
{ /* follow list till matching character

is found */
while( tmp_node->this_char != *query_next

&& tmp_node->list != NULL )
tmp_node = tmp_node->list ;

if( tmp_node->this_char == *query_next )
{ /* matching character found,

might be last */
if( *query_next != ’\0’ )
/* not last. follow */
{ tmp_node = tmp_node->next;

query_next += 1;
}
else /* insertion not possible,
string already exists */

return( -1 );
}
else

finished = 1;
}
/* left existing trie, create new branch */
tmp_node->list = get_node();
tmp_node = tmp_node->list;
tmp_node->list = NULL;
tmp_node->this_char = *query_next;
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while( *query_next != ’\0’)
{ query_next += 1;

tmp_node->next = get_node();
tmp_node = tmp_node->next;
tmp_node->list = NULL;
tmp_node->this_char = *query_next;

}
tmp_node->next = (trie_node_t *) new_object;
return( 0 );

}

object_t *delete(trie_node_t *trie,
char *delete_string)

{ trie_node_t *tmp, *tmp_prev,
*first_del, *last_undel;

object_t *del_object;
char *del_next;
if( trie->list == NULL ||

*delete_string == ’\0’ )
return( NULL ); /* delete failed:
trie empty */

else /* trie not empty, can start */
{ int finished = 0; int branch = 1;

last_undel = tmp_prev = trie;
first_del = tmp = trie->list;
del_next = delete_string;
while( !finished )
{ while( tmp->this_char != *del_next )

{ /* follow list to find
matching character */
if( tmp->list == NULL ) /* none
found*/

return( NULL );
/* deletion failed */

else /* branching trie node */
{ tmp_prev = tmp; tmp = tmp->list;

branch = 1;
}
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} /* tmp has matching next character */
if( branch || (tmp->list != NULL) )
{ /* update position where

to start deleting */
last_undel = tmp_prev;
first_del = tmp; branch = 0;

}
if( *del_next == ’\0’ )

finished = 1; /* found
deletion string */

else
{ del_next += 1;

tmp_prev = tmp; tmp = tmp->next;
}

} /* reached the end. now unlink and
delete path */

del_object = (object_t *) tmp->next;
tmp->next = NULL; /* unlink del_object */
if( first_del == last_undel->next )

last_undel->next = first_del->list;
else /* first_del == last_undel->list */

last_undel->list = first_del->list;
/* final path of nonbranching
nodes unlinked */
tmp = first_del;
while( tmp != NULL ) /* follow
path, return nodes */
{ first_del = tmp->next;

return_node( tmp );
tmp = first_del;

}
return( del_object );

}
}

void remove_trie(trie_node_t *trie)
{ trie_node_t *tmp_node;

create_stack();
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push( trie );
while( !stack_empty() )
{ tmp_node = pop();

if( tmp_node->this_char != ’\0’)
push( tmp_node->next );

if( tmp_node->list != NULL)
push( tmp_node->list );

return_node( tmp_node );
}

}
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Trie for the Strings exam, example, fail, false, tree, trie, true
Implemented with List Nodes: All Pointers Go Right or Down

The only difficult part here is the delete operation because the deletion
of unused nodes requires different unlinking operations, depending on whether
it is reached by a next or a list pointer. We avoid some difficulties by just
traversing the structure twice: once to find the place from which we have to
delete and another to actually perform the deletion. This turns out to be simpler
than a stack-based implementation. The performance of this structure is as
follows:

Theorem. The trie structure with nodes realized as lists stores a set of
words over an alphabet A. It supports a find operation on a query string
q in time O(|A| length(q)) and insert and delete operations in time
O(|A| length(q)). The space requirement to store n strings w1, . . . , wn is
O
(∑

i length(wi)
)
.
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So the main improvement is the space complexity, which stops being a
problem. The dependence on |A| in both query and update operations happens
only in those instances when the basic trie would be efficient: when there are
many prefixes that allow many different next characters. So in applications
with normal text strings, the performance will be much better. If we have
some information about the access probabilities of the words, we can optimize
the structure by choosing the right sequence for the characters on each list
(Suraweera 1986).

Another way to avoid the problem with the alphabet size |A| is alphabet
reduction. We can represent the alphabet A as set of k-tuples from some direct
product A1 × · · · × Ak; by this each string gets longer by a factor of k, but the

alphabet size can be reduced to
⌈

|A| 1
k

⌉
. For our standard ASCII codes, we can

break each 8-bit character by two 4-bit characters, which reduces the node size
from 256 pointers to 16 pointers, but doubles the length of each search path.

01111110

01110110

01101110

01100101

01100011

01011111

01010100

01001011

01000101

00101110

00101100

0111

0110

0101

0100

0010

1110

0110

1110

0101

0011

1111

0100

1011

0101

1110

1100

Alphabet Reduction: Instead of One Node with 256 Entries,
of Which Only 11 Are Used, We Have Five Nodes with 16 Entries Each

At the extreme end, we could use a 1-bit alphabet, representing the strings as
sequences of single bits; this has been variously discussed in literature because
it seems a natural model, but the many necessary bit operations make it a bad
choice in real implementations. For more general alphabets the same technique
applies, but if we do not have direct access to the bit representation of the
characters, we might need to keep tables of the individual maps A → Ai to the
k subalphabets of the direct product embedding. But these tables are only of
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total size k|A| and need to be kept only once, so this is an insignificant memory
overhead.

By alphabet reduction, the special role of the termination character is lost;
it is mapped on a termination string, and we need additional bookkeeping to
recognize it. But it is also a good structure for the string model with explicit
length, without termination character. Next we give an implementation of the
trie structure, for strings of 8-bit characters broken in two 4-bit characters, with
no special role of the ’\0’-character but instead a given length of each string.
We also use reference counts in the nodes to speed up the deletion.

typedef struct trie_n_t {
struct trie_n_t *next[16];
object_t *object;
int reference_count;
/* possibly additional information*/

} trie_node_t;

trie_node_t *create_trie(void)
{ trie_node_t *tmp_node; int i;

tmp_node = get_node();
for( i = 0; i < 16; i++ )

tmp_node->next[i] = NULL;
tmp_node->object = NULL;
tmp_node->reference_count = 1;
/* root cannot be deleted */
return( tmp_node );

}

object_t *find(trie_node_t *trie,
char *query_string, int query_length)

{ trie_node_t *tmp1_node, *tmp2_node;
int query_pos;
tmp1_node = trie;
for( query_pos = 0;
query_pos < query_length; query_pos ++)
{ tmp2_node =

tmp1_node->next[((((int)query_string
[query_pos])& 0xF0)>>4)];
if( tmp2_node != NULL )
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tmp1_node = tmp2_node;
/* used upper four bits */

else
return( NULL );
/* query string not found */

tmp2_node =
tmp1_node->next[((int)query_string
[query_pos]) & 0x0F];

if( tmp2_node != NULL )
tmp1_node = tmp2_node;
/*used lower four bits */

else
return( NULL );
/* query string not found */

}
/* reached end of query string */
return( tmp1_node->object);
/* NULL if query string not found */

}

int insert(trie_node_t *trie,
char *new_string, int new_length,
object_t *new_object)

{ trie_node_t *tmp1_node, *tmp2_node;
int current_pos; int next_sub_char;
tmp1_node = trie;
for( current_pos = 0; current_pos

< 2*new_length; current_pos++)
{ if( current_pos % 2 == 0 )

/* use upper four bits next */
next_sub_char = (((int)new_string

[current_pos/2]) & 0xF0)>>4;
else /* use lower four bits next */

next_sub_char = ((int)new_string
[current_pos/2]) & 0x0F;

tmp2_node =
tmp1_node->next [ next_sub_char ];
if( tmp2_node != NULL )



350 8 Data Structures for Strings

tmp1_node = tmp2_node;
/* used four bits */

else /* need to create new node */
{ int i;

tmp2_node = get_node();
for( i = 0; i < 16; i++ )

tmp2_node->next[i] = NULL;
tmp2_node->object = NULL;
tmp2_node->reference_count = 0;
tmp1_node->next[ next_sub_char ] =
tmp2_node;
tmp1_node->reference_count += 1;
tmp1_node = tmp2_node;

}
}
if( tmp1_node->object != NULL )

return( -1);/* string already exists,
has associated object*/

else
{ tmp1_node->object = new_object;

tmp1_node->reference_count += 1;
}
return( 0 );

}

object_t *delete(trie_node_t *trie,
char *del_string,
int del_length)

{ trie_node_t *tmp1_node, *tmp2_node;
int current_pos; int next_sub_char;
trie_node_t *del_start_node;
int del_start_pos;
object_t *tmp_object;
tmp1_node = trie;
del_start_node = trie; del_start_pos = 0;
for( current_pos = 0;
current_pos < 2*del_length; current_pos++)
{ if( current_pos % 2 == 0 )
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/* use upper four bits next */
next_sub_char = (((int)del_string

[current_pos/2]) & 0xF0)>>4;
else /* use lower four bits next */

next_sub_char = ((int)del_string
[current_pos/2]) & 0x0F;

tmp2_node =
tmp1_node->next [ next_sub_char ];
if( tmp2_node != NULL )
{ if( tmp1_node->reference_count > 1 )

{ del_start_node = tmp1_node;
del_start_pos = current_pos;

} /* del_start_node is the
last node with two pointers */
tmp1_node = tmp2_node;
/* used four bits */

}
else

return( NULL ); /* delete_string
did not exist */

}
if( tmp1_node->object == NULL )

return( NULL ); /* delete_string
did not exist */

else
{ tmp1_node->reference_count -= 1;

tmp_object = tmp1_node->object;
tmp1_node->object = NULL;

}
if( tmp1_node->reference_count == 0)
{ tmp1_node = del_start_node;

for( current_pos = del_start_pos;
current_pos < 2*del_length; current_pos++)
{ if( current_pos % 2 == 0 )

/* use upper four bits next */
next_sub_char = (((int)del_string

[current_pos/2]) & 0xF0)>>4;
else /* use lower four bits next */



352 8 Data Structures for Strings

next_sub_char = ((int)del_string
[current_pos/2]) & 0x0F;

tmp2_node =
tmp1_node->next[ next_sub_char ];
tmp1_node->next[ next_sub_char ] = NULL;
tmp1_node->reference_count -= 1;
if( tmp1_node->reference_count == 0 )

return_node( tmp1_node );
tmp1_node = tmp2_node;

}
return_node( tmp1_node );

}
return( tmp_object );

}

void remove_trie(trie_node_t *trie)
{ trie_node_t *tmp_node;

create_stack();
push( trie );
while( !stack_empty() )
{ int i;

tmp_node = pop();
for( i=0; i<16; i++)
{ if( tmp_node->next[i] != NULL )

push( tmp_node->next[i] );
}
return_node( tmp_node );

}
}

The performance of this structure is as follows:

Theorem. The trie structure with k-fold alphabet reduction stores a set of
words over an alphabet A. It supports find and delete operations on
a query string q in time O(k length(q)) and insert operations in time
O(k|A| 1

k length(q)). The space requirement to store n strings w1, . . . , wn is
O(k|A| 1

k

∑
i length(wi)).
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The inverse operation of alphabet reduction is level compression, which is
the use of some power Ak of the original alphabet to reinterpret the string as
groups of k symbols. This received some theoretical study (Andersson and
Nilsson 1993, 1994; Nilsson and Tikkanen 1998, 2002) in the context of bit
strings, where A = {0, 1}, and for other very small alphabets (quadtree), but
for strings over an ASCII alphabet it is not feasible.

Each node of the basic trie structure is itself again a dictionary, with the
character as key and the pointer to the next node as object. Thus we can
realize the nodes by any dictionary structure of our choice. The trie version
using lists for the nodes corresponds to a dictionary realized as list of (key,
object) pairs, which is very inefficient if that list is long. The trie version using
alphabet reduction can be interpreted as using a trie over the smaller alphabet
as dictionary in each node of the trie over the original alphabet. Another natural
choice is to use a balanced search tree in each trie node. Here we have the
choice of the numerous types of search trees, but in principle we can use just
any balanced tree. Because in each node the dictionary contains at most |A|
entries, we get at worst an O(log |A|) time overhead to find the correct entry in
each node, and possibly to change it. And the space used by any search tree is
linear in the number of keys it stores, so the performance of the structure is as
follows:

Theorem. The trie structure with balanced search trees as nodes stores a
set of words w1, . . . , wn over an alphabet A. It supports find, delete,
and insert operations on a query string q in time O(log |A| length(q)) and
requires O

(∑
i length(wi)

)
space.

The dependence on the alphabet size is thus harmless; still the overhead of a
search tree gives it an advantage over the list only if many nodes have many
entries.

In the previous argument we overestimated the height of the search trees in
most nodes because most nodes will not have an entry for each possible next
letter. We can improve the bound a bit if we balance not each node individually,
but use some global balance criterion. For a static trie structure, this was done
by Bentley and Sedgewick (1997), who introduced the “ternary trie.” They
use as underlying search tree a tree of our model 2 (node tree), a ternary tree,
where each node contains one character as key and one pointer each for query
characters that are smaller, larger, or equal. To build a ternary trie, we assume
that the strings are already sorted in lexicographic order. In each node, we
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choose as comparison key the character at the current position of that string,
which is the lexicographic median of the strings that remain along that search
path. Then in a query step, when we compare the current query character with
the node key,

{ either query character and node key are equal, then we move on to the next
query character and follow the “equal” pointer of the node; this happens
only length(q) times,

{ or the query character and node key are not equal, then we follow the
“smaller” or “larger” pointer; this reduces the number of possible strings to
less than half the previous number, so this happens only O(log n) times.

The performance of this structure is as follows:

Theorem. The ternary trie structure is a static structure that stores a set of words
w1, . . . , wn over an alphabet A. It supports find operations for a query string
q in time O(log n + length(q)). The space requirement is O

(∑
i length(wi)

)
,

and it can be built from a sorted set of strings in this time.

Some heuristic dynamic variants of this structure have been discussed in
Badr and Oommen (2004), but a true dynamization is surprisingly difficult.
The idea of subdividing tries into binary comparisons with median characters
has occurred before in Breslauer (1995) and Cole and Lewenstein (2003) in the
context of suffix trees.

A different type of compression of tries is path compression, which is the
idea that instead of explicitly storing nodes with just one outgoing edge, we
skip these nodes and keep track of the number of skipped characters. So the
path compressed trie contains only nodes with at least two outgoing edges,
and together with each edge it contains a number, which is the number of
characters that should be skipped before the next relevant character is looked
at. This reduces the required number of nodes from the total length of all strings
to the number words in our structure. But, as we skip all those intermediate
nodes, we need in each access a second pass over the string to check all those
skipped characters of the found string against the query string. This structure
is known as Patricia tree (Morrison 1968), which is an acronym for “Practical
algorithm to retrieve information coded in alphanumeric.” The idea of path
compression can be combined with any of the aforementioned variants of tries;
originally it was described for bit strings, but for a two-element alphabet the
space overhead is so small that today there is no need for path compression;
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this technique to reduce the number of nodes is justified only if the alphabet is
large.
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As a static data structure, the Patricia tree seems to be quite straightforward,
but the insertion and deletion operations create significant difficulties. To insert
a new string, we need to find where to insert a new branching node, but this
requires that we know the skipped characters. It seems an obvious solution to
attach to each node the skipped substring that led to it, but then we have to
allocate and deallocate many small strings of varying sizes; even if we group
them in a few standard sizes, this is a procedure with high overhead. Another
solution would be a pointer to one of the strings in the subtrie reached through
that node, for there we have that skipped substring already available. But we
need to be careful because that string might again be deleted, in which case
we would have to replace all those pointers by pointers to a different string
in that same subtrie. To allow us to detect that a pointer on the path points to
some place in the string we wish to delete, all those pointers would need to
be represented as pointer to the beginning of the string plus offset. This is a
clumsy solution, but still feasible; its performance would be the following:

Theorem. The Patricia tree structure stores a set of words over an alphabet
A. It supports find operations on a query string q in time O(length(q))
and insert and delete operations in time O(|A| length(q)). The space
requirement to store n strings w1, . . . , wn is O(n|A| +∑i length(wi)).
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Another obvious solution attempt would be to follow some branch just to its
end to find out which the skipped characters were; they have to be the same for
all branches. But this does not give any bound for the insertion time of a string
q in terms of length(q), because even to insert a very short string, we might
have to follow very long paths to the end.

Thus, a Patricia tree is a structure whose implementation overhead uses
up its efficiency advantage over normal tries, for example, those with nodes
realized as lists. The significance of Patricia trees is mainly as building block
of suffix trees, where these problems do not occur.

