
A VLSI ARCHITECTURE FOR
CONCURRENT DATA STRUCTURES

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Consulting Editor

Jonathan Allen

Other books in the series:

Logic Minimization Algorithms for VLSI Synthesis, R.K. Brayton,
G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli.
ISBN 0-89838-164-9.

Adaptive Filters: Structures, Algorithms, and Applications, M.L. Honig
and D.G. Messerschmitt. ISBN: 0-89838-163-0.

Computer-Aided Design and VLSI Device Development, K.M. Cham,
S.-Y. Oh, D. Chin and J.L. Moll. ISBN 0-89838-204-1.

Introduction to VLSI Silicon Devices: Physics, Technology and
Characterization, B. El-Kareh and R.J. Bombard.
ISBN 0-89838-210-6.

Latchup in CMOS Technology: The Problem and Its Cure,
R.R. Troutman. ISBN 0-89838-215-7.

Digital CMOS Circuit Design, M. Annaratone. ISBN 0-89838-224-6.

The Bounding Approach to VLSI Circuit Simulation, C.A. Zukowski.
ISBN 0-89838-176-2.

Multi-Level Simulation for VLSI Design, D.O. Hill, D.R. Coelho.
ISBN 0-89838-184-3.

Relaxation Techniques for the Simulation of VLSI Circuits, J. White and
A. Sangiovanni-Vincentelli. ISBN 0-89838-186-X.

VLSI CAD Tools and Applications, W. Fichtner and M. Morf.
ISBN 0-89838-193-2.

A VLSI ARCHITECTURE FOR
CONCURRENT DATA STRUCTURES

by

William J. Dally
Massachusetts Institute of Technology

KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/Lancaster

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061, USA

Distributors for the UK and Ireland:
Kluwer Academic Publishers
MTP Press Limited
Falcon House, Queen Square
Lancaster LAI lRN, UNITED KINGDOM

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging·in·Publication Data

Dally, William J.
A VLSI architecture for concurrent data

structures.

(The Kluwer international series in engineering
and computer science ; SECS 027)

Abstract of thesis (Ph. D.)-California Institute
of Technology.

Bibliography: p.
1. Electronic digital computers-Circuits.

2. Integrated circuits-Very large scale integration.
3. Computer architecture. 1. Title. II. Series.
TK7888.4.D34 1987 621.395 87-3350
ISBN·13: 978·1-4612·9191-6 e·ISBN·13: 978·1-4613·1995·5
DOl: 10.10071978·1-4613·1995·5

Copyright © 1987 by Kluwer Academic Publishers
Softcover reprint of the hardcover 1 st edition 1987
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061.

Contents

List of Figures

Preface

Acknowledgments.

1 Introduction

1.1 Original Results.

1.2 Motivation

1.3 Background

1.4 Concurrent Computers .

1.4.1 Sequential Computers

1.5

1.4.2 Shared-Memory Concurrent Computers

1.4.3 Message-Passing Concurrent Computers

Summary

2 Concurrent Smalltalk

2.1 Object-Oriented Programming

2.2 Distributed Objects.

2.3 Concurrency

2.4 Locks

2.5 Blocks

ix

xv

. xvii

1

2

3

5

6

6

8

9

11

13

14

15

19

22

23

vi A VLSI Architecture for Concurrent Data Structures

2.6 Performance Metrics 23

2.7 Summary 24

3 The Balanced Cube 27

3.1 Data Structure .. 29

3.1.1 The Ordered Set 29

3.1.2 The Binary 1IrCube 29

3.1.3 The Gray Code . . . 31

3.1.4 The Balanced Cube 32

3.2 Search 35

3.2.1 Distance Properties of the Gray Code 35

3.2.2 VW Search 37

3.3 Insert 45

3.4 Delete 49

3.5 Balance 58

3.6 Extension to B-Cubes 62

3.7 Experimental Results. 64

3.8 Applications. 69

3.9 Summary .. 72

4 Graph Algorithms 75

4.1 Nomenclature .. 76

4.2 Shortest Path Problems 76

4.2.1 Single Point Shortest Path 78

4.2.2 Multiple Point Shortest Path 90

4.2.3 All Points Shortest Path . . . 90

Table of Contents vii

4.3 The Max-Flow Problem 94

4.3.1 Constructing a Layered Graph 99

4.3.2 The CAD Algorithm. · 101

4.3.3 The CVF Algorithm · 107

4.3.4 Distributed Vertices .115

4.3.5 Experimental Results .116

4.4 Graph Partitioning · 121

4.4.1 Why Concurrency is Hard . · 122

4.4.2 Gain · 123

4.4.3 Coordinating Simultaneous Moves · 124

4.4.4 Balance · 127

4.4.5 Allowing Negative Moves · 128

4.4.6 Performance129

4.4.7 Experimental Results .129

4.5 Summary · 131

5 Architecture 133

5.1 Characteristics of Concurrent Algorithms · 135

5.2 Technology · 137

5.2.1 Wiring Density · 137

5.2.2 Switching Dynamics · 140

5.2.3 Energetics · 142

5.3 Concurrent Computer Interconnection Networks · 143

5.3.1 Network Topology ... · 144

5.3.2 Deadlock-Free Routing. · 161

5.3.3 The Torus Routing Chip. · 171

viii A VLSI Architecture for Concurrent Data Structures

5.4 A Message-Driven Processor. · 183

5.4.1 Message Reception · 184

5.4.2 Method Lookup · 186

5.4.3 Execution · 188

5.5 Object Experts · 191

5.6 Summary .194

6 Conclusion 197

A Summary of Concurrent Smalltalk 203

B Unordered Sets 215

B.l Dictionaries . · 215

B.2 Union-Find Sets · 217

C On-Chip Wire Delay 221

Glossary 225

Bibliography 233

List of Figures

1.1 Motivation for Concurrent Data Structures 4

1.2 Information Flow in a Sequential Computer 7

1.3 Information Flow in a Shared-Memory Concurrent Computer 9

1.4 Information Flow in a Message-Passing Concurrent Computer. 10

2.1 Distributed Object Class Tally Collection

2.2 A Concurrent Tally Method .

2.3 Description of Class Interval.

2.4 Synchronization of Methods

3.1 Binary 3-Cube

3.2 Gray Code Mapping on a Binary 3-Cube .

3.3 Header for Class Balanced Cube

3.4 Calculating Distance by Reflection

3.5 Neighbor Distance in a Gray 4-Cube

3.6 Search Space Reduction by vSearch Method

3.7 Methods for at: and vSearch

3.8 Search Space Reduction by wSearch Method.

3.9 Method for wSearch ..

3.10 Example of VW Search

16

19

20

21

30

33

33

35

37

39

40

41

41

43

x A VLSI Architecture for Concurrent Data Structures

3.11 VW Search Example 2 . 44

3.12 Method for locaIAt:put: . 46

3.13 Method for 5plit:key:data:flag: 47

3.14 Insert Example 49

3.15 Merge Dimension Cases 51

3.16 Method for mergeReq:flag:dim: . 52

3.17 Methods for mergeUp and mergeDown:data:flag: 53

3.18 Methods for move: and copy:data:flag: 53

3.19 Merge Example: A dim = B dim 54

3.20 Merge Example: A dim < B dim 55

3.21 Balancing Tree, n = 4 59

3.22 Method for size:of: 61

3.23 Method for free: . 62

3.24 Balance Example 63

3.25 Throughput vs. Cube Size for Direct Mapped Cube. Solid line
is 1~~\~. Diamonds represent experimental data. 66

3.26 Barrier Function (n=lO) 67

3.27 Throughput vs. Cube Size for Balanced Cube. Solid line is 1~:~.
Diamonds represent experimental data. . 68

3.28 Mail System

4.1 Headers for Graph Classes .

4.2 Example Single Point Shortest Path Problem

4.3 Dijkstra's Algorithm

4.4 Example Trace of Dijkstra's Algorithm.

4.5 Simplified Version of Chandy and Misra's Concurrent SPSP Al-

69

77

78

79

80

gorithm .. 81

List of Figures

4.6 Example Trace of Chandy and Misra's Algorithm

4.7 Pathological Graph for Chandy and Misra's Algorithm .

4.8 Synchronized Concurrent SPSP Algorithm.

4.9 Petri Net of SPSP Synchronization

4.10 Example Trace of Simple Synchronous SPSP Algorithm

4.11 Speedup of Shortest Path Algorithms vs. Problem Size.

xi

82

83

84

85

86

87

4.12 Speedup of Shortest Path Algorithms vs. Number of Processors. 88

4.13 Speedup of Shortest Path Algorithms for Pathological Graph 89

4.14 Speedup for 8 Simultaneous Problems on R2.10 . . 91

4.15 Speedup VB. Number of Problems for R2.1O, n=10 92

4.16 Floyd's Algorithm

4.17 Example of Suboptimal Layered Flow

4.18 CAD and CVF Macro Algorithm . .

4.19 CAD and CVF Layering Algorithm.

4.20 Propagate Methods .

4.21 Reserve Methods .

4.22 Confirm Methods .

4.23 request Methods for CVF Algorithm.

4.24 sendMessages Method for CVF Algorithm

4.25 reject and ackFlow Methods for CVF Algorithm

4.26 Petri Net of CVF Synchronization ...

4.27 Pathological Graph for CVF Algorithm

93

97

99

.100

.103

. 104

.106

.109

.110

.112

.114

. 115

4.28 A Bipartite Flow Graph 116

4.29 Distributed Source and Sink Vertices . . 117

4.30 Number of Operations vs. Graph Size for Max-Flow Algorithms 117

xii A VLSI Architecture for Concurrent Data Structures

4.31 Speedup of CAD and CVF Algorithms vs. No. of Processors . 119

4.32 Speedup of CAD and CVF Algorithms vs. Graph Size . 120

4.33 Thrashing 123

4.34 Simultaneous Move That Increases Cut . 125

4.35 Speedup of Concurrent Graph Partitioning Algorithm vs. Graph
Size 130

5.1 Distribution of Message and Method Lengths · 135

5.2 Packaging Levels · 137

5.3 A Concurrent Computer .144

5.4 A Binary 6-Cube Embedded in the Plane · 146

5.5 A Ternary 4-Cube Embedded in the Plane . 146

5.6 An 8-ary 2-Cube (Torus) 147

5.7 Wire Density vs. Position for One Row of a Binary 20-Cube . .149

5.8 Pin Density vs. Dimension for 256, 16K, and 1M Nodes ... · 150

5.9 Latency vs. Dimension for 256, 16K, and 1M Nodes, Constant
Delay 153

5.10 Latency vs. Dimension for 256, 16K, and 1M Nodes, Logarithmic
Delay 155

5.11 Latency vs. Dimension for 256, 16K, and 1M Nodes, Linear
Delay 156

5.12 Contention Model for A Single Dimension

5.13 Latency vs. Traffic (A) for 32-ary 2-cube, L=200bits. Solid line
is predicted latency, points are measurements taken from a sim-

.158

ulator 160

5.14 Actual Traffic vs. Attempted Traffic for 32-ary 2-cube, L=200bits.
160

5.15 Deadlock in a 4-Cycle .162

5.16 Breaking Deadlock with Virtual Channels .166

List of Figures xiii

5.17 3-ary 2-Cube · 168

5.18 Photograph of the Torus Routing Chip . 170

5.19 A Packaged Torus Routing Chip 171

5.20 A Dimension 4 Node 172

5.21 A Torus System. . . 173

5.22 A Folded Torus System 174

5.23 Packet Format 175

5.24 Virtual Channel Protocol 176

5.25 Channel Protocol Example 176

5.26 TRC Block Diagram 177

5.27 Input Controller Block Diagram. 178

5.28 Crosspoint of the Crossbar Switch · 179

5.29 Output Multiplexer Control .. . 180

5.30 TRC Performance Measurements 182

5.31 Message Format · 185

5.32 Message Reception 186

5.33 Method Lookup .. 187

5.34 Instruction Translation Lookaside Buffer . · 188

5.35 A Context · 189

5.36 Instruction Formats 190

5.37 A Coding Example: Locks 192

A.1 Class Declaration . .204

A.2 Methods208

B.1 A Concurrent Hash Table · 216

xiv A VLSI Architecture for Concurrent Data Structures

B.2 Concurrent Hashing

B.3 A Concurrent Union-Find Structure

B.4 Concurrent Union-Find

C.l Model of Inverter Driving Wire

.218

. 219

.220

.222

Preface

Concurrent data structures simplify the development of concurrent programs
by encapsulating commonly used mechanisms for synchronization and commu­
nication into data structures. This thesis develops a notation for describing
concurrent data structures, presents examples of concurrent data structures,
and describes an architecture to support concurrent data structures.

Concurrent Smalltalk (CST), a derivative of Smalltalk-80 with extensions for
concurrency, is developed to describe concurrent data structures. CST allows
the programmer to specify objects that are distributed over the nodes of a
concurrent computer. These distributed objects have many constituent objects
and thus can process many messages simultaneously. They are the foundation
upon which concurrent data structures are built.

The balanced cube is a concurrent data structure for ordered sets. The set is
distributed by a balanced recursive partition that maps to the subcubes of a
binary 7lrcube using a Gray code. A search algorithm, VW search, based on
the distance properties of the Gray code, searches a balanced cube in O(log N)
time. Because it does not have the root bottleneck that limits all tree-based
data structures to 0(1) concurrency, the balanced cube achieves 0C.:N) con­
currency.

Considering graphs as concurrent data structures, graph algorithms are pre­
sented for the shortest path problem, the max-flow problem, and graph parti­
tioning. These algorithms introduce new synchronization techniques to achieve
better performance than existing algorithms.

A message-passing, concurrent architecture is developed that exploits the char­
acteristics of VLSI technology to support concurrent data structures. Intercon­
nection topologies are compared on the basis of dimension. It is shown that
minimum latency is achieved with a very low dimensional network. A deadlock­
free routing strategy is developed for this class of networks, and a prototype
VLSI chip implementing this strategy is described. A message-driven processor
complements the network by responding to messages with a very low latency.
The processor directly executes messages, eliminating a level of interpretation.
To take advantage of the performance offered by specialization while at the
same time retaining flexibility, processing elements can be specialized to oper­
ate on a single class of objects. These object experts accelerate the performance
of all applications using this class.

xvi A VLSI Architecture for Concurrent Data Structures

This book is based on my Ph.D. thesis, submitted on March 3, 1986, and
awarded the Clauser prize for the most original Caltech Ph.D. thesis in 1986.
New material, based on work I have done since arriving at MIT in July of 1986,
has been added to Chapter 5. The book in its current form presents a coherent
view of the art of designing and programming concurrent computers. It can
serve as a handbook for those working in the field, or as supplemental reading
for graduate courses on parallel algorithms or computer architecture.

Acknowledgments

While a graduate student at Caltech I have been fortunate to have the opportu­
nity to work with three exceptional people: Chuck Seitz, Jim Kajiya, and Randy
Bryant. My ideas about the architecture of VLSI systems have been guided by
my thesis advisor, Chuck Seitz, who also deserves thanks for teaching me to
be less an engineer and more a scientist. Many of my ideas on object-oriented
programming come from my work with Jim Kajiya, and my work with Randy
Bryant was a starting point for my research on algorithms.

I thank all the members of my reading committee: Randy Bryant, Dick Feyn­
man, Jim Kajiya, Alain Martin, Bob McEliece, Jerry Pine, and Chuck Seitz for
their helpful comments and constructive criticism.

My fellow students, Bill Athas, Ricky Mosteller, Mike Newton, Fritz Nordby,
Don Speck, Craig Steele, Brian Von Herzen, and Dan Whelan have provided
constructive criticism, comments, and assistance.

This manuscript was prepared using TEX [75] and the LaTEX macro package
[80]. I thank Calvin Jackson, Caltech's TEXpert, for his help with typesetting
problems. Most of the figures in this thesis were prepared using software de­
veloped by Wen-King SUo Bill Athas, Sharon Dally, John Tanner, and Doug
Whiting deserve thanks for their careful proofreading of this document.

Mike Newton of Caltech and Carol Roberts of MIT have been instrumental in
converting this thesis into a book.

Financial support for this research was provided by the Defense Advanced Re­
search Projects Agency. I am grateful to AT&T Bell Laboratories for the sup­
port of an AT&T Ph.D. fellowship.

Most of all, I thank Sharon Dally for her support and encouragement of my
graduate work, without which this thesis would not have been written.

A VLSI ARCHITECTURE FOR
CONCURRENT DATA STRUCTURES

Chapter 1

Introduction

Computing systems have two major problems: they are too slow, and they are
too hard to program.

Very large scale integration (VLSI) [88] technology holds the promise of im­
proving computer performance. VLSI has been used to make computers less
expensive by shrinking a rack of equipment several meters on a side down to a
single chip a few millimeters on a side. VLSI technology has also been applied
to increase the memory capacity of computers. This is possible because memory
is incrementally extensible; one simply plugs in more chips to get a larger mem­
ory. Unfortunately, it is not clear how to apply VLSI to make computer systems
faster. To apply the high density of VLSI to improving the speed of computer
systems, a technique is required to make processors incrementally extensible so
one can increase the processing power of a system by simply plugging in more
chips.

Ensemble machines [112] , collections of processing nodes connected by a com­
munications network, offer a solution to the problem of building extensible
computers. These concurrent computers are extended by adding processing
nodes and communication channels. While it is easy to extend the hardware of
an ensemble machine, it is more difficult to extend its performance in solving a
particular problem. The communication and synchronization problems involved
in coordinating the activity of the many processing nodes make programming
an ensemble machine difficult. If the processing nodes are too tightly synchro­
nized, most of the nodes will remain idle; if they are too loosely synchronized,
too much redundant work is performed. Because of the difficulty of program­
ming an ensemble machine, most successful applications of these machines have
been to problems where the structure of the data is quite regular, resulting in
a regular communication pattern.

2 A VLSI Architecture for Concurrent Data Structures

Object-oriented programming languages make programming easier by provid­
ing data abstraction, inheritance, and late binding [123]. Data abstraction
separates an object's protocol, the things it knows how to do, from an object's
implementation, how it does them. This separation encourages programmers
to write modular code. Each module describes a particular type or class of
object. Inheritance allows a programmer to define a subclass of an existing
class by specifying only the differences between the two classes. The subclass
inherits the remaining protocol and behavior from its superclass, the existing
class. Late, run-time, binding of meaning to objects makes for more flexible
code by allowing the same code to be applied to many different classes of ob­
jects. Late binding and inheritance make for very general code. If the problems
of programming an ensemble machine could be solved inside a class definition,
then applications could share this class definition rather than have to repeatedly
solve the same problems, once for each application.

This thesis addresses the problem of building and programming extensible com­
puter systems by observing that most computer applications are built around
data structures. These applications can be made concurrent by using concurrent
data structures, data structures capable of performing many operations simul­
taneously. The details of communication and synchronization are encapsulated
inside the class definition for a concurrent data structure. The use of concur­
rent data structures relieves the programmer of many of the burdens associated
with developing a concurrent application. In many cases communication and
synchronization are handled entirely by the concurrent data structure and no
extra effort is required to make the application concurrent. This thesis develops
a computer architecture for concurrent data structures.

1.1 Original Results

The following results are the major original contributions of this thesis:

• In Section 2.2, I introduce the concept of a distributed obfect, a single
object that is distributed across the nodes of a concurrent computer. Dis­
tributed objects can perform many operations simultaneously. They are
the foundation upon which concurrent data structures are built .

• A new data structure for ordered sets, the balanced cube, is developed in
Chapter 3. The balanced cube achieves greater concurrency than conven­
tional tree-based data structures.

Chapter 1: Introduction 3

• In Section 4.2, a new concurrent algorithm for the shortest path problem
is described.

• Two new concurrent algorithms for the max-flow problem are presented
in Section 4.3.

• A new concurrent algorithm for graph partitioning is developed in Sec­
tion 4.4.

• In Section 5.3.1, I compare the latency of k-ary n-cube networks as a
function of dimension and derive the surprising result that, holding wiring
bisection width constant, minimum latency is achieved at a very low di­
mension.

• In Section 5.3.2, I develop the concept of virtual channels. Virtual chan­
nels can be used to generate a deadlock-free routing algorithm for any
strongly connected interconnection network. This method is used to gen­
erate a deadlock-free routing algorithm for k-ary n-cubes.

• The torus routing chip (TRC) has been designed to demonstrate the fea­
sibility of constructing low-latency interconnection networks using worm­
hole routing and virtual channels. The design and testing of this self-timed
VLSI chip are described in Section 5.3.3.

• In Section 5.5, I introduce the concept of an object expert, hardware spe­
cialized to accelerate operations on one class of object. Object experts pro­
vide performance comparable to that of special-purpose hardware while
retaining the flexibility of a general purpose processor.

1.2 Motivation

Two forces motivate the development of new computer architectures: need and
technology. As computer applications change, users need new architectures to
support their new programming styles and methods. Applications today deal
frequently with non-numeric data such as strings, relations, sets, and symbols.
In implementing these applications, programmers are moving towards fine-grain
object-oriented languages such as Smalltalk, where non-numeric data can be
packaged into objects on which specific operations are defined. This packaging
allows a single implementation of a popular object such as an ordered set to
be used in many applications. These languages require a processor that can
perform late binding of types and that can quickly allocate and de-allocate
resources.

4 A VLSI Architecture for Concurrent Data Structures

Object-Oriented Programming VLSI

Figure 1.1: Motivation for Concurrent Data Structures

New architectures are also developed to take advantage of new technology. The
emerging VLSI technology has the potential to build chips with 107 transis­
tors with switching times of 10-10 seconds. Wafer-scale systems may contain
as many as 10· devices. This technology is limited by its wiring density and
communication speed. The delay in traversing a single chip may be 100 times
the switching time. Also, wiring is limited to a few planar layers, resulting in a
low communications bandwidth. Thus, architectures that use this technology
must emphasize locality. The memory that stores data must be kept close to
the logic that operates on the data. VLSI also favors specialization. Because a
special purpose chip has a fixed communication pattern, it makes more effec­
tive use of limited communication resources than does a general purpose chip.
Another way to view VLSI technology is that it has high throughput (because
of the fast switching times) and high latency (because of the slow communica­
tions). To harness the high throughput of this technology requires architectures
that distribute computation in a loosely coupled manner so that the latency of
communication does not become a bottleneck.

This thesis develops a computer architecture that efficiently supports object­
oriented programming using VLSI technology. As shown in Figure 1.1, the
central idea of this thesis is concurrent data structures. The development of
concurrent data structures is motivated by two underlying concepts: object-

Chapter 1: Introduction 5

oriented programming and VLSI. The paradigm of object-oriented program­
ming allows programs to be constructed from object classes that can be shared
among applications. By defining concurrent data structures as distributed ob­
jects, these data structures can be shared across many applications. VLSI
circuit technology motivates the use of concurrency and the construction of
ensemble machines. These highly concurrent machines are required to take
advantage of this high throughput, high latency technology.

1.3 Background

Much work has been done on developing data structures that permit concurrent
access [33], [34], [35], [36], [78], [83]. A related area of work is the development
of distributed data structures [41]. These data structures, however, are primar­
ily intended for allowing concurrent access for multiple processes running on a
sequential computer or for a data structure d.istributed across a loosely coupled
network of computers. The concurrency achieved in these data structures is
limited, and their analysis for the most part ignores communication cost. In
contrast, the concurrent data structures developed here are intended for tightly
coupled concurrent computers with thousands of processors. Their concurrency
scales with the size of the problem, and they are designed to minimize commu­
nications.

Many algorithms have been developed for concurrent computers [7], [9], [15],
[77] [87],[104], [118]. Most concurrent algorithms are for numerical problems.
These algorithms tend to be oriented toward a small number of processors and
use a MIMD [44] shared-memory model that ignores communication cost and
imposes global synchronization.

Object-oriented programming began with the development of SIMULA [11],
[19]. SIMULA incorporated data abstraction with classes, inheritance with
subclasses, and late-binding with virtual procedures. SIMULA is even a con­
current language in the sense that it provides co-routining to give the illusion
of simultaneous execution for simulation problems. Smalltalk [53], [54], [76],
[138] combines object-oriented programming with an interactive programming
environment. Actor languages [1], [17] are concurrent object-oriented languages
where objects may send many messages without waiting for a reply. The pro­
gramming notation used in this thesis combines the syntax of Smalltalk-80 with
the semantics of actor languages.

The approach taken here is similar in many ways to that of Lang [81]. Lang also
proposes a concurrent extension of an object-oriented programming language,

6 A VLSI Architecture for Concurrent Data Structures

SIMULA, and analyzes communication networks for a concurrent computer to
support this language. There are several differences between Lang's work and
this thesis. First, this work develops several programming language features not
found in Lang's concurrent SIMULA: distributed objects to allow concurrent
access, simultaneous execution of several methods by the same object, and
locks for concurrency control. Second, by analyzing interconnection networks
using a wire cost model, I derive the result that low dimensional networks are
preferable for constructing concurrent computers, contradicting Lang's result
that high dimensional binary Tlrcube networks are preferable.

1.4 Concurrent Computers

This thesis is concerned with the design of concurrent computers to manipulate
data structures. We will limit our attention to message-passing [114] MIMD
[44] concurrent computers. By combining a processor and memory in each node
of the machine, this class of machines allows us to manipulate data locally. By
using a direct network, message-passing machines allow us to exploit locality in
the communication between nodes as well.

Concurrent computers have evolved out of the ideas developed for program­
ming multiprogrammed, sequential computers. Since multiple processes on a
sequential computer communicate through shared memory, the first concurrent
computers were built with shared memory. As the number of processors in a
computer increased, it became necessary to separate the communication chan­
nels used for communication from those used to access memory. The result of
this separation is the message-passing concurrent computer.

Concurrent programming models have evolved along with the machines. The
problem of synchronizing concurrent processes was first investigated in the con­
text of multiple processes on a sequential computer. This model was used almost
without change on shared-memory machines. On message-passing machines,
explicit communication primitives have been added to the process model.

1.4.1 Sequential Computers

A sequential computer consists of a processor connected to a memory by a
communication channel. As shown in Figure 1.2, to modify a single data object
requires three messages: an address message from processor to memory, a data
message back to the processor containing the original object, and a data message

Chapter 1: Introduction 7

Address

~
Old Data

New Data ..
Processor ... - Memory -- -

Figure 1.2: Information Flow in a Sequential Computer

back to memory containing the modified object. The single communication
channel over which these messages travel is the principal limitation on the speed
of the computation, and has been referred to as the Von Neumann bottleneck
[4J.

Even when a programmer has only a single processor, it is often convenient
to organize a program into many concurrent processes. Multiprogramming
systems are constructed on sequential computers by multiplexing many pro­
cesses on the single processor. Processes in a multiprogramming system com­
municate through shared memory locations. Higher level communication and
synchronization mechanisms such as interlocked read-modify-write operations,
semaphores, and critical sections are built up from reading and writing shared
memory locations. On some machines interlocked read-modify-write operations
are provided in hardware.

Communication between processes can be synchronous or asynchronous. In
programming systems such as CSP [64J and OCCAM [66J that use synchronous
communication, the sending and receiving processes must rendezvous. Whichever
process performs the communication action first must wait for the other pro­
cess. In systems such as the Cosmic Cube [125J and actor languages [lJ,[17J
that use asynchronous communication, the sending process may transmit the
data and then proceed with its computation without waiting for the receiving
process to accept the data.

Since there is only a single processor on a sequential computer, there is a unique
global ordering of communication events. Communication also takes place with­
out delay. A shared memory location written by process A on one memory

8 A VLSI Architecture for Concurrent Data Structures

cycle can be read by process B on the next cycle 1. With global ordering of
events and instantaneous communication, the strong synchronization implied
by synchronous communication can be implemented without significant cost.
The same is not true of concurrent computers where communication events
are not uniquely ordered and the delay of communication is the major cost of
computation.

It is possible for concurrent processes on a sequential computer to access an
object simultaneously because the access is not really simultaneous. The pro­
cesses, in fact, access the object one at a time. On a concurrent computer the
illusion of simultaneous access can no longer be maintained. Most memories
have a single port and can service only a single access at a given time.

1.4.2 Shared-Memory Concurrent Computers

To eliminate the Von Neumann bottleneck, the processor and memory can be
replicated and interconnected by a switch. Shared memory concurrent comput­
ers such as the NYU Uitracomputer [108],[56],[57], C.MMP [137], and RP3 [1021
consist of a number of processors connected to a number of memories through
a switch, as shown in Figure 1.3.

Although there are many paths through the switch, and many messages can
be transmitted simultaneously, the switch is still a bottleneck. While the bot­
tleneck has been made wider, it has also been made longer. Every message
must travel from one side of the switch to the other, a considerable distance
that grows larger as the number of processors increases. Most shared-memory
concurrent computers are constructed using indirect networks and cannot take
advantage of locality. All messages travel the same distance regardless of their
destination.

Shared-memory computers are programmed using the same process-based model
of computation described above for multiprogrammed sequential computers.
As the name implies, communication takes place through shared memory loca­
tions. Unlike sequential computers, however, there is no unique global order of
communication events in a shared-memory concurrent computer, and several
processors cannot access the same memory location at the same time.

Some designers have avoided the uniformly high communication costs of shared­
memory computers by placing cache memories in the processing nodes [551.

1 Some sequential computers overlap memory cycles and require a delay to read a location
just written.

Chapter 1: Introduction 9

Old Data

SWITCH

Address New Data

Figure 1.3: Information Flow in a Shared-Memory Concurrent Computer

Using a cache, memory locations used by only a single processor can be ac­
cessed without communication overhead. Shared memory locations, however,
still require communication to synchronize the caches'. The cache nests the
communication channel used to access local memory inside the channel used
for interprocessor communication. This division of function between memory
access and communication is made more explicit in message-passing concurrent
computers.

1.4.3 Message-Passing Concurrent Computers

In contrast to sequential computers and shared-memory concurrent comput­
ez:s which operate by sending messages between processors and memories, a
message-passing concurrent computer operates by sending messages between
processing nodes that contain both logic and memory.

As shown in Figure 1.4, message-passing concurrent computers such as the Cal­
tech Cosmic Cube [114J and the Intel iPSC [67J consist ofa number of processing
nodes interconnected by communication channels. Each processing node con­
tains both a processor and a local memory. The communication channels used

'The problem of synchronizing cache memories in a concurrent computer is known as the
cache coherency problem.

10 A VLSI Architecture for Concurrent Data Structures

Control

Message

Figure 1.4: Information Flow in a Message-Passing Concurrent Computer

for memory access are completely separate from those used for inter-processor
communication.

Message-passing computers take a further step toward reducing the Von Neu­
mann bottleneck by using a direct network which allows locality to be exploited.
A message to an object resident in a neighboring processor travels a variable
distance which can be made short by appropriate process placement.

Shared-memory computers, even implemented with direct networks, use the
available communications bandwidth inefficiently. Three messages are required
for each data operation. A message-passing computer can make more efficient
use of the available communications bandwidth by keeping the data state sta­
tionary and passing control messages. Since a processor is available at every
node, data operations are performed in place. Only a single message is required
to modify a data object. The single message specifies: the object to be modified,
the modification to be performed, and the location to which the control state
is to move next.

Keeping data stationary also encourages locality. Each data object is associated
with the procedures that operate on it. This association allows us to place
the logic that operates on a class of objects in close proximity to the memory
that stores instances of the objects. As Seitz points out, "both the cost and
performance metrics of VLSI favor architectures in which communication is
localized" [113].

Chapter 1: Introduction 11

Message-passing concurrent computers are programmed using an extension of
the process model that makes communication actions explicit. Under the Cos­
mic Kernel [125], for example, a process can send and receive messages as well
as spawn other processes. This model makes the separation of communication
from memory visible to the programmer. It also provides a base upon which
an object-oriented model of computation can be built.

1.5 Summary

In this thesis I develop an architecture for concurrent data structures. I begin in
Chapter 2 by developing the concept of a distributed object. A programming no­
tation, Concurrent Small talk (CST), is presented that incorporates distributed
objects, concurrent execution and locks for concurrency control. In Chapter 3 I
use this programming notation to describe the balanced cube, a concurrent data
structure for ordered sets. Considering graphs as concurrent data structures, I
develop a number of concurrent graph algorithms in Chapter 4. New algorithms
are presented for the shortest path problem, the max-flow problem, and graph
partitioning. Chapter 5 develops an architecture based on the properties of the
algorithms developed in Chapters 3 and 4 and the characteristics of VLSI tech­
nology. Network topologies are compared on the basis of dimension, and it is
shown that low dimensional networks give lower latency than high dimensional
networks for constant wire cost. A new algorithm is developed for deadlock-free
routing in k-ary n-cube networks, and a VLSI chip implementing this algorithm
is described. Chapter 5 also outlines the architecture of a message driven pro­
cessor and describes how object experts can be used to accelerate operations
on common data types.

Chapter 2

Concurrent Smalltalk

The message-passing paradigm of object-oriented languages such as Smalltalk-
80 [53] introduces a discipline into the use of the communication mechanism
of message-passing concurrent computers. Object-oriented languages also pro­
mote locality by grouping together data objects with the operations that are
performed on them.

Programs in this thesis are described using Concurrent Smalltalk (CST), a
derivative of Smalltalk-80 with three extensions. First, messages can be sent
concurrently without waiting for a reply. Second, several methods may access
an object concurrently. Locks are provided for concurrency control. Finally,
the language allows the programmer to specify objects that are distributed
over the nodes of a concurrent computer. These distributed objects have many
constituent objects and thus can process many messages simultaneously. They
are the foundation upon which concurrent data structures are built.

The remainder of this chapter describes the novel features of Concurrent Smalltalk.
This discussion assumes that the reader is familiar with Smalltalk-80 [53]. A
brief overview of CST is presented in Appendix A. In Section 2.1 I discuss
the object-oriented model of programming and show how an object-oriented
system can be built on top of the conventional process model. Section 2.2 in­
troduces the concept of distributed objects. A distributed object can process
many requests simultaneously. Section 2.3 describes how a method can exploit
concurrency in processing a single request by sending a message without wait­
ing for a reply. The use of locks to control simultaneous access to a CST object
is described in Section 2.4. Section 2.5 describes how CST blocks include local
variables and locks to permit concurrent execution of a block by the members
of a collection. This chapter concludes with a brief discussion of performance
metrics in Section 2.6.

14 A VLSI Architecture for Concurrent Data Structures

2.1 Object-Oriented Programming

Object-oriented languages such as SIMULA [n] and Smalltalk [53] provide data
abstraction by defining classes of objects. A class specifies both the data state
of an object and the procedures or methods that manipulate this data.

Object-oriented languages are well suited to programming message-passing con­
current computers for four reasons.

• The message-passing paradigm of languages like Smalltalk introduces
a discipline into the use of the communication mechanism of message­
passing computers.

• These languages encourage locality by associating each data object with
the methods that operate on the object.

• The information hiding provided by object-oriented languages makes it
very convenient to move commonly used methods or classes into hardware
while retaining compatibility with software implementations.

• Object names provide a uniform address space independent of the physical
placement of objects. This avoids the problems associated with the par­
titioned address space of the process model: memory addresses internal
to the process and process identifiers external to the process. Even when
memory is shared, there is still a partition between memory addresses and
process identifiers.

In an object-oriented language, computation is performed by sending messages
to objects. Objects never wait for or explicitly receive messages. Instead, objects
are reactive. The arrival of a message at an object triggers an action. The
action may involve modifying the state of the object, transmitting messages
that continue the control flow, and/or creating new objects.

The behavior of an object can be thought of as a function, B [1]. Let S be the
set of all object states and M the set of all messages. An object with initial
state, i E S, receiving a message, m E M, transitions to a new state, n E S,
transmits a possibly empty set of messages m: c M, and creates a possibly
empty set of new objects 0 C O.

B : S x M -+ P (M), S, P (0). (2.1)

Chapter 2: Concurrent Smalltalk 15

Actions as described by the behavior function (2.1) are the primitives from
which more complex computations are built. In analyzing timing and synchro­
nization each action is considered to take place instantaneously, so it is possible
to totally order the actions for a single object.

Methods are constructed from a set of primitive actions by sequencing the ac­
tions with messages. Often a method will send a message to an object and wait
for a reply before proceeding with the computation. For example, in the code
fragment below, the message size is sent to object x, and the method must wait
for the reply before continuing.

xSize +-x size.

ySize +-xSize * 2.

Since there is no receive statement, multiple actions are required to implement
this method. The first action creates a context and sends the size message.
The context contains all method state: a pointer to the receiver, temporary
variables, and an instruction pointer into the method code. A pointer to the
context is placed in the reply-to field of the size message to cause the size method
to reply to the context rather than to the original object. When the size method
replies to the context, the second action resumes execution by storing the value
of the reply into the variable xSize. The context is used to hold the state of the
method between actions.

Objects with behaviors specified by (2.1) can be constructed using the message­
passing process model. Each object is implemented by a process that executes
an endless receive-dispatch-execute loop. The process receives the next message,
dispatches control to the associated action, and then executes the action. The
action may change the state of the object, send new messages, and/or create
new objects. In Chapter 5 we will see how, by tailoring the hardware to the
object model, we can make the receive-dispatch-execute process very fast.

2.2 Distributed Objects

In many cases we want an object that can process many messages simulta­
neously. Since the actions on an object are ordered, simultaneous processing
of messages is not consistent with the model of computation described above.
We can circumvent this limitation by using a distributed object. A distributed
object consists of a collection of constituent objects, each of which can receive
messages on behalf of the distributed object. Since many constituent objects

16 A VLSI Architecture for Concurrent Data Structures

class
superclass
instance variables
class variables
locks
class methods

class methods ...

instance methods

tally: aKey

II

TallyColiection

Distributed Collection

data

the class name
a distributed object
local collection of data
none
none

count data matching aKey

(self upperNeighbor) localTally: aKey sum: 0 return From: myld

localTally: aKey sum: anlnt return From: anld

I new$um I
new$um +-anlnt.

data do: [:each I
(each = aKey) ifTrue: [newSum +-newSum +1]].

(myld = anld) ifTrue: [requester reply: newSum]

if False: [(self upperNeighbor) localTally: aKey sum: new$um return From: anld].

other instance methods ...

Figure 2.1: Distributed Object Class Tally Collection

can receive messages at the same time, the distributed object can process many
messages simultaneously.

Figure 2.1 shows an example CST class definition. The definition begins with a
header that identifies the name of the class, Tally Collection. the superclass from
which Tally Collection inherits behavior, Distributed Collection, and the instance
variables and locks that make up the state of each instance of the class. The
header is followed by definitions of class methods, omitted here, and definitions
of instance methods. Class methods define the behavior of the class object,
Tally Collection, and perform tasks such as creating new instances of the class.
Instance methods define the behavior of instances of class Tally Collection, the
collections themselves. In Figure 2.1 two instance methods are defined.

Chapter 2: Concurrent Smalltalk 17

Instances of class Tally Collection are distributed objects made up of many con­
stituent obJects (COs). Each CO has an instance variable data and understands
the messages tally: and locaITally:. A distributed object is created by sending a
newOn message to its class.

a TallyColiection +--- TallyColleetion newOn: someNodes.

The argument of the newOn: message, someNodes, is a collection of processing
nodes l . The newOn: message creates a CO on each member of someNodes.
There is no guarantee that the COs will remain on these processing nodes,
however, since objects are free to migrate from node to node.

When an object sends a message to a distributed object, the message may be
delivered to any constituent of the distributed object. The sender has no control
over which CO receives the message. The constituents themselves, however, can
send messages to specific COs by using the message co:. For example, in the
code below, the receiver (self), a constituent of a distributed object, sends a
localTally message to the anldth constituent of the same distributed object.

(self co: anld) 10ealTally: #foo sum: 0 return From: myld.

The argument of the co: message is a constituent identifier. Constituent identi­
fiers are integers assigned to each constituent sequentially beginning with one.
The constant myld gives each CO its own index and the constant maxld gives
each CO the number of constituents.

The method tally: aKey in Figure 2.1 counts the occurrences of aKey in the
distributed collection and returns this number to the sender. The constituent
object that receives the tally message sends a localTally message to its neighbor'.
The localTally method counts the number of occurrences of aKey in the receiver
node, adds this number to the sum argument of the message and propagates the
message to the next CO. When the localTally message has visited every CO and
arrives back at the original receiver, the total sum is returned to the original
customer by sending a reply: message to requester.

Distributed objects often forward messages between COs before replying to
the original requesting object. TallyColiection, for example, forwards localTally
messages in a cycle to all COs before replying. CST supports this style of

1 Processing nodes are objects.
'The message upper Neighbor returns the CO with identifier myld + 1 if myld of maxld and

the CO with identifier 1 otherwise.

18 A VLSI Architecture for Concurrent Data Structures

programming by providing the reserved word requester. For messages arriving
from outside the object, requester is bound to the sender. For internal messages,
requester is inherited from the sending method.

This forwarding behavior illustrates a major difference between CST and Small talk
80: CST methods do not necessarily return a value to the sender. Methods that
do not explicitly return a value using 'i' terminate without sending a reply. The
tally: method terminates without sending a reply to the sender. The reply is
sent later by the localTally method.

The tally: method shown in Figure 2.1 exhibits no concurrency. The point of
a distributed object is not only to provide concurrency in performing a single
operation on the object, but also to allow many operations to be performed
concurrently. For example, suppose we had a Tally Collection with 100 COs.
This object could receive 100 messages simultaneously, one at each CO. After
passing 10,000 localTally messages internally, 100 replies would be sent to the
original senders. The 100 requests are processed concurrently.

Some concurrent applications require global communication. For example, the
concurrent garbage collector described by Lang [81] requires that processes
running in each processor be globally synchronized. The hardware of some
concurrent computers supports this type of global communication. The Caltech
Cosmic Cube, for instance, provides several wire-or global communication lines
for this purpose [114].

Some applications require global communication combined with a simple com­
putation. For example, branch and bound search problems require that the
minimum bound be broadcast to all processors. Ideally, a communication net­
work would accept a bound from each processor, compute the minimum, and
broadcast it. In fact, the computation can be carried out in a distributed man­
ner on the wire-or lines provided by the Cosmic Cube.

Distributed objects provide a convenient and machine-independent means of
describing a broad class of global communication services. The service is for­
mulated as a distributed object that responds to a number of messages. For
example, the synchronization service can be defined as an object of class Sync
that responds to the message wait. The distributed object waits for a speci­
fied number of wait messages and then replies to all requesters. On machines
that provide special hardware, class Sync can make use of this hardware. On
other machines, the service can be implemented by passing messages among
the constituent objects.

Chapter 2: Concurrent Smalltalk

instance methods for class T allyColiection

tally: aKey

II
lself localTally: aKey level: 0 root: myld.

localTally: aKey level: anlnt root: anld

I upperTally lowerTally sum alevell

alevel = anlnt + 1.

sum <-0.

data do: [:each I
(each = aKey) ifTrue: [sum <-sum +1]].

(anlnt < max level) ifTrue: [

19

count data matching aKey

upperTally <-(self upperChild: anld level: alevel) localTally: aKey level: 1 root: anld,

lowerTally <-(self lowerChild: anld level: alevel) localTally: aKey level: 1 root: anld.

lupperTally + lowerTally + sum].

lsum.

Figure 2.2: A Concurrent Tally Method

2.3 Concurrency

CST does not exclude the use of concurrency in performing a single method. A
more sophisticated tally: method is shown in Figure 2.2. Here I use messages
upperChild and lowerChiid to embed a tree on the COs'. When a CO receives
a tally: message it sends two localTally messages down the tree simultaneously.
When the localTally messages reach the leaves of the tree, the replies are prop­
agated back up the tree concurrently. The new TallyColiection can still process
many messages concurrently, but now it uses concurrency in the processing of
a single message as well.

The use of a comma, ',', rather than a period, '.', at the end of a statement
indicates that the method need not wait for a reply from the send implied by
that statement before continuing to the next statement. When a statement is
terminated with a period, '.', the method waits for all pending sends to reply
before continuing.

