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Preface

This book is a graduate-level textbook on data structures. A data structure is
a method! to realize a set of operations on some data. The classical example
is to keep track of a set of items, the items identified by key values, so that
we can insert and delete (key, item) pairs into the set and find the item with a
given key value. A structure supporting these operations is called a dictionary.
Dictionaries can be realized in many different ways, with different complexity
bounds and various additional operations supported, and indeed many kinds of
dictionaries have been proposed and analyzed in literature, and some will be
studied in this book.

In general, a data structure is a kind of higher-level instruction in a virtual
machine: when an algorithm needs to execute some operations many times, it
is reasonable to identify what exactly the needed operations are and how they
can be realized in the most efficient way. This is the basic question of data
structures: given a set of operations whose intended behavior is known, how
should we realize that behavior?

There is no lack of books carrying the words “data structures” in the title, but
they merely scratch the surface of the topic, providing only the trivial structures
stack and queue, and then some balanced search tree with a large amount of
handwaving. Data structures started receiving serious interest in the 1970s, and,
in the first half of the 1980s, almost every issue of the Communications of the
ACM contained a data structure paper. They were considered a central topic,
received their own classification in the Computing Subject Classification,?

! This is not a book on object-oriented programming. I use the words “method” and “object” in
their normal sense.

2 Classification code: E.1 data structures. Unfortunately, the Computing Subject Classification is
too rough to be useful.

X1



xii Preface

and became a standard part of computer science curricula.> Wirth titled a
book Data Structures + Algorithms = Programs, and Algorithms and Data
Structures became a generic textbook title. But the only monograph on an al-
gorithmic aspect of data structures is the book by Overmars (1983) (which is
still in print, a kind of record for an LNCS series book). Data structures re-
ceived attention in a number of application areas, foremost as index structures
in databases. In this context, structures for geometric data have been studied in
the monographs of Samet (1990, 2006); the same structures were studied
in the computer graphics context in Langetepe and Zachmann (2006). Re-
cently, motivated by bioinformatics applications, string data structures have
been much studied. There is a steady stream of publications on data structure
theory as part of computational geometry or combinatorial optimization. But
in the numerous textbooks, data structures are only viewed as an example ap-
plication of object-oriented programming, excluding the algorithmic questions
of how to really do something nontrivial, with bounds on the worst-case com-
plexity. It is the aim of this book to bring the focus back to data structures as a
fundamental subtopic of algorithms. The recently published Handbook of Data
Structures (Mehta and Sahni 2005) is a step in the same direction.

This book contains real code for many of the data structures we discuss and
enough information to implement most of the data structures where we do not
provide an implementation. Many textbooks avoid the details, which is one
reason that the structures are not used in the places where they should be used.
The selection of structures treated in this book is therefore restricted almost
everywhere to such structures that work in the pointer-machine model, with
the exception of hash tables, which are included for their practical importance.
The code is intended as illustration, not as ready-to-use plug-in code; there is
certainly no guarantee of correctness. Most of it is available with a minimal
testing environment on my homepage.

This book started out as notes for a course I gave in the 2000 winter semester
at the Free University Berlin; I thank Christian Knauer, who was my assistant
for that course: we both learned a lot. I offered this course again in the fall
semesters of 2004—7 as a graduate course at the City College of New York
and used it as a base for a summer school on data structures at the Korean
Advanced Institute of Science and Technology in July 2006. I finished this
book in November 2007.

3 ABET still lists them as one of five core topics: algorithms, data structures, software design,
programming languages, and computer architecture.
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I thank Emily Voytek and Giinter Rote for finding errors in my code ex-
amples, Otfried Cheong for organizing the summer school at KAIST, and
the summer school’s participants for finding further errors. I thank Christian
Knauer and Helmut Brass for literature from excellent mathematical libraries at
the Free University Berlin and Technical University Braunschweig, and Janos
Pach for access to the online journals subscribed by the Courant Institute. A
project like this book would not have been possible without access to good
libraries, and I tried to cite only those papers that I have seen.

This book project has not been supported by any grant-giving agency.

Basic Concepts

A data structure models some abstract object. It implements a number of
operations on this object, which usually can be classified into

— creation and deletion operations,
— update operations, and
— query operations.

In the case of the dictionary, we want to create or delete the set itself, update the
set by inserting or deleting elements, and query for the existence of an element
in the set.

Once it has been created, the object is changed by the update operations.
The query operations do not change the abstract object, although they might
change the representation of the object in the data structure: this is called an
adaptive data structure — it adapts to the query to answer future similar queries
faster.

Data structures that allow updates and queries are called dynamic data
structures. There are also simpler structures that are created just once for
some given object and allow queries but no updates; these are called static
data structures. Dynamic data structures are preferable because they are more
general, but we also need to discuss static structures because they are useful
as building blocks for dynamic structures, and, for some of the more complex
objects we encounter, no dynamic structure is known.

We want to find data structures that realize a given abstract object and are
fast. The size of structures is another quality measure, but it is usually of less
importance. To express speed, we need a measure of comparison; this is the
size of the underlying object, not our representation of that object. Notice that
a long sequence of update operations can still result in a small object. Our
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usual complexity measure is the worst-case complexity; so an operation in a
specific data structure has a complexity O(f(n)) if, for any state of the data
structure reached by a sequence of update operations that produced an object of
size n, this operation takes at most time C f(n) for some C. An alternative but
weaker measure is the amortized complexity; an update operation has amortized
complexity O(f(n)) if there is some function g(n) such that any sequence of
m of these operations, during which the size of the underlying object is never
larger than n, takes at most time g(n) + mC f(n), so in the average over a long
sequence of operations the complexity is bounded by Cf(n).

Some structures are randomized, so the data structure makes some random
choices, and the same object and sequence of operations do not always lead
to the same steps of the data structure. In that case we analyze the expected
complexity of an operation. This expectation is over the random choices of the
data structure; the complexity is still the worst case of that expectation over all
objects of that size and possible operations.

In some situations, we cannot expect a nontrivial complexity bound of type
O( f (n)) because the operation might give a large answer. The size of the answer
is the output complexity of the operation, and, for operations that sometimes
have a large output complexity, we are interested in output-sensitive methods,
which are fast when the output is small. An operation has output-sensitive
complexity O(f(n) + k) if, on an object of size n that requires an output of
size k, the operation takes at most time C(f(n) + k).

For dynamic data structures, the time to create the structure for an empty
object is usually constant, so we are mainly interested in the update and query
times. The time to delete a structure of size n is almost always O (n). For static
data structures we already create an object of size n, so there we are interested
in the creation time, known as preprocessing time, and the query time.

In this book, log, n denotes the logarithm to base a; if no base is specified,
we use base 2.

We use the Bourbaki-style notation for closed, half-open, and open intervals,
where [a, b] is the closed interval from a to b, Ja, b[ is the open interval, and
the half-open intervals are ]a, b], missing the first point, and [a, b[, missing the
last point.

Similar to the O(-)-notation for upper bounds mentioned earlier, we also use
the €2(-) for lower bounds and ®(-) for simultaneous upper and lower bounds.
A nonnegative function f is O(g(n)), or 2(g(n)), if for some positive C and all
sufficiently large n holds f(n) < Cg(n), or f(n) > Cg(n), respectively. And
f is ©(g(n)) if it is simultaneously O(g(n)) and 2(g(n)). Here “sufficiently
large” means that g(n) needs to be defined and positive.
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Code Examples

The code examples in this book are given in standard C. For the readers used
to some other imperative programming language, most constructs are self-
explanatory.

In the code examples, = denotes the assignment and == the equality test.
Outside the code examples, we will continue to use = in the normal way.

The Boolean operators for “not,” “and,” “or” are ! , &&, | | , respectively,
and %denotes the modulo operator.

Pointers are dereferenced with * , so if pt is a pointer to a memory location
(usually a variable), then * pt is that memory location. Pointers have a type to
determine how the content of that memory location should be interpreted. To
declare a pointer, one declares the type of the memory location it points to, so
“i nt *pt; ” declares pt to be a pointer to an i nt . Pointers are themselves
variables; they can be assigned, and it is also possible to add integers to a
pointer (pointer arithmetic). If pt points to a memory object of a certain type,
then pt +1 points to the next memory location for an object of that type; this is
equivalent to treating the memory as a big array of objects of that type. NULL
is a pointer that does not point to any valid memory object, so it can be used as
a special mark in comparisons.

Structures are user-defined data types that have several components. The
components themselves have a type and a name, and they can be of any type,
including other structures. The structure cannot have itself as a type of a
component, because that would generate an unbounded recursion. But it can
have a pointer to an object of its own type as component; indeed, such structures
are the main tool of data structure theory. A variable whose type is a structure
can be assigned and used like any other variable. If Z is a variable of type C,
and we define this type by

typedef struct { float x; float y; } C

then the components of z are z. X and z. y, which are two variables of type
fl oat.If zpt is declared as pointer to an object of type C (by C *zpt ; ),
then the components of the object that zpt points to are (*zpt). X and
(*zpt).y. Because this is a frequently used combination, dereferencing a
pointer and selecting a component, there is an alternative notation zpt - >X
and zpt - >y. This is equivalent, but preferable, because it avoids the operator
priority problem: dereferencing has lower priority than component selection,
so (*zpt) . X is not the same as * zpt . X.

‘We avoid writing the functions recursively, although in some cases this might
simplify the code. But the overhead of a recursive function call is significant
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and thus conflicts with the general aim of highest efficiency in data structures.
We do not practice any similar restrictions for nonrecursive functions; a good
compiler will expand them as inline functions, avoiding the function call, or
they could be written as macro functions.

In the text we will also frequently use the name of a pointer for the object
to which it points.



1
Elementary Structures

Elementary data structures usually treated in the “Programming 2" class are
the stack and the queue. They have a common generalization, the double-
ended queue, which is also occasionally mentioned, although it has far fewer
applications. Stack and queue are very fundamenta structures, so they will
be discussed in detail and used to illustrate several points in data structure
implementation.

1.1 Stack

Thestack isthesimplest of all structures, with an obviousinterpretation: putting
objects on the stack and taking them off again, with access possible only to the
top item. For this reason they are sometimes also described as LIFO storage:
last in, first out. Stacks occur in programming wherever we have nested bl ocks,
local variables, recursive definitions, or backtracking. Typical programming
exercises that involve a stack are the evaluation of arithmetic expressions with
parentheses and operator priorities, or search in alabyrinth with backtracking.
The stack should support at least the following operations:

{ push( obj ):Putobj onthestack, making it the top item.
{ pop() : Return the top object from the stack and remove it from the stack.
{ stack_enpt y() : Test whether the stack is empty.

Also, the realization of the stack has, of course, to give the right values,
so we need to specify the correct behavior of a stack. One method would be
an algebraic specification of what correct sequences of operations and return
values are. This has been done for simple structures like the stack, but even
then the specification isnot very helpful in understanding the structure. Instead,
we can describe a canonical implementation on an idealized machine, which
gives the correct answer for all correct sequences of operations (no pop on an

1



2 1 Elementary Structures

empty stack, no memory problems caused by bounded arrays). Assuming that
the elements we want to store on the stack are of typei t emt , this could look
asfollows:

int i=0;

itemt stack[oq];

int stack_enpty(void)

{ return( i == 0);

}

void push( itemt x)

{ stack[i++] = x ;

}

itemt pop(void)

{ return( stack[ --i] );
}

This describes the correct working of the stack, but we have the problem
of assuming both an infinite array and that any sequence of operations will be
correct. A more realistic version might be the following:

int i=0;
itemt stack[ MAXSI ZE];

int stack_enpty(void)
{ return( i ==0);
}

int push( itemt x)
{ if (i < MAXSIZE )
{ stack[i++] = x ; return( 0);
}
el se
return( -1);

}

itemt pop(void)
{ return( stack[ --i] );

}
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This now limits the correct behavior of the stack by limiting the maximum
number of items on the stack at one time, so it is not really the correct stack
we want, but at least it does specify an error message in the return value if
the stack overflow is reached by one push too many. This is a fundamental
defect of array-based redlizations of data structures. they are of fixed size,
the size needs to be decided in advance, and the structure needs the full size
no matter how many items are really in the structure. There is a systematic
way to overcome these problems for array-based structures, which we will see
in Section 1.5, but usually a solution with dynamically allocated memory is
preferable.

We specified an error value only for the stack overflow condition, but not
for the stack underflow, because the stack overflow is an error generated by
the structure, which would not be present in an ideal implementation, whereas
a stack underflow is an error in the use of the structure and so a result in the
program that uses the stack as a black box. Also, this allows us to keep the
return value of pop as the top object from the stack; if we wanted to catch
stack underflow errors in the stack implementation, we would need to return
the object and the error status. A final consideration in our first stack version
is that we might need multiple stacks in the same program, so we want to
create the stacks dynamically. For this we need additional operations to create
and remove a stack, and each stack operation needs to specify which stack it
operates on. One possible implementation could be the following:

typedef struct {itemt *base; itemt *top;
int size;} stack_t;

stack_t *create_stack(int size)
{ stack_t *st;
st = (stack_t *) malloc( sizeof(stack_t) );
st->base = (itemt *) malloc( size *
sizeof (itemt) );
st->size = size;
st->top = st->base;
return( st );

int stack_enmpty(stack t *st)
{ return( st->base == st->top );
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int push( itemt x, stack_ t *st)

{ if ( st->top < st->base + st->size)
{ *(st->top) = x; st->top += 1; return( 0 );
}
el se

return( -1);

}

itemt pop(stack_t *st)
{ st->top -= 1;
return( *(st->top) );

}

itemt top_elenment(stack t *st)
{ return( *(st->top -1) );
}

voi d renpve_stack(stack t *st)
{ free( st->base );
free( st );

}

Again, we include some security checks and leave out others. Our policy
in genera is to include those security checks that test for errors introduced
by the limitations of this implementation as opposed to an ideal stack, but
to assume both that the use of the stack is correct and that the underlying
operating system never runs out of memory. We included another operation
that isfrequently useful, which just returns the value of the top element without
taking it from the stack.

Frequently, the preferable implementation of the stack is a dynamically
alocated structure using a linked list, where we insert and delete in front of
the list. This has the advantage that the structure is not of fixed size; therefore,
we need not be prepared for stack overflow errors if we can assume that the
memory of the computer is unbounded, and so we can aways get a new node.
It is as simple as the array-based structure if we already have the get _node
and r et ur n_node functions, whose correct implementation we discuss in
Section 1.4.

typedef struct st_t { itemt item
struct st_t *next; } stack_t;
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stack_t *create_stack(void)
{ stack_t *st;
st = get_node();
st->next = NULL;
return( st );

}

int stack_enpty(stack_t *st)
{ return( st->next == NULL );
}

void push( itemt x, stack_t *st)
{ stack_t *tnp;
tnmp = get_node();
tnp->item = x;
t np- >next = st->next;
st->next = tnp;

}

itemt pop(stack_t *st)
stack_t *tnp; itemt tnp_item
tnp = st->next;
st->next = tnp->next;
tnp_item = tnp->item
return_node( tmp );
return( tnp_item);

}

itemt top_element(stack_t *st)
{ return( st->next->item);

}

voi d renove_stack(stack_t *st)
{ stack_t *tnp;
do
{ tnp = st->next;
return_node(st);
st = tnp;
}
while ( tnmp !'= NULL );
}

Notice that we have a placeholder node in front of the linked list; even an
empty stack is represented by a list with one node, and the top of the stack is
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only the second node of thelist. Thisisnecessary asthe stack identifier returned
by cr eat e_st ack and used in all stack operations should not be changed by
the stack operations. So we cannot just use a pointer to the start of the linked
list as a stack identifier. Because the components of anode will beinvalid after
it is returned, we need temporary copies of the necessary valuesin pop and
r enove_st ack. Theoperationr enove_st ack shouldreturnall theremain-
ing nodes; thereis no reason to assume that only empty stackswill be removed,
and we will suffer amemory leak if wefail to return the remaining nodes.

placeholder top of stack

next next next next

item item item item

STACK REALIZED AS LIST, WiTH THREE ITEMS

The implementation as a dynamically allocated structure always has the
advantage of greater elegance; it avoids stack overflow conditions and needs
just the memory proportional to the actually used items, not abig array of asize
estimated by the programmer as upper bound to the maximum use expected
to occur. One disadvantage is a possible decrease in speed: dereferencing a
pointer does not take longer than incrementing an index, but the memory
location accessed by the pointer might be anywhere in memory, whereas the
next component of the array will be near the previous component. Thus, array-
based structures usually work very well with the cache, whereas dynamically
all ocated structures might generate many cachemisses. Soif wearequitecertain
about the maximum possible size of the stack, for example, because itssizeis
only logarithmic in the size of the input, we will prefer an array-based version.

If one wants to combine these advantages, one could use a linked list of
blocks, each block containing an array, but when the array becomes full, we
just link it to a new node with anew array. Such an implementation could ook
asfollows:

typedef struct st_t { itemt *base;
itemt *top;
i nt si ze;

struct st_t *previous;} stack_t;

stack_t *create_stack(int size)
{ stack t *st;
st = (stack_t *) nalloc( sizeof(stack_t) );
st->base = (itemt *) malloc( size *
sizeof (itemt) );
Sst->size = size;
st->top = st->base;



1.1 Sack

st ->previ ous = NULL;
return( st );

}

int stack_enpty(stack_t *st)

{ return( st->base == st->top &&

st->previ ous == NULL);

}

void push( itemt x, stack_t *st)

{ if ( st->top < st->base + st->size )
{ *(st->top) = x; st->top += 1;
}
el se

{ stack_t *new,

new = (stack_t *) malloc( sizeof(stack_t) );

new >base = st->base;

new >t op = st->top;

new >si ze = st->size;

new- >previ ous = st->previous;

st->previ ous = new,

st->base = (itemt *) malloc( st->size *
sizeof (itemt) );

st->top = st->base+l;

*(st->base) = x;

}

itemt pop(stack_t *st)
{ if( st->top == st->base )
{ stack_t *old;
ol d = st->previous;
st->previ ous = ol d->previous;
free( st->base );
st ->base = ol d- >base;
st->top = ol d->top;
st->size = ol d->si ze;
free( old);
}
st->top -= 1;
return( *(st->top) );

}

itemt top_element(stack_t *st)
{ if( st->top == st->base )
return( *(st->previous->top -1) );
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el se
return( *(st->top -1) );
}

voi d renpove_stack(stack_t *st)
{ stack_t *tnp;
do
{ tnp = st->previous;
free( st->base );
free( st );
st = tnp;
}
while( st !'= NULL );

}

In our classification, push and pop are update operations and
stack_enpty andt op_el ement are query operations. In the array-based
implementation, it is obvious that we can do al the operations in constant
time as they involve only a constant number of elementary operations. For the
linked-list implementation, the operations involve the external get _.node and
r et ur n_node functions, which occur in both push and pop once, so the
implementation works only in constant time if we can assume these functions
to be constant-time operations. We will discuss the implementation of this
dynamic node allocation in Section 1.4, but we can assume here (andin all later
structures) that this worksin constant time. For the block list we allocate large
parts of memory for which we used here the standard memory management
operations mal | oc and f r ee instead of building an intermediate layer, as
described in Section 1.4. It istraditional to assume that memory allocation and
deallocation are constant-time operations, but especialy with the f r ee there
are nontrivial problems with a constant-time implementation, so one should
avoid using it frequently. This could happen in the block list variant if there
are many push/pop pairs that just go over a block boundary. So the small
advantage of the block list is probably not worth the additional problems.

The cr eat e_st ack operation involves only one such memory aloca-
tion, and so that should be constant time in each implementation; but the
renove_st ack operation is clearly not constant time, because it has to de-
stroy a potentially large structure. If the stack still contains n elements, the
r enmove_st ack operation will take time O (n).

1.2 Queue

The queue is a structure almost as simple as the stack; it also stores items,
but it differs from the stack in that it returns those items first that have been
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entered first, so it is FIFO storage (first in, first out). Queues are useful if there
are tasks that have to be processed cyclically. Also, they are a central structure
in breadth-first search; breadth-first search (BFS) and depth-first search (DFS)
really differ only in that BFS uses a queue and DFS uses a stack to store the
node that will be explored next.

The queue should support at least the following operations:

{ enqueue( obj ):Insertobj attheend of the queue, making it the last
item.

{ dequeue() : Return thefirst object from the queue and remove it from the
queue.

{ queue_enpt y() : Test whether the queue is empty.

The difference between queue and stack that makes the queue dightly
more difficult is that the changes occur at both ends: at one end, there are
inserts; at the other, deletes. If we choose an array-based implementation for
the queue, then the part of the array that is in use moves through the array. If
we had an infinite array, this would present no problem. We could write it as
follows:

int lower=0; int upper=0;
itemt queue[o];

i nt queue_enpty(void)
{ return( | ower == upper );

}

voi d enqueue( itemt x)
{ queuel upper ++] = x ;

}

itemt dequeue(void)
{ return( queue[ |ower++] );

}

A real implementation with a finite array has to wrap this around, using
index calculation modulo the length of the array. It could look as follows:

typedef struct {itemt *base;
i nt front;
i nt rear;
i nt si ze;} queue_t;
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queue_t *create_queue(int size)
{ queue_t *qu;
gqu = (queue_t *) malloc( sizeof(queue_t) );
qu->base = (itemt *) malloc( size *
sizeof (itemt) );
qu- >si ze = size
qu->front = qu->rear = O;
return( qu );

}

i nt queue_enpty(queue_t *qu)

{ return( qu->front == qu->rear );
}

int enqueue( itemt X, queue_t *qu)
{ if ( qu->front !'= ((qu->rear +2)% qu->size) )
{ qu- >base[ qu->rear] = X;
qu->rear = ((qu->rear+1)%gu- >si ze);
return( 0 );
}
el se
return( -1)

}

itemt dequeue(queue_t *qu)

{ int tnp;
tnp = qu->front;
qu->front = ((qu->front +1)%u->si ze);
return( qu->base[tnp] );

}

itemt front_el enent (queue_t *qu)
{ return( qu->base[qu->front] );

}

voi d rempove_queue(queue_t *qu)
{ free( qu->base );

free( qu );
}
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Again this has the fundamental disadvantage of any array-based structure —
that it is of fixed size. So it possibly generates overflow errors and does not
implement the structure correctly asit limits it this way. In addition, it always
reserves this expected maximum size for the array, even if it never needsit. The
preferred aternativeisadynamically allocated structure, with alinked list. The
obvious solution is the following:

typedef struct qu_n_t {itemt item
struct qu_n_t *next; } qu_node_t;
typedef struct {qu_node_t *renove;
qu_node_t *insert; } queue_t;

gueue_t *create_queue()
{ queue_t *qu;
qu = (queue_t *) malloc( sizeof (queue_t) );
qu->renmove = qu->insert = NULL;
return( qu );

}

i nt queue_enpty(queue_t *qu)
{ return( qu->insert ==NULL );
}

voi d enqueue( itemt x, queue_t *qu)
{ qu_node_t *tnp;
tnp = get_node();
tnp->item = x;
tnp->next = NULL; /* end marker */
if ( qu->insert !'= NULL ) /* queue nonenpty */
{ qu- >i nsert->next = tnp;
qu->i nsert = tnp;
}
else /* insert in enpty queue */
{ qu- >renove = qu->insert = tnp;
}
}

itemt dequeue(queue_t *qu)
{ qu_node_t *tnp; itemt tnp_item
tnp = qu->renove; tnp_item= tnp->item
gu- >renove = tnp->next;
if( qu->renpve == NULL ) /* reached end */
gu->insert = NULL; /* make queue enpty */
return_node(tnp);
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return( tnp_item);
}

itemt front_el enent (queue_t *qu)
{ return( qu->renove->item);

}

voi d renove_queue(queue_t *qu)
{ qu_node_t *tnp;
whi | e( qu->renove != NULL)
{ tnmp = qu->renove,;
gu- >renove = tnp->next;
return_node(tnp);

}
free( qu );

}

Again we assume, as in all dynamically allocated structures, that the op-
erations get _node and r et ur n_node are available, which always work
correctly and in constant time. Because we want to remove items from the front
of the queue, the pointersin thelinked list are oriented from the front to the end,
where we insert items. There are two aesthetical disadvantages of this obvious
implementation: we need aspecial entry point structure, whichisdifferent from
the list nodes, and we always need to treat the operations involving an empty
queue differently. For insertions into an empty queue and removal of the last
element of the queue, we need to change both insertion and removal pointers;
for all other operations we change only one of them.

next next next next
item item item item

QUEUE REALIZED AS LisT, wiTH FOUR ITEMS

Thefirst disadvantage can be avoided by joining the list together to make it
acyclic list, with the last pointer from the end of the queue pointing again to
the beginning. We can then do without aremoval pointer, because the insertion
point’s next component points to the removal point. By this, the entry point to
the queue needs only one pointer, so it is of the same type as the queue nodes.

The second disadvantage can be overcome by inserting a placeholder node
in that cyclic list, between the insertion end and the removal end of the cyclic
list. The entry point still points to the insertion end or, in the case of an empty
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list, to that placeholder node. Then, at least for the insert, the empty list isno
longer aspecia case. So acyclic list version is the following:

typedef struct qu_t { itemt item
struct qu_t *next; } queue_t;

queue_t *create_queue()

{ queue_t *entrypoi nt, *placehol der;
entrypoint = (queue_t *) malloc( sizeof(queue_t) );
pl acehol der = (queue_t *) mall oc( sizeof (queue_t) );
entrypoi nt->next = placehol der;
pl acehol der - >next = pl acehol der;
return( entrypoint );

}

int queue_enpty(queue_t *qu)

{ return( qu->next == qu->next->next );
}

voi d enqueue( itemt x, queue_t *qu)
{ queue_t *tnp, *new,
new = get _node(); new >item = x;
tnmp = qu->next; qu->next = new,
new >next = tnp->next; tnp->next = new,

}

itemt dequeue(queue_t *qu)
{ queue_t *tnp;
itemt tnp_item
tmp = qu->next - >next - >next ;
qu- >next - >next - >next = tnp- >next;
if( tnp == qu->next )
qu- >next = tnp->next;
tnp_item = tnp->item
return_node( tnp );
return( tnp_item);

}

itemt front_el enent (queue_t *qu)
{ return( qu->next->next->next->item);

}

voi d renove_queue(queue_t *qu)
{ queue_t *tnp;
tnp = qu->next->next;
while( tnmp !'= qu->next )
{ qu->next->next = tnp->next;
return_node( tnp );
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tnp = qu->next - >next;

}
return_node( qu->next );
return_node( qu );

entrypoint

next
item
front of queue placeholder
next next next next
item item item item

QUEUE REALIZED As CycLic LisT, WiTH THREE ITEMS

Or one could implement the queue as adoubly linked list, which requiresno
casedistinctions at all but needs two pointers per node. Minimizing the number
of pointersis an aesthetic criterion more justified by the amount of work that
hasto be donein each step to keep the structure consistent than by the amount of
memory necessary for thestructure. Hereisadoubly linked listimplementation:

typedef struct qu_t { itemt item
struct qu_t *next ;
struct qu_t *previous; } queue_t;

gueue_t *create_queue()
{ gqueue_t *entrypoint;
entrypoint = (queue_t *) malloc( sizeof(queue_t) );
entrypoi nt->next = entrypoint;
entrypoi nt->previ ous = entrypoint;
return( entrypoint );

}

i nt queue_enpty(queue_t *qu)
{ return( qu->next == qu );
}

voi d enqueue( itemt x, queue_t *qu)
{ gueue_t *new,
new = get_node(); new>item = x;
new >next = qu->next; qu->next = new,
new >next - >pr evi ous = new, new >previ ous = qu;

}

itemt dequeue(queue_t *qu)
{ gqueue_t *tnp; itemt tnp_item
tnp = qu->previous; tnp_item= tnp->item
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t np- >pr evi ous- >next = qu;

qu- >previ ous = tnp->previ ous;
return_node( tnp );

return( tnp_item);

}

itemt front_el ement (queue_t *qu)
{ return( qu->previous->item);

}

voi d renove_queue(queue_t *qu)
{ queue_t *tnp;
qu- >pr evi ous- >next = NULL;
do
{ tmp = qu->next;
return_node( qu );

qu = tnp;
}
while ( qu !'= NULL );
}
entry point
next
previous
item
insertion deletion
end end
next next next next
previous previous previous previous
item item item item

QUEUE REALIZED AS DOUBLY LINKED LisT, wiTH FOUR ITEMS

Which of the list-based implementations one prefersis really a matter of taste;
they areall slightly more complicated than the stack, although thetwo structures
look similar.

Like the stack, the queue is a dynamic data structure that has the update
operationsenqueue and dequeue and the query operationsqueue _enpt y
and front _el enent, al of which are constant-time operations, and the
operations cr eat e_queue and del et e_queue, which are subject to the
same restrictions as the similar operations for the stack: creating an array-
based queue requires getting abig block of memory from the underlying system
memory management, whereas creating alist-based queue should require only
some get _node operations; and deleting an array-based queue just involves
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returning that memory block to the system, whereas del eting alist-based queue
requiresreturning every individual node still containedinit, soit will take O (n)
time to delete a list-based queue that still containsn items.

1.3 Double-Ended Queue

The double-ended queue is the obvious common generalization of stack
and queue: a queue in which one can insert and delete at either end. Its
implementation can be done as an array, or as a doubly linked list, just like a
queue; because it does not present any new problems, no code will be given
here. The double-ended gueue does not have many applications, but at least
a “one-and-a-half ended queue’ sometimes is useful, as in the minqueue dis-
cussed in Section 5.11.

1.4 Dynamical Allocation of Nodes

Inthe previous sectionswe used the operationsget _node andr et ur n_node
to dynamically create and delete nodes, that is, constant-sized memory objects,
as opposed to the generic operationsmal | oc and f r ee provided by the stan-
dard operating-system interface, which we used only for memory objects of
arbitrary, usually large, size. The reason for this distinction isthat although the
operating-system memory alocation is ultimately the only way to get memory,
it is a complicated process, and it is not even immediately obvious that it is
a constant-time operation. In any efficient implementation of a dynamically
alocated structure, where we permanently get and return nodes, we cannot
afford to access this operating-system-level memory management in each op-
eration. Instead, we introduce an intermediate layer, which only occasionally
has to access the operating-system memory management to get alarge memory
block, which it then gives out and receives back in small, constant-sized pieces,
the nodes.

The efficiency of theseget _node and r et ur n_node operationsisrealy
crucia for any dynamically alocated structure, but luckily we do not have
to create a full memory management system; there are two essential simpli-
fications. We deal only with objects of one size, as opposed to the mal | oc
interface, which should provide memory blocks of any size, and we do not re-
turn any memory from the intermediate level to the system before the program
ends. Thisisreasonable: the amount of memory taken by theintermediate layer
from the system is the maximum amount taken by the data structure up to that
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moment, so we do not overestimate the total memory requirement; we only fail
tofreeit earlier for other coexisting programs or structures.

Thisalows usto use the freelist asastructure for our dynamical allocation
of nodes. The free list contains al the nodes not currently in use; whenever
areturn_node is executed, the node is just added to the free list. For the
get _node, the situation is dightly more complicated; if the free list is not
empty, we may just take a node from there. If it is empty and the current
memory block is not used up, we take a new node from that memory block.
Otherwise, we have to get a new memory block with mal | oc and create the
node from there.

An implementation could look as follows:

typedef struct nd_t { struct nd_t *next;
/*and ot her conponents*/ } node_t;
#defi ne BLOCKSI ZE 256
node_t *currentbl ock = NULL;
i nt size left;
node t *free_list = NULL;

node_t *get node()
{ node_t *tnp;
if( free_list !'= NULL )
{ tmp = free_list;
free list = free list -> next;

}
el se
{ if( currentblock == NULL || size_left == 0)
{ currentblock =
(node_t *) mall oc( BLOCKSI ZE *
si zeof (node_t) );
size | eft = BLOCKSI ZE;
}
tnp = currentbl ock++;
size left -= 1;
}
return( tnp );

}

voi d return_node(node_t *node)
{ node->next = free_list;
free_list = node;

}
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Dynamical memory alocation is traditionally a source of many program-
ming errorsand is hard to debug. A simple additional precaution to avoid some
common errors is to add to the node another component, i nt val i d, and
fill it with different values, depending on whether it has just been received
back by r et ur n_node or is given out by get _node. Then we can check
that a pointer does indeed point to a valid node and that anything received by
r et ur n_node hasindeed been avalid node up to that moment.

1.5 Shadow Copies of Array-Based Structures

There is a systematic way to avoid the maximum-size problem of array-based
structures at the expense of thesimplicity of thesestructures. Wesimultaneously
maintain two copies of the structure, the currently active copy and alarger-sized
structure which is under construction. We have to schedule the construction of
the larger structure in such a way that it is finished and ready for use before
the active copy reaches its maximum size. For this, we copy in each operation
on the old structure a fixed number of items from the old to the new structure.
When the content of the old structure is completely copied into the new, larger
structure, the old structure is removed and the new structure taken as the active
structure and, when necessary, construction of an even larger copy is begun.
This sounds very simple and introduces only a constant overhead to convert
a fixed-size structure into an unlimited structure. There are, however, some
problems in the details: the structure that is being copied changes while the
copying isin progress, and these changes must be correctly done in the still
incomplete larger copy. To demonstrate the principle, here is the code for the
array-based stack:

typedef struct { itemt *base;
i nt si ze;
int max_size;
itemt *copy;
int copy_size; } stack_t;

stack_t *create_stack(int size)
{ stack_t *st;
st = (stack_t *) malloc( sizeof(stack_t) );
st->base = (itemt *) nalloc( size *
sizeof (itemt) );
st->max_si ze = size;
st->size = 0; st->copy = NULL; st->copy_size = 0;
return( st );
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int stack_enpty(stack_t

{ return( st->size

}

void push( itemt x,

sta

*st)
0);

ck_t *st)

{ *(st->base + st->size) = x;

st->size += 1;
if ( st->copy !=

NUL

L1

st->size >= 0. 75*st - >nmax_si ze )

{ [/* have to continue or start copying */
int additional _copies = 4;

= NULL )

if( st->copy =
/* start copy
{ st->copy =

ng:

al | ocat e space */

(itemt *) malloc( 2 * st->max_size *
sizeof (itemt) )

}

/* continue copying: at nost 4 itens
per push operation */
whil e( additional _copies > 0 &&
st->copy_si ze < st->size )
{ *(st->copy + st->copy_size) =

*(st->base + st->copy_size);

st->copy_size += 1; additional _copies -= 1;

}

if( st->copy_size == st->size)
/* copy conplete */
{ free( st->base );

st->base = st-> copy;
st->max_size *= 2
st->copy = NULL
st->copy_si ze = 0;
}
}
}
itemt pop(stack_t *st)

itemt tnp_item
st->size -= 1;

tnp_item = *(st->base + st->size);

i f( st->copy_size
{ free( st->base

)

st->size) /* copy conplete */

st->base = st-> copy;
st->max_size *= 2;

st->copy = NUL
st ->copy_si ze

L;

= 0:
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return( tnp_item);
}

itemt top_elenent(stack_t *st)
{ return( *(st->base + st->size - 1) );

}

voi d renove_stack(stack_t *st)
{ free( st->base );
if( st->copy != NULL )
free( st->copy );
free( st );

}

For the stack, the situation is especially easy because we can just copy
from the base until we reach the current top; in between, nothing changes.
The threshold when to start copying (here, at 0.75*si ze), the size of the new
structure (here, twice the previous size), and the number of items copied in
each step (here, four items) must, of course, be chosen in such a way that
copying is complete before the old structure overflows. Note that we can reach
the situation when the copying is finished in two ways. by actual copying in
the push and by deleting uncopied itemsin the pop.

In general, the connection between copying threshold size, new maximum
size, and number of items copied is asfollows:

{ if the current structure has maximum size smax,

{ and we begin copying as soon as its actual size has reached a.sma (With
a>3),

{ the new structure has maximum size 2sy, and

{ each operation increases the actual size by at most 1,

thenthereareat least (1 — o)smax Steps left to complete the copying of at most
smax €lements from the smaller structure to the new structure. So we need to
copy [ﬁ} elementsin each operation to finish the copying before the smaller
structure overflows. We doubled the maximum size when creating the new
structure, but we could have chosen any size Bsmax, 8 > 1, aslong asaf > 1.
Otherwise, we would have to start copying again before the previous copying
process was finished.

In principle, thistechnique is quite general and not restricted to array-based
structures. We will use it again in Sections 3.6 and 7.1. We can always try to
overcomethe size limitation of afixed-size structure by copying its content to a
larger structure. But it is not always clear how to break this copying into many
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small steps that can be executed simultaneously with the normal operations on
the structure, as in our example. Instead, we have to copy the entire structure
in one step, so we cannot get a worst-case time bound, but only an amortized
bound.

A final example of thistechnique and its difficulties is the realization of an
extendible array. Normal arrays need to be declared of a fixed size, they are
allocated somewhere in memory, and the space that is reserved there cannot be
increased as it might conflict with space allocated for other variables. Access
to an array element is very fast; it is just one address computation. But some
systems also support a different type of array, which can be made larger; for
these, accessing an element is more complicated and it is really an operation
of a nontrivial data structure. This structure needs to support the following
operations:

{ creat e_array creates an array of agiven size,

{ set _val ue assignsthe array element at a given index avalue,

{ get _val ue returnsthe value of the array element at a given index,
{ ext end_ar r ay increases the length of the array.

To implement that structure, we use the same technique of building shadow
copies. There is, however, an additional problem here, because the structure
we want to model does not just grow by a single item in each operation; the
ext end_ar r ay operation can make it much larger a single operation. Still,
we can easily achieve an amortized constant time per operation.

When an array of size s is created, we allocate space for it, but more than
requested. We maintain that the size of the arrayswe actually allocate isaways
a power of 2, so we initially alocate an array of size 2/'%9s1 and store the
start position of that array, as well as the current and the maximum size, in a
structure that identifies the array. Any access to an array element first has to
look up that start position of the current array. Each time an ext end_ar r ay
operation is performed, we first check whether the current maximum size is
larger than the requested size; in that case we can just increase the current size.
Else, we have to allocate a new array whose size is the next number 2¢ larger
than the requested size, and copy every item from the old array to the new
array. Thus, accessing an array element is always donein O(1) time; it isjust
one in the direction of the pointer; but extending the array can take linear time
in the size of the array. But the amortized complexity is not that bad; if the
ultimate size of the array is 2I'°9%1, then we have at worst copied arrays of size
1,2,4,..., 219411 so we spent in total time O(1+ 2+ - - - 4 2M109k1-1) =
O (k) with those ext end_ar r ay operations that did copy the array, and O (1)
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with each ext end_ar r ay operation that did not copy the array. Thus, we
have the following complexity:

Theorem. An extendible array structure with shadow copies performs any
sequenceof n set _val ue, get _val ue, andext end_ar r ay operationson
an array whosefinal sizeisk intime O(n + k).

If we assume that each element of the array we request is also accessed
at least once, so that the final size is at most the number of element access
operations, this gives an amortized O (1) complexity per operation.

It would be natural to distribute the copying of the elements again over
the later access operations, but we have no control over the ext end_ar r ay
operations. It is possible that the next extension is requested before the copying
of the current array is complete, so our previous method does not work for this
structure. Another conceptual problem with extendible arrays is that pointers
to array elements are different from normal pointers because the position of the
array can change. Thus, in general, extendible arrays should be avoided even
if the language supports them. A different way to implement extendible arrays
was discussed in Challab (1991).



Search Trees

A search tree is a structure that stores objects, each object identified by a key
value, in a tree structure. The key values of the objects are from a linearly
ordered set (typically integers); two keys can be compared in constant time and
these comparisons are used to guide the access to a specific object by its key.
The tree has a root, where any search starts, and then contains in each node
some key value for comparison with the query key, so one can go to different
next nodes depending on whether the query key is smaller or larger than the
key in the node until one finds a node that contains the right key.

This type of tree structure is fundamental to most data structures; it allows
many variations and is also a building block for most more complex data
structures. For this reason we will discussit in great detail.

Search trees are one method to implement the abstract structure called
dictionary. A dictionary isastructure that stores objects, identified by keys, and
supportsthe operationsfind, insert, and delete. A search tree usually supports at
|east these operations of adictionary, but there are a so other waysto implement
a dictionary, and there are applications of search trees that are not primarily
dictionaries.

2.1 Two Models of Search Trees

In the outline just given, we supressed an important point that at first seems
trivial, but indeed it leads to two different models of search trees, either of
which can be combined with much of the following material, but one of which
isstrongly preferable.

If we compare in each node the query key with the key contained in the
node and follow the left branch if the query key is smaller and the right branch

23
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if the query key islarger, then what happens if they are equal? The two models
of search trees are asfollows:

1. Take left branch if query key is smaller than node key; otherwise take the
right branch, until you reach aleaf of the tree. The keysin the interior node
of the tree are only for comparison; all the objects are in the leaves.

2. Takeleft branchif query key is smaller than node key; take the right branch
if the query key islarger than the node key; and take the object contained
in the node if they are equal.

This minor point has a number of consequences:

{ Inmodé 1, the underlying tree is abinary tree, whereasin model 2, each
tree node isreally aternary node with a special middle neighbor.

{ Inmodé 1, each interior node has aleft and aright subtree (each possibly a
leaf node of the tree), whereas in model 2, we have to alow incomplete
nodes, where left or right subtree might be missing, and only the
comparison object and key are guaranteed to exist.

So the structure of a search tree of model 1 is more regular than that of atree
of model 2; thisis, at least for the implementation, a clear advantage.

{ Inmodd 1, traversing an interior node requires only one comparison,
whereas in model 2, we need two comparisons to check the three
possibilities.

Indeed, treesof the sameheight inmodels 1 and 2 contain at most approximately

the same number of objects, but one needstwice as many comparisonsin model

2 to reach the deepest objects of the tree. Of course, in model 2, there are al'so

some objects that are reached much earlier; the object in the root is found

with only two comparisons, but almost all objects are on or near the deepest
level.

Theorem. A tree of height # and model 1 contains at most 2" objects.
A tree of height # and model 2 contains at most 2+1 — 1 objects.

Thisis easily seen because the tree of height 4 has as |eft and right subtrees a
tree of height at most 2 — 1 each, and in model 2 one additional object between
them.

{ Inmodéd 1, keysin interior nodes serve only for comparisons and may
reappear in the leaves for the identification of the objects. In model 2, each
key appears only once, together with its object.
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It is even possible in model 1 that there are keys used for comparison that
do not belong to any object, for example, if the object has been deleted. By
conceptually separating these functions of comparison and identification, this
isnot surprising, and in later structures we might even need to define artificial
tests not corresponding to any object, just to get a good division of the search
space. All keysused for comparison are necessarily distinct because in amodel
1 tree, each interior node has nonempty left and right subtrees. So each key
occurs at most twice, once as comparison key and once as identification key in
the leaf.

Model 2 became the preferred textbook version because in most textbooks
the distinction between object and its key is not made: the key is the object.
Then it becomes unnatural to duplicate the key in the tree structure. But in
all real applications, the distinction between key and object is quite important.
One almost never wishes to keep track of just a set of numbers; the numbers
are normally associated with some further information, which is often much
larger than the key itself.

In some literature, where this distinction is made, trees of model 1 are called
leaf trees and trees of model 2 are called node trees (Nievergelt and Wong
1973). Our preferred model of search treeismodel 1, and we will useit for all
structures but the splay tree (which necessarily follows model 2).

SEARCH TREES OF MODEL 1 AND MODEL 2

A tree of model 1 consists of nodes of the following structure:

typedef struct tr_n_t {key_t key;
struct tr_n_t *|left;
struct tr_n_t *right;
/* possibly additional information */
} tree_node_t;

We will usually need some additional balancing information, which will be
discussed in Chapter 3. So thisisjust an outline.
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From nodes of thistype, wewill construct atree essentially by the following
recursive definition: each tree is either empty, or aleaf, or it contains a special
root node that points to two nonempty trees, with all keys in the left subtree
being smaller thanthekey intheroot and all keysintheright subtree being larger
than or equal to the key in the root. This still needs some details; especialy
we have to specify how to recognize leaves. We will follow here the following
convention:

{ Anode*nisaledf if n->ri ght = NULL. Thenn->| ef t pointsto the
object stored in that leaf and n- >key contains the object’s key.

We aso need some conventions for the root, especially to deal with empty
trees. Each tree has a special node * r oot .

{ Ifroot->| eft = NULL, then thetreeisempty.

{ Ifroot->left #NULL andr oot ->ri ght = NULL, thenr oot isa
leaf and the tree contains only one object.

{ Ifroot->left % NULL andr oot - >ri ght # NULL, then
root - >ri ght andr oot - >l ef t point to the roots of the right and left
subtrees. For each node * | ef t _node in the left subtree, we have
| ef t _node- >key < r oot - >key, and for each node*ri ght _node in
theright subtree, we haver i ght _node- >key > r oot - >key.

Any structure with these properties is a correct search tree for the objects and
key valuesin the leaves.
With these conventions we can now create an empty tree.

tree_node_t *create tree(void)
{ tree_node_t *tnp_node;
t np_node = get _node();
t np_node->l eft = NULL;
return( tnp_node );

2.2 General Propertiesand Transformations

In a correct search tree, we can associate each tree node with an interval, the
interval of possible key values that can be reached through this node. The
interval of r oot is]—oo, oo[, and if *n is an interior node associated with
interval [a, b[, then n- >key € [a, b[,andn- >l ef t andn->ri ght haveas
associated intervals [a, n- >key[ and [n- >key, b[. With the exception of the
intervals starting in —oo, al these intervals are half-open, containing the left
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endpoint but not the right endpoint. Thisimplicit structure on the tree nodesiis
very helpful in understanding the operations on the trees.

INTERVALS ASSOCIATED WITH NODES IN A SEARCH TREE

The same set of (key, object) pairs can be organized in many distinct correct
search trees: theleaves are alwaysthe same, containing the (key, object) pairsin
increasing order of the keys, but thetree connecting theleavescan bevery differ-
ent, and we will see that some trees are better than others. There are two opera-
tions—theleft and right rotations—that transform acorrect searchtreein adiffer-
ent correct search treefor the same set. They are used as building blocks of more
complex treetransformations because they are easy toimplement and universal.

Suppose *n is an interior node of the tree and n- >ri ght is also an
interior node. Then the three nodes n- >l eft, n->ri ght->left, and
n- >ri ght->ri ght have consecutive associated intervals whose union is
the associated interval of *n. Now instead of grouping the second and third
intervals(of n- >ri ght - >l ef t andn- >ri ght - >ri ght) together in node
n- >ri ght, and then this union together with the interval of n- >l ef t in
*n, we could group the first two intervals together in a new node, and that
then together with the last interval in * n. Thisis what the left rotation does:
it rearranges three nodes below a given node * n, the rotation center. Thisis
alocal change done in constant time; it does not affect either the content of
those three nodes or anything below them or above the rotation center * n. The
following code does aleft rotation around * n:

void left_rotation(tree_node_t *n)
{ tree_node_t *tnp_node;

key t t np_key;
tmp_node = n->|eft;
tnp_key = n->key;
n->left = n->right;



28 2 Search Trees

n- >key = n->right->key;
n->right = n->left->right;
n->left->right = n->left->left;
n->left->left t np_node;

n->| ef t - >key = tmp_key;

}

Note that we move the content of the nodes around, but the node * n till
needs to be the root of the subtree because there are pointersfrom higher levels
in the tree that point to * n. If the nodes contain additional information, then
this must, of course, also be updated or copied.

Theright rotation is exactly the inverse operation of the I€eft rotation.

void right _rotation(tree_node_t *n)
{ tree_node_t *tnp_node;

key t t np_key;

t np_node = n->right;
tnp_key = n->key;
n->right = n->left;

n- >key = n->| ef t - >key;

n->| eft n->right->left;
n->right->left = n->right->right;
n->right->right = tnp_node;

n->ri ght - >key = tnp_key;
}
key C key b
left ‘right left ‘right

right rotation

key b key C

D ————

left |right I leﬁ I’Otation I left |[right

LEFT AND RIGHT ROTATIONS

Theorem. The left and right rotations around the same node are inverse oper-
ations. Left and right rotations are operations that transform a correct search
tree in adifferent correct search tree for the same set of (key, object) pairs.
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The great usefulness of the rotations as building blocks for tree operations
lies in the fact that they are universal: any correct search tree for some set of
(key, object) pairs can be transformed into any other correct search tree by a
sequence of rotations. But one needs to be careful with the exact statement of
this property becauseit isobviously false: in our model of search trees, we can
change the key values in the interior nodes without destroying the search tree
property as long as the order relation of the comparison keys with the object
keys stays the same. But the rotations, of course, do not change the key values.
The important structure is the combinatorial type of the tree; any system of
comparison keysis transformed correctly together with the tree.

Theorem. Any two combinatorial types of search trees on the same system
of (key, object) pairs can be transformed into each other by a sequence of
rotations.

But thisis easy to see: if we apply right rotations to the search tree as long as
any right rotation can be applied, we get a degenerate tree, a path going to the
right, to which the leaves are attached in increasing order. So any search tree
can be brought into this canonical shape using only right rotations. Because
right and | eft rotations are inverse, this canonical shape can betransformed into
any shape by a sequence of left rotations.

The space of combinatorial types of search trees, that is, of binary treeswith
n leaves, isisomorphic to a number of other structures (a Catalan family). The
rotations define adistance on this structure, which has been studied in anumber
of papers (Culik and Wood 1982; Makinen 1988; Sleator, Tarjan, and Thurston
1988; Luccio and Pagli 1989); the diameter of thisspaceisknowntobe2n — 6
forn > 11 (Sleator et al. 1988). The difficult part here is the exact value of the
lower bound; it is simple to prove just ®(n) bounds (see, e.g., Felsner 2004,
Section 7.5).

2.3 Height of a Search Tree

The centra property which distinguishes the different combinatorial types of
search trees for the same underlying set and which makes some search trees
good and others bad is the height. The height of a search tree is the maximum
length of a path from the root to a leaf — the maximum taken over all leaves.
Usually not all leaves are at the same distance from the root; the distance of
a specific tree node from the root is called the depth of that node. As already
observed in Section 2.1, the maximum number of leaves of a search tree of
height /2 is 2". And at the other end, the minimum number of leavesish + 1
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because a tree of height 4 must have at least one interior node at each depth
0,...,h —1, and atree with & interior nodes has h + 1 leaves. Together, this
gives the bounds.

Theorem. A search tree for n objects has height at least [logn] and at most
n—1

It iseasy to see that both bounds can be reached.

The height is the worst-case distance we have to traverse to reach a specific
object in the search tree. Another related measure of quality of a search tree
is the average depth of the leaves, that is, the average over al objects of the
distance we have to go to reach that object. Here the bounds are:

Theorem. A search tree for n objects has average depth at least logn and at
most =042 ~ 1,

To prove these bounds, it is easier to take the sum of the depths instead of the
average depth. Because the sum of depths can be divided in the depth of the
a leaves to the left of the root and the depth of the b leaves to the right of
the root, these sums satisfy the following recursions:

at+b=n

and

depthsum™®(n) = n + max depthsum™(a) + depthsum™(b);

atb=n

with these recursions, one obtains
depthsum™"(1) > n logn
and
depthsum™(n) = %(n - Dn+2

by induction. In the first case, one uses that the function x logx is convex, so
aloga +blogb > (a + b)log(a + b)/2.
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2.4 Basic Find, Insert, and Delete

The search tree represents a set of (key, object) pairs, so it must allow some
operations with this set. The most important operations that any search tree
needs to support are as follows:

{ find( tree, query_key): Returnsthe object associated with
query key, if thereisone;

{insert( tree, key, object ):Insertsthe (key, object) pairinthe
tree; and

{ del ete( tree, key): Deletesthe object associated with key from
thetree.

We will now describe herethebasicf i nd, i nsert,anddel et e operations
on the search trees, which will be extended in Chapter 3 by some rebalancing
steps. The simplest operation is the fi nd: one just follows the associated
interval structure to the leaf, which is the only place that could hold the right
object. Then one tests whether the key of this only possible candidate agrees
with the query key, in which case we found the object, or not, in which case
there is no object for that key in the tree.

SEARCH TREE AND SEARCH PATH FOR UNSUCCESSFUL f i nd(tree, 42)

object _t *find(tree_node_t *tree,
key t query_key)
{ tree_node_t *tnp_node;
if( tree->left == NULL )
return(NULL) ;
el se
{ tnp_node = tree;
whil e( tnmp_node->right != NULL )
{ i f( query_key < tnp_node->key )
tnp_node = tnp_node->left;
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el se
t np_node = tnp_node->right;
}
i f( tnp_node->key == query_key )
return( (object_t *) tnp_node->left );
el se
return( NULL );

}

The descent through the tree to the correct level is frequently written
as recursive function, but we avoid recursion in our code. Even with good
compilers, a function call is much slower than a few assignments. Just as
illustration we also give here the recursive version.

object _t *find(tree_node_t *tree,
key t query_key)
{ if( tree->left == NULL |
(tree->right == NULL &&
tree->key != query _key ) )
return(NULL) ;
else if (tree->right == NULL &&
tree->key == query_key )
return( (object t *) tree->left );
el se
{ if( query_key < tree->key )
return( find(tree->left, query_key) );
el se
return( find(tree->right, query_key) );

}

Thei nsert operation starts out the same asthef i nd, but after it findsthe
correct place to insert the new object, it has to create a new interior node and
anew leaf node and put them in the tree. We assume, as always, that there are
functionsget _node andr et ur n_node available, asdescribedin Section1.4.
For the moment we assume all thekeysareuniqueandtreat it asan error if there
isalready an object with that key in the tree; but in many practical applications
we need to deal with multiple objects of the same key (see Section 2.6).
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/* key is distinct, now performthe insert */

{ tree_node_t *old_ le
ol d_l eaf = get_node

af, *new_| eaf;

()

old_leaf->left = tnp_node->|eft;

ol d_l eaf->key = tnp
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Thedel et e operationiseven more complicated becausewhen we are deleting
a leaf, we must also delete an interior node above the leaf. For this, we need
to keep track of the current node and its upper neighbor while going down in
the tree. Also, this operation can lead to an error if there is no object with the

given key.

obj ect _t

*del ete(tree_node_t *tree,
key t del ete_key)

{ tree_node_t *tnp_node, *upper_node,
*ot her _node;
obj ect _t *del eted_obj ect;
if( tree->left == NULL )
return( NULL );
else if( tree->right == NULL )
{ if( tree->key == delete_key )

(object t *) tree->left;

{ deleted object =
tree->left = NULL;
return( del eted _object );

}

el se
return( NULL );

}
el se

{ tnp_node = tree;
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whil e( tnmp_node->right !'= NULL )
{ upper _node = tnp_node;
i f( delete_key < tnp_node->key )
{ tnp_node = upper _node- >l eft;
ot her _node = upper_node->ri ght;

}

el se

{ tnp_node = upper _node->ri ght;
ot her _node = upper_node->l eft;

}

}
i f( tnp_node->key != del ete_key )
return( NULL );

el se
{ upper_node- >key = ot her _node- >key;
upper _node->l eft = other_node->left;

upper _node->ri ght = ot her_node->ri ght;
del eted_object = (object _t *)

t np_node->| eft;

return_node( tnp_node );

return_node( other_node );

return( del eted_object );

}

If there is additional information in the nodes, it must also be copied or
updated when we copy the content of theot her _node intotheupper _node.
Note that we delete the nodes, but not the object itself. There might be other
references to this object. But if thisis the only reference to the object, this will
cause amemory leak, so we should delete the object. Thisis the responsibility
of the user, so we return a pointer to the object.

2.5 Returning from L eaf to Root

Any tree operation starts at the root and then follows the path down to the
leaf where the relevant object is or where some change is performed. In al
the balanced search-tree versions we will discuss in Chapter 3, we need to
return along this path, from the leaf to the root, to perform some update or
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rebalancing operations on the nodes of this path. And these operations need to
be donein that order, with the leaf first and the root last. But without additional
measures, the basic search-tree structure we described does not contain any
way to reconstruct this sequence. There are several possibilities to save this
information.

1. A stack: If we push pointersto all traversed nodes on a stack during
descent to the leaf, then we can take the nodes from the stack in the correct
(reversed) sequence afterward. Thisis the cleanest solution under the
criterion of information economy; it does not put any additional
information into the tree structure. Also, the maximum size of the stack
needed is the height of the tree, and so for the balanced search trees, it is
logarithmic in the size of the search tree. An array-based stack for 200
itemsisreally enough for all realistic applications because we will never
have 2'% jtems. Thisis also the solution implicitly used in any recursive
implementation of the search trees.

2. Back pointers: If each node contains not only the pointers to the left and
right subtrees, but also a pointer to the node above it, then we have a path
up from any node back to the root. This requires an additional field in each
node. As additional memory requirement, thisis usually no problem
because memory is now large. But this pointer also has to be corrected in
each operation, which makes it again a source of possible programming
errors.

3. Back pointer with lazy update: If we have in each node an entry for the
pointer to the node above it, but we actually enter the correct value only
during descent in the tree, then we have a correct path from the leaf we just
reached to the root. We do not need to correct the back pointers during all
operations on the tree, but then the back pointer field can only be assumed
to be correct for the nodes on the path along which we just reached the
leaf.

Any of these methods will do and can be combined with any of the balancing
techniques. Another method that requires more care in its combination with
various balancing techniques is the following:

4. Reversing the path: We can keep back pointers for the path even without an
extraentry for aback pointer in each node by reversing the forward
pointers as we go down the tree. While going down in each node, if we go
left, the left pointer is used as back pointer and if we go right, the right
pointer is used as back pointer. When we go up again, the correct forward
pointers must be restored.
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This method does not use any extra space, so it found interest when space
limitations were an important concern. In the early years of data structures,
methods to work with trees without space for either back pointers or a stack
have been studied in anumber of papers (Lindstrom 1973; Robson 1973; Dwyer
1974; Burkhard 1975; Clark 1975; Soule 1977; Morris 1979; Chen 1986; Chen
and Schott 1996). But this method causes many additional problems because
the search-tree structure is temporarily destroyed. Space is now almost never
a problem, so we list this method only for completeness, but advise against
itsuse.

2.6 Dealing with Nonunique Keys

In practical applications, it is not uncommon that there are several objectswith
the same key. In database applications, we might have to store many objects
with the same key value; there it is a quite unrealistic assumption that each
object isuniquely identified by each of its attribute values, but there are queries
tolist all objectswith agiven attribute value. So any redlistic search tree hasto
deal with this situation. The correct reaction is as follows:

{ fi nd returnsall objects whose key is the given query key in
output-sensitive time O (h + k), where  isthe height of the tree and k isthe
number of elementsthat f i nd returns.

{ i nsert awaysinsertscorrectly intime O(h), where 1 isthe height of the
tree.

{ del et e deletesall items of that key in time O (%), where /1 isthe height of
the tree.

The obvious way to realize this behavior is to keep al elements of the same
key in alinked list below the corresponding leaf of the search tree. Thenf i nd
just produces all elements of that list; i nsert awaysinsertsat the beginning
of the list; only del et e in time independent of the number of deleted items
requires additional information. For this, we need an additional node between
the leaf and the linked list, which contains pointers to the beginning and to the
end of the list; then we can transfer the entire list with O (1) operations to the
freelist of our dynamic memory allocation structure. Again, this way we only
delete the references to the objects contained in this tree. If we need to delete
the objects themselves, we can do it by walking along thislist, but notin O(1)
time independent of the number of objects.
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2.7 Queriesfor theKeysin an Interval

Up to now we have discussed only the query operation f i nd, which, for a
given key, retrieves the associated object. Frequently, a more genera type of
query isuseful, in which we give akey interval [a, b[ and want to find all keys
that are contained in this interval. If the keys are subject to small errors, we
might not know the key exactly, so we want the nearest key value or the next
larger or next smaller key. Without such an extension, our f i nd operation just
answers that there is no object with the given key in the current set, which is
correct but not helpful.

There are other types of dictionary structures, which we will discuss in
Chapter 9 on hash tables that cannot support this type of query. But for search
trees, it isavery minor modification, which can be done in several ways.

1. We can organize the leaves into a doubly linked list and then we can move
in O(1) time from aleaf to the next larger and the next smaller leaf. This
requires a change in the insertion and del etion functions to maintain the
list, but it isan easy change that takes only O(1) additional time. The query
method is also almost the same; it takes O (k) additional timeif it listsa
total of k keysin theinterval.

2. An dternative method does not change the tree structure at all but changes
the query function: we go down the tree with the query interval instead of
the query key. Then we go l€eft if [a, b[< node- >key; right if
node- >key < [a, b[; and sometimes we have to go both left and right if
a < node- >key < b. We store al those branches that we still need to
explore on a stack. The nodes we visit thisway are the nodes on the search
path for the beginning of the query interval a, the search path for itsend b,
and all nodesthat are in the tree between these paths. If there are i interior
nodes between these paths, there must be at least i + 1 |eaves between
these paths. So if this method lists k |eaves, the total number of nodes
visited is at most twice the number of nodes visited inanormal f i nd
operation plus O(k). Thus, this method is dightly slower than the first
method but requires no changeinthei nsert and del et e operations.

Next we give code for the stack-based implementation of i nt er val _fi nd.
Toillustrate the principle, we write here just the generic stack operations; these
need, of course, to befilled in. The output of the operation is potentially long,
so we need to return many objectsinstead of asingle result. For this, we create
alinked list of the (key, object) pairsfoundinthe query interval, whichislinked
hereby ther i ght pointers. After use of the results, the nodes of thislist need
to be returned to avoid a memory leak.
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tree_node_t *interval _find(tree_node_t *tree,
key t a, key_t b)
{ tree_node_t *tr_node;
tree_node_t *result_list, *tnp;
result_list = NULL
create_stack();
push(tree);
whil e( !stack _enpty() )
{ tr_node = pop();
i f( tr_node->right == NULL )

{ [/* reached | eaf, now test */
if( a <= tr_node->key &&
tr_node->key < b )

{ tnp = get_node();
/* leaf key in interval */
tmp->key = tr_node->key; /*
copy to output list */
tmp->left = tr_node->left;
tnp->right = result_list;
result _list =tnp
}
} /* not leaf, mght have to foll ow down */
else if ( b <= tr_node->key )
/* entire interval left */
push( tr_node->left );
else if ( tr_node->key <= a )
/* entire interval right */
push( tr_node->right );
el se /* node key in interval
follow left and right */
{ push( tr_node->left );
push( tr_node->right );
}
}

renove_stack();
return( result _list );

}

Listing the keys in an interval is a one-dimensional range query. Higher-
dimensiona range queries will be discussed in Chapter 4. In general, arange
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query givessome set, therange, of aspecific type, hereintervals, and asksfor all
(key, object) pairswhose key liesin that range. For more complex ranges, such
asrectangles, circles, halfplanes, and boxes, thisis an important type of query.

2.8 Building Optimal Search Trees

Occasionally it is useful to construct an optimal search tree from a given set
of (key, object) pairs. This can be viewed as taking search trees as static data
structure: there are no inserts and del etes, so thereisno problem of rebalancing
thetree, but if we build it, knowing the datain advance, then we should build it
as good as possible. The primary criterion is the height; because a search tree
of height i has at most 2" |eaves, an optimal search tree for aset of n items has
height [logn], where the log, as always, is taken to base 2.

We assume that the (key, object) pairs are given in a sorted list, ordered
with increasing keys. There are two natural ways to construct a search tree of
optimal height from a sorted list: bottom-up and top-down.

The bottom-up construction is easier: one views the initia list as list of
one-element trees. Then one goes repeatedly through the list, joining two
consecutive trees, until there is only one tree left. This requires only a bit
of bookkeeping to insert the correct comparison key in each interior node.
The disadvantage of this method is that the resulting tree, although of optimal
height, might be quite unbalanced: if we start with aset of n = 2" + 1 items,
then the root of the tree has on one side a subtree of 2" items and on the other
side a subtree of 1 item.

Next is the code for the bottom-up construction. We assume here that the
listitemsarethemselves of typet r ee_node_t , withthel ef t entry pointing
to the abject, the key containing the object key, and ther i ght entry pointing
to the next item, or NULL at the end of the list. Wefirst create alist, where all
the nodes of the previous list are attached as leaves, and then maintain a list
of trees, where the key value in the list is the smallest key value in the tree
below it.

tree_node_t *nmke tree(tree_node_ t *list)
{ tree_node_t *end, *root;
if( list == NULL )
{ root = get_node(); /* create enpty tree */
root->left = root->right = NULL;
return( root );
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else if( list->right == NULL )
return( list ); /* one-leaf tree */
else /* nontrivial work required: at |east
two nodes */
{ root = end = get_node();
/* convert input list into | eaves bel ow
new list */

end->left = list;
end- >key = |i st->key;
list = 1list->right;

end- >l eft->ri ght = NULL;

while( list I'= NULL )

{ end->right = get_node();
end = end->right;

end->left = list;
end->key = |ist->key;
list = 1list->right;

end->l eft->right = NULL;
}
end->right = NULL;
/* end creating list of |eaves */
{ tree_node_t *old list, *new.list, *tnpl,

*tnp2;
old list = root;
while( old list->right !'= NULL )
{ /* join first two trees from
old_list */
tmpl = old_list;
tmp2 = old_list->right;
old_list = old_list->right->right;
tnp2->right = tnmp2->left;
tnp2->left = tnpl->left;
tmpl->left = tnp2;
tnpl->right = NULL;

new |list = end = tnmpl;

/* new |list started */

while( old_list !'= NULL )

/* not at end */

{ if( old_list->right == NULL )
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/* last tree */
{ end->right = old_list;
old list = NULL;
}
else /* join next two trees of
old_list */
{ tnmpl = old_list;
tnp2 = old_list->right;
old list =
old_list-> right->right;
tmp2->right = tnp2->left;

tmp2->left = tnmpl->left;
tmpl->left = tnp2;
tmpl->right = NULL;
end->right = tnpl;
end = end->ri ght;
}

} /* finished one pass through

old_list */

old list = new |list;
} /* end joining pairs of trees
t oget her */
root = old list->left;
return_node( old list );

}

return( root );

}

Theorem. The bottom-up method constructs a search tree of optimal height
from an ordered list in time O (n).

The first half of the algorithm, duplicating the list and converting all the orig-
inal list nodes to leaves, takes obviously O(n); it is just one loop over the
length of the list. The second half has a more complicated structure, but in
each execution of the body of the innermost loop, one of the n interior nodes
created in the first half is removed from the current list and put into a fin-
ished subtree, so the innermost part of the two nested loopsis executed only n
times.
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BoTTOM-UP CONSTRUCTION OF AN OPTIMAL TREE FROM A SORTED LIST

The top-down construction is easiest to describe recursively: divide the data
set in the middle, create optimal trees for the lower and the upper halves, and
join them together. This division is very balanced; in each subtree the number
of items left and right differs by at most one, and it also results in a tree of
optimal height. But if weimplement it thisway, and the datais given asligt, it
takes ®(n logn) time, because we get an overhead of ®(n) in each recursion
step to find the middle of thelist. But there is a nice implementation with O ()
complexity using a stack. We write here the generic stack operations push,
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pop, st ack_enpty, creat e_st ack, renpve_st ack to illustrate how
this method works. In a concrete implementation they should be replaced by
one of the methods discussed in Chapter 1. In this case an array-based stack is
the best method, and one should declare the stack aslocal array in the function,
avoiding al function calls.

AR ARED,

BoTrToM-UP AND TOP-DOWN OPTIMAL TREE WITH 18 LEAVES

The idea of our top-down construction is that we first construct the tree “in
the abstract,” without filling in any key values or pointers to objects. Then we
do not need the time to find the middle of the list; we just need to keep track of
the number of elements that should go into the left and right subtrees. We can
build this abstract tree of the required shape easily using a stack. We initially
put the root on the stack, labeled with the required tree size; then we continue,
until the stack is empty, to take nodes from the stack, attach them to two newly
created nodes labeled with half the size, and put the new nodes again on the
stack. If the size reaches one, we have aleaf, so node should not be put back
on the stack but should be filled with the next key and object from thelist. The
problemistofill inthe keys of the interior nodes, which become available only
when the leaf is reached. For this, each item on the stack needs two pointers,
one to the node that still needs to be expanded and one to the node higher upin
the tree, where the smallest key of leaves below that node should beinserted as
comparison key. Also, each stack item contains a number, the number of leaves
that should be created below that node.

When we perform that step of taking a node from the stack and creating
its two lower neighbors, the right-lower neighbor should and always go first
on the stack, and then the left, so that when we reach a ledf, it is the leftmost
unfinished leaf of the tree. This pointer for the missing key value propagates
into the |l eft subtree of the current node (where that smallest node comes from),
whereas the smallest key from the right subtree should become the comparison
key of the current node.
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For this stack, an array-based stack of size 100 will be entirely sufficient
because the size of the stack is the height of the tree, which islogn, and we
can assumen < 2%,

tree_node_t *mmke tree(tree_node_ t *list)
{ typedef struct { tree_node_t *nodel
tree_node_t *node2;
i nt nunber; }
st _item
st _itemcurrent, left, right;
tree_node_t *tnp, *root;
int length = 0;
for( tnp = list; tnp !'= NULL;
tnp = tnp->right )
length += 1; /* find length of list */
create_stack(); /* stack of st_item
repl ace by array */
root = get_node();
/* put root node on stack */
current.nodel = root;
current.node2 = NULL
/* root expands to length | eaves */
current. nunmber = | ength;
push( current );
while( !stack_enmpty() )
/* there is still unexpanded node */
{ current = pop();
if( current.nunber > 1)
/* create (enpty) tree nodes */
{ left.nodel = get node();
| eft.node2 = current. node2;
| eft. nunmber = current.nunber / 2;
right.nodel get _node();
ri ght.node2 = current. nodel
ri ght.nunber = current. nunber -
| ef t. number;
(current.nodel)->left = left.nodel
(current.nodel)->right = right.nodel
push( right );
push( left );
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}

else /* reached a | eaf, nmust be filled
with list item?*/

{ (current.nodel)->left = list->left;
{/* fill leaf fromlist */}
(current. nodel) - >key = |list->key;

(current.nodel)->right = NULL;
if( current.node2 !'= NULL )
/* insert conparison key in
interior node */

(current. node2) - >key = |ist->key;
tmp = |ist;
[* unlink first itemfromlist */
list = list->right;

/* content has been copied to */
return_node(tnp);
/* leaf, so node is returned */
}
}

return( root );

}

To analyze this algorithm, we just observe that in each step on the stack,
we create either two new nodes, and there are only n — 1 new nodes created in
total, or we attach alist item as leaf, and there are only n list items. So the total
complexity is O(n).

Theorem. The top-down method constructs a search tree of optimal height
from an ordered list in time O (n).

Severa other methods to construct the top-down optimal tree from alist or
to convert agiven treein atop-down optimal tree have been discussed in Martin
and Ness (1972), Day (1976), Chang and lyengar (1984), Stout and Warren
(1986), Gerasch (1988), Korah and Kaimal (1992), and Maelbrancke and Olivié
(1994). They differ mostly in the amount of additional space needed, whichin
our algorithmisthe stack of size [Iog2 n] . Becausethisisavery minor amount,
it is not an important consideration. One cannot avoid a worst-case complexity
of Q(n) if one wants to maintain an optimal search tree under insertions and
deletions.
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ToP-DowN CONSTRUCTION OF AN OPTIMAL TREE FROM A SORTED LIST
FIRST STEPS, UNTIL THE LEFT HALF IS FINISHED

2.9 Converting Treesinto Lists

Occasionally one aso needs the other direction, converting a tree into an
ordered list. Thisis very simple, using a stack for a trivial depth-first search
enumeration of the leaves in decreasing order, which we insert in front of
thelist. This convertsin O(n) time a search tree with n leavesinto alist of n
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elementsinincreasing order. Again we write the generic stack functions, which
in the specific implementation should be replaced by the correct method. If one
knows in advance that the height of the tree is not too large, an array is the
preferred method; the size of the array needsto be at |east aslarge asthe height
of the tree.

tree_node_t *nmake list(tree_node_ t *tree)
{ tree_node_t *list, *node;
if( tree->left == NULL )
{ return_node( tree );
return( NULL );
}
el se
{ create_stack();
push( tree );
[ist = NULL;
while( !stack_empty() )
{ node = pop();
i f( node->right == NULL )

{ node->right = list;
list = node;

}

el se

{ push( node->left );
push( node->right );
return_node( node );

}

}

return( list );

2.10 Removing a Tree

We also need to provide amethod to remove the tree when we no longer need it.
Aswe already remarked for the stacks, it isimportant to free all nodesin such a
dynamically allocated structure correctly, so that we avoid amemory leak. We
cannot expect to remove a structure of potentially large size in constant time,
but time linear in the size of the structure, that is, constant time per returned
node, is easily reached. An obvious way to do thisis using a stack, analogous
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to the previous method to covert atree into asorted list. A more el egant method
isthe following:

void renove_tree(tree_node_ t *tree)

{ tree_node_t *current_node, *tnp;
if( tree->left == NULL )
return_node( tree );

el se
{ ~current_node = tree;
whi | e(current _node->right !'= NULL )
{ if( current_node->left->right == NULL )
{ return_node( current_node->left );
tnmp = current_node->right;
return_node( current_node );
current _node = tnp;
}
el se
{ tnp = current_node->| eft;
current _node->left = tnp->right;
tmp->right = current_node;
current _node = tnp;
}
}

return_node( current_node );

}

This essentialy performs rotations in the root till the left-lower neighbor is
aleaf; then it returnsthat |eaf, moves the root down to theright, and returnsthe
previous root.
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Balanced Search Trees

In the previous chapter, we discussed search trees, giving f i nd, i nsert, and
del et e methods, whose complexity isbounded by O (h), whereh isthe height
of thetree, that is, the maximum length of any path from the root to aleaf. But
the height can be aslarge asn; in fact, alinear list can be acorrect search tree,
but it is very inefficient. The key to the usefulness of search treesis to keep
them balanced, that is, to keep the height bounded by O(log ) instead of O ().
Thisfundamental insight, together with the first method that achieved it, is due
to Adel’son-Vel'skiT and Landis (1962), who in their semina paper invented
the height-balanced tree, now frequently called AV L tree. The height-balanced
tree achieves a height bound /2 < 1.44logn + O(1). Because any tree with n
leaves has height at least log n, thisis already quite good. There are many other
methods that achieve similar bounds, which we will discussin this chapter.

3.1 Height-Balanced Trees

A treeisheight-balanced if, in each interior node, the height of theright subtree
and the height of the left subtree differ by at most 1. Thisis the oldest balance
criterion for trees, introduced and analyzed by G.M. Adel’son-Vel'skiT and
E.M. Landis (1962), and still the most popular variant of balanced search trees
(AVL trees). A height-balanced tree has necessarily small height.

Theorem. A height-balanced tree of height / has at |east

3:38) (168" _ (3=48) (1=5)" |eqyes
( Zf hlight-zba?anceo(I t?é/e? v?/it(h nzle?iveﬁef\lvazs height at most
lrlogl%/g n-‘ = [CF,-;, |ngn—| ~ 1.44l09,n,

where ¢z, = (logy(2572)) L.

50
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Proof. Let F;, denote a height-balanced tree of height 2 with minimal number
of leaves. Either the left or the right subtree of r oot (F,,) must have height
h — 1, and because the tree is height balanced, the other subtree has height at
least h — 2. Sothetree F;, hasat least asmany leavesasthetrees 7, _; and Fj,_»
together. And one can construct recursively asequence of height-balanced trees
Fiby, the Fibonacci trees, for which equality holds: just choose as |eft subtree
of Fib, atree Fib,_; and as right subtree a tree Fib,_,. Thus, the number
of leaves leaves(h) of the height-balanced trees with minimum number of
leaves satisfies the recursion leaves(h) = leaves(h — 1) + leaves(h — 2), with
the initial values leaves(0) = 1 and leaves(1) = 2. Such recursions can be
solved by a standard technique described in the Appendix; this recursion has

the solution leaves(h) = (32+—\/§) (%ﬁ)h — (32*—\/?) (%E)h

T n O K

FiBoNAcct TREES OF HEIGHT 0 TO §

Thus, a height-balanced search treeiis, at least for f i nd operations, only a
small factor (less than g) slower than an optimal search tree. But we need to
explain how to maintain this property of height balancedness under i nsert
and del et e operations.

For this, we need to keep an additional information in each interior node of
the search tree — the height of the subtree below that node. So the structure of
anodeisasfollows:

typedef struct tr_n_t { key_t key;
struct tr_n t *left;
struct tr_n_t *right;
i nt hei ght ;
/* possibly other information */
} tree_node_t;

The height of anode * n is defined recursively by the following rules:

{ if*nisaleaf (n->l eft = NULL), thenn->hei ght =0,

{ elsen->hei ght isonelarger than the maximum of the height of the left
and right subtrees:
n- >hei ght = 1+ max(n- >l ef t - >hei ght, n->ri ght - >hei ght).
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The height information must be corrected whenever the tree changes and must
be used to keep the tree height balanced.

0 ®0f1 R1 0 0 £2 R1 €0 R1 €0 ®0 €0 R1 €0 ®0 €0 0 €0 ®0 0 ®0 %1 ®0 0 ®0
0 €0 €0 &0 1 R1 €0 &0 €0 90 0 ®0 0 ®0
0 €0 €0 &0

HEIGHT-BALANCED TREE WITH NODE HEIGHTS

The tree changes only by insert and delete operations, and by any such
operation, the height can change only for the nodes that contain the changed
leaf in their subtree, that is, only for the nodes on the path from the root to the
changed leaf. Asdiscussed in Section 2.5, we need to follow this path from the
leaf back upward to the root and recompute the height information and possibly
restore the balance condition.

At the leaf that was changed, or in the case of an insert, the two neighboring
leaves, the height is 0. Now following the path up to the root, we have in each
nodethefollowing situation: the height informationin theleft and right subtrees
is already correct, and both subtrees are already height balanced: one because
we restored balance in the previous step of going up and the other because
nothing changed in that subtree. Also, the heights of both subtrees differ by at
most 2 because previous to the update operation, the height differed by at most
1 and the update changed the height by at most 1. We now have to balance this
node and update its height before we can go further up.

If * n isthe current node, there are the following possibilities:

1. |n->| ef t - >hei ght —n->ri ght->hei ght| <1
In this case, no rebalancing is necessary in this node. If the height also did
not change, then from this node upward nothing changed and we can finish
rebalancing; otherwise, we need to correct the height of * n and go up to
the next node.

2. In->| ef t - >hei ght —n->ri ght - >hei ght | = 2.
In this case, we need to rebalance * n. Thisis done using the rotations
introduced in Section 2.2. The complete rules are as follows:
21 If n->| ef t - >hei ght =n->ri ght - >hei ght + 2and

n->l eft->l eft->hei ght =n->right->hei ght + 1.
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Perform right rotation around n, followed by recomputing the height
inn->right andn.

If n->| ef t - >hei ght =n->ri ght - >hei ght +2and

n->| eft->l ef t->hei ght =n->ri ght->hei ght.

Perform left rotation around n- >I ef t , followed by aright rotation
around n, followed by recomputing the height in n- >r i ght ,

n->l eft,andn.

If n->ri ght - >hei ght =n->l eft - >hei ght +2and

n->ri ght->right->hei ght =n->l eft->hei ght + 1.
Perform left rotation around n, followed by recomputing the height in
n->l eft andn.

If n->ri ght - >hei ght =n->| ef t - >hei ght +2and

n->ri ght->right->hei ght =n->| eft->hei ght.
Perform right rotation around n- >r i ght , followed by aleft rotation
around n, followed by recomputing the height inn- >r i ght ,

n->l eft,andn.

After performing these rotations, we check whether the height of n
changed by this: if not, we can finish rebalancing; otherwise we
continue with the next node up, till we reach the root.

key C|height 7 key b|height h+2or h+3

left |right left |right

right rotation

k heigh +2
ey blheight h key c|height h+1 or h+2

left |right left |right
h h+1

REBALANCING A NODE IN A HEIGHT-BALANCED TREE: CASE 2.1

Sincewedo only O(1) work on each node of the path, at most two rotationsand
at most three recomputations of the height, and the path has length O(logn),
these rebalancing operationstake only O(lognr) time. But we till have to show
that they do restore the height balancedness.

We have to show this only for one step and then the claim follows for the

entire
whoseleft and right subtrees are already height balanced but their height differs
by 2, and let * "™ be the same node after the rebalancing step. By symmetry
we can assume that

tree by induction. Let * n°d denote a node before the rebalancing step,

ndd. >| ef t - >hei ght = n%->ri ght - >hei ght + 2.



54 3 Balanced Search Trees
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REBALANCING A NODE IN A HEIGHT-BALANCED TREE: CASE 2.2

Let h =n%d>right->height. Because n%d->|eft->hei ght =
h + 2,wehavemax(n?9- >| ef t - >| ef t - >hei ght ,n%->| ef t - >ri ght
->hei ght) = & + 1, and because n?%- >| ef t is height balanced, there are
the following cases:

(@ n9d->|] eft->| eft->hei ght = h + 1and
nod->| ef t - >ri ght - >hei ght € {h, h + 1}.
By rule 2.1 we perform aright rotation around n°d.
By thisn%d->| ef t - >| ef t becomesn"™¥- >| ef t,
nod->| ef t - >ri ght becomesn™"->ri ght - >l eft, and
n°d->rj ght becomesn™"->ri ght->ri ght.
Son"™->| eft->hei ght =h + 1,
n"™W->rj ght - >l eft->hei ght € {h, h + 1},
n"Y->ri ght - >ri ght - >hei ght = A.
Thus, the node n"*- >r i ght isheight-balanced, with
n"->ri ght - >hei ght € {h + 1, h + 2}.
Therefore, the node n™ is height-balanced.

(b) n9d->| ef t - >| ef t - >hei ght = & and
nod->| eft->l ef t - >hei ght =h + 1.
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By rule 2.2 we perform left rotation around n°- >| ef t , followed by a
right rotation around n°9. By this

nod->| ef t - >l ef t becomesn™->| eft->| ef t,

nod->| ef t - >ri ght - >l ef t becomesn™"->| eft - >ri ght,
nod->| ef t - >ri ght - >ri ght becomesn™¥->ri ght ->l eft, and
n%d->ri ght becomesn™"->ri ght->right.

Son"™.>| eft - >l ef t - >hei ght =4,

n"->| ef t - >ri ght - >hei ght € {h — 1, h},

n"->ri ght - >l eft - >hei ght € {h — 1, h},

n"™.>ri ght - >ri ght - >hei ght = 5.

Thus, the nodes n"- >| ef t and n"®- >r i ght are height-balanced,
with n"™- >| ef t - >hei ght =4+ 1and

n"™.>ri ght->hei ght =h + 1.

Therefore, the node n"™ is height balanced.