Although it is most natural to use the string in this left-to-right fashion,
there is no intrinsic reason to do so. The sequence in which we evaluate the
characters of the strings does influence the size of the resulting trie structure; if,
for example, all strings have a long common suffix, it might be advantageous
to read them from that end. We could even, for each trie node, specify which
position we next look at – there is no need for these positions to be in any
particular sequence or the same sequence along all branches of the trie. But
optimizing the possible sequence choices turns out to be NP-complete in any
variant (Comer and Sethi 1977).

A number of additional ways to compress tries have been proposed (Heinz,
Zobel, and Williams 2002). The compression methods in Maly (1978) and al-
Suwaiyel and Horowitz (1984) are suitable only for static tries; the method in
Aoe, Morimoto, and Sato (1992) requires very large arrays, but the method in
Morimoto, Iriguchi, and Aoe (1994) works with the same nodes as the normal
trie and has, in the experiments they report, a space reduction by a factor 1

2 .
But in any of these space-saving modifications we lose the simple elegance of
the trie structure. A related question is how to represent tries, or sets of strings,
on external memory. Strings are variable-length keys, so they do not fall in the
model of B-trees, but these are structures like string-B-trees, prefix-B-trees and
O-trees (Ferragina and Grossi 1999; Orlandic and Mahmoud 1996).

8.2 Dictionaries Allowing Errors in Queries

The trie-based structures we discussed in the previous section find only exact
matches; if the query string contains an error, for example, a word is misspelled
or a typing or transmission error happened, the correct string will not be found.
This situation is different from the numeric keys in the search trees discussed in
Chapter 3, or the range trees for higher-dimensional data discussed in Chapter
4; for these, it is easy to find a neighbor of a query value even if the query
value is slightly off the correct value. That does not work in a trie-based
structure because the trie essentially mirrors the lexicographic order of the
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strings: if the first character of the query string is incorrect, we are searching
at entirely the wrong place. It would be highly desirable to have a dictionary
structure that keeps track of a set of strings and finds all strings that differ
only in d characters from the query string. This problem has for d = 1 an
elegant, efficient, and practicable solution (Brodal and Ga̧sieniec 1996), and
several even more efficient solutions in computation models less relevant for
our purposes (Yao and Yao 1997; Ferragina, Muthukrishnan, and de Berg 1999;
Brodal and Venkatesh 2000); for d ≥ 2, it is essentially open.

Suppose we have a set of n words w1, . . . , wn over an alphabet A, with
total length �w =∑n

i=1 length(wi), and we want to preprocess this into a
structure that can find all words of our set that differ in at most d places from
a query string q for some fixed d. Then there are two trivial solutions:

1. We could generate for each word wi all the words that differ in at most d

places from it and store all these word variants in a trie.
For each word wi , we get �(|A|d length(wi)d ) variants, so if we use a
standard trie, the size of the underlying structure increases from
O (|A|�w) = O(|A|∑n

i=1 length(wi)) to O(|A|d+1∑n
i=1 length(wi)d+1),

whereas the query time stays O(length(q)). This size is infeasible even for
d = 1.

2. We could use just a standard trie for the words, but generate for each query
string q all the words that differ in at most d places, and perform all these
queries on the trie.
This generates �(|A|d length(q)d ) queries, each of time �(length(q)),
which again is useless at least for d ≥ 2.

There are minor improvements possible. In the first solution we could perform
path compression, which would reduce the exponent for the required space
from d + 1 to d, because there are only so many leaves; but it is not obvious
how to construct the structure in that time (Brodal and Ga̧sieniec 1996). One
could use a trie with list-based nodes, which would remove one |A| factor. And
one can combine both solutions, storing all variants with d1 errors and asking
all query variants with d2 errors, to find all words with d1 + d2 errors. All this
is useless, but essentially the best we have for d ≥ 2.

The remarkable achievement of Brodal and Ga̧sieniec (1996) is a structure
for d = 1, which, in our standard model, consists of just two tries on the words,
so of size O(|A|�w) each, if we use the standard trie, and one balanced search
tree of size O(�w). The query time is O(length(q) log �w). It is even a dynamic
structure, inserting or deleting a word w takes O(length(w) log �w) time. It can
be combined with all the trie variants, so one might use the trie with list-based
nodes to decrease the space complexity. Only the path compression cannot be
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used if we want to have the structure as dynamic dictionary. If we leave our
computational model and allow ourselves the use of a hash table instead of
the search tree, even the log �w factor disappears and both preprocessing and
query are linear-time operations.

The idea of this double-trie structure is to build one trie for all words wi and
a second trie for the words written backward wreversed

i . Then each node in the
first trie corresponds to some prefix π of some word wi , and each node in the
second trie corresponds to some suffix σ of a word wj . For each word wi we
look at all pairs of (prefix, suffix) that are separated by a single character, so as
to have different ways to write wi = πcσ , where c is a character. Each word
wi generates length(wi) for such pairs (π, σ ), which are represented by pairs
of trie nodes, addresses or numbers. We generate all these pairs for a given
word by first following in the first trie the path of the word to its end, pushing
a pointer for each passed node on the stack, and then following in the second
trie the path of the reversed word, pairing each node we reach in the second
trie with the corresponding next node from the stack. So we can generate all
the node pairs in time O(length(wi)). Each of these node pairs, that is, pairs of
pointers or node numbers, we enter in our search-tree, together with a pointer to
the word wi that generated that pair. The total number of pairs are �w, so each
search-tree operation costs only O(log �w). So we build the entire structure in
time O(�w log �w).

The query method now follows the same outline: follow the path of the
query word in the first trie as far as possible, pushing a pointer to each visited
node on the stack. Unless the query word is indeed correct, we will not reach
the end, but there is a maximum prefix of the query word that is also prefix of
some correct word. Then we follow the path of the reversed word in the second
trie until we are one character before the end of that maximum prefix. From
then on, while we continue to follow the path in the second trie, we pair each
visited node with a prefix node from the stack and look up in the search tree
whether that node pair belongs to any correct word. Thus the query time is
O(length(q) log �w).

If we use a trie with list-based nodes and any balanced search tree, the
performance of this structure is as follows:

Theorem. The double-trie structure, with trie nodes realized as lists and a
balanced search tree, stores a set of words of total length �w over an alphabet
A. It supports a find operation on a query string q to find all words that differ in
at most one place from q in output-sensitive time O(|A| length(q) log �w + k)
if there are k such words. It supports insert and delete operations of a
word w in time O(|A| length(w) log �w). The space requirement is O(�w),
and the time to build the structure is O(|A|�w log �w).
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This is almost as good as possible, and if our computational model allows the
use of a hash table instead of the search tree, the log �w factor disappears, so
all operations become linear time in the length of the input, which is certainly
optimal. In a somewhat intermediate model, Ferragina et al. (1999) give a
much more complicated structure in which the log �w is reduced to log log �w.
Another method with worse performance was proposed in Amir et al. (2000).

The double-trie structure even supports queries for a more general model
of errors; not only one character might be exchanged for a different character,
but instead also one character could be inserted or deleted. This corresponds
to using the edit distance instead of the Hamming distance. For the double-
trie structure it just means that for each word w we need to insert another
length(w) + 1 acceptable (prefix, suffix) pairs into the search tree, those de-
compositions w = πσ without intermediate letter; then the same query algo-
rithm will also accept all query words q with q = πcσ ; and to accept the query
words which are missing one character, we use the original set of acceptable
pairs, but pair in the query the current suffix with its immediate prefix instead
of the prefix one character shorter. Neither of these modifications changes the
complexity.

Brodal and Ga̧sieniec (1996) also gave a different solution to use the two
tries and obtain a linear query time, without the use of a hash table, but using
a more complicated tool: sorting all the input strings in lexicographic order in
O(�w) time and assigning them their rank in that order as their number. Then,

{ each trie node in the first trie then corresponds to an interval in that order,
the words wi that start with that prefix;

{ each trie node in the second set corresponds to some subset: the words that
end with that suffix.

Instead of testing whether a pair of nodes from the first and second trie represent
a (prefix, suffix) pair from a word wi by looking up that pair of nodes in our
search tree, they test whether the interval of the first node intersects the subset
of the second node. This is a situation in which fractional cascading can be
applied: when we follow a path in the second trie, the subsets get sparser, so
we represent the subsets by sorted lists and sublists, with pointers from any
node in the list to its next neighbors in the sublists. Going the corresponding
path backward in the first trie, we get a sequence of increasing intervals. So,
when we follow the path in second trie and compare with the corresponding
node from the stack in the first trie, we get a sequence of increasing intervals
and a sequence of decreasing sorted sublists, and we want to test whether there
is at any stage an intersection between the interval and the sublist. For this, we
just have to find the position of the interval in the first list, for which we need
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a search tree, then we can follow in each step in O(1) time the pointers to the
neighbors in the sublist to obtain the position of the previous interval in the new
sublist, and then extend the interval and check whether it now contains one of
the neighbors in the sublist. The complexity of this query-processing algorithm
is O(length(q)) to follow the first trie as far as possible and put the nodes on
the stack, the same time to reach the corresponding position in the second trie,
O(log n) to determine the initial position position of the interval in the list, and
O(1) for each step to the next sublist and interval, giving a total query time of
O(length(q) + log n).

All this assumed that the characters of the string were approximately of
the same size as the elementary units of the computer memory, so the time
necessary to read a string is essentially its length, and we have an �(length(w))
lower bound for any operation on a word w. The situation changes when we
may read the entire word in constant time, which is the model considered in
Yao and Yao (1997) and Brodal and Venkatesh (2000); there they consider sets
of n bit strings of length m in machine model of word length at least m. Then
we can read the entire query word in time O(1), and for an exact match query
we could just use it directly in a hash table and find the corresponding entry
in O(1). Here the question again is how fast we can extend this to words that
differ in a single position. A first solution was given in Yao and Yao (1997) that
used O(n log m) words of length m space and a query time of O(log log n); this
was improved in Brodal and Venkatesh (2000) to O(1) query time.2

For queries for distance d ≥ 2, essentially nothing is known, although some
aspects were discussed in Dolev et al. (1994) and Greene, Parnas, and Yao
(1994), neither of them leading to an algorithm.

8.3 Suffix Trees

The suffix tree is a static structure that preprocesses a long string s and answers
for a query string q, if and where it occurs in the long string. Thus, it solves the
substring matching problem, as do the classical string-matching algorithms.
The difference is that the time to answer a substring query is not dependent
on the length of the long string, but only on the length of the query string.
The query time is O(length(q)) for a query string q. The idea is very simple
at least on the query side: each substring of s is prefix of a suffix of s, and

2 They used a bitwise computation model, but if we would reinterpret those bounds just as
strings over the binary alphabet, the performance would be worse than the double-trie structure
combined with a hash table. The strength of the results is that the operations on the words of
length m are performed in O(1) time.
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the nodes of any trie correspond to the prefixes of the strings stored in the trie,
so if we construct a trie that stores all suffixes of the long string s, then its
nodes correspond to the substrings of s, and we can decide for any query q in
O(length(q)) whether it is a substring of s.
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As it is, this structure would use O(length(s)2) nodes and take the same
time to build; but if we now apply path compression, we see that there are only
length(s) branching nodes and, different from Patricia trees, we do not need to
store all those strings explicitely, but can encode each by a beginning and end
address in the long string s. Thus we get an O(length(s)) representation for the
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This idea was introduced by Weiner (1973).3 The major problem is to build
that linear-sized representation in linear time. Several algorithms have been
proposed, all of which require some thought. The classical methods are by
Weiner (1973), who builds the structure backward, starting from the end of

3 But the name was given by McCreight (1976). In Weiner (1973), the structure was called a
prefix bitree and a very similar structure was called position tree (Aho, Hopcroft, and Ullman
1974).
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the string and adding the suffixes in order of increasing length; by McCreight
(1976), who builds the structure by adding suffixes in order of decreasing
length; and by Ukkonen (1995), who builds the structure incrementally from
front while maintaining a suffix tree of the already-processed prefix. Before
Ukkonen’s solution, the problem of constructing the suffix tree incrementally,
while reading the string, had been studied in a number of papers; the algorithm
in Majster and Reiser (1980) does not work in linear time, but the algorithms in
Kempf, Bayer, and Güntzer (1987) for the related position trees and Kosaraju’s
“quasi-real-time” algorithm (Kosaraju 1994) are linear-time constructions. An
incremental method that allows addition at either end of the string was de-
veloped by Inenaga (2003); a “lazy” version that builds the tree only during
the queries was described in Giegerich, Kurtz, and Stoye (2003), and an at-
tempt at a common model for these algorithms was made in Giegerich and
Kurtz (1997). In Tian et al. (2005), a quadratic-time algorithm is proposed for
a memory-restricted setting and various experimental results are reported in
Hunt, Atkinson, and Irving (2002).

Because any realization of the suffix tree has a trie as underlying structure,
the space requirements of tries, especially for large alphabets, are also a problem
for suffix trees. This problem has been considered in Andersson and Nilsson
(1995), Farach (1997), Kurtz (1999), Munro et al. (2001), and Kim and Park
(2005). We can combine the suffix tree idea with any of the trie representations
discussed in the previous section. Some applications of the structure already
have a small alphabet, for example, for substring search in a genetic sequence;
but for a long text over the normal alphabet, the representation of the trie nodes
as lists is probably most convenient.

The algorithms are easiest to understand if first described without the path
compression, so the underlying abstract structure is a trie that stores a set of
suffixes of the input string and the trie nodes correspond to prefixes of those
suffixes, that is, the substrings. Each node has some outgoing pointers that are
the normal trie edges, corresponding to possible extensions of the current prefix
of a suffix, that is, a longer substring with some additional character at the end.
In addition to these pointers, both McCreight (1976) and Ukkonen (1995) use
a further pointer in each node – the suffix link – which points from a node
representing a string a0 . . . ak to the node representing the string a1 . . . ak , that
is, its suffix after deleting the first character.

We describe here Ukkonen’s method. Suppose we have already built the
structure for the string c0 . . . cn−1 and want to add one further character cn

in the end. We need to change only those nodes that correspond to strings
ci . . . cn−1; a node whose string does not occur as suffix of c0 . . . cn−1 cannot
change by the extension to c0 . . . cn−1cn. Those nodes that potentially might
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change are reached from the node corresponding to c0 . . . cn−1 by following
suffix pointers; this path is known as the boundary path. Each node on the
boundary path is in one of the following situations:

{ type 1: The node has no outgoing edge.
{ type 2: The node has an outgoing edge, but none that corresponds to the

next character cn.
{ type 3: The node has an outgoing edge corresponding to the next character

cn.

If we follow the boundary path from c0 . . . cn−1 to cn−1, these three types form
consecutive, possibly empty, intervals. If the node corresponding to ci . . . cn−1

is of type 1, this substring occurs only at the end, so the longer substring
ci−1ci . . . cn−1 also occurs only at the end and its corresponding node is also of
type 1. In the same way, if the node corresponding to ci . . . cn−1 is of type 3,
the substring ci . . . cn−1cn has already occurred somewhere before and so the
shorter substring ci+1 . . . cn−1cn also has occurred somewhere before and its
corresponding node is also of type 3. Thus, all type 1 nodes are in the beginning
of the boundary path, all type 3 nodes in the end, and type 2 nodes possibly
between them.

We do not need to make any change in a type 3 node because the node we
need for the new last character cn already exists. In a type 2 node, we need
to create a new branch, a new node for the string ci . . . cn−1cn, which did not
occur before. This is a new branch off a node that already had at least one
outgoing edge, because the total number of leaves of the trie structure is n, we
meet type 2 nodes only a total of n − 1 times while inductively building the trie
structure for a string of length n. So the main work is the type 1 nodes, where
we have to just add another node to a node that previously had no outgoing



364 8 Data Structures for Strings

* c *

*

c a *

a *

*

c a c *

*

a c *

*

c a c a *

*

a c a *

*

*

c a c a o *

o *

a c a o *

o *

o *

*

Incremental Construction of Trie of the Suffixes of cacao:
The ∗-Nodes Mark the Current End; They Form the Boundary Path

pointer. There we just make a long path at the end one node longer, exactly
the structure we wanted to avoid by path compression. To represent such a
path, which has no branches and extends to a leaf, we need just the first node,
together with the position in the long string where the substring represented by
that first node occurs, and the information to accept all continuations of that
substring up to the end of the long string. Such an “open-ended” node does not
need to be updated at all, when the long string grows at its end, unless the path
represented by this node develops a new branch. For the open-ended nodes, the
suffix link stays undefined.

