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Preface

Uncertainty is one of the characteristics of the nature. Many theories have been
proposed in dealing with uncertainties. Fuzzy logic has been one of such theories.
Both of us were inspired by Zadeh’s fuzzy theory and Jonathan Lawry’s label
semantics theory when we both worked in University of Bristol.

Machine learning and data mining are inseparably connected with uncertainty.
To begin with, the observable data for learning is usually imprecise, incomplete or
noisy. Even the observations are perfect, the generalization beyond that data is still
afflicted with uncertainty; e.g., how can we be sure which one from a set of candidate
theories that all of them explain the data. Though Occam’s razor tells us to favor the
simplest models, this principle does not guarantee this simple model is the truth of
the data. In recent research, we have found that some complex models seem to be
more appropriate comparing to simple ones because of our complex nature and the
complicated mechanism of data generation in social problems.

In this book, we introduce a fuzzy logic basesd theory for modeling uncertainty
in data mining. The content of this book can be roughly split into three parts:
Chapters 1-3 give a general introduction of data mining and the basics of label
semantics theory. Chapters 4–8 introduce a number of data mining algorithms based
on label semantics and detailed theoretical aspects, and experimental results are
given. Chapters 9–12 introduce prototype theory interpretation of label semantics
and data mining algorithms developed based on this interpretation. This book is for
the readers like postgraduates and researchers in AI, data mining, soft computing
and other related areas.

Zengchang Qin
Pittsburgh, PA, USA

Yongchuan Tang
Hangzhou, China

July, 2013
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Introduction

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.

— Albert Einstein (1879–1955), “Geometry and Experience”

1.1 Types of Uncertainty

Our nature is uncertain. Given this fact, there are two main streams of philosophy
to understand uncertainty. First, the nature is incomplete and is full of uncertainties.
Uncertainty is an objective and undeniable fact of nature. The second stream implies
that the nature is governed by orders and laws. However, we cannot perceive all
these laws from our limited cognitive abilities. That is where the uncertainties come
from. The existence of uncertainty is because of the lack of information. Following
these two streams of philosophy, uncertainty can be roughly classified into the
following two categories:

(1) Epistemic or systematic uncertainties are due to things we could in principle
know but don’t in practice. This may be either because we have not measured
a quantity sufficiently accurately, or because our model neglects certain effects.
The uncertainty comes from an imprecise nature which is involved with mixture
of truths. As gray is a mixture of black and white.

(2) Aleatoric or statistical uncertainties are unknowns that differ each time we
would make the same experiment. We assume there exists an ideological and
undeniable fact which is the reason for a phenomenon. However, it cannot be
perceived due to the limitation of human cognitive abilities. Each experiment is
actually the observable evidence of this “fact” from which we can know better
about this fact by conducting repeated experiments.

Vagueness or ambiguity is sometimes described as “second order uncertainty”,
where there is uncertainty even about the definitions of uncertain states or outcomes.
To quote Lindley[1]:
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There are some things that you know to be true, and others that you
know to be false; yet, despite this extensive knowledge that you have, there
remain many things whose truth or falsity is not known to you. We say that
you are uncertain about them. You are uncertain, to varying degrees, about
everything in the future; much of the past is hidden from you; and there is a
lot of the present about which you do not have full information. Uncertainty
is everywhere and you cannot escape from it.

Philosophically, uncertainty is ubiquitous. However, in the practice of science
and engineering, what we are concerned with is how to predict future events by using
uncertain information with a proper measure. Probability is a way of expressing
knowledge or belief that an event will occur or has occurred using uncertainty
information. Generally, there are two broad categories of probability interpretations:
frequentists and Bayesians. Frequentists consider probability to be the relative
frequency of occurrence from repeating games. Bayesians use probability as a
measure of an individual’s degree of belief. Such belief can be updated by new
observable evidence from a prior [2]. In the last few decades, Bayesian probability
has been widely used in probabilistic reasoning and statistical inference[3,4]. Many
successful algorithms have been proposed and applications have been used in real-
world practice. Bayesian probability theory assumes that uncertainty exists because
of the limitation of our cognitive abilities and lack of information�. Some other
uncertainty theories have been proposed to assume that the nature itself is uncertain
and independent from the limited abilities of acquiring this information. Among
them, Fuzzy Logic is the most successful and widely-used theory of modeling such
a type of uncertainty.

Proposed by Zadeh in 1965[5], fuzzy logic is a superset of conventional Boolean
logic that has been extended to handle the concept of partial truth (an interpretation
of the uncertainty of being true) — truth values between “completely true” and
“completely false”. Three hundred years B.C., the Greek philosopher, Aristotle,
came up with binary logic of true and false, which is now the principle foundation
of mathematics. Two centuries before Aristotle, Buddha, had the belief which
contradicted the black-and-white world, which went beyond the bivalent cocoon and
sees the world as it is, filled with contradictions. Such beliefs are popular especially
in oriental cultures, such as the Chinese Yin-Yang concept which is used to describe
how polar or seemingly contrary forces are interconnected and interdependent in the
natural world, and how they give rise to each other in turn[6].

Both fuzzy logic and probability theory can be used to represent subjective
belief. Fuzzy set theory uses the concept of fuzzy set membership (i.e., how much a
variable is in a set), and probability theory (Bayesian) uses the concept of subjective
probability (i.e., how probable do I think that a variable is in a set). While this
distinction is mostly philosophical, there is no such situation where this variable
is partially in the set; the variable is either in the set or not, absolutely. However,
we do not have such absolute belief because of the lack of information. The

� According to Jaynes, probability is an extension of logic given incomplete information [2].



1.1 Types of Uncertainty 3

fuzzy-logic-derived possibility measure is inherently different from the probability
measure; hence, they are not directly equivalent [7]. The work presented in this book
actually uses both fuzzy logic and probability for modeling uncertainty and making
predictions based on observable evidence. The nature of uncertainty is modeled by
fuzzy labels and the reasoning for using evidence is probabilistic.

A prediction or forecast is a statement about the way things will happen in
the future. A basic difference between a good predictor and a random guesser is
that a good predictor always uses the previous experience or embedded knowledge
when making predictions. We human beings are using such a way for making wise
decisions or predictions. The research of studying how to effectively use machines
to make predictions using given historic data is referred to as machine learning[8].
In this information age, we are buried by a tremendous amount of data. How we
use machine learning algorithms to exploit the data for discovering useful patterns
is called data mining.

Machine learning and data mining research has developed rapidly in recent
decades. As one of the most successful branches of artificial intelligence (AI),
it has had a tremendous impact on the current world �. Many new technologies
have emerged or been reborn with its development such as bioinformatics [9],
natural language processing[10], computer vision[11], information theory[12], and
information retrieval [13]. Traditionally machine learning and data mining research
has focused on learning algorithms with high classification or prediction accuracy.
From another perspective, however, this is not always sufficient for some real world
applications that require good algorithm transparency. By the latter we refers to
the interpretability of models; that is, the models need to be easily understood
and provide information regarding underlying trends and relationships that can be
used by practitioners in the relevant fields. Transparent models should allow for a
qualitative understanding of the underlying system in addition to giving quantitative
predictions of behavior. The intuition behind this idea is the way of human reasoning
with imprecise concepts. It has been a well-accepted fact that computers have beaten
the human being in numerical calculations in both accuracy and speed. However, the
capability of imprecise reasoning is still Achilles’ heel for machines.

Uncertainty and imprecision are often inherent in modeling these real-world
applications and it is desirable that these should be incorporated into learning
algorithms. In this book, we shall investigate the effectiveness of a high-level
modeling framework from the dual perspectives of accuracy and interpretability.
The reasoning is that by enabling models to be defined in terms of linguistic
expressions we can enhance robustness, accuracy and transparency. We need
a higher level modeling language which is to be truly effective and it must

� In 2011, IBM’s Watson, an artificial intelligence computer system capable of answering
questions posed in natural language, beat other human competitors on a famous American
quiz show Jeopardy and became the biggest winner. Its core algorithm, DeepQA, basically
uses advanced machine learning and information retrieval technologies. This is a big event
for attracting people’s attention to the long lasting human-machine competition since the
last breakthrough by Deep Blue, the world champion chess player, also from IBM.
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provide a natural knowledge representation framework for inductive learning. As
such it is important that it allows for the modeling of uncertainty, imprecision
and vagueness in a semantically clear manner. Here we present such a higher
level knowledge representation framework centered on the Modeling with Words
(MW)[14] paradigm.

We need to notice that the underlying semantics of our approach is quite
different from computing with words (CW) � proposed by Zadeh[15]. In this book,
the framework is used mainly for modeling and building intelligent data mining
systems. In such systems, we use words or fuzzy labels for modeling uncertainties
and use probabilistic approaches for reasoning. Therefore, the framework we will
introduce is an achievement of the research of modeling with words (MW) rather
than CW. The new framework we shall use in this book, label semantics [16], is a
random set based semantics for modeling imprecise concepts where the degree of
appropriateness of a linguistic expression, as a description of a value, is measured
in terms of how the set of appropriate labels for that value varies across a
population. Different from traditional fuzzy logic, fuzzy memberships are viewed
as being fixed point coverage functions of random sets, themselves representing
uncertainty or variations in underlying crisp definition of an imprecise concept.
Also, label semantics allows linguistic queries and information fusion in a logical
representation of linguistic expressions. Therefore, label semantics provides us with
an ideal framework for modeling uncertainty with good transparency.

1.2 Uncertainty Modeling and Data Mining

Since the invention of fuzzy logic, it has been widely applied in engineering
especially in control problems by handling the uncertainty information as a set
of expert rules. However, in this information age, we are facing some new
challenges. Nowadays, a tremendous amount of data and information has flooded us.
Contributing factors including the widespread use of the World Wide Web (WWW)
and other digital innovations in electronics and computing, such as digital cameras,
intelligent mobile phones, PDAs and new portal computing devices such as iPad,
Blackberry, Kindle, and etc. Most importantly, all the classical communication tools
such as papers, books, photos, videos are digitalized and have never been so easily
accessed as today. We are in the age of overwhelming information. The ability
to find the useful information has never been so important in history. Valuable
information may be hiding behind the data, but it is difficult for human beings
to extract this without powerful tools. We have already been living in a “data
rich but information poor” environment since the invention of these innovative IT
infrastructures and devices. To relieve such a plight, data mining research emerged
and has developed rapidly in the past few decades.

� CW is focused on developing a calculus of using linguistic terms directly for reasoning
based on a fuzzy logic framework. More details on modeling with words are available in
Reference [14], in which Zadeh pointed out the differences between CW and MW in the
foreword of this book.
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Data mining has become one of the most active and exciting areas for its
omnipresent applicability in the current world. Approaches to data mining research
mainly include three perspectives according to Zhou[17]: databases, machine
learning, and statistics. Especially from the perspective of machine learning, many
data mining algorithms have been developed to accomplish a limited set of tasks and
produce a particular enumeration patterns over data sets. But more theoretical and
practical problems still block our way to gain knowledge from data. Among these
obstacles, uncertainty is one of the most intractable. The traditional data mining
algorithms, such as decision trees[18,19] and K-means clustering[20], are crisp and
each database value may be classified into at most one cluster. This is unlikely to
satisfy everyday life experiences where a value may be partially classified into one
or more categories.

Probabilistic approaches for data mining have been the main stream of this
research for handling the statistical uncertainties. We generally assume some prior
probabilities in the hypothesis space, by inference on observations, to yield the
best hypothesis that can explain the observations best. Form another perspective,
systemic uncertainties are not well handled in such a probabilistic reasoning
framework. Imprecise data, missing data, and human subjectivity, all could cause
such uncertainty. Fuzzy logic is a good means for handling these uncertainties, and
also provides an inference methodology to enable the principles of approximate
human reasoning capabilities to be systematically used as a basis for knowledge-
based systems. In contrast to a classic set, the boundary of a fuzzy set is blurred.
This smooth transition is characterized by membership functions which give a
fuzzy set flexibility in modeling linguistic expressions. The appearance of fuzzy
logic becomes an important milestone in not only mathematics and logic but also
scientific philosophy — it is complementary to our classical 0-or-1, black-or-white
view of the nature[21]. Interpretations of membership degrees include similarity,
preference, and uncertainty [22]: they can state how similar an object or case is to
a prototypical one, they can indicate preferences between suboptimal solutions to
a problem, or they can model uncertainty about the true situation that is described
in imprecise terms. Generally, due to their closeness to human reasoning, solutions
obtained using fuzzy approaches are easy to understand and apply.

Uncertainty may exist in data mining models in various different ways:

(1) The model structure, i.e., how accurately a mathematical model describes the
true system for a real-life situation, may be known only approximately. Models
are almost always only approximations to reality.

(2) The numerical approximation, i.e., how appropriately a numerical method
is used in approximating the operation of the system. Most models are too
complicated to solve exactly. For example, the finite element method may
be used to approximate the solution of a partial differential equation, but
this introduces an error (the difference between the exact and the numerical
solutions).

(3) Input and/or model parameters may be known only approximately due to the
noise of data.
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(4) Input and/or model parameters may vary between different instances of the
same object for which predictions are sought. As an example, the wings of
two different airplanes of the same type may have been fabricated to the same
specifications, but will nevertheless differ by small amounts due to fabrication
process differences. Computer simulations therefore almost always consider
only idealized situations.

In recent years, a new framework of label semantics that was proposed by
Lawry[23] has become an alternative approach to dealing with two types of
uncertainties in inference problems. In contrast to fuzzy sets, label semantics
encodes the meaning of linguistic labels according to how they are used by a
population of communicating agents to convey information. Label semantics contest
that the efficiency of natural language as a means of conveying information between
members of a population lies in shared conventions governing the appropriate
use of words which are, at least loosely, adhered to by individuals within the
population. Following this idea, a new approach based on random set theory to
interpret uncertainty is discussed in this book. Based on these semantics, several
new algorithms are proposed. In such models, linguistic expressions such as small,
medium, large, tall, short, hot, cold, young and old are used to learn from data
and build linguistic models. These models are modified from the traditional models
in accordance with the label semantics. These models not only give comparable
accuracy to other well-known data mining models, but also have higher transparency
and robustness, which are all considered important properties of a data mining
algorithm.

1.3 Related Works

Fuzzy logic provides an approximate yet effective means for describing the
characteristics of a system that is too complex or ill-defined to admit precise
mathematical analysis. A fuzzy approach is based in the premise that key elements
in human thinking are not just numbers but can be approximated to a set of fuzzy
rules. Fuzzy logic implements this idea by introducing membership function which
is gradual rather than abrupt — which agrees with some eastern philosophy of
smooth transition. Much of the logic behind human reasoning is not the traditional
two-valued or even multi-valued logic[24]. This fuzzy logic plays a basic role in
various aspects of the human thought process [25].

For the above advantages of fuzzy methods, fuzzy logic can play an important
role in uncertainty modeling, so that there is a rich literature of fuzzy logic based
data mining algorithms. Particularly, fuzzy logic has already been used in the data
selection and preparation phase for modeling vague data in terms of fuzzy sets [26,27].
Another possible application of fuzzy logic in data mining is the induction of fuzzy
cluster analysis. Clustering methods are among the most important unsupervised
learning techniques. In data mining, they are often applied as one of the first steps
in order to convey a rough idea of the structure of a data set. Clustering refers
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to the process of grouping a collection of objects into classes such that objects
within the same class are similar in a certain sense, and objects from different
classes are dissimilar. In standard clustering, each object is assigned to only one
cluster. Consequently, the clusters have sharp boundaries. However, in practice, such
boundaries are often not very natural or even counterintuitive. In fact, the boundary
of single clusters and the transition between different clusters are usually “smooth”
rather than sharp. This motivates researchers to extend fuzzy logic to clustering
algorithms. In fuzzy clustering an object that may belong to different clusters is
usually assumed to form a partition of unity. Fuzzy clustering has proved to be
extremely useful in practice[20].

One of the most frequent applications of fuzzy logic in data mining is the
induction of rule based models. Linguistic modeling which is now an important
area of application for fuzzy logic is accomplished by descriptive Fuzzy Rule-Based
Systems (FRBSs). At present, FRBSs are becoming more and more important.
These kinds of systems constitute an extension of classical rule-based systems,
because they deal with fuzzy rules instead of classical logic rules. In order to
enhance the robustness in classification or prediction, many fuzzy rule induction
algorithms have been proposed. Some are simple fuzzy logic rules in the form of
IF-THEN, e.g., Reference [28] and some are fuzzy associate rules [29]. There are
also fuzzy rules from semi-supervised learning[30]. Drobics et al. [31] proposed a
fuzzy FOIL based on traditional fuzzy logic. Lawry et al. [32] also applied fuzzy rule
induction algorithms in hydrological modeling.

A fuzzy rule base is the key procedure in constructing FRBSs. A large quantity
of methods has been proposed for automatically generating fuzzy rules from
numerical data. Usually they make use of complex rule generation mechanisms
such as neural networks[33,34], genetic algorithms[35,36], fuzzy clustering [37], and
etc. And all these learning algorithms could be categorized into three kinds:
cluster-oriented approaches, hyperbox-oriented approaches, and structure-oriented
approaches. Cluster-oriented rule learning approaches are based on fuzzy cluster
analysis [20]. Hyperbox-oriented approaches use a supervised learning algorithm that
tries to cover the training data by overlapping hyperboxes [38]. The main problem
of both approaches is that each generated fuzzy rule uses individual membership
functions and thus the rule base is hard to interpret. Cluster-oriented approaches
additionally suffer from a loss of information. Structure-oriented approaches avoid
all these drawbacks, for they do not search for clusters in the data space. Among
these algorithms, a family of efficient and simple methods, called “ad hoc data-
driven methods”, has been proposed in the literature[39–41]. One of the most known
and widely used ad hoc data-driven methods is Wang and Mendel’s method (WM-
method) [41]. By providing initial fuzzy sets before fuzzy rules are created the data
space is structured by a multidimensional fuzzy grid. A rule base is created by
selecting those grid cells that contain data. One important criterion used to evaluate
the interpretability of a fuzzy system is that there are few fuzzy rules in the rule base.
And in addition, to improve the performance, the membership function is usually
trained after the rule base has been generated.
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After decades of developments of fuzzy methods, their application in data
mining has made a great progress. But there is still a problem: What is a good
solution from the point of view of a user in the field of data mining? Of course,
correctness, completeness, and efficiency are important, but there is a constantly
growing demand to keep the solutions conceptually simple and understandable.
Unfortunately, it is extremely hard to develop a formal theory to evaluate the so-
called “simplicity”, because for complex domains it is difficult to measure the
degree of simplicity and it is even more difficult to assess the gain achieved by
making a system simpler. Nevertheless, this is a lasting challenge for the fuzzy
community to meet [42].

Another big area for applying fuzzy logic is decision tree learning. As pointed
out by Quinlan[43]:

The results of (traditional) decision trees are categorical and so do
not convey potential uncertainties in classification. Small changes in
the attribute values of a case being classified may result in sudden
and inappropriate changes to the assigned class. Missing or imprecise
information may apparently prevent a case being classified at all.

To overcome this problem, some probabilistic or soft decision trees were
proposed. The first fuzzy decision tree (FDT) reference was attributed to Chang
and Pavlidis in 1977[44]. Since then more than 30 algorithms were proposed.
Generally, these algorithms can be divided into two categories according to Olaru
and Wehenkel [45]:

(1) Enable the use of decision trees to manage fuzzy information in the forms of
fuzzy inputs, fuzzy classes or fuzzy rules;

(2) Use fuzzy logic to improve their predictive accuracy.

One of the representative FDTs is the one proposed by Yuan and Shaw[46].
They proposed a model based on the reduction of classification ambiguity with
fuzzy evidence. They argue that there are two kinds of uncertainties, which are
statistical uncertainties and cognitive uncertainties, in real-world applications. In
some real-world classification problems, the feature values are actually vague and
with involved cognitive uncertainties. For example, given a rule such as “If the
weather of tomorrow is sunny, then I will go to play football”, the term “sunny”
has the inherent cognitive uncertainties. They use fuzzy membership functions to
represent these uncertainties and try to build a fuzzy decision tree that gives the
best partitioning of classes given the fuzzy data. Wang et al. [47] also extended this
model by considering branch merging. Most of the fuzzy decision trees use fuzzy
membership functions to model uncertainties. Baldwin et al. [48] proposed a fuzzy
decision tree based on mass assignment theory which is another interpretation of
imprecise concepts based on Shafer-Dempster theory[49]. Elouedi et al. [50] directly
used belief functions in decision trees.

Fuzzy logic can also be applied to Bayesian estimation. Fuzzy logic can enhance
the robustness of the model by using soft boundaries rather than sharp boundaries
in the problems with numerical attributes. For example, Naive Bayes classifiers
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proposed by Zhang and Tang[51]. Di Tomaso and Baldwin[52] also proposed a
fuzzy Bayesian network model. Label semantics, as an alternative interpretation
of vagueness and uncertainties to fuzzy logic and belief functions, has a nice
probabilistic property and the advantages of modeling with linguistic (or fuzzy)
labels. Using label semantics for Bayesian modeling is still a new research field.
Randon and Lawry[53,54] proposed a semi-Naive Bayes algorithm. A comprehensive
study of this algorithm can be found in Reference [55]. Chipman et al. [56] proposed
Bayesian treed models, where they used a binary tree to identify partitions of a data
set and the tree will be used for finding and fitting parametric treed models using a
Bayesian approach. In this book we will use a different approach to combine Naive
Bayes and decision trees.
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2

Induction and Learning

Learning is any process by which a system improves performance from experience.

— Herbert Simon (1916–2001)

2.1 Introduction

Induction is fundamental to the acquisition of human knowledge. Twenty-four
centuries ago, Plato raised the point that people have much more knowledge
than what appears to be present in the information to which they have been
exposed. Chomsky referred to it as Plato’s problem to describe the gap between
knowledge and experience[1]. Induction can be regarded as an important property
of intelligence. Human beings have the ability of generalizing from already known
cases to new unknown cases with which they share similarities or patterns. Actually,
people have been seeking patterns in data throughout human history. Hunters seek
patterns in animal migration behavior in order to hunt for survival, farmers seek
patterns in crop growth in order to feed themselves and their families, businessmen
seek patterns from markets to make profit, and politicians seek patterns in voter
opinions in order to be elected. A scientist’s job is to make sense of observed
evidence (or data) in order to discover the patterns that govern how the physical
world works and encapsulate them in theories that can be used for predicting what
will happen in the future. Scientists are the first group of people who woke up and
dared to argue with the followers of the Almighty on the issues such as the earth is
not the center of the universe and human beings, like all other species, have evolved
to what they are today. The powerful tool they have been employing, so called
science, is based on such a hypothesis-evidence paradigm. With the development
of new measuring tools, we can always find more new evidence about the nature
and our hypothesis spaces have been updated again and again by those giants like
Copernicus, Newton, Maxwell, Darwin and Einstein.

The problem of how to make machines learn like human beings is a key
issue of artificial intelligence research. This research has been developed rapidly
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with the advance of computing technology. It has grown into a new research field
called machine learning. Machine learning is about how to build algorithmic or
mathematic models that can be trained from data in order to make correct decisions
or predictions. The learning processing can be to consider a search through the
hypotheses space in order to find what can explain the evidence best. In other
words, we need to find an algorithmic “theory” to explain the “observations” and
use it to make predictions. A theory is good if it can be validated by observations
and predictions. For more than two thousand years, philosophers have debated the
question of how to evaluate scientific theories, and the issues are brought into a focus
by inductive learning because what is extracted is essentially a “theory” about the
data. Machine learning and the philosophy of science share a lot of similarities and
are regarded as an experimental philosophy of science, though the methodological
skills employed in science are non-algorithmic[2]. In this chapter, we are going to
introduce some basic ideas about inductive learning and some classical algorithms
that will be used in the following chapters.