"The implementation of methods upperChiid and lowerChild is straightforward and will not
be shown here.

20 A VLSI Architecture Eor Concurrent Data Structures

class
superclass
instance variables

class variables
locks

class methods

Interval

Object

I

rwLock

I: aNum u: anotherNum

I newlnterval I
newlnterval +-self new.

newlnterval I: aNum.

newlnterval u: anotherNum.

i newlnterv.1

other class methods ...

instance methods

contains: aNum

require rwLock.

Ilin uin I
lin +-1 ~ aNum.

uin +-u ~ .Num.

i(lin and: uin)

other instance methods ...

the class name
the name of its superclass
lower bound
upper bound
none
implements readers and writers

creates a new interval

tests for number in interval

Figure 2.3: Description of Class Interval

Chapter 2: Concurrent Smalltalk 21

Requester

Figure 2.4: Synchronization of Methods

A simpler example of concurrency is shown in Figure 2.3. This figure shows
a portion of the definition of Class Interval'. The definition has two methods;
I:u: is a class method that creates a new interval, and contains: is an instance
method that checks if a number is contained in an interval.

As shown in Figure 2.4, the contains: method is initiated by sending a message,
contains: aNum, to object, anlnterval, of class Interval. Objects of class Interval
have two acquaintances 5 , I and u. To check if it contains aNum, object anlnterval
sends messages to both I and u asking I if I :.:::: aNum, and asking u if u ~ aNum.
After receiving both replies, anlnterval replies with their logical and.

Observe that the contains: method requires three actions. The first action
occurs when the contains: message is received by anlnterval. This action sends
messages to I and u and creates a context, aContext, to which I and u will reply.
The first reply to aContext triggers the second action which simply records its
occurrence and the value in the reply. The second reply to aContext triggers
the final action which computes the result and replies to the original sender.
In this example the context object is used to join two concurrent streams of
execution.

4The term Interval here means a closed interval over the real numbers, {a E!R II :5 a:5 u}.
This differs from the Smalltalk-80 [531 definition of class Interval.

SIn the parlance of actor languages [11 an object, A's, acquaintances are those objects to
which A can send messages.

22 A VLSI Architecture for Concurrent Data Structures

Only the first action of the contains: method is performed by object anlnter­
val. The subsequent actions are performed by object aContext. Thus, once the
first action is complete anlnterval is free to accept additional messages. The
ability to process several requests concurrently can result in a great deal of con­
currency. This simple approach to concurrency can cause problems, however,
if precautions are not taken to exclude incompatible methods from running
concurrently.

2.4 Locks

Some problems require that an object be capable of sending messages and re­
ceiving their replies while deferring any additional requests. In other cases we
may want to process some requests concurrently, while deferring others. To de­
fer some messages while accepting others requires the ability to select a subset
of all incoming messages to be received. This capability is also important in
database systems, where it is referred to as concurrency control [135J.

Consider our example object, anlnterval. To maintain consistency, anlnterval
must defer any messages that would modify I or u until after the contains:
method is complete. On the other hand, we want to allow anlnterval to process
any number of contains: messages simultaneously.

SAL, an actor language, handles this problem by creating an insensitive actor
which only accepts become messages [IJ6. The insensitive actor buffers new
requests until the original method is complete. Lang's concurrent SIMULA
[81J incorporates a select construct to allow objects to select the next message
to receive. While exclusion can be implemented using select, Lang's language
treats each object as a critical region, allowing only a single method to proceed
at a time. Neither insensitive actors nor critical regions allow an object to
selectively defer some methods while performing others concurrently.

Adding locks to objects provides a general mechanism for concurrency control.
A lock is part of an object's state. Locks impose a partial order on methods that
execute on the object. Each method specifies two possibly empty sets of locks:
a set of locks the method requires, and a set of locks the method excludes. A
method is not allowed to begin execution until all previous methods executing
on the same object that exclude a required lock or require an excluded lock
have completed. The concept of locks is similar to that of triggers [92J.

6CST objects could use the Smalltalk become: message to implement insensitive actors.

Chapter 2: Concurrent Small talk 23

A solution to the readers and writers problem is easily implemented with this
locking mechanism. All readers exclude rwLock, while all writers both require
and exclude rwLock. Many reader methods can access the object concurrently
since they do not exclude each other. As soon as a writer message is received, it
excludes new reader methods from starting while it waits for existing readers to
complete. Only one writer at a time can gain access to the object since writers
both require and exclude rwLock. This illustrates how mutual exclusion can
also be implemented with a single lock.

2.5 Blocks

Blocks in CST differ from Smalltalk-80 blocks in two ways.

• A CST block may specify local variables and locks in addition to just
arguments. [:argl :arg2 I (locks) :varl :var2 I code)

• It is possible to break out of a CST block without returning from the
context in which the value message was sent to the block. The down­
arrow symbol, '1', is used to break out of a block in the same way that
'j' is used to return out of a block.

Sending a block to a collection can result in concurrent execution of the block by
members of the collection. Giving blocks local variables allows greater concur­
rency than is possible when all temporary values must be stored in the context
of the creating method. Locks are provided to synchronize access to static
variables during concurrent execution.

2.6 Performance Metrics

Performance of sequential algorithms is measured in terms of time complex­
ity, the number of operations performed, and space complexity, the amount of
storage required [2]. On a concurrent machine we are also concerned with the
number of operations that can be performed concurrently.

The algorithms and data structures developed in this thesis are based on a
message-passing model of concurrent computation. Message-passing concurrent
computers are communication limited. The time required to pass messages
dominates the processing time, which we will ignore.

24 A VLSI Architecture for Concurrent Data Structures

In sharp contrast, most existing concurrent algorithms have been developed as­
suming an ideal shared-memory multiprocessor. In the shared-memory model,
communication cost is ignored. Processes can access any memory location with
unit cost, and an unlimited number of processes can access a single memory
location simultaneously. Performance of algorithms analyzed using the shared­
memory model does not accurately reflect their performance on message-passing
concurrent computers.

Communication cost has two components:

latency: the delay of delivering a single message in isolation,

throughput: the amount of message traffic the communication network can
handle per unit time.

For purposes of analysis I will ignore throughput and consider only latency.

The programs in this thesis are analyzed assuming a binary n-cube interconnec­
tion topology. Programs are charged one unit of time for each communication
channel traversed in a binary n-cube.

2.7 Summary

In this chapter I have introduced Concurrent Smalltalk (CST), a programming
notation for message-passing concurrent computers. Its novel features include
locks for concurrency control, and the ability to create distributed objects. CST
borrows its syntax, late-binding, and inheritance directly from the Smalltalk
programming language [531. Many of the ideas in CST are borrowed from
Athas' language, XCPL [31.

Distributed objects are implemented as a collection of constituent objects (COs).
Any CO can receive a message sent to the distributed object. Since many
COs can receive messages at the same time, a distributed object can process
many messages simultaneously. The constituents of a distributed object are
assigned to processing nodes when the object is created. Thus, distributed ob­
jects provide a mechanism for mapping a data structure onto an interconnection
topology. Distributed objects are the foundation upon which concurrent data
structures, such as the balanced cube described in Chapter 3, are built.

CST permits methods to exploit concurrency by sending several messages before
waiting for any replies. CST also allows some methods to terminate without

Chapter 2: Concurrent Smalltalk 25

sending any reply. Thus a message can be forwarded across many objects before
a reply is finally sent to the original requester.

CST methods are compiled into sequences of primitive actions that can be de­
scribed using a behavior function (2.1). Context objects are used to hold the
state of a method between actions and to join concurrent streams of execu­
tion. Primitive object behaviors can be implemented using the message-passing
process model of computation [125]. However, as we will see in Chapter 5, a
direct hardware implementation of the behavior function results in improved
performance.

Chapter 3

The Balanced Cube

Sequential computers spend a large fraction of their time manipulating ordered
sets of data. For these operations to be performed efficiently on a concurrent
computer, a new data structure for ordered sets is required. Conventional
ordered set data structures such as heaps, balanced trees, and B-trees [2] have
a single root node through which all operations must pass. This root bottleneck
limits the potential concurrency of tree structures, making them unable to take
advantage of the power of concurrent computers. Their maximum throughput
is 0(1). This chapter presents a new data structure for implementing ordered
sets, the balanced cube [21], which offers significantly improved concurrency.

The balanced cube eliminates the root bottleneck allowing it to achieve a
throughput of O(10: N) operations per unit timel. Concurrency in the balanced
cube is achieved through uniformity. With the exception of the balancing al­
gorithm, all nodes are equals. An operation may originate at any node and
need not pass through a root bottleneck as in a tree structure. In keeping with
the spirit of a homogeneous machine, the balanced cube is a homogeneous data
structure.

Why is a concurrent data structure such as the balanced cube needed? Many
applications are organized around an ordered set data structure. By using a
balanced cube to implement this data structure, the application can be made
concurrent with very little effort. The application is divided into partitions that
communicate by storing data in and retrieving data from the balanced cube.
Because the balanced cube can process these requests concurrently, accesses
to the balanced cube do not serialize the application. In Section 3.8 we will
see how a balanced cube can be used in a concurrent computer mail system,

1 Unless otherwise specified, all logarithms are base two.

28 A VLSI Architecture for Concurrent Data Structures

in a concurrent artwork analysis program, and in a concurrent directed-search
algorithm.

The balanced cube's topology is well matched to binary n-cube multiprocessors.
The balanced cube maps members of an ordered set to subcubes of a binary
n,.cube. A Gray code mapping is used to preserve the linear adjacency of the
ordered set in the Hamming distance adjacency of the cube.

Previous work on concurrent data structures has concentrated on reducing the
interference between concurrent processes accessing a common data base but
has not addressed the limited concurrency of existing data structures. Kung
and Lehman [78] have developed concurrent algorithms for manipulating binary
search trees. Lehman and Yao [83] have extended these concepts and applied
them to B-trees. Algorithms for concurrent search and insertion of data in
AVL-trees [33] and 2-3 trees [34] have been developed by Ellis. Ellis has also
developed concurrent formulations of linear hashing [35] and extendible hashing
[36].

These papers introduce a number of useful concepts that minimize locking of
records, postpone operations to be performed, and use marking mechanisms to
modify the data structure. However, these papers consider the processes and
the data to be stationary, and thus do not address the problems of moving
processes and data between the nodes of a concurrent computer. The cost of
communications, which we assume to dominate processing costs, has largely
been ignored.

The remainder of this chapter describes the balanced cube and how it addresses
the issues of correctness, concurrency, and throughput. In the next section the
data structure is presented, and the consistency conditions are described. The
VW search algorithm is described in Section 3.2. VW search uses the distance
properties of the Gray code to search the balanced cube for a data record in
O(log N) time while locking only a single node at a time. An insert algorithm
is presented in Section 3.3. Insertion is performed by recursively splitting sub­
cubes of the balanced cube. Section 3.4 discusses the delete operation. Deletion
is accomplished by simply marking a record as deleted. A background garbage
collection process reclaims deleted subcubes. The insertion and deletion algo­
rithms tend to unbalance the cube. A balancing algorithm, presented in Section
3.5, acts to restore balance. Each of the algorithms presented in this chapter
is analyzed in terms of complexity, concurrency, and correctness. Section 3.6
extends the balanced cube concept to B-cubes which store several records in
each node. Section 3.7 discusses the results of experiments run to verify the
balanced cube algorithms. The chapter concludes with a discussion of some
possible balanced cube applications in Section 3.8.

Chapter 3: The Balanced Cube 29

3.1])ata Structure

3.1.1 The Ordered Set

An ordered set is a set, S, of objects on which a linear ordering < has been
defined, Va, b E S either a < b or b < a and a = b unless a and b are the same
object. In many applications these objects are records and the linear order is
defined by the value of a key field in each record. In this context the ordered set
is used to store a database of relations associating the key field with the other
fields of the record. The order relation defined on the keys of the records is
implicit in the structure. A data structure implementing the ordered set must
efficiently support the following operations.

at: key return the object associated with a key.

at: key put: object add an object to the set

delete: key remove the object associated with key from the set.

from: Ikey to: ukey do: aBlock concurrently send a value: message to aBlock
for each element of the set of objects with keys in the range [lkey,ukey].

succ: key1 return the object with the smallest key greater than keyl.

pred: key1 return the object with the largest key smaller than keyl.

max return the maximum object.

min return the minimum object.

In this chapter we will restrict our attention to developing algorithms for the
search (at:), insert (at:put:) and delete operations. The remaining functions
can be implemented as simple extensions of these three fundamental operations.
The succ: and pred: operations can be implemented using the nearest neighbor
links present in the balanced cube.

3.1.2 The Binary n-Cube

The balanced cube is a data structure for representing ordered sets that stores
data in subcubes of a binary n-cube [98], [126]. A binary n-cube has N = 2"
nodes accessed by n-bit addresses. Each bit of the address corresponds to a

30 A VLSI Architecture for Concurrent Data Structures

Figure 3.1: Binary 3-Cube

dimension of the cube. The node or subcube with address a; is denoted N[a;].
If the address is implicit, the node will be referred to as N. The binary n-cube
is connected so that node N[a;] is adjacent to all nodes whose addresses differ
from l1; in exactly one bit position: {a; E!l2; I 0 ~ J. ~ n - I}. A binary 3-cube
with nodes labeled by address is shown in Figure 3.1.

An 7n-subcube of a binary n-cube is a set of M = 2m nodes whose addresses
are identical in all but m positions. An 7n-subcube is identified by an address
that contains unknowns, represented by the character X, in the m bit positions
in which its members' addresses may differ. For example, in Figure 3.1 the top
of the 3-cube is the lXX subcube. The top front edge is the lXl subcube.

A right 7n-subcube is an 7n-subcube which has unknowns in the least significant
m bits of the address. No X is to the left of a 0 or 1 in a right subcube address.
For example, the lXX sub cube is a right subcube while the lXl subcube is not.
A node is a right O-subcube, a singleton set, since it has zero Xs in its address.
The corner node of a right subcube N[a] is the node with the lowest address in
the subcube, N[min(a)]. The corner node address is the subcube address with
all unknown bits set to zero. The upper nodes of a right subcube N[a] are all
the nodes in the subcube other than the corner node: the elements of the set
N[a] \ N[min(a)].

Chapter 3: The Balanced Cube 31

3.1.3 The Gray Code

The balanced cube uses a Gray code [581 to map the elements of an ordered
set to the vertices of a binary n-cube. Consider an integer, I, encoded as a
weighted binary vector, b"-I, ... , bo, so that

,,-I
1= Eb;2;. (3.1)

;=0

The reflected binary code or Gray code representation of I, a bit vector G(I) =
g,,-I, ... ,!lo, is generated by taking the modulo-2 sum of adjacent bits of the
binary encoding for I [581 .

. _ { bi e bi + 1 if i < n - 1
g;- bi ifi=n-l (3.2)

Since the e operation is linear, we can convert back to binary by swapping
gi and bi in equation 3.2. We use the function B(J) to represent the binary
number whose Gray code representation is J.

(3.3)

By repeated substitution of equation 3.3 into itself we can express bi as a
modulo-2 summation of the bits of G(I).

,,-I

bi = E g; (mod 2) (3.4)
j=i

While these equations serve as a useful recipe for converting between binary and
Gray codes, we gain more insight into the structure of the code by considering a
recursive list definition of the Gray code. For any integer, n, we can construct a
list of N = 2" integers, gray(n), so that the Ith element of gray(n) is an integer
whose binary encoding is identical to the Gray encoding of I. The construction
begins with the Gray code of length 1. At the i th step we double the length of
the code by appending to the current list a reversed copy of itself with the i th

bit set to one' .

'In (3.5) [or denotes the list containing the number zero. The function append(x,y) in (3.6)
appends lists x and y. The function reverse(z) reverses the order of list z. Also in (3.6) the
addition is performed with scalar extension. The number 2,,-1 is added to every element of
the reversed list.

32 A VLSI Architecture for Concurrent Data Structures

gray(O) = [0]. (3.5)

gray(n) = append(gray(n - 1) ,2(n-1) + reverse(gray(n - 1))). (3.6)

It is this reversal that gives the code the symmetry and reflection properties
that we will use in developing the balanced cube search algorithm.

In the linear space of the ordered set, element I is adjacent to elements I ± 1.
In the cube space, however, the distance between two nodes is the Hamming
distance between the node addresses: the number of bit positions in which the
two addresses differ. For nodes A and B to be adjacent, they must be Hamming
distance one apart, dH(A, B) = 1. The Hamming distance between I and I-I,
dHA (!) is given by the recursive equation.

{
dHA(f) + 1 if 211, I = a

dHA (!) = 1 if 2 II
undefined if I = a

(3.7)

A plot of this function is shown in Figure 3.26 on page 67.

For example, in the case where I = ~ and 1- 1 = ~ - 1, the elements are at
opposite corners of the cube, distance n apart. The Gray code has the property
that dH(G(!),G(I +1)) = 1, VI '3 0:-::; 1:-::; (N -2). Thus, if we map element I
of the linear order to node G(!) of the binary n-cube, nodes that are adjacent in
linear space are also adjacent in cube space. A Gray code mapping of integers
onto a binary 3-cube is shown in Figure 3.2.

3.1.4 The Balanced Cube

In a balanced cube, each datum is associated with a right subcube, N[a;], and
is stored in a constituent object in the corner node, N[min(a;)], of the subcube.
Figure 3.3 shows the header for class Balanced Cube. A datum is composed
of a key, N key, an object associated with the key, N object, the dimension
of the subcube, N dim, and a flag, N flag, that indicates the status of the
subcube. The data are ordered so that if B(ad > B(a.), N[a,] key ~ N[a.]
key. Node addresses are ordered using the inverse Gray code function; thus, if
two addresses are adjacent in the order, they will also be Hamming distance
one apart.

Chapter 3: The Balanced Cube 33

Figure 3.2: Gray Code Mapping on a Binary 3-Cube

class
superclass
instance variables

class variables
locks

Balanced Cube

Distributed Object

key

data

dim

flag

rwlock

the class name

defines the order
object associated with key
the dimension of the 8ubcube
statu8 of subcube
none
implements readers and writers

Figure 3.3: Header for Class Balanced Cube

34 A VLSI Architecture for Concurrent Data Structures

For the remainder of this chapter I will refer to both cube addresses and to
linear order addresses. A cube address is the physical address of a processing
node. The parenthesized binary numbers in Figure 3.2 are cube addresses.
A linear address is the position of a node in the linear order. For example,
the integers (0-7) in Figure 3.2 are linear addresses. Linear addresses Ali. are
related to cube addresses A.b. by (3.2) and (3.4).

(3.8)

Upper nodes of the subcube N[a,l are flagged as slaves to the corner node by
setting N flag +-#slave. Any messages transmitted to an upper node N[aul
are routed to the corner node of the subcube to which N[aul belongs. There
is one exception to this routing rule. A split message is always accepted by
its destination and never forwarded. This message is the mechanism by which
upper nodes become corner nodes. Since the cube is balanced, most corner
nodes have dimensions differing only by a small constant. Thus, the message
routing time between adjacent corner nodes will be limited by a small constant.

Data are associated with the subcubes rather than the nodes of a binary n-cube
to allow ordered sets of varying sizes to be mapped to a cube of size 2n. For
example, a singleton set mapped to the 3-cube of Figure 3.1 would be associated
with the subcube XXX, the entire cube. If a second element is added to the set,
the cube will be split. One element will be associated with the oXX subcube
and the other element with the 1XX subcube. This splitting is repeated as
more elements are added to the set.

A balanced cube is balanced in the sense that in the steady state, the dimensions
of any two subcubes of the balanced cube will differ by no more than one. This
degree of balance guarantees O(log N) access time to any datum stored in the
cube. The balance condition is valid only in the steady state. Several insert
or delete operations in quick succession may unbalance the cube. A balancing
process which runs continuously acts to rebalance the cube.

There are two consistency conditions for a balanced cube. It must be ordered
as described above and operations on the cube must be serializable giving re­
sults consistent with sequential execution of the same operations ordered by
time of completion. This condition guarantees correct results from concurrent
operations.

Chapter 3: The Balanced Cube 35

2h-l
X -2- Y r- l ~I~ 1-----1

0 0 0 1 1
0 Xn-2 1 1 Xn-2
0 xn-l 0 0 Xn-l

0 Xo 0 0 Xo

Figure 3.4: Calculating Distance by Reflection

3.2 Search

3.2.1 Distance Properties of the Gray Code

To develop a search algorithm for the balanced cube, we need to know the
distance properties of the Gray code; that is, for any element of the ordered
set mapped onto the cube, at what distance in linear space its neighbors are in
cube space. The distance properties of the mapping tell us how much we can
reduce the (linear) search space with each nearest neighbor query in the cube.
To achieve O(log N) search time we must cut the search space in half with no
more than a constant number of messages.

The reflection properties of the Gray code give us an easy method of calculating
distance in a balanced cube. Consider some node, X, in a balanced n-cube. As
shown in Figure 3.4, if we toggle the most significant bit of node address X,
we generate address Y = X EEl 2n - 1 • In linear space, Y is the reflection of X
through 2 h

2-1. Thus, the linear distance between node X and its neighbor, Y,
in the n - 1" dimension is

I 2n 11 dLN (X,n-1)=2X-+ . (3.9)

1
0
0

0

36 A VLSI Architecture for Concurrent Data Structures

To calculate the distance in a lower dimension, say k, we reflect about the center
of the local gray(k) list. Thus, the linear distance from a node with address X
to its neighbor in the kth dimension is given by

(3.10)

The tables below show the distance function (3.10) for each dimension, k, of a
balanced 4-cube. In each dimension, k, the first table shows the cube address,
G(X) for the X'h element in the linear order. The second table lists the neighbor
of each node, X, in the kth dimension, N(X, k). The third table shows the
distance to this neighbor, dLN (X, k) = IN(X, k) - XI. To find X's neighbor
in dimension k, we convert X to a cube address, G(X), toggle the kth bit,
G(X) ED 2k, and convert back to the linear order, N(X, k) = B(G(X) ED 2k). For
example, the neighbor of node X = 4 in dimension k = 1 is node N(4, 1) = 7.
The distance to this node is dLN (4,1) = 17 - 41 = 3.

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N(X, 0) 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

N(X, 1) 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

N(X,2) 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

N(X,3) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dLN(X, 0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dLN(X, 1) 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3

dLN (X,2) 7 5 3 1 1 3 5 7 7 5 3 1 1 3 5 7

dLN (X,3) 15 13 11 9 7 5 3 1 1 3 5 7 9 11 13 15

The distance functions shown in these tables are plotted in Figure 3.5. The
symmetry of reflection is clearly visible. In each dimension, k, we have 2n - k - 1 Vs
centered on right subcubes of dimension k+ 1. There are eight Vs of dimension
0, four Vs of dimension 1, two Vs of dimension 2, and one V of dimension 3.
For example, the nodes at linear addresses 4-7 constitute a V of dimension 1.
Combining this V with it neighboring V (addresses 8-11) gives addresses 4-11,
a W of dimension 1.

Ohapter 3: The Balanced Oube

16r---~
14

12
o
i 10
s
t 8
a
n 6
c
e 4

2

2 346 6 7 B 9 10 11 12 13 14 16

Linear Address

Figure 3.5: Neighbor Distance in a Gray 4-Cube

37

Definition 3.1 A Vof dimension k is a right subcube of dimension k + 1: a
collection of 2k+l nodes beginning on a multiple of 2k+l in the linear order.

Definition 3.2 A Wof dimension k is two adjacent Vs of dimension k.

We use these Vs and Ws in the following section to develop a new search
algorithm.

3.2.2 VW Search

VW search finds a search key in the Gray cube by traversing the Vs and Ws of
the distance function shown in Figure 3.5. The neighbors of a node, X, are those
nodes that are directly across a V from X in Figure 3.5. The search procedure
sends messages across these valleys, selecting a search path that guarantees that
the search space is halved every two messages.

Messages:

VW search is performed by passing messages between the nodes of the cube be­
ing searched. The body of the search uses two messages: vSearch and wSearch.

38 A VLSI Architecture for Concurrent Data Structures

When a node receives one of these search messages, it updates the state fields of
the message and forwards it to the next node in the search path. Nodes never
wait for a reply from a message. The formats of the search messages are shown
below. The search state is represented by the destination node, two dimensions:
vDim and wDim, and a search mode: V or W.

vSearch: aKey vDim: vDim wDim: wDim

wSearch: aKey vDim: vDim wDim: wDim

In VW search we encode the search space into the destination address, self, and
a dimension, wDim. wDim is the dimension of the smallest W in the distance
function which contains the search space. A second dimension, vDim, is the
dimension of the smallest V which completely contains our current Wand thus
the search space. vDim can be computed from wDim and self; however, it is
more convenient to pass it in the message than to recompute it at each node.

The wDim. self encoding of the search space can be converted to the conven­
tional upper bound, lower bound (U, L) representation by means of the reflect
function. From (3.10) we know that the reflection in the linear space about
dimension, d, of node X is given by

(3.11)

The current position, self, or its reflection in the wDim dimension is one bound
of the search space, and the reflection of this bound in the vDim dimension is
the other bound. Thus, if the current address is S, the wDim is W, and the
vDim is V, we can calculate the linear bounds of the search space (L,U) from

(3.12)

(3.13)

Algorithm:

VWsearch operates by passing vSearch and wSearch messages between the nodes
of a balanced cube. Each message reduces the search space by comparing the
search key to the key stored in the destination node.

When a node receives a vSearch message, the search space extends between the
current node's neighbors in the V and W dimensions (Nv and Nw) as shown in

Chapter 3: The Balanced Cube

new apa.:e (W) ----;_,

1-4-----old search space ----~

Figure 3.6: Search Space Reduction by vSearch Method

39

Figure 3.6. These neighbors will always be in opposite directions. By examining
the key at the present node, the vSearch method makes the current node a new
endpoint of the search space selecting Ny or Nw as the other endpoint. The
dimension of the neighbor chosen becomes the new V dimension and the W
dimension is decreased until a W neighbor in the appropriate direction is found.

When the W dimension has been reduced below the dimension of the current
node, X, then X's W neighbor is contained within X's subcube. Thus there is
no point in sending a message to the W neighbor, and the search is completed.
Before terminating the search, however, X checks the contents of its linear
neighbor in the direction of the key to verify that the key hasn't been inserted
in the cube during the search. If the key isn't found, the search terminates with
a nil reply. Otherwise, the search continues by increasing the W dimension above
the dimension of X's subcube. The method for vSearch is shown in Figure 3.7 3 •

When a node receives a wSearch message, the search space extends from its W
neighbor (Nw) to that neighbor's V neighbor (Ny) as shown in Figure 3.8. The
wSearch method makes the current node one endpoint of the new search space,
selecting between Nw and Ny as the other endpoint. If Nw is chosen as the
endpoint, the search proceeds as in vSearch. If Ny is the endpoint, however,
the dimension remains unchanged and a vSearch message is forwarded to the
current node's V neighbor. The wSearch method is shown in Figure 3.9.

3Th. methods for neighbor:, upper Neighbor:, lowerNeighbor:, key:SameSideAsDim: and re­
duceDim:key: are omitted for the sake of brevity. Their implementation is straightforward.

40 A VLSI Architecture for Concurrent Data Structures

instance methods for class Balanced Cube

at: aKey reply the object associated with aKey

II
iself vSearch: aKey wDim: MaxWdim vDim: MaxVdim mode: vMode

vSearch: aKey wDim: wDim vDim: vDim

exclude rwLock.

InewVDim newWDim I

(key = aKey) ifTrue:[requester reply: data]'

(self key: aKey sameSideAsDim: wDim) ifTrue:

newVDim <-wDim,

newWDim <-wDim - 1.]
if False: [

newVDim <-vDim,

newWDim <-wDim.]

newWDim <-self reduce Dim: wDim key: aKey.

(wDim < dim) ifTrue: [

(key < a Key) ifTrue: [

search for aKey
a reader method

new dimensions of search space
check If found

(aKey < ((self upperNeighbor) key)) ifTrue: [requester reply: nilll

if False: [

(aKey > ((self lowerNeighbor) key)) ifTrue: [requester reply: nil]].

newWdim <-self increaseDim: wDim key: aKey.]

(self neighbor: newWDim) wSearch: aKey wDim: newWDim vDim' newVDim

Figure 3.7: Methods for at: and vSearch

Chapter 3: The Balanced Cube 41

f.------- old..,a.rch space

Figure 3.8: Search Space Reduction by wSearch Method

instance methods for class Balanced Cube

wSearch: aKey wDim: wDim vDim: vDim
exclude rwlock.

II
(key = aKey) iffrue:[requester reply: data].

(self key: aKey sameSideAsDim: wDim)

iffrue: [self vSearch: aKey wDim: wDim vDim: vDim]

search lor aKey

check illound

if False: [(self neighbor: vDim) vSearch: aKey wDim: wDim vDim: vDim.]

Figure 3.9: Method for wSearch

42 A VLSI Architecture for Concurrent Data Structures

Example 3.1 The search technique is best described by means of an example.
Consider the following table.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O(X) 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8

Data $A $8 $($D $E $F $G $H $1 $J $K $L $M $N $0 $P

The table represents a Gray 4-cube where each node of the cube stores a single
character symbol. Figure 3.10 shows the search of this Gray 4-cube for the
key $G stored at node 0(6). The search begins at node 0(2). The search is
started with the message vSearch: $G wDim: 5 vDim: 5. Since we know that
the search key must be in the current dimension 5 trough of the W (this is the
whole 4-cube), we start the search with a vSearch message. The subsequent
search messages are as follows:

1. Since the search key, $G, is greater than the key $C stored at 0(2), node
0(2) sends the message wSearch: $G wDim: 4 vDim: 5 to its dimension 4
neighbor, 0(13).

2. Since the key, $G, is between 0(2)'s key, $C, and 0(13)'s key, $N, 0(13)
sends the message wSearch: $G wDim: 3 vDim: 4 to node 0(10).

3. The search key is not between $N and SK, so 0(10) must reflect the
search (in the vDim dimension) to the other trough of the W by sending
the message vSearch: $G wDim: 3 vDim: 4 to node 0(5).

4. Since the key is not between 0(5)'s key, $F, and its neighbor 0(2)'s key,
$C , the Wdim is decreased to find a neighbor in the direction of the key.
0(5) sends the message wSearch: $G wDim: 2 vDim: 4 onto 0(6) where
the search terminates successfully.

Example 3.2 Figure 3.11 shows two examples of searching a balanced cube
which is not full and which is temporarily out of balance.

1. In the first example, a search for the contents of 0(4) is initiated from
node 0(5) with the message vSearch: 4 wDim: 4 vDim: 4.

Chapter 3: The Balanced Cube 43

0

s
t
a

c
e

16

14

12 (5,4) (4,3)

10

8

6

4

2

0
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Linear Address

Figure 3.10: Example of VW Search

2. Since the search key is less than G(5), node G(5) forwards the search mes­
sage to node G(2), a slave node of node G(O) with the message wSearch:
4 wDim: 3 vDim: 4. Since the search key is greater than the contents
of G(O) the W dimension is decremented to 0 and the message wSearch:
4 wDim: 0 vDim: 4 is sent to node G(3). It is important to note that
although G(2) is a slave node and thus uses the value of the corner node,
G(O), the search continues from G(2) and is not detoured to G(O).

3. Node G(3) is also a slave of G(O) and thus less than the search key, so the
search is reflected across the V dimension to node G(4) with the message
vSearch: 4 wDim: 0 vDim:4. The search key is found at node G(4).

The second example in Figure 3.11 illustrates the case in which the search key
is not present in the cube.

1-3. The search for the key, 3, is initiated at node G(5). The search proceeds
as above until the message vSearch: 4 wDim: 0 vDim: 4 reaches node
G(4).

4. To confirm that the key has not been inserted during the search, node G(4)
examines the key of its linear address neighbor, node G(3) by sending G(3)
a key message.

44

000

001

010

011

100

101

000

001

011

010

110

111

110 101

111

Linear
Order

100

Cube
Address

A VLSI Architecture for Concurrent Data Structures

0

4

5

t Search for 4 Search for 5
7

Figure 3.11: VW Search Example 2

5. Node G(3) replies with the value associated with its subcube, O. Since 0
and the contents of G(4), 4, bracket the search key, the search terminates
by sending a nil reply to the original requester.

The remainder of this section analyzes the VW search algorithm to show that
the order of the algorithm is O(1og N) and to prove that the algorithm is dead­
lock free.

Lemma 3.1 Each execution of vSearch decreases wDim by at least 1.

Proof: There are two cases as shown in Figure 3.6:

•

1. If the search key is between the current node, self, and its W neighbor,
wDim is explicitly decremented.

2. If the search key is between the current node, self, and its V neighbor, then
the current W neighbor is in the wrong direction, so ReduceDim:key: will
decrement wDim by at least 1 to find a neighbor in the proper direction .

Chapter 3: The Balanced Cube 45

Leuuna 3.2 vSearch is executed at least once for every two search messages '.

Proof: The only case in which vSearch is not executed is when a wSearch
message is received and the key is not between the current node and its neighbor.
The next message generated in this case is a vSearch message. Thus the vSearch
method will be executed at least once for every two messages. •

Theorem 3.1 A VW Search of a Gray 1lrcube requires no more than 2(log N +
1) messages.

Proof: From Lemmas 3.1 and 3.2 wDim is decremented at least once every two
messages. Since wDim is initially n = log N, after 2 log N messages wDim will
be zero. An additional two messages will either find the search key or decrement
wDim below zero, causing termination .•

Theorem 3.2 The VW Search algorithm is deadlock free.

Proof: The VW Search algorithm locks only one node at a time: the one cur­
rently conducting the search, Since rwLock is never required, the key messages
transmitted before terminating an unsuccessful search are never blocked. Thus,
there is no possibility of deadlock. •

3.3 Insert

Messages:

The insert operation is initiated by sending an at:put: message to any node in
the cube. This message starts a search of the cube for the insert key, aKey.
When the search terminates, the data, anObject, is inserted by calling method
locaIAt:put:. A 5plit:key:data:flag: message is used by this method to split an
existing right subcube into two right subcubes of lower dimension to make room
for the insert.

at: aKey put: an Object

localAt: aKey put: anObject

split: aDim key: aKey data: anObject flag: aFlag

'Messages to self are local to the node and thus are not counted in this analysis.

46 A VLSI Architecture for Concurrent Data Structures

instance methods for class Balanced Cube

localAt: aKey put: anObject
require rwLock exclude rwLock.

II
(dim> 0) iffrue: [

dim <-dim - l.

(self key: aKey sameSideAsDim: dim) iffrue:

insert after completing search

(self neighbor: dim) split: dim key: aKey data: anObject flag: #valid]

if False: [

(self neighbor: dim) split: dim key: key data: data flag: flag,

key <-a Key,

data <-anObject]

requester reply: anObject]

if False: [

requester reply: nil]

Figure 3.12: Method for locaIAt:put:

Algorithm:

The insert algorithm is identical to the search algorithm except that on com­
pletion, in addition to sending a reply, the insert splits a node and inserts the
key and associated data. Rather than repeat the search algorithm here, only
the changes will be described.

If the key being inserted is already in the cube, the insert replaces the object
bound to the key with the object in the at:put: message. If the key being
inserted is not already in the cube, the insert procedure must insert it. To do
this, the not found reply of the search procedure listed above:

requester reply: nil.

is replaced by a call to the method locaIAt:put: shown in Figure 3.12.

If the present node has a dimension greater than zero, then it is split by send­
ing a split message to its upper half and decrementing its dimension. If the
dimension is already zero, the insert terminates with a reply of nil. This does

Chapter 3: The Balanced Cube 47

instance methods for class Balanced Cube

split: aDim key: aKey data: an Object flag: aFlag splits a slave node from its parent
require rwLock exclude rwLock.

II
key +-aKey.

data +-anObject.

dim +-aDim.

flag +-aFlag.

Figure 3.13: Method for split:key:data:flag:

not necessarily mean that the cube is full. The cube may just be temporarily
out of balance.

If the insert key and the linear order of the neighbor's address have the same
relation to the current key and current address, the split message inserts the
key and record into the corner node of the upper half subcube and sets its
dimension to prevent it from routing further messages to the original corner
node. The method belowNeighbor: dim returns true if the linear order address
of the current node is less than the linear address of its neighbor in dimension
dim. Figure 3.13 shows the split method. Once the dimension of the split
node is set, the split is complete in that the split node will begin responding to
messages rather than forwarding them to its corner node.

If the insert key and the linear order of the neighbor's address have opposite
relations to the current key and current address, the split message copies the
original corner node's key and record into the upper half subcube. The lower
half subcube is then set with the new key and record. Note that between
the assignment of the key and the assignment of the record to the lower half
subcube, this subcube is in an inconsistent state.

To prevent an inconsistent state from being observed, both localAt: put: and
split: key: data: flag: are writer methods. They both require and exclude
rwLock. Thus, no other operation can be performed on the current node during
an inconsistent state. This locking cannot cause deadlock, since the split node
is in fact part of the locked node until the split is completed.

Consider splitting the subcube OOOXXX into OOOOXX and 000lXX. In the in­
stant of time before the split, all nodes in OOOXXX must route their messages

48 A VLSI Architecture for Concurrent Data Structures

to 000000. Immediately after the split, all messages to the upper half subcube
0001XX must be routed to 000100. For the cube algorithms to operate cor­
rectly, the split must be an atomic operation. Since the split occurs when the
dimension of node 000100 is written, it is an indivisible operation. Before the
dimension is written, messages to nodes 0001XX are routed to 000100 which
forwards them to 00000 since it is not a corner node. After the dimension is
written, these messages are accepted directly by 000100. Because the key and
record of the split node are in fact not accessible before the dimension is up­
dated, the split procedure does not have to require rwLock. This lock, however,
makes the analysis of the operation simpler.

To prevent the possibility of simultaneously inserting the same key in the cube
twice, it is necessary that the search terminate in the up direction unless the
insert key is lower than the lowest key in the cube.

Example 3.3 Figure 3.14 shows the steps required to insert the key 3 into the
cube of Figure 3.11. The search part of the insert proceeds as in Example 3.2
However, instead of terminating with a not found message, the key, 3, is inserted
as follows:

1. Since the search must terminate in the UP direction, node G(4) sends the
search back to node G(3). The state of the cube at this point is shown in
Figure 3.14A.

2. As shown in Figure 3.14B, G(O), the corner node of the oXX subcube
to which G(3) belongs, decrements its dimens~on (from two to one), ef­
fectively detaching the 01X subcube, and sends a split message to its
neighbor in dimension 1, node G(3). G(3) becomes the corner node of the
newly formed subcube.

3. The split message inserts the key, 3, into node G(3) and sets its dimension
to 1 as shown in Figure 3.14C.

4. Finally, both nodes are unlocked as shown in Figure 3.14D.

Theorem 3.3 An insert operation in a stationary cube containing N nodes
requires O(log N) time.

Proof: The initial stages of the insert are identical to the search operation and
thus require O(log N) time. The final stage of the insert is the split operation
which takes constant time .•

Chapter 3: The Balanced Cube 49

Key Dim Key Dim Key Dim Key Dim

000 000 0 2

001 001

010 011

011 010

Linear Cube
~
~

Order Address A B c D
* ~ Locked

Figure 3.14: Insert Example

Theorem. 3.4 An insert operation will not deadlock with other concurrent
operations.

Proof: While the insert operation can lock out readers on two nodes simultane­
ously, the second node locked is part of the subcube which is locked by the first
node. Placing the second lock operation does not increase the number of nodes
which are locked. Rather, requiring and excluding rwLock in the split method
assures that the upper half subcube will remain locked after its dimension is set
to make it an independent subcube. This second subcube is in effect created by
the insert and thus cannot previously have been locked by another operation.
This node cannot be created by another operation during the final stage of the
insert, since its corner node is locked, and the only way to create a node is to
split it from its corner node. Thus, an insert operation will never have to wait
to gain access to the split node .•

3.4 Delete

Messages:

The delete operation is initiated by sending a delete: message to any node in
the cube. This message initiates a search for the node containing the delete key.
If found, the operation marks this node as deleted and replies to the requester.
After the node is marked deleted, it sends a mergeReq message to its merge
neighbor. The merge neighbor merges with the deleted node to recover its

50 A VLSI Architecture for Concurrent Data Structures

space. The messages mergeUp, mergeDown, move, and copy are used to merge
the two nodes.

The following is a list of the principal message selectors used to implement the
delete: operation.

delete: a Key
mergeReq: anld flag: aFlag dim: aDim
merge Up
mergeDown: aKey data: anObject flag: aFlag

move: aNode
copy: aKey data: anObject flag: aFlag

Algorithm:

The delete algorithm is identical to the search until the key is found. Then
the node is marked deleted, flag +-#deleted, and a mergeReq message is sent to
the deleted node's merge neighbor. This has the result of routing all messages
addressed to this node except mergeUp, mergeDown, and copy messages to its
merge neighbor.

Definition 3.3 The merge neighbor of a node, N(a], with address, a, is the
node N(m(a)] with address, m(a) = a ED 2Nlaldim. If the subcubes cornered by
nodes N[a] and N(m(a)] are of the same dimension, they can be merged to
form a subcube of greater dimension. Further, node N[m(a)] is the only node
with which node N[a] can be merged.

When a node, A, receives a mergeReq message from another node, B, A de­
termines if B is its merge neighbor by comparing dimensions. There are two
possible cases, as shown in Figure 3.15. If the two nodes are of the same di­
mension (Figure 3.15A,B), they are merged. The merge is accomplished by
node A's sending a mergeUp or mergeDown message to node B. If A is below
B (Figure 3.15A) a mergeUp message is sent. A mergeDown message is sent if
A is above B (Figure 3.15B). These messages have the effect of extending the
subcube cornered by node A to include the sub cube cornered by node B. The
method invoked by a mergeReq message is shown in Figure 3.16.

When the two adjacent nodes A and B have different dimensions, a simple
merge is not possible. This situation is shown in Figure 3.15C,D. Since A is the
merge neighbor of B, it will always be the case that A dim < B dim. In this case
we copy the contents of node C, the linear address neighbor of node B, to node

Chapter 3: The Balanced Cube 51

Adlm = Bdim A dim < B dim

A
B (DEL) A B (DEL)

c

c
A B (DEL) B (DEL)

A

A B c D
Figure 3.15: Merge Dimension Cases

B and mark C deleted. In performing the copy we reduce the dimension of the
deleted subcube and make it possible for the linear address neighbor node, C, to
merge subsequently with its merge neighbor A. The move: and copy:data:flag:
messages arc used to move the contents of node C to node B.

The merge operation combines the subcube cornered by node, A, with its adja­
cent subcube cornered by B. IT the current node is the corner of the upper half
subcube, the state of the current node is copied into the available lower half
subcube with the mergeDown message. The method for mergeDown is shown in
Figure 3.17. If this method is successful, the current node flag is set to #slave
to indicate that it is no longer a corner node. Since the nodes are inconsistent
while the copying takes place, this operation requires rwLock.

If the current subcube is below its adjacent subcube, then the current node is
the corner of the combined subcube. In this case a mergeUp message is sent
to the adjacent subcube to set its flag to #slave. Once this message completes
successfully, the dimension of the current subcube is incremented to extend its
domain over the merged subcube. The method for mergeUp is also shown in
Figure 3.17.

Since a merge operation must lock both nodes A and B, a priority mechanism
is used to prevent deadlock. IT a mergeDown message arrives at a node which is
locked, it terminates unsuccessfully. A mergeUp message will wait until the node
is unlocked. The alternative 'or jfalse' in the lock specification for mergeDown
causes it to return false rather than wait on an incompatible lock.