So all the update work that needs to be done on the boundary path is among
the type 2 nodes, starting at the first node that corresponds to a substring
ci . . . cn−1 that has already occurred before as cj . . . cj−i+n−1, and ending at the
first node that already has an entry for cn, so even the substring ci . . . cn−1cn

has already occurred before. The starting node in each step of the inductive
construction is easy to find: the end node of one round is predecessor of the
starting node of the next round. If, in the step of adding cn, we found ci . . . cn−1

as the end node, and that the first node already had an entry for cn (type 3),
then in the step of adding cn+1, we will find ci . . . cn as the first node that
already has an outgoing pointer (type 2 or 3). The only exception to this is
that if we did not find any node that already had an entry for cn, we walked
down the boundary path to the root node representing the empty string and
added there a new entry for cn, then the root node is the starting node of the
next round.
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So the outline of this algorithm to construct the suffix tree of a given string
s = c0 . . . cn−1 is as follows:

0. Create the root node, representing the trie of the empty string. Set the
active node to that node, and i = 0.

1. While i < n

1.1 While the active node has no entry for ci

1.1.1 Create a new node, reached from the active node by the entry
for ci . This new node is a leaf.

1.1.2 Move the active node down its suffix link if it is not already
the root.

1.2 Move the active node up the link for ci unless it is the root and we
just created that link. Increment i.

In this outline, we see two types of steps: in 1.1 the active node follows a suffix
link, so it moves to a node representing a string shorter by one character, and in
1.2 it follows a regular link, so it moves to a node representing a string longer
by one character. There are only n iterations of step 1.2, so the step 1.1 is also
taken only n times. This suggests an O(n) complexity. There are, however,
several problems because the nodes we want to use may be missing due to the
path compression, especially in the nodes represented by the open-ended paths.
And for those nodes the suffix links will also not exist.

So we have to find implicit nodes when we need them and make them
explicit. We can represent each implicit node by an explicit node, followed
by a substring: if the explicit node represents string α and the substring is
ci . . . cj , they together represent αci . . . cj . This is a constant-sized represen-
tation if we use (i, j ) to describe ci . . . cj . Each implicit node has many such
representations, one for each explicit node on the path to that implicit node.
Given such a representation of an implicit node, we make it explicit by first
following the path in the compressed trie, as far as possible, and in the last ex-
plicit node we insert a newly created explicit node in the correct link. This also
solves the problem of missing suffix links for implicit nodes: if the implicit
node is represented by an explicit node followed by ci . . . cj , then the node
reached by the suffix link from the implicit node is represented by the node
reached by the suffix link from the explicit node, followed by the same substring
ci . . . cj .

We still need to bound the time we need to make the missing nodes ex-
plicit. We make an implicit node explicit in step 1.1.1 only when it becomes a
branching node; there are only at most n − 1 branching nodes, so this happens
only O(n) times. There is no O(1) bound for the individual operation because
we might have to go through many explicit nodes to finally find the link in
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which the implicit node has to be inserted. But a similar accounting argument
as before works, applied to the current representation of the active node instead
of the active node itself. The representation of the active node consists of an
explicit node and a substring. The substring gets longer only in step 1.2; each
time we follow a suffix link, the length of the string does not change, and each
time we follow a link to another explicit node, in the process of making an
implicit node explicit, the string gets shorter. So the total number of explicit
nodes traversed while making implicit nodes explicit is only O(n). This gives
a total O(n) bound for the complexity of the construction of the suffix tree of
a string of length n.

The performance of this structure is as follows:

Theorem. The suffix tree structure is a static structure that preprocesses a
string s and supports substring queries. If the trie nodes are realized as linked
lists, the operation make suffix tree preprocesses a string of length n over
an alphabet A in time O(|A|n) into a structure of size O(n), which supports
find string queries for a string q in time O(|A| length(q)).

The suffix tree structure turned out to be very useful for various string pat-
tern processing tasks (Apostolico 1985; Gusfield 1997). Some applications
motivated variants of the underlying structure, like parametrized strings intro-
duced in Baker (1993) and further discussed in Kosaraju (1995) and Cole and
Hariharan (2003); a parametrized string consists of characters of the underlying
alphabet and variables, where all occurrences of the same variable have to be
replaced by the same string. This can be viewed as an equivalence class of
strings, for example, a program under renaming of variables.

Another variant are the two-dimensional strings, rectangular arrays of sym-
bols from an alphabet, which can be viewed as abstraction of images, where a
two-dimensional substring corresponds to a match of a translate of a small im-
age in the big image. Two-dimensional suffix trees were introduced in Giancarlo
(1995) and further developed in Choi and Lam (1997) and Cole and Hariha-
ran (2003); higher-dimensional versions are discussed in Kim, Kim, and Park
(2003).

Suffix trees can also be used to find repetitions in text, which is an important
subtask of dictionary-based compression methods like Lempel-Ziv. A closely
related structure is the directed acyclic word graph (DAWG), which is the
smallest automaton that accepts the subwords of a given word (Blumer et al.
1985; Blumer 1987; Holub and Crochemore 2002); it can also be constructed
by the same algorithms as suffix trees (Chen and Seiferas 1987; Ukkonen 1995).
Yet another variant is the affix tree studied in Maass (2003).



8.4 Suffix Arrays 367

Because the suffix tree structure is so useful, it would be desirable to have
a dynamic variant of it, in which we can change the underlying string. This
question has already been considered by McCreight (1976), but there are words
of length n for which a change of O(1) places in the word forces �(n) changes
in the suffix tree structure (Ayala-Rincón and Conejo 2003).

Suffix trees can also be built for multiple strings if we want to decide
whether a query string q occurs as substring of any of k strings s1, . . . , sk . The
construction is exactly the same; indeed, we can just concatenate the strings to
s1s2, · · · , sk and build a normal suffix tree for this combined string.

8.4 Suffix Arrays

The suffix array is an alternative structure to the suffix tree that was developed
by Manber and Myers (1993).4 It supports the same operations as the suffix
tree: it preprocesses a long string and then answers for a query string whether
it occurs as substring in the preprocessed string. The possible advantage of the
suffix array structure is that its size does not depend on the size of the alphabet
and that it offers a quite different tool to attack the same type of string problems.
It is said to be smaller than suffix trees, but that somewhat depends on various
compact encoding tricks; in its most straightforward implementation, it requires
three integers per character of the long string, whereas an implementation of
the suffix tree with list nodes requires five pointers per node, and the number
of nodes is at most the length of the string, but possibly smaller. In any case
the query structure is significantly larger than the underlying string – our suffix
tree by a factor of 20,5 the basic suffix array by a factor of 12 – both factors
can be reduced by some encoding tricks; a study of this was made by Kurtz
(1999), and many further papers have been aimed at this topic. Especially for
the suffix array, we need to consider not only the space of the structure itself,
but also the additional space used during the construction (Itoh and Tanaka
1999; Burkhardt and Kärkkäinen 2003; Manzini and Ferragina 2004; Kim, Jo,
and Park 2004b; Na 2005). Some structures intermediate between suffix array,
and suffix tree have also been proposed (Kärkkäinen 1995; Colussi and De Col
1996; Kim, Jeon, and Park 2004a).

In the previous chapters we frequently claimed that space is no longer a
problem, but for structures on strings, it is a legitimate problem because the
overhead is so large. The main reason for this is that standard ASCII characters

4 The same structure was developed at the same time under the name PAT array by Gonnet
(1992) for the application of an Index to the Oxford English Dictionary.

5 Frequently, a factor of 28 is cited for suffix trees.
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are so small compared to integers or pointers. If we used an even smaller alpha-
bet, the ratio would be even worse. In the same way, the word width influences
the ratio: if we use 64-bit pointers, the overhead of the straightforward imple-
mentation doubles, and if we have only text of length at most 216, we could fit
all our pointers and integers in 16 bit and halve the overhead. So the various
numbers stated in literature have to be taken with care; they assume the text
length to be less than 232, and especially for the variants of the suffix tree,
whose size depends on the given text, they frequently are experimental values
obtained for some specific set of text samples. A clean way to compare the vari-
ous methods in models like our pointer machine would be to count integers and
pointers per text character in the worst case. Or one can start to count the bits
of additional space needed for the structure (Hon, Sadakane, and Sung 2003).

The underlying idea of the suffix array structure is to consider all suffixes
of the preprocessed string s in lexicographic order and perform binary search
on them to find a given query string. This already shows one disadvantage of
the structure: the query time to find a string q in the long string s also depends
on length(s); to find the right one among the length(s) possible suffixes, we
need O(log length(s)) lexicographic comparisons between q and some suffix
of s. Without additional information, each comparison takes O(length(q)) time
for a total of O(length(q) log length(s)); if some additional information on the
length of common prefixes of the suffixes of s is available, this reduces to
O(length(q) + log length(s)). The suffix tree needs only O(length(q)) query
time, independent of s.
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We need to represent the suffixes of the string s in a way that they are
sorted in lexicographic order and we can perform binary search on them. The
most natural way is to have one big array in which the starting indices of the
lexicographically sorted suffixes are stored. So we need an integer array of
the same length of the string. This is another disadvantage. There might be a
problem of allocating an array of length(s) integers if length(s) is very large.
And for the common prefix information, we need another two such arrays.
The structure does not fit into our pointer-machine model, which allows only
fixed-size arrays.
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A final problem is how to build the structure. Manber and Myers (1993)
originally gave an algorithm that built the suffix array of a string of length n

in time O(n log n), compared to O(n) for the suffix tree. One can construct
the suffix array from the suffix tree in O(n) time, but if one already has the
suffix tree, there is no point in building a suffix array. Ten years later, many
different methods to construct the structure directly in O(n) time were found
simultaneously by Kärkkäinen and Sanders (2003), Kärkkäinen, Sanders, and
Burkhardt (2006), Kim et al. (2003, 2005), Ko and Aluru (2003, 2005), and
Hon et al. (2003); of these, the method of Kärkkäinen and Sanders (2003) is
probably the simplest6 and we will describe it later. By now, many different
construction methods have been found; a survey and comparison is given in
Puglisi, Smyth, and Turpin (2007). It appears that some algorithms with a
worst-case complexity as bad as O(n2) outperform the O(n) algorithms on real
test data.

In all those papers, as well as in Manber and Myers (1993) and Itoh and
Tanaka (1999), constructing the array of sorted suffixes is viewed as the main
problem, which is a special instance of the classical string sorting problem.
But there are really two steps in building the structure: sorting the suffixes and
finding the common prefix information. For that second step, a nice method was
presented in Kasai et al. (2001), which constructs in O(n) time the common
prefix information from the sorted suffixes.

We will now describe the query algorithm for suffix arrays, as developed in
Manber and Myers (1993). We are basically performing binary search on an
array that contains the starting indices of the suffixes of our string s in lexico-
graphic order. In addition, we have two additional arrays that contain longest
common prefix information for questions asked during the binary search. Sup-
pose we already know that the query string q is lexicographically between the
strings left and right and we want to compare now with the string middle. If
we know that left and middle share the first k characters, then any other string
between them in the lexicographic order also shares these first characters. So
if left and q share the first l characters, with l < k, then the query string cannot
be between left and middle. And by the same argument, if l > k, then middle
cannot be between left and q.

So if we have the numbers k and l, we can decide the outcome of the com-
parison in that step of binary search without looking at the string q unless
l = k. If l = k, we have to compare the strings q and middle in time propor-
tional to the length of the common prefix of q and middle. If, as a result of
this comparison, we find that q is to the right of middle, then in the binary

6 They even give explicit code for it in their paper, but they allocate four auxiliary arrays of the
same length, per recursion, which destroys the main virtue of the suffix array structure.
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search middle becomes the new left, and we have spent the possibly large
comparison time usefully, for we updated l, the length of the common prefix of
q, with left. But if q is to the left of middle, that information does not help us
avoid future comparison. If we search for q = b50a in the string ab100, using
the left common prefix information only, we will in each step compare b50a

from the beginning to the middle string b≥50 because the length of the common
prefix with the left string a stays 0. We avoid this by maintaining both the
information about the common prefix length to the left and to the right. In each
step in which a string comparison between q and middle is necessary, either the
left or the right common prefix length increases by the number of additional
common characters we found, which is at most length(q) in total, over all steps.
If we can decide the binary search step without comparing characters, on base
of the length of common prefix information only, then this information also
gives the new common prefix length of the query string q to the new left or
right string.

Of these numbers, the length of the common prefix of left and middle can
be precomputed, whereas the other number needs to be maintained during the
query. We have one array left middle cp, which gives the length of the
common prefix of left and middle, and another array right middle cp,
which gives the length of the common prefix of middle and right, for each
interval that can occur in the binary search. Each of these arrays is only as long
as the original sorted list of strings because in a binary search each item occurs
for at most one interval as subdivision point. So we can use the number of the
middle item as the address in the array for the interval of the binary search.

During the query, we maintain two numbers – left query cp and
right query cp – that are the length of the common prefixes of the query
string with the left and right endpoints of the current interval in the binary
search. And we need the array sorted str, which contains pointers to the
strings sorted in lexicographic sequence. In the suffix array application, these
strings are the suffixes of the preprocessed string, but the query algorithm works
on any array of lexicographically sorted strings and is also useful outside the
suffix array application.
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To analyze this algorithm for binary search on a set of sorted strings, we
observe that the main loop of the binary search is executed only log(n) times,
and everything in it but the common prefix computations takes constant time.
Whenever we compute a common prefix of length i, it takes O(1 + i), and
we add that length either to left query cp or to right query cp, either
of which is bounded by the length of the query string. We summarize the
performance of this structure as follows:

Theorem. An array of pointers to n lexicographically sorted strings, together
with two arrays of n integers each, containing the common prefix length infor-
mation, allows to find for a query string q whether it is prefix of any of these
strings in time O(length(q) + log n).

To use this query algorithm for suffix arrays, we need to construct the array
of the sorted suffixes. We now describe the construction by Kärkkäinen and
Sanders (2003). The idea of the algorithm is to construct the suffix array for
a shorter string over a larger alphabet recursively and then recover the suffix
arrays for parts of the original string and merge them. This general outline
is also used in Kim et al. (2003), and it was already present in the suffix-
tree algorithm of Farach (1997); indeed the principle of interpreting pairs of
consecutive characters as characters of a new alphabet, and perform string
matching for the shorter string over the larger alphabet, already occurs in Karp,
Miller, and Rosenberg (1972). The problem is in the details.

Kärkkäinen and Sanders consider the triples of consecutive characters
s[i]s[i + 1]s[i + 2] for i �≡ 0 mod 3. These are 2

3n triples, which are or-
dered by the lexicographic order for triples, and by radixsort we can assign
each triple its rank in that set of triples as its canonical name. We use radixsort
because the triples we sort are triples of numbers less than n, and so of numbers
less than n3, which can be sorted by radixsort in time O(n).

We now construct a new string of length 2
3n that consists of the se-

quence of canonical names of the triples s[3i + 1]s[3i + 2]s[3i + 3]
for i = 0, . . . , 1

3n − 1 followed by the sequence of names of the triples
s[3i + 2]s[3i + 3]s[3i + 4] for i = 0, . . . , 1

3n − 1. This is a string over
an alphabet of integers at most n. The suffix of this new string starting in
position i of the first group corresponds to the string that is the suffix of the
original string starting in position 3i + 1 followed by the end mark and the
original string starting in position 2. And the suffix of this new string starting
in position i of the second group corresponds to the string that is the suffix of
the original string starting in position 3i + 2 followed by the end mark. For the
lexicographic order of these string, the part after the end mark is irrelevant, so
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the lexicographic order of the suffixes of the new string allows us to read off
the lexicographic order of those suffixes of the original string that started in
positions 3i + 1 or 3i + 2.

As next step, we have to find the order of the suffixes starting in positions
3i + 0 and merge these orders to obtain the lexicographic order of all suffixes.
But the order of the suffixes starting in positions 3i + 0 is determined by the first
character of that suffix, and among those with the same first character, by the
order of the remaining suffix, which we know because it starts at position 3i + 1.
So we can construct in O(n) time the lexicographic order of the remaining
suffixes. We finally have to merge these two orders for which we need to
compare the lexicographic order between a suffix starting in a position of
form 3i + 0 and a suffix starting in a position of form 3i + 1 or 3i + 2. This
comparison can be done in constant time, using again the first character or the
first two characters:

{ If we are comparing the suffix starting in position 3i with the suffix starting
in position 3j + 1, then this is determined either by their first characters, or,
if those agree, by the comparison of the rest, which are the suffixes starting
in 3i + 1 and 3j + 2, so they occur both in the same sorted sequence and
can be compared in O(1) time.

{ If we are comparing the suffix starting in position 3i with the suffix starting
in position 3j + 2, then this is determined either by their first two
characters, or, if those agree, by the comparison of the rest, which are the
suffixes starting in 3i + 2 and 3j + 4, so they occur both in the same sorted
sequence and can be compared in O(1) time.