2.2 Machine Learning

Learning, a main feature of intelligence, covers such a broad range of processes that
is hard to define precisely. Based on dictionary definition, learning is the process by
which we “gain knowledge or understanding of, or skill in, by study, instruction, or
experience” and results in “modification of a behavioral tendency by experience”[3].
To quote Herbert Simon�, “learning is any process by which a system improves
performance from experience”. Usually, human learning involves the following
steps:

(1) Observation;
(2) Analysis in order to find out the regularities or patterns among the observations;
(3) Formulation of a theory to explain the observations;
(4) Prediction of new phenomena according to the theory.

Can machines follow the same steps of learning� and if so, how? This is a
central question in machine learning research originated from early research on

� Herbert Simon has made important contributions in many areas including cognitive
psychology, cognitive science, computer science, public administration, economics,
management, philosophy of science, sociology and political science. He received the
Turing Award in 1975, the Nobel Prize in Economics in 1978, National Medal of Science
in 1986, the Von Neumann Theory Prize in 1988, the American Psychology Association’s
Award for Outstanding Lifetime Contributions to Psychology in 1993. With almost
thousands of high cited publications, he is regarded as one of the most influential social
scientists of the 20th century [4].

� It still remains controversial for machines to have human intelligence. For example,
Penrose argued that the human intelligence is inseparable from his physical structures.
Since the machines (or specifically, computers) have the different physical structures, it is
infeasible to recreate the human intelligence in silicon structures [5]. The Chinese Room
thought experiment by Searle proposed another philosophical problems of machine’s
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game playing, letter recognition, abstract concepts and verbal memory in the mid-
1950s[7], and developed into an area of artificial intelligence research. According
to Reference [8], similar to human learning, the machine learning process can be
divided into the following steps:

(1) Observing and exploring interesting phenomena;
(2) Generating hypotheses;
(3) Formulating a model to explain phenomena;
(4) Testing predictions made by the theory;
(5) Modifying theory and repeating (at step (2) or (3)).

Machine learning is not a single area. It combines computer science,
mathematics (especially probability theory, statistics and information theory),
cognitive science, biological sciences and even linguistics. It is regarded as a
computational approach to understanding the mechanism of learning and used as
a powerful tool in many areas. As an engineering field, machine learning has
become steadily more mathematical and more successful in applications over the
past 30 years. Learning approaches such as data clustering, probabilistic classifiers,
and nonlinear regression have found surprisingly wide application in the practice
of engineering, business, and science. We can say that, machine learning is the
study of computer algorithms capable of learning from experience to improve their
performance on some special tasks. Thus, if machine learning is a science, so is it a
science of algorithms[7].

Today machine learning algorithms are being applied to many kinds of problems
and developed into some new fields by emphasizing the different aspects of the
problem, including knowledge discovery in databases (KDD) or data mining,
natural language processing[12], computer vision [13,14], information retrieval [12],
biometrics, bioinformatics [15], robot control [16] and crime location prediction[17],
as well as to more traditional problems such as speech recognition, face recognition,
handwriting recognition, medical data analysis and game playing[18,19].

AI researchers can roughly be divided into two groups: one group is trying to
combine current mathematical and computational techniques with cognitive science
and neuroscience with the aim of understanding the essence of intelligence �.
Another group takes engineering approaches by making intelligent systems or
intelligent machines with learning algorithms to aid human beings in many practical
areas. The latter include manufacturing, financial analysis and computer aided
diagnosis (CAD) and so on. The research of these two groups is inter-connected. The

limitation in language understanding[6]. In this book, we consider learning of machines
as a mathematical induction and treat it with an engineering approach. We do not intend to
go deeply into the philosophy behind human cognition and knowledge acquisition.

� Nobel Prize laureate Francis Crick, famous for discovering the double helix structure of
DNA, had devoted his later life of research centering on theoretical neurobiology and
attempts to advance the scientific study of human consciousness, which is so related to
human intelligence. He was skeptical about the value of using only computational models
of mental function that are not based on detailed brain structure and function[20].
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research presented in this book mainly belongs to the latter group. More specifically,
we aim to build intelligent systems that are more accessible to human beings.

2.2.1 Searching in Hypothesis Space

We can treat machine learning as a process of searching in a large space of possible
hypotheses to determine the one that best fits the observed data by giving some prior
knowledge for the learner. In other words, the learning algorithm is trying to find the
hypothesis that is most consistent with the available training examples �. According
to Mitchell [21] there are three main issues related to learning:

(1) Some class of tasks T ;
(2) Performance measurement P;
(3) Experience E.

If a system can be described as the ability to “learn”, then its performance
improves with E, with respect to T and P. Formally, for a set of noise free data
xi for i = 1, · · · ,N, there is a target concept function denoted as f (xi), yi = f (xi),
where yi is the class or label of xi. We aim to find a hypothesis h in the hypotheses
space H (i.e., h∈H), for which h(xi) = f (xi) for i = 1,2, · · · ,N in the instance space
X , where N is the number of training examples.

Besides the hypotheses and instance space, another important “space” is called
version space which is the subset of hypotheses from H consistent with training
examples seen so far. In other words, version space V is the plausible space of
H given x. For a particular concept target we only need to search through the
version space instead of the whole hypotheses space. Fig. 2.1 gives an example of
“rectangle” hypothesis space and the version space based on given positive (pluses)
and negative examples (circles). The “theories” in this example are to find rectangles
that cover the positive examples only. The thick outer rectangle is the maximally
general positive hypothesis boundary, and the inner thick rectangle is the maximally
specific positive hypothesis boundary. The intermediate (thin) rectangles represent
the hypotheses in the version space bounded by these two boundaries.

� In logic, we often refer to the two broad methods of reasoning as the deductive and
inductive approaches, respectively. Machine learning is usually regarded as an inductive
reasoning by following the steps from (A) observations; (B) pattern; (C) hypothesis to (D)
theory. However, if we consider the learning a search in the hypothesis space, we are first
given a paradigm with pre-assuming models (e.g., some parametric models like Gaussian
mixtures). By offering the observations, we hope to find the best hypothesis to explain
these data. This process is a deductive approach of reasoning: (A) theory; (B) hypothesis;
(C) observations and (D) confirmation. Based on this example, we can understand that
some philosophers deny the existence of pure induction in human reasoning based on the
limitation of our cognitive abilities.
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Fig. 2.1 Version space for a “rectangle” hypothesis language in two dimensions. Pluses are
positive examples, and circles are negative examples. This figure is modified from the version
space illustration in Reference [9]

However, all the hypotheses in the version space are consistent with the given
examples. How can we select the best one? According to Occam’s razor � [23], we
should always intend to find the simplest one �.

In addition to the “learning capability” of the algorithms, the efficiency of
searching is also largely dependent on the complexity of searching space. Some
machine learning algorithms employ the hill climbing method in which one
iteratively applies all possible operators, and compares the resulting states using
an evaluation function, in order to select the best state [7]. Learning can be regarded
as guided learning but not an exhaustive searching, so it is not guaranteed to find
the optimal solution. The search procedures tend to be heuristic and no guarantees
can be made about the optimality of the final result. This leaves plenty of room for
“bias” where different search heuristics bias the search in different ways. For most
cases, we are forced to work with a limited quantity of data, and increasing the
dimensionality of the space rapidly leads to the point where the data is very sparse.
This problem is referred to as the curse of dimensionality [24]. For example, 100
evenly-spaced samples in a unit interval of [0,1] have no more than 0.01 distance
between points; an equivalent sampling of a 10-dimensional unit hypercube with a
lattice with a spacing of 0.01 between adjacent points would require 210 samples:
thus, the 10-dimensional hypercube can be said to be a factor of 1018 “larger” than
the unit interval [25].

Machine learning algorithms have different paradigms. Based on the paradigms
proposed by Langley[7] and recent developments, we use the following several

� Occam’s razor principle may not be applicable to all practical problems because some
real-world phenomena are related complex hidden factors, and the simplest hypothesis
may not always be the best hypothesis. For example, some complex hierarchical Bayesian
generative models perform very well in complex problems such as natural language
understanding [10,11], question-answering [12] and content-based image retrieval [13].

� In some other theories [22], the hypotheses consistent with data are assigned with a
probability distribution that is referred to as universal distribution [23]. Hypotheses will
be chosen according to this distribution but not the simplest one only.
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general forms in this book: supervised learning, unsupervised learning, semi-
supervised learning[26] and reinforcement learning. In supervised learning, a
teacher/supervisor provides a category label or cost for each pattern in a training set,
and seeks to reduce the sum of the costs for these patterns. In unsupervised learning
or clustering which is a representative unsupervised problem, there is no explicit
teacher/supervisor, and the system forms clusters of the input patterns based on
some measure of similarity. The most typical way to train a classifier is to present
an input, compute its tentative category label, and use the known target category
label to improve the classifier [27]. In semi-supervised learning, only a small subset
of data are provided with category labels. It can be regarded as weak supervised
learning, After all, some supervised information is given for training. However, in
reinforcement learning, like in unsupervised learning, no explicit category labels
are given; instead, the teaching feedback is that the tentative category of being right
or wrong will be given. A popular example is, when teaching a dog a new trick, if
he performs correctly, some rewards (e.g., bones, foods) will be given. Otherwise,
there will be penalties (e.g., no bones or foods). Gradually, the dog will learn the
trick. One of the most well-known reinforcement learning methods, Q-learning, has
been well used in game playing or mobile robot path planning[21]. In this book,
we only focus on using the proposed framework for building supervised learning
and unsupervised learning models. Semi-supervised learning and reinforcement
learning will not be discussed in this book.

2.2.2 Supervised Learning

Supervised learning aims to devise a method or construct a model for assigning
instances to one of a finite set of classes on the basis of a vector of variables
measured on the instances. The information on which the rule is to be based is
called a training set of instances with known vectors of measurements and known
classification[28]. A typical supervised classification problem has a training set in
the form:

DB = {(x1,y1),(x2,y2), . . . ,(xn,yn)}
where x values are typically vectors of the form: x = 〈x1, . . . ,xn〉, whose components
can be discrete or real valued. These components are called the attributes (or
features) of the database. In classification problems, the object is to infer the
unknown functional mapping

f : x → y

where y value is drawn from a discrete set of classes C = {C1, . . . ,Ck} that
characterize the given data x. In prediction or regression problems, the values of
y ∈ R are continuous but not discrete. The training examples will be used to build
our learning model and are considered as the “experience” about some hidden truth
we want to learn about.

For example, Fig. 2.2 illustrates the probability distributions of two sets of data
which are assumed to be generated by two Gaussians:
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P(x|C1) ∼ N (2,0.3)

P(x|C2) ∼ N (3,0.3)

where N (μ,δ ) is a Gaussian distribution with mean μ and standard deviation δ .
Given a new data x

′
, the probability of it belonging to a particular class can be

calculated based on the Bayes theorem:

P(Ci|x′
) ∝ ∏

i=1,2
P(x|Ci)P(Ci) (2.1)

where P(x|Ci) can be estimated based on the training data. More details about
Bayesian learning can be found in Chapter 6.
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Fig. 2.2 Two classes of data characterized by two Gaussian distributions with the same
standard deviation δ = 0.3 but different means μ1 = 2 and μ2 = 3

The models learnt from training data are then evaluated with a different test set
in order to determine if they can be generalized to new cases. Since the training data
is limited and may also contain noise, then we would expect that the accuracy of
the test set will be less than 100%. Usually, test data are independent and identically
distributed samples are drawn from the same distribution of training examples. Why
is the test set important? The following analogy[29] illustrates the importance of test
sets in the learning process [30]:

Imagine yourself back in the 5th grade. The class is taking a spelling
test. Suppose that, at the end of the test period, the teacher asks you to
estimate your own grade in the quiz by marking the words you got wrong.
You will give yourself a good grade, but your spelling will not improve. If,
at the beginning of the period, you thought there should be an ‘e’ at the end
of “tomato”, nothing will have happened to change your mind when you
grade your own paper. No new data has entered the system. You need a test
set! Now, imagine that at the end of the test the teacher allows you to look
at the papers of several neighbors before grading your own. If they all agree
that “tomato” has no final ‘e’, you may decide to mark your own answer
wrong. If the teacher gives the same quiz tomorrow, you will do better.
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But how much better? If you use the papers of the very same neighbors to
evaluate your performance tomorrow, you may still be fooling yourself. If
they all agree that “potatoes” has no more need of an ‘e’ than “tomato”,
and you have changed your own guess to agree with theirs, then you will
overestimate your actual grade in the second quiz as well. That is why the
evaluation set should be different from the test set.

If the model is very complex and is trained excessively only for improving the
training accuracy, we may be in danger of overfitting. Fig. 2.3 gives an illustration
of overfitting the training data. Given the data in the left-hand side figure, there could
be three models with different complexities. By empirical studies, we can observe
the training error and test error by increasing the model complexity. The right-hand
side figure shows that the best model should be the one with best test error since
the training error will keep going down by overfitting the training data. All the
experiments presented in the following chapters are based on separate training and
test sets in order to validate the performance of the proposed algorithms.
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Fig. 2.3 Given the training data shown in the left-hand side figure, models with different
complexities can be used, e.g., least squares (LS), smoothing spline and polynomial function.
The right-hand side figure shows that the training error and test error will diverge with the
increase in complexity

2.2.3 Unsupervised Learning

In contrast with supervised learning, there are no explicit target outputs in
unsupervised learning. The unsupervised learner brings to bear prior biases as to
what aspects of the structure of the input should be captured in the output. The
only things that unsupervised learning methods have to work with are the observed
input patterns xi, which are often assumed to be independent samples forming
an underlying unknown probability distribution and some explicit or implicit a
priori information as to what is important. A typical problem of unsupervised
learning is clustering. The basic idea behind clustering is to group similar objects
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together and maximize the differences between these groups. Commonly used
clustering algorithms include k-means, fuzzy C-means [31], hierarchical clustering
and a mixture of Gaussians. Among them, the k-means algorithm is the simplest
and most widely used model for clustering. Supposing that we have N sample
feature vectors x1,x2, ...,xN , where each element is an n-dimensional real vector,
the k-means algorithm aims to partition the observations into K sets (K ≤ N) S =
{S1,S2, . . . ,SK} so as to minimize the within-cluster sum of dissimilarity measure
J:

J = argmin
S

K

∑
i=1

∑
x j∈Si

D(x j,μi) (2.2)

where μi is the mean of data elements in Si:

μi =
1
|Si| ∑

x j∈Si

x j (2.3)

and D is a distance or dissimilarity measure. Fig. 2.4 illustrates clustering 2-
dimensional data (with coordinates x1,x2) into three clusters based on the Euclidean
distance, i.e.,

D(x,y) = ‖x−y‖2 (2.4)

x2

x1

Fig. 2.4 An example of clustering in 2-dimensional space where cluster number K = 3

A key component of a clustering algorithm is the distance measure between
data points. If the components of the data vectors are all in the same physical
units then it is possible that the simple Euclidean distance metric is sufficient to
successfully group similar data. For many real-world problems, how to define a
sufficient distance measure that can reflect the similarity properties of data is the
most important component for solving the problem but not the clustering algorithm
itself. Chapter 7 in this book gives a good example by defining a distance measure
between a data element to a vague concept for solving the problem of clustering
mixed types of data.
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To illustrate the difference between supervised and unsupervised learning, we
can think of uncontaminated data as forming a fuzzy ball in a high dimensional
space. Unsupervised learning puts a boundary around this ball and assigns a high
suspicion score to anything outside of the boundary. Supervised learning creates a
second fuzzy ball consisting of fraudulent data and assigns a high suspicion score
only if the probability of being in class 2 is sufficiently higher than being in class
1. Data that are outside of the unsupervised boundary may not be in the direction
of class 2. However, the supervised approach makes the assumption that future
fraudulent data will have the same characteristics as past fraudulent data and further
assumes that fraudulent use of the data will result in characteristics similar to those
in the fraudulent use of the other account. Clustering algorithms have been used in
numerous practical applications such as medical imaging, gene sequence analysis,
social network analysis, grouping similar answers in information retrieval and so
on[32]. A good tutorial on unsupervised learning from a statistical viewpoint can be
found in Reference [33].

2.2.4 Instance-Based Learning

Besides the above paradigms based on the type of supervisions, machine learning
also has other paradigms such as parametric model learning and non-parametric
model learning, generative model learning and discriminative learning. Instance-
based learning (IBL) or memory-based learning[34] is a non-parametric approach
where learning does not take place until a query is made. Instead of performing
explicit generalization, IBL compares the new instances with instances seen in
training, which have been stored in the memory. We are not assuming any models
that generate these data. We consider only the properties that the data exhibit.

k-nearest neighbor (k-NN) learning, one of the most popular realizations of
IBL, combines the target classes (or values in prediction problems) of selected
neighbors to predict the target class or estimate the function value of the given
instance. Fig. 2.5 illustrates how to classify a new instance using k-NN in a 2-
dimensional space with two classes of data in two scenarios where the k value is set
to 3 and 7, respectively. The classification results may be different. The choice of
k is data-dependent; generally, larger values of k reduce the effect of noise on the
classification, but make boundaries between classes less distinct. A good k can be
selected by various heuristic techniques.

k-NN can be applied to manifold learning such as locally linear embedding
(LLE) [34] and locally linear reconstruction (LLR)[35]. The basic idea of these two
models is about how to automatically determine two main factors of k-NN: k value
and weights of neighbors by minimizing the construction error

E(w) = ∑
i
|xi −

k

∑
j=1

wi jx′j|2 (2.5)

where x′j for j = 1, . . . ,k is the k-nearest neighbor of xi and wi j is the weight of
x′j respective to xi. Based on k-nearest neighbors of xi, the data is mapped into a
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Most likely class when =7k

Most likely class when =3k

k=7
k=3

Fig. 2.5 An example of k-nearest neighbor classification in a 2-dimensional space. The
selection of k may yield different classification results, e.g., the cases of k = 3 and k = 7 are
illustrated

lower dimensional space through a linear transformation of w, which provides the
optimal construction of each data point from its neighbors. The properties between
high dimensional data instances are contained in weight matrix w. In the final stage
of dimension reduction, we hope to find the lower dimensional output yi of high
dimensional input xi in order to minimize the embedding cost function

Φ(y) = ∑
i
|yi −

k

∑
j=1

wi jy j|2 (2.6)

More details are available in References [34] and [35].

2.3 Data Mining and Algorithms

Data mining, also popularly referred to as knowledge discovery in database
(KDD), is a multidisciplinary field including database technology, machine
learning, statistics, information retrieval, knowledge acquisition and knowledge-
based systems. Specifically, it is the technology for extracting (or mining)
knowledge from large amounts of data. “Data mining” has become a popular term
in recent years in industry as well as in academia. Big software companies such as
Google, Yahoo! and Microsoft invest heavily in data mining and machine learning
technologies. In this section, we give a short introduction to this field by focusing
on the following issues: What is data mining and why is it important, how do we do
data mining? Brief introductions to some data mining algorithms used in this book
are given in the following sections.
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2.3.1 Why Do We Need Data Mining?

Generally, data mining is the process of analyzing data from different perspectives
and summarizing it to provide useful information. We are overwhelmed with the
unbridled growth in data across a wide range of disciplines and applications. In
recent years, companies have used powerful computers to sift through volumes of
supermarket scanner data and analyze market research reports. However, continuous
innovations in computer processing power, disk storage and statistical software are
dramatically increasing the accuracy of analysis while driving down the cost. Based
on traditional statistical analysis methods and newly developed machine learning
algorithms, data mining research has advanced rapidly and has become one of the
most promising areas in Information Technology (IT).

Important sources of large volumes of data include scientific, engineering,
financial, demographic, marketing data and World Wide Web (WWW) data.
Omnipresent computers make it so easy to save things that previously we would
have trashed. With the development of computer technology, collecting and storing
data has become cheaper. The traditional database technology and statistical
methods are not powerful enough for us to extract useful information from
such large volumes of data. Classical database research was focused on how to
efficiently store and query data. With the development of machine learning and data
mining, some new database technology can generate new knowledge based on data
reasoning to match the given queries.

Suppose you enter a library without the retrieval systems and librarians and with
an endless network of rooms with bookshelves full of books, each of which has
no title or author but only a content page. In such a case, it will be too hard to
find the book you want. The library contains a huge amount of data but no useful
information for us. This is an interesting but cruel metaphor for our growing data
mining problems. We are buried by the expanding universe of data in which we
are data rich but information poor. It is almost impossible for a human librarian to
handle such amounts of information. We need intelligent computing systems to be
a wise librarian in such a library[36]. As the volume of data increases inexorably the
proportion of it that people understand decreases, alarmingly. So, we need to find
useful patterns and relationships from large and potentially noisy databases.

2.3.2 How Do We do Data Mining?

According to the CRISP-DM (CRISP-Data Mining) Methodology[37], we can
divide data mining into five main parts: Data Understanding, Data Preparation,
Modeling, Evaluation and Deployment. In this book, we shall not attempt to give
an exact solution for a data mining project. Instead, we will focus on the modelling
part of data mining with the aim of providing effective and interpretable algorithms.

There are a number of different approaches toward data mining. Zhou divides
data mining research into three distinct approaches: the approach from the
database perspective, from the machine learning perspective and from the statistical
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perspective[38]. Each perspective lays strong emphasis on different aspects of data
mining.

(1) Efficiency of data mining: this is emphasized by the database perspective. A
database often has a huge amount of data and for some reasons of computational
complexity some algorithms simply cannot be applied to such a large data set.
We have to use the KDD process with high efficiency, for many industrial
applications.

(2) Effectiveness of data mining: this is emphasized from the machine learning
perspective. Machine learners want their algorithms to be as accurate as possible
empirically. From this point of view, the accuracy of the classification and
prediction is the only criterion for the evaluation of the data mining algorithm.

(3) Validity of data mining: this is emphasized from the statistical perspective.
Statistics provides a solid foundation for statistical learning algorithms, so in
this case we expect a mathematical justification of the process of data mining
not only an empirical one.

In this book we will mainly focus on the machine learning perspective. A good
data mining algorithm needs both theoretical soundness and excellent performance
in experimental studies of benchmark problems, e.g., UCI Machine Learning
Repository[39]. In this book, we will put our emphasis on both the effectiveness and
transparency of the algorithm. In this case a good algorithm should generate models
that are both interpretable and accurate. In order to make the book self-contained,
we will give brief introductions to some of the data mining algorithms that will be
used in later experiments.

2.3.3 Artificial Neural Networks

The learning model of Artificial Neural Networks (ANN) (or just a neural
network (NN)) is an approach inspired by biological neural systems that perform
extraordinarily complex computations in the real world without recourse to explicit
quantitative operations. The original inspiration for the technique came from
examination of bioelectrical networks in the brain formed by neurons and their
synapses (see biological neural network). In a neural network model, simple nodes
(called variously “neurons” or “units”) are connected together to form a network of
nodes hence the term “neural network”.