52 A VLSI Architecture for Concurrent Data Structures

instance methods for class Balanced Cube

mergeReq: anld flag: aFlag dim: aDim
require rwLock exclude rwLock.

invoked after node anld is deleted

II
(.Flag = #deleted) ifTrue: [

(aDim = dim) ifTrue: [same dimension, J·ust merge
(anld > myld) ifTrue:[

«self co: anld) mergeUp) ifTrue:[dim <--dim + 1]]

ifF.lse[

«self co: anld) mergeDown: key data: data flag: flag) ifTrue:[flag <--#slaveJ]]

if False: [smaller than neighbor, send move
(self neighbor: (aDim-1)) move: anld]]

Figure 3.16: Method for mergeReq:flag:dim:

Only a node's merge neighbor can send it a merge message; thus, there is only
one case in which merge messages can form a cycle for resources. If two adjacent
nodes of the same dimension, such as A and B in Figure 3.15A, are both deleted,
these nodes will send mergeReq messages to each other. The mergeReq method
will lock each node and send a mergeUp or mergeDown message to the other
node. If the merge messages were both to wait on the locks, deadlock would
occur. Instead, the mergeDown message terminates immediately. Its reply
unlocks node B and allows the mergeUp message to proceed.

The messages move: and copy:data:flag: are used to move the contents of one
node to another. When the move: message is received by a node, that node
attempts to copy itself to the destination of the move by sending a copy: message
to the destination. If the copy: succeeds, it replies to the move: which then
marks the source node deleted. The methods for move and copy are shown in
Figure 3.1S.

Example 3.4 This example illustrates the simplest case of garbage collection,
where the nodes are the same size and all that is required is a merge. Fig­
ure 3.19A shows the state of a 2-cube where the key stored in G(3) has just
been deleted. The following messages merge the deleted node with its neighbor.

Chapter 3: The Balanced Cube 53

instance methods for class Balanced Cube

mergeDown: aKey data: anObject flag: aFlag copy a node's state and absorb it
require rwLock exclude rwLock or ifalse.

II
key <-a Key, data <-anObject. flag <-aFlag.

itrue.

mergeUp

exclude rwLock.

merge with node below by becoming a slave
a reader operation

II
flag <-#slave.

itrue.

Figure 3.17: Methods for mergeUp and mergeDown:data:flag:

instance methods for class Balanced Cube

move: anld

require rwLock exclude rwLock.

II

attempt to move contents to node anld
a writer operation

((self co: anld) copy: key data: data flag: flag) ifTrue:[flag <-#deleted]

copy: aKey data: anObject flag: aFlag

require rwLock exclude rwLock or ifalse.

II
((flag == #deleted) or: (flag == #free)) ifTrue:

key "-a Key, data <-anObject, flag .-aFlag.

itrue]

if False: [ifalse]

replace contents if deleted or free
doesn't wait

Figure 3.18: Methods for move: and copy:data:flag:

54

Key Dim

00 00

01 01

10 11

11 10

A VLSI Architecture for Concurrent Data Structures

Key Dim

0*

Key, Dim Key

0

~

Dim

2

Linear Cube

Order Address A B c D
* * Locked

Figure 3.19: Merge Example: A dim = B dim

1. To initiate collection, G(3) sends a mergeReq message to its merge neigh­
bor G(O).

2. The mergeReq method locks G(O) and sends a mergeUp message to G(3)
as shown in Figure 3.19B. This message locks G(3). It will always succeed
since mergeUp messages have priority over mergeDown messages.

3. As shown in Figure 3.19C, the mergeUp method sets G(3)'s flag equal to
#slave effectively attaching it to the oX sub cube.

4. After the merge method replies, G(O) increments its dimension to 2 to
reflect the fact that the two subcubes, IX and aX, have been merged to
form a single subcube, XX. The final state of the subcube is shown in
Figure 3.19D.

Example 3.5 Figure 3.20 illustrates the case where A dim < B dim.

1. Node G(3)10 (node G(3) with dimension 0) receives a mergeReq message
from node G(O)/!, as shown in Figure 3.20A.

2. The linear address neighbor of G(O)/! is the neighbor of G(3) in the dim
- 1 dimension, G(2). Node G(3) sends a move:G(O) message to G(2) as
shown in Figure 3.20B.

3. The move locks node G(2) and copies the key, record and flag from node
G(2) to node G(O) by sending a copy message as shown in Figure 3.20C.

Chapter 3: The Balanced Cube 55

Key Dim

00 00 1 1

01 01 ~ ~
10 11 DEL 0

11 10 2 0

Linear Cube
OrderAddress A B c D E
* => Locked

Figure 3.20: Merge Example: A dim < B dim

4. When copy replies successfully to node G(2) (Figure 3.20D) node G(2) is
marked deleted.

5. As illustrated in Figure 3.20E. Node G(2) will now send a mergeReq to
node G(3) initiating equal dimension garbage collection.

Theorem 3.5 To delete a key from a cube with N nodes requires O(log N)
time.

Proof: The search portion of the delete requires O(log N) time. Marking the
node deleted and merging the node with its neighbor requires constant time .

•
Theorem 3.6 The delete operation will not deadlock with other concurrent
operations.

Proof: The delete operation locks only one node at a time. •

Theorem 3.7 The merge operations will not deadlock with other concurrent
operations.

56 A VLSI Architecture for Concurrent Data Structures

Proof: Although the merge operations lock two nodes simultaneously, this
locking is ordered so that a node, A, will only wait for a node with an address
greater than A to become unlocked. Thus, it is impossible to have a cycle of
nodes waiting on each other's locks. •

Before proving that concurrent search, insert, delete, and merge operations will
give the same result as running the operations sequentially in order of comple­
tion, we need to define some terms and prove one lemma about concurrency.

Definition 3.4 An operation commits when it has made a final decision to
modify the state of a node in the cube and/or to reply with a particular result.
Once an operation commits to modifying the state of a node, it must follow
through and perform the modification. It cannot back out after committing.

Definition 3.5 The commit condition is the condition which must occur for
an operation to commit.

Definition 3.6 An operation completes when it has finished modifying the
state of a node. After an operation completes it cannot modify any additional
state.

Definition 3.7 The vulnerable period of an operation is the period between
the time it commits and the time it completes.

Definition 3.8 A snapshot of the cube is the state of all corner nodes of the
cube with no methods in progress. Since there is no concept of simultaneity
between nodes of the cube, each node may be stopped at any point as long as
causality and order of completion are preserved.

Definition 3.9 The neighborhood of an operation includes all nodes whose
states are examined by the operation between the time it commits and the
time it completes.

Here are some examples:

• A search operation commits and completes at the same time. A successful
search commits to replying with the data when it finds the requested key
in the current node. An unsuccessful search commits to replying nil when
it receives a reply from a linear address neighbor confirming that the
search key is not in the cube.

Chapter 3: The Balanced Cube 57

• An insert operation commits when the search portion of the insert receives
the reply from the query message to an adjacent node. The commit
condition is that the present node and the adjacent node bracket the
insert key. The insert operation completes when the split method unlocks
its node. The node which is split constitutes the neighborhood of the
insert operation.

• The commit condition for a delete operation is the key stored in the
present node matching the delete key. When this condition is discovered,
the operation commits. A delete is completed when the delete flag of the
node is set true.

• A merge commits when the mergeUp or mergeD own message is accepted.
The commit condition is that the two nodes being merged are adjacent.
Completion occurs when the merged node is unlocked.

Le:mma 3.3 If an operation, P's, commit condition is valid throughout P's
vulnerable period and if P's neighborhood is not changed by another operation
during this period, then any concurrent execution of P is consistent with a
sequential execution of P ordered as follows:

• P is ordered after all operations R which complete before P commits.

• P is ordered before all operations S which commit after P completes.

• P is ordered either before or after any operation Q that completes during
P's vulnerable period.

Proof: P's commit condition and P's neighborhood constitute the state of
the cube which is visible to P. If this state remains constant from the time P
commits to the time P completes, then P will act as if there were no concurrent
operations, Q, during this period since it cannot see any changes caused by Q.
It follows that P can be serialized with operations Q in any order. Since P's
commit decision is valid after all operations R have completed, it will be valid
if P is not started until after these operations have completed. Applying the
same logic with S in place of P shows that operations S can be started after P
completes without changing S's commit condition .•

TheoreID. 3.8 Concurrent search, insert, delete, and merge operations will give
the same result as running the operations sequentially in order of completion.

58 A VLSI Architecture for Concurrent Data Structures

Proof: The search, insert, delete and merge operations all meet the conditions
in the hypothesis of Lemma 3.3:

Search completes at the time it commits and thus meets this condition.

The commit condition for insert is that the present node, A, and the node
directly above the present node, B, straddle the key to be inserted, K. This
condition always holds at completion since: (1) a new node C<K cannot be
inserted between A and B since this insert would have to be performed at A
and A is locked, and (2) if B is deleted during this period, then for any node
D>B, D>K.

The commit decision for delete is that the delete key is found. The node con­
taining this key is locked, so the condition still holds at completion.

The commit condition for merge is that the adjacent node is marked deleted
and the merge operation is able to lock the node. Since both of the nodes being
merged are locked during the vulnerable period, this condition is still valid
when the operation completes. For all these operations, the neighborhood is
the present node which is locked and thus remains constant during the critical
period .•

3.5 Balance

The balancing process proceeds in three steps.

1. An imbalance between two adjacent subcubes, A and B, in the cube is
recognized.

2. The subcube containing fewer data, say A, frees space on its border with
B. Without loss of generality assume A is below B. To free space, the
node containing the highest datum in A, AH, splits itself, freeing half its
space.

3. The heavier subcube (containing more data)' in this case B, moves its
smallest datum to the space freed in step 2.

Imbalance is recognized by embedding a tree in the cube. As shown in Fig­
ure 3.21, for n=4, the tree is constructed by recursively dividing the cube into
two subcubes. The node of each subcube closest in linear order to the other
subcube is chosen as the corner node. This tree has one idiosyncrasy: messages

Chapter 3: The Balanced Cube 59

1000

CubeOOOO 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 101110011000
LlnearOOOO 0001 00100011 0100 0101 011001111000 1001 1010 1011 1100 11011110 1111

Figure 3.21: Balancing Tree, n = 4

to the outer child of a node" must traverse two communication links, while mes­
sages to the inner child of a node need to traverse only one link. Despite this
shortcoming, however, the tree is ideal for balancing for two reasons. First, it
evenly distributes the task of recognizing imbalance over all nodes of the cube
except the zero node. Also, the root node of every cube is on the boundary
of the cube across which a datum must be moved to balance the cube with an
adjacent cube at the same level. Each root node participates in correcting an
imbalance recognized by its parent.

The cube is balanced if, for each internal node in the tree, the number of keys
stored in the subcubes represented by the two children of the node differ by less
than 2 : 1. Using the number of keys in a subcube as the balancing criterion
rather than the maximum or minimum dimension of a node in the subcube has
the advantage that local imbalances are averaged out when considering global
balance. This balance criterion also allows us to balance B-Cubes, described in
Section 3.6.

·Here the outer child of a node, A, is the child of A to the outside of the subtree rooted by
A's parent as drawn in Figure 3.21. The outer child of the root is the left child as drawn in
Figure 3.21.

60 A VLSI Architecture for Concurrent Data Structures

Messages:

Leaf and internal nodes periodically transmit size messages to their parent
nodes. When the parent node receives the size message, it updates its size and
checks the sizes of its two subcubes for imbalance.

If the root node of a sub cube detects imbalance between the two halves of its
subcube, it initiates balancing by moving records between its two children. This
data transfer takes place in two steps. First, a free message is transmitted to
the boundary node of the subcube containing fewer elements. This message
causes the boundary node to split itself as in the insert operation, with the
old key and record remaining in the node farthest from the subcube boundary.
The boundary node of the subcube with the larger size is then sent a move
message. This message locks the boundary node, copies its key and record to
the freed node, and then marks the adjacent node deleted. The net effect is
to move one datum from the larger subcube to the smaller subcube. While a
node is marked free, it routes all its messages to the destination node. The
root sub cube repeats this operation until balance is restored to a 2:1 size ratio.
It is important to note that because of the Gray code mapping, most of these
messages traverse only a single link in the cube. The message from the root to
its outer child is the only message that must traverse two links.

size: anlnt of: anld

free: anld

Algorithm:

The size method, shown in Figure 3.22, updates the size of self, checks for
balance between its two subcubes, and possibly initiates balancing by sending
a free message to the smaller of the two subcubes. The free method splits its
destination subcube in half and sends a move message to the node in the other
half subcube, instructing it to copy itself to the freed node and then to delete
itself.

The free method, shown in Figure 3.23, is similar to insert in that it must split
the present node to generate a free block. There are two cases. If the subcube
contains more than one element, the boundary node is a corner node. Since it
is right on the boundary, it must copy its present state into the split sub cube
and then free itself. If the subcube contains only a single element, the boundary
node is a slave to the root which recognized the imbalance. In this case the
root simply sends a split message to free the boundary half of its subcube.
As with insert, locking two nodes simultaneously is permissible during a split

Chapter 3: The Balanced Cube 61

instance methods for class Balanced Cube

size: anlnt of: anld update size 0/ 8ubcube rooted at receiver

II
(myld < anld) ifTrue:[

lowerSize +-anlnt]

ifFalse:[

upperSize +-anlnt].

mySize +-lowerSize + upperSize. (lowerSize > (2 * upperSize» ifTrue:[

(self upperChild) free lowerChild]

(upperSize > (2 * lowerSize» ifTrue:!

(self lowerChild) free upperChild]

Figure 3.22: Method for size:of:

since the two nodes were the same node at the time of the first lock, and it is
impossible for another process to attempt to lock the split subcube after the
original subcube is locked.

After a node is freed, the node which is to move to the freed subcube receives
the move message. The move copies the boundary node's key and record to
the freed node while preserving the freed node's dimension. After the copy
completes, the boundary node is marked deleted. Although two nodes are locked
simultaneously, unlike the merge operation, no priority resolution is required
to prevent deadlock. Once a node is freed, there is only one node which can
send a copy message to that node. Thus, as in the insert and free operations,
for purposes of locking, the freed node is part of the boundary node from the
moment it unlocks after being tagged free.

Example 3.6 Figure 3.24 shows a balancing operation on a 3-cube.

1. In Figure 3.24A, root node 100, G(7), sees one record in the upper half of
the cube and four records in the lower half of the cube. Recognizing this
imbalance, G(7) sends a free message to G(4).

2. As shown in Figure 3.24B, since G(4) is a slave to G(7), the free operation
locks G(7), decrements its dimension, and sends a split message to G(4).

62 A VLSI Architecture for Concurrent Data Structures

instance methods for class Balanced Cube

free: anld split self and send a move message to anld
require rwlock exclude rwlock

II
(dim> 0) ifTrue: [

«flag = #deleted) or: (flag = #free» ifTrue:[(self co: anld) move: myldJ]

ifFalse:[

dim +-dim - 1.

(self adjacentTo: anld) ifTrue [

(self neighbor: dim) split: dim key: key data: data flag: flag.

flag +-free].

(self co: anld) move: myld]

if False [

(self neighbor: dim) split: dim key: key data: data flag: #free.

(self co: anld) move: (myld xor: 2dimJ]

Figure 3.23: Method for free:

3. After the split message has marked G(4) free, a move message is sent to
G(3) as shown in Figure 3.24C.

4. After the move completes, G(3) is marked deleted and the cube is balanced
as shown in Figure 3.24D.

The balancing operations alter none of the arguments in the proofs of Theorems
3.1 to 3.8 above. Thus, all of these theorems hold in a cube which is being
dynamically balanced.

3.6 Extension to B-Cubes

A straightforward extension of the balanced cube is the B-cube. The B-cube is
to a balanced cube what a B-tree is to a balanced tree. In the B-cube, rather
than storing one record in each node, up to k records may be stored in each
node. B-cube operations attempt to keep the number of records in each node
between ~ I and k by splitting nodes when the number of records exceeds k and

Ohapter 3: The Balanced Oube 63

Key Dim Key Dim Key Dim Key Dim
000 000 0 0 0 0 0 0 0 0

001 001 1 0 1 0 1 0 1 0

010 011 2 0 2 0 2 0 2 0

011 010

100 110

3 0

~e e
3 0

~I It
3 0 D Free 1 py

DEL 0

~ 3 1

ove ply

101 111 + + J +
110 101 t f f f t t
111 100 <4 2 ./ <4 1 ./ <4 1 4 1

Linear Cube "
~

'r
~ "

'-"""
'r

"'" ~ Order Addr A B c D

Figure 3.24: Balance Example

merging adjacent nodes when their combined number of records drops below
k + 1. Within a B-cube node, records are sorted and searched by conventional
means. Between nodes, the algorithms presented here for balanced cubes are
applied with some modifications. For example, in the search procedure, a query
message would reply with both upper and lower keys. The test for equality in
this case would be lower <= key <= upper.

B-cubes have several advantages over balanced cubes:

• The overhead for maintaining the dimension and flag fields in each node
is reduced. Rather than maintaining these fields for each record, their
cost is spread out over up to k records. Locks in a B-cube can be either
on a record basis or on a node basis. Write-locking at the node level and
read-locking at the record level seem to make the most sense.

• In a B-cube, the majority of inserts and deletes can be performed entirely
within a single node without splitting or merging. Thus, the number of
node interactions is reduced. Also, balancing is required less frequently,
since the number of operations which changes the node counts is reduced.
Note, however, that when balancing is performed the amount of data to
be moved has increased.

64 A VLSI Architecture for Concurrent Data Structures

• It is expected that nodes will be swapped from a mass storage device.
In the B-cube, the size of a node can be chosen to match a convenient
transfer size for the storage device. In general, this size is larger than a
single record.

A possible disadvantage of B-cubes is that they reduce the potential concurrency
of the data structure. However, in most applications the number of records will
greatly exceed the number of available processors, and the concurrency of B­
cubes will not be the limiting factor. In fact, this reduction of concurrency is
an advantage in the sense that it allows the granularity of the data structure
to be smoothly varied over a large range.

3.7 Experimental Results

The balanced cube data structure has been implemented on a multiprocessor
simulator, and a number of experiments have been performed to verify the
correctness of the algorithms and to measure their throughput. The balanced
cube simulator is a 3000-line C program [70]. The code is divided fairly evenly
into three parts:

• A binary n-cube simulator which provides the message passing environ­
ment of a concurrent computer.

• The balanced cube algorithms.

• Instrumentation code to configure the cube simulator and to measure the
performance of the balanced cube algorithms.

Two sets of experiments were run. The first set of experiments, described in
detail in [20], was performed on an early version of the balanced cube which
directly mapped the elements of the ordered set to the nodes of a binary n-cube.
The current balanced cube algorithms, using a Gray code mapping, were used
in the second set of experiments. After a few experiments were run to verify
that the insert, delete, and balance operations consume only a modest portion
of the cube's resources, all remaining experiments were performed using only
the search operation.

Throughput experiments were run to determine if the data structure can achieve
the predicted 0Co:N) throughput. These experiments were run using a load

Chapter 3: The Balanced Cube 65

model that applied a maximum uniform load to the cube. The experiments
were run for both the direct mapped cube and the current balanced cube.

Throughput is the number of operations the data structure can perform per unit
time. The balanced cube can perform N operations at a time and each operation
requires O(log N) time, so the predicted throughput is O(10: N)' In the steady

state, the balanced cube can perform O(lo:N) operations each message time.

The throughput results presented in this section assume a uniform load. Both
the constituents to which requests are made and the keys searched for are uni­
formly distributed. A concentration of messages to one constituent or searching
for a single key would cause a hot spot and reduce throughput. These through­
put results also assume that data inserted into the balanced cube is uniformly
distributed. If an adversary inserts a pathological sequence of data, balancing
can, in the worst case, require O(N) messages per operation reducing through­
put to 0(1).

The throughput results for the original direct mapped cube of [20], shown in
Figure 3.25, fail to achieve the predicted throughput. The direct mapped cube
achieves a throughput of only 0Co;'N)'

The degradation of O(log N) is due to the non-uniformity of the Hamming dis­
tance between linear order neighbors, as expressed in Equation (3.7). The func­
tion, dBA, can be thought of as a barrier function. Shown in Figure 3.26, this
function represents how many channels a message between linear address neigh­
bors must traverse. Degradation occurs because the channels corresponding to
the higher barriers must carry more traffic than the channels corresponding
lower barriers. Hence, these channels become congested.

The average barrier height is given by:

Ei-I i2,,-i 2"+ I + 2
dBAL = = Rl2.

2" 2"
(3.14)

The degradation is the ratio of maximum barrier height to average barrier
height or Rl ~. The experimental data of Figure 3.25 agrees exactly with this
figure.

The Gray code mapping used in the current balanced cube eliminates this
degradation as shown in Figure 3.27. The throughput difference of O(log N)
between Figures 3.25 and 3.27 illustrate the importance of developing data
structures which match the topology of concurrent computers.

66

T
h
r
o

10

5

u 1
g
h
P 0.5
u
t

0.1

o

o 2

A VLSI Architecture for Concurrent Data Structures

o

4 6

Log(N)

o

8 10 12

Figure 3.25: Throughput VB. Cube Size for Direct Mapped Cube. Solid line is
I:~~~' Diamonds represent experimental data.

Chapter 3: The Balanced Cube 67

300

B
a 250
r

i 200
e

F 150
u
n 100
c
t
i
0

50
n

0

0 200 400 600 800 1000 1200

Position

Figure 3.26: Barrier Function (n=10)

68 A VLSI Architecture for Concurrent Data Structures

500

100
T 50
h

0
u 10
g 5
h
p
u
t 1 0

0.5
0

0.1
0 2 4 6 8 10 12

Log(N)

Figure 3.27: Throughput vs. Cube Size for Balanced Cube. Solid line is l~;~'
Diamonds represent experimental data.

Chapter 3: The Balanced Cube 69

Post Office
mealage

Post Office

Balanced Cube

name:addraa uaoeiatiou

Figure 3.28: Mail System

3.8 Applications

A Mail System

Concurrent data structures such as the balanced cube provide a medium through
which objects can communicate without knowing of each other's existence or
physical location. Consider a mail system that forwards messages between ob­
jects that occasionally migrate from node to node. As shown in Figure 3.28, the
mail system consists of a balanced cube used to hold the associations between
object names and their current addresses, and local Post Offices that cache
these associations and handle communications with objects. Objects interact
through the Post Office rather than directly communicating with each other .

• When an object moves to a new node, it registers its new address by
sending the message at: <name> put: <address> to its local Post Office.
The Post Office inserts this association in the balanced cube .

• To send a message to an object, B, the sender object, A, transmits a
message to its local Post Office. Each local Post Office maintains a cache

70 A VLSI Architecture for Concurrent Data Structures

of recently used object-address associations. If the address is not found
in this cache, an at:<name> message is sent to the balanced cube to look
up the address .

• If an address in the local cache is stale (the object has moved), the desti­
nation Post Office consults the balanced cube to find the correct address,
forwards the message, and notifies the sending Post Office of the new
address.

Using the Post Office mechanism, objects can communicate without ever know­
ing anything about each other. Objects send messages to names. The object
receiving messages for a given name can move or be replaced without notifying
any of its customers. There is no central name server to become a bottleneck.
The server that associates names with addresses is distributed and can process
many requests simultaneously.

Artwork Analysis

Applications can be constructed by combining concurrent data structures. Con­
sider the problem of integrated circuit artwork analysis. This problem has two
aspects:

circuit extraction: discovering the electrical circuit of an integrated circuit
from an examination of its layout geometry.

design rule checking: verifying that the layout obeys a set of geometrical de­
sign rules. These rules specify restrictions such as minimum feature width,
minimum feature spacing, etc

Traditionally, artwork analysis has been performed using a scan-line algorithm
[5],[31],[16]. However scan line algorithms are inherently sequential as they
involve traversing the chip in sequence from one end to the other. In this
section we examine an approach to concurrent artwork analysis using balanced
cubes.

The artwork for an integrated circuit is a set of polygons. Artwork analysis
involves checking for interactions between polygons. An efficient algorithm
must be selective in these checks to avoid the O(~) complexity required to
check every pair of polygons. If polygons are compared only with neighboring
polygons, the number of comparisons can be significantly reduced.

Chapter 3: The Balanced Cube 71

To reduce the number of comparisons, we use a B-cube to maintain the spatial
relationship between polygons in one dimension. Each polygon is enclosed in
a bounding box, and the B-cube is ordered by the left x coordinate of the
bounding box. Within each node of the B-cube, two indices into the local
list of polygons are maintained, one ordered by x coordinate and one by y
coordinate.

Artwork analysis is performed concurrently on this structure by having each
polygon send a from: leftX to: rightX do: aBlock message to the B-cube. At
each node of the B-cube, aBlock executes and, using the y index, selects only
those polygons that overlap the sender in both coordinates. These polygons are
then compared with the sender to check for design rule errors.

O(NJ o6) comparisons will be made on y coordinates, making this algorithm
less efficient than O(Nlog N) sequential algorithms. This algorithm has the
advantage, however, of being very concurrent, while the scan-line algorithms
are inherently sequential.

By using a two-dimensional corner-stitched data structure as described in [951
it is possible to achieve concurrency without the O(..fN) penalty imposed by
ordering primarily in a single dimension. A corner-stitched data structure can
be distributed by using the pointers as keys into a balanced cube. Since order
is not required, the concurrent dictionary described in Appendix B could be
used instead of the balanced cube.

Directed Search

Many problems involve the directed search of a state space. For example,
most game-playing programs are built around an a - f3 search of a game tree
that represents the state space of positions. The program begins from the
current position and generates all possible successor positions. These successor
positions are then expanded to generate positions two moves ahead and so on.
At each step of the search there is a set of active positions: those positions that
have been generated but not yet expanded. Active positions are expanded in
order of their merit as determined by some evaluation function. Some positions
may be pruned, eliminated from further consideration, on the basis of static
evaluation functions.

We can construct a concurrent directed search algorithm by storing all gener­
ated positions in a balanced cube. As in the artwork analysis example above,
a B-cube is used. Some hash function of position is used as a key to insert po­
sitions into the B-cube. Within each node, two indices are kept into the data:

72 A VLSI Architecture for Concurrent Data Structures

an index ordered by keys and an index ordered by the evaluation function. An
expand method running in each node repeatedly removes the most promising
position from the local B-cube node, expands that position, and inserts its
descendants into the B-cube.

The directed search algorithm that results from using a B-cube in this manner
has a number of desirable properties.

• Identical positions can be converged, since they will hash to the same key.

• The hash function in combination with the balance property of the B-cube
will evenly distribute positions over the processing nodes of a concurrent
computer, resulting in good load balancing.

• Perhaps most importantly, no special effort is required to make the expand
method concurrent. The method simply removes a position from the B­
cube, expands it, and inserts the descendants into the B-cube. All of the
communication and synchronization, all of the burdens of concurrency,
are handled by the B-cube.

3.9 Summary

I have developed a new data structure for implementing ordered sets, the bal­
anced cube. The balanced cube is a distributed ordered set object. It is an
ordered set of data, along with operations to manipulate those data, distributed
over the nodes of a concurrent computer. Operations are initiated by messages
to any node. Thus, many operations may be initiated simultaneously. The
balanced cube offers significantly improved concurrency over conventional data
structures such as heaps, balanced trees, and B-trees.

On sequential machines, complexity is measured by instruction counts. Based
on these conventional measures, the balanced cube performs as well as balanced
trees or B-trees requiring O(log N) time to search, insert, or delete a record in
a structure of N records. For concurrent machines, however, communications
costs are more important than instruction counts, and the throughput of several
operations executing in parallel is more important than the latency of a single
operation. Based on this performance model, a balanced cube offers OC.: N)

throughput as compared to 0(1) throughput for conventional data structures.
Consider, for example, an N = 1024 processor concurrent computer. A conven­
tional data structure implemented on such a machine can process only a single

Chapter 3: The Balanced Cube 73

access per unit time. A balanced cube, on the other hand, can process over 100
accesses simultaneously.

In any concurrent system, consistency of interacting operations and deadlock
avoidance are critical. The balanced cube is provably deadlock free. Each oper­
ation locks at most one non-deleted node at a time and unlocks this node before
loc'king the next node. In the case of the merge operation, where there may
be competition for access to deleted nodes, a priority scheme is used to resolve
any conflicts. In the balanced cube, concurrently executing operations produce
results that are consistent with a sequential execution of the same operations
ordered by time of completion. This consistency is achieved by the judicious
use of locking to make the completion of an operation appear instantaneous and
to assure that th" neighborhood of an operation is not modified between the
time it commits t~ modifying the state of the cube and the time it completes
performing the modification.

Balanced cubes and B-cubes can be used to construct concurrent applications.
In many cases, such as in the directed search example of Section 3.8, no special
effort is required to make an application concurrent. Many instances of the ap­
plication simply insert and remove data from the balanced cube. The balanced
cube data structure handles all communication and synchronization.

Chapter 4

Graph Algorithms

In this chapter I represent graphs as concurrent data structures and develop
algorithms for manipulating graphs on message-passing concurrent computers.
Unlike the ordered set structure examined in Chapter 3, a graph does not have
a fixed set of operations defined on it" Instead, a graph serves as a framework
for modeling and solving a number of combinatorial problems.

Graph data structures have been applied to a wide range of problem areas,
including transportation, communications, computer aided design, and game
playing. Because of their importance, graph algorithms for sequential machines
have been studied in depth [38], [45], [65], [69], [97], and some work has been
done on concurrent graph algorithms [104], [105], [118], [87]. However, little
work has been done on algorithms for message-passing concurrent computers,
and very little experimental work has been done to determine the performance
of concurrent graph algorithms on large (> 100 processor) machines.

This chapter addresses these gaps in the literature by formulating new concur­
rent graph algorithms for three important graph problems and evaluating their
performance through both analysis and experiment. Section 4.2 discusses con­
current shortest path algorithms. A weakness in an existing concurrent shortest
path algorithm is exposed, and a new algorithm is developed to overcome this
problem. Max-flow algorithms are discussed in Section 4.3. Two new max-flow
algorithms are developed. Finally, Section 4.4 deals with the graph partition­
ing problem. Novel techniques are developed to prevent thrashing of vertices
between partitions and to keep the partitions balanced concurrently.

76 A VLSI Architecture for Concurrent Data Structures

4.1 Nomenclature

Definition 4.1 A graph G(V, E) consists of a set of vertices, V, and a set
of edges, E ~ V x V. The source vertex of edge e,. is denoted 8 n and the
destination, d,..

Definition 4.2 A path is a sequence of edges P = el , •.. , ek :3 'ii d; = 8.+1.

The source of the path is 8p = 81 and the destination of the path is dp = dk •

Definition 4.3 A path P is said to visit a vertex v if P contains an edge en
and v = 8 n or v = d,.. A proper path visits no vertex twice.

Definition 4.4 The degree of a vertex, v, is the number of edges incident on v.
The in-degree of v is the number of edges with destination v and the out-degree
of v is the number of edges with source v.

Most graphs encountered in computer aided design and transportation problems
are sparse: O(IE[) ~ O(IVI). For this reason I restrict my attention to sparse
graphs.

The CST headers for classes Graph. Vertex and Edge are shown in Figure 4.1.
A graph is represented by two distributed collection objects, vertices, V, and
edges, E. Elements of vertices are of class Vertex and consist of forward and
backward adjacency lists. The adjacency list representation is used here, since
it is more efficient than adjacency matrices in dealing with the sparse graphs
characteristic of most large problems. Each edge in the graph is an instance of
class Edge which relates its source and destination vertices.

In the following sections I will define subclasses of Vertex and Edge to include
problem specific instance variables such as length, weight, capacity and flow.
To conserve space, these subclasses will not be explicitly declared. Instead, the
new instance variables in each subclass will be informally described.

4.2 Shortest Path Problems

The shortest path problem has wide application in the areas of transportation,
communication and computer-aided design. For example, finding optimal rout­
ings for aircraft, trucks or trains is a shortest path problem as is routing phone

Ohapter 4: Graph Algorithms

class
superclass
instance variables

class variables
locks

class
su perclass
instance variables

class variables
locks

class
superclass
instance variables

class variables
locks

Graph

Object

vertices

edges

Vertex

Object

forward Edges

backwardEdges

Edge

Object

source

dest

generic graph

a distributed collection
a distributed collection
none
none

none
none

s, where e = (s,d)
d, where e = (s,d)
none
none

Figure 4.1: Headers for Graph Classes

77

78 A VLSI Architecture for Concurrent Data Structures

b

Figure 4.2: Example Single Point Shortest Path Problem

calls in a telephone network. Shortest path algorithms are also used to solve
computer-aided design problems such as circuit board routing and switch level
simulation [14].

To discuss shortest paths, we must first define length.

Definition 4.5 Length, l, is a function E -+ R. The length of a path is the
sum of the edge lengths along the path l(P) = LCjEP l(ei).

Definition 4.6 The diameter, D, of a graph, G, is the maximum over all pairs
of points of the minimum length of a path between a pair of points,

D= max {minl(p)lsp = v;,dp = vi} 'if v;, vi E V (4.1)

4.2.1 Single Point Shortest Path

The single point shortest path problem (SPSP) involves finding the shortest
path from a distinguished vertex, S E V to every other vertex. In this section
I examine an existing concurrent SPSP algorithm due to Chandy and Misra
[15] and show that it has exponential complexity in the worst case. I go on
to develop a new concurrent algorithm for the SPSP problem that overcomes

g

Chapter 4: Graph Algorithms

spsp: s

I vSet u v I
vertices do: [:aVertex I aVertex distance: infinity].

source distance: O.

vSet +-SortedCollection sortBlock:[:a :b I a distance < b distance].

vSet add: source.

[vSet isEmpty] whileFalse: [

u +-vSet removeFirst.

(u forwardEdges) do: [:edge I
v +-edge destination.

«u distance + edge length) < v distance) ifTrue:[

v distance: (u distance + edge length).

v pred: u.

vSet add: vllJ

Figure 4.3: Dijkstra's Algorithm

79

the problem of Chandy and Misra's a.lgorithm and requires at most O(iVI2)
messages.

The SPSP problem was solved for sequential computers by Dijkstra in 1959 [29).
Shown in Figure 4.3, Dijkstra's algorithm begins at the source and follows edges
outward to find the distance from the source to each vertex. The wavefront of
activity is contained in vSet, the set of vertices that have been visited but not
yet expanded. To avoid traversing an edge more than once, the algorithm keeps
vSet in sorted order. Each iteration through the whileFalse: loop, the active
vertex nearest the source, u, is removed from vSet and expanded by updating
the distance of all forward neighbors. When the algorithm terminates, the
distance from source to a vertex, v, is in v distance and the path can be found
by following the pred links from v back to source. Dijkstra's algorithm remains
the best known algorithm for the sequential SPSP problem.

A trace of Dijkstra's Algorithm on the graph of Figure 4.2 is shown in Figure 4.4.
For each iteration of the while False: loop, the figure shows the vertex expanded,
its distance from the source, its predecessor and the state of the active set.
Note that each vertex, and thus each edge, is examined exactly once. Because
of this property, for sparse graphs Dijkstra's algorithm has a time complexity

80 A VLSI Architecture for Concurrent Data Structures

Vertex u Distance Pred vSet (vertex,dist)

0 nil (a,1),(b,2)

a (b,2),(c,2),(d,3),(e,5)

b 2 (c,2),(d,3),(e,5)

2 a (d,3),(.A)
d 3 a (eA),(fA)

4 d (fA),(g,6)

4 d (g,5)

g 5 f

Figure 4.4: Example Trace of Dijkstra's Algorithm

of O(lVllog 1V1l. The loop is iterated IVI times and the rate-limiting step in
each iteration, selecting the vertex u, can be performed in O(log IVIl time using
a heap'.

Chandy and Misra [IS] have developed a concurrent version of Dijkstra's Al­
gorithm. This algorithm is simple and elegant; however, as we will see shortly,
it has a worst case time complexity of O(21V1). A simplified form of Chandy
and Misra's algorithm is shown in Figure 4.5. While Chandy and Misra's origi­
nal algorithm uses two passes to detect negative weight cycles in the graph, the
simple algorithm uses only a single pass. As with Dijkstra's Algorithm, Chandy
and Misra's Algorithm works by propagating distances from the source. The
algorithm is initiated by sending the source a setDistance: 0 from: nil message.
When a vertex receives a setDistance:from: message, with a distance smaller
than its current distance, it updates its distance and sends messages to all of
its successors. Every setDistance:from: message is acknowledged with an ack
message to detect termination as described in [3D]. When the source replies to
the graph the problem is solved and the algorithm terminates. Unlike Dijkstra's
algorithm, the expansion of vertices is not ordered but takes place concurrently.
This is both the strength and the weakness of this algorithm.

A trace of Chandy and Misra's algorithm on the graph of Figure 4.2 is shown
in Figure 4.6. Each row of the figure corresponds to one arbitrary time pe­
riod. Each column corresponds to one vertex. For each time period, the mes-

1 If there are only a constant number of edge lengths, then the selection can be performed
in constant time using a bucket list and the time complexity of the algorithm is O(!VI).

Chapter 4: Graph Algorithms

instance methods for class Path Graph

spsp: s

II
source setDistance: 0 from: nil.

instance methods for class Path Vertex

setDistance: aDist from: aVertex

ack

II
(aDist < distance) iffru.: [

distance +-aDist,

(pred notNil) iffrue:[pred ack].

pred +-aVertex.

forward Edges do: [:edge I
(edge destination) setDistance: (distance + edge length) from: self

nrMsgs +-nrMsgs + 1]].

if False: [aVertex ack].

II
nrMsgs +-nrMsgs - 1.

(nrMsgs = 0) iffrue:[

(pred notNil) iffrue: [pred ack].

(self = graph source) iffrue: [graph reply].

pred +-nil].

81

Figure 4.5: Simplified Version of Chandy and Misra's Concurrent SPSP Algo­
rithm

82 A VLSI Architecture for Concurrent Data Structures

Time b g

(5,1) (5,2)
2 (a,2) (b,5) (0,5)

(0,3)

3 (d,7) (d,4) (e,7)

(d,5) (e,7)

(cA)
4 (e,6) (e,6)

(f,5)

Figure 4.6: Example Trace of Chandy and Misra's Algorithm

sages (vertex. distance) received by the vertices are shown in the corresponding
columns. For instance, during the first time period vertex a receives the message
setDistance: 1 from: 5, or (5.1) and vertex b receives (5,2).

The order of message arrival at reconvergent vertices is nondeterministic. Fig­
ure 4.6 shows a particularly pessimistic message ordering to illuminate a prob­
lem with the algorithm. During time period 2, messages (b.5) and (a,3) are
received by vertex d. In the example I assume the message from b arrives be­
fore the message from a, Vertex d updates its distance twice and sends two
messages to vertex e. Unlike Dijkstra's algorithm, Chandy and Misra's algo­
rithm may traverse an edge more than once.

This multiple edge traversal, due to the very loose synchronization of the al­
gorithm, can result in exponential time complexity. Consider the graph of
Figure 4.7. If messages arrive in the worst possible order, Chandy and Misra's
algorithm requires O(2~) time to solve the SPSP problem on this graph. Each
triangular stage doubles the number of messages. Vertex v. receives messages
with distances 3 and 2; ~ receives 7,6,5 and 4; Vk receives 2k + 2k - 1, ... , 2k
in that order. Although it is unlikely that the situation will ever get this bad,
the problem is clear. Tighter synchronization is required.

To solve the synchronization problem with Chandy and Misra's algorithm I have
developed a new concurrent algorithm for the SPSP problem that synchronizes
all active vertices. This algorithm, shown in Figure 4.8, synchronizes all vertices

Chapter 4: Graph Algorithms 83

Figure 4.7: Pathological Graph for Chandy and Misra's Algorithm

in the graph with their neighbors. By forcing a vertex to examine all of its
input edges before propagating a value on its output edges, the worst case time
complexity of the algorithm is reduced to O(IVI) for sparse graphs'. The worst
case number of messages required for sparse graphs is O(IVI').

The algorithm is initialized by sending an spsp: source message to the graph.
The graph then initializes each non-source vertex by sending it an spsplnit:
00 message. The source receives an spsplnit:O message. The spsplnit messages
initialize the distance instance variable of each vertex and start the synchronized
distance computation by having each vertex send setDist:from: messages to all
of its forward neighbors.

Figure 4.9 illustrates the synchronization imposed by this algorithm on each
vertex by means of a Petri Net [100]. During each step of the algorithm, each
vertex sends setDist messages to all of its forward neighbors. When setDist
messages have arrived from all backward neighbors, the vertex acknowledges
these messages with ackDist messages. When ackDist messages are received
from all forward neighbors, the cycle begins again. Using this mechanism,
vertices are kept locally synchronized. They do not operate in lockstep, but,
on the other hand, two vertices cannot be out of synchronization by more than
the number of edges separating them.

The algorithm as presented will run forever since no check is made for com­
pletion. Completion detection can be added to the algorithm in one of two
ways.

20n any real concurrent computer O(IVI) performance will not be seen, since it ignores
communication latency between vertices. On a binary n-cube processor, for example, the
average latency is O(logN), where N is the number of processors, giving a time complexity of
O(IVllogN).

84 A VLSI Architecture for Concurrent Data Structures

instance methods for class Path Graph

spsp: s

II
vertices do: [: vertex I

(vertex = source) ifTrue: [vertex spsplnit: 0]

if False: [vertex spsplnit: 00]]

instance methods for class Path Vertex

setDist: aDist over: an Edge

II
nrMsgs +-nrMsgs - 1,

(aDist < distance) ifTrue:

distance +-aDist,

pred +-(anEdge source)],

(nrMsgs =0) ifTrue:[

self sendAcks,

(nrAcks = 0) ifTrue: [self sendMsgs]]

spsplnit: aDist

II
distance +-aDist,

self send Msgs

sendMsgs

II
nrAcks +-(forwardEdges size),

acksSent +-false,

forward Edges do: [:edge I (edge destination) setDist: (distance + edge length) over: edge]

sendAcks

II
nrMsgs +-(backwardEdges size),

acksSent +-true,

backward Edges do: [:edge I (edge source) ackDist]

ackDist

II
nrAcks +-nrAcks - l.

(acksSent and: (nrAcks = 0)) ifTrue: [self sendMsgs]

Figure 4.8: Synchronized Concurrent SPSP Algorithm

Chapter 4: Graph Algorithms

ackDlst from
forward

neighbors

setDist to
forward

neighbors

setDlst from
backward
neighbors

sendMsgs

ackDlst to
backward
neighbors

Figure 4.9: Petri Net of SPSP Synchronization

85

• Embed a tree into the graph. Each step, each vertex (leaf) transmits up
the tree a message indicating whether or not its distance has changed.
Internal nodes of the tree combine and forward these messages. When
the root of the tree detects no change for h consecutive steps, where h is
the height of the tree, the computation is finished.

• This shortest path is an example of a diffusing computation as defined in
[30] and thus the termination detection technique described there can be
applied to this algorithm.

For the sake of brevity, the details of implementing completion detection will not
be described here. In the experiments described below, the second termination
technique was implemented to give a fair comparison with Chandy and Misra's
algorithm.

An example trace of the synchronous SPSP (SSP) algorithm on the sample
graph of Figure 4.2 is shown in Figure 4.10. Since each vertex waits for dis­
tance messages on all incoming edges before propagating its next message on an
outgoing edge, an unfortunate message ordering cannot cause an exponential
number of messages.

Theorem 4.1 The SSP algorithm requires at most O(IVI x lEI) total messages.

