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Preface

Many data-mining algorithms were developed for the world of business, for
example for customer relationship management. The datasets in this environ-
ment, although large, are simple in the sense that a customer either did or
did not buy three widgets, or did or did not fly from Chicago to Albuquerque.

In contrast, the datasets collected in scientific, engineering, medical,
and social applications often contain values that represent a combination of
different properties of the real world. For example, an observation of a star
produces some value for the intensity of its radiation at a particular frequency.
But the observed value is the sum of (at least) three different components:
the actual intensity of the radiation that the star is (was) emitting, properties
of the atmosphere that the radiation encountered on its way from the star to
the telescope, and properties of the telescope itself. Astrophysicists who want
to model the actual properties of stars must remove (as far as possible) the
other components to get at the ‘actual’ data value. And it is not always clear
which components are of interest. For example, we could imagine a detection
system for stealth aircraft that relied on the way they disturb the image of
stellar objects behind them. In this case, a different component would be the
one of interest.

Most mainstream data-mining techniques ignore the fact that real-world
datasets are combinations of underlying data, and build single models from
them. If such datasets can first be separated into the components that under-
lie them, we might expect that the quality of the models will improve signifi-
cantly. Matrix decompositions use the relationships among large amounts of
data and the probable relationships between the components to do this kind
of separation. For example, in the astrophysical example, we can plausibly
assume that the changes to observed values caused by the atmosphere are in-
dependent of those caused by the device. The changes in intensity might also
be independent of changes caused by the atmosphere, except if the atmosphere
attenuates intensity non-linearly.

Some matrix decompositions have been known for over a hundred years;
others have only been discovered in the past decade. They are typically

xiii



xiv Preface

computationally-intensive to compute, so it is only recently that they have
been used as analysis tools except in the most straightforward ways. Even
when matrix decompositions have been applied in sophisticated ways, they
have often been used only in limited application domains, and the experi-
ences and ‘tricks’ to use them well have not been disseminated to the wider
community.

This book gathers together what is known about the commonest matrix
decompositions:

1. Singular Value Decomposition (SVD);

2. SemiDiscrete Decomposition (SDD);

3. Independent Component Analysis (ICA);

4. Non-Negative Matrix Factorization (NNMF);

5. Tensors;

and shows how they can be used as tools to analyze large datasets. Each ma-
trix decomposition makes a different assumption about what the underlying
structure in the data might be, so choosing the appropriate one is a critical
choice in each application domain. Fortunately once this choice is made, most
decompositions have few other parameters to set.

There are deep connections between matrix decompositions and struc-
tures within graphs. For example, the PageRank algorithm that underlies the
Google search engine is related to Singular Value Decomposition, and both
are related to properties of walks in graphs. Hence matrix decompositions can
shed light on relational data, such as the connections in the Web, or transfers
in the financial industry, or relationships in organizations.

This book shows how matrix decompositions can be used in practice in
a wide range of application domains. Data mining is becoming an important
analysis tool in science and engineering in settings where controlled exper-
iments are impractical. We show how matrix decompositions can be used
to find useful documents on the web, make recommendations about which
book or DVD to buy, look for deeply buried mineral deposits without drilling,
explore the structure of proteins, clean up the data from DNA microarrays,
detect suspicious emails or cell phone calls, and figure out what topics a set
of documents is about.

This book is intended for researchers who have complex datasets that
they want to model, and are finding that other data-mining techniques do
not perform well. It will also be of interest to researchers in computing who
want to develop new data-mining techniques or investigate connections be-
tween standard techniques and matrix decompositions. It can be used as a
supplement to graduate level data-mining textbooks.



Preface xv

Explanations of data mining tend to fall at two extremes. On the one
hand, they reduce to “click on this button” in some data-mining software
package. The problem is that a user cannot usually tell whether the algorithm
that lies behind the button is appropriate for the task at hand, nor how
to interpret the results that appear, or even if the results are sensible. On
the other hand, other explanations require mastering a body of mathematics
and related algorithms in detail. This certainly avoids the weaknesses of the
software package approach, but demands a lot of the user. I have tried to
steer a middle course, appropriate to a handbook. The mathematical, and to
a lesser extent algorithmic, underpinnings of the data-mining techniques given
here are provided, but with a strong emphasis on intuitions. My hope is that
this will enable users to understand when a particular technique is appropriate
and what its results mean, without having necessarily to understand every
mathematical detail.

The conventional presentations of this material tend to rely on a great
deal of linear algebra. Most scientists and engineers will have encountered
basic linear algebra; some social scientists may have as well. For example,
most will be familiar (perhaps in a hazy way) with eigenvalues and eigenvec-
tors; but singular value decomposition is often covered only in graduate linear
algebra courses, so it is not as widely known as perhaps it should be. I have
tried throughout to concentrate on intuitive explanations of what the linear
algebra is doing. The software that implements the decompositions described
here can be used directly – there is little need to program algorithms. What is
important is to understand enough about what is happening computationally
to be able to set up sequences of analysis, to understand how to interpret the
results, and to notice when things are going wrong.

I teach much of this material in an undergraduate data-mining course.
Although most of the students do not have enough linear algebra background
to understand the deeper theory behind most of the matrix decompositions,
they are quickly able to learn to use them on real datasets, especially as vi-
sualization is often a natural way to interpret the results of a decomposition.
I originally developed this material as background for my own graduate stu-
dents who go on either to use this approach in practical settings, or to explore
some of the important theoretical and algorithmic problems associated with
matrix decompositions, for example reducing the computational cost.
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Chapter 1

Data Mining

When data was primarily generated using pen and paper, there was never
very much of it. The contents of the United States Library of Congress,
which represent a large fraction of formal text written by humans, has been
estimated to be 20TB, that is about 20 thousand billion characters. Large
web search engines, at present, index about 20 billion pages, whose average
size can be conservatively estimated at 10,000 characters, giving a total size
of 200TB, a factor of 10 larger than the Library of Congress. Data collected
about the interactions of people, such as transaction data and, even more so,
data collected about the interactions of computers, such as message logs, can
be even larger than this. Finally, there are some organizations that specialize
in gathering data, for example NASA and the CIA, and these collect data at
rates of about 1TB per day. Computers make it easy to collect certain kinds
of data, for example transactions or satellite images, and to generate and save
other kinds of data, for example driving directions. The costs of storage are
so low that it is often easier to store ‘everything’ in case it is needed, rather
than to do the work of deciding what could be deleted. The economics of
personal computers, storage, and the Internet makes pack rats of us all.

The amount of data being collected and stored ‘just in case’ over the
past two decades slowly stimulated the idea, in a number of places, that it
might be useful to process such data and see what extra information might
be gleaned from it. For example, the advent of computerized cash registers
meant that many businesses had access to unprecedented detail about the
purchasing patterns of their customers. It seemed clear that these patterns
had implications for the way in which selling was done and, in particular,
suggested a way of selling to each individual customer in the way that best
suited him or her, a process that has come to be called mass customization
and customer relationship management . Initial successes in the business con-

1
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text also stimulated interest in other domains where data was plentiful. For
example, data about highway traffic flow could be examined for ways to re-
duce congestion; and if this worked for real highways, it could also be applied
to computer networks and the Internet. Analysis of such data has become
common in many different settings over the past twenty years.

The name ‘data mining’ derives from the metaphor of data as something
that is large, contains far too much detail to be used as it is, but contains
nuggets of useful information that can have value. So data mining can be
defined as the extraction of the valuable information and actionable knowledge
that is implicit in large amounts of data.

The data used for customer relationship management and other commer-
cial applications is, in a sense, quite simple. A customer either did or did not
purchase a particular product, make a phone call, or visit a web page. There
is no ambiguity about a value associated with a particular person, object, or
transaction.

It is also usually true in commercial applications that a particular kind of
value associated to a customer or transaction, which we call an attribute, plays
a similar role in understanding every customer. For example, the amount that
a customer paid for whatever was purchased in a single trip to a store can be
interpreted in a similar way for every customer – we can be fairly certain that
each customer wished that the amount had been smaller.

In contrast, the data collected in scientific, engineering, medical, social,
and economic settings is usually more difficult to work with. The values that
are recorded in the data are often a blend of several underlying processes,
mixed together in complex ways, and sometimes overlaid with noise. The
connection between a particular attribute and the structures that might lead
to actionable knowledge is also typically more complicated. The kinds of
mainstream data-mining techniques that have been successful in commercial
applications are less effective in these more complex settings. Matrix decom-
positions, the subject of this book, are a family of more-powerful techniques
that can be applied to analyze complex forms of data, sometimes by them-
selves and sometimes as precursors to other data-mining techniques.

Much of the important scientific and technological development of the
last four hundred years comes from a style of investigation, probably best
described by Karl Popper [91], based on controlled experiments. Researchers
construct hypotheses inductively, but usually guided by anomalies in existing
explanations of ‘how things work’. Such hypotheses should have more explana-
tory power than existing theories, and should be easier to falsify. Suppose a
new hypothesis predicts that cause A is responsible for effect B. A controlled
experiment sets up two situations, one in which cause A is present and the
other in which it is not. The two situations are, as far as possible, matched
with respect to all of the other variables that might influence the presence or
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absence of effect B. The experiment then looks at whether effect B is present
only in the first situation.

Of course, few dependencies of effect on cause are perfect, so we might
expect that effect B is not present in some situations where cause A is present,
and vice versa. A great deal of statistical machinery has been developed to
help determine how much discrepancy can exist and still be appropriate to
conclude that there is a dependency of effect B on cause A. If an experiment
fails to falsify a hypothesis then this adds credibility to the hypothesis, which
may eventually be promoted to a theory. Theories are not considered to
be ground truth, but only approximations with useful predictiveness. This
approach to understanding the universe has been enormously successful.

However, it is limited by the fact that there are four kinds of settings
where controlled experiments are not directly possible:

• We do not have access to the variables that we would like to control.
Controlled experiments are only possible on earth or its near vicinity.
Understanding the wider universe cannot, at present, be achieved by
controlled experiments because we cannot control the position, inter-
actions and outputs of stars, galaxies, and other celestial objects. We
can observe such objects, but we have no way to set them up in an
experimental configuration.

• We do not know how to set the values of variables that we wish to
control. Some processes are not well enough understood for us to create
experimental configurations on demand. For example, fluid flowing next
to a boundary will occasionally throw off turbulent eddies. However, it
is not known how to make this happen. Studying the structure of such
eddies requires waiting for them to happen, rather than making them
happen.

• It would be unethical to set some variables to some values. Controlled
medical experiments on human subjects can only take place if the ex-
pected differences between the control and treatment groups are small.
If the treatment turns out to be either surprisingly effective or danger-
ously ineffective, the experiment must be halted on ethical grounds.

• The values of some variables come from the autonomous actions of hu-
mans. Controlled experiments in social, political, and economic settings
cannot be constructed because the participants act in their own inter-
ests, regardless of the desires of the experimenters. Governments and
bureaucrats have tried to avoid these limitations by trying to compel the
‘right’ behavior by participants, but this has been notably unsuccessful.

Controlled experiments require very precise collection of data, capturing
the presence or absence of a supposed cause and the corresponding effect,
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with all other variable values or attributes either held constant, or matched
between the two possibilities. In situations where controlled experiments are
not possible, such different configurations cannot be created to order, but they
may nevertheless be present in data collected about the system of interest. For
example, even though we cannot make stars behave in certain ways, we may be
able to find two situations where the presence and absence of a hypothesized
cause can be distinguished. The data from such situations can be analyzed to
see whether the expected relationship between cause and effect is supported.
These are called natural experiments, in contrast to controlled experiments.

In natural experiments, it may often be more difficult to make sure that
the values of other variables or attributes are properly matched, but this can
be compensated for, to some extent, by the availability of a larger amount of
data than could be collected in a controlled experiment. More sophisticated
methods for arguing that dependencies imply causality are also needed.

Data mining provides techniques for this second kind of analysis, of sys-
tems too complex or inaccessible for controlled experiments. Data mining is
therefore a powerful methodology for exploring systems in science, engineer-
ing, medicine, and human society (economics, politics, social sciences, and
business). It is rapidly becoming an important, central tool for increasing our
understanding of the physical and social worlds.

1.1 What is data like?

Given a complex system, many kinds of data about it can be collected. The
data we will consider will usually be in the form of a set of records, each of
which describes one object in the system. These objects might be physical
objects, for example, stars; people, for example, customers; or transactions,
for example, purchases at a store.

Each record contains the values for a set of attributes associated with the
record. For example, an attribute for a star might be its observed intensity at
a particular wavelength; an attribute for a person might be his or her height;
an attribute for a transaction might be the total dollar value.

Such data can be arranged as a matrix, with one row for each object,
one column for each attribute, and entries that specify the attribute values
belonging to each object.

Other data formats are possible. For example, every record might not
have values for every attribute – a medical dataset contains information about
pregnancies only for those records corresponding to females. Such data does
not trivially fit the matrix template since not every row has the same length.
Another common data format is a graph, in which the connections or links
between the records contain the important information. For example, a graph
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of telephone calls, in which the nodes are people and the edges represent calls
between them, can be used to detect certain kinds of fraud. Such a graph
does not trivially fit the matrix template either.

In practical data-mining applications, n, the number of records, may
be as large as 1012 and m, the number of attributes, as large as 104. These
values are growing all the time as datasets themselves get larger, and as bet-
ter algorithms and hardware make it cost-effective to attack large datasets
directly.

To illustrate the techniques we are discussing we will use the following 11× 8
matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8
3 4 4 5 5 6 7 9
1 8 2 7 3 6 4 5
9 8 7 6 5 4 3 2
9 4 8 3 7 2 6 1
2 3 2 4 2 5 2 6
3 4 3 4 4 3 4 3
3 2 4 3 2 4 3 2
5 5 4 4 6 6 2 2
2 3 6 5 4 6 7 2
1 6 5 3 8 2 3 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we think of each row as describing the properties of an object, and the
columns as describing a set of attributes, then we can see that objects 1 and
2 (and to a lesser extent 3) have small values for the first few attributes,
increasing for the later attributes; objects 4 and 5 have the opposite pattern
– mostly large values for the first few attributes and smaller ones for the
later attributes; while objects 6 to 11 have moderate values for most of the
attributes. Of course, we can only pick out such properties by inspection when
the matrix is relatively small, and when the rows have been arranged to make
it easy.

We will use this matrix as an example throughout the book. A Matlab
script used to generate all of the data and figures based on this matrix can be
found in Appendix A.

1.2 Data-mining techniques

Many kinds of analysis of data are possible, but there are four main kinds:

1. Prediction, producing an appropriate label or categorization for new
objects, given their attributes, using information gleaned from the rela-
tionship between attribute values and labels of a set of example objects.
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2. Clustering , gathering objects into groups so that the objects within a
group are somehow similar, but the groups are somehow dissimilar.

3. Finding outliers, deciding which objects in a given dataset are the most
unusual.

4. Finding local patterns, finding small subsets of the objects that have
strong relationships among themselves.

1.2.1 Prediction

In prediction, the goal is to predict, for a new record or object, the value
of one of the attributes (the ‘target attribute’) based on the values of the
other attributes. The relationship between the target attribute and the other
attributes is learned from a set of data in which the target attribute is al-
ready known (the ‘training data’). The training data captures an empirical
dependency between the ordinary attributes and the target attribute; the
data-mining technique builds an explicit model of the observed dependency.
This explicit model can then be used to generate a prediction of the target
attribute from the values of the other attributes for new, never before seen,
records. When the target values are categorical, that is chosen from some
fixed set of possibilities such as predicting whether or not a prospective bor-
rower should be given a mortgage, prediction is called classification. When
the target values are numerical, for example predicting the size of mortgage
a prospective borrower should be allowed, prediction is called regression.

Each data-mining technique assumes a different form for the explicit
prediction model, that is a different structure and complexity of the depen-
dencies among the attributes. The quality of a model can be assessed using a
test set , a subset of the data for which the correct target attribute values are
known, but which was not used as part of the training data. The accuracy of
predictions on the test set is an indication of how the model will perform on
new data records, and so how well it has captured the dependencies among
the attributes.

The simplest prediction model is the decision tree, a technique related
to the well-known game of Twenty Questions. A decision tree is (usually) a
binary tree, with an inequality test on one of the attributes at each internal
node, and a target attribute value associated with each leaf. The target
attribute must be categorical , that is with values from a fixed set. When
a new object is to be classified, it begins at the root node. If its attribute
values satisfy the inequality there, then it passes down (say) the left branch;
otherwise it passes down the right branch. The same process is repeated at
each internal node, so the object eventually ends up at one of the leaves. The
predicted target attribute value for the new object is the one associated with
that leaf.
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nw > 500k

income > 100k income > 300k

educ > 15Y N Y

Y N

Figure 1.1. Decision tree to decide individuals who are good
prospects for luxury goods.

Suppose a company wants to decide who might be interested in buying
a luxury product such as an expensive watch. It has access to the net worth,
income, and years of education of customers who have previously bought the
product and wants to decide which new individuals should be approached to
buy the product. Figure 1.1 shows a decision tree that might be constructed
based on existing customers. The internal nodes represent decisions based
on the available attributes of new customers, with the convention that the
branch to the left describes what to do if the inequality is satisfied. The
leaves are labelled with the class labels, in this case ‘yes’ if the customer is
a good prospect and ‘no’ if the customer is not. So, for example, a potential
customer whose net worth is below $500,000 but whose income is more than
$300,000 is considered a good prospect.

The process of constructing a decision tree from training data is more
complicated. Consider the process of deciding which inequality to choose for
the root node. This requires first selecting the attribute that will be used,
and second selecting the boundary value for the inequality that will define the
separation between the two descendant nodes. Given the training data, each
attribute is examined in turn and the one that provides the most ‘discrimina-
tion’ is selected. There are a number of ways of instantiating ‘discrimination’,
for example information gain, or gini index , details of which can be found in
standard data-mining texts. The value of that attribute that is most ‘discrim-
inating’ is selected. Again, the details can be found in standard texts. The
process of growing the tree stops when the training data objects associated
with each leaf are sufficiently ‘pure’, that is they mostly have the same value
for their target attribute.

The tree structure and the construction process are slightly different if
attributes can be categorical, that is have values chosen from a fixed set of
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Figure 1.2. Random forest of three decision trees, each trained on
two attributes.

possibilities. If a categorical attribute is chosen as most discriminating, then
the tree is no longer binary – it has one descendant for each possible value
that the attribute can take, and the test is a match against these values. The
decision about which attribute is most discriminatory is done in essentially
the same way, but there are one or two details to consider. For example,
a categorical attribute with many possible values looks more discriminatory
than one with few possible values, but this is not necessarily a reason to prefer
it.

Another prediction technique based on decision trees is random forests .
Instead of growing a single decision tree from the training data, multiple
decision trees are grown. As each tree is being grown, the choice of the
best attribute on which to split at each internal node is made from among a
randomly-chosen, fixed size subset of the attributes. The global prediction is
derived from the predictions of each tree by voting – the target attribute value
with the largest number of votes wins. Random forests are effective predictors
because both the construction mechanism and the use of voting cancels out
variance among the individual trees – producing a better global prediction.

A set of possible decision trees for predicting prospects for luxury prod-
ucts is shown in Figure 1.2. Each of the decision trees is built from a subset of
the available attributes, in this case two of the three. Because only a subset
of the data is being considered as each tree is built, attributes can be chosen
in different orders, and the inequalities can be different. In this case, an indi-
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Figure 1.3. Thickest block separating objects of two classes (circles
and crosses), with midline defining the boundary between the classes.

vidual whose net worth is $450,000, whose income is $250,000, and who has
15 years of education will be regarded as a good prospect. The first two trees
classify the individual as a good prospect, while the third does not. However,
the overall vote is two to one, so the global classification is ‘good prospect’.
Notice that the amount of agreement among the trees also provides an esti-
mate of overall confidence in the prediction. An individual with net worth
$450,000, income of $350,000 and 15 years of education would be considered a
good prospect with greater confidence because the vote for this classification
is three to zero.

A third prediction technique is support vector machines (SVMs). This
technique is based on a geometric view of the data and, in its simplest form,
predicts only two different target attribute values. A data record with m at-
tribute values can be thought of as a point inm-dimensional space, by treating
each of the attribute values as a coordinate in one dimension. Support vector
machines classify objects by finding the best hyperplane that separates the
points corresponding to objects of the two classes. It uses three important
ideas. First, the best separator of two sets of points is the midline of the thick-
est plank or block that can be inserted between them; this allows the problem
of finding the best separator to be expressed as a quadratic minimization
problem.

Figure 1.3 shows an example of objects from a dataset with two at-
tributes, plotted in two-dimensional space. The thickest block that can fit
between the objects of one class (circles) and the objects of the other class
(crosses) is shown; its midline, also shown, is the best boundary between
the classes. Notice that two circles and two crosses touch the separating
block. These are the support vectors, and the orientation and placement
of the boundary depends only on them – the other objects are irrelevant in
determining the best way to separate the two classes.
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a1

a2

Figure 1.4. Two classes that cannot be linearly separated.

Figure 1.5. The two classes can now be linearly separated in the
third dimension, created by adding a new attribute abs(a1) + abs(a2).

Second, if the two classes are not well separated in the space spanned
by the attributes, they may be better separated in a higher-dimensional space
spanned both by the original attributes and new attributes that are combina-
tions of the original attributes.

Figure 1.4 shows a situation where the objects in the two classes cannot
be linearly separated. However, if we add a new attribute, abs(a1) + abs(a2),
to the dataset, then those objects that are far from the origin in the two-
dimensional plot (crosses) will now all be far from the origin in the third
dimension too; while those objects close to the origin (circles) will remain
close to the origin in the third dimension. A plane inserted roughly parallel
to dimensions 1 and 2 will now separate the two classes linearly, as shown in
Figure 1.5. A new object with values for attributes a1 and a2 can be mapped
into the three dimensional space by computing a value for its third attribute,
and seeing which side of the plane the resulting point lies on.

Third, the form of the minimization requires only inner products of the
objects and their attributes; with some care, the combinations of attributes
required for a higher-dimensional space need not ever be actually computed
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because their inner products can be computed directly from the original at-
tributes.

The SVM technique can be extended to allow some objects to be on the
‘wrong’ side of the separator, with a penalty; and to allow different forms of
combinations of the original attributes. Although SVMs compute only two-
class separators, they can be extended to multiclass problems by building
separators pairwise for each pair of classes, and then combining the resulting
classifications.

Many other prediction techniques are known, but random forests and
support vector machines are two of the most effective.

1.2.2 Clustering

In clustering, the goal is to understand the macroscopic structure and rela-
tionships among the objects by considering the ways in which they are similar
and dissimilar. In many datasets, the distribution of objects with respect to
some similarity relationship is not uniform, so that some of the objects resem-
ble each other more closely than average. Such a subset is called a cluster. In
a good clustering, objects from different clusters should resemble each other
less than average. For any particular dataset, there are many ways to compare
objects, so a clustering always implicitly contains some assumption about the
meaning of similarity.

Clustering techniques can be divided into three kinds: those based on
distances among objects in the geometrical sense described above (clusters
are objects that are unusually close to each other); those based on density of
objects (clusters are regions where objects are unusually common); or those
based on probability distributions (clusters are sets of objects that fit an
expected distribution well). These are called distance-based, density-based,
and distribution-based clusterings, respectively.

Clustering techniques can also be distinguished by whether they carve
up the objects into disjoint clusters at a single level (partitional clustering),
or give a complete hierarchical description of how objects are similar to each
other (hierarchical clustering), using a dendrogram. As well, some clustering
techniques need to be told how many clusters to look for, while others will
try to infer how many are present.

The simplest geometrical clustering technique is k-means. Given a data-
set considered as a set of points in m-dimensional space, a set of k cluster
centers are chosen at random. Each point in the dataset is allocated to the
nearest cluster center. The centroid of each of these allocated sets of points
is computed, and these centroids become the new cluster centers. The pro-
cess is repeated until the cluster centers do not change. Each set of points
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Figure 1.6. Initialization of the k-means algorithm, with objects
denoted by crosses, and k initial cluster centers denoted by circles. The dashed
lines indicate which cluster center is closest to each object.

Figure 1.7. Second round of the k-means algorithm. One object has
moved from one cluster to another, and all objects are closer to their center
than in the previous round.

allocated to (closest to) a cluster center is one cluster in the data. Because
k is a parameter to the algorithm, the number of clusters must be known or
guessed beforehand.

Figures 1.6 and 1.7 show a small example in two dimensions. The crosses
represent data points. If the cluster centers (circles) are placed as shown in
Figure 1.6, then each object is allocated to its nearest cluster center. This
relationship is shown by dashed lines. After this initial, random, allocation,
each cluster center is moved to the centroid of the objects that belong to it,
as shown in Figure 1.7. Since the centers have moved, some objects will be
closer to a different center – one point has been reallocated in Figure 1.7.
The allocations of objects to new cluster centers is again shown by the dashed
lines. It is clear that the allocation of objects to clusters will not change
further, although the cluster centers will move slightly in subsequent rounds
of the algorithm.

The k-means algorithm is simple and fast to compute. A poor choice
of the initial cluster centers can lead to a poor clustering, so it is common
to repeat the algorithm several times with different centers and choose the



1.2. Data-mining techniques 13

clustering that is the best. It is also possible to make cleverer choices of the
initial cluster centers, for example by choosing them from among the objects,
or by calculating some simple distributional information from the data and
using that to make better initial choices.

Typical density-based partitional clustering algorithms choose an object
at random to be a potential cluster ‘center’ and then examine its neighbor-
hood. Objects that are sufficiently close are added to the cluster, and then
their neighbors are considered, in turn. This process continues until no further
points are close enough to be added. If enough points have been found, that is
the potential cluster is large enough, then it becomes one of the clusters and
its members are removed from further consideration. The process is repeated
until no new clusters can be found. Some objects may not be allocated to any
cluster because there are not enough other objects near them – this can be
either a disadvantage or advantage, depending on the problem domain.

The best known distribution-based clustering technique is Expectation-
Maximization (EM). Instead of assuming that each object is a member of ex-
actly one cluster, the EM approach assumes that clusters are well-represented
by probability density functions, that is regions with a center and some vari-
ability around that center, and objects belong to each cluster with some prob-
abilities. Suppose that the dataset contains two clusters, and we have some
understanding of the shape of the clusters. For example, they may be multidi-
mensional Gaussians, so we are hypothesizing that the data is well described
as a mixture of Gaussians. There are several missing values in this scenario:
we do not know the parameters of the distributions, and we do not know the
probability that each object is in cluster 1. The EM algorithm computes these
missing values in a locally optimal way.

Initially, all of the missing values are set randomly. In the Expectation
(E) step, the expected likelihood of the entire dataset with these missing values
filled in is determined. In the Maximization (M) step, the missing values are
recomputed by maximizing the function from the previous step. These new
values are used for a new E step, and then M step, the process continuing
until it converges. The EM algorithm essentially guesses values for those that
are missing, uses the dataset to measure how well these values ‘fit’, and then
re-estimates new values that will be better. Like k-means, EM can converge
to a local maximum, so it may need to be run several times with different
initial settings for the missing values.

Figure 1.8 shows an initial configuration for the EM algorithm, using the
same data points as in the k-means example. The ellipses are equi-probable
contours of 2-dimensional Gaussian distributions. The point labelled A has
some probability of belonging to the bottom distribution, a lower probability
of belonging to the top, left distribution, and a much smaller probability of
belonging to the top, right distribution. In the subsequent round, shown in
Figure 1.9, the parameters of the bottom distribution have changed to make
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Figure 1.8. Initial random 2-dimensional Gaussian distributions,
each shown by a probability contour. The data points are shown as crosses.

A

Figure 1.9. Second round of the EM algorithm. All three distribu-
tions have changed their parameters, and so their contours, to better explain
the objects, for example, object A.

it slightly wider, and hence increasing the probability that A belongs to it,
while the other two distributions have changed slightly to make it less likely
that A belongs to them. Of course, this is a gross simplification, since all of
the objects affect the parameters of all of the distributions, but it gives the
flavor of the algorithm.

Hierarchical clustering algorithms are usually bottom-up, and begin by
treating each object as a cluster of size 1. The two nearest clusters are joined
to form a cluster of size 2. The two nearest remaining clusters are joined,
and so on, until there is only a single cluster containing all of the objects.
There are several plausible ways to measure the distance between two clus-
ters that contain more than one object: the distance between their nearest
members, the distance between their centroids, the distance between their
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Figure 1.10. Hierarchical clustering of objects based on proximity in
two dimensions. The edges are numbered by the sequence in which they were
created to join the clusters at their two ends.

A B C D E F G H I

Figure 1.11. Dendrogram resulting from the hierarchical clustering.
Any horizontal cut produces a clustering; the lower the cut, the more clusters
there are.

furthest members, and several even more complex measures. Hierarchical
clustering can also be done top-down, beginning with a partitioning of the
data into two clusters, then continuing to find the next best partition and
so on. However, there are many possible partitions to consider, so top-down
partitioning tends to be expensive.
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Figure 1.10 shows a hierarchical clustering of our example set of objects
in two dimensions. The edges are numbered in the order in which they might
be created. Objects A and B are closest, so they are joined first, becoming a
cluster of size 2 whose position is regarded as the centroid of the two objects.
All of the objects are examined again, and the two closest, G and H, are
joined to become a cluster. On the third round, objects D and E are joined.
On the fourth round, the two nearest clusters are the one containing A and
B, and the one containing only C, so these clusters are joined to produce a
cluster containing A, B, and C, and represented by their centroid. The process
continues until there is only a single cluster. Figure 1.11 shows a dendrogram
that records this clustering structure. The lower each horizontal line, the
earlier the two subclusters were joined. A cut across the dendrogram at any
level produces a clustering of the data; the lower the cut, the more clusters
there will be.

1.2.3 Finding outliers

In finding outliers, the goal is to find those objects that are most unusual,
rather than to understand the primary structure and relationships among the
objects. For example, detecting credit card fraud requires finding transactions
that are sufficiently unusual, since these are likely to be misuse of a card. As
in clustering, there must be some implicit assumption about the meaning of
similarity (or dissimilarity).

Not many techniques for finding outliers directly are known. One-class
support vector machines try to capture the main structure of the data by
fitting a distribution such as a multidimensional Gaussian to it. Those ob-
jects on or just outside the boundary are treated as outliers. Although some
successes with this technique have been reported in the literature, it seems to
be extremely sensitive to the parameter that describes how tightly the main
data is to be wrapped.

Density-based clustering techniques can be used to detect outliers, since
these are likely to be those objects that are not allocated to any cluster.
Hierarchical algorithms can also detect outliers as they are likely to be single
objects or very small clusters that are joined to the dendrogram only at levels
close to the root.

1.2.4 Finding local patterns

In finding local patterns, the goal is to understand the structure and relation-
ships among some small subset(s) of the objects, rather than understanding
the global structure. For example, in investigations of money laundering, the
primary goal may be to find instances of a cash business connected to bank
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accounts with many transactions just under $10,000. The many other possible
relationships among objects are of less interest.

The most common technique for finding local patterns is association
rules, which have been successful at understanding so-called market-basket
data, groupings of objects bought at the same time, either in bricks-and-
mortar stores, or online. Suppose we have a dataset in which each row rep-
resents a set of objects purchased at one time. We would like to learn, for
example, which objects are often purchased together.

Objects that are purchased together only 1 in 10,000 times probably
do not have much to tell us. So it is usual to consider only sets of objects
that occur together in a row more than some fraction of the time, called the
support . Finding such frequent sets of objects that occur together depends
on the observation that a set of k objects can be frequent only if all of its
subsets are also frequent. This leads to the levelwise or a priori algorithm:
compute all pairs of objects that are frequent; from these pairs compute only
those triples that could be frequent (for example, if AB, AC, and BC are
all frequent then ABC might be frequent), and check which of these triples
actually are frequent, discarding the rest. Repeat by combining frequent
triples into potentially frequent quadruples of objects; and so on. It becomes
harder and harder to find sets of objects that might be frequent as the sets
get larger, so the algorithm runs quickly after it passes the first step – there
are typically many potentially frequent pairs.

Each set of frequent objects can be converted into a series of rules by
taking one object at a time, and making it the left-hand side of a rule whose
right-hand side is the remaining objects. For example, if ABC is a frequent
set, then three rules: A→ BC, B→ AC, and C→ AB can be derived from it.
The predictive power of these rules depends on how often the left-hand side
predicts the presence of the right-hand side objects in the same purchase, a
quantity called the confidence of the rule. Confidences are easily computed
from frequencies. If the frequency of the set ABC is 1000 and the frequency
of the set BC is 500, then the confidence of the rule A → BC is 0.5.

The problem with local rules is that it is often difficult to decide how to
act on the information they reveal. For example, if customers who purchase
item A also purchase item B, should As and Bs be placed together on a shelf
to remind customers to buy both? Or should they be placed at opposite ends
of the store to force customers to walk past many other items that might be
bought on impulse? Or something else?

1.3 Why use matrix decompositions?

The standard data-mining techniques described above work well with many
common datasets. However, the datasets that arise in settings such as sci-
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ence, engineering, medicine, economics, and politics are often complex in ways
that make mainstream data-mining techniques ineffective. Two properties of
complex datasets that make straightforward data mining problematic are

1. Data comes from multiple processes. Each entry in the dataset is usually
not the result of a single, discrete property or action of the object with
which it is associated; rather it is the combination of values that have
arisen from different processes, and have been combined to produce the
single value captured in the dataset.

2. Data has multiple causes. The relationships among the attributes, and
between each attribute and the target attribute, are subtle, and some
attributes are predictive only for some records.

For these complex datasets, more powerful analysis techniques are re-
quired. Matrix decompositions can sometimes provide this more powerful
analysis; at other times, they can provide ways to produce cleaner data which
mainstream techniques may then be able to use.

1.3.1 Data that comes from multiple processes

One way in which the values recorded in a dataset can vary from their ‘true’
values is when the collection process introduces noise. Most data collected
in the real world comes from measuring devices, and these almost always
introduce noise into the data. Noise can also be introduced into data in other
ways; for example, if people are asked their opinions, they often respond in
inaccurate ways, especially if they are asked about sensitive topics.

Individuals are also quite variable over short time scales. Even if the
topic is not sensitive, a response today may be substantially different from
what it was yesterday, or will be tomorrow, so the data collected is really a
sample of a much more complex set of possible responses.

Unsurprisingly, the presence of noise can distort predictive models or
clusterings built from the data. Not so obviously, the distortions introduced by
noise can be much larger than expected from the magnitude of the noise itself.
The support vector technique tells us that the best separator is the midline of
the thickest rectangle that can be inserted between points representing objects
from the two classes. Only some of the objects, those that make contact with
this rectangle, actually alter its placement – such points are called support
vectors, and they are typically a small fraction of the objects. If only one
or two of these objects are moved by a small amount because of noise, it
can make a large difference to the angle (and thickness) of the separating
rectangle, and so to the boundary between the two classes.
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Analyzing a dataset without considering how much its values may have
been distorted by noise can lead to poor results. Matrix decompositions pro-
vide several ways to investigate datasets for the presence of noise, and also
allow it to be removed.

Even when noise is not present in a dataset, for example because it has
been collected by some automatic and digital process, it is still possible for the
values in the dataset to represent a merging of data from different underlying
processes. Consider the collection of data about stars using a telescope. The
measured intensity of a particular star at a particular wavelength represents
the sum of terms that represent: the actual intensity of the star at that
wavelength, the gravitational force on the light due to other stars and galaxies,
the effects of the atmosphere on the light as it passed from space to the
telescope, and properties of the telescope itself. Treating such a measured
value as if it represented only the actual intensity of the star is bound to
create inaccurate models.

This situation could be thought of as noise corrupting an underlying
signal, but it is better to regard this as four different processes whose effects are
superimposed in the observed data. After all, which process represents noise
depends on the goals of the observation; it might be that the goal is to develop
a new detection system to observe stealth aircraft which give themselves away
by the way they distort the light from stars. With this goal, the process that
might previously have been considered noise is now signal.

In general, many datasets cannot capture significant data without also
capturing other kinds of data that blur the structures of interest. Trying to
model the data without awareness of these other processes’ contributions leads
to weak models. In the astronomical example above, the four processes could
plausibly be assumed to be statistically independent, which makes it easier
to separate them, but even this is not usually the case. The contributions of
each of the processes are intertwined, and separating them is not easy.

1.3.2 Data that has multiple causes

It is attractive to think that, in any given dataset, there is a fixed relationship
between a particular attribute and the target attribute; attribute a1 is strongly
predictive, attribute a2 is not very predictive, and so on. Indeed, there are
algorithms for attribute selection that assume this kind of relationship and
aim to select those attributes that are most useful, so that the others can be
discarded, and the analysis simplified.

It is sometimes the case that some attributes in a dataset are almost
useless in determining its underlying structure. This happens partly because
datasets are collected for many reasons, and subsequent data mining is an
extra win. It also happens because it is usually hard to tell, in advance,
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which attributes will be the most revealing, and so it makes sense to collect
as many as possible.

However, in many real-world datasets, the dependence of the overall
structure on individual attributes is more complex. It is often the case that
attribute a1 is predictive for objects from class 1, whereas attribute a3 is
predictive for objects from class 2, and attribute a5 is predictive only for
some other objects from class 2. Attribute selection, in the usual sense, does
not help for such datasets. Discarding an attribute means discarding useful
information; on the other hand, any particular attribute may be useful for
only some of the objects and useless, or even misleading, for other objects.

A simple example may help to clarify this issue. Suppose you are asked
what personality traits make you like someone, and what personality traits
make you dislike someone. There will probably be some traits that are on one
of your lists, while their opposites are on the other list. These correspond to
attributes that are uniformly predictive of whether you will or will not like
someone. However, there are likely to be some traits that appear on one of
your lists, but whose opposites do not appear on the other. For example, you
might say that you dislike people who talk a lot. It does not necessarily follow
that you will like quiet people. Traits that appear on only one list correspond
to attributes that are predictive for one class, but have no predictive power
for the other class.

Consider the simple scenario shown in Figure 1.12. Here objects from
Class 1 (circles) are easily determined because they contain only a limited
range of values for attribute a1; their values for attribute a2 are widely dis-
tributed. In the same way, objects from Class 2 (crosses) are easily determined
by a limited range of values for attribute a2; but their values for attribute a1

are widely distributed. Both predictors and clusterings of this data will insert
a boundary between the classes roughly as shown by the line.

However, it is easy to see from the Figure that the precise placement
of the boundary depends on the exact positions of the objects in the top
right hand corner! These objects are the least typical objects of either class,
and so the least reliable on which to base decisions. Yet these objects, that
are least characteristic, and perhaps have attribute values that are least to be
trusted, are those that contribute most strongly to the model being built. This
situation is typical of many datasets, and illustrates the pitfalls of assuming
that attributes, rather than attribute values, correlate with classes.

1.3.3 What are matrix decompositions used for?

Matrix decompositions have two main roles in data analysis. The first is
that they are able to tease apart the different processes that have usually
been captured by the dataset. The effects of processes that are irrelevant
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Figure 1.12. Typical data distribution for a simple two-attribute,
two-class problem.

to the task at hand, perhaps noise or some other unavoidable processes that
are intertwined with the process of interest, can be removed from the data.
This enables subsequent modelling using mainstream data mining to produce
better results. This role might be called data cleaning .

The second role for matrix decompositions is to cluster the objects (or
attributes) of a dataset, either directly in ways that derive from the matrix
decomposition or in some standard way.

Matrix decompositions also allow other forms of analysis, for example
experimenting with the importance of a critical object or attribute, and forcing
representations of the data in terms of a small number of substructures. We
will see many of these in action in subsequent chapters.

Notes

The scientific method is discussed in Popper’s book [91].

Some standard data-mining texts are those by: Tan, Steinbach and Ku-
mar [110], Kantardzic [64], and Dunham [39]. A book written from a more
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statistical perspective is Hand, Mannila, and Smyth [50]. Although there were
a number of good survey papers about data mining, most of these are now
quite old.

Decision trees were developed by Quinlan [92–94] and independently by
Breiman [18]. Random Forests were also developed by Breiman [17]. Support
Vector Machines, as they are used today, were developed by Cortes and Vapnik
[30], and extended by a large number of others [15, 22, 31, 37].

The k-means algorithm was developed by MacQueen [83], and has been
used in hundreds of different contexts. It is often used as a first algorithm
to cluster a dataset. However, its use of Euclidean distance assumes that
clusters are naturally spherical, and this assumption almost never holds in
practice. An example of a density-based clustering algorithm is DBSCAN [41].
The Expectation-Maximization algorithm was developed by Dempster [33].
Hierarchical clustering is a simple idea that should probably be credited to
Linnaeus’s classification of species. However, the approach is usually credited
to Johnson [61]. Association rules and algorithms to compute them were
developed in a series of papers by Agrawal and others [5, 6].



Chapter 2

Matrix decompositions

Matrix decompositions have been used for almost a century for data analysis
and a large set of different decompositions are known. The most important
ones are:

• Singular Value Decomposition (SVD), and its close relation, Principal
Component Analysis (PCA);

• SemiDiscrete Decomposition (SDD);

• Independent Component Analysis (ICA);

• Non-Negative Matrix Factorization (NNMF);

Some of these are really families of related decompositions; there are also a
number of variants and extensions, and we will briefly discuss some of them
as well.

2.1 Definition

Recall that we consider a dataset as a matrix, with n rows, each of which
represents an object, and m columns, each of which represents an attribute.
The ijth entry of a dataset matrix is the value of attribute j for object i 1.
Each family of matrix decompositions is a way of expressing a dataset matrix,

1In some applications it is more natural to use the rows of A for the attributes and the
columns for objects. This doesn’t change anything since the transpose of a matrix product
is the product of the transposes in the reverse order. However, it does make reading the
literature confusing.

23
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Figure 2.1. A basic matrix decomposition.
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Figure 2.2. Each element of A is expressed as a product of a row of
C, an element of W , and a column of F .

A, as the product of a set of new matrices, usually simpler in some way, that
shed light on the structures or relationships implicit in A. Different matrix
decompositions reveal different kinds of underlying structure.

More formally, a matrix decomposition can be described by an equation
of this form

A = C W F (2.1)

where the sizes of the matrices are as follows: A is n × m (and we assume
for simplicity that n > m; in practice n � m); C is n × r for some r that is
usually smaller than m; W is r × r, and F is r ×m; Figure 2.1 illustrates a
matrix decomposition.