Each node has a set of input lines which are analogous to input synapses in a
biological neuron. Each node also has an “activation function” that tells the node
when to fire, similar to a biological neuron. In its simplest form, this activation
function can just be to generate a ‘1’ if the summed input is greater than some value,
or a ‘0’ otherwise. Activation functions, however, do not have to be this simple. In
fact to create networks that can do useful work, they almost always have to be more
complex, for at least some of the nodes in the network. Typically, there are at least
three layers to a feed-forward network — an input layer, a hidden layer and an output
layer (see Fig. 2.6 ). The input layer does no processing — it is simply where the
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data vector is fed into the network. The input layer then feeds into the hidden layer.
The hidden layer, in turn, feeds into the output layer. The actual processing in the
network occurs in the nodes of the hidden layer and the output layer. Since the first
model of ANN in an artificial neuron proposed by McCulloch and Pitts [40], neural
network research was flourishing until Minsky and Papert’s book Perceptrons [41]

that pointed out a drawback of the linear separability problem. This drawback was
overcome by Multi-layer Perceptrons (MLP) or Multi-Layer Feed-Forward Neural
Network[42]. A good review of the the history of neural network research is in
Reference [43].

w
ij

Inputs

Output

Hidden nodes

Fig. 2.6 An illustration of a two-layer neural network. The arrows represent connections
with weights wi j attached to them

The most commonly used algorithms for multi-layer ANN are the Back-
Propagation (BP) neural networks[44]. In this book, BP-NN will be used for later
comparison studies. Learning by BP algorithm for NN proceeds as follows: example
inputs are presented to the network and, if the network computes an output vector
that matches the target, nothing is done. If there is an error, then the weights are
adjusted to reduce this error. The trick is to assess the blame for an error and divide
it among the contribution weights [45] in order to minimize the error between each
target output and actually computed output.

Neural networks are particularly useful for dealing with bounded real-valued
data, where a real-valued output is desired; in this way neural networks will perform
classification by degrees, and are capable of expressing values equivalent to “not
sure”. In real life applications, neural networks perform particularly well on the
following common tasks:

(1) Function approximation (or regression analysis);
(2) Time series prediction;
(3) Classification;
(4) Pattern recognition.
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As one of the most successful branches of artificial intelligence, ANN has a great
impact in both computer science and engineering. There are many good textbooks
on this topic such as References [46], [47] and [21].

2.3.4 Support Vector Machines

Support vector machines (SVM) were proposed based on Vapnik-Chervonenkis
(VC) Theory, which is also referred to as statistical learning theory[47] by Vapnik
and his colleagues.

Support vector machines are considered to have good generalization ability,
especially in a high dimensional feature space. When used for classification,
the SVM creates a hyperplane that separates the data into two classes with the
maximum-margin. Given training examples labeled either “pluses” or “squares”,
a maximum margin hyperplane splits the positive and negative training examples,
such that the distance from the closest examples (the margin) to the hyperplane is
maximized (for example, see Fig. 2.7 ). The use of the maximum margin hyperplane
is motivated by Vapnik-Chervonenkis theory, which provides a probabilistic test
error bound that is minimized when the margin is maximized. However, the utility
of this theoretical analysis is sometimes questioned given the large slack associated
with these bounds.

The parameters of the maximum margin hyperplane are derived by solving a
quadratic programming (QP) optimization problem. There exist several specialized
algorithms for quickly solving the QP problem that arises from SVMs. The
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+

e1

e2

Fig. 2.7 The perpendicular distance between the separating hyperplane and a hyperplane
through the closed points (the support vectors) is called margin. e1 and e2 are examples of
support vectors of opposite class
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classification problem can be restricted to consideration of the two-class problem
without loss of generality. Go get a better generalization, we would expect to draw
a decision boundary which maximizes the margin. Given the database:

DB =
{

(x1,y1), . . . ,(xN ,yN)
}

, x ∈ R
n,y ∈ {−1,1}

and let the decision function be

f (x) = sign(w · x+b) (2.7)

If the given data is separable then the data will be correctly classified

∀i, yi(w · x+b) > 0 (2.8)

Clearly, this relation is invariant under a positive re-scaling of the argument inside
the sign function, hence we implicitly define a scale for (w,b) to give canonical
hyperplanes such that

w · x+b = 1 (2.9)

(denoted by H1) on one side of the hyperplane and

w · x+b = −1 (2.10)

which can be denoted by H2, on the other side, since the perpendicular distance
between the hyperplane

w · x+b = 0 (2.11)

is |b|/||w|| where ||w|| is the Euclidean norm of w.
The distance of the hyperplane H1 to the origin is |b−1|/||w|| and |b+1|/||w||.

The margin, i.e., the distance between the two parallel hyperplane H1 and H2 is
simply 2/||w||. We then can find the pair of hyperplanes which gives the maximum
margin by minimizing ||w||2. Based on the structural risk minimization (SRM)
principle, which is a core theory of statistical learning[47], minimizing ||w|| is
equivalent to minimizing an upper bound on the VC dimension. To maximize the
margin the task therefore becomes

min g(w) =
1
2
||w||2 (2.12)

subject to the constraints
∀i, yi(w · x+b) ≥ 1 (2.13)

By introducing positive Lagrange multipliers αi, i = 1, . . . , l, we can obtain the
following equation,

Φ(w,b,α) =
1
2
||w||2 −

l

∑
i=1

αi

(
yi(xi ·w+b)−1

)
(2.14)
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The Lagrangian has to be minimized with respect to w,b and maximized with
respect to αi > 0. Classical Lagrangian duality enables the primal problem to be
transformed to its dual problem, which is easier to solve.

The dual problem is given by,

max
α

W (α) = max
α

(
min
w,b

Φ(w,b,α)
)

(2.15)

The minimum with respect to w and b of the Lagrangian, Φ , is given by,

∂Φ
∂b

= 0 ⇒
l

∑
i=1

αiyi = 0 (2.16)

∂Φ
∂w

= 0 ⇒ w =
l

∑
i=1

αiyixi (2.17)

∀i αi ≥ 0 (2.18)

By substituting w into Eq. (2.14), we obtain,

W (α) =
1
2

w ·w−
l

∑
i=1

αiyi(xi ·w+b)+
l

∑
i=1

αi (2.19)

2.4 Measurement of Classifiers

Traditionally, the main criterion for evaluating the performance of a classifier is
accuracy (i.e., percentage of test examples that are correctly classified) or error
(i.e., percentage of misclassified examples). However, in many situations, not every
misclassification has the same consequences when misclassification costs have
to be taken into account. Recent studies show that the accuracy of a classifier
is also influenced by the class distribution[48]. Provost et al. have demonstrated
problems with using accuracy as a metric[49]. It can be irrelevant or misleading
when misclassification costs are unequal (cost-sensitive) or classes are imbalanced.
Receiver Operating Characteristics (ROC) analysis, which originated from signal
detection theory, has been introduced to evaluate machine learning algorithms[48−51]

and it has become increasingly popular in machine learning research. ROC analysis
is not just about cost sensitive learning. It provides tools to compare classifiers
across the entire range of class distributions and misclassification costs [52]. In
addition to being a generally useful performance graphing method, it has properties
that make it especially useful for domains with skewed class distribution and
unequal classification error costs. For example, consider a classifier which has an
accuracy of 80%. The accuracy doesn’t make sense without knowing the class
distribution: If the database consists of 90% positive and 10% negative examples.
We can do better simply by classifying all the data as positive which will give
90% accuracy. Hence, ROC analysis is not just about cost-sensitive learning, it
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considers the relative importance of negative vs. positive examples. This relative
importance can be represented by a skewed ratio taking into account both costs and
class distribution[52].

Many classifiers not only give discrete predicted classes but also estimate
class membership probabilities (e.g., Naive Bayes). The former are referred to as
discrete classifiers and the latter as probabilistic classifiers or rankers, because the
membership probabilities can be used to rank instances from most to least likely
positive. By setting a threshold, a rankers can act as a discrete classifier. The area
under the curve (AUC) of ROC is used to measure the quality of ranking for a
probabilistic classifier [28,53]. Ling et al. proved that AUC is statistically consistent
and more discriminating than the accuracy measure[54]. Therefore, it is fairer to use
AUC rather than accuracy to evaluate a learning algorithm.

2.4.1 ROC Analysis for Classification

Traditionally, accuracy and error are widely used measures for evaluating
performance of a classifier. Using accuracy as a performance measure assumes that
the error costs are equal and the class distribution is balanced. However, this is not
realistic if we consider problems such as medical diagnosis or fraud detection. For
example, in diagnosis of a serious disease, the cost of predicting a healthy person as
a virus carrier is much less than the cost of predicting a virus carrier as healthy.

We begin by considering classification problems using only two classes (i.e.,
binary classification problem). Let the number of positives and negatives be denoted
by P and N, respectively, the predicted positives and negatives be denoted by P̂
and N̂. The instances are divided according to the following contingency table or
confusion matrix as shown in Fig. 2.8 . And the following equations hold.

P = T P+FN N = FP+T N

P̂ = T P+FP N̂ = FN +T N

Positive Examples

Negative Examples

Predicted Positives Predicted Negatives

(TP ) True Positives

(FP) False Positives ( ) TrueTN Negatives

(FN ) False Negatives

^
( )P

^
( N )

( )P

( N )

Fig. 2.8 Confusion matrix for a binary classification problem

The classification accuracy is then defined according to the confusion matrix as
follows:

Accuracy =
T P+T N

P+N
(2.20)
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ROC analysis decomposes performance into true and false positive rates defined as
follows: the true positive rate (TPR)� of a classifier is:

T PR =
T P
P

(2.21)

and the false positive rate (FPR) of a classifier is:

FPR =
FP
N

(2.22)

2.4.2 Area Under the ROC Curve

Given a confusion matrix, if we plot FPR on the X axis and T PR on the Y axis, then
a single classification is represented by a point in this 2D coordinate space referred
to as ROC space. In the ROC space, the upper left point (0, 1) represents the optimal
classifier performance with 100% of true positive and zero false positives. This point
is like the “ROC Heaven” and, correspondingly, the point (1, 0) represents the worst
possible classifier performance and then the “ROC Hell”[52]. The diagonal line in
Fig. 2.9 represents a random classifier (dotted line) which always gives 50% of
the true positive rate and 50% of the false positive rate. Each discrete classifier
can be presented by a single point according to its T PR and FPR in the ROC
space. Different ROC profiles will be more or less desirable under different class
distributions and different error cost functions. For example, Fig. 2.9 shows 3
classifiers C1, C2 and C3. If the misclassification costs are the same, and if the
distribution of classes is uniform, classifier C2 is the optimal one. If the class
distribution changes to four times negatives as positives, then C1 and C2 will have
the same accuracy. Similarly, C2 and C3 will have the same accuracy with four times
as many positives as negatives. in the case where there are less than 20% negatives,
the optimal point is where we classify all the instances as positive. More details
about basic ROC space properties can be found in Reference [53].

Consider a probabilistic classifier with two classes “+” and “−”. We can sort
the instances according to the probabilities of belonging to class “+”. Different
classification results will be given according to the varying threshold T based on:

∀ i
{

xi →{+} if : P(+|xi) ≥ T
xi →{−} otherwise

For example, Table 2.1 shows three different classification results when T = 0.8,
T = 0.5 and T = 0.3 based on the probability values of test examples. Typically T
is set to 0.5	 when we calculate accuracy for a probability estimation model. If we
vary the value of T through [0,1], it will result in a continuous curve in ROC space
referred to as a ROC curve.

As discussed above, a classifier results in an ROC curve which aggregates its
behavior for all possible decision thresholds. The quality of the classifier can be

� In signal detection theory, the true positive rate is called as hit rate and the false positive
rate as the false alarm rate, respectively. These two concepts have been widely used in
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Fig. 2.9 Illustration of ROC space with three discrete classifiers C1, C2 and C3

Table 2.1 Classification by a probability estimator with different thresholds

Examples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Pr(+|xi) 0.11 0.23 0.25 0.37 0.49 0.58 0.63 0.69 0.84 0.97
T = 0.8 − − − − − − − − + +
T = 0.5 − − − − − + + + + +
T = 0.3 − − − + + + + + + +

measured by the area under the curve of ROC (AUC), which measures how well
the classifier separates the two classes without reference to a decision threshold. In
other words, AUC represents the quality of the ranking of examples by this classifier.
Given k instances, there are only k +1 possible thresholds. A practical method is as
follows:

(1) Rank test instances in terms of decreasing membership scores.
(2) Starting at (0, 0), if the next instance in the ranking list is positive then move

1/P up. If it is negative then move 1/N to the right.

where P and N are the number of positive and negative examples, respectively.
Given the two classifiers C1 and C2 in Table 2.2 , the ROC curves drawn by the

decision theory. For example, Swets et al. wrote a good introductory article published in
Scientific American Magazine. [55]

	 The optimal threshold for a probabilistic classifier depends on the class distribution and
misclassification costs. The membership scores are not calibrated estimates of probabilities
in most cases [56]. Therefore, assigning T = 0.5 (e.g., for Naive Bayes classifier) may not
be the optimal choice.
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above method are shown in Fig. 2.10 . The decreasing order of examples is:

x10, x9, . . . , x1

For C1, the first step is moving up 1/10 (P = 10 for this problem) because x10 → +.
It will keep moving up until meeting x6 from where we move 1/10 to the right (see
Fig. 2.10 ). According to Hand and Till [28], the AUC value for a binary classification
problem with two classes {+,−} can be calculated by:

AUC = ∑P
i=1 ri −P(P+1)/2

PN
(2.23)

where ri is the rank of the ith positive example in the ranking list according to the
probabilities of the class +. Eq. (2.23) evaluates the separability of negative and
positive examples by a classifier. For example, the AUC values for classifier 1 and
2 listed in Table 2.2 are:

AUC(C1) =
(5+7+8+9+10)−5(5+1)/2

5×5
=

24
25

AUC(C2) =
(1+6+7+9+10)−5(5+1)/2

5×5
=

18
25
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Fig. 2.10 ROC curves for the classifiers C1 and C2 in Table 2.2

We may notice that both classifier 1 and 2 have the same accuracy 80% (8 of
10 examples are correctly classified) and thus they can be viewed as equally good.
However, intuition suggests that classifier 1 is better than classifier 2 since classifier
1 gives a better overall ranking. Consider an intuitive example, where the ranking
tells us how poisonous ten different kinds of mushrooms are, so that “−” represents
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Table 2.2 Two classifiers with the same accuracy but different AUC values. This table is
inspired by a similar Table in Reference [55]

Examples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Classifier 1 (C1) − − − − + − + + + +
ri for Classifier 1 5 7 8 9 10

Classifier 2 (C2) + − − − − + + − + +
ri for Classifier 2 1 6 7 9 10

poisonous and “+” edible. In this case, classifier 2 will classify a very poisonous
mushroom as edible. However, classifier 1 makes less serious errors by classifying
a less poisonous mushroom as edible. So, classifier 1 is better for the mushrooms
classification problem. This can be seen from the AUC measure but not the accuracy
measure. Ling et al. mathematically proved that the AUC measure is consistent
and more discriminating than the accuracy measure[54]. The method for calculating
AUC for multi-class problems is given in [28]

2.5 Summary

Machine learning research has been developed rapidly in recent years and many
new models have been proposed and have been successfully applied into many
applications, such as time-series prediction[57,58], flood forecasting[59−61], fraud
detection[62], medical imaging, drug design[63,64], encoding and decoding[65], gene
classification[15], and so on. In this chapter we are not trying to give a full review
of machine learning and data mining algorithms but a general background to this
research area and some of the algorithms that will be used in subsequent chapters.
Besides discussing the basics of machine learning and data mining and why they
are so important. We also discussed the necessity of using intelligent methods to
analysis loads of data, and measurements of classifiers.
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3

Label Semantics Theory

When one admits that nothing is certain one must, I think, also admit that some things are
much more nearly certain than others.

– Bertrand Russell (1872-1970), “Am I an atheist or an agnostic?”

3.1 Uncertainty Modeling with Labels

As we have discussed in Chapter 1, modeling real world problems typically involves
processing two distinct types of uncertainty. These are, firstly, uncertainty arising
from a lack of knowledge relating to concepts which, in the sense of classical
logic, may be well defined and, secondly, uncertainty due to inherent vagueness
in concepts themselves. Traditionally, these two types of uncertainties are modeled
in terms of probability theory and fuzzy set theory, respectively, though, Zadeh
recently pointed out that all the approaches for uncertainty modeling can be unified
into a general theory of uncertainty (GTU)[1]. The first type of uncertainty has
been a focus of Bayesian probabilistic models [2]. The most recent advancement
in machine learning has been about using using hierarchical Bayesian generative
models to describe data.

Furthermore, there are many situations where we have insufficient information
regarding vague or fuzzy concepts. That is where both types of uncertainty are
present. Fuzzy logic is an extension of traditional Boolean logic. In a wider sense,
which is in predominant use today, fuzzy logic is almost synonymous with the
theory of fuzzy sets; a theory which relates to classes of objects with blurred
boundaries in which membership is a matter of degree. In this chapter, we will
introduce an alternate approach for modeling uncertainties by using randoms set
and probability theory.

3.1.1 Fuzzy Logic
The world is not fuzzy in some sense. We can look out and see precisely a leaf falling
from an old oak tree whose shadow lies on a green grassland. There are five people
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playing and laughing on the grassland. Not far away, there are two cars parked on
the side of the road, one is blue and the other is red. Which of them is fuzzy? But
this precision which we can see with our eyes if we wish is often unwanted detail
when it comes to categorizing and classifying and clustering the real world into
groups which we can label. We give labels to such objects as people, cars, grassland,
trees and leaves, so that we can talk about these objects in terms of their common
properties within their group. Plato said: Ordinary objects are classified together
if they “participate” in the same abstract form. Based on this intuition, set theory
has become the foundation of mathematics before Kurt Godel overthrew the edifice.
Another intuition is that sometimes we cannot really tell if an object belongs to a
particular set, sometimes, maybe partially. That is why we need a new mathematics.

Fuzzy Logic was first proposed by Zadeh in the 1960s as an extension of
traditional Boolean logic[3]. It is basically a multi-valued logic that allows more
human-like interpretation in machine reasoning by resolving intermediate categories
between notations such as true and false, black and white, etc. used in Boolean logic
that originated from ancient Greek philosophy �. The mathematics built on fuzzy
logic was developed into fuzzy set theory and fuzzy mathematics. In contrast to a
classical set, which has a crisp boundary, the boundary of a fuzzy set is blurry. This
smooth transition is characterized by membership functions which give fuzzy sets
flexibility in modeling linguistic expressions. For example, in dice rolling games,
we can define a fuzzy set small to describe dice scores by:

small = 1/1+2/0.8+3/0.2

where 1,0.8 and 0.2 are the associated mass for the dice score 1,2 and 3,
respectively. It means that the truth value of 1 being small is 1, 2 being small is
0.8 and 3 being small is 0.2.

In the case of a continuous variable, membership functions could be in various
forms. Fig. 3.1 shows a few commonly used membership functions generated by
Matlab Fuzzy Logic Toolbox DemoT M . Each membership function has its own
special property for modeling uncertainties in different scenarios. In this book,
we will mainly use trapezoidal (trapmf) and trianglar shape (trimf) membership
functions.

Fig. 3.2 gives another example with a set of membership functions defined on
human height: short, medium and tall. As same as the prior probability in Bayesian
statistics, the pre-assumptions of fuzzy membership have been the weakest link of
the theory since there are always disagreeable points of views in the definition of
an imprecise concept. In fuzzy reasoning, we always say “suppose we are given the
expert knowledge or the fuzzy memberships ...” the effectiveness of fuzzy reasoning

� Although the fact that bi-valued logic has been regarded as the basic rule in ancient Greek
philosophy. Actually, Greek philosopher Parminedes proposed the “the way of truth”
around 400 B.C. and stated amidst controversy that statements could be both true and
not true at the same time[4]. The “grey” area of the black and white has always been
well-accepted in Eastern philosophy such as Taoism that states the inter-correlations and
transitions between two states such as true/false, black/white, good/bad, right/wrong, etc.
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Fig. 3.2 Membership functions defined on human height

or fuzzy calculation is based on the correctness of the given assumptions. It is a
universally true for other theories as well in the philosophy of science. It should not
be treated as a defect of fuzzy theory. More details of fuzzy set theory, fuzzy logic
and fuzzy applications are available in several classical text books[5,6].

3.1.2 Computing with Words

In early research, fuzzy logic was successfully applied in expert systems where
the linguistic interpretation fuzzy sets allow for an interface between the human
user and a computer system. Because our language is full of uncertainty and
impreciseness, one word has many different meanings. To describe one meaning,
we could use many different words. Therefore, it can be a good way of trying to
use fuzzy sets to model human natural language. This idea provides a good method
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for bridging the gap between human users and computing machines, and this also
motivates research into Computing with Words[7].

Zadeh suggests a form of precisiated natural language (PNL) based on the
theory of generalized constraints and linguistic variables[8]. A linguistic variable
is a quintuple 〈L,T (L),S,Ω ,M〉 in which L is the name of the variable, Ω is a
universe of discourse, T (L) is a term set of words to describe elements of Ω , S is a
set of syntactic rules for generating new elements of T (L) from existing words and
M is a set of semantic rules which identify a fuzzy subset of Ω for each word in
T (L), corresponding to its fuzzy extension.

The term set can be generated recursively from the initial set of labels by using
logical operators such as “∧, ∨ and ¬” and linguistic hedges such as quite, very, etc.
The semantic rule M is based on the standard truth-functional fuzzy calculus: e.g.,
∀θ1,θ2 ∈ T (L):

M(¬θ1) = 1−M(θ1)

M(θ1 ∧θ2) = min(M(θ1,θ2))

M(θ1 ∨θ2) = max(M(θ1,θ2))

Zadeh also defines semantic rules for a linguistic hedge that is practically
computable.

M(veryθ) = M(θ )2

M(verynθ ) = M(θ)2n

where veryn denotes n occurrences of the hedge very. However, this definition is
very arbitrary and hardly to be used in dealing with practical natural language
problems. Qin et al. first used this CW framework for designing a question-
answering system in specified domains[9]. Though it can tackle some challenging
natural language problems, it has serious limitations that so few natural language
sentences can match the prototypes of computing[10].

Almost all the labels we give to groups of objects are fuzzy. For example,
friends, pretty faces, tall trees, etc. An object may belong to the set of objects
with a certain label with a certain membership value. In traditional set theory, this
membership value only has two possible values, 1 and 0, which represent the case
where the object belongs to, or does not belong to, the set, respectively. We use a
fuzzy term such as “big” to label a particular group, because it shares the property of
objects within this group (i.e., they are big). The objects within this group will have
different membership values varying from 0 to 1 qualifying the degree to which
they satisfy the concept. An object with a membership of 0.8 is more likely to be
described as “big” than an object with a membership of 0.4.

3.1.3 Mass Assignment Theory

Mass assignment theory allows inference under fuzzy and probabilistic reasoning.
The theory includes an algebra, a conditioning process for inference under
uncertainty[11]. A mass assignment over a set S is a probability distribution over
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the power set of S, in which the probabilities associated with the subsets are called
masses. If a fuzzy set was defined in a discrete universe S, then mass assignments
provide a way of interpreting fuzzy sets as a probability distributions on subsets of
S. Mass assignment theory gives us a new way of understanding fuzzy sets from
a probabilistic prospective. Based on this theory, Baldwin et al. developed a fuzzy
logic based inductive logic programming language FRIL� by incorporating fuzzy
reasoning to Prolog styled A.I. programming[11].