Thiscompletesthe proof that rebalancing can be donefor height-balanced trees
after insertions and deletionsin O(logn) time.

Theorem. The height-balanced tree structure supports f i nd, i nsert, and
del et e in O(logn) time.

A possible implementation of thei nsert in height-balanced treesis now as
follows:

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new_obj ect)
{ tree_node_t *tnp_node;

int finished;

if( tree->left == NULL )

{ tree->left = (tree_node_t *) new object;

tree->key = new key;
tree->hei ght = 0;
tree->right = NULL;
}
el se

{ create_stack();
t np_node = tree;
whi |l e( tnp_node->right !'= NULL )
{ push( tnmp_node );
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i f( new key < tnp_node->key )

t np_node = tnp_node->left;

el se

t np_node = tnp_node->right;

}

/* found the candi date | eaf. Test whether

key distinct */

i f( tnp_node->key == new key )
return( -1 );

/* key is distinct, now perform
the insert */

{ tree_node_t *old_leaf, *new|eaf;

ol d_l eaf = get_node();

old leaf->left = tnp_node->left;

ol d_I eaf ->key = tnp_node- >key;

old_leaf->right = NULL;

ol d_I eaf - >hei ght = 0;

new | eaf = get _node();

new | eaf->l eft = (tree_node_t

new_obj ect;

new | eaf - >key = new key;

new | eaf ->right = NULL;

new_| eaf - >hei ght = 0;

i f( tnmp_node->key < new key )

{ tnp_node->left = old_|eaf;
t np_node- >ri ght new_| eaf ;
t np_node- >key = new key;

}
el se
{ t np_node->l eft = new | eaf;
t np_node->right = ol d_| eaf;
}
t np_node- >hei ght = 1;
}
/* rebal ance */
finished = 0;

while( !stack_empty() && !finished )

{ int tnp_height, old_height;
tmp_node = pop();
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ol d_hei ght = t np_node- >hei ght ;
i f( tnp_node->| eft->height -
t np_node- >ri ght - >hei ght == 2 )
{ if( tnmp_node->left->|eft->height -
t np_node- >ri ght - >height == 1)
{ right_rotation( tnp_node );
t np_node- >ri ght - >hei ght =
t mp_node- >ri ght - >| ef t - >hei ght + 1;
t np_node- >hei ght =
t np_node- >ri ght - >hei ght + 1;
}
el se
{ left_rotation( tnp_node->left );
right _rotation( tnp_node );
tmp_hei ght =
t mp_node->| eft - >l ef t - >hei ght ;
tmp_node- >l eft - >hei ght =
t np_hei ght + 1;
t np_node- >ri ght - >hei ght =
t np_hei ght + 1;
t np_node- >hei ght = tnp_hei ght + 2;
}
}
el se if( tnp_node->left->height -
t np_node- >ri ght - >hei ght == -2 )
{ 1if( tnp_node->right->right->height -
t np_node- >l eft->height == 1)
{ left_rotation( tnp_node );
t np_node- >l ef t - >hei ght =
t np_node- >l eft->ri ght->hei ght + 1,
t np_node- >hei ght =
t np_node- >| eft - >hei ght + 1;
}
el se
{ right _rotation( tnp_node->right );
left_rotation( tnp_node );
t mp_hei ght =
t np_node- >ri ght - >ri ght - >hei ght ;
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t np_node- >l ef t - >hei ght =
tnp_hei ght + 1;
t np_node- >ri ght - >hei ght =
tnp_hei ght + 1;
t np_node- >hei ght = tnp_hei ght + 2;
}
}

el se /* update height even if there
was no rotation */
{ if( tnp_node->|eft->height >
t np_node- >ri ght - >hei ght )
t mp_node- >hei ght =
t mp_node->| ef t - >hei ght + 1;
el se
t mp_node- >hei ght =
t mp_node- >ri ght - >hei ght + 1;

}
i f( tnp_node->hei ght == ol d_hei ght )
finished = 1;
}
renmove_stack();
}
return( 0 );

}

The basic del et e function needs the same modifications, with the same
rebalancing code while going up the tree. Thereis, of course, no change at all
tothef i nd function. Because we know that the height of the stack is bounded
by 1.44logn and n < 2'%, this is a situation where an array-based stack of
fixed maximum size is a reasonable choice.

In our implementation we chose to have in each node a field with the
height of the node as balance information. It is possible to maintain height-
balanced trees with less information in each node; each node really needs as
balance information only the difference of left and right height, so one of three
states. In older literature, various methods to minimize this space per node were
discussed, but because space stopped being an important issue, it isnow always
preferable to have some explicit (and easily checkable) information.

Further analysis of the rebalancing transformation shows that the rotations
can occur during an i nsert only on a most one level, whereas during a
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del et e they might occur on every level if, for example, aleaf of minimum
depth in aFibonacci treeis deleted. The number of rotations or changed nodes
has been studied by a number of papers, but it is of little significance for the
actual performance of the structure. Also, even if there is only one level that
requires rebalancing during an insert, there are many levelsin which the nodes
change because the height information must be updated.

The average depth of theleavesin aFibonacci tree with n leavesis even bet-
ter than 1.441ogn. By the recursive definition of the tree Fiby,, it iseasy to see
that the sum depthsum(#) of the depths of the leaves of Fib), satisfiesthe recur-
sion depthsum(iz) = depthsum(z — 1) + depthsum(h — 2) + leaves(h), where
leaves(h) is the number of leaves of Fib,, which we determined from the
recursion leaves(h) = leaves(h — 1) 4 leaves(h — 2) in the beginning of this
section. One can eliminate the function leaves from these two linear recursions
to obtain

depthsum(h) — 2 depthsum(h — 1) — depthsum(h — 2)
+ 2depthsum(i — 3) + depthsum(h — 4) =0

The initial values are depthsum(0) = 0, depthsum(1) = 2, depthsum(2) =
and depthsum(3) = 12. This recursion can be solved with standard methods
(see Appendix) to give

st = (5 +5650) () + (5 +69) ()

- (2550 () 4ot

Thus the average depth of Fib, isvery near to the optimal depth of any binary
tree with that number of leaves: d?‘;g\‘,;”}g’) ~ 1.04log, (leaves(h)) + O(1).
This, however, is not true for height-balanced trees in general. In 1990,
R. Klein and D. Wood constructed height-bal anced trees whose average depth
isalmost the same as the worst-case depth of height-balanced trees (Klein and
Wood 1990). So we cannot hope for any average-case improvement. They gave
strong bounds for the maximum average depth of a height-balanced tree with n
leaves. Wewill demonstrate here only the construction of ‘bad’ height-balanced

trees.

Theorem. There are height-balanced trees with n leaves and average depth
crinl0g,n — o(logn), where ¢, = (log((52)) 1.
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Proof. Let Bin, denote the complete binary tree of height 4. In Bin,, the
left and right subtrees of the root are both Bin,_1; in Fib,, the left subtree
is Fib,_1 and the right subtree is Fib,_,. We now define a new family of
height-balanced trees Gy, by replacing a subtree of height # — k containing
the vertices of maximum depth by a complete binary tree of the same height.
A recursive construction of these treesis the following:

{ for k = 0, we define Gy, = Bin,, and
{ for k > 1, we define G, ,, asthe tree with left subtree G;_1 ,—1 and right
subtree Fiby,_o.

Thetree G, is aheight-balanced tree of height # with

Ieaves(gh,k) = leaves(Fiby,) — leaves(Fib,_;) + leaves(Bin,_)
= leaves(h) — leaves(h — k) + 2/

= (52) () - (38) (9) "+ 2+,

and the sum of the depths of the leavesis

depthsum(G;, ) = depthsum(Fib,)
— depthsum(Fiby,_i) — k - leaves(Fiby,_y)
+ depthsum(Bin;,_;) + k - leaves(Bin;,_)
= depthsum(h) — depthsum(h — k) — k leaves(h — k)
+(h — k)2"* 4 k2" k.

Denote ¢p = %5 andy = 2+T£'5 = % and then we have

leaves(Gy x) = ¢" — ¢"* + 2" 1+ 0(1)
— ¢h +2h7k +0(¢h7k)’
depthsum(Gy, ) = yho" + 8¢" — y(h — k)¢" " — 8¢+ — ko
+h2"* 1 0(1)
= yhe¢" +h2" " + 0(¢").

We choose k = k(h) = (1 —log, ¢)h —log, h; then, h —k = (log, p)h +
log,(h) and 2"=* = he". Then,

leaves(Gi k) = ho" + 0(¢"),
depthsum(Gy, xn) = h?¢" + O(he").
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Therefore,

log, (Ieaves(Gy, km)) = 10g,(h¢") + o(1) = (log, )1 + log, 1 + o(2),

sowith n = leaves(Gy, k().

depthsum(G;, () = @n log, n ~ 1.44nlog, n.

Severa variants of the height-balanced trees were proposed relaxing the
balance condition to some larger (but still constant) upper bound for the height
difference in each node (Foster 1973; Karlton et al. 1976) or strengthening
it to require that the nodes two levels below still have only height difference
at most one (Guibas and Sedgewick 1978), but neither gives any interesting
advantage. One-sided height-balanced trees, in which additionally the height
of the right subtree is never smaller than the height of the left subtree, were
subject of considerable study (Hirschberg 1976; Kosargju 1978; Ottmann and
Wood 1978; Zweben and McDonald 1978; Raiha and Zweben 1979), because
it was not obvious how to update this structurein O(logn) time. But once that
problem was solved, they lost interest, because they do not give any algorithmic
advantages over the usual height-balanced trees.

3.2 Weight-Balanced Trees

When Adel’son-Vel'skiT and Landis invented the height-balanced search trees
in 1962, computers were extremely memory limited, so the applicability of the
structure at that time was small and only very few other papers on balanced
search trees' appeared in the 1960s. But by 1970, technological development
made it a feasible and useful structure, generating much interest in the topic,
and several alternative ways to maintain search trees at O(logr) height were
proposed. One natura alternative balance criterion is to balance the weight,
that is, the number of leaves, instead of the height of the subtrees. Weight-
balanced trees were introduced as “trees of bounded balance” or BB[«]-trees
by Nievergelt and Reingold (1973) and Nievergelt (1974), and further studied
in Bager (1975) and Blum and Mehlhorn (1980). Another variant of weight
balance was proposed in Cho and Sahni (2000).

Theweight of atreeisthe number of itsleaves, soin aweight-balanced tree,
the weight of the left and right subtrees in each node should be “balanced”.

1But there was a fashion of analyzing the height distribution of search trees without rebalancing
under random insertions and deletions.
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The top-down optimal search trees constructed in Section 2.7 are in this way
as balanced as possible, with the left and right weights differing by at most
1; but we cannot maintain such a strong balance condition only with O(logn)
rebalancing work during insertions and deletions. Instead of bounding the
difference, the correct choice is to bound the ratio of the weights. This gives
an entire family of balance conditions, the «-weight-balanced trees, where for
each subtree the left and right sub-subtrees have each at least a fraction of
a of the total weight of the subtree (and at most a fraction of (1 — «)). An
a-weight-balanced tree has necessarily small height.

Theorem. An a-weight-balanced tree of height / > 2 has at least ()"
leaves.
An «-weight-balanced tree with n leaves has height at most Iog% n=

-1
(log, (%)) ~log,n.
Proof. Let 7, be an «-weight-balanced tree of height /2 with minimum number

of leaves. Either |eft or right subtree of 7, must be of height 2 — 1, so the
weight of that subtreeis at least leaves(7,_,) and at most (1 — «) leaves(7},).
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0.29-WEIGHT-BALANCED TREE WITH NODE WEIGHTS

So the proof of the O(logn) height bound is even simpler than for the
height-balanced trees. But the analysis of the rebalancing agorithm is more
complicated and we cannot maintain the «-weight-balanced condition for all
a. Already Nievergelt and Reingold (1973) observed o < 1 — \/iz as hecessary
condition for therebal ancing a gorithm to work. But & should @l so not be chosen
very small, otherwise rebalancing fails for small cases. Blum and Mehlhorn
gave 111 < « as lower bound (Blum and Mehlhorn 1980), but indeed if we
are willing to use a different rebalancing method for small trees, we could
choose o smaller. In our model, we restrict ourselves to the small interval
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vel31- %z] > [0.286, 0.292], but with additional work for the rebalancing
of the trees of small weight, one could choose « arbitrary small.

To describe therebalancing a gorithmin thisclass, wefirst need to choose an
o and asecond parameter ¢ subjectto e < o? — 2o + % Asin height-balanced
trees, we need to keep some additional information in each interior node of the
search tree — the weight of the subtree below that node. So the structure of a
nodeis asfollows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
i nt wei ght ;
/* possibly other information */
} tree_node_t;

The weight of anode * n is defined recursively by the following rules:

{ If*nisaleaf (n- >l eft = NULL), thenn- >wei ght = 1.
{ Elsen- >wei ght isthe sum of the weight of the left and right subtrees:
n- >wei ght =n- >l eft - >wei ght + n->ri ght - >wei ght .

The node * n is a-weight-balanced if
n->l eft->wei ght > an->weight and n->right->weight >
a n->wei ght,
or equivalently o n- >| ef t - >wei ght < (1 — ) n->ri ght - >wei ght
and (1 — ) n- >l ef t - >wei ght > a n->ri ght - >wei ght .
Againtheweight information must be corrected whenever thetreeischanged
and is used to keep the tree weight balanced. And the information changes only
by insert and delete operations, and only in those nodes on the path from the
changed leaf to the root, and there only by at most 1. So, as in the height-
balanced trees (Section 3.1) we use one of the methods of Section 2.5 to follow
the path up to the root and restore in each node the balance condition, using
inductively that below the current node the subtrees are already balanced.
If *n isthe current node and we aready corrected the weight of * n, there
are the following cases for the rebalancing a gorithm:

1. n->l ef t - >wei ght > o n- >wei ght and
n->ri ght - >wei ght > o n- >wei ght .
In this case, no rebalancing is necessary in this node; we go up to the next
node.
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2. n->ri ght->wei ght < o n->wei ght

21 Ifn->l eft->l ef t - >wei ght > (@ + €)n- >wei ght .

Perform aright rotation around n, followed by recomputing the weight
inn->right.

2.2 Else perform aleft rotation around n- >| ef t , followed by aright
rotation around n, followed by recomputing the weight in n- >| ef t
andn- >ri ght.

3. n->l ef t->wei ght <« n->wei ght

31 Ifn->right->right->weight > (¢ + ¢)n->wei ght .
Perform aleft rotation around n, followed by recomputing the weight
inn->| eft.

3.2 Else perform aright rotation around n- >r i ght , followed by aleft
rotation around n, followed by recomputing the weight in n- >| ef t
and n- >ri ght.

Noticethat, different from the height-bal anced trees, we must alwaysfollow the
path up to the root and cannot stop early because the weight information, unlike
the height information, changes necessarily along the whole path. Because we
do only O(1) work on each node of the path, at most two rotations and at most
three recomputations of the weight and the path has length O(logn), these
rebalancing operationstake only O (logn) time. But again we still have to show
that they do restore the a-weight-balancedness.

Let *n%d be the node before the rebalancing step and * n" the same
node after the rebalancing step. Denote the weight n®9- >wei ght = n"®V- >
wei ght by w. We need to analyze only case 2; in case 1, the node is already
balanced, and case 3 follows from case 2 by symmetry. In case 2, we have
nod- >ri ght - >wei ght < aw, but the weight changed only by 1 and before
that the node was balanced; so n®4- >r i ght - >wei ght = aw — § for some
3 €]0, 1]. We now have to check for cases 2.1 and 2.2 that all nodes changed
in that step are balanced afterwards.

2.1 Wehaven9d->| ef t - >| ef t - >wei ght > (o + ¢)w and perform a
right rotation around n°. By this
nod->| ef t - >l ef t becomesn™"->| ef t,
nod->| ef t - >ri ght becomesn™"->ri ght->l eft, and
n%d->ri ght becomesn"->ri ght->right.
Because n%9- >| ef t was balanced, with
nod->| ef t - >wei ght = (1 — a)w + 8§, we have
n"™- >ri ght - >l ef t - >wei ght €
[@(l—a)w + ad, (1 — 20 — &)w + 3],
n"™'- >ri ght - >ri ght - >wei ght = aw — 4,
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n"->ri ght - >wei ght € [¢2—a@)w — (1 —a)s, (1 — @ — &)w],
n"->| ef t - >wei ght € [(a + &)w, (1L — a)?w + (1 — a)s].
Now for n"®- >r j ght the balance conditions are
a an™->rjght->left->wei ght
<(1—a)n"->right->right->weight,so
a((l—20 —)w+68) < (1 —a)(aw —9),
which is satisfied for (a? + ag)w > §; and
b. (1 —a)n"™->right->|eft->weight
> a n"™W->ri ght->right->wei ght, so
l-a)(e(l—a)w+ad) > o (@w—35),
which is satisfied for 0 < o < 3575,
And for n"*" the balance conditions are
C. an™->| eft->nei ght < (1—«a)n™"->ri ght->wei ght, so
a((l—a)’w+ (L —a)d) < (L —a)(@(2 - a)w — (L — a)d),
which is satisfied for cw > §; and
d. (1—a)n"™->] ef t - >wei ght > a n"™->ri ght - >wei ght, so
(1-0o) (@ +e)w) = a((1—-a—e)w),
which is satisfied for all «, with strict inequality for ¢ > 0. Together this
shows that in the interesting interval « € [0, 1 — \/ii]' at least if the

subtree is not too small (for «?w > 1) in case 2.1, the «-weight-balance is
restored.

2.2 Wehaven?d->| ef t - >| ef t - >wei ght < (« + ¢)w and perform a
left rotation around n?9- >| ef t , followed by aright rotation around nd.
By this

nod_>| ef t - > ef t becomesn"¥->| ef t - >| ef t ,
nod->| ef t - >ri ght - >l ef t becomesn™"->| ef t - >ri ght,
nod- >| ef t - >ri ght - >ri ght becomesn™->ri ght->| eft,
and
n%d- >ri ght becomesn™"->ri ght->right.
Because n®9- >| ef t was balanced, with
nod->| ef t - >wei ght = (1 — a)w + 8, we have by the assumption of
case 2.2
n"->| ef t - >l ef t - >wei ght € [¢(1 — a)w + ad, (o« + &)w],
nod- >| ef t - >ri ght - >wei ght €
[(1-2x —&)w+ 6, (1—a)’w+ (1 —a)s],
n"- >| ef t - >ri ght - >wei ght , n"™- >ri ght - >l ef t - >wei ght
€ [a(l - 20 — &)w + af, (1 — a)®*w + (1 — a)?4],
n"Y- >ri ght - >ri ght - >wei ght = aw — 4,
n"- > ef t - >wei ght €
[(2x — 3 + &®)w + a(2 — @)8, (1 — 20 + 202 + ae)w + (1 — @8],
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n"Y->ri ght - >wei ght €
[(2a — 20 — ag)w — (1 — )8, (1 — 20 + 30? — &®)w + a(a — 2)8].
Then the balance conditions for n"*¥- >| ef t are
a an™->|eft->| eft->neight
<(l—-a)n"™->| ef t->right->weight, so
a(le+e)w)<(1—a)(ad— 20 —&)w+ ad),
which is satisfied for o € [0, 1 — %[ ande < a?— 20+ 1;and
b. (1—a)n"™->| eft- >l ef t - >wei ght
>an™->] eft->right->weight, so
Q1-—o)(e(l—a)w+ad) >« ((l —a)*w+(1- oz)28) ,
which is satisfied for « € [0, 1].
The balance conditions for n"¥- >ri ght are
c. a n"™->right->l ef t->wei ght
<(1—-oa)n"™->right->right->weight, so
o ((1—a)3w + (1—0{)28) <(1l-a)(aw—-39),
which is satisfied at least for (2 — a)e’w > (1 + a — «?)8; and
d. (1 —a)n"™->right->l ef t - >wei ght
>an™->right->ri ght->wei ght, so
Ql-o)(@(l—-20—8)w+ ad) > o (aw —J),
which is satisfied for o € [0, 1 — Jié[ and e < 202 — 4a + 1.
And the balance conditions for " are
e an™->eft->weight <1 —a)n"™->right->weight, so
o ((1 — 20+ 20 +ag)w + (1 — a)(S)
<(1-a) ((2a —20% —ag)w — (1 — a)S) ,
which is satisfied for (1 — 2o — ¢)w > 1, and
f. (1—a)n™->] eft->wei ght > o n"™->ri ght->wei ght, so
(1—a) (e — 30 + &®)w + a(2 — a)9)
za((l—2a+3a2—a3)w+a(a —2)8),
which is satisfied for « € [0, 352].
Together this shows that in the interesting interval o € 10, 1 — \i@[ with
e <o®— 20+ 3, a least if the subtree s not too small (for 2w > 1,
whichimplies (2 — a)a?w > (1+ o — @?)8), and (1 — 20 — &)w > 1
in the interval of interest) in case 2.2, the a-weight-balance is restored.

But we still have to show that the rebalancing algorithm worksfor w < «=2.
This, unfortunately, isin general not the case. It is, however, truefor« €]2, 1 —
%2[; here we need to check it only for w < 12 and n- >r i ght - >wei ght =
law].

In case 2.1, we have additionally n°d->| eft->| ef t - >wei ght >
[aw], and there is only one baance inequality (a) that could
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fal: we have to check that n"™->right->right->weight >
an™->right->weight, so |aw] > a(w — [aw]), which is easily
tested.

In case 2.2, we have additionally n%d->| eft->l eft->wei ght <
law]. Because n%9->| ef t - >wei ght = w — |aw], the balance condi-
tion in n->l eft determines the weights of n9->| eft->left and
nod->| ef t - >ri ght , andit iseasily tested for these trees that the balanceis
restored.

This compl etes the proof that rebalancing can be done for weight-balanced
trees after insertions and deletionsin O (logn) time.

Theorem. The weight-balanced tree structure supportsf i nd, i nsert, and
del et e in O(logn) time.

A possible implementation of thei nsert in weight-balanced trees is now
asfollows:

#defi ne ALPHA 0. 288
#define EPSILON 0.005

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new_obj ect)
{ tree_node_t *tnp_node;
if( tree->left == NULL )
{ tree->left = (tree_node_t *) new object;
tree->key = new key;
tree->wei ght = 1;
tree->right = NULL;
}
el se
{ create_stack();
tnp_node = tree;
whi |l e( tnp_node->right !'= NULL )
{ push( tnp_node );
i f( new _key < tnp_node->key )
tnmp_node = tnp_node->left;
el se
t np_node = tnp_node->right;
}

/* found the candi date | eaf. Test whether
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key distinct */

i f( tnp_node->key == new key )

/*

return( -1 ); /* key alreay exists,
insert failed */
key is distinct, now perform
the insert */
tree_node t *old | eaf, *new.|eaf;
ol d_| eaf = get_node();
old_leaf->left = tnp_node->left;
ol d_I eaf - >key = tnp_node- >key;
ol d_leaf->right = NULL;
ol d_I eaf ->wei ght = 1;
new | eaf = get _node();
new | eaf->left = (tree_node_t *)
new_obj ect ;
new_| eaf - >key = new _key;
new | eaf ->right = NULL;
new | eaf - >wei ght = 1;
i f( tnp_node->key < new key )
{ tnp_node->left = old_|eaf;

t np_node->ri ght = new | eaf;

t np_node- >key = new key;

}

el se

{ t np_node->l eft = new_| eaf;
t np_node->right = ol d_| eaf;

}

t np_node- >wei ght = 2;

rebal ance */

ile( !'stack_enpty())

tnp_node = pop();
t np_node- >wei ght =

t np_node- >l ef t - >wei ght

+ tnmp_node->ri ght - >wei ght ;
i f( tnp_node->right->wei ght

< ALPHA*t np_node- >wei ght )

{ if(tnmp_node->left->left->weight >
(ALPHA+EPSI LON) *t nmp_node- >wei ght)
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{ right_rotation( tnp_node );
t np_node- >ri ght - >wei ght =
t np_node- >ri ght - >| ef t - >wei ght
+ tnp_node->ri ght - >ri ght - >wei ght ;
}
el se
{ Vleft_rotation( tnmp_node->left );
right_rotation( tnp_node );
t np_node- >ri ght - >wei ght =
t np_node- >ri ght - >| ef t - >wei ght
+ tnp_node->ri ght->ri ght - >wei ght ;
t np_node- >l ef t - >wei ght =
t mp_node- >| ef t - >| ef t - >wei ght
+ tnp_node- >l eft->ri ght - >wei ght ;
}
}

else if ( tnp_node->left->wei ght
< ALPHA*t np_node- >wei ght )
{ if( tnp_node->right->right->weight
> ( ALPHA+EPSI LON)
*t np_node- >wei ght )
{ Vleft _rotation( tnmp_node );
t np_node- >l ef t - >wei ght =
t np_node->| ef t - >l ef t - >wei ght
+ tnp_node- >l eft->ri ght - >wei ght;
}
el se
{ right_rotation( tnp_node->right );
left _rotation( tnp_node );
t np_node- >ri ght - >wei ght =
t np_node- >ri ght - >l ef t - >wei ght
+ tnp_node- >ri ght - >ri ght - >wei ght ;
t np_node- >l ef t - >wei ght =
t mp_node- >| ef t - >| ef t - >wei ght
+ tnp_node- >l ef t - >ri ght - >wei ght ;

}

} /* end rebal ance */
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renove_stack();

}
return( 0 );

Again the basic del et e function needs the same modifications, with the
same rebalancing code while going up the tree, and there is no change to
the f i nd function. Because we know that the height of the stack is bounded
by (log ﬁ)‘llogn, which is less than 2.07logn for our interval of «, and
n < 2% again an array-based stack of fixed maximum size is a reasonable
choice.

The rebalancing algorithm described here was similar to the rebalancing of
height-balanced trees in two phases. going down to the leaf and then rebal-
ancing bottom-up. In principle, weight-balanced trees also alow a top-down
rebalancing, which takes place while going down to the leaf and makesthe sec-
ond phase unnecessary. This is possible because we already know the correct
weight of a subtree while going down, so we see whether it will need rebalanc-
ing, whereas the height of a subtree is available only when we reach the leaf.
Thealgorithm was originally outlined for BB[«] treesthat way (Nievergelt and
Reingold 1973) and discussed in Lai and Wood (1993), but a correct analysis
that balance is restored is even more work for top-down rebalancing because
the assumption we have below the current node is weaker: the node below is
not necessarily balanced, because we have not performed rebalancing below,
but at most one off from balance.

With respect to the maximum height, the weight-balanced trees are not
as good as the height-balanced trees; for our interval of «, the coefficient
(log ﬁ)‘l is approximately 2 instead of 1.44, and for larger «, it would get
evenworse. It was already observed in Nievergelt and Reingold (1973) that the
average depth of the leavesis slightly better than for the height-balanced trees.

Theorem. The average depth of an a-weight-balanced tree with n leavesis at
-1

MOSt 5o Ty Togti=a) 1097

For our interval of «, this coefficient isapproximately 1.15, whereasfor height-

balanced trees we had also 1.44.

Proof. We again use the maximal depthsum instead of the average depth. It
satisfies the recursive bound depthsum(n) < n + depthsum(a) + depthsum(b)
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for somea, b witha + b = n,a, b > an. We show depthsum(n) < cnlogn for
the above ¢ by induction, using that

depthsum(n) < n + caloga + cblogb
=cn (1 +2%loga + Llogb)

= cnlogn +cn (2 + %log% + 2log?).

Because the function x logx + (1 — x) log(1 — x) is negative and decreasing
on x € [0, 0.5], the second term is nonpositive for ¢ = WM

A more remarkable property of weight-balanced treesis the following:

Theorem. In the time from one rebalancing of a specific node to the next
rebalancing of this node, a positive fraction of all leaves below that node are
changed.

Thisisremarkable because it forces almost all rebalancing operationsto occur
near the leaves. This was observed in Blum and Mehlhorn (1980).

Proof. It is easy to check that the rebalancing operations |eave each of the
changed nodes not only « weight balanced, but even «* weight balanced for
some o*(«, €) > «. But then the weight must change by a positive fraction
to violate the balance condition, so a positive fraction of the leaves must be
inserted or deleted before that node needs to be rebalanced again. This is
the reason for the additional ¢ > 0 used in the rebalancing algorithm; with-
out it, in case 2.1 one of the nodes would not have this stronger balance

property.

For the height-balanced trees, we bounded the difference of the heights,
whereas for weight-balanced trees, we bounded the ratio of the weights.
Because in any sort of balanced tree the height will be logarithmic in the
weight, it is not surprising that these conditions have the same effect. The
much weaker condition of bounding the ratio of the heights was studied in
Gonnet, Olivié, and Wood (1983). It turns out that this condition is not strong
enough to give a logarithmic height; the maximum height of a height-ratio
balanced tree with n leaves is 20(V1997) instead of ©(logn) = 2!09'097+6(D),
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3.3 (a, b)- and B-Trees

A different method to keep the height of the trees small is to allow tree nodes
of higher degree. Thisideawasintroduced as B-trees by Bayer and McCreight
(1972) and turned out to be very fruitful. It was originally intended as external
memory data structure, but we will see in Section 3.4 that it has interesting
uses also as normal main memory data structure. The characteristic of external
memory isthat accesstoit isvery slow, compared to main memory, and isdone
in blocks, units much larger than single main memory locations, which are
simultaneously transferred into main memory. In the 1970s, computers were
still very memory limited but usually already had a large external memory, so
that it was anecessary consideration how astructure operates when alarge part
of itisnot in main memory, but on external memory. This situation is now less
important, but it istill relevant for database applications, where B-tree variants
are still much used asindex structures.

The problem with normal binary search trees as external memory structure
is that each tree node could be in a different external memory block, which
becomes known only when the previous block has been retrieved from the
external memory. So we might need as many external memory block accesses
as the height of the tree, which is more than log,(r), and would be interested
in each of these blocks, which are large enough to hold many nodes, in just a
single node. The idea of B-treesis to take each block as a single node of high
degree. In the original version, each node has degree between a and 2a — 1,
where a is chosen as large as possible under the condition that a block must
have room for 2a — 1 pointers and keys. Then balance was maintained by the
criterion that al leaves should be at the same depth.

The degree interval a to 2a — 1 is the smallest interval for which the re-
balancing algorithm from Bayer and McCreight (1972) works. Because each
block has room for at most 2a — 1 elements and is at least half full this way,
it sounded like a good choice to optimize the space utilization. But then it was
discovered by Huddleston and Mehlhorn (1982) and independently by Maier
and Salveter (1981) that choosing the interval a bit larger makes an important
difference for the rebalancing algorithm; if one alows node degrees from a to
b for b > 2a, then rebalancing changes only amortized O (1) blocks, whereas
for b = 2a — 1, the original choice, ®(logn) block changes can be necessary.
For amain memory datastructure, the number of changesin rebalancing makes
little difference, although it has been studied in many papers; but for an external
memory structure it is essential because all changed blocks have to be written
again to the external memory device. So these trees, known as (a, b)-trees, are
the method of choice.
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An (a, b)-tree is anonbinary search tree in which al leaves have the same
depth; each nonroot node has degree between a and b, with b > 24, and the
root has degree at most » and at least 2 (unless the tree is empty or has only
one leaf). An (a, b)-tree has necessarily small height.

Theorem. An (a, b)-tree of height 1 > 1 has at least 24"~* and at most »"
leaves. An (a, b)-treewith n > 2 leaves has height at most
[log,(n) + (1 —log, 2)| ~ =1 logn.

log, a

This follows immediately from the definition.

Because these trees are not binary search trees, they do not fall in the
framework described in Chapter 2, and we have to define their structure and
our conventionsfor their representationin addition to therebal ancing a gorithm.
A node has the following structure:

typedef struct tr_n_t { int degree;
i nt hei ght ;
key _t key[ B] ;

struct tr_n_t * next[B];
/* possibly other information */
p y
} tree_node_t;

We describe the (a, b)-tree here as a main memory structure; for an external -
memory version, we would need to establish a correspondence between the
main memory nodes and the external memory blocks, and would need functions
to recover anode from external memory and write it back.

The node structure contains the degree of the node, which isat most B, and
spacefor up to B outgoing edges. It also contains spacefor B key values. Usually
we need only one key value less than the degree to separate the outgoing edges,
but in the node at the lowest level, we avoid having separate leaf nodes and
instead place the object references together with their associated key values
in that node. We need a convention to identify the nodes on the lowest level;
for this reason we include the height of the node above the lowest level in the
node.

Asin the case of binary search trees, we associate with each node a half-
open interval of the possible key values that can be reached through that node
or pointer. If * n is a node with associated interval [a, b[, then the associated
intervals of the nodes referenced to by next pointers are as follows:

{ forn->next [ 0], theinterva [a, n- >key[ 1] [;
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{ forn->next[i],withl <i <n->degree — 2, theinterva
[n->key[i],n->key[i+ 1] [; and

{ forn- >next [ n- >degr ee- 1] theinterva
[n- >key[ n- >degr ee- 1], b|.

Thenthef i nd operation looks as follows:

object t *find(tree_node_t *tree,
key t query_key)
{ tree_node_t *current_node;
obj ect _t *object;
current _node = tree;
whil e( current_node->height >= 0 )
{ int |ower, upper;
/* binary search anong keys */
| ower = 0; upper = current_node->degr ee;
whi |l e( upper > |lower +1 )
{ if( query_key <
current _node->key[ (upper+lower)/2 ] )
upper = (upper +l ower)/2;



3.3 (a, b)- and B-Trees 75

el se
| ower = (upper+lower)/2
}
i f( current_node->hei ght > 0)
current _node =
current _node->next[| ower];
el se
{ /* block of height 0, contains the
obj ect pointers */
i f( current_node->key[lower] ==
query_key )
obj ect = (object_t *)
current _node->next [l ower];
el se
obj ect = NULL;
return( object );

}

By performing binary search onthekeyswithinthenode, thef i nd operation
isasfastasaf i nd inabinary tree.

Now we finally have to describethei nsert and del et e operations and
therebalancing that keepsthe structure of the (a, b)-tree. | nsert anddel et e
begin straightforward as in the binary search-tree case: first one goes down in
thetreeto find the placewhereanew leaf should beinserted or an old one should
be deleted. Thisisinanode of height 0. If thereis still room in the node for the
new leaf or after the deletion the leaf still contains at least a objects, thereisno
problem, but the node could overflow during an insertion or become underfull
during a deletion. In these cases we have to change something in the structure
of thetree and possibly propagate the structure upward. The restructuring rules
for these situations are as follows:

{ For aninsertion: if the current node overflows

a. If the current node is the root, create two new nodes, copy into each half
the root entries, and put into the root just pointers to these two new nodes
together with the key that separates them. Increase the height of the root
by 1.
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b. Else create anew node and move half the entries from the overflowing
node to the new node. Then insert the pointer to the new node into the
upper neighbor.

The case b is known as “ splitting.”
{ For adeletion: if the current node becomes underfull

a. If the current node istheroot, it is underfull if it has only one remaining
pointer. Copy the content of the node to which the pointer pointsinto the
root node and return the node to the system.

b. Elsefind the block of the same height that immediately precedes or
followsit in the key order and has the same upper neighbor. If that block
isnot aready almost underfull, move a key and its associated pointer
from that block and correct the key value separating these two blocksin
the upper neighbor.

c. Else copy entries of the current node into that almost underfull
neighboring node of the same height, return the current node to the
system, and delete the reference to it from the upper neighbor.

The cases b and ¢ are known as “sharing” and “joining,” respectively.

It is clear that this method does restore the (a, b)-tree property; if the node is
overfull, thenit containsenough entriesto be splitinto two nodes, and if thenode
isunderfull and its neighbor does not have an element to spare, then they can be
joined together into a single node. These operationswork evenfor b = 2a — 1
(the original B-trees) and because we change at most two blocks on each level,
itisalso clear that the number of changed blocksis O(log, (r)). For the original
B-trees, this bound is also best possible: if b = 2a — 1, then both new blocks
obtained from splitting an overflowing block (with 5 + 1 = 2a entries) are at
the lower degree limit, so deleting the element that was just inserted forces
them to be joined again. It is easy to construct an example where along the
entire path every block is split by an insertion; so by deleting the same element
each of these block pairsisjoined again.

It was the remarkable observation of Huddleston and Mehlhorn (1982) and
Maier and Salveter (1981) that if we allow at least one position more space
(b > 2a), weget amuch better bound with only amortized O (1) blockschanged.
To prove this amortized bound, we define a potential function on the search
tree and analyze how this potential changes during the changes by the various
operations of an insert or delete. We follow the development of the structure
always immediately before the next operation (split, share, join, etc.), so the
node degreesa — 1 (after adelete) and b + 1 (after an insert) are possible. We
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do not count the operation on the root: creating a new root or deleting the old
root, but thereisonly at most one root operation per insertion or deletion.

We define the potential of the tree as the sum of the potentials of its nodes,
where the potential of node * n is defined as

4 if n- >degr ee = a — 1 and xn isnot the root

1 if n->degr ee = a and xn isnot the root
pot(xn) = 1 0 ifa < n->degree < b or*n istheroot

3 if n->degr ee = b and xn isnot the root

6 if n->degree = b+ 1and «xn isnot theroot.

Now each operation starts with an insert or delete on the lowest level; before
any restructuring operations are done, thisis just a change of the degree of a
single node by one, so the potential of the tree increases by at most three.

We claim now that each restructuring operation decreases the potential of
the tree by at least two; because the potential of the tree is nonnegative and
initially bounded by 6n, thisimpliesthat eachinsert or delete can onthe average
cause at most %’ restructuring operations, plus possibly one root operation. We
have to check this claim for each of the following restructuring operations:

{ For insertions the current node has degree b + 1.

a. We do not count the root operation.

b. A splitting operation takes the current node of degree b + 1 and splitsit
into two nodes of degree [ 2521 and | 252 |. Also, it increases the degree
of the upper neighbor node. This removes a node of potential 6 and
creates two new nodes, of which at most one has potential 1 (degree @)
and the other has potential 0 (degree betweena + 1and b — 1), and it
increases the degree of the upper neighbor node by 1 and so its potential
by at most 3: in total the potential decreases by at least 2.

{ For deletions the current node has degree a — 1 if it is not the root.

a. Again we do not count the root operation.

b. A sharing operation takes the current node of degreea — 1 and its
neighbor of degree at least ¢ + 1 and at most b, and creates two new
nodes, each of degree at least a and less than b. This removes a node of
potential 4 and anode of nonnegative potential, and creates two new
nodes, each with potential at most 1: in total the potential decreases by at
least 2.

¢. A joining operation takes the current node of degreea — 1 and its
neighbor of degree a, and creates one new node of degree 2a — 1 < b,
and decreases the degree of the upper neighbor node by one. This
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removes two nodes of potential 4 and 1, and creates one new node of
potential 0 and increases the potential of the upper neighbor by at most
3: intotal the potential decreases by at least 2.

Together this provesthat the (a, b)-tree structure can be maintained efficiently.

Theorem. The (a, b)-tree structure supports fi nd, i nsert, and del et e
with O(log, n) block read or write operations and needs only an amortized
O(1) block writesperi nsert ordel et e.

We finally have to show one possible implementation of this structure.

tree_node_t *create_tree()
{ tree_node_t *tnp;
tnp = get_node();
t np- >hei ght 0;
t np- >degr ee 0;
return( tmp );

}

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new object)
{ tree_node_t *current_node, *insert_pt;
key t insert_key;
int finished;
current _node = tree;
if( tree->height == 0 && tree->degree == 0 )
{ tree->key[0] = new key;
tree->next[0] = (tree_node_t *) new object;
tree->degree 1;
return(0); /* insert in enpty tree */

}

create_stack();
whi | e( current _node->height > 0 )
/* not at leaf |evel */
{ int |ower, upper;
/* binary search anong keys */
push( current_node );
| ower = O; upper = current_node->degr ee;
whil e( upper > lower +1)
{ if( new key <
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current _node->key[ (upper+lower)/2 ] )
upper = (upper+l ower)/ 2;
el se
| ower = (upper+l ower)/2
}
current _node = current_node->next[| ower];
} /* now current_node is | eaf node in which
we insert */
insert_pt = (tree_node_t *) new object;
i nsert_key = new key;

finished = 0;
while( !'finished)
{ int i, start;
i f( current_node->height > 0 )
start = 1;
/* insertion in non-leaf starts at 1 */
el se
start = 0;

/* insertion in non-leaf starts at 0 */
i f( current_node->degree < B)
/* node still has room */
{ /* nove everything up to create
the insertion gap */
i = current_node->degree;
while((i > start) &&
(current _node->key[i-1] > insert_key))
{ current_node->key[i]
current _node->key[i-1];
current _node->next[i] =
current _node->next[i-1];
i -=1;

}

current _node->key[i] = insert_key;
current _node->next[i] insert_pt;
current _node- >degree +=1

finished = 1,
} /* end insert in non-full node */
else /* node is full, have to split

t he node*/
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tree_node_t *new_node;
int j, insert_done=0;
new _node = get_node();
i=B-1, j =(B-1)/2
while( j >=0)
/* copy upper half to new node */
{ if( insert_done |
i nsert_key < current_node->key[i] )
{ new_node->next[j] =
current _node->next[i];
new_node- >key[j--] =
current _node->key[i--];

}

el se

{ new_node->next[j] = insert_pt;
new _node- >key[j--] = insert_key;
i nsert_done = 1;

}

} /* upper half done, insert in |ower
hal f, if necessary*/
whil e( !'insert_done)
{ if( insert_key < current_node->key[i]

&% i >= start )

{ current_node->next[i +1]
current _node->next[i];
current _node->key[i +1]
current _node->key[i];

i -=1;

}

el se

{ current_node->next[i+1] =
i nsert_pt;
current _node->key[i+1] =
i nsert_key;
i nsert_done = 1;

}

} /*finished insertion */
current _node->degree = B+1 - ((B+1)/2);
new_node- >degree = (B+1)/2;
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new_node- >hei ght = current_node->hei ght;
/* split nodes conplete, now insert the
new node above */
i nsert_pt = new_node;
i nsert_key = new_node->key[0];
if( ! stack_enpty() )
/* not at root; nove one |evel up*/
{ current_node = pop();
}
else /* splitting root: needs copy to
keep root address*/
{ new_node = get_node();
for( i=0; i < current_node->degree;
i ++ )
{ new_node->next[i] =
current _node->next[i];
new_node->key[i] =
current _node->key[i];
}
new_node- >hei ght =
current _node- >hei ght ;
new_node- >degree =
current _node- >degr ee;
current _node->hei ght += 1;

current _node->degree = 2;

current _node->next[ 0] = new_node;
current _node->next[1l] = insert_pt;
current _node->key[1l] = insert_key;
finished =1;

} /* end splitting root */
} /'* end node splitting */
} /'* end of rebal ancing */
renove_stack();
return( 0 );

}

object _t *delete(tree_node_t *tree,
key t del ete_key)
{ tree_node_t *current, *tnp_node;
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int finished, i, j;
current = tree;
create_node_stack(); create_index_stack();
whil e( current->height > 0 ) /* not
at leaf level */
{ int |ower, upper;
/* binary search among keys */
| ower = O; upper = current->degree;
whil e( upper > lower +1 )
{ if( delete_key <
current->key[ (upper+lower)/2 1] )
upper = (upper +l ower)/ 2;
el se
| oner = (upper+l ower)/2;
}
push_i ndex_stack( | ower );
push_node_stack( current );
current = current->next[|ower];
} /* nowcurrent is |eaf node from
whi ch we delete */

for( i=0; i < current->degree ; i++ )
if( current->key[i] == delete_key )
br eak;
if( i == current->degree )

{ return( NULL ); /* delete failed,;
key does not exist */
}
el se /* key exists, now delete from
| eaf node */
{ object_t *del object;
del _object = (object_t *) current->next[i];
current->degree -=1
while( i < current->degree )
{ current->next[i] = current->next[i+1];
current->key[i] current->key[i+1];
i +=1;
} /* deleted from node, now rebal ance */
finished = 0;
while( ! finished)
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{ if(current->degree >= A)
{ finished = 1; /* node still ful
enough, can stop */
}
el se /* node becane underfull */
{ if( stack_enpty() )
/* current is root */
{ if(current->degree >= 2 )
finished = 1; /* root
still necessary */
else if ( current->height == 0 )
finished = 1; /* deleting
| ast keys fromroot */
else /* delete root, copy to
keep address */
{ tnp_node = current->next[O0];
for( i=0; i< tnp_node->degree;
i ++ )
{ current->next[i] =
t np_node->next[i];
current->key[i] =
t np_node- >key[i];
}
current->degree
t np_node- >degr ee;
current - >hei ght
t np_node- >hei ght ;
return_node( tnp_node );
finished = 1;

}

} /* done with root */
else /* delete fromnon-root node */
{ tree_node_t *upper, *neighbor

int curr;
upper = pop_node_stack();
curr = pop_index_stack();

if( curr < upper->degree -1)
/* not |ast*/
{ neighbor = upper->next[curr+1];



3 Balanced Search Trees

i f( nei ghbor->degree >A)
{ [/* sharing possible */
i = current->degree;
if( current->height > 0 )
current->key[i] =
upper - >key[ curr +1] ;
el se /* on leaf |evel
take | eaf key */
{ current->key[i]
nei ghbor - >key[ 0] ;
nei ghbor - >key[ 0]
nei ghbor - >key[ 1] ;

}

current->next[i] =

nei ghbor - >next [ 0] ;

upper - >key[ curr +1] =

nei ghbor - >key[ 1] ;

nei ghbor->next[0] =

nei ghbor - >next [ 1] ;

for(j =2; ) <

nei ghbor - >degree; j++)

{ neighbor->next[j-1]
nei ghbor->next[j];
nei ghbor - >key[ j - 1]
nei ghbor->key[j];

}
nei ghbor - >degree -=1
current->degree+=1
finished =1;
} /* sharing conplete */
else /* must join */
{ 1 = current->degree;
if( current->height > 0 )
current->key[i] =
upper - >key[ curr +1] ;
el se /* on leaf |evel
take | eaf key */
current->key[i] =
nei ghbor - >key[ 0] ;
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current->next[i] =
nei ghbor - >next [ 0] ;
for( j = 1;

j < nei ghbor->degree; j++)
{ current->next[++i] =
nei ghbor->next[j];
current->key[i] =
nei ghbor - >key[j];

}
current->degree = i+1;
return_node( neighbor );
upper - >degree -=1
i = curr+1;
while( i < upper->degree )
{ upper->next[i] =
upper - >next[i +1];
upper->key[i] =
upper - >key[i +1];
i +=1;
} /* deleted from upper,
now propagate up */
current = upper

} /* end of share/joining
if-elsex/

}

else /* current is last entry

in upper */

{ neighbor = upper->next[curr-1];
i f( neighbor->degree >A)

{

/* sharing possible */
for( j = current->degree;
i >1 0--)

{ current->next[j] =
current->next[j-1];
current->key[j] =
current->key[j-1];

}

current->next[1l] =

current->next[0];
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i = nei ghbor->degr ee;

current->next[0] =

nei ghbor - >next[i-1];

if( current->height > 0 )

{ current->key[1] =
upper - >key[curr];

}

else /* on |leaf |evel,

take | eaf key */

{ current->key[1] =
current->key[ 0] ;
current->key[0] =
nei ghbor - >key[i - 1] ;

}

upper - >key[curr] =

nei ghbor - >key[i-1];

nei ghbor - >degree -=1

current->degree+=1

finished =1;
} /* sharing conplete */
else /* must join */
{ 1 = neighbor->degree;

if( current->height > 0 )
nei ghbor->key[i] =
upper->key[curr];

else /* on | eaf |evel

take | eaf key */
nei ghbor->key[i] =
current->key[ 0] ;

nei ghbor->next[i] =

current->next[0];

for( j = 1;

j < current->degree; j++)
{ neighbor->next[++i] =
current->next[j];
nei ghbor->key[i] =

current->key[j];

}

nei ghbor - >degree = i +1;
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return_node( current );
upper - >degree -=1;
/* del eted from upper,
now propagate up */
current = upper;
} /* end of share/joining
if-else */
} /* end of current is (not)
| ast in upper if-else*/
} /* end of delete root/non-root
if-else */
} /* end of full/underfull if-else */
} /* end of while not finished */
return( del _object );
} /* end of delete object exists if-else */

}

We used herein the del ete operation two stacks, one for the node and onefor
the index within the node. Again all stacksin the insert and delete operations
should be chosen as arrays; the necessary size is the maximum height, so it
dependson a, theminimum degree of thenodes. But inanormal application, the
disk blocks are currently chosen as 4-8 kB, so avalueintherangea ~ 500 is
reasonable, in which case our assumption n < 21 implies a maximum height
of 12. Inmost real applications, aheight of 3isaready large. Because accessing
asingle disk block is slow but accessing many consecutive disk blocks takes
only slightly longer, the size of the nodes can a so be chosen much larger than
the blocksin which the disk is organized if the operating system allowsto keep
these groups of consecutive blocks together.

The (a, b)-tree structure allows for b > 24, aso a top-down rebalancing
method, where al the rebalancing is done on the way from the root to the leaf
and no pass back from the leaf to the root is necessary. This sounds convenient
and it avoids the use of a stack, but it has the disadvantage that the number of
changed nodesislarger. Theideais simple: for insertion, we split any node of
degree b we encounter along the path down. This splitting does not propagate
up because the node above was already split before, so it still has room for
an additional entry. And at the bottom level, we arrive with a node that still
has room for the new leaf that we insert. In the same way, for deletion, we
perform joining or sharing for each node on the path down that has degree a;
again this does not propagate up because the node above already has degree at
least a + 1, and on the bottom level we arrive with a node that can spare the
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entry that we delete. Thuswe perform a preemptive splitting or joining; we still
change only O(log, n) nodes, but the amortized O(1) bound no longer holds.
Also, we require b > 2a, so this method does not apply to classical B-trees
(with b = 2a — 1). A potentia useful aspect of the top-down method is that it
requires only alock on the current node and its neighbors, instead of the entire
path to the root.

A number of alternative solutions have been proposed for the problem of
blockwise memory access. Instead of creating a new tree structure like the
(a, b)-trees that is explicitly adapted to the memory block setting, one could
useany normal binary tree structure, like height-bal anced trees, and try to group
their nodes into blocks in such a way that the maximum number of distinct
blocks aong any path from root to leaf becomes small (Knuth 1973; Sprugnoli
1981; Diwan et al. 1996; Gil and Itai 1999). Because theimplicit representation
of asubtreein an (a, b)-tree node as an array of keysand an array of pointersis
very dense, they have a slight advantage over any method that stores a subtree
explicitly in ablock. But amethod that takes any tree and groups the tree nodes
into blocks can reuse the results on the underlying tree structure and can aso
be applied to overlay structures on trees, as described in Chapter 4. Replicating
tree nodes so that they occur in several blocksimproves the query performance
but makes updates difficult (Hambrusch and Liu 2003).

A different balance criterion for the same type of block nodes as (a, b)-
trees was proposed in Culik, Ottmann, and Wood 1981; their r-dense m-ary
multiway trees also have all leaves at the same depth, but balancing is achieved
by the property that any nonroot node that is not of maximum degree (which
ism) has @ least r nodes with the same upper neighbor that are of maximum
degree. This criterion is similar to the brother trees (Ottmann and Six 1976;
Ottmann, Six, and Wood 1978; Ottmann et a. 1984) and inheritsfrom there an
inefficiency in the deletion algorithm (O ((logn)™ 1) for m-ary treesinstead of
O(logn)).

A method proposed for small block size is to use search trees following
the second model, with the objects in the nodes, but keep several consecutive
keys and objects in each node (Jung and Sahni 2003). Then each node still
has only two lower neighbors — one for al keys less than the smallest node
key and one for al keys larger than the largest node key. Because it is essen-
tially still a binary tree, it can be combined with any rebalancing scheme like
height-balanced trees. The motivation given for this structure was that the pro-
cessor cache is organized in the same way as the external memory, only with
much smaller blocks. But a single block in the cache might still have room for
morethan anormal tree node, so packing moreinformation in the node requires
fewer cache load operations. But this improvement could as well have been
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reached by taking an (a, b)-tree with small b like a (4, 8)-tree. For large block
size this method is clearly less efficient than the (a, b)-tree because the depth
of the tree is between log,(n/b) and 1.4lo0g,(n/a) (for the height-balanced
version) instead of between log,,(r) and log, (n).

3.4 Red-Black Treesand Trees of Almost Optimal Height

As already observed in the previous section, the idea of trees with variable-
degree nodesis also a useful ideafor normal main memory binary search trees.
A node of an (a, b)-tree can be resolved into a small binary search tree with a
to b leaves. This was aready observed by Bayer (1971) simultaneously with
the definition of B-trees as external memory structure (Bayer and McCreight
1972). He proposed the smallest special casg, (2, 3)-trees, as a binary search
tree, where any node of degree 3 is replaced by two binary nodes connected
by an edge, which he called a “horizontal” edge, because it connected two
nodes on the same level of the underlying (2, 3)-tree. In Bayer (1972a) he then
extended the ideato (2, 4)-trees as underlying structure and called the derived
binary search trees “symmetric binary B-trees’ (SBB-trees). In these binary
search trees, the edges are labeled as “downward” or “horizontal” with the
restrictions:

{ the paths from the root to any leaf have the same number of downward
edges, and
{ there are no two consecutive horizontal edges.

This structure directly corresponds to (2, 4)-trees; if we take such a tree and
collapse all edges at the lower end of a horizontal edge into the previous node,
we obtain a search tree with nodes of degree ranging from 2 to 4, in which all
leaves are on the same level. We know from the previous chapter that such trees
have height at most log, 2, so the derived binary search tree has height at most
2log, n. And we inherit from the underlying (2, 4)-tree structure arebalancing
algorithm.

A further reformulation was done by Guibas and Sedgewick (1978), who
labeled the nodesinstead of the edges, making the top node of each small binary
tree replacing a (2, 4)-node black and the other nodesred. Thisisthe red-black
tree now used in many textbooks: a binary search tree with nodes colored red
and black such that

{ the paths from the root to any leaf have the same number of black nodes,
{ there are no two consecutive red nodes, and
{ theroot is black.
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We aso assign colors to the leaves; this breaks the complete analogy to
(2, 4)-trees but is convenient for the rebalancing algorithm.

ROR R | o

REPLACEMENT OF (2, 4)-NODES TO RED-BLACK-LABELED BINARY TREES

We can collapse any red node in the black node above it and obtain a
(2, 4)-tree apart from the nodes on leaf level. So a red-black tree has height
at most 2logn + 1. And we have from the underlying (2, 4)-tree structure a
rebalancing algorithm with O(logn) worst-case complexity and that changes
amortized only O(1) nodes. The only disadvantage with regard to our previous
framework isthat this rebalancing algorithm uses instead of rotations the more
complex operations of split, share, and join. But there is a so a rotation-based
algorithm with the same properties that we will describe later.

RED-BLACK TREE WITH NODE COLORS

Other equivalent versions of the same structure are the half-balanced trees
by Olivié (1982), characterized by the property that for each internal node, the
longest path to aleaf is at most twice aslong as the shortest path, whose equiv-
alence to the red-black trees was noticed by Tarjan (1983a) and the standard
son-trees by Ottmann and Six (1976) and Olivié (1980), which are trees with
unary and binary nodes, whose all leaves are at the same depth, and there are
no unary nodes on the even levels. Severa aternative rebalancing algorithms
for these structures have been proposed in Tarjan (1983a), Zivani, Olivig, and
Gonnet (1985), Andersson (1993), Chen and Schott (1996).

Guibas and Sedgewick (1978) also observed that several other rebalancing
schemes could be expressed as color labels on the vertices associated with
certain rebalancing actions. For the height-balanced trees, it was aready long
known that one need not store the height in each node but just the information
whether the two subtrees have equal height, or the left or the right height is
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smaller (by one). This was originally intended as memory-saving encoding,
but it brings the height-balanced trees also into the node-coloring framework.
In a height-balanced tree if one colors every node of odd height whose upper
neighbor is of even height red and all other nodes black, then it satisfies the
conditions of ared-black tree. But not all red-black trees are height-balanced,;
an additional restrictionisthat if anodeisblack and both of itslower neighbors
are black, then at least one of their lower neighbors must be red. Under these
conditions, it is possible to reconstruct the height balance of a node from the
colors of the lower neighbors and their lower neighbors, and with this infor-
mation one can restore the height balance of the tree. Guibas and Sedgewick
(1978) gave several other rebalancing schemes based on red-black colorings of
vertices, most interesting among them top-down rebalancing methods, which
can be executed already while going down from the root to the leaf, making
the second pass back to the root unnecessary.

A different development derived from the main memory reinterpretation of
(a, b)-treesistrees of small height. We have seen in Chapter 2 that the height of
abinary search treewith n leavesisat least log n, and we can maintain an upper
height bound of 1.4410gn using the height-balanced trees. The bounds for the
weight-balanced trees and for the red-black trees are both somewhat worse —
2logn for the red-black tree and at least 2logn (depending on the choice of
«) for the weight-balanced trees. This suggests the question whether we can
do better than 1.44 log n while keeping the O (log ) update time. Without that,
we could just rebuild an optimal tree after each update. The first scheme that
reached (1 + %) logn for any k > 1 (the algorithms depending on k) were the
k-trees by Maurer, Ottmann, and Six (1976), but a much simpler solution was
discovered by Andersson et al. (1990). They just take a (2%, 2¢*1)-tree as un-
derlying structure and replace each of the high-degree nodes by a small search
tree of optimal height (which isk + 1). For the underlying tree, we have again
the general rebalancing algorithm of (a, b)-trees, using split, join, and share
operations, and on the embedded binary trees these transformations can be
reproduced by rotations because we showed in Section 2.2 that any transfor-
mation of search trees on the same set of |eaves can be realized by rotations. So
this search tree structure has height at most (k + 1) logy () = (1 + %) log, n,
with fixed k rebalancing donein O(logn), with amortized only O (1) rotations.
Choosing k = loglogn, they get further down to height (1 + o(1)) log, n, and
Andersson and Lai reduced in their dissertations and a series of papers with
varying coauthors the o(logn) term further. The last word seems to be that
height [log, 7| cannot be maintained with o(n) rebalancing work, because for
n = 2% theuniquesearchtreesof heightk for {1, ..., n}and {2, ..., n + 1} dif-
fer in Q(n) positions; but height [log, n | 4 1 can be maintained with O (logn)
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rebalancing work (Andersson 1989a; Lai and Wood 1990; Fagerberg 1996a).
All thisis, of course, irrelevant for practical applications; the algorithmsaretoo
complicated to code, and the small gain inthe query timefor thefind operations
(which do not get more complex) would not be justified by the large lossin the
update operations.

We already mentioned the height bound of 2logn + 1.

Theorem. A red-black tree of height & has at least 2(*/2+1 — 1 |eaves for h
even and at least (2) 2¢'-1/2 — 1 |eaves for & odd.
The maximum height of ared-black tree with n leavesis2logn — O(1).

Proof. We already observed that the height bound follows from the height
bound on the (a, b)-trees: a (2, 4)-tree with n leaves has height at most logn
and each (2, 4)-node is replaced by abinary tree of height 2, so the underlying
binary tree has at most height 2logn. But we have to show that this does not
overestimate the height: the (2, 4)-tree of height logn has only nodes of degree
2, s0 the binary tree underlying the extremal (2, 4)-tree also has height only
logn. But we can determine the extremal red-black tree. Let 7,/9"% pe the
red-black tree of height 2 with minimal number of leaves. Then there is a
path from the root to aleaf of depth /, and all red nodes have to occur along
this path; otherwise we can reduce the number of leaves. So the structure of
7,4k s that there is this path of length &, and off this path there are only
complete binary trees, colored all black, of height i, so with 2' |eaves. Because
the height of the binary tree, together with the number of black nodes along the
path above the tree, is the same for al these binary trees, the total number of
leavesis of the form

1420422420 4.0 420,

wherei; < i;1 and each exponent occursat most twice, once below ared node
and once below its black upper neighbor. So for i even the number of leaves
of Tred—black is

h

14220+ 28 422 4 ... 4 20/2=0y — ph/A+1 _ 9
andfor 2 odd itis
1+ 2(20 L2l 2 4 2((/1—1)/2)—1) + 2(h=1)/2 _ §2(h—1)/2 1
2

So the worst-case height of ared-black treeisrealy 2logn — O(1).
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RED-BLACK TREE OF HEIGHT 8 WITH MINIMUM NUMBER OF LEAVES

As in the case of height-balanced trees, not only this worst-case height
bound istight, but it is possible that almost all leaves are at that depth; such a
red-black tree was constructed in Cameron and Wood (1992).

We will describe now the red-black tree with its standard bottom-up re-
balancing method because it is classical textbook material, and in Section 3.5
an alternative top-down rebalancing method. Both work on exactly the same
structure. The node of ared-black tree contains as rebalancing information just
that color entry.

typedef struct tr_n t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;

enum {red, black} color;
/* possibly other information */
} tree_node_t;

We have to maintain the following balancedness properties:

(1) each path from the root to aleaf contains the same number of black nodes,
and
(2) if ared node has lower neighbors, they are black.

It is also convenient to add the condition

— theroot is black.



94 3 Balanced Search Trees

This is no restriction because we can always color the root black without
affecting the other conditions; but this assumption guarantees that each red
node has an upper neighbor that is black, so we can conceptually collapse all
red nodesinto their upper neighbors to get the isomorphism with (2, 4)-trees.

Therebalancing operations are different for insert and del ete operations. For
insert, we perform the basic insert and color both new leaves red. This possibly
violates condition (2), but preserves condition (1); so the rebalancing after the
insert starts with a red node with red lower neighbors and moves this color
conflict up along the path to the root till it disappears.

For delete, we perform the basic delete but retain the colors of the nodes; if
thedeleted leaveswere black, thisviolates condition (1) but preserves condition
(2); again we will move this violation up along the path to the root till it
disappears.

The insert-rebalance method works as follows: If the violation of (2) occurs
in the root, we color the root black. Else let * upper be a node with lower
neighbors* cur r ent and* ot her , where* cur r ent isthe upper node of a
pair of red nodesviolating (2). Becausethereisonly one pair of nodesviolating
(2), *upper isablack node. Now therules are as follows:

1. If ot her isred, color curr ent and ot her black and upper red.
2. If current =upper->l eft
21 If current->ri ght->col or isblack,
perform aright rotation around upper and color upper - >r i ght
red.
22 Ifcurrent->right->col or isred,
perform aleft rotation around cur r ent followed by aright rotation
around upper , and color upper - >ri ght andupper - >l ef t
black and upper red.
3. If current =upper->ri ght
3.1 If current ->| ef t - >col or isblack,
perform aleft rotation around upper and color upper - >l ef t red.
32 If current->l eft->col or isred,
perform aright rotation around cur r ent followed by aleft rotation
around upper , and color upper - >ri ght and upper - >l ef t
black and upper red.

It is easy to see that condition (1) is preserved by these operations, and the
violation of condition (2) is moved two nodes up in the tree for cases 1, 2.2,
and 3.2 and disappears for cases 2.1 and 3.1 or if it was in the root. Because
we need only O(1) work on each level along the path to the root of length
O(logn), thisrebalancing takes O(logn) time.
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upper abl bl r bl bl
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current other
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SITUATION AND CASES I, 2.1, AND 2.2 OF INSERT-REBALANCE
current Has A RED LowER NEIGHBOR

Indeed, with the same argument as for (a, b)-treesin general, we can show
that the amortized number of rotationsisonly O(1). Associate with each black
node the number of red nodes for which this node is the next black node
above it, and give black nodes potential 1, O, 3, 6 if they are associated with
0, 1, 2, 3 red nodes, respectively. Then each basic insert increases the sum of
potentials by at least 3, whereas operations 1, 2.2, and 3.2 decrease the sum of
potentials by at least 2, and operations 2.1 and 3.1 can occur only once during
the rebalancing. This same analysis works although the rebalancing method by
rotationsis not eguivalent to the rebalancing by split, join, and share.

By adlight complication of the rebalancing rules, we could even get aworst-
case number of four rotationsin an insert rebalancing. In the cases 2.2 and 3.2,
which are the only rotation cases that propagate the color conflict, we need to
color upper - >ri ght and upper - >l ef t black because it is possible that
both lower neighbors of cur r ent are red; but that can happen only once on
the leaf level. After that, there is always at most one red lower neighbor. Then
we could color inthe cases2.2 and 3.2 upper - >ri ght andupper - >l ef t
red and upper black; with that change, all rotation cases above the leaf level
would remove the color conflict.

The delete rebalance is unfortunately much more complicated.” In this
situation we have aviolation of property (1): anode* cur r ent for which all
paths through that node to aleaf contain one black node less than they should.
There are two simple situations:

1. If current isred, we color it black.
2. If current istheroot, then (1) holds anyway.

2|t is very easy to make an error among these many cases; in awell-known algorithms textbook,
one of the delete-rebalance cases is wrong.
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Otherwisewecan assumethat * cur r ent ishlack and it hasan upper neighbor
*upper , which itself has another lower neighbor * ot her . Because all paths
from * ot her to aleaf contain at least two further black vertices, all vertices
below * ot her referenced in the following cases do indeed exist. The cases
and transformation rules are the following:

3. Ifcurrent =upper->left

3.1 If upper isblack, ot her isblack, and ot her - >| ef t ishlack,
perform aleft rotation around upper and color upper - >l ef t red
and upper black. Then the violation of (1) occursin upper .

3.2 If upper isblack, ot her isblack, and ot her - >l ef t isred,
perform aright rotation around ot her , followed by aleft rotation
around upper , and color upper - >| ef t , upper - >ri ght and
upper black. Then (1) isrestored.

3.3 If upper isblack, ot her isred, andot her->l eft->l eft is
black, perform aleft rotation around upper , followed by aleft
rotation around upper - >l ef t , and color upper - >l ef t - >l ef t
red, upper - >l ef t and upper black. Then (1) isrestored.

3.4 If upper isblack, ot her isred, and ot her- >l ef t - >l ef t isred,
perform aleft rotation around upper , followed by aright rotation
around upper - >l ef t - >ri ght, and aleft rotation around
upper - >l ef t, and color upper - >l eft - >l ef t and
upper - >l ef t - >ri ght black, upper - >l ef t red, and upper
black. Then (1) isrestored.

3.5 If upper isred, ot her isblack, and ot her - >| ef t isblack,
perform aleft rotation around upper and color upper - >l ef t red
and upper black. Then (1) isrestored.

3.6 If upper isred, ot her isbhlack, and ot her - >l ef t isred,
perform aright rotation around ot her , followed by aleft rotation
around upper , and color upper - >l ef t and upper - >ri ght
black and upper red. Then (1) isrestored.

4. If current = upper->ri ght

4.1 If upper isblack, ot her isblack, and ot her - >ri ght isblack,
perform aright rotation around upper and color upper - >ri ght
red and upper black. Then the violation of (1) occursin upper .

4.2 If upper isblack, ot her isblack, and ot her - >ri ght isred,
perform aleft rotation around ot her , followed by aright rotation
around upper , and color upper - >l ef t , upper - >ri ght and
upper black. Then (1) isrestored.

4.3 If upper isblack, ot her isred, and ot her - >ri ght - >ri ght is
black, perform aright rotation around upper , followed by aright
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rotation around upper - >r i ght , and color upper - >ri ght - >
ri ght red, upper->ri ght andupper black. Then (1) isrestored.

4.4 If upper ishlack, ot her isred, and ot her - >ri ght - >ri ght is

45

4.6

P "7?\
bl ?

current

red, perform aright rotation around upper , followed by aleft rotation
around upper - >ri ght - >l ef t , and aright rotation around
upper - >ri ght, and color upper - >ri ght - >ri ght and
upper->right - >l ef t black, upper - >ri ght red, and upper
black. Then (1) isrestored.

If upper isred, ot her isblack, and ot her - >ri ght isblack,
perform aright rotation around upper and color upper - >ri ght
red and upper black. Then (1) isrestored.

If upper isred, ot her isblack, and ot her - >ri ght isred,
perform aleft rotation around ot her , followed by aright rotation
around upper , and color upper - >l ef t and upper - >ri ght
black and upper red. Then (1) isrestored.

bl 3.2 gap1 1

bl bl

other

bl ?

SITUATION AND CASES 3.1 TO 3.6 OF DELETE REBALANCE:
THE PATHS THROUGH cur r ent HAvVE ONE BLACK NODE ToO FEW
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Again we perform only O (1) work per level along the path from the leaf to the
root, so O(logn) in total. Only the operations 3.1 and 4.1 can occur more than
once, but these can indeed occur ©(log ) times, as one can see when one starts
with a complete binary tree, colored entirely black, and removes one vertex.
This completes the proof that rebalancing can be done for red-black trees after
insertions and deletionsin O (logn) time.

Theorem. Thered-black tree structure supportsfi nd, i nsert , and
del et e in O(logn) time.

Again we give an implementation of i nsert in red-black trees.

i nt

insert(tree_node_t *tree, key_t new key,

obj ect _t *new_obj ect)
tree_node_t *current_node;
int finished = O;

if( tree->left == NULL )

{

{

tree->left = (tree_node_t *) new_object;
tree->key = new key;

tree->col or = bl ack;

/* root is always black */

tree->right = NULL;
}
el se
{ create_stack();

current_node = tree;
whil e( current_node->right !'= NULL )
{ push( current_node );
i f( new key < current_node->key )
current _node = current_node->| eft;
el se
current _node =
current _node->ri ght;
}
/* found the candi date | eaf.
Test whet her key distinct */
i f( current_node->key == new key )
return( -1);
/* key is distinct,
now performthe insert */
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{ tree_node_t *old_|eaf, *new|eaf;

ol d_| eaf = get_node();

old | eaf->left = current_node->left;

ol d_| eaf - >key = current_node- >key;

old leaf->right = NULL

ol d_l eaf->col or = red;

new | eaf = get_node();

new | eaf->l eft = (tree_node_t *)

new_obj ect ;

new_| eaf - >key = new _key;

new | eaf ->right = NULL

new | eaf - >col or = red;

i f( current_node->key < new key )

{ current _node->left = old_|eaf;
current _node->right = new_| eaf;
current _node->key = new key;

}

el se

{ current _node->| eft new | eaf;
current _node->right = old_|eaf;

}

}

/* rebal ance */

i f( current_node->col or == bl ack |
current_node == tree )

finished = 1;

/* else: current_node is upper node of

red-red conflict*/

while( !stack _enpty() && !finished )

{ tree_node_t *upper_node, *other_node;
upper _node = pop();

i f (upper_node->l eft->col or ==
upper _node- >ri ght - >col or)

{ /* both red, and upper_node bl ack */
upper _node- >l eft->col or = bl ack
upper _node->ri ght->col or = bl ack
upper _node->col or = red;

}

el se /* current_node red,
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ot her _node bl ack */
i f( current_node == upper_node->l eft)

{

{

}

ot her _node = upper_node->ri ght;

/* other_node->col or == black */

i f( current_node->right->col or ==

bl ack )

{ right_rotation( upper_node );
upper _node- >ri ght->col or = red;
upper _node->col or = bl ack
finished = 1;

}

el se /* current_node->right->col or

== red */

{ left_rotation( current_node );
right_rotation( upper_node );
upper _node- >ri ght - >col or =
bl ack;
upper _node->| eft->col or =
bl ack;
upper _node->col or = red;

}

el se /* current_node ==
upper _node->ri ght */

{

ot her _node = upper_node- >l eft;

/* other_node->col or == black */

i f( current_node->left->color ==

bl ack )

{ left_rotation( upper_node );
upper _node->l eft->col or = red;
upper _node->col or = bl ack
finished = 1;

}

el se /* current_node->l eft->col or

==red */

{ right_rotation( current_node );
left _rotation( upper_node );
upper _node->ri ght->col or =
bl ack;
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upper _node- >l eft->col or =
bl ack;
upper _node->col or = red;

}
} /* end current_node |eft/right
of upper */

current _node = upper_node;
} /*end other_node red/black */
if( !'finished & !stack_empty() )
/* upper is red, conflict possibly
propagat es upward */
{ current_node = pop();
i f( current_node->col or == bl ack )
finished = 1;
/* no conflict above */
/* else: current is upper node of
red-red conflict*/
}
} /* end while | oop noving back to root */
tree->color = black; /* root is
al ways bl ack */
}
remove_st ack();
return( 0 );

We do not give code for the delete function, which works in the same way
but with the numerous cases given in the delete rebalance description. Again,
asin the previous chapter, the stack should be chosen as array.

3.5 Top-Down Rebalancing for Red-Black Trees

The method of the previous section was again very similar to the height-
balanced and weight-balanced trees discussed in Sections 3.1 and 3.2; it sepa-
rates the finding of the leaf from the rebalancing, which is done in a bottom-up
way, returning from the leaf back to the root. But red-black trees also a-
low a top-down rebalancing, as did weight-balanced trees and (a, b)-trees,
which performs the rebalancing on the way down to the leaf, without the
need to return to the root. This method is a specia case of the method we
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mentioned in Section 3.3, but we will describeit now in detail for the red-black
trees.

For insertion, we go down from the root to the leaf and ensure by some
transformationsthat the current black node has at most one red lower neighbor.
So each timewe meet ablack nodewith two red lower neighbors, we haveto ap-
ply some rebalancing transformation; this corresponds to the splitting of (2, 4)-
nodes of degree 4. Thus, at the leaf level we alwaysarrive at ablack leaf, sowe
can insert anew leaf below that black node without any further rebalancing.

For deletion, we go down from the root to the leaf and ensure by some
transformations that the current black node has at |east one red lower neighbor.
So each time we meet a black node with two black lower neighbors, we have
to apply some rebalancing transformation; this corresponds to the joining or
sharing of (2, 4)-nodes of degree 2. Thus we arrive at the leaf level in a black
node that has at least one red lower neighbor, so we can delete aleaf below that
black node without any further rebalancing.

The following are the rebalancing rules for the top-down insertion: Let
*current be the current black node on the search path and * upper be
the black node preceding it (with perhaps a red node between these two
black nodes). By our rebalancing, * upper has aready at most one red lower
neighbor.

1 Ifatleastoneof current->l eft andcurrent->right isblack, no
rebalancing is necessary.
2. Ifcurrent->l eft andcurrent->ri ght areboth red, and
current->key < upper - >key
21 If current =upper->left
colorcurrent->left andcurrent->ri ght black and
current red.
If upper - >l ef t - >key < newkey
{ setcurrent toupper->left->left,ese
{ setcurrent toupper->l eft->right.
22 If current =upper->left->left
perform aright rotation in upper , and color upper - >l ef t and
upper - >ri ght red, and upper - >l eft->l eft and
upper - >l eft->ri ght black.
If upper - >l ef t - >key < new.key
{ setcurrent toupper->left->left, ese
{ setcurrent toupper->l eft->right.
23 Ifcurrent =upper->left->right
perform aleft rotation in upper - >I ef t followed by aright rotation
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inupper , and color upper - >l ef t and upper - >ri ght red, and
upper->l eft->ri ght andupper->ri ght->l ef t black.

If upper - >key < newkey

{ setcurrent toupper->left->right,else

{ setcurrent toupper->right->left.

3. Elsecurrent->l eft andcurrent->ri ght areboth red, and
current->key > upper - >key

31

3.2

33

If current =upper->right

color current - >l eft andcurrent->ri ght black and
current red.

If upper - >ri ght - >key < new.key

{ setcurrent toupper->right->left,ese

{ setcurrent toupper->right->right.

If current =upper->right->right

perform aleft rotation in upper , and color upper - >l ef t and
upper - >ri ght red, and upper - >ri ght - >l ef t and
upper - >ri ght - >ri ght black.

If upper - >ri ght - >key < newkey,

{ setcurrent toupper->right->left,else

{ setcurrent toupper->right->right.

If current =upper->right->left

perform aright rotation in upper - >ri ght , followed by aleft
rotation in upper , and color upper - >l ef t andupper - >ri ght
red, and upper - >l eft - >ri ght andupper->ri ght->| eft
black.

If upper - >key < newkey,

{ setcurrent toupper->left->right,else

{ setcurrent toupper->right->left.

The new current in cases 2 and 3 was previously a red node, so both
its lower neighbors are black. After this rebalancing transformation, we set
upper tocurrent and movecurrent further down aong the search path
until it meets either a black node or a leaf. If it meets a black node, we
repeat the rebalancing transformation, and if it meets a leaf, we perform the
insertion. The insertion creates a new interior node below upper , which we
color red. If upper isthe upper neighbor of that new red node, we arefinished,
else the single red node below upper is the node above the new node; then
we perform a rotation around upper, and have restored the red-black tree

property.



104 3 Balanced Search Trees

CASES 2.1 TO 2.3 OF TOP-DOWN INSERTION:
upper AND current ARE MARKED WITH cUr r ent MovING DowN

Next we give an implementation of i nsert in red-black trees with top-
down rebalancing

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new object)

{ if( tree->left == NULL )
{ tree->left = (tree_node_t *) new object;
tree->key = new key;

tree->col or = bl ack;
/* root is always black */
tree->right = NULL;
}
el se
{ tree_node_t *current, *next_node, *upper
current = tree;
upper = NULL;
while( current->right !'= NULL )
{ if( new_key < current->key )
next _node = current->left;
el se
next _node = current->right;
if( current->color == black )
{ if( current->left->color == black |
current->right->col or == black )
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{ upper = current;
current = next_node;

}

else /* current->left

and current->right red */

{ [/* need rebal ance */

i f( upper == NULL )

/[* current is root */

{ current->left->color = black
current->right->col or = black
upper = current;

}

else if (current->key <

upper - >key )

{ [/* current left of upper */

if( current == upper->left )
{ current->left->color =
bl ack;
current->right->color =
bl ack;

current->color = red;

}

else if( current ==

upper->left->left )

{ right _rotation( upper );
upper - >l eft - >col or = red;
upper->right->col or = red;
upper->l eft->left->color =
bl ack;
upper->l eft->ri ght->col or
bl ack;

}

else /* current ==

upper->l eft->right */

{ left_rotation
(upper->left );
right_rotation( upper );
upper->l eft->col or = red;
upper->right->col or = red;
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upper - >right->l eft->col or
bl ack;
upper - >l eft->ri ght->col or
bl ack;

}
}

el se /* current->key >=
upper - >key */
{ [/* current right of upper */

if( current == upper->right )
{ current->left->color =
bl ack;
current->right->color =
bl ack;

current->col or = red;

}

else if( current ==

upper->right->right )

{ left _rotation( upper );
upper - >l eft->col or = red;
upper->right->color = red;
upper->right->left->color =
bl ack;
upper->right->right->color =
bl ack;

}

else /* current ==

upper->right->left */

{ right_rotation(
upper->right );
| eft_rotation( upper );
upper->l eft->col or = red;
upper - >right->col or = red;
upper - >ri ght->l eft->col or
bl ack;
upper - >l eft->ri ght->col or
bl ack;

}

} /* end rebal ancing */
current = next node;
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upper = current;
/*two bl ack | ower nei ghbors*/
}
}

else /* current red */
{ current = next_node; /*nove down */
}
} /* end while; reached |eaf. always
arrive on black |eaf*/
/* found the candi date | eaf. Test
whet her key distinct */
i f( current->key == new key )
return( -1)
/* key is distinct, now performthe
insert */
{ tree_node_t *old_leaf, *new.l eaf;
ol d_l eaf = get_node();
old leaf->left = current->|eft;
ol d_| eaf - >key = current->key;
old leaf->right = NULL
ol d_| eaf->col or = red;
new | eaf = get node();
new | eaf->l eft = (tree_node_t *)

new _obj ect;
new_| eaf - >key = new_key;
new | eaf->right = NULL

new_| eaf - >col or = red;

i f( current->key < new key )

{ current->left = old_|eaf;
current->right new_| eaf;
current->key = new_key;

}

el se

{ current->left = new|eaf;
current->right = ol d_I eaf;

}

}
}

return( 0 );
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Therebalancing rulesfor the top-down del etion are again more complicated.
Let *cur r ent bethe current black node on the search path and * upper be
the black node preceding it (with perhaps a red node between these two black
nodes). We need to maintain that below that at least one of upper - >| ef t
and upper - >ri ght isred.

If at least oneof current - >l eft andcurrent ->ri ght isred, no
rebalancing is necessary. Set upper tocur rent and movecur r ent
down the search path to the next black node.

.Ifcurrent->left andcurrent->ri ght areboth black, and

current - >key < upper - >key
21 If current =upper->left,and

211

212

213

upper->right->left->left and

upper ->right - >l ef t - >ri ght are both black:

Perform aleft rotation in upper and color upper - >| ef t
black, and upper->l eft->l ef t and

upper->l eft->ri ght red, and set cur r ent and upper
toupper->l eft.

upper->right->left->left isred:

Perform aright rotation in upper - >ri ght - >l ef t , followed
by aright rotation in upper - >ri ght and aleft rotation in
upper , and color upper - >l ef t and

upper ->ri ght - >l ef t black, and

upper - >ri ght andupper->l eft->| eft red, and set
current andupper toupper->l eft.
upper->right->left->left isblack and

upper->ri ght->left->right isred:

Perform aright rotation in upper - >ri ght , followed by aleft
rotationin upper , and color upper - >| ef t and

upper - >ri ght - >l ef t black, and upper - >ri ght and
upper->l eft->l eft red, and setcurr ent and upper to
upper->| eft.

22 If current =upper->left->left,and

221

222

upper->left->right->left and

upper - >l eft->ri ght - >ri ght areboth black: Color
upper->l eft->l eft andupper->l eft->ri ght red,
and upper - >| ef t black, and set cur r ent and upper to
upper->left.

upper->l eft->right->right isred:

Perform aleft rotation in upper - >l ef t , and color
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upper - >l eft->l ef t andupper->l eft->ri ght black,
and upper - >l ef t andupper->l eft->l eft->| eft red,
and set current andupper toupper->left->left.
223 upper->l eft->right->left isredand
upper - >l eft->ri ght - >ri ght isblack: Perform aright
rotation inupper - >l ef t - >ri ght , followed by aleft
rotation inupper - >l ef t , and color upper - >l ef t - >l ef t
and upper - >l ef t - >ri ght black, and upper - >l ef t and
upper->l eft->l eft->l eft red, andsetcurrent and
upper toupper->left->left.
23 Ifcurrent =upper->left->right,and
23.1 upper->left->left->left and
upper - >l eft - >l ef t - >ri ght areboth black: Color
upper->l eft->l eft andupper->l eft->ri ght red,
and upper - >l ef t black, and set cur r ent and upper to
upper - >l eft.
232 upper->l eft->left->left isred:
Perform aright rotation in upper - >I ef t , and color
upper - >l eft->l ef t andupper - >l eft - >ri ght black
and upper - >l ef t andupper->l eft->ri ght->right
red, and set cur r ent and upper to
upper->l eft->right.
2.3.3 upper->l eft->left->l eft isblack and
upper - >l ef t - >l ef t - >ri ght isred: Perform aleft
rotation inupper - >l ef t - >l ef t , followed by aright
rotation in upper - >l ef t , and color upper - >l ef t - >l ef t
and upper - >l ef t - >ri ght black, and upper - >l eft and
upper - >l eft->ri ght->right red, andsetcurrent
and upper toupper->l eft->right.
3. Elsecurrent->l eft andcurrent->ri ght areboth black, and
current->key > upper - >key
3.1 If current =upper->right,and
3.1.1 upper->l eft->right->right and
upper - >l eft->ri ght->l| eft areboth black:
Perform aright rotation in upper , and color upper - >ri ght
black, and upper - >ri ght - >ri ght and
upper->right->l ef t red, and set cur rent and upper
toupper->right.
3.1.2 upper->l ef t->ri ght->ri ght isred:
Perform aleft rotation in upper - >| ef t - >ri ght , followed
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by aleft rotation inupper - >l ef t and aright rotation in
upper , and color upper - >ri ght and

upper - >l eft->ri ght black,

and upper - >l ef t andupper - >ri ght ->ri ght red,
and set current and upper toupper - >ri ght.
upper->l eft->ri ght->right isblack and

upper->l eft->right->left isred:

Perform aleft rotation in upper - >| ef t , followed by aright
rotation in upper , and color upper - >r i ght and

upper - >l eft->ri ght black, and upper - >l ef t and
upper->right->right red, andsetcurrent andupper
toupper - >ri ght.