Thus, the time to sort all suffixes of a string of length n is O(n), plus the time
to sort the suffixes of a string of length 2

3n, which gives an O(n) bound in
total. It should be noted that although the size of the alphabet increases, it never
becomes larger than n because each character corresponds to a k-character
subsequence that occurs in the string for some fixed k.

It remains to compute the arrays left middle cp and
right middle cp. We follow here the method proposed in Kasai
et al. (2001) to construct first the array cp, where cp[i] is the length of
the common prefix of the suffixes starting in sorted suffix[i − 1]
and sorted suffix[i]. We use an additional array rank that
contains the inverse of the sorted suffix array: rank[i] = j if
sorted suffix[j] = i. The key observation here is that when we already
know that the suffix starting in position i and its adjacent suffix in the lexi-
cographic order, which starts in position sorted suffix[rank[i] + 1],
have a common prefix of length l, then the suffix starting in position i + 1
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and its adjacent suffix in the lexicographic order, which starts in position
sorted suffix[rank[i + 1] + 1], have a common prefix of length at
least l − 1. So if we determine the lengths of common prefixes of lexicograph-
ically consecutive suffixes in the sequence given by the rank array, then there
are two types of steps: those in which that length decreases by 1, which takes a
constant time, and those in which the length stays the same or increases, which
takes a time proportional to the increase. But the length cannot be larger than
n and the total decrease is at most n, so the total increase is less than 2n and
the time to determine all these lengths is O(n).

Finally, we derive the arrays left middle cp and right middle cp
from cp. For this we use that the length of the common prefix of any two
suffixes is the minimum of the lengths of the common prefix of two lexi-
cographically consecutive suffixes between them. The entries in the arrays
left middle cp and right middle cp are thus maxima over those in-
tervals that can occur in a binary search between middle and left and between
middle and right endpoint. But each such interval is the union of two intervals
that can occur one step further down in the binary search. So if we construct
them bottom-up, starting with the smallest, we can construct each entry in O(1)
time from previous entries, giving a complexity of O(n) in total.

We summarize the performance of this structure as follows:

Theorem. The suffix array structure is a static structure that preprocesses
a string s and supports substring queries. This structure can be built in
time O(length(s)), requires space O(length(s)), and supports find string
queries for a string q in time O(length(q) + log(length(s))).

So the suffix array can be constructed in the same time as the suffix tree and
gives almost the same query performance. Suffix arrays and suffix trees can be
used in many applications interchangeably (Abouelhoda, Kurtz, and Ohlebusch
2004). But if space is not an issue, suffix trees seem conceptually more elegant.
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Hash Tables

Hash tables are a dictionary structure of great practical importance and can
be very efficient. The underlying idea is quite simple: we have a universe U
and want to store a set of objects with keys from U . We also have s buckets
and a function h from U to S = {0, . . . , s − 1}. Then we store the object with
key u in the h(u)th bucket. If several objects that we want to store are mapped
to the same bucket, we have a collision between these objects. If there are no
collisions, then we can realize the buckets just as an array, each array entry
having space for one object. The theory of hash tables mainly deals with the
questions of what to do about the collisions and how to choose the function h

in such a way that the number of collisions is small.
The idea of hash tables is quite old, apparently starting in several groups at

IBM in 1953 (Knott 1972). For a long time the main reason for the popularity of
hash tables was the simple implementation; the hash functions h were chosen
ad hoc as some unintelligible way to map the large universe to the small array
allocated for the table. It was the practical programmer’s dictionary structure
of choice, easily written and conceptually understood, with no performance
guarantees, and it still exists in this style in many texts aimed at that group.
The development and analysis of hash table methods that are provably good in
some sense started only in the 1980s, and now a well-designed hash table can
indeed be a very efficient structure.

9.1 Basic Hash Tables and Collision Resolution

If we map the keys of a big universe U to a small set S = {0, . . . , s − 1}, then it
is unavoidable that many universe elements are mapped to the same element of
S. In a dictionary structure, we do not have to store the entire universe, but only
some set X ⊂ U of n keys for the objects currently in the dictionary. But if we

374
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do not know the set X when we choose the hash function h : U → S, as it is
unavoidable if the set X is dynamic, changing by insertions and deletions, then
we can choose a set X all of whose elements are mapped to the same s ∈ S. So
something must be done about colliding elements in X.

There are two classical solutions to this problem:

1. Having for each s ∈ S, a secondary structure that stores all the elements
x ∈ X with h(x) = s. So each of the s buckets contains another dictionary,
but because the buckets should contain only few elements, this secondary
dictionary can be very simple. The simplest method is just a linked list of
the elements; this is called “chaining.”1 This is the recommended
method.

2. Having for each u ∈ U a sequence of alternative addresses in S: if h(u) =
h1(u) is already used by a colliding element, we try h2(u), h3(u), . . . until
we find an empty bucket. This is called “open addressing,” and it has been
much studied, but its use is strongly discouraged.2

In the first solution, we partition the universe U by h−1(S) and store those x ∈
X ⊂ U that are in the same partition class in the same secondary structure. We
can insert and delete in the structure if we can insert and delete in the secondary
structure; the function h just directs us to the right secondary structure. If the
partition induced on X is fine, with only at most a few elements in each bucket,
this is especially good, but if there are many elements in the same bucket, it
degrades no worse than the secondary structure we are using. We could use
a balanced search tree as secondary structure and get a worst-time O(log n)
bound in addition to an O(1) time for all those elements whose bucket contains
few elements. But we will show that with proper choice of the hash function
and a not-too-small set S, most buckets are expected to be almost empty. So
the choice of a linked list as secondary search structure is enough.

The second solution was very popular because we do not need linked lists,
so no kind of dynamic memory allocation. It was, thus, considered especially
easy to implement and space efficient, because it is an implicit structure without
need for pointers. These minor advantages, which seem irrelevant on today’s
computers, are countered by a fundamental disadvantage: this structure does
not support deletions. To insert an element x, we look at sequence of buckets
h1(x), h2(x), . . . , hk(x) to find an empty bucket. So in a find operation, we

1 The literature calls this “indirect” or “separate” chaining because we allocate the nodes of the
lists outside the hash table; “direct chaining” uses hash table entries as nodes and suffers from
the same defects as method 2. Some variant chaining methods are described in Bays (1973a).

2 Writing further papers on variants of open addressing should also be discouraged.
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need to look again at the same sequence of buckets till we have found either
the element or an empty bucket. If we delete an element along this sequence,
its bucket becomes empty, so a later find operation for x will be unsuccessful
because we broke the search path.

We could avoid this by marking the deleted element as invalid, but the bucket
still as full; in that case we will accumulate many invalid buckets, which may
be reused in insert operations, but will contribute to the search path length even
though invalid. Or, if we delete an element in bucket i, we could try to move up
along its search path any other element that had i in its search path and found
that bucket full. But this is possible only if we know where that potential other
element is; so all elements that have i occurring in their search path must have
the same bucket j as the next element of their search path. This is very bad,
because it leads to clustering, blocks of full buckets growing together; and any
method that allows deletions will necessarily lead to that clustering.

The most obvious choice hi(x) = h0(x) + i is for this reason a bad choice.
If we do not use deletions, many different sequences of functions (hi(x))si=1

are possible as search paths, and they have been studied under the aspect
of the expected length of the longest search path. A large number of papers
have been written on the optimal choice of the sequence (hi(x))si=1, called
probe sequences (Král 1971; Ullman 1972; Ecker 1974; Knuth 1974; Ajtai,
Komlós, and Szemerédi 1978; Guibas and Szemerédi 1978; Gonnet 1981;
Larson 1982, 1983; Yao 1985a,b; Lueker and Molodowitch 1988; Ramakrishna
1989a). But the small space advantage of avoiding pointers does never outweigh
the fundamental disadvantage of losing deletions.

Next we give code for the basic hash table structure with chaining

typedef struct l_node { key_t key;
object_t *obj;

struct l_node *next;
} list_node_t;

typedef struct { int size;
list_node_t **table;
int (*hash_function)
(key_t, hf_param_t);
/* the hash function might
need some parameters */
hf_param_t hf_param;

} hashtable_t;
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hashtable_t *create_hashtable(int size)
{ hashtable_t *tmp; int i;

tmp = (hashtable_t *)
malloc( sizeof(hashtable_t) );
tmp->size = size;
tmp->table = (list_node_t **)
malloc(size*sizeof(list_node_t *));
for( i=0; i<size; i++ )

(tmp->table)[i] = NULL;
/* fill in the hash function: needs to

be added */
/* and choose necessary parameters */
return( tmp );

}

object_t *find(hashtable_t *ht, key_t query_key)
{ int i; list_node_t *tmp_node;

i = ht->hash_function(query_key,
ht->hf_param );

tmp_node = (ht->table)[i];
while( tmp_node != NULL &&

tmp_node->key != query_key )
tmp_node = tmp_node->next;

if( tmp_node == NULL )
return( NULL ); /* not found */

else
return( tmp_node->obj ); /* key found */

}

void insert(hashtable_t *ht, key_t new_key,
object_t *new_obj)

{ int i; list_node_t *tmp_node;
i = ht->hash_function(new_key, ht->hf_param );
tmp_node = (ht->table)[i];
/* insert in front */
(ht->table)[i] = get_node();
((ht->table)[i])->next = tmp_node;
((ht->table)[i])->key = new_key;
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((ht->table)[i])->obj = new_obj;
}

object_t *delete(hashtable_t *ht, key_t del_key)
{ int i; list_node_t *tmp_node;

object_t *tmp_obj;
i = ht->hash_function(del_key, ht->hf_param );
tmp_node = (ht->table)[i];
if( tmp_node == NULL )

return( NULL ); /* list empty,
delete failed */

if( tmp_node->key == del_key ) /* if first
in list */
{ tmp_obj = tmp_node->obj;

(ht->table)[i] = tmp_node->next;
return_node( tmp_node );
return( tmp_obj );

}
/* list not empty, delete not first in list */
while( tmp_node->next != NULL &&

tmp_node->next->key != del_key )
tmp_node = tmp_node->next;

if( tmp_node->next == NULL )
return( NULL ); /* not found,
delete failed */

else
{ list_node_t *tmp_node2; /* unlink node */

tmp_node2 = tmp_node->next;
tmp_node->next = tmp_node2->next;
tmp_obj = tmp_node2->obj;
return_node( tmp_node2 );
return( tmp_obj );

}
}

Both methods have generated many variants. Because we are examining
consecutive objects until we find the right key, walking down the list in the
correct bucket in the chaining method, we want frequently accessed objects
to be found early in each list. So within each bucket we have an instance of
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the much-studied list accessing problem for which the move-to-front strategy
is known to be 2-competitive, that is, accessing at most twice as many list
items as the strategy with the optimum sequence of list items. So it is an
easy modification that brings some advantages for very skewed access patterns
to move in each find operation the found object to the front within its list.
This was proposed as self-adjusting hash tables (Pagli 1985; Wogulis 1989); it
can also be combined with the open addressing strategy, but there it gets much
more complicated. Next is the find function combined with the move-to-front
strategy.

object_t *find(hashtable_t *ht, key_t query_key)
{ int i; list_node_t *front_node,

*tmp_node1, *tmp_node2;
i = ht->hash_function(query_key,

ht->hf_param );
front_node = tmp_node1 = (ht->table)[i];
tmp_node2 = NULL;
while( tmp_node1 != NULL &&

tmp_node1->key != query_key )
{ tmp_node2 = tmp_node1;

tmp_node1 = tmp_node1->next;
}
if( tmp_node1 == NULL )

return( NULL ); /* not found */
else /* key found */
{ if( tmp_node1 != front_node )

/* move to front */
{ tmp_node2->next = tmp_node1->next;

/* unlink */
tmp_node1->next = front_node;
(ht->table)[i] = tmp_node1;

}
return( tmp_node1->obj );

}
}

Many further variants have been studied for open addressing schemes. One
key observation is that in a collision the situation of the two colliding elements
is entirely symmetrical; we have to choose one of them to move further down
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along its search path, while the other stays in the bucket. In the basic open
addressing scheme, we always move the new element, but there is no necessity
for that. So there is some freedom to rearrange the table during an insert.
This was first studied in Brent (1973) and then analyzed in many different
strategies in Amble and Knuth (1974), Mallach (1977), Gonnet and Munro
(1979), Maddison (1980), Rivest (1978), and Lyon (1985); Robin-Hood hashing
(Celis, Larson, and Munro 1985; Devroye, Morin, and Viola 2004), last-come-
first-served hashing (Poblete and Munro 1989), and Cuckoo hashing (Pagh and
Rodler 2004; Devroye and Morin 2003) all belong to this category. Another
type or open addressing variant is split sequence hashing (Lodi and Luccio
1985; Wogulis 1989), where the next step in the probe sequence depends on
the key of the element occupying the current bucket, which makes it similar to
using a search tree as secondary structure in chaining.

By its conceptual simplicity and lack of intrinsic problems, chaining gen-
erated much less variants and continues to be the recommended solution. One
interesting variant is two-way chaining, in which each element of the universe
is assigned to two possible buckets; on insertion, it is added to the bucket that
contains fewer elements. This was introduced in Azar et al. (1999) and further
analyzed in Berenbrink et al. (2000).

There are several variants that avoid the use of pointers up to a maximum
capacity, and only then resort to chaining. The trivial solution is to have a hash
table as array, in which each bucket has space for a fixed number of items,
and to use chaining only when that bucket is full. Another method is the use
of a sequence of hash tables; if the entry is already used in the first table, we
look in the second table, with a different hash function, and so on, up to a
fixed maximal number of tables; at the end we still have to resort to chaining.
This has been proposed as especially convenient for parallelization because the
lookup in the different tables is independent (Larson 1980; Broder and Karlin
1990; Mairson 1992).

9.2 Universal Families of Hash Functions

Up to the end of the 1970s, any theoretical analysis of hashing assumed that
the hash values of the elements were independent random values, uniformly
distributed on the available addresses; this is known as the uniform hashing
model. And in actual use of a hash function, the implicit assumption was
that any function that is complicated enough that the programmer does not
really understand its effects will behave like a random assignment, mixing the
values of the input set sufficiently well (Pearson 1990). This situation was
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very unsatisfactory, because in each use of a hash table, we are dealing with a
concrete set, and the sets that are used are certainly not uniformly distributed
in the universe U .

The breakthrough was the introduction of the concept of universal families
of hash functions by Carter and Wegman (1979). The idea here is that instead
of keeping the hash function fixed and making an unjustified assumption on
the random distribution of the input, we make a random choice of the hash
function from a family of hash functions and show that for any input set the
values of the hash functions are well distributed with high probability.

Let F be a family of functions that map U to S. The crucial property of the
family F , which is sufficient to distribute any set X ⊂ U well over S, is the
following: We choose a function f ∈ F uniformly at random. Then we need
for some c,

for all distinct u1, u2 ∈ U holds Prob(f (u1) = f (u2)) ≤ c

|S| .

So the probability of a collision of any two elements under the randomly
chosen hash function is only slightly larger than the probability if the values
were chosen independently and uniformly from S, which is 1

|S| . Any family F
with this property is called a universal family of hash functions.3 Sometimes
this property is denoted as 2-universal because it is a restriction on pairs, and
k-universal then denotes a similar property for k-tuples: any k-tuple u1 . . . uk

of distinct elements of the universe will collide with probability at most c
|S|k−1 .

It is an immediate consequence of this definition that for any set X, stored
in the hash table S by a randomly chosen function h ∈ F , any y will have in
expectation less than c

|X|
|S| collisions; this follows just by linearity of expectation,

applied to all possible colliding pairs. This is, up to that factor of c, the same as
for a completely random assignment. If the hash table is at least large enough
to store all elements of X in distinct buckets, so |S| ≥ |X|, then for any element
y ∈ U , the expected number of elements of X colliding with y is O(1), so at
least if we use chaining, the expected time of any find, insert, or delete is O(1).

The property of the hash values we get by choice from a universal family of
hash functions is very similar to pairwise independence of the hash values. This
is much weaker than the complete independence assumed in the old uniform
hashing model, but for the expected number of collisions with a single element,
it is sufficient to also give an O(1) bound. For distribution properties, it is much
weaker: n random variables, each with an O(1) expectation, can still have a

3 Some literature demands this property with c = 1, but this slightly weaker property is easier to
obtain and still sufficient for the results. Several further variants of the property are discussed
in Stinson (1994) and Krovetz and Rogaway (2006).
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large maximum. For the expected maximum size of a bucket, when hashing an

n-element set into a hash table of size s, we get only an O(1 +
√

n2

s
) bound,

because

max
i=1,...,s

bucketsize(i) ≤ 1 +
√√√√ s∑
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2

(
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2

)
,
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∑s

i=1
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2

)
is the total number of colliding pairs, which is in expec-

tation less than
(
n

2

)
c
s
, so

E
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]
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⎡
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≤ 1 +
√
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2

)
c

s
≤ 1 +

√
c
n2

s
.