We will use a simple example to introduce mass assignment theory: Suppose we
have a fair dice and we the use linguistic labels, small, medium and large to describe
the values the dice can show, i.e., {1 2 3 4 5 6}[12]. These labels are fuzzy, and not
everyone would identify the same subset of the values as satisfying a given label.
How we can interpret these linguistic values is a key problem for us.

Consider the dice problem, for a particular value of dice. Suppose we have a
set of people who are asked to accept or reject the value as satisfying a linguistic
expression. We may need two assumptions in the voting model: the first one is the
constant threshold constraint.

Definition 3.1 (Constant threshold constraint) A voter who accepts a given value
will also accept the values with a greater membership value, it is called the constant
threshold constraint.

It simply means, if a person accepts 2 as small, it has the implication that 1 is
small too. That makes the mass assignment consonant (or nested) when we decide
the mass for each subset. For example, we may ask 10 people that if they accept 1
as small, will they accept that by saying “Yes” or refute to saying “No”. We then get
the survey where all 10 people accept that 1 is small, and 8 people accept 2 is small
and 2 people accept 3 as small (Table 3.1 ). So the membership value of 1 being
small is 1, 2 is 0.8 and 3 is 0.2. From this voting model, we can get the fuzzy set of
small in normal fuzzy notation as,

small = 1/1+2/0.8+3/0.2

Table 3.1 The voting table for each voter from V1 to V10

Voter V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Accept 1 as small Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Accept 2 as small Yes No Yes Yes No Yes Yes Yes Yes Yes
Accept 3 as small No No No No No No Yes No Yes No
Accept 4 as small No No No No No No No No No No

Among voters, 100% of people accept 1 as small, 80% of people accept that 2 is
small, but only 20% accept 3 as small. So, the proportion of people who accept that
only 1 (but not others) is small is 100%−80% = 20%. We can say the distribution
of the set {1} over all dice numbers given the fuzzy set small, is 20%. We also can
see from Table 3.2 that there are only two voters of ten accept {1} is the only set

� The name FRIL was originally an acronym for Fuzzy Relational Inference Language.
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of being small. Based on the constant threshold constraint assumption, we can get
the probability of set {1, 2} is the proportion of those who agree with 2 is small,
which is 0.8, minus the proportion of who agree 3 as small 0.2. The result 0.6 is
the proportion who agree that both 1 and 2 are small only. Finally, 20% of people
accept that 1,2 and 3 are all small. This equals the proportion of voters who accept
3 as small, since if a voter accepts 3 as small and he must accept the fact that 1, 2
and 3 are all small according to the constant threshold constraint.

Example 3.1 Given the voting Table 3.1 , how can we generate the mass
assignments of small?

From the voting Table 3.1 , we can obtain the Table 3.2 of voting statistics, and
the fuzzy set of small as follows:

small = 1/1+2/0.8+3/0.2

Then the mass assignment over small is:

msmall = {1} : 0.2,{1,2} : 0.6,{1,2,3} : 0.2

We need to notice that, unlike fuzzy memberships, mass assignment is a
probability distribution. To be precise it is a probability distribution on a set of
possible values.

Table 3.2 The voting statistics: we re-order the voters in Table 3.1 to get this nested structure

The Number of Voters 1 2 3 4 5 6 7 8 9 10

The number accepted as small 1 1 1 1 1 1 1 1 1 1
The number accepted as small 2 2 2 2 2 2 2 2
The number accepted as small 3 3

3.2 Label Semantics

In contrast to fuzzy sets and linguistic variables, label semantics proposed by Lawry
encodes the meaning of linguistic labels according to how they are used by a
population of communicating agents to convey information[13]. Label semantics
is an epistemic theory of uncertainty for vague concepts based on appropriateness
measures and mass functions. Most current approaches to modeling vague or
imprecise concepts are based on the explicit definition of the extension of that
concept, corresponding to the fuzzy description of objects for which the concept
holds. For example, in a recent analysis of models of vagueness, Dubois et al.
categorize different semantics for fuzzy sets on the basis of the nature of the division
between the extension of a vague concept and its negation[14]. However human
reasoning with imprecise concepts is based on the explicit use of their extensions
irrespective of whether they are fuzzy or crisp.
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The focus of label semantics is on the crisp decision problems associated with
the use of labels and the underlying uncertainty associated with these decisions.
It means that it is somewhat related to a number of alternative theories of vague
concepts proposed in the literature. In some sense, label semantics is very close
to the epistemic view of vagueness as expounded by Williamson, who assumes
that for the extension of a vague concept there is a precise but unknown dividing
boundary between it and the extension of the negation of that concept [15]. For
example, consider the set of weights which are classified as being “fat”. Then there
is, according to the epistemic view, a precise but unknown weight for which all
values less than this weight are not fat while all those greater than it are fat. From this
viewpoint, Sorities problems are resolved by denying the assumption that practically
indistinguishable elements satisfy the same vague predicates. Hence, for a finite
sequence of increasing weights xi: i =1, . . . ,k, where x1 is not “fat”, xk is fat and
xi+1 ≤ ε . For some very small positive number ε , it holds that: ∃i for which ‘xi is
not fat’ and ‘xi+1 is fat’. Although the exact value of i will be virtually impossible
for anyone to identify precisely [16].

3.2.1 Epistemic View of Label Semantics

First, the epistemic view assumes the existence of some objectively correct, but
unknown, set of criteria for determining whether or not a given instance satisfies
a vague concept, while label semantics argues that individuals when faced with
decision problems regarding assertions find it useful as part of a decision making
strategy to assume that there is a clear dividing line between those labels which are
and those which are not appropriate to describe a given instance.

Lawry argues that in practice, these rules underling the appropriate use of
labels would not be imposed by some outside authority, even not exist at all
in a formal sense [17]. Rather, they are represented as a distributed body of
knowledge concerning the assertability of predicates in various cases, shared
across a population of agents, and emerging as the result of interactions and
communications between individual agents all adopting the epistemic stance. The
idea is that the learning processes of individual agents, all sharing the fundamental
aim of understanding how words can be appropriately used to communicate
information, will eventually converge to some degree on a set of shared conventions.
To summarize, both the epistemic theory and label semantics identify vagueness
as being a type of ignorance. And in both cases, the association of vagueness with
ignorance strongly contrasts with the fuzzy logic approach in which the applicability
of concept labels is viewed as being a matter of degree.

For the characteristics of label semantics discussed above, it has some
advantages when applied in data mining and knowledge engineering. In many data
mining and knowledge engineering applications information is available both in
the form of high-level qualitative background knowledge as provided by domain
experts and low-level numerical data from experimental studies. It is necessary to
combine or fuse these two different sources of information to obtain optimal models.
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In Bayesian statistical machine learning, the expert knowledge is the bias towards
choosing prior distribution and the model fuses the prior information and observable
evidence by posterior calculation.

This is particularly true in cases where the data provided is sparse due to the
expense or difficulty of experimental trials. The type of fusion method appropriate to
a particular problem will be dependent on a number of factors. In classical analysis
the representation of the form of the available background knowledge is restricted
to one of a few mathematical forms. However, for many applications the expert
knowledge is more naturally represented as “rules of thumb” expressed as natural
language statements. Such statements are likely to be both imprecise and uncertain
making their translation into mathematical forms difficult and often inappropriate.
Instead, label semantics represent the background knowledge in a logical framework
which is as close to natural language as possible and also incorporates vagueness,
imprecision and uncertainty. That makes the fusion of data much easier and more
understandable. In the next chapters several kinds of data mining algorithms based
on label semantics will be introduced.

The modeling of concept vagueness in artificial intelligence has been dominated
by ideas from fuzzy set theory. It does not in the narrowest manifestations adopt
an epistemic view of vagueness. It is possible to build bridges between probability
and fuzzy sets where the latter are viewed as possibility distributions. In particular,
we shall interpret possibility measures in the framework of random sets and belief
function theory and we shall consider the problem of transforming a possibility
distribution into a probability distribution and vice versa.

3.2.2 Random Set Framework

Vague or imprecise concepts are fundamental to natural language. Human beings
use imprecise language to communicate with each other. We usually say “John is
tall and strong” but not “John is exactly 1.85 meters in height and he can lift 100 kg
weights”. We will focus on developing an understanding of how an intelligent agent
can use vague concepts to convey information and meaning as part of a general
strategy for practical reasoning and decision making. Such an agent could be an
artificial intelligence program or a human, but the implicit assumption is that their
use of vague concepts is governed by some underlying internally consistent strategy
or algorithm. We may notice that labels are used in natural language to describe
what we see, hear and feel. Such labels may have different vagueness (i.e., when
we say Mary is young and she is female, the label young has more vagueness than
the label female because most people have many more differing opinions on being
young than being female. For a particular concept, there could be more than one
label that is appropriate for describing this concept. Some labels could be more
appropriate than others. Here, we will use a random set framework to interpret these
facts. Label semantics, first proposed by Lawry, is a framework for modeling with
linguistic expressions, or labels such as small, medium and large[18]. Such labels are
defined by overlapping fuzzy sets which are used to cover the universe of continuous
variables.
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The underlying question posed by label semantics is how to use linguistic
expressions to label vague concepts. For a variable x within a domain of discourse
Ω we identify a finite set of linguistic labels L = {L1, . . . ,Ln} with which to label
the values of x. Then, for a specific value x ∈ Ω an individual I identifies a subset
of L, denoted D I

x to stand for the description of x given by I, as the set of labels
with which it is appropriate to label x. If we allow I to vary across a population V
with prior distribution PV , then D I

x will also vary and generate a random set denoted
Dx into the power set of L denoted by S. We can view the random set Dx as a
description of the variable x in terms of the labels in L. The frequency of occurrence
of a particular label, say S, for Dx across the population then gives a distribution on
Dx referred to as a mass assignment of labels�.

Definition 3.2 (Label description) For x ∈ Ω the label description of x is a random
set from V into the power set of L, denoted Dx, with associated distribution mx,
which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈V |D I
x = S}) (3.1)

where mx(S) is called the mass associated with a set of labels S and

∑
S⊆L

mx(S) = 1 (3.2)

Intuitively mass assignment is a probability distribution on appropriate label sets
and mx(S) quantifies the evidence that S is the set of appropriate labels for x. Based
on the data distribution p(x), we can calculate the prior distribution of labels by
summing up the mass assignment across the database as follows:

pm(S) = p(S) =
∫

Ω mx(S)p(x)dx
∑S⊆L

∫
Ω mx(S)p(x)dx

(3.3)

However, the dominator equals to 1 according to the definition of mass assignment
and Eq. (3.2), so that:

pm(S) =
∫

Ω
mx(S)p(x)dx (3.4)

and in a discreet case:
pm(S) = ∑

x∈Ω
mx(S)P(x) (3.5)

If in expectation form:

pm(S) = Ex[m(S)|x] = Ex[mx(S)] (3.6)

For example, an expression such as “the score on a dice is small”, as asserted
by individual I, is interpreted to mean D I

SCORE = {small}, where SCORE denotes

� Given the power set of L, S, the element S ∈ S can be written as S ⊆L. This representation
will be used throughout this book. For example, given L = {L1,L2}, the powerset S =
{ /0,{L1},{L2},{L1,L2}}. For every element in S: S ∈ S, the relation S ⊆ L will hold.
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the value of the score given by a single throw of a particular dice. When I varies
across a population V , different sets of labels could be given to describe the variable
SCORE, so that we obtain the random set of DSCORE into the power set of L. The
above definitions and equations can be illustrated by the following example:

Example 3.2 Suppose the variable SCORE with universe {1,2,3,4,5,6} gives the
outcome of a single throw of a particular dice. Let L ={small, medium, large} and
V = {I1, I2, I3} then a possible definition of DSCORE is given as follows:

D I1
1 = D I2

1 = D I3
1 = {small},D I1

2 = {small,medium},D I2
2 = D I3

2 = {small}

D I1
3 = D I2

3 = {medium},D I3
3 = {small,medium},

D I1
4 = {medium, large},D I2

4 = D I3
4 = {medium},D I2

5 = {large}
D I1

5 = D I3
5 = {medium, large},D I1

6 = D I2
6 = D I3

6 = {large}
Assuming a uniform prior distribution on V , so that PV = 1/|V |, then the mass
assignment of Dx can be represented according to Definition 3.2 as follows�:

∀S ⊆ L, mx(S) =
|{I ∈V |D I

x = S}|
|V | (3.7)

We can determine mass assignments on DSCORE according to Eq. (3.7). For example,
if SCORE = 4 we have

m4({medium, large}) =
|{I ∈V |DI

4 = {medium, large}}|
|V | =

|{I1}|
|V | =

1
3

m4({medium}) =
|{I ∈V |DI

4 = {medium}}|
|V | =

|{I2, I3}|
|V | =

2
3

We then have the mass assignment for SCORE = 4 as follows,

m4 = {medium, large} :
1
3
,{medium} :

2
3

In the sequel 1/3 and 2/3 are also referred to as the associated mass for {medium,
large} and {medium}, respectively. Similarly, we can obtain the mass assignment
on 1, 2, 3 and 5 as follows:

m1 = {small} : 1,m2 = {small} :
2
3
,{small,medium} :

1
3

m3 = {small,medium} :
1
3
,{medium} :

2
3

� |A| represents the absolute value of A when A is a number or the cardinality of A when A
is a set.
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m5 = {medium, large} :
2
3
,{large} :

1
3
,m6 = {large} : 1

Now, let us consider the calculation of label distribution. In order to obtain
the label distribution, we need to know the distribution on the universe {1, . . . , 6}.
Suppose a biased distribution is given on SCORE as follows (see the left-hand side
figure of Fig. 3.3 ):

P(1) =
1
10

,P(2) =
1
10

,P(3) =
1
10

,P(4) =
1
5
,P(5) =

1
5
,P(6) =

3
10

0.3

0.2

0.1

0
1 2 3 4 5 6

SCORE

Prior Distribution of :( )V V Prior MassAssigment

1/6

1/15

1/5

11/30

1/5

{ }small { ,small medium}{ }medium { , }medium large { }large

(a) (b)

(a) (b)

Fig. 3.3 (a): the prior distribution P(V ) (or PV ) on variable SCORE and its prior mass
assignment (pm) on 5 focal elements (b)

The probability (associated mass) of {medium, large} can be calculated
according to Eq. (3.5):

m({medium, large}) =
6

∑
x=1

mx({medium, large})P(x) (3.8)

= ∑
x=4,5

mx({medium, large})P(x) (3.9)

=
1
3
× 1

5
+

2
3
× 1

5
=

1
5

(3.10)

Similarly, we can calculate the prior mass assignment on other label sets as follows:

m({small}) =
6

∑
x=1

mx({small})P(x) (3.11)

= ∑
x=1,2

mx({small})P(x) (3.12)

= 1× 1
10

+
2
3
× 1

10
=

1
6

(3.13)
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m({small,medium}) =
6

∑
x=1

mx({small,medium})P(x) (3.14)

= ∑
x=2,3

mx({small,medium})P(x) (3.15)

=
1
3
× 1

10
+

1
3
× 1

10
=

1
15

(3.16)

m({medium}) =
6

∑
x=1

mx({medium})P(x) (3.17)

= ∑
x=3,4

mx({medium})P(x) (3.18)

=
2
3
× 1

10
+

2
3
× 1

5
=

1
5

(3.19)

m({large}) =
6

∑
x=1

mx({large})P(x) (3.20)

= ∑
x=5,6

mx({large})P(x) (3.21)

=
1
3
× 1

5
+1× 3

10
=

11
30

(3.22)

The prior assignment on these 5 focal elements is shown on Fig. 3.3 (b).

3.2.3 Appropriateness Degrees

In this framework, appropriateness degrees are used to evaluate how appropriate a
label is for describing a particular value of variable x. Simply, given a particular
value α of variable x, the appropriateness degree for labeling this value with the
label L, which is defined by fuzzy set F , is the membership value of α in F .
The reason we use the new term “appropriateness degrees” is partly because it
more accurately reflects the underlying semantics and partly to highlight the quite
distinct calculus based on this framework[18]. This definition provides a relationship
between mass assignments and appropriateness degrees.

Definition 3.3 (Appropriateness degrees)

∀x ∈ Ω , ∀L ∈ L μL(x) = ∑
S⊆L:L∈S

mx(S)
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Example 3.3 Let us consider Example 3.2 again. According to Definition 3.3:

μsmall(1) = ∑
S⊆L:small∈S

m1(S) = m1({small}) = 1

μsmall(2) = ∑
S⊆L:small∈S

m2(S) = m2({small})+m2({small,medium}) = 1

Hence, the overall the non-zero appropriateness degrees for each fuzzy label are
given by:

μsmall(1) = 1,μsmall(2) = 1,μsmall(3) =
1
3

μmedium(2) =
1
3
,μmedium(3) = 1,μmedium(4) = 1,μmedium(5) =

1
3

μlarge(4) =
1
3
,μlarge(5) = 1,μlarge(6) = 1

As we can see from the above example, given mass assignment on labels, we
can obtain the fuzzy sets by which these labels are defined. For example, the label
small is defined by fuzzy set:

small = 1/1+2/1+3/

(
1
3

)
There is a unique mapping from mass assignments to fuzzy sets. Does it hold for
the inverse process? We will discuss it in the subsequent section.

It is certainly true that a mass assignment on Dx determines a unique
appropriateness degree for any functions of μL but generally the converse does not
hold. If we know the appropriateness degrees of the labels, we may not be able
to infer a unique underlying mass assignment. For example, given μL1 = 0.3 and
μL2 = 1, we may obtain the sets of appropriate labels with associated masses as:

{L2} : 0.7,{L1,L2} : 0.3
{L1} : 0.1,{L2} : 0.8,{L1,L2} : 0.2
{L1} : 0.2,{L2} : 0.9,{L1,L2} : 0.1
. . . . . . . . . . . . . . .

There are infinite number of possible representations. This fact is schematically
illustrated by Fig. 3.4 . To overcome this problem, we will introduce some
assumptions. The first one is the consonance assumption, according to which we
can determine the mass assignment uniquely from the appropriateness degrees as
follows.

3.2.4 Assumptions for Data Analysis

Definition 3.4 (Consonant mass assignments on labels)

Let {β1, . . . ,βk} = {μL(x)|L ∈ L,μL(x) > 0} ordered such that βt > βt+1 for t =
1,2, . . . ,k−1 then:
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Assignment

Appropriateness

Degree

Fig. 3.4 The mapping from voters via mass assignments to appropriateness degrees of labels
is unique while the mapping from appropriateness degrees to mass assignments are not

mx = Mt : βt −βt−1, for t = 1,2, . . . ,k−1,

Mk : βk, M0 : 1−β1

where M0 = /0 and Mt = {L ∈ L|μL(x) ≥ βt} for t = 1,2 . . . ,k.
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Fig. 3.5 Calculating mass assignments given the consonance assumption. The right-hand
figure is with a full fuzzy covering while the left-hand figure is not

For the previous example, given μL1(x) = 0.3 and μL2(x) = 1, we can calculate
the consonant mass assignments as follows: The appropriateness degrees are
ordered as {β1,β2} = {1,0.3} and M1 = {L2}, M2 = {L1,L2}. We then can obtain

mx = {L2} : β1 −β2,{L1,L2} : β2 = {L2} : 0.7,{L1,L2} : 0.3

Because the appropriateness degrees are sorted in Definition 3.4, the resulting mass
assignments are “nested” (see Fig. 3.5 ). Clearly then, there is a unique consonant
mapping to mass assignments for a given set of appropriateness degree values. The
justification of the consonance assumption can be found in Reference [11] and [19].
Notice that in some cases we may have a non-zero mass associated with the empty
set (left-hand diagram of Fig. 3.5 ). This means that some voters believe that x cannot
be described by any labels in L. This property would add to the complexity of our
learning algorithms and hence we avoid it by introducing a full linguistic covering
defined as follows:
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Definition 3.5 (Full linguistic covering) Given a continuous discourse Ω , the
labels L form a full linguistic (fuzzy) covering of Ω if for every value x ∈ Ω there
exists a label such that its appropriateness degree as a descriptor of x is 1:

∀x ∈ Ω , ∃L ∈ L μL(x) = 1

Additionally, if only two labels can overlap at a time, the covering is said to be
“pairwise overlapping”, that is, for every value x in the universe there exist at most
two labels with non-zero appropriateness degrees:

∀x ∈ Ω , ∃i, j ∈ {1, . . . ,m} : {L ∈ L : μL(x) �= 0} = {Li,L j}
In another words, the full fuzzy covering assumes that, for any element, there

always exists a particular label which all the voters agree is appropriate to describe
this data, though the voters may have different opinions on other labels. Unless
otherwise stated, we will use NF fuzzy sets� with 50% overlap to cover a continuous
universe (see Fig. 3.8 ), so that the appropriateness degrees satisfy: ∀x ∈ Ω , ∃i ∈
{1, . . . ,NF −1} such that

μLi(x) = α, μLi+1(x) = β

and
μL j(x) = 0 f or : j < i or j > i+1

and where max(α,β ) = 1. In the case that α = 1 according to the full fuzzy covering
assumption, then mx has the following form.

mx = {Li} : 1−β ,{Li,Li+1} : β (3.23)

It is also important to note that, given definitions for the appropriateness degrees on
labels, we can isolate a set of subsets of L with non-zero masses. These are referred
to as focal sets and the appropriate labels with non-zero masses as focal elements.

Definition 3.6 (Focal set) The focal set of L is a set of label sets that satisfy the
following condition:

F = {S ⊆ L|∃x ∈ Ω ,mx(S) > 0}
where label sets with non-zero masses S are referred to as focal elements.

Consider the Example 3.2, the focal set decided by voters is:

F = {{small},{small,medium},{medium},{medium, large},{large}}
There are a number of label sets that are not focal elements such as

{small, large} and {small,medium, large} because both of them have zero
associated mass. If small, medium and large are defined by trapezoidal membership
functions, the membership functions for the focal elements are triangular. The
corresponding relations in the general case are shown in Fig. 3.6 .

If the labels are defined by differently shaped fuzzy membership functions (e.g.,
bell-shape or Gaussian), the corresponding focal elements will also be different as
well. More details are available in Lawry’s book on label semantics theory [16].

� Because a fuzzy label is usually defined by a trapezoidal fuzzy set in this book, we use
both terms to indicate a label in different scenarios.
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L1 L2
L3

L4 L5 L
n

F1 F2 F3 F2 2n� F2 1n�

Fig. 3.6 Given linguistic labels L1, . . .Ln are defined by trapezoidal membership functions,
the corresponding focal elements F1, . . . ,F2n−1 in triangular shapes are shown under these
linguistic labels

3.2.5 Linguistic Translation

Based on the above assumptions (consonant, full linguistic covering with 50%
overlap) defined on a particular continuous universe, we can then always find the
unique and consistent translation from a given data element to a mass assignment on
focal elements, specified by the function μL : L ∈L. Fig. 3.7 illustrates the mapping
relations among numerical universe, mass assignments and fuzzy memberships
(appropriateness degrees).