3.2 Ifcurrent =upper->right->right,and

321

322

3.2.3

upper->right->left->right and
upper->right->l eft - >l ef t areboth black:

Color upper - >ri ght - >ri ght and

upper - >ri ght->l eft red, and

upper - >ri ght black, and set cur r ent and upper to
upper->right.

upper->right->left->left isred:

Perform aright rotation in upper - >r i ght and color
upper->ri ght->ri ght andupper->ri ght->| eft
black, and upper - >ri ght and
upper->right->right->right red, andsetcurrent
and upper toupper->right->right.
upper->right->left->right isredand
upper->right->l eft->left ishlack:

Perform aleft rotationinupper - >ri ght - >l ef t , followed
by aright rotation in upper - >r i ght , and color

upper ->ri ght ->ri ght andupper->ri ght->l eft
black, and upper - >ri ght and
upper->right->right->right red,

and set current andupper toupper->ri ght->right.

33 If current =upper->right->left,and

331

upper->right->right->right and
upper->right->right->l eft areboth black:
Color upper - >ri ght - >ri ght and
upper->right->l eft red, and

upper - >ri ght black, and set curr ent and upper to
upper->right.
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CASES 2.1 TO 2.3 AND THEIR SUBCASES OF ToP-DOWN DELETION:
upper AND current ARE MARKED
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3.3.2 upper->right->right->right isred:
Perform aleft rotation in upper - >r i ght , and color
upper ->right->ri ght andupper->ri ght->left
black, and upper - >ri ght and
upper->right->left->left red, andsetcurrent and
upper toupper->right->left.

3.3.2 upper->right->ri ght->right isblack and
upper->right->right->left isred:
Perform aright rotation in upper - >ri ght - >ri ght,
followed by aleft rotationin upper - >ri ght , and
color upper - >ri ght - >ri ght and
upper->ri ght - >l ef t black,
and upper - >ri ght and
upper->right->left->left red, andset current and
upper toupper->ri ght->left.

After this rebalancing transformation, we move cur r ent further down along
the search path until it either meets a black node or aleaf. If it meets a black
node, we repeat the rebalancing transformation, and if it meets a leaf, we
perform the deletion. The deletion removes a leaf and an interior node below
upper , but thereisat least onered node below upper . If theleaf isbelow that
red node, we just delete it and the red node; otherwise, we perform a rotation
around upper to bring the red node above the leaf and then we delete the | eaf
and the red node. By this, we have maintained the red-black tree property.

3.6 Treeswith Constant Update Timeat a Known L ocation

We have seen that (a, b)-trees need only an amortized constant number of
node changes during any update. This essentially also holds for the structures
derived from them like red-black trees, but here we have to distinguish between
structural changes, that is, rotations, and recolorings. In the bottom-up rebal-
ancing algorithms described in the previous section, we need only an amortized
constant number of rotations but still have to recolor nodes all along the path.
With another rebalancing algorithm, Tarjan (1983a) managed to reduce the
number of rotations for the update of red-black trees from amortized O(1) to
worst-case O(1), but this disregards the time spent in finding the nodes that
should be rotated and the recoloring of nodes along the path, so even if we
know the leaf where we performed the update, it is not a constant update time,
not even in the amortized sense.
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Overmars (1982) observed avery simple argument that converts any binary
search tree with an O(logn) query and update timein atree with an amortized
0O(1) update time for updates at a known location, while keeping the O (logn)
query time, withjust someincreasein the multiplicative constant. Thetechnique
he introduced is bucketing in the leaves; instead of storing individual elements
in the leaves, he stores consecutive elements in a sorted linked list, so the
lowest levels of the search tree are replaced by a sorted list. The length of
these lists is limited by logn. Then the search time is still O(logn) because
the search consists of going to the correct leaf of the original tree and then
following the linked list. The insertion of an element consists of inserting it
in the correct ordered list, in time O(logn), followed by a splitting of the list
if the length of the list is above the threshold logr, and a rebalancing of the
tree to insert the new list as new leaf, also in time O(logn). Because the lists
overflow ontheaverage only every % logn insertions, the rebalancing of thetree
happens amortized only every Q(logn) steps and costs each time O (logn), so
the amortized cost of the rebalancing of the tree after aninsertionis O(1). This
assumes, of course, that we already know the exact place where the insertion
happens.

The same method cannot be used for deletions because a list can become
short but all its neighboring lists remain too long to join it to them. Instead,
there isamuch stronger transformation, also invented by Overmars (Overmars
and van Leeuwen 1981b; Overmars 1983), a global rebuilding analog to the
shadow copies of array-based structures that we introduced in Section 1.5. The
important insight is that in any balanced search treelike structure the rebal-
ancing after deletions, unlike insertions, can be deferred quite a lot. Without
rebalancing, a sequence of [ insertions in a balanced search tree with m leaves
might increase the height of the tree from clogm to [ + ¢ logm, where the
rebalanced height should increase only to clog(m + I). But a sequence of /
deletions without rebalancing does not increase the height at all, and the re-
balanced height should decrease to ¢ log(m — ). Thus, we can delete half the
elements of the tree without any rebalancing and have still at most only an error
¢ = 0(1) inthe height of the tree. Thus, we can set athreshold for the number
of deletions, for example, %m and when the threshold is met, we start building
a new tree, while still working with the old tree, copying O(1) elements at a
time, for example, four, so that the new tree is finished while the old tree still
contains more than, for example, %m elements. Then we switch the tree and
start unbuilding and returning the nodes of the old tree, again only a constant
number of nodes at atime. This way we have only a worst-case overhead of
O(21) for deletion of a known leaf. And again this technique can be combined
with any balanced search tree, and indeed with a much more general class of
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objects like the tree with ®(log n)-buckets for the |eaves described earlier for
which we have m = @(@). The main implementation difficulty is that the
current tree changes while we copy it.

So worst-case constant-time del etion in balanced search treesisin principle
no problem, but worst-case constant insertion was an open problem for some
time, finally solved by Levcopoulos and Overmars (1988) using a two-level
bucketing scheme, and by Fleischer (1996) using (a, 4a)-trees with a single-
level bucketing schemeand adeferred splitting of nodes, which becomeeligible
for splitting as soon as they contain at least 2a + 1 elements. Both methods are
quite complicated especially because they have to be combined with the global
rebuilding technique for deletions, so we do not give their details.

3.7 Finger Treesand Level Linking

The underlying idea of finger trees is that searching for an element should be
faster if the position of a nearby element is known. This nearby element is
known as the “finger.” The search time should not depend on the total size
of the underlying set S, but only on the neighborhood or distance from the
finger f tothe element ¢ that is searched. The reasonable way to measure the
distance is the number of elements between the finger and the query element.
And the best we can hopefor isasearchtimethat islogarithmicin that distance,
O (log|S N[f, q]l). Because finger search contains the usual find operation as
specia case (we could just add —oo to any set and take it as finger), it cannot
be faster, but the logarithmic query time can be reached.

This needs, however, some additional structure on the search tree. As we
have defined it, there is no connection from the leaf to any other node in the
tree. We even had to keep the path back to the root on the stack because it was
not recoverable from the leaf alone. But adding back pointersis no solution to
the problem either because we still may have to go all the way back to the root
to come from one leaf to its neighbor, asin the case of the rightmost |eaf of the
|eft subtree of root to its right neighbor. We need even more connectionsin the
tree — a structure known as level linking.

Finger trees were invented by Guibas et a. (1977) for a structure based on
B-trees and later discussed by Brown and Tarjan (1980) and Kosaraju (1981)
for (2, 3)-trees, and the concept of level linking is really easiest to explain in
the context of (a, b)-trees. In an (a, b)-tree, al leaves are at the same depth.
Suppose now we create for each depth i a doubly linked list of nodes at depth
i and also add back pointers to each node. Then afinger search method could
have the following outline: go from the finger leaf several levels up, movein
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the list of nodes at level i in the right direction till the subtree with the query
element isfound, and then go down in the tree again to the query element. The
importance of the level listsisthat the higher up thelist, the larger the distance
between consecutive entries in the list: they give views of the set at various
resolutions and allow moving large distances with few stepsif one chooses the
right list.

Thisidea does not directly transfer to binary search trees because the paths
from the root to the leaves have different lengths. But we do not need to assign
each node to some level — many nodes can be between levels. We need to
maintain two conditions:

1. within each level, the intervals associated with the nodes form a partition
of ]—o0, oo[; and

2. along each path from the root to aleaf, the number of nodes between two
nodes of consecutive levels is bounded by a constant C.

These conditions are obviously satisfied for (a, b)-trees: there condition (2) is
empty. They are also satisfied for red-black trees because the black nodes are
arranged in levels, and between two black nodes in consecutive levels thereis
at most one red node. Because we observed in the previous chapter that height-
balanced trees allow ared-black coloring, we can a so perform level linking on
height-balanced trees (Tsakalidis 1985). So many of the balanced search trees
we have discussed allow level linking. The structure of anodein alevel linked
treeisasfollows:

typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
struct tr_n_t *up;

struct tr_n_t *level left;

struct tr_n_t *level _right;

/* some bal ancing infornation */

/* possibly other infornmation */
} tree_node_t;

So in addition to the | eft and ri ght pointers going downward, we have
an up pointer and two pointers | evel | eft and | evel _ri ght that are
the links for the doubly linked list within the level. We use the convention
that | evel |1 eft =NULL and| evel ri ght = NULL for nodes between
levels, and one of them is NULL for nodes at the beginning or end of the level
lists. For the root, the up pointer is NULL.
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‘ A
Bhdbddhd

EXAMPLE OF A LEVEL-LINKED SEARCH TREE:
ALL EDGES CORRESPOND TO POINTERS IN BOTH DIRECTIONS

The strategy for the finger search is now that we go up from the finger as
long as on each level the next nodein the level list in the direction of the query
key separatesthefinger key and the query key. Then below this separating node
there is a subtree whose al leaves are between the finger leaf and the query
leaf, and this subtree has a number of leaves that is exponentia in its height,
which is proportional to the length of the search path.

By property (1), each path from a leaf to the root intersects each level. Let
n; be the node on the ith level from the leaf on the path from the finger to the
root. We have for each level that

n;- >l evel | eft->key < finger->key < n;->l evel _ri ght->key

{ Iffinger->key < query key, leti bethelast level for which
n;- >l evel ri ght - >key < query key, then all leaves of the subtree
below n;- >l evel ri ght - >| ef t have key values between
finger - >key and quer y_key. Sothere are at least 22— | eaves between
the finger and the query. Now one level higher, we have
query_key < n;y1- >l evel _ri ght - >key, sothe query key falseither
in the subtree below n;_; or in the subtree below
N, 1- >l evel right->left.
Each of these trees has by property (2) height at most C(i + 1). Together
with the path from the finger up to n; . ; and al the neighbor comparisons
on the levels, we have used O (i) work to find a query key whose distance to
the finger is at least 221, giving the
O(log (distance(f i nger , quer y)))-bound we claimed.

{ Similarly, if fi nger - >key > query _key, leti bethelast level for
whichn;- >l evel | ef t - >key > query key, thenal leaves of
subtree below n;- >l evel _| ef t - >ri ght have key values between
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finger->key and quer y _key. So there are at least 2! |eaves between
the finger and the query. Now one level higher, we have

n;.1- >l evel | eft->key < query_key, sothe query key fallseither
in the subtree below n; ;- > evel | eft->ri ght orinthe subtree
below n,, ;. Each of these trees has by property (2) height at most C(i + 1).
Together with the path from the finger up to n; .1 and all the neighbor
comparisons on the levels, we again used O (i) work to find a query key
whose distance to the finger is at least 21, giving the

O (log (distance(f i nger , quer y)))-bound we claimed.

:n i+l—>r1ght

on >right

inger }

: °
finger key query key
FINGER SEARCH IN A LEVEL-LINKED TREE

Theorem. A level-linked tree supports finger search in time
O (log (distance(f i nger , quer y))).

Next we give code for the finger search. In addition, the tree should of course
also support the normal find, insert, and delete operations, and when imple-
menting these, one needs to keep track of the level-linking information. In our
finger search implementation, we use the normal find function, which, for this
application, should be changed not to return the object pointer but the pointer
to the leaf node, otherwise we have no method to obtain the finger pointers.

tree_node_t *finger_search(tree_node t *finger,
key t query_key)
{ tree_node_t *current_node, *tnp_result;
current _node = finger;
if (finger->key == query_key )
return( finger );
el se if( finger->key < query_key )
{ while( current_node->up != NULL &&
( (current_node->level right == NULL
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&&
current _node->level left == NULL )
I
(current _node->l evel _right!= NULL
&&
current _node->l evel _right->
key < query_key) ) )
current _node = current_node->up
/* end of while */
if( (tnmp_result = find( current_node,
query_key ) ) !'= NULL )
return( tnp_result );
else if (current_node->level right !'= NULL )
return( find( current_node->l evel right,
query_key ) );
el se
return( NULL );
/* end of: if query is right of finger */
se /* query_key < finger->key */
whil e( current_node->up != NULL &&

( (current_node->l evel right == NULL
&&
current _node->l evel _left == NULL )
N
(current _node->level left !'= NULL
&&

qguery_key < current_node->
level _left->key) ) )
current _node = current_node->up
/* end of while */
if( (tnmp_result = find( current_node,
query_key ) ) !'= NULL )
return( tnp_result );
else if (current_node->level left !'= NULL )
return( find( current_node->l evel left,
query_key ) );
el se
return( NULL );

} /* end of: if query is left of finger */
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Finger search has been studied in a number of papers; for any search-tree
structure or property, one can ask how to combine it with finger search and
what the update cost of thefinger structureis. Thiswasfinally optimally solved
in Brodal (1998) and Brodal et al. (2002), where al update operations were
donein O(1) timein addition to the time to find the relevant leaf. But in truth,
finger search has little practical relevance unless the access is extremely local,
for instead of going once down from the root, we go up from the finger to some
turning point and then down again (in a most optimistic estimate, the work is
really about four timesthat distance). So this can be more effective than going
down from the top only if the way we went up from the bottom is less than
half the total height. So if there are in total ¢" = n leaves and we go up at
most to //2, then the distance between finger and query should be less than
n'/Z (really much smaller). Otherwise, the trivial find is more efficient than the
finger search.

A final problem with the use of finger treesasdescribed hereisthat thefinger
isapointer into the structure, so it isonly valid aslong as the structure, at least
in the memory location of the leaves, does not change. So if one wants the
pointersto be valid after any insert, additional care has to be taken to keep the
leaf node as leaf. This is different from what we did, which was just splitting
the old leaf on insertion. To keep the leaf as leaf, one would have to change
the pointer in the upper neighbor of the old leaf. Keeping the fingersvalid after
deletion introduces the additional problem that the finger element could have
been deleted.

A variant proposed in Blelloch, Maggs, and Woo (2003) replaces the finger
by alarger structure and instead does not need al those pointers added to the
tree itself, making it more space efficient. In our level-linked trees, we really
needed only the path back to the root for the evaluation of a finger query, and
the level neighbors of that path on all levels; apart from that, we just used the
normal pointers of the underlying tree. So the main problem is to make an
efficient update of that access structure after afinger query.

3.8 Treeswith Partial Rebuilding: Amortized Analysis

An entirely different method to keep the search trees balanced is to rebuild
them. Of course, rebuilding the entiretreetakes Q2(n) time, soitisno reasonable
aternative to the update methods of O(logn) complexity if we do it in each
update for the entire tree. But it turns out to be comparable in the amortized
complexity if we only occasionally rebuild and rebuild only subtrees. Thiswas
first observed by Overmars, who studied partial rebuilding as a very genera
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method to turn static data structures (not allowing updates) into dynamic data
structures (supporting update operations) (Overmars 1983). Welose by thisthe
worst-case guarantee on the update time but still have an amortized bound over
a sequence of updates. Every single one of them could, however, take ®(n)
time.

The use of partia rebuilding for balanced search trees was rediscovered
in a different context by Andersson (1989b, 1990, 1999) and Galperin and
Rivest (1993). They were interested in the question how little information is
sufficient to rebalance the tree. The red-black trees still needed one bit per
node, but indeed no information in the nodes is necessary. One can keep the
tree balanced with only the total number of leaves as balancing information
because this is sufficient to detect when aleaf istoo low.

Given the number n of elements, one can set a height threshold c logn for
some ¢ sufficiently large. Then we can decide, whenever we go down the tree
to aleaf, whether the depth of this leaf is too large for the current number of
elements. In that case some subtree containing the leaf requiresrebalancing, but
we do not know where this subtree starts. It could be possible that the next log n
levelsabovetheleaf areacompletebinary tree; only thisperfectly balanced tree
is attached by along path to the root. So we have to go up aong the path from
theleaf to the root and check for each node whether the subtree below that node
is sufficiently unbalanced that rebalancing will give a significant improvement.
This sounds very inefficient, but because the subtrees we are looking at are
exponentially growing in size, the total work is realy determined by the last
subtree — the one which we decide to rebalance.

Our measure for the balancedness is a-weight-balance. Because we use
a different rebalancing strategy, the restrictions on « of Section 3.2 do not
apply here. We are hereinterested in o < %1. For a-weight-balance, our depth

bound is (log ﬁ)_l logn, asin Section 3.2: if along the path all nodes are «-
weight-balanced, then thisis an upper bound for the length of the path. But we
cannot directly usethe violation of o-weight-balance as criterion for rebuilding
becauseit isnot sufficient to guarantee aheight reduction by optimal rebuilding.
The bottom-up optimal tree with 2¢ 4 1 leavesis extremely unbalanced in the
root, but it is still of optimal height. Instead, we accept a subtree as requiring
rebuilding if its height is larger than the maximum height of an «-weight-
balanced tree with the same number of leaves or equivalently if its number
of leavesis less than the minimum number of leaves of an «-weight-balanced
tree with the same height, which is (ﬁ)h. This guarantees that rebuilding
decreases the height.

So the method for insertion isthe following: We perform the basic insertion,
keeping track of the depth and the path up. If after the insertion the depth of
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the leaf is till below the threshold, no rebalancing is necessary. If the leaf has
a depth above the threshold, we again go up the path and convert the subtree
below the current nodeinto alinked list. When we move up to the next node, we
convert the other subtree of that node also into a linked list, using the method
from Section 2.8, and concatenate the two lists of the left and right subtrees. If
the node is the ith node along the path from the leaf and the number of |eaves
inthislist isgreater than (ﬁ)" , We move up to the next node on the path to the
root, else convert the list into an optimal tree using the top-down method from
Section 2.7 and finish rebalancing. Because the length of the path is above the
threshold of (log ﬁ)_l logn, there must be a node along the path where the
number of leavesistoo small for the height (at latest, the root).

We observe that the height bound (log ﬁ)_l logn is maintained by this
method over any sequence of insertions. If the height bound was satisfied before
the insertion, then after the insertion it is violated by at most one; but if it is
violated, then an unbalanced subtree will be found and optimally rebuilt, which
will decrease the height of that subtree by at least one.

Now we prove that the amortized complexity of aninsertionis O (logn). For
thisweintroduce a potential function on the search trees. The potential of atree
isthe sum over all interior nodes of the absolute value of the difference of the
weights of the left and right subtrees. The potential of any tree is nonnegative,
and a single insertion will change only the potential of the nodes along its
search path, each by at most one, so it will increase the potential of the tree
by at most (log ﬁ)fl logn. But the subtree that gets rebalanced is the first
along the path that has height too large to be «-weight-balanced, so it is not
a-weight-balanced in its root. So this subtree has potential at least (1 — 2c)w
if it has w leaves. If we select thistree for rebalancing, we perform O (w) work
to obtain atop-down optimal tree on these w nodes.

Theorem. A top-down optimal tree with w |eaves has potential at most %w.

Proof. In a top-down optimal tree, any interior node has potential 0 or 1,
depending on whether the number of leaves in the subtree is even or odd. But
one of the lower neighbors of an odd node must be even, so there are at least
as many even nodes as odd nodes.

So the rebalancing reduces the potential from at least (1 — 2«)w to at most
fw. Soif @ < 1, we have an Q(w) decrease in potential using O(w) work.
But the average decrease over a sequence of insertions cannot be larger than
the average increase, so the average work per rebalancing after an insertion is
O(logn).
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For deletions, the situation is even simpler; deletions do not increase the
height of the tree, but decrease very slowly our reference measure for the
maximum allowable height. So in order to keep the height restriction even after
deleting many elements, we occasionally completely rebuilt the tree, whenever
sufficiently many elements have been deleted that the required height would
be decreased by one. For this we keep a second counter, which is set to an
after completely rebuilding the tree when it hasn leaves. Each timewe perform
a basic delete, we decrease this counter, and when it reaches 0, we again
completely rebuilt the tree as top-down optimal tree. When the counter reaches
0, there are still at least (1 — «)n leaves, possibly more if there were insert
operations. So the height bound cannot have decreased by more than one
since the last rebuilding. So this operation preserves the height bound. But its
amortized complexity isvery small, only O(1) per delete operation, because we
are performing one complete rebuild, taking O (n) time, every Q(n) operations.
Of course, an amortized O (1) deletion cost does not imply any advantage over
O (logn) because the amortized insertion cost is O (logn) and there are at least
as many insertions as there are deletions. But we get this amortized O(logn)
update time with very simpletools, just top-down optimal complete rebuilding
and counting the leaves of subtrees, together with two global counters for the
number of leaves and the number of recent deletions.

Theorem. We can maintain by partial rebuilding search trees of height at
most (log ﬁ)fllogn, for o €]0, Z[, with amortized O(logn) i nsert and
del et e operations, without any balance information in the nodes.

Saving the bits of balancing information in the nodes is not a serious practical
consideration, so this structure should not be seen as an alternative to height-
balanced trees. But it is ademonstration of the power of occasional rebuilding,
which gives only amortized bounds, but which is also available on much more
complex static data structures, and in many cases the best tool we have to make
static structures dynamic.

3.9 Splay Trees: Adaptive Data Structures

The idea of an adaptive data structure is that it adapts to the queries so that
queries that occur frequently are answered faster. So an adaptive structure
changes not only by the update operations, but also while answering a query.
The first adaptive search tree was developed by Allen and Munro (1978), who
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showed that a search tree of model 2 that moves after each query the queried
element to the root will behave on a sequence of independent queries that
are generated according to a fixed distribution, only a constant factor worse
than the optimal search tree for that distribution. Similar structures were also
found by Bitner (1979) and Mehlhorn (1979), whose D-trees combine the
adaptivity with regard to queries with a reasonable behavior under updates.
The D-trees, as well as biased search trees (Bent, Sleator, and Tarjan 1985),
and Vaishnavi’sweighted AV L trees (Vaishnavi 1987) achievethisperformance
also for individual operationswith explicitly given access probabilities, aswell
as supporting updates on those probabilities.

The most famous adaptive structures are the splay treesinvented by Sleator
and Tarjan (1985); they aso move the queried element to the top in a dightly
more complicated way and have several additional adaptiveness properties.
A number of other structures with similar properties were found (Makinen
1987; Hui and Martel 1993; Schoenmakers 1993; lacono 2001), as well as
some general classes of transformation rules that generate the same properties
(Subramanian 1996; Georgakopoulos and McClurkin 2004); also there are
versions with block nodes similar to B-trees (Martel 1991; Sherk 1995).

Splay trees have a number of adaptiveness properties, perhaps the most
natural isthat if the queries come according to some fixed distribution on the
set of keys, then the expected query timefor asplay treeisonly aconstant factor
worse than the expected query time of atreethat isoptimal for that distribution.
Of course, as with the finger trees, to make up for the loss of a constant factor,
the distribution must be far from uniform, otherwise any balanced search tree
has that property.

The other remarkable property of splay treesis that they are simple and do
not have any balance information, neither in the nodes nor any global counters.
They just follow some simple transformation rules that miraculously balance
the tree, at least in the amortized sense.

Splay trees are unlike all other trees in this book in that they necessarily
follow the model 2 for search trees, with the objects together with the keysin
the nodes. For the various other balancing criteria, we could combinethem with
either model, but thisis not possible for the standard model of splay trees. The
adaptiveness of splay trees hinges on the use of the fact that in a model 2 tree,
some objects are encountered much earlier than the average depth suggests.
There is an object in the root which, if queried, is aready found after two
comparisons. And the splay tree query moves the queried object to the root,
performing some rearrangements on the way, so that if this object is queried
again not too much later, it will still be in some node near the root.
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A node of a splay tree contains just the key, the pointer to the associated
object, and the usual left and right pointers; no balancing information is neces-
sary. Soits structure is asfollows:

typedef struct tr_n t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
obj ect _t *obj ect ;
/* possibly other information */
} tree_node_t;

The left and right rotations must be adapted that they move not only the key,
but al so the object pointer. We keep the convention to mark the leaves by using
NULL as right pointer. The intervals associated with the nodes are now open
intervals. The insert and delete operations are just the basic insert and delete
with the appropriate changes for this tree model. There is no rebalancing after
insert or delete; the only place where the tree structure changes is the find
operation.

Therulesfor find are asfollows: Wefirst go down to the node containing the
object, keeping track of the way up. Let cur r ent initially denote this node.
We repeat the following steps, which always keep cur r ent as the node that
contains the queried object, until cur r ent becomes the root and we return
the queried object.

1. If current istheroot, wereturn cur r ent - >obj ect .
2. Elsecurrent hasan upper neighbor upper .

If upper istheroot, and

21 if current =upper->left,
perform aright rotation in upper , set cur r ent toupper, and
return cur r ent - >obj ect

2.2 elsecurrent =upper->right,
perform aleft rotationin upper, set cur r ent toupper, and return
current->obj ect.

3. Elseupper itself has an upper neighbor upper 2.

3.1 If current =upper->|l eft andupper = upper 2- >l ef t,
perform two consecutive right rotationsin upper 2 and set cur r ent
toupper 2.

3.2 If current =upper->l eft andupper = upper 2->ri ght,
perform aright rotationin upper , followed by aleft rotation in
upper 2, and set cur r ent toupper 2.



3.9 Slay Trees: Adaptive Data Structures 125

33 If current =upper->ri ght andupper = upper 2->| eft,
perform aleft rotation in upper , followed by aright rotation in
upper 2, and setcurr ent toupper 2.

34 If current =upper->right andupper = upper2->ri ght,
perform two consecutive left rotationsin upper 2 and set cur r ent
toupper 2.

The cases 2.1 and 2.2 areknown as“zig,” 3.1 and 3.4 as“zig-zig,” and 3.2 and
3.3 as"zig-zag” operations.

t v t v
u v u u u — t u
e

THE REBALANCING OPERATIONS 2.1, 3.1, AND 3.2 ON A SPLAY TREE

We have to show now that these operations restructure the tree in a way
that is efficient in the amortized sense. We will obtain several such results by
a single proof choosing different weight functions. The weight function w is
defined on the objects with the sum of all weights normalized to » and all
weights nonnegative.

For any given weight function and search tree, we define several derived
functions:

{ theweight sum s(n) of node n isthe sum of all weights of objectsin the
subtree below n;

{ therank r(n) of node n isthe logarithm of the weight sum:
r(n) = log(s(n)); and

{ the potential pot of the tree is the sum of all ranks of the nodes of the tree.

Now the central tool isthe following lemmathat describes the potential change
by the rebalancing of aquery operation. Inthefollowing we use potpefore; fbefores
Shefore AN POLaster, Fafters Sater tO dENote, respectively, the potential, rank function,
and weight sum before and after rebalancing.

Lemma3.1 If the query operation accessing node v used k rotations, then
we have

k + (pOtafter - pOtbefore) <1+ 3(rafter(v) - rbefore(V)) .
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Proof. The rebalancing consists of a sequence of operations, and by the tele-
scoping structure of the claimed inequality, it is sufficient to prove
2+ (pOtafter - p0tbefore) = 3(rafter(v) - rbefore(V))
for any operation of type 3.1, 3.2, 3.3, and 3.4, which take two rotations each,
and
1+ (pOtafter - pOtbefore) = 1+ 3(rafter(V) - rbefore(V))

for the operation of type 2.1 or 2.2, which occurs at most once and which takes
one rotation.

{ For operations of type 2.1 and 2.2, let u be the upper neighbor of v.
Because r'pefore(U) = Tafter(V), Fatter(V) > Tafter(U), @Nd I'after(V) > Tiefore(V),
the claimed inequality follows:

POtatter — POtoefore = Iafter(V) — vefore(V) + Iater (U) — T'before(U)
= Taiter(U) — T'before(V)
< Tafter(V) — I'before(V)
< 3(after(V) — T'before(V)) -

{ For operations of type 3.1 and 3.4, let u be the upper neighbor of v andt be
the upper neighbor of u. Then we note that

Soefore(t ) = Safter(V) > Soefore(V) + Safter(t ),

(rbefore(V) - I'after(\/)) + (rafter(t ) - rafter(V))

_ Spefore(V) Saiter(t)
B I0g< Sefter(V) > +log <Safter(v)>
< max (loge +logp) = -2

a+p=<1

Using this, and rpeore(V) < roefore(U) aNd Faster(U) < Tater(V), we again
obtain the claimed inequality:
POtafter — POtbetore = Mafter(V) + Fapter(U) + Faster(t )
—Tbefore(V) — I'before(U) — I'before(t )
= Tefter(U) + Tapter(t ) — Ibefore(V) — Moefore(U)
= 3(after (V) — Tbefore(V))
+ (Fefore(V) — Tafter(V)) + (Fafter(t ) — Fatter(V))
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+ (rbefore(V) - rbefore(u)) + (rafter(u) - rafter(V))
< 3(atter(V) — roefore(V)) — 2.

{ For operations of type 3.2 and 3.3, let u be the upper neighbor of v andt be
the upper neighbor of u. Then we note that

Shefore(t ) = Setter(V) > Satter(U) + Softer(t ),

(Fafter(U) — Tapter(V)) + (Fapter(t ) — Fatter(V))
_ Saiter (U) Saiter(t )
= log (Sau‘ter(V)> +log <Sa‘ter(v))

< max (loge +logp) < -2

at+p=1

Using this, and rpefore(V) < I'after(V) and rpefore(V) < Ibefore(U), We again
obtain the claimed inequality:

POtatter — POtbetore = Iafter(V) + Tafter(U) + Fater(t )
—I'pefore(V) — Ibefore(U) — oefore(t )
= Tafter(U) + Tapter(t ) — Foefore(V) — Ibefore(U)
= 3(Fafter(V) — I'before(V))
+ (Fatter(U) — Fatter(V)) + (Fatter (t ) — Fafter(V))
+ (Mpefore(V) — Tafter(V)) + (Fbefore(V) — before(U))
< 3(Fatter(V) — Tbefore(V)) — 2.

This completes the proof of the lemma.

Now we can use the lemma to prove amortized bounds on the complexity
of any sequence of fi nd operations. The complexity of the operations is
proportional to the number of rotations made in these operations. According to
the lemma, the number of rotationsin asingle find operation is bounded by the
potential change of the tree, plus three times the difference of the rank of the
root minus the rank of the queried node before it became the new root, plus 1.
Over a sequence of operations this becomes

number of rotations < Z (POtpesore — POtafter)
operations

+ Z (r(root) — rpetore(queried node))

operations
+ number of operations.
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The first sum is a telescoping sum, which reduces to the potential in the
beginning minus the potential in the end, and can be bounded independent of
the sequence of operations by the maximum potential of a tree with the given
weights minus the minimum potential of such atree. For an amortized bound
on the complexity of af i nd operation, that is, the number of rotationsit uses,
we have to bound the other sum.

If we give each of the n objectsin the tree the weight 1, then the weight of
the root isn and the weight of any nodeis at least 1. So the ranks are numbers
between 0 and logr, and the rank difference of the root and the queried node
isat most logn. Also, the tree has n nodes, so its potential, that is, the sum of
its ranks, is between 0 and n logn and any potential difference is O(nlogn).
This gives an amortized O(logr) bound.

Theorem. Any sequence of m f i nd operationsin a splay tree with n objects
needstime O(m logn + n logn).

A different model is that the queries come according to some probability
distribution (p;)?_, on the objects. Then we give object i asweight p;n. Again
the sum of weightsisn, so the rank of theroot islogn, and with probability p;
the queried object has rank log(p;n) = log(p;) + logn, so the expected rank
differenceis

> pi(logn —log(pin)) = =Y pilogp; = H(px. ..., pa).

i=1 i=1
which is the entropy of the distribution. The maximum and minimum poten-
tial of a tree with these weights depends on the distribution (p;)7_;, and we
have no simple bound on them but that maximal potential difference is some
number Apot ma(P1, - - - p.) that isindependent of the sequence of thef i nd
operations. This gives the following bound:

Theorem. The expected complexity of a sequence of m fi nd operations in
a splay tree if the queries are chosen independently at random according to a
distribution (p;)?_; is O (Apotye(p1, .-, Pn) + m(A+ H(py, ..., pn)))-

But theentropy H(p1, ..., pn) = — Y., pi 109 p; isessentialy the expected
depth of the optimal tree with the given distribution. It isalower bound evenin
aweaker model, when weare using atree of model 1, and are allowed to change
the order of the keys and only have to keep the probability distribution; that is,
the situation in variable-length codes and the lower bound is a consequence of
Kraft's inequality. In that model, that depth, plus at most one, can be reached
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by Huffman or Shannon-Fano trees. By changing from model 1 to model 2
trees, we lose at most afactor 2 because each model 2 tree can be transformed
in a model 1 tree by replacing each model 2 node by two model 1 nodes.
Constructing optimal or near-optimal search trees, especially of model 2, was
a much-studied subject (see Knuth (1973) or Mehlhorn (1979) for numerous
references). So the splay tree needs an average expected access time within
a constant factor of the optimum expected access time for that distribution
for which H(ps, ..., p,) is a lower bound. The splay tree achieves this by
adapting to the query sequence without knowing the distribution. We used
the distribution only in the analysis to define the weight function, not in the
algorithm.

Yet another model of the adaptiveness is the finger search. Splay trees
support finger search without knowing the finger. Consider a fixed element
fi nger andassign each element x theweight distanced i %ger ) X)ZH,Where
distance(f i nger, x) denotes the number of elements between f i nger and
X. Then the weight sum is ©(n) because ) o7 v—lz =2 < o0, s0 the rank of

6
theroot islogn — O(1) and the rank of the query element q is

n . .
log <di51ance(fi nger . Q2 + 1) = logn — O(log(distance(f i nger , q))).

So the rank difference is O(log(distance(f i nger, g))). Because each node
has a rank between logn and log m > —logn, the potentia of the tree
isbetween nlogn and —n log n, so any potential differenceis O(nlogn). This
implies the following:

Theorem. A sequence of m find operationsfor elementsqq, .. ., d. inasplay
tree with n elements requirestime
O(nlogn + )", log(distance(f i nger , q;,))).

So the splay tree adaptsto nonuniformness or locality of the queriesin anumber
of ways at least in amortized sense.

Up to now we have only analyzed sequences of queries for a fixed set,
implicitly excluding the update operations. We can perform updates by the
basic insert and delete, possibly followed by the same moving to the top done
for the queries. And if we use a constant weight one, the same amortized
analysis applies, because there is really no difference between the query and
theinsert or delete. For the adaptive analysis, however, even the model becomes
less clear, because we cannot change the weight function whenever the current
set changes.
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We finally give the code for the f i nd in splay trees together with the basic

i nsert and del et e for these trees of model 2. Our conventions need to

be changed for this node-tree model; because every node contains the object
together with the key, the rotations need to move the object and the key, and we
use a NULL pointer in the object field to encode the empty tree. The deletion
is more complicated than in our preferred leaf tree model because keys from
interior nodes can be deleted; in that case, it is necessary to move another key
up to replaceit.

object t *find(tree_node_t *tree,

key t query_key)

{ int finished = 0;
if( tree->object == NULL )

return(NULL); /* tree empty */

el se

{

tree_node_t *current_ node;
create_stack();
current _node = tree;
while( ! finished)
{ push( current_node );
i f( query_key < current_node- >key
&% current _node->left !'= NULL )
current _node = current_node->| eft;
el se if( query_key > current_node->key

&& current _node->right !'= NULL )
current _node = current_node->right;
el se
finished = 1;
}
i f( current_node->key != query_key )
return( NULL );
el se

{ tree_node_t *upper, *upper2;
pop(); /* pop the node contai ning
the query key */
while( current_node !=tree )
{ upper = pop(); /* node
above current _node */
i f( upper == tree )
{ if( upper->left == current_node )
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right_rotation( upper );
el se
left_rotation( upper );
current _node = upper;
}
el se
{ upper2 = pop(); /* node
above upper */
i f( upper == upper2->left )
{ if( current_node ==
upper->left )
right_rotation( upper2 );
el se
| eft _rotation( upper );
right _rotation( upper2 );
}
el se
{ if( current_node ==
upper->right )
left _rotation( upper2 );
el se
right _rotation( upper );
left rotation( upper2 );

}
current _node = upper?2
}
}
return( current_node->object );

}

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new_obj ect)
{ tree_node_t *tnp_node, *next_node;
i f( tree->object == NULL )
{ tree->o0bject = new_ object;
tree->key = new key;
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tree->left = NULL;
tree->right = NULL;
}
else /* tree not enpty: root contains a key */
{ next_node = tree;
whi | e( next_node !'= NULL )
{ t np_node = next_node;
i f( new_key < tnmp_node->key )
next _node = tnp_node->l eft;
el se if( new key > tnp_node->key )
next _node = tnp_node->right;

el se /* new key == tnp_node- >key:
key al ready exists */
return(-1);

}
/* next_node == NULL. This should

point to new |l eaf */
{ tree_node_t *new | eaf;
new | eaf = get node();

new | eaf - >obj ect = new_object;
new | eaf - >key = new key;
new | eaf->l eft = NULL;

new_| eaf ->right = NULL
i f( new key < tnp_node->key )

t np_node->l eft = new_| eaf;
el se
t np_node->ri ght = new | eaf;
}
}
return( 0 );

}

object_t *delete(tree_node_t *tree,
key_t del ete_key)
{ tree_node_t *tnp_node, *upper_node,
*next _node, *del node;
obj ect _t *del et ed_obj ect;
i f( tree->object == NULL )
return( NULL ); /* delete fromenpty tree */
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el se

{

next _node = tree; tnp_node = NULL;
whil e( next_node !'= NULL )
{ upper_node = tnp_node;
t np_node = next_node;
i f( delete_key < tnp_node->key )
next _node = tnp_node->l eft;
else if( delete_key > tnp_node->key )
next _node = tnp_node->right;
el se /* del ete_key == tnp_node->key */
break; /* found del ete_key */
}
i f( next_node == NULL )
return( NULL );
/* delete key not found */
else /* delete tnp_node */
{ deleted object = tnp_node->object;
i f( tnp_node->left == NULL
&& tnp_node->right == NULL )
{ [/* degree 0 node: delete */
i f( upper_node != NULL )
{ if( tnp_node == upper _node->| eft )
upper _node->l eft = NULL;
el se
upper _node->ri ght = NULL;
return_node( tnp_node );
}
el se /* delete | ast object,
nmake tree enpty */
t np_node- >obj ect = NULL;
}
else if ( tnp_node->left == NULL )
{ tnp_node->left =
t np_node- >ri ght->l eft;
t mp_node- >key =
t mp_node- >ri ght - >key;
t np_node- >o0bj ect =
t mp_node- >ri ght - >obj ect ;
del _node = tnp_node->right;
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t np_node->right =
t np_node- >ri ght->ri ght;
return_node( del _node );
}
else if ( tnp_node->right == NULL )
{ tnp_node->right =
t np_node- >l ef t - >ri ght;
t np_node- >key = tnp_node->| eft->key;
t np_node- >obj ect =
t np_node- >l ef t - >0bj ect ;
del _node = tnp_node->left;
t mp_node->l eft =
tmp_node- >l eft - >l eft;
return_node( del _node );
}
else /* interior node needs to
be del eted */
{ upper_node = tnp_node;
del _node = tnp_node->right;
whil e( del node->left !'= NULL )
{ upper_node = del node;
del _node = del node->left;
}
t np_node- >key = del node- >key;
t np_node- >obj ect = del _node- >obj ect;
i f( del _node = tnp_node->right )
t np_node->ri ght = del node->right;
el se
upper _node->l eft =
del _node->ri ght;
return_node( del _node );

}

return( del eted_object );

}

Herewe cannot usean array-based stack because the depth of theelement can
ben — lintheworst case. Wehaveto use oneof thelinked-listimplementations
for the stack. In fact, using back pointers instead of a stack to keep track of
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the path up would be preferable, but then we cannot claim that we do not use
additional space in the nodes for rebalancing.

3.10 Skip Lists: Randomized Data Structures

Theskip list isbased on the ideathat adding forward pointersto asorted linked
list that skip many in-between elements may allow afast accessto any element
of thelist. If we have just a sorted linked list of length », then finding a query
element will take up to n comparisons. If we add a second list on the same
items that contains only every second item of the first list, we need at most
[%n} comparisons on the second list, plus one additional comparison on the
first list. If weiterate the construction, adding lists that contain only every 2'th
dementfori = 1,..., k totheoriginal sorted list, then we need at most [ %7 |
comparisons on the kth list, plus one additional comparison on each of the
lower lists. For k = logn, this gives alogn find operation. Indeed, this system
of lists is very similar to the bottom-up optimal search tree turned sideways,
with a step down to a lower-order list corresponding to a left pointer, and a
step to the next item on the current list corresponding to aright pointer. But, of
course, we cannot maintain this structurein O (log ) time under insertions and
deletions. Because updates change the distance between elements, we would
have to rebuild all those lists from the changed item on.

The idea by which Pugh made this a useful structure, the skip list (Pugh
1990), is that we do not need to maintain the distances that the higher-level
lists jump as exactly 2/ on the ith level, but just maintain the average. Here
the average is an expectation over a sequence of random choices that the
data structure makes; the skip list is a randomized data structure that achieves
O(logn) complexity for the find, insert, and delete operations in the expected
value. This expected value is for a fixed sequence of operations, so the same
sequence of operationswill take varying time depending on the random choices
made by the structure.

Theskiplist assignseachitemalevel i > 1 during theinsertion of that item.
Thislevel will not changewhileit existsand theitemwill beincludedinall lists
up to that level. The distribution of the levels is a geometric distribution with
Prob(level = i) = (1 — p)p'~L. A simple interpretation for this distribution is
that each item starts with level 1 and then repeats throwing a coin with success
probability p to increaseits level until it fails, so Prob(level > i) = p'~2.

Now any accessto an item, given aquery key, starts on the list of maximum
level that currently exists. On this list we move until the key of the next
item on the list will be past the query key; then we go down a level and
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repeat the procedure until we are at the bottom level. There we either find the
queried item, or, when the next item is already past the query key, no such item
exists.

ElE [em [Jem Flzz Flzz Flz

A SKiP LisT

To analyzethe structure, wefirst observethat if therearen elements, thenthe
expected number of items on level i and aboveis p'~1n, so the maximum level
wherewestill expect tomeet anitemisl + I091 n=1+ ,Oglp log n, suggesting
an expected height of the structure of O(log n) To make this argument precise,
we need the expectation of the maximum level of n elements of the skip list,
that is, the maximum of » independent random variables X; with Prob(X; >
i) = p'. Then we obtain, using Bernoulli’s inequality (1 — x)" > 1 — nx for
x € [0, 1], the following bound:
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Within each of these log: n + O(1) levels, the expected number of steps is
bounded from above by the distance in that level to the next element of higher
level, for within a level we will never go past an element of higher level.
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Because we are on alower-level list, all items on the higher-level lists must be
beyond the query key. But each item on a list has probability p to reach the
next higher level, so the number of steps on the list before we meet an item of
higher level is negative exponentially distributed, with j steps with probability
p(1 — p)/~L. Thisargument also bounds the length of the top-level list because
thereisno element of higher level. Thus, on each level, the expected number of
stepsis 1—1) = 0(1) and the expected number of levelsis % logn = O(logn),
so the expected total number of stepsis O(logn) for any choice of p €]0, 1].
The coefficient pl_Oép has a minimum for p = 1 ~ 0.3678 for which we get
an expected number of 1.88logn comparisons, but the choice does not matter
much, 3, £, or § are good choices for p.

By thiswefind an element, given itskey, or find the place where the element
should be. To insert an element, we just need to make the random choice of
itslevel and then insert it in al lists up to that level. To delete the element, we
just have to unlink it from al thelists up to itslevel. Both operations use O (1)

work on each level, so O(logn) intotal.

Theorem. The skip list structure supportsf i nd, i nsert, and del et e op-
erations on an n-element set in expected time O (log n).

We still need to describe how the element is represented in the various lists.
In the original paper, Pugh (1990) proposed fat nodes that have links for al
the lists we might require up to some predetermined maximum level. This,
of course, suffers from all the drawbacks of array-based fixed-size structures:
if we limit the number of levels of the skip list, then for sufficiently large n
it really degenerates in a linked list with a few shortcuts, which give only a
constant-factor speedup to the ®(n) search timein a sorted list. So instead we
represent the element itself by alinked list, which startson thelist whoselevel is
the level of the element, and then connects by down pointersto the lower-level
lists, until at the bottom we reach the element itself. This does not significantly
increase the space requirements of the structure because the expected length
of alist isthe expected level of the element, that is ﬁ We duplicate the key
of the object in each node on this downgoing list. We attach |eaf nodes for the
objects below the level 1 list. Each of these downgoing lists belonging to the
same object ends in a leaf node with NULL as down pointer and the object
pointer inthe next field; and each of the level lists endsin anode with NULL
asthenext pointer. At the beginning of each level list, there is a placeholder
node that just serves as entry point with connection to the lower-order lists. The
structure of the nodeis as follows:
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typedef struct tr_n_t { key_t key;
struct tr_n_t *next,
struct tr_n_t *down;
/* possibly other information */
} tree_node_t;

Now the code for fi nd, i nsert, and del et e in skip lists could look like
this.

object_t *find(tree_node_t *tree,
key t query_key)
{ tree_node_t *current_node;
i nt beyond_pl acehol der = 0;
if( tree->next == NULL ) /* enpty skip list */
return(NULL);
el se
{ ~current_node = tree;

whi | e( current _node->down != NULL )

{ while( current_node->next != NULL
&& current _node- >next - >key
<= query_key )

{ current_node = current_node->next;
beyond_pl acehol der = 1;

}

current _node = current_node->down;

}

i f( beyond_pl acehol der

&& current _node->key == query_key )

return( (object_t *)

current _node->next );
el se

return( NULL );

}

tree_node_t *create_tree(void)
{ tree_node_t *tree;
tree = get_node();
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tree->next = NULL;
tree->down = NULL;
return( tree );

}

int insert(tree_node_t *tree, key_t new key,
obj ect _t *new_obj ect)
{ tree_node_t *current_node,
*new_node, *tnp_node;
int max_level, current | evel, new node_ | evel
/* create downward list for new node */
{ new_node = get_node();
new _node- >key = new key;
new_node- >down = NULL;
new _node->next = (tree_node_t *)
new_obj ect ;
new _node_| eve
do
{ tnp_node = get _node();
t np_node- >down = new_node;
t np_node- >key = new key;
new_node = tnp_node;
new_node_| evel += 1;

0;

}
whi | e( random(P) );
/* random choi ce, probability P */
}
tnp_node = tree;
/[* find the current maxi mum|evel */
max_| evel = 0;
whi | e( tnp_node->down != NULL )
{ tnp_node = tnp_node->down;
max_| evel +=1
}
whi l e( max_| evel < new_node_l evel )
/* no entry point */
{ tnp_node = get_node();
t np_node- >down = tree->down;
t np_node- >next = tree->next;
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tree->down = tnp_node;
tree->next = NULL;
max_| evel += 1;

{ [/* find place and insert at all
rel evant | evels */
current _node = tree;

current level = max_| evel
while( current_level >= 1)
{ while( current_node->next != NULL

&& current _node- >next - >key
< new_key )
current _node = current_node->next;
if( current_|evel <= new_node_ | evel )
{ new_node->next = current_node->next;
current _node->next = new_node;
new_node = new_node- >down;
}
if( current_level >= 2 )
current _node = current_node->down;
current _level -=1

}
}

return( 0 );

}

object t *delete(tree_node t *tree,

key t del ete_key)

{ tree_node_t *current_node, *tnp_node;
object _t *del eted_object = NULL;
current _node = tree;
whi | e( current_node->down != NULL )

{ while( current_node->next != NULL
&& current_node- >next - >key
< del ete_key )

current _node = current_node->next;
i f( current_node->next != NULL

&& current _node- >next - >key ==

del ete_key )
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{ tnp_node = current_node->next;
/*unlink node */
current _node->next = tnp_node->next;
i f( tnmp_node->down->down == NULL )
[* delete | eaf */
{ deleted_object = (object_t *)
t np_node- >down- >next ;
return_node( tnp_node->down );

}

return_node( tnp_node );

}

current _node = current_node->down;
}
/* renove enpty | evels in placehol der */
while( tree->down !'= NULL &&
tree->next == NULL )
{ tnp_node = tree->down;
tree->down = tnp_node- >down;
tree->next = tnp_node- >next;
return_node( tnp_node );

}

return( del eted_object );

We could haveincluded alevel field in each node; then, we could have put the
object pointers in the level 1 list instead of creating leaf nodes for them, and
the insert would have been dlightly simplified. Instead, we chose the greater
regularity of NULL-terminated listsin both directions.

Notice that the i nsert does not test whether the inserted key already
exists; it isalways successful. Dealing with multipleidentical keys correctly in
the skip list isinconvenient for several reasons: if we insert top-down as here,
we find out only in the last level whether the key aready exists. We could, of
course, put the relevant nodes on a stack, and then we could remove them again
if the key was already there. Or we could make the insert bottom-up, keeping
all relevant nodes on the stack on al levels and inserting nodesin the level lists
and making random choices only on the way up again. Unlike the other search
trees, the del et e operation issimpler thanthei nsert .

Thisversion of the skip list isrelated to our model 1 trees; askip-list variant
similar to model 2 treeswas proposed in Cho and Sahni (1998). Another similar
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structure, which avoids the multiple levels of lists, isthe jJump lists sketched in
Bronnimann, Cazals, and Durand (2003).

The running time distribution of the skip list has been subject of a number
of papers (Sen 1991; Devroye 1992; Papadakis, Munro, and Poblete 1992;
Kirschenhofer and Prodinger 1994), but it is quite well-behaved. The skip list
aso allows simple adaptation to known access probability distributions: if we
skew the assignment of levels accordingly, we can make objects queried with
high probability have shorter access paths (Ergun et a. 2001; Bagchi, Buchs-
baum, and Goodrich 2002). Also, if we add backward pointers in both direc-
tions, the skip list is easily adapted for finger search. So if we are satisfied with
good behavior in the expected case, the skip list is avery convenient structure.

The skip list can also be derandomized (Munro, Papadakis, and Sedgewick
1992); we only need to maintain the property that on each ith level list, the
number of items of level i between two items of higher level is between lower
and upper bounds a and b. If we insert an element, we insert it on level 1, and
if the number of level 1 items between two items of level at least 2 becomes
too large, weinsert it in level 2, and so on. And the same in the other direction
for deletion. Thisisvery similar to an (a, b)-tree, but worse because we cannot
do binary search within the (a, b)-nodes, but must use linear search. For the
general similarity of theskip list to (a, b)-trees, note that during find operations
we never follow thelink in theith level list that leads to an element of a higher
level, so when breaking those links, weredlly get an (a, b)-tree, but thelinksare
necessary during update operations. By derandomizing the skip list, welosethe
simplicity of the random choice, so there is no advantage to the deterministic
skip list.

Another randomized search-tree structureisthetreap invented by Seidel and
Aragon (1996) that is a search tree where the elements are assigned random
priorities upon insertion. Then in each subtree the root contains the key of the
element of the highest priority in the subtree. This essentially corresponds to
taking a uniformly random cut in the elements in that subtree, which on the
average distributes the elements sufficiently well to give an O(logn) expected
depth. In the original version, thisis described as atree following model 2, but
again theidea can be combined with either model. This structureis represented
by atree in which each node has two values: the key and the randomly chosen
priority. With respect to the key values, the nodes are in search-tree order, and
with respect to the priorities they are in heap order, which will be defined in
Section 5.3; this combination of tree and heap gave the name. As a structure
on pairs, so with given priorities instead of randomly chosen, this type of tree
was named Cartesian tree by Vuillemin (1980); if n pairs are given in sorted
order according to the key component, the structure can be build in O(r) time
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(Weiss 1994). Yet another randomized search tree was proposed in Martinez
and Roura (1998).

Randomized variants of the splay tree with the same adaptivity properties
were analyzed in Furer (1999) and Albers and Karpinski (2002).

3.11 Joining and Splitting Balanced Search Trees

Uptonow wehavediscussedonly thef i nd,i nsert ,anddel et e operations
on the sets stored by balanced search trees. There are some additional useful
operations that can be supported by most of the search trees described in this
chapter. We already mentioned in Section 2.7 thei nt er val _f i nd query to
list all keysin aquery interval and the related queries for the next smaller or
next larger key. The methods described there also work for any of the balanced
search trees.

Theorem. Any balanced search tree can be extended with O(1) overhead in
thefi nd, i nsert, and del et e operations to support additionally the op-
erationsf i nd_next _| arger andfi nd_next _smal | er intime O(logn)
and i nt erval _fi nd in output-sensitive time O(log(n) + k) if there are k
objectsin the query interval.

Level-linked trees have the links for the doubly linked list of leaves anyway;
they are the lowest level. Skip lists have these links in one direction, which is
sufficient. So these structures do not need any modification to support interval
queries.

More complex operations are the splitting of a set at a given threshold into
the set of smaller elements and the set of larger elements, and in the other
direction the joining of two sets whose keys are separated by athreshold. Both
operations, spl it andj oi n, can be implemented for most balanced search
trees described in this chapter in time O(logn).

This is easiest for the skip list because the elements of the skip list are
assigned their levels independently. To split, we just find the point to split and
insert a new placeholder element for the lists that extend past the splitting
threshold, and insert NULL pointers to terminate all those level lists we have
cut. And the other direction, joining two skip listswhere al keysin thefirst are
smaller than al keysin the second, is just as easy; we remove the placehol der
elements in the beginning of the second skip list and connect all level lists,
possibly inserting additional placeholder elements in the first skip list if its
maximum level was smaller than the maximum level of the second skip list.
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The total work in either operation is just O(logn): we have to find the point
where to split and then perform O (1) work on each level.

Theorem. The skip list structure supports splitting at a threshold and joining
two separated skip listsin expected time O (logn).

For the worst-case balanced trees, splitting and joining require a bit more
thought, but the splitting follows once we have thejoining. In the case of height-
balanced trees, it works as follows. Suppose we have two height-balanced
search trees 7; and 7, of height 1 and h,, which are separated, with all keys
in 7; smaller than al keysin 7.

1. If hy and h, differ by at most one, we can add a new common root, whose
key isthe key of the leftmost leaf in 75.

2. If hy < hy — 2, wefollow the leftmost path in 73, keeping track of the way
back up to the root until we find a node whose height is at most ;.
Because any two consecutive nodes on this path differ in height by one or
two, the following cases are possible:

2.1 The node on the leftmost path of 7> has height /1 and its upper
neighbor has height /1 + 2: Then we just create a new node with
height /21 + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height /2, on the path, as left lower
neighbor the root of 77, and as key the key of the leftmost leaf in 7>.
The new tree is again height-balanced.

2.2 The node on the leftmost path of 7, has height 4, and its upper
neighbor has height /#; + 1: Then we just create a new node with
height 21 + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height 4, on the path, as | eft lower
neighbor the root of 77, and as key the key of the leftmost leaf in 75.
Then we correct the height of the upper neighbor to #; + 2 and
perform the rebalancing, going up to the root.

2.3 The node on the leftmost path of 7; has height #; — 1 and its upper
neighbor has height #; + 1: Then we just create a new node with
height 72; + 1 below the upper neighbor on the path, which has as right
lower neighbor the node of height ; — 1 on the path, as left lower
neighbor the root of 77, and as key the key of the leftmost leaf in 75.
Then we correct the height of the upper neighbor to #; + 2 and
perform the rebalancing, going up to the root.

3. If hy < by — 2, wefollow the rightmost path in 7, keeping track on the
way back up to the root until we find a node whose height is at most #5.
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Because any two consecutive nodes on this path differ in height by one or

two, the following cases are possible:

3.1 The node on the rightmost path of 7; has height &, and its upper
neighbor has height 4, + 2: Then wejust create a new node with
height 72, + 1 below the upper neighbor on the path, which has as | eft
lower neighbor the node of height 4, on the path, as right lower
neighbor the root of 7, and as key the key of the leftmost leaf in 75.
The new tree is again height-balanced.

3.2 The node on the rightmost path of 7; has height &, and its upper
neighbor has height i, + 1: Then wejust create a new node with
height /2, + 1 below the upper neighbor on the path, which has as |eft
lower neighbor the node of height 2, on the path, as right lower
neighbor the root of 75, and as key the key of the leftmost leaf in 75.
Then we correct the height of the upper neighbor to %, 4+ 2 and
perform the rebalancing, going up to the root.

3.3 The node on the leftmost path of 7; has height #, — 1 and its upper
neighbor has height 4, + 1: Then we just create a new node with
height /2, + 1 below the upper neighbor on the path, which has as |eft
lower neighbor the node of height #, — 1 on the path, as right lower
neighbor the root of 75, and as key the key of the leftmost leaf in 75.
Then we correct the height of the upper neighbor to /2, 4+ 2 and
perform the rebalancing, going up to the root.

So theideaisjust to insert a new node branching off to the smaller tree on the
correct outermost path of the higher tree and use the rebalancing methods to
restore the balance condition. We need to go to the bottom of theright tree only
to recover the key value we use to separate the trees; if that key valueisaready
known, the complexity isjust O (Jh1 — ho| + 1).

Theorem. Two separated height-balanced search trees can be joined in
time O(logn). If the separating key is already known, this time reduces to
O(| height(71) — height(73)| + 1).

We can reduce the splitting of asingle search tree at agiven threshold into a
split along the search path into two sets of search trees, followed by sequence
of join operations to collect these trees together into the left and right trees of
the split. This works as follows: Given key i, we follow the search path for
this key from the root to the leaf. Each time we follow the | ef t pointer, we
insertther i ght pointer infront of theright treelist, together with the key that
separated the right subtree from everything to the left in the original tree. And
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each time we follow ther i ght pointer, we insert the | ef t pointer in front
of the left tree list, together with the key that separated the left subtree from
everything to the right in the original tree.

When we reach the leaf with this splitting along key gy, we have created
two lists of balanced search trees of increasing search trees. We now join
these search trees in order of increasing size (as they are on the list), using as
separating key the key associated with the next tree we take from the list. The
key of thefirst tree onthelist isdiscarded. Then the complexity of constructing
the two listsis O(logn) because we just follow the path down to the leaf, and
the total complexity of the join operationsis O (logn) asit isatelescoping sum
of the heights of the trees on the list. Here we use that the height of the join
of two trees is at least the height of the larger tree. Together this implies the
following:

Theorem. A height-balanced search tree can be split at a given key value into
two balanced search treesin time O(logn).

For red-black trees and (a, b)-trees, asimilar method works.

A final variant that has been studied in a number of papersis the separation
of the update and the rebalancing, known as relaxed balance. Thisis motivated
by the external memory model: In order to minimize the number of block
transfers and to move them to atime when the system load is otherwise small,
onewould liketo perform just the necessary insertionsand del etionsbut perform
therebalancing later in adecoupled “ clean-up” run (Nurmi, Soisal on-Soininen,
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and Wood 1987). The algorithmic problem here is that in the description and
analysis of the rebalancing methods, we always assumed that previous to the
insertion, the tree was balanced, so in order to apply those methods, we need
to rebalance before making the next insertion (Larsen and Fagerberg 1996).
Relaxed balance versions exist for most of the trees discussed here (Nurmi et
al. 1987; Nurmi and Soisal on-Soininen 1996; Soisal on-Soininen and Widmayer
1997; Larsen 1998, 2000, 2002, 2003), although for main memory structures
this question is only of theoretical interest because problems with rebalancing
would occur only in parallel system where several processors act on a search
tree stored in shared memory. Related is also the lazy rebalancing, performed
only during following queries, proposed in Kessels (1983).



4
Tree Structures for Sets of Intervals

The importance of balanced search trees does not come primarily from the
importance as dictionary structures — they are just the most basic applica
tion. Balanced search trees provide a scaffolding on which many other useful
structures can be built. These other structures can then take advantage of the
logarithmic depth and the mechanisms that preserve it, without going into the
detail sof studying the underlying search-tree balancing methods. Inthischapter
we describe several structuresthat are built on top of abalanced search tree and
that implement different queries or even an entirely different abstract structure.

4.1 Interval Trees

The interval tree structure stores a set of intervals and returns for any query
key al theintervalsthat contain this query value. The structureisin away dual
to the one-dimensional range queries we mentioned in Section 2.7: they keep
track of a set of values and return for a given query interval all key valuesin
that interval, whereas we now have a set of intervals as data and a key value
as query. In both cases the answer can be potentially large, so we have to
aim for an output-sensitive complexity bound. Interval trees were invented by
Edelsbrunner® and McCreight.?

The idea of the interval tree structure is simple. Suppose the underlying set
of intervalsis the set {[a1, b1], [a2, b2], ..., [an, b,]}. Let T be any balanced

L In the frequently cited but almost inaccessible technical report, H. Edelsbrunner: Dynamic Data
Structures for Orthogonal Intersection Queries, Report F59, Institut fur Informationsverarbei-
tung, Technische Universitét Graz, Austria, 1980. Thefirst published reference istheir usein
Edelsbrunner and Maurer (1981).

2 Again only in an inaccessible technical report, E.M. McCreight: Efficient Algorithms for
Enumerating Intersecting Intervals and Rectangles, Report CSL-80-9, Xerox Palo Alto
Research Center, USA, 1980.
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search tree for the set of interval endpoints {a1, ay, ..., a,, b1, ..., b,}. With
each interior node of this search tree we associate, as described in Section 2.2,
theinterval of possiblekey valuesthat can reach thisnode. Eachinterval [a;, b;]
of our set is now stored in a node that satisfies

1. the key of the node is contained in [a;, b;], and
2. theinterval [a;, b;] is contained in the interval associated with the node.

Such a node is easy to find: given [a;, b;] and 7, we start with the root as
current node. The interval associated with the root is] — oo, oo, S0 property
2 isinitidly satisfied by the current node. If the key in the current node is
contained in [a;, b;], then this node satisfies both properties and we choose it;
otherwise, [a;, b;] is either entirely to the left or entirely to the right of the key
of the current node, so it is contained in the interval associated with the left or
right lower neighbor, which we choose as new current node. Thus, each interval
moves down in the search tree till we find a node for which properties 1 and 2
are satisfied. This node might not be unique; if during this descent the key of
the current node occurs as endpoint of the interval, then some node below the
current node will also satisfy both properties. For the interval tree structure, it
makes no difference which node we choose.

[10,15]

]

SYSTEM OF INTERVALS AND ITS INTERVAL TREE

Within the node there might be multiple intervals that should be stored in
that node. We keep the intervals in two lists — one list of the left endpointsin
increasing order and one list of the right endpoints in decreasing order. Each
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interval stored in that node appears on both lists. All eft endpoints are smaller
than or equal to the key in the node, and all right endpoints are larger than or
equal to the key in the node.

By this we have specified the abstract structure of an interval tree. To
implement it, we need two different types of nodes: the search-tree nodes
augmented by the left and right list pointers, and the list nodes. The list nodes
contain, in addition to the interval endpoint, a pointer to the object associated
with the interval. The nodes have the following structure:

typedef struct Is n t { key_t key;
struct Is n_ t *next;
obj ect _t *obj ect ;

} list_node_t;

typedef struct tr_n_t { key_t key;
struct tr_n_t *|eft;
struct tr_n_t *right;
list _node_t *left |ist;
list_node_t *right_Ilist;
/* balancing information */
} tree_node_t;

Given the interval tree, we can now describe the query agorithm. For a
given value quer y _key, we follow the underlying search-tree structure with
its usual find algorithm. In each tree node * n we visit, we output intervals as
follows:

1. If query key < n->key

wesetlist ton->left_list,

whilel i st #NULL and| i st ->key < query key.

1.1 Weoutput | i st - >0bj ect andsetli st toli st->next.
2. Elsequery _key > n- >key

wesetlist ton->right_list,

whilel i st # NULL and| i st ->key > query key.

2.1 Weoutput | i st ->0bj ect andsetli st toli st->next.

In each tree node, we perform O (1) work for each object we list, so the total
time is O(h + k), where & is the height of the tree and k is the number of
objectslisted, so using any balanced search tree as underlying structure, we get
an output-sensitive complexity of O(logn + k).

We still have to show that the output given by this method is correct. For
thiswe observe that if an interval [a;, b;] contains the query key, then it will be
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stored in one of the tree nodes along the path followed by the query key. On
each level there is at most one node whose associated interval contains|[a;, b;],
and if the query key isin that interval, this path will pass through that node.
But for each node, we need to consider only those intervals for which the query
key is between the interval endpoint and the node key. Because the node key is
contained in all intervals stored in that node, we do not need to check the other
interval endpoint. Thus

1. If the query key islessthan the node key,
1.1 and thelist item key isless than the query key, we have

left endpoint < query key < nodekey < right endpaint,

1.2 if thelist item key islarger than the node key, this holds by the
increasing order of the left list also for al following keys, so none of
the remaining intervals contains the query key.

2. If the query key islarger than the node key,
2.1 and thelist item key is larger than the query key, we have

left endpoint < nodekey < query key < right endpoint,

2.2 if thelist item key is smaller than the node key, this holds by the
decreasing order of the right list also for all following keys, so none of
the remaining interval s contains the query key.

So this algorithm lists exactly the intervals (or associated objects) that contain
the query key.

So far we gave only the structure and the query algorithm. Theinterval tree
is a static data structure, we can build it once, but there is ho update operation;
insertion and deletion of intervals are not possible. To build it from a given
list of n intervals, we first build the search tree for the interval endpoints in
O(nlogn) time. Next we construct a list of the intervals sorted in decreasing
order of their left interval endpoints, in O(n logn), and find for each interval
the node where it should be stored, and insert it there in front of the left list,
in O(logn) per interval. Finaly, we construct a list of the intervals sorted in
increasing order of their right interval endpoints, in O(nlogn), and find for
each interval the node where it should be stored, and insert it there in front of
theright list, in O(logn) per interval. By thisinitial sorting and inserting in that
order, all node lists arein the correct order. The total work needed to construct
theinterval tree structureis O(n logn). The total space needed by the interval
treeis O(n) because the search tree needs O (n) space and each interval occurs
only on two lists. This completes the analysis of the interval tree structure.
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Theorem. Theinterval tree structure is a static data structure that can be built
intime O(n logn) and needs space O (n). It listsal intervals containing agiven
query key in output-sensitive time O (logn + k) if there are k such intervals.

Before we now give the code for the query function f i nd_i nt er val s, we
need to decide how to return multiple results —a question that occurs whenever
our query operation has potentially many results. Our preferred solution is to
construct alist of al resultsand returnthat list asanswer. Thishasthe advantage
of conceptual clarity, but it depends on the list nodes being correctly returned
by the program that getsthislist to avoid amemory leak. The alternative would
be to divide the query function in two: one to start the query and one to get the
next result.

list node t *find interval s(tree_node t *tree,
key t query_key)

tree_node_t *current_tree_node;

list node t *current list, *result _|ist,

{

*new result;

if( tree->left == NULL )
return(NULL) ;

el se

{ current _tree_node = tree;
result list = NULL;
whil e( current_tree_node->right != NULL )
{ 1if( query_key < current_tree_node->key )
{ current list =

current _tree_node->left_Iist;

while( current_list !'= NULL

}

&& current_Ilist->key

<= query_key )
new result = get_list_node();
new result->next = result |ist;
new resul t->object =

current _|ist->object;

result list = newresult;
current _list = current _|ist->next;

current _tree_node =
current _tree_node->| eft;

}

el se
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{ current_list =
current _tree_node->right _list;
while( current_list !'= NULL
&& current _|ist->key
>= query_key )
{ newresult = get_I|ist_node();
new result->next = result |ist;
new result->object =
current _|ist->object;
result list = newresult;
current _list = current _|ist->next;
}
current_tree_node =
current _tree_node->right;
}
}

return( result _list );

}

There are severa problems in making this static data structure dynamic.
The simpler problem is that to insert a new interval at the correct node, we
need to insert it in the two ordered lists of left and right endpoints. The length
of this ordered list can be anything up to » and inserting in an ordered list of
length [ takes up to (/) time. This could be reduced to O(log!) if we represent
the left and right endpoints in a balanced search tree with a doubly connected
list of leaves and a pointer to the first and last |eaf: then we still have O (k)
time to list the first k& elements of the list and insertion or deletion time of
O(logl) = O(logn).

The other, essentialy unsolved, problem consists of the restructuring of the
underlying tree. The interval tree structure depends on each interval containing
some key of atree node. So athough not every interval endpoint needs to be
akey of the underlying search tree because many tree nodes will not store any
intervals, we can be forced to add keys to the underlying search tree. And the
tree can become unbalanced by this. But if we wish to rebalance the tree, for
example, by rotations, we have to correct the associated lists and this requires
that wejoin two ordered lists which are not separated and that we take apart an
ordered list in two, depending on whether the interval s associated with the list
items contain some key value. There is no known way to do this in sublinear
time.



154 4 Tree Sructures for Sets of Intervals

If we know in advance some superset of all theinterval endpointsthat might
occur during our use of the structure, we can, of course, build the underlying
tree for that superset and that tree will never need to be restructured. This
can be a quite efficient solution if that superset is not too large. For the left
and right lists in each node, we still need search trees to efficiently insert and
delete new intervals.

Several external-memory versions of the interval tree structure were pro-
posed in Ang and Tan (1995) and Arge and Vitter (2003).

4.2 Segment Trees

The primary task performed by a segment tree is the same as that done by an
interval tree: keeping track of a set of n intervals, here assumed to be half-
open, and listing for a given query key all the intervals that contain that key in
output-sensitive time O(logrn + k) if the output consisted of k intervals. It is
dlightly worse at this task than the interval tree having a space requirement of
O(nlogn) instead of O(n). But the segment tree, or the idea of the canonical
interval decomposition on which it is based, is realy a framework on which
a number of more general tasks can be performed. Again it is a static data
structure. Segment trees were invented by Bentley.®

Assumeaset X = {xg, ..., x,} of key valuesand asearchtree7 for {—oo} U
X. Asusual, with each node of 7 we associate theinterval of all key valuesfor
which the query path would go through that node. Any interval [x;, x;[ can be
expressed in many ways as union of node intervals,” so it can be represented
by subsets of the tree nodes. In any such representation, a node that is in the
tree below some other node is redundant because its node interval is contained
in that higher-up node. Among all such representations there is one that is
highest: just take all nodeswhose intervals are contained in theinterval [x;, x;[
we want to represent and eliminate the redundant nodes. This representation
consists of &l those nodes whose node interval is contained in [x;, x;[, but the
node interval of their upper neighbor is not contained in [x;, x;[. Thisis the
canonical interval decomposition of the interval [x;, x;[ relative to that search
tree 7.

Theorem. The canonical interval decomposition is a representation of the
interval as union of digoint node intervals. Any search path for avalue in the

3 In another frequently cited inaccessible technical report, J.L. Bentley: Solution to Klee's
Rectangle Problems, Technical Report, Carnegie-Mellon University, Pittsburgh, USA, 1977.

4 Here we need the key —oo as leaf of the search tree; otherwise there would be no node interval
starting at x1.
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interval will go through exactly one node that belongs to the canonical interval
decomposition.

The canonical interval decomposition is easy to construct. We start with the
interval [x;, x;[ at the root:

1. Each timethe node interval of the current node is entirely contained in
[x;, x;[, we take that node into our representation and stop following that
path down because all nodes below are redundant;

2. Each time the node interval of the current node partially overlaps [x;, x;[,
we follow both paths down;

3. Each time the node interval of the current node is disjoint from [x;, x;[, we
stop following that path down.

CANONICAL INTERVAL DECOMPOSITION FOR INTERVAL [1, 10]

It is easy to see that this operation selects exactly the nodes of the canonical
interval decomposition. It remains to bound the size of the decomposition and
the time necessary to construct it. For this we look at case 2, because it is the
only case that does not immediately terminate. Case 2 happens only for those
nodes whose node interval contains an endpoint of the interval [x;, x;[ that
we wish to represent, so the nodes for which case 2 is followed are the nodes
along the search paths of x; and x;. Each of these nodes causes both its lower
neighbors to be visited. Because the only way a node that belongs to case 1
or case 3 can be visited is by being lower neighbor of a node of case 2, the
total number of visited nodes is less than 4 height(7") and the total number of
selected nodesis less than 2 height(7).

Theorem. Let X = {x1, ..., x,} beaset of key valuesand 7 a search tree for
{—o0} U X. Then for any interval bounded by values from X, the canonical
decomposition has size at most 2 height(7) and can be constructed in time
O (height(7)). If 7 isof height O(logr), the canonical interval decomposition
has size O(logn) and can be found in time O (logn).

Now we have the canonical interval decomposition; the segment tree struc-
ture that represents a set of intervals {[aa, b1[, [az, b2, ..., [an, bu[} 1S €asy
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to describe. It consists of some balanced search tree 7 for the extended set of
interval endpoints{—oo, ai, az, ..., ay, by, ..., b,} inwhich each node carries
alist of al those intervals [q;, b;[ for which this node is part of the canonical
interval decomposition.

SYSTEM OF INTERVALS AND ITS SEGMENT TREE

With thisstructure, theinterval containment queriesarevery easy: givenaquery
key, we follow the search-tree structure down and for each node on the search
path, we output all intervalsonitslist. All theseintervals contain the query key,
and each interval that contains the query key is met in exactly one node. Thus,
the output does not contain any duplicatesand the query timeis O(logn + k) to
follow the search path down and list & intervals. Thiswould work just the same
for any other interval decomposition that does not contain redundant elements,
but we need the canonical interval decomposition becauseit issmall and easy to
build. Unlike the interval tree, each interval is stored in the segment tree many
times, so the required space is not only O(n). Each interval generates at most
O(logn) parts in its canonical interval decomposition, so the total required
space is O(n logn). And the segment tree structure can be built in O (n logn)
time, first building the balanced search tree and then inserting the n intervals,
constructing the canonical interval decomposition of eachin O(logn).

Theorem. The segment tree structure is a static data structure that can be built
intime O(nlogn) and needs space O(nlogn). It lists al intervals containing
a given query key in output-sensitive time O(logn + k) if there are k such
intervals.

To implement the segment tree structure, we again need two types of nodes —
the tree nodes and the interval lists attached to each tree node.

typedef struct Is_n t { key t key_ a, key_b;
/* interval [a,b][ */
struct Is_n_t *next;
obj ect _t *obj ect ;
} list_node t;



4.2 Sgment Trees 157

typedef struct tr_n_t { key_t key;
struct tr_n_t *|left;
struct tr_n_t *right;
list_node_t *interval _|ist;
/* bal ancing information */
} tree_node_t;

Then the query algorithm is as follows:

list itemt *find_interval s(tree_node_t *tree,
key t query_key)
{ tree_node_t *current_tree_node;
list node t *current list, *result list,
*new result;
if( tree->left == NULL ) /* tree enpty */
return(NULL);
else /* tree nonenpty, follow search path */
{ current_tree_node = tree;
result _list = NULL
while( current_tree_node->right !'= NULL )
{ if( query_key < current_tree_node->key )
current _tree_node =
current _tree_node->|eft;
el se
current _tree_node =
current _tree_node->right;
current _list =
current _tree_node->interval |ist;
while( current_list !'= NULL )
{ [/* copy entry fromnode list to
result list */
new result = get |ist _node();
new result->next = result_list;
new result->key a =
current |ist->key a;
new result->key b =
current _|ist->key b;
new resul t->object =
current _|ist->object;
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result _list = newresult;
current _list = current_list->next;

return( result_list );

Noticethat neither the root nor any node on theleft or right boundary path of
the tree can have any interval s of the canonical interval decomposition attached
to it because their node intervals are unbounded and we are representing only
finite intervals. Typically, nodes near the leaf level will have nonempty lists,
whereas in the interval tree, the intervals tended to be stored in higher-up
nodes.

The construction of the segment tree structure has two phases. First the
underlying balanced search tree is built for which we can choose any method
from the previous chapter or a method to build optimal trees from Section 2.8.
We assume that initially all thei nt erval | i st fields of the tree nodes are
NULL. Then the intervals are inserted one after another. Next is code for the
insertion of an interval [a, b[ in the tree; the insertion of an interval into the
interval list of anode iswritten as separate function.

void attach_intv_node(tree_node_t *tree_node,
key t a, key_ t b,
obj ect _t *object)

{ list_node_t *new_node;
new _node = get _list_node();
new _node- >next = tree_node->interval |ist;

new_node->key_a = a; new_node->key_b = b;
new_node- >0obj ect = obj ect;
tree _node->interval |ist = new node;

}

void insert_interval (tree_node_t *tree,
key t a, key_t b,
obj ect _t *object)
{ tree_node_t *current_node, *right_path,
*| eft _pat h;
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list node t *current list, *new node;
if( tree->left == NULL )
exit(-1); /* tree incorrect */
el se
{ ~current_node = tree;
right _path = left_path = NULL;

whi l e( current_node->right !'= NULL )
/* not at |eaf */
{ if( b < current_node->key )

/* go left: a < b < key */
current _node = current_node->| eft;
el se if( current_node->key < a)
/* go right: key < b < a */
current _node = current_node->right;
else if( a < current_node->key &&
current _node->key < b )
[* split: a < key < b */
{ right _path = current _node->right;
/* both right */

left _path = current_node->left;
/[* and left */
br eak;

}

el se if( a == current_node->key )

/* a = key < b */
{ right _path = current_node->right;
/* no left */

br eak;
}
else /* current _node->key == b, so a
< key = b */
{ left_path = current_node->left;
/* no right */
br eak;
}

}
if( left_path !'= NULL )

now foll ow the path of the left
[ * foll h h of the Ief
endpoi nt a*/



160

4 Tree Sructures for Sets of Intervals

while( left_path->right !'= NULL )
{ if( a < left_path->key )
{ /* right node nust be
sel ected */
attach_i ntv_node(l eft _pat h->
right, a,b,object);
left _path = left_path->left;

}

else if ( a == left_path->key )

{ attach_intv_node(l eft_path
->right, a,b, object);
break; /* no further descent
necessary */

}

el se

/* go right, no node selected */
left_path = | eft_path->right;
}
/* left leaf of a needs to be selected
if reached */
if( left_path->right == NULL &&

| eft_path->key == a )

attach_intv_node(l eft_path,

a, b, obj ect);

} /* end left path */
if( right_path !'= NULL )
{ /* and now follow the path of the right
endpoint b */
while( right_path->right !'= NULL )
{ if( right_path->key < b )

{ /* left node rmust be selected */
attach_intv_node(right_path->
left, a,b, object);
ri ght _path = right_path->right;

}

else if ( right_path->key == b)

{ attach_intv_node(right_path->
left, a,b, object);
break; /* no further descent
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necessary */
}
else /* go left, no node selected */
right_path = right_path->left;
}
/* on the right side, the leaf of b is
never attached */
} /* end right path */

Again, like the interval tree, the segment tree is a static structure, and we
face the same problems in making it dynamic: we have to alow insertion
and deletion in each node, and we have to support the restructuring of the
underlying tree. For the insertion and deletion in the nodes, we can again
use a search tree. But we have to insert or delete the O(logn) fragments of
the canonical interval decomposition for a single insert or delete; so it would
be efficient to use a search tree only for the first fragment and then have
the remaining fragments on a linked list from the first fragment. Then each
tree node would need two structures: asearch tree for all those intervals whose
canonical interval decomposition has its first fragment in that node and a
doubly linked list, allowing O(1) insertion and deletion, for thoseinterval s that
started somewhere else. This shows that we can perform O(logn) insertion
and deletion of intervals as long as the underlying tree does not change. A
rebalancing of the underlying tree by rotations again causes changesin thelists
attached to the tree nodes that can be resolved only by looking at the entire
list and so this is no efficient solution. The situation here is better than that
for interval trees because the sequence of the intervals attached to a tree node
does not matter. This allows a representation of the sets of intervals attached
to nodes, which will be described in Section 6.2, which makes segment trees
truly dynamic (van Kreveld and Overmars 1989, 1993).

In the aforementioned discussion we have aways used half-open intervals
because they mirror the structure of the node intervals. It is easy to adapt the
segment tree structure to open or closed intervals, but for interval trees, the
sameiseven easier.

An external memory version of the segment tree structure was discussed in
Blankenagel and Giiting (1994).
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4.3 Treesfor the Union of Intervals

Several of the early papers on intervals were motivated by a problem posed
by Klee in anote in the American Mathematical Monthly (Klee 1977), which
became known as “Klee's Measure Problem.” He asked whether it is possible
to determine the measure (length) of a union of n intervals in time better than
O(nlogn).

SYSTEM OF INTERVALS AND THEIR UNION

A simple solution in O(n logn) would be to sort the interval endpoints and
then sweep from the smallest endpoint up, keeping track of the number of
intervals that the current point belongs to. This number increases by 1 each
time we pass a left interval endpoint and decreases by 1 each time we pass a
right endpoint, and we compute the sum of the lengths from one endpoint to
the next larger one for those points that belong to at least one interval.