From this equation, an element of A, say a11, arises from the multipli-
cation of the first row of C, the top left element of W , and the first column
of F , as shown in Figure 2.2. If we think of the rows of F as parts or pieces,
then the product W F weights each of the rows by the corresponding diagonal
element of W . The matrix C then takes something from each part and com-
bines them in a weighted way. Hence each entry of A is a kind of combination
of parts from F , combined in ways described by C and W .

The matrix C has the same number of rows as A. Each row of C gives a
different view of the object described by the corresponding row of A. In other
words, the ith row of C provides r pieces of information that together are a
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new view of the ith object; while A provides m pieces of information about
the ith object.

The matrix F has the same number of columns as A. Each column
of F gives a different view of the attribute described by the corresponding
column of A, in terms of r pieces of information, rather than the n pieces of
information in A.

The role of r is to force a representation for the data that is more compact
than its original form. Choosing r = m still gives a sensible decomposition,
but it is usually the case that r is chosen to be smaller than m. We are im-
plicitly assuming that a more compact representation will capture underlying
or latent regularities in the data that might be obscured by the form in which
the data is found in A, usually because A expresses the data in a way that
contains redundancies.

The particular dataset, A, being studied is always considered to be a
sample from a larger set of data that could have been collected. The use
of a limited representational form prevents the matrix decomposition from
overfitting the data, that is learning the precise properties of this particular
dataset, rather than the properties of the larger system from which it came.

The matrix W has entries that reflect connections among the different
latent or implicit regularities or latent factors – the ijth entry provides the
relationship between the latent factor captured by the ith column of C (a
kind of latent attribute) and latent factor captured by the jth row of F (a
kind of latent object). For us, W will always be a diagonal matrix (that is, its
off-diagonal elements are zero), in which case the latent factors for the objects
and attributes are the same, and each entry can be interpreted as providing
information about the relative importance of each underlying factor. Some
decompositions do not create this middle matrix, but we can always imagine
that it is there as the r × r identity matrix.

Usually r is smaller, often much smaller, than m, but a few matrix
decompositions allow r > m. In this case, the underlying factors must some-
how be of a particular simple kind, so that the matrix decomposition is still
forced to discover a compact representation. For example, as we shall see, the
SemiDiscrete Decomposition allows r > m, but the entries of the C and F
matrices are restricted to be only −1, 0, or +1.

We will consider many different kinds of matrix decompositions. These
differ from each other in the assumptions they make about the kind of un-
derlying structure that can be present in the data. In practice, this means
that different matrix decompositions have different requirements for the en-
tries of the matrices into which the dataset is decomposed, different relation-
ships among the rows and columns, and different algorithms to compute each
decomposition. Nevertheless, there are deep connections among the matrix
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decompositions we will consider. Most can be expressed as constrained op-
timization problems; and all are a form of Expectation-Maximization with
stringent requirements on the distributions assumed.

Symmetry between objects and attributes

There is always a kind of symmetry between the objects and the attributes in a
dataset because the matrix decomposition on the objects, as we have described
it, can also be turned into a matrix decomposition on the attributes. For if

A = C W F

then
A′ = F ′ W ′ C ′

The dash indicates the transpose of the matrix, that is the matrix obtained
by flipping the original matrix across its main diagonal, making rows into
columns, and columns into rows. A′ reverses the roles of objects and at-
tributes, so the attributes are now the rows. On the right-hand side, F ′ plays
the role originally played by C, and C ′ plays the role originally played by F .
For any matrix decomposition, whatever can be done with the objects in the
dataset can also be done with the attributes, and vice versa.

Normalization

Because matrix decompositions are numerical computations, the magnitudes
of the values in different columns (different attributes) must be comparable,
or else the large magnitudes will have a greater influence on the result than
the smaller ones. How this is done, however, requires some care because it
amounts to making assumptions, perhaps quite strong ones, about the data.
Although matrix decompositions are usually characterized as non-parametric
methods, the choice of normalization is really a parameter.

One standard way to adjust attribute values is to subtract the mean from
the entries in each column, which centers the values around zero; and then di-
vide each entry in each column by the standard deviation of the column mean.
This makes the values in different columns roughly similar in magnitude, but
implicitly assumes that the values of each attribute are normally distributed.
We will discuss normalization in detail for each matrix decomposition.

When it is not clear how to normalize values in the dataset, as for ex-
ample when the distribution of values is very different for different attributes,
it can often be useful to replace the values in each column by their ranks. A
common way to do this is to use the Spearman rank . The values are num-
bered in increasing order, except that when there are ties, the rank associated
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with the tied elements is the average of the ranks that those elements would
have had if they had been different. Suppose that the original values are, say,
1,4,2,3,2,4,2. Sorting these into order we get 1,2,2,2,3,4,4 and the correspond-
ing ranks are 1, 3 (= (2+3+4)/3 ), 3, 3, 5, 6.5 (= (6+7)/2), and 6.5. Each
column of the dataset contains the same number of values, so the magnitudes
in the different columns are roughly the same.

Degenerate decompositions

Many decompositions, in their simple forms, can be degenerate. Given an
invertible m×m matrix X, it is often possible to insert X X−1 in the right-
hand side of a decomposition, rearrange, and get a new right-hand side that
is another example of the same decomposition. If

A = C F

then
A = C (XX−1)F = (C X) (X−1 F )

and the parenthesized terms on the right-hand side are a new C and a new F ,
and so a different decomposition of A. Most matrix decompositions impose
some further condition to specify which, of all these related decompositions,
is ‘the’ decomposition.

Correlation matrices

Given a matrix A, we can form the matrices AA′ and A′A, where the dash
indicates the transpose of A. The matrix AA′ is the correlation matrix of the
objects. The magnitude of the ijth entry indicates the amount of correlation
between the ith and the jth object. Similarly, the matrix A′A is the correla-
tion matrix of the attributes, and its entries indicate the amount of correlation
between pairs of attributes. Both of these matrices are symmetric.

The correlation matrices can also be decomposed, and the resulting ma-
trices analyzed to give new insights into the structures present in the data.
However, this is often not as helpful as it seems, for three reasons. First, the
correlation matrices are n×n and m×m respectively, so that at least the first
can be very large. Second, calculating a decomposition for such a matrix can
often be difficult because of numerical instability. Third, each decomposition
of a correlation matrix provides information about the structure of the objects
or about the structure of the attributes, but not both at once. This can lose
information implicit in their interactions.
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2.2 Interpreting decompositions

Equation 2.1 explains what a matrix decomposition is, but it does not explain
how to compute one, or how such a decomposition can reveal the structures
implicit in a dataset. The computation of a matrix decomposition is straight-
forward; software to compute each one is readily available, and understanding,
in a deep way, how the algorithms work is not necessary to be able to interpret
the results.

Seeing how a matrix decomposition reveals structure in a dataset is more
complicated. Each decomposition reveals a different kind of implicit structure
and, for each decomposition, there are four different, although related, ways to
interpret the result. Hence, for each dataset, there are many possible avenues
for exploration.

Each decomposition allows the following four interpretations:

• A factor interpretation. Here the underlying assumption is that the rows
of F represent r underlying or hidden factors with inherent significance.
The objects in the observed data, A, are the result of mixing these
underlying factors in different proportions given by the entries of each
row of C.

• A geometric interpretation. Here the underlying assumption is that
the rows of A can be interpreted as coordinates in an m-dimensional
space. After decomposition, each object is described by a new set of
coordinates, the entries of the corresponding rows of C with respect to
a set of axes given by the r rows of F .

• A component interpretation. Here the underlying assumption is that
each entry in the dataset is a blend of values from different processes
that contributed to the dataset. The component interpretation naturally
allows such contributions to be separated.

• A graph interpretation. Here nodes are associated with each of the
objects and the attributes, with edges joining nodes of one kind to nodes
of the other kind, weighted by the matrix entries. If these weights are
regarded as permeability of edges, then objects that are similar to each
other are nodes that have many ‘easy’ paths between them.

These four interpretations might be called the hidden factors model, the hid-
den clusters model, the hidden processes model, and the hidden connections
model, respectively. The four interpretations are mathematically equivalent,
but provide different views of the structure hidden within the matrix A. For
each particular dataset and application domain, one or other of these interpre-
tations will often seem more natural, but it is usually instructive to consider
all four.
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2.2.1 Factor interpretation – hidden sources

In this interpretation, the attributes that are captured in the dataset A are
regarded as mixtures (somehow) of some attributes that have more direct
significance. For example, if sound signals are captured by microphones in
a number of places in a noisy room, then the amplitudes and frequencies at
these locations are the measured attributes. The real attributes of interest
might be what the speakers in the room are saying, that is the amplitudes and
frequencies of the sounds each speaker produces. The measured attributes,
of course, depend on the real attributes, but in ways that also depend on
where the microphones are placed and the shapes and textures of objects in
the room. This is often called the Blind Source Separation problem, and it is
ubiquitous in signal processing.

Data analysis in the humanities and social sciences often uses this in-
terpretation as well. Data collected by surveys, for example, often describes
superficial properties or actions, while the goal of the survey is to discover the
deeper drivers or motivators that explain or cause the superficial properties
or actions.

For example, data collected about athletes might contain information
about their heights, weights, femur length, and shoe size. These properties are
probably highly correlated and reflect a latent property, ‘body size’. Reducing
these overt factors to a single, latent factor might make it easier to see why
some athletes are successful and others are not. A decomposition shows how
this latent factor contributes to the observed factors via the entries in C; that
is, the value of height for a given athlete is a scalar multiple of the ‘body size’
factor, the value for weight is a different scalar multiple, and so on. These
scalars appear along the row of C corresponding to the given athlete.

2.2.2 Geometric interpretation – hidden clusters

Clustering means finding groupings of the objects such that the objects in a
group are more similar to each other than they are to the objects in other
groups. As we discussed in Chapter 1, this requires a measure of similarity
which is often, in practice, a distance measure of some kind.

Clustering in such a space could be done using any practical measure
of similarity between points, for example Euclidean distance. Unfortunately,
when m is large, such distance measures are not well-behaved. Consider a
dataset with m attributes whose values are grouped into three ranges: large-
positive, close-to-zero, and large-negative. If attributes are chosen at random,
then the probability of any object lying close to the origin is

1
3m
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Object Attrib 1 Attrib 2
1 1 2
2 -1 -1
3 2 2
4 0 -1
5 2 1
6 0 -2
7 -1 2

Figure 2.3. A small dataset.

because this can happen only if every attribute has the value close-to-zero.
Similarly, if we select an arbitrary object, the probability that any other single
object will be close to it is again 1/3m because the other object’s attribute
values must match exactly in every position. As m becomes large, these
probabilities become smaller and smaller. The geometry of high-dimensional
spaces is not intuitive. In a high-dimensional space, objects tend to be far
from the origin, and every object also tends to be far from every other object.
Thus the expected difference between the nearest and furthest neighbor of
any point is quite small.

There is a natural geometric interpretation of the matrix A, in which
each row defines the coordinates of a point in an m-dimensional space spanned
by the columns of A. In low-dimensional space, this geometric view can make
it easy to see properties that are difficult to see from the data alone.

For example, suppose we have the small, two-attribute dataset shown
in Figure 2.3. A two-dimensional plot of this dataset, as shown in Figure 2.4
makes it clear that there are two clusters in this data, which is not easy to
see from the textual form.

Because of their awkward properties, distances in high-dimensional spaces
are not as useful for clustering as they might seem.

A matrix decomposition can be interpreted as a transformation of the
original m-dimensional space into an r-dimensional space. The relationships
(distance, densities) among the objects may be more clearly visible in the
r-dimensional space that results from the decomposition than they were in
the geometrical view of the original space. Each row of F is regarded as
an axis in an r-dimensional space, and the rows of C are the coordinates of
each object of A with respect to the space spanned by these axes. When a
well-behaved measure can be defined on this transformed space (which is not
always possible), clustering can be based on similarity with respect to this
measure.

For example, Euclidean distance can be used in r dimensions, where it
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Figure 2.4. Plot of objects from the small dataset.

may be a better-behaved measure. In some datasets, the magnitude of the
dataset entries is less important than whether the entry is non-zero or not. For
example, if the dataset is a word-document matrix, with rows corresponding
to words, columns corresponding to documents, and the ijth entry counting
the frequency of word i in document j, many occurrences of the same word in
a document do not necessarily make it more relevant with respect to a search
query. Measures based on the angle between the vector from the origin to
the point corresponding to each row (or column) may be more appropriate.
This angle between two rows can be easily calculated as the dot product : the
corresponding entries in each row are multiplied together, and the results are
summed. The dot product of the two rows is proportional to the cosine of the
angle between them, when they are regarded as vectors. The larger the cosine,
the smaller the angle between them, and the more similar the two points are.

When theW matrix is diagonal, its entries cause the different dimensions
to behave as if they were stretched by different amounts, corresponding to the
wiis. Hence differences in a dimension with a large associated weight are more
important than equivalent differences in dimensions with smaller weights. Not
all decompositions imply this kind of ranking on the axes – for such techniques,
we can treat W as the identity matrix.

There is a natural symmetry in this view of a matrix decomposition:
the columns of the matrix C can equally well be regarded as defining the
axes of an r-dimensional space, and the columns of F as coordinates in this
space. Each of these points corresponds to a column of A, that is to one of
the attributes of the original dataset.
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2.2.3 Component interpretation – underlying processes

Consider the product of the ith column of C, the ith entry of the diagonal
of W , and the ith row of F . A is the pointwise sum of these outer product
matrices with i ranging from 1 to r.

To see this, let Ai be the matrix obtained by multiplying the ith column
of C, the ith diagonal element of W and the ith row of F , so

Ai = C(:, i) ∗W (i, i) ∗ F (i, :)

Ai has the same shape as A because it is the product of n×1, 1×1 and 1×m
matrices. Now we have that

A =
r∑

i=1

Ai (2.2)

(to see this, rearrange the sum into the usual form for matrix multiplication)
so each entry in A is the sum of the corresponding entries in each of the Ai,
and we can view the Ai as being layers or components whose pointwise sum
is the original matrix.

Each layer corresponding to an outer-product matrix can be examined
to see if it can be identified with a known process. For example, one layer may
represent Gaussian noise, or noise with some structural component that makes
it visible via the ordering of the rows of A. Such a layer can be discarded,
and the remaining layers added back together to give a new version of A from
which (some of) the noise has been removed. On the other hand, one layer
may contain structure that seems fundamental to the modelling task at hand.
The matrix corresponding to that layer may be analyzed directly using some
other data-mining technique.

For example, a store may record, each month, the sales of each item
by counting the difference between the number of each item at the beginning
and end of the month, and taking into account any restocking. However,
most stores suffer losses from shoplifting. Directly analyzing the data means
trying to build a model of two processes at once, sales and shoplifting, and is
unlikely to model either accurately. Decomposing the product-stock matrix
into two components may produce a component corresponding to sales, and a
component corresponding to shoplifting, both of which can then be analyzed
separately in a principled way.

2.2.4 Graph interpretation – hidden connections

In this interpretation, the entries in the matrix are thought of as strengths of
connections between the objects corresponding to the rows and the objects
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corresponding to the columns. We can think of A as a bipartite graph (that
is with two kinds of nodes or vertices), where one set of nodes corresponds to
the objects and the other set of nodes corresponds to the attributes. There
are edges between each object-attribute pair (but no edges between objects
and objects, or between attributes and attributes). The edge between the
node corresponding to object i and the node corresponding to attribute j has
a weight associated with it, corresponding to the matrix entry aij . Of course,
if the matrix contains zero entries, we can remove the corresponding edges.

We can consider the edge weights as measures of the strength of the
association between object i and attribute j, so that we could imagine that
they represent the pull between the nodes at each end. Another useful way
to think of these edge weights, however, is as permeabilities that represent
how easy it is to pass from the node at one end to the node at the other. It
now becomes possible to consider how close (that is, how similar) two nodes
are in terms of their commute time, that is the average ‘time’ it takes to get
from one to the other and back over all possible paths between them. There
are connections between such commute distance metrics and the higher-order
structure revealed by some decompositions.

A matrix decomposition can be thought of as replacing this bipartite
graph by a tripartite graph, with three kinds of nodes. The first kind of
nodes correspond to the objects, the third kind of nodes correspond to the
attributes, but the second kind of nodes correspond to the ‘middle’ dimension
of the matrix decomposition. The number of points in this middle dimension
is r. We can think of these middle points as waystations on paths between
the points corresponding to objects and attributes. For any given object and
attribute there are r different paths, each using a different waystation.

Edge weights can be assigned to each of the edges in the tripartite graph:
cij for the edges from the object nodes to the middle nodes, and fjk for the
edges from the middle nodes to the attribute nodes. If a diagonal matrix, W ,
is part of the decomposition, then its effect can be included by multiplying
the weight on each edge by the square root of the corresponding element of
the diagonal of W .

Now consider a particular object and attribute, connected in the bipar-
tite version by an edge with weight aik. In the tripartite graph, this weight,
however we interpret it, has been smeared across all of the r paths that join
this ith object to the kth attribute via any of the middle-layer points. The
relationship between the weights in the tripartite graph and the weight aik is
the standard matrix multiplication relationship

aik =
∑

j

cij fjk

This is not an arbitrary decomposition of the value aik into pieces because
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the weights cij and fjk also have to fit into many other such sums for other
object-attribute pairs.

For example, suppose we have a dataset whose rows are people, and
whose columns are famous works of art. The people are asked to indicate,
say on a scale of 1 to 10, how much they like any of the works of art with
which they are familiar. In the graphical view, these entries become weights
on edges linking people to works of art. After the decomposition, these direct
links between people and works of art become indirect links passing through
waystations. These waystations may correspond to different groupings of taste
in art; perhaps one waystation corresponds to Old Masters and connects some
of the people with paintings by Rembrandt and Rubens. Another waystation
may correspond to Impressionists, or those who like Picasso, or Jackson Pol-
lock.

The structure of the tripartite graph is reminiscent of a neural network,
especially of an auto-associative neural network.

2.2.5 Summary

Each of the interpretations is simply a way of looking at exactly the same
decomposition – nothing changes in the data, although each interpretation
reflects a different view of the meaning of similarity. As humans, however, a
different perspective can often provide a new insight into the structures im-
plicit in the data. These different interpretations are different ways of bringing
our intuitions and understanding of the data to bear. For any particular data-
set, some of the interpretations may not provide much insight, but it is useful
to be familiar with them so that they can be used as opportunities arise.

2.2.6 Example

We will make the different interpretations more concrete by considering what
light each one sheds on understanding the relationship between two objects
in a dataset.

Suppose we are interested in the objects described by rows i and j of a
dataset. One way to measure their similarity would be to compute their dot
product, the sum of the pointwise products of each row. It is clear intuitively
that, if the two objects are similar, then their dot product will be large and
positive – because in each position they will tend to have values that are of
similar magnitudes and sign, and these will contribute to the sum. In fact,
if the dot product is large and positive, then the rows, as vectors, point in
similar directions in the obvious m-dimensional geometric space. If the dot
product is zero, then the rows are orthogonal to each other. If the dot product
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is negative then, in many positions, the values of the corresponding entries of
the rows have opposite signs, and so are very dissimilar. The rows, as vectors,
point in opposite directions. Dot products are useful ways of formalizing the
idea of similarity. If the magnitudes of the values are suitably normalized,
then dot products correspond to cosines of the angles between the vectors:
positive when the angle is small, zero when the angle is a right angle, and
negative when the angle is obtuse.

The problem with computing similarity in the space of the original data
is that it may misrepresent the real similarities. For example, suppose that
the same ‘real’ attribute was repeated three times in the data (this happens
when the attributes appear different but are really just ways of measuring the
same thing). Then distances between objects (rows) put three times as much
emphasis as they should on the difference between values for the ‘real’ under-
lying attribute. This will make a major difference to the apparent similarities,
especially for those objects that are far apart according to this ‘real’ attribute
because dot products are squares of Euclidean distance. Adding the squares
of the distance according to this attribute into the sum three times makes it
much larger than if it were only included once. Most matrix decompositions
are able to detect this kind of redundancy and provide ways to remove it.

Applying a matrix decomposition makes it possible to compare objects i
and j using the ith and jth rows of C rather than A. The factor interpretation
implies that the entries of a row of C should be thought of as quantities of
underlying factors that have been mixed together to produce the observed
attribute values of each object. With this view, it might be sensible to look
at the pointwise differences between the entries of rows i and j of C.

The geometric interpretation suggests that we should consider the dis-
tances between the points corresponding to objects, in a space of dimension
r rather than m and with new axes. This could be done using the Euclidean
distance between the points corresponding to rows i and j, or the dot prod-
ucts of rows i and j. Again, a positive dot product indicates similarity, a dot
product whose magnitude is small indicates independence, and a negative dot
product indicates dissimilarity.

The component interpretation suggests that each entry in a row of C
comes from a different component. Comparing rows i and j should be done
column by column, but the resulting products need not be summed, or com-
bined in any other way. The decomposition may also suggest that some
columns should be ignored, and perhaps other columns emphasized.

The graph interpretation suggests that the dot product of rows i and
j should be interpreted as proportional to the average permeability of the
paths between the point corresponding to i and the point corresponding to j.
A large value indicates that it is easy to get between these two points on the
graph.
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We can see from this example that the different interpretations are really
based on different views of the underlying measures of similarities among
objects.

2.3 Applying decompositions

The preceding section shows how to understand the results of a matrix de-
composition in an abstract way. In this section, we consider how matrix
decompositions can be applied to extract useful knowledge from a dataset.
There are two main ways to use matrix decompositions:

1. As discussed earlier, values in many datasets are combinations of data
from different processes, possibly including noise, that are not part of
the systems that are of interest. Matrix decompositions can be used to
separate the contributions of the different processes, allowing those of
interest to be selected, and those that are not of interest to be discarded.
Matrix decompositions can be used for a powerful form of data cleaning.

2. Finding the similarities among objects can be difficult because their
attributes may not all be relevant and because the sheer number of
attributes can make the analysis difficult. Matrix decompositions make
it possible to use either standard clustering techniques or specialized
clustering techniques related to the decomposition more effectively, by
applying them to the C matrix.

Some decompositions can also be used to select interesting objects or at-
tributes, or to find local relationships within datasets.

2.3.1 Selecting factors, dimensions, components, or
waystations

Matrix decompositions break datasets into parts, which may be thought of
as underlying factors (the factor interpretation), dimensions (the geometric
interpretation), layers (the component interpretation), or waystations (the
graph interpretation). This allows us to select one or more parts for removal,
or some sets of parts to keep.

Selecting parts of a decomposition is easier if there is some ordering on
the parts, for then it is usually clearer how important each part is in explaining
the data. Some decompositions naturally impose such an ordering; even when
they do not, it is still sometimes possible to arrange the parts in a sensible
way. When the entries on the diagonal of W have different magnitudes, then
these can be sorted into decreasing order, permuting the rows of F and the
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columns of C to match. When W is the identity matrix, an alternate way
to get an ordering is to sort the rows of F in decreasing order of their row
norms, permuting the columns of C to match.

When a decomposition is arranged in this way, selection becomes trun-
cation, retaining only the first k columns of C, the top left k×k submatrix of
W and the first k rows of F . Truncation makes an implicit assumption that
the dataset, as given, contains some redundancy or noise whose removal will
make it easier to see the ‘real’ structure in what remains.

This truncated representation is a simplification of the original decom-
position. For some matrix decompositions, a bound on how different the new
representation is from the old, as a function of k, is possible. The Johnson-
Lindenstrauss Lemma shows that the number of dimensions in a dataset can
be reduced to roughly O(log n) without introducing substantial distortions
into the L2 distances between objects (note that this is a function only of n,
not m).

Denoising

The most obvious reason to remove one or more parts is that we believe those
parts to contain noise, either in the sense of noise introduced by measurement
or capture of the data, or in the sense of factors that are known to be present
but are not of interest (which in the end amounts to the same thing). If noise
is present, then some of the parts of the decomposition do not correspond to
the process of interest, but to other processes that are somehow artifacts of
the data-collection process. Noise removal needs to be carefully considered,
however, for two reasons. First, it is hard to be sure that a particular process
is truly irrelevant and so safe to remove. Second, the decomposition may not
perfectly separate noise processes from processes of interest, so removing the
noise may also, unavoidably, remove some of the useful structure.

For example, a dataset of customers who use a store’s own credit card
might contain information about how much each person has used the card
each month, how good their credit rating is, and how many redeemable points
they have accumulated. Such a dataset might also contain the number of each
credit card, and perhaps the postal code where each customer lives. If we want
to cluster the customers to discover if there are useful subgroups of customers
who should be treated differently, then we might expect that the credit card
numbers are noise that will only obscure the similarities among customers.
After all, the credit card numbers are usually handed out sequentially, and
similar customers wouldn’t be expected to get credit cards at the same time.
However, credit card numbers do partly correlate with age, since those who
have cards given out a long time ago must be older; and age does correlate with
purchasing patterns. So even attributes that seem to have little to contribute
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may still be partly useful. Postal codes also have little to do, directly, with
purchasing patterns; but postal codes do correlate with demographics and
wealth, and so also have something indirect to contribute.

If the C, W , and F matrices are truncated at some k (< r) then we
retain the first k columns of C, the top left hand k × k submatrix of W (the
first k diagonal entries), and the top k rows of F . The product of these smaller
matrices

CkWkFk

is a matrix, Ak, that has the same shape as A. The entries of Ak will differ
slightly from those of A because some of the values that summed to produce
each entry of A are missing (think of the component interpretation). Ak can
be viewed as a version of A from which the effects of some processes have
been removed, leaving an element-wise ‘cleaned’ version of the dataset.

Of course, the remaining question is how to choose a suitable value for
k. There is no definitive answer to this. In practice, what is often done is
to consider the values that were used to order the parts (either the values in
the diagonal of W or the row norms of F ) and look for a sharp change in the
values. For example, if these values are plotted, then the plot may show a
distinct ‘knee’ where the values suddenly become smaller. This may suggest
a suitable value for k.

A more sophisticated method, suggested by Zhu and Ghodsi, models the
sequences of values used to order the parts explicitly, and assumes that these
values v1, . . . , vk and vk+1, . . . , vm are chosen from different distributions. An
expression for the profile log-likelihood of k is generated and its maximum
determined exhaustively. This approach seems to work reasonably well in
practice. However, this assumes that the truncation is directed at removing
noise, or at least that there are two different major processes from which the
data was created.

Another method is based on the fact that multiplying a matrix pointwise
by a random −1,+1 matrix should change its 2-norm if it contains structure,
but will not change it much if the matrix contains no structure. This test
can be applied to the residual matrix, the matrix combining the k + 1 to
m components, to see if it contains any remaining structure that would re-
quire retaining more components. Again, this method applies only when the
truncation is directed at removing noise.

Removing redundancy

The second reason to remove some parts of the data is that the inherent di-
mensionality of the dataset, that is the number of parts actually needed, is
lower than the apparent dimensionality in terms of the number of attributes.
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In other words, the data forms a manifold of k dimensions in a space of m
dimensions. This is not attribute selection, but still has the effect of reduc-
ing the number of attributes for subsequent analysis. Here truncation does
not remove information; rather it expresses it in a more economical form.
(Of course, as discussed in the previous chapter, real datasets tend to con-
tain a number of low-dimensional manifolds oriented in different directions.
It is still possible, however, that these manifolds together are still of lower
dimension than the entire dataset appears to be.) For example, we previ-
ously mentioned a dataset of athletes and their heights and weights. If these
are well-correlated, as we expect, then we might see one component in the
decomposition representing ‘body size’, and another component of much less
significance, representing variations between height and weight. If this sec-
ond component is essentially random, then we can remove it, and effectively
compress the two attributes into a single one.

When the diagonal of W is in decreasing order then there is a sensible
reason to truncate the C and F matrices after the first k rows/columns.
However, it is also possible to select any k rows/columns and the matching
diagonal entries of W . The resulting decomposition represents the effects
of selecting only certain underlying factors, and enables the interaction of
different processes to be observed. When the factors are not automatically
ranked, W is the identity matrix, and there is little to guide selection of
particular submatrices, so many different subsets of k rows/columns may be
considered.

Selecting objects and/or attributes with special properties

Selecting parts from a decomposition changes the values in all of the entries
of A but leaves a matrix that is still n × m. However, it is also possible
to use information from the decomposition to remove rows or columns of A,
to produce a new, smaller matrix. Attributes, or objects, or both can be
removed.

There are three reasons to remove attributes from the dataset:

1. Some of the attributes are redundant. Recall that many datasets are
collected for other purposes, for example to record transactions. Data
mining of the data is therefore a kind of afterthought. Such datasets may
contain attributes that are not related to the properties of interest. Some
prediction and clustering algorithms are not affected by the presence of
irrelevant attributes, although they always increase the size of the data
and so the time taken to analyze it. However, the majority of data-
mining algorithms are affected by the presence of unrelated attributes,
at best spending extra computation time to understand them, and at
worst producing lower-quality results because of them. Therefore, it
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makes sense to eliminate attributes that have no predictive power or do
not help to produce better clusterings.

2. Some of the attributes are duplicates. It may happen that several at-
tributes measure essentially the same underlying property, so their val-
ues are highly correlated. This is a special form of redundancy in which
all but one of each correlated group is redundant. For predictors, the
presence of such a set of attributes often causes the predictor to spend
time understanding the slight (but ultimately uninteresting) differences
among the members of the set. For clustering, the presence of such a set
puts too much emphasis on the dimension corresponding to the under-
lying property and so skews the clustering. Deciding which member of
the set is to be retained is not straightforward – a rule of thumb might
be to keep the best behaved.

3. Some of the attributes are duplicates, but some are much harder to
collect than the others. In the situation where a set of attributes are
highly correlated, it might be better to select and retain the attribute
whose values are easiest to collect. For subsequent objects, gathering
the needed data is then much cheaper but the quality of the prediction
or clustering will stay much the same. Such an attribute is called a
pathfinder for the other attributes. For example, in medical settings
there may be multiple tests that reveal the presence of a particular
condition. It is obviously attractive to use the test that is cheapest to
administer and analyze, or least painful for the patient.

Although selecting attributes sounds like a straightforward process, the rela-
tionships among ordinary attributes, and between an ordinary attribute and
the target attribute, are seldom simple. For example, the relationship “is
correlated with” is not usefully transitive in practice, so that two attributes
can be predictive of a target attribute, and yet range mutually anywhere from
highly correlated to almost completely uncorrelated.

There are also three reasons to change the objects in a dataset.

1. Some of the objects are outliers. Some clustering techniques do not
perform well in the presence of outliers, that is single objects that are
different (far) from all of the other objects. It may be helpful to remove
such objects before clustering. For example, if a store is trying to under-
stand its customers’ buying patterns, it may want to ignore customers
who have made only a few purchases or purchases worth very little in
the past year, since there is probably little to learn from them.

2. Some of the objects are almost identical. Replacing a set of almost
identical objects by a representative, perhaps with a multiplicity, can
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reduce the size of the dataset and so the computation time of most data-
mining techniques. For example, many supermarket customers buy very
similar, perhaps identical, sets of products each week.

3. Objects that are the centroids of other sets of objects may be particu-
larly interesting. If the objects are already quite similar, the centroid
may represent a ‘typical’ or ‘prototypical’ object, to which further anal-
ysis can be applied. If the objects seem dissimilar then it is inherently
unlikely that their centroid will be an object in the dataset, and this
may signal some kind of suspicious or manipulative behavior.

For example, suppose a dataset contains travel information for a large
number of people, and we look for people whose travel patterns are
correlated with those of some high-profile person. We would expect such
people to perhaps be on the staff of the high-profile person – it’s likely
that such people have the same basic travel pattern, perhaps sometimes
travelling to the same places but earlier. However, other people with
correlated travel patterns are probably suspicious because they may
be conducting surveillance on the high-profile person and should be
investigated further [100].

2.3.2 Similarity and clustering

Geometric clustering

We have already discussed how the rows of C can provide a clearer view of
the properties of objects than the rows of A. Any data-mining clustering
technique can be applied to the data as described by the rows of C and we
might expect that the result will be a better clustering than a direct clustering
of the data. However, this process assumes that the entries of C can properly
be treated as coordinates, and that distances behave as expected. If the axes
corresponding to the r rows of F are, for example, not orthogonal, then these
assumptions are not correct. This does not mean that clustering will not be
effective, but it should be done with some caution and with awareness of F .

Decomposition-based clustering; similarity clustering

All clustering depends on some measure of similarity between objects, or
between attributes. We have seen that different interpretations correspond to
different views of such measures: the geometric view corresponds to a metric
such as Euclidean distance, while the component view corresponds to the
elementwise difference.

These interpretations therefore provide either hints or methods for clus-
tering that exploit properties of the decomposition. For example, suppose
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that a dataset about customers contains details of their purchasing behavior,
but also a customer number. It would be silly to use differences in this cus-
tomer number as part of a distance measure. (On the other hand, it might not
be sensible to discard it from the dataset, since customer numbers are usually
allocated sequentially in time, and this temporal information often has some
predictive power.)

Graph-based clustering

One particular kind of similarity measure is so different from the others that
we will discuss it separately. An entire chapter, Chapter 4, will be devoted to
it as well.

The similarities among objects in a geometric model are qualitatively
different from the similarities in a graph model. For some datasets, it may be
more appropriate to cluster based on a pairwise affinity relationship between
objects than to cluster geometrically.

The difference between the two views is the difference between a global
view of similarity and a local view of similarity. In a geometric model, the
distance between any two objects can be computed, and it stays the same
regardless of whether other objects are present or not. On the other hand, in
a graph model, the distance between any two objects depends on which other
objects are present and how they are arranged because the distance depends
on a path or paths involving all of these objects.

For example, suppose we have a dataset with four attributes. Two
objects whose values are (0, 1, 0, 1) and (1, 0, 1, 0) can be directly compared
in a geometric model (their Euclidean distance apart is 2), but they cannot
be directly compared in a graph model, and their distance apart depends on
other objects that may be present in the dataset. They may not even have a
well-defined distance between them.

In a larger sense, a geometric space has an existence on its own, and
does not depend on the presence of objects. The shape of a graph space is not
like this at all – all of the distances can be changed by the addition or removal
of a single object. This suggests that care is needed with techniques that try
to embed a graph space into a geometric one, for example multidimensional
scaling .

2.3.3 Finding local relationships

Although matrix decompositions do not look for local patterns in data in
the same way as, say, association rules, they can still be used to look more
deeply at certain parts of the data. All rows of the dataset matrix are treated
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equally by a matrix decomposition but, as it is a numerical technique, it can
be guided by changing the magnitudes of some rows compared to others. For
example, if the entries in a row of the matrix are multiplied by two, then this
will change the decomposition in a way whose effect is to consider that row
as more important than the other rows (twice as important, in fact).

If we know that an object, or for that matter an attribute, is more
important, then this information can be conveyed, indirectly, to the matrix
decomposition using multiplication of a row or column by a scalar greater
than one. In the same way, the effect of a row or column can be discounted
by multiplying it by a scalar less than one.

This technique can be used to check whether a group of objects or at-
tributes really are similar to each other, and to decide which of them might
make a good pathfinder. Increasing the importance of one member of the
group should have the effect of increasing the importance of the other mem-
bers of the group in a coupled and visible way in the resulting decomposition.

This technique can also be used to look for clusters that are completely
contained within other clusters. Such hidden clusters may sometimes be de-
tected directly by density-based clustering but, even when detected, it may
be difficult to find their boundaries. Increasing the importance of one or more
objects suspected to be in the subcluster can have the effect of moving the
entire subcluster, relative to the cluster that overlaps it, and so making the
subcluster easier to see.

2.3.4 Sparse representations

A matrix is called sparse if most of its entries are zero. A decomposition that
results in either C or F being sparse is of interest from the point of view of
both analysis and practicality.

If the ith row of the matrix C is sparse, it means that the representation
of object i in the transformed space is a particularly simple combination of
the underlying parts. Sparse representations for the objects are attractive
because they increase our confidence that the set of factors captures deeper
realities underlying the dataset, and they allow more comprehensible explana-
tions for the data. For example, some kinds of sparse independent component
analysis seem to correspond to early-stage mammalian vision, where the input
resources are well understood because they correspond to neurons. Sparse rep-
resentations are also useful because they reduce the amount of space required
to store representations of large datasets.

In the factor interpretation, a sparse row of C means that an object is
made up of only a few of the factors. In the geometric interpretation, a sparse
row means that each object has an extent in only a few dimensions. In the
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component interpretation, a sparse row means that each object merges values
from only a few processes. In the graph interpretation, a sparse row means
that paths from that object to the points corresponding to attributes pass
through only a small number of waystations. These statements are all saying
the same thing in a different way, but they once again illustrate the power of
looking at properties of the data from different perspectives.

The F matrix can also be sparse. When this happens, it suggests that
the parts are themselves particularly simple, requiring only a small amount
of information, and that the parts are quite decoupled from each other.

We have pointed out that any matrix decomposition remains unchanged
if the factor matrix is multiplied by an arbitrary invertible matrix, and the
coordinate matrix is multiplied by its inverse. This corresponds to a rotation
of the axes of the new space. It is sometimes useful to apply such a rotation at
the end, after the decomposition has been computed, with the goal of making
the representation more sparse. This, of course, reduces the optimality of
the solution with respect to whatever criterion was used by the particular
decomposition, but it may nevertheless increase the explanatory power of the
result.

2.3.5 Oversampling

We have already mentioned one situation, SemiDiscrete Decomposition, when
the number of parts, r, of the decomposition is larger than m, the number of
attributes. In this case, the decomposition must still generalize the structures
implicit in A because the range of values of the entries of C and F are limited.

There is another way in which a decomposition can be ‘larger’ than the
matrix it comes from: when the new parts are redundant. In the decomposi-
tion, there is now more than one way to describe the same object. However,
any individual object should not require more than m parts to describe it; in
other words, there should not be more than m non-zero entries in any row of
C.

Such a decomposition is called an overcomplete representation. These
occur in some natural systems where the parts involved were not globally
optimized (for example, some neural structures in the brain) [80]. They may
also be useful in situations with some inherent ambiguity, for example signal
separation in mobile telephony, where multiple signal paths between a phone
and the local cell tower are commonplace.



2.4. Algorithm issues 45

2.4 Algorithm issues

The matrices used for data analysis are often very large, so it is useful to
have some sense of the complexity of computing matrix decompositions. Be-
cause matrix decompositions are numerical algorithms, it is also important
to be aware of how numerical magnitudes affect results; this can sometimes
cause computational problems such as instability, but can also be exploited
to discover finer details of the structure present in the data.

2.4.1 Algorithms and complexity

Even looking at all of the elements of A has complexity Θ(nm), and it is hard
to see how a useful matrix decomposition could avoid complexity Ω(nmr).
In practice, most matrix decompositions are much more expensive, perhaps
quadratic in one or both of n and m. Although quadratic complexity does not
sound alarming, n can be extremely large so the execution time to compute
a matrix decomposition is often a limitation in practice.

Because n is often so large in real-world applications, matrix decompo-
sitions may not even be compute-bound. The performance bottleneck may
actually be the time required to fetch the entries of A from the bottom of
the memory hierarchy. This requires Θ(nm) operations, but the constants
required in modern architectures are very large, typically comparable in size
to m. Hence memory access times can be as bad as computation times.

For these reasons, there is a great deal of ongoing research aimed at
exploiting sparse matrix algorithms; computing approximate matrix decom-
positions, for example low-rank approximations; and exploiting quantization
of the matrix entries.

2.4.2 Data preparation issues

Many datasets have attributes that are categorical, that is they have values
for which no natural ordering exists. For example, customers may pay using
a range of named credit cards. Since matrix decompositions are numerical
techniques, these categorical attributes must be converted into numeric values.
Care must be taken not to introduce spurious correlations because of the
conversion. Techniques require a tradeoff between the expense of additional
attributes and the accuracy of the mapping. The best approach is to map
each categorical value to a corner of a generalized tetrahedron, requiring n−
1 new attributes for n categorical values. A cheaper approach is to map
the categorical values to equally spaced points on a circle (requires 2 new
attributes) or sphere (requires 3 new attributes). Of course, the order of the
mapping around the circle or sphere must still be given some consideration.
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2.4.3 Updating a decomposition

In many situations, data continues to become available after an initial matrix
decomposition has been computed. Such data can be considered as new rows
for the matrix A. There are several ways to include this new data in the
existing decomposition, that is create new rows of the matrix C corresponding
to the new data, and adjusting W and F to include the new information
implicit in the new data.

The first and simplest way is to add the new rows to A and repeat the
decomposition. This fully incorporates the information from the new data in
the model, but it is an expensive solution because of the high complexity of
the algorithms for computing decompositions.

The second way is to use an incremental algorithm that includes the
new information without carrying out a new decomposition from scratch. For
most matrix decompositions, such incremental algorithms are known. Their
complexity is usually much less than the complexity of a new decomposition.

If the matrices F and W are invertible, then F−1W−1 can be viewed as
transforming data that looks like rows of A into data that looks like rows of
C. Applying this transformation approximates the effect of decomposing the
larger matrix that combines A and the new data into a new larger C – but
note that neither W nor F is changed, so the new data does not change the
model. This transformation only allows us to see what the new data would
look like in the context of the original decomposition.

This can nevertheless be quite useful. If the original matrix captures
enough data about the problem domain, then its decomposition reveals the
implicit structure of this domain. If this implicit structure does not change
with time, then applying the transformation to new data shows the underlying
properties of the new data, even though the structure is not being updated
to reflect the new data.

For example, if the original decomposition led to a clustering of the
rows of A, multiplying new objects by F−1W−1 maps them to locations in
the space of the clustering. Such objects can then be allocated to the clusters
to which they are closest.

Although the way in which C and F are combined to give A is linear,
it is perfectly possible to construct C and F in some other, non-linear, way.
We will not discuss this further, but it shows that matrix decompositions can
decompose data in even more sophisticated ways.
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Notes

Hubert et al. provide a good historical comparison of the role of matrix
decompositions, contrasting their use in linear algebra and in data analysis
[57].

The standard references for the matrix decompositions we will use are:
Singular value decomposition (SVD) [48]; SemiDiscrete Decomposition (SDD)
[72, 73]; Independent Component Analysis (ICA) [58, 60]; Non-Negative Ma-
trix Factorization (NNMF) [78]; but see the relevant chapters for a fuller list
of references.