Proof: In a graph with positive edge lengths, all shortest paths must be sim­
ple paths, or we could make them shorter by eliminating their cycles. Thus, a

86 A VLSI Architecture for Concurrent Data Structures

Time b d f g

(5,1) (5,2) (0,00) (0,00) (0,00) (d,oo) (e,oo)
(b,oo) (c,oo) (e,oo) (f,oo)

(d,oo)

2 (5,1) (5,2) (0,2) (0,3) (0,5) (d,oo) (e,oo)

(b,5) (c,oo) (e,oo) (f,oo)
(d,oo)

3 (5,1) (5,2) (0,2) (0,3) (0,5) (d,4) (e,oo)
(b,5) (c,4) (e,7) (f,oo)

(d,5)
4 (.. ,1) (5,2) (0,2) (0,3) (0,5) (d,4) (e,6)

(b,5) (c,4) (e,6) (f,6)
(d,5)

Figure 4.10: Example Trace of Simple Synchronous SPSP Algorithm

shortest path contains at most WI-1 edges. By induction we see that the algo­
rithm finds all shortest paths containing i edges after i iterations of exchanging
messages with its neighbors. Thus, at most WI - 1 iterations are required.
Since lEI messages are sent during each iteration; O(WI x lEI) total messages
are required. •

The experiments discussed below were performed by coding both Chandy and
Misra's algorithm and the SSP algorithm in C and running them on a binary n,.

cube simulator. The simulator charges one unit of time for each communications
channel traversed in the graph. The experiments show that for large graphs the
SSP algorithm outperforms Chandy and Misra's algorithm because it has better
asymptotic performance, while for small graphs Chandy and Misra's algorithm
performs better since it is not burdened with synchronization overhead.

Figure 4.11 shows the speedup of both algorithms as a function of the problem
size. The line marked with circles shows the speedup of Chandy and Misra's
algorithm, while the line marked with diamonds shows the speedup of the SSP
algorithm. The graph shows that the SSP algorithm performs better than
Chandy and Misra's algorithm for large graphs.

Chapter 4: Graph Algorithms 87

500

100 0 Chandy and Misra

50
S 0 SSP
P
e 10
e
d 5
u
P

1
0.5

0.1
2 4 6 8 10 12 14

Log of Problem Size

Figure 4.11: Speedup of Shortest Path Algorithms vs. Problem Size

88 A VLSI Architecture for Concurrent Data Structures

500

100 0 Chandy and Misra

50
5
P

0 SSP

e 10
e
d 5
u
P

1
0.5

0.1
0 2 4 6 8 10 12 14

Log(N)

Figure 4.12: Speedup of Shortest Path Algorithms vs. Number of Processors

The algorithms were run on random graphs of degree four with uniformly dis­
tributed edge lengths. Tests were run varying the graph size in multiples of two
from 16 to 4096 vertices. In each test the number of processors was equal to
the number of vertices in the graph. The speedup figure in the graph is given
by ~, where T. is the number of operations required by Dijkstra's algorithm
on a sequential processor ignoring accesses to the priority queue, and 1;, is the
time for the concurrent algorithm on a concurrent processor. Note that these
speedup figures are, in fact, pessimistic since they ignore the time required by
the sequential algorithm to access the priority queue.

Figure 4.12 shows the speedup of both algorithms as a function of the number
of processors. These tests were run on a random graph of degree 4 with 4096
vertices and uniformly distributed edge weights. For this graph size, the SSP
algorithm is about four times as fast as Chandy and Misra's algorithm for all
configurations tested. The speedup of both algorithms is ~ 10: N over much of

Chapter 4: Graph Algorithms 89

5

0 Chandy and Misra

S
P

1 0 SSP

e
e 0.5
d
u
P

0.1

2 4 6 8 10 12 14

Log of Problem Size

Figure 4.13: Speedup of Shortest Path Algorithms for Pathological Graph

the range with Chandy and Misra's algorithm falling short of this asymptote
for large N.

Figure 4.13 shows the speedup of both algorithms for different-size instances
of the pathological graph of Figure 4.7. Because the graph is very narrow and
does not offer much potential for concurrency, neither algorithm performed par­
ticularly well. The SSP algorithm, however, outperformed Chandy and Misra's
algorithm by a significant margin. Data are not available for Chandy and
Misra's algorithm on graphs of more than 256 vertices because the algorithm
did not terminate on the 512 vertex case after two days of run time on a VAX
11/750! The SSP algorithm performs moderately well even on a 4096 vertex
graph.

As we will see in the next section, additional speedup can be gained exploit­
ing concurrency at a higher level by running several shortest path problems
simultaneously.

90 A VLSI Architecture for Concurrent Data Structures

4.2.2 Multiple Point Shortest Path

In the multiple shortest path problem there are several source vertices,s" ... , Sk.

The problem is to find the minimum length path from each source vertex, 8;,

to every node in the graph. For example, during the loose routing phase an
integrated circuit router assigns signals to channels by independently finding
the shortest path from each signal's source to its destination. Since each signal
is handled independently, on a concurrent computer all signals can be routed
simultaneously.

The results of a number of experiments run to measure the concurrency of
running multiple shortest path problems simultaneously are shown in Figures
4.14 and 4.15. Figure 4.14 shows the speedup vs. number of processors for
eight simultaneous shortest path problems on graph R2.1O, a random graph of
degree 2 and 1024 vertices. This figure shows an almost linear speedup for small
N trailing off to an lo~N speedup as N, the number of processors, approaches
the size of the graph. This degradation is due to the uneven distribution of
load that results when only a few vertices of the graph are assigned to each
processing node. The maximum speedup of lo~ N is due to the log N cost of
communication in an N processor binary n-cube.

Figure 4.15 shows the speedup of the multiple path algorithm vs. the number
of simultaneous problems for a fixed computer of dimension 10, 1024 nodes. For
a small number of problems the speedup is limited by the number of problems
available to run. As more problems are added the speedup increases to a point
where it is limited by the number of processors available. Beyond this point
the speedup remains at a constant level. In this experiment the processors
become the limiting factor beyond 10 problems. Running a sufficient number
of shortest path problems simultaneously gives a speedup that is independent of
the diameter of the graph and is instead dependent on the number of available
processors and the distribution of work to those processors.

The experiments shown in Figures 4.14 and 4.15 were run using Chandy and
Misra's algorithm. Even greater performance gains are expected for the SSP al­
gorithm since the multiple problems could share the significant synchronization
overhead of this algorithm.

4.2.3 All Points Shortest Path

The all points shortest path problem is the extreme case of the multiple shortest
path problem described above, where every vertex in the graph is a source

Chapter 4: Graph Algorithms 91

500

100
S 50 p
e
e
d
u 10
p

5

1

a 2 4 6 8 10

Log(N)

Figure 4.14: Speedup for 8 Simultaneous Problems on R2.1O

92 A VLSI Architecture for Concurrent Data Structures

140

120

5 100
p
e
e 80
d
u
P 60

40

20
0 5 10 15 20

Number of Problems

Figure 4.15: Speedup vs. Number of Problems for R2.10, n=10

Chapter 4: Graph Algorithms

floyd

I i j k I
vertices do: [:vi I

vertices do: [:vj I
vi distTo: vj put: length of edge from i to J1]

vertices do: [:vk I
vertices do: [:vi I

vertices do: [:vj I
vi distTo: vj put: (vi distTo: vj) min: «vi distTo: vk) + (vk distTo: vj)lll

Figure 4.16: Floyd's Algorithm

93

vertex. An efficient sequential algorithm for solving this problem is given by
Floyd [43] based on a transitive closure algorithm by Warshall [136]. This
algorithm, shown in Figure 4.16, finds the shortest path between any pair of
vertices, vi and vj, by incremental construction. The algorithm begins, k=O,
with vi dist at: vj containing the length of the edge (if any) from vi to vj.
That is, the shortest path from vi to vj containing no other vertices. On the
first iteration, the algorithm considers paths from vi to vj that pass through
the first vertex vk. On the m'h iteration, the shortest path passing through
vertices numbered less than or equal to m is found. Thus, when the algorithm
completes, vi distTo: vj contains the length of the shortest path from vi to vj.
This algorithm has time complexity O(1V13) and space complexity O(1V12).

A concurrent version of this algorithm is given in [59]. This algorithm uses 1V12
processors, one for each pair of vertices, to execute the inner two loops above in
a single step. O(IVI) steps are required to perform the path computation. This
approach is similar to one described by Levitt and Kautz for cellular automata
[84]. Although it gives linear speedup, this algorithm is impractical for all
but the smallest graphs because it requires lVI' processors. Since graphs of
interest in computer-aided design problems often contain 105 to 106 vertices,
practical algorithms must require a number of processors that grows no faster
than linearly with the problem size.

Both the sequential and concurrent versions of Floyd's algorithm are very inef­
ficient for sparse graphs. Floyd's algorithm requires O(IVI") operations, while
IVI repetitions of Dijkstra's algorithm requires only O(IVI'log IVI) for graphs

94 A VLSI Architecture for Concurrent Data Structures

of constant degree. This is even better than the expected case performance
of Spira's O(IVI2 log2 JVI) algorithm [1211. Thus, for sparse graphs, it is much
more efficient to run multiple shortest path problems as described in Section
4.2.2 than it is to run Floyd's algorithm.

The space complexity of O(IVI') is a serious problem with the all points shortest
path problem. Note that this space requirement is inherent in the problem since
the solution is of size IVI'. Another advantage of running multiple shortest path
problems instead of the all points problem is that the problem can be run in
pieces and backed up to secondary storage.

4.3 The Max-Flow Problem

The problem of determining the maximum flow in a network subject to capac­
ity constraints, the max-flow problem, is a form of linear programming problem
that is often encountered in solving communication and transportation prob­
lems. These problems usually involve large networks and are very computation­
intensive.

Consider a directed graph G(V,E) with two distinguished vertices, the source,
s, and the sink, t. Each edge e E E has a capacity, c(e). A flow function
f: E --> R. assigns a real number f(e) to each edge e subject to the constraints:

1. The flow in each edge is positive and less than the edge capacity.

0::; f(e) ::; c(e), (4.2)

2. Except for sand t, the flow out of a vertex equals the flow into a vertex:
vertices conserve flow.

'VVEV\{s,t} , L f(e) L f(e), (4.3)
eEin{v) eEout(u)

where in(v) is the set of edges into vertex v, and out (v) is the set of edges
out of vertex v.

The network flow, F(G, f), is the sum of the flows out of s. It is easy to show
that F is also the sum of the flows into t, the sink3 •

3rt is assumed that there is no flow into the source or out of the sink.

Chapter 4: Graph Algorithms 95

F= L fee) = L fee) (4.4)
.Eont(_) .Ein(t)

The max-flow problem is to find a legal flow function, f, that maximizes the
network flow F.

The max-flow problem was first formulated and solved by Ford and Fulkerson
[45J. To understand their algorithm we first need the following definitions.

Definition 4.7 An edge e is useful(v,u) if either

1. e = (v, u) and fee) < c(e), or

2. e = (u, v) and fee) > o.

An edge that is useful(v, u) can be used to increase the flow between v and u
either by increasing the flow in the forward direction or decreasing the flow in
the reverse direction.

Definition 4.8 The available flow, ail over an edge ei = (sil d;) is

1. c(ei) - f(e;) in the forward direction from si to dj,

2. f(ei) in the backward direction from d; to si'

The available flow is the amount the flow can be increased over an edge in a
given direction without violating the capacity constraint.

Definition 4.9 An augmenting path is a sequence of edges e1 , ••• ,e" where

1. el is useful(s, vd,

2. e; is useful(vi_l, v;) 'Vi 3 1 < i < n,

3. e" is useful(v"_l,t).

96 A VLSI Architecture Eor Concurrent Data Structures

Thus, an augmenting path is a sequence of edges from s to t along which the
flow can be increased by increasing the flow on the forward edges and decreasing
the flow on the reverse edges.

The Ford and Fulkerson algorithm begins with any feasible flow and constructs
a maximal flow by adding flow along augmenting paths. An arbitrary search
algorithm is used to find each augmenting path. Flow in each edge of the path
is then increased by the minimum of the available flow for all edges in the
path. The original Ford and Fulkerson algorithm may require an unbounded
amount of time to solve certain pathological graphs. Edmonds and Karp [321
later discovered that restricting the search for augmenting paths to be breadth­
first makes the time complexity of the algorithm O(IEI 2 IVi). For dense graphs
where lEI = O(IVI2) this is quite bad, O(IVI5)j however, for sparse graphs
where lEI = O(IVI), Edmonds and Karps's algorithm requires only O(IVI3)
time. Only recently have better algorithms been discovered for sparse graphs.

Dinic introduced the use of layering to solve the max-flow problem [371. Dinie's
algorithm constructs a max-flow in phases. Each phase begins by constructing
an auxiliary layered graph that uses only useful edges in the original flow graph.

Definition 4.10 A layered graph is a graph where the vertex set, V, has been
partitioned into layers. Each vertex, v, is assigned to layer l(v) and edges are
restricted to connect adjacent layers: "Ie = (u, v), l(v) = l(u) + 1. The layer of a
vertex corresponds to the number of edges between the source and that vertex.
A layered graph is constructed from a general flow graph by breadth-first search .

• The source, 8, is assigned to layer l(8) = O.

• For each layer i from 1 to k, a vertex u is assigned to layer i if :3 an edge,
e, whieh is useful(v, u) for some vertex v in layer i - 1.

During each phase of Dinie's algorithm a maximal layered flow is found in the
layered graph using depth first search. The flows added to the layered graph are
added to the original flow-graph, and the next phase of the algorithm begins by
relayering the graph. The number of layers in the auxiliary graph is guaranteed
to increase by one each iteration and obviously can contain no more than IVI
layers, so the number of iterations is at most IVI - 1.

Definition 4.11 A maximal layered flow is a legal assignment of flows to edges
of a layered graph such that

Chapter 4: Graph Algorithms 97

s

b d

Figure 4.17: Example of Suboptimal Layered Flow

• Flows are augmented only in the forward direction. The flow over a
forward edge (from layer i to layer i + 1) can only be increased and the
flow over a reverse edge (from i + 1 to i) can only be decreased.

• All paths from the source to the sink are saturated.

Because of the layering constraint, a maximal layered flow is not necessarily a
maximal flow on the layered network and may not be the best achievable within
the constraints. For example, Figure 4.17 shows a layered graph where each
edge is labeled with its capacity and flow (capacity/flow). The one unit of flow
along path 8, a, d, t is a maximal layered flow even though a two-unit flow is
possible (paths 8, a, c, t and 8, b, d, t).

Finding a maximal layered flow is much easier than finding a max-flow in a gen­
eral graph because each edge has been assigned a direction. Dinic's algorithm
[37J constructs the layered max-flow using depth-first search which requires
O(IVI x lEI) time for each phase or O(1V12 IEI) total time. Algorithms due
to Karzanov [65J and Malhotra, Kumar, and Maheshwari (MKM) [86J also use
layering, but construct layered max-flows by pushing flow from vertex to vertex.
Karzanov's algorithm constructs preflows, pushing flow from the source, while
the simpler MKM algorithm identifies a flow limiting vertex, v, and then satu­
rates v _propagating flow towards both the source and sink from v. Both of these
algorithms require O(IVIS) time and Galil has shown that these bounds are tight
[48J. While considerably better for dense graphs, these layered algorithms offer
no improvement over Edmunds and Karp for sparse graphs.

Cherasky developed an O(IVI\/fEf) algorithm by further partitioning the lay­
ered graph into superlayers [47]. Karzanov's algorithm is applied between the

98 A VLSI Architecture [or Concurrent Data Structures

superlayers while Dinic's algorithm is used within each superlayer. Galil im­
proved Cherasky's superlayer to have complexity O(/VI!IEI~) by using a set
of data structures called forests to efficiently represent paths in the super layers
[46J.

Galil and Naamad have developed an O(WI x IEIlog2 WI) algorithm that uses
a form of path compression. The algorithm follows the general form of Dinic's
algorithm, but avoids rediscovering paths by storing path fragments in a 2-3
tree [471. The fastest known algorithm for the max-flow problem, due to Sleator
[1201, also stores path fragments in a tree structure. Sleator's algorithm uses
a novel data structure called a biased 2-9 tree on which join, split and splice
operations can be performed very efficiently to give an O(log IVI) improvement
over Galil and N aamad.

Despite the intensive research that has been performed on the max-flow prob­
lem, little work has been done on concurrent max-flow algorithms. This paucity
of concurrent algorithms may be due to the fact that all of the sequential al­
gorithms reviewed above are inherently sequential. They depend upon a strict
ordering of operations and cannot be made parallel in a straightforward manner.

Shiloach and Vishkin (SV) [118J have developed a concurrent max-flow algo­
rithm based on Karzanov's algorithm. Like Karzanov's algorithm, the SV al­
gorithm operates in stages constructing a maximal layered flow at each stage
by pushing preflows from the source to the sink. A novel data structure called
a partial-sum tree (PS-tree) is used to make the pushing and rejection of flow
efficient in dense graphs. The SV algorithm is based on a synchronized, shared­
memory model of computation wherein all processors have access to a common
memory and can even read and write the same location simultaneously. The al­
gorithm assumes that all processors are synchronized so that all active vertices
finish their flow propagation before any new active vertices begin processing.
The CVF algorithm, described below, is very similar to the SV algorithm but
is based on a message passing model of computation wherein shared memory
and global synchronization signals are not provided.

Marberg and Gafni have developed a message passing version of the SV algo­
rithm [87J; however, their algorithm is quite different from the CVF algorithm.
The CVF algorithm is _locally synchronized; vertices communicate only with
their neighbors. Each cycle of the algorithm requires only two channel traver­
sals for synchronization'. Marberg and Gafni, on the other hand, use global
synchronization. All vertices are embedded in a tree which is used to broad­
cast STARTPULSEmessages to all vertices to begin each cycle and to combine
ENDP ULSE messages to detect the completion of each cycle. The same tree is

• A round trip between neighboring vertices is performed each cycle.

Chapter 4: Graph Algorithms

maxFlow: g source: s sink: t

While an augmenting path exists from s to t

Construct a layered graph g' from graph g

Construct a maximal layered flow in g'

Figure 4.18: CAD and CVF Macro Algorithm

99

used to detect completion of each phase of the algorithm. With this approach
each cycle requires a minimum of 2log IVI channel traversals for synchroniza­
tion.

4.3.1 Constructing a Layered Graph

The remainder of this section describes two novel concurrent max-flow algo­
rithms:

• the concurrent augmenting digraph (CAD) algorithm,

• the concurrent vertex flow (CVF) algorithm.

Both algorithms are similar to Dinie's algorithm in that they iteratively par­
tition the flow-graph into layers and construct a maximal layered flow on the
partitioned network. This common macro algorithm is illustrated in Figure 4.18.
The algorithms differ in their approach to increasing flow in the layered net­
work. The CAD algorithm increases flow by finding augmenting paths, while
the CVF algorithm works by pushing flow between vertices.

Both the CAD and CVF algorithms construct a layered network using an al­
gorithm similar to Chandy and Misra's shortest path algorithm. As shown
in Figure 4.19, partitioning the vertices into layers is the same as finding the
shortest path when all edge lengths are one.

The algorithm shown in Figure 4.19 differs from the algorithm shown in Fig­
ure 4.5 in three ways:

100 A VLSI Architecture for Concurrent Data Structures

instance methods for class Flow Vertex

layer: aLayer over: anEdge

ack

II
(alayer < layer) ifTrue:[

(pred not Nil) ifTrue:[pred ackFrom: self].

layer <-layer,

pred <-an Edge,

forward Edges do:[:edge I
edge layer: (layer + 1) from: self,

nrMsgs <-nrMsgs + 1),

backward Edges do:[:edge I
edge layer: (layer + 1) from: self,

nrMsgs <-nrMsgs +1],

(nrMsgs = 0) ifTrue:[

pred ackFrom: self,

pred <-nilll

ifFalse:[anEdge ackFrom: self)'

II
nrMsgs <-nrMsgs - l.
(nrMsgs = 0) ifTrue:[

(pred notNil) ifTrue:[pred ackFrom: self],

pred <-nil].

instance methods for class Flow Edge

layer: aLayer from: aVertex

II
(aVertex = source) ifTrue:[

(flow < capacity) ifTrue:[dest layer: alayer over: self]

ifFalse:[aVertex ack]]

ifFalse:[

(flow> 0) ifTrue:[source layer: alayer over: self]

if False: [aVertex ackll.

ackFrom: aVertex

II
(self oppositeVertex: aVertex) ack

Figure 4.19: CAD and CVF Layering Algorithm

Chapter 4: Graph Algorithms 101

• Both forward and backward edges are used in constructing paths.

• Only edges that are useful in the proper direction are considered.

• All edge lengths are considered to be unity.

Restricting edge lengths to unity results in greatly improved worst case com­
plexity. With unit edge lengths there are at most IVI possible values for a
vertex's distance from the source. A vertex can change its value at most IVI
times resulting in O(IVI2) messages in the worst case. For unit edge lengths
the looser synchronization of Misra and Chandy's algorithm is preferable to the
tight synchronization of the SSP algorithm. Since the algorithm performs at
most O(IVI) layerings in the worst case, the contribution of layering to the total
number of messages required to solve the flow problem is O(JVI').

In addition to partitioning the vertices into layers, it is also necessary to parti­
tion the edges incident on each vertex, v in layer i into a set of edges to layer
i + 1, out Edges, a set of edges to layer i-I, inEdges, and all remaining edges.
Collections inEdges and outEdges will be used extensively in the following al­
gorithms. The partitioning of edges is straightforward and will not be shown
here.

4.3.2 The CAD Algorithm

The CAD algorithm constructs a maximal flow in each layered network by
finding augmenting paths. Multiple paths are explored concurrently and the
algorithm merges reconvergent paths into a digraph to improve performance.
To prevent several paths from claiming the same edge capacity, each path is
constructed in three phases: propagation, reservation and confirmation.

Propagation: All potential augmenting paths from B to t in the layered net­
work are found by constructing a path digraph rooted at B. Construction
of the path digraph begins by sending propagate messages from the source
over all useful edges to vertices in layer 1. A vertex in layer i waits until
it has received messages over all incoming useful edges from layer i-I.
It then sends propagate messages over all outgoing useful edges to layer
i + 1. The propagation process continues until vertex t is reached.

For each edge, e, the maximum flow that can reach that edge from the
source is recorded in instance variable reserve Flow. The capacity of the
edges used by the paths discovered during the propagation phase is not
locked, however, and several paths may use the same capacity. Conflicts
over edge capacity are resolved during the reservation phase.

102 A VLSI Architecture for Concurrent Data Structures

Reservation: Paths discovered during the propagation phase reserve edge
capacity by following links in the path digraph backwards from t to s.
When a propagate message reaches the sink, the reservation process is
initiated by the sink sending a reserve message back to the preceding
layer. A vertex in layer i waits until it receives reserve messages over all
outgoing edges and then parcels the reserve flow among incoming edges.
Since there may not be sufficient flow into the vertex from layer i + 1 to
satisfy all reservations, some edges may reduce the value of reserveFlow. It
is also possible that some vertices may have more incoming flow from layer
i + 1 than can be reserved on all incoming edges. In this case the excess
reservations in the higher layers will be reduced during the confirmation
phase.

Confirmation: Reservations are confirmed and possibly reduced during the
confirmation phase. When a reserve message reaches the source, confir­
mation is initiated by the source sending a confirm message back to layer
1. When a vertex in layer i has received confirm messages over all incom­
ing edges, it partitions the flow over the outgoing edges, possibly reducing
or completely canceling the reservation on some of these edges and prop­
agates confirm messages to layer i + 1. Because of the way reservations
are made during the reserve phase, the reservations made on incoming
edges are no greater than the reservations on outgoing edges. Thus, the
flow into a vertex during the confirm phase is guaranteed to be no greater
than the reserved flow on outgoing edges.

The propagate methods for both vertices and edges are shown in Figure 4.20.
When a non-sink vertex, v, receives a propagate message, it accumulates the
total flow that could possibly reach v in instance variable inFlow and counts
the number of propagate messages received in instance variable nrMsgs. When
messages have been received over all incoming edges·, a propagate message is
transmitted to each outgoing edge in collection out Edges. An edge receiving a
propagate message takes the minimum of the flow the vertex can deliver, a Flow,
and its own available flow and propagates the resulting outFlow to the next layer
of the graph. When a propagate message reaches the sink, the sink immediately
sends a reserve message back to the sender to initiate the reservation phase".

The code that propagates reservations back toward the source is shown in Fig­
ure 4.21. A vertex, v, waits to receive reserve messages from all of its outgoing

5Recall that inEdges,outEdges is a partition of edges constructed during layering and may be
different than the forwardEdges, backward Edges partition defined by the structure of the graph.

6The sink could test for termination at this point by checking if any flow can reach it;
however, for the sake of simplicity this test has been omitted.

Chapter 4: Graph Algorithms

instance methods for class Flow Vertex

propagate: aFlow over: an Edge

II

103

(isSink) if False: [internal vertex
inFlow +-inFlow + aFlow,

nrMsgs +-nrMsgs + 1.

(nrMsgs = (inEdges size» iffrue: propagate flow to next layer
outEdges do: [:edge I edge propagate: inFlow from: self].

inFlow +-0,

nrMsgs +-0]

(outEdges size = 0) iffrue:[dead end, reserve 0 flow
inEdges do: [:edge ledge reserve: 0 from: self]]

iffrue: [an Edge reserve: aFlow from: self]. sink reflects messages

instance methods for class Flow Edge

propagate: aFlow from: aVertex

I outFlow I
(aVertex = source) iffrue:[outFlow = aFlow min: (capacity - flow)]

ifFalse:[outFlow = aFlow min: flow].

(self oppositeVertex: aVertex) propagate: outFlow over: self.

reserveFlow +-outFlow.

Figure 4.20: Propagate Methods

forward edge
backward edge

104 A VLSI Architecture for Concurrent Data Structures

instance methods for class Flow Vertex

reserve: aFlow over: anEdge

I outFlow I
(isSource) if False: [

inFlow +-inFlow + aFlow,

nrMsgs +-nrMsgs + 1.

(nrMsgs = (outEdges size)) ifTrue:

inEdges do: [:edge I
outFlow +-inFlow min: edge reserveFlow.

edge reserve: outFlow from: self,

inFlow +-inFlow - outFlow].

inFlow +-0,

nrMsgs +-0]]

ifTrue: [anEdge confirm: aFlow from: self].

instance methods for class Flow Edge

reserve: aFlow from: aVertex

II
reserve Flow +-aFlow.

(self oppositeVertex: _Vertex) reserve: _Flow over: self.

Figure 4.21: Reserve Methods

internal vertex

source reflects messages

Chapter 4: Graph Algorithms 105

edges, summing the reserved flow in instance variable inFlow. When v has
received messages from all outgoing edges the value of inFlow represents the
flow reserved between v and the sink, t. Vertex v divides this flow among
its incoming vertices sending each of them a reserve message to propagate the
reservations back to the next layer. A reserve message received by the source is
reflected back to the sender to initiate the confirmation phase.

The details of the confirmation phase are shown in Figure 4.22. As in the
propagate stage, a vertex, v, waits for messages on all incoming edges before
sending messages over all outgoing edges. When v receives the confirm message
from the last incoming edge, instance variable inFlow represents the amount
of flow that has been added to paths from the source, 8, to v. Vertex v uses
this flow to confirm reservations on outgoing edges until it is used up. If the
incoming flow is not sufficient to satisfy all outgoing reservations, one outgoing
edge may only have part of its reservation confirmed (aFlow < reserve Flow)
and some edges may have their reservation completely canceled (aFlow = 0).
An edge receiving a confirm message increments or decrements its flow by the
specified amount depending on whether it is a forward or backward edge.

When all confirm messages reach the sink, t, an iteration is complete and t replies
with the added flow to the macro-level algorithm. If the added flow is zero,
a maximal layered flow has been constructed and the macro-level algorithm
proceeds to re-layer the network for the next solution phase. Otherwise, another
iteration of path finding is initiated by sending a propagate message to the
source.

Lemma 4.1 Each iteration of the CAD algorithm saturates at least one vertex,
v, leaving no useful flow into v.

Proof: There are two cases:

1. No vertex reduces the reservation by having inFlow> 0 after sending all
of its reserve messages: all flow propagated into the sink is confirmed.
Proof by induction on the number of layers, l.

• For l = 1, since the flow propagated into the sink comes directly from
the source, confirming this flow saturates all edges into the sink and
thus saturates the sink vertex.

• Consider a network of llayers. The flow propagated along each edge
is the minimum of the available flow on the edge and the maximum
flow that can reach the preceding vertex. Thus, for each edge into

106 A VLSI Architecture for Concurrent Data Structures

instance methods for class Flow Vertex

confirm: aFlow over: an Edge

I outFlow I
.(isSink) if False: [

inFlow <-inFlow + aFlow,

nrMsgs <-nrMsgs + l.
(nrMsgs = (inEdges size)) iffru.:

out Edges do: [:edge I
outFlow <---inFlow min: edge reserve Flow.

edge confirm: outFlow from: self,

inFlow <-inFlow - outFlow].

nrMsgs <---a]]

iffrue: [

inFlow +-inFlow + aFlow,

nrMsgs <---nrMsgs + l.
(nrMsgs = (in Edges size)) iffrue: [requester reply: inFlow]].

instance methods for class Flow Edge

confirm: aFlow from: aVertex

II
reserveFlow +-0.

(aVertex = source) ifTrue:[flow <---flow + aFlow]

ifFalse:[flow +-flow - aFlow]'

(self oppositeVertex: aVertex) confirm: aFlowover: self].

Figure 4.22: Confirm Methods

internal vertex

sink

forward edge
back edge

Chapter 4: Graph Algorithms 107

•

the sink, either that edge is saturated, or all flow propagated to the
preceding vertex will be confirmed. If all edges into the sink are
saturated, then the sink is saturated. If some edge e = (v,t) into
the sink is not saturated, then all flow propagated into vertex v is
confirmed. This situation is analogous to vertex v being the sink
vertex of a l - 1 layer network. Thus by induction, some vertex will
be saturated.

2. If some vertex v reduces the reservation, then :J a vertex'll, :3 'II, reduces
the reservation and no vertex in a layer lower than l(u) reduces the reser­
vation. Thus, all flow propagated into'll, is confirmed. Consider'll, as the
sink of a graph of depth l(u)j then by the result of case (1) above, some
vertex in this subgraph is saturated .

Theorem 4.2 The CAD algorithm requires O(1V12IEI) messages.

Proof: The CAD algorithm sends exactly 3 X lEI messages during each iteration
of the three phases. By Lemma 4.1 each iteration saturates at least one vertex,
so there can be at most IVI iterations per layering. Since at most IVI - 1
layerings are constructed, the total number of messages sent is at most

3 x lEI x IVI x (1V1-1) = O(1V1 2 IEI). (4.5)

•
4.3.3 The CVF Algorithm

Like the CAD algorithm, the CVF algorithm works by iteratively partitioning
the graph into layers and then constructing a maximal layered flow for each
partition. Rather than using augmenting paths to construct a maximal layered
flow, however, the CVF algorithm works by pushing flow from the source vertex
to the sink vertex.

The concept of a preftow ([65] p.53) is helpful in understanding this algorithm.

Definition 4.12 A preftow, f : E -> R, is an assignment of flow to the edges
of the graph so that Equation (4.2) is satisfied, but Equation (4.3) is reduced
to an inequality: the flow into a vertex may exceed the flow out of a vertex.

108 A VLSI Architecture [or Concurrent Data Structures

Vv E V - {s,t}, L !(e):$ L !(e). (4.6)
eEin(u) cEon.(o)

The CVF algorithm constructs a preftow by pushing flow requests from source
to sink. The preftow is converted into a maximal layered flow by rejecting excess
flow requests. If a vertex, v, in layer i cannot push all requested flow on to layer
i + 1, it rejects the remaining flow sending it back to layer i - 1. The vertex,
'IL, receiving the rejected flow may send a request to another vertex in layer i,
or it may reject the flow itself passing the problem back to layer i - 2.

This approach to constructing a maximal layered flow is not unique. The CVF
algorithm is a concurrent version of Karzanov's algorithm [65]. It is almost
identical to the SV algorithm [118]. There are three major differences between
the CVF algorithm and the SV algorithm.

1. The SV algorithm depends on a synchronized model of computation where
all vertices operate in lockstep. The CVF algorithm, on the other hand,
is based on an asynchronous message-passing model of computation. Ver­
tices operate autonomously and all synchronization is explicitly performed
using message passing.

2. The SV algorithm uses PS-trees to combine communications from several
edges. The CVF algorithm is intended for sparse graphs where vertex
degree is small and such a structure is not needed.

3. The SV algorithm does not detect termination. All vertices become idle
when a maximal layered flow has been constructed, but there is no mech­
anism to detect this condition. The CVF algorithm explicitly detects
termination by propagating acknowledgements.

An iteration of the CVF algorithm is started by having the source vertex send
request messages over all of its outgoing edges. The code for the request method
is shown in Figure 4.23. When a vertex, v, in layer i has received a request
message for a non-zero amount of flow, it records the flow quantum requested
on a LIFO stack and accumulates the flow in instance variable inFlow. When
request messages have been received over all incoming edges, instance variable
inFlow represents the total unbalanced flow into the vertex. Method sendMes­
sages balances this flow by either pushing it to layer i + 1 or rejecting it back
to layer i - 1. After its first activation, vertex v waits for messages over all in­
coming edges and all outgoing edges, accumulating both flow pushed from layer
i-I and flow rejected from layer i + 1 before calling method send Messages to
balance the flow.

Chapter 4: Graph Algorithms

instance methods for class Flow Vertex

request: aFlow over: anEdge

II
(isSink) ifFalse: [

inFlow +-inFlow + aFlow.

109

(inFlow> 0) ifTrue:[stack push: aFlow<oanEdge]

internal vertex
accumulate flow

record flow quanta on stack
nrRequests +-nrRequests + l.
«nrRequests = in Edges size) and:

«state = #inactive) or: (nrRejects = outEdges size))) ifTrue: [

self sendMessageslJ distribute accumulated flow
ifTrue: [anEdge ackFlow: self]. sink acknowledges immediately

instance methods for class Flow Edge

request: aFlow from: aVertex

II
(aVertex = source) ifTrue:[flow +-flow + aFlow]

ifFalse:[flow +-flow - aFlow].

forward edge
backward edge

(a Flow = self avail Flow: aVertex) ifTrue:[state +-#saturatedJ.

(self oppositeVertex: aVertex) request: aFlowover: self.

rejectable Flow +-rejectableFlow + aFlow.

avail Flow: aVertex

II
(state = #active) ifTrue:[jO].

(aVertex = source) ifTrue:[icapacity - flow]

if False: [iflowJ

no more flow on saturated edge
forward edge

backward edge.

Figure 4.23: request Methods for CVF Algorithm

110 A VLSI Architecture for Concurrent Data Structures

instance methods for class Flow Vertex

send Messages
I outFlow quantum I
(inFlow> 0) iffrue:[nrAcks <--0).

out Edges do: [:edge I
outFlow <--inFlow min: edge availFlow: self.

edge request: outFlow from: self,

inFlow <--inFlow - outFlow).

«inFlow == 0) and: (nrAcks == out Edges size» iffrue:[

reactivate unbalanced vertex
request flow from next layer

inEdges do: [:edge I send acknowledges to previous layer
edge ackFlow: self))

ifFalse[

(inFlow> 0) iffrue: [

state <--#saturated,

[(inFlow> 0) and: (stack notEmpty») whileTrue: [reject flow to previous layer
quantum <--stack pop.

outFlow <--inFlow min: quantum x.

quantum y reject: outFlow from: self,

inFlow <--inFlow - outFlow,

(quantum x > outFlow) iffrue:[

stack push: quantum y<ll(quantum x - outFlow»))).

in Edges do: [:edge I edge sync: self), sync up previous layer
(state = #saturated) iffrue:[state <--#active)). become active

inFlow <--0, reset flow rejected to source
nrRequests <--0,

nrRejects <--0.

reset message counts

Figure 4.24: sendMessages Method for CVF Algorithm

Chapter 4: Graph Algorithms 111

Method send Messages shown in Figure 4.24 balances the flow at a vertex, v, and
synchronizes v with its neighbors. To balance the flow at vertex v the method
first tries to push the excess flow to layer i + 1 by sending request messages over
output edges. These request messages propagate the preflow to the next layer
of the graph. If flow remains after all requests have been sent, the remaining
flow is rejected back to layer i-I by sending reject messages over incoming
edges. Flow is rejected in LIFO order by rejecting flow quanta popped off the
stack until the excess flow has been rejected. Once the flow has been rejected,
sync messages are sent to all back edges to push the rejected flow back to layer
i-I and to synchronize the algorithm. Request messages are always sent to
all outgoing edges and sync or ack messages to all incoming edges to keep the
algorithm synchronized. Many of these messages carry zero flow.

Method send Messages also performs completion detection by propagating ac­
knowledgements. Sink vertices acknowledge all flow pushed into them by send­
ing an ackFlow message back to the sending edge. When a non-sink vertex, v,
receives acknowledgement from all of its neighbors in layer i + 1 and receives
no additional flow requests, it sends acknowledgments to all of its neighbors in
layer i - 1. These acknowledgements, however, can be canceled by sending a
non-zero flow request to v. When the source receives acknowledgements from
all of its neighbors, completion is detected and the algorithm terminates.

Figure 4.25 shows the details of rejection. When an edge, e, receives a reject
message, it adjusts its flow accordingly and changes its state to either #satu­
rated (no more flow can be requested across e) or #done (no more flow can be
requested or rejected across e). Flow rejections are accumulated until e receives
a sync message. The sync message causes e to propagate the rejected flow back
to the vertex at its opposite end. Vertices handle flow rejections exactly the
same as flow requests: flow is accumulated until all requests and rejections are
in, and then the vertex is balanced by calling send Messages.

Both vertices and edges have a state encoded in instance variable state. Edge
states progress from #active to # saturated, and finally to #done.

#active: All edges begin each CVF iteration in the #active state. Flow can
be requested only across active edges.

#saturated: When the maximum possible flow has been requested across an
#active edge, or when any flow is rejected across an edge, the edge be­
comes #saturated. No further flow can be requested across a #saturated
edge.

112 A VLSI Architecture for Concurrent Data Structures

instance methods for class Flow Vertex

reject: aFlowover: anEdge

I outFlow I
inFlow +-inFlow + _Flow.

nrRejects +-nrRejects + 1.

accumulate flow

«nrRejects = outEdges size) and: (nrRequests = in Edges size)) ifTrue: [

self sendMessagesJ]. distribute excess flow

ackFlow: anEdge

II
nrAcks +-nrAcks + 1.

self reject: 0 over: anEdge.

instance methods for class Flow Edge

reject: aFlow from: aVertex

II
(_Vertex = source) ifTrue:[f1ow +-flow + _Flow]

ifFalse:[flow +-flow - aFlow].

rejectable Flow +-rejectableFlow - aFlow.

rejected Flow +-rejected Flow + aFlow

(aFlow > 0) ifTrue:[

(rejectable Flow = 0) ifTrue:[state +-#done]

if False: [state +-#saturated]].

sync: aVertex

II
rejectable Flow +-rejectableFlow - rejected Flow.

(self oppositeVertex: _Vertex) reject: rejected Flow over: self.

rejected Flow +-0.

ackFlow: aVertex

II
(state = #saturated) ifTrue:[state +-#done].

(self oppositeVertex: aVertex) ackFlow: self.

count acks

forward edge
backward edge

no more flow to reject
no more requests

Figure 4.25: reject and ackFlow Methods for CVF Algorithm

Chapter 4: Graph Algorithms 113

#done: When all requested flow is rejected across an edge, or the flow in a
#saturated edge is acknowledged, the edge becomes #done. The flow in
a #done edge cannot be changed.

Vertex states progress from #inactive to #active to #saturated:

#inactive: To initiate synchronization, all vertices begin in the #inactive state.
Inactive vertices wait only for messages on their incoming edges before
calling send Messages to balance their flow. After their first balancing
operation, all vertices become #active or #saturated.

#active: As with edges, a vertex remains #active until it rejects flow.

#saturated: Once a vertex rejects flow, it becomes #saturated and will no
longer accept flow requests.

Lemma 4.2 Each iteration of the CVF algorithm constructs a maximal layered
flow.

Proof:

•

• The flow is legal since acknowledges are only propagated back from the
sink to the source when all vertices are balanced.

• Suppose the flow was not maximal; then there exists an augmenting path,
P, in the layered network. Let Vi be the vertex of P in the ith layer of
the graph. The source requests all possible flow from VI, so some vertex
on P must have rejected some of this flow. Let Vi = t be the vertex of P
furthest from the source that rejected the flow. Each vertex Vi requests all
possible flow from all of its neighbors in layer i + 1 including Vi+1 before
rejecting any flow to Vi-I. Since Vi rejected the flow and vi+l didn't, all
edges out of Vi including the edge (Vii vi+.) must be saturated. Then we
have a contradiction since P includes (Vii Vj+ I), but an augmenting path
cannot contain a saturated edge .

The CVF algorithm is synchronized by having each vertex, v, in layer i wait
for messages from all of its neighbors in layers i ± 1 before sending messages to
layers i ± 1. This synchronization, illustrated in the Petri Net of Figure 4.26,
causes operation of the layers to alternate: even layers send messages to odd

114 A VLSI Architecture for Concurrent Data Structures

•••

•••
layer 0 layer 1 layer 2 layer 1-1 layer I

Figure 4.26: Petri Net of CVF Synchronization

layers and then odd layers send messages to even layers. Since the layers are
not completely connected, this alternation is somewhat loose; however, the
Petri Net assures us that each vertex will execute the same number of message
sending cycles.

Lemma 4.3 Each iteration of the CVF algorithm requires at most O(1V1)
cycles and thus O(1V12) messages.

Proof: Flow pushed from the source is either acknowledged or rejected. Ac­
knowledged flow takes O(IVI) cycles to reach the sink from its last point of
rejection. Rejected flow performs a depth-first search (DFS) of the layered
graph before it is either rejected back to the source or is acknowledged by the
sink. Flow first pushes forward (depth-first); then, if it is rejected, it follows
the same path backward, since requests are rejected in a LIFO manner. Each
time flow backtracks over a node, that node is saturated and will not be visited
again. In the worst case a single flow quantum traverses the entire layered graph
taking O(1V1) cycles. Since every vertex sends messages every cycle, O(1V12)
messages are required. If several flow quanta are being rejected simultaneously,
the traversal takes less time. •

To see that this bound is tight, consider the graph of Figure 4.27, a binary
tree where all internal edges have capacity 100 and all leaves are connected to
the sink with capacity 1. The CVF algorithm will perform DFS on this graph
taking 21V1 cycles to construct a maximal layered flow. In contrast, the CAD
algorithm will find a maximal layered flow for this graph in O(log IVI) cycles.

The graph of Figure 4.27 illustrates the major difference between the CAD and
CVF algorithms. In the CAD algorithm all potential paths from source to sink

Chapter 4: Graph Algorithms 115

s

Figure 4.27: Pathological Graph for CVF Algorithm

are discovered simultaneously without considering possible conflicts. The CVF
algorithm, on the other hand, never generates any conflicts. It explores only
those paths that have guaranteed available capacity on their initial segments.
This conservative approach to augmenting flow can result in sequential execu­
tion for graphs like the one shown in Figure 4.27 that bottleneck near their
sink.

Theorem 4.3 The CVF algorithm requires at most O(1V13) messages.

Proof: The contribution of layering is O(IVIS). By Lemma 4.2 a maximal
layered flow is constructed by each iteration of the CVF algorithm. Since at
most IVI- 1 layerings are produced, at most O(IVI) iterations are performed.
By Lemma 4.3 each iteration takes O(1V12) time. Thus, the algorithm requires
O(IVIS) time .•

4.3.4 Distributed Vertices

In both the CAD and CVF algorithms, the source and the sink are bottlenecks
that serialize the algorithm. At most one path can be processed by the source

116 A VLSI Architecture for Concurrent Data Structures

s t

Figure 4.28: A Bipartite Flow Graph

or sink per unit time and each path must pass through both the source and sink
twice. The problem is especially acute in the case of a flow-graph for solving
a bipartite matching problem where the fanout of the source and fan-in of the
sink are ~ - 1 as shown in Figure 4.28.