Theorigina gquestion was answered in Fredman and Weide (1978), wherean
Q(n logn) lower bound in the decision tree model with linear comparisons was
proved.® The higher-dimensional analog of this question, computing the area of
aunion of axis-aligned rectangles, or the measure of a union of d-dimensional
orthogonal boxeswasalso stated by Klee (1977). Thetwo-dimensional problem
was solved by Bentley, who gave an O (n logn) algorithm for it,° andfor d > 3,
the best current result is an O (n¢/?logn) agorithm by Overmars and Yap
(1991), improving an earlier result in van Leeuwen and Wood (1980b).

All methods for the higher-dimensional measure problem are based on the
idea of sweeping the arrangement by a coordinate hyperplane, which inter-
sects the arrangement of d-dimensional boxes in an arrangement of (d — 1)-
dimensional boxes. That induced arrangement changes whenever the hyper-
plane passes the beginning or end of a d-dimensional box, in which case a
(d — 1)-dimensional box isinserted into or deleted from the induced arrange-
ment. If we have astructure that maintainsthe (d — 1)-dimensional measure of
the union of a system of (d — 1)-dimensional boxes under insertion and dele-
tion of these boxes, then we can use it to answer the d-dimensional measure
problem.

5 But this bound generalizes to the stronger algebraic decision tree model (Ben-Or 1983).
6 In the same unpublished notes in which he invented the segment tree.
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For the two-dimensional measure problem, we need a structure that main-
tainsthemeasure of aunion of interval sunder insertion and del etion of intervals.
Bentley’s solution to this was based on his segment trees. As additional infor-
mation, each node n contains the measure n- >neasur e of the union of al
node intervals of nodes in the subtree below n that have a nonempty list of
intervals attached to them, that is, that are part of the canonical interval decom-
position of some interval in the current set. For any node n, this information
can easily be reconstructed from its lower neighbors:

{ ifn->interval I ist % NULL,
then n- >measur e isthe length of the node interval of n;

{ ifnisaleaf andn->i nt erval _| i st = NULL, thenn- >neasur e
isO;

{ if nisaninterior nodeand n- >i nt erval | i st = NULL, then
n- >neasure = n- >l ef t - >measur e +n->ri ght - >neasure.

So after any insertion or deletion of aninterval, we just have to update the mea-
sure information in al nodes that were changed or that are above a changed
node. These nodes are the nodes along the search path for the left interval
endpoint, with their right lower neighbors, and the nodes on the search path
for the right interval endpoint, with their left lower neighbors. This gives
a structure with an insertion and deletion time of O(logn), which has the
measure of the union of the current intervals in the root, so it can answer
measure queries in O(1) time. It has, however, a restriction that is inher-
ited from the segment tree structure: we cannot change the underlying search
tree, so al the interval endpoints must be known in advance. For the ap-
plication in the measure problem, this is the case because al the rectangles
aregiven.

A fully dynamic structure to maintain the measure of aunion of intervalsis
the measure tree defined by Gonnet, Munro, and Wood (1983). That structure
maintainsaset of » intervalsunder insertion and del etion of intervalsin O (log )
and measure queriesin O(1).

The construction of the measure tree begins with any balanced search tree
on the endpoints of al intervals in the current set and —oo. The associated
intervals of a node are all those intervals in the current set that have at least
one endpoint in the node interval; like the node interval, we do not store the
associated intervals in the node, but just need them as concept. Notice that an
interval that properly contains a node interval is not associated with the node;
theinterval [a, b[ is associated with exactly those nodes that are on the search
paths of a or b.
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Each node n of the search tree contains three additional fields:

{ n->measur e isthe measure of the intersection of the node interval of n
with the union of al its associated intervals.

{ n->ri ght max isthe maximum right endpoint of all intervals associated
with n.

{ n->I ef t m n isthe minimum left endpoint of all intervals associated
with n.

node interval

associated intervals (
! , : :
leftmin rightmax
contributed measure — i
NODE INTERVAL AND ITS ASSOCIATED INTERVALS

For any interior node n, thisinformation can be reconstructed from itslower
neighbors. Two of the fields are easy:

{ n->rightmax =
max(n- >l ef t - >ri ght max, n->ri ght - >ri ght max), and
{n->leftmn=min(n->l eft->leftmn,n->right->leftmn).

The measure, however, needs severa cases. Let x be any number in the node
interval of n, which is contained in the union of the intervals associated with n,
so it contributesto n- >neasur e. Suppose x < n- >key, so x isin the node
interval of n- >l ef t . If x iscontainedinaninterval associatedwithn- >| ef t |
then it already contributed to n- >| ef t - >neasur e. But it is also possible
that x is contained in an interval associated with n, but not in an interval
associated with n- >| ef t ; in that case that interval must be associated with
n- >ri ght, and contain the entire node interval of n- >l ef t . So the contri-
bution of n- >l ef t to n- >measur e is either the length of the entire node
interval of n- >l ef t ,if n->ri ght - >l ef t m n issmaller than the left end-
point of the node interval of n- >l eft, or itisn- >l ef t - >measur e. The
corresponding situation holds for the contribution of n- >ri ght . Thus, if [
and r are the left and right endpoints of the node interval of n, we have

1L ifn->right->leftmn</landn->left->rightmax >r,
n- >nmeasure =r — I,

2. ifn->right->leftmn>/7andn->l eft->right max >r,
n- >measur e = (r — n- >key) + n- >l ef t - >measur e;
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3. ifn->right->leftmn</andn->left->rightmax <r,
n- >measur e = n- >ri ght - >mreasur e + (n- >key — /); and
4. ifn->right->leftmn=>/andn->left->rightmax <r,
n- >measur e = n- >ri ght - >measur e + n- >l ef t - >measure.

l r
. . . L n ]
node intervals f !
H : H
H T s
n->left H n->right
1. n->right->leftmin : -
: ! n->left->rightmax
2 : n->right->leftmin - +
i ; ! n->left->rightmax
3. n->right->leftmin : |
i H i | n->left->rightmax
4 : n->right->leftmin I —

p——— 4 n->left->rightmax

) n-;key
[ r

Four S1TUATIONS FOR COMPUTATION OF N- >Measur e

With these rules, we can now perform updates, inserting or deleting an in-
terval [a, b[; wefirst update the leaves containing a and b, possibly inserting or
deleting as necessary; then we go up to the root, rebal ancing along the way and
recomputing the three additional fieldsfor each node we changed. Thuswe get
an O(logn) update time for any choice of the underlying balanced search tree;
and the total measure of the unionisintheroot, so we havean O (1) query time.
If there are several intervals in the current set that have the same endpoint, the
update of the leaf might become nontrivial because there might be many inter-
vals associated with the same leaf; but we can arrange them again into a search
tree, which givesan O (logn) update of theleaf, which does not change thetotal
complexity. So we can summarize the performance of this structure asfollows:

Theorem. The measure tree structure is a dynamic data structure that keeps
track of a set of n intervals, supporting insertion and deletion of intervals in
time O(logn), and that answers queries for the measure of the union of the
intervalsin O (1) time. The structure has size O (n).

Another related problemisto list the union of interval sinstead of computing
its measure. Here we want an output-sensitive query complexity: if theunionis
just one long interval, we want that answer fast, whereas if the union consists
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of many intervals, we cannot avoid the time required to list them all. But
adding or deleting asingle interval can change the structure of the union much.
An optimal structure for this union-listing problem was given by Cheng and
Janardan (1991); it supports insertions and deletions of intervals in O(logn)
time and lists the union in output-sensitive time O (k) if the union consists of k
components.

The union tree structure we describe hereis based on this structurein Cheng
and Janardan (1991). We again start with any balanced search tree for the set
{—o00, x1, ..., x,} Of dl interval endpoints and —oco. As in the measure tree,
we associate with each node all intervals in the current interval set that have
at least one end point in the node interval. For a fixed node n, we consider
the union of al intervals associated with that node; this union consists of
connected components, which themselves are intervals with endpoints from
the underlying set of intervals. Let [x;, x;[ be the leftmost component of the
union and [x;, x;[ be the rightmost component. These intervals might coincide.
Then the node n has the following additional fields:

{ n->| ef t m n isthe pointer to the leaf with key x;.
{ n->I ef t max isthe pointer to the leaf with key x;.
{ n->ri ght m nisthepointer to the leaf with key x;.
{ n->ri ght nax isthe pointer to the leaf with key x;.

There are also two further fields that are defined only if n isalesf.

{ n->next isthe pointer to the leaf with the next larger key.

{ n->t ransf er isthe pointer to the highest node v with
v->left->rightmn=nand
v->| ef t - >ri ght max- >key > v- >key if such anode exists. A
t ransf er pointer can exist only for those leaf nodes n that occur as
v->| eft->ri ghtm nfor somenodev.

With these definitions, the query algorithm is now easy, based on the ob-
servation that if [x;, x;[ isaconnected component of the union of all intervals
in the current set and n is the leaf node with key x;, then n- >t r ansf er is
defined and n- >t r ansf er - >ri ght max isthe leaf node with key x;. So if
we know the beginning of acomponent of the union, then wefind itsend using
thet ransf er pointers, and if we know the end of a component, then the
next component must start at the next larger key, found by following the next
pointer, because each key is beginning or end of some interval in the current
interval set. The smallest key in the current set must be the beginning of thefirst
component, so we can start at that node and work our way upward, with O(1)



4.3 Treesfor the Union of Intervals 167

time for each component we found. This gives the claimed output-sensitive
O (k) query timeif the union of the current set consists of k components.

Intervals : :

Union I I

N — L
D — -
(S
~N
oo — L
O — -
~
=)
~
~
~
(NS}
~
w
~
EN

!
I
1 2 3

UNION OF INTERVALS WITH SEARCH TREE AND t r ansf er POINTERS

The main difficulty is the update. To insert or delete an interva [a, b[, we
first have to perform the insertion or deletion in the underlying tree, deleting a
node only if thereis no other interval in the current set with the same endpoint.
We can also update the next pointer at this stage, that is, just maintaining a
linked list of the leaves, as we mentioned in Section 3.11. Then we go back to
the root, perform the rebalancing, and finally make a second upward pass over
the nodes we passed on the search path and those neighboring nodes that were
changed during the rebalancing to reconstruct all the other fieldsin abottom-up
way.

For this, weobservethat thefieldsl ef t mi ntori ght max canchangeonly
for those nodes for which the set of associated intervals changed, which are the
nodes on the search path for a and b. For these nodes, bottom-up reconstruction
iseasy: if n- >l ef t andn- >ri ght already contain the correct information,
then the information for n is given by the following rules:

1. n->leftmn
11 ifn->left->l eftm n->key <n->right->leftm n->key,
thensetn->l eftminton->l eft->l eftmn;
12 dsesetn->l eftmnton->right->leftmn.
2. n->| ef t max
21 if n->l eft - >l ef t max- >key < n->ri ght - >l ef t m n- >key,
thenset n- >l ef t max ton- >l ef t - >| ef t max;
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2.2 dseif
n->| eft - >ri ght max- >key < n->ri ght - >| ef t max- >key,
then set n- >l ef t max ton- >ri ght - >| ef t max;

23 dseif n->| ef t - >ri ght max- >key <
n- >ri ght - >ri ght max- >key, then set n- >| ef t nax to
n->| eft->ri ght max;

24 esesatn- >l ef t max ton->ri ght - >ri ght max.

3. n->rightmn

31 if n->l ef t->ri ght max- >key <
n->ri ght->right m n->key, thensetn- >ri ght m nto
n->right->rightmn;

3.2 dseif
n->l eft->right m n->key < n->right->l eftmnn->key,
thensetn->ri ghtnminton->l eft->ri ghtmnin;

3.3 dseif
n- >l eft - > ef t max- >key < n->ri ght - >l ef t m n- >key,
thensetn- >ri ght m nton->ri ght->l eftmin;

34 esesatn->rightminton->left->leftmn.

4. n->ri ght max

4.1 if n->| ef t - >ri ght max- >key <
n->ri ght - >ri ght max- >key, then set n- >r i ght nax to
n->ri ght - >ri ght nax;

4.2 elseset n->ri ght max ton- >l ef t - >ri ght max.

The update of thet r ansf er pointer is more difficult because this happens
not in the nodes along the search path, but in leaves. If n is a leaf, then
n- >t ransf er isapointer to anodev withv->l eft->ri ghtmn =n,
so the only leaves that possibly need update of their t r ansf er pointer are
thosethat arereached asv- >| ef t - >ri ght m n fromanodev that isonthe
search path or changed during rebalancing. We take these O(logrn) nodesv in
sequence of decreasing depth, that is from the leaf to the root, and for each we
perform the following step:

{ ifv->l ef t->ri ght max- >key > v- >key, then
setv->l eft->rightmin->transfer tov.

If for aleaf n there are severa interior nodesv withv- >l ef t - >ri ght m n
= n and v->| ef t - >ri ght max- >key > v- >key, then the highest of
these overwrites all earlier entriesin n- >t r ansf er , so we get the required
property that n- >t r ansf er pointsto the highest node with these properties.
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The complexity of any update is again only O(logn) because we spent a
constant time on each level of the underlying balanced search tree. And the
space requirement is O (n) because we only augmented each of the O (n) nodes
of the search tree by six pointers. Intotal, this givesthe following performance:

Theorem. The union tree is a dynamic data structure that keeps track of a set
of n intervals, supporting insert and delete in time O(logr), and that lists the
union of these intervals in output-sensitive time O (k) if that union consists of
k components. The structure has size O(n).

4.4 Treesfor Sumsof Weighted Intervals

A simple but useful application of the canonical interval decomposition idea
is a structure that keeps track of a piecewise constant function represented as
sum of weighted intervals. We can identify an interval [a, b[ with itsindicator
function, whichis1for x € [a, b[ and Ofor x ¢ [a, b[; with this convention, it
is natural to define weighted intervals

¢ x€la, b
0 x¢la,b|

and we can use the sum of weighted intervals, whose value at x is the sum of
the weights of the intervalsthat contain x. A typical use of this structure would
be to keep track of the use of some resource like electricity; the resource is
used by various systems, each for some time interval at a constant level, and
the total amount used is at each moment the sum of the demands of all those
systems active at that moment.

interval [a, b withweightc = f(x) = {

T —T
0.3 0.0 1.9 0.0 1.4 1.7 0.3 0.7 0.4 1.5 1.1 0.6 -0.5 0.7
SYSTEM OF WEIGHTED INTERVALS AND ITS SUM FUNCTION

To construct the structure, we begin with the segment trees described in the
previous section, but instead of requiring to report al covering intervals we
ask only for the number of covering intervals. This way we do not need to
keep in each tree node a list of the intervals, but just a single number. For a
guery we just go down the search path and sum up al the numbers in nodes
we havevisited. Thisgivesusastructure of size O(n), builtin O (n logn), with
query time O(logn), which gives for any query key the number of intervals
that contain that key. Now we are not restricted to just counting the intervals;
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we could give them arbitrary positive or negative weights and determinein the
same way the sum of al the weights of intervals that contain the query key.
Thisway we keep track of a piecewise constant function, with at most » jumps,
and can evauate this function at a given point in time O(logn). And we can
easily make this data structure dynamic, for unlike the segment tree, where we
needed to update the potentially large structures associated with each node in
any rotation, here we just need to adjust the partial sums.

0.3 ’ 0.4 - 0.7

SYSTEM OF WEIGHTED INTERVALS AND ITS TREE REPRESENTATION:
SuMMAND FIELD OF NODES WITH WEIGHT 0 LEFT EMPTY

We arrive at the following structure: a search tree on the interval endpoints,
or the places where the piecewise constant function jumps, with a number
associated with each node. The value of the function at a query key is the
sum of the numbers associated with nodes on the search path for that key. To
increase the function on the interval [a, b[ by the value w, we find al nodes
belonging to the canonical interval decomposition of [a, b[ and increase their
associated numbers by w. If a, b were aready keys of the underlying search
tree, no further work isnecessary during aninsert; otherwise, we need to update
the underlying search tree and adjust the numbers in the nodes in such a way
that the sum along each path staysthe same. To delete an interval, wejust insert
it with negative weight and delete unnecessary leaves. In total, this gives the
following properties:

Theorem. There is a dynamic data structure that keeps track of a set of n
weighted intervals, supporting insert and delete in time O(logn), and that
evaluates the sum of the weights of all intervals containing a query point x in
time O(logn). The structure has size O (n).

The implementation of this structure is quite easy because we need to store
and update only a single number in the tree nodes. So the structure of each tree
node is the following:
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typedef struct tr_n_t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
nunber _t sumrand;
/* some bal ancing information */
} tree_node t;

As in the previous structures, we always need a node of key —oo in the
underlying search tree, so we insert it when the tree is created. In this search
tree, we do not use any objects associated with the keys, but we need a non-
NULL object pointer to satisfy our search-tree convention. Here we just use the
pointer to the tree root as object pointer.

tree_node_ t *create_tree(void)
{ tree_node_t *tree;
tree = get _node();
tree->left = NULL;
tree->summand = 0;
/* need key -infty. use root as non- NULL
obj ect ptr */
insert( tree, NEG NFTY, (object t *) tree );
return( tree );

}

Then the query algorithmis as follows:

nunber t eval uate_sun(tree_node_t *tree,
key t query_key)
{ tree_node_t *current_tree_node;
nunber _t sum
if( tree->left == NULL )
return(0);
el se
{ ~current_tree_node = tree;
sum = tree->sumand;
while( current_tree_node->right !'= NULL )
{ i f( query_key < current_tree_node->key)
current _tree_node =
current _tree_node->| eft;
el se
current _tree_node =
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current _tree_node->right;
sum += current tree_node->sumuand;

}

return( sum);

}

To insert a weighted interval, we first insert the interval endpoints into the
underlying search tree if they are not there already. For this, we might have to
split a previous leaf node, then the summand previously in the leaf nodes stays
with that now-inner node, and the two new leaf nodes contain the summand
0, so that the sum along al the paths is not changed. Then we perform the
necessary rebalancing, where we have to change the rotation code in such a
way that the sums along the paths stay constant. But that is easy because we can
push down summandsin the search tree: given aninterior noden, if weincrease
n->| ef t - >summand and n- >r i ght - >summand each by n- >sumrand
and then set n- >r i ght - >surmand to 0, then aong any path through n the
sum has not changed.

PUSHING DOWN THE SUMMAND OF A NODE

So before the rotation, we push down the summands from the two nodes
changed in the rotation, so their summands become 0. Then we can rotate
without changing the sums along the paths because the nodes changed by the
rotation do not contribute to the sums anyway. The following is the adapted
code for the left rotation:

void left rotation(tree_node t *n)
{ tree_node_t *tnp_node;
key t t np_key;
/* push down sunmmand fromn */
n->| eft - >sumand += n- >sumuand;
n->ri ght - >summand += n- >summand,;
n- >sumrand = O;
tnp_node = n->right;
/* push down sunmand from n->right */
t np_node- >l ef t - >sunmand += t np_node- >summand;
t np_node- >ri ght - >summand += t np_node- >sunmand;
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t np_node- >sunmand = O;
tnp_node = n->|eft;

[* performnormal left rotation */

tnp_key = n->key;
n->left = n->right;
n- >key = n->ri ght - >key;
n->right = n->left->right;
n->left->right = n->left->left;
n->left->left = tnp_node;
n->| eft - >key = tnmp_key;

}
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Now we give the code for the insertion of an interval [a, b[ with weight w.

void insert_interval (tree_node_t *tree,

key t a, key_t b,

{ tree_node_t *tnp_node;
if ( find(tree, a) == NULL )

nunber _t w)

{ insert( tree, a, (object_t *) tree );
} /* used treenode itself as non-NULL object

poi nter*/
if ( find(tree, b) == NULL )

{ insert( tree, b, (object t *) tree );

}

tnp_node = tree;

[* follow search path for a,*/
whi l e( tnp_node->right !'= NULL )

{ /* add wto everything right of path */

if( a < tnp_node->key )

{ tnp_node->right->sumand += w

t np_node = tnp_node->l eft;
}

el se
t np_node = tnp_node->right;
}

t np_node->sunmand += w, /* leaf with key a */

tnp_node = tree;
/* follow search path for b, */
whil e( tnp_node->right !'= NULL )

{ [/* subtract w fromeverything right of

path */
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if( b < tnp_node->key )
{ tnp_node->right->sumand -= w,
tmp_node = tnp_node->left;

}
el se
tnp_node = tnp_node->right;
}
t np_node->sunmand -=w, /* leaf with key b */

}

Here we reuse the f i nd and i nsert functions of any of our balanced
search trees, with the minor modification that the surmand field of any newly
created leaf isinitialized to O.

The deletion isjust an insertion with weight —w. But this does not remove
any leaves that became unnecessary. In a minimal tree representation, there
should be leaves only for the places where the sum function changes. So, after
the insertion of the interval [a, b[, we could evaluate the sum function for the
leaf preceding a and the leaf following b. It is not sufficient to compare the
sunmand fields of these leaves because they might be reached over different
paths. If two consecutive leaves with the same sum are found, we push down
the summands along the path to the leaf with the larger key and then delete that
key from the tree, with the normal rebalancing.

A problem that looks similar but is more complicated is to maintain the
maximum instead of the sum: given a set of weighted intervals, we want to
find for a query key the maximum weight of an interval that contains the
key. The problem here is to make the structure dynamic; as a static structure,
we could reuse the canonical interval decomposition idea and store in each
node the maximum weight of al intervals for which this node is part of the
canonical interval decomposition. Then for a query, we would answer the
maximum of al node values aong the search path. This can be adapted to
support insertions, but not for deletions. A structure that supports insertions
and deletions with O(logn) amortized update time and O(logn) worst-case
query time was described in Agarwal, Arge, and Yi (2005), improving an
earlier structure in Kaplan, Molad, and Tarjan (2003).

4.5 Treesfor Interval-Restricted Maximum Sum Queries

A structure on the same objects, piecewise constant functions or sets of weigh-
ted interval's, but supporting even stronger queries, was described in Bose et al.



4.5 Treesfor Interval-Restricted Maximum Sum Queries 175

(2003). Let o be the current piecewise constant function, then this structure
answers queries for the maximum value of o in a query interval [a, b[, as
well as for the argument x for which this maximum of o (x) is reached. This
contains the eval uation queries supported by the previous structure as a special
case when the interval degenerates to a single point. The update operation for
structure isto increase or decrease o for al x € [¢, oo[ by c.

SUM OF WEIGHTED INTERVALS AND TREE FOR INTERVAL MAXIMUM QUERIES:
IN EacH NobE, LErT Is key; Top RiGHT Is sumand;
BottoMm RiGHT Is par ti al _sum EmMpTY FIELDS HAVE VALUE 0

This is again a dynamic data structure that consists of a balanced search
tree, with the jumps of o as keys, in which the nodes carry some additional
information — the numbers par ti al _sumand summand. The central prop-
erty of this structure is that for each node * n, the maximum of o over the
interval associated with this node equals n- >par ti al _sumplus the sum of
m >summand over al nodes * mon the path from the root to * n, including
n- >sunmand.

Thus, if the query interval [a, b[ isthe interval associated with a node, we
can answer the maximum value query simply by going down in the search
tree to that node and adding up the correct terms. If the query interval isnot a
nodeinterval, we usethe canonical interval decomposition of thequery interval:
themaximum over theentireinterval must occur in oneof the subintervalsof the
canonical interval decomposition. We find the intervals of the decomposition,
and the maximum valuesin them, again by going down in thetree and summing
up the correct node values.
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The structure of anodein thistreeisthe following:

typedef struct tr_n t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
nunber _t sumrand;
nunber t partial _sum
/* bal ancing information */
} tree_node_ t;

With this structure, the query algorithm is now similar to the insertion in
segment trees: we just check for each node of the canonical interval decompo-
sition whether it contributes alarger sum than the current maximum. The query
function can be written as follows:

int max_value_interval (tree_node_t *tree,
key t a, key_t b)
{ tree_node_t *current_node, *right_path,
*| eft _pat h;
nunber _t sum left_sum right_sum tnp_sum
current _max;
int first = 1;

if( tree->left == NULL )
exit(-1); /* tree incorrect */
el se
{ current_node = tree;
sum = O;
right _path = left_path = NULL;
whil e( current_node->right !'= NULL )

/* not at |eaf */
{ sum += current_node- >sunmand;
if( b < current_node->key )
/* go left: a < b < key */
current _node = current _node->| eft;
el se if( current_node->key < a)
/* goright: key < b < a */
current _node = current_node->right;
else if( a < current_node->key &&
current_node->key < b )
/[* split: a < key < b */
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{ right_path = current_node->right;
/* both right */

left _path = current_node->left;
/* and left */
br eak;

}

el se if( a == current_node->key )

/* a = key < b */
{ right_path = current_node->right;
/* no left */

br eak;
}
else /* current _node->key == b, so
< key = b */
{ left_path = current_node->|eft;
/* no right */
br eak;
}

}
if( left_path == NULL &&
right _path == NULL)
current_max = sum
+ current_node- >sunmand

177

a

+ current _node->partial _sum

left_sum = right_sum = sum
if( left_path !'= NULL )
{ /* now follow the path of the |left
endpoi nt a*/
while( left_path->right !'= NULL )
{ left_sum += |eft_pat h- >sumand;
if( a < left_path->key )
{ [/* right node possibly
contributes */
tmp_sum = | eft_sum
+ |l eft _pat h->ri ght->summuand

+ left_path->right->partial_sum

if( first ||
tnp_sum > current_nmax )
{ current_max = tnp_sum
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first = 0;
}
left _path = left_path->left;
}
else if ( a == left_path->key )
{ tnp_sum= left_sum
+ | eft _pat h->ri ght - >summrand
+ left_path->right->partial _sum
if( first ||
tnp_sum > current _max)
{ current_max = tnp_sum
first = 0;
}
break; /* no further descent
necessary */
}

else /* go right, no node sel ected */
left_path = | eft_path->right;
}
/* left leaf of a needs to be checked
if reached */
if( left_path->right == NULL )
{ tnmp_sum= left_sum
+ |l eft_pat h- >summand
+ left_path->partial _sum
if( first || tnmp_sum > current_max )
{ current_max = tnp_sum first = O;
}

}
} /* end left path */

if( right_path !'= NULL )
{ /* and now follow the path of the right
endpoint b */
while( right_path->right !'= NULL )
{ right_sum += right_path->summand,;
if( right_path->key < b )
{ [/* left node possibly
contributes */
tnp_sum = right_sum
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+ right_path->l eft->summand
+ right_path->left->partial_sum
if( first ||
tnp_sum > current_nax)
{ current_max = tnmp_sum
first = 0;
}
right_path = right_path->right;
}
else if ( right_path->key == b)
{ tnp_sum=right_sum
+ right_pat h->l eft->sumrand
+ right_path->left->partial _sum
if( first ||
tnmp_sum > current _max )
{ current_max = tnp_sum
first = 0;
}
break; /* no further descent
necessary */
}
else /* go left, no node selected */
right_path = right_path->left;
}
if( right _path->right == NULL &&
ri ght path->key < b)
{ tnp_sum=right_sum
+ right_pat h->sunmand
+ right_path->partial _sum
if( first || tnmp_sum > current_max )
{ ~current_max = tnmp_sum first = 0;
}
}
} /* end right path */
return( current_nmax );
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This determines the maximum value of the current function o over the query
interval [a, b[, but doesnot tell uswherethis maximumisreached. The simplest
way to implement the query for the argument x, which maximizes o (x), isto
first perform amaximum val ue query and then make asecond pass down. When
we know the maximum va ue, we can find the interval of the canonical interval
decomposition for which thisvalueisreached and then go down in that interval
to the leaf, always choosing that lower neighbor in whose associated interval
we gtill find that maximum value.

We now need to describe the update, which is similar to the update in the
previoussection. Toinsert [a, b[ withweight w, weadd w tothecurrent function
o fordl x € [a, oo[ and then add —w for al x € [b, oo[. Wefirst insert a and
b in the underlying search tree, with any of our balanced search-treei nsert
functions. This, asin the previous section, needs amodification for new leaves.
If we gplit a leaf, both sunmand and parti al _sumof the previous leaf
stay with thisnow-interior node; thepar t i al _sumisalso copied to both new
leaves, and thesunmand of thenew leavesisO. Thispreservesthe sum property
along the paths to the root. For the rebalancing of the underlying search tree,
the standard rotations again need to be modified, pushing summands down and
recomputing thepart i al _sumfieldsfrom the lower neighbors. An example
code for the modified left rotation is as follows:

void left _rotation(tree_node t *n)
{ tree_node_t *tnp_node;
key t t np_key;
nunber t tnpl, tnp2;
tnpl = n->sunmmand;
n- >sumrand = O;
n->partial _sum += tnpl;
tnp2 = n->right->sunmand;
n->ri ght - >sumuand = 0;
n->| ef t - >sunmand += t np1l;
n->right->left->sumand += tnpl + tnmp2;
n->right->right->sumrand += tnpl + tnp2;
t np_node = n->| eft;
tnp_key = n->key;
n->left = n->right;
n- >key n->ri ght - >key;
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n->right = n->left->right;
n->left->right = n->left->left;

n->left->left = tnp_node;
n- >l ef t - >key = tnmp_key;
tnpl n->| eft->l ef t - >sunmand

+ n->left->left->partial _sum
tnp2 = n->l eft->right->sunmmand
+ n->left->right->partial_sum
n->left->partial _sum= (tnpl > tnp2) ?
tmpl : tnp2 ;
}

These operations have up to now not changed the function o represented
by the tree and have preserved the sum property. To perform the actual update
of the function, we proceed in a similar way as in the previous section. We
add w to the suntmrand for any node that belongs to the canonical interval
decomposition of [a, oo[. Then the path to any node whose associated interval
lies entirely within [a, oo[ will contain exactly one of these nodes. Because o
changed by w over the entire interval of the node, the maximum of o (x) over
that interval will have changed by w, so the sum property is preserved for all
these nodes.

For the nodes whose associated interval lies entirely outside the interval
[a, oo on which we changed the function o, nothing changes; so only the
nodes whose interval contains a remain. These are the nodes on the search
path to a. For these we restore the sum property bottom-up by recomputing the
parti al _sumfield from the lower neighbors.

Finally, we repeat the same stepsto add —w on theinterval [b, oof.

This update does not remove leaves that have become unnecessary, at whose
key thesum function o doesnot change. Thetechniquedescribed inthe previous
section can also be used for this structure.

All the operations of the structure we have described take O (k) timeif A
is the height of the underlying search tree. Choosing any balanced search tree
from Chapter 3, we obtain an O(logr) time bound. The global maximum of
the underlying function can even be determined in constant time; it is just the
sumof thesunmand and par t i al _sumfields of theroot. We could even add
some further operationsif they are supported by the underlying search tree, like
splitting the function at a threshold or joining together two functions whose
jumps are separated.



182 4 Tree Sructures for Sets of Intervals

Theorem. Thereisastructurethat keepstrack of a piecewise constant function
o with n jumps, which supportsinterval-restricted maximum queries and max-
imum argument queriesin O(logn) time and supports updates of the function
by adding w to o (x) for dl x > [a, b[ intime O(logn). It can answer queries
for the global maximum in time O(1).

4.6 Orthogonal Range Trees

Wehavea ready met the one-dimensional problem of range searchingin Section
2.7: given a query interval, list al key values of the current set that lie in
that interval. The higher-dimensional analog isthe orthogonal range-searching
problem: given an axis-aligned rectangle, or in general abox in d-dimensional
space, list al the pointsin the current set that lie in that rectangle or box.

Orthogonal range searching has been much studied, not only for geometric
applications, but indeed rather morefor databaseindex structures. In adatabase,
there are frequently tuples with many number components, and there higher-
dimensional range queries are quite normal, like “list all employeeswith salary
between $50,000 and $75,000, age above 50, who made more than $500,000
salesin each of thelast threeyears’: thisisafive-dimensional orthogonal range
query. Orthogonal range searching is also useful as preprocessing for queries,
which really depend only on the neighborhood of the query point, to isolate the
small subset of relevant points and then answer the query based on these points.

So the general situation is that we have a set of data points pi, ..., px
given by their coordinatesin d-dimensional space, p; = (pi1, - - -, pia), Which
isin some way stored by the data structure. We receive a d-dimensional query
interval [a1, bi[x - - - x [aq4, bg[ and want to list all points p; contained in
that interval, so a1 < pi1 < b, ...,aq < pia < by In output-sensitive time
O(fu4(n) + k) if thereare k such points, with f,(rn) asslow-growing as possible.
Many solutions have been proposed for data structures supporting this type of
query. The canonical interval decomposition allowsaparticularly nicerecursive
construction, the orthogonal range trees, which were independently discovered
by Bentley (1979), Lee and Wong (1980), Lueker (1978), and Willard.”

The idea of the orthogona range tree is that in order to solve the d-
dimensional orthogonal range-searching problem, we build a balanced search
tree for the key valuesthat occur in thefirst coordinate of the data points. Each
node of the search tree has its associated interval for the first coordinate, and
we store in that node al points whose first coordinate falls into that interval

7 In an inaccessible technical report, D.E. Willard: The Super-B-Tree Algorithm, Report
TR-03-79, Aiken Computer Laboratory, Harvard University, USA, 1979.
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in astructure that allows d — 1-dimensional range searching on the remaining
d — 1 coordinates.

RECURSIVE STRUCTURE OF THREE-DIMENSIONAL ORTHOGONAL RANGE TREE:
EAcH TREE NODE HAS ASSOCIATED TwO-DIMENSIONAL TREE, IN WHICH
EacH NoDE HAS ASSOCIATED ONE-DIMENSIONAL TREE

If we have this structure, then the query for the d-dimensional interval
[a1, ba[x - - - x [aq, ba[ is simple: we find the O (logn) nodes that correspond
to the canonical interval decomposition of [ay, b1[. In each of these nodes, we
perform d — 1-dimensional range searching for [az, bo[ x - - - x [a4, by[. Each
data point that occurs in the d-dimensional query interval occurs in exactly
one of these nodes, where it will be found by the d — 1-dimensional query.
And al the points that occur in the nodes have a first coordinate that lies in
theinterval [ay, by[, SO within the nodes we can disregard the first coordinate.
Suppose now there are r nodes that belong to the canonical interval decom-
position of [as, b1[, with r = O(logn), and the pth node returns k, matching
pointsin time O(f;-1(n) + k,); then the total timeis O(logn) for finding the
canonical interval decomposition, plus O(3_)_;(fa-1(n) + k,)) for thed — 1-
dimensional queries in the nodes. Because the total output size is just the
sum of the output sizes of the subproblems, k = Z;:l k,, we have in total an
output-sensitive complexity of O(f,(n) + k), with f,(n) = O(f4-1(n)logn).
If we use for the one-dimensional problem any balanced search tree, with any
of the interval-query methods from Section 2.7, we get f1(n) = O(logn), so
fa(n) = O ((logn)?). Thus, orthogonal range trees are a static structure that
supports d-dimensiona orthogonal range queries in a set of d-dimensional
points in output-sensitive time O ((Iogn)d +k) if the output consists of
k points. To build the structure for d > 2, we first build the tree on the
first coordinates and insert each of the n points in al the O(logn) nodes
along the search path for its first coordinate. Within each node, we build a
d — 1-dimensional range tree structure. This gives a building time of
O (n(logn)?). The space requirement of this structure is O (n(logn)?~*) be-
cause the one-dimensional structure needs an O (n) space.
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Theorem. Orthogonal range trees are a static structure that supports
d-dimensional orthogonal range queries in a set of d-dimensional points in
output-sensitive time O ((logn) + k) if the output consists of k points. They
can bebuiltin O (n(logn)?) timeusing O (n(logn)?~*) space.

{(0.1),(1,5),(2,8),(3,3),(5,0),
(6,4),(7.6),(8,7),(9.9)}

10.1).(1.5).2.8).3.3).5.0)} {(6.4).(7.6).(8.7).09.9)}

SET OF NINE POINTS, WITH SEARCH TREE FOR FIRST COORDINATE.
EAacH NoDE Has SET OF POINTS WITH FIRST COORDINATE IN NODE INTERVAL;
FoOR THESE, A SEARCH STRUCTURE FOR SECOND COORDINATE Is BUILT

Becausethe structureisdefined inductively using alower-dimensional struc-
ture in the nodes, we can improve the performance in al dimensions if we
have a better low-dimensional range-searching structure to start the induc-
tion. The one-dimensiona structure, the normal binary search tree, does not
|leave any room for improvement; at least in the comparison-based model as-
sumed here, the Q(n logn) lower bound for comparison-based sorting implies
a Q(logn) lower bound for one-dimensional range searching. But the two-
dimensional structure can be improved, reducing the O((logn)? + k) query
timeto O(logn + k) using the technique of fractional cascading. This method
was discovered by Willard® and Hart.’

The general idea of fractiona cascading is that when we have to make a
sequence of searches in different, but related, sets, we should avoid having
to start each search from anew, but create links between these sets so that
we can use the information from the previous search in the next set. A sim-
ilar situation occurs in the two-dimensional orthogonal range tree because in
each node of the canonical interval decomposition of the query interval in
the first coordinate, we have to search among the second-coordinate values of
points stored in that node for the second-coordinate query interval. The frac-
tional cascading idea occursin a number of other algorithms. The method was

8 Another inaccessible technical report from 1978 is usually cited, but that dates the improved
method before the basic method. The first published reference is Willard (1985).

9 Another technical report, JH. Hart: Optimal Two-Dimensional Range Queries Using Binary
Range Lists, Technical Report 76-81, Department of Computer Science, University of
Kentucky, USA, 1981.
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discussed in a more general setting by Chazelle and Guibas (198643, b), and
later in Sen (1995).

In the two-dimensional orthogonal range tree, the searches we need to do
are not themselves related in the required way: the sets in the nodes of the
canonical interval decomposition are digjoint, so searching in one set does not
give any information about the position in another set. But if we also search for
the same second-coordinate query interval in all nodes along the search paths
for the first-coordinate query interval, we find the structure we need.

For each node, we organize the points stored in that node into alist, sorted
by increasing second coordinate. If the node is not a leaf, then each point on
thelist of the node occurs either on the list of the Ieft lower neighbor or on the
list of the right lower neighbor. We link each point on this sorted list

{ tothe same point on thelist of the left or the right lower neighbor, where it
occurs;

{ tothe paint with the next smaller second coordinate if the point is missing
on that list; or

{ tothefirst point on the list if thereis no point with a smaller coordinate.

With this information, we can follow down an interval, given in the list of
the root, through all nodes we visit while determining the canonical interval
decomposition of the first-coordinate interval. In each node, we have the first
and last points of the interval, restricted to the list in the node, and we find in
0(1) timethefirst and last pointsin the list of the left or right lower neighbor,
just following the pointers between the lists and possibly going one node up on
the list. Thus, if we perform the search in the top node in O(logr) time, then
each level of going down the tree takes only O (1) time. There are two types of
going down alevel we need, following the path of the query interval endpoint,
where we just keep track of the current position, which takes O (1), and listing
the contents of anode bel onging to the canonical interval decomposition, which
takes O(1 + k) if there are k elements in that interval. So in total, the query
takes O(logn + k) time if the output consists of & points.

Using this structure for the two-dimensional orthogonal range queries, we
improve the bound by one logn factor.

Theorem. Orthogonal range trees with fractional cascading are a static data
structure that supports d-dimensional orthogona range queries in a set of
d-dimensional points, d > 2, in output-sensitivetime O ((logn)?~* + k) if the
output consists of k points. They can be built in O (n(logn)?~?*) time using
O (n(logn)?~1) space.
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S
——
//'0)’\\
{(5.0), (0,1), (3.3), (1.5), (2.8)} m ( 6.4), (7,6). (8.7). (9.9)}
9., (1.5, mx (5.0, <3,3\>) {(64). (7.6\)) (8.7, 9.9)}
[0] 0.1 (1.5, 2.8)} (33) (5.0 [6] t©64) ey [8] a7 (0.9

((15) (28))
SET OF NINE POINTS: ORTHOGONAL RANGE SEARCH TREE WITH

FrACTIONAL CASCADING

To decribe the orthogonal range tree in more detail, we first give code
for the genera recursive structure and then discuss the improvement of the
two-dimensional case by fractional cascading. In general, the d-dimensiona
orthogonal range tree consists of any balanced search tree, with an addi-
tional pointer to a d — 1-dimensional orthogonal range tree in each node.
The one-dimensional orthogonal range tree is just a balanced search tree that
supports interval queries as in Section 2.7, so that one-dimensional range
queries can be answered. So a node of the d-dimensiona tree looks as
follows:

typedef struct tr_n t { key_t key;
struct tr_n_t *left;
struct tr_n_t *right;
struct tr_n_t *I_dimtree;
/* bal ancing information */
} tree_node_t;

Thepointsstoredinthetreearegiven by an array of coordinatesand possibly
a pointer to some object associated with that point. We assume the dimension

to be aglobally defined constant.

typedef struct { key_t coor di nat e[ DI MENSI ON] ;
object _t object; } point_t;

We need again alist type to collect the output.



4.6 Orthogonal Range Trees 187

typedef struct p ls nt { struct p_Is nt *next;
point_t *point;
} p_list _node t;

For our recursive algorithms, it is always convenient to use the coordinates
in backward order, evaluating the last coordinate first. So each point has an
array of coordinates of unknown length, of which we look only at the first
dimension entries.

Next isthe codethat constructsthe orthogonal rangetreefromalist of points.
Itfirst createsalist of the key valuesin thelast coordinate, then sortsthese, build
a search tree on the key values, augmented by —oo, attaches to each search-
tree node the list of al points that should go into that lower-dimensional tree,
and findly calls itself to build all these lower-dimensional trees. The sorting
function produces a sorted list of key values occurring in the last coordinate,
with the list of points of that key value attached to each node of the sorted list.
Thefunction to build the search tree can be one of the functions of Section 2.8.

tree_node_t *build or r _tree(p_list_node_t
*pt _list, int dim)
{ if( pt_list == NULL )
return( NULL );
/* should not be called for enpty tree*/
el se
{ tree_node_t *o_tree, *t_tnp;
tree_node_t *key list, *k_tnp;
p_list_node_t *p_tnp, *p_tnmp2;
/* create list of key values in dinension
dim*/
key list = NULL; p_tnp = pt_list;
while( p_tnmp !'= NULL )
{ k_tnp = get_node();
k_tnmp->key =
(p_t mp->poi nt ->coordi nate)[di m ;
p_tnmp2 = get_p_list_node();
p_t np2- >poi nt p_t np- >poi nt ;
p_t np2- >next NULL;
k tmp->left = (tree_node t *) p_tnp2;
Kk tmp->right = key_ |ist;
key list = k_tnp;
p_tnp = p_tnp->next;
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} /* made copy of point list */
/* sort and renove duplicates*/
key list = sort( key_list );

if( dim>=1) /* for interval deconposition

need -infty key*/

{ k_tnp = get _node();
k_tnp->key = NEG NFTY
k_tnmp->right = key_list;
k_tmp->left = NULL;
key list = k_tnp;

}

/* create search tree */

o tree = nake_tree( key_ list );

/* initialize all |ower-dinmensional trees
to NULL */

create_stack();

push( o_tree );

whil e( !stack_empty() )

{ t_tnmp = pop();

t _tnp->l _dimtree = NULL;
if( t_tnmp->right !'= NULL )
{ push( t_tnmp->left );
push( t_tnp->right );
}
}

renove_stack();
if( dim==20)
return( o_tree );
[* for dinension one:finished */
else /* need to construct | ower-dinensiona
trees */
{ [/* insert each point, initially attach as
list to nodes */
while( pt_list !'= NULL )
{ t_tnp = o_tree; /* tree not enpty */
while( t_tnp!= NULL )
{ p_tnp = get_p_list_node();
p_tmp->next = (p_list_node_t *)
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t_tnp->l _dimtree

p_tnmp->point = pt_list->point;

t tnp->l _dimtree = (tree_node_t *)
p_tmp;

if( t_tnp->right !'= NULL &&
pt_list->point->coordinate[din] <

t _t mp- >key)
t_tnp =t _tnmp->left;
el se

t_tnp = t_tnmp->right;
} /* attached point to each node
on its search path */
pt list = pt_list->next; /* go to next
poi nt */
}
/* now create | ower-di nensional trees for
all nodes */
create_stack();
push( o_tree );
while( !stack _empty() )
{ t_tmp = pop();
if( t_tnmp->l_dimtree !'= NULL )
t_tnp-> _dimtree =
build or r _tree((p_list_node_t *)
t _tnp->l _dimtree, diml);
if( t_tnp->right != NULL )
{ push( t_tnp->left );
push( t_tnmp->right );
}
}

renove_stack();
/* finished */
return( o_tree );



190 4 Tree Sructures for Sets of Intervals

The keys of the query interva [ay, bi[x - -+ x [aq, by[ are given as two
pointers to arrays a[ ] and b[] of keys. For dimension greater than one,
the query function is based on the canonical interval decomposition that we
aready used severa times. One difference is that the query interval is not
necessarily spanned by key values occurring in the tree, so at the left and
right leaves, we need to test whether the key values really belong to our query
interval. For dimension one, we call a different function, which is the one-
dimensiona range-searching function described in Section 2.7 adapted to the
current situation.

p_list_node_t *find_points_1d(tree_node_t *tree,
key_t *a, key_t *b)
{ tree_node_t *tr_node;
p_list_node_t *result_list, *tnp, *tnp2;
result list = NULL;
create_stack();
push( tree );
while( !'stack_empty() )
{ tr_node = pop();
if( tr_node->right == NULL )
{ /* reached | eaf, now test */
if( a[0] <= tr_node->key &&
tr_node->key < b[0] )
{ /* nust attach all points belowthis
| eaf */
tmp = (p_list_node_t *)
tr_node->l eft;
while( tnmp !'= NULL )
{ tmp2 = get _p_list_node();
t np2- >poi nt = t np->poi nt;
tnp2->next = result_list;
result list = tnp2;
tnp = tnp->next;

}

}

else if ( b[0] <= tr_node->key )
push( tr_node->left );

else if ( tr_node->key <= a[0])
push( tr_node->right );
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el se
{ push( tr_node->left );
push( tr_node->right );
}
}

remove_st ack();
return( result_list );

_list_node_t *join_list(p_list_node t *a,
p_list_node_t *b)

©

{ if( b == NULL)

return(a);

el se

{ p_list_node_t *tnp;
tmp = b;

whil e( tnp->next !'= NULL )
tnp = tnp->next;

t np- >next = a;

return(b);

ist_node_ t *find points(tree_node_t *tree,
key t *a, key t *b, int dim
{ tree_node_t *current_node, *right path,
*| eft _path;

p_list_node_t *current_list, *new.|ist;
current list = NULL
if( tree->left == NULL )

exit(-1); /* tree incorrect */
else if( dim==0)

return( find_points_1d( tree, a, b ) );
el se
{ current_node = tree;

right_path = left_path = NULL;

whi l e( current_node->right !'= NULL )

/* not at |eaf */

{ if( b[din] < current_node->key )

P_
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/* go left: a < b < key */
{ current _node = current_node->| eft;
}
el se i f( current_node->key < a[dim)
/* go right: key < b < a */
{ current _node =
current _node->ri ght;
}
else if( a[din] < current_node->key &&
current _node->key < b[dim )
/* split: a < key < b */
{ right_path = current_node->right;
/* both right */

left _path = current_node->left;
/* and left */
br eak;

}

else if( a[din] == current_node->key )

/[* a = key < b */
{ right _path = current _node->right;
/* no left */

br eak;

}

el se

/* current_node->key == b, so a < key = b */

{ left _path = current _node->| eft;
/* no right */
br eak;

}

}
if( left_path !'= NULL )

{ /* now follow the path of the left
endpoint a */
while( left_path->right !'= NULL )
{ if( a[din] < |eft_path->key )
{ /* right node nust be selected */
new |ist = find_points(
| eft_path->right->l _dimtree,
a, b, diml);
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current _list = join_list(
new |ist, current _list);
left _path = left_path->left;
}
else if ( a[din] == |left_path->key )
{ new_|ist = find_points(
left_path->right-> _dimtree,
a, b, dim1l);
current _list = join_list(
new |ist, current_list);
break; /* no further descent
necessary */
}
else /* go right, no node
selected */
left_path = |l eft_path->right;
}
/* left leaf needs to be selected if
reached in descent*/
if( left_path->right == NULL &&
| eft _path->key == a[din] )
{ new |ist = find_points(
| eft _path->I _dimtree,
a, b, diml);
current _list = join_list( new.list,
current _list);
}
} /* end left path */
if( right_path !'= NULL )
{ /* and now follow the path of the right
endpoint b */
while( right_path->right !'= NULL )
{ if( right_path->key < b[dinm )
{ /* left node nmust be selected */
new |ist = find_points(
right_path->left-> _dimtree,
a, b, dim1l);
current _list = join_list(
new |ist, current_list);
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i f(

}

ri ght _path = right_path->right;
}
else if ( right_path->key == b[din])
{ new_|ist = find_points(
right _path->left-> _dimtree,
a, b, dim1l);
current _list = join_list(
new list, current_list);
break; /* no further descent
necessary */
}
else /* go left, no node selected */
right_path = right_path->left;

right _path->right == NULL &&
ri ght _path->key < b[dim)
new |ist = find_points(
right _path->I _dimtree,
a, b, diml);
current _list = join_list( new.list,
current _list);

/* end right path */

return( current _list );

Notice that we must insert the results from the subproblems in front of the
current result list. To concatenate the two lists, we have to follow onelist to its
end, so if we always follow the list of new results to the end, we touch each
result on each level of the recursion only once and spend only O (k) time on the
k results. An alternative way would beto give back from the lower-dimensional
subproblems pointers to front and rear of the list.

The two-dimensional range searching with fractional cascading is more
difficult. We have a search tree for the first coordinate, where we have to select
the nodes corresponding to the canonical interval decomposition of the query
interval in the first coordinate. Attached to each node of the first tree is a
structure for the search in the second coordinate, but these structures are linked
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together as needed for the fractional cascading, so that we need to search only
in the set associated with the first node and then can reuse that information in
all later searches.

It is sufficient to attach to each node of the first tree just a linked list of
all pointsin the set of that node, ordered with increasing second coordinate,
and each list item containing two pointers to the next list item in the two lists
associated with the lower neighbors of the node. We also need a second tree,
a search tree for the second coordinates of all points, to get the fractional
cascading started by locating the query interval endpoints in the list of all
points.

Wehave upto now only described the query a gorithmsfor thisdatastructure.
To build the structure, we list al coordinate values in the last coordinate and
build a search tree for these key values. Each node should contain a lower-
dimensional search structure for all those points whose last coordinate liesin
the interval associated with that node. Thus, each point occurs in all the sets
of nodes along the search path of its last coordinate, and we can assign the
n points to the nodes in O(nlogn) time. Then we visit each node and build
there the lower-dimensional search structure in the same way until we arrive
at dimension one, in the simple structure, or dimension two, in the fractional
cascading structure.

In the simple one-dimensional structure, we just build a normal balanced
search tree whose leaves are connected in alinked list in time O (n logn).

In the two-dimensional fractional cascading structure, we first build the
search tree for the second coordinates, whose leaves are arranged in a linked
list, and the search treefor thefirst coordinates. Thelist of leaves of the second-
coordinatetreeislinked to theroot of thefirst-coordinatetree. Then wego down
thefirst-coordinate tree, and for each node, the list associated with that nodeis
entirely copied and the items distributed over the list of the lower neighbors of
the tree node, with pointers added from the list nodes to the copies or their next
successors in the lists of the lower neighbors. Because the depth of the treeis
O(logn) and we meet each of the n points on each level only in one list, the
total time to build this structure is O (n logn).

Together with the recursion, the total time to build this structure is
O(n(logn)?) for the simple version and O(n(logn)¢~1) for the fractional cas-
cading version.

The structure, as described, is a static structure. One can make it dynamic,
with amortized bounds, using the technique of partial rebuilding (Edel sbrunner
1981; Lueker and Willard 1982; Overmars 1983). If we do not ask for a list
of points in our range, but only for their number (range counting), one can
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make the structure fully dynamic, with worst-case update bounds (Willard and
Lueker 1985). If we are interested only in range-counting queries, we need to
storein the nodes of the range tree only the numbers of pointsin the associated
intervals, which are easier to update, because they can be added and subtracted.
The maximum number of distinct range queries possible for a set of n points
in d-dimensional space was studied by Saxe (1979). It is between 57zn?* and
1 2 19} (n2d—1) .

eyt T

4.7 Higher-Dimensional Segment Trees

In the previous section we studied the orthogonal range-searching problem:
given a set of n points and a query range (a d-dimensional interval), list
al points that lie in that range. The inverse problem is also quite natural:
given a set of n ranges (d-dimensiona intervals) and a query point, list al
ranges that contain that point. This problem can be solved by d-dimensional
segment trees, which are a straightforward generalization of the segment tree
structure.

Like the orthogonal range tree, the d-dimensional segment tree is defined
recursively; we have abalanced search tree whose keys are thefirst coordinates
of the d-dimensional intervals, and each node of that tree containsad — 1-
dimensional segment tree. In this (d — 1)-dimensional segment tree associated
with the node * n, al those d-dimensional intervals [a;1, bi1[x - - - X [aiq, bial
are stored for which *n is part of the canonical interval decomposition of
[ai1, bi1[. Because there are at most 2n keysin the first coordinate, the canoni-
cal interval decomposition has size O(logn), so each d-dimensional interval is
storedin O(logn) (d — 1)-dimensional segment trees. Thus the space require-
ment, and the time to construct the d-dimensional segment tree of n intervals,
is O(n(logn)?).

Now for the query, we follow the search path of the first coordinate of
the query point, and in each node we perform a (d — 1)-dimensional query
with the remaining coordinates in the structure associated with the node.
By the properties of the canonical interval decomposition, we will meet any
d-dimensional interval that contains this point in exactly one of the associated
structures. Because the search path contains O (logn) nodes, we perform that
number of (d — 1)-dimensional queries, each of which takesan output-sensitive
time O((logn)?~1 + k;) if it lists k; intervals. By induction it follows that the
query time of the d-dimensional segment tree of » intervals is output-sensitive
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O((logn)? + k). This is again a static structure that can be made dynamic in
the amortized sense by the technique of partial rebuilding.

Theorem. The d-dimensional segment tree structure is a static data structure
that can be built in time O (n(logn)?) and needs space O (n(logn)?). It lists all
d-dimensional intervals containing a given query key in output-sensitive time
O((logn)? + k) if there are k such intervals.

Again this allows an improvement for the two-dimensional case, which re-
duces the query time from O((logn)? + k) to O(logn + k). This can then
be used in the recursive construction for the d-dimensiona structure to get
O((logn)?~1 + k) output-sensitive query timefor 4 > 2. This structure, the S-
tree, was devel oped by Vaishnavi (1982) and uses again afractional cascading-
like technique.

To describe this method for the two-dimensional problem, we start with the
two-dimensional segment tree as described before. In a query, we follow the
segment tree for the first coordinate, with the first coordinate ¢, of the query
point, and in each of the O (log n) nodes along this search path we make aquery
in the segment tree for the second coordinate ¢, and list &l the rectangles we
found along that path. So this second-coordinate query goes again in a search
tree down from the root to aleaf and gathers the rectangles listed in the nodes.
If we knew which leaf we would end up in, we could aso take the same path
backward, going up from the leaf. And thisisindeed easier because we always
end in the same leaf: that one which contains the second-coordinate ¢, of the
query point.

So the first idea is to orient each second-coordinate tree backward, from
leaves to root, and join the leaves of different trees together according to the
first-coordinatetree; then wevisit O (logn) second-coordinatetrees, butin each
wejust follow a path upward and list al rectangles found on the way. With the
upward pointers along these O (log ) paths, we can skip the empty nodes, sothe
time we spend on the ith pathis O (1 + k;) if welist k; rectangles on that path,
which givesan O(logn + k) output-sensitive query time, k = ), k;, if wecan
visitthe O(logn) leavesof the second-coordinatetreesin O (log n) time, instead
of the O((logn)?) time we need if we locate each leaf in its tree individually.

The problem hereisthat, although in each tree we need the | eaf that contains
the second coordinate ¢, of the query point, the individual trees might look
quite different, because they do not use the same keys, but only those that
are second coordinates of rectangles that are inserted in that specific second-
coordinate tree. Thusit could happen that going down the first-coordinate tree,
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some of the second-coordinate trees have only one leaf, and then there are
again big ones. If we want to go in O(1) time from one leaf containing ¢, to
the corresponding leaf of the next tree, the interval associated with the previous
leaf should intersect only O(1) intervals of leavesin the next tree.

Because the leaf intervals are the intervals between the consecutive key
valuesin the tree, we can achieve this if the set of key values that occur in the
next second-coordinate tree is a subset of the key values used in the current
tree. Then each leaf interval in the current tree is contained in a unique leaf
interval in the next tree, and we can just create a pointer from the leaf in the
current to the leaf in the next tree, for each of the two possible next trees we
get from the first-coordinate tree.

To achievethissubset property for thekey val ues, we need to enter the second
coordinates of each rectangle not only in the second-coordinate trees, where it
occurs by the canonical interval decomposition of itsfirst coordinate, but also
in the trees above it in the first-coordinate tree. But there are only another two
nodes on each level where the rectangle is entered, so each rectangle occurs
still in only O(logn) second-coordinate trees, where it contributes O(logn)
occurences each, so thetotal size of the structureisstill only O(logn). And the
query time, as described earlier, is O(logn + k).

The construction we now ultimately arrived at is the following: given the
rectangles[a;, b;[ x[c;, d;[,fori =1, ..., n,

1. Create abalanced search tree 7; for {a1, b1, as, bo, . .., a,, b,}.
2. Attach to each node v of thistree aninitially empty secondary search tree
To(v).
3. Foreachi=1,...,n,
3.1 Start at the root of 7; and put it on a stack. Then, aslong asthe stack is
not empty, repeat.
3.2 Take the current node v from the stack.
Insert {c;, d;} askeysinto the tree 75(v).
If the interval of the current node v isnot contained in [a;, b;[, check
forv->l eft andv- >ri ght whether their intervals have nonempty
intersection with [a;, b;[; if yes, put them on the stack.
4, Foreachi =1, ...,n,
4.1 Insert rectangle [a;, b;[ x[c;, d;[ into the segment tree 7>(v) for all
those nodes v that belong to the canonical interval decomposition of
[ai, b,[ in7;.
5. For each nodev of 77,
5.1 Create pointers from each leaf of 75(v) to the corresponding leaves of
To(v- >l ef t) and To(v- >ri ght).
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6. For each nodev of 77,
6.1 For each node w of 75(v) create a pointer to the next node above win
7,(v) that has some rectangle associated with it.

Thisisalready aquite complicated structure. Thekey insight for the analysis
is that each pair {c;, d;} is inserted in step 3 only O(logn) times, so the
associated segment trees 7;(v) together have only O(nlogn) nodes. Each
rectangle will again be inserted in at most O((logn)?) node lists, so the total
sizeand preprocessing timeis O (n(logr)?): the construction timeis dominated
by step 4; all others need only O(nlogn). To summarize the performance of
this structure see the following:

Theorem. The S-tree is a static data structure that keeps track of a set of n
rectangles, using O(n(logn)?) space and preprocessing time, and lists for a
given query point all rectangles that contain this point intime O(logn + k) if
there are k such intervals.

4.8 Other Systems of Building Blocks

In many of the preceding algorithmswe used the canonical interval decomposi-
tion induced by a search tree on a set of numbers. The underlying abstract idea
isto decompose an interval in aunion of asmall number of building blocks. If
we want to answer a query for an arbitrary query interval, then we decompose
that query interval into a union of building blocks and execute the query on
those building blocks.

I 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 718 9 10 11 12 13 14
1 2 3|4 5 6 7|8 9 10l 12 13 14
112 314 5|6 7189 10|11 12|13 14

2| 3l4lslelzl 9ol 1oli]i2]13]14
INTERVALS IN A CANONICAL INTERVAL DECOMPOSITION OF {1, ..., 14}:

ANY INTERVAL CAN BE EXPRESSED AS UNION OF FIVE BLOCKS

Thisrequires that we can decompose the queries and reconstruct the answer
for the entire interval from the answers for the building blocks into which we
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decomposed the query.’® Also, we need some structure that answers the query
for afixed block. And finally we need to be able to represent each interval as
union of asmall number of blocks.

The prototype of this situation is orthogonal range queries. With the canon-
ical interval decomposition, we need only n distinct building blocks, of total
size O(nlogn), and a query for an arbitrary interval is reduced to O(logn)
lower-dimensional queriesto building blocks. Thereisatrade-off in the choice
of building blocks: if we want to reduce our arbitrary interval query to a small
number of block queries, then we need many building blocks, and for each
block we have to build a structure to answer queries. In the extreme case,
we can build a structure for each possible query interval. In the orthogonal
range query example, there are () = ©(n?) possible query intervals for the
first coordinate, and we could build for each of them a structure for the lower-
dimensiona query. Then we would need just one lower-dimensiona query,
instead of ®©(logn), but would need much more preprocessing time to con-
struct all these lower-dimensional structures.

This ideawas first used by Bentley and Maurer in 1980 for d-dimensional
orthogonal range searching, where they showed that one can reach an output-
sensitive query time of O(f(d, €)logn + k) with O (n'+*) preprocessing time.
The same idea can be applied to many other problems, athough the details
depend, of course, on what we need to do with the building blocks.

To describe the method in more detail, we notice first that we need not
deal with those arbitrary n coordinate values, we can aways assume they
arel, ..., n. We achieve this normalization by building a search tree for the
coordinate values, which translate a query coordinate in its rank, that is, i for
the ith smallest. This adds O(logn) to the query time, but as the query timeis
at least Q2(logn), thisisinsignificant.

The system of blocks used in Bentley and Maurer (1980) is an r-level
structure that can be interpreted as writing the numbers to the base - . On the
top level, the blocks are the intervals

[anl_%,bnl_%] withO <a <b§n%.
On the jthlevel, the blocks are intervals

. 1

1 i g 1 i1 with0<a <b <nr and

[an r+cent 7 ,bnTr +cn ] -1 )
O<c<n7,for2<j=<r.

10 Thisis different from the decomposable searching problems we discuss in Section 7.1. There,
we decompose the underlying set; here, we decompose the query interval.
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Thisgives (";) = O(n*) blocks on the top level, each of size at most n, and

j-1

n*(”zl) = 0(n'"") blocks on the jth level, each of size at most n~*+. To
answer aquery, we need at most one block on thetop level and two blocks each
on the lower levels, which gives atotal of 2r — 1 queries on blocks. If thetime
to build the query-answering structure for a block of sizem is preproc(m), we
need in total

0 < > """ preproc (nl‘%) ) =0 (rn”f —preproc(n))
n
=1

time to build this structure.

/1 2 3 4 5 6 7 8 9 10 II 12 13 14
1 2 3 4 5 6 7 8 9 10 Il
5 6 7 8 9 10 11 12 13 14 | Top-level
blocks
1 2 3 4 5 6 7 819 10 11 12 13 14
5 6 7 8 9 10 11
1 2 3 415 6 7 s8lo 10 11112 13 14
1 2 3 5 6 7 9 10 12 13
2 3 4 6 7 8 10 11 13 14
1 213 4|5 617 sloliolilizlizlie |[Secondlevel
blocks
2 3 6 7
11213141516l 718

INTERVALS IN A TWO-LEVEL BENTLEY—-MAURER STRUCTURE OF {1, ..., 14}:
ANY INTERVAL CAN BE EXPRESSED AS UNION OF THREE BLOCKS

In the case of d-dimensional orthogonal range queries (Bentley and Maurer
1980), any normal balanced search tree gives us a structure that performs the
one-dimensional queries in output-sensitive time O(logn + k), with prepro-
cessing time preproc,(n) = O(nlogn). If we now use this r-level structure
for the possible query intervals in the second coordinate, we obtain a structure
that performs two-dimensional queriesin output-sensitivetime O(r logn + k)
and requires preprocessing time preproc,(n) = 0(rn1+72- logn). We again use
an r-level structure for the possible query intervalsin the third coordinate, and
the two-dimensional structure for the queries on each third-coordinate block in
thefirst two coordinates, we obtain a structure that performs three-dimensional
queries in output-sensitive time O(r?logn + k) and requires preprocessing



202 4 Tree Sructures for Sets of Intervals

time preprocs(n) = O(r2n*7 logn). Iterating this construction, we obtain
a structure that performs d-dimensional orthogonal range searching in time
O@r?logn + k) and requires preprocessing time O(rnl**~" logn). We
now choose r large enough to obtain O(f(d, €)logn + k) output-sensitive
query time with O(n'**) preprocessing time. Unfortunately, this method is
advantageous only for very large n, because the multiplicative constants in
those O(-) bounds are very large (Falconer and Nickerson 2005).

The same technique can be applied to other interval-based problems; indeed,
the technique of decomposing a query domain into few building blocks and
preprocessing the answers for al blocks is not restricted to intervals as query
domains. But we must be able to find the block decomposition of the query
domain fast and to answer the query from the answers on the blocks.

4.9 Range-Counting and the Semigroup M odel

The range-counting problem asks just for the number of points in a range,
instead of alist of these points. So in the complexity bound, we do not need any
output-sensitive term; the output is always just one number. The orthogonal
rangetree ideacan be directly adapted to that question instead of concatenating
lists; we just add up the numbers contributed from the subproblems in the
canonical interval decomposition. This can beimmediately generalized, giving
the points weights and asking for the total weight of the pointsin aquery range
or for the maximum weight. Indeed, if we have a commutative semigroup
(like 4, or max) and each point has an associated value, we can determine
the semigroup sum of al points in the query range in exactly the same way,
constructing the canonical interval decomposition of the first-coordinate query
interval, executing lower-dimensional queries, and computing the semigroup
sum of their results. In the one-dimensiona version, this just asks for the
number of keysin an interval, or the semigroup sum of their keys, which can
bedirectly answered from the canonical interval decomposition, if those values
are stored in the tree nodes. A special caseisto maintain an array ay, . . ., a,,
together with the partial sums of its subarraysa; + - - - + a;, under updates of
the array elements q,, a problem studied in various versions and models in
Fredman (1979, 1982), Yao (1982, 1985c), Hampapuram and Fredman (1998),
Burghardt (2001), and Patragcu and Demaine (2004).

There are two things that make range-counting problem interesting and
different from range searching. First, it allows to make the structure dynamic,
allowing insertions and deletions, as we can rebalance the trees. This was
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not possible in the range-searching problem because the structures associated
to the tree nodes were large structures, which would have to be rebuilt; but
for the range counting, it is just a single number, which can be recomputed
from its lower neighbors. This was already observed by Lueker (1978) and
Willard.** This structure performs i nsert, del et e, and r ange_count

al in amortized O((logn)?) on a set of n points. More remarkable, however,
is that in this model one can show lower bounds on the complexity of any
algorithm solving this range-counting problem. In the range-searching model,
the output-sensitive term hides some effects. This study of lower bounds was
started by Fredman (1979, 19814, b) and Yao (1982). For a lower bound, one
needs to be specific about the model assumptions, which are rather strong and
in each of these papers somewhat different. And the results show that details do
matter. In the model of Fredman (1981a), any structure that solvesthe dynamic
range-counting problem, supporting i nsert , del et e, and r ange _count

for any commutative semigroup, will need Q(n(logn)?) for some sequence
of n operations, starting from an empty set; and he gives one structure that
gives O((logn)¢) worst-case complexity. But this complexity mode! is quite
different from either pointer machines or algebraic decision trees because only
arithmetic operations of a specific type are allowed and only these are counted.
Asan example, if wehave astatic array ay, . . ., a, and want to evaluate partial
sums of subarrays a; + a;11 + --- +a;, and are interested in the additional
storage and the query time, then there is a trivial algorithm with n cells of
additional storage, and O (1) query time, if we are allowed to use subtractions:
we just store &l partial sums starting inay, thena; +---+a; = (@1 +--- +
a;) — (a1 + - -+ 4+ a;—1). Butif we are not allowed subtractions, and our query
algorithm can only add some subset of the additional storage cellstogether, and
these storage cellscontain only nonnegative linear combinationsof thea; , thena
bound on the complexity of the query related to theinverse Ackermann function
of n and the number of additional storage cellswas given in Yao (1982).'? But
this complexity then counts only the number of arithmetic operations, taking
the sum of cells, not the time to select the cells, in dependence of the query,
of which the sum is taken. Thus, the complexity results in these measures
are not comparable to our other complexity bounds. The most important of
these papers is Fredman (1981b), where a general technique for complexity
bounds for dynamic range-counting problemsin aclass of arithmetic modelsis

11 |n atechnical report mentioned earlier in Footnote 7.

12 A related technical report, N. Alon, and B. Schieber: Optimal Preprocessing for Answering
On-line Product Queries, Tel Aviv University, Israel, 1987, gives asimilar result for partia
products of static sequence of semigroup elements, using yet another relative of the inverse
Ackermann function.
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introduced. Many other models have been developed since; a survey of lower
bounds in various models is given in Patrascu (2007). The space-query time
trade-off in static d-dimensional range-query models was studied in Vaidya
(1989), Chazelle (1990a, b) and in aquitedifferent type of model in Hellerstein,
Koutsoupias, and Papadimitriou (1997), Koutsoupias and Taylor (1998), and
Samoladas and Miranker (1998).

4.10 kd-Treesand Related Structures

The kd-tree is another structure that supports orthogonal range searching. It
is quite popular in practical applications and conceptually easy to understand
and implement; but it is unsatisfactory because its worst-case performance is
much worse than orthogonal range trees. In the two-dimensional version, the
worst-case query time is O(y/n + k) instead of O((logn)? + k), and the d-
dimensional analog is even worse, with O (n~2) + k) instead of O((logn)? +
k). The empirical performance in database examples seems better than this
worst-case complexity, so in database literature, this and related structures
have been widely studied and used.

The kd-tree was invented by Bentley (1975)*° as a direct analog of the
normal balanced search tree, which is viewed as a one-dimensional tree: the
name kd-tree was originally meant as k-dimensional tree. The lower bound for
the query time was given by Lee and Wong (1977), and a first comparative
analysis of severa range-searching structures, among them the kd-tree, the
orthogonal range tree (see Section 4.6), and the Bentley—Maurer structures
(see Section 4.8), appearsin Bentley and Friedman (1979). The bad worst-case
query time places the kd-tree in any comparison far behind these structures,
only under strong assumptionslike uniformly distributed data points and small,
“relatively square”’ query rectangles; its performance becomes comparable to
them. Square query rectangles occur when wereally aim at a nearest-neighbor
query, or at least some filter for the neighborhood of the query point. Variants
of the kd-tree structure are analyzed in numerous papers under input and query
distribution assumptions (Silva-Filho 1979; Cunto, Lau, and Flajolet 1989;
Gardy, Flajolet, and Puech 1989; Duch, Estivill-Castro, and Martinez 1998;
Chanzy, Devroye, and Zamora-Cura 2001; Duch and Martinez 2002). Other
aspectsof the classical kd-tree structure have been studied in Silva-Filho (1981)
and Hoshi and Yuba (1982). Much work went into making kd-trees a dynamic
structure, allowing insertions and deletions of points starting with kd-trees

13 Winning the second prizein an ACM best student paper competition.
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(Robinson 1981), semidynamic kd-trees (Bentley 1990), divided kd-trees (van
Kreveld and Overmars 1991), O-trees (Ravi Kanth and Singh 1999), and the
structurein Grossi and Italiano 1997. External memory efficiency hasalso been
amajor consideration in these structures; further related structures supporting
various types of range-restricted queries have been developed in the database
community (Guttman 1984; Beckmann et al. 1990; Lomet and Sal zberg 1990;
Freeston 1995; Agarwal et a. 2002; Bozanis, Nanopoulas, and Manolopoulos
2003; Arge et a. 2004; Procopiuc et al. 2003); see also the books by Samet
(1990, 2006) and the surveys by Gaede and Gunther (1998) and Nievergelt and
Widmayer (1999).

The idea of the kd-tree is that we have a search tree, where in each node we
make a comparison and enter the left or right subtree, but unlike the normal
search trees, we can compare in different nodes against different coordinates.
The simplest choiceisto cyclethrough the coordinates; in the root, we compare
against the first coordinate, in the nodes bel ow, we compare against the second
coordinate, and so on. In each node, we choose as comparison key a value
that divides the set of points below that node in a balanced way. As in the
normal search trees, this defines a node interval for each node, which is now a
d-dimensional half-open box —the set of all possible query pointswhose search
pathwould go through that node. The comparison withthe nodekey then divides
the box by ahyperplanein the direction of that coordinate which we used inthe
comparison. So we get ahierarchy of possibly unbounded orthogonal boxes. In
the two-dimensional version, these are rectangles alternatingly divided in the
horizontal and vertical directions.

T (]
¢ t
SET OF NINE POINTS WITH KD-TREE STRUCTURE:

ALL RECTANGLES ARE HALF-OPEN TO THE RIGHT AND THE ToP

If we have this structure, a range query can be answered just as in the
one-dimensional case: starting in the root, we descend into each node whose
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node interval has a nonempty intersection with the query region and stop
following any branch when that intersection becomes empty. This is a very
natural and generic query algorithm that can be applied for any type of query
ranges, not only for rectangles. Thisisagreat strength of thistype of structure,
but it is not very efficient, for the number of leaves we visit without actually
finding a point that should belong to the answer can be as large as (/). And
thisis not only for specific bad point sets, or bad subdivision structures; it is
a problem that always occurs: there is always a query rectangle that intersects
Q(+/n) of the cellswithout containing any point of the underlying set.

[ ]

[ ]

VERY REGULAR KD-TREE SUBDIVISION WITH BAD QUERY RECTANGLE:
EACH POINT BELONGS TO RECTANGLE ABOVE OR TO THE RIGHT OF IT

We now assume that all point coordinates are distinct, and that the kd-tree
is constructed in such a way that in each node the key divides the number of
points in both subtrees as evenly as possible, with horizontal and vertical cuts
aternating. The tree has then height [logn].

To show that O(/n + k) query timeisindeed the worst case that can happen
in thistree, we have to bound the number of nodes we visit in aquery. We visit
only such nodes whose node interval (rectangle) has nonempty intersection
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with the query interval (rectangle). Of these, the nodes whose node interval
contains the query interval are few, only at most one per level of the tree,
for the node intervals at each level form a partition of the plane. Because the
tree has height [logn1, there are only O(logn) such nodes. Nodes whose node
interval iscontained in the query interval are potentially more, but each of these
contributes at least one point to the answer, so there are at most k£ such nodes.
The only problem are those nodes whose node interval partialy overlaps with
the query interval. These nodes intersect one of the sides of the query interval,
so we can bound the number of these nodes by four times the maximum
number of times an axis-paralel line segment can be cut by node intervals.
Let a; be the number of such nodes at level i. Because the cutting direction
alternates horizontal and vertical, in every second level this number does not
increase at al, and in the other levels, it at most doubles. Thus g; < 2L3/21
andag + a1 + - + diogn < 2% 221" = O(/n).

Note that at this point we really needed the optimal height [logn; aweaker
balance criterion in the nodes, with height O(logn), would not be enough to
show the O (/n) bound on the sum. For this height bound, it was necessary that
we could always divide the point setsin almost equal parts, which is enforced
by assuming that all coordinates are distinct. This strong assumption can be
removed by making each node a ternary comparison, with separate equality
case; we can aways choose the comparison key in such a way that both
< and > cases contain at most half the remaining points and the = caseisa
one-dimensional problem, which can be solved directly in O(logn) time.

To see that the O(/n) bound cannot be improved, we show that there is
alwaysaquery rectanglethat intersects 2(/n) leaf intervalswithout containing
any point. We just follow the previous argument again. Take any horizontal or
vertical ling; let b; bethenumber of nodesat level i of thetreethat areintersected
by the line. Then we have b, = 2 and b; ;, = 2b; fori + 2 < logn. So at the
leaf level, we have biog, = 2(y/n). If we select a thin rectangle around this
line, we have thus a very bad query rectangle, which forces us to visit Q(/n)
leaves without containing any point.




208 4 Tree Sructures for Sets of Intervals

We summarize the performance of the structure for the d-dimensional
analog.

Theorem. kd-trees are a static structure that supports d-dimensional or-
thogonal range queries in a set of d-dimensional points in output-sensitive
time O (nlﬁ + k) if the output consists of k& points. They can be built in
O (n(logn)) time using O(n) space.



Heaps are, after the search trees, the second most studied type of data structure.
As abstract structure they are also called priority queues, and they keep track
of aset of objects, each object having akey value (the priority), and support the
operationstoi nser t anobject, find the object of minimumkey (f i nd_ni n),
and delete the object of minimum key (del et e_mi n). So unlike the search
trees, there are neither arbitrary find operations nor arbitrary delete operations
possible. Of course, we can replace everywhere the minimum by maximum;
where this distinction is important, one type is called the min-heap and the
other the max-heap. If we need both types of operations, the structureis called
a double-ended heap, which is a bit more complicated.

The heap structure was originally invented by Williams' (1964) for the very
special application of sorting, although he did already present it as a separate
data structure with possibly further applications. But it was recognized only
much later that heaps have many other, and indeed more important, applica-
tions. Still, the connection to sorting is important because the lower bound of
Q(n logn) on comparison-based sorting of n objects implies alower bound on
the complexity of the heap operations. We can sort by first inserting all objects
in the heap and then performing f i nd_m n and del et e_m n operations to
recover the objects, sorted in increasing order. So we can sort by performing
n operations each of i nsert, fi nd_m n, and del et e_mi n; thus, at least
one of these operations must have (in acomparison-based model) a complexity
Q(logn). This connection works in both directions; there is an equivalence
between the speed of sorting and heap operationsin many models— even those

LUsually Floyd (1964) is also cited, but his contribution is the adaptation of the heap to in-place
sorting, continuing the line of development of his Treesort algorithm (Floyd 1962) previously
improved by Kaupe (1962).

209
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in which the comparison-based lower bound for sorting does not hold (Thorup
2002).

The various methods to realize the heap structure differ mainly by the
additional operationsthey support. The most important of these arethe merging
of several heaps (taking the union of the underlying sets of objects), which is
sometimes also called melding, and the change of the key of an object (usually
decreasing the key), which requires a finger to the object in the structure.

The most important applications of heaps are all kinds of event queues, as
they occur in many diverse applications: sweeps in computational geometry,
discrete event systems (Evans 1986), schedulers, and many classical algorithms
such as Dijkstra's shortest path algorithm.

5.1 Balanced Search Treesas Heaps

Because we have aready studied balanced search trees in detall, it is easy
to see that they also support the heap operations. They have the same under-
lying abstract structure, a set of objects associated with keys; but instead of
fi nd and del et e of arbitrary objects, given by their keys, we need f i nd
and del et e for the object with the smallest key. To find that object, we just
need to always follow the left pointer in a search tree, and in the same way we
find the largest key by always following the right pointer. Thus, we can use any
bal anced search tree to obtain a heap in which each of the operationsi nsert
find_m n,anddel et e_ni ntakes O(logn) time. Thef i nd_ni n operation
can even be made in O(1) time: we just need to store the current minimum
in a variable, and when we perform the next del et e_mi n, we also look up
the new current minimum in the same O(logn) time that the del et e_nmi n
operation takes anyway. Indeed, it is a double-ended heap; we get f i nd_max,
del et e_max in the same way, as well as all additional operations that are
perhaps supported by the search tree (e.g., spl i t).

min

SEARCH TREE USED AS HEAP

Thus, it is trivial to reach O(logn) performance for all the heap opera-
tions by reusing balanced search trees, with the query operation fi nd_mi n
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becoming even a constant-time operation. This s the standard of comparison:
any interesting heap structure should perform better than this in some respect
or support some type of operation not supported by balanced search trees.

Theorem. The heap structure can be realized using any balanced search tree
with time O(logn) fori nsert and del et e_ni n and O(1) for fi nd_mi n
operations.

In addition to the normal balanced trees, splay trees and skip lists have been
frequently used this way. Next is the code for thistrivial heap implementation
if we already have a balanced search tree available.

typedef struct {key_t key;
obj ect _t *obj ect ;
}heap_el _t;
typedef struct {heap_el _t current _mn;
tree_node_t *tree;
}heap_t;

heap_t *create_heap(void)

{ heap_t *hp;
hp = (heap_t *) malloc( sizeof(heap_t) );
hp->tree = create_tree();
return( hp );

}

i nt heap_enpty(heap_t *hp)

{ return( hp->tree->left == NULL );
}

heap el t find_min(heap_t *hp)
{ return( hp->current_nin);

}

voi d insert_heap( key_t new key,
object _t *new obj, heap_t *hp)
{ if( hp->tree->left == NULL ||
new_key < hp->current_m n. key )
{ hp->current_mi n. key = new key;
hp->current _ni n. obj ect = new_obj;
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}

i nsert (hp->tree, new key, new obj );

}

object_t *del ete_m n(heap_t *hp)
{ object_t *del _obj ;
tree_node_t *tnp_node;
if( hp->tree->left == NULL )
return( NULL ); /* heap enpty */
el se
{ del _obj = hp->current_mn.object;
del ete(hp->tree, hp->current_min. key );
tmp_node = hp->tree;
if( tnmp_node->left !'= NULL )
/* update current_mn */
{ while( tnp_node->right != NULL )

t np_node = tnp_node->|left;
hp->current _m n. key = t np_node- >key;
hp->current _m n. obj ect = (object _t *)
t np_node- >l eft;

}

return( del _obj );

}

voi d renmove_heap(heap_t *hp)

{ renove_tree( hp->tree );
free( hp );

}

As explained in the beginning, we cannot expect both del et e_mi n and
i nsert tobefasterthan O(lognr). Butitispossibleto usebalanced searchtrees
to get the del et e_ni n operation in O(1) time. For this, we need to arrange
the leaves in a linked list, and the underlying search tree has to support the
split operationin O(logn), with splitting in therootin O(1), asitisthe case
for height-balanced or red-black trees. Then we keep a pointer to the current
minimal element in this list and just advance this pointer in the list when we
perform the del et e_mi n operation, without actually deleting the tree nodes.
Such astrategy is called lazy deletion. Of course, a some point we must really
deleteall theinvalid objects and return the nodes. But in principle any balanced
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binary search tree that supports a split operation and whose |eaves are arranged
in alinked list can be used to implement a heap with O(1) fi nd_m n and
del et e_ni n operations, and O(logn) i nser t . Thismethod was essentially
already discovered in Guibas et a. (1977); it is best possible, and thisis the
reason why most later heap implementations proposed in literature discuss the
other extremum — O(1) i nsert and O(logn) del et e_ni n.

min

S e W N BN BN N BN N N N BN

invalid

SEARCH TREE USED AS HEAP WITH LAZY DELETION:
INVALID ELEMENTS ARE ALREADY DELETED FROM HEAP

In more detail, we need a balanced search-tree structure that supports the
splitting operation and whoseleavesarearrangedinalinked list from smallest to
largest key, or, which is easier to update, adoubly linked list in both directions.
We aso need a pointer cur r ent _mi n to the current minimum in this list.
Finally, we need an invalid nodes structure that allows us to add an entire
subtree of nodes whose keys and objects have already been deleted, but which
still need to be returned to the free list one by one. Then the heap operations
are implemented as follows:

{ find_m n:returncurrent _m n->key andcur rent _m n- >obj ect.
{insert:

1. Splitthe search treeat cur r ent _m n- >key, and add the lower tree to
the invalid nodes structure.

2. Insert the new key in search tree.

3. If the new key isbelow cur r ent _m n- >key, setcurrent _ninto
the new key and object.

{ del ete_m n:

1. Deletethe object cur r ent _mi n- >o0bj ect.

2. Movecurrent _m n to the next list position.

3. If current _m n- >key isnow larger than the key in the root of the
balanced search tree, add the left subtree of the balanced search treeto
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the invalid nodes structure; take the right subtree as new search tree; and
return the node of the old root to the free list.
4. Return severa nodes from the invalid nodes structure to the free list.