Chapter 3

Singular Value
Decomposition (SVD)

The singular value decomposition (SVD) transforms the data matrix in a way
that exposes the amount of variation in the data relative to a set of latent
features. The most natural interpretation is geometric: given a set of data
in m-dimensional space, transform it to a new geometric space in which as
much variation as possible is expressed along a new axis, as much variation
independent of that is expressed along an axis orthogonal to the first, and
so on. In particular, if the data is not inherently m-dimensional, its actual
dimensionality (the rank of the data matrix, A) is also exposed.

3.1 Definition

The singular value decomposition of a matrix A with n rows and m columns
is

A = USV ′

where the superscript dash indicates the transpose of matrix V .

If A has rank r, that is r columns of A are linearly independent, then
U is n × r, S is an r × r diagonal matrix with non-negative, non-increasing
entries σ1, σ2, . . . , σr (the singular values), and V ′ is r×m. In addition, both
U and V are orthogonal, so that U ′U = I and V ′V = I. This is actually
the so-called ‘thin’ SVD. If all of the singular values are different, the SVD is
unique up to multiplication of a column of U and the matching row of V ′ by
−1. In most practical datasets, r = m, since even if several attributes (that is,
columns) are really measurements of the same thing, which is the commonest
way in which the rank of A would be less than m, they are typically not
exactly correlated.

49
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By convention, the third matrix in the decomposition is written as a
transpose. This emphasizes the duality between objects and attributes be-
cause both U and V are matrices whose rows correspond to objects and
attributes respectively, and whose columns correspond to the r new parts.
Unfortunately, this makes it easy to make mistakes about which way round
V is considered, and which are its rows and columns.

The natural interpretation for an SVD is geometric (Section 3.2.2), but
the component interpretation is also useful (Section 3.3.1).

Recall our example dataset matrix, introduced on Page 5. The U , S and V
matrices of the singular value decomposition of this matrix are:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.31 −0.40 0.29 0.25 0.13 −0.07 −0.27 0.07
−0.37 −0.31 0.18 0.10 0.30 0.28 −0.13 −0.38
−0.31 −0.23 −0.63 −0.03 −0.38 0.23 −0.23 −0.29
−0.37 0.48 −0.31 −0.20 0.18 0.29 0.20 0.04
−0.33 0.55 0.45 0.03 −0.02 0.17 −0.23 −0.13
−0.22 −0.23 −0.19 −0.02 0.53 −0.02 0.31 0.38
−0.24 0.03 −0.03 0.00 −0.15 0.14 −0.35 0.74
−0.19 0.07 −0.02 0.23 0.16 −0.07 0.47 −0.16
−0.29 0.19 −0.21 −0.06 0.15 −0.83 −0.29 −0.12
−0.30 0.02 0.06 0.56 −0.51 −0.16 0.39 0.12
−0.32 −0.25 0.32 −0.72 −0.32 −0.14 0.30 0.01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 13.22 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 7.92 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 7.57 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 4.15 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 3.47 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 2.37 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.29 0.63 0.04 −0.03 0.65 0.20 −0.25 −0.02
−0.37 0.09 −0.53 −0.45 −0.36 0.20 −0.09 −0.46
−0.36 0.33 0.29 0.04 −0.19 −0.03 0.80 −0.05
−0.35 −0.05 −0.44 0.16 −0.10 0.20 0.04 0.78
−0.38 0.08 0.38 −0.34 −0.25 −0.56 −0.38 0.25
−0.36 −0.20 −0.35 0.47 0.27 −0.58 0.05 −0.28
−0.36 −0.11 0.36 0.55 −0.31 0.41 −0.34 −0.20
−0.36 −0.65 0.23 −0.37 0.42 0.23 0.16 −0.02

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



3.1. Definition 51

SVD and Principal Component Analysis (PCA)

Although this is not the way we will think about SVD in this chapter, SVD is
intimately connected with eigenvectors and eigenvalues. Principal component
analysis (PCA) is another way to understand data, and there is considerable
disagreement about the differences between the two techniques. Some authors
consider them to be identical, others to differ in normalization strategies, and
still others consider them to be completely distinct.

Most versions of principal component analysis find the eigenvectors and
eigenvectors of either the matrix AA′, which describes the correlation among
the objects, or the matrix A′A, which describes the correlation among the
attributes. Much of what is said about SVD in this chapter also holds for
PCA, but PCA is limited in at least the following two ways: first, it analyzes
either the objects or the attributes independently, whereas SVD analyzes both
together; and second, the correlation matrices are expensive to form (AA′ is
n × n which makes it difficult to handle) and often ill-conditioned, so that
computing the eigenvectors is problematic.

Normalization

Because SVD is a numerical algorithm, it is important to ensure that the
magnitudes of the entries in the dataset matrix are appropriate, so that prop-
erties are compared in a way that accords with comparisons in the real world.
For example, height and weight are roughly correlated in humans. However,
if height is measured in miles, and weight in grams, then weight is going to
seem much more important during the decomposition.

In general we don’t know what the ‘right’ units are for each attribute. In
the absence of better information, the only sensible thing to do is to scale all of
the attribute values into roughly the same range. This encodes an assumption
that all attributes are of about the same importance. This is quite a strong
assumption, but it is hard to see how to do better.

If the values in the data matrix A are all positive (say), the first compo-
nent of the decomposition will capture the rather trivial variation along the
axis that joins the origin to the centroid of the data (in m-dimensional space).
We could, of course, ignore this component in subsequent analysis. The prob-
lem is, however, that the new axes are forced to be orthogonal to each other,
so that the second axis points in a distorted direction. This is illustrated
in Figure 3.1, where the top ellipse shows what happens when positive data
is transformed. The second axis does not properly capture variation in the
data because of the existence of the first axis. The bottom ellipse shows what
happens when the data is zero centered , that is, for each column, the mean
of that column is subtracted from each entry. This moves the data ‘cloud’
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Figure 3.1. The first two new axes when the data values are positive
(top) and zero-centered (bottom).

so that it is centered at the origin. Now the new axes correctly capture the
directions of variation in the data.

To address the possibly different magnitudes of different attributes, it is
usual to divide the entries in each column by the standard deviation of that
column. This has the effect of scaling the values in each column so that most
of them fall in the range −1 to +1 – but also wires in the assumption that
the distribution of values in each column is approximately Gaussian. By the
Law of Large Numbers, this is a plausible assumption, but its existence should
always be remembered. In particular, if several attributes have distributions
that are far from Gaussian, Independent Component Analysis may be a better
decomposition (see Chapter 7). Values that have been transformed by zero
centering and division by the standard deviation are known as z scores.

When the significance of magnitudes is non-linear, for example when
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very large values are present in the data but do not have correspondingly
large significance, the attribute values can be scaled by taking logarithms (if
the values are all positive) or by taking cube roots (if they are both positive
and negative), and then transforming to z scores.

Our example matrix, normalized using z-scores, is:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.97 −1.09 −0.53 −0.33 0.38 0.89 1.40 1.30
−0.32 −0.20 −0.053 0.42 0.38 0.89 1.40 1.64
−0.97 1.59 −1.01 1.92 −0.77 0.89 −0.11 0.27

1.62 1.59 1.38 1.17 0.38 −0.44 −0.62 −0.76
1.62 −0.20 1.86 −1.08 1.54 −1.78 0.90 −1.11
−0.65 −0.64 −1.01 −0.33 −1.35 0.22 −1.12 0.61
−0.32 −0.20 −0.53 −0.33 −0.19 −1.11 −0.11 −0.42
−0.32 −1.09 −0.05 −1.08 −1.35 −0.44 −0.62 −0.76

0.32 0.25 −0.05 −0.33 0.96 0.89 −1.12 −0.76

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The resulting U , S and V matrices are:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.30 0.35 −0.30 −0.15 −0.15 0.10 −0.21 0.13
−0.21 0.08 −0.47 −0.10 −0.06 0.46 0.00 −0.21
−0.37 −0.57 −0.12 0.15 0.27 −0.25 −0.21 −0.40

0.39 −0.58 −0.04 −0.00 0.03 0.35 0.26 0.28
0.66 0.19 −0.07 −0.23 0.13 0.09 −0.29 −0.26
−0.31 0.07 0.42 0.13 −0.04 0.40 0.18 0.29

0.00 0.08 0.24 0.08 0.37 −0.15 −0.56 0.45
−0.04 0.21 0.56 −0.16 0.14 0.02 0.27 −0.51

0.08 −0.15 0.18 0.07 −0.84 −0.25 −0.20 −0.05
−0.06 0.01 −0.16 −0.53 0.08 −0.52 0.44 0.28

0.18 0.30 −0.24 0.74 0.08 −0.25 0.33 −0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 4.26 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 3.69 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 3.57 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.86 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.46 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.08 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50 −0.23 0.07 −0.22 −0.21 0.70 −0.33 −0.03
0.14 −0.59 −0.22 0.42 0.13 −0.14 −0.04 −0.60
0.53 −0.01 −0.21 −0.25 0.04 −0.05 0.78 0.00
−0.20 −0.64 −0.28 −0.12 0.23 0.02 0.01 0.64

0.37 0.17 −0.49 0.31 −0.47 −0.33 −0.28 0.31
−0.43 −0.22 −0.16 −0.36 −0.73 −0.02 0.16 −0.23
−0.05 0.23 −0.60 −0.53 0.37 −0.05 −0.31 −0.27
−0.31 0.24 −0.45 0.44 0.02 0.61 0.27 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we compare the two sets of matrices resulting from the SVD of the
unnormalized and normalized versions of A, we see a large difference in the
singular values. For the unnormalized version, the largest singular value is
41.50, followed by 13.22 and 7.92 For the normalized version, the largest
singular value is 5.35, followed by 4.26 and 3.69. The large singular value
for the unnormalized matrix reflects the average value of the matrix entries
or the length of the dashed vector in the situation at the top of Figure 3.1.

When a matrix is sparse, that is most of its entries are zeros, it may be
more appropriate to normalize by keeping the zero entries fixed. The mean
of the non-zero entries is then subtracted from the non-zero entries so that
they become zero-centered, and only the non-zero entries are divided by the
standard deviation of the column mean. This form of normalization needs to
be considered carefully because it reduces the impact of zero values on the
way other values are adjusted, and so should not be used if zero values have
some special significance. There is also an issue of how many non-zero entries
there should be in the matrix before it is no longer considered sparse.

3.2 Interpreting an SVD

Although, as we have said, the geometric interpretation is most natural for
an SVD, there is something to be learned from the other interpretations.

3.2.1 Factor interpretation

Interpreting the rows of V ′ (the columns of V ) as underlying factors is perhaps
the oldest way of understanding an SVD. For example, suppose we want to
understand what makes people happy. We might suspect that factors such as
income, education, family life, marital status, and a satisfying job might all be
relevant, but we couldn’t be sure that these were all the factors, and we might
not be sure precisely how to measure them. Designing a questionnaire to ask
about such factors, and also about degree of happiness, might need questions
directly about income, but also questions about home ownership, pension
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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while those at the bottom of the plot prefer white over red. This factor is much
less easy to see directly in the data. Notice also that the matrix decomposition
does not know the ‘meaning’ of any column of the dataset. It discovers this
pattern by noticing that certain rankings are correlated with other rankings.

One obvious conclusion that can be drawn just from seeing the triangular
shape of the plot in the figure is that those who like wine a lot do not have
strong preferences for red versus white; it is those who like wine less who tend
to have such a preference. These simple results have immediate implications
for marketing wine.

However, for large complex datasets, the factors tend to be linear combi-
nations of all or most of the attributes in the dataset because each attribute is
partially correlated with many of the others in subtle ways. Hence, it is often
difficult to interpret the factors and relate them to the application domain,
from which the original attributes come.

3.2.2 Geometric interpretation

The geometric interpretation of an SVD is to regard the rows of V (columns
of V ′) as defining new axes, the rows of U as coordinates of the objects in
the space spanned by these new axes, and S as a scaling factor indicating
the relative importance (or stretching) of each new axis. Note that the pos-
sible non-uniqueness of the decomposition means that an axis can be flipped
without changing anything fundamental.

Because the SVD is symmetric with respect to rows and columns, it
can also be regarded as defining a new space spanned by the rows of U and
mapping the attributes from coordinates in an original n-dimensional space
into this new space. The maximum variation among the attributes is captured
in the first dimension, and so on.

The most useful property of the SVD is that the axes in the new space,
which represent new pseudoattributes, are orthogonal. Hence the explicit
properties of each object as characterized by the original attributes are ex-
pressed in terms of new attributes that are independent of each other. As we
saw in Figure 3.2, the orthogonality of the new axes means that the rows of
the C matrix can be plotted in space in a way that accurately reflects their
relationships.

Rotation and stretching

There are several intuitive ways to understand how an SVD is transforming
the original data.
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1. Rotate axes to align

2. Stretch

Figure 3.3. One intuition about SVD: rotating and scaling the axes.

First, notice that when we interpret the rows of A as coordinates in an
m-dimensional space, the axes of this space can be made explicit by writing A
as AI, where I is the m-dimensional identity matrix. These axes are just the
ordinary Cartesian axes. The matrix decomposition is asserting the equiva-
lence of these coordinates and ordinary axes to new coordinates (the rows of
U) and a new set of axes described by the product SV ′. The matrix V ′ is a
rotation, and the matrix S is a stretching of the axes. However, these axes
are not arbitrary; rather they have been computed based on the data itself.

Imagine the unit sphere in m dimensions. Then V ′ followed by S rotates
and stretches this unit sphere so that it fits ‘over’ the data. This fitting guar-
antees that the coordinates required to describe each object will be as simple
as possible. Figure 3.3 illustrates the process. The gray ellipse represents the
raw data. First the axes are rotated to align with the axes of the rough ellipse
formed by the data. Then the axes are stretched so that they better fit the
extents of the data. Relative to these new axes, the coordinates of each data
point are simpler.

This intuition also shows clearly the effect of normalization on the SVD.
Zero centering places the rough ellipse corresponding to the data close to the
origin. Dividing the entries in each column by their standard deviation from
the mean makes the structure of the data as close to a sphere as possible – so
that the rotation and scaling can concentrate on the distribution or density
of the objects in each direction.

A special case that can also be understood from this intuitive point of
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1. Rotate axes to align

2. Stretch

Figure 3.4. Data appears 2-dimensional but can be seen to be 1-
dimensional after rotation.

view is when the raw data appears to have dimensionality m but is actually a
lower-dimensional manifold. This situation is shown in Figure 3.4. Here the
raw data seems to have dimension two – each data point requires an x and y
coordinate to describe its position (or the value of two attributes). However,
the rotation shows that only one new axis and one stretch factor are required
to fully describe the dataset.

Springs

.

Another helpful way to think about the transformation that SVD does is
the following. Suppose we place points corresponding to both the objects and
the attributes in the same m-dimensional space. Now connect the ith object
to the jth attribute by a spring whose tension corresponds to the magnitude
of the ijth entry of the matrix A. (If the entry is negative, then the spring is
repulsive rather than attractive.) Then the stable positions where each point
is at rest correspond to the locations described by the U matrix, for objects,
and the V matrix, for attributes. Actually, to get the scaling right, these
locations correspond to locations described by US1/2 and V S1/2 because the
singular values describe the scaling of each dimension relative to the others.

This view of SVD illustrates the symmetry between objects and at-
tributes. It also shows how SVD makes use of the indirect and higher-order
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relationships among object and attributes. If we assume that all entries of the
matrix are non-zero, then the relative position of two objects depends on the
positions of all of the attributes; but these, in turn, depend on the position of
these two objects, but also of all of the other objects. The position of these
objects depends on the strength of their connection to the attributes, and so
on. The SVD represents the fixed point of this reasoning (the stable positions
into which the points settle) and so takes into account all of the correlation
information between objects and attributes.

Dot products

Another way to understand the geometry of an SVD is this: if each point in
m-dimensional space is regarded as a vector, that is we associate each point
with the line from the origin to that point, then the angles between vectors
represent the correlation between them. The cosine of the angle between them
is the dot product of the two vectors, with their lengths appropriately scaled

cosine of angle betweenx and y =
< x, y >

< x, x >< y, y >

where < x, y > indicates the dot product of two vectors. Hence two vectors
in roughly the same direction represent two correlated objects, and their dot
product will be a large positive number. Two vectors that point in opposite
directions are negatively- or anti-correlated and their dot product will be a
large negative number. Two vectors that are orthogonal to each other are
uncorrelated and will have dot product 0.

Consider a vector that is uncorrelated with many of the other vectors.
Its position will have to be such that its dot product is (close to) zero with all
of these other vectors. Unfortunately, there are only m different, orthogonal
directions to point, and n is much larger than m. The only other way to have
a small dot product with many other vectors is to be a short vector, whose
endpoint plots close to the origin. Hence, objects that are largely uncorrelated
with other objects tend to be plotted close to the origin. This property holds
even in spaces of lower dimension. The vector components in the higher
dimensions have very little effect on the magnitude of dot products because the
corresponding singular values are so small. Hence, taking dot products using
the first k components of vectors produces dot products whose magnitudes are
close to their ‘true’ magnitudes, and so approximate the correlation structure.

Now consider a vector that is correlated with many of the other vectors.
Its position will have to be such that its dot product with many other vectors
will be large; in other words, it wants to point in many directions. The net
result, again, is that such vectors will be small, and the corresponding objects
are plotted close to the origin.
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Objects that are plotted far from the origin tend to be those whose
correlation with the other objects is intermediate; neither highly-correlated
nor uncorrelated. Hence an SVD has a built-in filter for interestingness. In a
transformed and truncated space, objects that are either correlated with few
other objects, or with almost all other objects tend to be short vectors, ending
close to the origin. On the other hand, objects with unusual correlation with
the other objects tend to be long vectors, ending far from the origin.

This is useful in two related ways. First, the values of the new attributes
(the columns of V ′) provide some information about the importance of the
objects – objects that are far from the origin along some dimension are usually
significant. For example, recall the first dimension of the wine dataset, which
could be used to identify those who liked wine most and least. However, sort-
ing the objects according to their distance from the origin in the transformed
space, using several attributes, is a much more significant ranking, since it
places both objects that are ‘important’ only in some commonplace way, and
objects that are idiosyncratic, at the bottom of the list. The objects at the
top of the ranking (those that are furthest from the origin in the transformed
space) are those that are interesting in a far more subtle way.

Second, objects that are close to the origin, say closer than the median
distance, are the least interesting and can be discarded from further analysis,
reducing the size of the dataset in a way guaranteed to preserve the most
interesting structure.

3.2.3 Component interpretation

Let ui be the ith column of U , si the ith singular value of S and vi the ith
row of V . Then

A =
m∑

i=1

Ai

where Ai = uisiv
′
i. This sum tells us that we can think of each entry of A

as the sum of the corresponding entries in each of the Ai, and of A as the
pointwise sum of the Ai. In other words, the Ai form layers that together
recreate A.

This view is exactly what we hypothesised was true for many real-world
datasets: the value of a particular entry in the dataset is the result of the
superposition of a number of processes, only some of which are of interest.
For SVD, the layers represent independently varying values.

Of course, there is no necessary reason why the decomposition into layers
that an SVD provides should correspond to the set of underlying processes
that were at work when the dataset was collected, but a correspondence can
often be found in practice, at least in the earlier dimensions.
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For our example matrix, A, the matrices A1 and A2 are:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.80 −0.23 −0.85 0.33 −0.60 0.69 0.07 0.50
−0.57 −0.16 −0.60 0.23 −0.42 0.49 0.05 0.35
−0.99 −0.28 −1.05 0.41 −0.74 0.85 0.09 0.62

1.04 0.29 1.10 −0.43 0.77 −0.89 −0.10 −0.65
1.74 0.49 1.85 −0.72 1.30 −1.50 −0.16 −1.09
−0.82 −0.23 −0.87 0.34 −0.62 0.71 0.08 0.51

0.00 0.00 0.00 −0.00 0.00 −0.00 −0.00 −0.00
−0.11 −0.03 −0.12 0.05 −0.08 0.10 0.01 0.07

0.21 0.06 0.22 −0.09 0.16 −0.18 −0.02 −0.13
−0.17 −0.05 −0.18 0.07 −0.12 0.14 0.02 0.10

0.47 0.13 0.50 −0.19 0.35 −0.40 −0.04 −0.29

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.34 −0.88 −0.01 −0.95 0.25 −0.33 0.34 0.36
−0.08 −0.21 −0.00 −0.22 0.06 −0.08 0.08 0.09

0.56 1.45 0.02 1.55 −0.40 0.54 −0.55 −0.60
0.57 1.48 0.02 1.58 −0.41 0.55 −0.56 −0.61
−0.19 −0.49 −0.01 −0.53 0.14 −0.18 0.19 0.20
−0.07 −0.17 −0.00 −0.18 0.05 −0.06 0.06 0.07
−0.08 −0.21 −0.00 −0.23 0.06 −0.08 0.08 0.09
−0.21 −0.54 −0.01 −0.58 0.15 −0.20 0.21 0.22

0.14 0.37 0.01 0.40 −0.10 0.14 −0.14 −0.15
−0.01 −0.03 −0.00 −0.03 0.01 −0.01 0.01 0.01
−0.29 −0.76 −0.01 −0.82 0.21 −0.29 0.29 0.31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and their sum is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.14 −1.11 −0.87 −0.61 −0.36 0.36 0.41 0.87
−0.65 −0.37 −0.60 0.01 −0.37 0.41 0.13 0.44
−0.43 1.17 −1.03 1.95 −1.14 1.39 −0.46 0.02

1.60 1.77 1.12 1.16 0.36 −0.34 −0.66 −1.25
1.55 −0.00 1.84 −1.24 1.44 −1.68 0.03 −0.88
−0.89 −0.40 −0.88 0.16 −0.57 0.64 0.14 0.58
−0.08 −0.21 −0.00 −0.23 0.06 −0.08 0.08 0.09
−0.32 −0.57 −0.13 −0.53 0.07 −0.11 0.22 0.29

0.35 0.43 0.23 0.31 0.05 −0.04 −0.16 −0.29
−0.18 −0.08 −0.18 0.03 −0.11 0.13 0.03 0.12

0.18 −0.63 0.49 −1.01 0.56 −0.69 0.25 0.02

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.4 Graph interpretation

The graph interpretation of SVD takes a bipartite graph, whose two kinds of
objects correspond to objects and to attributes, and whose edges are weighted
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by the entries of the matrix, and expands it to a tripartite graph. In this tri-
partite graph, there is a third set of r waystation vertices corresponding to
the ‘middle’ dimension of the SVD. The vertices corresponding to the objects
are fully connected to the waystation vertices that are created by the decom-
position; and these in turn are fully connected to the vertices corresponding
to the attributes.

Each edge in the tripartite graph has an associated weight. Those con-
necting objects to waystations get their weights from the entries of the matrix
US1/2, and those connecting waystations to attributes get their weights from
the entries of the matrix V S1/2. The fact that the product of these matrices
is A means that these weights fit together properly. The sum of the weights
along all of the paths between a particular object i and an attribute j is
the ijth entry of A, as long as the weights along a path are accumulated by
multiplication. These weights can be understood as capturing the similarity
between the vertices they connect; or equivalently the permeability of the
connection between them, or how easy it is to travel from one end to the
other.

The intuition here is that an SVD allocates capacity to each edge to
optimize the total permeability of all paths. The weight associated with an
edge from, say, an object to a waystation must be assigned so that it fits with
the paths from that object to all of the attributes, since this path makes a
contribution to all of them.

3.3 Applying SVD

3.3.1 Selecting factors, dimensions, components, and
waystations

The main distinguishing feature of an SVD is that it concentrates variation
into early dimensions. This means that the natural way to select parts of the
structure inside the dataset is to select, from the r components, the first k.

We have suggested that there are two main reasons to select and retain
only some parts of a decomposition: because the discarded parts are consid-
ered noise; or because the discarded parts represent some process that we do
not wish to model. Given the ordering of the parts by an SVD, these decisions
are much the same. The only difference is that we might use slightly different
criteria to choose how many parts to retain and how many to discard.

Suppose that we want to represent the dataset properties in a space of
dimension k (where k ≤ r), that is we want to retain only k parts of the
decomposition. The first k rows of V ′ define the axes of a k-dimensional
space. Surprisingly good representations of spaces with many hundreds of
dimensions can be achieved by quite small values of k, perhaps less than 10.
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Figure 3.5. The effect of noise on the dimensionality of a dataset.

Denoising

A dataset that contains noise may appear to be of much higher dimensionality
than it really is. Figure 3.5 shows, as a dark line, a 1-dimensional dataset
with two (perfectly correlated) attributes, and so appearing 2-dimensional.
As discussed above, an SVD will quickly detect that the data is actually 1-
dimensional. The dashed ellipse shows what happens when noise is added to
the dataset. The data now has an apparent extent in the second direction.

After the SVD transformation the data will appear to be 2-dimensional
– but the extent, and so the amount of stretching, required in the second
dimension will be small. This is the clue that this dimension does not contain
real structure. Because an SVD arranges the dimensions in decreasing order
of the magnitude of the singular values, the later dimensions with little or no
structure will appear at the end. Hence we have to make a decision only about
which value of k to use. Parts corresponding to the k + 1st and subsequent
singular values can be discarded.

An appropriate choice for k is made by considering the magnitude of
the singular values, which provide a measure of how much variation is being
captured in each dimension. There are two standard ways to make this choice,
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and at least two other, more sophisticated, methods that are beginning to be
used.

The first standard approach is to plot the singular values using a scree
plot, a plot of the magnitudes of the singular values in order. Since these are
non-increasing, and often decrease quite quickly, they resemble the side of a
mountain, which is the origin of the name. A suitable cutoff is a value of k
where this slope seems to flatten or when there is a detectable elbow or knee
in the curve.

The second considers the contribution of each singular value to the whole
in a slightly more formal way. The contribution of each singular value can be
computed by

fk = s2k/
r∑

i=1

s2i

and then the entropy of the dataset calculated as

entropy =
−1
log r

r∑
k=1

fk log(fk)

Entropy measures the amount of disorder in a set of objects; in this case, it
has a value between 0 (all variation is captured in the first dimension) and
1 (all dimensions are equally important) [8]. The magnitude of the entropy
indicates how many dimensions need to be retained.

The values of the fk for our example matrix are: 0.357, 0.227, 0.170, 0.160,
0.043, 0.027, 0.01454, and 0.0008871. The entropy for this dataset is 0.769,
suggesting that capturing variation requires most dimensions.

The third method is to use the technique of Zhu and Ghodsi [118] which
is based on the assumption that the singular values are drawn from two dif-
ferent distributions, one for the significant components and the other for the
noise components. An expression for the profile log-likelihood of the choice of
k is constructed from the combination of these distributions, and the maxi-
mum log-likelihood is determined empirically. This maximum corresponds to
the best choice of k.

A fourth method is to choose k such that the residual matrix of the
k + 1 to m components appears to be a random matrix. Suppose a matrix is
multiplied pointwise by a random −1,+1 matrix. Its Frobenius norm does not
change. If it is a random matrix, that is it contains no structure, only noise,
its 2-norm will not change either. However, if it contains structure, altering
the signs of its entries will change the 2-norm by an amount that reflects
the amount of structure present. Hence the difference of the 2-norms of the
residual matrix and the matrix obtained from it by pointwise multiplication
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by a random −1,+1 matrix, divided by the Frobenius norm should become
small as soon as the residual matrix contains only noise [4].

The truncated SVD is the best representation of the data in the sense
of capturing the variation among the objects and attributes. The matrix Ak

that results from remultiplying the truncated matrices on the right hand side
of the decomposition is the best approximation to A in both the 2-norm and
Frobenius norm. Chu [25] has also shown that a truncated SVD is the best
minimum variance estimation of the random variable corresponding to the
rows; in fact truncation corresponds to minimum variance estimation. Hence
an SVD provides the best representation of the data in a statistical sense as
well.

Removing redundancy

There are other reasons why we might want to discard components beyond
a certain point, even if those we discard are not simply noise. The ordering
of components ensures that the most important structures in the dataset
appear in the first few components, less important structure in subsequent
components, and then possibly noise in later components. Truncating at
any value of k preserves as much structure as possible for that number of
dimensions. So, in a sense, the choice of k is not critical since there is a smooth
relationship between the value of k and the amount of structure preserved.

Choosing a small value of k may allow the important structures to be
discovered more easily without the distraction of less-important structure.
Furthermore, the distances between points are cheaper to compute in a lower
dimensional space (requiring only a sum of k terms).

Normally the first k dimensions of the U and V matrices are used for
subsequent analysis. However, it may sometimes be useful to choose other
dimensions, and examine the similarity of points in the spaces so defined. For
example, the first few components may capture structure in the data that is
already well understood, and it may be the deeper structure that needs to be
analyzed.

Visualization

Of course, there are special advantages when k is 2 or 3 since we can visualize
the position of the points directly. This allows human abilities to see structure
in visual data to be exploited.

When a larger k is required, helpful visualization can still be achieved
by plotting three dimensions at a time. Some visualization packages contain a
display routine called a Grand Tour which displays k-dimensional data, three
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dimensions at a time, in a way that helps a human observer to see which, if
any, dimensions contain interesting structure.

Figures 3.6 and 3.7 show plots of the entries of the matrices U and V trun-
cated to 3 dimensions. Figure 3.8 shows the scree plot of the singular values
of this decomposition. In Matlab, these visualizations can be rotated on the
screen, making it much easier to see their three-dimensional structure (see
Appendix A).
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Figure 3.6. 3-dimensional plot of rows of the U matrix.

Some care needs to be taken when computing distances in the space
spanned by the k rows of V because distances in the first dimension are more
significant than distances in the second dimension (by exactly the ratio σ1/σ2),
and so on. Hence it may often be better to use the rows of the product UkSk

as the coordinates – the plot looks the same but the axis lengths are different.
Ordinary distance computations can then be used in this space.

We will call the space spanned by the rows of V , in which the rows of U
define coordinates for the objects, U space; and the symmetric space in which
the rows of V define coordinates for the attributes, V space.

Figures 3.9 and 3.10 show plots in 3 dimensions of the entries of US and V S.
The relative positions of the points are unchanged from Figures 3.6 and 3.7,
but the axes have different scales.

Figures 3.11, 3.12 and 3.13 show the same plots for the example matrix
normalized using z scores, again truncated to 3 dimensions.
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Selecting objects and/or attributes with special properties

The correlation matrices AA′ (for the objects) and A′A (for the attributes)
provide information about the relationships in the dataset. However, the
equivalent truncated correlation matrices provide even better information, and
in a way that can be related to the SVD [75, 76].

Let Ak be a matrix obtained by multiplying together some k rows of
U , the matching elements of S, and the matching rows of V . Consider the
correlation matrix AkA

′
k, which we might expect to tell us something about

the correlation among objects due to the k subprocess(es) that remain. Ex-
panding Ak using the SVD we find that

AkA
′
k = (UkSkV

′
k) (UkSkV

′
k)′

= UkSkV
′
kVkSkU

′
k

= UkS
2
kU

′
k

since V ′
kVk = I and S′

k = Sk. So the ijth entry of AkA
′
k is the dot product

of the ith and jth rows of Uk, weighted by the squares of the singular values.
(In exactly the same way, the entries of A′

kAk are weighted dot products of
the rows of Vk.)

The magnitudes of the entries in the correlation matrix obtained by
truncating after the first few singular values provide a good estimate of the
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Figure 3.7. 3-dimensional plot of the rows of the V matrix (columns
of V ′).
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Figure 3.8. Scree plot of the singular values.
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Figure 3.9. 3-dimensional plot of US.

correlation between objects and/or attributes for the process represented by
the choice of k.

Unlike the direct correlation matrix of A, the correlation matrix after
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truncation reflects both the absence of correlations in the processes that have
been ignored (the lost information due to truncation), and higher-order trun-
cation information. For example, two objects with no direct correlation may
have indirect correlations via some other object, and their mutual correlations
with some of the attributes. Matrices such as AkA

′
k may be useful inputs to

other analysis techniques since they encapsulate information neatly.

The correlation matrix from the truncated SVD of the normalized version of
A, truncated at k = 2, is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.84 2.37 −0.39 −7.08 −4.47 3.12 0.52 1.71 −1.62 0.62 0.36
2.37 1.43 1.43 −3.26 −3.73 2.00 0.12 0.57 −0.71 0.40 −0.64

−0.39 1.43 9.88 1.89 −8.99 2.61 −0.87 −1.75 0.67 0.53 −5.01
−7.08 −3.26 1.89 10.53 5.28 −4.18 −0.87 −2.72 2.45 −0.83 −1.20
−4.47 −3.73 −8.99 5.28 13.01 −5.60 0.31 −0.04 0.98 −1.13 4.39

3.12 2.00 2.61 −4.18 −5.60 2.85 0.09 0.63 −0.89 0.57 −1.21
0.52 0.12 −0.87 −0.87 0.31 0.09 0.13 0.32 −0.22 0.02 0.46
1.71 0.57 −1.75 −2.72 −0.04 0.63 0.32 0.87 −0.66 0.13 0.95

−1.62 −0.71 0.67 2.45 0.98 −0.89 −0.22 −0.66 0.57 −0.18 −0.40
0.62 0.40 0.53 −0.83 −1.13 0.57 0.02 0.13 −0.18 0.11 −0.25
0.36 −0.64 −5.01 −1.20 4.39 −1.21 0.46 0.95 −0.40 −0.25 2.54

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The negative correlations between, for example, objects 1 and 2, and objects
4, 5, and 9 become clear from this matrix.
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Figure 3.10. 3-dimensional plot of V S.



70 Chapter 3. Singular Value Decomposition (SVD)

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−0.6

−0.4

−0.2

0

0.2

0.4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 3

U2

 6

 2

 4

 10

 9

 1

 7

 8

U1

 11

 5

U
3

Figure 3.11. 3-dimensional plot of rows of U when the example
dataset, A, is normalized using z scores.

3.3.2 Similarity and clustering

The main advantage of an SVD is that, under the geometric interpretation,
truncating the U and V matrices avoids the difficulties of working with metrics

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

V2

 4 6

 2

 8

V1

 7

 1

 5

 3

V
3

Figure 3.12. 3-dimensional plot of rows of V when the example
dataset, A, is normalized using z scores.
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Figure 3.13. Scree plot of singular values when the example dataset,
A, is normalized using z scores.

in high-dimensional spaces, while preserving as accurate a representation in
low dimension as possible.

The two commonest measures of similarity among objects or attributes
are:

• Euclidean distance. Computing the Euclidean distance between a pair
of points is cheaper (O(k) rather than O(m)) and more effective than
computing the distance between them in the original space.

• Cosine similarity. This measures the closeness of the two vectors from
the origin to each of the points and is useful when the appropriate rows
or columns of A have been normalized so that the points are effectively
on the surface of a unit sphere; or when the entries in the matrix are
sparse and sparsity would be destroyed by normalization.

This happens, for example, in word-document matrices which are sparse
because most words occur in only a few documents, and where the fact
that a word occurs at all in a document is more interesting than its
frequency.

A vast number of clustering techniques based on SVD have been devel-
oped. Often this has happened in particular problem domains, and many of
them are not well known outside of these domains. Several have been rein-
vented repeatedly. They all rely on taking some subset of the singular vectors:
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the columns of U for clustering objects and the columns of V for clustering
attributes.

Here are some techniques for clustering:

• Use an ordinary clustering technique on the singular vectors, for example
k-means. Applying such a technique to the rows of U (especially after
truncation) rather than the rows of A exploits the fact that ‘noise’ has
been removed from the dataset and its dimensionality reduced. So the
ordinary clustering technique should produce a better result and also
run faster.

• Treat the new axes (the right singular vectors) as cluster centroids
and allocate each object to the appropriate cluster, giving priority to
the right singular vectors in order (and the converse for clustering at-
tributes). In other words, the first cluster contains all of those points
that fall within a 45◦ cone around the first new axis, the second cluster
contains all points that fall within a cone around the second new axis,
and so on. The points that fall in the cone around the kth new axis
can be treated as a cluster in the same way as the others, or could be
considered as the ‘everything else’ cluster, in other words as a set of
outliers.

Each cone is really two cones, one consisting of vectors positively cor-
related with the axis, and the other consisting of vectors negatively
correlated with it. In some applications, it might be sensible to consider
objects in both cones as forming a single cluster; in others they might
be considered as forming two different clusters.

• Look for ‘plateaus’ in the first left singular vectors: either by sorting
the values from a column of U (usually the first column) and plotting
them directly [35], or by histogramming their values. This approach has
considerable theoretical support, but it is hard to use in practice because
(a) clear plateaus and steps between them do not tend to appear in real
datasets, and (b) in any case the boundaries between such structures
tend to require subjective choice.

Alpert [7] shows that such clusterings improve when more columns of
U are used. In fact, it is best to use all r of them. Other papers have
used various functions of the columns of U as values to be clustered.

There are also ways to consider the entries in a matrix as defining the
edges of a graph, and then partitioning this graph to cluster the data. This
approach is so important that the next chapter is devoted to it.
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3.3.3 Finding local relationships

Normalization of datasets for an SVD means that their data values are of
similar magnitude. Multiplying row(s) or column(s) of the dataset by a scalar
effectively changes their influence on the entire decomposition. If the scalar
is greater than one, the effect is to move the points corresponding to these
rows or columns further from the origin. However, this also has the useful
side-effect of ‘pulling’ points that are correlated with the upweighted points
further from the origin as well. Furthermore, increasing the weight on some
objects also moves the points corresponding to attributes that are correlated
with these objects.

This property can be used to see clusters of correlated objects and at-
tributes that would otherwise be hidden inside larger clusters, provided at
least one such object is known. If this known object is upweighted, then it
will move, and also change the position of correlated objects. All of these
objects can then be upweighted and the SVD repeated. When new points
stop being moved outwards, the current set of upweighted objects probably
represents a well-defined cluster.

The same process can be used to determine roughly which attributes
account for membership of a cluster of objects (and vice versa). For if in-
creasing the weight on the objects in the cluster has the effect of moving some
set of attributes, then increasing the weight on those attributes should have
the effect of moving the cluster of objects – and this can be checked by the
appropriate SVDs.

Adding artificial objects to orient dimensions

One of the weaknesses of SVD is that the pseudoattributes or dimensions of
the transformed spaces cannot be easily understood because they are linear
combinations of all of the original attributes. However, the significance of the
first few dimensions can sometimes be discovered by adding extra artificial
objects to the dataset representing extremal examples of some property of
interest. For example, if we suspect that the first transformed dimension is
capturing the total magnitude of the attributes associated with each object,
then we can add artificial objects whose total magnitudes are larger than,
and smaller than, those of any normal object in the dataset. If the points
corresponding to the artificial objects are at the extremes of one dimension
in the transformed space, then we can be confident that this dimension is
capturing total magnitude. For example, recall the first dimension of the
transformed wine dataset, with one person who had given all of the wines low
scores.

Suppose that we add two extra rows to A, one consisting entirely of 1s and
the other consisting entirely of 9s. The resulting plot of the 3-dimensional
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Figure 3.14. 3-dimensional plot of U with a high-magnitude (13)
and a low-magnitude (12) object added.

truncation of U is shown in Figure 3.14. The points corresponding to these
new points (numbers 12 and 13) are at opposite ends of U1 dimension, sug-
gesting strongly that the variation captured by this dimension is that of total
magnitude.

In the same way, we can add rows to the original matrix A, one with
small values in the first four columns and large values in the last four columns,
and the other with large values in the first four columns and small ones in the
last four columns. The results in this case are shown in Figure 3.15. It is
clear from the plot that the second dimension captures the differences between
objects that have large values in the early columns and those that have large
values in the later columns.

It can also be useful to add lines to the plot of objects, each one indicat-
ing the direction of the one of the original axes. This can aid in interpretation
in the same way as adding objects to orient dimensions. It can also show
visually when several attributes are highly correlated.

Figure 3.16 shows the axes of the original space for our example matrix. It is
clear that attributes 2, 4, and 6 are very similar, as are attributes 1, 3, 5, and
7.
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Figure 3.15. 3-dimensional plot of U with two orienting objects
added, one (12) with large magnitudes for the first few attributes and small
magnitudes for the others, and another (13) with opposite magnitudes.
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Figure 3.16. 3-dimensional plot of U with lines representing axes
from the original space.
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Using the Split V technique

Matrix decompositions are usually applied to datasets that do not have a
target attribute. However, if a target attribute is known, or if we are interested
in investigating how one particular attribute is affected by the others, SVD
can provide some insight.

If the target attribute takes two values (a situation we can create for
an arbitrary attribute by choosing a midpoint value), then the matrix can be
divided into two parts: one associated with one value of the target attribute,
and the other with the other value. The SVD of each of these matrices pro-
duces two V matrices, say V1 and V2. If the points from these matrices are
plotted in the same space, then the different positions of each attribute in V1

and V2 give an indication of how the attribute interacts with the two values
of the target attribute. Attributes that move a long distance from one plot to
the other tend to be good predictors of the target attribute.

This technique implicitly assumes that the two submatrices are reason-
able samples from some larger universe of data and so their SVDs can be
plotted in the same space. This assumption may not be valid for particular
datasets.

3.3.4 Sampling and sparsifying by removing values

Many fast approximate algorithms for computing low-rank approximations to
the SVD are known. These are of interest from the practical point of view
of the resources required for what is otherwise an expensive algorithm; but
the existence of such algorithms also reveals something about the properties
required in datasets.

The matrix Ak can be computed in time independent of n and m with
high probability [45] under some plausibly practical assumptions. However,
constructing the matrix requires time O(kmn).

Entries of the matrix A can be randomly omitted or quantized (say to
0 and 1) without affecting the linear structure of the matrix and so without
affecting the SVD [4]. These changes to the dataset matrix amount to adding a
matrix of independent random variables with zero mean and bounded variance
to it. Such variables have no linear structure and so ‘vanish’ from an SVD.
This result shows that SVD has some ability to ignore random background,
which is useful when the goal is to find small pockets of correlation in largely
uncorrelated datasets. These fast algorithms work well when the goal of the
analysis is to understand the mainstream structure in the data, but should be
used with caution when the goal is to understand finer structure.
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3.3.5 Using domain knowledge or priors

The following result shows how to take a matrix of rankm and reduce its rank,
one step at a time. The reduction process produces a matrix decomposition
that is quite general. Suppose that A is an n×m matrix, x is an n× 1 vector
and y is an m× 1 vector such that

ω = x′Ay �= 0 (3.1)

Then the matrix
B = A − ω−1Ayx′A

has rank exactly one less than the rank of A [26], a result due originally to
Wedderburn.