For example, Fig. 3.8 shows the universes of two variables x1 and x2
which are fully covered by 3 fuzzy sets with 50% overlap, respectively. For x1,
the following focal elements occur: {small1}, {small1, medium1}, {medium1},
{medium1, large1} and {large1}. Since small1 and large1 do not overlap, the set
{small1, large1} cannot occur as a focal element according to Definition 3.6. We
can always find a unique translation from a given data point to a mass assignment
on focal elements, as specified by the function μL. This is referred to as linguistic
translation (LT) and is defined as follows:

Definition 3.7 (Linguistic translation) Suppose we are given a numerical data set
DB = {〈x1(i), . . . ,xn(i)〉|i = 1, . . . ,N} and focal set on attribute j: F j = {F1

j , . . .,

F
h j
j | j = 1, . . . ,n}, we can obtain the following new data base LD by applying

linguistic translation to DB:

LD = {A1(i), . . . ,An(i)|i = 1, . . .N}
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Fig. 3.7 A schematic illustration of the process of linguistic translation. We used a few
assumptions to generate mass assignment of labels such as the consonant mass assignment
assumption, full linguistic covering and 50% overlap on labels. These assumptions will
guarantee a unique mapping from numerical data to mass assignment on given linguistic
labels

A j(i) = {〈mx j(i)(F
1
j ), . . . ,mx j(i)(F

h j
j )〉}

where mx j(i)(F
r
j ) is the associated mass of focal element Fr

j as appropriate labels
for data element x j(i) where r = 1, . . . ,h j and j = 1, . . . ,n.

For a particular attribute with an associated focal set, linguistic translation is a
process of replacing its data elements with the focal element masses of these data
elements. For a variable x, it defines a unique mapping from data element x(i) to a
vector of associated masses 〈mx(i)(F1), . . . ,mx(i)(Fh)〉.
Example 3.4 Fig. 3.8 shows the universes of two variables x1 and x2 which are
fully covered by 3 fuzzy sets with 50% overlap, respectively. For x1, the following
focal elements occur: {small1}, {small1, medium1}, {medium1}, {medium1, large1}
and {large1}. Since small1 and large1 do not overlap, the set {small1, large1}
cannot occur as a focal element according to Definition 3.6. We can always find a
unique translation from a given data point to a mass assignment on focal elements,
as specified by the function μL according to the linguistic translation.

μsmall1(x1(1) = 0.27) = 1 μmedium1(0.27) = 0.6 μlarge1(0.27) = 0

They are simply the memberships read from the fuzzy sets. We then can obtain the
mass assignment of this data element according to Definition 3.3 under consonance
assumption[20]:

m0.27(small1) = 0.4, m0.27(small1,medium1) = 0.6

Similarly, the linguistic translations for two data

x1 = 〈x1(1) = 0.27〉,〈x2(1) = 158〉
x2 = 〈x1(2) = 0.7〉,〈x2(2) = 80〉

are illustrated on each attribute independently as follows:
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Fig. 3.8 A full fuzzy covering (discretization) with three fuzzy sets with 50% overlap on
two attributes x1 and x2, respectively

⎡⎣ x1
x1(1) = 0.27
x1(2) = 0.7

⎤⎦ LT→
⎡⎣mx({s1}) mx({s1,m1}) mx({m1}) mx({m1, l1}) mx({l1})

0.4 0.6 0 0 0
0 0 0.2 0.8 0

⎤⎦
⎡⎣ x2

x2(1) = 158
x2(2) = 80

⎤⎦ LT→
⎡⎣mx({s2}) mx({s2,m2}) mx({m2}) mx({m2, l2}) mx({l2})

0 0 0 0.4 0.6
0.4 0.6 0 0 0

⎤⎦
Therefore, we can obtain:

x1 → 〈{s1} : 0.4,{s1,m1} : 0.6〉,〈{m2, l2} : 0.4,{l2} : 0.6〉

x2 → 〈{m1} : 0.2,{m1, l1} : 0.8〉,〈{s2} : 0.4,{s2,m2} : 0.6〉
The pseudo-code of the linguistic translation is shown in Algorithm 1. We need to
notice that the linguistic translation is related to the given fuzzy labels. It may result
in different linguistic data based on a different setting of fuzzy labels. We assume
that the predefined fuzzy labels are involved with some expert knowledge. It is the
prior information we need before conducting the linguistic translation.

As we may notice, the linguistic translation heavily depends on the predefined
fuzzy labels. The linguistic data is not unique by giving variant ways of
discretization methods. In the next section, we will discuss a few discretization
methods with details.
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Algorithm 1: Linguistic translation

input : Given a database DB = {〈x1(i), . . . ,xn(i)〉|i = 1, . . . , |DB|}
output: Linguistic dataset LD

for j ← 1 to n do
foreach x j do : Cover the universe of x j with NF fuzzy sets with 50% overlap ;
for i ← 1 to |DB| do

foreach x j(i) ∈ DB j do ;
Read appropriateness degrees for x j(i) from the corresponding fuzzy set ;

Calculating the mass assignments: LDi, j = 〈mx(i)(F1
j ),. . . ,mx(i)(F

h j
j )〉 on

focal elements from appropriateness degrees based on Eq. (3.23) ;

Save dataset LD ←{LDi, j|i = 1, . . . , |DB|, j = 1, . . . ,n}

3.3 Fuzzy Discretization

Basically, fuzzy discretization provides an interpretation between numerical
data and linguistic data based on label semantics. The effectiveness of fuzzy
discretization depends much on the algorithm’s performance based on the
linguistic data. The simplest approach is to use uniformly distributed fuzzy sets
for discretization. In uniform discretization, labels are drawn uniformly on the
continuous universe of the variable. For example, Fig. 3.9 shows a uniform
discretization of one of the eight attributes, Clump Thickness in millimeters (or
triceps skin fold thickness ), of the Pima Indian Diabetics Problem[21]. We can also
see the relation between trapezoidal fuzzy sets and triangular focal elements.

However, in some real-world applications, background knowledge about
attributes may be available and can be used directly for discretization rather than
an automatic discretization technique. For example, a feature ranging from 1 to 99
to describe human age can be uniformly discretized into 3 intervals: [1,33), [34,66)
and [67,99]. Our background knowledge (experience) suggests that the partition
[1,30), [30,50) and [50,99] could be more reasonable. However, if no relevant
background knowledge is available, the question remains as to whether we can
improve on uniform discretization.

In label descriptions, focal elements are used in data modeling but not the
fuzzy labels. In fact, there is a unique mapping from trapezoidal fuzzy sets to
focal elements which can be represented by triangular functions�. Formally, these
functions correspond to the mx(F) as x varies, for each focal element F . In order to
improve the performance of our algorithm, we need to generate focal elements that
are as discriminative as possible and the associated fuzzy sets can then be obtained
according to Definitions 3.3 and 3.6. The following two discretization methods are
introduced and will be used to generate fuzzy labels in further experimental studies.

� The focal elements at the two extreme sides are still trapezoidal but not triangular, for
examples see Figs. 3.9 , 3.11 and 3.13 .
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Fig. 3.9 Relationships between fuzzy labels and the corresponding focal elements based on
uniform fuzzy discretization

3.3.1 Percentile-Based Discretization

In this approach discretization is based on data distribution, so that the attribute
universe is partitioned into intervals which each contain approximately the same
number of data elements. It is a very intuitive way of generating fuzzy labels based
on the data distribution. For example, consider the same data from the Pima Indian
Diabetics problem[21]. The data distribution shown in Fig. 3.10 . Fig. 3.11 shows
the
continuous attribute universe is labeled by 3 fuzzy sets: small, medium and large
(NF = 3). According to the assumptions we made in Section 3.2, there are 5 focal
elements. We then need 4 cut points that partition the universe into 5 intervals
each containing approximately the same number of examples. The functions of
focal elements mx(F) as x varies are drawn in the upper sub-figure and the
fuzzy sets obtained are shown in the lower sub-figure. However, if the data is
uniformly distributed, percentile-based discretization has the same affect as uniform
discretization.

3.3.2 Entropy-Based Discretization

In this approach, the discretization is based on the expected entropy of the resulting
partition. In fact we aim to obtain the partition maximizing the information gain[22].
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Fig. 3.10 Data distribution on the Clump Thickness in the Pima Indian Diabetics data [21]
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Fig. 3.11 Relationships between fuzzy labels and the corresponding focal elements based
on percentile-based fuzzy discretization

For a particular attribute, suppose we have a set of data values S = {x1, . . . ,xN}
according to which we want to define q focal elements, then initially we need to
find q−1 cut points forming a partition of the universe. These boundary points are
identified so as to maximize information gain in the following way. Every pair of
adjacent data points suggests a potential boundary point,

γi =
(xi + xi+1)

2
, i = 1, . . . ,N −1 (3.24)
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Fayyad has proved that only the class boundary points can be the boundary
points if we are to obtain the maximum information in classification, which implies
that γi cannot lead to a partition that has maximum information gain if xi and xi+1
belong to the same class [23]. Therefore, we should generate a candidate set, which
contains all class boundary points, from which we then need to find q− 1 points
with which we can maximize the information gain defined by Eq. (3.25)[22].

Gain(S,Φ) = Entropy(S)− ∑
v=1,...,q

|Sv|
|S| Entropy(Sv) (3.25)

where Φ is subset of the candidate set containing the q−1 cut points that partition
the original universe S into q intervals: S1, . . . ,Sq. The entropy is defined in Eq.
(3.26), where m is the number of classes and pi is the percentage of instances
belonging to a particular class within S.

Entropy(S) =
m

∑
i=1

−pi log2 pi (3.26)

pi =
|Si|
|S| where : Si = ∑

x j∈S
x j →Ci (3.27)

Fig. 3.12 shows the conditional distribution of lump Thickness given two
classes of the Pima Indian Diabetics Problem[21]. Fig. 3.13 shows the entropy-
based discretization of the same attribute.
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Fig. 3.12 Data distribution of Clump Thickness given class 1 (a) and class 2 (b)
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Fig. 3.13 Relationships between fuzzy labels and the corresponding focal elements based
on entropy-based discretization

3.4 Reasoning with Fuzzy Labels

So far we have introduced how to use the label semantics framework for data
modeling. In this section, we will go for more details in label semantics theory
especially in linguistic reasoning and other theoretical aspects.

3.4.1 Conditional Distribution Given Mass Assignments

As we have introduced in the previous section, mass assignment can be used to
describe vague concepts. How to convey and use the information in reasoning is
a key problem. We will start by defining the conditional probability given a vague
concept in mass assignment representation.

Definition 3.8 (Conditional distribution given a mass assignment) Given a mass
assignment on labels m : 2L → [0,1] then for Ω finite:

∀x ∈ Ω P(x|m) = P(x) ∑
S⊆L

mx(S)
m(S)
pm(S)

(3.28)

and for infinite Ω the conditional density is given by:
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∀x ∈ Ω f (x|m) = f (x) ∑
S⊆L

mx(S)
m(S)
pm(S)

(3.29)

where pm(S) is the prior mass assignment (see Eq. (3.4))

This definition can be justified in terms of the theorem of total probability as follows:
Suppose that instead of a mass assignment, you knew that the set of appropriate
labels for value y selected at random from Ω was certain to be S, i.e., that Dy = S
(Definition 3.2). In this case, you could apply Bayes’ theorem to obtain a conditional
distribution on Ω as follows:

∀x ∈ Ω P(y = x|Dy = S) =
P(y = x)P(Dy = T |y = x)

P(Dy = T )
=

P(x)mx(S)
pm(S)

(3.30)

However, you do not know the exact value of Dy for a randomly selected value y
but rather you only know a distribution for the values of Dy corresponding to mass
assignment m. Hence, in this case you can apply the theorem of total probability to
obtain a conditional distribution according to:

∀x ∈ Ω P(x|m) = ∑
S⊆L

P(y = x|Dy = S)m(S) = ∑
S⊆L

P(x)mx(S)
pm(S)

= P(x) ∑
S⊆L

mx(S)
m(S)
pm(S)

This will be used to evaluate conditional probabilities for label semantics based
Bayesian classifiers (see Chapter 6).

3.4.2 Logical Expressions of Fuzzy Labels

Given a universe of discourse Ω containing a set of objects or instances to be
described, it is assumed that all relevant expression can be generated recursively
from a finite set of basic labels L = {L1, . . . ,Ln}. Operators for combining
expressions are restricted to the standard logical connectives of negation “¬”,
conjunction “∧”, disjunction “∨” and implication “→”. Hence, the set of logical
expressions of labels can be formally defined as follows.

Definition 3.9 (Logical expressions of labels) The set of logical expressions, LE,
is defined recursively as follows:

(i) Li ∈ LE for i = 1, . . . ,n.
(ii) If θ ,ϕ ∈ LE then ¬θ ,θ ∧ϕ,θ ∨ϕ ,θ → ϕ ∈ LE

Basically, we interpret the main logical connectives as follows: ¬L means that L
is not an appropriate label, L1 ∧L2 means that both L1 and L2 are appropriate labels,
L1 ∨L2 means that either L1 or L2 are appropriate labels, and L1 → L2 means that
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L2 is an appropriate label whenever L1 is. The reason we use such logical forms is
because linguistic expressions such as not small and not large, or medium and high
etc., are more intuitively describable for human cognition compared to the mass
assignment on label sets.

We have developed a mechanism for measuring the appropriateness of using
a linguistic label to describe an object. We are also interested in evaluating the
appropriateness degrees of a complex logical expression θ ∈ LE. Consider the
set of logical expressions LE obtained by recursive application of the standard
logical connectives in L. In order to evaluate the appropriateness degrees of
such expressions we must identify what information they provide regarding the
appropriateness of labels. In general, for any label expression θ we should be able
to identify a maximal set of label sets, λ (θ) that are consistent with θ so that the
meaning of θ can be interpreted as the constraint Dx ∈ λ (θ).

Definition 3.10 (λ -function) Let θ and ϕ be expressions generated by recursive
application of the connectives ¬,∨,∧ and → to the elements of L (i.e. θ ,ϕ ∈
LE). Then the set of possible label sets defined by a linguistic expression can be
determined recursively as follows.

(i) λ (Li(x)) = {S ⊆ F|{Li} ⊆ S}
(ii) λ (¬θ) = λ (θ)
(iii) λ (θ ∧ϕ) = λ (θ)∩λ (ϕ)
(iv) λ (θ ∨ϕ) = λ (θ)∪λ (ϕ)
(v) λ (θ → ϕ) = λ (θ)∪λ (ϕ)

It should also be noted that the λ -function provides us with a notion of logical
equivalence for label expressions,

θ ≡L ϕ ⇐⇒ λ (θ) = λ (ϕ)

Basically, λ -function provides a way of transferring logical expressions of labels
(or linguistic rules) to random set descriptions of labels (i.e., focal elements).
λ (θ) corresponds to those subsets of F identified as being possible values of Dx
by expression θ . In this sense the imprecise linguistic restriction ‘x is θ ’ on x
corresponds to the strict constraint Dx ∈ λ (θ) on Dx. Hence, we can view label
descriptions as an alternative to linguistic variables as a means of encoding linguistic
constraints [24]. Reasoning with linguistic constraints will be introduced in Chapters
4 and 5, respectively.

Based on Definition 3.10, we can evaluate that the appropriateness degree of
θ ∈ LE is to aggregate the values of mx across λ (θ). This motivates the following
general definition of appropriateness measures.

Definition 3.11 (Appropriateness measures) ∀θ ∈ LE, ∀x ∈ Ω the measure of
appropriateness degrees of θ as a description of x is given by

μθ (x) = ∑
S∈λ(θ)

mx(S)
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Appropriateness degrees (Definition 3.3) introduced at the beginning of this chapter
can be regarded as a special case of appropriateness measures. Note that in label
semantics there is no requirement for the mass associated with the empty set to
be zero. Instead, mx( /0) quantifies the agent’s belief that none of the labels are
appropriate to describe x. Given the Definition 3.11 it can be shown that the
appropriateness measures have the following properties[16].

Theorem 3.1 General properties of appropriateness measures ∀θ ,ϕ ∈ LE then the
following properties hold:

(i) If θ |= ϕ then ∀x ∈ Ω μθ (x) ≤ μϕ(x)
(ii) if θ ≡L ϕ then ∀x ∈ Ω μθ (x) = μϕ(x)

(iii) θ is a tautology then ∀x ∈ Ω μθ (x) = 1
(iv) θ is a contradiction then ∀x ∈ Ω μθ (x) = 0
(v) ∀x ∈ Ω μ¬θ (x) = 1−μθ (x)

(vi) Let LE∧,∨ ⊆ LE denote those expressions generated recursively from L using
only the connectives ∧ and ∨. ∀x ∈ Ω it holds that:

μθ∧ϕ(x) = min(μθ (x),μϕ(x)) (3.31)

μθ∨ϕ(x) = max(μθ (x),μϕ(x)) (3.32)

Note that by implication μθ→ϕ(x) quantifies that agent’s belief that if θ is
appropriate to describe a given x then so is ϕ .

Example 3.5 Given a continuous variable x: Lx = {small, medium, large},
Fx = {{small},{small,medium},{medium},{medium, large},{large}}. Suppose
we are told that “x is not large but it is small or medium”. This constraint can
be interpreted as the logical expression

θx = ¬large∧ (small ∨medium)

According to Definition 3.10, the possible label sets of the given logical expression
θx are calculated as follows:

λ (¬large) = {{small},{small,medium},{medium}}
λ (small) = {{small},{small,medium}}

λ (medium) = {{small,medium},{medium},{medium, large}}
so that we can obtain,

λ (θx) = λ (¬large∧(small∨medium)) = {{small}, {small, medium}, {medium}}
∧ ({{small}, {small, medium}} ∨ {{small, medium}, {medium}, {medium,
large}}) = {{small}, {small, medium}, {medium}}
If a prior distribution on focal elements of variable x are given as follows:

p(x) = {{small} : 0.1,{small,medium} : 0.3,
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{medium} : 0.1,{medium, large} : 0.5,{large} : 0.0}
The appropriateness measure for θx = ¬large∧ (small ∨medium) is,

μθ (x) = ∑
S∈λ(θ)

mx(S)

= mx({small})+mx({small,medium})+mx({medium})
= 0.1+0.3+0.1 = 0.5

3.4.3 Linguistic Interpretation of Appropriate Labels

Based on the inverse of the λ -function (Definition 3.10), a set of logical label
expressions (linguistic rules) can be obtained from a given set of possible label
sets. For example, suppose we are given the possible label sets {{small},{small,
medium},{medium}}, which does not have an immediately obvious interpretation.
However by using the α-function, we can convert this set into a corresponding
linguistic expression (small ∨medium)∧¬large or its logical equivalence.

Definition 3.12 (α-function)

∀F ∈ F let N(F) =

( ⋃
F ′∈F:F ′⊇F

F ′
)
−F (3.33)

then αF =

(∧
L∈F

L

)
∧
⎛⎝ ∧

L∈N(F)

¬L

⎞⎠ (3.34)

Then map a set of focal sets to label expressions based on the α-function as follows:

∀R ∈ F θR =
∨

F∈R

αF where λ (θR) = R (3.35)

The motivation of this mapping is as follows. Given a focal set {small,medium}
this states that the labels appropriate to describe the attribute are exactly small and
medium. Hence, they include small and medium and exclude all other labels that
occur in focal sets that are supersets of {small,medium}. Given a set of focal sets
{{small,medium},{medium}} this provides the information that the set of labels
is either {small,medium} or {medium} and hence the sentence providing the same
information should be the disjunction of the α sentences for both focal sets. The
following example gives the calculation of the α-function.

Example 3.6 Let L ={very small (vs), small (s), medium (m), large(l), very large
(vl)} and F ={{vs,s}, {s}, {s,m}, {m}, {m, l}, {l}, {l,vl}}. For calculating α{l},
we obtain,

F ′ ∈ F : F ′ ⊇ {l} = {{m, l},{l},{l,vl}} = {m, l,vl}
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N({l}) =

⎛⎝ ⋃
F ′∈F:F ′⊇{l}

F ′

⎞⎠−{l} = {l,vl,m}−{l} = {vl,m}

α{l} =

(∧
L∈F

L

)
∧
⎛⎝ ∧

L∈N(F)

¬L

⎞⎠ = (l)∧ (¬m∧¬vl) = ¬m∧ l ∧¬vl

Also we can obtain,
α{m,l} = m∧ l α{l,vl} = l ∧ vl

Hence, a set of label sets {{m, l},{l},{l,vl}} can be represented by a linguistic
expression as follows:

θ{{m,l},{l},{l,vl}} = α{m,l} ∨α{l} ∨α{l,vl} =

(m ∧ l) ∨ (¬ m ∧ l ¬ vl) ∨ (l ∧ vl) ≡L large

where ‘≡L’ represents logical equivalence (Definition 3.10).

Basically, α-function provides a way of obtaining logical expressions from a
random set description of labels. It is an inverse process of λ -function.

3.4.4 Evidence Theory and Mass Assignment

Evidence theory, also known as Dempster-Shafer (D-S) theory[25], is based on
two dual non-additive measures: belief measures, denoted by Bel, and plausibility
measures, denoted by Pl. Let us suppose that we have a finite universe Ω . Then, for
each subset, S in the power set of Ω , 2Ω , we can interpret Bel(S) as the degree of
belief that a given element of Ω belongs to the set S. We may also view the subsets
of Ω as answers to a particular question or alternative hypothesis explaining the
state of the world. We assume that some of the answers are correct, but we do not
know with full certainty which ones they are.

Definition 3.13 (Belief measure) Given a finite universal set Ω , a belief measure
is a function:

Bel : 2Ω → [0,1]

such that,
Bel( /0) = 0, Bel(Ω) = 1

and for all possible families of subsets: S1, . . ., Sn of Ω :

Bel(S1 ∪ . . .∪Sn) ≥
n

∑
i=1

Bel(Si)−
n

∑
i> j

Bel(Si ∩S j)+, . . . ,+

(−1)n+1Bel(S1 ∩ . . .∩Sn) (3.36)
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Belief can be defined as a measure of total evidence in favor. When the sets S1, . . . ,Sn
are pair-wise disjoint, the inequality requires that the degree of belief associated
with union of the set, which is not smaller than the sum of the degree of belief
associated with the union of the sets is not smaller than the sum of the degrees of
belief pertaining to the individual sets. This basic property of belief measures is thus
a weaker version of the additivity property of probability measures. This implies
that probability measures are special cases of belief measures of which (Eq. (3.36))
becomes an equality.

Belief measures have the following properties:

∀S,T ∈ 2Ω : S ⊆ T,Bel(S) ≤ Bel(T ) (3.37)

∀S ∈ 2Ω : Bel(S)+Bel(S̄) ≤ 1 (3.38)

where S̄ denotes the complement of S in Ω .
The first property in Eq. (3.37) means that Bel(·) is a monotonic function. The

second property in Eq. (3.38) means that lack of belief in x ∈ S does not imply a
strong belief in x ∈ S̄. Associated with each belief measure is a plausibility measure
defined by:

∀S ∈ 2Ω , Pl(S) = 1−Bel(S̄) (3.39)

Similarly, we have that,

∀S ∈ 2Ω , Bel(S) = 1−Pl(S̄) (3.40)

Definition 3.14 (Plausibility measure) Given a finite universal set Ω , a plausibility
measure is a function:

Pl : 2Ω → [0,1] (3.41)

such that,
Pl( /0) = 0, Pl(Ω) = 1 (3.42)

In other words, plausibility is a measure of total evidence not against while belief
measure is total evidence in favor.