This still leaves unspecified how to redlize the invalid nodes structure. It has
to alow adding a subtree and removing a node both in constant time. The
simplest way to do thisisto build a stack whose entries are pointers to roots of
thesubtrees. To add anew subtree, onejust putsit onthe stack; toremoveanode,
one takes the top root from the stack, puts both left and right subtrees on the
stack, if it was not aleaf, and returns that root to the free list. These operations
work in constant time; the only disadvantage isthat they need additional storage
for the stack, possibly again as much as the total size of the trees on the stack.
So the stack can certainly not beimplemented as an array. But if spaceisnot an
essential restriction, thisis only a constant-factor overhead, in the worst case
an increase of the space requirement by afactor of less than four.

It is obviousthat the fi nd_m n operation takes only O(1) time. Thei n-
sert operation takes O(logn) for steps 1 and 2 each, and O (1) for step 3, so
atotal of O(logn). And each step of the del et e_ni n operation takes only
0O(1). We observe that the cur r ent _mi n is aways in the left subtree of the
search tree, so height of the search tree with all the invalid nodesis never more
than one larger than the height of a search tree without these nodes.

To summarize the performance of this structure, we obtained the following:

Theorem. The heap structure can be realized using a balanced search tree
with lazy deletionin time O(logn) fori nsert and O(1) for fi nd_ni n and
del et e_mi n operationsif the heap contains n el ements.

An aternative way to reach the same performance is to use a search tree with
a constant time deletion of an element at a known location, as described in
Section 3.6.

5.2 Array-Based Heaps

The classical heap version that was originally invented for heapsort and that
is described in most algorithms textbooks is the array-based heap. By using
the array index instead of explicit pointers, it is a very compact representation
(an implicit data structure). In the heapsort application, it even fits exactly in
the space of the array to be sorted and does not require any additional space.
It supportsi nsert and del et e_ni n operationsin time O(logn) and O(1)
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find_m n, and the number of key comparisons in the sorting application
(n inserts followed by n deletes) is near the theoretical minimum, so it is a
rather fast heap version, at the price of having a fixed maximum size and not
supporting additional operations. Thus, the array-based heap is most important
for the sorting application.

This heap works by embedding a complete binary tree structurein the array
elements, establishing a key ordering called the heap order. Given a big array
heap_key[ MAX_SI ZE] , acorrect heap satisfies the following conditions:

1. Theentries used by the heap are a beginning interval of the array; if the
heap currently contains n elements, it uses the array positionsOton — 1.
2. Forali > 0have
heap_key[i] < heap_key[2i + 1] if2i +1 < n and
heap_key[i] < heap_key[2i + 2] if 2i + 2 < n.

An immediate consequence of thisis that the minimum key is always in index
position 0, and the first unused entry of the array is the index position n.
Each array element is subject to three heap-order conditions: the element at
positioni issmaller than the elementsat positions 2i + 1 and 2i + 2, its upper?
neighbors, if they exist, and larger than the element at position | 3(i — 1) |, its
lower neighbor, if it exists. This defines a binary tree of height logn on the
array elements.

|heap [15]| |heap [16]| |heap [17]|

[heapr71]  [heapisi] [neapio1] [neapiio] [neapr111][heapr121] [heapi13]] [heapir4]]

heap[3] heap[4] [neap 51| [neapts]]

ARRAY-BASED HEAP WITH ORDER RELATION AMONG ARRAY ELEMENTS

Thei nser t now worksasfollows: put the new element into position n and
increase n; in this way, property 1 is maintained, but the new element might
violate property 2, so we need to compare and possibly exchange it with the
lower neighbor. If we do exchange the new element at position i with its lower
neighbor at position | 2(i — 1) |, this decreases the key value in that position,
so the order conditions from there upward, in which this should be the smaller

2When visualizing an array, we always put the start of the array to the left, or to the bottom, and
then number left to right, or from the bottom-up. This convention has as a consegquence that the
root of the implicit tree of the array heap is at the bottom, the only trees in this book, which
grow in the right direction.
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value, till hold; but again the order condition downward must be checked and
possibly corrected by an exchange. This stops at the latest in position 0, if the
new element is the new minimum, as there is no downward condition. This
takes at most one comparison on each level, so at most logn key comparisons
peri nsert operation.

ARRAY-BASED HEAP: INSERTION OF NEW ELEMENT WITH KEY 5.
THE NEwW ELEMENT IS PLACED IN THE LAST POSITION AND MOVES DOWN

For the del et e_m n, we have to delete the element at position 0 and fill
this gap by moving elements into it. The problem with the trivia strategy,
moving down the smaller of the two upper neighbors, is that this way we move
up the gap and restore the order property 2, but the gap will not end up in
position n — 1, so property 1 will be violated.

The classical method to avoid this problem is to move in the first step that
last element from position n — 1 to position 0 and then have it move up to its
correct place. Because we have to restore the two upward conditions in each
step of moving up, we need two comparisons; we compare the upper neighbors
and then the smaller of the upper neighbors with the current element. If the
smaller upper neighbor hasasmaller key than the current element, we exchange
them, moving the current element up. This uses two comparisons per level, one
to decide which of the upper neighbors should possibly move down and another
to decide whether it should move down. This will almost always be the case
because we moved the last element, which will be large, to the place of the
smallest, so we probably have to moveit back along way. Thus, an aternative
isto skip the second comparison and always exchange the current element with
the smaller of its upper neighbors, moving the gap up to the top, fill in the last



5.2 Array-Based Heaps 217

element, and then move that element in asecond pass down to its proper place.
In the worst case, this does not gain anything, but in the application of sorting,
it was shown that thisindeed decreases the total number of comparisons. This
is known as bottom-up heapsort (Wegener 1993; Fleischer 1994). A similar
method that gives a general improvement of the number of comparisonsin the
deletion was proposed in Xunrang and Yuzhang (1990); they move the gap
up to % of the possible height, insert the last element, and then move it up or
down as necessary. This decreases the worst-case number of key comparisons
indel et e_ni n operation from 2logn to % logn.

ARRAY-BASED HEAP: DELETION OF MINIMUM ELEMENT, CLASSICAL METHOD.
THE LAST ELEMENT Is PLACED INTO THE GAP AND MoOVES Up

A very small improvement can be gained by avoiding elements with two
lower neighbors on the highest level aslong as possible, not filling the highest
level sequentially, but first the odd and then the even positions. Thisrequires a
change of the order property 2 (Carlsson 1984) and saves one key comparison
for half the valuesof . Yet another possible modification isto usebinary search
in that process of moving down an element (Gonnet and Munro 1986; Carlsson
1987). By careful analysisit is even possibleto find the exact minimum number
of key comparisons for insert and delete (Gonnet and Munro 1986; Carlsson
1991), as well as bounds for some other operations, like constructing a heap
from an unordered array (McDiarmid and Reed 1989; Carlsson and Chen
1992) or merging of two heaps (Sack and Strothotte 1985; Khoong and Leong
1994). But the number of key comparisons is not that important as a realistic
measure of speed; this example of making a binary search on the path, but
then having to move all elements in the path to perform the actua insertion
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at the correct place, shows that reducing the number of comparisons from
logn to loglogn is not useful if the number of data movements does not also
decrease. In a good implementation we should also avoid unnecessary data
movements.

Yet another variant of the standard array-heap was proposed by Herman and
Masuzawa (2001) and allows partia recovery of the heap structure even from
corrupted states. An extension of array-heaps to other partially ordered sets
was outlined by Noltemeier (1981).

Next is an implementation of this standard array-based heap structure, with
agiven maximum size. Each element of the heap consists of akey and apointer
to an object, and thisis what we return with the query:

typedef struct {key_t key; object_t *object;
}heap_el t;
typedef struct {int max_si ze;
i nt current _si ze;
heap_el _t *heap; } heap_t;

heap_t *create_heap(int size)
{ heap_t *hp;
hp = (heap_t *) malloc( sizeof(heap_t) );
hp- >heap = (heap_el _t *)
mal | oc( size * sizeof(heap_el _t) );
hp- >max_si ze = si ze;
hp->current _size = 0;
return( hp );

}

i nt heap_enpty(heap_t *hp)

{ return( hp->current_size == 0 );

}

heap_el t *find_m n(heap_t *hp)

{ return( hp->heap );

}

int insert( key_t new key, object_t *new object,
heap_t *hp)

{ if ( hp->current_size < hp->max_size )

{ int gap;
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gap = hp->current_size++;
while(gap > 0 &&
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new _key < (hp->heap[(gap-1)/2]).key )

{ (hp->heap[gap]). key =
(hp->heap[ (gap-1)/2]). key;
(hp->heap[ gap]) . obj ect =
(hp->heap[ (gap-1)/2]).object;
gap = (gap-1)/2

}

(hp->heap[ gap]) . key = new_key;

(hp->heap[ gap] ) . obj ect = new_obj ect;

return( 0 ); /* insert successful */

}
el se
return( -1 ); /* Heap overflow */

object t *delete_m n(heap_t *hp)

{

obj ect _t *del obj;
int reached top = O;
int gap, newgap, |ast;
i f( hp->current_size == 0 )
return( NULL );
[*failed: delete fromenpty heap */
del _obj = (hp->heap[0]).object;
gap = O;
while( ! reached_top )
{ if( 2*gap + 2 < hp->current_size )
{ if( (hp->heap[2*gap+1]). key <
(hp->heap[ 2*gap+2] ) . key)
newgap = 2*gap + 1,
el se
newgap = 2*gap + 2;
(hp->heap[ gap] ) . key
(hp- >heap[ newgap]) . key;
(hp- >heap[ gap] ) . obj ect
(hp- >heap[ newgap] ) . obj ect;
gap = newgap



220 5 Heaps

else if ( 2*gap + 2 == hp->current_si ze )

{ newgap = 2*gap + 1
(hp->heap[ gap] ) . key
(hp->heap[ newgap]) . key;
(hp->heap[ gap] ) . obj ect =
(hp->heap[ newgap] ) . obj ect ;
hp->current _size -=1
return(del _obj);
/* finished, canme out exactly

on |l ast elenent */

}

el se
reached_top = 1;
}
/* propagated gap to the top, now nove
gap down again to insert |last object in
the right place */
| ast = --hp->current_si ze;
while(gap > 0 &&
(hp->heap[l ast]). key <
(hp->heap[ (gap-1)/2]) . key )
{ (hp->heap[gap]). key =
(hp->heap[ (gap-1)/2]). key;
(hp->heap[ gap]) . obj ect =
(hp->heap[ (gap-1)/2]). object;
gap = (gap-1)/2
}
(hp->heap[ gap]) . key
(hp- >heap[ gap]) . obj ect
(hp->heap[ |l ast]) . obj ect;
/* filled gap by noving |last elenment in it*/
return( del _obj );

(hp->heap[l ast]). key;

}

voi d remove_heap(heap_t *hp)
{ free( hp->heap );

free( hp );
}
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This heap version again has all the disadvantages of any structure of fixed
size, so it should only be used if the maximum size of the heap is known
in advance, asit is for sorting or Dijkstra's algorithm. Neither of the update
operationsis O(1), but it is still considered a fast implementation of the heap
structure. To summarize the performance of this structure, we obtained the
following:

Theorem. The heap structure of fixed maximum size can be realized using an
array intime O (1) forfi nd_m nand O(logn)fori nsert anddel ete_ni n
operations.

We described here an array-based heap that is essentially a binary tree
encoded in the array indices. One could construct in just the same way a k-ary
tree (Luk 1999). Then the comparison condition 2 has to be replaced by

2. Forali > 0have
heap key[i] < heap_key[ki + 1] if ki + 1 < n,
heap_key[i] < heap_key[ki + 2] ifki +2 <n,...upto
heap_key|[i] < heap_key[ki + k] if ki +k < n.

This decreases the height of the tree and makes, therefore, thei nsert faster,
but the degree k of each node increases and therefore the del et e_mi n gets
slower. In Johnson (1975) it was proposed to keep the height of the heap
constant and instead increase the degree of the vertices if the number of items
n on the heap gets larger. That would give a constant timei nsert operation,
but for aheap of height 2 and n elements, one would need a degree of ni and
thereforeadel et e_m n operation of time Q(n%).

5.3 Heap-Ordered Treesand Half-Ordered Trees

Instead of an array-based implementation, we can again use a dynamically
allocated structure. The heap is essentialy just atree, but thereis an important
difference, which actually makes the structure much simpler than a search tree.
Each node contains a key and two pointers to other nodes, which itself are
roots of some subheaps. But the key does not separate the keysin the subheaps;
instead, it is smaller than either of them. Thereis no required relation between
the nodes in the subheaps, and when we insert an element, we are free to
choose either of them. This order condition is called a heap-ordered tree, and
it is different from the search-tree order.

A consequence of heap order is that the key we are looking for is always
in the root, and keys are not repeated further down in the tree. Thus, each key
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has to occur together with its object: there are no two possible modelslike they
existed for search trees, but each node contains a key with its object. Thus, the
structure of anode of a (binary) heap-ordered tree is as follows:

typedef struct hp_n t {
key t key;
obj ect _t *obj ect ;
struct hp_n_t *left;
struct hp_n_t *right;
/* possibly additional information */
} heap_node_t;

We named the two pointersagain| ef t and ri ght, but different from the
search tree, there is no order relation between them. Again we define a heap-
ordered tree recursively: the heap-ordered tree is either empty or contains in
the root node a key, an object, and two pointers, each of which might be either
NULL or point to another heap-ordered tree in which all keys are larger than
the key in the root node.

Any structure with these propertiesis a heap-ordered tree for its objects and
key values.

HEAP-ORDERED TREE

We have to establish some convention to mark the empty heap; this is
different from the situation in the search trees, where we could use NULL fields
inl eft andri ght pointers; but in a heap-ordered tree, both pointers might
legitimately be NULL pointers. We could usetheobj ect field, but there might
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be legitimate uses with some NULL objects. Thus, we will decide on the empty
heap convention only later in the specific structures, but it should always be
something that can be tested just from the root node intime O(1).

With these conventions we can now write down the functions cr e-
at e_heap, heap_enpty and fi nd_m n — al of which are very simple
constant-time operations. The f i nd_ni n function is split in two operations
find_m n_key andfi nd_m n_obj ect, whichismore convenient than re-
turning a structure.

heap_node_t *create_heap(void)
{ heap_node_t *tnp_node;
tnp_node = get_node();
t np_node- >obj ect = NULL;
/* or other mark for enpty heap */
return( tnp_node );

}

i nt heap_enpty(heap_node_t *hp)
{ return( hp->object == NULL );

/* or other test for enpty heap*/
}

key t find_m n_key(heap_node_t *hp)
{ return( hp->key );
}

object _t *find_m n_object(heap_node_t *hp)
{ return( hp->object );
}

For thei nsert and del et e_mi n we need, however, more structure. In
the array-based heap, we had the advantage that all paths from the root to aleaf
were almost of the same length and we knew which of the paths would have
to be lengthened or shortened by one when we insert or delete an element. For
the heap-ordered tree, any operation has to start at the root because we do not
have any direct accessto aleaf.

The obvious method for i nsert would be to start at the root, select any
path to a leaf by making arbitrary left-right choices, insert the new key and
object in anew node at the right place on this path, and attach everything that
was previously at this place as a subtree below this new node.
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HEAP-ORDERED TREE: SIMPLE GENERIC INSERTION METHOD.
THE ENTIRE SUBTREE AT THE INSERTED NODE IS MOVED DowN

This way, we do not even need to go down until we reach a leaf, but
we increase the depth of everything below the newly inserted node by 1.
Alternatively, we could insert the new key in the existing node and then push
every following key one step downward to the leaf on this path, creating a new
leaf in the end. Here the depth of the nodes stays the same; only thefinal leaf is
anew nodewith possibly high depth. We do not violate the heap-order property
by this pushing down along any path, because in each node we exchange the
current key for asmaller key. The complexity of this operation is the length of
the path taken, so we just need to be able to find one short path. Any tree with
n nodes must contain some path of length |log(n + 1)]; wejust haveto find it.

HEAP-ORDERED TREE: ALTERNATIVE GENERIC INSERTION METHOD.
THE ELEMENTS ALONG THE ARBITRARY CHOSEN PATH ARE PUSHED DowN

For the del et e_mi n operation, the situation is more difficult; the obvious
method would be to remove the key and object from the root, compare the keys
of itsleft and right lower neighbors, and move the smaller one down, deleting
it recursively from its subtree. Thus we have no choice; we have to take the
path from the root to a leaf that we get when we always take the smaller key,
and along this path we move everything one step up to the root, deleting the
last, now empty, node. Because we have no control over the path we take, this
works only in O(logn) time if all paths from the root to any leaf have length
O(logn).
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HEAP-ORDERED TREE: GENERIC DELETION METHOD.
THE Root Is DELETED, AND THE HOLE MOVES DOWN TO A LEAF

We thus need some sort of balancing information. We could attempt to
reuse any of the balancing methods of the search trees, for example, creating
a height-balanced heap-ordered tree. Because the height of the tree would be
bounded by O(logn), we would support al the update operationsin O(logn)
time. The problem here is that the rotations cannot be applied to heap order.
If we want to rotate a subtree, the key in the root of the subtree must stay the
same by the heap-order condition, so the key in the other node of the rotation
also stays the same. But this other node receives a new lower neighbor and that
lower neighbor might violate the heap-order condition. Thus, we cannot just
reuse the balancing methods we developed for search trees.

An aternative with aweaker order condition isthe half-ordered trees. These
are the same trees as before, but we demand only that for each node, ev-
ery key in its right subtree should be larger. For the left subtree, there is no
condition.

>X >X restriction

ORDER CONDITIONS BELOW A NODE: HEAP ORDER AND HALF ORDER
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This way the minimum key need not be in the root, but it could be in any
node along the leftmost path. This weaker structure is easier to maintain. It is
possible to adapt the standard rotations to these structures, so we can reuse any
form of balancing we used for search trees also for half-ordered trees. Because
the tree then has depth O(logn), we can perform f i nd_m n by following the
leftmost path, aswell asi nsert anddel et e_mi n,in O(logn) time, for any
method of balancing (Hayer 1995).

LEFTMOST PATH IN HALF-ORDERED TREE:
MaxiMuM MuST BE ON LEFTMOST PATH BY IMPLIED ORDER CONDITIONS

But the most important reason why this structure is used is that it is one
representation for heap-ordered treeswith nodes of arbitrary large degree. Many
heaps, starting with the binomial heap, are presented in literature in that way,
but to implement them, one has to represent them with binary (or fixed-size)
nodes. The classical method to achieve thisisto keep the lower neighbors of a
node as alinked list, linked by their | ef t pointer. Ther i ght pointer points
to the first node on the list. By this representation, there is no order condition
adong| ef t edges, becausethey areall just lower neighbors of the same node,
but they are al in the right subtree of that node. A minor difference is that
in any heap-ordered tree, the root will contain the smallest element, which is
not the case in half-ordered trees. Indeed, the classical description of binomial
and related heaps is that they are a list of heap-ordered trees with nodes of
arbitrary large degree, so the common root is missing. And the half-ordered
trees are isomorphic to these lists of heap-ordered trees with nodes of arbitrary
degrees.
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5.4 Leftist Heaps

One of the simplest and earliest methods is the leftist heaps. Leftist heaps
were probably invented by C.A. Crane® and revised and named by D.E. Knuth
(1973). They supporti nsert anddel et e_nmi n bothin O(logn) time, which
is not remarkable, but they support an additional operation, the merging of two
heaps, aso in O(logn). This we cannot do with either the search-tree-based
heaps or the array heaps.

L eftist heaps are heap-ordered trees that use the distance to the nearest leaf,
called rank, as balancing information. This is different from the height, which
is the distance to the farthest leaf. Each node contains an additional field, the
r ank, which is defined by

{ n->rank =1ifn->l eft =NULL or n->ri ght = NULL.

{ n->rank =1+ min(n- >l ef t - >r ank, n- >ri ght - >r ank) if
n->l eft % NULL andn->ri ght # NULL.
If we have this additional r ank field, we can also use it to identify the root
of an empty heap by r ank = 0.

The leftist heap is characterized by the property that in each node the shortest
path on the |eft side is at least as long asthat on the right side:

{ n->l ef t - >rank > n->ri ght - >r ank if both are defined; and
{ if they are not both defined, then if one of them exists, it isthe left one:
n->l eft = NULL only if n->ri ght = NULL.

Thus aleftist heap may be very unbalanced on the left side when always going
to theleft, but going alwaysto the right, a heap with n elements contains a path
of length at most |log(n + 1)].

TREE UNDERLYING A LEFTIST HEAP WiTH NODES LABELED BY RANK

3In the technical report, C.A. Crane: Linear Lists and Priority Queues as Balanced Binary Trees,
CS-72-259, Stanford University, USA, 1972.



228 5 Heaps

Thisstructureiseasy torestore after we have changed some node because we
just have to follow the path back to the root, recompute the rank of each node,
and exchange | eft and ri ght fields wherever necessary. For an insertion,
we follow the rightmost path down to the correct place for the new node and
insert the node there, moving the rest of the rightmost path to the left below
the new node. The new node has then rank 1. We then follow the path upward
again, recomputing the ranks and restoring the leftist property along the path.

INSERTION IN A LEFTIST HEAP: FOUR EXAMPLES

The first phase is essentially the generic strategy for heap-ordered tree
insertion, but for the second phase we need a method to return to the root of
the tree, as we discussed in Section 2.5. Because we know that the length of
the rightmost path is at most [log(n + 1)], we can safely use a stack to keep
that return path and realize the stack as an array of size 100. We can now write
down the code for thei nsert and other basic operations.

typedef struct hp_n_t {

i nt rank;
key t key;
obj ect _t *obj ect ;

struct hp_nt *left;
struct hp_n_t *right;
} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tnp_node;

t np_node = get_node();

t np_node->rank = O;
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return( tnp_node );
}

i nt heap_enpty(heap_node_t *hp)
{ return( hp->rank == 0 );
}

key t find_m n_key(heap_node_t *hp)
{ return( hp->key );
}

object _t *find_m n_object (heap_node_t *hp)
{ return( hp->object );
}

voi d renove_heap(heap_node_t *hp)
{ heap_node_t *current_node, *tnp;
i f( hp->rank == 0)
return_node( hp );
el se
{ current_node = hp;
whil e(current _node != NULL )
{ if( current_node->left == NULL )

{ tnp = current _node->right;
return_node( current _node );
current_node = tnp;

}

el se

{ tnp = current_node;
current_node = current_node->l eft;
tmp->left = current_node->right;
current _node->right = tnp;

}

int insert( key_t new key, object_t *new obj,
heap_node_t *hp)



230 5 Heaps

i f(hp->rank ==0) /* insert in enpty heap */
{ hp->object = new obj;

hp- >key = new_key;

hp->l eft = hp->right = NULL;

hp->rank = 1;

}
el se i f( new _key < hp->key )
/* new m ni mum replace root */
{ heap_node_t *tnp;
tnp = get_node();

tnp->l eft = hp->left;
tnmp->right = hp->right;
t np- >key = hp- >key;

t mp- >r ank = hp->rank;

t mp- >obj ect = hp->o0bj ect;
hp- >l ef t = tnp;
hp->right = NULL;

hp- >key = new key;

hp- >obj ect = new obj;

hp- >r ank = 1;

}

else /* normal insert */
{ heap_node_t *tnp, *tnp2, *new node;
tnp = hp;
create_stack();
/* go down right path to the
insertion point */
while( tmp->right !'= NULL &&
t mp- >ri ght - >key < new _key)
{ push( tnp ) ;
tnmp = tnp->right;
}
/* now create new node */
new _node = get_node();
new_node- >key = new _key;
new_node- >obj ect = new obj ;
/* insert new node in path,
everyt hing bel ow goes left */
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new_node->l eft = tnp->right;
new_node->ri ght = NULL;
new_node->rank = 1;

if( tnmp->left == NULL )
/* possible only at the end */
tnp->left = new_node;
/* here tnp->right == NULL */
else /* insert right, restore
leftist property */
{ tnmp->right = new_node;
tnp->rank = 2;
/* has rank at |east one also left */
/* conpleted insert, now nove up
reconpute rank and exchange |l eft and
ri ght where necessary */
while( !stack_enmpty() )
{ tmp = pop();
{ if(tmp->left->rank <
t np->ri ght->rank )
{ tmp2 = tnp->left;
tnp->left = tnp->right;
t np->right = tnp2;
}
tnp->rank = tnp->right->rank +1;
}
}

} /* end wal ki ng back to the root */
renove_stack();

}

return(0); /* insert always successful */

The key idea of leftist heaps is the merging; it is then easy to reduce the
del et e_mi n to merging: just delete the root and merge the left and right
subtrees. For the mer ge, one just merges the right paths of both trees and then
does the same cleanup as in the insert: recomputing the r ank and restoring
the leftist heap property by exchanging | eft and ri ght pointers wherever
necessary.
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MERGING Two LEFTIST HEAPS: MERGE THE RIGHT PATHS AND
RECOMPUTE RANKS AND RESTORE LEFTIST PROPERTY ALONG MERGED PATH

Again, both right paths have length at most |log(n + 1)], so we can safely
usean array of size 200 asstack. Nextisthecodefor mer ge anddel et e_mi n.

heap_node_t *nerge( heap_node_t *hpl
heap_node_t *hp2)
{ heap_node_t *root, *tnpl, *tnp2, *tnp3;
if( hpl->rank == 0 ) /* heap 1 enpty */
{ return_node( hpl);
return( hp2 );
}
if( hp2->rank == 0 ) /* heap 2 enpty */
{ return_node( hp2);
return( hpl );
} /* select new root, setup nerging */
i f( hpl->key < hp2->key )

{ tnpl = root = hpil;
tnmp2 = hpl->right;
tmp3 = hp2;

}

el se

{ tnpl = root = hp2;
tnp2 = hp2->right;

tmp3 = hpl;
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}

create_stack();
while( tnmp2 !'= NULL && tnp3 != NULL )
{ if( tnp2->key < tmp3->key )

{ tnpl->right = tnp2;

push( tnpl );

tmpl = tnp2;

tnp2 = tnp2->right;
}
el se
{ tnmpl->right = tnmp3;

push( tnpl );

tnmpl = tnp3;

tnmp3 = tnp3->right;
}

}

if( tmp2 == NULL)
tmpl->right = tnp3;

el se
tmpl->right = tnmp2;

/* merging of right paths conplete,
now reconpute rank and restore leftist
property */

push( tnmpl );

whil e( !stack _enpty() )

{ tnpl = pop();

if( tnpl->left == NULL |
( tnpl->left !'= NULL &&
tnpl->right !'= NULL &&

tnpl->l eft->rank <
tmpl->right->rank ) )

{ tnmp2 = tnpl->left;
tnpl->left = tnpl->right;
tnpl->right = tnp2;

}

i f( tnpl->right == NULL )

t mpl- >r ank 1,

el se

t npl- >rank

t npl->ri ght->rank +1;
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}

renove_stack();
return( root );

obj ect _t *del ete_m n(heap_node_t *hp)
{ object_t *del _obj;
heap_node_t *heapl, *heap2, *tnp;
del _obj = hp->object;
heapl = hp->left;
heap2 = hp->right;
i f( heapl == NULL && heap2 == NULL )

hp->rank = O;
el se
{ if ( heap2 == NULL )
tnmp = heapl;
el se

tnmp = nerge( heapl, heap2);
/* now they are nerged, need to copy
root to correct place */

hp- >key = t np- >key;
hp- >obj ect = tnp->o0bj ect;
hp- >r ank = tnp- >rank;
hp- >l ef t = tnp->left;

hp->right = tmp->right;
return_node( tnp );

}

return( del _obj );

}

To summarize the performance of this structure, we have the following:

Theorem. The leftist heap structure supports the operations f i nd_ni n in
O(Dtimeandi nsert, merge, anddel et e_m nin O(logn) time.

L eftist heaps use a balance criterion similar to the height; as with balanced
search trees, one could instead use aweight balance. Weight-based | eftist heaps,
in which the number of nodesin the left subtreeisalways at least aslarge asin
the right subtree, were studied in Cho and Sahni (1998). A related, but slower
heap structure was devel oped by Jonassen and Dahl (1975).
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5.5 Skew Heaps

Theskew heapswereintroduced by Sleator and Tarjan (1986) asan anal og of the
leftist heaps, but without balancing information. The interesting property here
isthat, asin the splay trees, one can do without this information if one accepts
amortized boundsinstead of worst-case bounds. And by omitting the balancing
information, in principlethe structure becomes simpler; wejust always perform
the same sequence of operations. The memory advantage of doing without
balancing information is insignificant; memory is never a problem, and in the
bottom-up variant of skew heaps, we actually need several additional pointers
per node.

Without balancing information, one cannot decide whether the rank on the
left or on the right is larger, so whether to exchange left and right subtree to
restore the leftist heap property. In skew heaps, the strategy isjust to exchange
always. This leads to simpler code. We do not need a stack because there is
no information propagated back to the root. Next isthe code fori nsert and
nmer ge; the other operations are the same as before, and only the references
tother ank field must be removed. For this reason, we must use the obj ect
field as mark for an empty heap.

typedef struct hp_n_t {
key t key;
obj ect _t *obj ect ;
struct hp_n_t *left;
struct hp_n_t *right;
} heap_node_t;

int insert( key_t new key, object_t *new obj,
heap_node_t *hp)

i f (hp->o0bject == NULL)

/[* insert in enpty heap */
{ hp->o0bject = new obj;

hp->key = new key;

hp->l eft = hp->right = NULL;
}
el se i f( new key < hp->key )

/* new mnimum replace root */

{ heap_node_t *tnp;

tnp = get_node();
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tmp- >l eft = hp->left;
tmp->right = hp->right;
t np- >key = hp- >key;

t np- >obj ect = hp->obj ect;
hp->l ef t = t np;
hp->right = NULL;

hp- >key = new key;

hp- >obj ect = new_obj;
}
else /* normal insert */
{ heap_node_t *current, *tnp, *new_node;
current = hp;
/* go down right path to the insertion
poi nt */
while( current->right !'= NULL &&
current->right->key < new_key)
{ tnp = current->right; /* exchange */
current->right = current->left;
current->left = tnp;
current = tnp; /* and go down */
}
/* now create new node */
new node = get node();
new_node- >key = new_key;
new_node- >obj ect = new obj;
/* insert new node in path, everything
bel ow goes left */
new_node->left = current->right;
new_node->ri ght = NULL
current->right = new_node;

}
return(0);

heap_node_t *nerge( heap_node_t *hpl
heap_node_t *hp2)
{ heap_node_t *root, *tnpl, *tnp2, *tnps3;
i f( hpl->object == NULL ) /* heap 1 enmpty */
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{ return_node( hpl);
return( hp2);
}
i f( hp2->object == NULL ) /* heap 2 enpty */
{ return_node( hp2);
return( hpl );
} /* select new root, setup nerging */
i f( hpl->key < hp2->key )
{ tmpl =root = hpl

tmp3 = hp2;

}

el se

{ tnpl = root = hp2;
tmp3 = hpl;

}

tmp2 = tnpl->right;

/[* tnpl is end of already nerged right path
tnp2 and tnp3 are next nodes in renaining
right paths */

while( tnmp2 !'= NULL && tnp3 != NULL )

{ tmpl->right = tnmpl->left;

/* exchange on the nerged path*/

i f( tmp2->key < tnp3->key )

{ [/* attach tnp2 next, nove down */
tnpl->left = tnp2;

tmpl = tnp2;

tnp2 = tnp2->right;
}
el se

{ [/* attach tnp3 next, nove down */
tnpl->left = tnp3;
tmpl = tnp3;
t np3 t mp3->ri ght;

}
} /* now one of the paths enpty,

attach the other */
if( tnmp2 == NULL)
tmpl->right = tnp3;
el se
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tnpl->right = tnp2;
return( root );

Bothi nsert and mer ge exchangel eft andri ght ineach node along
the path they visit; their complexity is O(1 + k) if they exchanged | ef t and
right ink nodes.

The interesting part is now the analysis; as usual in an amortized analysis,
we need a potential function on the trees, indeed on sets of trees, because we
include the ner ge operation. The potential used by Sleator and Tarjan is the
number of nodes that are “right-heavy”: the right subtree contains more nodes
than the left subtree. The key insight is now that on a right path there are at
most logn “left-heavy” nodes because going right in aleft-heavy node reduces
the number of nodes in the subtree below the current node to less than half
their previous number. So there are not too many left-heavy nodes on the right
paths of the trees, but each time we touch them in any operation, |eft-heavy
and right-heavy exchange, so there should be not too many right-heavy nodes
either.

To make this idea precise, we keep track of the potential. For the analysis,
we decompose bothi nsert and mer ge in two phases: first the change of the
right path, performing the insertion of the new element or the merging of the
right paths, and then the exchange operation in all nodes of the right path that
we visited.

In the first phase of either i nsert or mer ge, al nodes on the right path
that were right-heavy stay right-heavy, because some nodes might be added in
their right subtree whereas nothing changes in their left subtree. It is possible
that left-heavy nodes on the right path become right-heavy, but there are only
O(logn) such nodes, so this increases the potential by at most O(logn). The
nodes that are not on the right path do not change their status.

In the second phase of either i nsert or mer ge, we exchange | ef t
andri ght in each node we visited. So these nodes exchange left-heavy and
right-heavy status. Each left-heavy node that becomes right-heavy increases
the potential by 1, but there are only logn |eft-heavy nodes among the nodes
we visited. Each right-heavy node becoming left-heavy decreases the potential
by 1. Thus, the second phase of either i nsert or ner ge aso increases the
potential by at most O(logn).

Thedel et e_m n finaly just removestheroot, generating two trees, which
does not increase the potential, and then merges these two trees, so it increases
the potential by at most as much asaner ge operation.
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If we haveasequenceof m i nsert, ner ge, or del et e_m n operations,
each of them exchanging | ef t and ri ght ink; nodes, of which k* are left-
heavy and k* areright-heavy, then thetotal timeisO(m + Y"1 k;) = O(m +
Y KE A+ kR) = O(m +mlogn) + O3 k*). To bound the last
sum, wenoticethat the potential isinitially at most n, intheenditisat least O, we
subtract Y7, k% and add Y7, kX < mlogn; thus, Y7 kR < n +mlogn.
The total time of m operations on n elements is therefore O(n 4+ m logn).
Together this shows the following:

Theorem. The skew heap structure supportsthe operationsf i nd_mi nin O(1)
timeandi nsert, nerge, and del et e_nmi n inamortized O(logn) time on
aheap with n elements.

A more complicated variant, the bottom-up skew heaps, was also described
in Sleator and Tarjan (1986); they achievei nsert and ner ge in O(1) amor-
tized time. Because they contain additional pointers that need to be updated
in adel et e_ni n operation, for bottom-up skew heaps we cannot use the
reduction of del et e_nmi n to mer ge; the del et e_nmi n operation still has
O(logn) amortized complexity. None of these complexities are worst case; at
worst they could be ©2(n). The structure was somewhat further studied in Jones
(1987), Kaldewaij and Schoenmakers (1991), and Schoenmakers (1997).

5.6 Binomial Heaps

Binomial heaps are another classical, although somewhat complicated, method
to achieve all heap operations including ner ge in O(logn) time. In contrast
to the previous structure, the f i nd_mi n operation also needs ©(logr) time.
Binomial heaps were invented by Vuillemin (1978) and are mainly interesting
for another type of additional operation, the change of key values, which will
require a separate discussion in alater section.

Binomial heaps can again be written as binary trees with keys and objects
in each node, but they are not heap-ordered trees, but only half-ordered trees:

1. If nodewisin theright subtree of nodev, thenv- >key < w >key.

Thisisaweaker condition than heap order: keys get larger to theright, but ona
left path keys might appear in any order. The minimum key itself might occur
anywhere along the path from the root to the Ieft. This weaker order condition
is coupled with a stronger balance condition.
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2. If v isanode on the path from the root to the left, then v- >r i ght isroot
of acomplete binary tree. The height of these treesis strictly decreasing
along the path from the root to the | eft.

Thusthe binomial heap consists of blocks of the following structure, which are
put together on theleft path: anoden; on the path, whoser i ght pointer points
to a complete binary tree of height i;, where this k; is decreasing along the
path. The complete binary tree of height /2 contains 2"+ — 1 nodes, so together
with the node on the leftmost path the block has 2"+ nodes. We also allow
the empty tree as complete binary tree of height —1, so there might also be a
block of 2° = 1 node, just consisting of the node on the path. If the block sizes
along the path are 2" > 22 > ... > 2 then 2/ 4202 ... 4 2 =, 50
the block decomposition corresponds to the binary expansion of the total size
n of the heap.

The central property of these blocks is that one can combine in time O(1)
two blocks of the same size 2" into one block of size 2"*1: if n and mare the top
nodes of two blocks, for which both n- >ri ght andm >ri ght arecomplete
binary trees of height 2 and n- >key < m >key, then we can make n the new
top node, whose r i ght field points to m and mbecomes root of a complete
binary tree of height # + 1, with the tree previously below n- >ri ght now
below m >| ef t . This is the point where the weaker order condition 1 is
needed; if we required heap order, we could not just join these trees together
because the heap-order relation between mand the new m >| ef t could be
violated, but condition 1 does not reguire any order along the left paths.

With this“adding” of two individual blocksin O (1) time, we can mergetwo
binomia heaps by performing an addition with carry of the two left paths.

The other operations, i nsert and del et e_m n, can be reduced to
merge. An insert is just a merge with a single-node heap. For a
del et e_nmi n, we have to find the minimum node from the leftmost path
of theroot, unlink that block, and delete itstop node. Then the remaining block
is acomplete binary tree, which itself is a binomial heap, so it can be merged
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CoMBINING Two BLocks oF SizE 2" INTo ONE BLock oF Sizg 2+

back with the original heap from which it was removed to get the heap resulting
from the deletion.

ONE BLock MINUS ITS ROOT Is AGAIN A BINOMIAL HEAP

We get an O(logn) bound for al operations, i nsert, nerge, and
del et e_mi n, from observing that the binary addition with carry of two logn-
bit numbersrequires O (logn) bit additions. Thisbound can beimproved, inthe
amortized sense, for long sequencesof i nser t operations, which correspond
to repeated adding of 1 or counting in binary numbers. The total number of
bits flipped while counting in binary from n to n +i is O(i + logn), so the
complexity of i consecutiveinsertionsinaheap of initial sizen isO(i + logn).
Consider now a sequence of a i nsert and b ner ge or del et e_m n op-
erations on a set of heaps with initial total size n, which at the end consists
of k heaps. For each heap, each del et e_ni n or nmer ge operation, of com-
plexity O(logn), is preceded by some sequence of a; i nsert operations, of
complexity O(a; + logn). There are also some asing | NSert operations that
are not followed by any del et e_nmi n or mer ge involving that heap; these
take at most O (afing + k logn) time. Because a = asing + Zj a;j, thisgivesa
total complexity of O(a + blogn + klogn). Because k < n, this shows that
the amortized complexity of thei nsert operationis O(1).

Next we givethe codefor the ner ge of two binomial heaps, aswell assome
elementary operations. Because the size of the blocks is decreasing aong the
paths, but we have to add starting from the blocks of smallest size, we put in a
first phasejust all blocks on a stack to invert the order. An aternative solution
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would be to put the blocks in increasing size on the leftmost path; in that case
the blocks themselves would not be complete binary trees but very skewed
objects of twice the height. The total work is the same, and it is preferable to
use standard binary trees. The required height of the stack isonly 2logn.

typedef struct hp n t {

i nt hei ght ;
key t key;
obj ect _t *obj ect ;

struct hp_n_t *left;
struct hp_n_t *right;
} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tnp_node;
t np_node = get_node();
t np_node- >hei ght = -1,
t np_node->l eft = tnp_node->right = NULL;
return( tnp_node );

}

int heap_enpty(heap_node_t *hp)
{ return( hp->height == -1);
}

key t find_m n_key(heap_node_t *hp)
{ heap_node_t *tnp;

key t t np_key;

tnp = hp;

t np_key = hp- >key;

while( tnp->left !'= NULL )

{ tmp = tnp->l eft;

if( tnp->key < tnp_key )
tnmp_key = tnp->key;
}
return( tnp_key );

}

heap_node_t *nerge( heap_node_t *hpl,
heap_node_t *hp2)
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heap_node_t *tnpl, *tnp2, *current, *next;
i f( hpl->height == -1 ) /* heap 1 enpty */
{ return_node( hpl);

return( hp2 );
}
if( hp2->height == -1) /* heap 2 empty */
{ return_node( hp2);

return( hpl );
}
/* put all the blocks on the stack */
create_stack();
tmpl = hpl; tnmp2 = hp2;
while( tnmpl !'= NULL && tnp2 != NULL )
{ if( tnpl->height > tnp2->height )

{ push( tnpl );

tmpl = tnpl->left;

}

el se

{ push( tnp2 );

tnp2 = tnp2->left;

}

}

/* one list is enpty, push the rest
of the other */
while( tmpl !'= NULL )
{ push( tnpl );
tnmpl = tnpl->left;
}
while( tnmp2 !'= NULL )
{ push( tm2 );
tnp2 = tnp2->left;
}
/* now all the blocks are on the stack */
/* put themtogether, perfornming addition */
current = pop();
while( !stack _enpty )
{ next = pop();
i f( next->height > current->height )
{ next->left = current;

243
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/[* add in front of left list */
current = next;
}
el se if( next->height ==
current->height )/* add bl ocks */
{ if( next->key < current->key )
{ next->left = current->left;
current->l eft = next->right;
next ->right = current;
next - >hei ght += 1
current = next;
}
el se
{ next->left = current->right;
current->right = next;
current->hei ght +=1
}
}

el se /* next->height < current->height */
{ next->left = current->left;

/* exchange current, next*/

current->l eft = next;

/* insert next just below current */

}
}

return( current );

The del et e_mi n code needs some care, because we have to preserve the
address of the root node, and the result of the mer ge could be a different
node. The same problem exists for thei nsert . Here we just copy the root
to a different node and then copy the result back. This could be avoided if
we used a placeholder node above the root. The placeholder could also point
to the current minimum node on the leftmost path, making fi nd_mi n an
O(1) operation by moving the minimum update time to the i nsert and
del et e_mi n operations. For thegreater regularity of the structure, we decided
to avoid a placeholder node. Next we give the code for the del et e_mi n and
i nsert operations.
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object _t *del ete_mi n(heap_node_t *hp)
{ object_t *del obj;
heap_node_t *tnpl, *tnp2, *mnl, *min2;
key t tmp_key;
if( hp->height == 0 )
/* delete | ast object, heap now enpty */
{ hp->height = -1;
return( hp->object );
} /* can assune now that heap wll
not becone enpty */
tnmpl = tnmp2 = hp;
tnmp_key = hp->key;
mnl = mn2 = hp
while( tnpl->left !'= NULL )
{ tnp2 = tnpl;
/* tnp2 node above tnpl on left path */
tnpl = tnpl->left;
if( tnmpl->key < tnp_key)
{ tnp_key = tnpl->key;
/* mnlis mninmmnode */
mnl = tnpl;, mn2 = tnmp2;
/* m n2 node above minl */

}
}
del _obj = minl->object;
if( mMmnl!=nmn2) /* mnl not root,

so node above exists */
{ mn2->left = mnl->left;
/[* unlinked mnl */
if( mnl->height > 0)
/* mnl has right subtree */
{ tnmpl = mnl->right;
/* save its right tree */
m nl->key = hp->key;
/* copy root into mnl */
m nl- >obj ect = hp->o0bject;
m nl->hei ght hp- >hei ght ;
m nl->|eft = hp->left;
m nl->right = hp->right;
tnp2 = merge( minl, tnmpl );
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/* and merge */
}
else /* minl is leaf on left path */
{ return_node( ninl);
return( del _obj );
}
} /* mnlis root node, has left
and right subtrees */
else if ( mnl->left !'= NULL )
tnp2 = merge( mnl->left, mnl->right );
else /* minl is root node, has only
right subtree */
tmp2 = mnl->right;
/* merge conpl eted, now copy new root back */

hp- >key = tnp2- >key;
hp- >obj ect = tnp2->o0bj ect;
hp- >hei ght = tnp2- >hei ght ;
hp- >l eft = tnmp2->left;

hp->right = tnp2->right;
return_node( tnmp2 );
return( del _obj );

int insert( key_t new key, object_t *new obj,
heap_node_t *hp)
{ heap_node_t *new node, *tnp, *tnp2;
new node = get _node();
/* create one-el ement heap */
new_node- >hei ght 0;
new_node- >key = new_key;
new_node- >obj ect new_obj ;
new_node- >l eft = new_node->ri ght = NULL;
tnp = get_node();
/* copy root into tnp_node */

tp->left = hp->left;
tnp->right = hp->right;
t mp- >key = hp- >key;

t np- >obj ect hp- >obj ect ;
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t np- >hei ght = hp->hei ght ;
tnmp2 = merge( new _node, tnmp );
/* nmerge the heaps */

hp->l eft = tnp2->left;

/* merge conpl eted, copy root back */
hp->right = tnmp2->right;

hp- >key = tnp2->key;

hp- >obj ect = t np2->obj ect;

hp- >hei ght = t np2->hei ght;
return_node( tmp2 );

return( 0 );

To summarize the performance of this structure, we have the following:

Theorem. The binomial heap structure supports the operations i nsert,
ner ge,find_m n,anddel et e_m nin O(lognr) time.

Theamortized complexity of thei nsert operationis O(1); any sequence of a
i nsert andb del et e_m n or nmer ge operations on a set of heaps of initial
total size n, with k heaps remaining at the end, takes O(a + blogn + klogn)
time.

The key idea of the binomia heap structure is this decomposition of the
heap into these blocks of canonical size (2 for some i) that are guaranteed to
have small height and that can be combined to the next larger size in constant
time. With this block structure, we can then merge two heaps by performing
binary addition on the lists of blocks. Severa other implementations of this
idea are possible, and some were discussed in Brown (1978). An array-based
representation of the binomial heap structure was given in Strothotte and Sack
(1985). One could aso change the system of canonical sizes as long as we
specify the block structure and the combination of a set of equal-sized blocks
toablock of the next larger size; thisgivesatrade-off betweenthei nsert and
thedel et e_mi n complexitiesthat was studied in Fagerberg (1996b). Also the
binomial heap structure formed the base of several other heaps, among them
the Fibonacci heap (Fredman and Tarjan 1987) described in Section 5.8, the
pairing heap (Fredman et al. 1986), and the relaxed heap (Driscoll et al. 1988).
The pairing heap was especialy popular for some time because it is easier
to code; it is essentialy related to the binomia heap in the same way as
the skew heap is related to the leftist heap: a self-adjusting version in which
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no balance conditions are checked and updated. It has amortized O(logn)
bounds instead of the worst-case bounds of the binomial heap. The pairing
heap was the object of several experimental studies as well as theoretical
bounds (Stasko and Vitter 1987; Liao 1992; Fredman 1998, 1999a; lacono
2000; Pettie 2005). A parametrized variant of these structures was discussed
in Elmasry (2004). A genera transformation of binomial-heap-like structures
that defers comparisons and sometimes makes the structure more efficient by
thiswas studied in Fredman (1999b).

All these structures used half-ordered trees, or equivalently heap-ordered
trees of variable degree, as the underlying model. A structure that combines
thisidea of alist of canonical building blocks with (binary) heap-ordered trees
instead isthe M-heaps (Bansil, Sreekanth, and Gupta 2003), which use alist of
complete binary heap-ordered trees as block structure, with the block heights
in increasing order and all distinct except possibly the first two. Then in an
i nsert, onejoinstogether the two blocks of the same height, if they exist, or
creates anew block of height O, if not. This structure again allows an O (logn)
worst-casei nsert anddel et e_mi n.

Any of these heaps based on binary addition of blocks again allows the
amortized analysis that gives an O (1) amortized complexity for thei nsert
operation.

5.7 Changing Keysin Heaps

There is an additional operation on heaps that received much interest and
was the main motivation for the interest in binomia heaps and their various
relatives, which isto change the keys of elements, especially to decrease keys,
which is necessary for Dijkstra's single-source shortest path algorithm and
many combinatorial optimization algorithms.

This operation is different from the other operations we discussed so far
because we have to identify the element that we want to change. A heap does
not support af i nd operation, so we need a pointer into the structure to the
element, a finger as in the finger search trees. This finger is returned by the
i nsert operations and must refer to the element until it is deleted. In any
actual implementation this requires some care because the node that contains
the element possibly changes during the operations on the heap:

{ Inthe array-based heap, the item moves through the array.
{ If we use rotations as rebalancing method on half-ordered trees, our
standard rotations copy the item to a different node.
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{ Even the binomial heap implementation we just described moved at one
point the item to a different node, although that could easily be changed.

Possible solutions to this problem of keeping the fingers correct are to

{ Introduce one level of indirection: the finger points to a node that itself
contains a pointer to the current node that contains the element; and the
node that contains the element contains a pointer back to that indirection
node, so the position can be updated.

{ Rewritethe code in such away that the content of a node is never copied to
another node, but only the pointers are changed.

Especidly the first solution can be combined with any heap, even with the
array-based heap, for which the second solution would be impossible.

If we have solved the problem of identifying the element, the work necessary
to change the key of an element depends on the heap we use. Inthefirst solution
we discussed, the use of balanced search trees as heaps, we can just delete the
element with the old key and insert it with the new key, which givesan O(logn)
change-key operation. This reduction of change-key to del et e followed by
i nsert works in any heap that allows the deletion of arbitrary elements.
Indeed, theinversereductionaso exists: if theheap supportsadecr ease_key
operation, we can aso delete arbitrary elements: we decrease the key to the
minimum possible key value and then perform adel et e_ni n.

The classical array-based heap also supports key changesin O(logn), just
moving the elements up or down as the heap-order condition demands until
heap order is restored. This was aready discussed in Johnson (1975), but no
information is given on how to identify the element, atradition followed by all
later papers.

Any heap-ordered tree would support key changes if we introduced back-
ward pointers in the nodes. Then we could move elements up or down, as
required by the heap-order condition. The complexity of this, however, would
be the length of the path along which we had to move the element, so at worst
the height of the tree. Neither leftist heaps nor skew heaps allow a sublinear
height bound, so they cannot be used to get efficient key change operations.

Thebinomial heap, however, does have agood height bound; aswe described
it, it even maintains the optima height [log(n + 1)]. We again need back
pointers to alow an element to move in the direction of the root. Because
the order condition of binomial heaps is not quite the heap order, there is
a difference between increase and decrease of keys. If the key of a node is
decreased, we follow the path back to the root, but we need to check the order
condition and possibly exchange the nodes only for those nodes for which the
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next edge is a right edge; no restrictions apply along the left edges. Thus, a
decr ease _key operation takes O(logn) time. But if we increase a key, we
need to check the order condition for all nodes that can be reached by a single
right edge followed by a left path, and possibly exchange with the node with
smallest key among them and repeat until these Ieft path conditions are all
satisfied. This takes O((logn)?) time, so decreasing the key to the minimum
possible value, deleting the element, and reinserting it with the new key value
would be faster than an increase key operation. But because the applications
usualy need only to decrease keys, that operation is more important. Thus, a
binomial heap does all the usual heap operations, and in addition to that mer ge
and decr ease key, in O(logn) time.

5.8 Fibonacci Heaps

The importance of the decr ease_key operation in various combinatorial
optimization algorithms motivated the development of a number of heap struc-
tureswith adecr ease _key operation that aim to be constant time instead of
O(logn). These structures did not quite achievetheir aim, insofar asthe bounds
were amortized, instead of worst case, but for the application of these structures
in other algorithms, where we know how often theindividual operationswill be
called, and especialy that the decr ease _key operation will be called more
often than i nsert of del et e_mi n, such amortized bounds for the struc-
tures are till sufficient to give worst-case bounds for the algorithm that uses
them.

Theoldest and best known of these structuresisthe Fibonacci heap (Fredman
and Tarjan 1987). The Fibonacci heap is related to the binomial heap described
in Section 5.6; it is again a half-ordered tree, and like a binomial heap, it
consists of blocks arranged on the leftmost path, but the structure of the blocks
isweaker and they are not necessarily of distinct size, and in decreasing order,
as they were in binomia heaps. During the updates, almost all rebalancing of
the structure will be deferred to the next del et e_mi n operation; the leftmost
path is a holding area where we can place blocks until that rebalancing phase
and where they are subject to neither order conditions nor structural conditions.

The structure that we maintain in a Fibonacci heap is as follows: Each node
n carries an integer field n- >r ank, aswell as a state n- >st at e, which can
be either conpl et e or def i ci ent . Then the defining properties are:

F1. For any node n withn- >rank > 1, or n- >r ank = 1 and
n- >st at e = conpl et e, holdsn- >ri ght # NULL, and
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F1.1 If n- >st at e = conpl et e, then on the left path below
n- >ri ght therearen- >r ank nodes, which have rank at least
n->rank —1,n->rank — 2, ..., 0, in some sequence.

F1.2 If n- >st at e = defi ci ent, then on the |eft path below
n- >ri ght therearen- >r ank — 1 nodes, which have rank at
least n- >rank — 2,n->rank — 3, ..., 0, in some sequence.

F2. For any node n with n- >r ank = 0, or n- >r ank = 1 and
n- >st at e = defi ci ent , holdsn- >ri ght = NULL.

FiBoNnAccl HEAP STRUCTURE:
THE NoODES ARE LABELED BY RANK AND DEFICIENCY STATUS

If we allow no deficient nodes, demand strictly decreasing rank along the
leftmost path, and strengthen F1 to the following property:

B1. For any node n of withn- >r ank > 0, holdsn- >ri ght # NULL, and
on the left path below n- >r i ght , there are n- >r ank nodes, which
haverank exactly n- >r ank — 1, n->rank — 2, ..., 0, in decreasing
sequence.

We get the binomial heap structure, so the Fibonacci heap is a structural relax-
ation of the binomial heap.

A block again consists of anode n and the subtree below n- >r i ght ; then
we can add, exactly asin the case of binomial heaps, two blocks of rank & to
oneblock of rank £ + 1in O(1) time.

A block of rank k consists of thetop noden and at least k — 2 further blocks,
ork —1,if n- >st at e = conpl et e that are arranged on the left path bel ow
n->ri ght and haverank at least 0, 1, ..., kK — 2. So the minimum number
f (k) of nodesin ablock of rank k satisfies the recursion

JK)=fk =2+ fk=3)+---+ f(D)+ f(O)+1
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Using
k=)= fk=3)+ -+ )+ fO)+1,

we can rewrite this recursion as f(k) = f(k — 1) + f(k — 2), which is the
same recursion we already met in Section 3.1. Here the starting values are
f(0) = f(1) =1, so f istheclassica sequence of Fibonacci numbers, which
gives the name to this heap. By the methods of Section 10.4, we can solve this
recursion and obtain

1 1+\/§ k+1 1 1_£ k+1
f(k)zﬁ< 2 ) —ﬁ< 2 ) .

The key elements of the Fibonacci heap are the methods by which we
maintain this structure. For that, each node needs two further fields: a normal
back pointer up and another pointer upward in the tree structure, r _up, which
for any node n not on the leftmost path points to that node mfor which n
is on the left path below m >ri ght. If n is on the leftmost path, we set
n->r _up to NULL. So the structure of a node in the Fibonacci heap is as
follows:

typedef struct hp _n t { key_t key;
obj ect _t *obj ect;
struct hp_n_t *|left;
struct hp_n_t *right;
struct hp_n_t *up;
struct hp_n_t *r_up;
i nt r ank;

enum {compl ete, deficient} state;
} heap_node_t;

Boththeup andther _up pointers can beadjustedin O (1) timewhen adding
two blocks of equal rank; athough there are possibly many nodeswhoser _up
pointers point to the root nodes of the blocks we add, these nodes stay in the
correct r _up relationship after adding and do not need to be changed.

In addition to the tree structure of the Fibonacci heap, we maintain a pointer
to the node with the minimum element and a pointer to the last node on the
leftmost path. Because the Fibonacci heap is a half-ordered tree, the node
with the minimum element occurs somewhere on the leftmost path. With this
minimum pointer, we can answer f i nd_m n queriesin O(1) time.
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FiBoNacct HEAP: I _Up POINTERS AND NORMAL TREE POINTERS

Thei nsert operation isnow very simple: we create a new node of rank 0,
with the new key and object, and place it on top of the leftmost path. Then we
check whether the new key is smaller than the previous minimum and adjust
the minimum pointer, if necessary.

In the same way we realize the mer ge operation by just concatenating the
leftmost paths; for this we need the left end pointer to the end of the leftmost
path.

For thedecr ease_key operation, the situation is more complicated. The
algorithm to decrease the key in node n works as follows:

1. Decrease the key in n asrequested. If the new key is smaller than the
previous minimum, we adjust the minimum pointer.

2. 1f n- >r _up = NULL, then n is already on the leftmost path, so it is not
subject to any condition and we are finished.

3. Elsethe half-ordered tree condition might be violated in n- >r _up and
possibly some nodes above. Set u to n- >r _up. Unlink n from the left path
to which it belongs, using the back pointer n- >up, and place n on the
leftmost path.

4. Now the property F1isviolated for u becauseit lost one node on the | eft
path below u- >ri ght .

4.1 If u- >r _up = NULL, then u ison the leftmost path. Decrease

u- >r ank by 1. Then property F1 is restored, and we are finished.
4.2 Elseif u- >st at e = conpl et e, then set u- >st at e to

defi ci ent . Then property F1 isrestored, and we are finished.
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4.3 Elseu- >st at e = defi ci ent . Decrease u- >r ank by 2, or only 1
if it becomes negative, and then set u- >st at e toconpl et e. By
thisFlis restored for node u.

Unlink u from the left path to which it belongs, using the back pointer
u- >up, and place u on the leftmost path. Set u to u- >r _up and
repeat step 4.

Thisupward propagation of theunlinkingiscalled a“ cascading cut”; it happens
duringthedecr ease_key of nif thenodesn- >r _up, n- >r _up- >r _up, ...
are dl defi ci ent. We spend O(1) time for each iteration of the unlinking
process. The upward propagation of the unlinking process ends when a node
n->r _up->---->r _up isreached that isconpl et e, which is then changed
to defi ci ent, or when a node on the leftmost path is reached. Thisis the
only node changed to defi ci ent, and al unlinked nodes are changed to
conpl et e. Soineachdecr ease_key operation, if we perform k unlinking
operations, we need time O (k), change one node from conpl et e todefi -

ci ent, and change k — 1 nodes from def i ci ent to conpl et e. Because
eachdef i ci ent nodemust have been created by an earlier decr ease key
operation, any sequence of operations that containsn decr ease_key opera
tions, and that starts on a heap with a deficient nodes and ends on a heap with
b deficient nodes, takes O(n + a — b) time and places O(n + a — b) nodes
on the leftmost path. This gives an amortized complexity of O(1) for the
decr ease_key operation.

This speed is achieved by delaying all rebalancing, placing items without
any structure update on the leftmost list. So if we have sufficiently many
decr ease _key operations, all itemswill finally be placed on that list in any
order. The difficult step is then to find a new minimum after thedel et e_ni n
operation. The new minimum can be in any node on the leftmost path, so
we have to go through all of them. We use this opportunity to shorten the
the leftmost path and perform the rebalancing, so that the next del et e_mi n
operation does not again meet a very long leftmost path. In this operation, we
use that the maximum rank of any node occurring in this structureis O(log n),
becauseif thereisanode of rank k, thenitsblock contains at |east %(#)k“
nodes.

Thedel et e_m n operation works as follows:

1. Unlink the current minimum node n, identified by the minimum pointer,
from the leftmost path. Then place the nodes on the left path of
n- >ri ght on top of the leftmost path and delete n.

2. Create an array of node pointers of size ®(logn), with an entry for each
possible rank value.
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3. Go down the leftmost path. Set n to the next node on the leftmost path.
3.1 If the array does not contain an entry of rank n- >r ank, store n in the
array and repeat step 3.
3.2 Else remove the node mof that same rank and add the blocks below n
and m Set n to the node at the top of the new block and repeat
step 3.1
4. Now all nodes that were on the leftmost path are either stored in the array
or have become part of blocks. Go through the array and link the nodes
together to form the new leftmost path. Set the minimum pointer to the
node of minimum key among them and the leftend pointer to the last node
of the leftmost path.

Here, step 1 takes O (logn) time because that isthe length of the left path below
n- >ri ght . Step 2 takes O(1) time. Step 4 takes O(logn) time because that
isthe size of the array. The key to the analysis of the complexity istheloop in
step 3; in each iteration of thisloop, we use up one node from the leftmost path,
so if the length of the leftmost path was [ before the del et e_mi n operation,
then step 3 takes O(!) time. Sothedel et e_mi n operation takes O (I + logn)
time and |eaves a heap structure with aleftmost path of length O (logr).

To analyze thetotal complexity of asequence of operations on aheap withn
elements, among these i i nsert operations, k decr ease_key operations,
and d del et e_ni n operations, we observe

{ Eachi nsert takes O(1) time and places one node on the leftmost path.

{ Eachdecr ease_key takes O(1) time per item it places on the leftmost
path, and the sequence of decr ease _key operations places at most
O(k + n) times an item on the leftmost path.

{ Eachdel et e_mi n takes O(logn) time, plus O(1) time per item it
removes from the leftmost path.

So we can summarize the performance of this structure.

Theorem. The Fibonacci heap structure supports the operations f i nd_mi n,
i nsert, nerge, del ete_ni n, and decr ease key, with fi nd_ni n,
i nsert,andnergein O(1)time decr ease_key inamortized O(1) time,
anddel et e_m n inamortized O(logn) time.

Any sequence of m operations on a set of heap with a total of n elements,
among which ared del et e_ni n operations, takes O(n + m + d logn).

The Fibonacci heap does not fit in our pointer-machine model because we
need the array to efficiently collect the nodes of equal rank; if we took a search
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tree on the ranksinstead, the amortized complexity of decr ease_key would
increaseto O(loglogn). But aswe know therequired array sizein advance and
itisnot large, thisis no signficant obstacle in the efficient use.

Wefinally giveanimplementation of aFibonacci heap. We use aplacehol der
node that does not contain any key as entry point, with | ef t pointing to the
current minimum, up pointing to the end of the leftmost path, and ri ght
pointing to the root of the heap if the heap is not empty.

typedef struct hp_n t { key_t key;
obj ect _t *obj ect ;
struct hp_n_t *|eft;
struct hp_n_t *right;
struct hp_n_t *up;
struct hp_n_t *r_up;
i nt r ank;

enum {compl ete, deficient} state;
} heap_node_t;

heap_node_t *create_heap(void)
{ heap_node_t *tnp_node;

t np_node = get_node();

t np_node->ri ght = NULL;

return( tnp_node );
}

int heap_enpty(heap_node_t *hp)
{ return( hp->right == NULL );
}

key t find_m n_key(heap node t *hp)
{ return( hp->left->key);
}

heap_node_t *insert(key_t new key,
obj ect t *new obj, heap_node t *hp)

{ heap_node_t *new node;

new_node = get_node(); /* create new node */

new_node->ri ght = NULL;

new_node- >key = new_key;

new_node- >0bj ect = new_obj;

new_node->rank = 0;
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new_node->state = conpl et e;

if( hp->right == NULL )
/* insert in enpty heap */

{ hp->right = hp->left = hp->up = new_node;
new _node- >l eft = NULL;

}

el se /* heap nonenpty, put on top

of leftnost path */

{ new_node->left = hp->right;
hp->ri ght = new_node;
new_node->| ef t - >up = new_node;

i f( hp->left->key > new key) /*
update m n-pointer */
hp->l eft = new_node
}

return( new_node );

}

heap_node_t *nerge(heap_node_t *hpl
heap_node_t *hp2)
{ if( hpl->right == NULL ) /* hpl enpty */
{ return_node(hpl); return(hp2);
}
else if( hp2->right == NULL ) /* hp2 enpty */
{ return_node(hp2); return(hpl);
}
el se /* both heaps nonenpty */
{ hpl->up->left = hp2->right;
/* concatenate | eftnost paths */
hp2->right->up = hpl->up
/[* join their up-pointers */
hpl->up = hp2->up
/* restore leftend pointer */
i f(hpl->left->key > hp2->|eft->key)
hpl->l eft = hp2->left;
/* update mn-pointer */
return_node(hp2); return(hpl);
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voi d decrease_key( key_t new key, heap _node_t *n,
heap_node_t *hp)
{ heap_node_t *u, *tnp; int finished = 0;
n- >key = new key; /* decrease key in n */
i f( new key < hp->left->key )
/* update min-pointer */
hp->left = n;
while( n->r_up !'= NULL && !finished )
{ u = n->r_up;
/* non left path of u->right: unlink n */
if( n==u->right )
/[* n on top of left path of u->right */
{ wu->right = n->left;
if( n->left !'= NULL )
n->left->up = u;
}
else /* n further down on |eft
path of u->right */
{ n->up->left = n->left;
if( n->left I'= NULL )
n->left->up = n->up
} /* unlink n conplete, now insert
n on | eftnost path */
n->r_up = NULL;
n->left = hp->right; n->left->up = n;
hp->right = n;
/* now repair u; if necessary, repeat cut */
if( u->r_up == NULL )
/* u already on |l eftnost path */
{ wu->rank -=1;
finished = 1;
}
else if( u->state == conplete )
/* u becones deficient */
{ wu->state = deficient;
finished =1;
}
el se /* u deficient and not
on leftnost path */
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{ if( u->rank >= 2 )
u->rank -= 2;
el se
u->rank = 0;
u->state = conpl ete;
/* u rank information correct */
} /* in this case, have to cut u from
left list */
n =u; /* so repeat unlink operation */
}/* end of while loop, finished with
‘cascadi ng cut’ */

}

object t *delete_m n( heap_node_t *hp)
{ heap_node_t *min, *tnp, *tnp2;
object _t *del obj;
heap_node_t *rank _class[100]; int i
key t tnp_mn
i f( hp->right == NULL)
/* heap enpty, delete failed */
return( NULL );
mn = hp->left;
/* unlink mn node fromleftnost path */
del _obj = m n->object;
if( min == hp->right )
/* minon top of leftnost path */
{ if( mn->left I'= NULL )
/* path continues after nmin */
{ hp->right = nmn->left;
m n->l eft->up = hp;
}
else /* min only vertex on leftnost path */
{ if( mn->right !'= NULL )
/* min not |ast node */
{ hp->right = mn->right;
m n->ri ght->up = hp;
m n->ri ght = NULL;
}

else /* min |ast node, heap now enmpty */
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{ hp->right = NULL;
return_node( mn );
return( del obj );

}
}

else /* min further down on leftnost path */
{ mn->up->left = nin->left;
if( mn->left !'= NULL )
/[* mn not |ast vertex */
m n->left->up = ni n->up;
} /* unlink mn conplete */
/* now nove |eft path of mn->right
to leftnost path */
if( mn->right '= NULL ) /* path nonenpty */
{ tnp = mn->right;
while( tmp->left I'= NULL )
/* find end of path */
tnmp = tnp->left;
tnp->left = hp->right; tnp->left->up = tnp;
hp->right = min->right;
m n->right->up = hp;
}
/* now path bel ow m n->ri ght
linked to |l eftnost path */
return_node( mn ); /* mnimmdeleted */
/* now starts clean-up phase */
for( i =0; i < 100; i++)
rank_class[i] = NULL;
/* now unbuild | eftnost path, collect
nodes of equal rank*/
tnp = hp->right;
/* take first node fromleftnost path */
hp->ri ght = hp->right->left;
/* unlink that node */
while( tnp !'= NULL )
{ 1if( rank_class[tnp->rank] == NULL )
{ /* no node of sane rank found:
store node */
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rank_cl ass[tnp->rank] = tnp;
tnp = hp->right; /* take new node */
if( tnmp !'= NULL)
hp->ri ght = hp->right->left;
/[* unlink that node */
}
else /* two nodes of sane rank found,
add bl ocks */
{ tmp2 = rank_cl ass[tnmp->rank];
rank_cl ass[t np->rank] = NULL;
i f( tnp->key < tnp2->key )
{ tnp2->left = tnp->right;
tmp->right = tnp2;
}
el se /* tnp->key >= tnp2->key */
{ tnp->left = tnp2->right;
tnmp2->right = tnp;
tnp = tnp2,
}
tnp->rank += 1;
/* increase rank of sum bl ock */
}
} /* all remaining blocks now
in rank class[] */
/* now rebuild the leftnbost path */
hp->right = NULL;
for( i =0; i < 100; i++)
{ if( rank_class[i] != NULL )
{ tnp = rank_class[i];
tnp->left = hp->right;
hp- >ri ght t np;

}
}

/* recompute pointers on new | eftnmost path */
hp->1 ef t hp->right; tnp_nmin = hp->left->key;
for( tnp = hp->right; tnp->left !=NULL;
t np tnp->left)
{ tmp->left->up = tnp;
/* new up pointers */
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if( tnp->left->key < tnp_mn)
{ hp->left = tnp->left;
/* new min pointer */
tnp_mn = tnp->l eft - >key;
}
}
hp->up = tnp; /* end of |eftnost path */
/* finished with clean-up phase */
return( del _obj );

5.9 Heaps of Optimal Complexity

We already noted in Section 5.1 that we cannot get all heap operations in
sublogarithmic time. For the search trees with lazy deletion, we showed that
del et e_ni n ispossiblein constant time, together withi nsert in O(logn).
Because there are necessarily morei nsert thandel et e_ni n operations, it
became a much-studied question whether one could geti nsert and all other
operations but deletion, in constant time, and del et e_mi n in O(logn).

The answer to this question somewhat depends on the exact details of
the question, but is “yes’ (almost), with the best structures due to Brodal
(1995, 1996a). The first step in this direction was the Fibonacci heap
(Fredman and Tarjan 1987), which supported i nsert, fi nd_m n, and
mer ge in O(1) amortized time and del et e_mi n, indeed arbitrary deletions,
in O(logn) amortized time. The special importance of this structure comes
from the fact that although the time bounds are only amortized, they are suffi-
cient to obtain worst-case time bounds in algorithms where we know that the
number of heap operationsislarge, for example, in Dijkstra’s algorithm. Other
developments are the pairing heap (Fredman et al. 1986) and the relaxed heap
(Driscoll et al. 1988), and the 2-3-heap (Takaoka 2003). Onereason for the pair-
ing heap’s popularity, besides the simpler implementation, was that although
it has only O(logn) amortized bounds for the usual heap operations, it was
conjectured to havean O (1) timedecr ease_key; but finaly an Q(loglogn)
amortized lower bound was found (Fredman 1998). The relaxed heaps came
in two variants, of which the run-relaxed heaps achieved O (1) worst-casei n-
sert anddecrease_key and O(logn) fi nd_m n and del et e_ni n; but
Fibonacci heaps and relaxed heaps are somewhat unsatisfactory because they
do not work in the pointer-machine model but require dynamically allocated
arrays of size ®(logn).
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The amost fina answer is the two structures of Brodal (1995, 1996a),
of which the first works in the pointer-machine model and supports worst-
case bounds of O(1) fori nsert, fi nd_m n, and ner ge and O(logn) for
del et e_ni nanddecr ease_key. Thesecond structure additionally reduces
the complexity of decr ease_key to constant time, but leaves the pointer-
machine model and needs dynamically allocated arrays of size ®(logn). Other
structures with the same performance are the ternary heap (Takaoka 2000) and
the heaps based on the black-box transformation of Alstrup et al. (2005). We
will describe here the first structure.

The underlying structure is again a heap-ordered tree with nodes of poten-
tially large degree, but to allow an i nsert in constant time while keeping
thisstructureand adel et e_mi nin O(logn) time, we need alot of additional
structure, especially several additional pointers per nodeto reach all those other
nodes that have to be corrected in constant time.

The structure is as follows:

{ Each node has asmaller key than al its lower neighbors (a heap-ordered
tree).

{ Each node n has a nonnegative rank as balancing information.

{ Each node has at most one special lower neighbor, which might be of
arbitrary rank, and anumber of normal lower neighbors, whose rank is
smaller than the rank of the node.

{ Thenormal lower neighbors are arranged in order of increasing rank in a
doubly linked list. The ranks of the normal lower neighbors of n satisfy the
following properties:

1. Each rank lessthan the rank of n occurs at least once, and at most three
times.

2. Between two ranks that occur three times there is arank that occurs only
once.

3. Beforethefirst rank that occurs three times, thereis arank that occurs
only once.

{ For each node, the first-lower neighbors of each rank that occurs three times
arearranged in alinked list, in increasing order.
{ Theroot has rank 0.

To provide the necessary information, the structure of anode is the following:

typedef struct hp_n_t {
i nt rank;
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NODE RANKS IN BRODAL’S HEAP

key _t key;
obj ect _t *obj ect ;
struct hp_n_t *first; /* |ower neighbors */
struct hp_n_t *last; /* |ower neighbors */
struct hp_n_t *next; /* same level list */
struct hp_n_t *previous; /* sane level list */
struct hp_n_t
*thrice_repeated;
struct hp_n_t *special

} heap_node_t;

By the heap order, the root contains the smallest key, so thef i nd_ni n oper-
ation istrivial and in constant time. Thei nsert operation is reduced in the
standard way to mer ge, creating a new one-element heap for the new element
and merging that heap with the old heap.

The ner ge isthe main operation and it works asfollows: letr ; and r , be
the roots of the heaps we want to merge. Because the root has rank 0, it has
only one lower neighbor, the special lower neighbor that may be of arbitrary
rank, r ;- >speci al andr ,- >speci al . We want to insert the root of one
heap in the list of normal lower neighbors of the special lower neighbor of the
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root of the other heap at the beginning of that list because it already has rank
0. But we have to preserve heap order and the rank sequence conditions on
that list.

For the rank sequence, we observe that it is easy to combine the subtrees
below two nonroot nodes of the same rank into one subtree below arank one
higher: just increase the rank of the node with the larger key and insert the node
with the smaller key at the end of the sequence of lower neighbors, as new
maximum-rank node.

The steps of the mer ge operation are as follows:

1. Comparer 1- >key andr - >key if necessary, exchange, so that r 1 isthe
root with smaller key. Then it must become the root of the merged tree.

2. Comparer ;- >speci al - >key andr ,- >key, exchange, so that
ri- >key < r - >speci al - >key < r,- >key.

3. If thelist of three-time occurring ranksbelow r ;- >speci al isnot empty,
go to thefirst rank on the list and convert two of its nodes into the next
higher rank. Remove that rank from the list of three-time occurring ranks,
and if the next higher rank now occurs three times, add that to thelist.

3.1 If that next higher rank is now the same astherank of r ;- >speci al ,
increase therank of r ;- >speci al by one.

4. Insertr , into thelist of normal lower neighbors of r ;- >speci al at
ri->special->first.

4.1 If there were aready two nodes of rank 0 on that list, combine them
into one node of rank 1.

4.2 If therank of r ;- >speci al wasl, increaseitto 2.

4.3 If there are now three nodes of rank 1 on the list, insert the first of them
in front of the list of ranks occurring three times.

These operations restore the rank conditions; step 3 moves the first three-time
repeated rank one step on, or destroys that repetition, while preserving that
alternation of somerank occurring only once between any two ranks that occur
three times and before the first such rank. This especially guarantees that rank
1 occurs a most two times, so we can combine two elements of rank O, if
necessary, because thereis till room at rank 1.

The del et e_m n operation is more complicated. The general strategy is
clear; one removes the root, moves the one lower neighbor of the root up, and
finds among its lower neighbors the one of minimum key, and moves that up,
and somehow merges the lists of all lower neighbors. There are, however, a
number of difficulties along the way.
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We observe first that the rank sequence conditions enforce that each node
has only O(logn) lower neighbors. A node of rank k has at least one lower
neighbor of each rank O, ..., k — 1, from this follows by induction that the
subtree with a node of rank k as root contains at least 2¢ nodes.

Let r bethe original root, n =r - >speci al its unique lower neighbor,
and m, ..., m the normal lower neighbors of n. The first step is to integrate
n- >speci al intothelist of normal lower neighbors of n. The difficulty here
is that n- >speci al might violate the rank restriction for a normal lower
neighbor of n. If n- >speci al - >r ank > n- >r ank, we cut thelist of nor-
mal lower neighbors of n- >speci al at the rank n- >r ank and attach the
top half, those nodes with rank at least n- >r ank, to the top end of the list
of lower neighbors of n. Then we can reduce the rank of n- >speci al to
n- >r ank by which the rank condition for the subtree below n- >speci al
isrestored and correct n- >speci al - >t hri ce_r epeat ed. Thenweinsert
n- >speci al at the correct place in the list of normal lower neighbors of n.
Thus, n has no specia lower neighbor any more, but the list of normal lower
neighbors violates the rank condition. The ranks on that list are still in increas-
ing order, and each rank up to the maximum occurs at |east once, but they might
occur more than three times and the alternation might be lost. Still, there are
at most O(logn) nodes on the list because each node was previously a normal
lower neighbor either of n or of n- >speci al . We now go once through that
list, fromn->f i r st ton- >l ast, and whenever there are three consecutive
nodes of the same rank, we combine two of them to the next larger rank, so
that in the end each rank occurs either one or two times. Then we increase the
rank n- >r ank to n->| ast - >r ank + 1, and the rank condition in n is re-
stored. Finally weclear n- >t hri ce_r epeat ed. All thistook O(logn) time
and merely integrated n- >speci al into the list of normal lower neighbors
of n.

We now go once through that list, from n->first to n->l ast, and
find and unlink the node with the smallest key. Let this node be m We copy
key and obj ect from n to r, deleting the previous minimum, and from
mto n. Then we merge the list of normal lower neighbors of minto that
list for n, and copy m >speci al to n- >speci al , and delete the node
m The list of normal lower neighbors of n is now again a list of O(logn)
nodes, in order of increasing rank, which possibly violates the rank sequence
condition, and also there might be a missing rank: if mwas the only node of
that rank on the list of n, this rank is nhow missing. In that case we take the
next node on the list and split it, inverting the combining of two nodesinto at
most four nodes of one rank smaller. If this leaves again a missing rank, we
repeat this until we reach the end of that list. Finally, we go again through the
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list fromn->first ton->l ast, and whenever there are three consecutive
nodes of the same rank, we combine them to the next larger rank, so that
in the end each rank occurs either one or two times. Then we set the rank
n- >r ank to n- >l ast - >r ank + 1. After this, the heap again satisfies all
the conditions. Intotal al these operationsfor thedel et e_mi n took O(logn)
time.

To summarize the performance of this structure, we have the following:

Theorem. Broda's heap structure supports the operationsi nsert , ner ge,
find.m n in worst-case O(1) and del et e_nmi n in worst-case O(logn)
time.

If one adds upward pointers, one can also get the operations decr ease_
key and arbitrary deletionsin O(logn) time. Some care is required; however,
the structure does not give an O(logn) height bound, because alist of nodes of
rank 0, which each have the special neighbor, would be a correct heap structure.
The strategy is therefore to bubble up until one meets a special neighbor link,
and then clear the special neighbor of r - >speci al asdescribed before, and
insert the current node there instead.

An array-based heap of the same performance, O (1) worst-casei nsert
and find_m n, and O(logn) del et e_m n, was developed in Carlsson,
Munro, and Poblete (1988). As aways in array-based heaps, we cannot merge
two heaps in this structure, but the space requirement is significantly smaller
by the implicit representation than in Brodal’s heap, where we need at least six
pointers per element.

5.10 Double-Ended Heap Structures
and Multidimensional Heaps

The heap structures that we discussed so far allow fast accessto one end of the
set of keysto the minimum key element in the current set, the way we have pre-
sented it here, or the maximum key element if we reverse all theinequality con-
ditions. Thisissufficient for all natural applications, but an obvious generaliza-
tionisto ask for fast access both to the minimum and to the maximum el ement.
That structure is called a double-ended heap, and it must support at least the
operationsi nsert, fi nd_m n, fi nd_max, del et e_nmi n, del et e_nax,
and possibly additional operations like mer ge or change key.

If we use balanced search trees as heap, as described in Section 5.1, we
immediately get a double-ended heap with the heap operations all in O(logn),
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and with thelazy deletionimprovement wecangeti nsert andchange _key
in O(logn), and fi nd_m n, fi nd_max, del et e_m n, del et e_max in
0(1) worst-case time. And al this requires not much extra effort beyond the
balanced search tree with leaves arranged in adoubly linked list.

Nonetheless, a large number of other double-ended heaps have been pro-
posed.”* The most obvious solution would be to have two heaps — a min-heap
and a max-heap — and insert each element in both, linking the two copies to-
gether by pointers. Thisrequiresthat the underlying heap structure supports not
only del et e_mi n, but deletion of arbitrary elements, given a pointer to that
element. Thiselement duplication reducesani nser t totwo insert operations
in the underlying heaps, and a del et e_ni n or del et e_max to the corre-
sponding deletion in one of the underlying heaps, and an arbitrary deletion in
the other. A mer ge operation reduces to two merges of the underlying heaps,
when these are supported, but decr ease _key failsto generalize, unless the
underlying heap allows key changes in both directions, because the min-heap
and the max-heap have opposite preferred orientations. We discussed this in
Section 5.7.

An alternative to element duplication is to group the elements into pairs,
againlinked by pointers, and the smaller element of each pair isinserted into the
min-heap and the larger element into the max-heap. Thenany del et e_mi nin
the min-heap or del et e_max in the max-heap does indeed delete the global
minimum or maximum, it breaks only one of these pairs, which has to be
corrected. This might again require deletion of arbitrary elements from one
heap, if that heap contained several unmatched elements, of which half have to
be moved to the other heap. If the underlying structure is a heap-ordered tree,
this can be avoided by matching only the leaves.