Applying the theorem once reduces the rank of the dataset matrix, A,
by one, and produces a vector, x, that can become the first column of the left-
hand matrix of a decomposition, which we have been calling C. Similarly, the
vector y becomes the first row of the right-hand matrix of a decomposition,
which we have been calling F . The theorem can be applied repeatedly. After
each round, the rank of the dataset matrix has been reduced by one, a new
column has been added to C, and a new row has been added to F .

The theorem allows a matrix of rank m to be decomposed in many
ways, depending on how x and y are chosen. If the xs and ys are chosen to be
orthogonal, then the result is an SVD. However, the choice of the first x and
y can be made freely, subject to condition (3.1). A standard decomposition
algorithm can then be applied, starting from matrix B. These initial choices
of x and y can be used to include external information in the decomposition.
For example, x could specify some subclass of objects by putting 1s in the
corresponding positions of the vector, and 0s in the other positions. This
provides a mechanism to include domain knowledge or priors in a matrix
decomposition.

3.4 Algorithm issues

3.4.1 Algorithms and complexity

The complexity of SVD is n2m+nm2. Since m is typically much smaller than
n in data mining algorithms, the complexity is usually taken to be O(n2m). In
data-mining applications, n is often large, so computing the SVD is expensive.

Many computational packages (for example, Matlab, Octave, R, S) con-
tain a command to compute an SVD. Standalone software in most program-
ming languages is also readily available.
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3.4.2 Updating an SVD

An SVD can be updated in two senses. The first is that the matrix A re-
mains the same size, but has had some of its values changed. In this case,
it is straightforward to recompute the SVD incrementally [88, 105]. The time
complexity is linear in n provided that the magnitude of the changes are small.

An SVD can also be updated in the sense that new rows or columns are
added. Rearranging the SVD equation we see that

U = AV S−1

Hence given a new row of A, whose shape is 1 × m, this equation can be
applied to transform it to a new row of U , whose shape is 1 × r. A similar
procedure can be used to update V . This computation is not a true update
since it does not preserve orthogonalities, but it is cheap. If desired, the
previous incremental algorithm can be run on the new matrices to reinforce
the orthogonality.

3.5 Applications of SVD

3.5.1 The workhorse of noise removal

The number one application of SVD is noise removal. Typically experimental
data has been collected, and an SVD is applied to determine how noisy it is,
and perhaps to remove the noise component. Often, this is all that is done;
none of the other benefits of SVDs are used.

3.5.2 Information retrieval – Latent Semantic Indexing
(LSI)

SVD has been used extensively in information retrieval, where it is known as
latent semantic indexing [13, 32].

In any large information repository, one of the critical problems is find-
ing documents about a particular topic. One approach to this information
retrieval problem is to model each document as a vector, with one entry for
each possible word. If a particular word is not in the document, then the
corresponding element is set to 0; if the word is present, then the correspond-
ing element can either be set to the number of times the word occurs in
the document, some modification of this frequency that reflects the fact that
longer documents contain more words, or just to 1 to indicate that the word
is present. The entire repository is then modelled by a matrix with one row
for each document, and one column for each word.
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The problem is that there are many possible words, even if stemming is
used (so that, for example, ‘skip’, ‘skipping’, ‘skipped’ are all treated as the
same word). If the information repository is very large, then the matrix will
have many rows; but no matter how large the repository, the matrix will have
many columns. For example, a typical collection of documents such as the
back issues of a newspaper can easily mention more than 100,000 words.

The fundamental problem in information retrieval is: given some search
terms, retrieve all of the documents that contain those search terms or, per-
haps more usefully, return documents whose content is semantically related to
the search terms. For example, if one of the search terms was ‘automobile’ it
might be appropriate to return also documents that contain the search term
‘car’.

It is also usually important to retrieve the documents and arrange them
in some order of importance, so that the most relevant documents come first.
This is less important when there are typically only a few relevant documents
that match a set of search terms, but becomes the most important part of
the process when the number of relevant documents is large, as it usually is
in web search.

A search query can be thought of as a short pseudodocument that con-
tains only the search terms, and so can be described by a row of the same
form as the rows of the document-term matrix. The goal of search is then
to find rows in the document-term matrix that are similar to the search term
row, where similarity means ‘contains all of the words’.

Progress was made with this problem by using the geometric model, and
treating documents as vectors in a very high dimensional space, a search vector
as a new vector in the same space, and retrieving document vectors that are
close to the search vector. The measure of similarity used is cosine similarity
– that is vectors are close if they point in the same direction in this space
– because a query always looks like a very small document, no matter how
normalization for document length is computed, so direct Euclidean distance
is not a good metric.

There are several problems with vector-based retrieval. First, the space
is very high dimensional, which creates problems for distance measurement.
Second, it treats each word as independent, whereas in languages like English,
the same word can mean two different things (‘bear’ a burden versus ‘bear’
in the woods), and two different words can mean the same thing (‘car’ and
‘automobile’).

Rather than implementing information retrieval in the space described
by A, it is effective to compute the SVD of A, and implement information
retrieval in the space described by U , truncating it at some appropriate value
of k, perhaps k ∼ 10, 000.
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This has a number of obvious benefits. First, there is a great deal of
redundancy in natural language, and this redundancy is largely eliminated by
truncation.

Second, words that are synonyms tend to be placed close together in the
truncated space, a nice illustration of SVD’s ability to exploit higher-order in-
formation. Consider two similar words such as ‘car’ and ‘automobile’. These
words tend not to co-occur in the same document, since they mean roughly
the same thing and the choice of which to use is stylistic. The columns in
the raw data matrix corresponding to these two words are therefore com-
pletely different; and the rows corresponding to documents about ‘car’s are
at least slightly different to those about ‘automobile’s. However, the contexts
of occurrences of ‘car’ and ‘automobile’ will be similar, so these two sets of
rows will have similarities because of other, contextual words. SVD is able
to transform this similarity of rows into similarities between the ‘car’ and
‘automobile’ columns in the truncated representation. This has an important
payoff: a query that is expressed using the term ‘car’ will also find documents
that contain occurrences of ‘automobile’ but none at all of ‘car’. The region
selected by the presence of the term ‘car’ is (close to) the region selected by
‘automobile’, so these search terms have become approximately interchange-
able. To say it another way, the truncated space has generalized beyond both
specific terms to a deeper concept.

Third, words with more than one meaning are placed between regions
corresponding to their different meanings – they are pulled toward such regions
with forces that reflect how common each meaning is. This has the effect of
discounting the usefulness of such words as search terms, since they do not
select any particular region strongly.

This approach is so effective that it can even be used for cross-lingual
information retrieval, where the search terms are in a different language from
the retrieved documents. A document space containing some documents in
both of the languages is required, but documents in only one language are
also permitted. Queries in one language retrieve relevant documents in the
other language (where ‘relevant’ means that they have the same underlying
semantics) [38].

Document-word matrices are typically extremely sparse – any given doc-
ument contains only a relatively small number of different words out of the
possible 100,000+. LSI is able to discover and measure the similarity between
documents that do not share even a single word, and similarities between
words that never co-occur in a single document.
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3.5.3 Ranking objects and attributes by interestingness

In a truncated SVD, there are only k different directions in which vectors can
point and be orthogonal, whereas there are n vectors corresponding to the
rows of U . There are two kinds of vectors that end close to the origin. The
first are objects that are correlated with many of the other objects. Such
vectors would like to point in every direction so that they can have positive
dot products with many other vectors. Or, using the spring intuition, they
are pulled from every direction and so end up near the center. The second
kind of vectors that end close to the origin are those that correlate with none
of the objects. These vectors want to be orthogonal to all of the other vectors,
and so must also have small magnitudes.

This means that vectors whose ends are far from the origin correspond
to objects whose correlation with all of the other objects is unusual. Such
objects are interesting in a meaningful sense. For example, we could rank
objects based on their distance from the origin; those objects at the top of
the ranking are those with interesting correlation with the other objects, while
those at the bottom of the ranking are uninteresting in the sense of being
correlated with almost all of the other objects, or with very few of them. (Of
course, using only distance from the origin loses information about direction,
which is also important.)

This technique can be used in many settings. For example, given a
document-word matrix it can be used to rank documents in a way that se-
lects the most interesting documents. Very bland documents, those that use
common words in common ways, are pushed to the bottom of the ranked list.
So are documents that use only rare words. Those documents that appear
near the top of the ranked list are those that use moderately common words,
but in ways that are different from the other highly-ranked documents. The
same approach can be used to rank words in a document repository, ranking
both common words and uncommon words low, while selecting words that
have interesting correlations. Such words are likely to be useful terms for
indexing or forming a taxonomy for the repository, since they all have useful
discriminatory power for the documents. This approach of ranking was used
in [101] to detect groups of messages in which ordinary words had been re-
placed by other words of different natural frequency in an attempt to conceal
the content of emails.

3.5.4 Collaborative filtering

Recommender systems use information about a set of objects and their proper-
ties to predict new properties of a particular object. Most of their applications
have been in the commercial sector, such as recommending movies or books.
For example, a bookseller such as Amazon has a large number of records,
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one for each purchaser, listing the books purchased. If a customer comes to
their web site, they can recommend a book that the customer might like, by
considering the patterns of other, similar customers’ book purchases.

There are several ways to implement such recommendation systems.
One way is to describe each book by a short list of properties. Each customer
can then be described by merging the lists of properties of books he or she
has purchased. A good book to recommend would be one that has a similar
list of properties to that of the customer. This approach has two drawbacks:
each book’s properties have to be described, perhaps by a human, although
for some objects this information can be extracted automatically; and no use
is made of the purchasing information of other customers. Such systems are
called content recommenders .

Collaborative filtering tries to avoid these drawbacks by using informa-
tion about purchase patterns of other customers. There is no need to explicitly
understand what properties of a book make it attractive to a particular sub-
set of customers; it is enough to be able to identify such a subset. Also,
information about which customers liked which books provides more subtle
information about preferences than a short list of properties can do.

The simplest form of collaborative filtering requires a matrix whose rows
correspond to customers and whose columns correspond, say, to books. The
entries in the matrix can either be zeros and ones, indicating whether or
not customer i purchased book j, or could be some indication of how much
customer i liked book j, perhaps expressed on a scale from 1 to 10. Getting
purchase information is free. Getting information about how much a book was
liked is more difficult because the customer has to provide extra information,
and such opinions tend to vary widely over short time periods, even for the
same customer and book.

If we wish to provide a recommendation for customer k, then we simply
need to find a row i that is similar to row k, and look for a column where row
i has a non-zero entry and k has a zero entry. The book corresponding to this
column is the one that should be recommended. (Note the similarity to the
information retrieval problem.)

There are several obvious problems with this simple scenario. First,
row i might be most similar to row k, but still not contain much overlap,
that is be closest, but not actually very close. The matrix is very sparse and
most people will not have purchased most books. Second, there may be many
possible recommendations, and it is not obvious how to select the best one.
One approach is to select the book (= column) that has the most entries,
but this recommends popular books at the expense of books that might be
a better fit. There are also problems that mimic the problems with words in
the previous section: there are often different books with the same title and it
may be hard to tell them apart; also many authors write books in series, and
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the books are very similar. However, this simple algorithm treats all books
as distinct entities, and so cannot use this extra structure. For example, if
you buy a book by a particular author from Amazon, you immediately get
recommendations for all of that author’s other books, even though it is likely
that you already own or have read many of them. Even if you tell Amazon
that you own many books by the same author, it persists in recommending
the remaining ones.

Collaborative filtering can be applied to many other settings, charac-
terized by using small amounts of human input about quality or preferences
to compute either global or local rankings of objects. The book system is
easily extended to providing recommendations for movies, or restaurants, or
music. The same approach can be used to provide feedback on technical pa-
pers, or news articles (e.g., Slashdot), or publish-subscribe or RSS systems,
which match content, as it is created, with a set of user preferences that may
themselves be either static or dynamic.

The performance of collaborative filtering can be improved by using SVD
to decompose the person-object matrix. People don’t prefer a random selec-
tion of different books; they have preferences for certain types of books, or
books by certain authors. (Physical) libraries use this information to organize
books into different categories, for example mystery, or science fiction, or hor-
ror; and organize non-fiction into one of a set of well-defined taxonomies. This
is helpful for someone whose tastes fall cleanly within a category. Libraries
also shelve fiction books by author. Again this is helpful to someone who likes
a particular author as long as the author does not write under several names.

Collaborative filtering systems can organize books into clusters that re-
flect how a large number of people actually prefer them, rather than a tax-
onomy imposed from outside. Clustering the rows of the U matrix avoids
many of the drawbacks of working directly with the person-object matrix.
Redundancy in the data has been removed; the main dimensions along which
books are categorized can be seen; books that appear to be different but are
purchased by the same people are placed close together, and different books
with the same name are placed far from the clusters in which they would, in-
dividually, fall. The result is a space in which comparisons between customers
can be made more reliably.

The U matrix, when truncated at some suitable k, is a much smaller
matrix than the original person-object matrix, and it is also much less sparse.
When we want to find customers similar to a particular customer, we are
working with distances that are better behaved because they are calculated
in a lower-dimensional space.

When we find a customer who is similar to the customer of interest,
we cannot directly produce a recommendation because the columns of the U
matrix do not correspond to books, but rather to groupings of books. There
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are a number of ways to compute the desired recommendation. One would
be to change the values of the customer of interest to move that row halfway
towards the row of the customer whose recommendations we plan to use. This
new row can then by mapped from U -space back to the space of the original
person-object matrix and compared to the original row. The entry that has
increased the most could suggest the best book to recommend. Alternatively,
a selection of books could be recommended, ordered by how much their entries
have increased.

There are interesting possibilities for folding in other business considera-
tions, for example the amount of profit associated with each book. Weighting
each column by a scalar corresponding to the desirability of selling each book
biases the recommendations in favor of such books. The preference informa-
tion from other customers is still used, but is modulated by another kind of
information.

We can use the ranking described in the previous section to analyze rec-
ommendation data further. The ability to rank the rows of the matrix by how
interesting they are selects those customers whose rankings are the most use-
ful. Those who buy only what everyone else buys, for example bestsellers, are
ranked low. So are those whose purchases are idiosyncratic. Those customers
who appear at the top of the ranking from the SVD are those whose rankings
are most helpful in a global sense. They can be encouraged by providing either
a psychic benefit (publishing their names), or an economic benefit (discount
coupons) to encourage them to continue to provide high-quality information
for the system. Notice that there is an inherent bias in these kinds of sys-
tems: there is usually a reasonable motivation to provide positive information
– those who liked a book would like others to enjoy it too. However, there is
less motivation to provide negative information, and what motivation there is
perhaps is less trustworthy.

The ability to rank the columns, for example books, provides another
new kind of useful information. Booksellers understand the economics of
bestsellers. They are also coming to understand the economics of the ‘long
tail’, keeping low-demand books available for rare customers. However, the
books or other objects that appear at the top of the ranking from an SVD
are those books that attract interesting customers. These books represent
potential word-of-mouth bestsellers [47], and so identifying them represents
a huge economic opportunity. Consider the ‘usual’ ranking based on sales or
expected revenue, and imagine that it is bent into a U shape. The part of the
list that comes at the top of the ranked list from the SVD is the part from
the bend of the U, neither the bestsellers, nor the rare sellers, but those in
between. Such books are neither correlated with very popular books (best
sellers), nor uncorrelated with almost all other books (rare sellers). This
correlation information about books is derived, indirectly, from customers.
Amazon, for example, could use this to make more sophisticated predictions.
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There may also be some benefit to understanding the clustering of books
implied by V matrix. This should agree with more conventional clusterings,
but the differences might be revealing. For example, they might suggest new
ways of thinking about groupings of books; perhaps “detective fantasy” is
becoming a new category.

The effects of normalization can be clearly seen in the collaborative
filtering setting. Suppose that participants are asked to rate books on a scale
from 1 to 5, with 1 meaning ‘didn’t like it’ and 5 meaning ‘liked it very
much’. The data will typically be very sparse, since few people will have read
more than 1% of the books in a typical collaborative filtering setting. This
percentage might be higher in other settings, for example movies and music,
but it is probably never very large.

So we have a matrix with rows corresponding to people and columns
corresponding to books. If we do not normalize the data at all, then the first
component of the attribute space will capture the average approval rating for
all books. Bestsellers will be far from the origin because they will have high
ratings from many people, but books that were strongly liked by moderately
sized groups of people cannot be distinguished from books that were consid-
ered mediocre by many people. Also the orthogonality requirement of an SVD
means that the direction of subsequent components will be distorted by the
first component.

Normalizing using z scores and including all of the zero values in the
normalization introduces a skew into the data. Suppose that all of the rat-
ings are positive. The zero entries are reflected in the denominator of the
calculation of the mean, so that the effect of the non-zero ratings are heav-
ily damped by the zeros, and the value of the mean will typically be quite
small. Subtracting the mean from all of the column entries means that the
previously zero entries will all become slightly negative. Hence the resulting
distribution of values will be biased slightly towards the negative direction for
every attribute – although the original zero entries represent no information,
their effect is to skew the data that will be analyzed.

A better approach is to leave the zero entries unchanged, and adjust the
non-zero entries, whose range of values are known, by centering them around
zero. This maps 5 to +2 and 1 to -2, making a rating of 1 antithetical to a
rating of 5. This is appropriate, and may even make it easier to distinguish
books that are generally liked from those that are generally disliked. Ratings
of 3, which suggest a neutral opinion about a book, have now been mapped to
0. The critical side-effect of this normalization is that neutral opinions about a
book have been conflated with the absence of opinions about a book. In a way
this is reasonable; it assumes that both provide no extra information about the
book’s quality. However, a book that many people have read and rated as a 3
really is a mediocre book, while a book that has not been read by anyone is an
unknown quantity, and both will look the same. The normalization prevents
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us from knowing where, on this considerable spectrum, a particular book
actually lies. In the end, this normalization forces the matrix decomposition
to ignore information about mediocre ratings and transform the data based
on the strong positive and negative opinions.

3.5.5 Winnowing microarray data

Microarrays are high-throughput devices that measure the expression level of
various proteins, usually messenger RNA (mRNA), in a cell. Each microarray
is a slide on which a large number of spots have been placed. Each spot
consists of many identical strands of oligonucleotide, complementary DNA,
or some other similar strand. When a sample is washed over the microarray,
some of its contents binds to the spots, and the quantity that binds can be
detected by subsequently reading the slide. There are many variations in type
and process of collecting microarray data.

Each sample produces an intensity reading for each spot, reflecting how
much the corresponding mRNA has been expressed in the cells of the sample.
A typical microarray may contain more than 20,000 spots. A dataset that
might be used to study a particular disease produces an array with, say,
20,000 rows and a set of columns, each one corresponding to a single sample
(patient).

The goal of microarray analysis is to discover how an external condition
(having a disease) correlates with an internal situation (increased expressed
levels of some genes and decreased levels of others, as reflected in the mRNA
they express). If there are samples from both the normal and disease condi-
tion, then we expect to see differences, for some rows, between the columns
associated with the different samples.

One of the problems is that the differences associated with most condi-
tions are expected to affect only some fraction of the 20,000 or more possible
genes (spots). Before carrying out some sophisticated analysis, it might be
helpful to remove those rows corresponding to genes whose expression levels
do not change in significant ways.

A standard way to do such winnowing is to discard those rows whose
expression levels are low, perhaps aiming to reduce the number of rows by a
third. However, this kind of simple winnowing does not do the right thing: it
retains a single gene that shows a large change in expression level, although
it is unlikely that most conditions can be explained by a single gene; and it
removes genes with small changes in expression level, even when these changes
are highly correlated, potentially missing important, but subtle, expression
patterns.

SVD provides a way to winnow such data more appropriately [66]. Given
a data matrix, A, sorting the rows of U by distance from the origin selects the
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genes with the most interesting expression in exactly the right sense. Genes
whose expression levels do not change across the patient groups will tend
to be close to the origin, both because their rows will be almost constant,
and because there are many other rows like them. Similarly, rows containing
unusual expression patterns that appear nowhere else will also tend to be close
to the origin.

A further advantage of creating a ranked list is that the decision about
which rows to retain and which to remove can be made after the winnowing,
rather than before. Any approach that requires the boundary to be defined
before the data is examined is much harder to use because information to
make a good choice is not known when the decision has to be made.

3.6 Extensions

3.6.1 PDDP

Boley’s Principal Direction Divisive Partitioning (PDDP) [14] uses SVD to
build an unsupervised decision tree. The approach is as follows:

• Compute the SVD of the data matrix, and consider the direction of the
first singular vector.

• Partition the objects depending on their position along this vector (there
are several possibilities for the splitting hyperplane which is, of course,
normal to the first singular vector). The resulting two parts of the
original datasets are separated.

• Continue the process on each of the partitions separately.

The result is a binary tree that divides the data in ways that reflect the most
important variation first.

Matlab software for PDDP is available from the web site www.cs.umn.edu/
∼boley/Distribution/PDDP.html.

3.6.2 The CUR decomposition

There are two situations where the properties of an SVD make it difficult to
use on real data. The first is where the data is sparse; the decomposition
results in matrices that are no longer sparse, causing storage and analysis
problems. The second is when rows and columns that are linear combinations
of the original data values do not make sense in the problem setting. Often,
this is because some attributes are allowed to take on only certain values, say



88 Chapter 3. Singular Value Decomposition (SVD)

integer values, and the rows and columns of the decomposition take on other
values.

The CUR Decomposition is designed for such situations – it computes
a decomposition of the dataset matrix, using actual rows and columns of
the dataset, but at the expense of a less faithful representation (although in
the end only less faithful by a multiplicative error factor). Hence the CUR
decomposition provides a high-quality excerpt or sketch of the dataset, rather
than a new representation.

The CUR Decomposition of a dataset matrix, A, is given by

A = C U R

where A is n × m, C is a set of c columns of A, R is a set of r rows of A,
and U is a c × r matrix. Let k be a scalar smaller than the rank of A, and
choose a multiplicative error, ε. Then a randomized algorithm that chooses c
columns of A, and r columns of A, where c and r are large enough functions
of k and depend on ε, and the columns are chosen in a clever way, produces
C, U , and R such that

||A− CUR||F ≤ (1 + ε)||A−Ak||F
The computation has about the same complexity as SVD and requires two
passes over the dataset.

The trick behind this, and other similar decompositions, is to select the
columns (resp. rows) in a special way. The columns must be chosen so that
they form a set of independent and identically distributed variables (which
is just a careful way of saying that they must be chosen randomly), and
they must be chosen with replacement, that is the probability of choosing a
particular row this time is unaffected by whether it has been chosen before.
For the present algorithm, the probability of choosing a row derives from the
SVD of the dataset matrix, truncated at k. This suffices to ensure that, with
high probability, the structure that remains in C and R approximates the
structure of A sufficiently well. The reason that this kind of approach works
at all is that, almost by definition, a matrix that is actually low rank, but
doesn’t look as if it is, contains lots of repetition or almost repetition.

The right-hand side of this decomposition acts as a kind of sketch of
the original dataset, but is much, much smaller and so easier to work with
in many practical ways. Because the matrices C and R consist of columns
and rows from A, they inherit properties such as sparseness. Also because
each column and row is a member of the dataset, it must be a reasonable
element, no matter what kind of constraints apply to such elements. Hence
the CUR Decomposition has many of the attractive properties of SVD, but
avoids some of its deficiencies as well. However, something has also been
lost – the CUR Decomposition describes only the mainstream structure of
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the dataset, and so cannot be used to understand the structure of outliers,
interesting, or borderline objects.

The two main applications of this kind of decomposition so far have
been:

• Lossy compression. The right-hand side of the decomposition can be
much, much smaller than the dataset matrix, and yet does not lose much
of the information. This is especially true for a sparse dataset matrix,
where an SVD coding would require more storage space because the
matrices involved would become dense.

• Creating large datasets based on small amounts of data. There are
several important settings where the contents of C and R are known;
these values can be used to construct an approximation to a much larger
matrix. For example, suppose an organization wants to understand
how to apply incentives to encourage their customers to buy certain
products. They can use a few of their customers to get preference data
about all of their products, creating an R matrix. They can look at
user purchases based on a few products for which they have already
provided incentives, creating a C matrix. Combining these two matrices
extrapolates the user-product information to all combinations of users
and products, suggesting ways to target incentives.

Decompositions of the CUR kind are new, and there are no doubt other ways,
waiting to be discovered, to apply them for data mining.

Notes

The singular value decomposition has a long history, both as a matrix pre-
processing technique and as a data analysis technique [48, 63, 109]. Beltrami
and Jordan essentially discovered it independently in 1873 and 1874, respec-
tively. A good historical survey of SVD and other matrix decompositions can
be found in Hubert et al. [57].

SVD is usually presented as the extension of eigenvectors and eigenvalues
to rectangular matrices. Although we will make this connection in the next
chapter, it does not seem to be necessary, or even helpful, for effective use of
SVD for data mining.

The wine dataset is discussed further in [65]; I am grateful to Mary-Anne
Williams for providing me with the data.

A good example of the use of SVD in recommender systems is Sarwar
et al. [96].





Chapter 4

Graph Analysis

4.1 Graphs versus datasets

In the previous chapter, we considered what might be called attributed data:
sets of records, each of which specified values of the attributes of each object.
When such data is clustered, the similarity between records is based on a
combination of the similarity of the attributes. The simplest, of course, is
Euclidean distance, where the squares of the differences between attributes
are summed to give an overall similarity (and then a square root is taken).

In this chapter, we turn to data in which some pairwise similarities be-
tween the objects are given to us directly: the dataset is an n×nmatrix (where
n is the number of objects) whose entries describe the affinities between each
pair of objects. Many of the affinities will be zero, indicating that there is no
direct affinity between the two objects concerned. The other affinities will be
positive numbers, with a larger value indicating a stronger affinity. When two
objects do not have a direct affinity, we may still be interested in the indirect
affinity between them. This, in turn, depends on some way of combining the
pairwise affinities.

The natural representation for such data is a graph, in which each vertex
or node corresponds to an object, and each pairwise affinity corresponds to a
(weighted) edge between the two objects.

There are three different natural ways in which such data can arise:

1. The data directly describes pairwise relationships among the objects.
For example, the objects might be individuals, with links between them
representing the relationship between them, for example how many
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Name Address Cust #

Cust # Product

Product Stock
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B
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1

Figure 4.1. The graph resulting from relational data.

times they have met in the past year. This kind of data is common
in Social Network Analysis.

2. The data comes from a relational database. The objects are rows from
tables, and rows have an affinity if they share a value for a field (that
is, an affinity represents two entries that would be matched by a join).
See Figure 4.1 for a small example.

3. The data is already in a geometric space, but it would not be appropri-
ate to analyze it, for example to cluster it, directly. The dataset may
appear high-dimensional but it is known from the problem domain that
the data actually occupies only a low-dimensional manifold within it.
For example, image data can often be very high-dimensional, with an
attribute for each pixel; but the objects visible in the image are only
three-dimensional, so the degrees of freedom of objects in the scene are
much fewer than they appear.

Most clustering algorithms have some kind of bias towards convex clus-
ters, and so do not perform well when the low-dimensional space is
embedded in the high-dimensional space in an overlapped or contorted
way. It may be more effective to extract an affinity graph based on
local or short-range distances, and then map this graph back into a
low-dimensional geometric space.

We would like to be able to analyze such datasets in the same way as
we did in the previous chapter, but also in some new ways made possible by
the fact that the data describes a graph. Some analysis possibilities are:
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• Clustering : Just as we did for datasets in the previous chapter, we would
like to be able to cluster the nodes of the graph so that those in each
cluster are similar to each other. This corresponds to finding regions of
the graph whose nodes are better connected to each other than they are
to the rest of the graph or, equivalently, to cutting some graph edges
that somehow weakly connect the nodes at their ends. Usually, it is
also important that the clusters are of significant size – it is not very
interesting to separate almost-isolated nodes from the edge of a graph
and call them a cluster.

• Ranking : We also saw how useful it is to be able to rank objects in
the previous chapter. For graph data, ranking has to somehow respect
the affinity structure, so that two nodes that are well-connected to each
other should receive similar ranks.

• Calculating global properties: Sometimes the global structure of the
graph is revealing, and this can be described by a few parameters. For
example, given the connections inside an organization, it may be possi-
ble to tell whether decision making is autocratic or democratic, based
on the ‘shape’ of the connection graph. It may be possible to determine
who holds the power in an organization by how central they are in the
graph. Global properties like these have been much studied in social
network analysis. It may also be of interest to know how many con-
nected components the graph breaks into; this tells us whether there is
a single community, or multiple communities present in the data.

• Edge prediction: Given the existing edges of the affinity structure, which
pair of unconnected edges could be connected by a (weighted) edge most
consistently with the existing affinities? This is one way of looking at
collaborative filtering – from a graph perspective, a recommendation is
implicitly a new edge.

• Nearest interesting neighbor : This is really a variant of edge predic-
tion, expressed locally. It’s obvious which is the nearest neighbor of
a given node – the node that is connected to it by the edge with the
largest weight. However, in some datasets, again especially those used
for collaborative filtering, nodes with large affinities are near neighbors
of almost all of the other nodes. It may be more useful to find nodes
that are similar once this global structure is discounted.

• Substructure discovery : Sometimes it is the existence of particular sub-
graphs within the graph that is of interest. For example, money laun-
dering typically requires particular patterns of connection between, say,
drug dealers, certain kinds of businesses, bank accounts, and people who
move money around. It may be useful to be able to discover all occur-
rences of such patterns inside a graph, or all patterns that are unusual,
or some combination of the two.
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Even clustering turns out to be more difficult for affinity or graph data
than it was for attributed data. Partly, this is for a reason alluded to already
on page 42; in a geometric space, the distance between any two points depends
only on where each of the points is in space. This provides a number of
shortcuts when we try to understand the global structure of the data in such
a space.

In a graph space, the distance and relationship between two objects
depends on all of the other objects that are ‘between’ them. The addition or
removal of a single object can alter all of the other, longer-range distances,
and so all the quantities that depend on them. Unsurprisingly, algorithms
of exponential complexity are required to compute many of the properties of
interest exactly.

A general strategy is used to avoid this problem. Rather than work
directly in the graph space, various embeddings are used to map the objects
and edges into a geometric space, for example a Euclidean space, in such a
way that:

• Each pair of connected objects is mapped to a pair of points in space
whose closeness accurately reflects the affinity between them. When
affinities are large, separations are small.

• Pairs of objects that are not directly connected are mapped in such a
way that their geometric closeness reflects, in some sensible way, their
edge-based closeness in the graph.

The second requirement requires a substantive choice, since there are several
ways in which longer-distance closeness in the graph could be defined, and
choosing different ones will obviously make a great difference to the apparent
properties of the graph.

There are a number of ways in which local affinities can be extended
to non-local affinities. The standard graph-theory view is that the distance
between two non-local nodes is simply the length of the shortest path between
them (extended to the path with the minimal sum of weights, for a weighted
graph). This extension is natural when the edges represent ‘steps’ with each
step increasing the dissimilarity between the nodes. However, in other settings
it is natural to consider two non-neighboring nodes to be similar if they are
connected by short paths and also by many different paths. This extension is
natural when similarity can be thought of in terms of the ‘flow’ or (inverse)
‘resistance’ between nodes. However, this extension is harder to work with
because it requires more of the context of the pair of points to be considered
to evaluate their similarity. In fact, two points might be connected by paths
through every other node of the graph, so calculating their similarity amounts
to making a global computation on the graph.
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The extension of local affinities to non-local affinities can be even more
complex when the edge structure of the graph plays a different role to the role
of the weight structure. We have already discussed collaborative filtering.
Collaborative filtering data can be interpreted graphically in a natural way
– the preference expressed by an individual for a product is a weighted edge
between the two nodes that represent the individual and product. However,
an individual who expresses many preferences does not have better opinions,
just more opinions. Nevertheless, the effect of their presence in the graph is
to alter the non-local affinity structure of the rest of the graph by providing
short paths that join almost every other individual to almost every other
product. Clearly, such individuals distort the medium-scale structures for
other individuals. In the end, this has the disastrous side-effect of making
the system recommend the most popular products to everyone. This example
shows that, in some situations, an affinity extension needs to be even more
sophisticated than using length of paths and numbers of paths.

We will describe a number of ways to embed a graph space into a geo-
metric space. The main difference between them is precisely the issue of how
they extend pairwise affinity to distance in the geometric space.

4.2 Adjacency matrix

The pairwise affinities between objects define a graph whose nodes or vertices
are the objects and whose edges are the pairwise affinities. The easiest and
most direct representation of these affinities is an adjacency matrix .

Given a set of n vertices (corresponding to objects), the adjacency ma-
trix, A, is an n× n matrix whose entries are zero, except that when object i
is connected to object j by an edge, the entry has value 1. The matrix has
n2 entries and usually the data will describe relatively few pairwise affinities,
so the adjacency matrix will usually be very sparse. Formally, the adjacency
matrix is

Aij =

{
1 object i has some affinity to object j

0 otherwise

Since we regard affinities as symmetric (the affinity between object i and
object j is the same as that between object j and object i), A is also a
symmetric matrix with non-negative entries.

The degree of each vertex or object is the number of edges that are
attached to it, which is the sum of the number of 1s in its row (or equivalently,
column). So the degree of object i is

di =
n∑

j=1

Aij
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The adjacency matrix, as defined so far, takes into account whether
or not two objects are directly joined, but does not take into account the
magnitude of the affinities. We can easily extend it to a weighted adjacency
matrix whose entries are weights derived from the affinities, like this

Aij =

{
wij object i has an affinity to object j with magnitude wij

0 otherwise

As before, we assume that affinities are symmetric. The degree also generalizes
in the obvious way

di =
n∑

j=1

Aij

The degree matrix of an adjacency matrix is a diagonal matrix, where the
diagonal entries are the (unweighted or weighted) degrees of the corresponding
objects

Dii = di

If the rows of an adjacency matrix are divided by the (weighted) degree,
then the sum of each row is 1, and it is natural to interpret the entries as
defining a kind of probability associated with each edge of the graph. This
matrix is called the walk matrix

Wij =

{
wij/di object i has an affinity to object j with magnitude wij

0 otherwise

The walk matrix provides one intuition about the composition of affinities,
in terms of the properties of random walks on the graph. We interpret the
off-diagonal entries of row i as the transition probabilities of moving to new
nodes from node i. If we consider two graph nodes, say a and b, then the
number of steps it takes a random walk starting from a to reach b is one
measure of the global affinity between them. The number of steps that the
random walk takes from a depends on the length of the path between them,
but also on how many other possible paths branch off along the way, leading
to long, circuitous paths back to b. Hence such a random walk captures a
great deal of information about the ‘geography’ of the graph between a and
b. An important application of this idea is used by Google to generate the
ranking of web pages that is used in its search engine.

4.3 Eigenvalues and eigenvectors

Given a symmetric matrix A, of size n × n, an eigenvalue-eigenvector pair
(v, λ), where v is a vector of length n and λ is a scalar, satisfies

Av = λv
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The usual explanation of such pairs is that an eigenvector represents a vector
that, when acted on by the matrix, doesn’t change direction but changes
magnitude by a multiplicative factor, λ.

This explanation is not particularly helpful in a data-mining setting,
since it isn’t particularly obvious why the action of a matrix on some vector
space should reveal the internal structure of the matrix. A better intuition is
the following. Suppose that each node of the graph is allocated some value,
and this value flows along the edges of the graph in such a way that the
outflowing value at each node is divided up in proportion to the magnitude
of the weights on the edges. Even though the edges are symmetric, the global
distribution of value will change because the two nodes at each end of an
edge usually have a different number of edges connecting to them. Different
patterns of weighted edges lead to the value accumulating in different amounts
at different nodes.

An eigenvector is a vector of size n and so associates a value with each
node of the graph. In particular, it associates a value with each node such that
another round of value flow doesn’t change each node’s relative situation. To
put it another way, each eigenvector captures an invariant distribution of value
to nodes, and so describes an invariant property of the graph described by A.
The eigenvalue, of course, indicates how much the total value has changed,
but this is uninteresting except as a way of comparing the importance of one
eigenvalue-eigenvector pair to another.

You may recall the power method of computing the principal eigenvec-
tor of a matrix: choose an arbitrary vector, and repeatedly multiply it by
the matrix (usually scaling after each multiplication). If A is a weighted ad-
jacency matrix, then the entries of its, say, pth power describe the weights
along paths of length p. If such a matrix has no net effect on a particular allo-
cation of values to the graph nodes, we can think of this as being because the
values have been passed along a loop of length p that ends where it started.
The effectiveness of the power method shows that the principal eigenvector is
related to long loops in the graph.

4.4 Connections to SVD

Although we avoided making the connection in the previous chapter, SVD
is a form of eigendecomposition. If A is a rectangular matrix, then the ith
column of U is called a left singular vector, and satisfies

A′ui = sivi

and the ith column of V is called a right singular vector, and satisfies

Avi = siui
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In other words, the right and left singular vectors are related properties asso-
ciated with, respectively, the attributes and objects of the dataset. The action
of the matrix A is to map each of these properties to the other. In fact, the
singular value decomposition can be written as a sum in a way that makes
this obvious

A =
m∑

i=1

siuivi

The connection to the correlation matrices can be seen from the equa-
tions above, since

AA′ui = siAvi = s2iui

so that u1 is an eigenvector of AA′ with eigenvalue s2i . Also

A′Avi = siA
′ui = s2i vi

so vi is an eigenvector of A′A with eigenvalue s2i also.

With this machinery in place, we can explore one of the great success
stories of eigendecomposition, the PageRank algorithm that Google uses to
rank pages on the world wide web. This algorithm shows how a graphical
structure can reveal properties of a large dataset that would not otherwise be
obvious.

4.5 Google’s PageRank

An important application of these ideas is the PageRank algorithm that
Google uses to rank web pages returned in response to search queries. Sat-
isfying a search query requires two different tasks to be done well. First,
pages that contain the search terms must be retrieved, usually via an index.
Second, the retrieved pages must be presented in an order where the most
significant pages are presented first [19–21]. This second property is partic-
ularly important in web search, since there are often millions of pages that
contain the search terms. In a traditional text repository, the order of pre-
sentation might be based on the frequencies of the search terms in each of the
retrieved documents. In the web, other factors can be used, particularly the
extra information provided by hyperlinks.

The pages on the web are linked to each other by hyperlinks. The
starting point for the PageRank algorithm is to assume that a page is linked
to by others because they think that page is somehow useful, or of high quality.
In other words, a link to a page is a kind of vote of confidence in the importance
of that page.

Suppose that each page on the web is initially allocated one unit of
importance, and each page then distributes its importance proportionally to
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all of the pages it points to via links. After one round of distribution, all
pages will have passed on their importance value, but most will also have
received some importance value from the pages that point to them. Pages
with only outgoing links will, of course, have no importance value left, since
no other pages point to them. More importantly, after one round, pages
that have many links pointing to them will have accumulated a great deal of
importance value.

Now suppose we repeat the process of passing on importance value in a
second round, using the same proportionate division as before. Those pages
that are pointed to by pages that accumulated lots of importance in the first
round do well, because they get lots of importance value from these upstream
neighbors. Those pages that have few and/or unimportant pages pointing to
them do not get much importance value.

Does this process of passing on importance ever converge to a steady
state where every node’s importance stays the same after further repetitions?
If such a steady state exists, it looks like an eigenvector with respect to some
matrix that expresses the idea of passing on importance, which we haven’t
quite built yet. In fact, it will be the principal eigenvector, since the repeated
passing around of importance is expressed by powers of the matrix.

The matrix we need is exactly the walk matrix defined above, except
that this matrix will not be symmetric, since a page i can link to a page
j without there having to be a link from j to i. The recurrence described
informally above is

xi+1 = xiW

where W is the directed walk matrix, and xi is the 1×n vector that describes
the importances associated with each web page after round i.

There are several technical problems with this simple idea. The first
is that there will be some pages with links pointing to them, but no links
pointing from them. Such pages are sinks for importance and, if we keep
moving importance values around, such pages will eventually accumulate all
of it. The simple solution is to add entries to the matrix that model links
from such pages to all other pages in the web, with the weight on each link
1/n, where n is the total number of pages indexed, currently around 8 billion.
In other words, such sink pages redistribute their importance impartially to
every other web page, but only a tiny amount to each. We can think of this
as teleportation of importance, since it no longer flows along links, but jumps
from one part of the graph to another.

This same problem can also occur in entire regions of the web; there can
exist a subgraph of the web from which no links emanate, although there are
links within the subgraph. For example, the web sites of smaller companies
may well contain a rich set of links that point to different parts of their web
site, but may not have any links that point to the outside web. It is likely that



100 Chapter 4. Graph Analysis

there are many such regions, and they are hard to find, so Google modifies
the basic walk matrix to avoid the potential problem, rather than finding
occurrences and dealing with them explicitly.

Instead of using W , Google uses Wnew, given by

Wnew = αW + (1− α)E (4.1)

where E is an n×n matrix generalizes the idea of teleporting importance from
a single node to a description of how importance teleports between every pair
of nodes, and α is between 0 and 1 and specifies how much weight to allocate
to the hyperlinked structure of the web (the first term), and how much to the
teleportation described by E (the second term).

The matrix E was originally created to avoid the problem of regions of
the graph from which importance could not flow out via links. However, it can
also be used to create importance flows that can be set by Google. Web sites
that Google judges not to be useful, for example web spam, can have their
importance downgraded by making it impossible for importance to teleport
to them.

The result of this enormous calculation (n is of the order of 8 billion)
is an eigenvector, whose entries represent the amount of importance that
has accumulated at each web page, both by traversing hyperlinks and by
teleporting. These entries are used to rank all of the pages in the web in
descending order of importance. This information is used to order search
results before they are presented.

The surprising fact about the PageRank algorithm is that, although it
returns the pages related to a query in their global importance rank order, this
seems adequate for most searchers. It would be better, of course, to return
pages in the importance order relevant to each particular query, which some
other algorithms, notably HITS, do [69].

The creation of each updated page ranking requires computing the prin-
cipal (largest) eigenvector of an extremely large matrix. Some care must be
taken in implementing the recurrence (4.1) because Wnew is now a dense ma-
trix because of E. However, a fast update is possible by rearranging the order
of the operations. Theory would suggest that it might take (effectively) a large
number of rounds to distribute importance values until they are stable. The
actual algorithm appears to converge in about 100 iterations, so presumably
this is still some way from stability – but this may not matter much given the
other sources of error in the whole process. The complexity of this algorithm
is so large that it is run in a batched mode, so that it may take several days
for changes in the web to be reflected in page rankings.