Mass assignment can be regarded as an extension of Shafer-Dempster’s evidence
theory. Shafer-Dempster belief functions are defined by a probability distribution on
the power set Ω . Belief is defined as

Bel(A) = ∑
B⊆A

m(B) (3.43)

and plausibility as
Pl(A) = ∑

B:B∩A�= /0
(3.44)

Based on mass assignment, Bel() and Pl() can be defined as Belief:

Bel(S) = ∑
T⊆S

m(T )
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Plausibility,
Pl(S) = ∑

T :T∩S �= /0
m(T )

Additivity is weakened in evidence theory:

Bel(A∪B) ≥ Bel(A)+Bel(B)−Bel(A∩B)

Pl(A∪B) ≤ Pl(A)+Pl(B)−Pl(A∩B)

While for probability measure:

P(A∪B) = P(A)+P(B)−P(A∩B)

Example 3.7 It is known that a patient is either healthy (H) or has one of two
diseases D1 or D2, (see Fig. 3.14 ). What should be our belief that the patient is
suffering from either diseases D1 or D2 (i.e., that he is not healthy)?

Bel({D1,D2}) = m({D1})+m({D2})+m({D1,D2}) (3.45)

It is the sum of evidence that supports the patient not being healthy. However, the
plausibility of this hypothesis is

Pl({D1,D2}) = m({D1})+m({D2})+m({D1,D2}) (3.46)

+m({H,D1})+m({H,D2})+m({H,D1,D2})
Although label semantics is based on random set theory and is quite different

from evidence theory, there are overlaps between these two theories. There is a
clear link between the appropriateness measures of disjunctions and conjunction of
basic labels and plausibility and commonality measures in D-S theory. Given mx
as conditional mass assignment on 2L given a random variable x. In this case, for
any labels Li ∈ L for i = 1, . . . ,n. The appropriateness measure of the disjunction
L1 ∨L2 . . .∨Ln is given by:

μL1∨...∨Ln(x) = ∑
S:{L1,...,Lk}∩S �= /0

mx(S) = Pl({L1, . . . ,Lk}|x) (3.47)

Similarly, the appropriateness measure of the conjunction L1 ∧ . . . ∧ Ln as a
description of x is given by:

μL1∧Ln(x) = ∑
S:{L1,...,Ln}⊆S

mx(S) = Bel({L1, . . . ,Ln}|x) (3.48)

Despite this relationship, we should not treat the appropriateness measures as a
specical case of D-S theory. The general method of evaluating appropriateness
measures by summing over λ -sets has no equivalency in D-S theory[26].
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{ H , D1 , D2 }

{ }H

{ H , }{ H , } { , }

{ } { }

m ({ ,H , }) = Measure of Ignorance

m ({ , }) = Total evidence

that patient

has or

Inconsistency

D1 D2

D1 D2

D1
D2

D1 D1
D2

D2

D2D1

Fig. 3.14 An example of evidence based on mass assignment. A patient is either healthy (H)
or has one of two diseases D1 or D2

3.5 Label Relations

In this section, we will consider how to use one set of fuzzy labels to describe
another fuzzy labels. Here, using the term high level labels does not mean a
hierarchical structure. We will actually consider two set of fuzzy labels which are
independently defined on the same universe. If the cardinality of a set of labels L

is denoted by |L|, we then can say L1 higher level labels of L2 if |L1| ≤ |L2|. We
will actually consider the methodology of using one set of fuzzy labels to represent
the other set of fuzzy labels. Generally, we want to use a set of fuzzy labels with
a smaller cardinality (which are relatively more vague) to represent a set of labels
with bigger cardinality (which are less vague).

For example, a fuzzy concept about_m is defined by an interval on [a,b] (see
Fig. 3.15 ), so that the appropriateness degree of using fuzzy label small to label
about_m is:

μsmall(about_m) =
1

b−a

∫ b

a
μsmall(u)du (3.49)

If the vagueness of the concept about_m depends on the interval denoted by δ where
the length of the interval |δ | = b−a, we then can obtain

μsmall(about_m) =
1
|δ |

∫
u∈δ

μsmall(u)du (3.50)
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small
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u xsmall( )

�

Fig. 3.15 The appropriateness degree of using small to label a vague concept about_m is
defined by the ratio of the area covered by both labels to the area covered by about_m only.
This is the case where about_m is defined by an interval

If about_m is defined by other fuzzy labels rather than an interval, for example,
a triangular fuzzy set (e.g., Fig. 3.16 ), how can we define the appropriateness
degrees?
We begin by considering a data element x ∈ [a,b], the function μabout_m(x)
represents the degree of x belonging to the fuzzy label F . Function μsmall(x) defines
the appropriateness degrees of using the label small to describe x �. We essentially
hope to obtain the appropriateness degrees of using small to label about_m. We
then consider each of the elements belonging to about_m. If μabout_m(x) = 1, which
means x is absolutely belongs to about_m, then the appropriateness degree is just
μsmall(x). However, if μabout_m < μsmall(x), we can only say it is belonging to
about_m in certain degrees. Logically, fuzzy operation AND is used, and in practical
calculation the min(·) function is employed. The appropriateness is then defined by

μsmall(about_m) =
∫

u∈δ min(μsmall(u),μabout_m(u))du∫
u′∈δ μabout_m(u′)du′

(3.51)

where function min(x,y) returns the minimum value between x and y. Eq. (3.50) is
a special case of Eq. (3.51) where the following equations always hold:

μsmall(u) = min(μsmall(u),μabout_m(u))

|δ | =
∫

u∈δ
μabout_m(u)du

Definition 3.15 Given a vague concept (or a fuzzy label) F and a set of labels
L = {L1, . . . ,Lm} defined on a continuous universe Ω , the appropriateness degrees
of using label L (L ∈ L) to describe F are:

� Here we interpret μ(·) in different manners: membership function and appropriateness
degrees, though they are mathematically the same.
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u x
small
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about_m
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about_m
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Fig. 3.16 The appropriateness degree of using small to label a vague concept about_m is
defined by the ratio of the area covered by both labels to the area covered by about_m only.
This is the case where about_m is defined by a triangular membership function

μL(F) =
∫

u∈δ min(μL(u),μF(u))du∫
u′∈δ μF(u′)du′

(3.52)

where δ is the universe covered by fuzzy label F.

Given appropriateness degrees, the mass assignment can be obtained from the
appropriateness degrees by the consonance assumption. Eq. (3.51) is a general form
for all kinds of fuzzy sets which are not limited to an interval or a triangular fuzzy
sets.

Example 3.8 Fig. 3.17 gives a set of isosceles triangular fuzzy labels F1, . . . ,F8,
and two high level fuzzy labels, small and large, defined on the same universe.
The membership functions (the non-zero part) for F5, F6 and small are defined as
follows:

PS → y =
5
2

x−3, PT → y = −5
2

x+5

QR → y =
5
2
(x−0.4)−3, QU → y = −5

2
(x−0.4)+5

OU → y = −5
6

x+2

As we can see from Fig. 3.17 : μF5(x) = 0.75 and μF6(x) = 0.25 given x = 1.7.
According to Definition 3.15 we can obtain

μsmall(F5) = 0.8, μlarge(F5) = 1

μsmall(F6) = 0.5, μlarge(F6) = 1
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Fig. 3.17 The relations between fuzzy labels

So that the corresponding consonant mass assignments (see Definition 3.4) are

mF5 = {small, large} : 0.8,{large} : 0.2

mF6 = {small, large} : 0.5,{large} : 0.5

High level labels small and large can be used to describe x = 1.7 by the following
steps:

mx = {F5,F6} : 0.25,{F5} : 0.5, /0 : 0.25

F5 and F6 can be represented by the mass assignments of high level fuzzy labels,
small and large. Considering the term {F5,F6}, it means that both two labels F5
and F6 are appropriate for labeling x with a certain degree. It defines a area covered
both by F5 and F6 which is an interval between R and T . Therefore, according to
Definition 3.15 we can obtain the mass assignment for {F5,F6}:

m{F5,F6} = {small, large} : 0.5,{large} : 0.5

Finally, we obtain

mx = ({small, large} : 0.5,{large} : 0.5) : 0.25,

({small, large} : 0.8,{large} : 0.2) : 0.5, /0 : 0.25
= {small, large} : 0.525,{large} : 0.225, /0 : 0.25
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From example 3.8, if we use small and large to describe x directly. By the
function of small we can obtain u = 7

12 , so that the mass assignments are

mx = {small, large} :
7
12

,{large} :
5
12

which is different from the result presented in Example 3.1. It is because precision
is lost by using two level of fuzzy labels. In our example, x is firstly repressed by F5
and F6 which are precise. However, the description of x by small and large through
F5 and F6 is not precise any more, because F5 and F6 are not exact representation of
x by involving uncertainties decided by δ . As we can see from the Figs. 3.18 and
3.19 : the appropriateness degrees of using high level labels to describe low level
concepts are dependent on the uncertainty parameter δ . For example, given a data
element m:

|μsmall(F(δ1))−μsmall(m)|< |μsmall(F(δ2))−μsmall(m)|< |μsmall(F(δ3))−μsmall(m)|
So that,

μsmall(m) = lim
δ→0

μsamll(F(δ ))

where F is the function of the fuzzy label (a function of δ–either an interval,
triangular fuzzy set or other type of fuzzy set) centered on m.

m

1

small

u

�

2�

3�

Fig. 3.18 The appropriateness degrees of small depend on the width of the vague concept
of about_m, where about_m is a uniform interval

3.6 Summary

Reasoning with uncertainty is an important area in artificial intelligence. In this
chapter, a random set based framework for modeling uncertainty is introduced.
In this framework the appropriateness of describing a concept with a particular
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Fig. 3.19 The appropriateness degrees of small depend on the width of the vague concept
of about_m, where about_m is a triangular fuzzy set

fuzzy label is used for modeling. The basic semantics is presented with examples.
The method for using it for data analysis is also discussed and that will be used
for designing new machine learning and data mining algorithms in the subsequent
chapters.

Generally, a human being posses a mechanism for deciding whether or not
to make assertions or to agree to a classification. Further, this underling decision
process is fundamentally crisp although the concepts concerned are vague. In this
sense, label semantics provides a new perspective on vague concepts by focusing
on the decision process you must go through in order to identify which labels or
expressions can actually be used to describe an object or instance. The foundation of
this theory is based on quantifying your subjective belief that a label is appropriate
to describe an object. Such belief evaluation would be made on the basis of your
previous experience of the use of labels and label expressions by other agents to
describe other similar instances.
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4

Linguistic Decision Trees for Classification

Science is the systematic classification of experience.

— George Henry Lewes (1817-1878)

4.1 Introduction

In this chapter, label semantics theory is applied to designing transparent data
mining models. A label semantics based decision tree model is proposed where
nodes are linguistic descriptions of variables and leaves are sets of appropriate
labels. For each branch, instead of labeling it with a certain class, the probability
of a particular class given this branch can be computed based on the given training
dataset. This new model is referred to as a linguistic decision tree (LDT).

A new algorithm for building such a tree model guided by information based
heuristics is proposed by modifying the classical ID3 algorithms in accordance
with label semantics theory. By empirical experiments on real-world datasets it
is verified that LDTs have better or equivalent classification accuracy compared
to three well-known machine learning algorithms: C4.5, Naive Bayes (NB) and
Back Propagation (BP) Neural Networks. Each LDT can be interpreted as a set of
linguistic rules that give this model a good transparency compared to other black-
box data mining models. By applying a new proposed forward branch merging
algorithm, the complexity of the tree can be greatly reduced without significant
loss of accuracy. Finally, a method for linguistic query evaluation is discussed and
supported with an example at the end of this chapter. This methodology can be
extended to learning from fuzzy data.

4.2 Tree Induction

Tree induction learning models have received a great deal of attention over recent
years in the fields of machine learning and data mining because of their simplicity
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and effectiveness. Among them, the Iterative Dichotomiser 3 (ID3)[1] algorithm
for decision trees induction has proved to be an effective and popular algorithm
for building decision trees from discrete valued data sets. The C4.5[2] algorithm
was proposed as a successor to ID3 in which an entropy based approach to crisp
partitioning of continuous universes was adopted.

Decision tree induction is one of the simplest and yet most successful learning
algorithms. A decision tree (DT) consists of internal and external nodes and the
interconnections between nodes are called branches of the tree. An internal node
is a decision-making unit to decide which child nodes to visit next depending on
different possible values of associated variables. In contrast, an external node, also
known as leaf node, is the terminated node of a branch. It has no child nodes and is
associated with a class label that describes the given data. A decision tree is a set of
rules in a tree structure. Each branch can be interpreted as a decision rule associated
with nodes visited along this branch. For example, Fig. 4.2 is a decision tree which
is generated from the “play-tennis” problem[3]. The database for this problem is
shown in Fig. 4.1 .

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

Day Outlook Temperature Humidity Wind Play-tennis

D14 Rain Mild High Strong No

Fig. 4.1 Database for the “play-tennis” problem [3]. Each instance is with 4 attributes and
one class label of either Yes or No, all attributes are with discrete values

Decision trees classify instances by sorting instances down the tree from root to
leaf nodes. This tree-structured classifier partitions the input space of the data set
recursively into mutually exclusive spaces. Following this structure, each training
data is identified as belonging to a certain subspace, which is assigned a label, a
value, or an action to characterize its data points. The decision tree mechanism
has good transparency in that we can follow a tree structure easily in order to
explain how a decision is made. Thus interpretability is enhanced when we clarify
the conditional rules characterizing the tree.
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Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes

Fig. 4.2 A decision tree built from the play-tennis problem [3]

4.2.1 Entropy

Entropy of a random variable is the average amount of information generated
by observing its value. Consider the random experiment of tossing a coin with
probability of heads equal to 0.9, i.e., a random variable x with

P(x = Head) = 0.9 P(x = Tail) = 0.1

The amount of information generated by observing a head is less than the
information generated by observing a tail. Intuitively, one can appreciated the
observing the outcome “heads” provides little information, since the probability
of heads is 0.9, i.e., heads is almost certain to come up. Observing “tails” on the
other hand provides much information, since its probability is low[4]. In statistical
physics, entropy is used to evaluate the randomness of a state, a large entropy
value indicates that there is more randomness involved. If an event x happens with
probability P(x), the function for measuring information content H(x) should be
inversely proportional to P(x). It should satisfy

H(x) =
1

P(x)
(4.1)

If both events x1 and x2 happen, where the probability of these two events happen is
P(x1)P(x2). However, the information content should satisfy

H(x1,x2) = H(x1)+H(x2) (4.2)

If we use a logarithm function

H(x) = log
1

P(x)
(4.3)

both the above two conditions can be satisfied. Given a random variable x with
probability P(x), the entropy is the expectation of the information content function
H(x):
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E(x) = ∑
x

P(x)H(x) = ∑
x

P(x)
(

log
1

P(x)

)
= −∑

x
logP(x)P(x) (4.4)

Because we basically use binary code for computing and communications. For
convenience, we choose the base 2. Therefore, the entropy can be formally defined
by

Entropy(x) = −∑
i

pi log2 pi (4.5)

We have introduced DT and how DTs make decisions. The hardest problem
is how to build a DT based on training data? The most popular decision tree
induction algorithm is called ID3 and was introduced by Quinlan in 1986[1]. It has
proved to be an effective and popular algorithm for building decision trees from
discrete valued data sets. The decision tree is guided heuristically according to the
information content of each attribute. In classification problems, we can also say
that entropy is a measurement of the impurity in a collection of training examples:
the larger the entropy is, the more random is the data. If the entropy equals 1, this
means that the data is distributed uniformly across the classes. Fig. 4.3 shows the
entropy function when the proportion of positive examples varies from 0 to 1 in a
binary classification problem.
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Fig. 4.3 The entropy for binary classification problems

Based on entropy, Information Gain (IG) is used to measure the effectiveness of
an attribute as a means of discriminating between classes.
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IG(S,A) = Entropy(S)− ∑
v∈Values(A)

|Sv|
|S| Entropy(Sv) (4.6)

It is simply the expected reduction of entropy caused by partitioning the examples
according to this attribute. More details regarding the ID3 algorithm are given in[3].
The ID3 algorithm is a hill-climbing algorithm, which is guided by information gain
in the hypotheses space. This gives us the following approximation of its inductive
bias: Shorter trees are preferred over longer trees. Trees that place high information
gain attributes close to the root are preferred over those that do not. The pseudo-code
is given in Algorithm 2.

Algorithm 2: ID3 algorithm for decision tree learning

ID3 (Examples, Target_Attribute, Attributes)

• Create a root node for the tree.
• If all examples are positive, Return the single-node tree Root, with label = +.
• If all examples are negative, Return the single-node tree Root, with label = −.
• If number of predicting attributes is empty, then Return the single node tree Root, with

label = most common value of the target attribute in the examples.
• Otherwise Begin:

– A = The Attribute that best classifies examples.
– Decision Tree attribute for Root = A.
– For each possible value, vi, of A:

· Add a new tree branch below Root, corresponding to the test A = vi.
· Let Examples(vi), be the subset of examples that have the value vi for A
· If Examples(vi) is empty:

· Then below this new branch add a leaf node with label = most common
target value in the examples.

· Else below this new branch add the subtree ID3 (Examples(vi),
Target_Attribute, Attributes /∈ A).

• End
• Return Root

Also, it is important to realize that the ID3 algorithm is not suitable for all
learning and classification problems. Typically, problems that have the following
main characteristics can be modeled as a decision tree.

(1) Instances are represented by attribute-value pairs.
(2) The target function has discrete values.

In dealing with the first problem, techniques of “learning from structured data”
have been developed as a part of Inductive Logic Programming (ILP). For the
second problem, much real-world data, including scientific and engineering data,
medical data and financial data, are continuous. In order to learn from continuous
data, we need to partition the continuous universe using some type of discretization
algorithms, as will be discussed in the following chapters.
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4.2.2 Soft Decision Trees

One inherent disadvantage of crisp partitioning is that it tends to make the induced
decision trees sensitive to noise. This noise is not only due to the lack of precision
or errors in measured features but is often present in the model itself, since the
available features may not be sufficient to provide a complete model of the system.
For each attribute, disjoint classes are separated with clearly defined boundaries.
These boundaries are “critical” since a small change close to these points will
probably cause a complete change in classification.

Due to the existence of uncertainty and imprecise information in real-world
problems, the class boundaries may not be defined clearly. In this case, decision
trees may produce high misclassification rates in testing, even if they perform well
in training[3,5].

This fact can be illustrated as follows: Fig. 4.4 shows a decision tree in a two-
class problem, in which there are two continuous attributes x and y. Using crisp
discretization, the decision space is partitioned into a set of non-overlapping sub-
regions A1, A2 and A3, which have clear boundaries with each other. The object
for classification will definitely fall into one of these areas. For example, the given
object (x = 13.5,y = 46.0) will be classified as A3, However, if this object is distorted
due to noise so that (x = 12.9,y = 46.2), then the object will be misclassified as
A1 (see Fig. 4.4 (a)). In contrast, consider the use of fuzzy discretization (Fig. 4.4
(b)), where the continuous universe is partitioned by overlapped trapezoidal fuzzy
sets {x1,x2} and {y1,y2}. As shown in the right-hand figures of Fig. 4.4 , A1, A2
and A3 generated from fuzzy discretization appear as overlapping subregions with
blurred boundaries. The possibility degree of an object belonging to each region
will be given by the membership of pre-defined fuzzy sets. The object may fall in
the overlapping area. These results can then aid the human users to make their final
decisions or suggest further investigation.

Many fuzzy approaches for decision tree learning have been proposed to
overcome the weaknesses described above[5−8]. In particular, gives a comprehensive
overview of the fuzzy decision tree literature [8]. The algorithm we will present can
be also considered as a soft decision. It is based on the label semantics theory (see
Chapter 3) and provides a good interpretation of decision rules by using linguistic
labels.

4.3 Linguistic Decision for Classification

In order to avoid being confusing about the complicated notations used in label
semantics and the LDT model, we highlight a few most important notations and list
them in Table 4.1 . Generally, a tree is considered as a set of branches and each
branch is a set of non-zero focal elements with a probability distribution on classes.

Consider a database DB = {x1, . . . ,x|DB|} where each instance has n attributes
(i.e., xi = 〈x1(i), . . . ,xn(i)〉) and each instance is categorized as belonging to one
of the classes: C = {C1, . . . ,C|C|}. Unless otherwise stated, we use uniformly
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Fig. 4.4 Comparisons of crisp discretization and fuzzy discretization for decision tree
models. The decision tree in (a) has crisp boundaries that divide the data into 3 non-
overlapping areas A1, A2 and A3. In (b), x1, x2, y1 and y2 are defined by fuzzy functions
that embed more robustness with blurred boundaries

Table 4.1 Important notations for the linguistic decision tree model

DB a database with the size of |DB|: {x1, . . . ,x|DB|}
xi a n-dimensional instance that: xi ∈ DB for i = 1, . . . , |DB|

L j a set of linguistic labels defined on the attribute j : j = 1, . . . ,n
F j the focal set on attribute j given L j for j = 1, . . . ,n

|F j| = 2|L j|−1 if Lk ∈ L j (k = 1, . . . , |L j|) are with 50% overlapping
C a set of classes with the size of |C|: {C1, . . . ,C|C|}
T a linguistic decision tree that contains |T | branches: {B1, . . . ,B|T |}
B a set of branches: B = {B1, . . . ,BM}, T ≡ B iif: M = |T |
B a branch of LDT, it has |B| focal elements: B = {F1, . . . ,F|B|}

focal elements Fi,Fj ∈ B are defined on different attributes
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distributed fuzzy sets with 50% overlap to discretize each continuous attribute
universe and obtain a corresponding linguistic data set by applying linguistic
translation (Definition 3.7). A linguistic decision tree is a decision tree where the
nodes are the random set label descriptions and the branches correspond to particular
focal elements based on DB.

Definition 4.1 (Linguistic decision tree) A linguistic decision tree is a set of
branches with associated class probabilities in the following form:

T = {〈B1,P(C1|B1), . . . ,P(C|C||B1)〉, . . . ,
〈B|T |,P(C1|B|T |), . . . ,P(C|C||B|T |)〉}

where |T | is the number of branches of the linguistic decision tree T .

A branch B is defined as a set of focal elements

B = 〈F1, . . . ,F|B|〉
where Fj ∈ F j . F j is the focal set for attribute j (Definition 3.6). |B| is the length of
a branch, corresponding to the number of component nodes (attributes), is less than
or equal to n, the number of attributes.

Within an LDT (see Fig. 4.5 ) each node is an attributes that can be split into
branches according to the focal elements of this node (attribute). One attribute is not
allowed to appear more than once in a branch, and an attribute which is not currently
part of a branch is referred to as a free attribute.

D
x1

LF1

{ small1} {large1}

{small1 ,

{small2}

(0.3, 0.7) (0.5, 0.5) (0.6, 0.4) (0.6, 0.4) (0.7, 0.3) (0.2, 0.8)

(0.1, 0.9)

LF2

D
x2

D
x2

LF4

{ large2 } {small2}

large1}

LF3
LF5 LF6

LF7

{ large2}

{small2 ,large2} {small2 ,large2}

Fig. 4.5 An example of a linguistic decision tree in a binary classification problem, where
each attribute is discretized by two fuzzy labels: small and large. The tree has 7 branches and
each leaf from LF1 to LF7 is labeled with a class distribution

Definition 4.2 (Free attributes) The set of attributes free to use for expanding a
given branch B is defined by

AT TB = {x j|∀F ∈ F j;F /∈ B}
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In an LDT, the length of the longest branch Dep(T ) is called the depth of the LDT,
which is also less than or equal to n:

Dep(T ) ≤ n (4.7)

Each branch has an associated probability distribution on the classes. For example,
an LDT shown in Fig. 4.5 might be obtained from training where the branch LF6:

〈〈{large1},{small2, large2}〉,0.7,0.3〉
means the probability of class C1 is 0.3 and C2 is 0.7 given attribute 1 that can be
only described as large and attribute 2 that can be described as small and large. We
need to be aware that the linguistic expressions such as small, medium or large for
each attribute are not necessarily the same, since they are defined independently on
each attribute. E.g. large2 means the fuzzy label large defined on attribute 2.