Thisidea, combined with array-based heaps, was already observed in Knuth
(1973) and Carlsson (1987/88), also Carlsson, Chen, and Strothotte (1989),
van Leeuwen and Wood (1993), Chang and Du (1993), Chen (1995), and
Jung (2005). These structures differ essentially only in the way these heaps
are mapped into an array and how the pairing between them is established;
thisinfluences the multiplicative constant in the O (log n) bound per operation.
Because these structures are al based on the array-based heaps, they achieve
O(logn) per i nsert, del et e_mi n, del et e_max, or even arbitrary dele-
tions of elementswith known positions, and O(1) f i nd_m n andf i nd_max.
Arbitrary key changes of elements at known position can be donein O(lognr)
time by deleting and reinserting it.

4Frequently, the original note by Williams (1964), in which hefirst defined the heap, is also cited
as the source of the first double-ended heap, but thisis not true.
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Array-based heaps are combined with adifferent order structurein Atkinson
et al. (1986) and Arvind and Rangan (1999) to implement double-ended heaps.
They again achieve the same O(logn) time for all operations supported by
array-based heaps; the only differences are the multiplicative constants in the
number of comparisons and possibly the difficulty of the implementation.

The idea of pairing elements in a min-heap and a max-heap structure is,
of course, not restricted to array-based heaps. It is applied to binomia heaps
in Khoong and Leong (1993) and to leftist heaps in Cho and Sahni (1999),
where al three variants — element duplication, global element pairing, and
leaves-only pairing — are discussed. The method is studied as general con-
struction principle in Chong and Sahni (2000) and Makris, Tsakalidis, and
Tsichlas (2003). If we have any underlying heap that supports ner ge and
deletion of arbitrary elements, the derived double-ended heap consists of the
following parts:

{ a most one unmatched element,

{ amin-heap,

{ amax-heap, and

{ apairing of the elements of the min-heap and the max-heap, so that for each
pair, the min-heap element is smaller than the max-heap element, and from
any element we can access the other half of its pair in O(1).

Now the operations work as follows:

{ i nsert: If thereisan unmatched element, the new element is paired with
it, and the smaller part of the pair isinserted into the min-heap, the larger
into the max-heap. If there is no unmatched element, the new element
becomes the unmatched element.

{ find_m n: Perfformsafi nd_m n inthe min-heap and compares the
result with the unmatched element if there is one and returns the smaller.

{ fi nd_max: Performsaf i nd_nmax in the max-heap and compares the
result with the unmatched element if there is one and returns the larger.

{ del et e_.m n: Performsaf i nd_m n in the min-heap and compares the
result with the unmatched element if there is one. If the unmatched element
issmaller, it deletes and returns the unmatched element. Otherwise it
performsadel et e_mi n inthe min-heap, agenera del et e of the
matched element in the max-heap, and againani nsert of that element
from the max-heap.

{ del et e_max: Performsaf i nd_max in the max-heap and compares the
result with the unmatched element if thereis one. If the unmatched element
islarger, it deletes and returns the unmatched element. Otherwise it
performsadel et e_max in the max-heap, agenera del et e of the
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matched element in the min-heap, and againani nsert of that element
from the min-heap.

{ mer ge: Performsaner ge for the two min-heaps and another ner ge for
the two max-heaps, and if there are two unmatched el ements, one from each
of the merged heaps, it matches them and inserts the smaller into the
min-heap, the larger into the max-heap.

If we apply this construction to the heap invented by Brodal (1995) that we
described in the previous section, which supported i nsert and mer ge in
O(1) and del et e_nmi n aswell asarbitrary deletionsin O(logn), we obtain a
double-ended heapwithi nsert ,fi nd_m n,fi nd_max,mer gein0(1)and
del et e_mi n,del et e_nmax in O(logn) time (Chong and Sahni 2000; Makris
etal. 2003). Brodal (1995) himself proposed el ement duplicationinstead, which
gives exactly the same performance, but needs twice the space for the heap. But
if the objects associated with the keys are larger, this does not matter because
the objects themselves are not duplicated.

Theorem. There is a double-ended heap that supportsi nsert,fi nd_m n,
find_max, merge in O(1) and del et e_mi n, del et e_max in O(logn)
worst-case time.

Further pointer-based double-ended heaps were proposed in Olariu, Over-
street, and Wen (1991) and Ding and Weiss (1993), which reusesthe alternative
order structure of min-layersand max-layersdevel opedin Atkinson et al. (1986)
for array-based heaps. The heaps of Atkinson et a. (1986) were also studied in
Hasham and Sack (1987) and Strothotte, Eriksson, and Vallner (1989).

A further generalization of the double-ended heap is the d-dimensiona
interval heaps proposed in van L eeuwen and Wood (1993) and discussed further
by Ding and Weiss (1994). They model aset of objects, whereto each object ad-
tuple of key valuesisattached, and one can query for the objects with minimum
or maximum ith coordinatefor eachi = 1, ..., d. Thislooks somewhat similar
to range searching, and indeed van Leeuwen and Wood (1993) observed that
their structure allows to solve complementary orthogonal range queries, that
is, listing the points outside a given box in output-sensitive time O (logn + k).
They are realized as array-based heaps, with i nsert, del ete_m n, and
del et e_max for each coordinatein O(logn) time.

A d-dimensional min-heap is the natural generalization of all these struc-
tures: aset of objects, each with d key values, in astructure that allowsinserts,
and query for and deletion of the object with minimum ith coordinate. A
double-ended heap is a special case of atwo-dimensiona heap because we can
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replace each key by the pair (key, —key). Then the maximum queriestranslate
into minimum queries for the second coordinate. In the same way, the queries
supported by ad-dimensional interval heap are a specia case of the queriesin
a 2d-dimensiona min-heap.

Again, one can implement this using severa heaps whose elements are
linked, one heap for each coordinate (Brass 2007). The main differenceis that
we cannot group the el ementsinto d-tuplesand insert onein each heap, because
itis possible that the same element is minimal for each coordinate and hasthus
to be entered in each heap. The simplest way to realize this structureis element
duplication. We have d min-heaps, one for each coordinate, and weinsert each
element in each heap, joining the nodes that refer to the same element in a
cycliclinked list. Theneachi nsert reducesto d insertionsin the underlying
heaps, and each del et e_mi n inone coordinate reducestoonedel et e_m n
in one heap, which gives us the beginning of the list of copies, and d — 1
general deletions at known places in the other heaps. And for a ner ge, we
just mergethe d coordinate-heaps. Using again Brodal's heap as the underlying
heap structure, we aobtain the following bounds:

Theorem. Thereisad-dimensiona min-heap that supportsi nsert , ner ge,
andf i nd_m n ineach coordinatein O(1) and del et e_mi n in each coordi-
nate in O(logn) worst-case time.

5.11 Heap-Related Structureswith Constant-Time
Updates

Several structures have been studied that keep track of the minimum key in
adynamically changing set if the changes are subject to some restrictions. In
general, because we can use a search tree to allow arbitrary insertions and
deletionsin O(logn) and find the minimumin O(1), we are interested in such
situations where the updates are significantly faster than O(logn), at best in
time O(2).

The simplest example of such a structure is to keep track of the minimum
value of elements on a stack. One can view the stack as a set that changes in
a very restricted way: if y isinserted after x, then it must be deleted before
x. For the minimum of the key values of the current set, this implies that
either the insertion of y decreases the minimum, then the previous minimum
becomes irrelevant until y is deleted, or the minimum stays the same. So we
can keep track of the current minimum by using a second stack, which contains
the current minimum. For each push on the stack, we compare the current
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minimum, that is, the top of the second stack, with the new element and push
the smaller value on the second stack. For each pop, we also pop the element
of the second stack. And for afi nd_m n, we return the value on top of the
second stack. All these operations take only constant time.

Theorem. The doubled stack structure supports push, pop, andfi nd_ni n
in O(1) worst-case time.
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The same problem for a queue instead of a stack is more difficult, but
also more important. A minqueue is a structure that supports the operations
enqueue, dequeue, and fi nd_mi n. It models a sliding window over a
sequence of items, where we want to keep track of the smallest key value in
that window. One application of amingqueueisto partition asequence of objects
into groups of consecutive objects such that each group has a certain size and
the breakpoints have small values. There, each potential breakpoint defines
an interval of potential next breakpoints, which is a queue, and we need the
minimum value of the next breakpoint as function of the previous breakpoint.
This type of problem was first discussed by McCreight (1977) in the context
of choosing page breaks in an external-memory index structure; there, normal
heaps were used (Diehr and Faaland 1984). The same problem occursin many
other contexts, for example, in text formatting, breaking text into lines.

A simpleversion of aminqueue with amortized O (1) timeworksasfollows:
We have a queue for the objects and additionally a double-ended queue for the
minimum key values (it really needs only one-and-a-half ends). The operations
are asfollows:

{ enqueue: Enqueue the object in the rear of the object queue; remove from
the rear of the minimum key queue all keysthat are larger than the key of the
new object, and then add the new key in the rear of the minimum key queue.

{ dequeue: Degueue and return the object from the front of the object
queus; if its key isthe same as the key in front of the minimum key queue,
dequeue that key.

{ fi nd_m n: Return the key value in front of the minimum key queue.
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Thisdoubled queue structure takes amortized O (1) time because each object
and each key isjust inserted and del eted once; but in asingle enqueue operation,
thereare possibly many key val uesremoved from the minimum key queue. Here
is an implementation of the doubled queue structure.

typedef struct qu_t { key_t key;
obj ect _t *obj ect;
struct qu_t *next ;
struct qu_t *prev; } queue_t;

gueue_t *create_ni nqueue()
{ queue_t *entrypoint;
entrypoi nt = get_node();
/* create enpty object queue bel ow
entrypoi nt - >next */
entrypoi nt->next = get_node();
ent rypoi nt - >next - >next = entrypoi nt - >next;
entrypoi nt - >next ->prev = entrypoi nt->next;
/* create enpty m nkey queue bel ow
entrypoint->prev */
entrypoi nt->prev = get_node();
ent rypoi nt - >prev->next = entrypoint->prev;
entrypoint->prev->prev = entrypoi nt->prev;
/[* mnimum over enpty set is +infty */
entrypoi nt - >prev->key = PCSI NFTY
/* enpty m nqueue created */
return( entrypoint );

i nt queue_enpty(queue_t *qu)
{ return( qu->next->next == qu->next );
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}

key t find_m n_key(queue_t *qu)
{ return( qu->prev->prev->key );

}

object_t *find_m n_obj(queue_t *qu)
{ return( qu->prev->prev->object );

}

voi d enqueue( object_t *new obj, key_ t new key,
queue_t *qu)
{ queue_t *new, *tnp; tnp = NULL;
/* create and fill new node with new
obj ect and key */
new = get_node();
new >obj ect = new obj; new >key = new key;
/* insert node in rear of object queue,
as qu->next->next */
new >prev = qu- >next;
gu- >next - >next - >prev = new,
new >next = qu- >next - >next;
gu- >next - >next = new,

/* renove all larger keys fromrear
of m nkey queue */
whi |l e( qu->prev->next != qu->prev &&

gu- >pr ev- >next - >key > new_key)
{ if( tnmp !'= NULL )
/* return node only if we get another*/
return_node( tnmp );
tnp = qu->prev->next;
/* now unlink tnmp */
qu- >prev->next = tnp->next;
qu- >pr ev->next - >prev = qu->prev;
}
/* create node with new key */
new = ( tnmp !'= NULL ) ? tnp : get_node();
new >obj ect = new_obj; new >key = new key;
/* insert node in rear of mnkey queue,



}

5.11 Heap-Related Structures with Constant-Time Updates

as qu->prev->next */
new >prev = qu- >prev;
gu- >pr ev- >next - >prev = new,
new >next = qu->prev->next;
gu- >prev->next = new,

obj ect _t *dequeue(queue_t *qu)

{

}

queue_t *tnp; object_t *tnp_object;
i f( qu->next->next == qu->next)
return( NULL );
/* dequeue fromenpty queue */
el se
{ [/* unlink node fromfront of
obj ect queue */
tnp = qu->next->prev;
t np_obj ect = tnp->object;
gu- >next - >prev = tnp->prev;
gu- >next - >prev- >next = qu->next;
/* test front of m nqueue,
unlink node if equal */
i f( tnp->key == qu->prev->prev->key )
{ return_node( tnp );
tnmp = qu->prev->prev;
qu- >prev->prev = tnp->prev;
qu- >prev->prev->next = qu->prev;
}
return_node( tnp );
return( tnp_object );

voi d renmove_ni hqueue(queue_t *qu)

{

queue_t *tnp;
/* link all queues together

to a list connected by next */
qu- >next - >prev->next = qu->prev;
qu->prev->prev->next = NULL;
/* follow the next pointers

275
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and return all nodes*/
do
{ tmp = qu->next;
return_node( qu );
qu = tnp;
}
while ( qu !'= NULL );

Theorem. The doubled queue is a mingqueue that supports enqueue, de-
gueue, andfi nd_m nin O(1) amortized time.

A structure that supports all double-ended queue operationsandf i nd_m n
in O(1) worst-case time is described in Gajewska and Tarjan (1986), and a
further extension to allow concatenation, but only in amortized O(1) time,
occursin Buchsbaum, Sundar, and Tarjan (1992). A different O(1) worst-case
generalization isamin-heap that discards on each insert al those elements that
have a larger key than the new element (Sundar 1989). That is exactly what
the minimum key queue did in the previously described version of aminqueue;
replacing it by the structure (Sundar 1989) gives another O(1) worst-case
mingueue. A minqueue that additionally supports key change operations, also
in O (1) amortized time, was given, together with some applications in Suzuki,
Ishiguro, and Nishizeki (1992).

Some heap structures have been proposed that support the general heap
operations, but take advantage of some specia update pattern if it is present.
The queaps of lacono and Langerman (2002) give O(1) time i nsert and
amortized O(logk) time del et e_mi n, where k is the number of items in
the heap that are in it longer than the current minimum item. Thus, the queap
is fast if the minimum item is always one of the oldest, so the items are
inserted approximately in increasing order. Thisisachieved by having separate
structuresfor “old” and“ new” elements, convertingall “new” to“ old” whenever
thecurrentminimumliesinthe“new” part. Thisway, adel et e_m n operation
needsto look up the minimum in both parts, but in most casesit hasto perform
the deletion only on the small “old” part.

The fishspear structure by Fischer and Paterson (1994) performs better in
the opposite case, when current minimum usually is in the heap only for a
short time. This will happen if the inserted elements are chosen from a fixed
distribution. The fishspear takes an amortized O(logm) timefor ani nsert,



5.11 Heap-Related Structures with Constant-Time Updates 277

wherem isthe maximum number of elements smaller than the inserted element
that exist at any moment before it is deleted again, and amortized O (1) time
foradel et e_mi n.

A similar property was proved by lacono (2000) for pairing heaps: the
amortized complexity of del et e_ni ninapairing heap is O(logmin(n, m)),
where n isthe size of the heap at the time of the deletion, and m is the number
of operations between the insertion and the del etion of the element.

Aswithfinger treesand splay trees, thisadvantagefor specia update patterns
given by aqueap or afishspear istoo small to perform better than agood ordinary
heap unless the update pattern is extremely strong.



6
Union-Find and Related Structures

The problem known as “union-find” is to keep track of a partition of a set,
in which partition classes may be merged, and we want to answer queries
whether two elements are in the same class. This problem was first discussed
in Arden, Galler, and Graham (1961)" and Galler and Fisher (1964) with the
motivation of keeping track of the equivalence of identifiers, becausein Fortran
and several other early languages it was possible to give several names to the
same variable. Later, much more important applications were found, and this
step of keeping track of a partition of a set whose classes grow together can be
found, for example, in the minimum-spanning-tree algorithms of Kruskal and
Borlivka.

The large number of papers generated by this problem and its relatives are
not so much motivated by the difficult structuresthey use, but by the difficulties
of theanalysis. Also, it turned out that the correct answer very much dependson
the exact question and the computational model. Thisis one of the two places
in algorithms® where the inverse Ackermann function occurs, an extremely
slow-growing function, and it not only occurs as a technica device, but also
gives the correct order of the amortized complexity of the classical solution to
this problem.

The structures related to the union-find problem are again, like the binary
search trees, useful building blocks in the construction of more complicated
data structures. But here one has to be more careful about which operations
exactly need to be supported.

1 One of the earliest algorithms paper in our references.

2 And almost the rest of mathematics. The other place s in Davenport-Schinzel sequences,
which occur by their application to the complexity of arrangementsin a number of
computational geometry results.
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6.1 Union-Find: Merging Classes of a Partition

The classical version of the union-find structure worksin the following model:
there is a set of items on which some partition is maintained. Items can be
inserted into that set, each initially forming aone-element partition class. Items
areidentified by apointer, afinger into the structure, which isobtained from the
insertion operation. This makes access to an item a constant-time operation;
there is no key involved in this structure. The underlying partition can be
changed by joining two classes, the classes identified by giving items in these
classes. And the partition can be queried by asking whether two items are in
the same class. So we have the following operations:

{ i nsert : Takesan item, returns pointer to the node representing the item,
and creates a one-element classfor it.

{ j oi n: Takestwo pointers to nodes and joins the classes containing these
items.

{ sane_cl ass: Takes two pointers to nodes and decides whether their items
arein the sameclass.

One could implement these operations in many different ways. One possibility
would be to keep a table with the class for each item; then one could query
fast, just looking up two table entries and checking whether they are the same,
but to join two classes, one would have to change al entries in one class. Or
one could just keep the graph of pairs of items that were joined, allowing very
fast updates by inserting one edge, and then decide at query time whether two
items are in the same connected component.

But a much better class of methods is based on the following idea, which
occurred firstin Galler and Fisher (1964). We represent each classby adirected
tree, with all edges oriented to the root. Then each node representing an item

CLASSES {a, b}, {c,d, e, f, k,1,m},{g, h,i,0, p,q,r}, {j}
WITH MARKED RoOoT NODES



280 6 Union-Find and Related Structures

needs just one outgoing pointer to that neighbor in the tree that is nearer to the
root; for the root itself we use the NULL pointer.

Given this representation, we can query whether two items are in the same
class by following from both nodes the path to their respective roots; they are
in the same class if they reach the same root. And we can join two classes by
connecting the root of one tree to the root of the other tree.

JOINING Two CLASSES BY CONNECTING ONE ROOT TO THE OTHER

This outline still leaves alot of freedom: we have to decide on joining two
trees, which of the two roots should become the root of the union. And we
can restructure the tree, ideally making al vertices point directly to the root,
because the time taken by the query is the length of the path to the root. In the
best-known solution, we use the following two techniques:

{ Union by rank: Each node has another field, ther ank, which starts on
insertion as 0. Each time we join two classes, the root with the larger rank
becomes the new root, and if both roots have the same rank, we increase the
rank in one of them.

{ Path compression: In each query and each update, when we followed a path
to the root, we go along that path a second time and make all the nodes
point directly to the root.

Both heuristics were introduced separately, but simultaneously, in severa pa-
pers,® for example, Bayer (1972b), they were combined in Hopcroft and Ullman
(2973).

With this, we can now write down an implementation of this very simple
structure.

3 And inaccessible technical reports and personal communications.
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JOINING THE CLASSES WITH ELEMENTS a AND c:
UNION BY RANK FOLLOWED BY PATH COMPRESSION

typedef struct uf_n_t {

i nt rank;
itemt *item
struct uf_n_t *up; } uf_node_t;

uf _node_t *insert(itemt *new.item
{ uf_node_t *new_node;
new node = get node();
new node->item = new_ item
new_node->rank = 0;
new_node- >up = NULL;
return( new_node );
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int same_cl ass( uf_node_t *nodel
uf _node_t *node2 )
{ uf_node_t *rootl, *root2, *tnp;
/* find both roots */
for( rootl = nodel; rootl->up != NULL
rootl = root1->up)

; /* follow path to root for nodel */
for( root2 = node2; root2->up !'= NULL
root2 = root2->up)

; /* follow path to root for node2 */
/* make both paths point directly to
their respective roots */
tnmp = nodel- >up;
while( tnp !'=rootl & tnp !'= NULL )
{ nodel->up = rootl1;

nodel = tnp; tnp = nodel->up
}
tnp = node2->up;
while( tnp !=root2 & tnp !'= NULL )
{ node2->up = root?2;

node2 = tnp; tnp = node2->up

}
/* return result */
return( rootl == root2 );

void join( uf_node_t *nodel, uf _node_ t *node2 )
{ uf_node_t *rootl, *root2, *new_root, *tnp;
/* find both roots */
for( rootl = nodel; rootl->up != NULL
rootl = root1->up)

; /* follow path to root for nodel */
for( root2 = node2; root2->up != NULL
root2 = root2->up)

; /* follow path to root for node2 */

/* performuni on by rank */
i f( rootl->rank > root2->rank )
{ new_root = rootl; root2->up = new_root;

}
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el se if( rootl->rank < root2->rank )
{ new root = root2; rootl->up = new_root;
}
el se /* same rank */
{ new root = rootl; root2->up = new_root;
new root->rank += 1;
}
/* make both paths point directly to
the new root */
tnmp = nodel- >up;
while( tmp !'= new root & tnp !'= NULL )
{ nodel->up = new_root;
nodel = tnp; tnp = nodel->up;
}
tnmp = node2->up;
while( tnp !'= new root && tnp !'= NULL )
{ node2->up = new_root;
node2 = tnp; tnp = node2->up;
}

The complexity of each of these operationsis of the order of the length of the
path taken to reach the root, so its worst-case complexity is the height of the
trees that result from these operations. It is easy to see that the height of these
trees, even without path compression, is O (log ). When constructing bad trees
by a sequence of these operations, we can avoid path compression if we always
perform the j oi n operations on the roots. By this we can construct trees
of height 2(logn), so the worst-case performance of this structure is indeed
O(logn). Union by rank is just one of severa very similar rules, as union by
height or union by weight, to select in a join operation which of the roots to
become the new root; any of these rules has the same effect: atree of height &
has at least 2" nodes.

This O (logn) upper bound on the compl exity of an operationinthisstructure
istight, but only for asingle operation: after we performed an operationinwhich
we took along time, we leave the tree representation in a much better state by
the path compression. We cannot have a long sequence of operations, each of
them taking (logr) time. This suggests that a better amortized bound should
be possible, and indeed it is. After earlier bounds in Fischer (1972), Hopcroft
and Ullman (1973), and Lao (1979), Tarjan (1975) obtained a famous result
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that expresses the amortized complexity in aversion of theinverse Ackermann
function.

The inverse Ackermann function is an extremely slow-growing function.
The classical Ackermann function was defined by Ackermann as an example
of an extremely fast-growing function for a problem in computability by

A(m,0) =0 form>1,

Am,1) =Am—1,2) form > 1,

AO,n) =2n forn=>0,
Am,n)=A(m -1, A(m,n—1) form=>1,n=>2

Becausethis Ackermann function hastwo variables, it isunfortunately not quite
as clear what its inverse is. Several distinct functions exist under this name,
some of them for technical reasons quite strange (e.g., Tarjan (1975) used
@™ (m, n) = minfk | Ak, 4[] > logn}). We define asinverse Ackermann
function the function

a(n) =min{i | A(i, 1) > n}.

With this function, we can now state the performance of the given union-find
structure.

Theorem. The union-find structure with union by rank and path compression
supportstheoperationsi nsert in O(1l) andsane_set andj oi nin O(logn)
time on aset with n elements. A sequenceof m sane_set orj oi n operations
on aset with n elements takes O ((m + n)a(n)) time.

We have already observed the first part; the maximum length of any path
on a set with n elements is O(logn), so the time of any single operation is
O(logn).

To prove the second part, the amortized bound, we define a sequence of
partitions (B;)2, of IN. Each B; isapartition of IN into blocksthat areintervals,
the jth block in B; istheinterval [A(i, j), A(i, j + 1) — 1]. Each block in the
ith partition isaunion of blocksin the (i — 1)th partition, because

[A(i,0), A(i, 1) — 1] = [AG — 1,0), A —1,2) — 1]
— [AG —1,0), A —1,1) — 1]
UAG —1,1), A — 1,2) — 1]
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and

=[AG -1 AG j—1),AG -1 AG, j -1 +1)—1]
U---U[AG -1 AG j)— 1), Al -1 AG, /) —1].

Let b;; denote the number of blocks in B;_; that together form the jth block
of B;, thenbo = 2and b;; = A(i, j) — A(i, j — 1). Now a(n) isthe smallest i
suchthat {1, ..., n} iscontained in the Oth block of B;.

Define the level of anode v at amoment in our sequence of operations by

0 if v- >next = NULL
v->r ank and

min{i| v->next->rank arein else
the same class of B;

level(v) =

If we follow anode v over a sequence of operations, initialy itsrank is0 and
then it increases by somej oi n operations, but only while v is still the root of
its tree. Once v becomes a nonroot node, its rank cannot change further and
it is not possible for a nonroot node to become root again. So the rank of v is
monotoneincreasing whileit isaroot node, and then becomesfixed. Up to that
moment, the level(v) is0; once v becomes anonroot node, level(Vv) increases.
Now v- >next - >r ank exists, and by further operations, it can only increase.
Because v- >r ank isnow fixed, level(v) can only increase.

To measure the total work done with anode v over a sequence of m opera-
tions, we first observe that the work done with v whilev isaroot nodeis O(1)
in each operation and each operation touches at most two root nodes, and so
the part of the work done on root nodes by the m operationsis O(m). Themain
contribution is the work on nonroot nodes, that is, the path compression.

Consider a path being compressed; this requires O (1) work for each node
on the path. Classify the nodes on the path in two groups as follows:

{ v belongsto group 1 if thereis a node won the same path, nearer to the
root, with level(v) = level(w).
{ Elsev isthelast node with itslevel on the path and belongsto group 2.

Each operation performs at most two path compressions, and on each path there
are at most a(n) nodes of group 2 because there are only «(n) distinct levels.
So the total work spent in m operations on group 2 nodesis O (ma/(n)).

It remains to bound the work done on nodes during path compression while
they belong to group 1. Suppose x is such anode and at the moment of this path
compression level(X) = i. Thus, X- >r ank and x- >next - >r ank belong to
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the sameclassin B5;, but not in 13;_;. Because x is of group 1, thereis another
node y on the path, nearer to the root, which also has level(y) = i. Let z be
the root. Because along the path the ranks are increasing, we have

X->rank < x->next->rank <y->rank < y->next->rank < z->rank,

and along this chain we move at least twicein B;_; oneclasson. So z- >r ank
and x- >next - >r ank arenotinthesameclassof 3;_;. Because after the path
compression z will bex- >next , thisimpliesthat in each path compressionin
which x participates as vertex of group 1, and while being on level i, the rank
of x- >next movesto ahigher classin BB;_1, but staysin the same class of ;.

If X isanonroot node for which x- >r ank is contained in the jth class of
B;, then x can participate as vertex of group 1, while being on levd i, in at
most b;; — 1 path compressions.

Let n;; be the number of nodes whose rank is in the jth class of B; when
they become nonroot nodes and the rank becomes fixed. Then the total work
done by our m operations on these nodes by path compressions in which they
belongtogroup Lis

a(n)

Z Znij(bij -1

i=0 j

To bound the n;;, we observe that there are at most 5 nodes of rank k; for any
node that reaches rank k is root of atree of at least 2* nodes, and these node
sets are digjoint. So

AGjHD-1
nijf Z _< Z 2k=2A(11) 1°
k=A(i,J) k=A(i,])

Putting these bounds, and the trivial n;o < n, together, we obtain for the work
on group 1 nodes

a(n) a(n) a(n)
Zznij(bij -1 = Znio(bio -+ Z Znij(bij —-1)
i=0 j>0 i=0 i=0 j>1

a(n)
< @) +Dn+ Y Y s (AG ) — 4G =D =D
i=0 j>1
a(n)
S@m)+n+d 20y 2A 5 (AG /)
i=0 j=1
a(n)
<(em)+n+) 2n Z

i=0  k=A(, 1)
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a(n)
A, ) +1
= (a(n) + Dn + ZZn AT

a(n) .
A, D+1
i=0

1)+1
< (@) + L) + 8n Z%

A0, 1) +2

< (x(n) + Ln + 8n 2A0.0)

= n(a(n) + 1+ 8).
Together with the O (m) work done in the roots and the O (m«(n)) work done
in group 2 nodes, this gives atotal complexity of O((m + n)a(n)).

This proof followed Tarjan (1975, 1983b). Alternative methods of analysis
of this structure were proposed in Harfst and Reingold (2000) and Seidel and
Sharir (2005); they al lead to the same result. Path compression is, like union
by rank, just one of several rules that have the same effect and lead to the
same bounds, but require different proofs (Tarjan and van Leeuwen 1984).
Thisamortized bound is, subject to some restrictions on m, n, known to be best
possible in several computation models (Tarjan 1979a, b; Banachowski 1980;
Tarjan and van Leeuwen 1984; Fredman and Saks 1989; La Poutré 1990a,
b), so the occurrence of the inverse Ackermann function is not an artifact of
the proof.

Theamortized bound, asit isstated, isuseful only if the number of operations
m isat least aslarge as the number of elements . But the number of nontrivial
j Oi n operationsisat most n — 1, so the interesting case is the diagonal case.
Our model differs from the model underlying the published papers on this
problem because they create a separate f i nd operation to find the root and
perform path compression and then allow the j oi n operation only on roots.
The amortized bound is certainly not best possible if the number of operations
issmall compared to the size of the set.

The amortized complexity of the classical union-find structure is best pos-
sible, but the single-operation complexity is not. Structures with a worst-case
complexity of O(; 'Oﬁ)”n) for aj oi n or same_set operation were proposed
in Blum (1986) and Smld (1990). Again these complexities are best possible
in some sense. An attempt to simultaneously achieve optimal amortized and
worst-case complexity was made in Alstrup, Ben-Amram, and Rauhe (1999).

To reduce the worst-case complexity of the union-find operations, while
keeping the same representation as set of trees oriented to their roots, we need
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to reduce the height of the trees. The height is essentially determined by the
number of nodes and the indegree of the nodes. So we need to increase the
indegree of the nodes. The idea used in Smid (1990) to achieve this is that
in those j oi n operations in which both roots have the same height and a
small indegree, we redirect all incoming edges of one root to the other root,
so that the new root has the sum of the previous indegrees and the height is till
the same. For this, we need alist of all nodes whose outgoing edge points to
the root because we need to change all these edges. So thetime of aj oi n is
proportional to the length of this list (indegree of the root) plus the height of
the tree. Because the height of a tree with » interior nodes, all interior nodes
of degreek, is ©(log, (1)) = ©(12"), we cannot do better than O (%) with

logk loglogn
this representation, which correspondsto k = O(je-).

There are a number of problems to realize that structure. Our indegree
requirement for the nodes changes with r, so we cannot keep this property in
thelower nodesif n increases. Also, we specified only theway to join two trees
of the same height. We do not want to insert atree of smaller height in the list
of lower neighbors of the root, because it would increase the length of the list
without giving many new nodes in its subtree. We overcome the first problem
by requiring that anode at height 4 that is not aroot has at least 4! nodesin its
subtree. If we maintain this condition, which isindependent of #, for al nodes,
the height bound is satisfied because the total number of nodes is at most n
and h! < nimpliesthat 1 = 0(|0';’E)gn). The second problem we overcome by
making the root of small trees point not to the root of the large tree, but to some
node on the list, which points to the root of the large tree. This way, the list
does not get any longer, and if the smaller tree has height at most # — 2, the
height does not increase, either.

To give the structure in more detail now, each node has two pointers:

{ up, which isNULL for aroot, points to the next node on the path to the root
for all other nodes.

{ l'i st,which pointstoitslist of lower neighborsfor aroot, points to the
next on that list for anode that islower neighbor of the root and is
unspecified otherwise.

The node also contains two numbers. the hei ght and thei ndegr ee. Then
the rules for joining two components with rootsr and s are as follows: Let
r- >hei ght > s->hei ght > 2, then

{ Ifr->hei ght > s->hei ght, al lower neighbors of s, aswell ass
itself, are made to point to alower neighbor of r .
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{ Elser - >hei ght = s->hei ght . All lower neighbors of s are added to
thelist of lower neighbors of r,
{ Ifr->hei ght > r->i ndegr ee, s ismadeto point to one lower
neighbor of r .
{ Elses becomesthe new root, with r asitsonly lower neighbor.

THREE CASES FOR JOINING THE CLASSES WITH ROOTS r AND s

With these definitions, we can now give the code for the operations of the
structure.

typedef struct uf_n_t {

i nt hei ght ;
i nt i ndegr ee;
itemt *item

struct uf_n_t *up;
struct uf_nt *list; } uf_node_t;

uf_node t *uf insert(itemt *new.iten
{ uf _node_t *new node;
new _node = get _uf node();
new node->item = new_item
new_node- >hei ght = 0;
new_node- >i ndegree = O0;
new_node->up = NULL;
new node->list = NULL;
return( new_node );
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int same_cl ass( uf_node_t *nodel
uf _node_t *node2 )
{ uf_node_t *tnpl, *tnp2;
/* find both roots */
for( tnpl = nodel; tnpl->up != NULL
tnpl = tnpl->up)
; /* follow path to root for nodel */
for( tnp2 = node2; tnp2->up != NULL
tnp2 = tnp2->up)
; /* follow path to root for node2 */
/* return result */
return( tnpl == tnmp2 );

void join( uf_node_t *nodel, uf_node_t *node2 )
{ uf_node_t *rootl, *root2, *tnp;
int i;
/* find both roots */
for( rootl = nodel; rootl->up != NULL
rootl = root1->up)
; /* follow path to root for nodel */
for( root2 = node2; root2->up != NULL
root2 = root 2->up)
; /* follow path to root for node2 */
i f( root1l->height < root2->height )
{ tnmp =rootl; rootl = root2; root2 = tnp;
} /* nowrootl is the |arger subtree */
i f( root1l->height >=2)
{ /* inserting two | evels belowroot 1
hei ght stays the sanme */
i f( root2->height < root1->height )
{ tnp = root2->list;
/* go through list below root2 */
while( tnmp !'= NULL )
{ tmp->up = root1l->list;
/* point to node on rootl list */
tnp = tnmp->list;
}

root 2->up = root1->list;



6.1 Union-Find: Merging Classes of a Partition 291

/* also point root2 to that node */
}
el se /* root2->hei ght == root 1->hei ght */
{ /* joinroot2 list to rootl list,
pointing to rootl */
tnp = root2->list; tnp->up = rootl;
while( tnp->list !'= NULL )
{ tnmp = tmp->list;
/* nmove to end of root2 list */
t mp->up = root1,
}
tnp->list = rootl->list;
root1->list = root2->list;
/* linked lists */
root 1- >i ndegree += root 2->i ndegr ee;
/* now lists joined together
bel ow root 1 */
i f( root1l->i ndegree <= root1l->hei ght )
root 2->up =root1->list;

/* point to node on rootl list */
else /* root2 becones new root,
rootl goes bel ow */

{ rootl->up = root?2;

root 1- >l i st = NULL;

root 2->hei ght += 1

root 2->i ndegree = 1

root2->list = rootl;

}
}
el se /* root1->height <= 1%/
{ if( rootl->height == 0 )
{ rootl->height = 1,
root 1- >i ndegree = 1;
root1->list = root2;
root 2->up = root 1,
/* rootl is new root */

}

el se /* rootl->height == */
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/* any root at height 1 has exactly
one | ower nei ghbor */
{ if( root2->height == 1)
/* both height 1 */
root2->list->up = root1;
/* now make root1 | ower neighbor
of root2 */
r oot 2- >hei ght = 2;
root 2- >i ndegree = 1;
root2->list = root1,;
root1->list = NULL;
root 1->up = root 2;
/* nowroot2 is the new root */

In this structure, each node at height 4 has indegree at least 4 once it becomes
a nonroot node and has indegree at most ~ while it is the root. All the lower
neighborsof aroot, which hasheight 4, themselveshave height 2 — 1, although
later further subtrees get attached that might have smaller height. So each
nonroot nodethat isat height 4 hasat any timeat |east i |ower neighborsthat are
at height 2 — 1, in addition to some possible lower neighbors at smaller height.
Thisimplies that a tree of height £ in this structure contains at least (& — 1)!
nodes; so with (h — 1)! < n we have the claimed bound 7 = O(=2). To

loglogn
summarize the performance of this structure, we state the following theorem:

Theorem. The union-find structure described before supports the operations
insert inO(1) andsanme_set andj oi nin 0(|O'g°|gogn) time on aset withn
elements.

There have been many attempts to extend the structures for the union-find
problem, but even deleting an item from a class is less trivial than expected
if we expect the complexity to depend on the current size of the set after the
deletions (Kaplan, Shafrir, and Tarjan 2002a). Both the worst-case and the
amortized bounds can be adapted.” A survey of related results and variants is

4 But Tarjan’s cryptic two-variable inverse Ackermann function gains a third variable.
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given in Galil and Italiano (1991). For specia sequences of operations or if
the sequence of unionsis known in advance, algorithms with linear amortized
bounds have been given in Gabow and Tarjan (1985) and Loebl and NeSetfil
(1997). A version in which some unions might be undone, returning to an
earlier state before those unions, was studied in Mannila and Ukkonen (1986),
Gambosi, Itaiano, and Talamo (1988, 1991), Westbrook and Tarjan (1989);
thereisan Q(,og’ﬂ,’;n) lower bound on the amortized complexity in arestricted
variant of the pointer machine, and this bound matches the worst-case bound
of an algorithm (Apostolico et a. 1994). A variant of union-find in which the
same-set queries are replaced by queries testing whether item x isin set Y was
discussed in Kaplan et a. (2002b).

6.2 Union-Find with Copies and Dynamic Segment Trees

A structure that kept track of general set systems would be very useful. Up to
now, our model is very restricted, the sets have to be digoint, and we can take
only unions of them. So we keep track of a sequence of coarser and coarser
partitions until after n — 1 unions everything isin the same class. Another less
obvious, but equally important, restriction is that our elements are presented
by fingers, not by keys. There is no search-tree variant that supports the union
of two sets. Of course, we can use a search tree to keep track of the fingers and
then we get an O(logn) overhead on every operation, so the trivial O(logn)
bound for the union-find structure would be sufficient.

It turns out that the details matter very much to decide what extension of
union-find is possible and what not. If we want to keep track of asystem of sets,
alowing unions and copies (or nondestructive unions), and listing of the sets,
as long as the unions occur only between disjoint sets, we can essentially keep
the speed of the union-find structure (van Kreveld and Overmars 1993). On the
other hand, if we alow arbitrary unions, there is alower bound of (r?) for a
sequence of n operations in areasonable model (Lipton, Martino, and Neitzke
1997). So by allowing unions of overlapping sets, the complexity per operation
increases from sublogarithmic to at least linear; a linear-time implementation
using linked listsistrivial.

The assumption of digointness of the sets of which unions are formed at
first seems difficult to guarantee, but it has interesting applications.

The union-copy structure by van Kreveld and Overmars keeps track of a
set of items, represented by fingers, and sets, also represented by fingers. It
supportsthe following operations, which are symmetric with respect to therole
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of items and sets:

{ creat e_.i t em Creates representation for a new item and returns a finger
toit.

{ creat e_set : Createsrepresentation for anew set and returns afinger to it.

{ i nsert:Insertsagivenitem in agiven set. Requires that the item was not
already contained in the set.

{ I'i st set s: Listsall sets containing agiven item.

{ I'i st_itens:Listsal itemscontained in agiven set.

{ j oi n_set s: Replacesthefirst set by the union of two given sets and
destroys the other set. Requires the two sets to be digjoint.

{ j oi n.i t ens: Replacesthefirst item by an item that is contained in all sets
which contained one of the two given items, and destroys the other item.
Requires that there is no set that contains both items.

{ copy_set : Creates representation for anew set, which is a copy of the
given set, and returns afinger to it.

{ copy.i t em Creates representation for a new item, which is a copy of the
given item, and returns afinger to it.

{ dest r oy _set : Destroys the given set.

{ destroy._i t em Destroysthe given item.

Of these operations, the creation and insertion operations are O(1), and the
complexity of the others depends on the complexity of the underlying union-
find structure, whichisused asabuilding block of theunion-copy structure. That
structure, however, cannot be directly plugged in —we need some modification.
The underlying union-find structure must also perform — in addition to the
normal operation of returning the current name (root) of the set containing a
given element — the reverse operation, listing al the elements of a set with a
given root. Thisis easy to add because we perform only disoint unions: we
must attach to the root alist of pointersto the elements. Theselistsarejust put
together in a union operation; to avoid pointers to beginning and end, we can
just use acyclic linked list.

works
as and
set list
union

BUILDING BLOCK: EXTENDED UNION-FIND STRUCTURE:
ONE DirecTION: FINDS UNION, OTHER DIRECTION: LISTS ELEMENTS
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The underlying representation of the set system is as follows: The data
structure consists of item nodes, set nodes, and setsin two extended union-find
structures — labeled A and B — which allow both normal and listing queries.
It is symmetric, like the operations supported by it, but because pointers are
necessarily directed graph edges and the two union-find structures exchange
their roles, we describe both directions.

If we wish to go from the itemsto the sets, the structure is as follows:

1. Each item node has exactly one outgoing edge.

2. Each set in the union-find structure A has at least two incoming edges (the
elements of the set) and exactly one outgoing edge (the current name of the
Set).

3. Each set in the union-find structure B has exactly one incoming edge (the
current name of the set) and at least two outgoing edges (the elements of
the set).

4. Each set node has exactly one incoming edge.

5. Anitem belongsto aset if thereisadirected path from the item node to the
set node.

6. Between any item node and any set node there is at most one directed path.

7. There are no edges between sets in the same structure (from A to A or from
B to B).

If we wish to go from the sets to the items, the properties 14 are replaced by
their reflected versions:

1’. Each set node has exactly one outgoing edge.

2'. Each set in the union-find structure B has at least two incoming edges (the
elements of the set) and exactly one outgoing edge (the current name of
the set).

3. Each set in the union-find structure A has exactly one incoming edge (the
current name of the set) and at least two outgoing edges (the el ements of
the set).

4'. Each item node has exactly one incoming edge.

So the items are connected by unique aternating paths through structures A
and B to their sets. The alternation property will be maintained in the updates
by performing a set union whenever a set is directly connected to another set
in the same structure; this preserves the existence and uniqueness of the paths
between the item nodes and the set nodes.
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STRUCTURE REPRESENTING THE SET SYSTEM:
A=1{1,2,3,B=1{1,2,34},C={3,5,D=1{3,6}, E=1{6,7}

The alternation property is central because it allows us to bound the total
number of edges between the structures and make our listing queries output
sensitive. Consider al the items contained in a given set; they correspond to
a set of directed paths, which by the uniqueness of these paths has to form a
directed tree, from the set node through the nodesin A and B to theitem nodes.
In thistree, each node has only oneincoming edge, and each nodein B hasalso
only one outgoing edge (by property 2'). There are no two consecutive B nodes
(alternation property), so if we contract the incoming and outgoing edges of
each B nodeto one edge, we get agraph onthe A and item nodes, in which each
A node has at |east two outgoing edges (by property 3). So if the total number
of leavesin thistree, that is, item nodes corresponding to items contained in the
set, isk, then total number of A nodesisat most k — 1. Because each B node
subdivides an edge of this graph and each edge is subdivided at most once,
there are at most 2k — 1 B nodesin thistree. So if the set contains & elements,
there are at most 3k — 2 nodes in structures A and B that are traversed by
thetree.

If we take the sum over al sets, this gives an immediate bound on the
the total number of edges between the structures A and B and the set and
item nodes: it is of the order of the total size of the set system. Let n be
that total size, that is, the sum of the sizes of the sets in the system. Then
both structures A and B are union-find structures on an underlying set of
sizen.

From this description follows immediately the algorithm for |i st _
i tens. Tolist al itemsfor agiven set, we perform the following steps:

0. Put theinitial outgoing edge of the set node on the stack.
1. While the stack is not empty, take the next edge from the stack.
1.1 If this edge goes to an item node, list that item.
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1.2 If this edge goes to union-find structure A, perform alisting query and
put all outgoing edges listed in the answer on the stack.

1.3 If this edge goes to union-find structure B, perform a naming query
and put the one outgoing edge in the answer on the stack.

If we execute this algorithm and it lists k items that are contained in the set,
we perform k times step 1.1, each taking O(1), and by the aforementioned
argument, at most 2k — 1 timesstep 1.3, which isanormal naming (find) query
inaset union structure. If thetime for queriesin the structureis uf (), then we
need at most k uf () for those queries. And we perform some j < k — 1listing
queries in step 1.2, which produce ay, ..., a; elements, with a listing query
reporting a elements taking O(1+ a) and Z{zl a; =2k — 1. Thus, step 1.2
takes in total O (k). Thus, the total complexity of al i st _i t ens query that
returns k items is output-sensitive O (k uf (n)).
The same holds for the exactly symmetrical | i st _set s query.

A

Ex L

LISTING THE ITEMS IN SET B

Thecopy_set operation isalso easy and takes only constant time. Given
the set node, we follow the outgoing edge. There are only two cases:

1. The outgoing edge of the set node directly goesto an item node or to the
structure A: We create a new set node and a set with two new elementsin
structure B. The two set nodes are joined to the elementsin B, and the
name of the set in B is the previous outgoing pointer of the node to be
duplicated. Then we return the new set node.

2. The outgoing edge of the set node goes to the structure B: We create a new
set node and a new element in B, join the set node to the element, and
insert the element in the set that the previous outgoing edge pointed to.

Here we again need to be careful with the union-find structure because in
our original description inserting a new element in a set was no elementary
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operation, just creating a new one-element set and merging it, and the general
merge is certainly not a constant time operation. But it is easy to modify the
structure as to allow constant time insert into the same set that a given element
belongs to: just copy the up pointer without doing any path compression. We
also need to adapt al the pointersin the opposite direction. Still, al thiscan be
donein O(1) time. The same holds, of course, for the symmetrical operation
copy.tem

/BN ”l | ”l ll

CREATING A CoPY OF A SET NODE

The key operation isj oi n_set s. Here we are given two set nodes. The
following cases are possible for their outgoing pointers:

1. Both go to nodes in structure A: We perform a union in structure A of the
sets they point to and adjust the pointer from the union set to the set node
now representing the union.

2. Thefirst set node pointsto anode in structure A and the second to a node
in structure B: We create anew element in A and make it element of the set
to which the first set node points. This new element then points to the
element in B to which the second set node pointed. The first set node now
represents the union and the second set node is discarded.

3. Both set nodes point to nodes in structure B or item nodes: We create two
new elementsin structure A and join them to a new set. The elements point
to the nodes in structure B or item nodes to which the set nodes previously
pointed, the set in structure A points to the set node representing the union.

4. Thefirst set node pointsto a node in structure A and the second to an item
node: We create anew element in A and make it element of the set to
which the first node points. The new element then points to the item node.

These operations require in the worst case one set union and O (1) additional
work. So the complexity of j oi n_set's and its dual j oi n_el ement s is
O (uf (n)).

Then we need the i nsert operation to insert an item in a set that up to
now does not contain it. We are given an item node and a set node, and then
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CREATING THE UNION OF Two SET NODES X AND Y

the following cases are possible for their outgoing pointers:

1

The set node points to anode in structure A, and the item node pointsto a
node in structure A or a set node: We create two new elementsin structure
B and join them to a new set. The set is then connected to the item node,
and one of the new elements points to the element in A or the set node to
which the item node previously pointed. Then we create a new element in
A, joinit to the set to which the set node points, and join this new
A-element to the other new B-element.

. The set node points to anode in structure A, and the item node pointsto a

node in structure B: We create anew element in A, and join it to the set to
which the set node points, and anew element in B, and join it to the set, to
which the item node points. Then we point the two new elements to each
other.

. The set node points to a node in structure B or an item node, and the item

node pointsto anode in structure A or a set node: We create two new
eementsin A and join them together to a set. This new set points to the set
node, and one of the new A-elements pointsto the B node or item node that
the set node previously pointed to. We also create two new elementsin B
and join them together to a set. This new set points to the item node, and
one of the new B-elements pointsto the A-node or set node that the item
node previously pointed to. Then we point the two new elements to each
other.

. The set node points to a node in structure B or an item node, and the item

node pointsto a node in structure B: We create two new elementsin
structure A and join them to anew set. The set is then connected to the set
node, and one of the new elements points to the element in B or the item
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node to which the set node previously pointed. Then we create a new
element in B, join it to the set to which the item node points, and join this
new B-element to the other new A-element.

These operations only require to create new elementsin A and B, join them
to existing sets, and adjust some pointers. So thei nsert operation has com-
plexity O(1).

.
_>

INSERTING ITEM y IN SET X

oX

OX+{y}

Finally, we need an operation to destroy a set. Again this needs some modi-
fication of the underlying union-find structure, and we need to be able to delete
an element in it. The necessary modifications for that are nontrivial if one
wants to keep the optimal complexity (Kaplan et al. 2002a) in the amortized or
worst-case optimal bounds. For dest r oy _set , we are given a set node. The
algorithm is similar to the listing of the set and also takes time depending on
the size of the set to be destroyed.

0. Put theinitial outgoing edge of the set node on the stack.
1. While the stack is not empty, take the next edge from the stack.

1.1 If this edge goes to an item node, remove that edge.

1.2 If this edge goes to union-find structure A, perform alisting query and
put al outgoing edges listed in the answer on the stack.

1.3 If this edge goes to union-find structure B and the set containing this
element contains at |east two further elements, just delete the element
from B.

1.4 If this edge goes to union-find structure B and the set containing this
element contains only one other element, connect the node pointed to
by this other element directly to the node pointed to by the set in B. If
both these nodes are nodesin A, perform a union of these setsin A.
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We follow here essentialy the same tree we follow during thel i st _i t ens
operation, but have to perform some set unions aong the way. If the set we
destroy contains k elements, wevisit O (k) nodesin which we perform O (k) set
unions, so the complexity of dest r oy _set , applied to a set with k elements,
is O (k uf(n)).

So we can summarize the performance of this structure. If we use an under-
lying union-find structure that supports unions, deletions, and naming queries
in uf(n) time, insert of a new element in aset in O(1), and listing queriesin
output-sensitive O (k) time, we have the following:

Theorem. The union-copy structure keeps track of a system of sets of total

size n, supporting the operations

{ create.itemcreate_set,insert,copy._set,copy.itemin
0(1);

{ l'i st _sets,|ist_itens inoutput-sensitive O (k uf(n)) timeif the
output has size k;

{ joinsets,join.tensinO(uf(r))time; and

{ destroy_set,destroy.i t emin O(k uf(n)) timeif the size of the
destroyed object was k.
Here, union is allowed only for digoint sets, and inserts may be performed
only when theitem is not already contained in the set.

Thestructureiseasiest toimplement if wedo not need the del etion operations
del et e_set and del et e_i t emand are satisfied with uf(n) = O(logn) in
the above complexity bounds. Then we can just usetreeswith union-by-rank for
the union-find operation. We support the node listing operation of the extended
union-find structure either by keeping a list of the nodes for each tree or by
connecting the lower neighors of each tree nodeinto alist, and then traversing
that tree using a stack of size O(logn). In any case, we obtain a structure that
supportscreat e_i temcreat e_set,i nsert,copy_set,copy.item
inO(1),li st sets,list_itensinoutput-sensitive O(k logn) time, if the
output hassizek, andj oi n_sets,j oi n_i t ens in O(logn) time.

If wewish toredlizethe dest r oy _set and dest r oy_i t emoperations,
wemust be ableto remove nodesfrom thetreesand still keep thetreesbalanced.
For this, we can use a set union structure with deletions, as in Kaplan et a.
(20024), or, again slightly worse than optimal but simpler, use height-balanced
trees for the sets in the union-find structure.

Wenow apply the structureto segment trees. The segment treeswe described
in Chapter 4 were a static structure: given a set of intervals, they were once
constructed and then answered queries. We can use the union-copy structure to
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alow at least insertion of new intervals. The idea here is that in the segment
trees we associated with each node a set of intervals, and in this set, no further
structure was required.” In the segment trees, we just needed to be ableto insert
an interval in the set associated with a node while building the tree, and at
query timeto list the set associated with a node. The problem with making the
structure dynamic is that we cannot change the underlying tree; if we want to
insert an interval whose endpoints are not already existing, we should extend
the underlying tree by these new key values, which is no problem on the | eaf
level, but then we need to rebalance, and the attached sets in the nodes do not
transform well under rotations.

We can solve the problem with the rotations by choosing a different repre-
sentation of the sets attached to the tree nodes, by using the above union-copy
structure. Because we only need to keep the sets we meet along a path from the
root to aleaf invariant and these sets are disjoint by their construction, we can
move a set down in the tree. We remove it from its current node, create a copy,
and join these two copies to the sets in the two lower neighbors of the node.
Creating the copy takes O(1), and the two unions take O (uf(n)). By this we
reached that the set attached to the node is empty and thus creates no problem
in a rotation. So for each rotation we need an additional O (uf(n)) time, but
there are search trees that need only O (1) rotations per insert. Because we need
O(logn) anyway to perform an insert of anew key value in the tree and uf ()
is O(logn), thisis no problem. Then the new interval hasto be inserted in the
search tree, which now contains the new intervals as key valuesin leaves. The
new interval is inserted in the O(logn) nodes corresponding to its canonical
interval decomposition. In each of these nodes, we need to perform one insert
in the union-copy structure, which takes O(1). So the total complexity of the
insert operations in this semidynamic segment treeis O (logn). We lose some-
what in the query complexity because listing a set takes O (k uf (rn)) instead of
O (k) output-sensitive time; thus, the query time becomes O (k uf(n)) to list k
intervals.

Theorem. A segment tree that uses the union-copy structure to represent the
sets associated with the tree nodes supportsi nsert into atree already con-
taining n intervalsin O(logn) timeand | i st _i nt er val s for aquery value
contained in k intervalsin O(logn + k uf(n)) output-sensitive time.

5 Different from the situation in interval trees, where the elements of the sets associated with the
tree nodes were ordered so that we could list thefirst k of themin O (k) time. This method
does not generalize to interval trees.
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In principlethis structureis even fully dynamic. We can a so del ete an inter-
val if theinterval isgiven by afinger, because our union-copy structure supports
deletion of items. The problem here is that the time of the deletion depends
on the number of nodes in which the interval is represented. Thisis initially
O(logn), the size of its canonical interval decomposition, but it increases each
time we copy one of the node sets in the process of a rotation. One solution
to that is to rebuild the tree sufficiently often. By this and choosing different
structures for the underlying union-find structures A and B, van Kreveld and
Overmars (1993) managed to support deletions and remove the uf () factor in
the query time, making the segment tree fully dynamic.

The same structure was aso used to construct segment trees that allow
splitting at akey value or joining if the intervals are separated, just asin search
trees (van Kreveld and Overmars 1989).

6.3 List Splitting

In the model of the union-find data structure, we started with a very fine
partition and continued to join classes until al elements were in one class.
This suggests a dual problem: start with one class containing all elements and
iteratively split it. One conceptual problem isthat we do not know how to split
aclass: we haveto specify which elements go into which part, but if we specify
this by enumerating all elements, the problem becomes trivial. The problem
becomes interesting only if we have a compact way to represent the split we
selected.

Thisis achieved in the list-splitting problem by assuming the elements are
linearly ordered, that is, given in alist. The items are identified by fingers to
the items, and a split is specified by an item: cut immediately to the right of
the given item. This way, the list is cut into smaller and smaller sublists, and
we want to answer again the question whether two given items arein the same
sublist. This problem wasfirst stated in Hopcroft and Ullman (1973) asinverse
of the union-find problem, and then in Gabow (1985, 1990) for a problem
in combinatorial optimization and in Hoffmann et al. (1986) for sorting the
intersections of two Jordan curves. In the model of Gabow (1985), the items
also have key values, and the query for the maximum key value in the current
list of the query item is supported.

Thus, for the list-splitting problem, our model isinitially an ordered list of
n items, each of them with a weight. Later this is replaced by a set of lists,
which partition the items into intervals in the original ordering. The items are
identified by fingers. The structure should, after some preprocessing, support
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the following operations:

{ split: Splitsinto two lists the current list containing the given item
directly to the left of the given item.

{ sane_li st : Decides whether two given items are in the same list.

{ max_wei ght : Returns afinger to the item of maximum weight in the same
list as the given item.

max §
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max 6 max 8
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LisT- SPLITTING PROCESS WITH SPLITS AFTER e, h, AND d

These operations can easily be supported by some balanced search trees
that support splitting, for example, height-balanced trees or red-black trees.
We build a single balanced tree from the list in O(n) time as preprocessing
and include in each node a pointer to the maximum weight item in its subtree.
Then each splitting operation splits the current tree in two trees: for each
sanme_l i st query we just go up to the root of the current tree and check
whether both nodes arrive at the same root, and for the max_wei ght query
we go to the root and report the pointer stored in it. Each of these operations
takesjust O(logn) worst-case time. Thisis even a dynamic data structure: we
can insert new elementsin asublist as neighbor of agiven element, and we can
delete elements and join lists again if the tree supports this.

Theorem. Using any balanced search tree that supports split and join, we can
build a dynamic structure that supports list splitting, with operationsspl i t,
same_l i st, max_wei ght,j oi n,insert, and del et e, al in O(logn)
worst-case time on alist of initial length n.

Several improvements in the amortized complexity have been proposed for
special applications; it isimportant here to know what exactly we need.

An improvement that gives amortized O(1) insertions, deletions, and split-
tings over a sequence of n operations initialy starting with an empty list was



6.3 List Splitting 305

used in Hoffmann et al. (1986). They observed that a level-linked (2, 4)-tree,
as described in Section 3.7, has amortized insertion and deletion cost O(1) in
this setting, as discussed in Section 3.3. Also, the splitting is amortized faster;
splitting atree of sizek into partsof size k; and k, takes O (logmin(ky, k7)) plus
an amortized O(1) rebalancing time instead of the worst-case O (log(ky + k>2))
for arbitrary splittable balanced search trees. Thisisasmall, but useful, differ-
ence, becausethese O (logmin(ky, k2)) terms can themsel ves be amortized over
a sequence of splitting operations. This follows from a potential argument. We
use as potential of the current family of lists the sum of the potentials of the
individual lists, with the potential of alist of length k being k — logk. Then, if
wesplit alist of length k intwo listsof length k4, k2, intime O (log min(ky, k2)),
the change of potential is

pot™or® — pot™' = (k — logk) — (ka — log(ks) + k2 — log(k2))
= —log(k) + log (max(ka, k2)) + log (min(ka, k2))

=log (M) + log (min(ky, k2))

> |og% + log (min(ky, k2)) .

Performing a sequence of n — 1 splitson alist of initial sizen, splitting off list
of sizeky, ..., k,_1,intime O(logk,y), ..., O(logk,_1), we get

potPeImning _ 4yn8d — (5 _Jogn) — n(1—logl) = —logn

1 1
> <Iogk1+ Iog§> 4+t (Iogk,,1+log§>,

logky +--- 4+ logk,—1 <nlog2—logn = O(n).

Thus, over asequence of n — 1 splitsof alist, whichisinitialy of length n, we
get an amortized time bound of O (1) per split in this setting.

In this structure, it isimportant that the nodes for the queries are identified
by fingers; otherwise we cannot avoid Q2(logn) time just to find the node. This
problem did not exist in the splittable search-tree version of the structure; there
we could, for example, identify nodes by their number in the original list. For
the queries, we can take some advantage of the finger search allowed by a
level-linked tree, so we can answer sane_| i st queries for two items given
by fingersintime O(logd), where d istheir distancein the original list, before
the splitting, or the length of the list currently containing either of the items.

A different strategy of amortized improvement was followed by Hopcroft
and Ullman (1973) and Gabow (1985); they increase the degree of the nodes
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in the tree model used to represent the lists. This decreases the height of
the trees and alows by this faster sane_|l i st queries. Because we need to
split al nodes along the path to the root if we split a list represented as tree,
nodes of large degree are expensive in the worst case. But if we start with a
list of length n and do not allow any insertions or deletions, only n — 1 split
operations, then the amortized performance is better. Gabow (1985) used a
blocking scheme related to the partitions B;, which we used in Section 6.1,
to obtain a total complexity of O(na(n)) for such a sequence of operations.
This gives an amortized O(«(n)) complexity for the splitting and a worst-case
complexity O(«(n)) for the same_set queries. If we want a uniform bound
on the splits and queries, 1a Poutré (1990b) showed that Gabow’s structure has
optimal amortized complexity.

If we may view the lists as subintervals of afixed interval, it is also natural
to join the intervals again so as to join sublists that were consecutive in the
original list. Thisis the union-split—find problem; it was studied by van Emde
Boas, Kaas, and Zijlstra (1977) and Mehlhorn, Naher, and Alt (1988). The
algorithm from van Emde Boas et a. (1977) solves this problem with an
O (loglogn) worst-case complexity for each operation, which was shown to be
optimal (Mehlhorn et al. 1988). An interesting sideissue isthat the * separation
assumption” here makes abig difference. Thisisatechnical assumption on the
agorithmsin apointer machinethat wasintroduced by Tarjan and used asadded
condition in all hislower bounds for the union-find and related problems; only
la Poutré (19903, b) showed that this assumption can be removed from those
lower bounds. But for the union-split-find problem, Mehlhorn et al. (1988)
showed that any algorithm that satisfies the “separation assumption” needs
Q(logn) time, whereas the optimal algorithm has complexity ®©(loglogn).

6.4 Problemson Root-Directed Trees

The structures we used for the union-find structure were directed trees with
all edges directed to the root. For the union-find structures, these were just a
tool for defining the data structure, but there are also problems for which this
type of tree is the underlying abstract object. The best-studied problem here
concerns least common ancestor (Ica) queries on such atree: given two nodes
of the tree, each node defines a path to the root, what is the first node that lies
on both paths? One can interpret the underlying tree as afamily tree, then this
node isthe first common ancestor, or one could interpret the tree as an ordered
set, then this node is the meet (or join) of the given nodes. Root-directed tree
can represent many kinds of things, for example, Sharir (1982) used them to
represent sparse functions on afinites and their concatenation.
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[ca(x,y)

Y

RoOT-DIRECTED TREE WITH Two NODES x, y, AND THEIR Ica(x, y)

This structure was first studied in Aho, Hopcroft, and Ullman (1976); at
the same time they also studied the union-find structure. This problem has
devel oped many variants, depending on the extent to which we may change the
tree, adding only leaves or linking entire subtrees, linking subtrees anywhere or
only to the root; also there are offline variants in which all the operations must
be announced in advance before the queries have to be answered. Numerous
possible combinations of this with the relevant literature are listed in Alstrup
and Thorup (2000).

The structure keeps track of a set of root-directed trees and supports at |east
the following operations:

{ creat e_t r ee: Creates anew tree with just one node, the root, and returns
apointer to that root.

{ add_l eaf : Addsanew leaf that islinked to a given node and returns a
pointer to that new leaf node.

{ | ca: Returns a pointer to the least common ancestor of the two given nodes
or NULL if they are not in the same tree.

Much stronger than simply adding leaves is the linking of entire subtrees, but
not all structures support it.

{ I'i nk: Takestwo nodesx andy and different subtrees, of which x isroot of
its subtree, and links the subtrees by introducing an edge fromx toy.

There are also reverse operationsto add_| eaf and | i nk, but again they are
more difficult to realize.

{ del et e_l eaf : Removes a given node, which must be a leaf.
{ cut : Removesthe link from a given node to its upper neighbor, making the
given node the root of a new tree.

Thereareseveral additional operationsthat might be useful and are supported
by some structures:

{ fi nd_r oot : Returnsapointer to the root of agiven node.
{ dept h: Returns the distance to the root of a given node.
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Anoptimal method for cr eat e_tree, | i nk,and| ca wasfound by Alstrup
and Thorup (2000), in the pointer-machine model, where it matches a lower
bound by Harel and Tarjan (1984), improving earlier structures in Aho et al.
(1976), Maier (1979), Harel and Tarjan (1984), and Tsakalidis (1988). Related
problems were aso studied in Gabow (1990), Gambosi, Protasi, and Talamo
(1993), Buchsbaum et al. (1998), Cole and Hariharan (2005), and Georgiadis,
Tarjan, and Werneck (2006). The method of Alstrup and Thorup (2000)
performs a sequence of n | i nk and m | ca operations on a set of » nodesin
time O(n + mloglogn), so with O(loglog(n)) amortized time per operation.
We will describe here only several simpler structures, which were combined
by Alstrup and Thorup to overcome the limitations of the individual structures.

One of these structures allows | ca queries in time O(logh), where i is
the height of the underlying tree. So if the tree, of height O(logn), itself is
balanced, this already gives us the O(loglogn) performance we aim for. But
the structure does not support the general | i nk operation, only add_| eaf ,
and additionally f i nd_r oot , dept h, anddel et e_| eaf .

Theidea of this structure isbinary search on the paths from the given nodes
to the root. Suppose first that both nodes are at the same depth and then they
are joined by paths of equal length to the root, and we ask for the smallest i
such that the ith node on both paths is the same. If we add for each node a
list of forward pointers up to the 2/th node along the path to the root, we can
find that first common node by binary search. To achieve O(log#h) time, the
forward pointers should be tested in the sequence from largest to smallest, so
each pointer length will be tested only once.
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If the given nodes are not at the same depth, but one at depth k1, k, with
k1 > ko, then we can use the same forward pointers to replace the node at
depth k; by the node along its path to the root k; — k, steps on, reducing
the general case to the equal depth case. This idea of binary search on the
paths was already introduced in Aho et al. (1976) and extended and adapted in
Tsakalidis (1988) and Alstrup and Thorup (2000). We need in each node that
list of O(logh) forward pointers. The depth of the node could be recovered
again by binary search with the forward pointers, but it is as easy to store it
in the node. This gives a query time of O(logh) and a space requirement of
O(nlogh); the space requirement can be reduced to O (n) by attaching the list
of forward pointers not to all nodes, but only to afraction of @ of them: then
each query starts by moving upward to the next node with forward pointers.
The fundamental limitation of this structure is that there is no way to update
all thelists after al i nk operation. Adding anew leaf and constructing its list
from the available listsis easy, but for al i nk we would have to extend many

lists. So the performance of this structure is the following:

Theorem. The Ica structure based on trees with lists of exponential forward
pointers attached to the nodes supports cr eat e_t r ee, dept h in O(1) and
add_| eaf ,del ete_l eaf,| ca,andfi nd_root intime O(logh), where
h isthe maximum height of the treesin the underlying set.

This structure is easy to implement. We use an up pointer to represent the
edgesin the underlying tree and anext pointer to connect the list of forward
pointers, with a pr ev pointer to make it a doubly linked list. The tree node
is simultaneously also the first list node; in the later list nodes, the up pointer
is used to point to the corresponding list item for the node 2/ steps ahead. A
minor problem with this arrangement isthat we need the existence of list nodes
as target of the incoming edges even if there are no outgoing edges, and the
number of list nodes needed for incoming edges depends not on the depth of
the tree node itself but on the maximum depth of tree nodes below the current
node. The solution used here is to add list nodes to the target list as they are
required. An alternative would be to immediately create for each tree node a
list with list nodes of all orders 2/ less than the depth of the node. Then all but
the last one of these list nodes would have a correct target node for their up
pointers; the last node would have only incoming, but no outgoing, edges.

typedef struct lca_n_t {
i nt dept h;
itemt *item
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struct lca_n_t *up;

struct lca n t *next;

struct lca_n_t “*prev;
} lca_node_t;

| ca_node_t *create tree(itemt *new.item
{ Ilca_node_t *new node;
new _node = get_| ca_node();
new _node->item = new_item
new_node- >depth = 0; new_node- >pr ev
new_node- >up = NULL; new_node- >next
return( new_node );

NULL;
NULL;

}

| ca_node_t *add_| eaf (I ca_node_t *node,
itemt *new.iten)
{ Ilca_node_t *new node;
/* create tree node */
new node = get | ca _node();
new _node->item = new_item
new _node- >dept h = node->depth + 1
new_node->up = node; new _node->prev = NULL;
/* now create new list of forward pointers */
{ lca_node t *tnp; int i
tnp = new_node;
for( i = new_node->depth; i>1; i /=2)
{ [/* add node to new node list */
t mp- >next = get | ca_node();
t mp- >next - >prev = tnp;
t mp- >next - >dept h = t np- >dept h;
i f( tnp->up->up->next == NULL )
{ [/* create new target node */
t np- >up- >up- >next = get_I| ca_node();
t np- >up- >up- >next - >prev =
t np- >up- >up;
t mp- >up- >up- >next - >depth =
t np- >up- >up- >dept h;
t mp- >up- >up- >next - >next = NULL;
t mp- >up- >up- >next - >up = NULL
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} /* now set forward pointer */
t mp- >next - >up = t np- >up- >up- >next;
tnp = tnp->next;
} /* and finish list */
t np- >next = NULL;
}

return( new_node );

}

i nt depth(lca_node_t *node)
{ return( node->depth );
}

| ca_node_t *lca(lca_node_t *nodel
| ca_node_t *node2 )
{ Ilca_node_t *tnp; int diff;
i f( nodel->depth < node2->depth )
{ tnp = nodel; nodel = node2; node2 = tnp;
} /* now nodel has |arger depth. Mowve up to
the sane depth */
{ int diff;
di ff = nodel->depth - node2->dept h;
while( diff > 1)
{ if( diff2 ==1)
nodel = nodel- >up->next;
el se
nodel = nodel- >next;
diff /= 2;
}
if( diff == 1)
nodel = nodel->up
whi | e( nodel->prev !'= NULL )
nodel = nodel->prev; /* nove
back to beginning of list */
} /* now both nodes at same depth */
i f( nodel == node2 )
return( nodel );
/* if not the same, perform exponenti al
search */
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{ int current_depth, step_size;
current _depth = nodel->dept h;
step_size = 1;
whil e( current_depth >= 2* step_size )
{ nodel = nodel->next;
node2 = node2->next;
step_size *= 2;
} /* maxi mum stepsize, now go up,
and decrease stepsize */
whil e( current_depth >= 1)
{ if( step_size > current_depth )
{ nodel = nodel->prev;
node2 = node2->prev;
step_size /= 2; |/* steps too |arge,
hal ve size */

}
el se if( nodel->up != node2->up )
{ nodel = nodel->up; /* step up
still belowlca */
node2 = node2->up
current _depth -= step_size;
}
el se /* nodel->up == node2->up */
{ if( step_size > 1) /* upper bound
for Ica */
{ nodel = nodel->prev;
node2 = node2->prev;
step_size /= 2;
}
else /* imediately below lca */
return( nodel->up );
}

}
return( NULL ); /* different trees */

We used explicit numbers for the depth in this| ca code; we could instead
just have tested the existence of pointers.
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This structure also supports a different type of query, the | evel _
ancest or query: given anode, what is the node k steps nearer to the root?
This is just the same binary search on the path to the root, using the list of
forward pointers, so this query can again be answered in O(log &) time. Level
ancestor queries were studied in Berkman and Vishkin (1994), Alstrup and
Holm (2000), and Bender and Farach-Colton (2004). Maier (1979) and Alstrup
and Holm (2000) used a different scheme of forward pointers. Instead of at-
taching to each node n alist of pointers to the nodes 2' steps up from n, for all
possible i, they attach two groups of pointers to each node: one containing a
list of pointers to the nodes j steps up for all j < 2°™ and another containing
pointers to the next nodes up that have larger values of »(n). Then the second
group of pointersis used to reach in O(1) steps a node for which the pointer
to the searched-for node is in the first group of pointers. The first group of
pointersis quite large for some nodes, but by the proper choice of the function
r(n), itisonly O(1) on the average. If the groups of pointers can be realized
as arrays, this allows one to answer the | evel _ancest or queriesin O(1)
time. In our pointer-machine model, we would have to use a tree to find the
jth pointer of a group, which gives again the worst-case time of O(logh) we
already had with the simplelist of exponential-stepsforward pointers. And sup-
porting updates in this structure is again quite complicated. Tsakalidis (1988)
uses yet another system of pointers, which gives again O(logh) query time,
but supports adding leaves and deleting arbitrary nodes in amortized constant
time. The structure described in Bender and Farach-Colton (2004) also supports
answersto | evel _ancest or queriesin O(1), but it again needs arrays of
pointers, and it is a static structure not allowing any updates.

The performance of the aforementioned structures depends on the height i
of the tree being small. To reach the O(loglogn) performance instead of the
O(log h), one can transform the underlying tree. Thistechniquewasintroduced
by Sleator and Tarjan (1983) and used in Harel and Tarjan (1984) and Alstrup
and Thorup (2000). The ideais to partition the root-oriented tree into oriented
paths. The compressed graph has these paths as vertices, each path represented
by the node nearest to theroot, which is called the apex of the path. Two vertices
in the compressed tree are connected by an edge if there is some edge in the
original tree between the paths, that is, going from the apex of one path to some
node on the other path. If we can answer | ca queries on the compressed tree,
we can almost recover the | ca query on the original tree.

We need dlightly more information from the query in the compressed tree:
tofindthel ca of nodesx andy, wefind first the path p that containsthat| ca
whichisausual | ca query inthe compressed tree. The paths from x and y to
theroot in the original tree enter the path p at verticesX and y and then follow
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p totheapex of p. Sothel ca, which isthefirst common node of these paths,
isthat node of X and ¥y which is nearer to the root, so has smaller depth.

One method to get this additional information is to use as representation
of the compressed tree the following structure: an oriented tree with al the
original nodes and one additional node as representative for each path; within
each path, all nodes point to the representative of the path and that itself points
to the node to which the apex of the path pointed. On thistree, any | ca query
of the original tree will give one of the path representatives as answer because
all original nodes have indegree 1. But if we extend our | ca query code to
give back the two nodes immediately preceding the first common node on the
two paths, asis easily done, then the correct | ca isthat of the two nodes that
in the original graph has smaller depth.

The usefulness of this compression depends on whether it actually decreases
the height. But thisis easy. To define the partition into paths, we have to choose
for each node one of its incoming edges. If a large part of the subtree below
the current node, for example, more than % of it, is below one of its lower
neighbors, then we choose the edge to that lower neighbor; otherwise we are
free to choose any edge to a lower neighbor. Then the compressed tree has
height O(logn) because each edge in the compressed tree corresponds to an
edge in the original tree along which the size of the subtree decreased by at
|least afactor of 2.

RoOT-DIRECTED TREE, PARTITIONED INTO PATHS, AND COMPRESSED TREE
EDGES ENTERING A PATH VERTEX ARE LABELED BY THE DEPTH IN THE PATH

Using only this compressed tree representation, combined with a trivial
search for the | ca by walking along the paths to the root and looking for the
first common vertex, one obtains astructure with O (log n) query time. We have
to store in each tree node the distance on the path to the apex of the path; then
we can compute the depth of anode in O(logn) by following the path in the
compressed tree and summing up the distances. After we have the depth of
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both query nodes, we can go up again this path of length O(log ) and find the
first common node of both paths, which must be at the same depth. Then we
know the compressed node that contains the answer to thel ca query and can
select the right node in original tree by going one step back in the compressed
tree and comparing the depth of the upper neighbors.

When we want to use this structure to link two trees, we have the problem
that we might have to change the path structure in the nodes that are linked,
and possibly al paths above; and this can force us to visit al nodes of those
paths to update the compressed tree. One solution is to realize the compressed
nodesnot only by pointersto the path representative but build abalanced search
tree within each compressed node for the path nodes with their depth as key.
This allows split and join of individual nodesin O(logn), but then the timeto
traverse a single compressed node also becomes 2(log n).

Theorem. The Ica structure based on compressed trees, with compressed tree
nodes realized as search trees, supports create_tree in O(1), and | ca,
l'i nk, dept h, find_root in worst-case time O((logn)?) on a set with n
elements.

Sleator and Tarjan (1983) outline a reduction of this complexity from worst-
case O((logn)?) to amortized O(logn) using biased search trees (Bent et al.
1985), or in Tarjan (1983b) using splay trees.

The completely static version of this problem also received some attention:
given aroot-directed tree of size n, preprocessit intime O(n) such that | ca
queries, or at |east comparison queries, can be answered fast. Already Harel and
Tarjan (1984) gave amethod for this, on aword-based RAM, which answered
| caqueriesin O(1). Thereitisrelated tothe problem of preprocessing an array
of numbers such that for any index range the minimum number in that range can
be found in O(1) (Wen 1994). Some claimed applications (Kaplan, Milo, and
Shabo 2002) motivated further study in the constants involved, specifically for
labeling schemes such that based on the |abel s al one one can deci de comparison
queries; labels of size logn + O(/Togn) are sufficient for that (Alstrup and
Rauhe 2002), improving Abiteboul, Kaplan, and Milo (2001). A survey of
related resultsis given in Alstrup et al. (2002).

Asking | ca queries naturally extend from root-directed tree-structured
orders to more genera orders. Arbitrarily directed trees were discussed in
Nykanen and Ukkonen (1994); if we do not require all edges to be directed to
the root, two elements might not have any common ancestor, but if they have
one, it is unique, and the techniques for the root-directed trees generalize to
this situation. The natural models for | ca queries, in which the Ica aways
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exists and is unique, are semilattices and lattices. For these, there is no rea-
sonable dynamic variant, thereis no local change to lattices that preserves the
| attice property, and especially the existence of an Icafor any pair of elements.
So in that setting, one can ask only for a static structure. If we allow ©(1?)
preprocessing and storage, we can just precompute and tabulate all answers.
If we may use an array to store the answers, this gives O(1) queries, using a
search tree we get O(logn) query time. A static structure with subquadratic
space complexity supporting the lattice operations was constructed in Talamo
and Vocca (1997, 1999).

Another type of query and operation on root-directed trees was discussed
in Alstrup, Husfeldt, and Rauhe (1998). They considered atree in which some
nodes were marked, with these marks dynamically changing, and the queries
ask for the next marked node on the path to the root. So here we have the
operations as follows:

{ mar k: Marks a given node.

{ unmar k: Removes the mark from a given node.

{ mar ked_ancest or : Returns the next node on the path from the given
node to the root which is marked.

If the underlying tree is just a path, this is just the union-split-find problem
mentioned in Section 6.3 again: the marked nodes are the ends of the sublists,
so marking a node splits the sublist, unmarking joins it to the next, and by
comparing the marked ancestor we can check whether two nodes are in the
same sublist (Mehlhorn et al. 1988).

For this problem we can again use the partition of the given tree into paths
as well as the compressed tree, and represent the paths by search trees with
the depth of the nodes as keys. We subdivide the paths at the marked vertices,
splitting the trees at these points and joining them together again when the
vertices become unmarked. Then each path in the compressed tree is a union
of subpaths, of which al but possibly the highest have a marked vertex as
apex. So to find the nearest marked ancestor, we have to traverse at most
O(logn) paths whose apex is not marked and one whose apex is marked,
each time taking O(logn) in the search-tree representation of the paths to
reach the apex. This gives an O((logn)?) query time, with O (logn) time per
mar k or unmar k operation, which is just a split or join of search trees. This
structure also supports the general | i nk of trees, as earlier, by updating the
path decomposition, in O ((logn)?) time. The structure in Alstrup et al. (1998)
supports mar k, unmar k, and mar ked_ancest or intime O( logn ), but it

loglogn
needs a stronger computation model; they also proved amatching lower bound.
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6.5 Maintaining a Linear Order

The problem of maintaining a linear order under insertions and deletions has
been discussed in a number of papers under the description of maintaing order
inalist. Thismight be misleading because the structurewe areimplementing is
not necessarily alinked list; the underlying abstract model isaset with alinear
order, which can bevisualized by alist. The operation we want to support isthe
comparison in the linear order: is element x smaller (to the left in the list) than
element y? The set changes by insertion of new elements, and possibly aso
by deletion, where the position of a new element isidentified by itsimmediate
neighbor in the linear order. The elements are identified by fingers. So we want
to support the following operations:

{ insert(x,y):Insertsx asimmediate smaller neighbor of y and returns
afinger to x.

{ del et e(x) : Deleteselement x.

{ conpar e(x, y) : Decides whether x issmaller than y in the current linear
order.

This problem would be easy if the elements came with a key and the order
was the order of the keys. Then we needed just a key comparison to check the
order relation. Our problem is that we have to assign these keys based on the
neighbor information at the insertion time. If the keys were real numbers, this
would again be easy, assigning each element on insertion the average of thekeys
of its neighbors. But in a reasonable computation model, we can only assume
integers here, and our integers are bounded in size. Certainly, our problem size
n must bein the range of admissibleintegers and perhaps even n?, but not much
more. So we cannot just start with 2", which would allow us to insert n times
in the middle of theinterval of the new element’s neighbors.

Thereis asimple solution that does not need any assignment of key values,
but instead uses a balanced search tree. If the elements are the leaves of the
search tree, we can compare two elementsin theleft-to-right order of theleaves
by going the paths up to the root and checking the order in which the paths
enter their first common vertex. If the nodes carry depth information, this is
easily realized and takes time O(logn) for a comparison, as well as for any
insertion or deletion. We can even reduce the update timeto O (1) using atree
that alows constant time update at a known location. So the simple search
tree—based solution has the following performance:

Theorem. Using a balanced search tree that allows constant time update at a
known location, we can maintain alinear order with O(1) worst-case time of
i nsert anddel et e and O(logn) worst-case time of conpar e.
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If we had key values, we could perform the comparison in O(1) time. Dietz
(1982) used the tree to construct the key values. If we use an (a, b)-tree or
any tree with all leaves at the same depth and nodes of degree at most b,
we can label the outgoing edges of any interior node in their natural order
by 1, ..., b (at most, perhaps fewer). Then the sequence of edge labels along
the path from the root to a node gives a key value for the node, written in
base b, that is compatible with the natural order of the leaves. The problem
with this is that when we change a node, we need to relabel al the leaves in
its subtree. Dietz used a modified (2, 3)-tree to obtain an amortized O (logn)
bound for the time of relabeling: any sequence of n insertions on an initially
empty tree takes O(n logn) time. One can use instead a weight-balanced tree;
then one can reuse the property that between two rebalancings in the same
node, a positive fraction of the leaves in its subtree has been changed, which
allows to amortize the relabeling of that subtree over those node updates. But
in the weight-balanced tree, not all leaves are at the same depth, so one needs
adifferent labeling scheme (Tsakalidis 1984). Both solutions give an O (logn)
amortized update time and an O (1) worst-case comparison time.

Inthat first paper (Dietz 1982), this construction isthen iterated; if the lower
levels of thetree are grouped in copies of the structure, then any query first tests
whether the elements are in the same lower-level structure and compares them
thereif possible, elseit goes up to the next higher-level structure and compares
there. For thiswe need as many elementary comparisonsastherearelevelsof the
structure, but most inserts need to be performed only on thelow-level structures
and propagate up only when the lower-level structures overflow. Using log*(n)
levels, Dietz obtained an O(log*()) worst-case query time and an O (log*(n))
amortized insertion time. Here log* is the iterated logarithm function defined
by the recursion log*(n) = 1 + log*(logn), which grows extremely slow, but
still faster than the Ackermann function (see Appendix 10.5).