PageRank is based on the assumption that links reflect opinions about
importance. However, increasingly web pages do not create links to other
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Figure 4.2. The global structure of analysis of graph data.

pages because it’s easier and faster to find them again by searching at Google!
It is clear that a new way to decide which pages are important needs to be
developed.

4.6 Overview of the embedding process

We now turn to ways in which we might discover structure, particularly clus-
tering, within a graphical dataset. As we noted above, we could work directly
in the graph space, but the complexities of the algorithms often make this
impractical.

Instead, we find ways to embed the graph space in a geometric space,
usually a Euclidean space, in a way that preserves relationships among objects
appropriately. Figure 4.2 provides an overview of the entire process.

Here is a brief description of the phases:

• Arrow A describes an initial transformation from a Euclidean space into
a graph or affinity space. Although this seems to be a retrograde step, it
can be appropriate when the data in the Euclidean space cannot easily
be clustered directly. This is usually because the clusters are highly
non-convex, or because the data occupies a low-dimensional manifold in
a high-dimensional space.

• Matrix B is an n×nmatrix of affinities, positive values for which a larger
magnitude indicates a stronger affinity. The matrix is usually, though
not always, symmetric, that is the edges in the graph are considered to
be undirected.
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• Arrow C is the critical step in the entire process. It maps the affinity
matrix to a representation matrix in such a way that geometric relation-
ships in the geometric space reflect non-local relationships in the graph
space. As a result, good clusterings in the geometric space are also good
clusterings in the graph space.

• This produces matrix D which behaves like a dataset matrix in the
previous chapter; that is it describes points in a geometric space whose
distances apart match, as much as possible, sensible separations in the
original graph. However, matrix D is still n×n, so its distances are not
well-behaved, and it is hard to work with.

• Arrow E represents the mapping of the geometric space described by
D to a lower-dimensional space where distances are better behaved,
and so clustering is easier. We can use the techniques described in the
previous chapter, except that matrix D is square so we can use eigende-
composition instead of SVD if we wish. The mapping of affinity matrix
to representation matrix can also sometimes provide extra information
about the reduction to a lower-dimensional space.

• Matrix F has columns consisting of the k most significant eigenvectors
of D, so F is an n × k matrix. It corresponds to the U matrix in an
SVD. The rows of F can be regarded as defining coordinates for each
object (node) in a lower-dimensional space.

• Finally, arrow G is the process of clustering. We have discussed many
of these clustering techniques in the previous chapter.

4.7 Datasets versus graphs

It is hard to visualize a graph space, and to see how it differs from a geometric
space. We can get some intuition for the differences using a small example.

Consider the affinity matrix:⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦

If we think of this as an ordinary dataset, and the rows as points in a five-
dimensional space, then the first row corresponds to a point that is far from
the origin, while the other rows are all closer to the origin. If we cluster this
directly, the object corresponding to row 1 forms a cluster by itself far from
the others, objects 2 and 3 form a cluster and objects 4 and 5 form another
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cluster, although these last two clusters are not well-separated, as you might
expect.

However, from a graph point of view, the object corresponding to row 1
is the center of the graph and connects the rest of the graph together because
of its links to all of the other objects. A clustering with respect to the graph
structure should place object 1 centrally, and then connect the other objects,
building from that starting place.

The significance and placement suggested by the geometric space view
is exactly ‘inside out’ from the significance and placement suggested by the
graph space view – large values that place an object far from the origin, and
so far from other objects, in the geometric space correspond to tight bonds
that link an object closely to other objects in the graph space.

If we want to embed a graph space in a geometric space in a way that
makes graphical properties such as centrality turn out correctly, we are going
to have to include this inside-out transformation as part of the embedding –
and indeed we will see this happening in representation matrices.

Embedding using adjacency matrices was popular a decade or more ago,
but more recently embeddings based on Laplacians and their relatives are
used precisely because of this need to turn graph structures inside out before
embedding them.

4.7.1 Mapping Euclidean space to an affinity matrix

The first possible step, as explained earlier, is not necessarily common in data
mining, except in a few specialized situations. Sometimes, a dataset appears
extremely high-dimensional but it is known from the problem domain that
the ‘real’ dimensionality is much lower. The data objects actually lie on a
low-dimensional manifold within the high-dimensional space, although this
manifold may have a complex, interlocking shape. For example, a complex
molecule such as a protein can be described by the positions of each of its
atoms in three-dimensional space, but these positions are not independent,
so there are many fewer degrees of freedom than there appear to be. It may
also be that the placing of the objects makes it hard for clustering algorithms,
with built-in assumptions about convexity of clusters, to correctly determine
the cluster boundaries.

In such settings, it may be more effective to map the dataset to an
affinity matrix, capturing local closeness, rather than trying to reduce the
dimensionality directly, for example by using an SVD. When this works, the
affinity matrix describes the local relationships in the low-dimensional mani-
fold, which can then be unrolled by the embedding.

Two ways to connect objects in the high-dimensional dataset have been
suggested [12]:
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1. Choose a small value, ε, and connect objects i and j if their Euclidean
distance is less than ε. This creates a symmetric matrix. However, it is
not clear how to choose ε; if it is too small, the manifold may dissolve
into disconnected pieces.

2. Choose a small integer, k, and connect object i to object j if object j is
within the k nearest neighbors of i. This relationship is not symmetric,
so the matrix will not be either. Because k describes the cardinality of a
set of neighbors, it is much less sensitive to the distribution of distances
at small scales.

There are also different possible choices of the weight to associate with each
of the connections between objects. Some possibilities are:

1. Use a weight of 1 whenever two objects are connected, 0 otherwise; that
is A is just the adjacency matrix induced by the connections.

2. Use a weight
Aij = exp(−d(xi, xj)2/t)

where d(xi, xj) is a distance function, say Euclidean distance, and t is a
scale parameter that expresses how quickly the influence of xi spreads
to the objects near it. This choice of weight is suggested by connection
to the heat map [12].

3. Use a weight
Aij = exp(−d(xi, xj)2/t1t2)

where ti and tj are scale parameters that capture locally varying density
of objects. Zelnik-Manor and Perona [117] suggest using ti = d(xi, xk)
where xk is the kth nearest neighbor of xi (and they suggest k = 7). So
when points are dense, ti will be small, but when they are sparse ti will
become larger.

These strategies attempt to ensure that objects are joined in the graph space
only if they lie close together in the geometric space, so that the structure of
the local manifold is captured as closely as possible, without either omitting
important relationships or connecting parts of the manifold that are logically
far apart.

4.7.2 Mapping an affinity matrix to a representation matrix

The mapping of affinities into a representation matrix is the heart of an ef-
fective decomposition of the dataset.
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The literature is confusing about the order in which eigenvalues are
being talked about, so we will adopt the convention that eigenvalues (like
singular values) are always written in descending order. The largest and the
first eigenvalue mean the same thing, and the smallest and the last eigenvalue
also mean the same thing.

Representation matrix is the adjacency matrix

We have already discussed the most trivial mapping, in which the representa-
tion matrix is the adjacency matrix of the affinity graph. The problem with
this representation is that it fails to make the inside-out transformation dis-
cussed earlier, and so starts from an inaccurate representation to produce a
clustering of the graph.

Historically, adjacency matrices have been studied because they are easy
to understand, and can reveal some of the properties of a graph. For example,
the eigenvalues of the adjacency matrix have this property

minimum degree ≤ largest eigenvalue ≤ maximum degree

Global graph properties such as betweenness and centrality that are of interest
in social network analysis can also be calculated from the adjacency matrix.

Representation matrix is the walk matrix

There are two possible normalizations of the adjacency matrix. The first we
have already seen, the walk matrix that is obtained from the adjacency matrix
by dividing the entries in each row by the sum of that row. In matrix terms,
W = D−1A. This matrix can be interpreted as the transition probabilities
of a random walk, and we saw how this can be exploited by the PageRank
algorithm. Again this matrix is not a good basis for clustering, but some
global properties can be observed from it.

Representation matrix is the normalized adjacency matrix

The second normalization of the adjacency matrix is the matrix

N = D−1/2AD−1/2

where D is the matrix whose diagonal entries are the reciprocals of the square
roots of the degrees, i.e. 1/

√
di. This matrix is symmetric.

The matrices W and N have the same eigenvalues and a one-to-one
relationship between their eigenvectors: if w is an eigenvector of W then
there is eigenvector, v, of N , such that w = vD1/2.
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Representation matrix is the graph Laplacian

It turns out that the right starting point for a representation matrix that
correctly captures the inside-out transformation from graphs to geometric
space is the Laplacian matrix of the graph. Given pairwise affinities, this
matrix is

L = D −A
that is L is the matrix whose diagonal contains the degrees of each node, and
whose off-diagonal entries are the negated values of the adjacency matrix.

At first sight, this is an odd-looking matrix. To see where it comes
from, consider the incidence matrix which has one row for each object, one
column for each edge, and two non-zero entries in each column: a +1 in the
row corresponding to one end of the edge, and a −1 in the row corresponding
to the other (it doesn’t matter which way round we do this for what are,
underneath, undirected edges). Now the Laplacian matrix is the product
of the incidence matrix with its transpose, so the Laplacian can be thought
of as a correlation matrix for the objects, but with correlation based only
on connection. Note that the incidence matrix will, in general, have more
columns than rows, so this is one example where the correlation matrix is
smaller than the base matrix.

L is symmetric and positive semi-definite, so it has n real-valued eigen-
values. The smallest eigenvalue is 0 and the corresponding eigenvector is the
vector of all 1s. The number of eigenvalues that are 0s corresponds to the
number of connected components in the graph. In a data-mining setting, this
means that we may be able to get some hints about the number of clusters
present in the data, although connected components of the graph are easy
clusters.

The second-smallest eigenvalue-eigenvector pair is the most interesting
in the eigendecomposition of the Laplacian. If the eigenvalue is non-zero then
the graph is connected. The second eigenvector maps the objects, the nodes
of the graph, to the real line. It does this in such a way that, if we choose any
value, q, in the range of the mapping, and consider only those objects mapped
to a value greater than or equal to q, then those objects are connected in the
graph. In other words, this mapping arranges the objects along a line in a way
that corresponds to sweeping across the graph from one ‘end’ to the other.
Obviously, if we want to cluster the objects, the ability to arrange them in
this way is a big help. Recall that a similar property held for the first column
of the U matrix in the previous chapter and we were able to use this to cluster
objects.

In fact, all of the eigenvectors can be thought of as describing modes
of vibration of the graph, if it is thought of as a set of nodes connected by
slightly elastic edges. The second smallest eigenvector corresponds to a mode
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Figure 4.3. Vibration modes of a simple graph.

in which, like a guitar string, half the graph is up and the other half is down.
The next smallest eigenvector corresponds to a mode in which the first and
third ‘quarters’ are up, and the second and fourth ‘quarters’ down, and so on.
This is not just a metaphor; the reason that the matrix is called a Laplacian is
that it is a discrete version of the Laplace-Beltrami operator in a continuous
space.

This pattern of vibration can be seen in the small graph shown in Fig-
ure 4.3. The top left graph shows the mode corresponding to the second small-
est eigenvalue, with ‘+’ showing where the eigenvector values are positive, ‘0’
showing where the eigenvector is 0, and ‘−’ showing where the eigenvector
values are negative. As expected, this mode shows eigenvector values increas-
ing from one ‘end’ of the graph to the other. Directly below this is the graph
showing the mode corresponding to the third smallest eigenvalue. Now the
values increase ‘across’ the graph. The graph at the bottom of the first col-
umn shows the mode of the next smallest eigenvalue which is a more complex
pattern; the two graphs in the second column correspond to the second largest
and largest eigenvalues, and show even more complex patterns. In general,
the larger the eigenvalue, the smaller the connected regions with positive and
negative eigenvector values, and the more such regions into which the graph
is divided.
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Obviously, the eigenvectors corresponding to small eigenvalues provide
information about where important boundaries in the graph lie – after all, the
edges between regions that are up and down in a vibration mode are places
where the graph can ‘bend’ in an interesting way, and these correspond to
boundaries between good clusters.

Another property of the Laplacian matrix, L, is that for every vector v
of n elements

v′Lv =
1
2

n∑
i,j=1

wij(vi − vj)2

where wij are the affinities, and vi and vj are elements of v. This equation is
useful for proving many other properties of the Laplacian, and also explains
the connection of Laplacians to quadratic minimization problems relating to
cuts.

Partitioning the geometric space whose representation matrix is the
Laplacian corresponds to minimizing the ratio cut in the graph. The ratio
cut of a graph G divided into a subset S and its complement S is

φ(S) =
|E(S, S)|

min(|S|, |S|)
where E is the number of edges between the two subsets separated by the cut.
Define

Φ(G) = min φ(S)

over all possible cuts. Φ(G) is called the isoperimetric number of the graph,
and has many connections to other properties of the graph. For example,
Cheeger’s inequality says that

Φ(G) ≤ λn−1 ≤ Φ(G)
2d

where d is the maximum degree of the graph.

Representation matrix is the walk Laplacian

There are two ways to normalize the Laplacian matrix, analogous to the two
ways to normalize an adjacency matrix. The first is the walk Laplacian, Lw

given by
Lw = D−1L = I −D−1A

where the entries in each row are divided by the (weighted) degree. Note the
second equality which shows explicitly how this matrix turns the adjacency
matrix inside out.
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Partitioning the geometric space given by the walk Laplacian corre-
sponds to minimizing the normalized cut of the graph. The normalized cut
(NCut) of a graph G divided into a subset S and its complement S is

NCut(S) =
|E(S, S)|
vol(S)

where vol(S) is the total weight of the edges in S. The NCut is small when a
cut is balanced both in terms of nodes and edges.

This embedding has the property that nodes are placed closer together
when there are both short paths and multiple paths between them in the
graph. There seems to be a consensus that this matrix, and the resulting
embedding, is the most appropriate for most datasets.

Representation matrix is the normalized Laplacian

The second way to normalize the Laplacian gives the normalized Laplacian

Ln = D−1/2LD−1/2 = I −D−1/2AD−1/2

Ln and Lw are related: they have the same eigenvalues and related
eigenvectors. An eigenvector v of Ln satisfies Lnv = λv while a (generalized)
eigenvector v of Lw satisfies Lwv = λDv.

This embedding is much the same as the previous one, but less numeri-
cally stable.

Representation matrix is the pseudoinverse of the Laplacian

Another way of thinking about distances in the graph is to consider how long
it takes a random walk, with transition probabilities weighted by the weights
on the edges, to go from a source node to a destination node. This naturally
treats nodes with many paths between them as closer because there are more
ways for the random walk to get between them. We can define the hitting
time

h(i→ j) = average number of steps to reach j from i

This measure, however, is not symmetric, that is h(i → j) �= h(j → i), so it
turns out to be more convenient to define the commute time

c(i, j) = h(i→ j) + h(j → i)

and this is symmetric. The commute time measures the average time for a
random walk on the weighted graph to leave node i and return to it, having
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passed through node j. The commute time measures both how close nodes
i and j are along a ‘direct’ path between them, but also how many possible
detours leading to much longer paths between them are encountered along
the way.

The commute times and their square roots from the graph behave like
Euclidean distances, so we would like to be able to create a representation
matrix containing them. This would be extremely difficult to compute directly
– even a single commute distance is not an easy measure to compute. But it
turns out that commute distance can be computed using the Moore-Penrose
pseudoinverse of the Laplacian of the graph, which we write as L+.

L is not of full rank since, even if the graph is connected, L has one zero
eigenvalue. Hence L does not have an inverse. The pseudoinverse of a matrix
behaves much like an inverse in most contexts, and exists for any matrix,
even one that is not square or does not have full rank. The properties of the
pseudoinverse are

LL+ L = L

L+ LL+ = L+

(LL+)′ = LL+

(L+L)′ = L+L

If L+ has entries l+ij , and vol(G) is the total number of edges in the
graph then the commute distance between nodes i and j is

c(i, j) = 2 vol(G) (l+ii + l+jj − 2l+ij)

There is a strong connection to electrical networks – in fact the right-hand
term in parentheses is the effective resistance between the two points i and j
if the edges of the graph are regarded as wires whose resistance is inversely
proportional to their pairwise affinities.

Once we know the pseudoinverse of the Laplacian, then we can trivially
build an n × n representation matrix whose entries are the square roots of
commute distances, and this matrix embeds the graph into Euclidean space.

Unfortunately, computing the pseudoinverse is non-trivial for large graphs.
Two methods, both of which avoid computing the entire matrix, have been
suggested by Fouss et al. [43], and Brand [16].

4.8 Eigendecompositions

The representation matrix is a square n×n matrix, but is still difficult to work
with because it is sparse, since it reflects to some extent, the sparseness of the
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adjacency matrix. It is also high-dimensional, since n objects are placed in a
space of dimension n. It is natural to use the techniques from the previous
chapter to reduce the dimensionality, especially as it is likely that the manifold
described by the embedded geometric space has much smaller dimensionality
than it appears to have – the points could have been embedded at the vertices
of a high-dimensional tetrahedron, but it is not likely. Therefore, we expect
that large-scale dimension reduction is possible.

Instead of using SVD, we can use the slightly simpler eigendecomposi-
tion, since the representation matrix, R, is square. The eigendecomposition
expresses R as the product

R = PΛP−1

where P is a matrix whose columns are the (orthogonal) eigenvectors, and Λ
is a diagonal matrix whose entries are the eigenvalues. Recall we are assuming
that the eigenvalues are presented in decreasing order just as in SVD (not all
software implementations of eigendecomposition will do this).

Just as with SVD, we can examine the magnitudes of the eigenvalues
and use them to choose how many columns of P to retain, say k. The rows
of the truncated P matrix can be treated as coordinates in a k-dimensional
space.

For the eigendecomposition starting from the Laplacian and the walk
Laplacian, the eigenvectors are indicator vectors; that is their positive and
negative entries divide the objects into two subsets, as long as the magnitude
of the entries are bounded away from zero. Small magnitude entries are prob-
lematic, since eigendecompositions are robust under perturbations, and so a
value close to zero could possibly be on the ‘wrong’ side. One of the weak-
nesses of the normalized Laplacian is that its eigenvectors are not necessarily
indicator vectors; in particular, nodes of unusually low degree are hard to
classify [115].

It is also necessary that the order of the eigenvectors is significant or
else we may lose clusters when we truncate at some k. For representation
matrices derived from the Laplacian, the order of eigenvectors is significant;
but not necessarily so for representation matrices derived from the adjacency
matrix. Clustering based on the adjacency matrix will work properly if there
are indeed strong clusters in the data, but may fail to work when clusters are
hard to separate. Such clusterings are harder to justify.

4.9 Clustering

The truncated version of the representation matrix, obtained via the eigende-
composition, is a faithful low-dimensional representation of the matrix. We
can therefore cluster the objects using techniques that we have seen before.
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However, there are several ways in which we can use the fact that the data
came from a graph space.

Using the Fiedler vector

The eigenvector corresponding to the second smallest eigenvalue, λn−1, of the
Laplacian, is called the Fiedler vector. Recall that if we sort the values in this
eigenvector into ascending order and separate the rows (objects) by whether
they are greater than or equal to; or less than or equal to some chosen value,
then the nodes in each separated group are connected. This tells us that a
simple way to divide the graph is to choose a value near the middle of the
range, typically zero, and use that to split the graph into two equal-sized
pieces. Of course, the fact that this gives rise to connected clusters in the
graph does not necessarily mean that these are good clusters. By the same
logic, we can choose three equally spaced values and divide the graph into four
pieces and so on, although we are not guaranteed that nodes in the middle
intervals are connected.

Simple clustering

A second approach that has often been suggested in the literature is to use
some standard clustering algorithm, such as k-means to cluster the data based
on its coordinates in the k-dimensional space. The idea is that the geometric
space has been reduced to its essentials, with noise removed and the data
expressed in its lowest-dimensional terms. Therefore, even a simple clustering
technique should be effective.

Clustering using eigenvectors directly

Clustering using the Fiedler vector relies on the structure captured by the
eigenvector of the (n − 1)st (second smallest) eigenvalue. In general, using
more of the eigenvectors will produce a better clustering.

The truncated matrix places a point (or vector) for each object in a k-
dimensional space. The geometry of this space can be exploited in a number
of ways. Alpert and Yao [7] provide a summary of some possible approaches.

Clustering on the unit sphere

The geometric space into which a graph space has been embedded can inherit
some structure from it. For example, if the graph contains a central node
that is well-connected to much of the rest of the graph, then this node will be
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placed close to the origin because it is being pulled by many other nodes, but
these other nodes in turn will be pulled towards the center.

Another way to think about this is that the stationary structure is sen-
sitive to the (weighted) degrees of the nodes in the graph. Nodes with high
degree have many immediate neighbors, but typically also many neighbors
slightly further away. In some settings, this can distort the modelling goal.
When the goal is to find the nearest interesting neighbor or to predict a new
graph edge, the presence of such a node can make the problem much harder.
Its presence overwhelms the remaining structure of the graph.

For example, in collaborative filtering it is not obvious how to treat a
neutral opinion. If an individual sees a movie and neither likes not dislikes it,
this does not provide any more objective information about how to recommend
the movie to others than if that individual had not rated it at all. However, the
addition of that edge to the graph of recommendations provides potentially
many paths between other pairs of nodes, which now seem closer, even though
nothing substantive has been added to the body of knowledge. It is useful to
be able to factor out the kind of generic popularity that is reflected in such
neutral ratings from more-useful rating information. (Neutral ratings are
not necessarily completely useless – a movie that has been neither liked nor
disliked by many people is a mediocre movie; one that has hardly been rated
at all is of unknown quality. It seems difficult to reflect this kind of second-
order information well in collaborative filtering. This difficulty is visible, for
example, in Pandora, the music recommendation system.)

When the geometric space has been derived from the pseudoinverse of
the Laplacian, based on commute distances, then the distance of any object
from the origin is

√
lii, which can be interpreted as the reciprocal of the generic

popularity of this state. The effect of this generic popularity can be removed
by removing the effect of distance from the origin as part of the distance
measure between objects. If we map each object to the surface of the unit
sphere in k dimensions, then we can use the cosine distance for clustering,
based on a more intrinsic similarity between objects.

The non-local affinity based on angular distance is

cos(i, j) = l+ij/
√
l+ii l

+
jj

which normalizes in a way that discounts generic popularity.

Examples

Shi and Malik [99] and Belkin and Niyogi [12] both use the unnormalized
Laplacian, and find solutions to the generalized eigenvalue problem Lv =
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λDv. Shi and Malik then suggest using k-means to cluster the points in the
resulting k-dimensional space.

Ng, Jordan and Weiss [89] use the normalized Laplacian, compute the
n × k matrix of eigenvectors, and then normalize the rows to have norm 1.
This addresses the problem of low-degree nodes. They then use k-means to
cluster the points.

Meilă and Shi [86] use the walk adjacency matrix, and then cluster the
rows of the n× k matrix of eigenvectors.

It is not clear who deserves the credit for suggesting that the best rep-
resentation matrix is the walk Laplacian, although some of the arguments in
its favor can be found in [114] and a useful discussion in [95].

4.10 Edge prediction

Given a graph, especially one that describes a social network, it may be in-
teresting to predict the existence of one or more edges or links in the graph
that are not present. For example, if the graph is dynamic and grows over
time, such a prediction indicates an edge that is likely to appear in the future,
perhaps the most likely to appear. If the graph describes the interactions of a
group of terrorists or criminals, such a link may indicate an interaction that
is present in reality but has not been observed. In a more mundane setting,
in a graph of streets weighted by the traffic they carry, an edge prediction
indicates a possible new traffic route that would be well-used if built.

The intuition behind edge prediction is that two nodes should be joined
if they are close in the graph. What closeness means, as we have seen, can
vary quite a lot. In its simplest form, the two closest nodes might be those
with the shortest (weighted) path between them. However, this is a quite a
weak measure of nearness.

Liben-Nowell and Kleinberg [81] have experimented with predicting edges
using a wide variety of closeness measures, some of them based on properties
derived from the two nodes’ mutual neighbors. These range from simple mea-
sures such as how many neighbors they have in common, to more complex
measures such as their Jaccard coefficient (the ratio of the number of common
neighbors they have to the total number of neighbors they have). They also
consider measures that take into account the entire structure of the graph,
including the commute time modulated to reduce the effects of stationarity,
and a measure defined by Katz which takes the form (I−βA)−1−I (where A
is the adjacency matrix). This score depends on the number of paths between
each pair of nodes, with β a scaling parameter that determines the relative
weight of long versus short paths. Liben-Nowell and Kleinberg experiment
with a number of datasets, and overall they achieve prediction accuracies of
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the order of 10–15%, about 30 times better than chance. We might expect
that the more sophisticated measures of nearness used to drive the embed-
dings described in this chapter might do better, and there is clearly plenty of
room for improvement.

4.11 Graph substructures

In some contexts, it may be useful to look at graph structure that is not
necessarily of global interest. Many law enforcement and intelligence data
gathering leads to graph data structures because it is the relationships between
entities, rather than properties of the entities themselves, that is of primary
interest. For example, the U.K. police use a system called HOLMES 2 (Home
Office Large Major Enquiry System)2 [84, 112] that is used in an investigation
to record all individuals, addresses, actions, statements, and descriptions, as
well as the results of surveillance of, for example, credit card usage. Graphs
connecting these various entities can be displayed and traversed.

Normal relationships in large-scale graph data should appear many times,
so the structures corresponding to them should be common. Structures that
are not common may represent relationships that are abnormal, and so of
interest. The difficulty is that typical graphs are large and contain many dif-
ferent substructures, so it is hard to discover places where something unusual
is going on. Even visualization, which itself requires sophisticated graph-
drawing algorithms, is of limited usefulness.

One approach to this problem is to construct patterns (subgraphs) that
correspond to known activities of interest. For example, drug dealing may
result in a web of connections joining a cash business to a number of in-
dividuals who have been detected carrying amounts just under $10,000 to
particular bank accounts. Discovering drug dealers becomes a kind of graph-
ical information-retrieval problem, looking inside large graphs for particular
substructures. Unfortunately, if not all edges are present in the graph, per-
haps because some relationship was not observed, then the pattern match will
fail. This approach also depends on understanding all possible relationships
that correspond to activities of interest – a clever criminal may invent a new
strategy that will not be detected by searching for known patterns.

Ways to examine graphs that find all unusual structures avoid these
weaknesses. The set of unusual structures at least contains the set of activities
of interest, although it might contain other activities as well. It will not, in
general, contain structures corresponding to innocuous activities, since these
will occur many times and so will not appear unusual.

The eigenvectors corresponding to the smallest eigenvalues of the repre-
sentation matrix reveal vibrational modes where large, well-connected regions

2A good example of a bacronym, a name carefully chosen to produce a good acronym.
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move in the same direction (that is, have positive or negative eigenvector val-
ues of similar magnitude). As we have seen, the eigenvectors of the last few
eigenvalues are good clusterings of the nodes because the boundaries between
vibrational regions are good cuts.

Choosing slightly larger-valued eigenvalues finds regions of the graph
that are locally well-connected, even if they are small. Such regions are good
clusters except that they are small in size, so that the partitions they represent
are unbalanced cuts of the graph. Such regions are still of interest, since
they represent groups of nodes with unusual affinity at medium scale. In
relationship graphs, ordinary people tend to have local relationships that are
sufficient to connect them quickly to the rest of the graph (the ‘six degrees of
separation’ phenomenon), while groups that are trying, for whatever reason,
to hide their existence and purpose may be less well connected. Small regions
that are internally well-connected but poorly connected to the rest of the
graph are prospects for further analysis.

If we forget that the representation matrix arises from the embedding
of a graph, then we can also consider the eigenvectors corresponding to the
large eigenvalues. Those nodes that have large values from these eigenvectors
(either positive or negative) are ‘interesting’ in the sense that we discussed in
the previous chapter – they have unusual correlation, considered as objects,
with other nodes. These nodes are those that have unusual neighborhoods;
most obviously because they have unusually high degree. However, nodes
whose neighborhoods are unusual for other reasons will also be selected.

There is, however, a third and more interesting case. The eigenvectors
associated with eigenvalues of medium size select regions of the graph repre-
senting small, unusual structures in the graph. Such structures may represent
groups whose connections to one another are unusual, or patterns that may
represent anomalous activity.

If we decompose the representation matrix using SVD, the columns of
the resulting U matrix are the eigenvectors in which we are interested. The
eigenvectors that reveal global clustering in the graph are the last few columns
of the U matrix (those that correspond to the non-zero eigenvalues); the
eigenvectors that reveal unusual local neighborhood structure are the first
few columns of the U matrix; and the eigenvectors that reveal unusual graph
substructure are near the ‘middle’ of the matrix. However, finding these
‘middle’ columns requires some effort.

We can estimate the ‘vibrational energy’ associated with each eigenvec-
tor by computing the mean of the absolute values of its entries. Eigenvectors
for which this measure is large correspond to vibrations that are large, be-
cause the magnitude of the vibrations are large, or because many nodes are
involved, or both. On the other hand, eigenvectors for which this value is
small correspond to vibrations that are small, and such vibrations are likely
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Figure 4.4. Plot of the means of the absolute values of each column
of U . Low values indicate eigenvectors with low vibrational energy, either
because many nodes move only slightly or because only a few nodes move.
Such components are likely to deserve further analysis.

to correspond to interesting substructures. Hence we expect that this value
will be small for the first few and last few columns of U , and also for some
columns close the to the middle of U .

We illustrate using a dataset of movie ratings, selected from the Movie-
Lens data [87], with 400 people rating 600 movies from 1 to 5, where 5 in-
dicates strong approval and 1 indicates strong disapproval. A graph is built
from this data by considering each individual and movie to be an object, and
each non-zero rating to be an edge, producing a 1000× 1000 matrix.

Figure 4.4 plots the means of the absolute values of the U matrix, ob-
tained by decomposing the walk Laplacian of this graph. It is obvious that
interesting structure is to be found associated with the eigenvectors at each
end, and a set of eigenvectors in the middle of the U matrix.

Figures 4.5–4.9 show a plot of a particular eigenvector, and the graph
plotted using, as coordinates, that and an adjacent eigenvector. Hence prox-
imity in the graph plot corresponds to similarity according to these two eigen-
vectors. True graph edges are overlaid. We use eigenvectors from the region
of unusual node neighborhoods (50), an uninteresting region (250), the region
of unusual local substructure (500), another uninteresting region (750), and a
region of large clusters (910).

There are clear differences between the substructures associated with
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Figure 4.5. Eigenvector and graph plots for column 50 of the U
matrix . (See also Color Figure 1 in the insert following page 138.)
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Figure 4.6. Eigenvector and graph plots for column 250 of the U
matrix. (See also Color Figure 2 in the insert following page 138.)

components 250 and 750, which are dense and whose subgraphs contain much
overlapping structure, and the other components that involve relatively few
nodes and whose subgraphs contain much simpler structures. The plot from
component 50 indicates interesting single nodes; the plot from component
910 indicates an interesting set of cliques (note how the extremal nodes are
connected to each other); while the plot from component 500 indicates a more
complex structure involving relatively few nodes.

4.12 The ATHENS system for novel-knowledge
discovery

A great deal of information is available in the web, but existing tools provide
only limited ways to find it. Conventional search engines, such as Google or
Yahoo, are good at helping us to find out more about some topic, but we
must know some relevant keywords first. Other systems like Vivisimo help
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Figure 4.7. Eigenvector and graph plots for column 500 of the U
matrix. (See also Color Figure 3 in the insert following page 138.)
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Figure 4.8. Eigenvector and graph plots for column 750 of the U
matrix. (See also Color Figure 4 in the insert following page 138.)
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Figure 4.9. Eigenvector and graph plots for column 910 of the U
matrix. (See also Color Figure 5 in the insert following page 138.)
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to organize the results of a search into different groups, usually because of
different possible meanings of the search terms.

However, if we don’t know about the existence of some topic, then these
technologies are unable to help. ATHENS is a tool for discovering topics that
are new to us, not by randomly selecting topics (which would be another inter-
esting approach), but by finding the most relevant topics that we do not know
about. In other words, ATHENS tries to impose some directionality in the
relationships among content pages in the web, and tries to search ‘outwards’
from whatever a user considers a base.

The ATHENS tool can be used for individuals to discover what they
should learn next, that is topics for which they are well-prepared; for organi-
zations to discover what their next strategic step should be, or what directions
their competitors are not well-prepared to go in; or for intelligence analysts
to avoid being trapped in silos of expectation.

The ATHENS tool has two major algorithmic components. The first
is called closure. Given a set of pages, a closure aims to discover a robust,
but brief, description of the content of the pages. It does this by extracting
the most frequent words from the pages; comparing the frequencies in the set
of documents to the natural frequencies of the same words in English; and
selecting those words that are more frequent in the returned documents. This
set of words becomes a description of the content.

The second algorithmic component is called probe. Given two sets of
terms, a probe chooses pairs of terms, one from each set, and generates a
query to a search engine using the pair as search terms.

The ATHENS system is initially given a set of terms describing content
that is already understood, that is the user’s model of the content in some
area of knowledge. To avoid too strong a dependence on the user’s initial
choice of descriptive terms, these terms are used as a search query, a set of
appropriate pages returned, and a closure computed. This closure is designed
to be a good representation of what the user is aware of knowing.

Probes are then generated using the two lists: the initial set of terms
from the user, and the description of the content returned by the closure. This
returns a large collection of pages that are designed to be a good representation
of what the user almost certainly knows, given the knowledge in the initial
domain. These pages do not yet represent novel knowledge.

A closure is then applied to the set of returned pages, primarily to
construct a master list of relevant words, and an association of these words
with each of the pages. An affinity matrix for the pages is constructed by
weighting an edge between each pair of pages based on the number of words
from the master list they share. A walk Laplacian is constructed from this
affinity matrix and a clustering algorithm used to cluster the pages. A very
short (three word) descriptor is generated for each cluster.
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New probes are generated using the list of words from the primary clo-
sure, and the short lists associated with each cluster. This is designed to
return knowledge that is new to the user (since such pages will typically not
contain any of the terms given by the user) but contextualized by what the
user probably already knows. Hence the retrieved set of pages represents
something ‘just beyond’ what the user knows.

Each probe generates a set of returned pages, that is there is one set
based on each of the clusters at the previous stage. Each set of returned
pages is processed as before: a closure is applied to the set to capture words
describing their content; these words are used to construct an affinity matrix,
and then a walk Laplacian; and the resulting graph is partitioned to produce
a set of clusters. These clusters represent novel knowledge and their content
is described by a set of keywords (and, as the system is developed, by more
sophisticated descriptors).

The ATHENS system has been applied to competitive intelligence [113],
and to counterterrorism [104]. Further technical details can be found in [103].

4.13 Bipartite graphs

Bipartite graphs are those in which the nodes can be divided into two classes
such that every edge passes from one class of nodes to the other. We have
already seen that one way to interpret rectangular matrices is as bipartite
graphs, with one class describing the objects and the other class the attributes.
This graph model of a dataset could be seen as a very simple way of mapping
from a high-dimensional geometric space to a graph space.

Bipartite graphs create a problem for the process we have outlined. Re-
call that the graph of the web had the potential problem that value could
become trapped in some subgraph. Bipartite graphs have the opposite prob-
lem: the allocation of value never reaches a fixed point because value oscillates
from nodes of one kind to nodes of the other, and then back again. This intu-
itively visible problem causes many technical problems with the embeddings
we have been discussing.

One possible solution is to take the rectangular graph matrix for the
bipartite graph, say n ×m, and embed it in an (n + m) × (n + m) matrix,
as shown in Figure 4.10. If n � m, then the resulting matrix is not too
much larger. This is what we did with the movie rating data to create a
graph in which we could look for unusual substructures. One advantage of
this approach to handling bipartite graphs is that it also allows extensions
that relate objects of the same kind to each other, when this makes sense
(that is, the graph can be not quite bipartite). For example, Hendrickson
[52] suggests that word-document matrices, handled in this way, allow queries
involving both words and documents to be expressed simultaneously.
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0

0

Figure 4.10. Embedding a rectangular graph matrix into a square matrix.

Notes

There is a large literature on the relationships between eigenvalues and eigen-
vectors of graphs, and other graph properties, for example [27, 28, 108]. Some
of these global properties are of interest in data mining for what they tell us
about a dataset. There is also a large literature in social network analysis
where the graphs connecting individuals using many different kinds of affini-
ties have been studied. Often the computation of appropriate properties in
social network analysis has been done directly, which has limited the kinds of
graphs that can be studied. This is changing with the convergence of graph
theory, social network theory, and data mining.



Chapter 5

SemiDiscrete
Decomposition (SDD)

The singular value decomposition is best thought of as a transformation in
a geometric space. The SemiDiscrete Decomposition (SDD), although it was
originally developed as a space-efficient version of SVD, is best thought of
as working with the entries of the matrix directly. It searches for regions in
the matrix that have entries of roughly similar magnitude, and treats each of
these as a component. In many situations, this is a useful way to decompose
the matrix.

5.1 Definition

Given a matrix A, the SemiDiscrete Decomposition of A of dimension k is

A ≈ Xk Dk Y
′
k

If A is n × m, then Xk is n × k, Dk is a diagonal k × k matrix, and Y ′
k is

k ×m. k does not need to be smaller than m. The entries of Xk and Yk can
be only 0,+1, or −1.

Unlike SVD, where the basic decomposition exactly describes A, the
limitation that X and Y can contain only 0s, 1s or −1s means that the right-
hand side may not exactly describe A, even for quite large k. SDD is forced
to generalize the contents of A because of a restriction on the range of values
rather than a restriction on the size of the decomposition matrices.

Each row of X corresponds to a row of A, and each column of Y ′ cor-
responds to a column of A. The diagonal entries of D, like those of S in an
SVD, provide information about the importance of each of the components.

123
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Whereas the natural way to understand SVD is as a transformation in a
geometric space, SDD is best understood as a transformation within the data
matrix itself. Suppose that we consider A as an n × m grid of entries; we
view each positive entry as a tower at that position in the grid, with a height
proportional to the value of the entry; and we view each negative entry as a
hole at that position, with a depth that corresponds to the value of the entry.
In other words, suppose that we view A as if it were the downtown area of a
city.

SDD finds sets of locations on the grid that are rectilinearly aligned,
that is which lie on the same rows and columns, and have similar height or
depth. In other words, SDD looks for blocks, not necessarily adjacent, of
similar height towers and similar depth holes.

When such a block is found, it defines one component of the decomposi-
tion. The average height/depth of the block is computed, and removed from
all of the towers and holes involved. The process of searching for the next
block then continues.

Although there is a heuristic aspect to the algorithm, the goal in each
round is to find a block with large squared volume, that is which both covers
many entries of the matrix and has large average height/depth.

For example, consider this small example matrix:

A =

⎡
⎣ 2 1 1 8 8

1 4 4 1 1
1 4 4 −8 −8

⎤
⎦

Figure 5.1 shows a tower/hole view, in which it is clear that there is a block
defined by the last two entries of the first and last rows. Notice that the
entries forming the block do not have to be adjacent, and how height and
depth matter, but sign does not.

The average magnitude of this block is 8. It cannot be expanded to
include more entries without reducing its squared volume.

The first column of X, the first diagonal entry of D, and the first column
of Y describe this block. The product of this column of X and this row of Y ′

define an n×m stencil or footprint describing the locations of this block, with
a +1 signifying a location where the block is positive, and a −1 signifying
a location where the block is negative. The diagonal entry of D defines the
average height of the block. The product of these three pieces is⎡

⎣ 1
0
−1

⎤
⎦× 8× [

0 0 0 1 1
]

=

⎡
⎣ 0 0 0 8 8

0 0 0 0 0
0 0 0 −8 −8

⎤
⎦
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Figure 5.1. Tower/hole view of the example matrix.

This block is then subtracted from the original matrix, to produce a
residual matrix, and the algorithm searches for the next block. The residual
matrix is:

R =

⎡
⎣ 2 1 1 0 0

1 4 4 1 1
1 4 4 0 0

⎤
⎦

The next block is the block of 4s, so the next column of X is⎡
⎣ 0

1
1

⎤
⎦

the next row of Y ′ is [
0 1 1 0 0

]
and the next diagonal entry of D has the value 4, the average magnitude of
these entries.

Subtracting this block from the residual matrix leaves this new residual:

R =

⎡
⎣ 2 1 1 0 0

1 0 0 1 1
1 0 0 0 0

⎤
⎦

Now it becomes hard to see, intuitively, what the best next component is. In
fact, the algorithm chooses a stencil covering the first two rows, and all the
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columns, so the next column of X is⎡
⎣ 1

1
0

⎤
⎦

the next row of Y ′ is [
1 1 1 1 1

]
and the next diagonal entry of D has value 0.7 (= 2 + 1 + 1 + 0 + 0 + 1 + 0 +
0 + 1 + 1/10).

The residual matrix after subtracting this component is:

R =

⎡
⎣ 1.3 0.3 0.3 −0.7 −0.7

0.3 −0.7 −0.7 0.3 0.3
1 0 0 0 0

⎤
⎦

and it becomes even more difficult to see intuitively what the next blocks
should be. The entries of the residual matrix continue to get smaller in mag-
nitude as further blocks are removed, so choosing to terminate the decompo-
sition at some value of k leaves a residual that exactly captures how much
structure is missed by the choice.

In the first two rounds for the example matrix, the average height of
each block was the same as the magnitudes of the heights of every entry in
the block. Once a block was subtracted from the matrix, the entries in the
residual at those locations were zero, so those locations were unlikely to be
part of a subsequent block. However, in the later rounds, this was no longer
true, so there are entries in the matrix that are not zero, despite being part
of an already removed block. This is because a region with average height is
removed.

Suppose that a matrix contains a region like this:

8 8
8 7.5

and it is selected as a component. The average height of this region is 7.87
(= (8 + 8 + 8 + 7.5)/4) so this amount is subtracted from all of the locations
in this region, giving:

0.13 0.13
0.13 −0.37

Any of these locations may be selected as part of some other block. Indeed,
exactly this same set of locations may be selected as a block again, but of
course with a different height. Hence X and Y can contain identical rows
and columns several times, representing ‘echoes’ of regions that were already
removed, but not completely, from the data matrix.
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We can see from this example that the general effect of SDD is to find
regions of the matrix in which the volume is relatively large, in the sense that
the region both covers many locations, and contains entries whose magnitudes
are large. Consider what such a region means in terms of the original dataset.
Such a region selects some objects and some of their values, so in the geometric
sense it is a region, in a subset of the dimensions, of homogeneous density.
SDD can be considered a form of bump hunting [44].