4.3.1 Branch Probability

According to the definition of LDT (Definition 4.1), given a branch of an LDT in the
form of B = 〈F1, . . . ,F|B|〉, the probability of class Ct (t = 1, . . . , |C|) given B can then
be evaluated from a training set DB. First, we consider the probability of a branch
B given a particular example x ∈ DB, where x = 〈x1, . . . ,xn〉 ∈ Ω1×, . . . ,×Ωn. This
probability is evaluated by:

P(B|x) =
|B|
∏
r=1

mxr (Fr) (4.8)

where mxr(Fr) are the associated masses of data element xr for r = 1, . . . , |B|.
Basically, the above equation can be justified as follows:

P(B|x) = P(Dx1 = F1, . . . ,Dx|B| = F|B||〈x1, . . . ,xn〉) (4.9)

where Dx1 = F1, . . . ,Dx|B| = F|B| are conditionally independent, so that we can obtain

P(Dx1 = F1, . . . ,Dx|B| = F|B||〈x1, . . . ,xn〉) =
|B|
∏
r=1

P(Dxr = Fr|xr) (4.10)

=
|B|
∏
r=1

mxr (Fr) (4.11)

Based on Eq. (4.8), the probability of class Ct given B can then be evaluated by

P(Ct |B) =
∑i∈DBt P(B|xi)
∑i∈DB P(B|xi)

(4.12)

where DBt is the subset consisting of instances which belong to class Ct .
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DBt = {xi|xi →Ct} : i = 1, . . . , |DB|.

In the case where the dominator equals zero (i.e., ∑i∈DBP(B|xi) = 0), which can
occur when the training database for the LDT is small so that there is no non-zero
linguistic data covered by the branch. In this case, we obtain no information from
the database so that equal probabilities are assigned to each class.

P(Ct |B) =
1
|C| for t = 1, . . . , |C| (4.13)

In the process of building a linguistic decision tree, if one of the class probabilities
reaches a certain threshold at a particular depth, for example 0.9, then we might take
the view that this branch is sufficiently discriminating and that further expansion
may lead to overfitting. In this case terminating the tree expansion at the current
depth will probably help maintain accuracy on the test set. To this end, we employ
a threshold probability to determine whether or not a particular branch should
terminate.

Definition 4.3 (Threshold probability of a LDT) In the process of building a
linguistic decision tree, if the maximum class probability, given a particular branch,
is greater than, or equal to a given threshold probability T , then the branch will be
terminated at the current depth.

Obviously, when using this probability-based thresholding, the branches of a
tree may have different lengths. For example, see Fig. 4.5 , where the threshold
probability T = 0.9, so that the 4th branch 〈{small1, large1}〉 is terminated at the
depth 1 while the other branches expand to the next depth.

In the above discussions we have been concerned about continuous (or
numerical) attributes, but can we learn with discrete (or nominal) attributes? One
problem is that the values of discrete attributes may not have a natural ordering
like continuous ones. For example, values for a person’s age can be sorted in
an increasing manner so that the labels young, middle-aged and old can be
meaningfully defined by fuzzy sets. However, if we consider the gender of a person,
there are only two possible values male or female, which are unordered. Hence,
partitioning discrete attribute domains using fuzzy labels is problematic. Instead,
we do not attempt to group discrete values but treat discrete values as distinct labels
which do not overlap with each other. Hence, the following focal elements for the
attribute “gender” are {male} and {female}. In this representation the associated
masses for each focal element will be binary, i.e. either zero or one. For instance,

mgender({male}) =
{

1 if gender= male
0 otherwise

Missing values can be handled simply by assigning the equal masses of
corresponding focal elements. For example, given the database shown in Table 4.2 ,
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the 4th instance has a missing value in Attribute 1. Instead of using some ad-hoc pre-
processing� techniques, we simply assign equal probabilities to the focal elements
of this missing value.

Table 4.2 An example of a small-scale artificial dataset after linguistic translation. Each
attribute has 2 independently defined fuzzy labels: small (s) and large (l)

# Instance
Attribute 1 (x1) Attribute 2 (x2) Class
{s1} {s1, l1} {l1} {s2} {s2, l2} {l2}

1 0 0.4 0.6 0 0.7 0.3 +
2 0.2 0.8 0 0.5 0.5 0 −
3 0 0.9 0.1 1 0 0 −
4 0.333 0.333 0.333 0 1 0 +
5 0 1 0 0.3 0.7 0 +

Example 4.1 Consider a two-class problem with 2 attributes, where L1 = {small1
(s1), large1(l1)} and L2 ={small2(s2), large2(l2)}. We assume the focal set F1 =
{{s1},{s1, l1},{l1}} and F2 = {{s2},{s2, l2},{l2}}. Suppose that the database
generated from the linguistic translation from the original training database is given
in Table 4.2 , and it has two target classes, positive (+) and negative (−) where

DB+ = {x1,x4,x5}, DB− = {x2,x3}

Now suppose we are given two branches of the form:

B1 = 〈〈{small1},{small2}〉,P(+|B1),P(−|B1)〉
B2 = 〈〈{small1, large1},{small2, large2}〉,P(+|B2),P(−|B2)〉

These two branches are evaluated according to Eqs. (4.8) and (4.12) (or Eq. (4.13)):

P(+,B1) =
∑i=1,4,5 P(B1|xi)

∑5
i=1 P(B1|xi)

=
∑i=1,4,5 mx1(i)({s1})×mx2(i)({s2})

∑5
i=1 mx1(i)({s1})×mx2(i)({s2})

=
0×0+0.333×0+0×0.3

0×0+0.2×0.5+0×1+0.333×0+0×0.3
= 0

� Some pre-processing techniques treat the missing values as a new value of “missing” for
nominal attributes [13].
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P(−,B1) =
∑i=2,3 P(B1|xi)

∑5
i=1 P(B1|xi)

=
∑i=2,3 mx1(i)({s1})×mx2(i)({s2})
∑5

i=1 mx1(i)({s1})×mx2(i)({s2})
=

0.2×0.5+0×1
0×0+0.2×0.5+0×1+0.333×0+0×0.3

=
0.1
0.1

= 1

P(+,B2) =
∑i=1,4,5 P(B2|xi)

∑5
i=1 P(B2|xi)

=
∑i=1,4,5 mx1(i)({s1, l1})×mx2(i)({s2, l2})

∑5
i=1 mx1(i)({s1, l1})×mx2(i)({s2, l2})

=
0.4×0.7+0.333×1+1×0.7

0.4×0.7+0.8×0.5+0.9×0+0.333×1+1×0.7
= 0.767

P(−,B2) =
∑i=2,3 P(B2|xi)

∑5
i=1 P(B2|xi)

=
∑i=2,3 mx1(i)({s1, l1})×mx2(i)({s2, l2})
∑5

i=1 mx1(i)({s1, l1})×mx2(i)({s2, l2})
=

0.8×0.5+0.9×0
0.4×0.7+0.8×0.5+0.9×0+0.333×1+1×0.7

= 0.233

4.3.2 Classification by LDT

Now consider classifying an unlabeled instance in the form of x = 〈x1, . . . ,xn〉 which
may not be contained in the training data set DB. We apply a linguistic translation
to x based on the fuzzy covering of the training data DB. In the case that a data
element appears beyond the range of the training data set [Rmin,Rmax] for a particular
attribute, we assign the appropriateness degrees of Rmin or Rmax to the element
depending on which side of the range it appears.

μFi(x) = μFi(Rmin) if x < Rmin

μFi(x) = μFi(Rmax) if x > Rmax

where i = 1, . . . , |F|. Jeffrey’s rule:

P(a) = P(a|b)P(b)+P(a|¬b)P(¬b) (4.14)

is used for classifying a new data element, where P(b) and P(¬b) are considered
as the beliefs in b and not b, respectively[11]. This can be generalized when given a
new condition c�:

P(a|c) = P(a|b)P(b|c)+ r(a|¬b)P(¬b|c) (4.15)

Hence, we can evaluate the probabilities of class Ct based on a given LDT, T , by
using Jeffrey’s rule as follows:

P(Ct |x) =
|T |
∑
v=1

P(Ct |Bv)P(Bv|x) (4.16)

� There is an implicit assumption that a is conditionally independent of c given b.
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where P(Bv|x) and P(Ct |Bv) are evaluated according to Eqs. (4.8) and (4.12) (or Eq.
(4.13)), respectively. In classical decision trees, classification is made according to
the class label of the branch in which the data falls. In our approach, the data for
classification partially satisfies the constraints represented by a number of branches
and the probability estimates across the whole decision tree are then used to obtain
an overall classification.

Example 4.2 Suppose we are given the linguistic decision tree shown in Fig. 4.5
for a two-class problem with F1 = {{small1},{small1, large1},{large1}},

F2 = {{small2},{small2, large2},{large2}}. A data element y = 〈y1,y2〉 for
classification is given such that μsmall1(y1) = 1, μlarge1(y1) = 0.4 and μsmall2(y2) =
0.2, μlarge2(y2) = 1.

The LDT given in Fig. 4.5 can be written as

LDT = {B1,B2,B3,B4,B5,B6,B7} = {
〈〈{small1},{small2}〉,0.3,0.7〉,
〈〈{small1},{small2, large2}〉,0.5,0.5〉,
〈〈{small1},{large2}〉,0.6,0.4〉,
〈〈{small1, large1}〉,0.1,0.9〉,
〈〈{large1},{small2}〉,0.6,0.4〉
〈〈{large1},{small2, large2}〉,0.7,0.3〉
〈〈{large1},{large2}〉,0.2,0.8〉 }

The mass assignments on y are

my1 = {small1, large1} : 0.4,{small1} : 0.6

my2 = {small2, large2} : 0.2,{large2} : 0.8

According to Eq. (4.8), we obtain

P(B1|y) = P(B5|y) = P(B6|y) = P(B7|y) = 0

P(B2|y) = my1({small1})×my2({small2, large2}) = 0.6×0.2 = 0.12

P(B3|y) = my1({small1})×my2({large2}) = 0.6×0.8 = 0.48

P(B4|y) = my1({small1, large1}) = 0.4

Hence, based on Jeffrey’s rule (Eq.(4.16)), we can obtain

P(C1|y) =
7

∑
v=1

P(C1|Bv)P(Bv|y) = ∑
v=2,3,4

P(C1|Bv)P(Bv|y)

= 0.12×0.5+0.48×0.6+0.4×0.1 = 0.388
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P(C2|y) =
7

∑
v=1

P(C2|Bv)P(Bv|y) = ∑
v=2,3,4

P(C2|Bv)P(Bv|y)

= 0.12×0.5+0.48×0.4+0.4×0.9 = 0.612

Usually, the decision threshold for a probabilistic classifier is 0.5 without assuming
any other prior information. Therefore, in this example, y is classified as C2
because P(C2|y) > 0.5. However, in cost-sensitive learning, the decision threshold
is not necessarily 0.5 when considering the misclassification cost and prior class
distribution.

From the above examples we have known how to calculate the class probabilities
and how to use them in classification. In the next section, we will introduce the
algorithm for building a linguistic decision tree.

4.3.3 Linguistic ID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm we propose for building the
linguistic decision tree based on a given linguistic database. Similar to the ID3
algorithm[1], search is guided by an information based heuristic, but the information
measurements of an LDT are modified in accordance with label semantics. The
measure of information defined for a branch B can be viewed as an extension of the
entropy measure used in ID3.

Definition 4.4 (Branch entropy) The entropy of branch B given a set of classes
C = {C1, . . . ,C|C|} is

E(B) = −
|C|
∑
t=1

P(Ct |B) log2 P(Ct |B) (4.17)

Now, given a particular branch B, suppose we want to expand it with the attribute x j.
The evaluation of this attribute will be given based on the expected entropy defined
as follows:

Definition 4.5 (Expected entropy)

EE(B,x j) = ∑
Fj∈F j

E(B∪Fj) ·P(Fj|B) (4.18)

where B∪Fj represents the new branch obtained by appending the focal element Fj
to the end of branch B. The probability of Fj given B can be calculated as follows:

P(Fj|B) =
∑i∈DB P(B∪Fj|xi)

∑i∈DB P(B|xi)
(4.19)

We can now define the Information Gain (IG) obtained by expanding branch B with
attribute x j as:

IG(B,x j) = E(B)−EE(B,x j) (4.20)
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The goal of tree-structured learning models is to make subregions partitioned
by branches be less “impure” in terms of the mixture of class labels than the
unpartitioned dataset. For a particular branch, the most suitable free attribute
for further expanding (or partitioning), is the one by which the “pureness” is
maximally increased with expandsion. That corresponds to selecting the attribute
with maximum information gain. As with ID3 learning, the most informative
attribute will form the root of a linguistic decision tree, and the tree will expand
into branches associated with all possible focal elements of this attribute. For each
branch, the free attribute with maximum information gain will be the next node,
from level to level, until the tree reaches the maximum specified depth or the
maximum class probability reaches the given threshold probability.

Algorithm 3: Linguistic decision tree learning

input : LD: Linguistic dataset obtained from Algorithm 1.
output: T : Linguistic Decision Tree

Set a maximum depth Mdep and a threshold probability T .;
for l ← 0 to Mdep do

B ← /0 when l = 0 ;
The set of branches of LDT at depth l is Bl = {B1, . . . ,B|Bl |} ;
for v ← 1 to |B| do

foreach Bv do : ;
for t ← 1 to |C| do

foreach t do Calculating conditional probabilities:
P(Ct |Bv) = ∑i∈DBt

P(Bv|xi)/∑i∈DB P(Bv|xi) ;
if P(Ct |Bv) ≥ T then

break (step out the loop)

if ∃ x j: x j is free attribute then
foreach x j do : Calculate: IG(Bv,x j) = E(Bv)−EE(Bv,x j) ;
IGmax(Bv) = maxx j [IG(Bv,x j)] ;
Expanding Bv with xmax where xmax is the free attribute we can obtain
the maximum IG value IGmax. ;
B
′
v ←

⋃
Fj∈F j

{Bv ∪Fj}.

else
exit;

Bl+1 ←
⋃s

r=1 B
′
r .

T ← B

(1) Linguistic Translation: to translate real valued data into linguistic form data (see
Definition 3.7). We first discretize the continuous universe of each attribute with
fuzzy sets uniformly or non-uniformly (see Section 3.3). For each data element,
find appropriateness degrees which will be used in subsequent calculations of
mass assignments. This is because a new database is saved for use in the second
step.



92 4 Linguistic Decision Trees for Classification

(2) Decision Tree Learning: A linguistic decision tree will be developed level by
level according to the information heuristics. At each level, we will examine
each branch for calculating class probabilities and compare it with the given
threshold probability to determine if it should be terminated or not, until the
maximum depth has been reached or all branches are terminated. The pseudo-
code of the tree learning process is shown in Algorithm 3.

(3) Classification: Given an LDT, we classify a data element according to class
probabilities, given branches of the tree according to Eq. (4.16).

4.4 Experimental Studies

We evaluated the LID3 algorithm by using 14 datasets taken from the UCI Machine
Learning repository[9]. These datasets have representative properties of real-world
data, such as missing values, multi-classes, mixed-type data (numerical, nominal)
and unbalanced class distributions, etc. Table 4.3 shows the dataset, the number
of classes, the number of instances, the number of numerical (Num.) and nominal
(Nom.) attributes and whether or not the database contains missing values.

Table 4.3 Descriptions of datasets from UCI machine learning repository. Other details
about these data sets are available in Reference [9]

# Dataset
Number

Data Size
Missing Attributes Number

of Classes Values Num. Nom.

1 Balance 3 625 no 4 0
2 Breast-Cancer* 2 286 yes 3 6
3 Breast-w 2 699 no 9 0
4 Ecoli 8 336 no 7 1
5 Glass 6 214 no 9 0
6 Heart-c 2 303 yes 6 7
7 Heart-Statlog 2 270 no 7 6
8 Heptitis 2 155 yes 6 13
9 Ionosphere 2 351 no 34 0
10 Iris 3 150 no 4 0
11 Liver 2 345 no 6 0
12 Pima 2 768 no 8 0
13 Sonar 2 208 no 60 0
14 Wine 3 178 no 14 0

In the following experiments, unless otherwise stated, attributes are discretized
by 2 trapezoidal fuzzy sets with 50% overlap, and classes are evenly split into two
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sub-datasets, one half for training and the other half for testing. This is referred to
as a 50-50 split experiment. The maximal depth is set manually and the results show
the best performance of LID3 across a range of depth settings. We also test the LID3
algorithm with different threshold probabilities T ranging from 0.6 to 1.0 in steps
of 0.1 and for the different fuzzy discretization methods: uniform, entropy-based
and percentile-based (see Section 3.3). For each dataset, we ran 50-50 random split
experiment 10 times. The average test accuracy with standard deviation is shown
on the right-hand side of Table 4.5 and the probability and the depth at which we
obtain this accuracy are listed in Table 4.4 .

Table 4.4 Summary of the threshold probabilities and depths for obtaining the best accuracy
with different discretization methods in the given datasets

#
LID3-Uniform LID3-Entropy LID3-Percentile

Threshold Best Depth Threshold Best Depth Threshold Best Depth

1 1.0 4 1.0 4 1.0 4
2 0.7 2 0.7 2 0.7 2
3 1.0 4 1.0 3 1.0 3
4 1.0 7 1.0 7 1.0 7
5 0.9 9 0.8 9 0.8 8
6 0.9 3 0.9 4 0.9 3
7 0.9 3 0.9 3 0.9 4
8 0.9 4 0.9 4 0.9 3
9 0.9 6 0.9 6 0.9 6

10 1.0 3 1.0 3 1.0 3
11 0.9 5 1.0 5 1.0 5
12 0.9 5 0.9 4 0.9 3
13 1.0 8 1.0 8 1.0 8
14 1.0 4 1.0 5 1.0 5

4.4.1 Influence of the Threshold

As can be seen from the results, the best accuracy is usually obtained with high
threshold probabilities T = 0.9 or T = 1.0, especially for datasets with only
numerical attributes (such as breast-w, iris, balance, wine) or where numerical
attributes play important roles in learning (ecoli, heptitis). Recent work on PETs
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Table 4.5 Accuracy (with standard deviation) of LID3 based on different discretization
methods and three other well-known machine learning algorithms

# C4.5 Naive Bayes Neural Network LID3-Uniform LID3-Entropy LID3-Percentile

1 79.20±1.53 89.46±2.09 90.38±1.18 83.80±1.19 83.07±3.22 86.23±0.97
2 69.16±4.14 71.26±2.96 66.50±3.48 73.06±3.05 73.47±2.66 73.06±3.05
3 94.38±1.42 96.28±0.73 94.96±0.80 96.43±0.70 96.11±0.78 96.11±0.89
4 78.99±2.23 85.36±2.42 82.62±3.18 85.41±1.94 86.53±1.28 85.59±2.19
5 64.77±5.10 45.99±7.00 64.30±3.38 65.96±2.31 65.60±2.57 65.87±2.32
6 75.50±3.79 84.24±2.09 79.93±3.99 76.71±3.81 78.09±3.58 77.96±2.88
7 75.78±3.16 84.00±1.68 78.89±3.05 76.52±3.63 78.07±3.63 79.04±2.94
8 76.75±4.68 83.25±3.99 81.69±2.48 82.95±2.42 83.08±2.82 83.08±1.32
9 89.60±2.13 82.97±2.51 87.77±2.88 88.98±2.23 89.11±2.30 88.01±1.83
10 93.47±3.23 94.53±2.63 95.87±2.70 96.00±1.26 96.13±1.60 96.40±1.89
11 65.23±3.86 55.41±5.39 66.74±4.89 58.73±1.99 64.62±2.80 69.25±2.84
12 72.16±2.80 75.05±2.37 74.64±1.41 76.22±1.81 76.22±1.85 76.54±1.34
13 70.48±0.00 70.19±0.00 81.05±0.00 86.54±0.00 87.50±0.00 89.42±0.00
14 88.09±4.14 96.29±2.12 96.85±1.57 95.33±1.80 95.78±1.80 95.89±1.96

(Probability Estimation Trees) [12] also suggests that the full expanded estimation
trees give better performance than pruned trees�.

The reason for this is that the heuristics used to generate small and compact
trees by pruning tend to reduce the quality of the probability estimates [12]. In this
context linguistic decision trees can be thought of as a type of probability estimation
tree but where the branches correspond to linguistic descriptions of objects. Strictly
speaking, our linguistic decision tree model is a probability estimation tree though
we employ the name of “linguistic decision tree”. The key difference between these
two types of trees is that PETs give probability estimation according to which we
can rank the examples given a target class [12]. We may have different classification
results based on a different given threshold which are related to class distribution or
cost matrix in cost-sensitive problems, while the decision trees only give the crisp
classification of examples. The difference in accuracy resulting from varying the
threshold probability T is quite data dependent. Figs. 4.6 to 4.8 show the results of
the datasets given in Table 4.3 . We will consider the results for 4 typical datasets:
Breast-w, Heart-statlog, Glass and Breast-Cancer. In Breast-w, the accuracy curves
are nested relative to increasing values of T . The models with high T values
outperform those with lower T values at all depths. Dataset Iris, Balance, Sonar,

� In classical decision tree learning such as ID3 and C4.5, pruning can reduce overfitting
so that the pruned trees have better generalization and perform better then unpruned trees.
However, this is not the case for probability estimation trees [12].
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Vine, Ecoli also behave in this way. On the other hand, for datasets Heart-Statlog,
Pima, Liver, Heart-C and Heptitis, the accuracy curve of T = 0.9 is better than all
other T values at certain depths. In addition, datasets Glass and Ecoli have accuracy
curves which are very close to each other and are even identical on some trials. For
the Breast-Cancer dataset the accuracy actually decreases with increasing T . All of
the datasets we tested have almost the same trends.
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Fig. 4.6 Comparisons of accuracy at different depths with threshold probability ranges from
0.6 to 1.0 on data set # 1 and # 2 in Table 4.3

4.4.2 Overlapping Between Fuzzy Labels

As we can see from Chapter 3, we usually use the trapezoidal fuzzy sets with
50% overlapping in linguistic translation. In this section, we will investigate the
influences of overlapping degrees on the accuracy by some empirical studies.

First, we introduce a new parameter PT by which to measure the degree of
overlapping of fuzzy labels. PT = 0.5 represents 50% of overlapping between
each two neighboring fuzzy labels (e.g., see Fig. 4.9 (a)). PT = 0 represents no
overlapping at all (see Fig. 4.9 (c)). The relation between different overlapping and
PT values is schematically shown in Fig. 4.9 . Given fuzzy labels F and G, m is the
distance between the center of a fuzzy label to the meeting point of these two fuzzy
labels. a is actually the length of the overlapping area. PT is then defined as follows:

PT = a/2m (4.21)

Suppose there is a 50% overlapping between two neighboring fuzzy labels, a equals
m so that PT = 0.5. If there is no overlapping at all, a = 0 so that PT = 0. Fig. 4.10
shows an example of fuzzy discretiztion with different PT values on a continuous

universe.
We tested 10 datasets taken from UCI[9] repository and the average results with

standard deviation based on 10 runs of 50-50 split experiments are shown in Fig.
4.11 and 4.12 . As we can see from these figures, accuracy generally increase with
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Fig. 4.7 Comparisons of accuracy at different depths with threshold probability ranges from
0.6 to 1.0 on data set #3 to #8 in Table 4.3
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Fig. 4.9 A schematic illustration of calculating the overlap parameter PT given different
degrees of overlaps

the increases in the PT values. Only the data Ionosphere is an exception. In order
to simplifying the label semantics, it is not necessary to use fuzzy labels with more
than 50% overlapping. Hence, we will use the fuzzy labels with 50% overlapping
for discretization in the following experiments.