We summarize these properties of universal families of hash functions as fol-
lows:

Theorem. When we distribute a set X ⊂ U of n items over a hash table S of
size s, using a randomly chosen hash function from a universal family of hash
functions,

{ the expected number of collisions of any element y ∈ U is ≤ c n
s
; and

{ the expected maximum bucket size is ≤ 1 +
√

c n2

s
.

This is, of course, only an upper bound for the expected maximum bucket
size, but Alon et al. (1999) showed that this is the best we can get out of the
universality assumption, by giving a specific universal family of hash functions
for a hash table of sizen, andn-element set, so that for any function in that family
there is a bucket that received�(

√
n) elements. So for the maximum bucket size,

the universality assumption is much weaker than the complete independence
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of the uniform hashing model, which gives an expected maximum bucket size
of �( log n

log log n
) for hashing an n-element set into a table of size n (Gomet 1981).

Some specific universal families of hash functions behave much better than this
O(

√
n) bound (Alon et al. 1999).

Up to now we did not give an example of a universal family of hash functions.
The trivial example is the family of all functions from U to S; this is the same
as assigning independently to each universe element its image, so it is just
a different way to express the uniform hashing model. This family of hash
functions is useless because it is too large; just to specify a function, we would
need a table with |U | entries. So we need two further properties of a family of
universal hash functions:

{ it must be small and have a convenient parametrization, so we can easily
select the random function from this family, and

{ it must be easy to evaluate.

To give such a family, we need more structure on the universe U .
The classical theory assumes that U = {0, . . . , p − 1} for some prime p.

This is reasonable if our universe is a set of numbers. Then we choose some
sufficiently large prime, slightly less than the square root of maximum integer
our machine arithmetic can handle, because we will need products of two such
numbers, and larger than all the numbers that can occur in our application.4

But it is important that we can really perform the arithmetic operations without
numerical overflow and reduction modulo 2wordsize; otherwise the families might
stop being universal and may behave quite badly (Mullin 1991). We assume
that S = {0, . . . , s − 1} with s ≤ p.

The simplest universal family of hash functions is the family

Fps = {ha:U → S | ha(x) = (ax mod p) mod s, 1 ≤ a ≤ p − 1}.

This family consists of p − 1 functions; to show that it is a universal family,
we need to bound the number of a for which ha(x) = ha(y) for any fixed pair
x, y of distinct elements of U . But if x �= y and

(ax mod p) mod s = (ay mod p) mod s,

then there is a q �= 0 with −(p − 1) ≤ qs ≤ (p − 1) such that

ax mod p = ay mod p + qs.

4 On a machine with 32-bit integers, so INT MAX = 2147483647, choose p = 46337. On a
machine with 64-bit integers, choose p = 3037000493.
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There are at most 2(p−1)
s

possible choices for q. For each q, the congruence

ax ≡ ay + qs mod p

has a unique solution a. So there are at most 2(p−1)
s

functions ha for which x

and y will collide. With uniform random choice from the p − 1 functions of the
family, this gives a collision probability at most 2

s
, as required by the definition

of a universal family.
The classical universal family of hash functions given already by Carter and

Wegman (1979) is the two-parameter family

Gps = {hab:U → S | hab(x) = ((ax + b) mod p) mod s, 0 ≤ a, b ≤ p − 1} .

Note that this is not just a cyclic permutation of the previous functions by b

steps: hab(x) = hab(y) does not imply ha(b+1)(x) = ha(b+1)(y). Like the pre-
vious class, it is very convenient class: for the initial random choice, we just
need to select two integers, and to evaluate the function, we need only four
arithmetic operations. To show that this family is universal, we have to show
that for each pair x, y ∈ U , x �= y, at most a fraction of c

s
of the p2 possible

parameter pairs a, b generates a collision. But if hab(x) = hab(y), then there is
an r ∈ {0, . . . , s − 1} with hab(x) = r and hab(y) = r or

((ax + b) mod p) − r ≡ 0 mod s,

((ay + b) mod p) − r ≡ 0 mod s.

So there are integers qx, qy with

((ax + b) mod p) − r = qxs,

((ay + b) mod p) − r = qys,

and because the left-hand side is a number between −(s − 1) and p − 1, we

find qx, qy ∈ {0, . . . ,
⌊

p−1
s

⌋
}. But for each choice of r, qx, qy , there is a unique

pair a, b that solves the system of linear equations mod p

ax + b ≡ r + qxs mod p,

ay + b ≡ r + qys mod p,

viewed as linear equations for a, b. This system is nondegenerate because
x �= y and the coefficient of b is 1. Thus, there are as many pairs (a, b) that
lead to a collision as there are choices for r, qx, qy , which is s�p

s
� �p

s
�. This is

a c
s

fraction of all pairs (a, b) for c =
( � p

s
�

p

s

)2
, which is very near 1 for p much

larger than s. Thus, the family Gps is a universal family of hash functions, with
a slightly better constant c.
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Frequently we want to have a universe that is not just a set of numbers, but
something that can be encoded as a k-tuple of numbers for some fixed k, for
example, a set of board positions in a game. The family of hash functions easily
extends to that situation: if U = {0, . . . , p − 1}k for some prime p, we use the
family of functions

ha1...akb(x1, . . . , xk) = ((a1x1 + · · · + akxk + b) mod p) mod s.

The proof is completely analogous to the special case k = 1: given (x1, . . . , xk)

and (y1, . . . , yk), there are r ∈ {0, . . . , s − 1} and qx, qy ∈ {0, . . . ,
⌊

p−1
s

⌋
}with

(a1x1 + · · · + akxk + b) mod p = r + qxs,

(a1y1 + · · · + akyk + b) mod p = r + qys,

and for given r, qx, qy the system of linear equations

a1x1 + · · · + akxk + b ≡ r + qxs mod p,

a1y1 + · · · + akyk + b ≡ r + qys mod p

has pk−1 solutions (a1, . . . , ak, b) ∈ {0, . . . , p − 1}k+1.
For strings, we have the problem that they are not of fixed length. We

can implicitly extend them by 0 in all later positions up to some maximum
length k. This will not change the hash value, so for short strings we do not
have to compute those implicit extended positions. We need, however, as many
coefficients as the maximum length of any string requires, but these random
coefficients can be selected when they become necessary.

Another universal family of hash functions that is both easy to implement
and good in performance is the family of all linear maps of bit strings of
length t to bit strings of length r , both viewed as linear spaces over Z2. So in
that situation we have U = {0, 1}t and S = {0, 1}r , which is very natural for
computer applications. To specify a linear map, we need the images of a basis,
so t numbers of r bits each. To evaluate the linear map for a given element of the
universe, that is, a t-bit number x, we perform addition mod 2, that is, xor, on
those numbers of the basis that correspond to 1 bit in x. It is obvious from linear
algebra that the family of all linear maps is indeed a universal family of hash
functions; this family was studied in Markowsky, Carter, and Wegman (1978)
and Alon et al. (1999), where it was shown that it is in some ways nearer to
the behavior of uniform hashing and thus preferable to the families Fps or Gps .
The price of this is that the family is larger, so needs more bits of specification;
where the previous family needed only two numbers of size log |U |, this family
needs log |U | numbers of size log |S|. It might be still preferable, especially in
view of the simple bit operations it uses.
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Next we give code for the universal hash functions of the family Gps , for a
universe U = {0, . . . , MAXP − 1}, with MAXP prime.

#define MAXP 46337 /* prime,
and 46337*46337 < 2147483647 */

typedef struct l_node { key_t key;
object_t *obj;

struct l_node *next;
} list_node_t;

typedef struct { int a; int b; int size;
} hf_param_t;

typedef struct { int size;
list_node_t **table;
int (*hash_function)(key_t, hf_param_t);
hf_param_t hf_param;

} hashtable_t;

hashtable_t *create_hashtable(int size)
{ hashtable_t *tmp; int i;

int a, b;
int universalhashfunction(key_t,
hf_param_t);
if( size >= MAXP )

exit(-1); /* should not be called with
that large size */

/* possibly initialize random number
generator here */
tmp = (hashtable_t *)

malloc( sizeof(hashtable_t) );
tmp->size = size;
tmp->table = (list_node_t **)

malloc(size*sizeof(list_node_t *));
for(i=0; i<size; i++)

(tmp->table)[i] = NULL;
tmp->hf_param.a = rand()%MAXP;
tmp->hf_param.b = rand()%MAXP;
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tmp->hf_param.size = size;
tmp->hashfunction = universalhashfunction;
return( tmp );

}

int universalhashfunction(key_t key,
hf_param_t hfp)

{ return( ((hfp.a*key + hfp.b)%MAXP)%hfp.size );
}

Next is another version of the same functions for the universe of strings;
here we organize the parameters of the universal hash function as a list of the
coefficients, which gets extended whenever the maximum length of the strings
increases. Here the find, insert, and delete functions also need to be
changed, because we need to compare the entire string to check whether we
found the right key.

#define MAXP 46337 /* prime,
and 46337*46337 < 2147483647 */

typedef struct l_node { char *key;
object_t *obj;

struct l_node *next;
} list_node_t;

typedef struct htp_l_node { int a;
struct htp_l_node *next;

} htp_l_node_t;

typedef struct { int b; int size;
struct htp_l_node *a_list;

} hf_param_t;

typedef struct { int size;
list_node_t **table;
int (*hash_function)(char *, hf_param_t);
hf_param_t hf_param;

} hashtable_t;
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hashtable_t *create_hashtable(int size)
{ hashtable_t *tmp; int i;

int universalhashfunction(char *, hf_param_t);
if( size >= MAXP )

exit(-1); /* should not be called with that
large size */

tmp = (hashtable_t *)
malloc( sizeof(hashtable_t) );

tmp->size = size;
tmp->table = (list_node_t **)

malloc(size*sizeof(list_node_t *));
for(i=0; i<size; i++)

(tmp->table)[i] = NULL;
tmp->hf_param.b = rand()%MAXP;
tmp->hf_param.size = size;
tmp->hf_param.a_list =
(htp_l_node_t *) get_node();
tmp->hf_param.a_list->next = NULL;
tmp->hash_function = universalhashfunction;
return( tmp );

}

int universalhashfunction(char *key,
hf_param_t hfp)

{ int sum;
htp_l_node_t *al;
sum = hfp.b;
al = hfp.a_list;
while( *key != ’\0’ )
{ if( al->next == NULL )

{ al->next = (htp_l_node_t *) get_node();
al->next->next = NULL;
al->a = rand()%MAXP;

}
sum += ( (al->a)*((int) *key))%MAXP;
key += 1;
al = al->next;

}
return( sum%hfp.size );

}
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object_t *find(hashtable_t *ht, char *query_key)
{ int i; list_node_t *tmp_node;

char *tmp1, *tmp2;
i = ht->hash_function(query_key,

ht->hf_param );
tmp_node = (ht->table)[i];
while( tmp_node != NULL )
{ tmp1 = tmp_node->key; tmp2 = query_key;

while( *tmp1 != ’\0’ && *tmp2 != ’\0’ &&
*tmp1 == *tmp2 )

{ tmp1++; tmp2++; }
if( *tmp1 != *tmp2 ) /*strings not equal */

tmp_node = tmp_node->next;
else /* strings equal: correct entry
found */

break;
}
if( tmp_node == NULL )

return( NULL ); /* not found */
else

return( tmp_node->obj ); /* key found */
}

void insert(hashtable_t *ht, char *new_key,
object_t *new_obj)

{ int i; list_node_t *tmp_node;
i = ht->hash_function(new_key, ht->hf_param );
tmp_node = (ht->table)[i];
/* insert in front */
(ht->table)[i] = get_node();
((ht->table)[i])->next = tmp_node;
((ht->table)[i])->key = new_key;
((ht->table)[i])->obj = new_obj;

}

object_t *delete(hashtable_t *ht, char * del_key)
{ int i; list_node_t *tmp_node;

object_t *tmp_obj;
char *tmp1, *tmp2;
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i = ht->hash_function(del_key, ht->hf_param );
tmp_node = (ht->table)[i];
if( tmp_node == NULL )

return( NULL ); /* list empty,
delete failed */

/* test first item in list */
tmp1 = tmp_node->key; tmp2 = del_key;
while( *tmp1 != ’\0’ && *tmp2 != ’\0’ &&

*tmp1 == *tmp2 )
{ tmp1++; tmp2++; }
if( *tmp1 == *tmp2 )/* strings equal:
correct entry found */
{ tmp_obj = tmp_node->obj; /* delete first

entry in list */
(ht->table)[i] = tmp_node->next;
return_node( tmp_node );
return( tmp_obj );

}
/* list not empty, delete not first in list */
while( tmp_node->next != NULL )
{ tmp1 = tmp_node->next->key; tmp2 = del_key;

while( *tmp1 != ’\0’ && *tmp2 != ’\0’ &&
*tmp1 == *tmp2 )

{ tmp1++; tmp2++; }
if( *tmp1 != *tmp2 ) /* strings not equal */

tmp_node = tmp_node->next;
else /* strings equal: correct entry
found */

break;
}
if( tmp_node->next == NULL )

return( NULL ); /* not found, delete
failed */

else
{ list_node_t *tmp_node2; /* unlink node */

tmp_node2 = tmp_node->next;
tmp_node->next = tmp_node->next->next;
tmp_obj = tmp_node2->obj;
return_node( tmp_node2 );



9.3 Perfect Hash Functions 391

return( tmp_obj );
}

}

We summarize the performance of the hash table structure as follows:

Theorem. The hash table with chaining, using a universal family of hash
functions, stores a set of n elements in a table of size s, supporting the operations
find, insert, and delete, in expected time O(1 + n/s) for each operation
and requires space O(n + s).

Universal families of hash functions are a very useful tool both in theory
and in practice. Further families with stronger independence properties were
studied in Siegel (1989, 2004) and Mansour et al. (1993).

9.3 Perfect Hash Functions

A hash function is perfect if it does not cause any collisions for the set it stores.
This sounds like a great advantage, but it should be noted that this is a definition
relative to the set, so we need to know the set in advance and keep it fixed. If
we are given a set X ∈ U and a hash table S = {0, . . . , s − 1}, we can ask for
a function that maps U to S and is injective on X.

If |X| ≤ |S|, there are always such functions: if U is linearly ordered, we
can build a search tree for X and store in each leaf its address in S. This is, of
course, quite useless, so there is an important additional restriction: we must
be able to evaluate the function fast, in constant time. This is first mentioned in
Knuth (1973) as an exercise for the ingenuity of the function constructor, to be
done by hand. As an algorithmic problem, to find a perfect hash function for
a given set X, this was first studied in Sprugnoli (1977), where some methods
were given, which always construct a perfect hash function, but might require
a very large table S and might take very long to find that function. Many
further construction methods were proposed, for example, Cichelli (1980),5

Jaeschke (1981), Bell and Floyd (1983), Chang (1984), Cormack, Horspool,
and Kaiserswerth (1985), Sager (1985), Yang and Du (1985), Chang and Lee
(1986), Chang, Chen, and Jan (1991), Czech et al. (1992), Fox et al. (1992),
Czech and Majewski (1993), Majewski et al. (1996), and Czech (1998) (see

5 Which, in spite of the fact that it obviously in general does not work and looks only at the first
and the last letter of a string and its length, is still recommended by various “practical” authors.



392 9 Hash Tables

Czech, Havas, and Majewski (1993) for a survey). All these methods are just
heuristics and do not work for arbitrary sets X; at best, they have a high success
probability if the set X is chosen uniformly at random from U . Methods that in
principle always give a perfect hash function, but are not practically realizable,
were given by Tarjan and Yao (1979) and Yao (1981). But the method of
Fredman, Komlós, and Szemerédi (1984) is really the ultimate solution: it works
always, is elegant, and simple enough to be practical. The only disadvantage
is the general disadvantage of perfect hash functions, that they do not support
changes in the underlying set.

The idea underlying Fredman et al. (1984) is to use a two-level scheme, first
distributing the set X over a table of size |X|, using a function from a universal
family of hash functions. This partitions the set X into the classes that are
assigned the same hash value X = X1 ∪ · · · ∪ Xk . All elements of each class
Xi are in collision, but the use of a universal family of hash functions bounds
the expected total number of colliding pairs.