The source and sink bottlenecks can be removed by distributing these vertices.
The only operations performed at the source and sink are keeping message
counts and reflecting messages back across edges. Messages to or from the
source or sink on a particular edge affect no other edges. Thus, we can split
the source and sink into multiple vertices: one for each edge incident on the
original source or sink as shown in Figure 4.29. The individual source and sink
vertices act independently, reflecting messages and keeping message counts.
When all source vertices have been acknowledged (in the CVF algorithm) or
have received confirm messages (in the CAD algorithm), completion is detected
and the algorithm terminates.

4.3.5 Experimental Results

The CAD and CVF algorithms have been run on a concurrent computer simu­
lator to measure their performance experimentally. Dinic's sequential max-flow
algorithm was also tested to give a performance baseline for comparisons. Ran­
domly generated bipartite graphs with uniformly distributed edge capacities
were used as test cases for the max-flow algorithms. The tests were run on
a simulated binary 1Ircube interconnection network where one unit of time is

Chapter 4: Graph Algorithms 117

ss .. ----------~~--------~~~--------~ .. ts

s2 .. --------~~~ -.t-----------~t2

so .. ----------~~--------~~~--------~II~

Figure 4.29: Distributed Source and Sink Vertices

1
e6

o 100000 o CAD Algorithm

p
e

o CVF Algorithm

10000
a 6. Dinic'. Algorithm

t
i 1000
0
n
5

100

10
1 5 10 50 500 5000

Number of Vertices

Figure 4.30: Number of Operations vs. Graph Size for Max-Flow Algorithms

118 A VLSI Architecture for Concurrent Data Structures

charged for each channel traversed by a message. This implies that a random
message requires on the average n = log N units of time to reach its destination.
The results of these experiments are shown in Figures 4.30, 4.31 and 4.32.

The number of messages required by each of the algorithms as a function of
graph size is shown in Figure 4.30. For purposes of comparison, Dinie's algo­
rithm was charged one message for each edge traversed. While the worst-case
complexity of these three algorithms is O(IVI3), all three give linear performance
on the test cases. The CAD algorithm (squares) requires the fewest messages,
~ 9IVI, followed by the CVF algorithm (diamonds) with ~ lllVl, and, finally,
Dinic's sequential algorithm (triangles) required ~ 30IVI edge traversals to con­
struct a max-flow. This figure shows that the CAD and CVF algorithms are,
in fact, good sequential algorithms. The overhead of synchronization does not
greatly increase the number of messages required when compared to a strictly
sequential algorithm. The CAD algorithm requires fewer messages than the
CVF algorithm because it propagates wavefronts of activity across the graph.
Only the vertices on the wavefront are active at a given time. In contrast,
the CVF algorithm is tightly synchronized with all vertices actively sending
messages all the time.

The speedup of the two concurrent algorithms relative to the sequential algo­
rithm is shown in Figure 4.31 as a function of the number of processors for a
4096 vertex graph. Both the CAD algorithm (squares) and the CVF algorithm
(diamonds) show nearly linear speedup until they saturate at 128 processors
with speedups of close to 200. The speedup is greater than the number of
processors because the CAD and CVF algorithms are better than Dinie's al­
gorithm even for a single processor. The speedup of the CAD algorithm varies
from 2.5 on a single processor to 204 on 256 processors, a relative speedup of
81.6. The speedup of the CVF algorithm varies from 1.7 on a single proces­
sor to 202 on 1024 processors for a relative speedup of 119. As expected the
CAD algorithm performs slightly better for small numbers of processors with
the CVF algorithm catching up for large numbers of processors.

Figure 4.32 shows the speedup of the CAD (squares) and CVF (diamonds)
algorithms as a function of graph size. Each test was run with lfl processing
nodes. For the CAD algorithm, speedup varies from 0.9 for a 4 vertex graph
to 196 for a 4096 vertex graph. CVF speedups were nearly the same, varying
from 0.7 for a 4 vertex graph to 202 for a 4096 vertex graph. The speedup
grows slower than linearly, almost logarithmically, as the number of vertices is
increased from 4 to 128 and then just about linearly from 128 to 4096 vertices.
This irregularity in the speedup curve may be due to the fact that only one
graph of each size was tested.

Chapter 4: Graph Algorithms 119

500

100
S SO P
e
e 0 CAD Algorithm
d
u 10 p

5 0 CVF Algorithm

1 5 10 SO 100 500 5000

Number of Processors

Figure 4.31: Speedup of CAD and CVF Algorithms vs. No. of Processors

120

500

100

5 50
p
e
e
d 10
u
P 5

1

1

A VLSI Architecture for Concurrent Data Structures

o CAD Algorithm

o CVF Algorithm

5 10 50 100 500 5000

Number of Vertices

Figure 4.32: Speedup of CAD and CVF Algorithms vs. Graph Size

Chapter 4: Graph Algorithms 121

4.4 Graph Partitioning

The graph partitioning problem involves partitioning the vertices of a graph
into two sets in a manner that minimizes the sum of the weights of edges
incident on both sets. This problem has important applications in computer
aided design where graphs representing the interconnection of logic circuits are
partitioned onto several physical packages [107]. Graph partitioning is also
used in process placement on multiprocessors where a possibly dynamic graph
representing the interconnection of logical processes is partitioned over a set of
physical processors [122].

Unfortunately this important problem is NP-Complete [49]. In practice, how­
ever, polynomial time heuristics based on iterative improvement methods are
used with good results [69],[40].

In the Kernighan and Lin algorithm [69], an initial partition is improved by ex­
changing pairs of vertices between the two sets. At each step, the pair that re­
sults in the greatest reduction in the weight of the cutset is chosen for exchange.
The limiting step of the algorithm is computing the weight reduction associated
with each pair and sorting the pairs according to this number. Based on this
step, the time complexity of the algorithm is estimated to be O(1V12 10g IVI).
Fidducia and Mattheyses [40] improve upon this algorithm to give a linear-time
heuristic. Their most important modification is to consider single vertex moves
rather than pairwise exchanges. They also use a bucket list to sort the vertices
so vertices can be added or deleted from the list in constant time.

A novel approach to the graph partitioning problem using linear programming
has been developed by Barnes [6]. This approach converts the partitioning prob­
lem into a matrix approximation problem. The matrix approximation problem
is then solved using linear programming. This method is good for finding an
approximate solution near a local minimum for the problem. Barnes then uses
an iterative improvement algorithm similar to that of Kernighan and Lin to
fine-tune this approximate solution.

The partitioning problem can also be approximately solved using simulated an­
nealing [71]. Simulated annealing, as applied to graph partitioning, involves
randomly selecting a move to alter the partition, and then accepting this move
with a probability dependent on its gain and the current annealing tempera­
ture. At high temperatures most moves are accepted regardless of gain. As
the graph cools, the algorithm becomes more selective, accepting fewer nega­
tive gain moves. At zero temperature only positive gain moves are accepted.
This technique generally achieves better solutions than the straight iterative

122 A VLSI Architecture for Concurrent Data Structures

improvement algorithms, because by occasionally accepting bad moves it is ca­
pable of avoiding local minima. Simulated annealing requires considerably more
computing time than the other methods.

Consider an undirected graph G = (V, E) where edges (VI' 'V:l) = e E E are
assigned weight w(e). The vertices are partitioned into two disjoint sets A and
B.

Definition 4.13 The cut defined by A and B is the set of edges C(A, B) =
{(a, b) I a E A, b E B}. The sum of the weights of edges in the cut is the weight
of the cut

W(A,B) = L w(e). (4.7)
eeG(A,B)

Definition 4.14 The imbalance of a partition A, B is

J(A, B) = IIAI - IBII· (4.8)

The object of a graph partitioning algorithm is to find a partition of V into
A, B, subject to a balance constraint J(A, B) < Cb so as to minimize the weight
of the cut, W(A, B).

The remainder of this section describes a novel concurrent heuristic graph par­
titioning algorithm. Like the sequential algorithms described in [69] and [40],
it is an iterative improvement algorithm. Starting from an initial partition,
vertices are moved from one set to the other to improve the partition. The
algorithm is concurrent in that it moves many vertices simultaneously while
sequential algorithms move only one or two vertices at a time.

4.4.1 Why Concurrency is Hard

Concurrency introduces two major problems: thrashing and balancing. There
are cases where making several simultaneous moves increases the weight of the
cut even though each move taken individually would reduce the weight of the
cut. The simplest example of this thrashing problem is shown in Figure 4.33.
Vertices a E A and b E B are connected with weight Wh to each other, and
with weight ~ to another element of the same set where Wh >~. Individually,
moving a to set B or b to set A would decrease the weight of the cut by % -~,

Chapter 4: Graph Algorithms 123

A B

before

b

after

Figure 4.33: Thrashing

but moving both a and b at the same time increases the weight of the cut by
2w,.

A balance constraint must be imposed on the partitioning to prevent the algo­
rithm from reducing W(A, B) to zero by moving all of the vertices into one set.
We require that II(A, B)I < Cb for some constant Cb • In a sequential algorithm
it is quite easy to keep a running count of the size of each set. Moves are checked
in sequence against the count, and only moves that keep the counts within the
balance constraint are allowed. In the concurrent algorithm, this sequential
checking of moves against a count is not possible, and another mechanism is
required to enforce balance.

The remainder of this section develops a concurrent algorithm that meets the
challenges described above. It uses a method of inhibiting gain to prevent
thrashing and uses a matching tree to impose balance.

4.4.2 Gain

An iterative improvement algorithm searches a state space by applying simple
transition moves to an initial state. In the case of graph partitioning, the state

124 A VLSI Architecture for Concurrent Data Structures

space is the space of all possible partitions. Each transition move is the transfer
of a vertex from one set to the other. My algorithm is greedy in the sense that
it moves all those vertices that are guaranteed to give the largest immediate
gain in the objective function -W(A,.8).

Definition 4.15 The gain of a vertex g(v) is the amount by which W(A, B)
is decreased by moving v from one set to another. If we define int(v) to be the
set of edges connecting v to vertices in the same set and ext(v) to be the set of
edges connecting to elements if the other set, then

g(v) = L: w(e) - L: w(e). (4.9)
<e •• ,(_) <ein'(.)

During the first phase of the algorithm, all of the vertices compute their gain
as follows.

1. All vertices transmit their set and the weight of the connecting edge to
all neighboring vertices.

2. As vertices receive messages from their neighbors, they compute their gain
as the sum of the weights received from vertices in the opposite set less
the sum of the weights received from vertices in the same set.

4.4.3 Coordinating Simultaneous Moves

Because of the thrashing problem, if vertices were moved on the basis of gain
alone, moves could potentially increase W(A,.8) as shown in Figure 4.34. The
vertices adjacent to vertex a can be divided into four sets:

• A"., vertices in set A with positive gain,

• A., vertices in set A with negative or zero gain,

• Bm , vertices in set B with positive gain,

• B., vertices in set B with negative or zero gain.

Chapter 4: Graph Algorithms 125

A B

Am Bm

before

A. a B.

Bm

after

A. a B.

Figure 4.34: Simultaneous Move That Increases Cut

The gain of a before moving any vertices is

g(a) = (w(Bm) + w(B.)) - (w(A".) + w(A.)). (4.10)

Where w(S) denotes the weight of all edges connecting a to set S. If all vertices
with positive gain including a are moved simultaneously, the new gain of a
(pushing a back into set A) becomes

g(a) = (w(Bm) + w(A.)) - (w(A".) + w(B.)). (4.11)

If w(A.) > w(B.) moving a increases the value of the cut, W(A, B).

To solve this problem of simultaneously moving vertices, we inhibit vertices
from moving if they are adjacent to vertices of larger gain in the opposite set.
Thus, any vertex, a E A, that moves knows that all of its neighbors in set B will
remain stationary. The set Bm is empty and the gain, g(a), is guaranteed. If
some neighbor of a, a: E A moves with a to set B, the actual gain will be larger
than g(a). To prevent ties, two vertices a and b with equal gains g(a) = g(b)

126 A VLSI Architecture for Concurrent Data Structures

compare their vertex IDs. The vertex with the larger ID inhibits the other
vertex.

Inhibiting nodes from moving based on gain has the disadvantage of reducing
the concurrency of the partitioning algorithm. To calculate the degradation in
concurrency, assume that all vertices have degree d, and that positive gains are
uniformly distributed over some range (0, n]. Then the probability of a vertex
with gain g moving is Pu = (!)d. Thus, the fraction of nodes with positive gain
that can be expected to move is given by

n 1
1m = 'L-P,.

k=l n

_ 1 n (k)d --'L -
n k=l n

::; ~!.n (~) d dk
n k=O n

(4.12)

= d!,·

Even with gain inhibition, vertices must be locked after they are moved to avoid
thrashing. This is even true of sequential algorithms. To implement locking, the
algorithm is performed in phases. At the beginning of each phase, all vertices
are unlocked. Whenever a vertex is moved it is locked and cannot be moved
again until the next phase. Phases are repeated until there are no vertices with
positive gain.

Using locking and gain inhibition to prevent thrashing, the algorithm becomes

1. Set all vertices unlocked.

2. While there is some unlocked positive gain vertex,

(a) All vertices transmit their set and the weight of the connecting edge
to all neighboring vertices.

(b) As vertices receive messages from their neighbors, they compute their
gain as the sum of the weights received from vertices in the opposite
set less the sum of the weights received from vertices in the same set.

Chapter 4: Graph Algorithms 127

(c) Unlocked vertices transmit their gain to all their neighbors. Locked
vertices transmit -00 to all their neighbors.

(d) Vertices that have a positive gain greater than the gain of all of their
neighbors move to the opposite set and become locked. Vertex IDs
are used to break ties.

3. Repeat steps 1 and 2 until there are no positive gain vertices.

4.4.4 Balance

A balance constraint is required to prevent the algorithm from finding a cut of
weight zero by moving all vertices into one set. Specifically, no move is allowed
that will make one set larger than the other by more than some constant Gb •

Thus, given a legal initial partition, the condition IIAI-IBII < Gb will always
be true.

The algorithm enforces the balancing constraint using a matching tree, a binary
tree with all vertices at its leaves. At the end of the gain exchange, step 2(c)
above, all vertices transmit their intentions (move or stay put) and their set
(A or B) up the matching tree. Each internal vertex of the matching tree
waits for all of its children to respond. It then attempts to match requests
to move from set A with requests to move from set B. Matched requests are
granted and the grant message is transmitted back down the tree. Unmatched
requests are collected into a single message (count and set) that is transmitted
up to the next level of the tree. At the root of the tree, a count of the current
imbalance, IAI - IBI, is kept. The root acknowledges unmatched requests as
long as J(A, B) < c".

With balancing, the concurrent partitioning algorithm becomes

1. Set all vertices unlocked.

2. While there is some unlocked positive gain vertex not blocked by the
balancing constraint,

(a) All vertices transmit their set and the weight of the connecting edge
to all neighboring vertices.

(b) As vertices receive messages from their neighbors, they compute their
gain as the sum of the weights received from vertices in the opposite
set less the sum of the weights received from vertices in the same set.

128 A VLSI Architecture for Concurrent Data Structures

(c) Unlocked vertices transmit their gain to all their neighbors. Locked
vertices transmit -00 to all their neighbors.

(d) Vertices that have a positive gain greater than the gain of all of
their neighbors transmit their set and their intention to move to
their parent in the matching tree. All other vertices transmit their
intention to remain stationary and their set to their matching tree
parent. Vertex IDs are used to break ties in gain comparison.

(e) The matching tree validates requests to move against the balance
constraint as follows:

i. Once each matching tree vertex receives messages from all of
its children, it matches requests from sets A and B. Matched
requests are acknowledged.

ii. Unmatched requests are collected into a message to the next
level of the matching tree.

iii. The root of the matching tree acknowledges up to Cb - I(A, B)
unmatched requests from set A or up to Cb + I(A, B) unmatched
requests from set B and updates I(A, B) accordingly. All re­
maining unmatched requests are rejected. If II(A, B) I = Cb , all
vertices in the smaller set are temporarily locked until I I(A, B) I =
Cb •

(f) Vertices that receive acknowledgements to their requests to move
become members of the opposite set.

3. Repeat steps 1 and 2 until there are no unblocked positive gain vertices.

4.4.5 Allowing Negative Moves

There are cases where any single move increases W(A, B), but a sequence of
moves can decrease W(A, B). Consider for example the case where IAI = IBI +
Cb , and V b E B, g(b) < O. There are no unblocked positive gain vertices to
move. Moving a vertex b with small negative gain from B to A, however, may
enable a vertex with large positive gain to move from A to B.

The algorithm can be extended to find some of these sequences by maintaining
two partitions and accepting negative gain moves. The partition A', B is up­
dated every move and its cut weight, W(A', B) is computed. The best partition
A, B is updated whenever W(A', B) < W(A, B).

Chapter 4: Graph Algorithms 129

4.4.6 Performance

Each iteration of the algorithm takes Oed + log IVI) time. Exchanging edge
weights and gains between neighbors takes Oed) time while propagating com­
parisons up the match tree takes O(log IVI) time. Since probabilistically d!1
of the positive gain vertices are moved in each iteration, the algorithm should
complete after Oed) iterations. Thus, the time complexity of the algorithm on
a computer with an processor for each vertex of the graph is estimated to be
O(eV + dlog IVI) or, if we assume d is constant, O(log lVI), a speedup of lo~~1
over the linear-time sequential algorithm of Fidducia and Mattheyses [40].

4.4.7 Experimental Results

The speedup of the concurrent graph partitioning algorithm compared to a se­
quential algorithm similar to Fidducia and Mattheyses is shown in Figure 4.35.
The tests were run on random graphs with average degree 4 and uniformly dis­
tributed edge weights. In each test the number of processors was equal to the
number of vertices.

The speedup is quite disappointing for small graphs but increases significantly
for large graphs. This behavior is due to the fact that the time required to
perform an iteration increases very slowly with the graph size, while the number
of vertices moved each iteration grows almost linearly with graph size.

The data in Figure 4.35 suggest that the efficiency of the algorithm could be
improved by using fewer processors than vertices and performing balancing
for all vertices on a single processor locally. This would reduce the height of
the balancing tree and thus reduce the time required for each iteration of the
algorithm.

For each data point shown in Figure 4.35 the concurrent and sequential algo­
rithms produced partitions of similar weight. A partition of the same graphs
performed using simulated annealing consistently produced partitions with 20%
lower weight. While the gradient-following algorithms, both sequential and con­
current, get stuck in a local minimum, the simulated annealing program is able
to find a point near the global minimum.

The techniques developed in this section, using gain inhibition to prevent thrash­
ing and using a matching tree to enforce balance constraints, are completely
applicable to a partitioning program that uses simulated annealing. In a con­
current simulated annealing program each vertex would compute its inhibited

130

50

S 10
p
e
e 5
d
u
p

1

A VLSI Architecture for Concurrent Data Structures

10 50 100 500 1000 5000

Number of Vertices

Figure 4.35: Speedup of Concurrent Graph Partitioning Algorithm vs. Graph
Size

Chapter 4: Graph Algorithms 131

gain, the difference between its gain and the largest of its neighbors' gains. Ver­
tices then move with a probability that is a function of their inhibited gain and
the current annealing temperature. The matching tree is used to keep track of
balance and to broadcast the current imbalance J(A, B) to each vertex so that
balance information can be incorporated in the gain function.

4.5 Summary

In this chapter I have developed concurrent algorithms for three graph problems.

In Section 4.2 I developed a new algorithm for the single point shortest path
problem. Chandy and Misra's shortest path algorithm [15], because it is under­
synchronized, has an exponential worst case time complexity. By adding syn­
chronization to this algorithm I developed the SSP algorithm which has polyno­
mial worst case time complexity. Experimental comparison of these algorithms
verified that the SSP algorithm outperforms Chandy and Misra's algorithm for
large graphs. Further experiments showed that additional concurrency can be
attained by running several problems simultaneously. Running multiple prob­
lems is particularly advantageous for the SSP algorithm where the multiple
problem instances can share the considerable synchronization overhead.

Two new algorithms for solving the max-flow problem were developed in Sec­
tion 4.3. Both of the algorithms operate by repeatedly layering the graph
and constructing a maximal layered flow. The CAD (concurrent augmenting
digraph) algorithm constructs a layered flow by simultaneously finding all pos­
sible augmenting paths. These paths compete with one another for shared edge
capacity through a three-step reservation process. The CVF (concurrent vertex
flow) algorithm is similar to an existing concurrent max-flow algorithm [118],
[87], but introduces new methods for synchronization and completion detection.
Experimental results show that both of these new algorithms achieve significant
speedups.

Finally, in Section 4.4 I developed a concurrent algorithm for graph partition­
ing. Concurrent graph partitioning is difficult for two reasons. First, moving
several vertices between partitions simultaneously can result in thrashing: two
vertices in opposite sets that are attracted to each other may indefinitely swap
sets. Second, multiple simultaneous moves may result in a loss of balance: all
vertices could simultaneously jump into the same set. The new algorithm solves
the thrashing problem by using gain to inhibit simultaneous moves that might
interfere with one another. The balancing problem is solved by embedding a
tree into the graph. The tree matches moves in one direction with moves in

132 A VLSI Architecture for Concurrent Data Structures

the other direction to assure that the moves made during one iteration of the
algorithm will not unbalance the partition.

The algorithms developed in this chapter have a great deal in common:

• They are synchronized by passing messages.

• Messages are short, containing between zero and three arguments.

• Methods are short; most are under 10 lines.

In Chapter 5 I will investigate how to build hardware to efficiently execute
programs having these characteristics.

Chapter 5

Architecture

The objective of computer architecture is to organize a computer system to ap­
ply available technology to the solution of specific problems. At the Processor­
Memory-Switch (PMS) level [119), architecture involves the organization of
processing elements and communication channels into a computer system. At
the Register Transfer (RT) level [62), architecture involves organizing registers,
arithmetic units, finite state machines, and transmission lines into the process­
ing elements and communication channels that form the building blocks at the
PMS level. This chapter addresses both the RT and PMS levels of architecture.

Computer architecture cannot ignore the physical organization of the machine.
VLSI computing systems are wire-limited; the complexity of what can be con­
structed is limited by wire density, the speed at which a machine can run is
limited by wire delay, and the majority of power consumed by a machine is used
to drive wires. Thus, machines must be organized both logically and physically
to keep wires short by exploiting locality wherever possible. The VLSI architect
must organize a computing system so that its form (physical organization) fits
its function (logical organization).

I start this chapter with an intended application - the model of computation
developed in Chapter 2 and the algorithms developed in Chapters 3 and 4 -
and a technology - VLSI. From this starting point I develop a new architecture
that takes advantage of the cost performance characteristics of VLSI technology
and includes many features designed to enhance the performance of concurrent
data structures.

In Section 5.1 I analyze the algorithms developed in Chapters 3 and 4. These
algorithms are characterized by short messages, short methods, and a limited

134 A VLSI Architecture for Concurrent Data Structures

number of pending messages. In Section 5.3.1 I use the characteristics of these
concurrent algorithms to analyze the performance of interconnection networks.

In Section 5.2 I look at VLSI technology. VLSI technology is wire-limited
both by the maximum wire density that the technology can support and, since
driving capacitive wires dissipates power, by the maximum power density that
can be tolerated. Propagation delays in VLSI systems are also wire-limited.
The delay of very short wires scales logarithmically with wire length until a
critical length is reached 1. Beyond this critical length, wire delay is bounded
by the speed of light and grows linearly with wire length. In Section 5.3.1 I
use these characteristics of the technology to derive some surprising results on
network topology.

The development of an architecture that applies VLSI technology to support
concurrent data structures is approached in two steps.

• First I consider the interconnection network over which processing el­
ements (PEs) communicate. Based on measurements of programs and
characteristics of the technology, in Section 5.3.1 I show that a 2-dimensional
torus or grid network topology is preferable to a higher dimensional net­
work. Experimental results back up this surprising result.

In addition to a topology a network requires a routing algorithm. In
Section 5.3.2 I go on to develop a new method for constructing deadlock­
free routing algorithms in concurrent computer interconnection networks
and apply this method to the two-dimensional torus network. The design
of a self-timed VLSI chip that implements this algorithm is discussed in
Section 5.3.3.

• To take advantage of a low latency communications network, the PEs must
be designed to operate efficiently in the message-passing environment. In
Section 5.4 mechanisms are developed to implement the model of compu­
tation described in Chapter 2 in hardware. The arrival of a message at a
node results in the PE's performing the required action with a minimum
of delay. Also, the sending of a message is made indistinguishable from a
method call.

To take advantage of VLSI technology, we must both exploit locality
and build hardware that is specialized to particular applications. In Sec­
tion 5.5 I introduce the concept of an object expert (OE) to achieve both
of these goals. OEs exploit locality by storing objects of a particular class
near the logic that operates on that class.

1 This critical length is about 30mm for a typical 1.251' CMOS technology.

Chapter 5: Architecture 135

20

A 12L 15 10
8

10 6
5 4

2
00 1 2 3 4 567 8 00 5 10 15 20 25

Message Length Method Length

Figure 5.1: Distribution of Message and Method Lengths

5.1 Characteristics of Concurrent Algorithms

In Chapters 3 and 4, 42 CST methods were written. Here we examine these
methods to find the average message length, the average method length, and
the average number of pending messages per object.

Message Length

Message Length
Number of Messages

Every method has at least three fields: receiver, selector, and an implicit reply-to
field (either the sender or the requester). Thus, the minimum message length is
3 fields; any message arguments add to this minimum length. The table above
gives the static2 frequency of message lengths for the 42 methods examined.
These data are also shown in the left half of Figure 5.1. The average message
length, L, is 4.9 fields. H we assume a 32-bit field size, L ~ 160 bits.

Method Length

Method Length
Number of Methods

2Static frequency is a measure of how often an event occurs in the program text. Dynamic
frequency, on the other hand, is a measure of how often an event occurs during execution of
the program.

136 A VLSI Architecture for Concurrent Data Structures

CST methods tend to be quite short. The lengths of the 42 methods presented in
Chapters 3 and 4 are tabulated above and shown in the right side of Figure 5.1.
The average method length is 5.7 lines. While counting static method length
does not account for time taken in loops, this inaccuracy is partially offset by
the fact that many of the methods considered involve multiple actions. Because
methods are short, each message received results in only a small amount of
computation. Thus, the latency of message transmission must be kept very
small, or excessive time will be spent transmitting messages between processing
nodes and little time will be spent computing at each node.

Pending Messages

A CST object usually has only a small number of messages pending at any
instant in time. An object typically transmits a number of messages (usually <
3) and then waits for replies from these messages before transmitting additional
messages. Thus, the total number of messages in the network at any given time
is a small multiple of the number of objects.

The characteristics of concurrent programs described in this section guide the
development of a concurrent computer architecture in the remainder of this
chapter. The message length is an important factor in deciding on the topology
of the network, as described in Section 5.3.1. The short method length means
that network latency is a critical parameter. Since the computation initiated
by the arrival of a message takes only a short period of time, message delivery
must be made fast, or all processing elements will become idle waiting for
messages. Also, processing elements must be able to handle messages quickly,
since the time (Tnod.) required to send a message and to initiate an action upon
receipt of a message contributes to the total message latency. Finally, since
each object typically has only a few messages pending at once, the required
network throughput can be calculated as a function of the number of objects
managed by each processing element.

Before we begin developing our concurrent architecture, we must first examine
the available technology.

Chapter 5: Architecture 137

Figure 5.2: Packaging Levels

5.2 Technology

5.2.1 Wiring Density

VLSI systems (VLSI chips packaged together on modules and boards) are lim­
ited by wire density, not by terminal or logic density. Current packaging technol­
ogy allows us to make more connections from VLSI chips to modules and boards
than can be routed away from the chips. Since VLSI systems are wire-limited,
the techniques of VLSI complexity theory [129J used to calculate bounds on the
performance of VLSI chips are applicable to systems as well. In Section 5.3.1 I
use this wire-cost model of VLSI systems to derive some results on concurrent
computer interconnection networks.

VLSI complexity theorists, by considering the wire-limited nature ofVLSI chips,
have been able to prove lower bounds on the area times time squared (AT2) re­
quired to perform a computation [89J, [129J. The bound is calculated by finding
the minimum bisection width of all possible communication graphs for the com­
putation. Thompson shows that the area, A, of a VLSI chip is proportional to
the square of the bisection width, while the time required for the computation,
T, is inversely proportional to the bisection width. Thus, the quantity AT2 is a
bound independent of bisection width. By considering the wire density, not the
logic density, as the L niting factor of the technology, VLSI complexity theory
has been able to compute new bounds on the complexity of sorting [131J, com­
puting Fourier transforms [130J, and numerous other transitive computations.

138 A VLSI Architecture for Ooncurrent Data Structures

Modern high performance computers are packaged in three primary levels as
shown in Figure 5.2 [117J.

Chip: Circuit components and local interconnections are fabricated on a
monolithic silicon die.

Module: Silicon dice are bonded to a (usually ceramic) module which pro­
vides interconnections between the chips and from the chips to board pins.
Connections from chip to module can be made either by wire bonds or
by solder bumps. With wire bonding the chip is placed face-up on the
module, and bonds are made by running wire from pads on the periphery
of the chip to corresponding pads on the module. Connections are limited
to one or two rows of pads about the periphery of the chip. Typical pad
dimensions are 100J.L on 200J.L centers. Solder bump connections are made
by depositing solder bumps on the face of the chip and then placing the
chip face down on the module and refiowing the solder. Solder bumps can
be distributed over the face of the chip on 250J.L centers [12J.

Board: A number of modules are assembled on a printed circuit board (PCB)
that provides interconnection between modules. Modules are connected
to a PCB either by pins brazed to the back of the module that fit into
holes drilled through the PCB or by surface mounting the module to the
PCB in a manner similar to solder bumping chips to a module. Boards
are connected using cables or backplanes.

There are often two secondary levels of packaging as well. Boards are packaged
together in chassis, and chassis are assembled into racks.

Dimension Level of Packaging Units
Chip Module Board

Wire Width 1.25 100 200 J.L
Via Diameter 1.25 100 500 J.L
Wire-Hole Pitch 3.75 200 750 J.L
Signal Layers 2 > 10 > 10
Linear Size 10 100 600 mm

The table above compares the characteristics of these three levels of packaging.
The PCB data are derived from design rules for a circuit board with 8 mil wire
width, 8 mil spacing and 20 mil minimum hole diameter. The module charac­
teristics are derived from available data on IBM's thermal conduction module

Chapter 5: Architecture 139

(TCM) [12) and a comparable ceramic technology available from Kyocera [79).
The design rules for several1.25JL CMOS processes were consulted to construct
the chip column of the table.

These numbers are for technologies that are in production today (1986). Inte­
grated circuit design rules are halved every 4 to 6 years [93), so that by 1990
it is reasonable to expect chips to have 0.5JL wide wires. Module and PCB
technologies also scale with time but at a slower rate, so that the density gap
between chips (I'l$ 2501:'::) and modules (5::n will continue to widen. Wafer­
scale integration [99J attempts to close this gap by increasing chip size to the
module level.

Most of the complexity of a VLSI system is at the chip level. Modem chips con­
tain I'l$ 2500 wiring tracks (~~~:), compared to 500 (1=:) for modules and 800
(~;;':) for PCBs. While modules and PCBs can have more layers than chips,
the use of additional layers is limited by the fact that in most PCB technologies,
every via penetrates through the entire thickness of the board. Because chips
are 50 times as dense and significantly more complex than modules, the amount
of information that can be transferred from chip to module is a bottleneck that
limits the performance achievable by a VLSI system. .

The number of connections from a chip to a module is limited by the wiring
density of the module, not, as many believe, by the number of terminals that
can be placed on a chip. Consider a 10mm chip with bond pads on 250JL
centers (the spacing of TCM bond pads [12]). The chip could make over 1600
connections if it were completely covered with pads. There would be no point,
however, in having this number of connections. A 10mm slice of the ceramic
substrate is capable of handling only I'l$ 25 wires per layer. Even if 10 wiring
layers were used, only 250 wires could be routed away from the chip4. At the
PCB level, assuming 10 layers and two wires between pins on a 2.5mm grid,
only 80 wires can be routed out from under the chip. Even wire-bonding can
achieve terminal densities that can saturate module technology. Two rows of
pads on 200JL centers about the periphery of the chip would be sufficient to
make 400 connections.

Wires, not terminals or logic, are the limiting factor in high-performance VLSI
systems.

S Assume alternate wiring channels are used by vias to lower layers.
4To convert pin density to wire density, this calculation assumes that all the pins are routed

to one edge of the chip.

140 A VLSI Architecture for Concurrent Data Structures

5.2.2 Switching Dynamics

The intrinsic delay of an MOS device is the transit time, 1", the time required
for a charge to cross the channel [88].

L
1"=-,

p.E
(5.1)

where p. is the carrier mobility, L is the channel length, and E is the electric
field. Since E = t (5.1) can be rewritten as

L2
1"=-.

p.V
(5.2)

1" also represents the time required for a device to transfer the amount of charge
on the gate, Q" from the drain to the source so, iDS = ~ [52].

A more useful time measure is the delay of an inverter driving another inverter
. of the same size [113].

(5.3)

Cinv is the input capacitance of the inverter, and C, is the gate capacitance of
the inverter's n-channel transistor. For a CMOS inverter with the p-channel
device twice the size of the n-channel device, 1"inv = 31". In a typical 1.25p.
CMOS technology with a 2.SV supply 6 voltage, 1" = 25ps and 1"inv = 7Sps 6.

An inverter driving a load with capacitance CL has delay,

CL
t= -C, 1"inv·

mv
(5.4)

6 As geometries get smaller, carrier velocity saturation limits device current, so that increas­
ing the applied voltage does not reduce .. linearly. For (5.1) to hold, voltages must be scaled
to keep E < 2;.

dparasitic output and wiring capacitance is typically at least twice the inverter input capac­
itance, Cp > 2C1Dy• These parasitics increase the delay of a 1.25" inverter with a fan-out of
one to ". 225ps.

Chapter 5: Architecture 141

To drive large capacitances the delay can be minimized by using an exponential
horn, a chain of inverters with each stage e times the size of the preceding stage
[88). Using this technique, the minimum delay to drive a load from an minimum
size inverter is

CL
tmin = 'lnve log. -C. •

lnv

For short wires, wire delay depends logarithmically on wire length, Iw,

(5.5)

(5.6)

where K = %-- and C'" is the capacitance per unit length of wire. Typically, K is
• in the range 0.1 < K < 0.2. Long wires, on the other hand, act as transmission

lines and are limited by the speed of light. Let I. be the critical length at
which speed of light limits transmission time. The delay of an optimally sized
exponential horn driving a transmission line is the logarithmic delay of the first
log. KI. - 1 stages of the driver plus the linear delay of the wire,

_ ~i;
tlongwire - Tinve (log. KI. - 1) + -,

c
(5.7)

or asymptotically,

Iw.jf;
tloDgwire >. c • (5.8)

The crossover from a capacitive (short) wire to a transmission line (long) wire
occurs when the delay of the last driver stage equals the time of flight along
the wire, Tinve = ¥. This equation can be rewritten as

(5.9)

With Tinv = 75ps and fr 1':$ 4, the crossover from a capacitive (short) wire
to a transmission line (long) wire occurs at Iw 1':$ 30mm. Thus for today's
technology (1.25",), even relatively short wires are speed-of-Iight limited. In an
0.5"" technology Tinv = 30ps , and the crossover is at Iw 1':$ IOmm, about the
length of a chip.

142 A VLSI Architecture for Concurrent Data Structures

These speed-of-light wires are off-chip wires. As shown in Appendix C, the high
resistivity of on-chip wires limits on-chip signal velocity to ~ 8 X 106:;';.

The delay of global wires in VLSI systems is due to speed-of-light delay in
the wire (not the RC delay of the driver) and thus increases linearly with wire
length. For short wires, lw < 11nye ,}.;, delay is due to the RC delay of the driver
and thus grows logarithmically with wire length. In Section 5.3.1 I consider both
linear and logarithmic delay models.

5.2.3 Energetics

The energy dissipated by a switching event in a VLSI system, E.w , is almost
entirely used to charge the capacitance of the circuit node being switched.

(5.10)

When a is the gate capacitance of a minimum-sized inverter, ainy , E.w is the
switching energy of the technology, a figure of merit commonly used to compare
logic technologies. Since V and ainy both scale linearly with linear dimensions,
A, the switching energy of MOS logic scales as the cube of the linear dimensions,
E.w ex 10.
In most VLSI systems the wiring capacitance dominates device gate capaci­
tance, and most of the switching energy is used to drive wires. The power
required to drive these wires must be supplied to each logic circuit by a power
distribution system. This power, in the form of heat, must also be removed by
a cooling system. The power density that the power supply and cooling sys­
tems can handle limits the performance of VLSI systems. With very advanced
cooling technology [12], power densities of 30~ have been achieved.

If a A is the capacitance per unit area and Tcy is the cycle time of the system,
power density, PA, is given by

(5.11)

Power density remains constant since, as voltage scales down, delay also scales
down and capacitance per unit area scales up (all linearly with A).

Chapter 5: Architecture 143

Consider a typical 1.251' technology. Let us make the following assumptions:

• CA is the capacitance of one metal layer, CA = 10-4 :. ••

• The cycle time is 100 inverter delays, Tc)' = l00Tjnv = 7.5ns.

• The supply voltage, V, is 2.5V.

Then the power density is PA ~ 40~. Even with a very modest cycle time, the
power density of a VLSI chip exceeds the capability of state-of-the-art cooling
technology. Thus, power density limits the wiring density of a VLSI system
independent of the wire density of the interconnection technology. We cannot
escape from the problem of wiring density by adding more wire layers.

To reduce power density we must run our system more slowly. From (5.11) one
would expect that power density varies as the inverse of cycle time; however,
using hot-clock7 logic [116J, the power density can be made to scale as the
inverse square of the cycle time, PA ex: Tc-:/. This relation is a strong argument
for concurrency. Concurrent computing is energy efficient. We can run two
computers at half speed with half the energy required to run one computer at
full speed.

5.3 ConculTent Computer Interconnection Net­
works

Figure 5.3 shows the organization of a concurrent computer. A number of
processing nodes (N) communicate by means of an interconnection network.
From Section 5.1 we know that the network must have a low latency to support
fine-grain concurrent algorithms. We also know, from Section 5.2, that since
VLSI technology is wire-limited, these networks are limited by the amount of
wire required to construct them. In Section 5.3.1 I compare networks under
the assumption of constant wire cost and show that low-dimension networks
(e.g., a torus) offer lower latency than can be achieved with a high-dimensional
interconnect (e.g., a binary n-cube). This surprising result strongly motivates
the use of low-dimension k-ary n-cubes for the interconnection networks of
concurrent computers.

7 Slow.clock logic is a better name for this technique since it is the speed of the clocb relative
to the circuit rather than their voltage level that results in an energy savings.

144 A VLSI Architecture for Concurrent Data Structures

Figure 5.3: A Concurrent Computer

A deadlock-free routing algorithm for k-ary n-cube networks is required if these
networks are to be useful. In Section 5.3.2 I develop a novel method for con­
structing deadlock-free routing algorithms and apply this method to several
networks including k-ary n-cubes. To test these ideas, I have designed a VLSI
chip that implements such a routing algorithm. The design and testing of this
chip are described in Section 5.3.3.

5.3.1 Network Topology

Interconnection networks for concurrent computers have been studied intensely,
and many different network topologies have been proposed. Tree networks have
been proposed for use in concurrent computers [13]. However, it has been
shown that most logical communication graphs do not map well onto a tree
network topology[122]. A crossbar switch can be used to connect every node,
P;, to every other node, Pi. A crossbar has the desirable characteristic of be­
ing non-blocking. In a non-blocking network, any connection that describes a
permutation of the processing nodes can be constructed without interference.
Unfortunately crossbars are impractical for large systems because their wiring
density grows as N 2 • Benes [10] developed a non-blocking network for telephone
systems that requires only O(N log N) switching elements. The Benes network
has the disadvantage, however, that it requires a long time to configure for a
particular permutation. In a concurrent computer where the pattern of com­
munications varies dynamically, this long configuration time is unacceptable.
Batcher's sorting network [7] is a more practical non-blocking network. While

Chapter 5: Architecture 145

it requires O(N log2 N) switching elements and has 0(1og2 N) delay, it can be
configured dynamically as messages are routed.

Most concurrent computers are constructed using blocking networks because the
advantages of a non-blocking network are not sufficient to offset the O(log N)
increased cost of a non-blocking network. The Omega network [82], a mul­
tiple stage shuffle-exchange network [124], is an example of such a blocking
network. The Omega network has O(N log N) switching elements8 and a delay
of O(log N)9. The Omega network is isomorphic to the indirect binary n-cube
or flip network [8] [110]. The direct version of this network is the the binary
n-cube [113], [98], [126]. The binary n-cube is a special case of the family of
k-ary n-cubes, cubes with n dimensions and k nodes in each dimension.

Since most of the interconnection networks used for concurrent computers are
isomorphic to binary n-cubes, a subset of k-ary n-cubes, in this section we
restrict our attention to k-ary n-cube networks. It is the dimension of the
network that is important, not the details of its topology. We refer to n as the
dimension of the cube and k as the radix. Dimension, radix, and number of
nodes are related by the equation

(5.12)

We can construct k-ary n-cubes with (approximately) the same number of nodes
but with different dimensions. Figures 5.4-5.6 show three k-ary n-cube networks
in order of decreasing dimension. Figure 5.4 shows a binary 6-cube (64 nodes).
A 3-ary 4-cube (81 nodes) is shown in Figure 5.5. An 8-ary 2-cube (64 nodes),
or torus, is shown in Figure 5.6. Each line in Figure 5.4 represents two com­
munication channels, one in each direction, while each line in Figures 5.5 and
5.6 represents a single communication channel.

Networks have traditionally been analyzed under the assumption of constant
channel bandwidth. Under this assumption each channel is one bit wide (W =
1) and has unit delay (To = 1). Thus, the constant bandwidth assumption
favors networks with high dimensionality (e.g., binary n-cubes).

8Recall from Section 5.2 that it is the wiring density that is important, not the number of
switching elements. I use the number of switching element. here for purposes of comparison
only.

9The Omega network has O(log N) delay under the assumption that wire delay is indepen­
dent of wire length. Again, I use this assumption here for purposes of comparison only. We have
already seen that this assumption is not consistent with the characteristics of VLSI technology.

146 A VLSI Architecture for Concurrent Data Structures

Figure 5.4: A Binary 6-Cube Embedded in the Plane

Figure 5.5: A Ternary 4-Cube Embedded in the Plane

Chapter 5: Architecture 147

Figure 5.6: An 8-ary 2-Cube (Torus)

The constant bandwidth assumption, however, is not consistent with the prop­
erties of VLSI technology. Networks with many dimensions require more and
longer wires than do low-dimensional networks. Thus, large dimensional net­
works cost more and run more slowly than low-dimensional networks. A realistic
comparison of network topology must take both wire density and wire length
into account.

In this section we compare the performance of k-ary n-cube interconnection
networks using the following assumptions:

• Networks must be embedded into the planelO •

• Nodes are placed systematically by embedding i logical dimensions in
each of the two physical dimensions. We assume that both n and k are
even integers. The long end-around connections shown in Figure 5.6 can
be avoided by folding the network as shown in Figure 5.22 on page 174.

• For networks with the same number of nodes, wire density is held con­
stant. Each network is constructed with the same bisection width, E, the
total number of wires crossing the midpoint of the network. To keep the
bisection width constant, we vary the width, W, of the communication
channels. We normalize to the bisection width of a bit-serial (W = 1)
binary n-cube.

• The networks use wormhole routing, described in Section 5.3.2.

lOrr a three-dimensional packaging technology becomes available, the comparison changes
only slightly.

148 A VLSI Architecture for Concurrent Data Structures

• No more than a single bit is in transit on any wire at a given time .