For the matrix we have been using as our running example, the X and Y
matrices are:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 1 −1 0 0 −1
−1 0 0 1 −1 0 1 0
−1 1 1 0 −1 −1 0 −1

1 1 1 0 0 −1 1 1
1 −1 −1 1 0 −1 1 1
−1 0 0 −1 1 0 1 −1

0 0 0 −1 −1 0 0 −1
0 −1 0 −1 1 0 1 0
0 0 0 0 1 −1 −1 0
0 −1 1 1 0 1 0 0
0 1 −1 0 −1 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1 1 0
0 1 1 0 0 −1 −1 1
1 0 0 1 0 0 1 1
0 1 1 1 0 0 1 −1
1 1 −1 1 0 0 −1 0
−1 0 1 1 1 0 −1 −1

0 −1 0 1 −1 1 1 0
−1 1 −1 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the values of D are

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.87
0.61
0.68
0.56
0.51
0.46
0.22
0.30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 5.2. Bumps at level 1 for the example matrix.

The bump at the second level is:

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 1 0 −1 1
0 1 0 1 1 0 −1 1
0 −1 0 −1 −1 0 1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 −1 −1 0 1 −1
0 0 0 0 0 0 0 0
0 −1 0 −1 −1 0 1 −1
0 1 0 1 1 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The bumps at the first few levels for the example matrix are shown in
Figures 5.2, 5.3, and 5.4.
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Figure 5.3. Bumps at level 2 for the example matrix.

Normalization

SDD is a numerical technique so it is necessary to give some thought to
the relative magnitudes associated with each attribute (column). Values of
comparable significance should have comparable magnitudes. For an arbitrary
dataset this may be problematic, at least without some understanding of the
problem domain. It might be plausible, for example, to divide the entries
in each column by the maximum entry to bring all attributes into a similar
range. There are some situations where the attributes are all of the same
kind, for example word frequencies in documents, and SDD can be applied
more straightforwardly then.

SDD does not require that attribute values be centered around the origin,
so if the data is, for example, naturally non-negative then SDD can be applied
directly. However, for some forms of data, it may be the extremal values of
attributes that are most significant. In this case, it may be appropriate to
zero center each attribute by dividing each entry by the attribute mean.

For example, suppose that A is a dataset from a collaborative filtering
setting, so that the rows of A correspond to individuals, the columns of A
correspond to objects being rated, and each entry is a rating of an object by
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Figure 5.4. Bumps at level 3 for the example matrix.

an individual, say on a scale from 1 to 10. Since each column represents the
same kind of attribute, and they all have the same range of magnitudes, there
is no need to scale the columns. Applying SDD to this matrix selects groups
of objects that receive high ratings from significant numbers of individuals; in
other words it selects good (highly rated) objects.

Zero centering the columns, and then applying SDD has a different effect
– it selects groups of objects that receive strongly positive or negative ratings
from significant numbers of individuals. In other words, it selects objects
about which opinions are strong. If the objects are movies, then the first
analysis may select movies that will make money, while the second analysis
may select movies that will receive critical acclaim.

An SDD is not scale-independent because the order in which bumps are
selected depends on heights as well as areas. Altering the relative magnitudes
of these two factors can change the order of selection. For example, if the
magnitudes of the entries of a matrix are scaled up by squaring each one and
preserving its sign, then the effect is to select small regions of unusually large
magnitude first. If the entries are replaced by their signed square roots, the
effect is to select large regions of smaller magnitude first.
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Reordering bump selection

The heuristic embedded in the basic SDD step creates two problems, one of
them solvable, the other not. The algorithm is quite sensitive to the initial
choice of yi. This means that it does not always find the largest possible
bump to remove from the matrix at each step. Hence later steps can find a
large bump that was missed on previous steps. As a result, the values on the
diagonal of D are not always decreasing.

We apply the following modification to the algorithm. After the X, Y ,
and D matrices have been computed, we

1. Form the product of the dis with the number of non-zero entries in the
corresponding columns of Y , and

2. Sort the columns of X, elements of D and rows of Y into decreasing
order of the products from the first step.

This has the effect of reordering the bumps so that those with the largest
volume appear first. In other words, the strongest components appear in the
earliest columns of X.

The second problem occurs because the height of a bump removed de-
pends on the current contents of the matrix, which depends on the order in
which previous bumps were removed. Reordering at the end cannot repro-
duce exactly the effect of having chosen a different removal order during the
algorithm’s execution. The problem occurs because the height of a bump is
determined by the average height of the locations that will be removed. In
some fundamental sense, the way in which the di are computed prevents the
original matrix from being partitioned as cleanly as it might otherwise be.
There seems to be no simple solution to this problem.

For our running example, the X and Y matrices become:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 1 0 0 −1 −1
−1 0 0 1 0 1 0 −1
−1 1 1 0 −1 0 −1 −1

1 1 1 0 −1 1 1 0
1 −1 −1 1 −1 1 1 0
−1 0 0 −1 0 1 −1 1

0 0 0 −1 0 0 −1 −1
0 0 −1 −1 0 1 0 1
0 0 0 0 −1 −1 0 1
0 1 −1 1 1 0 0 0
0 −1 1 0 0 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 1 0 0
0 1 1 0 −1 −1 1 0
1 0 0 1 0 1 1 0
0 1 1 1 0 1 −1 0
1 −1 1 1 0 −1 0 0
−1 1 0 1 0 −1 −1 1

0 0 −1 1 1 1 0 −1
−1 −1 1 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

when the reordering version of the algorithm is used, and the values of D are
now:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.33
3.38
3.03
2.81
1.85
1.77
1.52
1.02

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The bump at the second level is now:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 −1 1 −1 0 1
0 0 0 0 0 0 0 0
0 1 0 1 −1 1 0 −1
0 1 0 1 −1 1 0 −1
0 −1 0 −1 1 −1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 −1 1 0 −1
0 −1 0 −1 1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

representing a different set of locations to those selected by the original algo-
rithm.

5.2 Interpreting an SDD

From the discussion above, it is clear that the component interpretation is
the most natural one for an SDD. However, it is worth considering the other
interpretations as well, at least for some datasets.

Unlike SVD, the pieces of an SDD do not directly represent either objects
or attributes, but combinations of them – in other words, the decomposition
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inherently reveals structure in some attributes of some objects. As discussed
in Chapter 1, this is, in many ways, an advantage because many real datasets
do not have structure related to all of the attributes, or all of the objects.
However, this does make interpretation more difficult.

5.2.1 Factor interpretation

In the factor interpretation, the rows of Y ′ are interpreted as factors that
are mixed by the rows of X and diagonal entries of D. There are several
limitations to this interpretation. First, the mixing is an all or nothing matter,
since the entries of X are either 0 or −1,+1. Second, the rows of Y ′ are not
independent; as we have already observed, the same row can occur several
times as a result of the echo effect. Third, for most problems, limiting the
entries of Y ′ to 0,−1, or +1 forces too simple a representation for the ‘real’
factors.

For example, suppose that a matrix contains a block of locations with
values 40, 40, 40, and 20, and that all of the other values are much smaller.
The bump that is removed because of this block will have di = 35 (the average
magnitude of these locations). The next bump may well be the correction
needed for the location with value 20, this time a bump of height 15, but in
the negative direction (20 − 35 = −15). In other words, the second bump
is a correction for part of the first, and so these two bumps are not, in any
reasonable sense, independent factors.

There are settings where simple factors are appropriate, notably image
processing, which is in fact the domain where SDD was developed. Here the
factors might represent pixels, pieces, or even objects in an image, and simple
mixtures are appropriate.

5.2.2 Geometric interpretation

SDD has a form of geometric interpretation. The rows of Y can be regarded
as defining ‘generalized quadrants’; the values of X then specify whether a
given object is placed in a given ‘quadrant’ or not.

Each ‘bump’ in an SDD has a natural geometric interpretation in the
geometric space corresponding to the original matrix, A. Such a bump is a
region of unusual, homogeneous values in a subset of the original dimensions.
In other words, each bump delineates a submanifold in the original space (in
fact a generalized cube since the coordinate values in the dimensions involved
are of roughly the same magnitude). Discovering such submanifolds can be
difficult, so one useful property of SDD is that it finds groups of attributes
that play consistent roles in representing the data.
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The bumps are in fact a kind of clustering, but one which clusters the
objects and, at the same time, clusters the attributes. Such clusterings are
known as biclusterings.

5.2.3 Component interpretation

The component interpretation is the natural one for SDD. Each entry in the
array A can be expressed as the sum of Ais, where each Ai is the product of
a column of X, an entry in D, and a row of Y (that is, a bump). As with
SVD, it is possible to use only part of this sum, and terms associated with
large values of D are more significant.

Unlike components in an SVD, which typically represent global processes
and so affect every entry of the data matrix, SDD components are local,
each one affecting only some entries of the data matrix. SDD is therefore
an appropriate decomposition when the processes that were combined in the
data matrix have this same local character. For example, noise tends to be
a global phenomenon, so we would expect it to alter all of the entries of a
dataset. SDD cannot be expected to be effective at removing noise of this
kind.

5.2.4 Graph interpretation

The graph interpretation for SDD does not seem to produce any new insights
because the non-zero entries correspond only to the existence of edges. In
the resulting tripartite graph, the number of edges incident at each ‘middle’
vertex gives the dimensions of the stencil corresponding to it. The number
of edges leaving each vertex corresponding to an object or attribute describes
how many bumps it participates in and, when the edges are weighted by the
diagonal entries of D, how significant each is. This information is readily
available from the decomposition, however.

5.3 Applying an SDD

5.3.1 Truncation

Because the components of an SDD are selected based on volume, and cover
or explain a limited number of values in the data matrix, there is no natural
way to remove noise by eliminating some components.

It might be reasonable to select or discard certain components based
on the shape and location of their footprint, and their height. However, this
would almost certainly require some domain knowledge – the decomposition
itself does not provide much helpful information.
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5.3.2 Similarity and clustering

We have already seen that SDD components correspond to clusters in the
geometric space of the data matrix. Such clusters are actually biclusters,
since each one is based only on a subset of the attributes. For many datasets,
this is more appropriate than a clustering based on all of the attributes.

This clustering is like a partitional clustering, that is with all clusters
treated as being on the same level, but it does not necessarily partition the
objects. Some objects may not appear in any cluster, while others might
be members of several: either distinct clusters, or an original cluster and its
echoes.

Hierarchical clustering

However, the SDD actually imposes an ordering on the bumps, which can be
made into an ordering on the clusters, producing a hierarchical clustering.

The first column of X can be thought of as dividing the data objects
into three kinds: those for which the entry in X is +1, those for which it is
0, and those for which it is −1. Now for each of these three groups, we can
consider the entries of the second column of X. These subdivide each group
into three subgroups. This process can be continued for subsequent columns
of X.

The result is a hierarchical clustering of the objects of A. However, it
is an unusual clustering. First, the partitions at different levels are techni-
cally independent, since they describe partitions in different components, and
there is no necessary relationship between different components. However,
levels do have an importance ordering, so the hierarchical clustering does say
something about the role of each object in different components. This is a
weak criterion, so it is always possible to interchange levels and get a different
hierarchical clustering. Second, unlike a standard hierarchical clustering, the
result is a ternary tree rather than the more usual binary tree of a dendro-
gram. Third, the −1 and +1 branches are ‘equal and opposite’ rather than
‘different’. Fourth, the tree is constructed in a top-down way, rather than the
bottom-up construction of a typical dendrogram.

The resulting hierarchical clustering has k levels, and each node at level
l is characterized by a string of −1s, 0s, and +1s of length l. The parent label
of any node is obtained by removing the final symbol from its own label. Not
every node of the tree will necessarily be populated, and it may be convenient
to truncate a branch of the tree at the point when the leaf node contains only
a single object.

The depth of a node in the tree is not as significant as in a dendrogram
because the 0-labelled branch at each level implies no additional information
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Figure 5.5. Hierarchical clustering for objects of the example matrix.

about the objects concerned. For example, if the first two components are
single outlying objects, then almost all objects will lie below the node labelled
‘00’, but this does not make them somehow less important than if the outlying
objects had not been present. In other words, SDD provides information about
similarity, but provides only weak information about dissimilarity.

The hierarchical clustering for the example matrix is shown in Figure 5.5.

The same procedure can be followed, using Y , to build a hierarchical
clustering of the attributes of A.

Measuring similarity in hierarchical clusterings

In order to determine similarity between objects, we need to impose a distance
measure on the hierarchical clustering generated from X or Y . We cannot
use the labels on the edges (+1 and −1) directly because branches with these
labels at the same level represent clusters that are ‘similar but opposite’, and
so should be counted as close together.

A similarity metric that seems to be useful is to count a distance of

• 0 for traversal of a zero-labelled branch of the tree (because the existence
of clusters at other levels between two clusters of interest shouldn’t make
them seem more different);

• +1 for traversal of a +1-labelled or −1-labelled branch (because this
represents moving to or from a bump); except . . .

• +1 for traversal between the +1-labelled and −1-labelled branches at
the same level (because they are equal but opposite bumps).
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A B

C D

Figure 5.6. Examples of distances (similarities) in a hierarchical
clustering.

In Figure 5.6, the distance between A and B is 1 because these nodes
of the tree represent towers and holes from the same bump. The distance
between C and B is 2, one step to get on to the main ‘trunk’ of the tree, and
another step to get off again. The distance between D and B is 1 because ob-
jects in cluster D are undifferentiated (have not been members of any bump).
These objects are dissimilar to those of cluster B, but we cannot tell from this
tree how much.

This distance measure can be used to decide on the relationships among
clusters of objects and attributes, in the same way that proximity in low-
dimensional space was used in SVD.

Selecting outliers

There are a number of ways of using SDD to decide which objects (or at-
tributes) are outliers. For example, nodes in the hierarchical clustering that
contain one, or just a few, objects might be considered to describe outliers.
However, if the hierarchical clustering is continued far enough then every ob-
ject is in a node by itself (see Figure 5.5), so only nodes with small numbers
of objects near the root of the tree are really outliers. Such nodes describe
rather obvious outliers since the objects they describe must have a number of
attributes with unusual values to have been selected near the root.

Another way to characterize outliers that are somehow extremal or most
dissimilar to others is that they participate in many bumps. Such objects
have attribute values that overlap with other common attribute values, but
not enough to enable them to be well-explained by a single, or even a few,
bumps. To say it another way, an object that correlates well with many others
will tend to be placed in a bump or a small number of bumps of reasonable
size with them, and so its attribute values will come from a few components.

We define the following ‘bumpiness’ score for an object i to capture this
intuition

bumpiness score(i) =
∑

D(i)× abs(X(i))
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taking the ith row of X and the ith diagonal element of D. Objects with a
large bumpiness score are considered as outliers. (Replacing X by Y gives a
bumpiness score for attributes.)

Applying SDD to correlation matrices

SDD can be especially effective when applied to correlation matrices, AA′ and
A′A. Whenever a set of objects have similar attributes, the dot products of
their rows will be of a similar magnitude and sign, and these dot products
form the entries of the correlation matrix, AA′. Hence a block of similar
magnitude in a correlation matrix corresponds exactly to a set of similar
objects in the original data matrix. Because SDD also selects blocks based
on regions with similar negative magnitudes, it also finds objects that are
negatively correlated. Of course, exactly the same thing applies to correlations
among attributes, which form blocks in the matrix A′A.

5.4 Algorithm issues

As the informal description of the algorithm suggested, an SDD is built up
iteratively, one component at a time. Let xi be the ith column of X, di the
ith diagonal element of D, and yi the ith row of Y ′. The standard algorithm
for computing the SDD generates a new column, diagonal element, and row
on each step. Let A0 be the n ×m matrix of zeroes. The algorithm is, for
each step i

1. Subtract the current approximation, Ai−1, from A to get a residual
matrix Ri.

2. Find a triple (xi, di, yi) that minimizes

‖ Ri − dixiyi ‖2 (∗)

where xi is n × 1 and yi is 1 × m. The standard algorithm uses the
following heuristic:

(a) Choose an initial yi.

(b) Solve (∗) for xi and di using this yi.

(c) Solve (∗) for yi and di using the xi from the previous step.

(d) Repeat until some convergence criterion is satisfied.

3. Repeat until i = k.
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Eigenvector and graph plots for column 50 of the U matrix.
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Eigenvector and graph plots for column 250 of the U matrix.

 

Figure 3.

 

Eigenvector and graph plots for column 500 of the U matrix.
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Figure 4.

 

Eigenvector and graph plots for colum 750 of the U matrix.

 

Figure 5.

 

Eigenvector and graph plots for column 910 of the U matrix.

 

Figure 6.

 

Plot of sparse clusters, position from the SVD, shape (most significant) and color from
the SDD.
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Figure 7.

 

Plot of an SVD of galaxy data.

 

Figure 8.

 

Plot of the SVD of galaxy data, overlaid with the SDD classification.

 

Figure 9.

 

pH by sample; darker color means lower pH, greater acidity.
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Figure 10.

 

Calcium concentration by digestion (AA5, AA7, AQR, GDX).

 

Figure 11.

 

Plot with position from the SVD, and color and shape labelling from the SDD.
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Figure 12.

 

Sample locations labelled using the top two levels of the SDD classification: upward
triangle = 1, –1, square = 0, –1, downward triangle = –1, –1.

 

Figure 13.

 

(a) Conformations of the ASP-VAL bond; (b) Conformations of the VAL-ALA bond.
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Figure 14.

 

C matrix from an ICA of a matrix of relationships among al Qaeda members.

 

Figure 15.

 

Outer product plots for the SVD.
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Figure 16.

 

Outer product plots for Seung and Lee’s NNMF.

 

Figure 17.

 

Outer product plots for Gradient Descent Conjugate Least Squares NNMF.
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Figure 18.

 

Outer product plots for Hoyer’s NNMF.
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Complexity

Matlab and C code for this algorithm is available from www.cs.umd.edu/users/
oleary/SDDPACK/. Because the algorithm is a heuristic, some datasets will
require changes to the default parameters, which control the initial choice of
yi and the convergence criteria.

The complexity of the SDD heuristic algorithm is O(k2(n+m)+n log n+
m logm), comparable to SVD if we choose k = m.

Exact algorithm versus heuristic

We have described a heuristic for computing the SDD which greedily selects a
candidate column for X and Y at each iteration. This algorithm is generally
fairly stable, although the way in which the initial yj vector is determined
may have to be adjusted for some datasets. An exact algorithm could also
be used, but its complexity is O((n + m)3) so this is useful only for small
datasets.

The only reason for choosing a measure for bump volume that includes
a quadratic term is that it creates a minimization problem with an easy algo-
rithm. There are several plausible extensions: using a criterion that represents
the usual volume of a bump; and using the magnitude, rather than the ab-
solute value of the magnitude, so that positive and negative entries do not
behave as if they are related.

Removing parts of bumps

One of the weaknesses of SDD is that a peak in the dataset with (say) two
distinct values tends to be selected as a single bump whose height is the
average of the two data values. Interesting patterns can sometimes be seen
by selecting bumps as in the basic algorithm, but removing only a part (say
half) of their height. This may result in the same bump being removed in two
stages; but it can also allow the remaining part of a bump to be seen as part
of some larger bump.

5.5 Extensions

5.5.1 Binary nonorthogonal matrix decomposition

Grama [77] has proposed a kind of generalization to SDD that decomposes
binary sparse datasets using outer products that contain only 0s and 1s (so
without −1s as in SDD). The overall structure of the algorithm is similar to
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SDD – at each stage, a column and row vector are found whose outer product
is close to the current matrix in the sense of Hamming distance (i.e., number of
non-zeroes). However, rather in the style of PDDP, the dataset is partitioned
at each stage based on whether the column vector contains 0s or 1s, and the
process is repeated for each submatrix. Hence the original dataset can be
expressed as a sum of components, but this sum is a tree reduction rather
than a list reduction as it is for SVD and SDD.

Notes

The SemiDiscrete Decomposition was initially developed by Peleg and O’Leary
[90], and developed by O’Leary and Kolda [70, 72, 73, 119]. Its characteriza-
tion as a bump-hunting technique can be found in [85].



Chapter 6

Using SVD and SDD
together

Although SVD and SDD work in different ways, if a dataset contains a genuine
clustering, it should be visible to both algorithms. SVD and SDD are quite
complementary. SVD is able to make the most important structure visible in
the early dimensions, but it is hard to exploit this directly because there are
multiple ways to construct and label clusters from it. SDD, on the other hand,
tends to produce more, smaller clusters than SVD (because they are really
biclusters) but provides an automatic labelling of objects with the cluster they
belong to, using some subset of the columns of X.

Using both decompositions together can often provide insights that nei-
ther could produce on its own. This is especially true when visualization is
used. SDD produces and labels clusters but provides no natural way to visu-
alize them. SVD provides a way to visualize clusters, but no simple way to
label them (and, in particular, to delineate the cluster boundaries cleanly).

SVD and SDD tend to agree about the clustering of a dataset when that
clustering consists of many, small, well-separated clusters. This is typical, for
example, of the clustering of document-word matrices, which explains why
SDD has been used effectively as a supplement to LSI. In this case, the benefit
of adding SDD analysis to the SVD analysis is that we get a hierarchical
clustering of the data. When the clustering consists of a few, large clusters,
there is typically much more disagreement between the two decompositions.
The advantage of using SDD here is that it provides cluster boundaries within
what the SVD considers single clusters, and it can help to decide which cluster
outlying or remote objects might best be allocated to.

An example is shown in Figure 6.1, using a dataset typical of text-
retrieval applications – many zeroes, and the remaining values small positive
integers. Here the position of points (in 3 dimensions) is determined by the

141



142 Chapter 6. Using SVD and SDD together

0
0.1

0.2

−0.2−0.15−0.1−0.0500.050.10.150.20.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 6.1. Plot of sparse clusters, position from the SVD, shape
(most significant) and color from the SDD. (See also Color Figure 6 in the
insert following page 138.)

SVD but the shape and color used to render them is determined by the SDD.
It is clear that each cluster (in the SVD sense) is homogeneously labelled by
the SDD. Hence the two techniques agree.

Figure 6.2 shows the SDD hierarchical clustering label for each object in the
running example dataset, superimposed on a plotted position from the SVD.
Figure 6.3 shows the same kind of plot for the attributes. There is general
agreement about classification, but there are some differences – together SVD
and the SDD provide different views of the same data.

6.1 SVD then SDD

In the previous section, we considered SVD and SDD analysis in parallel. Now
we consider how the two decompositions can be used in series. In particular,
an SVD can be used to clean the original dataset, making it easier for an SDD
to detect bumps that may be present in the data.
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Figure 6.2. Plot of objects, with position from the SVD and labelling
from the SDD; symbol shapes describe the branching at the first two levels of
the decision tree like this: · 1, 1, o 1, 0, × 1,−1, + 0, 1, ∗ 0, 0, � −1, 1, �
−1, 0,  −1,−1.

6.1.1 Applying SDD to Ak

The simplest way to combine SVD and SDD sequentially is to compute the
SVD of the data matrix, truncate it at some suitable k, remultiply to produce
a matrix Ak of the same size as A, and then decompose Ak using an SDD.

The logic of this combination is that the SVD is denoising the data
matrix so that the SDD can better see the structure within it. The labels from
the early columns of X can be used as labels for the clusters that the SDD
finds. These labels can be used to overlay the positions of points corresponding
to the objects from the early columns of Uk. Although this seems like a
straightforward application of SVD, the combination is remarkably effective
– the effect of the SVD is to tighten up the boundaries of clusters present in
the data, and the effect of the SDD is to identify these clusters accurately.

6.1.2 Applying SDD to the truncated correlation matrices

For some datasets, a further improvement can be made by adding the follow-
ing refinement: first, perform an SVD on the data matrix, truncate as before
at some k, and remultiply to create a matrix, Ak. Now form the correla-
tion matrix AkA

′
k and apply the SDD to this new correlation matrix. Plot

points corresponding to the coordinates in Uk, and label them according to



144 Chapter 6. Using SVD and SDD together

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

  7

V1

  5

  8

V2

  4

  2

  3
  6

V
3

  1

Figure 6.3. Plot of attributes, with position from the SVD and la-
belling from the SDD.

the hierarchical clustering applied to the truncated correlation matrix. The
same process can, of course, be applied to the attributes using the attribute
correlation matrix, A′

kAk.

The logic of this combination is that the SVD is denoising the data ma-
trix to make its structure clearer, but then the SDD is used to find the corre-
lation structure within the denoised data, rather than finding the magnitude
structure. We call this combination the JSS (Joint SDD-SVD) methodology.

Since the diagonal of a correlation matrix tends to contain large values
that are not directly relevant to understanding the correlation structure of
a matrix, and because a diagonally oriented set of similar values is hard for
SDD to represent, we set the diagonal values of correlation matrices to zero.
There is probably a more intelligent way to address this issue.

6.2 Applications of SVD and SDD together

6.2.1 Classifying galaxies

Figure 6.4 is a plot from the U matrix of an SVD of a dataset containing data
about 863 galaxies, with attributes that are corrected intensities at a set of
four frequencies. The first three columns provide coordinates in three dimen-
sions for each galaxy. Hubble proposed a classification for galaxies into three
types: ellipticals, spirals (now subdivided into spirals and barred spirals), and
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Figure 6.4. Plot of an SVD of galaxy data. (See also Color Figure
7 in the insert following page 138.)

irregulars. There is little indication of any clustering in the Figure that might
agree with this classification.

Figure 6.5 shows the same data with the position from the first three
columns of U as before, but the color and shape of the symbols based on the
SDD clustering. Color is based on the first column of X (red = +1, green
= 0, blue = −1), and the shape is based on the next column of X, with
· = +1, o = 0, and × = −1. Although this dataset is almost certainly not
rich enough to classify galaxies using the Hubble classification, the Figure
shows how the SDD provides extra information. This is of two kinds: first, it
defines a finer clustering than that of SVD, which basically sees a single large
cluster. Second, it provides a way to decide on the role of the stray points
that are far from the main SVD cluster. For this dataset, it seems clear that
none of the objects are outliers, although this is not obvious from the SVD
plot alone.

6.2.2 Mineral exploration

Traditional mineral exploration involves boring deep holes to look for regions
under the surface containing desirable minerals, such as copper, zinc, gold, or
silver. A much simpler approach that is being developed is to take samples
at or near the surface, but over a much wider area. These near-surface sam-
ples can be processed to estimate the presence and concentration of a large
number of elements. It may be possible to detect a buried region that con-
tains interesting minerals from its effects on the near-surface concentrations
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Figure 6.5. Plot of the SVD of galaxy data, overlaid with the SDD
classification. (See also Color Figure 8 in the insert following page 138.)

and chemistry of these other elements. The near-surface samples are pro-
cessed using several leaches (‘digestions’) that extract elements from different
compounds, depending on how tightly they are bound in each one. Hence
the concentration of a particular element measured using different digestions
gives a contextualized estimate of its presence in the sample.

It is not completely understood how a deeply buried region of min-
eralization affects the surface geochemistry and there are, of course, many
confounding factors such as agriculture, moisture, parent minerals, and other
geological processes. Smee [106, 107] has suggested that H+ migration is the
most important signature-creating process, at least in moist environments,
so that a pH low (acidity) might be expected over mineralization. Others
(Hamilton [49]) have suggested that the presence of mineralization creates
a reduced column, that in turn produces a pH low near or above the water
table due to redox reactions involving oxygen diffusing downward from the
surface. Such a column might create the most distinctive signature in the
annulus around the mineralization.

We explore these ideas using a dataset collected near Timmins, in north-
western Ontario, along a line that crosses zinc-copper mineralization, covered
by 25–40m of clay. Samples were taken along the line at 5m intervals and
at depths that varied from 10–110cm. Figure 6.6 shows the position of the
samples with 20× vertical exaggeration. The mineralization lies beneath the
region from distance markers 185m to 205m along the sample line. Five diges-
tions were applied to each sample (ENZ, AA5, AA7, AQR, and GDX) and the
concentrations of many relevant elements measured. This produced a matrix
dataset with 215 rows (1 per sample), and 236 columns (1 per digestion-
element pair).
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Figure 6.6. Position of samples along the sample line (some vertical
exaggeration).

Conventional data-mining techniques applied to this dataset did not
perform well. Both EM and k-means produced clusters that did not seem to
have any physical significance. A decision tree, trained to predict whether a
sample was over the mineralization or not, predicted that all samples were
not over mineralization. The problem with these techniques is that they treat
each sample as if it were completely independent. However, we know that the
property of being a sample over mineralization is strongly spatially correlated,
and much of the geochemistry probably is too. Adding physical coordinates
improves the performance of these techniques a little but, of course, prevents
them from being generalized for use on other data.

Color Figure 9, in the insert following page 138, shows the pH by po-
sition, with lower pH indicated by darker colors. This suggests that pH is
indeed a good indicator of mineralization, at least in the Canadian Shield.
This region of low pH should lead to a calcium depletion near the surface,
extending down below the surface until oxygen levels become too depleted.

Color Figure 10, in the insert following page 138, shows that this is
indeed the case, with the depletion zone extending beyond the edges of the
mineralization as expected, given a reduced column. So both pH and calcium
concentration are good predictors of mineralization in this data, but would
not necessarily generalize to other data, especially when the overburden is not
clay.
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Figure 6.7. SVD plot in 3 dimensions, with samples over mineral-
ization circled.

Figure 6.7 shows a plot of the first three dimensions from an SVD of
the dataset, with the samples that lie over mineralization circled. There is no
particularly visible clustering structure for these samples – they seem widely
scattered.

The same plot with the SDD hierarchical classification information over-
laid is more revealing (Figure 6.8). The top-level classification is related to
depth of sample, with blue indicating the deepest samples while red indicates
samples near the surface. The second level of classification is completely or-
thogonal to the first, indicated by the symbols ×, o, and ·. Many of the
samples over mineralization are those denoted by ×.

With the hints from the single-element concentrations that there is a
signature associated with an annular region around the mineralization, and
that depth is a significant fact, we consider those samples in the range 150–
240m and whose depths are 60cm or less. These points are circled in the plot
in Figure 6.9.

This plot still does not seem to contain a cluster whose properties could
be used to predict the presence of mineralization. However, if we consider
Figures 6.8 and 6.9 together, they suggest that there is a well-defined cluster
of samples between 150–240m but with a more-constrained range of depths.
If we plot the SVD, circling those points that are classified as −1 using SDD,
we obtain the plot in Figure 6.10, which shows a coherent region with respect
to both classifications.
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Figure 6.8. Plot with position from the SVD, and color and shape
labelling from the SDD. (See also Color Figure 11 in the insert following page
138.)
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Figure 6.9. SVD plot with samples between 150–240m and depth
less than 60cm.
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Figure 6.10. SVD plot of 3 dimensions, overlaid with the SDD
classification −1 at the second level.
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Figure 6.11. Sample locations labelled using the top two levels of
the SDD classification: upward triangle = 1,−1, square = 0,−1, downward
triangle = −1,−1. (See also Color Figure 12 in the insert following page
138.)
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Furthermore, this set of samples form a coherent region along the sample
line, as shown in Figure 6.11. The effect of depth can be clearly seen, with
the first dimension of the SDD classification signalling depth. Note that the
deeper samples are not predictive, even when they lie over mineralization.
The predictive signature, then, is that seen in a region that lies over, but
extends beyond, the actual area of mineralization, and at a depth where both
oxygen and water are available.

The dataset does not contain information about sample depth directly.
The predictive power of depth has been inferred by the decompositions from
its effect on element concentrations. The two decompositions developed here
can play the role of predictors, since new samples from elsewhere can be
mapped to coordinates and classifications, as long as they are processed using
the same digestions, so that the attributes remain the same.

The success of these matrix decompositions in detecting a signature
for the presence of mineralization is largely due to their ability to extract
correlation information from the various partial element concentrations. Very
little information can be extracted from the concentrations of one, or even a
few, elements. This analysis also provides support for the model of a reduced
column above mineralization, with effects extending beyond the area above the
mineralization itself. Further details about applying matrix decompositions
to detecting mineralization can be found in [29].

6.2.3 Protein conformation

Proteins are chains of amino acids, each of which has a basic backbone and a
distinguishing side chain. The properties of a protein are largely determined
by its physical shape, which in turn can be characterized by the shape of its
backbone. The shape of a protein’s backbone can (with some simplification)
be completely defined by the angles between each amino acid and the next.
These are called the φ and ψ angles, and are almost completely determined
by the identities of the amino acids making up the backbone. There are 20
different amino acids that make up proteins in humans.

One of the important problems in bioinformatics is predicting the phys-
ical structure of the backbone of a protein (its conformation) based on the
sequence of amino acids that make it up. The Protein Data Bank (PDB) is
a repository for the observed conformations of proteins, and contains about
32,000 examples; this is growing by about 5000 examples per year. Given a
sequence of amino acids, the PDB can be queried for the known conformations
of that sequence, typically in a range of different contexts. The number of
examples, obviously, tends to decrease as the length of the sequence increases.

The PDB could be used to predict protein conformations for sequences
of arbitrary lengths by breaking the sequences into short but overlapping
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lengths, finding the conformations of each of the short segments, and then
finding conformations that fit together when they overlap. The problem with
this approach is that any given sequence typically has many different confor-
mations, and it is not usually clear whether the variations in conformation
represent genuinely different possibilities or are artifacts of some kind.

SVD and SDD can be used to address this problem. Suppose that we
choose any three amino acids, A, B, and C, and we search the PDB for all
occurrences of ABC adjacently in a recorded protein. The mean number of
occurrences for chains of length 3 is about 1650 and the mean number of
occurrences of chains of length 4 is 100. There are four bond angles defining
the conformation of the chain ABC, a φ and a ψ angle between A and B, and
between B and C. Hence for each ABC we obtain a matrix with (typically)
1650 rows and 4 columns.

In principle, the rows in the matrix should be of only a few different
kinds, representing different possible conformations. Apart from regions con-
taining turns, most protein sequences are either part of spirals or sheets. How-
ever, the actual data from the PDB describes many different conformations,
often with faint clustering, but with large variation.

A useful way to understand the possible conformations of a bond is the
Ramachandran plot, a plot of φ versus ψ angles. A Ramachandran plot for
half a million bond angle pairs is shown in Figure 6.12. From the Figure, it is
clear that there are three most common conformations: the region at the top-
left corresponding to so-called β sheets, the region below it corresponding to
clockwise helices, and the region to the right corresponding to anticlockwise
helices. However, it is also clear that there are many, many other possible
conformations.

For each amino acid triple, for example ASP-VAL-ALA, all examples can
be extracted from the PDB. The resulting matrix can be decomposed using
SVD. The first few columns of the resulting U matrix reveal the structure
underneath the apparently different conformations, as shown in Figure 6.13.
Now it is clear that there are at least four major, well-separated clusters, and
perhaps a number of smaller ones. This sequence is typical – clusters are
better defined in the U space, suggesting that the best explanation for the
variation seen in the PDB is noise.

Although it is easy to see the clusters by inspection, it is hard to auto-
mate the selection of clusters and the determination of their boundaries. This
is where SDD can be used.

The SVD is truncated at k = 3 and the matrices remultiplied to create
A3, a cleaned version of the original bond angle matrix. An SDD is then ap-
plied to this matrix to create a hierarchical clustering in which every exemplar
can be allocated to a cluster. For each cluster defined by the SDD (or possibly
each cluster that is large enough), an ellipse is fitted to the exemplars from
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Figure 6.12. Ramachandran plot of half a million bond angle pair
conformations recorded in the PDB.
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Figure 6.13. 3-dimensional plot of the SVD from the observed bond
angle matrix for ASP-VAL-ALA.
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Figure 6.14. (a) Conformations of the ASP-VAL bond; (b) Confor-
mations of the VAL-ALA bond, from the clusters in Figure 6.13. (See also
Color Figure 13 in the insert following page 138.)

that cluster in φ−ψ space. In other words, each cluster detected by the SDD
produces a cluster in the Ramachandran plot for the first bond and also for
the second bond. The centroids of these clusters might be called canonical
bond angles since they describe the most likely conformations for a pair of
amino acids. Figure 6.14 shows the clusters in the two Ramachandran plots
for the ASP-VAL-ALA sequence. There are four different conformations for
this sequence: two that involve sheet-like structure, and two α-helices with
different spirals.

Once canonical bond angles are known for each pair of amino acids, the
conformations of longer chains of amino acids can be inferred from the way in
which these bond angles fit together. This process works well [102]. There are
some limitations; for example, although the PDB is large, it holds examples
only of limited numbers of conformations. For example, at least one sequence
of length 3 has only four exemplars in the entire PDB.

This application shows how the strengths of SVD and SDD complement
each other. SVD is able to remove the noise from the observed protein con-
formations and display better clusterings of possible conformations. This by
itself would be useful for investigating a small number of amino acid sequences,
but it is not possible to build an automated clustering for many sequences.
SDD, on the other hand, is able to construct a hierarchical clustering that
discovers conformational clusters. By itself, though, it would find many small
clusters. SDD is much more effective because it works with data that has
been cleaned up by SVD.
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Independent Component
Analysis (ICA)

Independent Component Analysis (ICA) is, in a sense, complementary to sin-
gular value decomposition. The factors that an SVD selects are uncorrelated;
the starting point for ICA is the stronger assumption that the factors are
statistically independent. In order for a factorization like ICA to be possible,
all but one of the distributions of the objects along the axes corresponding to
the factors must be non-Gaussian.

ICA was developed for problems such as blind source separation. Con-
sider the sounds detected by a set of microphones in a room where a cocktail
party is happening. Are these sounds enough to recreate what each person
is saying? The fact that people can understand each other at cocktail par-
ties, and can tune out conversations other than the one they are involved in,
suggests that it is possible to do this kind of unmixing. In this situation,
it is plausible that the different conversations are (more or less) statistically
independent, and it turns out that this is critical to the unmixing process.

There are other situations where the values present in a dataset are
the result of processes that are independent. We have already mentioned
the example of light from a star or galaxy. Here it seems plausible that
the processes within the star that generate the light are independent of the
processes (for example, gravity) that the light encounters in flight, and that
these are independent of atmospheric effects or device effects.

Nevertheless, the assumption of statistical independence deserves some
consideration for each dataset. In many real-world settings, processes that
seem independent may in fact have some underlying connection that creates
a dependence between them. For example, it might seem as if a credit card
number should be independent of how much it is used to buy things. A
moment’s reflection should convince you that this is not true: there are all

155
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sorts of implicit information in a credit card number, including which bank
issued it, which might be correlated with geographical location and so with
economic region; when it was issued, which might be correlated with the point
in the business cycle when it was first issued; and whether it is a single card,
or one of a set billed to the same account.

7.1 Definition

Independent component analysis factors a data matrix, A, whose size is n×m
into a product

A = C F

where C is n×m and F is m×m. The rows of F describe m independent com-
ponents and C is a matrix that ‘mixes’ them to give the observed attributes
of the dataset.

The independent component analysis decomposition of the example matrix is:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.347 −0.50 −0.83 −0.22 2.80 2.61 7.19 −2.44
1.71 −0.44 −0.59 −0.09 3.04 0.75 7.89 −2.73
−1.25 −0.13 −1.65 1.14 2.80 1.66 6.35 −2.66

1.99 −0.48 −2.94 2.30 4.26 0.44 7.03 −3.73
2.52 −0.48 −2.84 −0.04 1.47 0.39 5.74 −3.33
2.58 −0.47 −0.53 1.85 4.51 1.65 5.78 −1.91
1.75 −0.45 −2.90 0.07 3.74 2.96 4.75 −2.21
1.84 −0.47 −0.75 2.08 1.60 0.46 5.12 −1.27
2.01 −0.46 −0.63 2.09 1.95 2.90 5.83 −4.93
2.14 −0.46 −2.86 2.34 1.76 2.87 7.91 −1.43
2.10 3.03 −1.65 1.15 2.79 1.67 6.36 −2.66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.84 −1.17 0.77 −0.87 0.53 −0.48 0.12 −0.18
−0.89 0.60 0.13 −0.35 1.02 −0.76 −0.44 1.46
−1.31 −0.68 −1.17 −0.22 −0.45 0.74 −0.39 1.53

0.23 0.41 0.19 0.23 −0.58 0.29 −1.10 −1.28
−0.14 0.62 −0.67 0.43 −0.45 0.02 −0.64 0.99
−1.42 −0.40 −0.78 0.03 −0.01 0.56 0.10 0.15
−0.30 0.18 0.42 0.57 0.34 0.82 1.21 1.12
−1.58 −1.07 −0.51 −0.15 −1.07 −0.01 0.50 0.46

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following are the most obvious differences between a factorization
such as SVD, and ICA:
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• An ICA does not naturally provide a way to reduce the dimensionality
of the data.

• We could always multiply a row of F by some scalar, and divide the
corresponding column of C by the same scalar, and still have a decom-
position. To resolve this ambiguity, the variances of the rows of F are
usually taken to be 1.

• There is no natural ordering of the components, so the rows of F can
be permuted as long as the columns of C are permuted to match. So we
cannot truncate the decomposition after a particular number of columns
and preserve the most important structure.

However, there are two possible ways of reordering the matrix explicitly
to make sure that the earlier components are more significant than the
later ones: order the columns of C in decreasing order of their norms,
which implies that large mixing coefficients are more important than
small ones; or order the rows of F so that the components whose distri-
butions are farthest from Gaussian come first. As for SVD, the purpose
of these orderings is to focus attention on the most interesting structures
of the representation so the one to choose depends on what structure is
interesting.

Statistical independence

The difficulty of understanding the difference between two attributes that
are uncorrelated and two attributes that are statistically independent is that
both can be casually described as “knowing the value of one attribute does
not help us to know the value of the other attribute”. However, this is true
in two different senses for the two properties.

Two attributes are uncorrelated if

E[a1]E[a2] = E[a1a2]

(where E[ ] is the expectation) so knowing something about the marginal
probability of either one reveals nothing about the joint probability. Two
attributes are statistically independent if

E[g(a1)]E[h(a2)] = E[g(a1)h(a2)]

that is, even applying non-linear functions g and h to the attributes does not
reveal any correlation information. Statistical independence is obviously a
stronger property, since it reduces to uncorrelation when g and h are both the
identity function.

For example, suppose a1 and a2 are constrained to lie on a circle. The
plot of a1 versus a2 shows that their values are uncorrelated. However, the
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squares of their values are very much (negatively) correlated, so they are not
statistically independent (taking g(x) = h(x) = x2).