But we can avoid the multiple levels. Two are sufficient if we use adifferent
method for the lower-level structure. This is possible if the individual setsin
the lower-level structure are small, less than logn. On these small sets, we
can assign integer key values less than n, giving in each insertion as key the
average of the neighboring keys. If we initially start with the keys 0 and 2¥,
we can perform k such averaging steps before we get a difference less than
1. So for sets of size |logn |, we can assign integer keys bounded by n in
time O(1) per insertion and O (1) per key comparison. We now cut the entire
set of n elementsinto O(; Ogn) groups of consecutive elements, each group of
size at most |logn J, and use the numbering scheme within each group and a
structure with O (1) comparisons and amortized O(logn) insertion to represent
the order relation between the groups. Then each comparison takes O (1): one
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comparison between the groups and one comparison within the group. And
each insertion takes an amortized O(1) time: if the insertion is possible in
the group, it is performed there in O(1) time; else the group overflows and
has to be split into two groups, which are renumbered in O(logn) time, and
the new group is inserted in the structure on the groups, in O(logn) amor-
tized time, but it needs logn insertions to make a new group overflow. This
argument with a different top-level structure was introduced by Tsakalidis
(1984) and used again, with a different top-level structure that avoids ex-
plicit use of trees, in Dietz and Sleator (1987),° and again with yet another
top-level structure in Bender et al. (2002).” A minor difficulty is that in the
lower-level numbering we assumed n to be known in the assignment of the
initial numbers; but as we have to rebuild the lists anyway, we can addition-
ally rebuild them whenever n passes another power of two; this gives only
0O(1) amortized additional work per insertion. Adding deletions on the lower
level istrivial, and on the upper level depends on the structure we chose, but
ispossible.

Theorem. Using a two-level structure, we can maintain a linear order with
O(1) amortized time of i nsert and del et e and O(1) worst-case time of
conpare.

A specia case of this problem that is of independent interest concerns
maintaining dynamic dense sequentia files. A sequentia fileis a set of items
with a linear order, which have to be mapped on addresses in a way that
preserves this order and that does not use too many addresses: only a small
constant factor more than the number of items. If items are inserted or deleted,
this might require renumbering, which corresponds to moving the item to a
different memory address. We want to keep the number of data movements
small or, if the addresses are grouped in disk blocks, keep the number of block
changes small. Animportant difference to our previous problemisthat here the
order has to be encoded in asingle integer key and the range of available keys
is small. This problem was studied by Willard (1982, 1986, 1992), who gave
an amortized O((logn)?) algorithm and then a complicated deamortization of
it; but his model is not quite compatible because he assumes the maximum size
to be given in advance. The deamortized version was used with some further

6 With a cryptic explanation of the lower-level numbering idea. It is really described only in the
technical report D.D. Sleator and PF. Dietz: Two Algorithmsfor Maintaining Order in aList,
CMU-CS-88-113, Carnegie-Mellon University, September 1988, which dates after Dietz and
Sleator (1987).

7 Which references Dietz and Sleator (1987) for the details of the lower-level structure.
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complications, running the algorithm in small steps to distribute the time of
an update and adding multiple versions to the underlying structures, because
queries must be answered consistently on partially performed updates in Dietz
and Sleator (1987) to deamortize their structure for maintaining a linear order
with O(1) update and query time. Another deamortization was announced in
Bender et al. (2002).°

8 Which postpones the details to the full version.



v
Data Structure Transformations

Up to now we have described many specific data structures. There are also
some general methods that add some additional capabilities or properties to a
given data structure. Without any further knowledge about the structure, there
is not much we can do, so in each case we need some further assumptions
about the operation supported by the structure or its implementation. The two
well-studied problems here are how to make a static structure dynamic and how
to allow queriesin old states of a dynamic data structure.

7.1 Making Structures Dynamic

Several of the structures we have discussed were static structures, like the
interval trees: they are built once and then allow queries, but ho changes of
the underlying data. To make them dynamic, we want to allow changesin the
underlying data. In this generality, there is not much we can do, but with some
further assumptions, there are efficient construction methods that take the static
data structure as ablack box, which is used to build the new dynamic structure.

The most important such class is the decomposable searching problems.
Here, the underlying abstract objectissomeset X, andin our querieswewishto
evaluate somefunction f (X, query), and thisfunction has the property that for
any partition X = X3 U X>, thefunction value f (X, query) can be constructed
from f (X4, query) and f (X2, query). If thefunction valueisnot aconstant-size
object, we also need that this construction happens in constant time. Thisisa
property of the underlying abstract problem, and the transformation can then
be applied to any structure that solvesiit.

The one-dimensional dual-range searching, that is, given a set of intervals,
list for a query value al intervals that contain this value, is just one such
problem; for that the interval trees are one static solution to which we can

321
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apply the methods devel oped in this section to obtain a dynamic solution. The
segment trees are a different static solution to this problem, to which we could
also apply this methods, but we already saw in Section 6.3 a different method
to make segment trees dynamic.

There are many problems with this property. The nearest-neighbor problem,
to find for a given query point the nearest point in a set, is perhaps the most
interesting, but finding an element of given key (dictionary), or finding the
smallest element (heap), or the sum of elements, or range searching, are all of
thistype. But thereare a so problemsthat do not fit in this class; the problemson
root-oriented trees discussed in Section 6.4 do not even have aset asunderlying
object; and finding the smallest element in a set is decomposable, but finding
the second-smallest element, or the median, is not. Thus it is a restricted, but
important class.

The notion of decomposable search problems, and the idea of a static-to-
dynamic transformation, goes back to Bentley (1979). Initially, the structures
alowed only insertions and had only amortized bounds, but soon deletions
were added; bounds were made worst case, and trade-offs between query time,
insertion time, and deletion time were introduced (Bentley and Saxe 1980;
van Leeuwen and Wood 1980a; Mehlhorn and Overmars 1981; Overmars and
van Leeuwen 19814, b; Edel sbrunner and Overmars 1985; Rao, Vaishnavi, and
lyengar 1988). The canonical reference to all methods of dynamization is the
monograph by Overmars (1983).

Theunderlyingideaisawaysthat the current set is partitioned in anumber of
blocksX = X, U --- U X,,. Eachblock isstored by one static structure; queries
are answered by querying each of these static structures and reconstructing the
answer for theentire set, and updates are performed by rebuilding one or several
blocks. The differences between the methods are the size restrictions for the
blocks and the details of the rebuilding policy.

The original method in Bentley (1979) uses only blocks whose size is a
power of two, and only one block of each size. So if the underlying set X has
n elements, then the blocks X; correspond to 1sin the binary expansion of ».
Thus there are at most logn blocks. For each query on X we perform at most
logn querieson the X;, so the query time increases by at most the factor log .
To insert anew element, ablock of size 1, we create ablock of size 1 and then
perform binary addition on the blocks until each block size exists at most once.
To add two blocks of the same size, the structures are taken apart to recover the
elements and then one new structure is built.

This gives a bad worst-case complexity because we might have to rebuild
everything into one structure; but the structure of size 2/ is rebuilt only when
the ith bit of n changes, which is every 2'~1th step. If preproc(k) isthe timeto
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build a static structure of size k, then the total time of the first n insertsis

Llogn]

> % preproc(2').

i=0

Thus the amortized insertion time in a set of n elementsis

llogn] ; O(logn) if preproc(n) = O(n)
ins(n) = Z preproc(2) O((logn)~1) if preproc(n) = O(n(logn)°)
o(n®) if preproc(n) = O(n'*®).

Some further fine-tuning by using other systems of block sizes is possible,
and in many instances the rebuilding of a block with an additional element, or
the merging of two blocks, is dightly easier than building the static structure
from scratch because one can reuse some order information. Many detailswere
discussed in Bentley and Saxe (1980); this frequently allows to gain alogn
factor. The systems of block sizes and their implications for the bounds were
further analyzed in Overmars and van Leeuwen (1981a) and Mehlhorn and
Overmars (1981). But we can summarize the most important special case of
the basic method.

Theorem. Given a static structure for a decomposabl e searching problem that
can bebuiltintime O (n(logn)©) and that answers queriesin time O (logn) for
an n-element set, the exponential-blocks transformation gives a structure for
the same problem that supports insertion in amortized O((logn)<**) time and
queriesin worst-case O((logn)?) time.

If we apply thisto the interval tree structure, which can be built in O(n logn)
time, we get astructure that supportsinsertionsand queriesin O ((logn)?) time,
where the insertion bound is only amortized.

This method is not useful for deletion; if we delete an element from the
largest block, we have to rebuild everything, so we can easily construct a
sequence of alternatingi nsert and del et e operations, in which each time
the entire structure has to be rebuilt.

A method that also supports deletion partitions the set in ©(,/n) blocks of
size O(y/n) and uses fingers or an additional search tree or other dictionary to
keep track of the information about in which block each element is stored (van
Leeuwen and Wood 1980a). Then for each insert or delete, we have to touch
only one block, using O(preproc(,/n)) time, and for each query, we have to
perform O(/n) queriesin the blocks of size O(/n).

This is a lot worse than the previous structure: if the static structure had
preprocessingtime O (n(log n)¢) and query time O (log n), thenthefirst dynamic
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structure has update time O((logn)**) and query time O((logn)?), whereas
the second dynamic structure has update time O(/n(logn)) and query time
O(+4/nlogn), but inthefirst structure updates were only insertions and the time
was amortized, whereas in the second structure we have both insertions and
deletions, and the time is worst case.

But this is about best possible if we can use our static structure only this
way, by rebuilding and querying (Bentley and Saxe 1980). Because any query
hasto be performed on all blocks, to achieve aquery time O (,/n) we may have
at most O(4/n) blocks, so the largest of the blocks has size at least (/7).
An adversary that alternatingly inserts an element and deletes an element from
the currently largest block forces each delete to rebuild ablock of size Q(/n).
Thus, although there are some trade-offs between the query time and the update
time, and a logn factor that can be reduced, we cannot get update and query
time below ©(/n) in this model. We again summarize the performance in the
most important special case.

Theorem. Given a static structure for a decomposabl e searching problem that
can bebuiltintime O (n(logn)°) and that answers queriesintime O (logn) for
an n-element set, the /n-blocks transformation gives a structure for the same
problem that supportsinsertion and deletionin O (y/n(logn)©) timeand queries
in O(y/nlogn) time, al times worst case.

If we want a better performance in a structure that supports deletion, we need
more information about the structure. A useful property here is that the static
structure supports “weak deletion” (Overmars and van Leeuwen 1981b; Over-
mars 1981b). A weak deletion deletes the element, so that the queries are
answered correctly, but the time bound for subsequent queries and weak dele-
tions does not decrease. The prototype of this situation is the deletion without
rebalancing in search trees: the element is deleted, but even though the number
of items in the tree decreased, the height, and by this the time for later tree
operations, does not decrease. Supporting weak deletions is a property of the
static structure, not of the underlying problem.

If we combine the weak deletion with the exponential -blocks idea, we get
the following structure: The current set is partitioned into blocks, where each
block has a nominal size and an actual size. The nominal sizeis a power of 2,
with each power occurring at most once. Theactual size of ablock with nominal
size 2’ isbetween 2°~1 + 1 and 2. The operations then work as follows:

{ To delete an element, we find its block and perform aweak deletion,
decreasing the actual size. If by thisthe actua size of the block becomes
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2i-1 we check whether thereis ablock of nominal size 2-1; if thereis
none, we rebuild the block of actual size 2—1 as block of nominal size 21
Else, we rebuild the block of actual size 2~ together with the elements of
the block of nominal size 2~ as block of nominal size 2'.

{ Toinsert an element, we create ablock of size 1 and perform the binary
addition of the blocks, based on their nominal size.

{ To query, we perform the query for each block.

With this method, we get again only amortized bounds. The amortized analysis
is dlightly more complicated. We have to keep track of two potentials. The
deletion potential is the sum over al blocks of the difference between the
nominal and actual size. Each time we perform a weak deletion, it increases
by 1 and an insertion does not change it. If we rebuild ablock of size 2 asa
result of adeletion, the deletion potential decreases by 2'~1. So the decrease in
potential is proportional to the size of the structure we rebuild. So if the time
of this rebuilding is preproc(2), then we can amortize the cost over 2/ weak
deletionsto get an amortized deletion cost of zl preproc(2’) < m plusthe
cost of the weak deletion.

For the analysis of the insertion, we give ablock of nominal size 2’ aweight
of ([logn] — i)2'~* and use asinsertion potential the sum of the weights of all
blocks. Here n is an upper bound for the maximum size of the underlying set
over the sequence of operations, soi < [log n] and all theweightsare positive.
Then during the insertion, we create anew block of size 1 = 2°, increasing the
potential by [log n1, and then, if there are now two blocks of size 2°, we destroy
two blocks of size 2° and one each of size 2 up to 22, and build a new block
of size 2. By this, we change the potential by

i—-1

—2flogn] =Y (flogn] — j)2/~* + (flogn] —i)2"*

j=1
i—-1
= (ijfl) —i27t=(((—-227 +1) -2t =2 41,

so the potential decreases by an amount proportional to the size of the block
we build. Only insertions increase the potential by [log »n7; deletions can only
decrease the nominal size of ablock, and by this its weight and the potential.
Thus, we get for insertions a set of size at most n and amortized complexity of
(log n) %"C("). We again summarize the performance of this structure.

Theorem. Given a static structure for a decomposable searching problem
that can be built in time preproc(n) and that supports weak deletion in time
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weakdel (), and answers queries in time query(n) for an n-element set, the
exponential-blocks transformation with weak deletion gives a structure for the
same problem that supports insertion in amortized O((logn) 2%y time,
deletions in amortized O (weakdel () + X®°4)) time, and queries in worst-
case O(logn query(n)) time.

Again some further refinements to this basic scheme are possible. One can
remove the amortization from the del etions by concurrent rebuilding of shadow
copies, but thisrequires further accessto the internal structure of the rebuilding
method, so that instead of being executed once in full during adelete operation,
itisexecuted insmall fragmentsover asequence of delete operations (Overmars
and van Leeuwen 1981b).

The methods discussed up to now were based on complete rebuilding of
the static structure, which was just a black box, supporting some operations.
With more information, we can do better. One class of problems where we get
an outline for building the dynamic structure out of lower-level black boxes
are the order-decomposable problems discussed by Overmars (1981a, 1983)
as an abstraction of divide-and-conquer algorithms. A problem is order de-
composable if the underlying abstract object is some set X, and we wish to
evaluate some function f(X) with the property that the elements of the set
can be ordered X = {x;, ..., x,} in such away that f(X) can be computed
from f({x1,...,x}) and f({xix11, ..., x,}). Note that, different from the de-
composable searching problems, the function f does not have any additional
parameters given by the query. So the static case is not a structure that answers
queries, but an algorithm that once computes f(X), and we want to update that
function value under changes of the underlying set.

The strategy hereisto maintain abalanced search tree on the underlying set,
with the elements in the leaves in that order that allows decomposition. Then
each interior node corresponds to the subset of all leavesin its subtree, which
isaninterval {x;, xi11, ..., x;} inthat order, and in each interior node we store
the function value f({x;, ..., x;}) for that set. For a query, we just read the
function value stored in the root. To update, we insert or delete aleaf and then
go the path up to the root, rebalancing and recomputing the function value in
each node along the way.

Suppose computing f(A U B) from f(A) and f(B), where A and B are
consecutive intervalsin the decomposition order, takes at most merge(|A U B|)
time. Then thetimefor aninsert or deleteis O(} "/ ; merge(n;)), where (n;)",
are the sizes of the subtrees below the nodes for which the function had to be
recomputed. These are the nodes along the path to the root, and for each node
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possibly the other lower neighbor, which might have changed by a rotation.
That lower neighbor has a smaller subtree, so we really need to bound only the
sizes of the subtrees along the path from the leaf to the root. Thisis especially
convenient if we choose a weight-balanced tree, as described in Section 3.2,
as underlying balanced tree. In the weight-balanced tree, a node whose subtree
has k leaves has lower neighbors whose subtrees contain a most (1 — )k
leaves. So the size of the subtrees along a path from the root to aleaf decreases
at least geometrically. Thus the time for an update in a tree with n leaves is
0 (zf’:‘g"g"’ merge (1 — o)’ n)) . Weadditionally need to find the correct place
in the decomposition order before we can start to insert or delete, but that can
usually be done by binary search in O(logn).

But there is a nonobvious problem with this nice technique in case the func-
tion we wish to compute has a value that is not of constant size. An important
example, for which the technique was used in Overmars and van Leeuwen
(1980) before it was stated in the more abstract setting, is the dynamic convex
hull computation of a set of pointsin the plane with insertions and deletions. If
the points are ordered according to their first coordinate, thenitis, in principle,
possible to merge the convex hulls of two sets with separated first coordinates
intime O(logn), although this also requires a nontrivial representation of the
convex hulls. But if we perform this merging, we destroy the individual struc-
tures we merge, so we cannot reuse them in the next update. The obvious
alternative, copying the structure, requires time proportional to the size of the
structure, so in the convex hull example it increases the complexity of merging
from O(logn) to ®(n), but in that time we could have computed the convex
hull of a sorted set anyway. To make use of the technique, we need a second
function, which isthe inverse of the merging function: it splits the structurein
the node and restoresthe structuresin itslower neighbors. Then for any update,
we perform the splits while going down from the root to the leaf where we
perform the update and then after the update we go up again and merge along
the way. For each rotation, we might have to perform yet another split merge
pair. So the updatetimeis

0(logn) 0(logn) if merge(n) = O(1)
Z merge ((1 — a)'n) = { O((logn)“*t) if merge(n) = O((logn)°)
i=0 0(n®) if merge(n) = 0 (n°),

if either the merge is nondestructive or there is a split inverting the merge that
runs with the same time bound. We summarize again the performance of this
structure in its most important special case.
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Theorem. Given an order-decomposable problem for which we can find the
correct place of an item in the decomposition order in O(logn), and for which
we have either a nondestructive mer ge operation or a complementary pair
of mer ge and spl i t operations that work in time O((logn)¢), then we can
maintain the function value for that problem under insertion and deletion in the
underlying set in worst-case time O ((logn)°*1) per update.

The fundamental restrictions of this model are the order-decomposition prop-
erty, and the fact that we are looking only for asingle value, not for afunction
depending on the query. This allows us to precompute the answer in the tree
nodes. It can be extended dlightly if we choose the function values itself to
be functions of constant description complexity, but it isinherent to the model
that, to answer a query, we have to look only at the datafound in the root node.
Many structures we discussed were similar to this: they are built on a balanced
search tree by adding some information to the nodes. But to evaluate a query
in those structures, we have to follow this search tree down and combine the
information in the nodes along the path to answer the query.

Thereisageneral dynamization method for thistype of data structure which
isbased on partial rebuilding. The canonical reference is again the monograph
by Overmars (1983), where partial rebuilding methods are studied systemati-
cally. Special instances of thiswere already used slightly earlier, such asL ueker
and Willard (1982) for the dynamization of range counting with orthogonal
range trees. The model assumption here is that we have a static structure that
can be built using any underlying search tree; it adds some additional informa-
tion to the nodes, and queries are answered by following a path down in the
tree and combining the information in the nodes. For this structure we must
have an update method that keeps this additional structure correct, so queries
are still answered correctly, but it changesthetree structure only by performing
basic inserts and del etes, so the tree might become unbalanced. And we need a
method to rebuild entire subtrees optimally balanced.

The fundamental insight here is that if we use weight-balanced trees as
underlying search trees, then large subtrees will become unbalanced only after
many updates. In Section 3.2, we had a theorem that there is an ¢ > 0 such
that between one rebalancing of the subtree below a fixed node and the next
rebalancing, at least an e-fraction of the leaves of that subtree have been
inserted or deleted. This can be used for an amortized complexity bound for
the updates. Each update of a leaf node contributes unit cost to each subtree
that contains it, that is, to each of the O(logn) nodes on the path from the
root to that leaf node. If we rebuild a subtree with k leaves, then there are
ek updates that contributed to it. If the cost of rebuilding of a subtree with
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k leaves is rebuild(k), then we can amortize this cost over these updates and
get an amortized cost of rebuilding per update of 0('02” rebuild(k)), which is
0('09% rebuild(n)). In additionto this, we of course need thetimeto performthe
basicinsert or delete and adjust the structure; thisis sometime basic_update(n),
whichisat least Q(logn) to perform the update of thetree, but it might belarger
because the additional information in the nodes also needs to be updated. The
query time does not change by these updates because we always maintain a
correct weight-balanced tree. We again summarize the performance of this
method.

Theorem. Given a static data structure, which consists of a balanced search
tree with additional node information and that allows basic inserts and deletes
without rebalancing in atree with n leavesintime basic_update(n), and optimal
rebuilds of a subtree with k leaves in time rebuild(k), we can keep this tree
balanced in amortized time per insert or delete
I
0 (basi c_update(n) + -2 rebuii d(n)) .
n

If the query timein this structure for atree of height % isquery(), we maintain
aworst-case query time query(logn).

In Section 3.8 we have aready used the partial rebuilding technique for
rebalancing in search trees with a different balance criterion and amortized
analysis, but they can also be viewed as the smplest special case of this
method.

Another class of problems allowing some dynamization are the two-
variable minimization problems studied by Dobkin and Suri (1991) and
Eppstein (1995). Here the underlying model isthat we have afunction f(x, y)
and want to maintain the minimum over all pairs from a cartesian prod-
uct min{f(x,y) | x € X,y € Y} under insertions and deletions in the sets
X and Y. Without additional information on f, there is no hope for a non-
trivial algorithm: when we insert a new point x"" in X, we would have to
evaluate f(x"*, y) for all y € Y. The additional structure we need is a dy-
namic structure that, for a set Y and a query point x%Y, findsthe y e Y
for which f(x%®Y, y) is minimal. Then maintaining the minimum, if only
insertions are allowed, is trivial: we just need to check whether the new
point generates a smaller minimum than the previous minimizing pair. But
that approach does not support deletions. Eppstein (1995) found a method
that maintains the two-variable minimum under insertions and deletions,
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with an amortized factor logn overhead on the complexity of the underlying
minimum-query structure for insertions and an amortized (log n)? overhead for
deletions.

7.2 Making Structures Persistent

A dynamic datastructure changes over time, and sometimesitisuseful if we can
accessoldversionsof it. Besidesthe obviousinterpretation of answering queries
about the past, thisis useful as atool for geometric algorithms that perform a
sweep; in such algorithms one typically has a structure that keeps track of the
state on the current position of the sweepline, but sometimes we have to access
regions we have already passed over. Another obvious application is revision
control and theimplementation of the*undo” command in editors(Myers 1984;
Fraser and Myers 1987; Dannenberg 1990), multiple file versions (Burton,
Huntbach, and Kollias 1985; Burton et al. 1990), and error recovery (Mullin
19814a). One can construct special-purpose structures for such applications, but
the success in finding general techniques for dynamization motivated a search
for similar techniques to solve this problem.

The question how to access past versions of a dynamic data structure was
first studied by Dobkin and Munro® and Overmars.” The first papers (Dobkin
and Munro 1985; Chazelle 1985) were motivated by the geometric applications,
which allowed them to make the additional assumption that the underlying uni-
verse was known in advance, which is reasonable for sweep a gorithms, where
we know the entire set even if it has not been passed over by the sweepline.
Indeed, the sequencein which the objects are passed by the sweeplineisknown
in advance, so for that application it is only the question of preprocessing the
set so that queries for various positions of the sweepline can be answered. For
search trees, the problem of queries in the past was also discussed in Field
(1987).

The main progress was the paper by Driscoll et al. (1989), in which general
techniques were discussed that transform a given dynamic data structure into a
dynamic data structure allowing access to earlier versions. They define several
grades of access. The most natural persistence, which they called “partial
persistence,” allows queries to previous versions. There is a current version to
which the next update will be applied to generate a new current version, but

1 In apaper in FOCS 1980, whose journal version appeared only five years |ater (Dobkin and
Munro 1985).

2 |n two preprints, M.H. Overmars: Searching in the Past I, |1, Rijksuniversiteit Utrecht preprints
RUU-CS-81-7 and RUU-CS-81-9, April and May 1981, which are amazingly still available
online.
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we can also query old versions, which could be identified by timestamps or
version numbers.

They also studied a more general scheme they called “full persistence,” in
which past versions can aso be changed, giving rise to a version tree without
any specia current version. Here even identifying the version one wishes to
reference is nontrivia; for this they produced a numbering of the versions
compatible with the partial order of the version tree. Even more general, but
applicable only to structures that support a join operation, is the “confluent
persistence” studied first for double-ended queues (Driscoll, Sleator, and Tarjan
1994; Buchsbaum and Tarjan 1995; K aplan, Okasaki, and Tarjan 2000) and then
in genera in Fiat and Kaplan (2003); in a confluently persistent structure, one
may also join different versions. But these stronger variants of persistence seem
only of theoretical interest.

More important, but much less deep, is a transformation that allows back-
tracking, that is, setting the current version back to an old version and discarding
all changes since then. The use of a stack for old versions predates all persis-
tence considerations.

Again, asin the dynamization of data structures, we need some information
on the underlying structure. Some general models similar to those discussed for
the dynamization were discussed by Overmars.® If the structure is just a black
box allowing some operations, we can copy that black box to preserve an old
state or keep alist of performed update operations that we can execute again
to reconstruct a state. These two methods can be mixed: if we have a structure
of size at most n with query time query(n) and update time update(n), if we
copy the structure after every kth update, we get an amortized update cost of
O(z + update(n)); and for any query we first copy the nearest saved state and
performtheat most k — 1 updatesonit, beforefinally executing the query onthe
reconstructed state. Thisgivesaquery timeof O(n + k update(n) + query(n)).
The largest component here is the time O(n) for the initial copying of the
structure before we can apply the updates. This can be avoided if the update
operations come in inverse pairs, like insertion and deletion. Then for any
query, we take the nearest saved state, perform the at most k — 1 updates on
it, perform the query, and then the sequence of inverse updates to recover the
saved state. This gives a query time O (k update(n) + query(n)). The choice
of k as afunction of n alows trade-offs between update and query time, but
without further knowledge of the structure, we cannot get update and query
simultaneously below O (/n).

3 Inthe preprint, M.H. Overmars: Searching in the Past |1, Rijksuniversiteit Utrecht preprint
RUU-CS-81-9, May 1981.
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The big progress achieved in Driscoll et al. (1989) are two structures that
work in the pointer-machine model, the first of which works on any structurein
the pointer-machine model, but carriesan O (logn) factor worst-case overhead,
and the second, which has only an O(1) amortized overhead, but requires that
the nodes in the pointer structure have bounded indegree. The amortized O (1)
of the second structure was improved to O(1) worst case in Dietz and Raman
(1991) and Brodal (1996b), but with the sameindegree condition. That indegree
restriction is satisfied, for example, for al search trees, but it is not satisfied for
theunion-find structure. Theleftist heap satisfiesthat restriction, whileBrodal’s
heap does not, so the indegree property isanontrivial restriction.

Thefirst transformation, called the “fat nodes’ method, replaces each node
of the pointer-based structure by asearch treefor the correct version of thenode,
using the query time as key. Each time the underlying structure is modified,
any “fat” node whose content is modified just receives a new version entry in
its search tree; and newly created nodes contain new search trees, initially with
oneversion only. Thus, any query isexecuted on asimulation of the underlying
structure, where finding the value of somefield of anode that is correct for the
query time requires a query in a search tree, so O(logn) time per elementary
operation in the underlying structure, giving an O(logn) factor increase of the
query time. For updates, the same argument holds — we are simulating the
underlying structure, but we can do better than the O(logn) time bound per
simulation step. Because in the update, all accesses and changes happen at the
maximum key end of the search tree, we can use atree that supportsinsert and
find at the end in constant time, as does afinger tree with constant update time.
By this, we get a simulation of the underlying structure with O(1) time per
simulated step. This gives the following performance:

Theorem. Any dynamic structure in the pointer-machine model that supports
queriesin time query(r) and updatesin time update(rz) on aset with n elements
can be made persistent, allowing queries to past versions, with a query time
O(logn query(n)) for past versions, O(query(n)) for the current version, and
update time O(update(n)), using the “fat nodes’ method combined with a
search tree that allows constant-time queries and updates at the maximum
end.

If wewant to add backtracking to our structure, we need to be ableto go back to
apreviousversion intime and discard al updates since then. We can do thisfor
any pointer-based structure, again using fat nodes, which thistime just contain
astack of valuestogether with their version numbers. Each time we perform an
update, we push anew value on the stack of all nodeswe change, and each time
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we perform a query, we use the top value of the stack. Both of these changes
generate only aconstant-factor overhead for each update or query operation. To
perform a backtrack operation, we need to pop from each stack all the values
of discarded versions, so we need alist of all fat nodes. The backtrack time can
be very long in the worst case if we return to the beginning and have to clear
all stacks. But the amortized complexity of the backtrack operation is constant,
hidden by the update operations, because each item removed from a stack by
the backtrack operation was previously put there by an update operation.

Theorem. Any dynamic structure in the pointer-machine model that supports
gueriesintime query(n) and updatesin time update(r) on a set with n elements
can be made to support backtracking, using stacksfor “fat nodes,” with aquery
time O(query(n)), update time O (update(n)), and backtrack time amortized
0(1), with asequence of a updates, b queries, and ¢ backtracks, starting on an
initially empty set, taking O (a update(a) + b query(a) + ¢).

To make the amortized complexity of backtracking worst case, we could use
splittable search trees in all fat nodes, but then an O(logn) factor overhead
appliesto the update and query times.

Because in each fat node we have a search tree over essentially the same
object, a set of version dates, we are performing very similar searches again
and again; this suggests to try to connect the search trees in such a way that
the result of the search in the previous node can be reused to find the correct
version in the current node. This is again a form of the fractional cascading
idea, but the problem is that we do not have the same version dates in each
node, and so it is not really the same search. If in the underlying structure the
updatetimeis O(logn), then in each update we add a new version date only to
O(logn) of the Q(n) nodes, so the set of all version dates is much larger than
the sets we encounter in the individual nodes.

The idea of the second structure of Driscoll et al. (1989), called “node
copying method,” is to replace the search tree in each fat node by a list of
constant-sized nodes, each holding only afew versions and linked to the nodes
with the corresponding versions in the lists in neighboring fat nodes. The
problem here isthat if we add a new version at time 7 to the last list node and
it overflows, so we have to create a new list node, then we have to update all
the incoming pointers to this new node. In the lists of al fat nodes that point
to the fat node we just updated, we have to add a new version for thistime,
pointing to the new node. This can cause those lists themselves to overflow and
force to create new nodes, so this creation of hew nodes propagates through
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the structure and stops only in those places where the node still has room for
anew version. By making the nodes large enough, it finally stops; in Driscoll
et a. (1989) an amortized O(1) bound for the number of newly created nodes
was shown. Using a good strategy when to create a new node, occasionally
also creating new nodes before forced to do so, this was reduced to worst-
case O(1) new nodes per update step by Brodal (1996b) following Dietz and
Raman (1991). But al this is possible only if the indegree of each node in
the underlying structure is bounded because we have to propagate the creation
of new versions along all incoming edges. The necessary number of versions
per list node depends on this indegree and is quite large. To summarize the
performance of this transformation we have the following:

Theorem. Any dynamic structure in the pointer-machine model that has
bounded indegree and that supports queries in time query(rn) and updates
in time update(n) on a set with n elements can be made persistent, allow-
ing queries to past versions with a query time O(query(rn)) and update time
O (update(n)) using the “node copying” method combined with Brodal’s node
copying strategy.

A property related to persistence is the retroactivity proposed in Demaine,
lacono, and Langerman (2004); they call a structure retroactive if it allows
the change of updates in the past while keeping all the updates that followed
the changed update. A fully persistent structure would allow the change in the
past, starting a new branch in the version tree, but would not include the later
updates in the branch. The concept of retroactivity is motivated by the idea
that one wants to correct an erroneous update in the past without having to
perform all the later updates again; but thisinvolves many conceptual problems
because the later updates might depend on the earlier updates and queries. So,
unlike persistence, there is no general technique for adding retroactivity to a
data structure.
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Data Structures for Strings

Up to now we always assumed that the data items are of constant size, and key
values can be compared in constant time, so essentially that they are numbers.
A very important class of objects for which these assumptions fail are strings.
In real applications, text processing is more important than the processing of
numbers, and text fragments have a length; they are not elementary objects
that the computer can process in a single step. So we need different structures
for strings than for numeric keys; especially the balanced binary search trees,
our most useful previous tool, require a key comparison in each node and are
quiteinefficient as dictionary structure for strings. Also, for strings we will ask
different questions. Even though strings can be ordered lexicographically, this
order does not reflect the similarity of strings, for two strings that differ in the
first character only are closer related than two strings that differ from the third
to the tenth character. Thus, range searching makes little sense for strings.
The concept of strings is not entirely uniform and therefore requires some
attention. We have an underlying alphabet A, for example, the ASCII codes,
and strings are sequences of characters from this alphabet. But for use in the
computer, we need an important further information: how to recognize where
the string ends. There are two solutions for this: we can have an explicit
termination character, which is added at the end of each string, but may not
occur within the string, or we can store together with each string its length.
The first solution is the "\ 0’ -terminated strings used in the C language,
and the other model is followed, for example, in the Pascal language and
its descendants.® The use of the special termination character > \ 0’ has a

1 Some languages have a different string concept in which higher-level operations such as
deleting an interval from a string are considered elementary operations (Housden 1975).
Current examples of this are the C++ and Java string classes. But these are not constant-time
operations, so these systems are not suitable for the type of efficient operation that we study.

335
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number of advantagesin simplifying code, but it hasthe disadvantage of having
onereserved character in the a phabet that may not occur in strings. If the strings
are really fragments of text, this is no problem; there are many nonprintable
ASCII codes that should never occur in atext and* \ 0° (ASCII code Q) is
just one of them. But there are also many applications in which the strings
do not represent text, but, for example, machine instructions, and in such
applications we cannot assume that the strings do not contain this reserved
character. In the following we will use’ \ 0’ -terminated strings in our code
examples, but one must be aware of thelimitation of thismodel and the possible
aternative.

Strings, especialy over a small aphabet, recently found much interest in
the context of bioinformatics because a type of data obtained there in large
amounts is DNA/RNA or protein sequence data, with alphabet sizes of 4 and
20, respectively. This presents challenges that motivate most of the newer
papers on string data structures and algorithms. Books entirely dedicated to
agorithmic problems on strings are the seminal books by Gusfield (1997) and
Crochemore and Rytter (2003).

8.1 Triesand Compressed Tries

The basic tool for string data structures, similar in role to the balanced bi-
nary search tree, is called “trie,” which is said to derive from “retrieval.” This
structure was invented by de la Briandais (1959); the first easily accessible
reference, which also introduced this unfortunate name, is Fredkin (1961). The
underlying ideais very simple — again a tree structure is used to store a set of
strings. But in this tree, the nodes are not binary; instead, they contain poten-
tially one outgoing edge for each possible character, so the degree is at most
the alphabet size | A|. Each node in this tree structure corresponds to a prefix of
some strings of the set; if the same prefix occurs several times, thereisonly one
node to represent it. The root of the tree structure is the node corresponding
to the empty prefix. The node corresponding to the prefix o1 contains for each
character a € A apointer to the node corresponding to the prefix o1a if such a
node exists, that is, if thereisastring o1a0> in the set.

To perform af i nd operation in this structure, we start in the node corre-
sponding to the empty prefix and then read the query string, following for each
read character the outgoing pointer corresponding to that character to the next
node. After we read the query string, we arrived at anode corresponding to that
string as prefix. If the query string is contained in the set of strings stored in
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thetrie, and that set is prefix-free, then this node belongs to that unique string.
And we can assume that the set of strings is prefix free if we use the model
of "\ 0’ -terminated strings: if the character ' \ 0’ occurs only as termination
character in the last position of each string, then no string can be a prefix of
another string. With this assumption, we can now write the basic version of the
trie structure. Each node has the following form:

typedef struct trie_n_t {
struct trie_n_t *next [ 256] ;
/* possibly additional information*/
} trie_node t;

We now implement the same dictionary structure that we also assumed for
the search trees. we are keeping track of a set of (key, object) pairs under
operations i nsert, del et e, and fi nd, but now the key is a string. We
usethenext[ (int)'\0'] field to hold the pointer to the object because
for "\ 0’ terminated strings we will never need that field to point to another
node. If we need a string model without a specific termination character, we
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must use an extra field in the node for that. An implementation of the trie for
"\ 0’ -terminated strings can look as follows:

trie_node_t *create_trie(void)
{ trie_node_t *tnp_node;

int i;

t np_node = get_node();

for( i=0; i<256; i++)

t np_node->next[i] = NULL;

return( tnp_node );

}

object _t *find(trie_node_t *trie,
char *query_string)
{ trie_node_t *tnp_node;
char *query_next;

tnp_node = trie; query_next = query_string;

whil e(*query_next !'="\0")

{ 1f( tnmp_node->next[(int)(*query_next)] ==
NULL)

return( NULL ); /* query string
not found */

el se

{ tnp_node =



}
i nt

{

obj
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tmp_node->next[(int) (*query_next)];
query _next += 1; /* nove to next
character of query */
}
}

return((object_t *)
tmp_node->next[(int)’'\0']);

insert(trie_node_t *trie,

339

char *new string, object_t *new object)

trie_node_t *tnp_node, *new_node;
char *query_next;

tnp_node = trie; query_next = new_string

whi l e(*query_next = "\0")

{ 1if( tnp_node->next[(int)(*query_next)] ==
NULL)

{ new_node = get_node();
/* create m ssing node */
for( i=0; i<256; i++)
new_node->next[i] = NULL;
t mp_node->next [ (int)(*query_next)]
= new_node;
}

/* nove to next character */

tnp_node = tnp_node->next[(int)(*query_next)];

query_next += 1; /* nove to
next character */

}

if( tnp_node->next[(int)’\0 ] !'= NULL )
return( -1 ); /* string already exists
has object */

el se
tmp_node->next[(int)'\0"]
= (trie_node_t *) new_object;

return( 0 );

ect _t *delete(trie_node_t *trie,
char *del ete_string)

trie_node_t *tnp_node

obj ect _t *tnp_object;

char *next _char;

int finished = 0;
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create_stack();

tnp_node = trie; next_char = delete_string

whil e(*next _char 1= "\10")

{ if( tnp_node->next[(int)(*next_char)] ==
NULL)

return( NULL ); /* delete_string
does not exist */
el se
{ tnp_node =
t np_node->next[(int) (*next_char)];
next _char += 1; /* nove to next
character */
push( tnp_node );
}
}
tnp_object = (object_t *)
tnp_node->next[(int)’'\0"];
/* renmove all nodes that becane unnecessary */
/* the root is not on the stack, so it is
never deleted */
while( !stack_enpty() && !finished )
{ tnp_node = pop();
t np_node->next[ (int)(*next_char)] = NULL
for( i=0; i<256; i++)
finished || = (tnmp_node->next[i] != NULL );
/* if tnp_node is all NULL,
it should be deleted */
if( !'finished )
{ return_node( tnp_node );
next _char -= 1;
}

}
return( tnp_object );

void renove_trie(trie_node_t *trie)
{ trie_node_t *tnp_node;
create_stack();

push( trie );
whil e( !'stack_emty() )
{ int i;

tnp_node = pop();
for( i=0; i<256; i++)
{ if( tnp_node->next[i] != NULL
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& i = (int)'\0" )
push( tnp_node->next[i] );
}

return_node( tnp_node );

}

This structure looks very simple and extremely efficient; the one problem
is the dependence on the size of the alphabet that determines the size of the
nodes. In this basic implementation, each node contains 256 pointers, one for
each character, and a pointer might be 4-8 bytes, so the size of each nodeis at
least 1 kB. And, unless the strings we wish to store have very much overlap, we
need approximately as many nodes as the total length of al stringstogether is:
almost al nodes will contain only one valid pointer because almost al prefixes
have only one possible continuation. So the space reguirement is enormous.
But even if we have unbounded space available, the alphabet size enters here
inthei nsert and del et e operations because new nodes must beinitialized
with NULL pointers, and when deleting nodes we must check whether they are
still used. The performance of the basic trie structure given hereis as follows:

Theorem. The basic trie structure stores a set of words over an alphabet
A. It supports a f i nd operation on a query string ¢ in time O(length(g))
and i nsert and del et e operations in time O(|A| length(g)). The space
requirement to store n strings wi, . .., w, is O(|A| ), length(w;)).

We can get rid of the |A|-dependence in the del et e operation by using
reference counts. Then all nodes that are returned to the free list are correctly
filled with NULL pointers, sothei nsert operation does not need to initialize
them if they are reused. But al new nodes do have to be initialized, so the
|A|-dependenceinthei nsert operation does not disappear.

There are several ways to reduce or avoid the problem of the aphabet size,
and the mostly empty nodes. In each method, we trade some loss in the query
time against an improvement in space and update time.

A simple method, which is most efficient exactly in those cases where the
basic implementation was most wasteful, if almost all nodes are almost empty,
isto replace the big nodes by linked lists of all the entries that are really used.
That technique was already suggested in the first paper by de la Briandais
(1959) and discussed again in Sussenguth (1963).

In the next implementation, the empty string, represented by the "\ 0" -
character, is aready contained in the empty trie when we create it. We use this
as entry point to the structure because any list node must contain at least one
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entry, whereasin the array implementation, we could have aninitial array node
with only NULL pointers. Of course, we could use separate list-head nodes, but
they would increase the path length.

typedef struct trie n t { char this_char;
struct trie_ n_t *next ;
struct trie n_t *|ist;
/* possibly additional information*/
} trie_node t;

trie_node_t *create_trie(void)
{ trie_node_t *tnp_node;
t np_node = get_node();
t np_node- >next = tnp_node->list = NULL;
t np_node->this_char = '\0’;
return( tnp_node );
}

object_t *find(trie_node_t *trie,
char *query_string)
{ trie_node_t *tnp_node;
char *query_next;
tnmp_node = trie; query_next = query_string;
whil e(*query_next 1'="\0")
{ while( tnp_node->this_char != *query_next )
{ if( tnp_node->list == NULL )
return( NULL );
/* query string not found */
el se
tnp_node = tnp_node->list ;
}
t np_node = tnp_node- >next;
query_next += 1,

}
/* reached end of query string */
while( tnmp_node->this_char !'="'\0" )

{ if( tnp_node->list == NULL )
return( NULL );
/* query string not found */
el se
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tnmp_node = tnp_node->list ;
}

return( (object_t *) tnp_node->next);

int insert(trie_node_t *trie,
char *new string, object_t *new object)

{ trie_node_t *tnp_node;

char *query_next; int finished = 0;

tnp_node = trie; query_next = new_string;

[* first go as far as possible in

existing trie */

while( !'finished)

{ /* followlist till matching character
is found */
whil e( tnp_node->this_char != *query_next
&% tnp_node->list !'= NULL )
tnp_node = tnp_node->list ;
i f( tnp_node->this _char == *query_next )

{ /* matching character found,
m ght be last */
if( *query_next !="\0" )
/* not last. follow */
{ tnp_node = tnp_node->next;
query_next += 1;
}
el se /* insertion not possible,
string already exists */
return( -1 );
}
el se
finished = 1;
}
/* left existing trie, create new branch */
tmp_node->li st = get_node();
tmp_node = tnp_node->list;
tmp_node->li st = NULL;
t mp_node- >t hi s_char = *query_next;
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while( *query_next !'="'\0")
{ query_next += 1,
t np_node- >next = get_node();
t np_node = tnp_node- >next;
tmp_node->l i st = NULL
t np_node- >t hi s_char = *query_next;
}
t np_node->next = (trie_node_t *) new_ object;
return( 0 );

object t *delete(trie_node_t *trie,
char *del ete_string)
{ trie_node_t *tnp, *tnp_prev,
*first_del, *last_undel
obj ect _t *del _object;
char *del next;

if( trie->ist == NULL |
*delete_string == '"\0" )
return( NULL ); /* delete fail ed:
trie enpty */

else /* trie not enpty, can start */
{ int finished = 0; int branch =1
| ast _undel = tnp_prev = trie;
first _del =1tnp = trie->list;
del _next = delete_string;
while( !finished)
{ while( tnp->this_char != *del _next )
{ /* followlist to find
mat chi ng character */
if( tnp->list == NULL ) /* none
found*/
return( NULL );
/* deletion failed */
el se /* branching trie node */
{ tnp_prev =tnp; tnp = tnp->list;
branch = 1;

}
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} /* tnp has matching next character */
if( branch || (tnp->list !'= NULL) )
{ [/* update position where

to start deleting */

[ ast _undel = tnp_prev;
first_del = tnp; branch = 0;
}
if( *del _next == "\0" )

finished = 1; /* found
deletion string */
el se
{ del_next += 1;
tnp_prev = tnp; tnp = tnp->next;
}
} /* reached the end. now unlink and
del ete path */
del _object = (object_t *) tnp->next;
t np->next = NULL; /* unlink del _object */

if( first_del == last_undel ->next )
| ast _undel ->next = first_del->list;
else /* first_del == last_undel ->list */

| ast _undel ->list = first_del->list;
/* final path of nonbranching
nodes unlinked */
tnp = first_del
while( tnp !'= NULL ) /* follow
path, return nodes */
{ first_del = tnp->next;
return_node( tnp );
tnp = first_del;
}

return( del _object );

void renove_trie(trie_node_t *trie)
{ trie_node_t *tnp_node;
create_stack();
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push( trie );
while( !stack_empty() )
{ tnp_node = pop();
if( tnp_node->this _char !'="'\0")
push( tnp_node->next );
i f( tnp_node->list !'= NULL)
push( tnp_node->list );
return_node( tnp_node );
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The only difficult part here is the del et e operation because the deletion
of unused nodes requires different unlinking operations, depending on whether
itisreached by anext oral i st pointer. We avoid some difficulties by just
traversing the structure twice: once to find the place from which we have to
delete and another to actually perform the deletion. Thisturns out to be simpler
than a stack-based implementation. The performance of this structure is as
follows:

Theorem. The trie structure with nodes realized as lists stores a set of
words over an aphabet A. It supports a f i nd operation on a query string
g in time O(|A|length(g)) and i nsert and del et e operations in time
O(]A|length(g)). The space requirement to store n strings wi, ..., w, IS

0 (X, length(w;)).
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So the main improvement is the space complexity, which stops being a
problem. The dependence on |A| in both query and update operations happens
only in those instances when the basic trie would be efficient: when there are
many prefixes that allow many different next characters. So in applications
with normal text strings, the performance will be much better. If we have
some information about the access probabilities of the words, we can optimize
the structure by choosing the right sequence for the characters on each list
(Suraweera 1986).

Another way to avoid the problem with the alphabet size |A| is aphabet
reduction. We can represent the alphabet A as set of k-tuples from some direct
product A1 x --- x Ay; by thiseach string gets longer by afactor of &, but the
alphabet size can bereducedto | |A| i |. For our standard ASCI| codes, we can
break each 8-bit character by two 4-bit characters, which reduces the node size
from 256 pointers to 16 pointers, but doubles the length of each search path.

00101100
| 00101110

01000101
01001011
01010100
— 01011111
01100011
01100101
[ —
01110110 p——
01111110 p——

|

ALPHABET REDUCTION: INSTEAD OF ONE NODE WITH 256 ENTRIES,
OF WHICH ONLY 11 ARE USeED, WE HAVE FIVE NODES WITH 16 ENTRIES EACH

At the extreme end, we could use a 1-hit al phabet, representing the stringsas
sequences of single bits; this has been variously discussed in literature because
it seems a natural model, but the many necessary bit operations make it a bad
choicein rea implementations. For more general a phabets the same technique
applies, but if we do not have direct access to the bit representation of the
characters, we might need to keep tables of theindividual maps A — A; tothe
k subalphabets of the direct product embedding. But these tables are only of
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total sizek|A| and need to be kept only once, so thisis an insignificant memory
overhead.

By alphabet reduction, the special role of the termination character is lost;
it is mapped on a termination string, and we need additional bookkeeping to
recognize it. But it is also a good structure for the string model with explicit
length, without termination character. Next we give an implementation of the
trie structure, for strings of 8-bit characters broken in two 4-bit characters, with
no special roleof the’ \ 0" -character but instead a given length of each string.
We also use reference counts in the nodes to speed up the deletion.

typedef struct trie_n_t {

tri

{

obj

struct trie_n_t *next [ 16];

obj ect _t *obj ect ;

i nt reference _count;

/* possibly additional information*/
} trie_node_t;

e _node_t *create_trie(void)

trie_node_t *tnp_node; int i;
t np_node = get_node();
for( i =0; i < 16; i++)

tmp_node->next[i] = NULL;
t np_node- >o0bj ect = NULL,;
t mp_node- >ref erence_count = 1,
/* root cannot be deleted */
return( tnp_node );

ect t *find(trie_node_t *trie,
char *query_string, int query_ | ength)
trie_node_t *tnpl node, *tnp2_node;
i nt query_pos;
tnpl _node = trie;
for( query_pos = O;
gquery_pos < query_l ength; query_pos ++)
{ tnp2_node =
t npl_node->next[ ((((int)query_string
[ query_pos]) & OxF0)>>4)];
if( tnp2_node != NULL )
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}
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tnpl_node = tnp2_node;

/* used upper four bits */
el se

return( NULL );

/* query string not found */

t np2_node =

t npl_node->next[ ((int)query_string
[ query_pos]) & OxOF];

i f( tnp2_node != NULL )
tnpl_node = tnp2_node;
/*used | ower four bits */

el se
return( NULL );

/* query string not found */

/* reached end of query string */
return( tnpl_node->object);
/* NULL if query string not found */

insert(trie_node_t *trie,

char *new_string, int new_length,
obj ect _t *new obj ect)

trie_node_t *tnpl_node, *tnp2_node;
int current_pos; int next_sub_char
tnmpl _node = trie;

for( current_pos = 0; current_pos

{

< 2*new_| engt h; current_pos++)
if( current_pos %2 == 0)
/* use upper four bits next */
next _sub_char = (((int)new_string
[current _pos/2]) & OxFO0)>>4;
else /* use lower four bits next */
next _sub_char = ((int)new string
[current _pos/2]) & OxOF;
t np2_node =
t npl_node- >next [ next_sub_char ];
i f( tnp2_node != NULL )
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tnpl_node = tnp2_node;
/* used four bits */
else /* need to create new node */

{ int i;
tnp2_node = get_node();
for( i =0; i <16; i++)

t np2_node->next[i] = NULL;
t np2_node- >obj ect = NULL;
t mp2_node- >r ef erence_count = O0;
tmpl_node- >next[ next_sub_char ] =
t np2_node;
tmpl_node->reference_count += 1
tnmpl_node = tnp2_node;
}
}
i f( tnpl_node->object != NULL )
return( -1);/* string already exists,
has associ at ed obj ect*/
el se
{ tnpl_node->object = new object;
t npl_node- >reference_count += 1

}
return( 0 );

object t *delete(trie_node t *trie,
char *del _string,
int del _l ength)
{ trie_node_t *tnpl node, *tnp2_node;
int current_pos; int next_sub_char
trie node t *del start node;
int del _start_pos;
object _t *tnp_object;
tnpl_node = trie;
del _start_node = trie; del_start_pos = 0;
for( current_pos = 0;
current _pos < 2*del _length; current_pos++)
{ if( current_pos %2 == 0 )
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/* use upper four bits next */
next _sub_char = (((int)del _string
[current _pos/2]) & OxFO0)>>4;
else /* use lower four bits next */

next _sub_char = ((int)del _string
[current _pos/2]) & OxOF
t np2_node =
t npl_node- >next [ next_sub_char ];
i f( tnp2_node != NULL )
{ if( tnmpl_node->reference_count > 1)
{ del _start_node = tnpl_node;
del _start_pos = current_pos;
} [/* del _start_node is the
| ast node with two pointers */
tmpl_node = tnp2_node;
/* used four bits */

}

el se
return( NULL ); /* delete_string
did not exist */

}

i f( tnpl_node->o0bject == NULL )
return( NULL ); /* delete_string
did not exist */

el se

{ tmpl_node->reference_count -= 1;
t np_obj ect = tnpl_node->obj ect;

t npl_node- >obj ect = NULL;

}

i f( tnpl_node->reference_count == 0)

{ tmpl_node = del _start_node;

for( current_pos = del _start_pos;
current _pos < 2*del _l ength; current_pos++)
{ if( current_pos %2 == 0 )
/* use upper four bits next */
next _sub_char = (((int)del _string
[current _pos/2]) & OxFO0)>>4;
else /* use |lower four bits next */
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next _sub_char = ((int)del _string
[current _pos/2]) & OxOF
tnp2_node =
tmpl_node- >next[ next_sub_char ];
tnpl_node->next[ next_sub_char ] = NULL
tmpl_node- >ref erence_count -= 1;
i f( tnpl_node->reference_count == 0 )
return_node( tnpl_node );
tnmpl_node = tnp2_node;
}
return_node( tnpl_node );

}
return( tnp_object );

void renove trie(trie_node_ t *trie)
{ trie_node_t *tnp_node;
create_stack();

push( trie );
whil e( !'stack_empty() )
{ int i;

t np_node = pop();

for( i=0; i<16; i++)

{ if( tnmp_node->next[i] != NULL )
push( tnp_node->next[i] );

}

return_node( tnp_node );

The performance of this structure is as follows:

Theorem. The trie structure with k-fold alphabet reduction stores a set of
words over an aphabet A. It supports fi nd and del et e operations on
a query string ¢ in time O(k length(g)) and i nsert operations in time
O(k|A|% length(g)). The space requirement to store n strings ws, ..., w, IS
O(k|Al¢ Y, length(w;)).
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The inverse operation of alphabet reduction is level compression, which is
the use of some power A* of the original alphabet to reinterpret the string as
groups of k symbals. This received some theoretical study (Andersson and
Nilsson 1993, 1994; Nilsson and Tikkanen 1998, 2002) in the context of hit
strings, where A = {0, 1}, and for other very small alphabets (quadtree), but
for strings over an ASCI| alphabet it is not feasible.

Each node of the basic trie structure is itself again a dictionary, with the
character as key and the pointer to the next node as object. Thus we can
realize the nodes by any dictionary structure of our choice. The trie version
using lists for the nodes corresponds to a dictionary realized as list of (key,
object) pairs, which isvery inefficient if that list islong. Thetrie version using
alphabet reduction can be interpreted as using a trie over the smaller alphabet
asdictionary in each node of thetrie over the original alphabet. Another natural
choice is to use a balanced search tree in each trie node. Here we have the
choice of the numerous types of search trees, but in principle we can use just
any balanced tree. Because in each node the dictionary contains at most |A|
entries, we get at worst an O(log | A|) time overhead to find the correct entry in
each node, and possibly to change it. And the space used by any search treeis
linear in the number of keysit stores, so the performance of the structureis as
follows:

Theorem. The trie structure with balanced search trees as nodes stores a
set of words w, ..., w, over an aphabet A. It supports fi nd, del et e,
and i nsert operations on a query string ¢ intime O(log|A| length(g)) and

requires O (", length(w;)) space.

The dependence on the alphabet size is thus harmless; still the overhead of a
search tree gives it an advantage over the list only if many nodes have many
entries.

In the previous argument we overestimated the height of the search treesin
most nodes because most nodes will not have an entry for each possible next
letter. We can improve the bound abit if we balance not each node individualy,
but use some global balance criterion. For a static trie structure, this was done
by Bentley and Sedgewick (1997), who introduced the “ternary trie” They
use as underlying search tree a tree of our model 2 (node tree), aternary tree,
where each node contains one character as key and one pointer each for query
characters that are smaller, larger, or equal. To build a ternary trie, we assume
that the strings are already sorted in lexicographic order. In each node, we
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choose as comparison key the character at the current position of that string,
which is the lexicographic median of the strings that remain along that search
path. Then in a query step, when we compare the current query character with
the node key,

{ either query character and node key are equal, then we move on to the next
query character and follow the “equal” pointer of the node; this happens
only length(g) times,

{ or the query character and node key are not equal, then we follow the
“smaller” or “larger” pointer; this reduces the number of possible strings to
less than half the previous number, so this happens only O(logn) times.

The performance of this structureis as follows:

Theorem. Theternary triestructureisastatic structurethat storesaset of words
wy, ..., w, over anaphabet A. It supportsf i nd operationsfor aquery string
g intime O(logn + length(g)). The space requirement is O (3}_; length(w;)),
and it can be built from a sorted set of stringsin thistime.

Some heuristic dynamic variants of this structure have been discussed in
Badr and Oommen (2004), but a true dynamization is surprisingly difficult.
The idea of subdividing tries into binary comparisons with median characters
has occurred beforein Breslauer (1995) and Cole and Lewenstein (2003) in the
context of suffix trees.

A different type of compression of tries is path compression, which is the
idea that instead of explicitly storing nodes with just one outgoing edge, we
skip these nodes and keep track of the number of skipped characters. So the
path compressed trie contains only nodes with at least two outgoing edges,
and together with each edge it contains a number, which is the number of
characters that should be skipped before the next relevant character is looked
at. Thisreducesthe required number of nodesfrom thetotal length of all strings
to the number words in our structure. But, as we skip all those intermediate
nodes, we need in each access a second pass over the string to check all those
skipped characters of the found string against the query string. This structure
is known as Patricia tree (Morrison 1968), which is an acronym for “Practical
algorithm to retrieve information coded in aphanumeric.” The idea of path
compression can be combined with any of the aforementioned variants of tries;
originally it was described for bit strings, but for a two-element alphabet the
space overhead is so small that today there is no need for path compression;
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this technique to reduce the number of nodes isjustified only if the alphabet is
large.

i "example"

"exam"

j "fail”

"false"

”Z‘I’ee”

| | "trie”

tr

PATRICIA TREE FOR THE STRINGS exam, example, fail, false, tree, trig, true:
NoDES IMPLEMENTED AS LisTS; EACH LEAF CONTAINS ENTIRE STRING

Asastatic data structure, the Patriciatree seemsto be quite straightforward,
but the insertion and del etion operations create significant difficulties. To insert
a new string, we need to find where to insert a new branching node, but this
requires that we know the skipped characters. It seems an obvious solution to
attach to each node the skipped substring that led to it, but then we have to
alocate and deallocate many small strings of varying sizes; even if we group
them in afew standard sizes, this is a procedure with high overhead. Another
solution would be a pointer to one of the strings in the subtrie reached through
that node, for there we have that skipped substring already available. But we
need to be careful because that string might again be deleted, in which case
we would have to replace al those pointers by pointers to a different string
in that same subtrie. To alow us to detect that a pointer on the path points to
some place in the string we wish to delete, all those pointers would need to
be represented as pointer to the beginning of the string plus offset. Thisis a
clumsy solution, but still feasible; its performance would be the following:

Theorem. The Patricia tree structure stores a set of words over an alphabet
A. It supports fi nd operations on a query string ¢ in time O(length(g))
and i nsert and del et e operations in time O(|A|length(¢)). The space
requirement to storen strings w, . .., w, is O(n|A| + Y, length(w;)).
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Another obvious solution attempt would be to follow some branch just to its
end to find out which the skipped characters were; they have to be the same for
al branches. But this does not give any bound for the insertion time of a string
g in terms of length(g), because even to insert a very short string, we might
have to follow very long paths to the end.

Thus, a Patricia tree is a structure whose implementation overhead uses
up its efficiency advantage over normal tries, for example, those with nodes
realized as lists. The significance of Patriciatreesis mainly as building block
of suffix trees, where these problems do not occur.

Although it is most natura to use the string in this left-to-right fashion,
there is no intrinsic reason to do so. The sequence in which we evaluate the
characters of the strings doesinfluence the size of the resulting trie structure; if,
for example, all strings have along common suffix, it might be advantageous
to read them from that end. We could even, for each trie node, specify which
position we next look at — there is no need for these positions to be in any
particular sequence or the same sequence along all branches of the trie. But
optimizing the possible sequence choices turns out to be NP-complete in any
variant (Comer and Sethi 1977).

A number of additional ways to compresstries have been proposed (Heinz,
Zobel, and Williams 2002). The compression methods in Maly (1978) and al-
Suwaiyel and Horowitz (1984) are suitable only for static tries; the method in
Aoe, Morimoto, and Sato (1992) requires very large arrays, but the method in
Morimoto, Iriguchi, and Aoe (1994) works with the same nodes as the normal
trie and has, in the experiments they report, a space reduction by a factor %
But in any of these space-saving modifications we lose the simple elegance of
thetrie structure. A related question is how to represent tries, or sets of strings,
on external memory. Strings are variable-length keys, so they do not fall in the
model of B-trees, but these are structureslike string-B-trees, prefix-B-trees and
O-trees (Ferragina and Grossi 1999; Orlandic and Mahmoud 1996).

8.2 Dictionaries Allowing Errorsin Queries

The trie-based structures we discussed in the previous section find only exact
matches; if the query string contains an error, for example, aword ismisspelled
or atyping or transmission error happened, the correct string will not be found.
Thissituation isdifferent from the numeric keysin the search treesdiscussed in
Chapter 3, or the range trees for higher-dimensional data discussed in Chapter
4; for these, it is easy to find a neighbor of a query value even if the query
value is dlightly off the correct value. That does not work in a trie-based
structure because the trie essentially mirrors the lexicographic order of the
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strings: if the first character of the query string is incorrect, we are searching
at entirely the wrong place. It would be highly desirable to have a dictionary
structure that keeps track of a set of strings and finds all strings that differ
only in d characters from the query string. This problem has for d = 1 an
elegant, efficient, and practicable solution (Brodal and Gasieniec 1996), and
several even more efficient solutions in computation models less relevant for
our purposes (Yao and Yao 1997; Ferragina, Muthukrishnan, and de Berg 1999;
Brodal and Venkatesh 2000); for d > 2, it is essentially open.

Suppose we have a set of n words wy, ..., w, over an alphabet A, with
total length £,, = Y, length(w;), and we want to preprocess thisinto a
structure that can find all words of our set that differ in at most d places from
aquery string ¢ for some fixed d. Then there are two trivial solutions:

1. We could generate for each word w; all the words that differ in at most d
places from it and store all these word variantsin atrie.

For each word w;, we get ©(]A|? length(w;)¢) variants, so if we use a
standard trie, the size of the underlying structure increases from

0 (IAIZ.) = O(IAI X/_; length(w,)) to O(JA|*+* -1, length(w,)**Y),
whereas the query time stays O (length(q)). Thissizeisinfeasible even for
d=1.

2. We could use just a standard trie for the words, but generate for each query
string ¢ all the words that differ in at most d places, and perform al these
queries on thetrie.

This generates ©(] A|“ length(¢)?) queries, each of time ®(length(q)),
which againis useless at least for d > 2.

There are minor improvements possible. In the first solution we could perform
path compression, which would reduce the exponent for the required space
from d + 1 to d, because there are only so many leaves; but it is not obvious
how to construct the structure in that time (Brodal and Gasieniec 1996). One
could use atrie with list-based nodes, which would remove one | A| factor. And
one can combine both solutions, storing all variants with d; errors and asking
all query variants with d, errors, to find al words with d; + d; errors. All this
isuseless, but essentially the best we have for d > 2.

The remarkable achievement of Brodal and Gasieniec (1996) is a structure
ford = 1, which, in our standard model, consists of just two tries on the words,
so of size O(|A|X,) each, if we use the standard trie, and one balanced search
treeof size O(X,)). Thequery timeis O (length(g) log ,,). Itisevenadynamic
structure, inserting or deleting aword w takes O (length(w) log X,,)) time. It can
be combined with al the trie variants, so one might use the trie with list-based
nodes to decrease the space complexity. Only the path compression cannot be
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used if we want to have the structure as dynamic dictionary. If we leave our
computational model and allow ourselves the use of a hash table instead of
the search tree, even thelog =, factor disappears and both preprocessing and
query are linear-time operations.

Theideaof thisdouble-trie structureisto build onetriefor all words w; and
a second trie for the words written backward w!®®, Then each node in the
first trie corresponds to some prefix = of some word w;, and each node in the
second trie corresponds to some suffix o of aword w;. For each word w; we
look at all pairs of (prefix, suffix) that are separated by a single character, so as
to have different ways to write w; = wco, where ¢ is a character. Each word
w; generates length(w;) for such pairs (7, o), which are represented by pairs
of trie nodes, addresses or numbers. We generate all these pairs for a given
word by first following in the first trie the path of the word to its end, pushing
a pointer for each passed node on the stack, and then following in the second
trie the path of the reversed word, pairing each node we reach in the second
trie with the corresponding next node from the stack. So we can generate all
the node pairsin time O (length(w;)). Each of these node pairs, that is, pairs of
pointers or node numbers, we enter in our search-tree, together with apointer to
the word w; that generated that pair. The total number of pairsare ¥,,, so each
search-tree operation costs only O(log ¥,,). So we build the entire structure in
time O(2, log Z,,).

The query method now follows the same outline: follow the path of the
query word in the first trie as far as possible, pushing a pointer to each visited
node on the stack. Unless the query word is indeed correct, we will not reach
the end, but there is a maximum prefix of the query word that is also prefix of
some correct word. Then we follow the path of the reversed word in the second
trie until we are one character before the end of that maximum prefix. From
then on, while we continue to follow the path in the second trie, we pair each
visited node with a prefix node from the stack and look up in the search tree
whether that node pair belongs to any correct word. Thus the query time is
O(length(g)log =,,).

If we use a trie with list-based nodes and any balanced search tree, the
performance of this structureis as follows:

Theorem. The double-trie structure, with trie nodes realized as lists and a
balanced search tree, stores a set of words of total length =, over an aphabet
A. ltsupportsaf i nd operation onaquery string ¢ to find all wordsthat differin
at most one place from ¢ in output-sensitive time O(]A| length(g) log ., + k)
if there are k such words. It supportsi nsert and del et e operations of a
word w in time O(]A|length(w) log =,,). The space reguirement is O(X,,),
and the time to build the structureis O(JA| X, log Z,,).
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Thisisalmost as good as possible, and if our computational model allows the
use of a hash table instead of the search tree, the log X, factor disappears, so
all operations become linear time in the length of the input, which is certainly
optimal. In a somewhat intermediate model, Ferragina et a. (1999) give a
much more complicated structurein whichthelog X, isreduced to loglog X,
Another method with worse performance was proposed in Amir et al. (2000).

The double-trie structure even supports queries for a more general model
of errors; not only one character might be exchanged for a different character,
but instead also one character could be inserted or deleted. This corresponds
to using the edit distance instead of the Hamming distance. For the double-
trie structure it just means that for each word w we need to insert another
length(w) + 1 acceptable (prefix, suffix) pairs into the search tree, those de-
compositions w = o without intermediate letter; then the same query algo-
rithm will also accept all query words g with g = mco; and to accept the query
words which are missing one character, we use the original set of acceptable
pairs, but pair in the query the current suffix with its immediate prefix instead
of the prefix one character shorter. Neither of these modifications changes the
complexity.

Brodal and Gasieniec (1996) also gave a different solution to use the two
tries and obtain alinear query time, without the use of a hash table, but using
amore complicated tool: sorting all the input strings in lexicographic order in
0(X,) time and assigning them their rank in that order astheir number. Then,

{ each trie node in thefirst trie then correspondsto an interval in that order,
the words w; that start with that prefix;

{ each trie node in the second set corresponds to some subset: the words that
end with that suffix.

Instead of testing whether apair of nodesfrom thefirst and second trie represent
a (prefix, suffix) pair from aword w; by looking up that pair of nodes in our
search tree, they test whether the interval of the first node intersects the subset
of the second node. This is a situation in which fractional cascading can be
applied: when we follow a path in the second trie, the subsets get sparser, so
we represent the subsets by sorted lists and sublists, with pointers from any
node in the list to its next neighbors in the sublists. Going the corresponding
path backward in the first trie, we get a sequence of increasing intervals. So,
when we follow the path in second trie and compare with the corresponding
node from the stack in the first trie, we get a sequence of increasing intervals
and a sequence of decreasing sorted sublists, and we want to test whether there
isat any stage an intersection between the interval and the sublist. For this, we
just have to find the position of the interval in the first list, for which we need
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a search tree, then we can follow in each step in O(1) time the pointers to the
neighborsin the sublist to obtain the position of the previousinterval inthe new
sublist, and then extend the interval and check whether it now contains one of
the neighborsin the sublist. The complexity of this query-processing algorithm
is O(length(g)) to follow the first trie as far as possible and put the nodes on
the stack, the same time to reach the corresponding position in the second trie,
O(logn) to determinetheinitial position position of theinterval in thelist, and
0(1) for each step to the next sublist and interval, giving atotal query time of
O(length(g) + logn).

All this assumed that the characters of the string were approximately of
the same size as the elementary units of the computer memory, so the time
necessary to read astring is essentially itslength, and we have an Q(length(w))
lower bound for any operation on a word w. The situation changes when we
may read the entire word in constant time, which is the model considered in
Yao and Yao (1997) and Brodal and Venkatesh (2000); there they consider sets
of n bit strings of length m in machine model of word length at least m. Then
we can read the entire query word in time O(1), and for an exact match query
we could just use it directly in a hash table and find the corresponding entry
in O(1). Here the question again is how fast we can extend this to words that
differinasingle position. A first solution was given in Yao and Yao (1997) that
used O (n logm) words of length m space and aquery time of O(loglogn); this
was improved in Brodal and Venkatesh (2000) to O(1) query time.?

For queriesfor distanced > 2, essentially nothing isknown, although some
aspects were discussed in Dolev et a. (1994) and Greene, Parnas, and Yao
(1994), neither of them leading to an algorithm.

8.3 Suffix Trees

The suffix treeisastatic structure that preprocesses along string s and answers
for aquery string ¢, if and where it occursin the long string. Thus, it solvesthe
substring matching problem, as do the classical string-matching algorithms.
The difference is that the time to answer a substring query is not dependent
on the length of the long string, but only on the length of the query string.
The query time is O(length(g)) for a query string g. The ideais very smple
a least on the query side: each substring of s is prefix of a suffix of s, and

2 They used a bitwise computation model, but if we would reinterpret those bounds just as
strings over the binary alphabet, the performance would be worse than the double-trie structure
combined with a hash table. The strength of the resultsis that the operations on the words of
length m are performed in O(1) time.
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the nodes of any trie correspond to the prefixes of the strings stored in the trie,
so if we construct a trie that stores all suffixes of the long string s, then its
nodes correspond to the substrings of s, and we can decide for any query ¢ in
O(length(gq)) whether it isa substring of s.

[ p—pHef—r—1\0

e H o e W
e 1{\]

TRIE OF THE SUFFIXES OF pepper

As it is, this structure would use O (length(s)?) nodes and take the same
timeto build; but if we now apply path compression, we see that there are only
length(s) branching nodes and, different from Patricia trees, we do not need to
store al those strings explicitely, but can encode each by a beginning and end
addressin thelong string s. Thuswe get an O (length(s)) representation for the
Patriciatree of the suffixes of s, which alows usto answer substring queries g
in O(length(q)) time.
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PATRICIA TREE OF THE SUFFIXES OF pepper:
THE LEAF NUMBERS GIVE THE STARTING POSITIONS OF THE SUFFIXES

Thisideawas introduced by Weiner (1973).° The major problem isto build
that linear-sized representation in linear time. Several agorithms have been
proposed, al of which require some thought. The classical methods are by
Weiner (1973), who builds the structure backward, starting from the end of

3 But the name was given by McCreight (1976). In Weiner (1973), the structure was called a
prefix bitree and a very similar structure was called position tree (Aho, Hopcroft, and Uliman
1974).
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the string and adding the suffixes in order of increasing length; by McCreight
(1976), who builds the structure by adding suffixes in order of decreasing
length; and by Ukkonen (1995), who builds the structure incrementally from
front while maintaining a suffix tree of the already-processed prefix. Before
Ukkonen's solution, the problem of constructing the suffix tree incrementally,
while reading the string, had been studied in anumber of papers; the algorithm
in Majster and Reiser (1980) does not work in linear time, but the algorithmsin
Kempf, Bayer, and Giintzer (1987) for the related position trees and Kosargju's
“quasi-real-time” algorithm (Kosargju 1994) are linear-time constructions. An
incremental method that allows addition at either end of the string was de-
veloped by Inenaga (2003); a “lazy” version that builds the tree only during
the queries was described in Giegerich, Kurtz, and Stoye (2003), and an at-
tempt at a common model for these algorithms was made in Giegerich and
Kurtz (1997). In Tian et a. (2005), a quadratic-time algorithm is proposed for
a memory-restricted setting and various experimental results are reported in
Hunt, Atkinson, and Irving (2002).

Because any realization of the suffix tree has atrie as underlying structure,
the spacerequirementsof tries, especially for largeal phabets, area so aproblem
for suffix trees. This problem has been considered in Andersson and Nilsson
(1995), Farach (1997), Kurtz (1999), Munro et a. (2001), and Kim and Park
(2005). We can combine the suffix tree idea with any of the trie representations
discussed in the previous section. Some applications of the structure already
have a small alphabet, for example, for substring search in a genetic sequence;
but for along text over the normal alphabet, the representation of the trie nodes
aslistsis probably most convenient.

The algorithms are easiest to understand if first described without the path
compression, so the underlying abstract structure is atrie that stores a set of
suffixes of the input string and the trie nodes correspond to prefixes of those
suffixes, that is, the substrings. Each node has some outgoing pointers that are
the normal trie edges, corresponding to possible extensions of the current prefix
of asuffix, that is, alonger substring with some additional character at the end.
In addition to these pointers, both McCreight (1976) and Ukkonen (1995) use
a further pointer in each node — the suffix link — which points from a node
representing a string ag . . . a; to the node representing the string as . . . ay, that
is, its suffix after deleting the first character.

We describe here Ukkonen's method. Suppose we have aready built the
structure for the string cg...c,—1 and want to add one further character ¢,
in the end. We need to change only those nodes that correspond to strings
¢i ...cp—1; anode whose string does not occur as suffix of ¢g. .. c,_1 cannot
change by the extension to ¢g. .. ¢,_1¢,. Those nodes that potentially might
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change are reached from the node corresponding to ¢g. .. c,_1 by following
suffix pointers; this path is known as the boundary path. Each node on the
boundary path isin one of the following situations:

{ type 1. The node has no outgoing edge.

{ type 2: The node has an outgoing edge, but none that corresponds to the
next character ¢,.

{ type 3: The node has an outgoing edge corresponding to the next character
Cp-

If we follow the boundary path fromc¢g . . . ¢,_1 t0 ¢,_1, these three types form
consecutive, possibly empty, intervals. If the node correspondingtoc; ...c,_1
is of type 1, this substring occurs only at the end, so the longer substring
ci_1¢i . .. cy—1 dsooccursonly at the end and its corresponding nodeis aso of
type 1. In the same way, if the node corresponding to¢; . ..c,_1 is of type 3,
the substring ¢; . .. ¢,_1¢, has already occurred somewhere before and so the
shorter substring ¢;11 . ..c,_1c, adso has occurred somewhere before and its
corresponding nodeisalso of type 3. Thus, all type 1 nodes arein the beginning
of the boundary path, all type 3 nodes in the end, and type 2 nodes possibly
between them.

We do not need to make any change in atype 3 node because the node we
need for the new last character ¢, already exists. In atype 2 node, we need
to create a new branch, a new node for the string ¢; . . . ¢,_1¢,, which did not
occur before. This is a new branch off a node that aready had at least one
outgoing edge, because the total number of leaves of the trie structureisn, we
meet type 2 nodes only atotal of n — 1 timeswhileinductively building thetrie
structure for a string of length . So the main work is the type 1 nodes, where
we have to just add another node to a node that previously had no outgoing
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pointer. There we just make a long path at the end one node longer, exactly
the structure we wanted to avoid by path compression. To represent such a
path, which has no branches and extends to a leaf, we need just the first node,
together with the position in the long string where the substring represented by
that first node occurs, and the information to accept al continuations of that
substring up to the end of the long string. Such an “open-ended” node does not
need to be updated at all, when the long string grows at its end, unless the path
represented by this node devel ops a new branch. For the open-ended nodes, the
suffix link stays undefined.

So all the update work that needs to be done on the boundary path is among
the type 2 nodes, starting at the first node that corresponds to a substring
¢ ... cqa—1 that hasaready occurred beforeasc; . . . ¢j_i1,—1, and ending at the
first node that already has an entry for ¢,, so even the substring ¢; ... c,_1¢,
has already occurred before. The starting node in each step of the inductive
construction is easy to find: the end node of one round is predecessor of the
starting node of the next round. If, in the step of adding ¢,, wefoundc; . ..c,_1
as the end node, and that the first node already had an entry for ¢, (type 3),
then in the step of adding ¢,+1, we will find ¢; ... c, as the first node that
aready has an outgoing pointer (type 2 or 3). The only exception to this is
that if we did not find any node that aready had an entry for ¢,, we walked
down the boundary path to the root node representing the empty string and
added there a new entry for ¢, then the root node is the starting node of the
next round.
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So the outline of this algorithm to construct the suffix tree of a given string
s =cp...c,_1isasfollows:

0. Create the root node, representing the trie of the empty string. Set the
active node to that node, and i = 0.
1. Whilei <n
1.1 Whilethe active node has no entry for ¢;
1.1.1 Create anew node, reached from the active node by the entry
for ¢;. Thisnew nodeis aledf.
1.1.2 Move the active node down its suffix link if it is not already
the root.
1.2 Move the active node up the link for ¢; unlessit is the root and we
just created that link. Increment ;.

In this outline, we see two types of steps: in 1.1 the active node foll ows a suffix
link, so it movesto anode representing a string shorter by one character, and in
1.2 it follows aregular link, so it moves to a node representing a string longer
by one character. There are only n iterations of step 1.2, sothe step 1.1 isaso
taken only n times. This suggests an O(n) complexity. There are, however,
several problems because the nodes we want to use may be missing due to the
path compression, especially in the nodes represented by the open-ended paths.
And for those nodes the suffix links will also not exist.

So we have to find implicit nodes when we need them and make them
explicit. We can represent each implicit node by an explicit node, followed
by a substring: if the explicit node represents string o and the substring is
¢ ...cj, they together represent ac; ... c;. Thisis a constant-sized represen-
tation if we use (i, ) to describe ¢; . .. ¢;. Each implicit node has many such
representations, one for each explicit node on the path to that implicit node.
Given such a representation of an implicit node, we make it explicit by first
following the path in the compressed trie, asfar as possible, and in the last ex-
plicit node we insert anewly created explicit node in the correct link. Thisalso
solves the problem of missing suffix links for implicit nodes: if the implicit
node is represented by an explicit node followed by ¢; ... c;, then the node
reached by the suffix link from the implicit node is represented by the node
reached by the suffix link from the explicit node, foll owed by the same substring
Ci...Cj.

We till need to bound the time we need to make the missing nodes ex-
plicit. We make an implicit node explicit in step 1.1.1 only when it becomes a
branching node; there are only at most n — 1 branching nodes, so this happens
only O(n) times. Thereisno O(1) bound for the individual operation because
we might have to go through many explicit nodes to finally find the link in
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which the implicit node has to be inserted. But a similar accounting argument
as before works, applied to the current representation of the active node instead
of the active node itself. The representation of the active node consists of an
explicit node and a substring. The substring gets longer only in step 1.2; each
time we follow a suffix link, the length of the string does not change, and each
time we follow a link to another explicit node, in the process of making an
implicit node explicit, the string gets shorter. So the total number of explicit
nodes traversed while making implicit nodes explicit isonly O(n). This gives
atotal O(n) bound for the complexity of the construction of the suffix tree of
astring of length n.
The performance of this structure is as follows:

Theorem. The suffix tree structure is a static structure that preprocesses a
string s and supports substring queries. If the trie nodes are realized as linked
lists, theoperationmake_suf f i x_t r ee preprocessesastring of length n over
an alphabet A in time O(|A|n) into a structure of size O(n), which supports
find_string queriesfor astring ¢ intime O(|A| length(g)).

The suffix tree structure turned out to be very useful for various string pat-
tern processing tasks (Apostolico 1985; Gusfield 1997). Some applications
motivated variants of the underlying structure, like parametrized strings intro-
duced in Baker (1993) and further discussed in Kosargju (1995) and Cole and
Hariharan (2003); aparametrized string consists of characters of the underlying
aphabet and variables, where all occurrences of the same variable have to be
replaced by the same string. This can be viewed as an equivalence class of
strings, for example, a program under renaming of variables.

Another variant are the two-dimensional strings, rectangular arrays of sym-
bols from an alphabet, which can be viewed as abstraction of images, where a
two-dimensional substring corresponds to a match of atrandate of asmall im-
ageinthebigimage. Two-dimensional suffix treeswereintroduced in Giancarlo
(1995) and further developed in Choi and Lam (1997) and Cole and Hariha-
ran (2003); higher-dimensional versions are discussed in Kim, Kim, and Park
(2003).

Suffix trees can also be used to find repetitionsin text, which isan important
subtask of dictionary-based compression methods like Lempel-Ziv. A closely
related structure is the directed acyclic word graph (DAWG), which is the
smallest automaton that accepts the subwords of a given word (Blumer et al.
1985; Blumer 1987; Holub and Crochemore 2002); it can also be constructed
by the samea gorithmsas suffix trees (Chen and Seiferas 1987; Ukkonen 1995).
Yet another variant is the affix tree studied in Maass (2003).
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Because the suffix tree structure is so useful, it would be desirable to have
a dynamic variant of it, in which we can change the underlying string. This
question has aready been considered by McCreight (1976), but there arewords
of length n for which achange of O(1) placesin the word forces () changes
in the suffix tree structure (Ayala-Rincon and Congjo 2003).

Suffix trees can also be built for multiple strings if we want to decide

whether a query string g occurs as substring of any of k stringssy, . .., sx. The
construction is exactly the same; indeed, we can just concatenate the strings to
$182, - - -, 8 and build anormal suffix tree for this combined string.

8.4 Suffix Arrays

The suffix array is an alternative structure to the suffix tree that was devel oped
by Manber and Myers (1993).* It supports the same operations as the suffix
tree: it preprocesses along string and then answers for a query string whether
it occurs as substring in the preprocessed string. The possible advantage of the
suffix array structureisthat its size does not depend on the size of the alphabet
andthat it offersaquitedifferent tool to attack the sametype of string problems.
It issaid to be smaller than suffix trees, but that somewhat depends on various
compact encoding tricks; initsmost straightforward implementation, it requires
three integers per character of the long string, whereas an implementation of
the suffix tree with list nodes requires five pointers per node, and the number
of nodes is a most the length of the string, but possibly smaller. In any case
the query structureis significantly larger than the underlying string — our suffix
tree by afactor of 20, the basic suffix array by a factor of 12 — both factors
can be reduced by some encoding tricks; a study of this was made by Kurtz
(1999), and many further papers have been aimed at this topic. Especially for
the suffix array, we need to consider not only the space of the structure itself,
but also the additional space used during the construction (Itoh and Tanaka
1999; Burkhardt and Kéarkkainen 2003; Manzini and Ferragina 2004; Kim, Jo,
and Park 2004b; Na 2005). Some structures intermediate between suffix array,
and suffix tree have al so been proposed (Karkkainen 1995; Colussi and De Col
1996; Kim, Jeon, and Park 20044).