• Channel delay, Te , is a function of wire length, L. We begin by considering
channel delay to be constant. Later, the comparison is performed for both
logarithmic and linear wire delays; Te ex log Land Te ex L.

When k is even, the channels crossing the midpoint of the network are all in the
highest dimension. For each of the "fN rows of the network, there are k(i-1) of
these channels in each direction for a total of 2"fNk(i-1) channels. Thus, the
bisection width, B, of a k-ary n-cube with W-bit wide communication channels
is

(5.13)

For a binary n-cube, k = 2, the bisection width is B(2, n) = W N. We set B
equal to N to normalize to a binary n-cube with unit width channels, W = 1.
The channel width, W(k,n), of a k-ary n-cube with the same bisection width,
B, follows from (5.13):

2W(k,n)"fNk(i-1) = N, (5.14)

W(k n) = "fN = "fN = k"fN = ~
, 2k(~-1) 2kh-1 2"fN 2·

(5.15)

The peak wire density is greater than the bisection width in networks with
n > 2 because the lower dimensions contribute to wire density. The maximum
density, however, is bounded by

t-1

Dmax = 2W"fNLk;
i=O

i-I
blNLk;

,::::0

ky'N (k'i -1) (5.16)
k-1

ky'N ("fN - 1)
k-1

< (k:1)B.

Chapter 5: Architecture 149

1400
R
0 1200
w

W
1000

800
e 600
0 400 e
n
5 200
i
t 0
Y

-200
0 200 400 600 800 1000 1200

Position

Figure 5.7: Wire Density vs. Position for One Row of a Binary 20-Cube

A plot of wire density as a function of position for one row of a binary 20-cube
is shown in Figure 5.7. The density is very low at the edges of the cube and
quite dense near the center. The peak density for the row is 1364 at position
341. Compare this density with the bisection width of the row, which is 1024.
In contrast, a two-dimensional torus has a wire density of 1024 independent
of position. One advantage of high-radix networks is that they have a very
uniform wire density. They make full use of available area.

Each processing node has 2n channels each of which is ~ bits wide. Thus, the
number of pins per processing node is

Np = nk. (5.17)

150 A VLSI Architecture for Concurrent Data Structures

350

P 300
0 256 Nodes i

n 250 ~ 16K Nodes
s <> 1M Nodes
p 200
e
r 150

N
0100
d
e

50

0
0 5 10 15 20

Dimension. n

Figure 5.8: Pin Density vs. Dimension for 256, 16K, and 1M Nodes

A plot of pin density as a function of dimension for N = 256, 16K and 1M
nodesu is shown in Figure 5.8. Low dimensional networks have the disadvantage
of requiring many pins per processing node. A two-dimensional network with
1M nodes (not shown) requires 2048 pins and is clearly unrealizable. However,
the number of pins decreases very rapidly as the dimension, n, increases. Even
for 1M nodes, a dimension 4 node has only 128 pins. Recall from Section 5.2.1,
however, that the wire density of the board under the chips becomes saturated
before the maximum pin density of the chip is exceeded. Since all of the 1M
node configurations have the same bisection width, B = 1M, these machines
cannot be wired in a single plane.

"1K = 1024 and, 1M = 1K x 1K = 1048576.

Chapter 5: Architecture 151

Latency

From Section 5.1 we know that the latency of the network is the critical per­
formance measure. Latency, n, is the sum of the latency due to the network
and the latency due to the processing node,

n = Tnot + Tnod.. (5.18)

In this section we are concerned only with Tnet • We will consider Tnode in
Section 5.4.

Network latency depends on the time required to drive the channel, Te , the
number of channels a message must traverse, D, and the number of cycles
required to transmit the message across a single channel, ~, where L is message
length.

(5.19)

H we select two processing nodes, 1';, P;, at random, the average number of
channels that must be traversed to send a message from Pi to P; is given by
the following three equations for the torus, the binary n-cube and general k-ary
n-cubes:

D, = v'N -1, (5.20)

(5.21)

(k-l) D(k,n) = -2- n. (5.22)

The average latency of a k-ary n-cube is calculated by substituting (5.15) and
(5.22), into (5.19)

((k -1) 2L) Tnet=Te -2- n+T . (5.23)

152 A VLSI Architecture for Concurrent Data Structures

Figure 5.9 shows the average network latency, Tne" as a function of dimension,
n, for k-ary n-cubes with 28 (256), 214 (16K), and 220 (1M) nodesu . The left
most data point in this figure corresponds to a torus (n = 2) and the right most
data point corresponds to a binary n-cube (k = 2). This figure assumes constant
wire delay, To> and a message length, L, of 150 bits. Although constant wire
delay is unrealistic, this figure illustrates that even ignoring the dependence of
wire delay on wire length, low-dimensional networks achieve lower latency than
high-dimensional networks.

In general the lowest latency is achieved when the component of latency due to
distance, D, and the component due to message length, ~, are approximately
equal, D ~ ~. For the three cases shown in Figure 5.9, minimum latencies are
achieved for n = 2, 4, and 5 respectively.

The length of the longest wire in the system, lw, becomes a bottleneck that
determines the rate at which each channel operates, Te. The length of this wire
is given by

lw(k,n) = k~-l. (5.24)

If the wires are sufficiently short, delay depends logarithmically on wire length.
If the channels are longer, they become limited by the speed of light, and delay
depends linearly on channel length. Substituting (5.24) into (5.6) and (5.8)
gives

1 + log.lw = 1 + (i- - 1) log. k logarithmic delay
(5.25)

lw = k~-l linear delay.

We substitute (5.25) into (5.23) to get the network latency for these two cases:

71 <X (5.26) 1
(1 + G -1) log. k) ((k ; 1) n + 2~) logarithmic delay

(k~-l) ((k ; 1) n + 2~) linear delay.

12For the sake of comparison we allow radix to take on non-integer values. For some of the
dimensions considered, there is no integer radix, k, that gives the correct number of nodes. In
fact, this limitation can b. overcome by constructing a mized·radiz cu6 •.

Chapter 5: Architecture 153

160

140

L 120
a
t 100
e
n 80 c
y

60

40

20
0 5 10 15 20

Dimension. n

Figure 5.9: Latency VB. Dimension for 256, 16K, and 1M Nodes, Constant
Delay

154 A VLSI Architecture for Concurrent Data Structures

Figure 5.10 shows the average network latency as a function of dimension for
k-ary n-cubes with 28 (256),214 (16K), and 220 (1M) nodes, assuming logarith­
mic wire delay and a message length, L, of 150. Figure 5.11 shows the same
data assuming linear wire delays. In both figures, the left most data point
corresponds to a torus (n = 2) and the right most data point corresponds to a
binary n-cube (k = 2).

In the linear delay case, Figure 5.11, a torus (n = 2) always gives the lowest
latency. This is because a torus offers the highest bandwidth channels and the
most direct physical route between two processing nodes. Under the linear delay
assumption, latency is determined solely by bandwidth and by the physical
distance traversed. There is no advantage in having long channels.

Under the logarithmic delay assumption, Figure 5.10, a torus has the lowest la­
tency for small networks (N = 256). For the larger networks, the lowest latency
is achieved with slightly higher dimensions. With N = 16K, the lowest latency
occurs when n is three. With N = 1M, the lowest latency is achieved when n
is 5. It is interesting that assuming constant wire delay does not significantly
change this result. Recall that under the (unrealistic) constant wire delay as­
sumption, Figure 5.9, the minimum latencies are achieved with dimensions of
2, 4, and 5 respectively.

The results shown in Figures 5.10 through5.19were derived by comparing net­
works under the assumption of constant wire cost to a binary n-cube with
W = 1. For small networks it is possible to construct binary n-cubes with
wider channels, and for large networks (e.g., 1M nodes) it may not be pos­
sible to construct a binary n-cube at all. In the case of small networks, the
comparison against binary n-cubes with wide channels can be performed by ex­
pressing message length in terms of the binary n-cube's channel width, in effect
decreasing the message length for purposes of comparison. The net result is the
same: lower-dimensional networks give lower latency. Even if we perform the
256 node comparison against a binary n-cube with W = 16, the torus gives the
lowest latency under the logarithmic delay model, and a dimension 3 network
gives minimum latency under the constant delay model. For large networks,
the available wire is less than assumed, so the effective message length should
be increased, making low dimensional networks look even more favorable.

In this comparison we have assumed that only a single bit of information is in
transit on each wire of the network at a given time. Under this assumption, the
delay between nodes, Tc, is equal to the period of each node, Tp. In a network
with long wires, however, it is possible to have several bits in transit at once. In
this case, the channel delay, Tc, is a function of wire length, while the channel
period, Tp < Te , remains constant. Similarly, in a network with very short wires

Chapter 5: Architecture 155

1200
o 256 Nodes

1000

L 800
a
t
e 600
n
c
Y400

200

0
0 5 10 15 20

Dimension. n

Figure 5.10: Latency VB. Dimension for 256, 16K, and 1M Nodes, Logarithmic
Delay

we may allow a bit to ripple through several channels before sending the next
bit. In this case, Tp > Te. Separating the coefficients, Te and Tp , (5.19) becomes

(5.27)

The net effect of allowing Te = Tp is the same as changing the length, L, by a
factor of ¥. and does not change our results significantly.

When wire cost is considered, low-dimensional networks (e.g., tori) offer lower
latency than high-dimensional networks (e.g., binary n-cubes). Intuitively, tori
outperform binary n-cubes because they better match form to function. The
logical and physical graphs of the torus are identical; Thus, messages always

156 A VLSI Architecture for Concurrent Data Structures

100000
50000

10000
L 5000
a
t
e 1000
n 500 c
y

100
50

10
0 5 10 15 20

Dimension. n

Figure 5.11: Latency VB. Dimension for 256, 16K, and 1M Nodes, Linear Delay

Chapter 5: Architecture 157

travel the minimum distance from source to destination. In a binary n-cube,
on the other hand, the fit between form and function is not as good. A message
in a binary n-cube embedded into the plane may have to traverse considerably
more than the minimum distance between its source and destination.

Throughput

Throughput, another important metric of network performance, is defined as
the total number of messages the network can handle per unit time. One
method of estimating throughput is to calculate the capacity of a network,
the total number of messages that can be in the network at once. Typically
the maximum throughput of a network is some fraction of its capacity. The
network capacity per node is the total bandwidth out of each node divided by
the average number of channels traversed by each message. For k-ary n-cubes,
the bandwidth out of each node is nW, and the average number of channels
traversed is given by (5.22), so the network capacity per node is given by

r(k,n) oc
nW(k,n)
D(k,n)

n (~) (5.28)
oc

(k;1) n

Rl 1.

The network capacity is independent of dimension. For a constant amount of
wire, there is a constant network bandwidth.

Throughput will be less than capacity because contention causes some channels
to block [27]. This contention also increases network latency. Let the traffic
offered to the network by each node be >"c~:~.' Consider a single dimension of
the network as shown in Figure 5.12. The message rate on channels entering the
dimension is >"E = i m:;c~!". The average message traverses k;1 channels in this
dimension: one entering channel and u = k;3 continuing channels. Thus, the
rate on channels continuing in the dimensions is >"0 = U>"E' At the destination,
each flit is serviced as soon as it arrives, so the service time at the sink is
Tn- 1 = ~ = ¥. Starting with T,,-1 we will calculate the service time seen
entering each preceding dimension.

Suppose the service time in dimension i + 1 is Ti+1' We wish to calculate the
service time seen entering the previous dimension, n. The service time in the

158 A VLSI Architecture for Concurrent Data Structures

ACI TiO ACI 7i(a-l) ... --~
Figure 5.12: Contention Model for A Single Dimension

last continuing channel in this dimension is 71(,,-1) = 71+1' Once we know
the service time for the }th channel, Tij • the additional service time due to
contention at the} - 1 th channel is given by multiplying the probability of a
collision, AET;o, by the expected waiting time for a collision, ~. Repeating
this calculation u times gives us 710.

T;U-l)

710 T. UAET;~ - T. AcT;~
i+l + --2- - HI + -2-'

1 - VI - 2AcT;+l
AC

(5.29)

Equation (5.29) is valid only when AC < '!ip-. If the message rate is higher than
this limit, latency becomes infinite.

To calculate Ti we also need to consider the possibility of a collision on the
entering channel.

(ACTiO) Ti=T;o 1+-2- . (5.30)

Chapter 5: Architecture 159

Parameter 256 Nodes 1024 Nodes
Dimension 2 4 8 2 5 10
radix 16 4 2 32 4 2
Max Throughput 0.40 0.49 0.21 0.36 0.42 0.18
Latency.). = 0.1 43.9 121. 321. 45.3 128. 377.
Latency .). = 0.2 51.2 145. 648. 50.0 162. NA
Latency .). = 0.3 64.3 180. NA 59.0 221. NA

Table 5.1: Maximum Throughput as a Fraction of Capacity and Blocking La­
tency in Cycles

If sufficient queueing is added to each network node, the service times do not
increase, only the latency and (5.30) becomes.

T.. = (T;+1) (1 + AcTn-l) .
• 1-),o;n-I 2

(5.31)

To be effective, the total queueing between the source and destination should
be greater than the expected increase in latency due to blocking. One or two
flits of queueing per stage is usually sufficient. The analysis here is pessimistic
in that it assumes no queueing.

To find the maximum throughput of the network, the source service time, To,
is set equal to the reciprocal of the message rate, AE, and equations (5.29) and
(5.30) are solved for AE. The maximum throughput as a fraction of capacity
for k-ary n-cubes with 256 and 1K nodes is tabulated in Table 5.1. Also shown
is the total latency for L = 200bit messages at several message rates. The table
shows that the additional latency due to blocking is significantly reduced as
dimension is decreased.

Figure 5.13 compares measurements from a network simulator (points) to the
latency predicted by (5.30) (lines). The simulation agrees with the prediction
within a few percent until the network approaches saturation. When the net­
work saturates, throughput levels off as shown in Figure 5.14. This plateau
occurs because (1) the network is source queued, and (2) messages that en­
counter contention are blocked rather than aborted.

Intuitively, low-dimensional networks handle contention better because they
use fewer channels of higher bandwidth and thus get better· queueing perfor­
mance. The shorter service times, ~, of these networks results in both a lower

160 A VLSI Architecture for Concurrent Data Structures

Figure 5.13: Latency VB. Traffic (.\) for 32-ary 2-cube, L=200bitB. Solid line is
predicted latency, points are measurements taken from a simulator.

Figure 5.14: Actual Traffic vs. Attempted Traffic for 32-ary 2-cube, L=200bits.

Chapter 5: Architecture 161

probability of collision, and a lower expected waiting time in the event of a col­
lision. Thus the blocking latency at each node is reduced quadratically as k is
increased. Low-dimensional networks require more hops, D = n(~;l), and have
a higher rate on the continuing channels, AC. However, messages travel on the
continuing channels more frequently than on the entering channels, thus most
contention is with the lower rate channels. Having fewer channels of higher
bandwidth also improves hot-spot throughput as described below.

Hot Spot Throughput

In many situations traffic is not uniform, but rather is concentrated into hot
spots. A hot spot is a pair of nodes that accounts for a disproportionately
large portion of the total network traffic. As described by Pfister [103) for
a shared-memory computer, hot-spot traffic can degrade performance of the
entire network by causing congestion.

The hot-spot throughput of a network is the maximum rate at which messages
can be sent from one specific node, Pi, to another specific node, P;. For a k-ary
n-cube with deterministic routing, the hot-spot throughput, aHS, is just the
bandwidth of a single channel, W. Thus, under the assumption of constant
wire cost we have

a HS = W = k-l. (5.32)

Low-dimensional networks have greater channel bandwidth and thus have greater
hot-spot throughput than do high-dimensional networks. Intuitively, low-dimensional
networks operate better under non-uniform loads because they do more resource
sharing. In an interconnection network the resources are wires. In a high­
dimensional network, wires are assigned to particular dimensions and cannot
be shared between dimensions. For example, in a binary n-cube it is possi-
ble for a wire to be saturated while a physically adjacent wire assigned to a
different dimension remains idle. In a torus all physically adjacent wires are
combined into a single channel that is shared by all messages that must traverse
the physical distance spanned by the channel.

5.3.2 Deadlock-Free Routing

Deadlock in the interconnection network of a concurrent computer occurs when
no message can advance toward its destination because the queues of the mes­
sage system are full [72). Consider the example shown in Figure 5.15. The

162 A VLSI Architecture for Concurrent Data Structures

N2

N3 3 Nl

NO
Figure 5.15: Deadlock in a 4-Cycle

queues of each node in the 4-cycle are filled with messages destined for the
opposite node. No message can advance toward its destination; thus the cy­
cle is deadlocked. In this locked state, no communication can occur over the
deadlocked channels until exceptional action is taken to break the deadlock.

Definition 6.1 A flow control digit or flit is the smallest unit of information
that a queue or channel can accept or refuse. Generally a packet consists of
many flits. The unit of communication that is visible to the programmer is the
message. A message may be composed of one or more packets, each of which
carries its own routing and sequencing information in a header.

This complication of standard terminology has been adopted to distinguish
between those flow control units that always include routing information - viz.
packets - and those lower-level flow control units that do not - viz. flits. The
literature on computer networks [127J has been able to avoid this distinction
between packets and flits because most networks include routing information
with every flow control unit; thus the flow control units are packets. That is not
the case in the interconnection networks used by message-passing concurrent
computers such as the Caltech Cosmic Cube [114J.

Chapter 5: Architecture 163

The concurrent computer interconnection networks we are concerned with in
this section are not store-and-forward networks. Instead of storing a packet
completely in a node and then transmitting it to the next node, the networks
we consider here use wormhole routinrP [115]. With wormhole routing, only
a few flits are buffered at each node. As soon as a node examines the header
flit(s) of a packet, it selects the next channel on the route and begins forwarding
flits down that channel. As flits are forwarded, the packet becomes spread out
across the channels between the source and destination. It is possible for the
first flit of a packet to arrive at the destination node before the last flit of the
packet has left the source. Because most flits contain no routing information,
the flits in a packet must remain in contiguous channels of the network and
cannot be interleaved with the flits of other packets. When the header flit of
a packet is blocked, all of the flits of a packet stop advancing and block the
progress of any other packet requiring the channels they occupy. Because a
single packet blocks many channels at once, preventing deadlock in a wormhole
network is harder than preventing deadlock in a store-and-forward network.

I assume the following:

• Every packet arriving at its destination node is eventually consumed.

• A node can generate packets destined for any other node.

• The route taken by a packet is determined only by its destination and not
by other traffic in the network.

• A node can generate packets of arbitrary length. Packets will generally
be longer than a single flit.

• Once a queue accepts the first flit of a packet, it must accept the remainder
of the packet before accepting any flits from another packet.

• An available queue may arbitrate between packets that request that queue
space but may not choose amongst waiting packets.

• Nodes can produce packets at any rate subject to the constraint of avail­
able queue space (source queued).

The following definitions develop a notation for describing networks, routing
functions, and configurations.

13 A method similar to wormhole routing, called virtual cut· through, is described in [68[.
Virtual cut-through differs from wonnhole routing in that it buffers messages when they block,
removing them from the network. With wormhole routing, bloclced me .. ages remain in the
network.

164 A VLSI Architecture for Concurrent Data Structures

Definition 5.2 An interconnection network, I, is a strongly connected directed
graph, I = G(N, C). The vertices of the graph, N, represent the set of pro­
cessing nodes. The edges of the graph, C, represent the set of communication
channels. Associated with each channel, c,' is a queue with capacity cap(c,).
The source node of channel c, is denoted s, and the destination node Ii;.

Definition 5.3 A routing function R : C x N -+ C maps the current channel,
c., and destination node, nd, to the next channel, Cn, on the route from c. to
nd, R(c., nd) = Cn. A channel is not allowed to route to itself, c. = Cn. Note
that this definition restricts the routing to be memory less in the sense that a
packet arriving on channel c. destined for nd has no memory of the route that
brought it to c •. However, this formulation of routing as a function from C x N
to C has more memory than the conventional definition of routing as a function
from N x N to C. Making routing dependent on the current channel rather
than the current node allows us to develop the idea of channel dependence.
Observe also that the definition of R precludes the route from being dependent
on the presence or absence of other traffic in the network. R describes strictly
deterministic and non-adaptive routing functions.

Definition 5.4 A channel dependenc!/ graph, D, for a given interconnection
network, I, and routing function, R, is a directed graph, D = G(C,E). The
vertices of D are the channels of I. The edges of D are the pairs of channels
connected by R:

E = {(c"cj)IR(c"n) = C; for some n EN}. (5.33)

Since channels are not allowed to route to themselves, there are no I-cycles in
D.

Definition 5.5 A configuration is an assignment of a subset of N to each queue.
The number of flits in the queue for channel c, will be denoted size(c,). If the
queue for channel Ci contains a flit destined for node nd, then member(nd,c,) is
true. A configuration is legal if

Vc, E C, size(c,) ~ cap(c,). (5.34)

Definition 5.6 A deadlocked configuration for a routing function, R, is a non­
empty legal configuration of channel queues such that

Chapter 5: Architecture

VCiEC, (Vn 3 member(n,ci), n=d;andcj=R(ci,n) =?

size(cj) = cap(cj)).

165

(5.35)

In this configuration no flit is one step from its destination, and no flit can
advance because the queue for the next channel is full. A routing function, R,
is deadlock-free on an interconnection network, I, if no deadlock configuration
exists for that function on that network.

Theorem 5.1 A routing function, R, for an interconnection network, I, is
deadlock-free iff there are no cycles in the channel dependency graph, D.

Proof:

=? Suppose a network has a cycle in D. Since there are no I-cycles in D,
this cycle must be of length two or more. Thus, one can construct a deadlocked
configuration by filling the queues of each channel in the cycle with flits destined
for a node two channels away, where the first channel of the route is along the
cycle.

¢= Suppose a network has no cycles in D. Since D is acyclic, one can assign a
total order to the channels of C so that if (Ci,Cj) E E then Ci > Cj. Consider
the least channel in this order with a full queue, C,. Every channel, Cn, that C,
feeds is less than c" and thus does not have a full queue. Thus, no flit in the
queue for C, is blocked, and one does not have deadlock. •

Virtual Channels

Now that we have established this if-and-only-if relationship between deadlock
and the cycles in the channel dependency graph, we can approach the problem
of making a network deadlock-free by breaking the cycles. We can break such
cycles by splitting each physical channel along a cycle into a group of virtual
channels. Each group of virtual channels shares a physical communication
channel; however, each virtual channel requires its own queue.

Consider for example the case of a unidirectional four-cycle as shown in Figure
5.16A, N = {nO, ... ,n3}, C = {cO,,,,,C3}' The interconnection graph, I, is
shown on the left and the dependency graph, D, is shown on the right. We
pick channel Co to be the dividing channel of the cycle and split each channel
into high virtual channels, ClO,' .. ,CI3, and low virtual channels, Coo, ... ,C03, as
shown in Figure 5.16B.

166 A VLSI Architecture for Concurrent Data Structures

n2
Cs C2

Cs C2

A ns nl

Co Cl

no
Co Cl

n2
C1S C12

CO2

B ns nl

COl

no
ClO Cll

I: Interconnection Graph D: Dependency Graph

Figure 5.16: Breaking Deadlock with Virtual Channels

Chapter 5: Architecture 167

When a packet enters the network it is routed on the high channels until it
passes through node zero. After passing through node zero, packets are routed
on the low channels. Channel Coo is not used. We now have a total ordering
of the virtual channels according to their subscripts: ClS > Cn > Cll > ClO >
C08 > C02 > COl. Thus, there is no cycle in D, and the routing function is
deadlock-free.

Many deadlock-free routing algorithms have been developed for store-and-forward
computer communications networks [50], [51], [60], [91], [132], [133]. These al­
gorithms are all based on the concept of a structured buffer pool. The packet
buffers in each node of the network are partitioned into classes, and the assign­
ment of buffers to packets is restricted to define a partial order on buffer classes.
The structured buffer pool method has in common with the virtual channel
method that both prevent deadlock by assigning a partial order to resources.
The two methods differ in that the structured buffer pool approach restricts the
assignment of buffers to packets, while the virtual channel approach restricts
the routing of messages. Either method can be applied to store-and-forward
networks, but the structured buffer pool approach is not directly applicable to
wormhole networks, since the flits of a packet cannot be interleaved.

In the next section, virtual channels are used to construct a deadlock-free rout­
ing algorithm for k-ary n-cubes. In [24] algorithms are developed for cube­
connected cycles and shuffle-exchange networks as well.

k-ary n-cubes

The E-cube routing algorithm [81],[126] guarantees deadlock-free routing in
binary n-cubes. In a cube of dimension d, we denote a node as nt where k
is an d-digit binary number. Node nk has d output channels, one for each
dimension, labeled COk, ••• , C(d-l)t. The E-cube algorithm routes in decreasing
order of dimension. A message arriving at node nt destined for node nl is routed
on channel cu, where j is the position of the most significant bit in which k and
I differ. Since messages are routed in order of decreasing dimension and hence
decreasing channel subscript, there are no cycles in the channel dependency
graph, and E-cube routing is deadlock-free.

Using the technique of virtual channels, this routing algorithm can be extended
to handle all k-ary n-cubes. Rings and toroidal meshes are included in this clasa
of networks. This algorithm can also handle mixed radix cubes. Each node of
a k-ary n-cube is identified by an n-digit radix k number. The ,"th digit of the
number represents the node's position in the jlh dimension. For example, the
center node in the 3-ary 2-cube of Figure 5.17 is nll. Each channel is identified

168 A VLSI Architecture for Concurrent Data Structures

~ ~

(C022 Con

n22 n21 i n20

Cl22 CI21
I C120

!

(i I

Con COll

n12 nll nlO

CU2 CUI CUO

(COO2 COOl COOO

n02 nOI I noo

~
C102 ClOl ClOO

Figure 5.17: 3-ary 2-Cube

by the number of its source node and its dimension. For example, the dimension
o (horizontal) channel from nu to nlO is COU. To break cycles, we divide each
channel into an upper and lower virtual channel. The upper virtual channel
of Con will be labeled COUI, and the lower virtual channel will be labeled Coon.

Internal channels are labeled with a dimension higher than the dimension of
the cube. To assure that the routing is deadlock-free, we restrict it to route
through channels in order of descending subscripts.

As in the E-cube algorithm, we route in order of dimension, most significant
dimension first. In each dimension, i, a message is routed in that dimension
until it reaches a node whose subscript matches the destination address in the
ith position. The message is routed on the high channel if the ith digit of the
destination address is greater than the jlh digit of the present node's address.
Otherwise the message is routed on the low channel. It is easy to see that this
routing algorithm routes in order of descending subscripts and is thus deadlock­
free.

Chapter 5: Architecture 169

Formally, we define the routing function:

1
C,il(n_rd) if (dig(n,d) < dig(j,d)) A (dig(n, d) = 0),

R (.) - CdO(n_rd) if (dig(n,d) > dig(j,d)) V (dig(n, d) = 0), (536)
KNC Cdun, n, - 'f ("'k . d' (k) d' (. k)) . C;l(n-rd) 1 v > I, 19 n, = 19), A

(dig(n, i) = dig(j, i)),

where dig(n, d) extracts the q,t.h digit of n, and r is the radix of the cube. The
subtraction, n - rd, is performed so that only the q,t.h digit of the address n is
affected.

Assertion 5.1 The routing function, RKNC, correctly routes messages from any
node to any other node in a k-ary n-cube.

Proof: By induction on dimension, d.

For d = 1, a message, destined for nj, enters the system at n; on the internal
channel, CdQi. IT i < j, the message is forwarded on channels, COli, ... ,COlO, Coo ,COO(j+1)
to node nj. IT i > j, the path taken is, COOi,'" ,COO(j+1)' In both cases the route
reaches node nj.

Assume that the routing works for dimensions $ d Then for dimension d + 1
there are two cases. IT dig(i,d) = dig(j,d), then the message is routed around
the most significant cycle to a node n~ 3 dig(k,d) = dig(j,d), as in the d = 1
case above. If dig(i,d) = dig(j,d), then the routing need be performed only
in dimensions d and lower. In each of these cases, once the message reaches
a node, nj;, 3 dig(k, d) = dig(j, d), the third routing rule is used to route the
message to a lower-dimensional channel. The problem has then been reduced
to one of dimension $ n, and the routing reaches the correct node by induction .

•
Assertion 5.2 The routing function RKNC on a k-ary n-cube interconnection
network, I, is deadlock-free.

Proof: Since routing is performed in decreasing order of channel subscripts,
Vc;,cj,nc 3 R(c;,nc) = Cj * i > j, the channel dependency graph, D, is
acyclic. Thus by Theorem 5.1 the route is deadlock-free .•

170 A VLSI Architecture for Concurrent Data Structures

Figure 5.18: Photograph of the Torus Routing Chip

Chapter 5: Architecture 171

Figure 5.19: A Packaged Torus Routing Chip

5.3.3 The Torus Routing Chip

I have developed the torus routing chip (TRC) as a demonstration of the use
of virtual channels for deadlock-free routing. Shown in Figures 5.18 and 5.19,
the TRC is a ~ 10, ODD-transistor chip implemented in 3p. CMOS technology
and packaged in an 84-lead pin-grid array. It provides deadlock-free packet
communications in k-ary n-cube (torus) networks with up to k = 256 nodes in
each dimension. While primarily intended for n = 2-dimensional networks, the
chips can be cascaded to handle arbitrary n-dimensional networks using ~ I

TRCs at each processing node. TRCs have been fabricated and tested.

Even if only two dimensions are used, the TRC can be used to construct con­
current computers with up to 216 nodes. It would be very difficult to distribute
a global clock over an array of this size [42J. To avoid this problem, the TRC
is entirely self-timed [111J, thus permitting each processing node to operate at
its own rate with no need for global synchronization. Synchronization, when
required, is performed by arbiters in the TRC.

To reduce the latency of communications that traverse more than one channel,
the TRC uses wormhole [115J routing rather than store-and-forward routing.
Instead of reading an entire packet into a processing node before starting trans-

172 A VLSI Architecture for Concurrent Data Structures

Input 4 Input 2

Inputl--------r---~~ --+----<~ Output 1

....... ----~-----------4~Output3

Output 4 Output 2

Figure 5.20: A Dimension 4 Node

mission to the next node, the TRC forwards each byte of the packet to the next
node as soon as it arrives. Wormhole routing thus results in a message latency
that is the sum of two terms, one of which depends on the message length,
L, and the other of which depends on the number of communication channels
traversed, D. Store-and-forward routing gives a latency that depends on the
product of L and D. Another advantage of wormhole routing is that communi­
cations do not use up the memory bandwidth of intermediate nodes. A packet
does not interact with the processor or memory of intermediate nodes along its
route. Packets remain strictly within the TRC network until they reach their
destination.

System Design

The torus routing chip (TRC) can be used to construct arbitrary k-ary n-cube
interconnection networks. Each TRC routes packets in two dimensions, and the
chips are cascadable as shown in Figure 5.20 to construct networks of dimension
greater than two. The first TRC in each node routes packets in the first two
dimensions and strips off their address bytes before passing them to the second
TRC. This next chip then treats the next two bytes as addresses in the next

Chapter 5: Architecture 173

Figure 5.21: A Torus System

two dimensions and routes packets accordingly. The network can be extended
to any number of dimensions.

A block diagram of a 2-dimensional message-passing concurrent computer con­
structed around the TRC is shown in Figure 5.21. Each node consists of a
processor, its local memory, and a TRC. Each TRC in the torus is connected
to its processor by a processor input channel and a processor output channel.
Connections on the edges of the torus wrap around to the opposite edge. One
can avoid the long end-around connection by folding the torus, as shown in
Figure 5.22.

A fiit in the TRC is a byte whose 8 bits are transmitted in parallel. The X and
Y channels each consist of 8 data lines and 4 control lines. The 4 control lines
are used for separate request/acknowledge signal pairs for each of two virtual
channels. The processor channels are also 8 bits wide, but have only two control
lines each.

The packet format is shown in Figure 5.23. A packet begins with two address
bytes. The bytes contain the relative X and Y addresses of the destination
node. The relative address in a given direction, say X, is a count of the number

174 A VLSI Architecture for Concurrent Data Structures

Figure 5.22: A Folded Torus System

of channels that must be traversed in the X direction to reach a node with the
same X address as the destination. After the address comes the data field of
the packet. This field may contain any number of non-zero data bytes. The
packet is terminated by a zero tail byte. Later versions of the TRC may use an
extra bit to tag the tail of a packet, and might also include error checking.

The TRC network routes packets first in the X direction, then in the Y direction.
Packets are routed in the direction of decreasing address, decrementing the
relative address at each step. When the relative X address is decremented to
zero, the packet has reached the correct X coordinate. The X address is then
stripped from the packet, and routing is initiated in the Y dimension. When
the Y address is decremented to zero, the packet has reached the destination
node. The Y address is then stripped from the packet, and the data and tail
bytes are delivered to the node.

Each of the X and Y physical channels is multiplexed into two virtual channels.
In each dimension packets begin on virtual channel 1. A packet remains on
virtual channel 1 until it reaches its destination or address zero in the direction
of routing. After a packet crosses address zero, it is routed on virtual channel
o. The address 0 origin of the torus network in X and Y is determined by two

Chapter 5: Architecture 175

x y Do • • • o

relative address non-zero data bytes tail

Figure 5.23: Packet Format

input pins on the TRC. The effect of this routing algorithm is to break the
channel dependency cycle in each dimension into a two-turn spiral similar to
that shown in Figure 5.16 on page 166. Packets enter the spiral on the outside
turn and reach the inside turn only after passing through address zero.

Each virtual channel in the TRC uses the 2-cycle signaling convention shown in
Figure 5.24. Each virtual channel has its own request (R) and acknowledge (A)
lines. When R = A, the receiver is ready for the next flit (byte). To transfer
information, the sender waits for R = A, takes control of the data lines, places
data on the data lines, toggles the R line, and releases the data lines. The
receiver samples data on each transition of R line. When the receiver is ready
for the next byte, it toggles the A line.

The protocol allows both virtual channels to have requests pending. The send­
ing end does not wait for any action from the receiver before releasing the
channel. Thus, the other virtual channel will never wait longer than the data
transmission time to gain access to the channel. Since a virtual channel al­
ways releases the physical channel after transmitting each byte, the arbitration
is fair. If both channels are always ready, they will alternate bytes on the
physical channel.

Consider the example shown in Figure 5.25. Virtual channel Xl gains control
of the physical channel, transmits one byte of information, and releases the
channel. Before this information is acknowledged, channel XO takes control of
the channel and transmits two bytes of information. Then Xl, having by then
been acknowledged, takes the channel again.

176 A VLSI Architecture for Concurrent Data Structures

DATA VALID)-------< VALID)-----

REQ __ --'I \~----

ACK -------------/
Figure 5.24: Virtual Channel Protocol

DATA

REQl ----'

ACK 1

REQ 0 _______ ...J

ACKO --------------~/ \'-----
Figure 5.25: Channel Protocol Example

Chapter 5: Architecture

XIID
R,A Xl

6xS
Crossbar

xu im. Switch
R,A xo
X in
Data

YI in
R,A YI

YO in
R,A YO

YiD
Data

P iD
R,A P

P iD
Data

Xl

xo

YI

YO

P

177

Xl out
I-r.;--------R,A

,..-------XO out
R,A

X out
Oata

VI out
I-r.;--------R,A

,--__====_-YO out.
R,A

Yout
Data

~;-------- Pout
R,A

~:--------p out
D ...

Figure 5.26: TRC Block Diagram

Logic Design

As shown in Figure 5.26, the TRC consists of five input controllers, a five by five
crossbar switch, five output queues, and two output multiplexers. There is one
input controller and one output controller for each virtual channel. The out­
put multiplexers serve to multiplex two virtual channels onto a single physical
channel.

The input controller is responsible for packet routing. When a packet header
arrives, the input controller selects the output channel, adjusts the header by
decrementing and sometimes stripping the byte, and then passes all bytes to
the crossbar switch until the tail byte is detected.

The input controller, shown in Figure 5.27, consists of a datapath and a self­
timed state machine. The datapath contains a latch, a zero checker, and a
decrementer. A state latch, logic array, and control logic comprise the state
machine. When the request line for the channel is toggled, data are latched,
and the zero checker is enabled. When the zero checker makes a decision, the
logic array is enabled to determine the next state, the selected crossbar channel,

178 A VLSI Architecture for Concurrent Data Structures

REQ ------r-:-~:_1_---------- ACK

ACK ------t......::;;:.:.. -----,

REQ
DATA ~'-----.....

DATA

Select

Figure 5.27: Input Controller Block Diagram

and whether to strip, decrement, or pass the current byte. When the required
operation has been completed, possibly requiring a round trip through the
crossbar, the state and selected channel are saved in cross-coupled multi-flops
and the logic array is precharged.

The input controller and all other internal logic operate using a 4-cycle signaling
convention [Ill]. One function of the state machine control logic is to convert
the external 2-cycle convention into the on-chip 4-cycle convention. The signals
are converted back to 2-cycle at the output pads.

The crossbar switch performs the switching and arbitration required to connect
the five input controllers to the five output queues. A single crosspoint of
the switch is shown in Figure 5.28. A two-input interlock (mutual-exclusion)
element in each crosspoint arbitrates requests from the current input channel
(row) with requests from all lower channels (rows). The interlock elements are
connected in a priority chain so that an input channel must win the arbitration
in the current row and all higher rows before gaining access to the output
channel (column).

Chapter 5: Architecture 179

ROUT GIN-

Data,REQ:-r_+-------+--====-4--~~~~====~~--_+--
In 9

ACK __ ~------~---r----~~----+_--r_+_--_+-­
In

Chann.I-r....L-______ --t __ ---1f-__ + ______ ---1i--____ t-____ __
Select 6

RIN GOUT- Data-,REQ- ACK
out out

Figure 5.28: Crosspoint of the Crossbar Switch

180 A VLSI Architecture for Concurrent Data Structures

,...----------- Data Valid-
REQ--.---------------------~------~

'"""---- REQ

L-____ +-~---~------------ REQDone
ACK ------------~~--------+_-------------------ACK

1-------------- Select

CH 0 Circuit Identical

Figure 5.29: Output Multiplexer Control

The output queues buffer data from the crossbar switch for output. The queues
are of length four. While shorter queues would suffice to decouple input and
output timing, the longer queues also serve to smooth out the variation in delays
due to channel conflicts.

Each output multiplexer performs arbitration and switching for the virtual
channels that share a common physical channel. As shown in Figure 5.29, a
small self-timed state machine sequences the events of placing the data on the
output pads, asserting request, and removing the output data. An interlock
element is used to resolve conflicts between channels for the data pads.

To interface the on-chip equipotential region to the off-chip equipotential region
that connects adjacent chips, self-timed output pads (Figure 7.22 in [111]) are
used. A Schmidt Trigger and exclusive-OR gate in each of these pads signals the
state machine when the pad is finished driving the output. These completion
signals are used to assure that the data pads are valid before the request is
asserted and that the request is valid before the data are removed from the
pads and the channel released.

Experimental Results

The design of the TRC began in August 1985. The chip was completely de­
signed and simulated at the transistor level before any layout was performed.

Chapter 5: Architecture 181

The circuit design was described using CNTK, a language embedded in C [26],
and was simulated using MOSSIM [14]. A subtle error in the self-timed con­
trollers was discovered at the circuit level before any time-consuming layout was
performed. Once the circuit design was verified, the TRC was laid out in the
new MOSIS scalable CMOS technology [134] using the Magic system [96]. A
second circuit description was generated from the artwork and six layout errors
were discovered by simulation of the extracted circuit. The verified layout was
submitted to MOSIS for fabrication in September 1985.

The first batch of chips was completed the first week of December but failed
to function because of fabrication errors. A second run of chips (same design),
returned the second week of December, contained some fully functional chips.

Performance measurements on the chips are shown in Figure 5.30. To mea­
sure the maximum channel rate, output request and acknowledge lines were
tied together, and input acknowledge was inverted and fed back into input
request. In this configuration the chip runs at a maximum speed, shown in
Figure 5.30A, of 4MHz. The delays from input request to output request and
input acknowledge, shown in Figure 5.30B, are 150ns and 250ns respectively.
Data propagation time from input to output (not shown) was measured to be
60ns for both rising and falling edges. Thus data are set up 90ns ahead of the
output request. Data hold time, shown in Figure 5.30C, is 20ns.

Tau model calculations suggest that a redesigned TRC should operate at 20MHz
and have an input to output delay of 50ns. The redesign would involve decou­
piing the timing of the input controller by placing single-stage queues between
the input pads and input controller and between the input controller and the
crossbar switch. The input controller would be modified to speed up critical
paths.

Summary

Communication between nodes of a concurrent computer need not be slower
than the communication between the processor and memory of a conventional
sequential computer. By using byte-wide datapaths and wormhole routing, the
TRC provides node-to-node communication times that approach main memory
access times of sequential computers. Communications across the diameter of a
network, however, may require substantially longer than a memory access time.

The TRC serves as still another counterexample to the myth that self-timed
systems are more complex than synchronous systems. The design of the TRC
is not significantly more complex than a synchronous design that performs the

182 A VLSI Architecture for Concurrent Data Structures

Input Request

Output Request

Input Request

Input Acknowlocl,e

Output Request

Output Atknowledge

Output Request

Output Data

A

B

c

Figure 5.30: TRC Performance Measurements

Chapter 5: Architecture 183

same function. As for speed, the TRC is probably faster than a synchronous
chip, since each chip can operate at its full speed with no danger of timing
errors. A synchronous chip is generally operated at a slower speed that reflects
the timing of a worst-case chip and adds a timing margin.

5.4 A Message-Driven Processor

In Section 5.3 we investigated means of minimizing message latency, 7/, by
choosing the proper dimension interconnection network and proper routing
strategy. We ignored, however, the contribution of the processing node to la­
tency: Tnod• in (5.18). In this section I present novel architectural features that
minimize Tnod. by matching the behavior of the processor to the object-based
model of computation described by function (2.1).

In a concurrent computer built around a conventional instruction processor, in­
terpreting a message is a time-consuming process. First, the processor responds
to an interrupt informing it that a message has arrived. Next, the message is
fetched from memory, and the method to be executed in response to the mes­
sage is determined. Finally, after executing ~ 100 instructions, the processor
begins execution of the method. If the execution of the method involves send­
ing a message, another cumbersome instruction sequence is required to initiate
the send. The latency introduced by performing these message receives and
sends in software is intolerable in a system where the average method is only
10 instructions long.

Instead of nesting the instruction fetch-decode-execute loop of a conventional
processor inside the receive-dispatch-execute loop required to process a message,
a message driven processor directly interprets messages. A level of interpreta­
tion is removed; messages are the instructions of a message-driven processor
[28].

When a message arrives at a processing node, the processor performs the fol­
lowing steps:

Reception: Upon message arrival the message is immediately removed from
the network. The message is buffered if the processor is busy and is
received when the processor becomes idle. Reception and buffering of
messages are performed by hardware. The current message is placed in a
receive register to allow the processor fast access to arguments.

184 A VLSI Architecture for Concurrent Data Structures

Method Lookup: Once a message has been copied into the receive register,
the method corresponding to the message is determined by examining the
message selector and the class of the receiver. An instruction translation
lookaside buffer (ITLB) [221 is used to speed the translation of messages
into methods.

Execution: Methods are either primitive or defined. Primitive methods, small
integer add for example, are performed directly by the processor. They
generally involve modifying the contents of an object and/or transmitting
a reply message.

Defined methods create a context and specify a sequence of actions. Ac­
tions are similar to subroutines on a conventional processor. They are
executed by sending a sequence of messages. Some of the sends per­
formed during the execution of a defined method are handled locally.
They are simply instructions. Sends to objects outside the current pro­
cessing node result in sending a message over the network. Addressing
modes are provided to allow fast access to the fields of the current mes­
sage, acquaintances of the receiver, and the contents of the context during
the execution of an action.