Given a data matrix A, we wish to construct C and F so that their
product is very close to A. Somewhat surprisingly, the assumption that the
components are statistically independent is enough to do this. Let us assume
that C is invertible – if the components are independent, we would expect
that the rows of C would all be quite different. Then we want to define the
entries of F so that

F = C−1A

is as independent as possible. So we want the rows Fi and Fj to be uncor-
related for i �= j, but we also want g(Fi) and h(Fj) to be uncorrelated for
suitable choices of g and h. There are a number of ways to choose these
functions, based on maximum likelihood, or mutual information. However,
they must all make some use of higher-order statistics of the data or else this
decomposition would reduce to SVD. An ICA assumes zero mean data, as
does SVD, and the data is whitened first (essentially performing an SVD) so
that rows Fi and Fj are already uncorrelated.

The rows of C−1A are linear combinations of rows of A. By the Central
Limit Theorem, sums of non-Gaussian variables are more Gaussian than the
original variables. Such a linear combination is therefore most non-Gaussian
when it corresponds to one of the independent components. A strategy for
finding the independent components, therefore, is to maximize such a linear
combination, where the objective function is the uncorrelation of g(Fi) and
h(Fj) over all pairs i and j. Each local maximum corresponds to an indepen-
dent component.

An ICA cannot contain more than one Gaussian component, but it can
contain exactly one. This can sometimes be useful.

ICA is particularly confusing to read about in the literature, since it
is more natural, in signal processing, to use a matrix transposed from the
natural orientation of a matrix in data mining.

Normalization

An ICA assumes zero mean data. Most ICA algorithms either require, or
perform better with, whitening, a preprocessing step in which the components
are transformed so that they are uncorrelated; in other words, a step similar
to SVD is applied to the dataset before ICA.

It is possible to remove some attributes after whitening, as discussed in
the SVD section, and then apply ICA to the remaining attributes.
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7.2 Interpreting an ICA

An ICA expects that the parts that make up the dataset are statistically inde-
pendent and far from Gaussian in shape. The assumption that distributions
are Gaussian tends to be made for most datasets both as a starting point, and
because Gaussians are easy to work with. However, there are clearly appli-
cation domains where such simple distributions are not likely and, for these,
ICA is the decomposition of choice.

ICA has been applied primarily to applications such as signal processing,
and relatives such as financial tracking and biomedical sensing. These domains
have two things in common: it is fairly easy to tell how many components
there are (or should be) in the data; and noise is both expected and well
understood. Other examples of the use of ICA are: analyzing signals from
drilled wells [116]; removing noise from astrophysics data [46]; and chat room
topic detection [74].

7.2.1 Factor interpretation

The factor interpretation is the natural one for ICA: the rows of F are factors
that are mixed by the entries of C. This is particularly clear in the blind
source separation problem. The rows of A correspond to n signals picked up
by each one of a set of microphones at m time intervals. The F matrix reveals
the actual spoken signals at m time intervals, and C shows how these signals
were mixed together to produce those detected by the microphones.

7.2.2 Geometric interpretation

The geometric interpretation treats the rows of C as coordinates in some
geometric space. Plotting some of the columns of C in this way can be a
useful way to visualize the structure of the data. Formally, this makes no sense
since the rows of F are not axes (they need not be orthogonal, for example).
This means that we cannot apply a metric blindly in this geometric space.
Two axes that we are treating as if they are orthogonal might turn out to be
oriented in almost the same direction. In this situation, two points that plot
far apart cannot actually be close together (that is, similar); the problem is
that two points that plot close together need not really be as similar as the
plot suggests.

If there are clusters in the data, we expect that such a plot will place
them along each of the axes, each one corresponding to an independent com-
ponent. Hence a three-dimensional visualization of a dataset using ICA will
always seem like a better clustering than a visualization using SVD. This has
misled a number of authors to conclude that ICA is inherently better than
SVD for clustering tasks.
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7.2.3 Component interpretation

The component interpretation does not seem to have been used with ICA,
but it is a very natural way to assess the contribution of each independent
process to the values in the original dataset. Each row of F describes one of
the processes that is assumed to be mixed together in the original data. The
product of the ith column of C with the ith row of F produces a matrix that
represents the effect of the ith process on the values of A.

Because of the properties of ICA, each of these outer product matrices
typically captures a bicluster of objects and attributes. A thresholding algo-
rithm can be applied to an outer product matrix, selecting automatically the
objects and attributes associated with the bicluster; the threshold determines
how strong an association is regarded as significant.

Visualizing the outer product matrix after thresholding can provide a
view of the internal structure of the bicluster; sorting the outer product matrix
so that the largest magnitude entries are in the top left-hand corner provides
a ranking of the significance of object and/or attributes to the bicluster.

The measures we suggested for finding the most significant structure may
not necessarily indicate which outer product is the most interesting. Other
useful measures, such as the number of entries above the threshold, might be
useful as well.

7.2.4 Graph interpretation

The graph interpretation does not seem helpful for ICA.

7.3 Applying an ICA

7.3.1 Selecting dimensions

As mentioned above, the order of components in an ICA can be made to
reflect some kind of importance structure. If this is done, then the first k
components, for some k, reveal the main structure in the data. However,
there is no principled way to choose k. It may be better to consider each
component individually and decide if it has interesting structure.

It is also possible to look at the distribution corresponding to each com-
ponent. For example, an ICA can contain at most one component that is
Gaussian. If such a component is present, it is likely to reflect Gaussian noise
in the dataset, and so its removal may clean up the data.
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The distributions of other components may also reveal that they arise
from particular processes that should be ignored, for example, structured
noise, perhaps related to spatial or temporal artifacts. These may be easy to
identify and remove.

7.3.2 Similarity and clustering

Because of the kinds of applications for which ICA has been used, clustering
in the ‘component’, that is attribute domain, is much more often investigated
than clustering in the object domain. However, because the components are
statistically independent, it is not obvious how to cluster them. The ex-
ception is the work by Bach and Jordan [10], who fit the components to a
forest-structured graph, deriving the appropriate contrast functions along the
way. Hence, there is an inherent hierarchical cluster on the ‘components’.
This idea cannot be extended to the object domain because it is built-in to
the ICA transform rather than applied as a post-processing step. It is plausi-
ble, however, to cluster objects based on their correlation with the clustered
attributes.

Other properties

A technique that is closely related to ICA is LOCOCODE, a neural network
approach using autoassociators with a particular training technique [53–55].
LOCOCODE looks for large, flat basins in weight space and removes those
weights whose effect is primarily to change position within such a basin.
Hence, although the weight space of a neural network is often very large,
LOCOCODE can produce representations that are quite compact. Moreover,
the features corresponding to these weights are often clearly ‘right’ in the
sense of matching the reality of the dataset.

7.4 Algorithm issues

Algorithms and complexity

ICA is really a family of factorizations, parameterized by choices of

• The way in which the deviation from Gaussian is measured – this is
called the objective or contrast function;

• The algorithm used to find each component, given an objective function.
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Objective functions implement the idea of the two nonlinear functions
g and h that are used to determine when two components are statistically
independent. Objective functions can be divided into two classes, depending
on whether they measure the non-Gaussianity and independence of all com-
ponents at once, or the non-Gaussianity of a component at a time. In the
first class, some of the objective functions that have been suggested are

• Maximizing the likelihood. However, this requires estimating the prob-
ability densities of the components, which is complex, and the resulting
function is sensitive to outliers.

• Minimizing the mutual information, using the sum of the differential
entropy of each of the variables. Again this is hard to estimate.

In the second class (one component at a time), some of the objective functions
that have been suggested are

• Maximizing the negentropy, which is a direct measure of the difference
between a given distribution and the Gaussian distribution with the
same mean and variance. Again this is hard to estimate.

• Maximize higher-order cumulants, such as kurtosis. These are more
practical, but take into account mainly the tails of distributions and so
may be oversensitive to outliers.

• Maximize generalized contrast functions, which are approximations to
negentropy with particular nice forms and good convergence behavior.
This is the approach taken by the most popular implementation of ICA,
a Matlab package called FastICA.

Algorithms for computing independent components are all iterative, up-
dating the mixing matrix and components until they converge. The algorithm
of choice at present is FastICA, which has good convergence properties and
can be used both as a single component at a time, and as a multicomponent
algorithm. Matlab code is available from www.cis.hut.fi/projects/ica/
fastica/. The script used for the running example (see Appendix A) illus-
trates how to use FastICA. In particular, transposes are required to match
the way we orient matrices with the way that FastICA requires them to be
oriented.

The complexity of ICA depends heavily on the particular objective func-
tion and algorithm. For FastICA, convergence is at least quadratic, and seems
quite fast in practice.
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7.5 Applications of ICA

7.5.1 Determining suspicious messages

Governments intercept communications legally, both as part of national secu-
rity and law enforcement. Increasingly, other organizations are also examining
internal communications such as emails, looking for illegal activity or indus-
trial espionage. Especially in the context of national security, a very large
number of messages may be intercepted, and only a tiny fraction of these
are likely to be of interest. The exact way in which messages are selected
for further consideration is secret, but it is known that a watchlist of sus-
picious words is part of the process [42]. Presumably, messages that use an
appropriate number of such suspicious words are treated as suspicious.

Those who would like to communicate without attracting government
attention might encrypt their messages. This hides the content, at the expense
of making the act of communication more visible. It may be safer to avoid
the use of suspicious words, and hide the communication inside the very large
amount of routine and innocent communication that is intercepted.

Suspicious words must be replaced by innocent words, but the meaning
of each message must still be implicit in the message. This suggests that parts
of speech will be replaced by the same parts of speech (nouns by nouns, verbs
by verbs), and that the same substitution will be used wherever it is needed.
So if the word ‘bomb’ is to be replaced, it will be replaced by another noun,
say ‘asparagus’, whenever it occurs. Such substitutions would, of course, be
easy for humans to detect because the semantics of the sentence is altered, but
the point of the substitution is to make sure a human never sees the sentence.

The problem now becomes: how is a substituted word to be chosen?
A codebook could, of course, be used but this introduces problems with its
construction, delivery, and protection which could be difficult for a covert or-
ganization. If the substitution is chosen on-the-fly, then the replacement word
is likely to differ from the original word in its naturally occurring frequency.
For example, ‘bomb’ is the 3155th most frequent word in English, according
to Wordcount (www.wordcount.org), while ‘asparagus’ is the 27197th most
frequent word, so there is a great difference between the two words.

The message with the replacement word may be detectable based on its
‘wrong’ frequency; all the more so if the same replacement word appears in
multiple messages. To look at it another way, conversations involving common
words are common; conversations involving rare words are rare. If a common
conversation about one topic uses a word or words that would naturally be
rare, it begins to look unusual. The converse is also true: a rare conversation is
not usually about a common topic. However, this is less important in practice
because the tendency is to replace a word by a rarer word – common words
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tend to have multiple meanings, which makes it harder for the recipients to
work out what meaning was intended. For example, if the original message
is “the bomb is in position”, then it is fairly easy for someone expecting
a message about a bomb to understand “the asparagus is in position”, but
more difficult to be sure about the meaning of “the time is in position”.

We illustrate how an ICA can be used to detect a group of messages
that use the same substitutions. The results below are based on an artificial
dataset, a matrix describing 1000 emails, and the frequencies of 400 words
used in them. The distribution of words in English follows a Zipf distribution:
common words are extremely common, with frequencies dropping off quickly
so that the frequency of the ith most frequent word is proportional to 1/i.
To model this, the entry in column j for any email is generated by a Poisson
distribution with mean 3 ∗ 1/j, where 3 represents the base mean and 1/j
reduces the mean as the column index increases. The resulting matrix is
about 4% sparse.

A set of related messages is modelled by inserting 10 extra rows with
the same distribution of entries, but adding a uniformly random block of
words in columns 301–306. Each of these messages now contains between
2 and 3 overlapped words with each other unusual message, and the words
in these columns occur much more frequently than would be expected from
the underlying Zipf distribution. We use only columns 201–400, since most
messages contain many common words, so the early columns of the dataset
tell us little about the relationships among messages.

Figure 7.1 shows a visualization of the first three components of the C
matrix of an ICA of this dataset. The set of messages with correlated and
unusual word use is clearly distinct from the other messages.

This detection technique selects only messages that involve unusual word
use in a correlated way. Sets of messages that have correlated word use, but of
words with typical frequencies (that is, ordinary conversations) do not show
up as outliers. This is shown in Figure 7.2.

Furthermore, unusual word usage by itself does not cause messages to
be selected. Figure 7.3 shows what happens when each of the extra rows uses
unusual words, but they are not the same words.

An ICA analysis of such data has exactly the right properties: it detects
conversations whose subjects suggest that conversations about them should
be rare. On the other hand, it does not detect ordinary conversations about
ordinary things, nor does it detect unusual word use that is not part of a
conversation.
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Figure 7.1. 3-dimensional plot from an ICA of messages with cor-
related unusual word use. The messages of interest are circled.
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Figure 7.2. 3-dimensional plot from an ICA of messages with cor-
related ordinary word use. The messages of interest are circled.
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Figure 7.3. 3-dimensional plot from an ICA of messages with un-
usual word use. The messages of interest are circled.

7.5.2 Removing spatial artifacts from microarrays

We saw in Section 3.5.5 how an SVD can be applied to microarray data to
select genes that are likely to be of most interest. For some technologies, two-
channel cDNA microarrays, the spots themselves are printed on each slide
using technology derived from ordinary printers. Unfortunately, the way in
which spots are printed creates artifacts that are large enough to call into
question the results obtained from such microarrays.

Two-channel arrays print the same amino acid chain repeatedly to fill
each spot. Each sample from a condition class (for example, a patient with a
disease) is mixed with a background sample and the combination is allowed
to hybridize with a slide. The condition and background samples are each
labelled with a different marker that fluoresces at different frequencies, and
that appear as red and green. When the slide is read, a laser excites each spot
at each of the two frequencies and the resulting intensities are measured. The
ratio of red to green intensity is used as an indication of how much expression
was present for each gene, relative to the background.

Since particular amino acid chains are assigned to positions on the slide
at random, we would not, in general, expect to see any systematic pattern in
the measured intensity ratios at different positions across the slide. Figures 7.4
and 7.5 show views of the important red/green intensity ratio of a slide from
the side edge of the slide and from the bottom edge of the slide, respectively.
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Figure 7.4. Slide red/green intensity ratio, view from the side.
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Figure 7.5. Slide red/green intensity ratio, view from the bottom.
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Figure 7.6. A single component from the slide, with an obvious
spatial artifact related to the printing process.

The fact that the spots are printed in blocks, in six rows of four, is
very obvious from these figures. However, it is also obvious that there are
artifacts in the ratios: both the top and bottom edges of each region in the plot
show characteristic spatial patterns. These patterns mean that the apparent
change in intensity of the expression of some protein between the condition
and background samples depends on where on the slide the spot that tests
for that sample is placed. Such spatial artifacts are serious problems for
microarray analysis, and they seem to be commonplace. A random sample
of microarray datasets downloaded from the Internet showed problems of this
scale in all of them.

ICA can help to remove these spatial artifacts because they appear as
single components in the decomposition. For example, for the dataset shown
above, component 10 is shown in the plot in Figure 7.6. It is very clear that
this component captures a 6 × 4 spatial artifact that must be related to the
way in which the 24 blocks are printed on the slide. We can see that average
intensities increase down the slide, and that block intensities decrease across
the slide, although intensities within each block increase. However, there is
no automatic way to select such components: a human must examine all of
the components to see whether any have an obvious spatial component.

Figure 7.7 is another component from the same ICA, showing that there
are spatial artifacts at the edges of each print block, independent of those
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Figure 7.7. Another component from the slide, with a spatial artifact
related to the edges of each printed region.

related to the print blocks and the slide.

These components can be removed from the decomposition, and the
remaining components summed to produce a new version of the dataset, in
which the problematic spatial artifacts have been removed. The critical ratio
of red to green intensity in the resulting dataset is shown in Figures 7.8 and
7.9. There is much less obvious spatial structure in the data, although there
is probably at least one more spatial artifact that could be removed; and the
range of values is much less compressed.

ICA’s strength in this application is that spatial noise appears as highly
non-Gaussian components and so is easily detected and separated by the de-
composition.

7.5.3 Finding al Qaeda groups

Figure 7.10 shows the C matrix of an ICA applied to a matrix of connections
among members of al Qaeda. The dataset matrix is 366 × 366 and contains
a 1 whenever two members of al Qaeda are known to have some kind of
relationship, for example carrying out a mission together, being related, or
being known friends. The entries in this particular matrix have been sorted
into a kind of importance order based on facts known about them, but the
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Figure 7.8. Slide intensity ratio of cleaned data, view from the side.
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Figure 7.9. Slide intensity ratio of cleaned data, view from the bottom.
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Figure 7.10. C matrix from an ICA of a matrix of relationships
among al Qaeda members. (See also Color Figure 14 in the insert following
page 138.)

examples we show here do not depend on this particular ordering of the rows
and columns.

Figure 7.10 clearly shows groups (more or less contiguous as it happens)
of members with close connections in each of the components. Component 1
captures the leadership of the organization. Component 2 captures a tight-
knit group at rows from about 250 to 270 along with an individual at row 13.
Other columns show similar groups.

The component matrix, that is the product of column 2 of C and row 2
of F , is shown in Figure 7.11. It is clear that this component captures a group
with a few important members around row 250 and some lesser members in
close rows, plus a single important person towards the top of the matrix.
The important members of this group are Fateh Kamel, Ahmed Ressam, and
Mustafa Labsi and the individual representing a connection to the central
leadership is Mustafa Hamza. These individuals had connections to Groupe
Roubaix in France in the early 1990s and then to the Millennium Bomb Plot
in 2000. SVD applied to this same dataset detects the relationship between
the first three individuals, but is unable to indicate the connection to Hamza
because he has connections to many others.

Recall that the rows of the dataset happen to have been arranged in
a meaningful order. When they are not, small groups can still be found by
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Figure 7.11. Component matrix of the second component.

looking for values above a threshold in any of the component matrices. For
example, using a threshold of 0.7 of the maximum entry as the cutoff produces
a component matrix where only entries corresponding to Fateh Kamel, Ahmed
Ressam, and Mustafa Labsi remain. The matrix can be searched for entries
above the threshold, so that groups can be found algorithmically rather than
by inspection.

Notes

Hyvärinen et al. [59] attribute ICA to Hérault, Jutten and Ans in the early
1980s. However, the obvious application of the blind source separation prob-
lem in sonar, and perhaps radar, suggests that the technique was probably
known in military circles well before that. The invention of the FastICA al-
gorithm by Hyvärinen et al. and the wide distribution of Matlab code has
greatly increased the use of ICA.

I am grateful to Marc Sageman for access to the dataset used in the al
Qaeda groups example.



Chapter 8

Non-Negative Matrix
Factorization (NNMF)

Non-negative matrix factorization is really a class of decompositions whose
members are not necessarily closely related to each other. They share the
property that they are designed for datasets in which the attribute values are
never negative – and it does not make sense for the decomposition matrices to
contain negative attribute values either. Such datasets have attributes that
count things, or measure quantities, or measure intensities. For example, doc-
uments cannot contain negative occurrences of words; images cannot contain
negative amounts of each color; chemical reactions cannot involve negative
amounts of each reagent, and so on.

A side-effect of this non-negativity property is that the mixing of com-
ponents that we have seen is one way to understand decompositions can only
be additive. In other words, a decomposition can only add together compo-
nents, not subtract them. And the pieces themselves do not have any negative
structure, so the combining really is additive – including a new component
cannot decrease the size of any matrix entry. It is natural to think of the
factors or components as parts that are put together additively.

The matrix decompositions we have seen so far will potentially decom-
pose a non-negative matrix in such a way that either the factors or the mix-
ing involve negative values. If there are negative values in the factor matrix,
then the factors must somehow describe the absence of something. If there
are negative values in the mixing matrix, then constructing the data matrix
must require subtracting some components. In the kind of settings mentioned
above, neither of these possibilities has a natural interpretation, so the non-
negativity constraint seems appropriate (although it should be kept in mind
that imaginary numbers have similar drawbacks, but have turned out to be
useful in constructing solutions to a wide variety of problems).

Non-negative matrix factorization (NNMF) was developed to address
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settings where negative values in the component matrices do not seem appro-
priate. One of the first efficient algorithms that computed an NNMF, due to
Seung and Lee, also had the property that the decomposition was sparse, that
is each entry in the dataset matrix is expressed as the sum of a small number
of factors; in other words, the mixing matrix contains many zeroes.

There is a connection between non-negativity and sparsity. Because the
mixing matrix contains only non-negative entries, an NNMF builds up the
dataset matrix by adding together factors, which can be thought of as parts
making up a whole. Such parts often have a direct physical interpretation.
In most real-world situations, the way that parts are assembled to make a
whole is inherently sparse: most wholes require only a relatively few parts.
Hence, a parts-based decomposition will tend to be sparse as a side-effect.
However, it is important to remember that there is no necessary link between
non-negativity and sparsity.

8.1 Definition

Unfortunately, most papers in the NNMF literature expect that datasets are
arranged with the columns representing objects and the rows representing
attributes. Such datasets are the transposes of the way in which we have been
treating datasets, so once again care is required when reading the literature
and using the software packages.

The standard definition for non-negative matrix factorization (NNMF)
of the matrix A is

A = W H

where A is m × n, W is m × r and H is r × n, and r ≤ m. Both W and H
must contain only non-negative entries. W is the matrix of factors and H is
the mixing matrix.

However, to be consistent with the other matrix decompositions we have
introduced, we will instead define NNMF to be

A = C F

where A is n×m, C is n×r and equal to H ′, and F is r×m and equal to W ′.
So, for us, as usual, C is the mixing matrix and F is the matrix of factors.

As usual, r is chosen to be smaller than n orm so that the decomposition
is forced to find a compact description of the dataset. A rule of thumb that
has been suggested for NNMF in the literature is that

r <
nm

n+m
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but it is not at all clear why this is a good choice. The ‘generic’ data-mining
rule of thumb that r should be of the order of

√
n seems equally plausible.

Unlike the other matrix decompositions we have described, known non-
negative matrix factorizations are not necessarily closely related. It is not
yet clear whether there is some underlying deeper theory to be discovered,
or whether the existing decompositions are related primarily by the non-
negativity constraints that they impose. The first fast, simple algorithm for
computing an NNMF was described by Seung and Lee [78, 79]. This algorithm
tries to minimize

||A − WH||2F
subject to the entries of W and H being non-negative. To avoid degeneracy,
since WH = WXX−1H for any non-singular X, they constrain the columns
of W (rows of F ) to sum to unity.

The algorithm is expressed in terms of a pair of update rules that are
applied alternately (although there is some empirical evidence that conver-
gence is faster if they are applied simultaneously). The rules, expressed in
terms of W and H are

Wij ←Wij

∑
k

Aik

(WH)ik
Hjk

Wij ← Wij∑
k Wkj

Hij ← Hij

∑
k

Wki
Akj

(WH)kj

The W and H matrices are initialized randomly.

Seung and Lee showed that their NNMF produced decompositions that
were naturally sparse for two example datasets: one a dataset of faces where
the factors corresponded closely to parts of faces (eyes, moustaches, etc.), and
the other a word-document dataset, where the factors corresponded fairly well
to topics. These decompositions were sparse in both senses: the parts were
compact descriptions of real objects, and the observed data could be explained
using a relatively small number of parts.

However, the observed sparsity of the decomposition of these two datasets
does not seem to generalize to other datasets; that is sparsity is an occasional,
fortuitous outcome of using their algorithm, but is not guaranteed. Nor is con-
vergence of their recurrences guaranteed, although this does not seem to be a
problem in practice.

Several researchers have generalized NNMF by adding explicit terms to
the minimization problem to penalize lack of sparsity in W and H. This
is slightly problematic since it forces sparsity into datasets that might not,
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in fact, be naturally sparse. In some settings, it is clear that sparsity of
decomposition should be expected, but these sparsifying NNMF algorithms
should be used with caution for datasets whose likely sparsity properties are
not obvious.

Explicit sparsity NNMF algorithms seek to minimize an objective func-
tion of the form

||A − WH||2F + penalty(W ) + penalty(H)

The simplest form of penalty might be the Frobenius norms of W and H.
For example, Lin [82] defines two projected gradient algorithms that use such
constraints.

Hoyer [56] defines a sparseness constraint for a vector x to be

sparseness(x) =
√
n− (

∑ |xi|)/
√

(
∑
x2

i )√
n− 1

where n is the length of x. This function takes values between 0 and 1, with
value 0 if all elements are of equal magnitudes, and 1 when there is only one
non-zero element, varying smoothly in between. His implementation allows
sparseness values for both W and H to be arguments.

Shahnaz et al. [97] define a gradient-descent conjugate least squares
algorithm for NNMF that includes a smoothing parameter.

Dhillon and Sra [34] generalize the problem using Bregman divergences,
a way of describing the minimization problem in terms of a very large class of
difference functions for the difference between A and WH, as well as a large
class of penalty functions. They show that most other definitions of NNMF
decompositions are special cases of their Bregman divergence formulation.

In general, convergence behavior of NNMF algorithms is not well un-
derstood, so most algorithms require users to provide a maximum number of
iterations. It is also possible to terminate when the differences between W
and H from one iteration to the next become sufficiently small.

The other parameter that must be set in computing an NNMF is the
number of components, r. Unlike previous matrix decompositions, NNMF
does not construct one component at a time, so it is not trivial to decide what
a reasonable choice might be.

The C and F matrices of the NNMF of our example matrix with r = 8 are
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shown below.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.61 2.92 1.83 12.36 13.78 1.03 1.96 0.51
7.17 5.94 3.37 8.40 14.11 0.90 0.60 2.51
4.68 18.96 0.05 1.47 8.29 1.83 0.71 0.01

15.49 8.09 0.10 0.00 0.00 5.79 1.30 13.23
1.65 0.03 1.17 0.06 0.48 2.00 20.61 13.99
0.98 7.63 9.84 2.00 4.23 0.16 0.27 0.89
0.76 7.79 0.24 0.81 5.42 0.85 7.76 4.36
6.61 0.50 2.85 7.44 0.00 1.16 1.72 2.72
0.00 4.74 0.25 8.23 0.96 8.89 0.03 10.91
4.25 1.83 0.09 13.91 1.63 2.10 11.17 0.01
0.86 0.21 5.29 0.10 10.29 20.12 0.05 0.09

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.18 0.16 0.26 0.15 0.00 0.01 0.16 0.07
0.00 0.34 0.00 0.31 0.03 0.27 0.03 0.03
0.14 0.01 0.13 0.10 0.04 0.21 0.00 0.37
0.00 0.00 0.12 0.17 0.09 0.38 0.20 0.04
0.00 0.02 0.01 0.01 0.22 0.01 0.27 0.47
0.00 0.28 0.20 0.10 0.27 0.04 0.00 0.11
0.11 0.09 0.26 0.11 0.16 0.01 0.27 0.00
0.45 0.08 0.11 0.02 0.23 0.10 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.2 Interpreting an NNMF

8.2.1 Factor interpretation

The natural way to interpret an NNMF is as defining a set of factors, and a
mixing of those factors to produce the observed data. Because of the non-
negativity, the factors can be interpreted as parts, and the mixing as addition
of parts. In both ways, NNMF has attractive simplicity. The factor inter-
pretation has been successful when the underlying data are images or signals.
However, this is not automatically the case, and the factors produced are not
always easy to interpret in the context of other problem domains.

8.2.2 Geometric interpretation

Since the rows of H have no natural interpretation as axes, there is no natural
interpretation of NNMF geometrically. Nevertheless, it can be useful to plot
the entries of either matrix as if they were coordinates, as we did for ICA. As



178 Chapter 8. Non-Negative Matrix Factorization (NNMF)

before, two points that are located far apart must be dissimilar, but two points
located close together are not necessarily similar. Because of the additive
nature of the model, distance from the origin is important, because the only
way for a point to be far from the origin is either to use parts with large
magnitude entries, or to use large mixing coefficients or both. Conversely, a
point can be close to the origin only if both the entries of its parts are small,
and its mixing coefficients are small.

8.2.3 Component interpretation

Each component is the product of a column of C and a row of F ; when this
has interesting structure, it is a kind of bicluster since it captures objects and
attributes that are related. Because of non-negativity, these biclusters may
be easy to relate to the problem domain. For example, this interpretation is
helpful for topic detection in word-document datasets, since word frequencies
are inherently positive, and topics are exactly the biclusters in such a dataset.
For some microarrays where the measured values are non-negative, NNMF
provides an alternative way to find biclusters of genes and conditions. For
faces, the biclusters describe facial features, such as moustaches, that appear
on some subset of the faces.

A bar plot of the first layer matrix from the NNMF of our example matrix
shows clearly that it captures the block of large values in the lower left corner
of the matrix.

8.2.4 Graph interpretation

As with the graph interpretation of other decompositions, the graph interpre-
tation of an NNMF is a tripartite graph, with one set of nodes corresponding
to objects, a second set corresponding to the r components, and a third set
corresponding to the attributes. The differences in this case are that the
graph is sparse because the two decomposition matrices are sparse; and that
the constraints on the weights of edges are all based on sums of non-negative
quantities, so they can be bounded more easily. Graphs whose edges have
only positive weights are also inherently easier to understand.

8.3 Applying an NNMF

8.3.1 Selecting factors

Like ICA, an NNMF does not order components in any particular order, so it
is not trivial to select ‘interesting’ or ‘important’ factors. When the rows of F
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Figure 8.1. Product of the first column of W and the first row of H
from the NNMF of the example matrix.

are normalized so that the row sums are unity, the norms of the columns of C
can be used as one way to order the components. These norms represent the
extent to which each particular factor plays a role in the description of all of
the objects. While this is a sensible measure, it is not clear that it captures
the real property of interest, since we expect most parts to play a role in
representing only a few objects. Another possibility is to use the Frobenius
norm of each component, that is the product of the ith column of C and the
ith row of F . This represents the mass of the ith bicluster, which should be
meaningful in most contexts.

8.3.2 Denoising

Little attention has been paid to the effects of noise in NNMF, partly because
many applications start from integral, non-negative data, where noise is easy
to see and remove in the raw data. If noise is widespread in the data, that
is most values in the dataset have been slightly altered as the result of noise,
then it is not clear what happens in the decomposition. Especially for those
algorithms that enforce sparsity, it seems unlikely that noise will appear in
one or a few components. Instead, it may be spread throughout the other,
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meaningful components.

Simple experiments suggest that NNMF is sensitive to noise, especially
to small but widely distributed noise, so that the biclustering structure changes
substantially when only modest Gaussian distributed noise is introduced. This
issue needs further research.

8.3.3 Similarity and clustering

The rows of C can be used as the basis of clustering the objects. This would
be expected to perform better than clustering directly on the rows of A both
because the rows of C are of length r rather than m, and because the sparsi-
fication of both C and F should make it easier to find meaningful boundaries
within the geometric space containing the rows of C. Similarity is now based
on the similarity of mixture coefficients rather than similarity of properties
of the objects. Of course, this assumes implicitly that the parts have been
properly discovered.

8.4 Algorithm issues

8.4.1 Algorithms and complexity

Because of the relatively large number of algorithms proposed to compute
the NNMF, little can be said in general about complexity. Lin [82] makes the
point that algorithms seem to exist on a continuum, one end of which contains
algorithms for which the cost of each step of the minimization is high but which
require few steps; and the other end of which contains algorithms for which
the step cost is small, but which require many steps. Since the entries of W
and H must be updated in each step, the total complexity is Ω(nrs) where s
is the number of steps. The constants may be large, and memory hierarchy
effects may become significant for large matrices since the access pattern does
not have spatial locality.

Matlab code for the Seung and Lee algorithm is given in [78] and may
also be downloaded from journalclub.mit.edu under “Computational Neu-
roscience”. Matlab code for Lin’s algorithm is available in [82]. Matlab
code for the algorithm used in Shahnaz et al. [97] is described in the pa-
per. Hoyer has made a suite of NNMF programs available at his web site
(www.cs.helsinki.fi/u/phoyer/).

8.4.2 Updating

Because the algorithms are iterative, it is straightforward to handle the sit-
uation when entries of A change; the algorithm must be run for a few more
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steps, but convergence will be rapid if the changes are small.

It is also possible to handle the situation where the size of A changes
by adding rows or columns, since extra rows can be added to W and/or H
to match. These rows can be initialized to random values, just as W and H
are initialized in the basic algorithm. Further iterations of the algorithm will
provide the updated decomposition.

8.5 Applications of NNMF

8.5.1 Topic detection

Shahnaz et al. apply their conjugate gradient constrained least squares algo-
rithm to topic detection in two corpora, the Reuters data corpus and TDT2
(the Topic Detection and Tracking Phase 2 corpus). They use the maximum
value in each row of C to allocate a document to one of the r topics.

Their results show good agreement with the known topics for small num-
bers of topics, dropping quickly (for Reuters) and more slowly (for TDT2) as
the number of clusters increases. Interestingly, they observe that the perfor-
mance of NNMF decreases when the bicluster sizes are significantly different.
In other words, performance is good when most of the clusters are roughly the
same size, but decreases when there are some large clusters and some small
ones.

In these datasets, the actual topics are known. The r outer product
matrices can, in general, be used to generate the topics automatically, based
on regions where there are large magnitude values in these matrices.

8.5.2 Microarray analysis

NNMF has also been used to analyze microarrays. Recall that microarrays
produce data about the expression levels of a large number of genes (oligonu-
cleotides) in samples. This information can be combined into a single array
with rows corresponding to each gene, and columns corresponding to each
sample. In general, we would expect that only some genes correlate with each
possible condition of the samples. This is a biclustering problem.

Carmona-Saez et al. have addressed this problem using NNMF extended
to enforce smoothness and sparsity. They do this by adding a third matrix to
the decomposition

A = W SH

where S is an r × r smoothing matrix given by

S = (1− θ)I + θ
11′

r
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where θ is a control parameter between 0 and 1. When θ is close to 1, the
smoothing matrix contains a value close to 1/r everywhere; when θ is close
to 0, the smoothing matrix is close to the identity matrix, that is almost all
of the value is close to the diagonal.

They then minimize
||A − WSH||2F

subject to W and H remaining non-negative. This is similar to the smoothing
used by Hoyer, without requiring the use of explicit penalty terms.

Carmona-Saez et al. [23] report strong results on a number of artificial
and real datasets for which the correct results are known with some confidence.
In particular, the outer product matrices reveal biclusters clearly.

8.5.3 Mineral exploration revisited

Recall that in Section 6.2.2 we looked at the problem of predicting deeply
covered mineralization based on the partial element concentrations of surface
or near-surface samples. We can apply NNMF to this same dataset to get a
feel for what kinds of results it can supply.

Figures 8.2, 8.3, and 8.4 show plots of the first three dimensions from
an SVD, from Seung and Lee’s basic NNMF algorithm and from the Gradient
Descent Conjugate Least Squares NNMF algorithm, using the dataset from
Section 6.2.2. Recall that this dataset has 215 rows and 238 columns, describ-
ing concentrations from five digestions. For the SVD, the matrix has been
moved to the positive orthant by subtracting the smallest value from all of
the entries (so we expect the first component to capture the global magnitude
of the data entries).

The most obvious feature of these four plots is how little difference there
is among them. Although many points are in slightly different positions, the
overall structure is quite well preserved among them, and the same samples are
outliers in all three. This suggests that NNMF is not substantially different
from SVD; some of its apparent clarity may be the result of the kind of
normalization that is natural in a non-negative setting. Hoyer’s C matrix
has many more zero entries than the other algorithms, but the objects that
remain still show some of the same structure as the other matrices, with the
same outliers.

Figures 8.6, 8.7, 8.8, and 8.9 show the outer product plots for 6 com-
ponents from an SVD, from the Seung and Lee NNMF, and from the Gra-
dient Descent Conjugate Least Squares NNMF. The first point to notice is
how much the SVD’s outer products differ from the NNMF outer products.
This clearly illustrates the way in which SVD factors are global descriptions
whereas the factors of NNMF are local (that is, parts). As we observed earlier,
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Figure 8.2. Plot of the U matrix from an SVD, geochemical dataset.
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Figure 8.3. Plot of the C matrix from Seung and Lee’s NNMF.
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Figure 8.4. Plot of the C matrix from the Gradient Descent Conju-
gate Least Squares Algorithm.
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Figure 8.5. Plot of the C matrix from Hoyer’s NNMF.

the second SVD outer product provides some hint about where the mineral-
ization might be, but it is not obvious without more domain knowledge. The
Seung-Lee NNMF provides strong biclusters, one of which – component 3 –
corresponds well to locations and signals of the buried mineralization. There
are a number of other strong biclusters, several of which do correspond to
other interesting geochemistry visible in the dataset. The Gradient Descent
algorithm seems to have applied too strong a sparseness constraint to one of
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Figure 8.6. Outer product plots for the SVD. (See also Color Figure
15 in the insert following page 138.)

the decomposition matrices, so that it suggests clusterings of the digestions,
but does not show biclusters. Component 3 does reveal the underlying min-
eralization, but it would be hard to see this if the answer was not already
known. Hoyer’s NNMF shows the effect of strong sparsity in the outer prod-
ucts. Components 2 and 4 capture the locations of mineralization, but they
divide the element concentration signals across two different components –
which does not appear to have any physical significance. Again, it seems as
if too much sparsity can obscure the structure in the data.

Notes

The idea of positive matrix factorization seems to have been originally de-
veloped by P. Paatero at the University of Helsinki, and to be popular in
the computational science community (e.g. [62]). Interest in positive ma-
trix factorization increased when the fast algorithm for non-negative matrix
factorization (NNMF), based on iterative update, was developed by Lee and
Seung [79], particularly as they were able to show that it produced intuitively
reasonable factorizations for a face recognition problem [78]. Donoho and
Stodden provided some justification for when NNMF decomposes a dataset
into parts in [36].

NNMF continues to attract attention because of the natural non-negativity
of many application domains and the difficulty of interpreting negative entries
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Figure 8.7. Outer product plots for Seung and Lee’s NNMF. (See
also Color Figure 16 in the insert following page 138.)
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Figure 8.8. Outer product plots for Gradient Descent Conjugate
Least Squares NNMF. (See also Color Figure 17 in the insert following page
138.)



8.5. Applications of NNMF 187

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

Figure 8.9. Outer product plots for Hoyer’s NNMF. (See also Color
Figure 18 in the insert following page 138.)

in the matrices of other decompositions. However, it is not clear whether
NNMF is a new decomposition, or simply a redefinition of SVD or something
close to it. Ding, for example, argues for equivalences between NNMF and a
form of k-means clustering.

Sparsity and its relationship to non-negative decompositions remains
problematic. There are clearly datasets where sparsity and non-negativity
are natural and complementary. It is less clear that sparsity should always be
a goal of a non-negative decomposition.





Chapter 9

Tensors

So far, we have considered only datasets in which there are two kinds of
entities: objects and attributes. However, in several settings it is more natural
to consider a dataset as having three, or even more, kinds of entities. For
example, we have considered word-document matrices derived from emails,
and seen how to extract relationships between words and documents. Another
possibility, though, would be to build a 3-dimensional matrix indexed by
words, documents, and times, whose entries would represent the frequency of
words used in documents during given time periods.

We can look at such a matrix from three directions. If we look at it
from the ‘front’, then we see a word-document matrix; if we look at it from
the ‘side’, then we see a document-time matrix from which, for example, we
can see how email usage changes with time; if we look at it from the ‘top’, then
we see a word-time matrix from which, for example, we can look at trends in
word usage over time. All of these are sensible data-mining tasks. However,
looking at the three dimensions two at a time means that we lose information
about the mutual dependencies among all three attributes. For example, if
certain words are more popular in emails sent after work, it may be difficult
to see this in any of the pairwise slices.

We would like to be able to investigate the structure of such 3-dimensional
data in an integrated way, decomposing the matrix directly, rather than slic-
ing or flattening it and then using one of the two-dimensional decompositions.
Matrices with extents in three or more dimensions are called tensors. Tensor
decompositions allow us to decompose such matrices directly. We will concen-
trate on tensor decompositions of three-dimensional matrices, but the ideas
and techniques extend to matrices of more than three dimensions.

Unfortunately, decompositions get more complicated in two ways: first,
notation becomes more cumbersome; second, many of the uniqueness results
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that hold in the two-dimensional case do not extend to the three-dimensional
case.

Tensor decompositions are usually attributed to Ledyard Tucker who,
in 1966, tried to generalize SVD. The first tensor decomposition we will look
at has come to be named after him.

9.1 The Tucker3 tensor decomposition

Suppose that the dataset matrix, A, is n ×m × p. A tensor decomposition
expresses A as the combination of four matrices N , M , P , and C. Matrix N
is n× nn, matrix M is m×mm, matrix P is p× pp, and matrix C, which is
called the core matrix is nn ×mm × pp. The new extents, nn, mm, and pp
are not necessarily bounded by the extents of A.

One of the difficulties of working with tensors is the complexity of writing
matrix equations describing the relationships that hold among the matrices.
To avoid the overhead of new notation, we will express these, as much as
possible, in pointwise form. The Tucker3 tensor decomposition can be written
pointwise as

Aijk =
nn∑

α=1

mm∑
β=

pp∑
γ=1

CαβγNiαMjβPkγ

Tensor decompositions are calculated by minimizing the difference be-
tween the left and right hand sides of the equation, usually using an alternating
least squares algorithm. The matrices N , M , and P are much like the sin-
gular vector matrices in an SVD; their rows correspond to the entities in the
respective dimensions of A, and each column behaves like an eigenvector. C is
called the core matrix. Its entries are much like singular values and describe
the importance of each triple of component columns in N , M , and P . The
Tucker3 tensor decomposition is shown in Figure 9.1.

There are many degrees of freedom in a Tucker3 decomposition, so it is
usual to make the columns ofN , M , and P orthogonal. Not only does this help
with analysis, but it also makes the computation of the decomposition faster.
However, when several components may be similar, for example because they
are highly correlated, requiring orthogonality may make the decomposition
harder to interpret, since these components will be forced to look dissimilar.
It is also usual to normalize the lengths of the columns in the component
matrices to unity.

There are three issues to consider in constructing and interpreting a
Tucker3 decomposition.
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Figure 9.1. The basic tensor decomposition.

How to choose the number of components

The ‘free’ sizes of the component matrices are bounded above by

nn ≤ m · p
mm ≤ n · p
pp ≤ n ·m

The ‘best’ decomposition depends on making good choices for these sizes. The
problem is rather like the decision about how many components to retain in
an SVD, but getting the equivalent of the scree plot of singular values is more
complicated. The search space of possible sizes is large, making exhaustive
search unattractive.