E[total number of colliding pairs] = E

[
k∑

i=1

( |Xi |
2

)]

≤ c

( |X|
2

)
1

table size
<

c

2
|X|

Now for each set Xi , we choose again a universal hash function to distribute Xi

over a table of size |Xi |2. We showed in the previous section that the expected
maximum bucket size, when distributing n elements over a hash table of size

s, is O(1 +
√(

n

2

)
c
s
), so for each of these second-level hash tables the expected

maximum bucket size is O(1). Thus, we have a method that gives us access to
the correct element in O(1) time: evaluate the first hash function, look up in the
first hash table what the correct second hash function is, evaluate that second
hash function, and go through the at most O(1) candidates. And the total size of
the structure is only O(|X|) because

∑k
i=1

(|Xi |
2

) = O(|X|). By choosing the
secondary hash tables a bit larger and by a constant factor that depends on
the c of the universal family of hash functions, we can even achieve that there
are no collisions at all in the secondary hash tables.

Fredman, et al. (1984) used this idea with the first universal family of hash
functions ha(x) = ((ax) mod p) mod s we gave in the previous section. Using
some further tricks, they managed to reduce the size of the structure representing
a set of n numbers from O(n) to n + o(n), with O(1) time to access an item.
Here we assume that our arithmetic operations, as well as the table access, are
constant-time operations. The problem has also been studied in other models
of computation, but these do not appear relevant for practical implementation.
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Indeed, the practical importance of perfect hash functions remains, in spite
of numerous papers, dubious. If we need to store a static set of integers, the
method of Fredman et al. is, at least in the version without space optimization,
indeed easily realized and very efficient. But there are not many situations in
which we need to store a static dictionary of integers. The frequently cited
application is a static set of strings; the early literature always gives the set of
keywords of a programming language as motivation. But for strings, we get the
same performance with tries, and they support insertion and deletion.

Next we give an implementation of the method of Fredman et al. (1984)
without the size optimization. The hash functions are chosen randomly and
then we check whether they have the required properties, that is, the bound on
the sum of squared bucket sizes for the primary hash function and injectivity
for each of the secondary hash functions; we repeat the choice until the con-
ditions are satisfied, which needs O(1) attempts. We do not move the items to
separate bucket structures after the primary hashing, because that would require
additional space, instead we select for all buckets a secondary hash function
and start to distribute the items with these hash functions. If the secondary
hash function of a bucket causes a collision, we mark that bucket as defect.
If there were any defect buckets, we choose a new secondary hash function
for each of them, clear all defect buckets, and again distribute all items with
these hash functions. After O(1) repetitions, there will be no defect buckets
left. This method has the additional overhead that in each round, we distribute
all items, even those whose buckets were already collision-free; but we avoid
the need for an intermediate structure to store the contents of the buckets for
redistribution, and the time overhead is only a constant factor. To check for
collisions, we need a value that is different from all keys occurring in the data.
We use MAXP, which is assumed to be larger than all keys in the universe.

#define MAXP 46337 /* prime,
and 46337*46337 < 2147483647 */

typedef struct { int size;
int primary_a;
int *secondary_a;
int *secondary_s;
int *secondary_o;
int *keys;
object_t *objs;

} perf_hash_t;



394 9 Hash Tables

perf_hash_t *create_perf_hash(int size,
int keys[], object_t objs[])

{ perf_hash_t *tmp;
int *table1, *table2, *table3, *table4;
int i, j, k, collision, sq_bucket_sum,

sq_sum_limit, a;
object_t *objects;
tmp = (perf_hash_t *)

malloc( sizeof(perf_hash_t) );
table1 = (int *) malloc( size * sizeof(int) );
table2 = (int *) malloc( size * sizeof(int) );
table3 = (int *) malloc( size * sizeof(int) );
sq_sum_limit = 5*size;
sq_bucket_sum = 100*size;
while(sq_bucket_sum > sq_sum_limit)
/* find primary factor */
{ a = rand()%MAXP;

for(i=0; i<size; i++)
table1[i] = 0;

for(i=0; i<size; i++)
table1[ (((a*keys[i])%MAXP)% size) ]
+=1;

sq_bucket_sum = 0;
for(i=0; i<size; i++)

sq_bucket_sum += table1[i]*table1[i];
}
/* compute secondary table sizes and
their offset */
for(i=0; i< size; i++ )
{ table1[i] = 2*table1[i]*table1[i];

table2[i] = (i>0) ? table2[i-1] +
table1[i-1] : 0;

}
table4 = (int *)
malloc( 2*sq_bucket_sum * sizeof(int) );
for( i=0; i< 2*sq_bucket_sum; i++ )

table4[i] = MAXP; /* different from
all keys */

collision = 1;
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for( i=0; i< size; i++ )
table3[i] = rand()%MAXP; /* secondary
hash factor */

while( collision )
{ collision = 0;

for( i=0; i< size; i++ )
{ j = ((keys[i]*a)% MAXP) % size;

k = ((keys[i]*table3[j])% MAXP)
% table1[j] + table2[j];

if( table4[k] == MAXP ||
table4[k] == keys[i] )

table4[k] = keys[i]; /* entry up
to now empty */

else /* collision */
{ collision = 1;

table3[i] = 0; /* mark bucket
as defect */

}
}
if( collision )
{ for( i=0; i< size; i++)

{ if( table3[i] == 0 )
/* defect bucket */
{ table3[i] = rand()%MAXP;

/* choose new factor */
for( k= table2[i];

k< table2[i]+table1[i]; k++)
table4[k] = MAXP;
/* clear i-th secondary table */

}
}

}
} /* now the hash table is collision-free */
/* keys are in the right places, now put
objects there */
objects =(object_t *)

malloc(2*sq_bucket_sum*sizeof(object_t) );
for( i=0; i< size; i++ )
{ j = ((keys[i]*a)% MAXP) % size;

k = ((keys[i]*table3[j])% MAXP)
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% table1[j] + table2[j];
objects[k] = objs[i];

}
tmp->size = size;
tmp->primary_a = a;
/* primary hash table factor */
tmp->secondary_a = table3;
/* secondary hash table factors */
tmp->secondary_s = table1;
/* secondary hash table sizes */
tmp->secondary_o = table2;
/* secondary hash table offsets */
tmp->keys = table4;
/* secondary hash tables */
tmp->objs = objects;
return( tmp );

}

object_t *find(perf_hash_t *ht, int query_key)
{ int i, j;

i = ((ht->primary_a*query_key)% MAXP)
%ht->size;

if( ht->secondary_s[i] == 0 )
return( NULL ); /* secondary bucket empty */

else
{ j = ((ht->secondary_a[i]*query_key)% MAXP)

%ht->secondary_s[i] + ht->secondary_o[i];
if( ht->keys[j] == query_key )

return( (ht->objs)+j ); /* right
key found */

else
return( NULL ); /* query_key does not
exist. */

}
}

We summarize the performance of this structure.
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Theorem. The perfect hash table structure of Fredman et al. is a static dictionary
that keeps track of a set of n elements identified by integer keys. It can be created
in O(n) time, requires O(n) space, and supports find operations in O(1) time.

Perfect hash functions have also been studied in other computation mod-
els, especially counting the bit complexity of the program size of a family of
functions that contains a perfect hash function for every n-element set of the uni-
verse, for example, in Mehlhorn (1982), Fredman and Komlós (1984), Schmidt
and Siegel (1990), Mairson (1992), Dietzfelbinger and Hagerup (2001), and
Hagerup and Tholey (2001).

9.4 Hash Trees

Up to now we always assumed that the hash function maps the universe U into
a set of integers S = {0, . . . , s − 1}, which are then used as the addresses in an
array. An alternative model was introduced by Coffman and Eve (1970). They
considered hash functions that map the universe U into a potentially infinite bit
string, of which one can take as much as necessary to distinguish each element
in the current set from all other elements. They then proposed to break this bit
string into pieces of k bits and interpret this as key to a trie structure over the
alphabet {0, 1}k . The object is then stored in the trie under that key. This is a
structure that does not require any arrays, but instead has fixed-size trie nodes
as the basic unit.

This key string of potential infinite length can be viewed as another method
to avoid collisions: if two elements u1, u2 ∈ U collide in the current structure,
we just take a longer prefix of their key until they are separated. But if the
key string is not a constant, this forces some changes on the trie structure,
depending on the way we resolve these collisions. There are two methods
proposed in Coffman and Eve (1970). If we insert a new element u2 and there
is already an element u1 whose hash key string agrees with that of u2 up to the
point that is used in the current structure, then

{ Either we take a longer prefix of its hash key string for u2 and leave u1 in
the node where it is already stored: This method was called sequence trees;
it has the advantage of the simpler insertion, but to find the object with hash
key b0b1b2 . . ., we have to look in the nodes b0, b0b1, b0b1b2, . . .; each of
these nodes contains an object, and for each of these objects, we have to
check whether its original key in U agrees with the query key;
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{ Or we take longer prefixes of the hash key strings of both u1 and u2, long
enough to distinguish u1 and u2, and store u1 and u2 in those nodes: This
method was called prefix trees; it stores objects only in the leaf nodes of the
trie structure. On insertion we might have to move both colliding elements
to a new node, but in a find operation, we need to make a key comparison of
the original key in U only for one node.

If a key comparison of the original keys in U is expensive, for example, be-
cause we hashed long strings into short strings, the second method is clearly
preferable. But it has the disadvantage that there might be many trie nodes with
a single outgoing edge if there are hash keys with a long common prefix. So we
trade key comparisons in the original universe against hash key comparisons
and space.

Because each trie node has at most 2k outgoing edges and we have at least n

nodes, there is a leaf at distance at least log2k (n) = 1
k

log n from the root. So even
with the best hash function, we cannot get a complexity better than O( 1

k
log n).

For small k that is the performance, we could as well achieve by a balanced
search tree if key comparisons in U are constant time. For larger k the nodes
get larger, because the size of a single node is O(2k), but we can, assuming
an optimal hash function, reach the correct leaf faster, until for k = log n we
just need the root node, which becomes a normal hash table. So the hash trees
are in their behavior between hash tables and balanced search trees, and are
interesting especially if key comparisons of the original keys are expensive.

As in all hash table structures, we hope that the mapping performed by
the hash function improves the distribution properties of our set; if the hash
function is bad, because there are hash keys with long common prefixes, the
sequence tree variant can degenerate into a simple unordered list and the prefix
trees can be arbitrary bad. The assumption in Coffman and Eve (1970) was,
as in all papers of that period, that the hash values would be independent and
uniformly distributed. The infinite bit strings can then be interpreted as real
numbers in the interval [0, 1[. The expected maximum length of the path we
have to follow in the trie to find a given key is then O( 1

k
log n), with nodes of

size O(2k).

9.5 Extendible Hashing

The classical hash table structure has a fixed maximum size. For the open
addressing-related methods of collision resolution, this is really a hard limit, and
performance degrades so badly near the maximum capacity that one has to stay
well below it. For the chaining methods, which we recommended, the situation
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is not as bad, and they can be used beyond their nominal capacity, but lose
the expected constant-time operations. So, to make hash tables a truly dynamic
structure, the maximum size limitations should be avoided, while retaining the
advantages of constant-time find, insert, and delete operations.

This can easily be achieved by the standard technique of building shadow
copies, as described in Section 1.5, by building a copy of the hash table in a
larger array, doubling the size, and copying in each step several elements from
the smaller to the larger hash table, so that the copy is complete before the
smaller hash table overflows. This generates only a constant factor of overhead
for each operation, so all operations still retain their expected constant time
performance, if we use a universal family of hash functions.

This is now only an obvious combination of the tools we have developed
before, but it appeared in literature only rather late in Brassard and Kannan
(1988). Total rebuilding of the hash table on reaching a capacity limit has
been used already early (Bays 1973b); but then we give up on worst-case
performance bounds, interrupt everything else, and build the new hash table.
This is much less demanding on the memory requirement because the two
tables coexist only during this rebuilding phase, whereas if we rebuild the table
concurrent with its use, we permanently block an additional piece of memory
that is larger than the hash table actually used.

Earlier work on extendible hash tables focused on a different type of struc-
ture that typically was interpreted as an external-memory structure, frequently
compared to B-trees. We see here again the influence of memory limitations in
the earlier work on data structures.

The classical structures known as extendible hashing were first proposed in
papers by Larson (1978) as “dynamic hashing,” by Litwin (1978) as “virtual
hashing” and Litwin (1980) “linear hashing,” and by Fagin et al. (1979) as “ex-
tendible hashing.” Many related methods have since been proposed (see Enbody
and Du (1988) for a survey). All these methods are based on the idea of splitting
buckets when they are overfull, while maintaing some bookkeeping system to
keep track of the buckets. They all assume that the hash function really gives an
arbitrary long bit string, as in the hash tree model; so if the hash table gets larger,
they can just take more bits of the hash function. All analysis was done under
the uniform hashing assumption that the hash values are arriving independent,
uniformly distributed. They all lack any worst-case performance guarantee.6

6 In spite of frequently repeated claims like “. . . guaranteed no more than two page faults to
locate the data . . .” (Fagin et al. 1979), similar claims for many other structures are repeated in
many well-known textbooks. These structures are interpreted as external-memory structures,
counting only external block accesses, but unlike true external-memory structures, they do not
keep the amount of internal memory constant.



400 9 Hash Tables

These structures are two-level structures: with a primary structure convert-
ing the hash value into a bucket number and a secondary structure for each
bucket. The bucket itself has a finite maximum capacity B, and it is frequently
identified with an external memory page; but in a main-memory application, it
can be realized in many ways, for example, as array, linked list, or as another
hash table. The measure analyzed in many papers is the memory utilization
expressed in the number of buckets used to store n elements; the primary
structure is assumed to be small and fit in the main memory, whereas the
buckets are in external memory.

In the first of these methods, the “dynamic hashing” method by Larson
(1978) is related to the prefix hash trees described in the previous section.
The only difference is that each leaf can hold several items. Thus, the primary
structure is a binary trie, where the buckets are associated with the leaves of
the trie. To find an element, we interpret the hash value as bit string and use
a prefix of it that is so long as to lead to a leaf in the trie; then, we use the
rest of the hash value to find the required element in the bucket associated
with the leaf. To insert a new element, we follow the same path and try to
insert the new element in the bucket associated with the leaf; if the bucket
overflows, we split the leaf, taking the next bit of the hash value, and distribute
the contents of the previous leaf bucket over the two buckets associated with the
new leaves. Under the uniform hashing assumption, this trie will be balanced,
having height O(log n

B
), and the number of buckets used to store the n elements

will be O( n
B

), indeed about 1.44 n
B

, giving a 70% storage utilization, and some
further refinements were analyzed (Larson 1978). If the hashing is not uniform,
it is easy to make this structure arbitrary bad, always forcing the same bucket
to be split.

The “virtual hashing” method of Litwin (1978) makes the primary structure
implicit and uses sequence hash trees instead of prefix hash trees, following
a search path through multiple buckets. If the hash value is b1b2b3 . . ., the
method first looks in bucket b1, then in bucket b1b2, then in bucket b1b2b3, and
so on. For an insertion, we follow this sequence of buckets until we find one
that has still room for a new element. We need to keep track of the longest
prefix length of buckets that are in use, and increase that when necessary. A
simple method to translate these bit strings of increasing length in integer array
addresses is to map b1b2 . . . bk to 2k − 1 + |b1b2 . . . bk|, where | · · · | denotes
the number represented by the bit string. Again, if the hash values are uniformly
distributed, the behavior of this is reasonable, using O( n

B
) buckets to store n

items; to look up an item, we need to check O(log n
B

) buckets, instead of the
one bucket checked by the previous method; the advantage here is that upon a
bucket overflowing, we do not have to redistribute the elements of that bucket,
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but just continue with the new elements in the next bucket along that prefix
path. Again the structure can become arbitrary bad if the hash values are not
uniformly distributed. And there is an additional problem that if we want to
avoid the primary structure in this way, we assume that we can allocate an
arbitrary number of consecutive buckets. Otherwise, we still need a primary
structure to translate the bucket number into the address where the bucket is
really stored. Litwin assumed this to be just an array, but indeed it would have
to be an extendible array, as described in Section 1.5, with all the problems that
this structure causes. If the array has fixed maximum size, we are back at our
original problem.

The “linear hashing” method by Litwin (1980), the “extendible hashing”
by Fagin et al. (1979), and the “spiral storage” by Martin7 also assume the
availability of an extendible array as primary structure and use a prefix of the
hash value as index to that array, which then gives the address of the bucket
containing the element. If buckets get overfull, the array size is doubled and a
longer prefix of the hash value is used. Linear hashing and extendible hashing
differ in the policy of splitting buckets.