If a method consists of more than a single action, the context is retained,
and the messages transmitted by the method are directed to reply to the
context. A pointer to the next sequence of messages to be executed for
the method is stored in the context. After the final action of a method,
the processor sends a reply to the object specified in the Reply To field of
the original message unless this field is nil.

The classes (data types) and the operations supported by a processing
node may vary amongst nodes. As described in Section 5.5, some pro­
cessing nodes may be object experts specialized to store and operate on
a particular class of objects.

5.4.1 Message Reception

The format of a message is shown in Figure 5.31. Each message contains the
following fields:

Receiver: The identifier of the object to which the message is directed.

Selector: The name of the message. The selector, together with the class of
the receiver, determines what method is to be executed in response to the

Chapter 5: Architecture 185

Object lo .. I_,,_8.;;g_.l.... __ I_"_st_8_"_Ce_.....I

Figure 5.31: Message Format

message. If the message has a nil receiver, the selector directly determines
the methoda .

Reply to: The object that is to receive the reply from this message. If this
field is nil, no reply is expected.

Arguments: Object identifiers for the arguments of the message, if any.

As shown in the lower portion of Figure 5.31, each object identifier consists
of two fields. The Tag field specifies whether the object is a primitive or a
reference object and, if the object is a primitive, specifies its class. If the object
is a primitive, the Instance field is the object itself. For example, if the Tag
field specifies that the object is of class Small Integer, the Instance field contains
the integer. For reference objects, the instance field contains a pointer to the
object in object space. The object pointer is translated into a node number by
the global mail system and into an address within the node by the local mail
system. The class of a reference object is found within the object itself.

The process of message reception is illustrated in Figure 5.32. If the processor is
idle when a message arrives from the network, the message is read directly into a
receive register. The receive register contains slots for the receiver, selector, and
reply to fields of the message, as well as four arguments. Additional arguments
are stored in memory at a location referenced by the argument pointer.

If the processor is busy when a message arrives, the message is automatically
buffered in memory. Message buffer memory access takes priority over proces­
sor memory access, since it is critical to network performance that a message
be removed from the network as soon as it arrives at its destination node. Ded­
icated registers point to the head and tail of a message queue in memory. When

14 Messages from the network will never have a nil receiver. Messages executed as the in­
structions of a defined method, however, may have a nil receiver.

186 A VLSI Architecture for Concurrent Data Structures

From Ne~work
Queue

--s-: Hud I

• l
• •

14--

~
Message Buffer

In Memory

rl rail

Figure 5.32: Message Reception

Receive
Selec~or
~eply

Arfl. 1
Arp; 2
Arg 3
Arfl. 4

Arp; Ptr

Receive Regis ~er

the processor becomes idle, the message at the head of the queue is removed
from the queue and copied into the receive register.

The use of special purpose hardware to remove messages from the network,
buffer them in memory, and load messages into a processor register has two sig­
nificant performance advantages. Since messages are quickly removed from the
network, network performance is improved; if messages were left for any period
of time with their tails blocking network channels, severe network congestion
could result. Also, message latency is reduced since the time for a conventional
processor to respond to a network interrupt and load the message is eliminated.
If the processor is idle, the message is loaded as soon as it arrives.

5.4.2 Method Lookup

Once a message is received, the first step in interpreting the message is to look
up the method specified by the selector and the class of the receiver. If the
receiver is a primitive, its class is encoded in the tag part of the object ID and
is already in the receive register. If the receiver is a reference object, the class
of the object must be fetched. Part of the object's class is a table of selectors
understood by that class and the method corresponding to each selector. This

Chapter 5: Architecture 187

Receiver Receiver'. a ... Receiver'. SUpercll ••
iver ~~!L:t----~u~e~~a~S~---------4~~~~[-------"' •••

Methods

Sel

01 •• Method Table

Figure 5.33: Method Lookup

Selector 1 Method 1
Selector 2 Metho

• • • • •
Supe~IISS Method Table

table is searched, by hashing, to find the selector in the received message. H the
selector is found, the corresponding method is executed. Otherwise, the object
Buperclass is checked, then the superclass' superclass, and so on, as shown in
Figure 5.33.

Method lookup can be accelerated by using an ITLB as shown in Figure 5.34
[22). The ITLB is an associative memory that associates selector and class with
the corresponding method. Each entry in the ITLB corresponds to a unique
method and contains three fields:

Key: The selector and class that specify the method.

Primitive Bit: Specifies whether the method is primitive or defined.

Method: How the method is to be accomplished. For a primitive method, this
field determines which primitive operation the processor is to perform. For
a defined method, this field contains the object ID of the method.

Method lookup using the ITLB proceeds in three steps. First, the class of the
receiver is obtained and concatenated with the selector to form a key into the
ITLB. The ITLB, an associative memory, attempts to find an entry matching
this key. H an ITLB entry is found, then the method field and primitive bit
are read from the ITLB. Otherwise, a conventional method lookup must be

188 A VLSI Architecture for Concurrent Data Structures

Key Receiver Selector

~~
ITLB Receiver 1 Selector 1 PI Method 1

Receiver 2 Selector 2 P2 Method 2

• • • • • • • • • • • •
Receiver N Selector N iPN Method N

I
Method P Method

Figure 5.34: Instruction Translation Lookaside Buffer

performed as described above. All primitive instructions are permanently stored
in the ITLB.

The memory requirements for a message-driven processor are quite modest. A
processing element need not keep a complete class description for each class
of objects it contains. In fact, a processing element need not keep any code
resident at all. When a method is referenced, it can be copied over the network.
When an ITLB miss occurs, method lookup can be spread across a number of
processing elements15• Performance can be enhanced, however, by maintaining
redundant copies of some methods and class descriptions. For example, it would
be beneficial to maintain local copies of each method referenced in the ITLB.

5.4.3 Execution

A context object, shown in Figure 5.35, is created at the start of a defined
method and controls the execution of the method. The receiver, reply-to ob­
ject, and arguments from the message as well as the method pointer from the
method lookup operation are copied into the context. The context contains the
instruction pointer (IP) that sequences the instructions in the method. Local

1SIt is important that only primitive or guaranteed resident methods are used for method
lookup, Otherwise, the system could get into an infinite loop of looking up a method required
to look up a method etc

Chapter 5: Architecture 189

Context Method

Method Header

IP

l
Inst 1

Receiver Inst 2
Reply To Inst 3

Arg 1 Inst 4
Arg 2 • • • • • • Inst N

Var 1 • • Var 2
~ • •

~
Figure 5.35: A Context

variables are also held in the context. A context cache as described in [22] can
be used to provide fast allocation of and access to contexts.

To execute a method, the processor fetches the instruction referenced by the
IP, executes the instruction, and increments the IP to proceed to the next
instruction. Each instruction conceptually sends a message, by specifying the
receiver, selector, and arguments. Many of the instructions, however, will not
result in actually sending a message, but instead will modify the contents of a
local object or alter execution of the method by modifying the IP. The processor
executes these instructions directly.

Since all instructions are message sends, a processor that interprets a single
instruction would suffice. However, to improve the efficiency of commonly used
primitives and control instructions, certain messages will be more compactly
encoded. A set of possible instructions is as follows:

send: The SEND instruction sends a message to the specified receiver. Ad­
dressing modes are provided to represent compactly the receiver, selec­
tor, and arguments. If the receiver is nil, a constant, or a local object, the
operation will be performed directly and no send will occur. Otherwise,
the fields of the message will be assembled and the message transmitted
over the network.

190 A VLSI Architecture for Concurrent Data Structures

SEND

A B <op> C <op> ABC
~--~----~--~--~~

BRANCH <offset> ON <condition> BRANCH <offset> I <condition> I

SUSPEND SUSPEND

EXECUTE <context> EXECUTE <context>

REPLY <I", nit> REPLY <I", nst>

Figure 5.36: Instruction Formats

control instructions: These instructions can be thought of as sending mes­
sages to the current context. BRANCH conditionally alters the value of
the IP. SUSPEND halts execution but preserves the context so that a re­
ply can resume execution. EXECUTE suspends the current context and
begins execution of another context. REPLY sends a reply message with
a specified argument list to the object specified by the Reply-To field of
the context and then deletes the current context.

common messages: Commonly used messages such as MOVE, at:put:, or +
may be encoded directly to save space. Often these instructions combine
several conceptual sends into a single instruction. For example, the in­
struction A <-- B + C sends the message + C to B and then stores the result
in A, conceptually sending an at:put: message to the object containing A.

Possible formats for these instructions are shown in Figure 5.36. Each instruc­
tion consists of an opcode field and zero or more operand fields. Each operand
field contains an operand specifier that describes the operand using one of four
addressing modes.

Chapter 5: Architecture 191

global constant: A global constant table contains commonly used constants
such as true, false, nil, and small integers. The operand descriptor specifies
an offset into the constant table.

local constant: A local constant table (literal table) is associated with each
method. This table contains selectors for the messages sent in the method
and any other constants required by the method that are not contained
in the global table. As with the global constant addressing mode, the
operand descriptor specifies an offset into the constant table.

context: The operand descriptor selects a field of the context, or, if a specific
code is used, the context itself. This mode is used to access arguments
and local variables.

receiver: The operand descriptor selects a field (variable) of the receiver or
the receiver itself.

The high two bits of the operand descriptor select the addressing mode. The
remaining bits select a specific constant or a specific field of the context or
receiver.

As an example of message-driven processor code, consider implementing locks,
described in Section 2.4, by prefixing the body of the method with the code
shown in Figure 5.37. First, two fields of the receiver, REQUIRED and EX­
CLUDED, are NORed to determine if the current method can be allowed to
proceed. The result of this operation is stored in the context in temporary
variable, T1. If the method can proceed, a BRANCH is made to the location
labeled SUCCEED, the locks are set, and the method is continuedl6 • Otherwise,
the method is terminated by sending a reply with false as the argument. In this
example the context acts as a receptionist [1] in controlling concurrent access
to the receiver.

5.5 Object Experts

One approach to harnessing the power of VLSI technology is through specializa­
tion. Many problems are so demanding of computer resources that the capabil­
ities of general-purpose computers are insufficient to solve these problems in a
reasonable period of time. Examples of demanding problems are finite element

16For mutual exclusion a Boolean lock is sufficient. In the general case, however, a counting
semaphore is required.

192 A VLSI Architecture for Concurrent Data Structures

This code prefixes a method that is qualified by the line:
'require rwLock exclude rwLock or tfalse.'

CONTEXT.T1 +- RCVR,REQUIRED NOR RCVR,EXCLUDED

BRANCH LCONST.SUCCEED ON CONTEXT.T1
REPLY GCONST.false

SUCCEED: RCVR.REQUIRED +- GCONST.true
RCVR.EXCLUDED +- GCONST.true
remainder of method code

Figure 5.37: A Coding Example: Locks

analysis, signal processing, game playing, circuit simulation, and logic simula­
tion. In recent years hardware accelerators have been constructed for a number
of these problems. Vector and array processors [106J have been used to acceler­
ate numerical applications such as finite element analysis and signal processing,
and special-purpose engines have been constructed for chess playing [18J and
for logic [101J and switch-level [23J circuit simulation. These machines typically
offer performance of 100 to 1000 times that of a general-purpose computer; how­
ever, they have the disadvantage of being specialized for one problem. The low
fabrication cost of VLSI technology makes building special-purpose processors
economically feasible; however, limited design resources and economy of scale
considerations make it impractical to build a different processor for each prob­
lem. The challenge is to build an accelerator sufficiently flexible to be applied
to many problems.

A flexible accelerator can be constructed by applying specialization to data
structures rather than to particular applications. Most applications are built
around a central data structure, and in many cases operations on this data
structure consume most of the computing resources. By accelerating operations
on common data structures, all applications using these data structures are
accelerated. Just as object-oriented programming makes it convenient to share
class definitions across several applications, hardware specialized to operate on
a particular class of objects, an object expert, can also be shared across many
applications.

Chapter 5: Architecture 193

In addition to exploiting specialization, object experts are also well suited to
VLSI technology because they promote locality. Data of a specific class are
stored in the object expert, and operations on the data are performed locally.
A floating point vector expert, for example, would store vectors of floating point
numbers near the pipelined arithmetic unit that operates on the vectors.

A machine constructed around object experts is a heterogeneous machine. Dif­
ferent types of processing elements specialized for different classes of objects
are distributed about the machine with several object experts clustered at each
processing node. Each processing node contains at least one general-purpose
processor (an object expert for context objects) and possibly one processor that
implements the class of objects used to construct the mail system. Clustering
of object experts promotes two levels of concurrency: pipelining applications
within each cluster and running several clusters in parallel. Many applications
can take advantage of two-level concurrency. For example, a logic'simulator
can pipeline the event list, fanout list, and evaluation functions and run several
of these pipelines in parallel on different portions of the circuit simultaneously.

Here are a few possible object experts:

A Floating Point Vector Expert accelerates numerical applications by pro­
viding fast arithmetic operations on vectors of floating point numbers,
similar to those provided by the vector arithmetic units of a scientific com­
puter such as the Cray 1 [106J. This expert is an example of a processing
element that stores and operates on objects that belong to a restriction
of a class. In this example, only those vector objects that contain only
floating point numbers and that are under a certain maximum length are
eligible. If an integer is stored into one of these vectors, or if a vector
exceeds the maximum length, the vector would be exported to a general
purpose processor.

A Graph Expert accelerates algorithms similar to those presented in Chap­
ter 4. This is an example of an expert for a distributed object class. Con­
stituents (edges and vertices) of distributed objects (graphs) are stored
in each expert. Several experts at different processing nodes cooperate in
accelerating operations on these graphs.

Set Experts accelerate operations on collections of objects. An ordered set
expert would accelerate the balanced cube operations described in Chap­
ter 3. An unordered set expert would accelerate the concurrent hashing
operations described in Appendix B.

I/O Experts provide a convenient way of dealing with I/O devices as objects
that send and receive messages. A display screen, for example, is an expert

194 A VLSI Architecture for Concurrent Data Structures

for objects of class Bit Bit. To draw on the screen, a copybits message is
sent to one of these objects. Input devices such as keyboards, lightpens,
and mice are handled by object experts that send messages in response to
an input event, e.g., a keystroke, and reply to messages about the state of
the device, e.g., mouse position. Mass storage experts control devices such
as disks and tapes. An I/O expert maps physical objects that manipulate
the outside world into CST objects that send and receive messages.

5.6 Summary

This chapter has presented a computer architecture designed to support con­
current object-oriented programming. This architecture is motivated by the
latency-sensitive nature of the algorithms developed in Chapters 3 and 4 and
the wire-limited nature of VLSI technology.

In Section 5.3 I analyze concurrent computer interconnection networks to de­
termine what network topology gives the lowest latency for a given amount
of wire. The analysis is restricted to k-ary n-cube networks because the di­
mension of the network is more important than the details of the topology. In
Section 5.3.1 I use a wire-cost model to analyze k-ary n-cube networks and de­
rive the result that keeping wire cost constant, low-dimensional networks have
lower latency than do high-dimensional networks. The lowest latency occurs
when the component of latency due to message length, if, is nearly the same
as the component of latency due to distance, D. Low-dimensional networks
also provide higher hot-spot throughput because each communication channel
is shared by more processor pairs. The average throughput of a network is
independent of dimension.

If low-dimensional, high-radix networks are to be used in message-passing con­
current computers, a deadlock-free routing algorithm for these networks is re­
quired. Avoiding deadlock is a more difficult problem in these networks than in
conventional computer networks because these networks use wormhole routing
to achieve low latency rather than the store-and-forward routing used in tra­
ditional computer networks. With wormhole routing, queueing is allocated on
the basis of flits that cannot be interleaved with flits of other messages, while
in conventional networks, resources are allocated on the basis of packets that
can be interleaved. In Section 5.3.2 I develop a novel deadlock-free routing al­
gorithm based on the concept of virtual channels. By multiplexing two virtual
channels on each physical communications channel and by making routing a
function 0 x N -+ 0 rather than the traditional N x N --> 0, this algorithm

Chapter 5: Architecture 195

converts cycles in the channel dependency graph, D, into spirals, thus avoiding
deadlock.

I have developed the Torus Routing Chip (TRC), described in Section 5.3.3,
to demonstrate the feasibility of the type of network described in this chapter.
The TRC combines many novel features.

• It is completely self-timed [111J.

• It uses wormhole routing [115J.

• It implements the virtual channel deadlock-free routing algorithm [24J in
hardware.

TRCs have been fabricated and they operate properly.

In addition to minimizing network latency, the latency of each processing node
must also be minimized by matching the architecture of the processor to the
semantics of the programming model. Section 5.4 outlines the architecture of
a message-driven processing element that responds directly to messages rather
than interpreting messages using a conventional instruction processor.

To take advantage of the performance offered by specialization while at the same
time retaining flexibility, processing elements can be specialized to operate on a
single class of object. These object experts, Section 5.5, by accelerating common
object classes, improve the performance of all applications using those classes.
Object experts also promote locality by storing the objects local to the hardware
that modifies them.

Chapter 6

Conclusion

The performance of computers can be made incrementally extensible by ex­
ploiting VLSI technology to build concurrent computers, ensembles of pro­
cessing nodes connected by a network. These concurrent computers can be
programmed by combining concurrent data structures. The problems of com­
munication and synchronization are encapsulated in the data structure, leaving
the programmer free to concentrate on problems specific to his/her application.

This thesis has developed a paradigm for programming concurrent computers:
concurrent data structures. To describe concurrent data structures, a program­
ming notation, Concurrent Smalltalk (CST), has been developed incorporating
the concept of a distributed object. A distributed object is a single object con­
sisting of a collection of constituent objects, each of which can receive messages
sent to the distributed object. Thus distributed objects can process many mes­
sages simultaneously. They are the foundation upon which concurrent data
structures are built.

The balanced cube is a concurrent data structure for ordered sets. It achieves
concurrency by eliminating the root bottleneck of tree-based data structures. A
balanced cube has no root; all nodes are equals. An ordered set is represented
in a balanced cube by mapping elements of the set to right sub cubes of the
balanced cube using a Gray code. The VW search algorithm, based on the
distance properties of the Gray code, searches a balanced cube in logarithmic
time. This search algorithm can be initiated from any node and will uniformly
distribute activity over the nodes of the cube. The B-cube is an extension of
the balanced cube that stores several data in each node to match the grain size
of the data structure to the grain size of a particular computer. The balanced
cube is an example of a concurrent data structure that differs markedly from
its sequential counterparts.

198 A VLSI Architecture for Concurrent Data Structures

Concurrent graph data structures can be used to solve many combinatorial
problems. In Chapter 4 concurrent algorithms for the shortest path problem,
the max-flow problem, and graph partitioning were developed. These graph
algorithms illustrate many of the synchronization problems encountered in con­
current programming. Consider, for example, the shortest path problem. Dijk­
stra's sequential algorithm [29] cannot directly be made concurrent because it
depends on a total order of events. It is too tightly synchronized. A concurrent
algorithm due to Chandy and Misra [15] that relaxes this ordering of events
but introduces no other synchronization may require exponential time because
it is too loosely synchronized.

The concurrent algorithms described here are characterized by short messages
and short methods. Supporting this fine-grain concurrency requires a low­
latency interconnection network for efficient execution. Because VLSI technol­
ogy is wire-limited, alternative architectures must be compared keeping wire
cost constant. Consider the family of k-ary n-cube networks: networks with
n dimensions and k processors in each dimension. High-dimensional networks
with narrow channels are compared against low-dimensional networks with wide
channels. The minimum latency occurs when the delay due to message length,
~, is nearly equal to the delay due to the distance traveled, D. This minimum
occurs at a surprisingly low dimension. For small networks, 1000 processors or
less, the minimum latency is achieved with a two-dimensional network. Even
for very large concurrent computers, networks with 4 or 6 dimensions are suf­
ficient. In addition to providing low-latency, low-dimensional networks have
several other advantages. They are easy to construct, since they fit into a plane
with fewer folds than high-dimensional networks. Two dimensional networks
are particularly easy to construct since they fit into the plane with no folds, and
all channels are the same length. Low dimensional networks are also easier to
interface to and control. Since they have fewer channels per node, they require
less control logic to manage communications.

Virtual channels can be used to construct deadlock-free routing algorithms for
all strongly connected interconnection networks including k-ary n-cubes. By
making routing a function of the channel on which a message arrives at a node,
and by multiplexing several virtual channels over a single physical channel, the
cycles in a channel dependency graph can be broken into spirals to avoid dead­
lock. A virtual channel routing algorithm has the advantage that it can be used
with wormhole [115] routing. In a wormhole network, flow control is performed
on flits that cannot be interleaved. Conventional structured buffer pool dead­
lock avoidance algorithms are designed for store-and-forward networks, where
flow control is performed at the level of packets that can be interleaved. These
algorithms depend on the ability to interleave packets and thus cannot handle
wormhole routing, since flits cannot be interleaved. The torus routing chip

Chapter 6: Conclusion 199

(TRC), a self-timed VLSI chip, has been developed to demonstrate the feasi­
bility of wormhole routing and virtual channels.

Low-latency processing elements are required to support fine-grain concurrent
computation. A conventional processor executes about one hundred instruc­
tions to receive and interpret a single message. A message-driven processor
directly interprets messages, eliminating this interpretation overhead. The in­
structions of a message-driven processor are messages. By performing auto­
matic message reception and buffering, accelerating message lookup with an
instruction translation lookaside buffer, and providing addressing modes for
fast access to the context and receiver, the architecture of a message-driven
processor is matched to the semantics of CST.

A machine with low-latency communications channels and processing elements
is capable of supporting instruction-size granularity. In the past, concurrent
computation has been performed with process-size granularity. With finer­
grain concurrency, less memory is required at each processing node. Current
machines require a large memory at each node to support a grain size large
enough to keep their high latency from dominating computation time. Some
argue that a large memory is required to store a copy of the operating system
at each node; however, such a practice is wasteful. By properly layering the
operating system, only a few bottom-level modules, e.g., method lookup and
mail delivery, need to be replicated in every processing node. Higher level
modules can be stored in a single processing node and cached in other nodes as
required.

VLSI technology, being wire-limited, encourages specialization and locality.
Storing data local to the logic that manipulates it results in shorter wires.
A special-purpose VLSI chip has a fixed communication pattern and thus can
make better use of the limited wires than a general-purpose chip that must
support many different communication patterns. Unfortunately the high cost
of designing a VLSI chip makes it impractical to build special-purpose VLSI
chips for every application. However, specialization can be applied to many ap­
plications by building VLSI chips to accelerate operations on common classes
of objects. These object experts can be shared among applications, offering
performance comparable with special-purpose hardware while retaining much
of the flexibility of a general-purpose machine.

Computer architecture encompasses the design of programming languages, data
structures, and algorithms, as well as hardware. The approach taken here is
to start with a programming paradigm, concurrent data structures, develop a
notation, CST, write algorithms using this notation, and finally to organize
hardware to support these algorithms. In contrast, many computer architects

200 A VLSI Architecture for Concurrent Data Structures

restrict themselves to the last step. They analyze existing algorithms and fine­
tune architectures to execute these algorithms. The problem with this evolu­
tionary approach is that it leads to inbreeding, amplifying both the good and
bad features of existing computer architectures. The algorithms analyzed are
optimized to run on the previous generation of machines, which were fine-tuned
to execute the previous generation of algorithms, and so on. Each generation,
algorithms are designed to make the best use of the good features of the ma­
chine and to avoid the bad. The next generation of machines, based on these
algorithms, makes the good features better and ignores the bad since they were
not frequently used by the algorithms. The worst effect of this approach to
architecture is that it discourages new programming language features. Late­
binding programming languages, for example, are often judged to be inefficient
because they cannot be efficiently implemented on conventional machines. Late­
binding languages are not inefficient; conventional architectures are just not well
matched to these languages.

Powerful software features such as late-binding operators and automatic stor­
age management that are often cited as inefficient need not be slow. These
features can be made very efficient with a modest amount of hardware support.
In fact, high-level features can lead to a more efficient computing system by
replacing many ad hoc mechanisms with a single mechanism that can then be
implemented in hardware. The key to a successful architecture is to identify a
few simple mechanisms that can be accelerated by hardware.

A VLSI architecture must match the physical form of a machine to its logical
function. Traditionally computer architects and designers have concentrated on
the logical organization of machines, giving little consideration to their physi­
cal design. With VLSI technology this is no longer possible. VLSI technology
is wire limited. To make best use of wiring resources, architects must care­
fully plan the physical design of their machines. For example, consider the
interconnection networks analyzed in Chapter 5. Considering just the logical
organization of the network, one quickly deduces (as Lang [81J did) that binary
n-cubes offer superior performance because of their smaller logical diameter.
When the physical implementation of the network is considered, however, one
finds that in fact low-dimensional networks offer better performance because
they make better use of their wires. The short logical diameter is no longer a
great advantage since, after being embedded into a two- or three-dimensional
implementation space, all network topologies have the same physical diameter.

Many experiments are required to refine the ideas presented in this thesis. A
first step is to implement a compiler and run-time system to run CST on an
existing concurrent machine such as the Caltech Cosmic Cube [114J. Because
of the high latency of Cosmic Cube communication channels and the mismatch

Chapter 6: Conclusion 201

between CST semantics and the architecture of the Intel 8086-based processing
nodes, such a system will be quite inefficient. Nevertheless this programming
system will be used to gain practical experience in concurrent object-oriented
programming and in building systems out of concurrent data structures.

The next step is to build hardware to improve the efficiency of the system. This
is best done in stages.

1. Provide a low-latency communication facility by building a concurrent
computer using the TRC for communications and a commercial micropro­
cessor, such as the Motorola 68000 [94], for a processing element. Such a
machine could be built in a relatively short time frame and would provide
valuable experience in using a low-latency communication network.

2. Build a message-driven processor to complement the low latency of the
TRC-based network. This machine will provide an efficient environment
for fine-grain concurrent object-oriented programming and will provide
further experience with this programming style.

3. Provide a powerful machine for demanding applications by constructing
object experts for several commonly used classes such as floating point
vectors and ordered sets.

The availability of a machine comparable to (3) above will stimulate much
research on concurrent software. Concurrent operating systems will evolve to
support fine-grain object-oriented programming. To run in a fine-grain machine
with limited storage in each processing node, operating systems will be parti­
tioned into layers with only the bottom layer duplicated in each node. Memory
management functions will make the partitions between processing nodes invis­
ible to user programs by maintaining a single name space across the machine.
The system will relocate objects as required to make efficient use of memory
and processing resources, dynamically balancing the load across the processing
nodes. Systems will evolve to the point where a host is no longer required.
Input/output devices will connect directly to processing nodes and will appear
as objects to the system. Methods will be edited and compiled directly on the
concurrent computer.

One fertile area for further research is the development of concurrent computer­
aided-design (CAD) applications. The exponential growth in the complexity of
VLSI systems that has made possible the construction of the machines described
here has also exceeded the capacity of sequential CAD programs. For example,
verification of a 106-transistor VLSI chip by logic simulation takes several weeks
of CPU time. Since simulation time grows as the square of device complexity,

202 A VLSI Architecture for Concurrent Data Structures

one can project that a lOG-transistor chip will require several years to verify.
Concurrent CAD programs will give performance several orders of magnitude
better than sequential applications, reducing verification time from years to
days. More importantly, concurrent applications give performance that scales
with the size of the problem. As VLSI chips become more complex, we will
construct larger concurrent computers to design these chips. We will apply
VLSI technology to solve the problem of VLSI complexity.

To exploit the low latency but high throughput of VLSI technology, we build
concurrent computers consisting of many processing nodes connected by a net­
work. Software is the real challenge in the development of these machines. It
is difficult to focus the activity of large numbers of processing elements on the
solution of a single problem. This thesis proposes a solution to the problem of
programming concurrent computers: concurrent data structures. Most applica­
tions are built around data structures. The problem of coordinating the activity
of many processing elements is solved once and encapsulated in a class defini­
tion for a concurrent data structure. This data structure is used to construct
concurrent applications without further concern for the problems of commu­
nication and synchronization. The combination of VLSI and concurrency will
make computers fast. The combination of object-oriented programming and
concurrent data structures will make them easy to program.

Appendix A

Summary of Concurrent

Smalltalk

Concurrent Smalltalk (CST) is an extension of the Smalltalk-80 programming
language [53J, [54J, [76J, [138J that incorporates distributed objects, concurrent
message sending, and locks. The differences between CST and Smalltalk-80 are
described in Chapter 2. This Appendix gives a brief summary of the entire
programming language for those readers not familiar with Smalltalk-80. For a
more complete description of the programming language, the interested reader
should consult [53J or [138J.

Classes

A CST program consists of a set of class declarations. Each class declaration
describes the state and behavior of a class of objects and has the form shown
in Figure A.I. The declaration contains the name of the class's superclass,
specification of the class object, and specification of each instance of the class.

class: The class name identifies the class object, the object that contains the
class variables and implements the class methods. The class object name
is capitalized since the class is a global objectl and by convention names
of shared variables are capitalized.

lSmalltalk could be greatly improved by adding Borne type of scoping to class names BO that
a user could locally override a class in an application without changing the class used by the
rest of the system.

204

class
superclass
instance variables
class variables
locks
class methods

class methods ...

instance methods

instance methods ...

A VLSI Architecture for Concurrent Data Structures

<identifier>

<identifier>

[<identifier>]*
[<identifier>]*
[< identifier>] *

the class name
name of the superclass
state of each instance object
state of the class object
locks controlling access to

each instance object

Figure A.I: Class Declaration

superclass: The superclass name identifies the superclass from which the cur­
rent class inherits variables and methods. The current class is declared as
an extension of the superclass. All class and instance variables declared
in the superclass are added to the lists specified in the class declaration.
All class and instance methods that are not overridden in the class defi­
nition are also inherited from the superclass. The inheritance can extend
through many levels of the superclass hierarchy, with the current class
inheriting methods and variables from the superclass that were in turn
inherited from the superclass' superclass, and so on.

instance variables: The private memory of each instance of the defined class.
For example, if we define a class Point with instance variables x and y,
then each instance of class Point is created with two local variables named
x and y distinct from the variables in any other instance. The instance
variables specified in this declaration are in addition to any instance vari­
ables specified by the superclass.

class variables: Variables shared by the class object and all instances of the
class. There is only one instance of each class variable. This single copy
of a class variables can be accessed by any instance of the class. Class
variables are capitalized since they are shared variables.

locks: Locks are special instance variables that control concurrent access to
objects.

Appendix A: Summary of Concurrent Smalltalk 205

class methods: Methods that define the behavior of the class object. Each
method specifies a number of expressions to be performed in response to
a message. Typically class methods handle tasks such as object creation.

instance methods: Methods that define the behavior of each instance of the
class.

Messages

Everything in CST is done by passing messages. Sending a message to an object
causes the object to execute one of its methods. A message has three parts:

receiver: The object to which the message is being sent.

selector: The type of message. The selector specifies the method the receiver
is to execute.

arguments: Additional data required for the receiver to execute the method
specified by the selector.

Here are some examples of message expressions.

theta sin

This message expression sends the message with selector sin and no arguments
to theta, the receiver. A message like sin that has no arguments is called a
unary message. In a unary message, the selector follows the receiver.

a+b

The receiver, a, is sent the message containing the selector, +, with argument,
b. A message like + b, where there is a single argument and the selector consists
of one or two special characters, is called a binary message.

foo at: 10 put: ·hello·

206 A VLSI Architecture for Concurrent Data Structures

This keyword message sends the message with selector at:put: to object foo
with arguments 10 and ·hello·. In keyword messages the selector consists of a
keyword before each argument. Each keyword is terminated by a colon, ':'.

When an object receives a message, it looks up and executes the method that
matches the message selector. The method lookup begins with the receiver first
checking its own instance methods. If the method is not found in the receiver's
class, the instance methods defined in the superclass are checked, and so on.

Literals

The receiver and arguments in a message expression may be variables, pseudo­
variables, or literals. CST supports the following types of literals:

numbers: Numbers consist of an optional sign, an optional radix, an integer
part, an optional fraction part, and an optional exponent. Here are some
examples of numbers.

17
16rFF
3.14159265358979
-10.1e-2
2r101e2

an integer, radix 10 is default
a radix 16 (hexadecimal) integer
pi
-0.101
2rl0l00 or 20

characters: Character literals consist of a dollar sign, '$', followed by any
character, e.g., SA.

strings: String literals consist of a sequence of characters delimited by single
quotes, e.g., 'Hello World'. To insert a single quote into a string it is
duplicated, e.g., ·don"t'.

symbols: Symbols or atoms consist of a hash mark followed by the name of
the symbol, e.g., #slave.

arrays: A sequence of literals is denoted by the sequence with hash marks
removed enclosed in parentheses, '0', and preceded by a hash mark, e.g.,
#(1 2 slave SA 'Element' 2r10001 (1 23)).

Appendix A: Summary of Concurrent Small talk 207

Assignment

To simplify assignment of values to variables, CST permits the result returned
by a method to be assigned to a variable by using the backarrow, '+-', character.
For example, the message

a +-3 + 2.

assigns to variable a the result of sending the message + 2 to the object 3.
Assignment can be thought of as sending an at: variable put: expression message
to the current environment.

Messages that do not include an assignment do not generate a reply. To wait
for a message that returns no value, the message is preceded by a backarrow,
'+-', with no variable. For example, the message

+-aRectangle display.

sends a display message to aRectangle and expects a reply from this message.
The message

aRectangle display.,

on the other hand, does not expect a reply.

Methods

An object's protocol2 is defined by the instance methods in the class declaration.
Two example method descriptions are shown in Figure A.2. The first method
calculates the product of a sequence of integers beginning with the receiver
and ending with the argument upperBound. This definition of the message
rangeProduct: follows that of Theriault [128]. The second method is the contains
method for class Interval described in Chapter 2 (Figure 2.3 on page 20). This
method tests if a number is contained in a closed interval of numbers.

Each method description consists of the following parts:

2 An object's protocol consists of the messages understood by an object.

208 A VLSI Architecture for Concurrent Data Structures

instance methods for Integer

rangeProduct: upperBound
locks would go here
I midPoint upperProd lowerProd I
self = upperBound ifTrue: [

iself]

if False: [

midPoint f-self + upperbound //2.

lowerProd f-self rangeProduct: midPoint.

upper Prod f-midPoint rangeProduct: upperBound.

ilowerProd * upperProd.J

instance methods for Interval

contains: aNum
require rwLock.

I lin uin I
lin f-I ~ aNum.

uin +-u ~ aNum.

i(lin and: uin)

Figure A.2: Methods

tests lor number in interval

Appendix A: Summary of Concurrent Smalltalk 209

header: The method header consists of the selector that activates the method
with pseudo-variables in place of arguments. When a message is received
by an object, the object's method with the corresponding header is ac­
tivated. Message arguments are bound to the pseudo-variables in the
method header. Pseudo-variables are like instance variables except that
they cannot be assigned to. For example, the header range Product: upper­

Bound specifies that the following method will be executed in response to a
message with selector rangeProduct: and the pseudo-variable upper Bound
will be bound to the argument of the message.

concurrency control: An optional concurrency control line specifies a re­
quired set of locks, an excluded set of locks, and an optional escape
expression. The method is allowed to execute only when no currently
pending method requires an excluded lock or excludes a required lock. If
the method is locked out, the escape expression is executed or, if no es­
cape expression is present, the method is suspended. Because the contains:
method requires rwLock and specifies no escape, it will be suspended if
some previous method excluded rwLock and will be restarted only when
all such methods have completed.

local variables: Local variables are declared between two vertical bars, 'I'.
For example, the rangeProduct: method declares three local variables,
midPoint, upperProd, and 10werProd.

message expressions: The remainder of the method consists of message ex­
pressions. Messages are separated by commas, '.', or periods, '.'. A
comma between two messages means that the second message can be sent
before receiving a reply from the previous message. When a period fol­
lows a message, replies must be received from all previous messages whose
results are assigned with a backarrow before the next message can be sent.
For example, the range Product: method sends messages to self and mid­
Point concurrently and then waits for replies from both messages before
multiplying the two results.

Messages may be nested within other messages. The reply of one mes­
sage, A, may specify the receiver or argument of another message, B. For
example, the message

self = upperBound ifTrue: [... J if False: [... J.

in method rangeProduct: first sends the message, = upperBound, to self
and then sends the ifTrue:ifFalse: message to the reply of this first message.
Three rules govern the parsing of these compound messages:

210 A VLSI Architecture for Concurrent Data Structures

1. Any messages enclosed in parentheses, '0', are evaluated before the
messages outside the parentheses.

2. Unary messages take precedence over binary messages, and binary
messages take precedence over keyword messages.

3. For messages of equal precedence, evaluation proceeds from left to
right.

Two special identifiers allow a method to refer to the receiver.

self is an expression that specifies the receiver.

super also specifies the receiver, but messages sent to super are inter­
preted by looking up the method beginning in the receiver's super­
class. Messages to super are often used to inherit a method from the
superclass while making additions in the subclass.

Messages return a value by preceding a message expression with an upar­
row, 'i'. The value returned by the following message is in turn returned
by the method. Preceding a variable by an uparrow returns the value of
the variable. A downarrow, 'r, causes a method to terminate without
returning a value.

Blocks

Like Smalltalk-80, CST has no built-in control structures. Instead, control
structures are built by sending messages to blocks. Blocks are deferred se­
quences of message expressions that are executed when they are sent a value
message. Blocks are like methods in that they have arguments, locks, and lo­
cal variables; unlike methods, however, blocks may have free variables that are
lexically scoped. That is, a block may refer to the local variables of the method
in which it is defined. Here is an example block:

[:edge I require rwLock :varl I
varl <--edge flow.
varl > 0 ifTrue: [tll.

Blocks are enclosed in square brackets, 'Il', and consist of the following parts.

argument list: The optional argument list specifies the names of pseudo­
variables that are bound to arguments passed into the block with a value:

Appendix A: Summary of Concurrent Smalltalk 211

arg message. Each identifier in the list is preceded by a colon, ': '. For
example, in the block above the pseudo-variable edge is an argument. If
this block is sent the message value: anEdge, the block will be executed
with pseudo-variable edge bound to object an Edge.

concurrency control: Like methods, blocks may optionally specify two sets
of locks to control concurrent access to the block.

local variables: The optional variable list consists of a list of identifiers pre­
ceded by colons. Local variables exist only for one activation of the block.
Each time a block receives a value message, it creates a new context with
a new set of local variables, all initialized to nil.

message expressions: The remainder of the block consists of a sequence of
message expressions. The sequence is interpreted as in a method except
that uparrow, 't', returns out of the method calling the block and dow­
narrow, '!', breaks out of the block or method calling the block. The last
message expression in the block is the value of the block expression.

A block is activated by sending it a value message. When a block receives a
value message, the arguments of the message are bound to the arguments of
the block and the message expressions in the block are executed.

Distributed Objects

A distributed object is a collection of constituent objects (COs) that receive
messages sent to the distributed object. Because a distributed object contains
many independent constituents, it can process many messages simultaneously.

Distributed objects are declared as subclasses of class DistributedObject. A new
distributed object is created by sending the newOn: message to the appropriate
class object. For example, a new instance of a TallyCollection (described in
Figure 2.1 on page 16) is created with the message

aTallyCollection +-TallyCollection newOn: someNodes.

The argument of the newOn: message, some Nodes, is a collection of processing
nodes. The newOn: message creates a CO on each member of some Nodes.

212 A VLSI Architecture for Concurrent Data Structures

When a message is sent to a distributed object, it may be delivered to any
constituent of that objectS. It is possible to send a message to a specific con­
stituent of a distributed object by indexing the object with the selector co:. For
example, the message

aTallyColiection tally: 'hello'.

is sent to any constituent of aTallyCollection. The message

aTallyColiection co: 3 tally: 'hello'.

is sent to the third constituent of aTallyCollection. Constituents are indexed
sequentially beginning with one. The pseudo-variables maxld, the total number
of constituents, and myld, the index of self, are available to constituent objects
for use in computing indices.

Common Messages

To describe all of the classes and messages in a Small talk system is beyond
the scope of this appendix. I include the following list of common messages to
assist the reader in understanding the CST code in this thesis. This list is by
no means comprehensive.

Block

value This unary message causes a block with no arguments to be executed.

value: anObject ... A block with i arguments is sent a message with i value:
keywords, one for each argument. This message passes the arguments to
the block and causes the block to execute.

while True: aBlock A value message is repeatedly sent to the receiver. As long
as the receiver replies with true, a value message is sent to aBlock, and
the sequence is repeated. If the receiver replies with false, the method
terminates.

whileFalse: aBlock This message is similar to whileTrue but with the receiver
negated. As long as the receiver block evaluates to false, the argument
block is iterated.

SOne hopes that the mail system will be efficient and deliver the message to the nearest CO
or perhaps the CO with the shortest message queue.

Appendix A: Summary of Concurrent Smalltalk 213

Boolean

ifTrue: aBlock Sends a value message to aBlock if the receiver is true.

if False: aBlock Sends a value message to aBlock if the receiver is false.

ifTrue: true Block if False: falseBlock Sends a value message to trueBlock if the
receiver is true. Otherwise, if the receiver is false, a value message is sent
to false Block.

if False: false Block ifTrue: true Block Sends a value message to true Block if the
receiver is true. Otherwise, if the receiver is false, a value message is sent
to falseBlock.

Number

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

/ / Integer division rounding to -00.

\ \ Modulo (remainder of division after rounding to -00).

quo: Integer division rounding to o.

rem: Modulo (remainder of division after rounding to 0).

abs Absolute value.

negated Additive inverse.

reciprocal Multiplicative inverse.

The selectors abs, negated, and reciprocal are not terminated with a colon
because they are unary messages. The selectors quo: and rem: are termi­
nated by colons because they are keyword messages.

Appendix B

Unordered Sets

Many applications use unordered data structures and do not require the over­
head necessary to support an ordered set concurrent data structure like the
balanced cube of Chapter 3. In this appendix I present two unordered concur­
rent data structures. A dictionary can be used in applications that require a
data structure to hold associations between objects but do not need to main­
tain an order relationship on the objects. A union-find set can be used in
applications where sets of data are combined.

B.l Dictionaries

A dictionary is a set of associations between pairs of objects. Each element of
a dictionary is an ordered pair (aKey,anObject) that associates a key aKey with
object anObject. A dictionary supports the following operations 1.

at: aKey return the object associated with key aKey.

at: aKey put: anObject add an object to the set.

delete: aKey remove the object associated with key aKey from the set.

do: aBlock : send a value: anObject message to aBlock for each object in the
set.

lThe complete protocol of class Dictionary is given in Chapters 9 and 10 of [53[. Most of the
protocol is omitted here for the sake of brevity.

216 A VLSI Architecture for Concurrent Data Structures

Figure B.1: A Concurrent Hash Table

Dictionaries represent binary relations. A common use of a dictionary is to
represent the name-of relation by binding symbols to names. For example, the
symbol table in a compiler is a dictionary.

Dictionaries can be implemented using a variety of data structures including
radix search tries [109J, binary search trees [2J, and hash tables [109J. Hash
tables are usually the structure of choice for sequential machines. The expected
case access time for a hash table is 0(1) compared to O(log N) for the binary
search tree, and hash tables make more efficient use of memory than radix
search tries. In the past, one objection to hash tables was their fixed size;
however, the recent development of extendible hashing [39J, [85J makes hash
tables efficient even for sets that change size dynamically.

Ellis has developed concurrent algorithms for extendible hashing [36J and linear
hashing [35J. These algorithms involve locking schemes and protocols to sup­
port concurrent access to a shared hash table. Like most work on databases,
this work assumes a disk-based system where multiple processes may compete
for access to shared disk pages and is not directly applicable to concurrent
computers.