The quality of a Tucker3 decomposition is the ratio of the sum of the
squares of the elements of the core matrix, C, to the sum of the squares of
the elements of A. The larger the elements of C, the more that the tensor
decomposition is generalizing the underlying structures, requiring less vari-
ability in N , P , and M , and so permitting more agreement in C. Tucker
suggested that the values for nn, mm, and pp be approximated by computing
eigenvalues and eigenvectors of flattenings of A, that is reducing A to a large
two-dimensional matrix by placing, say, its faces side by side.

For example, if we flatten A by taking its planes from the front, we
obtain a 2-dimensional matrix Ã of size n×mp. If we compute the eigende-
composition

ÃÃ′ = NΛN ′

then we get the matrix N , which might not necessarily be of full rank mp.
We can then choose some value for nn and keep only the first nn columns of



192 Chapter 9. Tensors

N . Similarly, we can flatten A in the two other possible directions to get M
and P , and choose mm and pp columns respectively. From these matrices, we
can compute an approximate core, by first computing GP of size nn×mm ·pp
using GP = N ′Ã(P ⊗M) where ⊗ is the Kronecker product, which multiplies
M by each element of P regarded as a scalar and assembles the result in the
positional order corresponding to P . Putting the faces of GP together gives
the approximate core. It does not matter which direction is favored in doing
this computation, so without loss of generality we have written it in terms of
the faces. The fit for this choice of nn, mm, and pp can be computed from
this approximate core. However, this process needs to be iterated over a large
space of choices of the component matrix column sizes.

The approximate fit approach can be used to compute the largest pos-
sible approximate core by allowing nn, mm, and pp to take their maximal
values, that is use all of the eigenvectors of the respective decompositions.
Each approximate core matrix for smaller values of nn, mm, and pp can be
computed by taking subsets of the maximal one. A process called DIFFIT
[68] can now be used to find the best possible values for the three parameters,
traversing the space of parameters in decreasing order of the parameter sums
s = nn+mm+ pp [68].

As problems become large, even this procedure becomes cumbersome.
For this reason, Tucker3 decompositions have had limited use for data-mining
problems. A better heuristic for finding reasonable sizes of the component
matrices is needed.

How to interpret the core matrix

The entries in the core matrix demonstrate how the three entities are coupled,
with large values indicating a strong coupling. The square of each entry of
C is proportional to the amount of variance that the entry explains. Sorting
the core array so that large entries appear in the top left corner, and sorting
the component array columns to match means that the component matri-
ces resemble the singular vectors in SVD, with the most important variation
explained by the earlier columns.

Tucker suggested interpreting the core matrix as describing the latent
structure in the data, and the component matrices as mixing this structure
to give the observed data [111, page 278], an interpretation we have seen for
several two-dimensional decompositions. It is not easy to see how to make
this idea work in practice.
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How to interpret the components

Without loss of generality, consider the first component matrix, N . The rows
of this matrix are the coordinates of points corresponding to the entities in
the rows of A. These coordinates lie in an nn-dimensional submanifold of a
space of dimension m× p.

We could plot these coordinates as if they were based on Euclidean
axes, as we did for ICA. In such a plot, separation indicates dissimilarity, but
closeness does not necessarily indicate similarity (because two axes could be
oblique and in almost the same direction, so that points along them would
appear close when they are actually not). Also geometric structure such as
collinearity is not to be trusted. Nevertheless, as we have seen, such plots can
provide useful visualization.

If we want a more accurate plot, we must construct a set of orthogonal
axes to use. Even though the columns of M and P are each orthogonal, they
are not necessarily orthogonal to each other. We must therefore construct a
matrix, R, that orthogonalizes the columns of M and P and then apply R−1

to N to produce a set of coordinates relative to these axes. In a similar way,
the rows of M and P can be plotted and visualized [67].

If the decomposition is computed in so-called principal axes form, so that
the columns of the component matrix N are the unit normalized eigenvectors
of AN (the flattened form of A with respect to the faces), and the same,
respectively, for the other dimensions, then scaling the columns so their sums
of squares equal the eigenvalues of GNG

′
N gives coordinates with respect to

Euclidean axes automatically [111].

Again by analogy with SVD we can apply techniques such as using some
leading subset of the columns of a component matrix as a set of loadings, and
select the most significant entities from the rows of the matrix accordingly.
Clustering techniques can also be applied to the rows of each component
matrix to cluster the relevant entities.

9.2 The CP decomposition

A restricted form of the Tucker3 decomposition was independently discov-
ered by Carroll and Chang, who called it CANDECOMP, and Harshman,
who called it PARAFACS. We will accordingly call it the CP decomposition,
although the PARAFACS name has become most common.

In the CP decomposition, the core matrix of a Tucker3 decomposition is a
superdiagonal matrix, that is it has non-zero entries only on the superdiagonal
from one corner to the opposite corner, and each of the component matrices
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A =
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+ +

Figure 9.2. The CP tensor decomposition.

has the same number of columns. The CP decomposition is therefore a special
case of the Tucker3 decomposition.

The pointwise description of the CP decomposition is

Aijk =
∑

q

CqqqNiqMjqPkq

The number of terms in the sum is called the rank of the tensor, and has
no necessary relation to the size of A. The CP decomposition is shown in
Figure 9.2.

The CP decomposition is more popular as a data-mining technique than
Tucker3, partly because it is much easier to interpret. The combination of the
qth element of N , M , and P is a single outer product whose density structure
makes it a bump detector, and the entry Cqqq of the superdiagonal gives an
indication of the importance of each outer product.

Like the outer product matrices that we have seen for ICA and NNMF,
each of the components of the CP decomposition is an outer product match-
ing the shape of the dataset matrix A. Although it may be a little harder
in practice, techniques such as visualization can be used to examine the 3-
dimensional outer products. Thresholding of the values can be applied to
make it easier to see the structure within the 3-dimensional matrix, and en-
tries can be sorted so the largest elements are at the top left-hand corner
of the outer product matrix. When the dataset matrix is sorted to match,
indications of the important contributions to each outer product can be found.

9.3 Applications of tensor decompositions

9.3.1 Citation data

Dunlavy et al. [40] have used tensors in which each face is an adjacency
matrix, but for different kinds of similarity between aspects of a document,
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specifically similarity of abstract, of title, of keywords, of authors, and of
citations. They use data from eleven SIAM journals and SIAM proceedings
for the years 1999-2004, and decompose the resulting 5022× 5022× 5 dataset
matrix using the CP tensor decomposition.

They interpret the three rank 1 matrices of each component as hub
scores, authority scores, and link-type importance scores, generalizing the
HITS algorithm of Kleinberg [69]. The largest scores in each of the compo-
nent matrices identify a kind of community, linked together in multiple ways
(that is, via similarities of different kinds). They observe, for example, that
components that are similar in the first three link types tend to have similari-
ties in the strongly weighted words in the hub and authority components; but
that this is no longer true for components that are similar in the citation link
type because citations are not symmetric. They also develop ways to use the
decomposition to compute the centroids of sets of papers. This captures more
powerfully the concept of a body of work because it includes papers that are
connected to the ‘core’ papers in more subtle or more complex ways.

9.3.2 Words, documents, and links

Kolda et al. [71] apply the CP technique to a dataset whose faces reflect
hyperlinks between web pages – entry ij is non-zero if page i links to page j
– while each face corresponds to a possible word from the anchor text of the
link. Anchor text provides a kind of preview of the document to be found
at its other end, and so provides useful information beyond that of the link
structure. The data was collected by a web crawl and reduced to inter-site,
rather than inter-page, links.

Their results discover authorities, sites with high scores in a component
– but now each component also provides a list of keywords (from the anchor
text). Thus each component defines both a set of authorities (or hubs), to-
gether with a set of high-scoring words associated with them. This creates
ways to extend the HITS algorithm to allow, for example, for sophisticated
searches within results.

9.3.3 Users, keywords, and time in chat rooms

Acar et al. [2, 3] have applied the Tucker3 decomposition to chatroom data,
where the three dimensions are users, keywords, and time windows. They
argue that the CP decomposition is not appropriate for such data because
the number of components should be different in each dimension.

They show that the interaction patterns in the data cannot be fully cap-
tured by flattenings of this data, and so there is a genuine advantage to using
a tensor decomposition, rather than some two-dimensional decomposition.
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In another paper, Acar et al. [1] consider the analysis of EEG data for
locating the focus of epileptic seizures. They show that the Tucker3 decompo-
sition of a matrix whose three dimensions are electrodes, time, and scale (an
encoding of frequency) is superior to SVD and kernel PCA on the pairwise
slice matrices of electrodes versus time, and electrodes versus frequency.

9.4 Algorithmic issues

An N-way toolbox has been developed by C. A. Andersson and R. Bro [9] for
Matlab. B. Bader and T.G. Kolda [11] have more recently developed a tensor
toolbox. Both of these toolboxes implement the decompositions described
here, as well as many basic tensor operations.

The decomposition algorithms can be modified to enforce extra proper-
ties, for example non-negativity of the entries of the component matrices, or
many zeroes for the core matrix.

Arbitrary non-singular matrices can be applied to the component ma-
trices, as long as they are compensated for by applying the matching inverse
transformations to the core matrix. This makes many transformations such
as rotations possible, and there is a considerable literature addressing how to
apply rotations to achieve structure in the core matrix.

Notes

The Tucker3 tensor decomposition was developed by Tucker [111]. The CP
decomposition was developed independently by Harshman [51] and Carroll
and Chang [24].

Tensor decompositions have many degrees of freedom, so it is possible
to impose many constraints to get specialized forms of tensor decompositions.
Many more or less principled specializations have been developed within the
social science community, and new specializations are being developed within
the linear algebra and data-mining communities. See, for example, [98].
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Conclusion

Datasets in science, engineering, medicine, social sciences, and derived from
the Internet have three significant properties:

• They are extremely large, holding millions or even billions of records,
partly because collection can often be automated.

This property implies that practical data mining is limited to techniques
whose complexity is at worst quadratic in the size of the dataset, and
even this may be impractical for the largest datasets. Increasingly, it
is not the cost of the computation that is the limiting factor, but the
cost of moving data up through the memory hierarchy. Practical data-
mining algorithms must not require more than a constant number of
passes through the data, and incremental algorithms are increasingly
attractive for datasets that change over time.

• The entries are usually the combination of values that have arisen from
a number of processes. This happens in two distinct ways. First, some
datasets are collected from the real world using sensing devices, and so
the values collected are affected by the variability of the real world, by
properties of the sensing devices, and by noise. Second, humans can
be thought of as complex multiprocess systems internally, so any data
values that depend on humans are already combinations from many
contributing activities. For example, humans are inconsistent, even from
day to day, in their opinions about almost everything.

This property implies that it is not useful to analyze datasets as if they
represented a single process. Such analysis cannot produce good models
because it is based on deeply-flawed assumptions. Instead, analysis must
first address the multiprocess character of complex datasets: removing
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‘noise’ in its most general sense where present, and uncovering the latent
or component structure. Only then is it sensible to model the data in
conventional data-mining ways, often component by component.

• Properties of each individual object arise from the values of only some
of its attributes, while its other attributes are more or less irrelevant.
However, the important attributes differ from object to object. In other
words, entries in the matrix are correlated with other entries in local,
rather than global, ways.

This implies two things. First, that the goal of clustering should usually
be considered as biclustering; and second, that attribute selection, as
it is usually discussed, cannot help to elucidate structure effectively.
Biclustering is already an important research topic; we suggest that it
will become the standard form of clustering for complex datasets.

We have suggested that matrix decompositions are ideal tools to attack
the problems of modelling such large and complex datasets. Matrix decompo-
sitions are all, underneath, forms of Expectation-Maximization that assume
particular forms of the underlying distributions. However, implementations
of EM typically allow only a limited number of relatively simple distributions
to be used, so this connection is not very useful for practical data mining. On
the other hand, each matrix decomposition looks, superficially, to be different
from the others and requires understanding different tools for computing the
decomposition and different ways of interpreting the results.

Different matrix decompositions are good at exposing different kinds of
structure in a dataset. However, the following list summarizes some of the
possibilities.

• Denoising : This is the simplest use of a matrix decomposition, in which
one or more component is judged to represent noise, and removed from
the dataset. The choice of such components must always be made ju-
diciously and with regard to the goals of the data-mining process, since
what is noise in one context may be signal in another.

Since the most common shape for noise is Gaussian, SVD is rightly
considered the standard way to remove noise. As we have seen, how-
ever, ICA can play a useful role both in removing Gaussian noise, and
especially in removing structured noise, for example spatial artifacts.

• Finding submanifolds: When data is collected, it is almost never pos-
sible to guess, in advance, which attributes will turn out to be most
significant for the modelling goal. It is therefore common to collect val-
ues for many attributes that are either irrelevant, or related to each
other in complex, interlocking ways. In some situations, it is also nat-
ural to collect the data in terms of a large number of attributes; for
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example, a molecule may be described in terms of the three-dimensional
positions of its atoms although there are clearly not as many degrees
of freedom in its configuration as this implies. As a result, the ‘in-
teresting’ structure in a dataset is a low-dimensional manifold hidden
within a much higher dimensional space. Matrix decompositions can
discover such lower-dimensional structure much more effectively than
most attribute-selection techniques, partly because matrix decomposi-
tions work from global structure in the data.

• Finding components : As discussed above, the critical problem with com-
plex datasets is that they represent the superposition or combination of
data values that arise from multiple processes. Matrix decompositions
all separate the given dataset into a form where the putative compo-
nents can be examined. Each component may be modelled separately,
or components can be discarded, upweighted, or downweighted, and a
modified form of the dataset reconstructed.

The resulting dataset(s) can then be passed to other data-mining tech-
niques, which can now be relied on to model them effectively since they
represent a known process, or they can be clustered directly based on
the matrix decomposition.

• Visualization: Humans are extremely good at seeing structure. Most
matrix decompositions have the following two properties: they can or-
der the components so that the most important or significant ones can
be determined; and they provide a sensible way to plot the data values.
Together these mean that matrix decompositions make useful visualiza-
tions possible. Visualizations can confirm the results of more-technical
analysis, and may sometimes suggest structure that would be hard to
detect from the models alone.

• Graph-based clustering : There are many ways for objects to be similar or
dissimilar, but the most powerful ones are those that depend not on the
properties of each object alone, but on the context of each pair of objects.
Modelling such context is inherently difficult because it may require,
for a single pair of objects, considering the entire rest of the dataset.
Graph-based clustering provides several ways of reducing this problem
to a more straightforward geometrical one, by embedding graphs in
Euclidean space in a clever way. Matrix decompositions provide a way
to do this approximately in a way that avoids the exponential analysis
required to compute many interesting properties, for example good cuts,
exactly.

• Extensions to greater numbers of related entities: Basic matrix decom-
positions relate objects and attributes. However, as we have seen, there
are increasingly common settings where the connections between more
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than two kinds of entities need to be explored. The multidimensional ar-
rays, or tensors, that represent such connections can also be decomposed
into matrices that reveal some of the underlying relationships, although
this is still a relatively new approach in mainstream data mining.

Each decomposition has its own special strengths. SVD is the sim-
plest decomposition and makes the weakest assumptions about the expected
structure in the data – assuming, based on the Law of Large Numbers, that
Gaussian distributions are most likely. The biggest advantage of SVD is its
ability to rank objects or attributes in such a way that both the commonest
and rarest are ranked low, leaving the most interesting, in a useful sense, at
the top of the ranking.

The strength of SDD is its ability to define a ternary hierarchical clus-
tering of the objects or attributes. This is especially useful when used along
with SVD, since it provides a way to label clusters automatically.

ICA and NNMF are both good at finding components corresponding to
biclusters, that is components that involve a relatively small number of both
objects and attributes. ICA looks for components characterized by statisti-
cal independence, which we saw is a stronger property than uncorrelation.
NNMF looks for components in the positive orthant. Both decompositions
are coming to be appreciated in wider contexts as the problems of finding
biclusters become more important in applications such as text mining, and
mining the results of high-throughput biomedical devices.

The situation where the dataset defines pairwise similarities or affinities
between entities is completely different from the implicit geometric situation
of the standard decompositions. Analysis of such datasets is much easier if
they can be transformed into a geometric representation, where the standard
analyses can be done. This is non-trivial. Obviously, the embedding in a
geometric space must respect, as far as possible, the pairwise affinities. How-
ever, it must also place non-adjacent points in such a way that their distance
apart in the geometry corresponds in a sensible way to their separation in the
graph. There are a number of ways to define separation in the graph, and
each leads to a different embedding. Many of these definitions are motivated
by the correspondence between simple boundaries in the geometric space, and
high-quality cuts in the graph. Analysis of graph data is still relatively new,
and these analysis techniques will surely become more important.

Finally, tensors enable us to extend ideas of relationships among two dif-
ferent kinds of entities to simultaneous relations among three or more different
kinds of entities. A great deal of work is being done on the technologies of ten-
sor decomposition, but tensor decompositions have not been applied to many
data-mining tasks (except, of course, for long-standing applications in fields
such as chemometrics). Much of the development of tensor decomposition
was done in social sciences, working with three-dimensional but quite small
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datasets. The development of new algorithms and interpretation techniques
may lead to renewed applications to larger datasets in the social sciences.





Appendix A

Matlab Scripts to
generate example matrix
decompositions

The scripts here are designed to show you how to get started calculating your
own matrix decompositions. Matlab makes it easy to do many things in ways
that are clever but hard to read. These scripts do things in the most obvious
ways, to make them easy to understand. With some Matlab experience, you
will be able to improve them.

This is the main script. It is unfortunately somewhat cluttered with the
output machinery that generates the files that are used in the main part of
the book.

function base(mfn)
format short;

% machinery to create result files
% make directory name
dmfn = [’figs’ mfn];
status = mkdir(dmfn);

a = csvread([mfn ’.csv’]);

n = size(a,1)
m = size(a,2)

ifile = [dmfn ’/initial.txt’];
inf = fopen(ifile,’w’);
for i = 1:n
fprintf(inf,’%6.0f &’,a(i,:));
fprintf(inf,’\\\\ \n’);
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end
fclose(inf);

% normalize a

na = zeros(n,m);
for j = 1:m
if std(a(:,j)) == 0
na(:,j) = (a(:,j) - mean(a(:,j)));
else
na(:,j) = (a(:,j) - mean(a(:,j)))./std(a(:,j));
end;
end;

% svd of unnormalized data

[u,s,v] = svd(a,0);

ufile = [dmfn ’/’ mfn ’.u’];
vfile = [dmfn ’/’ mfn ’.v’];
sfile = [dmfn ’/’ mfn ’.s’];
psfile = [dmfn ’/’ mfn ];
uf = fopen(ufile,’w’);
for i = 1:size(u,1)
fprintf(uf,’%6.2f &’,u(i,:));
fprintf(uf,’\\\\ \n’);
end
fclose(uf);

vf = fopen(vfile,’w’);
for i = 1:size(v,1)
fprintf(vf,’%6.2f &’,v(i,:));
fprintf(vf,’\\\\ \n’);
end
fclose(vf);

sf = fopen(sfile,’w’);
for i = 1:size(v,1)
fprintf(sf,’%6.2f &’,s(i,:));
fprintf(sf,’\\\\ \n’);
end
fclose(sf);

ss = diag(s);
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ssvf1 = fopen([dmfn ’/singvalue1.txt’],’w’);
fprintf(ssvf1,’%4.2f, followed by %4.2f and %4.2f.\n’,ss(1),ss(2),ss(3));
fclose(ssvf1);

% labelled objects
figure;

plot3(u(:,1),u(:,2),u(:,3),’r.’,’MarkerSize’,12)
for i = 1:size(u,1)

text(u(i,1), u(i,2), u(i,3), [’ ’ int2str(i)],’FontSize’,11)
end
view([-150,30])
axis(’auto’)
xlabel(’U1’)
ylabel(’U2’)
zlabel(’U3’)

print(’-deps2’, [dmfn ’/u.eps’]);

% labelled attributes
figure

hold on;
plot3(v(:,1),v(:,2),v(:,3),’r.’,’MarkerSize’,12);
for i=1:size(v,1)
text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i)],’FontSize’,11);
end
view([-150,30])
axis(’auto’)
xlabel(’V1’)
ylabel(’V2’)
zlabel(’V3’)

print(’-deps2’, [dmfn ’/v.eps’]);

% singular values
figure;

plot(ss,’-k+’,’MarkerSize’,10)
ylabel(’s’)

print(’-deps2’, [dmfn ’/s.eps’]);

% US and SV
us = u * s;
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vs = v * s;

% plot u and v matrices scaled by the singular values
figure;

plot3(us(:,1),us(:,2),us(:,3),’r.’,’MarkerSize’,12)
for i = 1:size(u,1)

text(us(i,1), us(i,2), us(i,3), [’ ’ int2str(i)],’FontSize’,11)
end
view([-150,30])
axis(’auto’)
xlabel(’US1’)
ylabel(’US2’)
zlabel(’US3’)

print(’-deps2’, [dmfn ’/us.eps’]);

% labelled attributes
figure

hold on;
plot3(vs(:,1),vs(:,2),vs(:,3),’r.’,’MarkerSize’,12);
for i=1:size(v,1)
text(vs(i,1),vs(i,2),vs(i,3),[’ ’ int2str(i)],’FontSize’,11);
end
view([-150,30])
axis(’auto’)
xlabel(’VS1’)
ylabel(’VS2’)
zlabel(’VS3’)

print(’-deps2’, [dmfn ’/sv.eps’]);

% repeat for normalized A

[u,s,v] = svd(na,0);

nufile = [dmfn ’/’ mfn ’.nu’];
nvfile = [dmfn ’/’ mfn ’.nv’];
nsfile = [dmfn ’/’ mfn ’.ns’];

uf = fopen(nufile,’w’);
for i = 1:size(u,1)
fprintf(uf,’%6.2f &’,u(i,:));
fprintf(uf,’\\\\ \n’);
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end
fclose(uf);

vf = fopen(nvfile,’w’);
for i = 1:size(v,1)
fprintf(vf,’%6.2f &’,v(i,:));
fprintf(vf,’\\\\ \n’);
end
fclose(vf);

sf = fopen(nsfile,’w’);
for i = 1:size(v,1)
fprintf(sf,’%6.2f &’,s(i,:));
fprintf(sf,’\\\\ \n’);
end
fclose(sf);

ss = diag(s);

ssvf2 = fopen([dmfn ’/singvalue2.txt’],’w’);
fprintf(ssvf2,’%4.2f, followed by %4.2f and %4.2f.\n’,ss(1),ss(2),ss(3));
fclose(ssvf2);

% calculate entropy

sssum = 0;
for i = 1:m
sssum = sssum + ss(i).*ss(i);
end

for i = 1:m
f(i) = ss(i).*ss(i)/sssum;
end

entrsum = 0;
for i = 1:m
entrsum = entrsum + f(i) * log(f(i));
end
entropy = -entrsum/(log(m))

ef = fopen([dmfn ’/entropy.txt’],’w’);
fprintf(ef,’%5.3f, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f, %7.5f, and %9.7f.’,f);
fprintf(ef,’ The entropy for this dataset is %5.3f,’, entropy);
fclose(ef);
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% labelled objects (normalized)
figure;

plot3(u(:,1),u(:,2),u(:,3),’r.’,’MarkerSize’,12)
for i = 1:size(u,1)

text(u(i,1), u(i,2), u(i,3), [’ ’ int2str(i)],’FontSize’,11)
end
view([-150,30])
axis(’auto’)
xlabel(’U1’)
ylabel(’U2’)
zlabel(’U3’)

print(’-deps2’, [dmfn ’/nu.eps’]);

% labelled attributes (normalized)
figure

hold on;
plot3(v(:,1),v(:,2),v(:,3),’r.’,’MarkerSize’,12);
for i=1:size(v,1)
text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i)],’FontSize’,11);
end
view([-150,30])
axis(’auto’)
xlabel(’V1’)
ylabel(’V2’)
zlabel(’V3’)

print(’-deps2’, [dmfn ’/nv.eps’]);

% singular values

figure;

plot(ss,’-k+’,’MarkerSize’,10)
ylabel(’s’)

print(’-deps2’, [dmfn ’/ns.eps’]);

% matrix with extra rows

aa = [a; 1 1 1 1 1 1 1 1; 9 9 9 9 9 9 9 9];

[u,s,v] = svd(aa,0);
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aaufile = [dmfn ’/’ mfn ’.aau’];
aavfile = [dmfn ’/’ mfn ’.aav’];
aasfile = [dmfn ’/’ mfn ’.aas’];

aauf = fopen(aaufile,’w’);
for i = 1:size(u,1)
fprintf(aauf,’%6.2f &’,u(i,:));
fprintf(aauf,’\\\\ \n’);
end
fclose(aauf);

aavf = fopen(aavfile,’w’);
for i = 1:size(v,1)
fprintf(aavf,’%6.2f &’,u(i,:));
fprintf(aavf,’\\\\ \n’);
end
fclose(aavf);

aasf = fopen(aasfile,’w’);
for i = 1:size(v,1)
fprintf(aasf,’%6.2f &’,s(i,:));
fprintf(aasf,’\\\\ \n’);
end
fclose(aasf);

% labelled objects
figure;

plot3(u(:,1),u(:,2),u(:,3),’r.’,’MarkerSize’,12)
for i = 1:size(u,1)

text(u(i,1), u(i,2), u(i,3), [’ ’ int2str(i)],’FontSize’,11)
end
view([-160,30])
axis(’auto’)
xlabel(’U1’)
ylabel(’U2’)
zlabel(’U3’)

print(’-deps2’, [dmfn ’/orient.eps’]);

% matrix with extra rows 2

ab = [a; 1 1 1 1 9 9 9 9; 9 9 9 9 1 1 1 1];
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[u,s,v] = svd(ab,0);

abufile = [dmfn ’/’ mfn ’.abu’];
abvfile = [dmfn ’/’ mfn ’.abv’];
absfile = [dmfn ’/’ mfn ’.abs’];
abuf = fopen(abufile,’w’);
for i = 1:size(u,1)
fprintf(abuf,’%6.2f &’,u(i,:));
fprintf(abuf,’\\\\ \n’);
end
fclose(abuf);

abvf = fopen(abvfile,’w’);
for i = 1:size(v,1)
fprintf(abvf,’%6.2f &’,v(i,:));
fprintf(abvf,’\\\\ \n’);
end
fclose(abvf);

absf = fopen(absfile,’w’);
for i = 1:size(v,1)
fprintf(absf,’%6.2f &’,s(i,:));
fprintf(absf,’\\\\ \n’);
end
fclose(absf);

% labelled objects
figure;

plot3(u(:,1),u(:,2),u(:,3),’r.’,’MarkerSize’,12)
for i = 1:size(u,1)

text(u(i,1), u(i,2), u(i,3), [’ ’ int2str(i)],’FontSize’,11)
end
view([-100,30])
axis(’auto’)
xlabel(’U1’)
ylabel(’U2’)
zlabel(’U3’)

print(’-deps2’, [dmfn ’/nextorient.eps’]);

% output A1 A2

[u,s,v] = svd(na,0);
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a1 = u(:,1) * s(1,1) * v(:,1)’;
a2 = u(:,2) * s(2,2) * v(:,2)’;
a1file = [dmfn ’/a1.txt’];
a2file = [dmfn ’/a2.txt’];
a3file = [dmfn ’/a3.txt’];
autoafile = [dmfn ’/autoa.txt’];

a1f = fopen(a1file,’w’);
for i = 1:size(u,1)
fprintf(a1f,’%6.2f &’,a1(i,:));
fprintf(a1f,’\\\\ \n’);
end
fclose(a1f);

a2f = fopen(a2file,’w’);
for i = 1:size(u,1)
fprintf(a2f,’%6.2f &’,a2(i,:));
fprintf(a2f,’\\\\ \n’);
end
fclose(a2f);

asum = a1 + a2;

a3f = fopen(a3file,’w’);
for i = 1:size(u,1)
fprintf(a3f,’%6.2f &’,asum(i,:));
fprintf(a3f,’\\\\ \n’);
end
fclose(a3f);

autoa = asum * asum’;

autoaf = fopen(autoafile,’w’);
for i = 1:size(u,1)
fprintf(autoaf,’%6.2f &’,autoa(i,:));
fprintf(autoaf,’\\\\ \n’);
end
fclose(autoaf);

% end of svd section

k = 8;

[d,x,y] = sdd(na,k);
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yfile = [dmfn ’/’ mfn ’.y’];
dfile = [dmfn ’/’ mfn ’.d’];
xfile = [dmfn ’/’ mfn ’.x’];

xf = fopen(xfile,’w’);
for i = 1:size(x,1)
fprintf(xf,’%6.0f &’,x(i,:));
fprintf(xf,’\\\\ \n’);
end
fclose(xf);

yf = fopen(yfile,’w’);
for i = 1:size(y,1)
fprintf(yf,’%6.0f &’,y(i,:));
fprintf(yf,’\\\\ \n’);
end
fclose(yf);

df = fopen(dfile,’w’);
for i = 1:size(y,1)
fprintf(df,’%6.2f &’,d(i,:));
fprintf(df,’\\\\ \n’);
end
fclose(df);

op = x(:,2) * y(:,2)’

opf = fopen([dmfn ’/op1.txt’],’w’);
for i = 1:size(x,1)
fprintf(opf,’%4.0f &’,op(i,:));
fprintf(opf,’\\\\ \n’);
end
fclose(opf);

% sdd with largest volume components moved to the front

[d,x,y] = smsdd(na,k);

yfile = [dmfn ’/’ mfn ’.sy’];
dfile = [dmfn ’/’ mfn ’.sd’];
xfile = [dmfn ’/’ mfn ’.sx’];

xf = fopen(xfile,’w’);
for i = 1:size(x,1)
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fprintf(xf,’%6.0f &’,x(i,:));
fprintf(xf,’\\\\ \n’);
end
fclose(xf);

yf = fopen(yfile,’w’);
for i = 1:size(y,1)
fprintf(yf,’%6.0f &’,y(i,:));
fprintf(yf,’\\\\ \n’);
end
fclose(yf);

df = fopen(dfile,’w’);
for i = 1:size(y,1)
fprintf(df,’%6.2f &’,d(i,:));
fprintf(df,’\\\\ \n’);
end
fclose(df);

op = x(:,2) * y(:,2)’

opf = fopen([dmfn ’/op2.txt’],’w’);
for i = 1:size(x,1)
fprintf(opf,’%4.0f &’,op(i,:));
fprintf(opf,’\\\\ \n’);
end
fclose(opf);

n = size(na,1);
m = size(na,2);

% plots of regions

figure;
for r = 1:k
peak = d(r) * x(:,r) * y(:,r)’;
nn = norm(peak,’fro’);
bar3(peak,1.0,’detached’,’y’);
title([’Bump at level ’ int2str(r)]);
ylabel(’Objects’);
xlabel(’Attributes’);
zlabel(’Bump direction’);
print(’-deps2’,[dmfn ’/peak’ int2str(r)]);
print(’-depsc2’,[dmfn ’/cpeak’ int2str(r)]);
clf;
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end

% 3 level sdd for objects

figure;
view([-150,30])
axis(’auto’)
xlabel(’U1’)
ylabel(’U2’)
zlabel(’U3’)
legend;
sz = n;

xdis;

print(’-deps2’,[dmfn ’/sso’] );
print(’-depsc2’,[dmfn ’/csso’] );

% 3 level sdd for attributes

figure;

view([-150,30])
axis(’auto’)
xlabel(’V1’)
ylabel(’V2’)
zlabel(’V3’)
sz = m;

ydis;

print(’-deps2’,[dmfn ’/ssa’] );
print(’-depsc2’,[dmfn ’/cssa’] );

% nnmf using Seung and Lee code

% transpose because algorithm expects attributes as rows
A = a’;

[n m] = size(A);
r = 8; % choose rank for the factorization
maxiter = 300; % choose the maximum number of iterations

W = rand(n,r); % randomly initialize basis
W = W./(ones(n,1)*sum(W)); % normalize column sums
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H = rand(r,m); % randomly initialize encodings
eps = 1e-9; % set your own tolerance

for iter=1:maxiter
H = H.*(W’*((A+eps)./(W*H+eps)));
W = W.*(((A+eps)./(W*H+eps))*H’);
W = W./(ones(n,1)*sum(W));
end

C = H’;
F = W’;

cf = fopen([dmfn ’/c.txt’],’w’);
for i = 1:size(C,1)
fprintf(cf,’%6.2f &’,C(i,:));
fprintf(cf,’\\\\ \n’);
end
fclose(cf);

ff = fopen([dmfn ’/f.txt’],’w’);
for i = 1:size(F,1)
fprintf(ff,’%6.2f &’,F(i,:));
fprintf(ff,’\\\\ \n’);
end
fclose(ff);

These are display routines for the SDD labelling of objects and at-
tributes, respectively.

Objects:

hold on

for i = 1:sz
split1 = x(i,1);
switch split1

case 1
split2 = x(i,2);
switch split2

case 1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’r.’,’ButtonDownFcn’,num2str(i));
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text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’k.’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’b.’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = x(i,3);
switch split3,
case 1,
plot3(u(i,1),u(i,2),u(i,3),’ro’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’ko’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’bo’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’rx’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’kx’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’bx’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
case 0
split2 = x(i,2);
switch split2

case 1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’r+’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
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plot3(u(i,1),u(i,2),u(i,3),’k+’,’ButtonDownFcn’,num2str(i));
text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);

case -1,
plot3(u(i,1),u(i,2),u(i,3),’b+’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = x(i,3);
switch split3,
case 1,
plot3(u(i,1),u(i,2),u(i,3),’r*’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’k*’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’b*’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’rs’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’ks’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’bs’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
case -1
split2 = x(i,2);
switch split2

case 1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’rd’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’kd’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);



218 Appendix A. Matlab scripts

case -1,
plot3(u(i,1),u(i,2),u(i,3),’bd’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = x(i,3);
switch split3,
case 1,
plot3(u(i,1),u(i,2),u(i,3),’rv’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’kv’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’bv’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = x(i,3);
switch split3
case 1,
plot3(u(i,1),u(i,2),u(i,3),’r^’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(u(i,1),u(i,2),u(i,3),’k^’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(u(i,1),u(i,2),u(i,3),’b^’,’ButtonDownFcn’,num2str(i));

text(u(i,1),u(i,2),u(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
end
end

Attributes:

hold on

for i = 1:sz
split1 = y(i,1);
switch split1

case 1
split2 = y(i,2);
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switch split2
case 1,
split3 = y(i,3);
switch split3
case 1,
plot3(v(i,1),v(i,2),v(i,3),’r.’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’k.’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’b.’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = y(i,3);
switch split3,
case 1,
plot3(v(i,1),v(i,2),v(i,3),’ro’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’ko’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’bo’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = y(i,3);
switch split3
case 1,
plot3(v(i,1),v(i,2),v(i,3),’rx’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’kx’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’bx’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
case 0
split2 = y(i,2);
switch split2

case 1,
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split3 = y(i,3);
switch split3
case 1,
plot3(v(i,1),v(i,2),v(i,3),’r+’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’k+’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’b+’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = y(i,3);
switch split3,
case 1,
plot3(v(i,1),v(i,2),v(i,3),’r*’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’k*’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’b*’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = y(i,3);
switch split3
case 1,
plot3(v(i,1),v(i,2),v(i,3),’rs’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’ks’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’bs’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
case -1
split2 = y(i,2);
switch split2

case 1,
split3 = y(i,3);
switch split3
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case 1,
plot3(v(i,1),v(i,2),v(i,3),’rd’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’kd’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’bd’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case 0,
split3 = y(i,3);
switch split3,
case 1,
plot3(v(i,1),v(i,2),v(i,3),’rv’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’kv’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’bv’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end
case -1,
split3 = y(i,3);
switch split3
case 1,
plot3(v(i,1),v(i,2),v(i,3),’r^’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case 0,
plot3(v(i,1),v(i,2),v(i,3),’k^’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
case -1,
plot3(v(i,1),v(i,2),v(i,3),’b^’,’ButtonDownFcn’,num2str(i));

text(v(i,1),v(i,2),v(i,3),[’ ’ int2str(i) ],’FontSize’,11);
end

end
end
end
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Decomposition-based clustering, 41
Degenerate decompositions, 27
Degree of a graph, 95
Dendrogram, 135
Denoising, 37, 200
Density-based clustering, 11
Distance-based clustering, 11
Distances in high-dimensional space,

30
Distribution-based clustering, 11
Dot product, 31, 34, 59

Edge prediction, 93, 114
Eigenvalue, 97
Eigenvector, 97
Embedding, 94

a graph in a geometric space,
101

Entropy, 64
Exact SDD algorithm versus heuris-

tic, 139
Example

citation data, 196

233
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classifying galaxies, 144
detecting unusual messages, 81
determining suspicious messages,

165
edge prediction, 114
finding al Qaeda groups, 171
graph substructures, 116
happiness survey, 54
latent semantic indexing, 78
microarray analysis using NNMF,

183
microarray analysis using SVD,

86
mineral exploration, 145
mineral exploration using NNMF,

184
most interesting documents, 81
most interesting words, 81
noise removal, 78
PageRank, 98
protein conformation, 151
removing spatial artifacts from

microarrays, 168
topic detection, 183
users, keywords, and time in

chat rooms, 197
wine, 55
winnowing microarray data, 86
words, documents, and links,

197
Expectation-Maximization, 13, 26,

147, 200

Factor interpretation, 28, 29
FastICA, 164
Fiedler vector, 112
Finding components, 201
Finding local patterns, 6, 16
Finding outliers, 6, 16
Finding submanifolds, 200
Frequent sets, 17

Generalized contrast functions, 164
Geometric clustering, 41
Geometric interpretation, 28, 29

Gini index, 7
Global properties of graphs, 93
Google, 98, 118
Grand Tour, 65
Graph, 4

adjacency matrix, 105
clustering, 93
degree, 95
edge prediction, 93, 114
embedding, 94, 202
global properties, 93
incidence matrix, 106
Laplacian matrix, 106
normalized adjacency matrix,

105
normalized cut, 109
normalized Laplacian, 109
ratio cut, 108
substructure discovery, 93
vibration, 106
walk Laplacian, 108
walk matrix, 96, 105

Graph data, 91
Graph interpretation, 28, 32
Graph vibration, 106
Graph-based clustering, 42, 201

Hierarchical clustering, 11, 135
HITS, 100
Hitting time, 109
HOLMES, 115
Hyperlinks, 98

ICA, 23
Incidence matrix, 106
Including domain knowledge, 77
Independent Component Analysis,

23
complexity, 163
equation, 158
Gaussian component, 160
normalization, 160
strengths, 202

Information gain, 7
Information retrieval, 79
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Inherent dimensionality, 38
Inside-out transformation, 103
Interestingness, 60

Joint SDD-SVD methodology, 144
JSS methodology, 144

k-means algorithm, 11, 72, 112, 147
Karl Popper, 2
Kurtosis, 164

Laplacian matrix, 106
Latent semantic indexing, 78
Left singular vector, 97
Levelwise algorithm, 17
LOCOCODE, 163
Long tail, 84
Lossy compression, 89

Mapping local affinities to global
affinities, 94

Mass customization, 1
Matrix, 4

sparse, 43
Matrix decomposition, 2

equation, 24
transposing, 26

Microarrays, 86, 168
Mineralization, 146
Model, 6
Multidimensional scaling, 42

NASA, 1
Natural experiments, 4
Nearest interesting neighbor, 93
Negentropy, 164
NNMF, 23
Noise, 18, 63
Non-Negative Matrix Factorization,

23
complexity, 182
equation, 176
strengths, 202
update rules, 177

Normalization, 26
dividing by the standard devi-

ation, 52

ICA, 160
SDD, 129
sparse data, 86
SVD, 51
zero centering, 51

Normalized adjacency matrix, 105
Normalized cut, 109
Normalized Laplacian, 109

Objective function, 163
One-class support vector machines,

16
Orienting dimensions, 73
Outer product, 32
Outliers, 40, 137
Overcomplete representation, 44
Overfitting, 25

PageRank, 98
Pairwise affinity, 91
PARAFACS, 195
Partitional clustering, 11
Pathfinder, 40
PCA, 23, 51
Permeability, 33
Popper, Karl, 2
Power method, 97
Prediction, 5, 6
Principal Component Analysis, 23,

51
Protein Data Bank, 151
Pseudoinverse of the Laplacian, 110

Ramachandran plot, 152
Random forests, 8
Random walk, 109
Rank of a tensor, 196
Ranking in graphs, 93
Ratio cut, 108
Recommender systems, 81
Records, 4
Regression, 6
Relational database, 92
Removing parts of bumps, 139
Removing redundancy, 38

SVD, 65
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Reordering bump selection, 131
Right singular vector, 97
Roles of matrix decompositions, 20
Rotation and stretching, 56

Scree plot, 64
SDD, 23
Search terms, 79
Selecting outliers

SDD, 137
Selecting special objects or attributes,

39
SVD, 67

SemiDiscrete Decomposition, 23
complexity, 139
equation, 123
hierarchical clustering, 135
normalization, 129
strengths, 202

Separating hyperplane, 9
Similarity, 11, 16

in SDD hierarchical clustering,
136

Similarity measures, 71
Singular Value Decomposition, 23

complexity, 77
denoising, 63
dot product, 59
equation, 49
interestingness, 60
noise, 63
normalization, 51
removing redundancy, 65
rotation and stretching, 56
springs, 58
strengths, 202
truncation, 63

Sketch, 88
Social network, 114
Social network analysis, 93, 105
Sparse matrix, 43
Spearman rank, 26
Split V technique, 76
Springs, 58
Statistical independence, 159

Substructure discovery, 93
Support, 17
Support vector machines, 9
SVD, 23
SVD and PCA, 51
Symmetry between objects and at-

tributes, 26

Teleportation, 99
Tensor toolbox, 198
Tensors, 191, 201, 202
Test set, 6
Topic detection, 180, 183
Training data, 6
Transition probability, 96
Tripartite graph, 33
Truncated correlation matrix, 67
Truncation, 37

boundary, 38
entropy, 64
profile log-likelihood, 64
residual matrix norm, 64
scree plot, 64

Tucker3 decomposition, 192
choosing the number of com-

ponents, 193
equation, 192
interpreting the components,

195
interpreting the core matrix,

194
quality, 193

Visualization, 65, 201
Vivisimo, 118
Voting, 8

Walk Laplacian, 108
Walk matrix, 96, 105
Wedderburn, 77
Word-document matrix, 31

Yahoo, 118

z scores, 52