Linear hashing just splits in a fixed cyclic order, so not the overflowing
bucket is split, but that bucket whose turn is next. The overflow problem is
then handled by attaching an overflow bucket to the intended bucket. When it
finally becomes its turn to be split, all items from the bucket and all overflow
buckets it might have acquired are redistributed according to their next bit in
the hash value. If the hash values are assumed to be independent and uniformly
distributed, this simple policy is sufficient to keep the expected number of
overflow buckets small. But many buckets might be split although they do not
yet require it. Spiral storage follows the same idea of splitting in a cyclic order,
but differs in the numbering scheme for the buckets. In linear hashing, one part
of a split bucket retains the old number and the other gets the next number
above the currently existing bucket numbers, so the array grows only at its end,
but begins always with index 0. In spiral storage, both parts of the split bucket
get new numbers and the old entry is deleted. Many variants of these methods
have been proposed (Litwin 1981; Mullin 1981b; Scholl 1981; Tamminen 1981;
Ramamohanarao and Lloyd 1982; Tamminen 1982; Larson 1985; Mullin 1985;
Larson 1988; Ouksel and Scheuermann 1988; Ou and Tharp 1991; Chu and
Knott 1994; Baeza-Yates and Soza-Pollman 1998).

Extendible hashing differs from the previous methods in that it splits only
overflowing buckets and allows several entries in the primary structure to refer

7 Introduced in the technical report, G.N. Martin: Spiral Storage: Incrementally Augmentable
Hash Addressed Storage, Technical Report 27, University of Warwick, USA, 1978; appears in
a paper published first in Mullin (1985).
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to the same bucket. When a bucket overflows, it is first checked whether we can
split the bucket within the framework of the current primary structure, because
the items corresponding to several different entries are stored in that bucket. If
that is the case, we just create the new bucket and separate the items. Else we
have to increase the depth of the primary structure; for that we double the array,
copying all previous entries into two consecutive array entries, so now every
bucket is referred by at least two array entries corresponding to two hash value
prefixes differing in the last bit. Then we can split the overflowing bucket and
distribute the items on two buckets according to that last bit. It is easy to check
whether there are multiple array entries referring to the same bucket, because
they share a prefix in their hash value, so the array entries are consecutive. This
property needs to be preserved when we split a bucket; the entries referring to the
old and the new bucket must again be consecutive array entries. Variants of the
extendible hashing method were proposed in Lomet (1983) and Chung (1992).

A higher-dimensional analog of this extensible hashing structure is the
“grid file” (Nievergelt, Hinterberger, and Sevcik 1984; Hinrichs 1985; Regnier
1985); here our data items have as key not only one sequence of bits, but d

such sequences. Then we take in each sequence a prefix and interpret that as
number, and use these d numbers as index to a d-dimensional array, which gives
us the number of the bucket containing that data item. Again we have potentially
many array positions pointing to the same bucket, but they form a d-dimensional
interval among the index positions, so we can split an overflowing bucket as
long as there are several array positions pointing to it. Higher-dimensional index
structures for points have some similarity to the other structures discussed in
this section and have again developed many variants.

A totally different class of structures that combine hash tables with variable
size are the methods of dynamic perfect hashing introduced by Dietzfelbinger
and Mayer auf der Heide (1992) and Dietzfelbinger et al. (1994). That is a
dynamization of the perfect hash method by Fredman et al. (1984), where parts
of the two-level structure are occasionally rebuilt. That is a randomized struc-
ture that supports worst-case constant find operations and amortized expected
constant time insertions and deletions.

9.6 Membership Testers and Bloom Filters

The dictionary structures we discussed in the earlier chapters, search trees, tries,
and hash tables, all were keeping track of a set of keys, associating with each key
an object. A membership tester does slightly less, he just answers membership
queries for the set: is the query key contained in the set? This weaker structure is
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interesting in a number of applications related to external memory and network
applications. If we are looking for some data that might be in any of a number
of buckets, we can avoid looking in each bucket if we have a membership tester
for its content. If the buckets are external memory pages or other computers in
a distributed system, we can perhaps keep a membership tester for each bucket
in our main memory, but not the content of the bucket itself. So membership
testers are mainly interesting if their size is small compared to the size of the
entire set, which would be the size of a classical dictionary structure.

For membership testers, it is possible to relax the requirements and accept
false positives, that is, query keys incorrectly accepted as members of the set,
as long as they are few. This significantly reduces the size of the structure,
without significantly degrading its usefulness: at worst we look in a bucket too
much. Another application, which was the main motivation of the first study,
is a spelling checker: we just need a decision whether the word is correct,
and incorrectly accepting a few misspelled words is not harmful. It has also
been proposed for some textual index applications (Mullin 1987; Ramakrishna
1989b; Shepherd, Phillips, and Chu 1989). This structure was invented by
Bloom (1970), and an approximate membership tester is called a Bloom filter.
Exact and approximate membership testers were then studied in Carter et al.
(1978), and recently became the object of many further studies, especially
motivated by network applications (Little, Shrivastava, and Speirs 2002; Broder
and Mitzenmacher 2004). Classical dictionaries, unlike membership testers,
have an approximate version only if we can approximate the associated object
in a meaningful way (Chazelle et al. 2004), which is usually not the case: there
are no approximate pointers.

For the construction and analysis of membership testers, it is necessary to
make further assumptions on the nature of the universe U from which the sets
are selected, and the computational model. In all structures proposed in this
context, the universe is assumed to be a finite set with u elements. This makes
the structure similar to hash tables and different from search trees, where
the assumption was only that we could compare two universe elements in
constant time.

If we have to represent all 2u possible subsets of the universe, we cannot
do better than using a bitmap, u bits, each representing one universe element
that may be in the current set or not. We cannot encode the 2u possible subsets
by less than u = log(2u) bits. If we restrict ourselves to subsets of a fixed
size, n elements of the u possible universe elements, we get a lower bound of
log
(
u

n

)
, which is approximately n log u for n much smaller than u. Already in

Carter et al. (1978), several exact membership testers of almost that size were
proposed, but the query times that can be achieved depend on the computational
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model: in some models, almost minimal space and constant query time are
possible (Brodnik and Munro 1999).

For approximate membership testers, the situation is more difficult. The
original method proposed by Bloom is that we have a bit string of length b,
and k hash functions hi : U → {1, . . . , b}. For each element x that belongs to
the set X we wish to represent, the structure sets the bits h1(x), . . . , hk(x) to 1.
The same bit might be set to 1 for many different elements of the represented
set. To query whether y ∈ U is in that set X, we compute h1(y), . . . , hk(y) and
check whether all these bits are 1; then we claim that y belongs to X, else
we know that it does not belong to X. This allows false positives, but no false
negatives. This was studied in Bloom (1970), Carter et al. (1978), and Mullin
(1983) under the uniform hashing assumption; if the hi(x) are independent and
uniformly distributed, and we use b = (log2 e)kn bits and k hash functions to
represent an n-element set, we get an upper bound of 2−k for the error rate,
independent of the size of the universe.

Another method, which requires less assumption on the independence of
the hash values, is just to map the large universe U by a hash function h chosen
from a universal family to a smaller universe V and use an exact membership
tester there. This was also already proposed in Bloom (1970), where a normal
hash table was used for that smaller universe; in Carter et al. (1978) it was then
combined with exact membership testers. Given a query element y, we claim
y belongs to X if h(y) belongs to h(X), otherwise we know it does not belong
to X. A false positive results if there is an x ∈ X, x �= y, with h(x) = h(y).
Using a smaller universe of size n2k , we get a probability of a collision under
the universal hash function, corresponding to a false positive, of c2−k . The
space required by this structure is the space for an exact membership tester
of an n-element set in a universe of size n2k . Again the space requirement is
independent of the size of the original universe U and depends only on n and
the error rate.

Further structures for membership testers, of almost optimal size and query
time, were developed in Brodnik and Munro (1999), Buhrman et al. (2000), and
Pagh, Pagh, and Rao (2005); related structures were also proposed in Kirsch
and Mitzenmacher (2006), Mitzenmacher (2001), a version also allowing false
negatives in Pagh and Rodler (2001) and a version for multisets answering
approximate multiplicity queries in Cohen and Matias (2003). All these struc-
tures are just static structures, not allowing any insertions or deletions of the
underlying set. A trivial way to make the structure dynamic is to replace the
bits in the first structure above by counters, incrementing each counter on
insertions and decrementing on deletions, with the test criterion in a query
becoming that all counters are positive. This is known as counting Bloom filter
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(Fan et al. 2006; Buhrman et al. 2000), but the structure is not fully dynamic
in the same way that hash tables had a maximum size, because the number of
counters, as well as their size, is not changed during insertions. That would
require techniques like the shadow copies, extendible arrays, or extendible
hash tables, as discussed in the previous section. But the main motivation
for the apparent practical interest in approximate membership testers is their
small size.
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Appendix

In the following I collected some comments on relevant concepts, useful tech-
niques, and the subject choices and restrictions of this book.

10.1 The Pointer Machine and Alternative
Computation Models

In this book we restricted ourselves as far as possible to structures that can be
represented in the model of the pointer machine and excluded structures that
require stronger models of computation.

In the pointer machine,1 the memory consists of nodes that are of size O(1),
each node containing possibly some values and some pointers to other nodes.
The only thing we can do with these pointers is to follow them and create a
pointer to a given node, or create a node and a pointer to it. All operations on
pointers, as well as the creation and deletion of nodes, take constant time.

Almost all our structures fall into this model, the main exception being
the hash tables, which were included for their great practical importance. In
hash tables we compute a pointer out of some input data; there is no “pointer
arithmetic” in the pointer machine. The other exceptions are our frequent
use of arrays for stacks and the array-based heaps, which both again require
address computations and non-constant-sized memory objects. We include
these structures for their efficiency, but could have avoided them: the linked-
list implementation of a stack is an obvious example of a pointer-machine
structure, and we gave many heaps that fall into this model. The Fibonacci

1 There are a number of concepts in literature that go under the popular name of “pointer
machine” and that differ in details. Ben-Amram (1995) tried to systematize them. According to
his classification, we are using “pointer algorithms.”

406
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heap is not a pointer-machine structure; we included it as a moderately simple
heap with an amortized fast decrease-key operation.

An important alternative, and more powerful, model of computation is the
word-based RAM with word length �(log n). In the pointer-machine model,
we do not worry about the size of the values in the various fields of the nodes;
in this book we never discussed any problem of numerical range overflow.
If we want to allow computation with addresses in our model, we have to
be more specific in what the addresses are. The pointer-machine model was
based exactly on the abstraction from that detail. If we model our computer
memory as a big array of memory words, each memory word having a fixed
width, w bits, and a pointer to a memory address fitting in a memory word,
we need a word size w ≥ �(log n) to be able at least to address the n parts
of the input. If we assume that our program needs only space polynomial in
n, which is a very weak upper bound for a reasonable program, O(log n) bits
are sufficient to address all those memory cells used by the program. For this
reason, word-based RAMs normally assume a word length of �(log n).

Having the word length of your machine depends on the size of the input
appears strange and unrealistic, but if we keep the word length fixed, then even
following a pointer needs �(log n) time just to read the entire pointer. And
if the input data consist of n items, each of which fits in a single word of
constant size w, there are only 2w = O(1) possible values for each input item,
so a large input will consist only of repeated items. This changes the problems
very much, making, for example, counting sort a reasonable algorithm for
sorting.

Allowing direct access to the addresses and computations with these ad-
dresses allows some operations to be much faster that it is possible in the
pointer machine. Because that asymptotic speed does not translate into a fast
implementation, we excluded this type of structures in this book.

Another model choice is the question what numbers the machine supports.
For word-based RAMs it is natural to use only integers that fit into a word; but
especially in geometric structures, it is very convenient to allow real numbers
as elementary objects, with which one can do arbitrary arithmetic operations
in constant time. For the pointer machine, this fits especially well; then the
number components of a node, like the pointer components, are just elementary
objects with which some constant-time operations are possible. With the RAM it
depends on whether we keep real numbers and integers separate; then we get the
standard real RAM; or whether we allow in our model operations like rounding,
thus converting a real number into an integer, which makes serious differences
in the complexity of some problems and adds another model question, whether
the derived integer then fits into a word or can be used as address.
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Being specific about the underlying computation model is especially im-
portant for lower bounds, which do depend strongly on the choice of the
computation model. In this book we focused on algorithms and excluded lower
bounds.

In principle, we could claim that our computational model is the set of correct
C programs. Any programming language does not have a stated restriction on
the word length of the integers and pointers used in your program, although
it is possible to access them on bit level. But these restrictions are present in
the computer, making asymptotic runtimes for n → ∞ a theoretical concept
anyway.

10.2 External Memory Models and Cache-Oblivious
Algorithms

We described the basic external memory model, in which blocks of fixed (large)
size are accessed on the external memory, in our discussion of B-trees and
(a, b)-trees. The same questions can be asked not only for search trees but
also for all other structures discussed here: how many blocks of size B

have to be accessed to solve the given problem. This is a different com-
plexity measure for the same problem; instead of counting operations, we
count block transfers and want to minimize that number by the design of our
algorithms.

These questions have been discussed in many papers and for many different
underlying data structure problems. A recent survey is given in Vitter (2001).
Especially the database community, in which the assumption that the data
will not fit into the main memory is standard, is interested in these external
memory structures. In many cases, a suitable modification of some B-tree
variant turns out to be the solution, other cases, especially with geometric
underlying problems, are more difficult.

In this book we mostly excluded that external memory setting, with the
exception of (a, b)-trees that were also useful as main memory data structure;
but any of our problems could also be studied in that setting, and many have
been. Both computers and problems get larger; the problems of 5 years ago now
fit into main memory, but new problems become feasible. The big majority of
problems, however, does fit into main memory, and the normal main-memory
model is both simpler and basic to other models, so its study has priority.
Ultimately, we believe it possible that the external memory models disappear
to specialized application niches, like the sequential access memory (tape)
structures that were an important model variant 30 years ago.
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A currently much-studied memory variant are the cache-oblivious struc-
tures, introduced in Frigo et al. (1999); they are like external memory struc-
tures, but without knowledge of the block size. They are based on the insight
that the main memory of a modern computer is not as homogeneous as we
assume in our standard model; there is a hierarchy of various levels of faster
cache memory between the actual processor and the main memory. Each of
these cache memories is structured in blocks; an access to a cached block is
fast, whereas a cache miss forces an access to the next slower level of cache,
from which not only the requested address, but an entire (small) block, the
“cache line” is read and stored. The cache-oblivious structure should behave
well with respect to the number of block transfers for any block size. This is
again a modification that can be combined with any data structure problem; we
get a set of different complexity measures, the numbers of block transfers for
the different block sizes, all of which should simultaneously be near optimal.
Like the B-tree for external memory problems, there is a canonical tool, the
van-Emde-Boas tree layout, which frequently can be adapted to make a given
main memory structure cache-oblivious. Again we excluded this topic from
this book.

10.3 Naming of Data Structures

In general, a structure or concept with a name is easier to reference than one that
is just identified by its author. This is noticeable in many places; indeed a named
structure is more probable to get cited. But in our subject, it is frequently not
clear what a name applies to, whether it is the abstract structure or the method to
realize that structure. A typical example are heaps: a large part of the literature
holds that the abstract structure is named “priority queue,” and heaps are just
the original implementation, the array-based heaps. But the names given to later
implementations are clearly always “heaps,” as in binomial heaps, Fibonacci
heaps, relaxed heaps, pairing heaps, and so on. Only the leftist heaps fail to
follow that scheme, in literature they are referred to as leftist trees. For this
reason, we used “heap” as the name of the abstract structure. Some authors
use “meld” instead of “merge” for the merging of heaps, but we preferred the
better-known word “merge.”

The word “queue” has been used for so many unrelated concepts, as “caten-
able queues” for search trees supporting split and join, that it should be avoided
for anything that is not really a queue. In the same way, “list” is a word that
gives very little explanation, having been used in many structures whose only
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common aspect is a linear order occuring somewhere. We use “list” only for
linked lists.

Good naming continues to be a problem, and we tried to be at least consistent
in the names used in this book.

10.4 Solving Linear Recurrences

Linear recurrences with constant coefficients occured in the analysis of height-
balanced trees and, in principle, at many other places that have an exponential
or logarithmic growth rate. Because there is a simple technique to solve any
such recursion, we present it here.