In the previous chapters we frequently claimed that space is no longer a
problem, but for structures on strings, it is a legitimate problem because the
overhead is so large. The main reason for thisisthat standard ASCII characters

4 The same structure was developed at the same time under the name PAT array by Gonnet
(1992) for the application of an Index to the Oxford English Dictionary.
5 Frequently, afactor of 28 is cited for suffix trees.
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are so small compared to integers or pointers. If we used an even smaller apha-
bet, the ratio would be even worse. In the same way, the word width influences
the ratio: if we use 64-hit pointers, the overhead of the straightforward imple-
mentation doubles, and if we have only text of length at most 26, we could fit
all our pointers and integers in 16 bit and halve the overhead. So the various
numbers stated in literature have to be taken with care; they assume the text
length to be less than 232, and especially for the variants of the suffix tree,
whose size depends on the given text, they frequently are experimental values
obtained for some specific set of text samples. A clean way to compare the vari-
ous methodsin modelslike our pointer machine would be to count integers and
pointers per text character in the worst case. Or one can start to count the bits
of additional space needed for the structure (Hon, Sadakane, and Sung 2003).

The underlying idea of the suffix array structure is to consider all suffixes
of the preprocessed string s in lexicographic order and perform binary search
on them to find a given query string. This already shows one disadvantage of
the structure: the query timeto find a string ¢ in the long string s also depends
on length(s); to find the right one among the length(s) possible suffixes, we
need O(loglength(s)) lexicographic comparisons between ¢ and some suffix
of s. Without additional information, each comparison takes O (length(g)) time
for atotal of O(length(g) loglength(s)); if some additional information on the
length of common prefixes of the suffixes of s is available, this reduces to
O (length(g) + loglength(s)). The suffix tree needs only O(length(¢)) query
time, independent of s.
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We need to represent the suffixes of the string s in a way that they are
sorted in lexicographic order and we can perform binary search on them. The
most natural way is to have one big array in which the starting indices of the
lexicographically sorted suffixes are stored. So we need an integer array of
the same length of the string. This is another disadvantage. There might be a
problem of alocating an array of length(s) integers if length(s) is very large.
And for the common prefix information, we need another two such arrays.
The structure does not fit into our pointer-machine model, which alows only
fixed-size arrays.
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A final problem is how to build the structure. Manber and Myers (1993)
originally gave an algorithm that built the suffix array of a string of length »n
in time O(nlogn), compared to O(n) for the suffix tree. One can construct
the suffix array from the suffix tree in O(n) time, but if one aready has the
suffix tree, there is no point in building a suffix array. Ten years later, many
different methods to construct the structure directly in O(n) time were found
simultaneously by Kérkkainen and Sanders (2003), Kérkkainen, Sanders, and
Burkhardt (2006), Kim et al. (2003, 2005), Ko and Aluru (2003, 2005), and
Hon et al. (2003); of these, the method of Karkkéinen and Sanders (2003) is
probably the simplest® and we will describe it later. By now, many different
construction methods have been found; a survey and comparison is given in
Puglisi, Smyth, and Turpin (2007). It appears that some agorithms with a
worst-case complexity as bad as O (n?) outperform the O (n) algorithms on real
test data.

In all those papers, as well as in Manber and Myers (1993) and Itoh and
Tanaka (1999), constructing the array of sorted suffixes is viewed as the main
problem, which is a special instance of the classical string sorting problem.
But there are really two steps in building the structure: sorting the suffixes and
finding the common prefix information. For that second step, anice method was
presented in Kasai et al. (2001), which constructs in O(n) time the common
prefix information from the sorted suffixes.

We will now describe the query algorithm for suffix arrays, as developed in
Manber and Myers (1993). We are basically performing binary search on an
array that contains the starting indices of the suffixes of our string s in lexico-
graphic order. In addition, we have two additional arrays that contain longest
common prefix information for questions asked during the binary search. Sup-
pose we already know that the query string ¢ is lexicographically between the
strings left and right and we want to compare now with the string middle. If
we know that left and middle share the first k characters, then any other string
between them in the lexicographic order also shares these first characters. So
if left and ¢ sharethefirst I characters, with! < k, then the query string cannot
be between left and middle. And by the same argument, if [ > k, then middle
cannot be between left and g.

So if we have the numbers k and /, we can decide the outcome of the com-
parison in that step of binary search without looking at the string g unless
[ = k. If I =k, we have to compare the strings ¢ and middle in time propor-
tional to the length of the common prefix of ¢ and middle. If, as a result of
this comparison, we find that ¢ is to the right of middle, then in the binary

6 They even give explicit code for it in their paper, but they allocate four auxiliary arrays of the
same length, per recursion, which destroys the main virtue of the suffix array structure.
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search middle becomes the new left, and we have spent the possibly large
comparison time usefully, for we updated I, the length of the common prefix of
q, with left. But if ¢ isto the left of middle, that information does not help us
avoid future comparison. If we search for ¢ = 5®a in the string ab'®, using
the left common prefix information only, we will in each step compare b*a
from the beginning to the middle string b= because the length of the common
prefix with the left string a stays 0. We avoid this by maintaining both the
information about the common prefix length to the left and to the right. In each
step in which a string comparison between ¢ and middleis necessary, either the
left or the right common prefix length increases by the number of additional
common characterswe found, whichisat most length(q) in total, over all steps.
If we can decide the binary search step without comparing characters, on base
of the length of common prefix information only, then this information also
gives the new common prefix length of the query string ¢ to the new left or
right string.

Of these numbers, the length of the common prefix of left and middle can
be precomputed, whereas the other number needs to be maintained during the
query. We have one array | ef t _-m ddl e_cp, which gives the length of the
common prefix of left and middle, and another array ri ght _m ddl e_cp,
which gives the length of the common prefix of middle and right, for each
interval that can occur in the binary search. Each of these arraysisonly aslong
astheoriginal sorted list of strings because in abinary search each item occurs
for at most oneinterval as subdivision point. So we can use the number of the
middle item as the address in the array for the interval of the binary search.

During the query, we maintain two numbers — | ef t _query_cp and
ri ght query_cp —that are the length of the common prefixes of the query
string with the left and right endpoints of the current interval in the binary
search. And we need the array sor t ed_st r, which contains pointers to the
strings sorted in lexicographic sequence. In the suffix array application, these
strings are the suffixes of the preprocessed string, but the query al gorithm works
on any array of lexicographically sorted strings and is also useful outside the
suffix array application.
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To analyze this algorithm for binary search on a set of sorted strings, we
observe that the main loop of the binary search is executed only log(n) times,
and everything in it but the common prefix computations takes constant time.
Whenever we compute a common prefix of length i, it takes O(1 + i), and
we add that length either tol ef t _.query_cportori ght _query_cp, either
of which is bounded by the length of the query string. We summarize the
performance of this structure as follows:

Theorem. An array of pointersto n lexicographically sorted strings, together
with two arrays of n integers each, containing the common prefix length infor-
mation, allows to find for a query string g whether it is prefix of any of these
strings in time O (length(g) + logn).

To use this query algorithm for suffix arrays, we need to construct the array
of the sorted suffixes. We now describe the construction by Karkkainen and
Sanders (2003). The idea of the algorithm is to construct the suffix array for
a shorter string over a larger alphabet recursively and then recover the suffix
arrays for parts of the original string and merge them. This genera outline
is also used in Kim et al. (2003), and it was aready present in the suffix-
tree algorithm of Farach (1997); indeed the principle of interpreting pairs of
consecutive characters as characters of a new alphabet, and perform string
matching for the shorter string over the larger alphabet, already occursin Karp,
Miller, and Rosenberg (1972). The problem isin the details.

Kéarkkainen and Sanders consider the triples of consecutive characters
s[i]s[i+1]s[i+2] fori=0mod3. These are %n triples, which are or-
dered by the lexicographic order for triples, and by radixsort we can assign
each tripleitsrank in that set of triples as its canonical name. We use radixsort
because the tripleswe sort are triples of numberslessthan n, and so of numbers
less than n2, which can be sorted by radixsort in time O (n).

We now construct a new string of length %n that consists of the se-
guence of canonical names of the triples s[ 3i + 1] s[ 3i + 2] s[ 3i + 3]
for i =0,..., %n — 1 followed by the sequence of names of the triples
S[3i+2]s[3i +3]s[3i+4] fori=0,..., 3n— 1. Thisis astring over
an alphabet of integers at most n. The suffix of this new string starting in
position i of the first group corresponds to the string that is the suffix of the
original string starting in position 3i + 1 followed by the end mark and the
original string starting in position 2. And the suffix of this new string starting
in position i of the second group corresponds to the string that is the suffix of
the original string starting in position 3; + 2 followed by the end mark. For the
lexicographic order of these string, the part after the end mark isirrelevant, so
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the lexicographic order of the suffixes of the new string allows us to read off
the lexicographic order of those suffixes of the original string that started in
positions 3i 4+ 1 or 3i + 2.

As next step, we have to find the order of the suffixes starting in positions
3i + 0 and merge these orders to obtain the lexicographic order of all suffixes.
But the order of the suffixesstarting in positions 3i + Oisdetermined by thefirst
character of that suffix, and among those with the same first character, by the
order of the remai ning suffix, whichweknow becauseit startsat position 3i + 1.
So we can congtruct in O(n) time the lexicographic order of the remaining
suffixes. We finally have to merge these two orders for which we need to
compare the lexicographic order between a suffix starting in a position of
form 3i + 0 and a suffix starting in a position of form 3i + 1 or 3i + 2. This
comparison can be done in constant time, using again thefirst character or the
first two characters:

{ If we are comparing the suffix starting in position 3i; with the suffix starting
in position 3 + 1, then thisis determined either by their first characters, or,
if those agree, by the comparison of the rest, which are the suffixes starting
in3i +1and 3; + 2, so they occur both in the same sorted sequence and
can be compared in O(1) time.

{ If weare comparing the suffix starting in position 3; with the suffix starting
in position 37 + 2, then thisis determined either by their first two
characters, or, if those agree, by the comparison of the rest, which are the
suffixes starting in 3i + 2 and 3; + 4, so they occur both in the same sorted
sequence and can be compared in O(1) time.

Thus, the time to sort al suffixes of a string of length » is O (n), plus the time
to sort the suffixes of a string of length %n which gives an O(n) bound in
total. It should be noted that although the size of the alphabet increases, it never
becomes larger than n because each character corresponds to a k-character
subsequence that occurs in the string for some fixed k.

It remains to compute the arays left_mddlecp and
ri ght _m ddl e.cp. We follow here the method proposed in Kasai
et a. (2001) to construct first the array cp, where cp[ i] is the length of
the common prefix of the suffixes starting in sorted_suffix[i—1]
and sorted.suffix[i]. We use an additional array rank that
contains the inverse of the sorted_suffix aray: rank[i] = if
sorted_suf fix[ j] =i.Thekey observation hereisthat when we already
know that the suffix starting in position i and its adjacent suffix in the lexi-
cographic order, which startsin position sor t ed_suf fi x[ rank[i] + 1],
have a common prefix of length I, then the suffix starting in position i + 1
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and its adjacent suffix in the lexicographic order, which starts in position
sorted_suffix[rank[i+ 1] + 1], have a common prefix of length at
least | — 1. Soif we determine the lengths of common prefixes of lexicograph-
ically consecutive suffixes in the sequence given by ther ank array, then there
aretwo types of steps: those in which that length decreases by 1, which takes a
constant time, and those in which the length stays the same or increases, which
takes a time proportiona to the increase. But the length cannot be larger than
n and the total decrease is a most , so the total increase is less than 2» and
the time to determine al these lengthsis O (n).

Finally, we derive the arrays| ef t _mi ddl e_cp andri ght _ni ddl e_cp
from cp. For this we use that the length of the common prefix of any two
suffixes is the minimum of the lengths of the common prefix of two lexi-
cographically consecutive suffixes between them. The entries in the arrays
 eft _mi ddl e_.cp andri ght _m ddl e_cp are thus maxima over those in-
tervals that can occur in a binary search between middle and left and between
middle and right endpoint. But each such interval is the union of two intervals
that can occur one step further down in the binary search. So if we construct
them bottom-up, starting with the smallest, we can construct each entry in O (1)
time from previous entries, giving a complexity of O(n) in total.

We summarize the performance of this structure as follows:

Theorem. The suffix array structure is a static structure that preprocesses
a string s and supports substring queries. This structure can be built in
time O(length(s)), requires space O (length(s)), and supportsf i nd_stri ng
gueriesfor astring ¢ intime O (length(g) + log(length(s))).

So the suffix array can be constructed in the same time as the suffix tree and
gives almost the same query performance. Suffix arrays and suffix trees can be
used in many applicationsinterchangeably (Abouelhoda, Kurtz, and Ohlebusch
2004). But if spaceisnot an issue, suffix trees seem conceptually more el egant.



Hash Tables

Hash tables are a dictionary structure of great practical importance and can
be very efficient. The underlying idea is quite smple: we have a universe U
and want to store a set of objects with keys from &/. We aso have s buckets
and afunction 2 fromi/to S = {0, ..., s — 1}. Then we store the object with
key u in the h(u)th bucket. If several objects that we want to store are mapped
to the same bucket, we have a collision between these objects. If there are no
collisions, then we can realize the buckets just as an array, each array entry
having space for one object. The theory of hash tables mainly deals with the
questions of what to do about the collisions and how to choose the function 4
in such away that the number of collisionsis small.

Theidea of hash tablesis quite old, apparently starting in several groups at
IBM in 1953 (Knott 1972). For along timethe main reason for the popul arity of
hash tables was the simple implementation; the hash functions & were chosen
ad hoc as some unintelligible way to map the large universe to the small array
alocated for the table. It was the practical programmer’s dictionary structure
of choice, easily written and conceptually understood, with no performance
guarantees, and it still exists in this style in many texts aimed at that group.
The development and analysis of hash table methods that are provably good in
some sense started only in the 1980s, and now a well-designed hash table can
indeed be a very efficient structure.

9.1 Basic Hash Tables and Collision Resolution

If we map the keys of abig universel/ toasmall set S = {0, ..., s — 1}, thenit
is unavoidable that many universe elements are mapped to the same element of
S. Inadictionary structure, we do not have to store the entire universe, but only
some set X C U of n keysfor the objects currently in the dictionary. But if we

374
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do not know the set X when we choose the hash function 4 : U/ — S, asitis
unavoidableif the set X isdynamic, changing by insertions and deletions, then
we can choose aset X all of whose elements are mapped to the sames € S. So
something must be done about colliding elementsin X.

There are two classical solutionsto this problem:

1. Having for each s € S, asecondary structure that stores all the elements
x € X with h(x) = s. So each of the s buckets contains another dictionary,
but because the buckets should contain only few elements, this secondary
dictionary can be very simple. The simplest method isjust alinked list of
the elements; thisis called “chaining.”* Thisis the recommended
method.

2. Having for each u € U asequence of alternative addressesin S: if h(u) =
hi1(u) isaready used by a colliding element, wetry hy(u), ha(u), ... until
we find an empty bucket. Thisis called “open addressing,” and it has been
much studied, but its use is strongly discouraged.”

In the first solution, we partition the universe i/ by ~~1(S) and store those x
X C U that arein the same partition class in the same secondary structure. We
caninsert and deletein the structure if we can insert and del ete in the secondary
structure; the function £ just directs us to the right secondary structure. If the
partition induced on X isfine, with only at most afew elementsin each bucket,
thisis especialy good, but if there are many elements in the same bucket, it
degrades no worse than the secondary structure we are using. We could use
a balanced search tree as secondary structure and get a worst-time O(logn)
bound in addition to an O (1) timefor all those elements whose bucket contains
few elements. But we will show that with proper choice of the hash function
and a not-too-small set S, most buckets are expected to be almost empty. So
the choice of alinked list as secondary search structure is enough.

The second solution was very popular because we do not need linked lists,
so no kind of dynamic memory allocation. It was, thus, considered especially
easy to implement and space efficient, becauseit isan implicit structure without
need for pointers. These minor advantages, which seem irrelevant on today’s
computers, are countered by a fundamental disadvantage: this structure does
not support deletions. To insert an element x, we look at sequence of buckets
ha(x), ho(x), ..., hr(x) to find an empty bucket. So in a find operation, we

1 Theliterature calls this “indirect” or “separate” chaining because we allocate the nodes of the
lists outside the hash table; “direct chaining” uses hash table entries as nodes and suffers from
the same defects as method 2. Some variant chaining methods are described in Bays (1973a).

2 Writing further papers on variants of open addressing should also be discouraged.
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need to look again at the same sequence of buckets till we have found either
the element or an empty bucket. If we delete an element along this sequence,
its bucket becomes empty, so a later find operation for x will be unsuccessful
because we broke the search path.

We could avoid thisby marking the del eted element asinvalid, but the bucket
still asfull; in that case we will accumulate many invalid buckets, which may
be reused in insert operations, but will contribute to the search path length even
though invalid. Or, if we delete an element in bucket i, we could try to move up
aong its search path any other element that had i in its search path and found
that bucket full. But thisis possible only if we know where that potential other
element is; so al elements that have i occurring in their search path must have
the same bucket j as the next element of their search path. This is very bad,
because it leads to clustering, blocks of full buckets growing together; and any
method that allows deletions will necessarily lead to that clustering.

The most obvious choice A;(x) = ho(x) + i isfor this reason a bad choice.
If we do not use deletions, many different sequences of functions (i; (x));_;
are possible as search paths, and they have been studied under the aspect
of the expected length of the longest search path. A large number of papers
have been written on the optimal choice of the sequence (/;(x));_,, called
probe sequences (Kra 1971; Ullman 1972; Ecker 1974; Knuth 1974; Ajtai,
Komlos, and Szemerédi 1978; Guibas and Szemerédi 1978; Gonnet 1981;
Larson 1982, 1983; Yao 1985a,b; L ueker and Mol odowitch 1988; Ramakrishna
1989a). But the small space advantage of avoiding pointers doesnever outweigh
the fundamental disadvantage of losing deletions.

Next we give code for the basic hash table structure with chaining

typedef struct | _node { key_t key;
object t *obj;
struct | _node *next;

} list_node_t;

typedef struct { int si ze;
list _node_ t **table;
int (*hash_function)
(key_t, hf _paramt);
/* the hash function m ght
need some paraneters */
hf _paramt hf_param
} hashtable_t;
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hashtabl e_t *create_hashtabl e(int size)
{ bhashtable_t *tnp; int i
tnp = (hashtable_t *)
mal | oc( sizeof (hashtable_t) );
t np- >si ze = size
tnp->table = (list_node_t **)
mal | oc(si ze*si zeof (I ist_node_t *));
for( i=0; i<size; i++)
(tnp->table)[i] = NULL;
[* fill in the hash function: needs to
be added */
/* and choose necessary paraneters */
return( tnp );

object t *find(hashtable_ t *ht, key t query_key)
{ int i; list_node_t *tnp_node;
i = ht->hash_function(query_key,
ht - >hf _param);
tnp_node = (ht->table)[i];
while( tnmp_node != NULL &&
t np_node- >key != query_key )
t np_node = tnp_node- >next;
i f( tnmp_node == NULL )
return( NULL ); /* not found */
el se
return( tnp_node->obj ); /* key found */

void insert(hashtable t *ht, key_ t new key,
obj ect _t *new obj)

{ int i; list_node_t *tnp_node;
i = ht->hash_function(new_key, ht->hf_param);
tnmp_node = (ht->table)[i];
/[* insert in front */
(ht->table)[i] = get_node();
((ht->table)[i])->next t np_node;
((ht->table)[i])->key new_key;
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((ht->table)[i])->0bj = new obj;
}

object _t *delete(hashtable_t *ht, key_ t del _key)
{ int i; list_node_t *tnp_node;
obj ect _t *tnp_obj;
i = ht->hash_function(del key, ht->hf_param);
tnp_node = (ht->table)[i];
i f( tnp_node == NULL )
return( NULL ); /* list enpty,
delete failed */
i f( tnp_node->key == del _key ) /* if first
inlist */
{ tnp_obj = tnp_node->obj;
(ht->table)[i] = tnp_node->next;
return_node( tnp_node );
return( tnp_obj );
}
/* list not enpty, delete not first in list */
whi | e( tnp_node->next != NULL &&
t np_node- >next - >key ! = del key )
t np_node = tnp_node- >next;
i f( tnmp_node->next == NULL )
return( NULL ); /* not found,
delete failed */
el se
{ list_node_t *tnp_node2; /* unlink node */
t np_node2 = tnp_node- >next;
t np_node- >next = tnp_node2->next;
tnp_obj = tnp_node2->o0bj;
return_node( tnp_node2 );
return( tnp_obj );

Both methods have generated many variants. Because we are examining
consecutive objects until we find the right key, walking down the list in the
correct bucket in the chaining method, we want frequently accessed objects
to be found early in each list. So within each bucket we have an instance of
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the much-studied list accessing problem for which the move-to-front strategy
is known to be 2-competitive, that is, accessing at most twice as many list
items as the strategy with the optimum sequence of list items. So it is an
easy modification that brings some advantages for very skewed access patterns
to move in each find operation the found object to the front within its list.
Thiswas proposed as self-adjusting hash tables (Pagli 1985; Wogulis 1989); it
can also be combined with the open addressing strategy, but there it gets much
more complicated. Nextisthef i nd function combined with the move-to-front
strategy.

object_t *find(hashtable_t *ht, key_t query_key)
{ int i; list_node_t *front_node,
*tnp_nodel, *tnp_nodez,;
i = ht->hash_function(query_key,
ht - >hf _param);
front_node = tnp_nodel = (ht->table)[i];
tmp_node2 = NULL;
while( tnmp_nodel !'= NULL &&
t np_nodel- >key != query_key )
{ tnp_node2 = tnp_nodel;
t mp_nodel = tnp_nodel- >next;
}
i f( tnp_nodel == NULL )
return( NULL ); /* not found */
else /* key found */
{ if( tnp_nodel !'= front_node )
/* move to front */
{ tnp_node2->next = tnp_nodel->next;
/* unlink */
t np_nodel- >next = front_node;
(ht->table)[i] = tnp_nodel
}
return( tnp_nodel->obj );

Many further variants have been studied for open addressing schemes. One
key observation isthat in a collision the situation of the two colliding el ements
is entirely symmetrical; we have to choose one of them to move further down
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aong its search path, while the other stays in the bucket. In the basic open
addressing scheme, we always move the new element, but there is no necessity
for that. So there is some freedom to rearrange the table during an insert.
This was first studied in Brent (1973) and then analyzed in many different
strategies in Amble and Knuth (1974), Mallach (1977), Gonnet and Munro
(1979), Maddison (1980), Rivest (1978), and Lyon (1985); Robin-Hood hashing
(Celis, Larson, and Munro 1985; Devroye, Morin, and Viola 2004), last-come-
first-served hashing (Poblete and Munro 1989), and Cuckoo hashing (Pagh and
Rodler 2004; Devroye and Morin 2003) all belong to this category. Another
type or open addressing variant is split sequence hashing (Lodi and Luccio
1985; Wogulis 1989), where the next step in the probe sequence depends on
the key of the element occupying the current bucket, which makesit similar to
using a search tree as secondary structure in chaining.

By its conceptual simplicity and lack of intrinsic problems, chaining gen-
erated much less variants and continues to be the recommended solution. One
interesting variant is two-way chaining, in which each element of the universe
is assigned to two possible buckets; on insertion, it is added to the bucket that
contains fewer elements. Thiswas introduced in Azar et al. (1999) and further
analyzed in Berenbrink et al. (2000).

There are several variants that avoid the use of pointers up to a maximum
capacity, and only then resort to chaining. Thetrivial solution isto have ahash
table as array, in which each bucket has space for a fixed number of items,
and to use chaining only when that bucket is full. Another method is the use
of a sequence of hash tables; if the entry is already used in the first table, we
look in the second table, with a different hash function, and so on, up to a
fixed maximal number of tables; at the end we still have to resort to chaining.
This has been proposed as especially convenient for parallelization because the
lookup in the different tables is independent (Larson 1980; Broder and Karlin
1990; Mairson 1992).

9.2 Universal Families of Hash Functions

Up to the end of the 1970s, any theoretical analysis of hashing assumed that
the hash values of the elements were independent random values, uniformly
distributed on the available addresses; this is known as the uniform hashing
model. And in actual use of a hash function, the implicit assumption was
that any function that is complicated enough that the programmer does not
really understand its effects will behave like arandom assignment, mixing the
values of the input set sufficiently well (Pearson 1990). This situation was



9.2 Universal Families of Hash Functions 381

very unsatisfactory, because in each use of a hash table, we are dealing with a
concrete set, and the sets that are used are certainly not uniformly distributed
inthe universe 4.

The breakthrough was the introduction of the concept of universal families
of hash functions by Carter and Wegman (1979). The idea here is that instead
of keeping the hash function fixed and making an unjustified assumption on
the random distribution of the input, we make a random choice of the hash
function from a family of hash functions and show that for any input set the
values of the hash functions are well distributed with high probability.

Let F beafamily of functionsthat map &/ to S. The crucial property of the
family F, which is sufficient to distribute any set X c ¢/ well over S, isthe
following: We choose a function f € F uniformly at random. Then we need
for somec,

c

for al distinct u1, u, € U holds Prob(f(u1) = f(u2)) < Gk

So the probability of a collision of any two elements under the randomly
chosen hash function is only dlightly larger than the probability if the values
were chosen independently and uniformly from S, whichis |_§\ Any family 7
with this property is called a universa family of hash functions.® Sometimes
this property is denoted as 2-universal because it is arestriction on pairs, and
k-universal then denotes a similar property for k-tuples: any k-tuple uq ... u;
of distinct elements of the universe will collide with probability at most \5\%

It is an immediate consequence of this definition that for any set X, stored
in the hash table S by arandomly chosen function 2 € F, any y will havein
expectationlessthan c% collisions; thisfollowsjust by linearity of expectation,
applied to al possible colliding pairs. Thisis, up to that factor of ¢, the same as
for a completely random assignment. If the hash table is at |east large enough
tostoreall dementsof X indistinct buckets, so |.S| > | X|, then for any element
y € U, the expected number of elements of X colliding with y is O(1), so at
least if we use chaining, the expected time of any find, insert, or deleteis O(1).

The property of the hash values we get by choice from auniversal family of
hash functionsisvery similar to pairwiseindependence of the hash values. This
is much weaker than the complete independence assumed in the old uniform
hashing model, but for the expected number of collisionswith asingle element,
itissufficient to also give an O (1) bound. For distribution properties, it ismuch

weaker: n random variables, each with an O(1) expectation, can still have a

3 Some literature demands this property with ¢ = 1, but this slightly weaker property is easier to
obtain and still sufficient for the results. Several further variants of the property are discussed
in Stinson (1994) and Krovetz and Rogaway (2006).
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large maximum. For the expected maximum size of a bucket, when hashing an

n-element set into a hash table of size s, we get only an O(1 + \/';E) bound,
because

max bucketsize(i) < 1+ Z (max(0, bucketsize(i) — 1))
i=1,..., K \ =

. ; Z(bucketzsize(i))
\ i=1

and Y3 _ (*=®) s the total number of colliding pairs, which isin expec-
tation lessthan ()<, so

El:liqaxJ bucketsize(i)] <14 E|:\l i2<bucketzsize(i)>:|

i=1

> (bucketsize(i)
< 1+J2E|:;< ) )}
<1+ /2<n>E < 1+‘/cn—2.
2)s S

We summarize these properties of universal families of hash functions as fol-
lows:

Theorem. When we distribute aset X c U of n items over a hash table S of
size s, using arandomly chosen hash function from a universal family of hash
functions,

{ the expected number of collisions of any element y € U/ is < ¢%; and
{ the expected maximum bucket sizeis< 1+ ,/c%.

Thisis, of course, only an upper bound for the expected maximum bucket
size, but Alon et al. (1999) showed that this is the best we can get out of the
universality assumption, by giving aspecific universal family of hash functions
for ahashtableof sizen, and n-element set, sothat for any functioninthat family
thereisabucket that received ©(,/n) €l ements. So for themaximum bucket size,
the universality assumption is much weaker than the complete independence
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of the uniform hashing model, which gives an expected maximum bucket size
of @(%) for hashing an n-element set into atable of sizen (Gomet 1981).
Some specific universal families of hash functions behave much better than this
O(4/n) bound (Alon et a. 1999).

Uptonow wedid not give an example of auniversal family of hash functions.
The trivial example isthe family of all functions from i/ to §; thisisthe same
as assigning independently to each universe element its image, so it is just
a different way to express the uniform hashing model. This family of hash
functionsis useless because it istoo large; just to specify afunction, we would
need atable with |I/| entries. So we need two further properties of afamily of
universal hash functions:

{ it must be small and have a convenient parametrization, so we can easily
select the random function from this family, and
{ it must be easy to evaluate.

To give such afamily, we need more structure on the universe /.

The classical theory assumes that &/ = {0, ..., p — 1} for some prime p.
Thisis reasonable if our universe is a set of numbers. Then we choose some
sufficiently large prime, slightly less than the square root of maximum integer
our machine arithmetic can handle, because we will need products of two such
numbers, and larger than al the numbers that can occur in our application.*
But it isimportant that we can really perform the arithmetic operations without
numerical overflow and reduction modul o 2o'9sZe; gtherwisethefamiliesmight
stop being universal and may behave quite badly (Mullin 1991). We assume
that S ={0,...,s — 1} withs < p.

The simplest universal family of hash functionsis the family

Fps = {ha:d = S| ha(x) = (@x mod p) mods, 1 <a < p —1}.

This family consists of p — 1 functions; to show that it is a universal family,
we need to bound the number of a for which &, (x) = h,(y) for any fixed pair
x, y of distinct elements of /. But if x # y and

(ax mod p) mods = (ay mod p) mods,
thenthereisaqg # Owith —(p — 1) < gs < (p — 1) such that
axmod p = aymod p + gs.

4 On amachine with 32-hit integers, so | NT_MAX = 2147483647, choose p = 46337. On a
machine with 64-bit integers, choose p = 3037000493.
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There are at most @ possible choices for ¢. For each ¢, the congruence
ax = ay + gs mod p

has a unique solution a. So there are at most @ functions s, for which x
and y will collide. With uniform random choicefromthe p — 1 functionsof the
family, this gives a callision probability at most % asrequired by the definition
of auniversal family.

Theclassical universal family of hash functions given aready by Carter and
Wegman (1979) is the two-parameter family

Gps = {hap:U = S | hgp(x) = ((ax + b)mod p) mods,0 <a,b < p—1}.

Note that this is not just a cyclic permutation of the previous functions by b
steps: hap(x) = hap(y) does not imply hap41)(x) = hap+1)(y). Like the pre-
vious class, it is very convenient class: for the initial random choice, we just
need to select two integers, and to evaluate the function, we need only four
arithmetic operations. To show that this family is universal, we have to show
that for each pair x, y e U, x # y, a most a fraction of < of the p? possible
parameter pairsa, b generatesacollision. But if 4,,(x) = h.(y), then thereis
anr €{0,...,s — 1} withh,(x) =r and hy,(y) =r or

((ax + b)mod p) — r = Omods,
((ay + b)mod p) — r = 0mods.

So there are integers ., g, with

((ax + b)mod p) — r = q,s,
((ay +b)mod p) — r = gys,

and because the left-hand side is a number between —(s — 1) and p — 1, we
findg,,q, € {0, ..., L”Tflj} But for each choiceof r, ¢,, g, thereisaunique
pair a, b that solves the system of linear equations mod p

ax +b=r+g,smodp,
ay +b =r+gy,smodp,

viewed as linear equations for a, b. This system is nondegenerate because
x # y and the coefficient of b is 1. Thus, there are as many pairs (a, b) that

lead to a collision as there are choices for r, gy, gy, Whichiss[ 27 [2]. Thisis
2
a s fraction of al pairs(a, b) for ¢ = (@) , Whichisvery near 1 for p much

larger than s. Thus, the family G, isa universal fami ly of hash functions, with
adlightly better constant c.
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Frequently we want to have a universe that is not just a set of numbers, but
something that can be encoded as a k-tuple of numbers for some fixed k, for
example, aset of board positionsin agame. The family of hash functions easily
extends to that situation: if 2/ = {0, ..., p — 1}* for some prime p, we use the
family of functions

hay..awp (X1, -« ., xx) = ((@ax1 + - - - + axxg + b) mod p) modss.

The proof iscompletely analogousto the specia casek = 1: given (xy, ..., xx)
and(y1. ... y) therearer € {0, ..., s — 1} andg,. gy € {O. ... L”TflJ}with

(arx1+ -+ axy +b)mod p = r + q,s,
(aty1+ -+ aryr +b)ymod p =r + gys,

and for givenr, ¢, g, the system of linear equations

aixy+ -+ axy +b=r+gsmodp,
ayi+---+ay+b =r+q,smodp

has p*~1 solutions (ay, . .., ax, b) € {0, ..., p — 1}*+L.

For strings, we have the problem that they are not of fixed length. We
can implicitly extend them by 0 in all later positions up to some maximum
length k. This will not change the hash value, so for short strings we do not
have to compute those implicit extended positions. We need, however, as many
coefficients as the maximum length of any string requires, but these random
coefficients can be selected when they become necessary.

Another universal family of hash functions that is both easy to implement
and good in performance is the family of al linear maps of bit strings of
length ¢ to bit strings of length r, both viewed as linear spaces over Z,. So in
that situation we have i/ = {0, 1} and S = {0, 1}", which is very natural for
computer applications. To specify alinear map, we need the images of abasis,
sot numbersof r bitseach. To evaluate the linear map for agiven element of the
universe, that is, az-bit number x, we perform addition mod 2, that is, xor, on
those numbers of the basisthat correspondto 1 bitin x. It isobviousfrom linear
algebra that the family of al linear maps is indeed a universal family of hash
functions; this family was studied in Markowsky, Carter, and Wegman (1978)
and Alon et al. (1999), where it was shown that it is in some ways nearer to
the behavior of uniform hashing and thus preferable to the families 7, or G .
The price of thisisthat the family islarger, so needs more bits of specification;
where the previous family needed only two numbers of sizelog |/|, thisfamily
needs log |U/| numbers of sizelog|S|. It might be still preferable, especialy in
view of the simple bit operations it uses.
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Next we give code for the universal hash functions of the family G, for a
universed = {0, ..., MAXP — 1}, with MAXP prime.

#defi ne MAXP 46337 [/* prine,
and 46337*46337 < 2147483647 */

typedef struct | _node { Kkey_t key;
object _t *obj;
struct | _node *next;

} list_node_t;

typedef struct { int a; int b; int size;
} hf_paramt;

typedef struct { int si ze;
list _node t **table;
int (*hash_function)(key_t, hf_paramt);
hf _paramt hf_param
} hashtable_t;

hashtabl e t *create_hashtabl e(i nt size)
{ hashtable_t *tnp; int i
int a, b;
i nt uni versal hashfuncti on(key_t,
hf _paramt);
if( size >= MAXP )
exit(-1); /* should not be called with
that large size */
/* possibly initialize random nunber
generator here */
tnp = (hashtable_ t *)
mal | oc( sizeof (hashtable t) );
t np- >si ze = size
tnp->table = (list_node t **)
mal | oc(si ze*si zeof (I ist_node_t *));
for(i=0; i<size; i++)
(tnp->table)[i] = NULL
t np- >hf _param a = rand() %VAXP
t np- >hf _param b = rand() %vVAXP
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t mp- >hf _param si ze = si ze;
t np- >hashf uncti on = uni versal hashfuncti on;
return( tnmp );

}

i nt uni versal hashfunction(key_t key,

hf _paramt hfp)
{ return( ((hfp.a*key + hfp.b)%RAXP) %fp. size );
}

Next is another version of the same functions for the universe of strings;
here we organize the parameters of the universal hash function as alist of the
coefficients, which gets extended whenever the maximum length of the strings
increases. Here the f i nd, i nsert, and del et e functions also need to be
changed, because we need to compare the entire string to check whether we
found the right key.

#defi ne MAXP 46337 [/* prine,
and 46337*46337 < 2147483647 */

typedef struct | _node { char *key;
object t *obj;
struct | _node *next;

} list_node_t;

typedef struct htp_| _node { int a;
struct htp_| _node *next;
} htp_| node_t;

typedef struct { int b; int size;
struct htp_| _node *a |ist;
} hf_paramt;

typedef struct { int si ze;
list _node t **table;
int (*hash_function)(char *, hf_paramt);
hf _paramt hf_param
} hashtable_t;
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hasht abl e_t *create_hashtabl e(int size)

{

}

hashtable t *tnp; int i;
i nt universal hashfunction(char *, hf_paramt);
i f( size >= NMAXP )

exit(-1); /* should not be called with that

| arge size */
tnp = (hashtable_t *)

mal | oc( sizeof (hashtable_t) );
t np- >si ze = si ze;
tnp->table = (list_node_t **)
mal | oc(si ze*si zeof (I ist_node_t *));

for(i=0; i<size; i++)

(tnmp->table)[i] = NULL
tmp->hf _param b = rand() WWAXP;
t mp- >hf _param si ze = si ze
tmp->hf _parama_list =
(htp_I _node_t *) get_node();
t np->hf _param a_list->next = NULL;
t np- >hash_function = universal hashfunction
return( tnp );

i nt universal hashfuncti on(char *key,

{

hf _paramt hfp)

int sum

htp_ | node_ t *al

sum = hf p. b;

al = hfp.a_list;

while( *key !'="'\0" )

{ if( al->next == NULL )

{ al ->next = (htp_| _node_t *) get node();
al - >next - >next = NULL;
al ->a = rand() %vAXP;

}

SUm+:( (a|_>a)*((int) *key))%\/AXP,
key += 1;

al = al ->next;

}
return( sunthfp.size );
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object_t *find(hashtable_t *ht, char *query_key)
{ int i; list_node_t *tnp_node;
char *tnpl, *tnp2;
i = ht->hash_function(query_key,
ht - >hf _param);
tnp_node = (ht->table)[i];
whil e( tnmp_node !'= NULL )
{ tnpl = tnp_node->key; tnp2 = query_key;
while( *tnmpl !="\0" && *tnmp2 !="\0" &&
*tmpl == *tnp2 )
{ tnpl++; tnp2++; }
if( *tmpl I'= *tnp2 ) /*strings not equal */
t mp_node = tnp_node- >next;
else /* strings equal: correct entry
found */
br eak;
}
i f( tnmp_node == NULL )
return( NULL ); /* not found */
el se
return( tnp_node->obj ); /* key found */

void insert(hashtable t *ht, char *new key,
obj ect _t *new obj)

{ int i; list_node_t *tnp_node;
i = ht->hash_function(new_key, ht->hf_param);
tnp_node = (ht->table)[i];
[* insert in front */
(ht->table)[i] = get_node();
((ht->table)[i])->next t np_node;
((ht->table)[i])->key = new key;
((ht->table)[i])->obj new_obj ;

object _t *del ete(hashtable_t *ht, char * del _key)
{ int i; list_node_t *tnp_node;

object_t *tnp_obj;

char *tnpl, *tnp2;
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i = ht->hash_function(del _key, ht->hf_param);
tnp_node = (ht->table)[i];
if( tnmp_node == NULL )
return( NULL ); /* list enpty,
delete failed */
/* test first itemin list */
tnpl = tnp_node->key; tnp2 = del key;
while( *tnpl I="\0" && *tmp2 !="\0" &&
*tnpl == *tnp2 )
{ tnpl++; tnp2++; }
if( *tmpl == *tnp2 )/* strings equal
correct entry found */
{ tnp_obj = tnp_node->o0bj; /* delete first
entry in list */
(ht->table)[i] = tnp_node->next;
return_node( tnp_node );
return( tnp_obj );
}
/* list not enpty, delete not first in list */
whi | e( tnp_node->next != NULL )
{ tnpl = tnp_node->next->key; tnp2 = del key;
while( *tnpl I="\0" && *tnp2 I="\0" &&
*tnpl == *tnmp2 )
{ tnpl++; tnp2++; }
if( *tnmpl !'= *tnp2 ) /* strings not equal */
t np_node = tnp_node- >next;
el se /* strings equal: correct entry
found */

br eak;
}
i f( tnmp_node->next == NULL )
return( NULL ); /* not found, delete
failed */
el se
{ list_node_t *tnp_node2; /* unlink node */

t np_node2 = tnp_node- >next;

t np_node- >next = tnp_node- >next - >next;
tnp_obj = tnmp_node2->o0bj;

return_node( tnp_node2 );
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return( tnp_obj );

}

We summarize the performance of the hash table structure as follows:

Theorem. The hash table with chaining, using a universal family of hash
functions, storesaset of n elementsin atable of sizes, supporting the operations
find,i nsert,anddel et e,inexpectedtime O(1 + n/s) for each operation
and requires space O (n + s).

Universal families of hash functions are a very useful tool both in theory
and in practice. Further families with stronger independence properties were
studied in Siegel (1989, 2004) and Mansour et al. (1993).

9.3 Perfect Hash Functions

A hash function is perfect if it does not cause any collisionsfor the set it stores.
Thissoundslike agreat advantage, but it should be noted that thisisadefinition
relative to the set, so we need to know the set in advance and keep it fixed. If
wearegivenaset X € Y and ahashtable S = {0, ..., s — 1}, we can ask for
afunction that maps{ to S and isinjectiveon X.

If |X| < |S§], there are always such functions: if I/ is linearly ordered, we
can build a search tree for X and store in each leaf its addressin S. Thisis, of
course, quite useless, so there is an important additional restriction: we must
be able to evaluate the function fast, in constant time. Thisisfirst mentioned in
Knuth (1973) as an exercise for the ingenuity of the function constructor, to be
done by hand. As an algorithmic problem, to find a perfect hash function for
agiven set X, thiswasfirst studied in Sprugnoli (1977), where some methods
were given, which always construct a perfect hash function, but might require
a very large table S and might take very long to find that function. Many
further construction methods were proposed, for example, Cichelli (1980),°
Jaeschke (1981), Bell and Floyd (1983), Chang (1984), Cormack, Horspool,
and Kaiserswerth (1985), Sager (1985), Yang and Du (1985), Chang and Lee
(1986), Chang, Chen, and Jan (1991), Czech et a. (1992), Fox et al. (1992),
Czech and Majewski (1993), Majewski et al. (1996), and Czech (1998) (see

5 Which, in spite of the fact that it obviously in general does not work and looks only at the first
and thelast letter of astring and itslength, is still recommended by various “practical” authors.
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Czech, Havas, and Majewski (1993) for a survey). All these methods are just
heuristics and do not work for arbitrary sets X; at best, they have ahigh success
probability if the set X is chosen uniformly at random from /. Methods that in
principle always give a perfect hash function, but are not practically realizable,
were given by Tarjan and Yao (1979) and Yao (1981). But the method of
Fredman, Komlos, and Szemerédi (1984) isreally the ultimate solution: it works
aways, is elegant, and simple enough to be practical. The only disadvantage
is the general disadvantage of perfect hash functions, that they do not support
changes in the underlying set.

Theideaunderlying Fredman et a. (1984) isto use atwo-level scheme, first
distributing the set X over atable of size | X|, using afunction from auniversal
family of hash functions. This partitions the set X into the classes that are
assigned the same hash value X = X; U --- U X;. All elements of each class
X; arein collision, but the use of a universal family of hash functions bounds
the expected total number of colliding pairs.

k
E[total number of colliding pairs] = E[Z <|§i|):|
i=1

- | X| 1 c X
- . Z

=N 2 ) taplesize = 2

Now for each set X;, we choose again auniversal hash function to distribute X;

over atable of size | X;|?. We showed in the previous section that the expected
maximum bucket size, when distributing n elements over a hash table of size

s,isO(1+ \/@) so for each of these second-level hash tables the expected
maximum bucket sizeis O(1). Thus, we have a method that gives us access to
the correct element in O (1) time: evaluate thefirst hash function, look up inthe
first hash table what the correct second hash function is, evaluate that second
hash function, and go through the at most O (1) candidates. And thetotal size of
the structure is only O(|X|) because Y"i_; (%) = 0(|X|). By choosing the
secondary hash tables a bit larger and by a constant factor that depends on
the ¢ of the universal family of hash functions, we can even achieve that there
areno collisions at al in the secondary hash tables.

Fredman, et a. (1984) used this idea with the first universal family of hash
functions £,(x) = ((ax) mod p) mods we gave in the previous section. Using
somefurther tricks, they managed to reducethesize of the structurerepresenting
a set of n numbers from O(n) to n + o(n), with O(1) time to access an item.
Here we assume that our arithmetic operations, as well as the table access, are
constant-time operations. The problem has also been studied in other models
of computation, but these do not appear relevant for practical implementation.
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Indeed, the practical importance of perfect hash functions remains, in spite
of numerous papers, dubious. If we need to store a static set of integers, the
method of Fredman et al. is, at least in the version without space optimization,
indeed easily realized and very efficient. But there are not many situations in
which we need to store a static dictionary of integers. The frequently cited
application is a static set of strings; the early literature always gives the set of
keywords of aprogramming language as motivation. But for strings, we get the
same performance with tries, and they support insertion and deletion.

Next we give an implementation of the method of Fredman et a. (1984)
without the size optimization. The hash functions are chosen randomly and
then we check whether they have the required properties, that is, the bound on
the sum of squared bucket sizes for the primary hash function and injectivity
for each of the secondary hash functions; we repeat the choice until the con-
ditions are satisfied, which needs O(1) attempts. We do not move the items to
separate bucket structures after the primary hashing, becausethat would require
additional space, instead we select for all buckets a secondary hash function
and start to distribute the items with these hash functions. If the secondary
hash function of a bucket causes a collision, we mark that bucket as defect.
If there were any defect buckets, we choose a new secondary hash function
for each of them, clear all defect buckets, and again distribute all items with
these hash functions. After O(1) repetitions, there will be no defect buckets
left. This method has the additional overhead that in each round, we distribute
al items, even those whose buckets were aready collision-free; but we avoid
the need for an intermediate structure to store the contents of the buckets for
redistribution, and the time overhead is only a constant factor. To check for
collisions, we need avalue that is different from all keys occurring in the data.
We use MAXP, which is assumed to be larger than all keysin the universe.

#def i ne MAXP 46337 [/* prine,
and 46337*46337 < 2147483647 */

typedef struct { int si ze;
i nt primary_a;
int *secondary_a,;
int *secondary_s;
int *secondary_o;
i nt *keys;
obj ect _t *obj s;
} perf_hash_t;
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perf_hash t *create_perf_hash(int size,
int keys[], object_t objs[])
{ perf_hash_t *tnp;
int *tablel, *table2, *table3, *table4;
int i, j, k, collision, sq_bucket sum
sg_sumlimt, a;
obj ect _t *objects;
tnp = (perf_hash_t *)
mal | oc( si zeof (perf_hash_t) );
tablel = (int *) malloc( size * sizeof(int) );
table2 = (int *) malloc( size * sizeof(int) );
table3 = (int *) malloc( size * sizeof(int) );
sg_sumlimt 5*si ze;
sq_bucket _sum = 100*si ze;
whi | e(sq_bucket _sum > sq sumlinit)
/* find primary factor */
{ a = rand() %AXP
for(i=0; i<size; i++)
tablel[i] = O;
for(i=0; i<size; i++)
tabl el (((a*keys[i])%vXP)% size) ]
+=1;
sq_bucket _sum = 0;
for(i=0; i<size; i++)
sq_bucket _sum += tablel[i]*tablel[i];

}

/* conpute secondary table sizes and

their offset */

for(i=0; i< size; i++)

{ tablel[i] = 2*tablel[i]*tablel[i];
table2[i] = (i>0) ? table2[i-1] +
tablel[i-1] : O;

}

tabled = (int *)

mal | oc( 2*sq_bucket _sum * sizeof (int) );

for( i=0; i< 2*sq_bucket_sum i++ )
tabled4[i] = MAXP, /* different from
all keys */

collision = 1;
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for( 1=0; i< size; i++)
tabl e3[i] = rand() %AXP; /* secondary
hash factor */
while( collision)
{ collision = 0;
for( i=0; i< size; i++)
{ J = ((keys[i]*a)% MAXP) % si ze;
k = ((keys[i]*table3[]j]) % MAXP)
% tablell[j] + table2[j];
if( tabled4[k] == MAXP ||
tabl e4[ k] == keys[i] )
tabl e4[ k] = keys[i]; /* entry up
to now enpty */
else /* collision */
{ collision 1;
tabl e3[i]
as defect */

/* mark bucket

|
e

}
}
if( collision)
{ for( i=0; i< size; i++)
{ if( table3[i] == 0)
/* defect bucket */
{ table3[i] = rand() %AXP;
/* choose new factor */
for( k= table2[i];
k< table2[i]+tablel[i]; k++)
tabl e4[ k] = MAXP;
/* clear i-th secondary table */

}
}

} /* now the hash table is collision-free */
/* keys are in the right places, now put
objects there */
obj ects =(object_t *)
mal | oc(2*sq_bucket _sunrsi zeof (object _t) );

for( i=0; i< size; i++)
{ ] = ((keys[i]*a)% MAXP) % si ze;

k = ((keys[i]*tabl e3[j]) % MAXP)
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%tablel[j] + table2[j];
obj ects[k] = objs[i];
}
t np- >si ze = size
tnp->primary_a = a;
/* primary hash table factor */
t np- >secondary_a = tabl e3
/* secondary hash table factors */
t np- >secondary_s = tabl el;
/* secondary hash table sizes */
t np- >secondary_o = tabl e2;
/* secondary hash table offsets */
t mp- >keys = tabl e4;
/* secondary hash tables */
t np- >0bj s = obj ects;
return( tnp );

object _t *find(perf_hash_t *ht, int query_key)
{ int i, j;
i = ((ht->primary_a*query_key) % MAXP)

ot - >si ze;
i f( ht->secondary_s[i] == 0)
return( NULL ); /* secondary bucket enpty */
el se

{ J = ((ht->secondary_a[i]*query_key) % MAXP)
ot - >secondary_s[i] + ht->secondary_o[i];
i f( ht->keys[j] == query_key )
return( (ht->objs)+j ); /* right
key found */

el se
return( NULL ); /* query_key does not
exist. */

We summarize the performance of this structure.
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Theorem. Theperfect hashtablestructureof Fredmanet al. isastatic dictionary
that keepstrack of aset of n elementsidentified by integer keys. It can be created
in O(n) time, requires O (n) space, and supportsf i nd operationsin O(1) time.

Perfect hash functions have aso been studied in other computation mod-
els, especially counting the bit complexity of the program size of a family of
functionsthat containsaperfect hash function for every n-element set of the uni-
verse, for example, in Mehlhorn (1982), Fredman and Komlos (1984), Schmidt
and Siegel (1990), Mairson (1992), Dietzfelbinger and Hagerup (2001), and
Hagerup and Tholey (2001).

9.4 Hash Trees

Up to now we always assumed that the hash function maps the universe i/ into
aset of integers § = {0, ..., s — 1}, which are then used as the addressesin an
array. An alternative model was introduced by Coffman and Eve (1970). They
considered hash functions that map the universe/ into apotentialy infinite bit
string, of which one can take as much as necessary to distinguish each element
in the current set from all other elements. They then proposed to break this bit
string into pieces of k bits and interpret this as key to atrie structure over the
alphabet {0, 1}. The object is then stored in the trie under that key. Thisisa
structure that does not require any arrays, but instead has fixed-size trie nodes
as the basic unit.

This key string of potential infinite length can be viewed as another method
to avoid collisions: if two elements i, u, € U collide in the current structure,
we just take a longer prefix of their key until they are separated. But if the
key string is not a constant, this forces some changes on the trie structure,
depending on the way we resolve these collisions. There are two methods
proposed in Coffman and Eve (1970). If we insert a new element u, and there
isaready an element u1 whose hash key string agrees with that of u, up to the
point that is used in the current structure, then

{ Either we take alonger prefix of its hash key string for u, and leave u; in
the node where it is already stored: This method was called sequence trees,
it has the advantage of the simpler insertion, but to find the object with hash
key bob1b; . . ., we have to look in the nodes by, bob1, bob1bo, . . .; €ach of
these nodes contains an object, and for each of these objects, we haveto
check whether its original key in U/ agrees with the query key;
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{ Or wetake longer prefixes of the hash key strings of both «; and u,, long
enough to distinguish 11 and u», and store 3 and u; in those nodes: This
method was called prefix trees; it stores objects only in the leaf nodes of the
trie structure. On insertion we might have to move both colliding elements
to anew node, but in afind operation, we need to make a key comparison of
the origina key in/ only for one node.

If a key comparison of the original keysin U is expensive, for example, be-
cause we hashed long strings into short strings, the second method is clearly
preferable. But it has the disadvantage that there might be many trie nodeswith
asingle outgoing edgeif there are hash keyswith along common prefix. Sowe
trade key comparisons in the original universe against hash key comparisons
and space.

Because each trie node has at most 2 outgoing edges and we have at least n
nodes, thereisaleaf at distanceat least1og, (n) = % logn fromtheroot. Soeven
with the best hash function, we cannot get acomplexity better than 0(% logn).
For small k that is the performance, we could as well achieve by a balanced
search tree if key comparisonsin U/ are constant time. For larger £ the nodes
get larger, because the size of a single node is O(2*), but we can, assuming
an optimal hash function, reach the correct leaf faster, until for k = logn we
just need the root node, which becomes a normal hash table. So the hash trees
are in their behavior between hash tables and balanced search trees, and are
interesting especialy if key comparisons of the original keys are expensive.

As in al hash table structures, we hope that the mapping performed by
the hash function improves the distribution properties of our set; if the hash
function is bad, because there are hash keys with long common prefixes, the
sequence tree variant can degenerate into asimple unordered list and the prefix
trees can be arbitrary bad. The assumption in Coffman and Eve (1970) was,
asin al papers of that period, that the hash values would be independent and
uniformly distributed. The infinite bit strings can then be interpreted as real
numbers in the interval [0, 1[. The expected maximum length of the path we
have to follow in the trie to find a given key is then O(% logn), with nodes of
size O(2).

9.5 Extendible Hashing

The classical hash table structure has a fixed maximum size. For the open
addressing-related methods of collisionresolution, thisisreally ahardlimit, and
performance degrades so badly near the maximum capacity that one hasto stay
well below it. For the chaining methods, which we recommended, the situation
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is not as bad, and they can be used beyond their nominal capacity, but lose
the expected constant-time operations. So, to make hash tables atruly dynamic
structure, the maximum size limitations should be avoided, while retaining the
advantages of constant-timef i nd, i nsert, and del et e operations.

This can easily be achieved by the standard technique of building shadow
copies, as described in Section 1.5, by building a copy of the hash table in a
larger array, doubling the size, and copying in each step severa elementsfrom
the smaller to the larger hash table, so that the copy is complete before the
smaller hash table overflows. This generates only a constant factor of overhead
for each operation, so all operations still retain their expected constant time
performance, if we use auniversal family of hash functions.

This is now only an obvious combination of the tools we have developed
before, but it appeared in literature only rather late in Brassard and Kannan
(1988). Total rebuilding of the hash table on reaching a capacity limit has
been used already early (Bays 1973b); but then we give up on worst-case
performance bounds, interrupt everything else, and build the new hash table.
This is much less demanding on the memory requirement because the two
tables coexist only during this rebuilding phase, whereas if we rebuild the table
concurrent with its use, we permanently block an additional piece of memory
that islarger than the hash table actually used.

Earlier work on extendible hash tables focused on a different type of struc-
ture that typically was interpreted as an external-memory structure, frequently
compared to B-trees. We see here again the influence of memory limitationsin
the earlier work on data structures.

The classical structures known as extendible hashing were first proposed in
papers by Larson (1978) as “dynamic hashing,” by Litwin (1978) as “virtual
hashing” and Litwin (1980) “linear hashing,” and by Fagin et a. (1979) as* ex-
tendible hashing.” Many rel ated methods have since been proposed (see Enbody
and Du (1988) for asurvey). All these methods are based on theidea of splitting
buckets when they are overfull, while maintaing some bookkeeping system to
keep track of the buckets. They all assumethat the hash function really givesan
arbitrary long bit string, asinthe hash treemodel; soif the hash table getslarger,
they can just take more bhits of the hash function. All analysis was done under
the uniform hashing assumption that the hash values are arriving independent,
uniformly distributed. They all lack any worst-case performance guarantee.®

6 In spite of frequently repeated claims like“. . . guaranteed no more than two page faults to
locatethedata. ..” (Fagin et al. 1979), similar claims for many other structures are repeated in
many well-known textbooks. These structures are interpreted as external-memory structures,
counting only external block accesses, but unlike true external-memory structures, they do not
keep the amount of internal memory constant.
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These structures are two-level structures: with a primary structure convert-
ing the hash value into a bucket number and a secondary structure for each
bucket. The bucket itself has a finite maximum capacity B, and it isfrequently
identified with an external memory page; but in a main-memory application, it
can be realized in many ways, for example, as array, linked list, or as another
hash table. The measure analyzed in many papers is the memory utilization
expressed in the number of buckets used to store n elements; the primary
structure is assumed to be small and fit in the main memory, whereas the
buckets are in external memory.

In the first of these methods, the “dynamic hashing” method by Larson
(1978) is related to the prefix hash trees described in the previous section.
The only differenceis that each leaf can hold several items. Thus, the primary
structure is a binary trie, where the buckets are associated with the leaves of
the trie. To find an element, we interpret the hash value as bit string and use
a prefix of it that is so long as to lead to a leaf in the trie; then, we use the
rest of the hash value to find the required element in the bucket associated
with the leaf. To insert a new element, we follow the same path and try to
insert the new element in the bucket associated with the leaf; if the bucket
overflows, we split the leaf, taking the next bit of the hash value, and distribute
the contents of the previousleaf bucket over the two buckets associated with the
new leaves. Under the uniform hashing assumption, this trie will be balanced,
having height O(log %), and the number of buckets used to storethen elements
will be O(%), indeed about 1.447, giving a 70% storage utilization, and some
further refinements were analyzed (Larson 1978). If the hashing is not uniform,
it is easy to make this structure arbitrary bad, always forcing the same bucket
to be split.

The “virtual hashing” method of Litwin (1978) makes the primary structure
implicit and uses sequence hash trees instead of prefix hash trees, following
a search path through multiple buckets. If the hash value is b1bybs. . ., the
method first looks in bucket b, then in bucket b16-, then in bucket 516,53, and
so on. For an insertion, we follow this sequence of buckets until we find one
that has still room for a new element. We need to keep track of the longest
prefix length of buckets that are in use, and increase that when necessary. A
simple method to trand ate these bit strings of increasing length in integer array
addresses isto map biby ... by 10 28 — 1+ |bib, ... by |, where | - - - | denotes
the number represented by the bit string. Again, if the hash valuesare uniformly
distributed, the behavior of this is reasonable, using O(%) buckets to store n
items; to look up an item, we need to check O(log %) buckets, instead of the
one bucket checked by the previous method; the advantage here isthat upon a
bucket overflowing, we do not have to redistribute the elements of that bucket,
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but just continue with the new elements in the next bucket along that prefix
path. Again the structure can become arbitrary bad if the hash values are not
uniformly distributed. And there is an additional problem that if we want to
avoid the primary structure in this way, we assume that we can allocate an
arbitrary number of consecutive buckets. Otherwise, we till need a primary
structure to trandate the bucket number into the address where the bucket is
really stored. Litwin assumed thisto be just an array, but indeed it would have
to be an extendible array, as described in Section 1.5, with all the problems that
this structure causes. If the array has fixed maximum size, we are back at our
original problem.

The “linear hashing” method by Litwin (1980), the “extendible hashing”
by Fagin et al. (1979), and the “spiral storage” by Martin’ also assume the
availability of an extendible array as primary structure and use a prefix of the
hash value as index to that array, which then gives the address of the bucket
containing the element. If buckets get overfull, the array size isdoubled and a
longer prefix of the hash value is used. Linear hashing and extendible hashing
differ in the policy of splitting buckets.

Linear hashing just splits in a fixed cyclic order, so not the overflowing
bucket is split, but that bucket whose turn is next. The overflow problem is
then handled by attaching an overflow bucket to the intended bucket. When it
finally becomes its turn to be split, al items from the bucket and all overflow
buckets it might have acquired are redistributed according to their next bit in
the hash value. If the hash val ues are assumed to be independent and uniformly
distributed, this simple policy is sufficient to keep the expected number of
overflow buckets small. But many buckets might be split although they do not
yet requireit. Spiral storage follows the sameideaof splitting in acyclic order,
but differsin the numbering scheme for the buckets. In linear hashing, one part
of a split bucket retains the old number and the other gets the next number
abovethe currently existing bucket numbers, so the array grows only at itsend,
but begins always with index 0. In spiral storage, both parts of the split bucket
get new numbers and the old entry is deleted. Many variants of these methods
have been proposed (Litwin 1981; Mullin 1981b; Scholl 1981; Tamminen 1981;
Ramamohanarao and Lloyd 1982; Tamminen 1982; Larson 1985; Mullin 1985;
Larson 1988; Ouksel and Scheuermann 1988; Ou and Tharp 1991; Chu and
Knott 1994; Baeza-Yates and Soza-Pollman 1998).

Extendible hashing differs from the previous methods in that it splits only
overflowing buckets and allows several entriesin the primary structure to refer

7 Introduced in the technical report, G.N. Martin: Spiral Storage: Incrementally Augmentable
Hash Addressed Storage, Technical Report 27, University of Warwick, USA, 1978; appearsin
apaper published first in Mullin (1985).
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to the same bucket. When abucket overflows, it isfirst checked whether we can
split the bucket within the framework of the current primary structure, because
the items corresponding to several different entries are stored in that bucket. If
that is the case, we just create the new bucket and separate the items. Else we
have to increase the depth of the primary structure; for that we double the array,
copying al previous entries into two consecutive array entries, so now every
bucket isreferred by at least two array entries corresponding to two hash value
prefixes differing in the last bit. Then we can split the overflowing bucket and
distribute the items on two buckets according to that last bit. It is easy to check
whether there are multiple array entries referring to the same bucket, because
they share aprefix in their hash value, so the array entries are consecutive. This
property needsto be preserved when we split abucket; theentriesreferringto the
old and the new bucket must again be consecutive array entries. Variants of the
extendible hashing method were proposed in Lomet (1983) and Chung (1992).

A higher-dimensional analog of this extensible hashing structure is the
“gridfile” (Nievergelt, Hinterberger, and Sevcik 1984; Hinrichs 1985; Regnier
1985); here our data items have as key not only one sequence of bits, but d
such sequences. Then we take in each sequence a prefix and interpret that as
number, and usethese d numbersasindex to ad-dimensional array, which gives
usthenumber of the bucket containing that dataitem. Again we have potentially
many array positions pointing to the same bucket, but they formad-dimensional
interval among the index positions, so we can split an overflowing bucket as
long asthereare several array positionspointingtoit. Higher-dimensional index
structures for points have some similarity to the other structures discussed in
this section and have again devel oped many variants.

A totally different class of structures that combine hash tables with variable
size are the methods of dynamic perfect hashing introduced by Dietzfelbinger
and Mayer auf der Heide (1992) and Dietzfelbinger et al. (1994). That is a
dynamization of the perfect hash method by Fredman et a. (1984), where parts
of the two-level structure are occasionally rebuilt. That is a randomized struc-
ture that supports worst-case constant find operations and amortized expected
constant time insertions and deletions.

9.6 Membership Testersand Bloom Filters

Thedictionary structureswediscussedin theearlier chapters, search trees, tries,
and hash tables, all were keeping track of aset of keys, associating with each key
an object. A membership tester does dlightly less, he just answers membership
queriesfor the set: isthe query key containedin the set? Thisweaker structureis
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interesting in anumber of applicationsrelated to external memory and network
applications. If we are looking for some data that might be in any of a number
of buckets, we can avoid looking in each bucket if we have amembership tester
for its content. If the buckets are external memory pages or other computersin
adistributed system, we can perhaps keep a membership tester for each bucket
in our main memory, but not the content of the bucket itself. So membership
testers are mainly interesting if their size is small compared to the size of the
entire set, which would be the size of aclassical dictionary structure.

For membership testers, it is possible to relax the requirements and accept
false pogitives, that is, query keys incorrectly accepted as members of the set,
as long as they are few. This significantly reduces the size of the structure,
without significantly degrading its usefulness: at worst we look in a bucket too
much. Another application, which was the main motivation of the first study,
is a spelling checker: we just need a decision whether the word is correct,
and incorrectly accepting a few misspelled words is not harmful. It has also
been proposed for some textual index applications (Mullin 1987; Ramakrishna
1989Db; Shepherd, Phillips, and Chu 1989). This structure was invented by
Bloom (1970), and an approximate membership tester is called a Bloom filter.
Exact and approximate membership testers were then studied in Carter et al.
(1978), and recently became the object of many further studies, especially
motivated by network applications (Little, Shrivastava, and Speirs 2002; Broder
and Mitzenmacher 2004). Classical dictionaries, unlike membership testers,
have an approximate version only if we can approximate the associated object
in ameaningful way (Chazelle et al. 2004), which isusually not the case: there
are no approximate pointers.

For the construction and analysis of membership testers, it is necessary to
make further assumptions on the nature of the universe &/ from which the sets
are selected, and the computational model. In all structures proposed in this
context, the universe is assumed to be afinite set with u elements. This makes
the structure similar to hash tables and different from search trees, where
the assumption was only that we could compare two universe elements in
constant time.

If we have to represent all 2 possible subsets of the universe, we cannot
do better than using a bitmap, u bits, each representing one universe element
that may be in the current set or not. We cannot encode the 2* possible subsets
by less than u = log(2*) bits. If we restrict ourselves to subsets of a fixed
size, n elements of the u possible universe elements, we get alower bound of
log (), which is approximately n logu for n much smaller than u. Already in
Carter et a. (1978), severa exact membership testers of almost that size were
proposed, but the query timesthat can be achieved depend on the computational
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model: in some models, almost minimal space and constant query time are
possible (Brodnik and Munro 1999).

For approximate membership testers, the situation is more difficult. The
origina method proposed by Bloom is that we have a bit string of length b,
and k hash functions i; : U — {1, ..., b}. For each element x that belongsto
the set X we wish to represent, the structure setsthe bits 21 (x), . .., hy(x) to 1.
The same bit might be set to 1 for many different elements of the represented
set. To query whether y € U isinthat set X, we compute 21(y), ..., hx(y) and
check whether all these bits are 1; then we claim that y belongs to X, else
we know that it does not belong to X. This allows false positives, but no false
negatives. This was studied in Bloom (1970), Carter et a. (1978), and Mullin
(2983) under the uniform hashing assumption; if the &, (x) areindependent and
uniformly distributed, and we use b = (log, e)kn bits and k hash functions to
represent an n-element set, we get an upper bound of 2 for the error rate,
independent of the size of the universe.

Another method, which requires less assumption on the independence of
the hash values, isjust to map the large universe I/ by a hash function / chosen
from a universal family to a smaller universe V and use an exact membership
tester there. This was also already proposed in Bloom (1970), where a normal
hash table was used for that smaller universe; in Carter et al. (1978) it wasthen
combined with exact membership testers. Given a query element y, we claim
y belongsto X if h(y) belongsto i (X), otherwise we know it does not belong
to X. A fase positive results if thereis an x € X, x # y, with A(x) = A(y).
Using asmaller universe of size n2*, we get a probability of a collision under
the universal hash function, corresponding to a false positive, of c27%. The
space required by this structure is the space for an exact membership tester
of an n-element set in a universe of size n2¢. Again the space requirement is
independent of the size of the original universe &/ and depends only on n and
the error rate.

Further structures for membership testers, of almost optimal size and query
time, were developed in Brodnik and Munro (1999), Buhrman et al. (2000), and
Pagh, Pagh, and Rao (2005); related structures were also proposed in Kirsch
and Mitzenmacher (2006), Mitzenmacher (2001), aversion also allowing false
negatives in Pagh and Rodler (2001) and a version for multisets answering
approximate multiplicity queriesin Cohen and Matias (2003). All these struc-
tures are just static structures, not allowing any insertions or deletions of the
underlying set. A trivial way to make the structure dynamic is to replace the
bits in the first structure above by counters, incrementing each counter on
insertions and decrementing on deletions, with the test criterion in a query
becoming that all counters are positive. Thisis known as counting Bloom filter
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(Fan et al. 2006; Buhrman et al. 2000), but the structure is not fully dynamic
in the same way that hash tables had a maximum size, because the number of
counters, as well as their size, is not changed during insertions. That would
require techniques like the shadow copies, extendible arrays, or extendible
hash tables, as discussed in the previous section. But the main motivation
for the apparent practical interest in approximate membership testers is their
small size.
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Appendix

In the following I collected some comments on relevant concepts, useful tech-
niques, and the subject choices and restrictions of this book.

10.1 The Pointer Machine and Alternative
Computation Models

In this book we restricted ourselves as far as possible to structures that can be
represented in the model of the pointer machine and excluded structures that
require stronger models of computation.

In the pointer machine,! the memory consists of nodes that are of size O(1),
each node containing possibly some values and some pointers to other nodes.
The only thing we can do with these pointers is to follow them and create a
pointer to a given node, or create a node and a pointer to it. All operations on
pointers, as well as the creation and deletion of nodes, take constant time.

Almost all our structures fall into this model, the main exception being
the hash tables, which were included for their great practical importance. In
hash tables we compute a pointer out of some input data; there is no “pointer
arithmetic” in the pointer machine. The other exceptions are our frequent
use of arrays for stacks and the array-based heaps, which both again require
address computations and non-constant-sized memory objects. We include
these structures for their efficiency, but could have avoided them: the linked-
list implementation of a stack is an obvious example of a pointer-machine
structure, and we gave many heaps that fall into this model. The Fibonacci

! There are a number of concepts in literature that go under the popular name of “pointer
machine” and that differ in details. Ben-Amram (1995) tried to systematize them. According to
his classification, we are using “pointer algorithms.”

406
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heap is not a pointer-machine structure; we included it as a moderately simple
heap with an amortized fast decrease-key operation.

An important alternative, and more powerful, model of computation is the
word-based RAM with word length ®(logn). In the pointer-machine model,
we do not worry about the size of the values in the various fields of the nodes;
in this book we never discussed any problem of numerical range overflow.
If we want to allow computation with addresses in our model, we have to
be more specific in what the addresses are. The pointer-machine model was
based exactly on the abstraction from that detail. If we model our computer
memory as a big array of memory words, each memory word having a fixed
width, w bits, and a pointer to a memory address fitting in a memory word,
we need a word size w > Q2(logn) to be able at least to address the n parts
of the input. If we assume that our program needs only space polynomial in
n, which is a very weak upper bound for a reasonable program, O(logn) bits
are sufficient to address all those memory cells used by the program. For this
reason, word-based RAMs normally assume a word length of ®(log n).

Having the word length of your machine depends on the size of the input
appears strange and unrealistic, but if we keep the word length fixed, then even
following a pointer needs 2(logn) time just to read the entire pointer. And
if the input data consist of n items, each of which fits in a single word of
constant size w, there are only 2” = O(1) possible values for each input item,
so a large input will consist only of repeated items. This changes the problems
very much, making, for example, counting sort a reasonable algorithm for
sorting.

Allowing direct access to the addresses and computations with these ad-
dresses allows some operations to be much faster that it is possible in the
pointer machine. Because that asymptotic speed does not translate into a fast
implementation, we excluded this type of structures in this book.

Another model choice is the question what numbers the machine supports.
For word-based RAMs it is natural to use only integers that fit into a word; but
especially in geometric structures, it is very convenient to allow real numbers
as elementary objects, with which one can do arbitrary arithmetic operations
in constant time. For the pointer machine, this fits especially well; then the
number components of a node, like the pointer components, are just elementary
objects with which some constant-time operations are possible. With the RAM it
depends on whether we keep real numbers and integers separate; then we get the
standard real RAM; or whether we allow in our model operations like rounding,
thus converting a real number into an integer, which makes serious differences
in the complexity of some problems and adds another model question, whether
the derived integer then fits into a word or can be used as address.
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Being specific about the underlying computation model is especially im-
portant for lower bounds, which do depend strongly on the choice of the
computation model. In this book we focused on algorithms and excluded lower
bounds.

In principle, we could claim that our computational model is the set of correct
C programs. Any programming language does not have a stated restriction on
the word length of the integers and pointers used in your program, although
it is possible to access them on bit level. But these restrictions are present in
the computer, making asymptotic runtimes for n — oo a theoretical concept
anyway.

10.2 External Memory Models and Cache-Oblivious
Algorithms

We described the basic external memory model, in which blocks of fixed (large)
size are accessed on the external memory, in our discussion of B-trees and
(a, b)-trees. The same questions can be asked not only for search trees but
also for all other structures discussed here: how many blocks of size B
have to be accessed to solve the given problem. This is a different com-
plexity measure for the same problem; instead of counting operations, we
count block transfers and want to minimize that number by the design of our
algorithms.

These questions have been discussed in many papers and for many different
underlying data structure problems. A recent survey is given in Vitter (2001).
Especially the database community, in which the assumption that the data
will not fit into the main memory is standard, is interested in these external
memory structures. In many cases, a suitable modification of some B-tree
variant turns out to be the solution, other cases, especially with geometric
underlying problems, are more difficult.

In this book we mostly excluded that external memory setting, with the
exception of (a, b)-trees that were also useful as main memory data structure;
but any of our problems could also be studied in that setting, and many have
been. Both computers and problems get larger; the problems of 5 years ago now
fit into main memory, but new problems become feasible. The big majority of
problems, however, does fit into main memory, and the normal main-memory
model is both simpler and basic to other models, so its study has priority.
Ultimately, we believe it possible that the external memory models disappear
to specialized application niches, like the sequential access memory (tape)
structures that were an important model variant 30 years ago.
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A currently much-studied memory variant are the cache-oblivious struc-
tures, introduced in Frigo et al. (1999); they are like external memory struc-
tures, but without knowledge of the block size. They are based on the insight
that the main memory of a modern computer is not as homogeneous as we
assume in our standard model; there is a hierarchy of various levels of faster
cache memory between the actual processor and the main memory. Each of
these cache memories is structured in blocks; an access to a cached block is
fast, whereas a cache miss forces an access to the next slower level of cache,
from which not only the requested address, but an entire (small) block, the
“cache line” is read and stored. The cache-oblivious structure should behave
well with respect to the number of block transfers for any block size. This is
again a modification that can be combined with any data structure problem; we
get a set of different complexity measures, the numbers of block transfers for
the different block sizes, all of which should simultaneously be near optimal.
Like the B-tree for external memory problems, there is a canonical tool, the
van-Emde-Boas tree layout, which frequently can be adapted to make a given
main memory structure cache-oblivious. Again we excluded this topic from
this book.

10.3 Naming of Data Structures

In general, a structure or concept with a name is easier to reference than one that
is just identified by its author. This is noticeable in many places; indeed a named
structure is more probable to get cited. But in our subject, it is frequently not
clear what a name applies to, whether it is the abstract structure or the method to
realize that structure. A typical example are heaps: a large part of the literature
holds that the abstract structure is named “priority queue,” and heaps are just
the original implementation, the array-based heaps. But the names given to later
implementations are clearly always “heaps,” as in binomial heaps, Fibonacci
heaps, relaxed heaps, pairing heaps, and so on. Only the leftist heaps fail to
follow that scheme, in literature they are referred to as leftist trees. For this
reason, we used “heap” as the name of the abstract structure. Some authors
use “meld” instead of “merge” for the merging of heaps, but we preferred the
better-known word “merge.”

The word “queue” has been used for so many unrelated concepts, as “caten-
able queues” for search trees supporting split and join, that it should be avoided
for anything that is not really a queue. In the same way, “list” is a word that
gives very little explanation, having been used in many structures whose only
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common aspect is a linear order occuring somewhere. We use “list” only for
linked lists.

Good naming continues to be a problem, and we tried to be at least consistent
in the names used in this book.

10.4 Solving Linear Recurrences

Linear recurrences with constant coefficients occured in the analysis of height-
balanced trees and, in principle, at many other places that have an exponential
or logarithmic growth rate. Because there is a simple technique to solve any
such recursion, we present it here.

Suppose you have a function defined by a recursion of the form

fao+b=afo+k—-—D+afn+k=2)+ - +a f(n+1)
+ao f(n),

as well as some initial conditions for the small values (f(1), ..., f(k)). The
set of all solutions of this recursion is closed under taking constant multiples
and sums, so it forms a linear space. The dimension of this linear space is k: we
can choose f(1),..., f(k) arbitrarily and then define the function for n > k
by the recursion. This always gives a solution of that recursion, and any two
solutions that agree on the first k values are identical. So we just need to find k
linearly independent solutions to this recursion and then we can form a linear
combination of them to satisfy the k given initial conditions.

Define a polynomial of degree k by p(x) = x* — a;_ 1 x*7! — ap_,x*% —
-+« —a;x — ag. This is called the characteristic polynomial of the recursion.
A polynomial of degree k has exactly k zeros, at least if we count them with
multiplicities (and allow complex numbers). Let ¢ be one of these zeros, so

&= ak_lckfl + ak_zck*2 +---+ac+ ap,
then f.(n) = ¢" is a solution of the recursion:
fon+k) =" ="
= "(@-1" Fapad" P + -t are +ap)
= G " b e a4 agl”
= a1 feln+k—D+aafn+k—=2)+---
+ay fe(n + 1) + ag fe(n).

If ¢ is a multiple zero of the polynomial p, so p(x) = (x — ¢)'r(x) for some i >
2 and some polynomial r, then c is also a zero of the derivatives p’, ..., p@~V.
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So we have

- ak_lckfl — ak_zckfz —-—ajc—ay=0,

ket — a1k = 1) —ag ok = 2)cF P = —ay =0,

kk—=1) - (k—i+2)F " —qp (k= Dk =2)---(k—i + D"
—ag ok =3k —=4)- (k=D = — (=D =2)---1a;_; = 0.

Thus, there are polynomials gy, . .., g;—; of degree 0, ...,i — 1
(gjx) =x(x —D(x —2)---(x — j + 1)) with

qo(k)c* — gotk — Dag_1¢* ™ — qo(k — 2)ar_oc" ™ — - -+ — go(1)c—qo(0) = 0,
g1 (k)" — g1tk — Dag_ ' — g1k — a2 — - — g1(1)e—q1(0) = 0,

gi—1(k)c* — qi_1(k — Dag_1 " — g1 (k — 2)ag_oc?
—--—qi—1(Dc —g;—1(0) = 0.

These polynomials are linearly independent and form a basis of the space of
polynomials of degree at most i — 1. So we can express any polynomial g
of degree at most i — 1 as linear combination of the g;, and obtain by the
corresponding linear combination of the above equations that

q(k)c* — qlk — Dag_ 1" — qlk — ag_oc* 2 — - — g(1)e — q(0) = 0.

Therefore, if ¢ is an i-fold zero of the characteristic polynomial p, then any
polynomial ¢ with degree at most i — 1 also generates a solution f, ,(n) =
qg(n)c" of our recurrence. We just have to use that g(n + k) is a polynomial
in k.

Jfeqn+k)y=qn+ k)c”+k =c"-qgn+ k)ck
= (g0 + (k= a1~ + g0+ (k = D)2 + -

+q(n + Dajc+q@n + O)ao)

=a_1g(n+k — D faoqn + k=2 4+
+aig(n + "™ + apg(n + 0)c"

=ar 1 feqtt+k—D+aafeqn+k—=2)+---
+ay feq(n+ 1)+ ag feq(n).
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Thus we have found a system of linearly independent solutions of the given
recursion whose cardinality is the dimension of the space of solutions. So they
form a basis for the space.

In summary to solve a given recursion of this type, we just write down
the characteristic polynomial p, find its zeros with their multiplicities, write
down the basis, and find the linear combination that satisfies the given initial
conditions. The only potential problem in this method is to find the zeros of a
given polynomial.

10.5 Very Slowly Growing Functions

We frequently used the logarithm function that is already for all normal purposes
quite slow growing. After all, problem sizes of n > 2'% are irrelevant, so we
could assume for practical purposes that logn < 100. Indeed, we did this when
choosing the array size for array-based stacks in the implementation of several
tree structures.

Still, there are many functions that grow slower than logn, and some of
them do occur in the analysis of data structures and algorithms. Of course
loglogn grows slower than logn and that occured in the worst-case optimal
structure for the set union problem in Section 6.1. To get a feeling for very
slow-growing functions, it is easier to look at their inverses, which are very
fast-growing functions. The inverse of logn is 2", and the inverse of loglogn
is 2%". An occasionally useful function that grows much slower is the “iterated
logarithm” function log* n, which is usually defined as the number of times we
have to apply the logarithm to make the result less than 1. An equivalent, but
better understandable, version is

2 2
log*n = k if 22 }" <n< 2 }"“.

So the inverse function of log*(n) is an exponential tower of height n. Even the
Ackermann function grows faster than the exponential tower. This was defined
in Chapter 6 by

A(m,0)=0 form >1,

Am,1)=Am —1,2) form >1,

A0,n)=2n forn >0,
Am,n)=Am—1,Am,n—1)) form>1,n>2.
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Ackermann? (1928) then took the diagonal function A(n, n) as his example of
a function that grows so fast that it cannot be expressed as primitive recursive
function. To get a feeling for the growth rate, we observe that

A(0, n) = 2n (by definition),

A(l,n) = A0, A(l,n — 1)) =24(0,n — 1) = ... =2""1A(, 1) = 2",

AQ,n) = A(1, A2, n — 1)) = 24@n=DF1L 5 2ACGn=D " ¢,

2
A(2 n) > 222“ }n+2 times.

In general, A(k, n) is the result of n-fold application of A(k — 1, -).
Some simple properties of A(m, n) are that it is increasing in both variables
(increasing very fast), and A(m, 1) > m. With this, we note that

AG D =AG—1,2) = A —2,AG — 1, 1)>AG —2,i —2) > A — 2, 1),

so the value of the diagonal Ackermann function A(n, n) lies between the first-
column values A(n, 1) and A(n + 2, 1). So the inverse Ackermann function
defined in Section 6.1 (Chapter 6) as

a(n) =min{i | A(i, 1) > n}

differs from the inverse of the diagonal Ackermann function a¥*¢(n) = min{i |
A(i, i) > n} by at most two. This function a(n) is the slowest-growing function
that occurs in this book.

2 Actually this is not quite what Ackermann defined. Since 1928 the idea has been simplified, and
several variants for the initial conditions of the recursion exist, of which we choose one
especially suitable for our application. But the behavior of the function is always the same.
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