Unlike most sequential data structures, the hash table is ideally suited for a
concurrent implementation. The table is homogeneous and can be distributed
uniformly over the nodes of a concurrent computer. Hash tables, unlike tree
structures, have no root bottleneck.

A concurrent implementation of a hash table using a variant of bounded index
hashing [85J is shown in Figure B.1. To see how this structure is used, consider
the at: method for distributed object Hash Table shown in Figure B.2. Search
key aKey is converted to a hashed key hKey by sending it the message hash.

Appendix B: Unordered Sets 217

The low-order bits of hKey are used to find the node that contains the data,
while the next depth bits of hKey find the head of a linked list within the node.
A linear search of this list is performed to return the object associated with
aKey, or nil if this object is not found. The at:put: and delete: methods are
obvious extensions of the at: method.

An extendible hash table [39] is implemented in each node. Each node's table is
initialized to size 2depth. When the number of entries increases beyond a2depth

for some constant a, depth is incremented and the size of the table is doubled.
The objects in the table need not be rehashed as the table grows. Doubling the
size of the table simply increases by one the number of significant bits of hKey.
The new entries in the table initially duplicate the old entries. As accesses are
made to the table, the linked lists are split to shorten the access paths.

The do: aBlock method broadcasts aBlock to each node of the distributed hash
table object. Each node enumerates the objects in its local table, sending each
of them to aBlock. If aBlock updates no instance or method variables, it can be
replicated, and the value methods can be processed in parallel. If aBlock up­
dates instance or method variables, then the executions must be synchronized.

An operation on the table requires only two messages, a find:at: message to the
node containing the key and the reply: message back. Thus, hashing is 0(1)
in the number of elements in the set. However, since the destination of these
messages is random, each message travels an average distance of ¥, where
N is the number of nodes in the machine. This makes hash table access time
grow o (log N) with the number of nodes in the machine.

Since the hash function randomizes access to a hash table, there is very lit­
tle interaction between concurrent hash operations. Thus, the concurrency of
hashing is O(N).

B.2 Union-Find Sets

A union-find set, as the name implies, supports the operations of forming the
union of two sets and finding the set to which an element belongs 2.

union: aSet returns the union of the receiver with aSet. Both the receiver and
aSet are modified to form the new set.

add: anElement adds anElement to the receiver

2 As with dictionary, this class supports a more complete protocol.

218

class
superclass
instance variables

class variables
locks

instance methods

at: aKey

I hkey I

A VLSI Architecture for Concurrent Data Structures

Hash Table

Dictionary

table

depth

rwLock

a distributed object
table o/links (key,data,next)
log 0/ table size
none
implements readers and writers

find anObj in hash table

hKey +-aKey hash. compute hashed key 0/ object
(self at: (hkey mod maxld)) find: aKeyat: (hKey/maxld).

private instance methods

find: aKey at: hKey
require rwLock

I link I
link +-table at: (hKey \ \2depth).

[link isNil] whileFalse: [

(link key = aKey) ifTrue[requester reply: link data].

link +-link next.]

requester reply: nil.

in proper node, find object

Figure B.2: Concurrent Hashing

Appendix B: Unordered Sets

~~~ 
~ ~~~jl 

~ 
Before A union: B After A union: B 

Figure B.3: A Concurrent Union-Find Structure 

219 

set returns the set to which the receiver belongs. Elements of the set must 
support this message as well. 

Algorithm 4.3 in [2] performs a sequence of union and find operations in time 
that is almost linear3 in the number of operations performed, approximately 
constant time per operation. Unfortunately this algorithm has very poor con­
currency. Every find requires traversing a tree from the leaves to the root. The 
root serializes finds since it can only process one message at a time. 

To eliminate this root bottleneck, we store with each element the identity of 
the set to which the element belongs. As shown in Figure B.3, during a union 
operation the smaller set becomes a subset of the larger set. Each element of 
the smaller set must also be informed that it is now a member of the larger set. 
The code for these operations is shown in Figure BA. 

Only the elements of the smaller set are updated during a union operation. 
Since each time an element is updated the size of the set it belongs to has at 
least doubled, an element is updated at most o (log N) times, where N is the 
number of elements 4. Thus, if we implement each of the sets with a dictionary 
or other constant access time structure, the average time per union operation 
will be o (log N). Find operations require 0(1) time. The concurrency of 
union-find operations depends on the balance of the resulting tree structure of 
sets. 

3The time grows as N",(N) where '" is the inverse of Ackerman's function and N is the 
number of operations. 

4 A similar approach is used in Section 4.6 of [21. 



220 A VLSI Architecture for Concurrent Data Structures 

class 
superclass 
instance variables 
class variables 
locks 
instance methods 

add: anObj 
require me Lock 

II 
anObj parent: self. 

isuper add: anObj 

union: aSet 
require meLock 

II 

Union Find Set 

Set 

parent 

meLock 

a distributed object 
parent set if not self 
none 

add an element or subset to the set 

make smaller set a subset of larger 

«aSet size) > (self size» iITrue: [iaSet union: self]. 

iself add: aSet 

private instance methods 

parent: .Set inform all elements of new parent 
require me Lock exclude me Lock 

II 
parent +-aSet, 

self do: [:each I each parent: aSet]. 

Figure B.4: Concurrent Union-Find 



Appendix C 

On-Chip Wire Delay 

Signal velocities on an integrated circuit are limited by the resistance and capac­
itance of the wire to be far less than the speed of light. Because the resistivity 
of integrated circuit wires is high, it is not possible to build good transmission 
lines on a chip. Instead, on-chip signal wires are lossy transmission lines with 
a delay proportional to the square of their length. 

We can propagate a signal with linear delay by placing repeaters along a trans­
mission line. Each repeater is an inverter of size S. The repeaters are spaced 
distance L apart. Let us make the following assumptions: 

• The ratio of inverter input capacitance to transistor gate capacitance is 
X. For a CMOS inverter with the p-channel transistor twice the size of 
the n-channel transistor, X = 3. 

• Transistors will be modeled by a linear resistance. The resistance of a 
minimum width transistor is R... The output resistance of each inverter 
is R.... = ~. 

• The gate capacitance of a minimum width transistor is a constant, G., and 
scales linearly with device size. The input capacitance of each inverter is 
an. = XSG •. 

• The resistance of a unit length wire is K,R... The resistance of the wire 
between two inverters is Rw = LK, R... 

• The capacitance of a unit length wire is 1(. G •. The capacitance of the 
wire between two inverters is G", = LK. q. 



222 A VLSI Architecture for Concurrent Data Structures 

R;nv 

in '-------,---------,r--- out 

Figure C.1: Model of Inverter Driving Wire 

We model one stage of the RC transmission line with repeaters with a II network 
as shown in Figure C.l. Half of the distributed wire capacitance is lumped at 
each end of the wire. The output resistance of the driving repeater is added 
to the input end of the network, and the input capacitance of the receiving 
repeater is added to the output side of the network. 

We approximate the delay between repeaters by multiplying each resistance by 
the capacitance it 'sees' and summing the products. 

T R;nv (Cw + C;nv) + Rw (~w + C;nv), 

~ (LKC. + XSCg) + LKB. (L~Cg + XSCg), 
(C.1) 

( LK L'KK ) B.Cg S+X+-2-+LKXS . 

To find the optimal repeater size, we take the partial derivative of T with respect 
to S 

(C.2) 



Appendix C: On-Chip Wire Delay 223 

Setting ~~ equal to zero and solving for S gives 

SOP' = J ffK.. (C.3) 

To find the optimal repeater spacing, we take the partial derivative of f, the 
inverse of signal velocity, with respect 1.0 L 

af = D Q (_ X XK,) aL Lit. [} + 2 . 

Setting this equal to zero and solving for L gives 

.f2X L"p, = YU· 

(C.4) 

(C.S) 

Substituting (C.3) and (C.S) back into (C.1) gives the delay of the optimal 
segment 

(C.6) 

Dividing (C.S) by (C.6) gives the maximum signal velocity in units of '0;::.' 

(C.7) 

Let us put some real numbers into these equations. The following table gives 
approximate values for our four constants as a function of linear dimension, )., 
in microns. 

Parameter Value Units 

R. 10' n 
G. 4). fF 
K, 0.1 

X ~ 



224 A VLSI Architecture for Concurrent Data Structures 

For a 1/-£ technology (>. = 0.5/-£), if we set X = 3, we can calculate: 

• Optimal repeater size is S Rl 60. 

• Optimal repeater spacing is L Rl 2500. 

• Time between repeaters is T Rl 300ps. 

• The maximum signal velocity, v = ¥ Rl 8 x 10· .:, «3 x 108 .:,. 

This calculation has not been terribly accurate. Still, it is clear that signal 
velocities on integrated circuits are limited by resistance to be much less than 
the speed of light. 



Glossary 

acquaintance An object's, A's, acquaintances are those objects to which A can 
send messages. In most cases an object's acquaintances are its instance 
variables and class variables. 

actor: A synonym for object. 

algorithm: A finite set of instructions for solving a specific type of problem 
[73]. 

argument: An object passed as part of a message. Arguments are bound to 
pseudo-variables in the method executed in response to the method. 

assignment: The process of binding an object to a variable. In CST assign­
ment is indicated by a backarrow, '<-'. For example, a <-b, assigns the 
value of b to variable a. 

balanced cube: A concurrent ordered set data structure that maps the ele­
ments of an ordered set to the right subcubes of a binary n-cube. 

balanced tree: An ordered set data structure based on a binary search tree 
whose height is kept within a constant factor of log, N, where N is the 
number of data in the tree [74]. 

B-cube: A concurrent ordered set data structure where multiple data are 
stored in each node of a balanced cube. 

B-tree: An ordered set data structure based on a tree with the following prop­
erties [74]: 

1. Each internal node of a B-tree of order N has between Nj2 and N 
children. 

2. All leaves of a B-tree are at the same level and contain no data. 

3. An internal node with k children contains k records. 



226 A VLSI Architecture for Concurrent Data Structures 

4. The i'h record of an internal node is greater than the i-I" record. 

5. All records stored in the i'h child of a node, A, are greater than the 
i-I" record stored in A and less than the i th record stored in A. 

binary message: A message with a single argument and a selector composed 
of one or two special characters. For example, a + band p :<::: q are binary 
messages. 

binary ~cube: An interconnection topology with N == 2n nodes where each 
node has a binary address, a, and is connected to those nodes whose 
addresses differ from a in exactly one bit position, a EB 2', a :<::: i < n. 

binding: The process of associating meaning with an object. For example, 
object-oriented programming languages bind meaning to message objects 
by associating a method with each message. 

block: In Concurrent Smalltalk, a block is a sequence of deferred message 
expressions along with arguments, locks and local variables. A block is 
executed when it receives a value message. 

[:each I require rwLock :varl :var2 I message1. message2) 

The block above, for example, has a single argument, each, requires a lock, 
rwLock, and has two variables, varl and var2. When it receives a value: 
arg message, this block binds each to arg and executes the two messages. 

cache: A small, fast memory used to hold frequently accessed data. 

class: An object that describes the state and behavior of objects of a certain 
type. 

class variable: A variable shared by objects of a certain class. It can be 
accessed by the class itself and by any instance of the class. 

communication channel: The hardware used to transmit information be­
tween the nodes of a network. The channel includes the physical wires 
that carry the information, the buffers or queues that store information 
in transit, and the logic that controls information flow. 

computer architecture: The process of organizing a computer system to ap­
ply available technology to the solution of a set of problems. 

concurrent algorithm: An algorithm for a concurrent computer. 



Glossary 227 

concurrent computer: A computer composed of many autonomous process­
ing elements connected by a network. The term concurrent is used rather 
than the term parallel to emphasize the autonomous nature of the pro­
cessing elements [113]. 

concurrent data structure: A data structure that can perform many oper­
ations simultaneously. 

constituent object (CO): An object that is part of a distributed object. 
Constituent objects receive messages sent to the distributed object. 

data abstraction: Data abstraction separates an object's protocol, the mes­
sages an object understands, from an object's implementation, how the 
object responds to the messages in its protocol. 

data structure: A collection of data on which some relations are defined. 

deadlock: Deadlock occurs when no progress can be made because of a cyclic 
conflict for resources. In an interconnection network deadlock occurs when 
no message can advance toward its destination because the queues of the 
message system are full. 

degree: The degree of a vertex, v, is the number of edges incident on v. 

diameter: The maximum over all pairs of vertices of the length of the shortest 
path between two vertices in a graph. 

direct network: An interconnection network in which the terminal nodes are 
also the switching elements as opposed to an indirect network in which 
the terminals and switching elements are distinct. 

distributed object: An object consisting of a collection of constituent ob­
jects. A message sent to the distributed object may be received by any 
constituent of the object. 

edge: An ordered pair of vertices. 

ensemble machine: A machine consisting of an ensemble of processing nodes 
connected by a network [112]. The processing nodes of an ensemble ma­
chine may be autonomous as in a concurrent computer, or they may 
operate in lockstep as in a SIMD [441 parallel computer. 

Bit: A FLow control digIT, the smallest unit of information that can be ac­
cepted or refused by a communication channel or queue. One or more flits 
make up a packet. Individual flits do not contain sequencing or routing 
information and thus flits in a packet cannot be interleaved with flits of 
another packet. 



228 A VLSI Architecture for Concurrent Data Structures 

heap: A data structure for implementing a priority queue. A heap is orga­
nized as a binary tree with one record stored in each node of the tree. 
The tree is ordered so that the record stored in each node is greater than 
the records stored in both of its children. 

hypercube: A k-ary n cube with dimension, n, greater than three. Hypercube 
is often incorrectly used as a synonym for binary n-cube; however, the 
radix of a hypercube is not restricted to be two. 

identifier: A name or symbol. In CST an identifier consists of a letter possibly 
followed by a sequence of letters and digits. 

inheritance: In an object-oriented language, a subclass inherits behavior from 
its superclass. 

instance: An instance of a class, A, is an object of class A. 

instance variable: A variable local to a particular instance of an object. In­
stance variables make up an object's private memory. 

interconnection network: A communication network used to connect the 
processing nodes of an ensemble machine. 

indirect network: An interconnection network in which the terminal nodes 
are distinct from the switching elements as opposed to a direct network 
in which the terminals contain the switching elements. 

k-ary n-cube: An interconnection topology with N = K' nodes. Each node 
in a k-ary n-cube has an n-digit radix k address, a = a,.-l' ... '~' and is 
adjacent to those nodes with addresses b = b"-l' ... , bo that differ from a 
in only one digit, say the ith, and this digit differs only by one, a; = b; ± 1. 
Binary n-cubes are a special case of k-ary n-cubes where k = 2. 

keyword message: A message consisting of a selector and one or more ar­
guments where the selector is a sequence of keywords terminated with 
colons, ':', one preceding each argument. For example, the message re­
ceiver at: 8 put: ·arg2· is a keyword message with selector at:put: and 
arguments 8 and ·arg2·. 

late binding: Binding meaning to objects as late as possible, usually at run­
time. In contrast, early binding usually takes place at compile time. 

latency: The elapsed time required to perform an operation. The latency of a 
message transmission is the elapsed time from the time the first flit of the 
message leaves the source to the time the last flit of the message arrives 
at the destination. 



Glossary 229 

lock: A programming construct used to restrict concurrent access to an object. 

message: In an object-oriented programming language, a message is a request 
for an object to perform some action. Messages consist of three parts: 
a receiver that specifies the object which is to receive the message, a 
selector that specifies the type of action to be performed, and arguments 
that supply additional information required to perform the action. In an 
interconnection network, a message is a logical unit of communication. A 
message may be broken down into a number of packets, physical units of 
communication that contain routing and sequencing information. Packets 
in turn may be broken down into flits. 

message-passing concurrent computer: A concurrent computer in which 
the processing nodes communicate by passing messages over communica­
tion channels. 

method: A description of how an object is to respond to a message. Methods 
in object-oriented programming languages are similar to procedures and 
subroutines in conventional programming languages. 

multiprogrammed system: A computer system that supports multiple pro­
cesses on a single processor. 

object: The primitive element of an object-oriented programming system. An 
object consists of a state and a behavior. The state of an object is made 
up of a number of variables or acquaintances. The behavior of an object 
is specified by a number of methods. The object executes these methods 
in response to particular messages. 

object expert: A processing element specialized to operate on a restricted 
class of objects. An object expert contains both storage for instances of 
this class of objects and logic specialized to operate on these objects. 

packet: In a communication network a packet is the smallest unit of informa­
tion that contains routing information. Packets may be broken down into 
flits. 

path: A sequence of connected edges in a graph. 

protocol: The set of messages that an object understands. 

receiver: The object to which a message is sent. 

selector: A part of a message specifying the type of operation to be performed 
by the object receiving the message. 



230 A VLSI Architecture for Concurrent Data Structures 

self-timed: A design discipline where the sequencing of events is controlled by 
the internal delays of elements rather than by an external clock. 

sequential computer: A computer that executes instructions one at a time. 

shared-memory concurrent computer: A concurrent computer in which 
the processing elements communicate by reading and writing shared stor­
age locations. 

store-and-forward routing: A routing strategy where an entire packet is 
stored in each node along a multi-hop path before transmission to the 
next node is initiated. 

strongly connected: A graph is strongly connected if there exists a path from 
every vertex in the graph to every other vertex. 

structured buffer pool: A technique used to prevent deadlock in an inter­
connection network by controlling the allocation of buffers to packets. 

subclass: A class that inherits methods and variables from an existing class, 
its superclass. 

superclass: The class from which methods and variables are inherited. 

throughput: The total number of operations performed per unit time. 

tori: Plural of torus. 

torus: Topologically, a torus is a doughnut shaped surface. In terms of inter­
connection networks, torus is a synonym for k-ary n-cube. 

tree: In Computer Science a tree refers to a hierarchical data structure orga­
nized as a connected acyclic directed graph where the in-degree of each 
vertex is less than or equal to one. 

useful: In a flow graph, an edge, e, is useful from vertex u to vertex v, denoted 
useful(u,v) if e = (u, v) and f(e) < c(e), or e = (v, u) and f(e) > O. 

vertex: A part of a graph. 

virtual channels: A technique for preventing deadlock in an interconnection 
network by multiplexing several virtual channels, each with its own queue, 
over a single physical channel and restricting the routing on virtual chan­
nels so that there are no cyclic dependencies amongst channels. 

very large scale integration (VLSI): A technology for fabricating integrated 
circuits containing over 104 devices. 



Glossary 231 

wafer scale integration (WSI): A technology for fabricating integrated cir­
cuits the size of wafers (50-150mm on a side). 

wormhole routing: A routing strategy where each flit of a packet is immedi­
ately forwarded to the next node along a multi-hop path without waiting 
for the rest of a packet to arrive. 



Bibliography 

[I] Agha, Gul A., Actors: A Model of Concurrent Computation in Dis­
tributed Systems, MIT Artificial Intelligence Laboratory, Technical Re­
port 844, June 1985. 

[2] Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D., The De­
sign and Analysis of Computer Algorithms, Addison-Wesley, Reading, 
Mass., 1974. 

[3] Athas, W.C., XCPL, an Experimental Concurrent Language, Dept. 
of Computer Science, California Institute of Technology, Technical 
Report 5196, 1985. 

[4] Backus, John, "Can Programming Be Liberated from the von Neu­
mann Style? A Functional Style and Its Algebra of Programs," 
CACM, Vol. 21, No. 8, August 1978, pp. 613-641. 

[5] Baird, Henry S., "Fast Algorithms for LSI Artwork Analysis," Pro­
ceedings, 14th ACM/IEEE Design Automation Conference, 1977, pp. 
303-311. 

[6] Barnes, Earl R., "An Algorithm for Partitioning the Nodes of a 
Graph," SIAM J. Alg. Disc. Meth., Vol. 3, No.4, December 1982, 
pp. 541-550. 

[7] Batcher, K.E., "Sorting Networks and Their Applications," Proceed­
ings AFIPS FJCC, Vol. 32, 1968, pp. 307~314. 

[8] Batcher, K.E., "The Flip Network in STARAN," Proceedings, 1976 
International Conference on Parallel Processing, pp. 65-71. 

[9] Baudet, Gerard M., The Design and Analysis of Algorithms for Asyn­
chronous Multiprocessors, Ph.D. Thesis, Department of Computer Sci­
ence Carnegie-Mellon University, Technical Report CMU-CS-78-116, 
1978. 



234 A VLSI Architecture for Concurrent Data Structures 

[10J Benes, V.E., Mathematical Theory of Connecting Networks and Tele­
phone Traffic, Academic, New York, 1965. 

[l1J Birtwhistle, Graham M., Dahl, Ole-Johan, Myhrhaug, Bjorn, and Ny­
gaard, Kristen, 8imula Begin, Petrocelli, New York, 1973. 

[12J Blodgett, A.J. and Barbour, D.R., "Thermal Conduction Module: A 
High Performance Multilayer Ceramic Package," IBM J. of Research 
and Development, Vol. 26, No.1, January 1982, pp. 30-36. 

[13J Browning, Sally, The Tree Machine: A Highly Concurrent Comput­
ing Environment, Dept. of Computer Science, California Institute of 
Technology, Technical Report 3760, 1985. 

[14J Bryant, R., "A Switch-Level Model and Simulator for MOS Digital 
Systems," IEEE Transactions on Computers, Vol. C-33, No.2, Febru­
ary 1984, pp. 160-177. 

[15J Chandy, K.M. and Misra, J., "Distributed Computation on Graphs: 
Shortest Path Algorithms," CACM, Vol. 25, No. 11, November 1982, 
pp. 833-837. 

[16J Chapman, P.T. and Clark K., Jr., "The Scan-Line Approach to Design 
Rules Checking," Proceedings, 21'1 ACM/IEEE Design Automation 
Conference, 1984, pp. 235-241. 

[17J Clinger, W.D., Foundations of Actor Semantics, MIT Artificial Intel­
ligence Laboratory, Technical Report 633, May 1981. 

[18J Condon, Joseph H. and Thompson, Ken, "Belle Chess Hardware," 
Advances in Computer Chess, Vol. 3, Pergamon Press, Oxford, 1982, 
pp.45-54. 

[19J Dahl, O.J. and Nygaard, K., "SIMULA - An Algol-Based Simulation 
Language," CACM, Vol. 9, No.9, September 1966, pp. 671-678. 

[20J Dally, William J. and Seitz, Charles L., The Balanced Cube: A Con­
current Data Structure, Dept. of Computer Science, California In­
stitute of Technology, Technical Report 5174:TR:85, February 1985, 
early release of [21J. 

[21J Dally, William J. and Seitz, Charles L., The Balanced Cube: A Con­
current Data Structure, Dept. of Computer Science, California Insti­
tute of Technology, Technical Report 5174:TR:85, May 1985. 



Bibliography 235 

[22] Dally, William J . and Kajiya, J., "An Object Oriented Architecture,n 
Proceedings, 1f!h International Symposium on Computer Architecture, 
1985, pp. 154-161. 

[23] Dally, William J. and Bryant, Randal E., "A Hardware Architecture 
for Switch-Level Simulation" IEEE Transactions on Computer-Aided 
Design, Vol. CAD-4, No.3, July 1985, pp. 239-250. 

[24] Dally, William J. and Seitz, Charles L., Deadlock-Free Message 
Routing in Multiprocessor Interconnection Networks, Dept. of Com­
puter Science, California Institute of Technology, Technical Report 
5206:TR:86, 1986. 

[25] Dally, William J. and Seitz, Charles L., "The Torus Routing Chip," 
J. Distributed Systems, Vol. 1, No. 3, 1986, pp. 187-196. 

[26] Dally, William J., CNTK: An Embedded Language for Circuit Descrip­
tion, Dept. of Computer Science, California Institute of Technology, 
Display File, in preparation. 

[27] Dally, William J., "Wire-Efficient VLSI Multiprocessor Communica­
tion Networks," 1987 Stanford Conference on Advanced Research in 
VLSI, MIT Press, Cambridge, MA, 1987, pp. 391-415. 

[28] Dally, William J., et.al., "Architecture of a Message-Driven Proces­
sor," to appear in Proceedings, 14th International Symposium on Com­
puter Architecture, 1987. 

[29] Dijkstra, E.W., "A note on two problems in connexion with graphs," 
Numerische Mathematik, Vol. 1, 1959, pp. 269-271. 

[30] Dijkstra, E.W. and Scholten, C.S., "Termination Detection for Dif­
fusing Computations," Information Processing Letters, Vol. 11, No.1, 
August 1980, pp. 1-4. 

[31] Donath, W.E. and Wong, C.K., "An Efficient Algorithm for Boolean 
Mask Operations," Proceedings, 2rJh ACM/IEEE Design Automation 
Conference, 1983, pp . 358-360. 

[32] Edmonds, J. and Karp, R.M., "Theoretical Improvements in Algo­
rithmic Efficiency for Network Flow Problems," JACM, Vol. 19, No. 
2, April 1972, pp. 248-264. 

[33] Ellis, C.S ., "Concurrent Search and Insertion in AVL Trees," IEEE 
Transactions on Computers, Vol. C-29, No.9, September 1980, pp. 
811-817. 



236 A VLSI Architecture for Concurrent Data Structures 

[34] Ellis, C.S., "Concurrent Search and Insertion in 2-3 Trees," Acta In­
formatica, Vol. 14, 1980, pp. 63-86. 

[35] Ellis, C.S., Concurrency and Linear Hashing, Computer Science De­
partment, University of Rochester, TR 151, March 1985. 

[36] Ellis, C.S., Distributed Data Structures, A Case Study, Computer Sci­
ence Department, University of Rochester, TR 150, August 1985. 

[37] Even, S. and Tarjan, R.E., "Network Flow and Testing Graph Con­
nectivity," SIAM J. Computing, Vol. 4, 1975, pp. 507-518. 

[38] Even, Shimon, Graph Algorithms, Computer Science Press, Rockville, 
Md., 1979. 

[39] Fagin, Ronald, NievergeIt, Jurg, Pippenger, Nicholas and Strong, 
H. Raymond, "Extendible Hashing- A Fast Access Method for Dy­
namic Files," ACM Transactions on Database Systems, Vol. 4, No.3, 
September 1979, pp. 315-344. 

[40] Fiduccia, C.M. and Mattheyses R.M., "A Linear-Time Heuristic for 
Improving Network Partitions," Proceedings, lf1h ACM/IEEE Design 
Automation Conference, 1982, pp. 175-181. 

[41] Filman, Robert E. and Friedman, Daniel P., Coordinated Comput­
ing, Tools and Techniques for Distributed Software, McGraw-Hill, New 
York, 1984, Ch. 17. 

[42] Fisher, A.L. and Kung, H.T., "Synchronizing Large VLSI Processor 
Arrays," IEEE Transactions on Computers, Vol. C-34, No.8, August 
1985, pp. 734-740. 

[43] Floyd, R.W., "Algorithm 97: Shortest Path," CACM, Vol. 5, No.6, 
June 1962, p. 345. 

[44] Flynn, Michael J., "Some Computer Organizations and Their Ef­
fectiveness," IEEE Transactions on Computers, Vol. C-21, No.9, 
September 1972. 

[45] Ford, L.R., Jr. and Fulkerson, D.R., Flows in Networks, Princeton 
University Press, Princeton, N.J., 1962. 

[46] Galil, Z. and Naamad, A., "Network Flow and Generalized Path Com­
pression," Proceedings, 11th ACM Symposium on the Theory of Com­
puting, 1979, pp. 13-26. 



Bibliography 237 

[47] Galil, Z., "An O(V~Ef) Algorithm for the Maximal Flow Problem," 
Acta Informatica, Vol. 14, 1980, pp. 221-242. 

[48] Galil, Z. "On the Theoretical Efficiency of Various Network Flow Al­
gorithms," Theoretical Computer Science, Vol. 14, 1981, pp. 103-111. 

[49] Garey, M.R. and Johnson D.S., Computers and Intractibility, A Guide 
to the Theory of NP-Completeness, W. H. Freeman and Company, 
1979, p. 209. 

[50] Gelernter, David, "A DAG-Based Algorithm for Prevention of Store­
and-Forward Deadlock in Packet Networks," IEEE Transactions on 
Computers, Vol. C-30, No. 10, October 1981, pp. 709-715. 

[51] Gerla, Mario, and Kleinrock, Leonard, "Flow Control: A Comparative 
Survey," IEEE Transactions on Communications, Vol. COM-28, No. 
4, April 1980, pp. 553-574. 

[52] Glasser, Lance A. and Dobberpuhl, Daniel W., The Design and Anal­
ysis of VLSI Circuits, Addison-Wesley, Reading, Mass., 1985. 

[53] Goldberg, Adele and Robson, David, Smalltalk-80: The Language and 
its Implementation, Addison-Wesley, Reading, Mass., 1983. 

[54] Goldberg, Adele, Smalltalk-80: The Interactive Programming Envi­
ronment, Addison-Wesley, Reading, Mass., 1984. 

[55] Goodman, J., "Using Cache Memories to Reduce Processor-Memory 
Traffic," 10th Annual Symposium on Computer Architecture, June 
1983. 

[56] Gottlieb, Alan, et aI., "The NYU U1tracomputer - Designing an MIMD 
Shared Memory Parallel Computer," IEEE Transactions on Comput­
ers, Vol. C-32, No.2, February 1983, pp. 175-189. 

[57] Gottlieb, Alan, et ai., "Basic Techniques for the Effici~nt Coordination 
of Very Large Numbers of Cooperating Sequential Processors," ACM 
TOPLAS, Vol. 5, No.2, April 1983, pp. 164-189. 

[58] Gray, H.J. and Levonian P.V., "An Analog-to-Digital Converter for 
Serial Computing Machines,~ Proceedings of the I.R.E., Vol. 41, No.10, 
October 1953, pp.1462-1465. 

[59] Guibas, L.J., Kung, H.T., and Thompson, C.D., "Direct VLSI Imple­
mentation of Combinatorial Algorithms," Proceedings, Caltech Con­
ference on VLSI, 1979, pp. 509-525. 



238 A VLS1 Architecture for Concurrent Data Structures 

[60] Gunther, Klaus D., "Prevention of Deadlocks in Packet-Switched Data 
Transport Systems," IEEE Transactions on Communications, Vol. 
COM-29, No.4, April 1981, pp. 512-524. 

[61] Hewitt, Carl, "The Apiary Network Architecture for Knowledgeable 
Systems," Conference Record of the 1980 LISP Conference, 1980, pp. 
107-117. 

[62] Hill, F .J. and Peterson, G.R., Digital Systems: Hardware Organization 
and Design, Wiley, New York, 1978. 

[63] Hillis, W. DanieL, The Connection Machine (Computer Architecture 
for the New Wave), MIT Artificial Intelligence Laboratory, AI Memo 
No. 646, September 1981. 

[64] Hoare, C.A.R., "Communicating Sequential Processes," CACM, Vol. 
21, No.8, August 1978, pp. 666-677. 

[65] Hu, T.C., Combinatorial Algorithms, Addison-Wesley, 1982. 

[66] Inmos Limited, 1MS T424 Reference Manual, Order No. 72 TRN 006 
00, Bristol, United Kingdom, November 1984. 

[67] Intel Scientific Computers, iPSC User's Guide, Order No. 175455-001, 
Santa Clara, Calif., Aug. 1985. 

[68] Kermani, Parviz and Kleinrock, Leonard, "Virtual Cut-Through: A 
New Computer Communication Switching Technique," Computer Net­
works, Vol 3., 1979, pp. 267-286. 

[69] Kernighan, B.W. and Lin, S., "An Efficient Heuristic Procedure for 
Partitioning Graphs," Bell System Technical Journal, February 1970, 
pp. 291-307. 

[70] Kernighan, B.W. and Ritchie, D., The C Programming Language, 
Prentice-Hall, Englewood Cliffs, N.J., 1978. 

[71] Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P., "Optimization by Sim­
ulated Annealing," Science, Vol. 220, No. 4598, 13 May 1983, pp. 
671-680. 

[72] Kleinrock, Leonard, Queueing Systems, Volume 2: Computer Appli­
cations, Wiley, New York, 1976, pp. 438-440. 

[73] Knuth, Donald E., The Art of Computer Programming, Volume 1/ 
Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1973. 



Bibliography 239 

[74] Knuth, Donald E., The Art of Computer Programming, Volume 9/ 
Sorting and Searching, Addison-Wesley, Reading, Mass., 1973. 

[75] Knuth, Donald E. The TEXbook, Addison-Wesley, Reading, Mass., 
1984. 

[76] Krasner, Glenn, Smalltalk-80: Bits of History, Words of Advice, 
Addison-Wesley, Reading, Mass., 1983. 

[77] Kung, H.T., "The Structure of Parallel Algorithms," Advances in 
Computers, Vol. 19, 1980, pp. 65-112. 

[78] Kung, H.T. and Lehman, P.L., "Concurrent Manipulation of Binary 
Search Trees," ACM Transactions on Database Systems, Vol. 5, No. 
3, September 1980, pp. 354-382. 

[79] Kyocera, Inc., Design Guidelines, Multilayer Ceramics, 
CAT /2T8403TM. 

[80] Lamport, Leslie, The LaTEX Document Preparation System, Second 
Preliminary Edition, 1983. 

[81] Lang, C.R. Jr., The Extension of Object-Oriented Languages to a Ho­
mogeneous, Concurrent Architecture, Dept. of Computer Science, Cal­
ifornia Institute of Technology, Technical Report 5014, May 1982. 

[82] Lawrie, Duncan H., "Alignment and Access of Data in an Array Pro­
cessor," IEEE Transactions on Computers, Vol. C-24, No. 12, Decem­
ber 1975, pp. 1145-1155. 

[83] Lehman, P.L. and Yao, S.B., "Efficient Locking for Concurrent Oper­
ations on B-Trees," ACM Transactions on Database Systems, Vol. 6, 
No.4, December 1981, pp. 650-670. 

[84] Levitt, K.N. and Kautz, W.H., "Cellular Arrays for the Solution of 
Graph Problems," CACM, Vol. 15, No.9, September 1972, pp. 789-
801. 

[85] Lomet, David B., "Bounded Index Exponential Hashing," ACM 
Transactions on Database Systems, Vol. 8, No.1, March 1983, pp. 
136-165. 

[86] Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N., "An O(IVI') 
Algorithm for Finding Maximum Flows in Networks," Information 
Processing Letters, Vol. 7, No.6, October 1978, pp. 277-278. 



240 A VLSI Architecture Eor Concurrent Data Structures 

[87J Marberg, J.M. and Gafni, E., "An O(Af3) Distributed Max-Flow Al­
gorithm," Proceedings, 1ffh Princeton Conference on Information Sci­
ences and Systems, 1984, pp. 478-482. 

[88J Mead, Carver A. and Conway, Lynn A., Introduction to VLSI Systems, 
Addison-Wesley, Reading, Mass., 1980. 

[89J Mead, Carver A. and Rem, Martin, "Cost and Performance of VLSI 
Computing Structures," IEEE J. Solid-State Circuits, Vol. SC-14, No. 
2, April 1979, pp. 455-462. 

[90J Mead, Carver A. and Rem, Martin, "Minimum Propagation Delays in 
VLSI," IEEE J. Solid-State Circuits, Vol. SC-17, No.4, August 1982, 
pp. 773-775. 

[91J Merlin, Philip M. and Schweitzer, Paul J., "Deadlock Avoidance in 
Store-and-Forward Networks-I: Store-and-Forward Deadlock," IEEE 
Transactions on Communications, Vol. COM-28, No.3, March 1980, 
pp. 345-354. 

[92J Miklosko, J. and Kotov, V.E., Algorithms, Software and Hardware of 
Parallel Computers, VEDA, Publishing House of the Slovak Academy 
of Sciences, Bratislava, 1984. 

[93J Moore, Gordon, "VLSI: Some Fundamental Challenges," IEEE Spec­
trum, April 1979, pp. 30-37. 

[94J Motorola Inc., MC68000 16-bit Microprocessor User's Manual, Third 
Edition, Prentice Hall, Englewood Cliffs, N.J., 1982. 

[95J Ousterhout, John K., "Corner Stitching: A Data-Structuring Tech­
nique for VLSI Layout Tools," IEEE Transactions on Computer Aided 
Design, Vol. CAD-3, No.1, January 1984, pp. 87-100. 

[96J Ousterhout, John K., et aI., "The Magic VLSI Layout System," IEEE 
Design and Test of Computers, Vol. 2, No.1, February 1985, pp. 19-30. 

[97J Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: 
Algorithms and Complexity, Prentice Hall, 1982. 

[98J Pease, M.C., III, "The Indirect Binary n-Cube Microprocessor Array," 
IEEE Transactions on Computers, Vol. C-26, No.5, May 1977, pp. 
458-473. 

[99J Peltzer, Douglas L., "Wafer-Scale Integration: The Limits of VLSI?" 
VLSI Design, September 1983, pp. 43-47. 



Bibliography 241 

[100] Peterson, James L., "Petri Nets," Computing Surveys, Vol. 9, No.3, 
September 1977, pp. 223-252. 

[101] Pfister, G.F., "The Yorktown Simulation Engine: Introduction," Pro­
ceedings, 1f1h ACM/IEEE Design Automation Conference, 1982, pp. 
51-54. 

[102] Pfister, G.F., et aI., "The IBM Research Parallel Processor Prototype 
(RP3): Introduction and Architecture," IEEE 1985 Conf. on Parallel 
Processing, August, 1985, pp. 764-771. 

[103] Pfister, G.F. and Norton, V.A., "Hot Spot Contention and Combin­
ing in Multistage Interconnection Networks," IEEE Transactions on 
Computers, Vol. C-34, No. 10, October 1985, pp. 943-948. 

[104] Quinn, Michael J. and Narsingh, Deo, "Parallel Graph Algorithms," 
Computing Surveys, Vol. 16, No.3, September 1984, pp. 319-348. 

[105] Quinn, Michael J. and Yoo, Year Back, "Data Structures for the 
Efficient Solution of Graph Theoretic Problems on Tightly-Coupled 
MIMD Computers," Proceedings, 1984 International Conference on 
Parallel Processing, 1984, pp. 431-438. 

[106] Ramamoorthy, C.V. and Li, H.F., "Pipeline Architecture," ACM 
Computing Surveys, Vol. 9, No.1, March 1977, pp. 61-102. 

[107] Russo, R.L., Oden, P.H., and Wolff, P.K., "A Heuristic Procedure for 
the Partitioning and Mapping of Computer Logic Blocks to Modules," 
IEEE Transactions on Computers, Vol. C-20, 1971, pp. 1455-1462. 

[108] Schwartz, J.T., "Ultracomputers," ACM TOPLAS, Vol. 2, No.4, Oc­
tober 1980, pp. 484-521. 

[109] Sedgewick, Robert, Algorithms, Addison-Wesley, Reading, Mass., 
1983. 

[110] Seigel, Howard Jay, "Interconnection Networks for SIMD Machines," 
IEEE Computer, Vol. 12, No.6, June 1979, pp. 57-65. 

[111] Seitz, Charles L., "System Timing" in Introduction to VLSI Systems, 
C. A. Mead and L. A. Conway, Addison-Wesley, 1980, Ch. 7. 

[112] Seitz, Charles L., Experiments with VLSI Ensemble Machines, Dept. 
of Computer Science, California Institute of Technology, Technical 
Report 5102, October 1983. 



242 A VLSI Architecture for Concurrent Data Structures 

[113] Seitz, Charles L., "Concurrent VLSI Architectures," IEEE Transac­
tions on Computers, Vol. C-33, No. 12, December 1984, pp. 1247-1265. 

[114J Seitz, Charles L., "The Cosmic Cube," CACM, Vol. 28, No.1, Jan. 
1985, pp. 22-33. 

[115J Seitz, Charles L., et aI., The Hypercube Communications Chip, Dept. 
of Computer Science, California Institute of Technology, Display File 
5182:DF:85, March 1985. 

[116J Seitz, Charles L., et aI., "Hot-Clock nMOS," 1985 Chapel Hill Con­
ference on Very Large Scale Integration, Henry Fuchs, ed., Computer 
Science Press, Rockville, Md., 1985. 

[117J Seraphim, D.P. and Feinberg, I., "Electronic Packaging Evolution in 
mM," IBM J. of Research and Development, Vol. 25, No.5, September 
1981, pp. 617-629. 

[118J Shiloach, Y. and Vishkin, U., "An O(n2Iogn) Parallel MAX-FLOW 
Algorithm," J. Algorithms, Vol. 3, No.2, June 1982, pp. 128-146. 

[119J Siewiorek, D.P., Bell, C.G., and Newell, A., Computer Structures: 
Principles and Examples, McGraw-Hill, New York, 1982. 

[120J Sleator, Daniel D.K., An O(nmlogn) Algorithm for Maximum Net­
work Flow, Ph.D. Thesis, Department of Computer Science, Stanford 
University, Report No. STAN-CS-80-831, December 1980. 

[121J Spira, P.M., "A New Algorithm for Finding All Shortest Paths in 
a Graph of Positive Arcs in Average Time O(n2log2 n)," SIAM J. 
Computing, Vol. 2, No.1, pp. 28-32. 

[122J Steele, Craig S., Placement of Communicating Processes on Multipro­
cessor Networks, Dept. of Computer Science, California Institute of 
Technology, Technical Report 5184, 1985. 

[123] Stefik, Mark and Bobrow, Daniel G., "Object-Oriented Programming: 
Themes and Variations," AI Magazine, Vol. 6, No.4, Winter 1986, pp. 
40-62. 

[124J Stone, H.S., "Parallel Processing with the Perfect Shuffle," IEEE 
Transactions on Computers, Vol. C-20, No.2, February 1971, pp. 
153-161. 

[125J Su, Wen-King, Faucette, Reese, and Seitz, Charles L., C Programmer's 
Guide to the Cosmic Cube, Dept. of Computer Science, California 
Institute of Technology, Technical Report 5203, September 1985. 



Bibliography 243 

[126J Sullivan, H. and Bashkow, T.R., "A Large Scale Homogeneous Ma­
chine," Proc. 4th Annual Symposium on Computer Architecture, 1977, 
pp. 105-124. 

[127J Tanenbaum, A. S., Computer Networks, Prentice Hall, Englewood 
Cliffs, N.J., 1981. 

[128J Theriault D.G., Issues in the Design and Implementation 01 Act2, MIT 
Artificial Intelligence Laboratory, Technical Report 728, June 1983. 

[129J Thompson, C.D., A Complexity Theory 01 VLSI, Department of Com­
puter Science, Carnegie-Mellon University, Technical Report CMU­
CS-80-140, August 1980. 

[130J Thompson, C.D., "Fourier Transforms in VLSI," IEEE Transactions 
on Computers, Vol. C-32, No. 11, November 1983, pp. 1047-1057. 

[131J Thompson, C.D., "The VLSI Complexity of Sorting," IEEE Transac­
tions on Computers, Vol. C-32, No. 12, December 1983, pp. 1171-1184. 

[132J Toueg, Sam and Ullman, Jeffrey D., "Deadlock-Free Packet Switch­
ing Networks," Proceedings, 11th ACM Symposium on the Theory 01 
Computing, 1979, pp. 89-98. 

[133J Toueg, Sam, "Deadlock- and Livelock-Free Packet Switching Net­
works," Proceedings, If!'h ACM Symposium on the Theory 01 Com­
puting, 1980, pp. 94-99. 

[134J Trotter, D., MOSIS Scalable CMOS Rules, Version 1.2, 1985. 

[135J Ullman, Jeffrey D., Principles 01 Database Systems, Computer Science 
Press, 1982. 

[136J Warshall, S., "A Theorem on Boolean Matrices," JACM, Vol. 9, No. 
1, January 1962, pp. 11-12. 

[137J Wulf, W. and Bell, C.G., "C.mmp - A Multi-Mini-Processor," Pro­
ceedings, AFIPS FJCC, Vol. 41, Pt. 2, 1972, pp. 765-777. 

[138J Xerox Learning Research Group, "The Smalltalk-80 System," BYTE, 
Vol. 6, No.8, August 1981, pp. 36-48. 