Suppose you have a function defined by a recursion of the form

f (n + k) = ak−1f (n + k − 1) + ak−2f (n + k − 2) + · · · + a1f (n + 1)

+a0f (n),

as well as some initial conditions for the small values (f (1), . . . , f (k)). The
set of all solutions of this recursion is closed under taking constant multiples
and sums, so it forms a linear space. The dimension of this linear space is k: we
can choose f (1), . . . , f (k) arbitrarily and then define the function for n > k

by the recursion. This always gives a solution of that recursion, and any two
solutions that agree on the first k values are identical. So we just need to find k

linearly independent solutions to this recursion and then we can form a linear
combination of them to satisfy the k given initial conditions.

Define a polynomial of degree k by p(x) = xk − ak−1x
k−1 − ak−2x

k−2 −
· · · − a1x − a0. This is called the characteristic polynomial of the recursion.
A polynomial of degree k has exactly k zeros, at least if we count them with
multiplicities (and allow complex numbers). Let c be one of these zeros, so

ck = ak−1c
k−1 + ak−2c

k−2 + · · · + a1c + a0,

then fc(n) = cn is a solution of the recursion:

fc(n + k) = cn+k = cn · ck

= cn(ak−1c
k−1 + ak−2c

k−2 + · · · + a1c + a0)

= ak−1c
n+k−1 + ak−2c

n+k−2 + · · · + a1c
n+1 + a0c

n

= ak−1fc(n + k − 1) + ak−2fc(n + k − 2) + · · ·
+a1fc(n + 1) + a0fc(n).

If c is a multiple zero of the polynomial p, so p(x) = (x − c)i r(x) for some i ≥
2 and some polynomial r , then c is also a zero of the derivatives p′, . . . , p(i−1).
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So we have

ck − ak−1c
k−1 − ak−2c

k−2 − · · · − a1c − a0 = 0,

kck−1 − ak−1(k − 1)ck−2 − ak−2(k − 2)ck−3 − · · · − a1 = 0,

...

k(k − 1) · · · (k − i + 2)ck−i+1 − ak−1(k − 1)(k − 2) · · · (k − i + 1)ck−i

−ak−2(k − 3)(k − 4) · · · (k − i)ck−i−1 − · · · − (i − 1)(i − 2) · · · 1ai−1 = 0.

Thus, there are polynomials q0, . . . , qi−1 of degree 0, . . . , i − 1
(qj (x) = x(x − 1)(x − 2) · · · (x − j + 1)) with

q0(k)ck − q0(k − 1)ak−1c
k−1 − q0(k − 2)ak−2c

k−2 − · · · − q0(1)c−q0(0) = 0,

q1(k)ck − q1(k − 1)ak−1c
k−1 − q1(k − 2)ak−2c

k−2 − · · · − q1(1)c−q1(0) = 0,

...

qi−1(k)ck − qi−1(k − 1)ak−1c
k−1 − qi−1(k − 2)ak−2c

k−2

− · · · − qi−1(1)c − qi−1(0) = 0.

These polynomials are linearly independent and form a basis of the space of
polynomials of degree at most i − 1. So we can express any polynomial q

of degree at most i − 1 as linear combination of the qj , and obtain by the
corresponding linear combination of the above equations that

q(k)ck − q(k − 1)ak−1c
k−1 − q(k − 2)ak−2c

k−2 − · · · − q(1)c − q(0) = 0.

Therefore, if c is an i-fold zero of the characteristic polynomial p, then any
polynomial q with degree at most i − 1 also generates a solution fc,q (n) =
q(n)cn of our recurrence. We just have to use that q(n + k) is a polynomial
in k.

fc,q (n + k) = q(n + k)cn+k = cn · q(n + k)ck

= cn
(
q(n + (k − 1))ak−1c

k−1 + q(n + (k − 2))ak−2c
k−2 + · · ·

+q(n + 1)a1c + q(n + 0)a0

)
= ak−1q(n + k − 1)cn+k−1 + ak−2q(n + k − 2)cn+k−2 + · · ·

+a1q(n + 1)cn+1 + a0q(n + 0)cn

= ak−1fc,q (n + k − 1) + ak−2fc,q (n + k − 2) + · · ·
+a1fc,q (n + 1) + a0fc,q (n).
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Thus we have found a system of linearly independent solutions of the given
recursion whose cardinality is the dimension of the space of solutions. So they
form a basis for the space.

In summary to solve a given recursion of this type, we just write down
the characteristic polynomial p, find its zeros with their multiplicities, write
down the basis, and find the linear combination that satisfies the given initial
conditions. The only potential problem in this method is to find the zeros of a
given polynomial.

10.5 Very Slowly Growing Functions

We frequently used the logarithm function that is already for all normal purposes
quite slow growing. After all, problem sizes of n > 2100 are irrelevant, so we
could assume for practical purposes that log n ≤ 100. Indeed, we did this when
choosing the array size for array-based stacks in the implementation of several
tree structures.

Still, there are many functions that grow slower than log n, and some of
them do occur in the analysis of data structures and algorithms. Of course
log log n grows slower than log n and that occured in the worst-case optimal
structure for the set union problem in Section 6.1. To get a feeling for very
slow-growing functions, it is easier to look at their inverses, which are very
fast-growing functions. The inverse of log n is 2n, and the inverse of log log n

is 22n

. An occasionally useful function that grows much slower is the “iterated
logarithm” function log∗ n, which is usually defined as the number of times we
have to apply the logarithm to make the result less than 1. An equivalent, but
better understandable, version is

log∗ n = k if 222..
.2}

k ≤ n < 222..
.2}

k+1
.

So the inverse function of log∗(n) is an exponential tower of height n. Even the
Ackermann function grows faster than the exponential tower. This was defined
in Chapter 6 by

A(m, 0) = 0 for m ≥ 1,

A(m, 1) = A(m − 1, 2) for m ≥ 1,

A(0, n) = 2n for n ≥ 0,

A(m, n) = A (m − 1, A(m, n − 1)) for m ≥ 1, n ≥ 2.
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Ackermann2 (1928) then took the diagonal function A(n, n) as his example of
a function that grows so fast that it cannot be expressed as primitive recursive
function. To get a feeling for the growth rate, we observe that

A(0, n) = 2n (by definition),

A(1, n) = A(0, A(1, n − 1)) = 2A(1, n − 1) = · · · = 2n−1A(1, 1) = 2n+1,

A(2, n) = A(1, A(2, n − 1)) = 2A(2,n−1)+1 > 2A(2,n−1), so

A(2, n) > 222..
.2}

n+2 times.

In general, A(k, n) is the result of n-fold application of A(k − 1, ·).
Some simple properties of A(m, n) are that it is increasing in both variables

(increasing very fast), and A(m, 1) > m. With this, we note that

A(i, 1) = A(i − 1, 2) = A(i − 2, A(i − 1, 1))>A(i − 2, i − 2) > A(i − 2, 1),

so the value of the diagonal Ackermann function A(n, n) lies between the first-
column values A(n, 1) and A(n + 2, 1). So the inverse Ackermann function
defined in Section 6.1 (Chapter 6) as

α(n) = min{i | A(i, 1) > n}
differs from the inverse of the diagonal Ackermann function αdiag(n) = min{i |
A(i, i) > n} by at most two. This function α(n) is the slowest-growing function
that occurs in this book.

2 Actually this is not quite what Ackermann defined. Since 1928 the idea has been simplified, and
several variants for the initial conditions of the recursion exist, of which we choose one
especially suitable for our application. But the behavior of the function is always the same.



11

References

Whenever a paper exists in a conference and a journal version, I cite the journal version.
I do not cite technical reports and other inaccessible references.

S. Abiteboul, H. Kaplan, T. Milo: Compact Labeling Schemes for Ancestor Queries,
in: SODA 2001 (Proceedings 12th ACM-SIAM Symposium on Discrete
Algorithms), 547–556.

M.I. Abouelhoda, S. Kurtz, E. Ohlebusch: Replacing Suffix Trees with Enhanced
Suffix Arrays, Journal of Discrete Algorithms 2 (2004) 53–86.

W. Ackermann: Zum Hilbertschen Aufbau der reellen Zahlen, Mathematische Annalen
99 (1928) 118–133.

G.M. Adel’son-Vel’skiı̆, E.M. Landis: An Algorithm for the Organization of Informa-
tion, Dokl. Akad. Nauk. SSSR 146(2) (1962) 1259–1262; English translation in
Soviet Mathematics Doklady 3 (1962) 1259–1263.

P.K. Agarwal, L. Arge, K. Yi: An Optimal Dynamic Interval Stabbing-Max Data
Structure, in: SODA 2005 (Proceedings 16th ACM-SIAM Symposium on
Discrete Algorithms), 803–812.

P.K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, H.J. Haverkort: Box-Trees
and R-Trees with Near-Optimal Query Time, Discrete & Computational Geometry
28 (2002) 291–312.

A.V. Aho, J.E. Hopcroft, J.D. Ullman: The Design and Analysis of Computer
Algorithms, Addison-Wesley 1974.

A.V. Aho, J.E. Hopcroft, J.D. Ullman: On Finding Lowest Common Ancestors in
Trees, SIAM Journal on Computing 5 (1976) 115–132.
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M. Fürer: Randomized Splay Trees, in: SODA 1999 (Proceedings 10th ACM-SIAM
Symposium on Discrete Algorithms), 903–904.

H.N. Gabow: A Scaling Algorithm for Weighted Matching on General Graphs, in:
FOCS 1985 (Proceedings 26th Annual IEEE Symposium on Foundations of
Computer Science), 90–100.

H.N. Gabow: Data Structures for Weighted Matching and Nearest Common Ancestors
with Linking, in: SODA 1990 (Proceedings 1st ACM-SIAM Symposium on
Discrete Algorithms), 434–443.

H.N. Gabow, R.E. Tarjan: A Linear Time Algorithm for a Special Case of Disjoint Set
Union, Journal of Computer and System Sciences 30 (1985) 209–221.

V. Gaede, O. Günther: Multidimensional Access Methods, ACM Computing Surveys
30 (1998) 170–231.

H. Gajewska, R.E. Tarjan: Deques with Heap Order, Information Processing Letters
22 (1986) 197–200.

B.A. Galler, M.J. Fisher: An Improved Equivalence Algorithm, Communications ACM
7 (1964) 301–303.

Z. Galil, G.F. Italiano: Data Structures and Algorithms for Disjoint Set Union
Problems, ACM Computing Surveys 23 (1991) 319–344.

I. Galperin, R.L. Rivest: Scapegoat Trees, in: SODA 1993 (Proceedings 4th ACM-
SIAM Symposium on Discrete Algorithms), 165–174.

G. Gambosi, G.F. Italiano, M. Talamo: Getting Back to the Past in the Union-Find
Problem, in: STACS 1988 (Proceedings of the 5th Annual Symposium on
Theoretical Aspects of Computer Science), Springer. LNCS 294, 8–17.

G. Gambosi, G.F. Italiano, M. Talamo: The Set Union Problem with Dynamic
Weighted Backtracking, BIT 31 (1991) 382–393.

G. Gambosi, M. Protasi, M. Talamo: An Efficient Implicit Data Structure for Relation
Testing and Searching in Partially Ordered Sets, BIT 33 (1993) 29–45.

D. Gardy, P. Flajolet, C. Puech: Average Cost of Orthogonal Range Queries in
Multiattribute Trees, Information Systems 14 (1989) 341–350.

T.E. Gerasch: An Insertion Algorithm for a Minimal Internal Pathlength Binary Search
Tree, Communications ACM 31 (1988) 579–585.

G.F. Georgakopoulos, D.J. McClurkin: Generalized Template Splay: A Basic Theory
and Calculus, The Computer Journal 47 (2004) 10–19.

L. Georgiadis, R.E. Tarjan, R.F. Werneck: Design of a Data Structure for Mergeable
Trees, in: SODA 2006 (Proceedings 17th ACM-SIAM Symposium on Discrete
Algorithms), 394–403.

R. Giancarlo: A Generalization of the Suffix Tree to Square Matrix, with Applications,
SIAM Journal on Computing 24 (1995) 520–562.

R. Giegerich, S. Kurtz: From Ukkonen to McCreight and Weiner: A Unifying View of
Linear-Time Suffix Tree Construction, Algorithmica 19 (1997) 331–353.



11 References 427

R. Giegerich, S. Kurtz, J. Stoye: Efficient Implementation of Lazy Suffix Trees,
Software – Practice and Experience 33 (2003) 1035–1049.

J. Gil, A. Itai: How to Pack Trees, Journal of Algorithms 32 (1999) 108–132.
G.H. Gonnet: Expected Length of the Longest Probe Sequence in Hash Code

Searching, Journal of the ACM 28 (1981) 289–304.
G.H. Gonnet, R.A. Baeza-Yates, T. Snider: New Indices for Texts: PAT Trees and PAT

Arrays, in: Information Retrieval: Data Structures and Algorithms, W.B. Frakes,
R.A. Baeza-Yates, eds., Prentice Hall 1992, 66–82.

G.H. Gonnet, J.I. Munro: Efficient Ordering of Hash Tables, SIAM Journal on
Computing 8 (1979) 463–478.

G.H. Gonnet, J.I. Munro: Heaps on Heaps, SIAM Journal on Computing 15 (1986)
964–971.

G.H. Gonnet, J.I. Munro, D. Wood: Direct Dynamic Structures for Some Line-Segment
Problems, Computer Vision, Graphics, and Image Processing 23 (1983) 178–186.
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J. Kärkkäinen, P. Sanders, S. Burkhardt: Linear Work Suffix Array Construction,
Journal of the ACM 53 (2006) 918–936.

P.L. Karlton, S.H. Fuller, R.E. Scroggs, E.B. Kaehler: Performance of Height-Balanced
Trees, Communications ACM 19 (1976) 23–28.

R.M. Karp, R.E. Miller, A.L. Rosenberg: Rapid Identification of Repeated Patterns
in Strings, Trees, and Arrays, in: STOC 1972 (Proceedings 4th Annual ACM
Symposium on Theory of Computing), 125–136.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park: Linear-Time Longest-Common-
Prefix Computation in Suffix Arrays and Its Applications, in CPM 2001
(Proceedings 12th Annual Symposium on Combinatorial Pattern Matching),
Springer. LNCS 2089, 181–192.

A.F. Kaupe, Jr.: Algorithm 143: Treesort 1, Algorithm 144: Treesort 2, Communications
ACM 5 (1962) p. 604.
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E. Mäkinen: On Top-Down Splaying, BIT 27 (1987) 330–339.
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Zürich, Switzerland

Dan E. Willard: [Lueker and Willard 1982;
Willard 1982, 1985, 1986, 1992; Willard
and Lueker 1985] SUNY University at
Albany, USA

Hugh E. Williams: [Heinz et al. 2002] MSN
Search, USA

John W.J. Williams: [Williams 1964]
JamesWogulis: [Wogulis1989]Borland,USA
Chak-Kuen Wong: [Lee and Wong 1977,

1980; Nievergelt and Wong 1973] City
University of Hong Kong, China

Shan Leung Maverick Woo: [Blelloch et al.
2003] Carnegie Mellon University, USA

Derick Wood: [Ottmann and Wood 1978;
Ottmann et al. 1978; van Leeuwen and
Wood 1980, 1980b, 1983; Culik et al. 1981;
Culik and Wood 1982; Gonnet et al. 1983;
Nurmi et al. 1987; Klein and Wood 1990;
Lai and Wood 1990, 1993; Cameron and
Wood 1992] Hong Kong University of
Science and Technology, China

Nicholas C. Wormald: [Majewski et al.
1996] University of Waterloo, Canada

Gu Xunrang: [Xunrang and Yuzhang 1990]
Shanghai University, China

Wei-Pang Yang: [Yang and Du 1985]
National Chiao Tung University, Taiwan,
Republic of China

Andrew Chi-Chih Yao: [Tarjan and Yao,
1979; Yao 1981, 1982; 1985a, b, c; Yao and
Yao 1997] Tsinhua University, China

Frances Foong Yao: [Greene et al. 1994;
Yao and Yao 1997] City University of Hong
Kong, China

Chee-Keng Yap: [Overmars and Yap 1991]
New York University, USA

Ke Yi: [Arge et al. 2004; Agarwal et al. 2005]
Duke University, USA

Toshitsugu Yuba: [Hoshi and Yuba 1982]
University of Electro-Communications,
Japan

Zhu Yuzhang: [Xunrang and Yuzhang 1990]
Gabriel Zachmann: [Langetepe and

Zachmann 2006] University of Clauusthal,
Germany

Carlos Zamora-Cura: [Chanzy et al. 2001]
Erik Zijlstra: [van Emde Boas et al. 1977]
Jack Zito: [Bender et al. 2002]
Nivio Zivani: [Zivani et al. 1985] Federal

University of Minas Gerais, Brazil
Justin Zobel: [Heinz et al. 2002] RMIT

University, Australia
Stuart H. Zweben: [Zweben and McDonald
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