4.5 Comparison Studies

From the Table 4.4 , we also see that the optimal values of T and depth are
relatively invariant across the discretization techniques. Overall the entropy-based
and percentile-based discretization methods performed better than the uniform
discretization although no statistically significant difference was found between
the three methods. In order to conduct the comparison studies, we first start by
introducing the neural networks.

We now compare LID3 with different discretization with C4.5, Naive Bayes
Learning and Neural Networks � using 10 50-50 splits on each dataset and the
average accuracy and standard deviation for each test are shown in Table 4.5 .
The reason for choosing these three particular learning algorithms is as follows:
C4.5 is the most well-known tree induction algorithm, Naive Bayes is a simple

� WEKA is used to generate the results of J48 (C4.5 in WEKA) unpruned tree, Naive Bayes
and Neural Networks with default parameter settings. [13]
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but effective probability estimation method and neural networks are a black-box
model well known for its high predictive accuracy. We then carried out paired t-
tests with confidence level of 90% to compare LID3-Uniform, LID3-Entropy and
LID3-Percentile with each of the three algorithms[3]. A summary of the results is
shown in Table 4.6 .

Table 4.6 Summary of comparisons of LID3 based on different discretization methods with
three other well-known machine learning algorithms

LID3-Uniform LID3-Entropy LID3-Percentile

Decision Tree (C4.5) vs. 9 wins-4 ties-1 losses 9 wins-5 ties-0 losses 10 wins-4 ties-0 losses
Naive Bayes vs. 3 wins-8 ties-3 losses 7 wins-4 ties-3 losses 7 wins-4 ties-3 losses
Neural Network vs. 5 wins-6 ties-3 losses 5 wins-8 ties-1 losses 5 wins-8 ties-1 losses

Across the data sets, all LID3 algorithms (with different discretization
techniques) outperform C4.5, with LID3-Percentile achieving the best results with
10 wins, 4 ties and no losses. The performance of the Naive Bayes algorithm and
LID3-Uniform is roughly equivalent although LID3-Entropy and LID3-Percentile
outperform Naive Bayes. From Table 4.5 , we can see that the datasets on which
Naive Bayes outperforms LID3 are those with a mixture of continuous and discrete
attributes, namely Heart-C, Heart-Statlog and Heptitis. Most of the comparisons
with the Neural Network result in ties rather than wins or losses, especially
for LID3-Entropy and LID3-Percentile. Due to the limited number and type of
datasets we used for evaluation, we may not draw the strong conclusion that LID3
outperforms all the other 3 algorithms. However we can at least conclude that based
on our experiments, the LID3 outperforms C4.5 and has equivalent performance to
Naive Bayes and the Neural Networks. For the datasets with only numerical values,
LID3 outperforms both C4.5 and Naive Bayes. Between different discretization
methods, percentile-based and entropy-based approaches achieve better results than
uniform discretization.

4.6 Merging of Branches

In the previous section, we showed that LID3 performs at least as well as and often
better than, three well-known classification algorithms across a range of datasets.
However, even with only 2 fuzzy sets for discretization, the number of branches
increases exponentially with the depth of the tree. Unfortunately, the transparency
of the LDT decreases with the increasing number of branches. To help to maintain
transparency by generating more compact trees, a forward merging algorithm based
on the LDT model is introduced in this section and experimental results are given to
support the validity of our approach.
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4.6.1 Forward Merging Algorithm

See Fig. 4.13 for instance, with the first round of merging, the adjacent branches L2
and L3, L5 and L6 are merged into two new branches. If any of two adjacent branches
have sufficiently similar class probabilities according to some criteria, these two
branches give similar classification results and therefore can then be merged into
one branch in order to obtain a more compact tree. We employ a merging threshold
to determine whether or not two adjacent branches can be merged.

Definition 4.6 (Merging threshold) In a linguistic decision tree, if the maximum
difference between class probabilities of two adjacent branches B1 and B2 is less
than or equal to a given merging threshold Tm, then the two branches can be merged
into one branch. Formally, if

Tm ≥ max
c∈C

|P(c|B1)−P(c|B2)| (4.22)

where C = {C1, . . . ,C|C|} is the set of classes, then B1 and B2 can be merged into
one branch MB. A merged linguistic decision tree MT can be represented by a set
of merged branches MB, or formally

MT = {MB1, . . . ,MB|MT |}
where each merged MB j has a class distribution

P(C1|MB j), . . . ,P(C|C||MB j)

Definition 4.7 (Merged branch) A merged branch MB nodes is defined as

MB = 〈M j1 , . . . ,M j|MB| 〉

|MB| are the number of nodes for the branch MB where the node is defined as:

M j = {F1
j , . . . ,F

|M j |
j }

Each node is a set of focal elements such that Fi
j is adjacent to Fi+1

j for i =
1, . . . , |M j| − 1. If |M| > 1, it is called compound node, which means it is a
compound of more than one focal elements because of merging (e.g., see Fig. 4.13
). The associate mass for M j is given by

mx(M j) =
|M j |
∑
i=1

mx(Fi
j ) (4.23)

where w is the number of merged adjacent focal elements for attribute j.

Based on Eq. (4.8), we can obtain

P(Ct |x) =
|MB|
∏
r=1

mxr (Mr) (4.24)
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Fig. 4.13 An illustration of forward branch merging process. Given the merging threshold
0.1, branches L2 and L3 are firstly merged into new merged branch L2 and branches L5 and
L6 are merged into a new branch L4. There is one more step merging of the new L4 and L5
because these branches have close probabilities less than or equal to the threshold probability
1. Finally, the original LDT with 7 branches is merged into a new LDT with 4 branches only
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Therefore, based on Eqs. (4.12), (4.13) and (4.23) we use the following formula to
calculate the class probabilities given a merged branch.

P(Ct |MB) =
∑i∈DBt P(Ct |xi)
∑i∈DB P(Ct |xi)

(4.25)

When the merging algorithm is applied in learning a linguistic decision tree,
the adjacent branches meeting the merging criteria will be merged and re-evaluated
according to Eq. (4.25). Then the adjacent branches after the first round of merging
will be examined in a further round of merging, until all adjacent branches cannot
be merged further. We then proceed to the next depth. In Fig. 4.13 , leaves L2 and L3,
L5 and L6 are merged in the first round of merging, and the new leaves L4 and L5 are
then merged further because they still meet the merging criteria in the second round
of merging. The merged branches can be represented by compound expressions that
will be described in the subsequent sections. The merging is applied as the tree
develops from the root to the maximum depth and hence is referred to as forward
merging.

4.6.2 Dual-Branch LDTs

Dual-Branch LDTs are a special LDT where each branch grain is two neighboring
focal elements. It is a special case of the merged tree introduced in the previous
section. Give a focal set with size l, from each node there are l − 1 branches.
For example, the focal set for a particular attribute x is F = {F1, . . . ,F7} {{tiny},
{tiny,small}, {small}, {small,normal}, {normal}, {normal, large}, {large}}.
Then we have the branches from the node x: Bx = {B1, . . . ,B6} = {{F1,F2},
{F2,F3}, {F3,F4}, {F4,F5}, {F5,F6}, {F6,F7}}. The LDT with such nodes are
referred to as a dual-branch LDT. The revised condition of probability of a focal
element Fy ∈ Fy that is appropriate to describe a goal given the branch B, can be
evaluated from a training set DB according to

P(Fy|B) =
∑i∈DBy ∏N

r=1(mxir
(Fj)+mxir

(Fj+1))

∑i∈DB ∏N
r=1(mxir

(Fj)+mxir
(Fj+1))

(4.26)

Different from the normal LDTs, each branch of the dual-branch LDT has the
summed masses of the neighboring focal elements.

4.6.3 Experimental Studies for Forward Merging

We tested the forward merging algorithm on the UCI datasets listed in Table 4.3
with 10 50-50 split experiments and the results are shown in Table 4.7 . Obviously,
there is a tradeoff between the algorithm accuracy and the algorithm transparency in
terms of the number of leaves. The merging threshold Tm plays an important role in
the accuracy-transparency tradeoff problem. Algorithm accuracy tends to increase
while algorithm transparency decreases with decreasing Tm and vice versa.
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Table 4.7 Comparisons of accuracy and the number of leaves (rules) |T | with different
merging thresholds Tm across a set of UCI datasets [9]. The results for Tm = 0 are obtained
with NF = 2 and results for other Tm values are obtained with NF values listed in the second
column of the table

# NF
Tm = 0 Tm = 0.1 Tm = 0.2 Tm = 0.3 Tm = 0.4

Acc. |T | Acc. |T | Acc. |T | Acc. |T | Acc. |T |
1 2 83.80 77 84.19 51 81.09 25 75.08 10 47.03 1
2 2 73.06 17 71.67 12 71.11 9 59.65 4 61.25 2
3 2 96.43 57 95.80 29 95.74 16 95.63 9 95.49 4
4 3 85.41 345 85.29 445 84.24 203 83.88 104 82.65 57
5 3 65.69 329 62.84 322 64.04 190 44.31 86 35.41 49
6 2 76.71 37 78.68 31 78.55 22 78.42 18 68.49 11
7 3 76.52 31 78.37 35 78.44 23 77.85 12 72.22 7
8 3 82.95 11 81.28 24 80.77 18 80.64 15 80.77 13
9 3 88.98 45 87.90 78 88.47 41 89.20 30 89.20 26

10 3 96.00 21 95.47 23 95.20 18 95.20 14 94.27 10
11 2 58.73 83 56.30 43 55.90 11 57.34 4 57.92 3
12 2 76.12 27 75.31 20 74.45 5 73.85 3 65.10 1
13 2 86.54 615 88.46 516 85.58 337 81.73 93 49.04 6
14 3 95.33 67 93.78 80 94.11 50 93.56 36 89.67 24

The number of fuzzy sets NF in the merging algorithm is also a key parameter.
Compared to NF = 3, setting NF = 2 can achieve better transparency, but for some
datasets, with NF = 2, the accuracy is greatly reduced although the resulting trees
have significantly fewer branches. For example, Figs. 4.14 and 4.15 show the
change in test accuracy and the number of leaves (or the number of rules interpreted
from a LDT) for different Tm on the Breast-w dataset. Fig. 4.14 is with NF = 2 and
Fig. 4.15 with NF = 3. Fig. 4.14 shows that the accuracy is not greatly influenced
by merging, but the number of branches is greatly reduced. This is especially true
for the curve marked by ‘+’ corresponding to Tm = 0.3 where applying forward
merging, the best accuracy (at the depth 4) is only reduced by approximately 1%,
whereas, the number of branches is reduced by roughly 84%. However, in Fig. 4.15
, at the depth 4 with Tm = 0.3, the accuracy also reduces about 1% but the number of
branches only reduces by 55%. So, for this dataset, we should choose NF = 2 rather
than NF = 3.

However, this is not always the case. For the dataset Iris, the change in accuracy
and the number of branches against depth with NF = 2 and NF = 3 is shown in
Figs. 4.16 and 4.17 , respectively. As we can see from Fig. 4.16 , by applying the
forward merging algorithm, the accuracy is greatly changed. The best accuracy with
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Fig. 4.14 The change in accuracy and number of leaves as Tm varies in the Breast-w dataset
with NF = 2
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merging is roughly 10% worse than with the non-merging algorithm. But for NF = 3,
as we can see from Fig. 4.17 , the accuracy is not that greatly reduced compared to
NF = 2, and we still obtain a reduced number of branches, compared to the accuracy
for Tm = 0 obtained from NF = 2. In this case we should prefer NF = 3.

Table 4.7 shows the results with optimal NF and different Tm ranging from 0
to 0.4, where Tm = 0 represents no merging. Acc represents the average accuracy
from 10 runs of experiments and |T | is the average number of rules (leaves).
Unless otherwise stated, the results obtained in this section are with the threshold
probability set to T = 1. The results for Tm from 0.1 to 0.4 are obtained at
the depth where the optimal accuracy is found when Tm = 0. As we can see
from the table, for most cases, the accuracy before and after merging is not
significantly different but the number of branches is dramatically reduced. In some
cases, the merging algorithm even outperforms the LID3 without merging. The
possible reason for this is because the merging algorithm generates self-adapting
granularities based on class probabilities. Compared to other methods that discretize
attributes independently, merging may generate a more reasonable tree with more
appropriate information granules.

4.6.4 ROC Analysis for Forward Merging

In this section, we will use ROC analysis to study the forward merging algorithm for
LDTs. Six binary datasets from the UCI machine learning repository are tested here:
Breast-Cancer, Wisconsin-Cancer, Heart-C, Heart, Heptitis and Pima Indian [9].
Descriptions of these datasets including the number of examples, the number of
attributes (features) and whether the attributes are a mixture of Num. and Nom., is
shown in Table 4.3 . The LDT parameters for each data set are set individually: the
number of fuzzy sets used for discretization (NF ) is also shown in Table 4.8 . The
maximum depth for the Breast-Cancer dataset is 2 and for the other five data sets
is 3. These parameter settings are based on a few test-and-trail experiments [10]. For
each data set, the examples were equally divided into two subsets, one for training
and the other one for the test. This is referred to as a 50-50 split experiment.

Table 4.8 shows the average AUC and standard deviation from 10 runs of 50-
50 split experiments by applying merging with the merging threshold Tm ranging
from 0 (no merging) to 0.3. The average size of the trees |T | from 10 runs of
experiments is also shown in the table, where the size of the tree is in terms of
the number of branches (this also corresponds to the the number of rules that can
be extracted from an LDT). According to the t-test with confidence level 0.9, the
AUC values for the merged LDTs are not reduced significantly compared to the non-
merging case. Indeed for some data sets, (e.g., Breast-Cancer) the merged trees even
performs a little better than non-merged trees, although no statistically significant
differences are found. On the other hand, the tree sizes are reduced significantly.
These facts can be seen from FigS. 4.18 and 4.19 . Fig. 4.18 shows the accuracy
comparison and Fig. 4.19 shows the comparison of the number of branches,
respectively. The possible reason for this is that the merging algorithm generates
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self-adapting granularities based on class probabilities. Compared to other methods
that discretize attributes independently, merging may generate more reasonable trees
with more appropriate information granules. However, this claim still needs more
investigation.

Table 4.8 Mean AUC values with standard deviation of six data sets with different merging
thresholds

Data NF
Tm = 0 Tm = 0.1 Tm = 0.2 Tm = 0.3
AUC |T | AUC |T | AUC |T | AUC |T |

Breast-Cancer 3 73.69±7.73 13 71.45±7.12 11 74.29±8.44 9 81.11±3.25 4
Wisconsin-Cancer 3 98.76±0.72 44 99.02±0.54 12 98.69±0.59 9 98.99±0.60 7
Heart-C 2 85.36±2.58 35 84.02±3.46 32 84.79±3.39 25 84.32±4.38 17
Heart-S 2 84.41±3.64 29 85.16±2.90 2581.12±15.05 19 82.36±5.71 11
Heptitis 2 73.26±6.89 19 73.99±5.36 11 74.80±4.83 9 74.25±5.99 7
Pima Indian 2 81.08±0.97 27 81.92±1.79 14 74.74±15.13 5 81.90±4.84 2
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Fig. 4.18 Comparison between non-merged trees and merged trees with Tm ranging from
0.1 to 0.3 on the given test data in terms of accuracy
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4.7 Linguistic Reasoning

As we have known from Chapter 3, the main logical connectives for fuzzy labels are
interpreted as follows: ¬L means that L is not an appropriate label, L1 ∧L2 means
that both L1 and L2 are appropriate labels, L1 ∨ L2 means that either L1 or L2 are
appropriate labels, and L1 → L2 means that L2 is an appropriate label whenever L1
is. In this section we use label semantics to provide a linguistic interpretation for
LDTs and merged LDTs. We also use this framework to show how LDTs can be
used to classify data with linguistic constraints on attributes. In addition, a method
for classification of fuzzy data is proposed and supported with empirical studies of
a toy problem.

4.7.1 Linguistic Interpretation of an LDT

Based on the α-function (Definition 3.12), a branch of a linguistic decision tree in
random set forms (i.e. {small}, {small, medium}, {medium}) can be represented by
a linguistic rule that joined by logical connectives (i.e., ¬large)�. The motivation of
this mapping is shown in Fig. 4.20. Given a focal set {s,m} this states that the labels
appropriate to describe the attribute are exactly small and medium. Hence, they

� By applying the α-function, the logical expression for {small}, {small, medium},
{medium} is ¬large, see Section 3.4.3.
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include s and m and exclude all other labels that occur in focal sets that are supersets
of {s,m}. Given a set of focal sets {{s,m},{m}} this provides the information that
the set of labels is either {s,m} or {m} and hence the sentence providing the same
information should be the disjunction of the α sentences for both focal sets (see
Section 3.4.3).
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Fig. 4.20 A merged linguistic decision tree for the Iris problem

As discussed in the last section, a merged LDT was obtained from a real-world
dataset Iris at the depth 2 when Tm = 0.3 and where L j={small j (s j), medium j (m j),
large j (l j)| j = 1, . . . ,4} (see Fig 4.21).

MTiris = {MB1,MB2,MB3,MB4,MB5,MB6,MB7,MB8} =
{〈〈{s3}〉,1.0000,0.0000,0.0000〉
〈〈{{s3,m3},{m3}},{s4}〉,1.0000,0.0000,0.0000〉
〈〈{{s3,m3},{m3}},{{s4,m4},{m4}}〉,0.0008,0.9992,0.0000〉
〈〈{{s3,m3},{m3}},{m4, l4}〉,0.0000,0.5106,0.494〉
〈〈{{s3,m3},{m3}},{l4}〉,0.0000,0.0556,0.9444〉
〈〈{{m3, l3},{l3}},{s4}〉,0.3333,0.3333,0.3333〉
〈〈{{m3, l3},{l3}},{{s4,m4},{m4}}〉,0.000,0.8423,0.1577〉
〈〈{{m3, l3},{l3}},{{m4, l4},{l4}}〉,0.000,0.0913,0.9087〉}

We can then translate this tree into a set of linguistic expressions as follows:

MTiris = {
〈〈s3 ∧¬(m3 ∨ l3)〉,1.0000,0.0000,0.0000〉
〈〈m3 ∧¬l3,s4 ∧¬(m4 ∨ l4)〉,1.0000,0.0000,0.0000〉
〈〈m3 ∧¬l3,m4 ∧¬l4〉,0.0008,0.9992,0.0000〉
〈〈m3 ∧¬l3,¬s4 ∧m4 ∧ l4〉,0.0000,0.5106,0.4894〉
〈〈m3 ∧¬l3,¬(s4 ∨m4)∧ l4〉,0.0000,0.0556,0.9444〉
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〈〈l3,s4 ∧¬(m4 ∨ l4)〉,0.3333,0.3333,0.3333〉
〈〈l3,m4 ∧¬l4〉,0.000,0.8423,0.1577〉
〈〈l3, l4〉,0.000,0.0913,0.9087〉}

Furthermore, the tree itself can be rewritten as a set of fuzzy rules. For example
branch 2 corresponds to the rule:

IF Attribute 3 is medium but not large and Attribute 4 is only small, THEN the
class probabilities given these branches are (1.0000, 0.0000, 0.0000).

Dx3

s3 (m3 l3)

^ ^

s4 (m4 l4)

Dx4 Dx4

l4

m3 l3

l3

m4 l4m4s4

^
^ l4m4)(s4

s4 (m4 l4) m4 l4

l4

Fig. 4.21 A merged linguistic decision tree in logical expressions for the LDT shown in Fig.
4.20

4.7.2 Linguistic Constraints

Here we consider that the linguistic constraints take the form of θ = 〈x1 is θ1, . . . ,xn
is θn〉, where θ j represents a label expression based on L j : j = 1, . . . ,n. Consider the
vector of linguistic constraint θ = 〈θ1, . . . ,θn〉, where θ j is the linguistic constraint
on attribute j. We can evaluate a probability value for class Ct conditional on this
information using a given linguistic decision tree as follows. The mass assignment
given a linguistic constraint θ is evaluated by

∀Fj ∈ F j mθ j(Fj) =

{ pm(Fj)
∑Fj∈λ (θ j)

pm(Fj)
if : Fj ∈ λ (θ j)

0 otherwise
(4.27)

where pm(Fj) is the prior mass for focal elements Fj ∈ F j derived from the prior
distribution p(x j) on Ω j as follows:

pm(Fj) =
∫

Ω j

mx(Fj)p(x j)dx j (4.28)
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Usually, we assume that p(x j) is the uniform distribution over Ω j so that

pm(Fj) ∝
∫

Ω j

mx(Fj)dx j (4.29)

More details of the calculation of mass assignment given a linguistic constraint are
given in Example 4.3. For branch B the probability of B given θ is evaluated by

P(B|θ ) =
|B|
∏
r=1

mθ jr
(Fjr ) (4.30)

where |B| is the number of nodes in branch B. By Jeffrey’s rule[11], we can obtain

P(Ct |θ) =
|T |
∑
v=1

P(Ct |Bv)P(Bv|θ) (4.31)

Example 4.3 Given the LDT in Example 4.2, suppose we know that for a particular
data element “x1 is not large and x2 is small”. We then can translate this knowledge
into the following linguistic constraint vector:

θ = 〈θ1,θ2〉 = 〈¬large1,small2〉
By applying the λ -function (Definition 3.10), we can generate the associated label
sets, so that:

λ (¬large1) = {{small1}}
λ (small2) = {{small2},{small2, large2}}

Suppose the prior mass assignments are

pm1 = {small1} : 0.4,{small1, large1} : 0.3,{large1} : 0.3
pm2 = {small2} : 0.3,{small2, large2} : 0.2,{large2} : 0.5

From this, according to Eq. (4.27) we obtain that,

mθ1 = {small1} : 0.4/0.4 = {small1} : 1
mθ2 = {small2} : 0.3/(0.3+0.2),{small2, large2} : 0.2/(0.2+0.3)

= {small2} : 0.6,{small2, large2} : 0.4

This gives

P(B1|θ ) = mθ1({small1})×mθ2({small2}) = 1×0.6 = 0.6
P(B2|θ ) = mθ1({small1})×mθ2({small2, large2}) = 1×0.4 = 0.4
P(B3|θ ) = P(B4|θ) = P(B5|θ ) = P(B6|θ) = P(B7|θ ) = 0

Hence, according to Jeffrey’s rule
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P(C1|θ) =
7

∑
v=1

P(Bv|θ)P(C1|Bv) = ∑
v=1,2

P(Bv|θ)P(C1|Bv)

= 0.6×0.3+0.4×0.5 = 0.38

P(C2|θ) =
7

∑
v=1

P(Bv|θ)P(C2|Bv) = ∑
v=1,2

P(Bv|θ)P(C2|Bv)

= 0.6×0.7+0.4×0.5 = 0.62

The methodology for classification under linguistic constraints allows us to fuse
the background knowledge in linguistic form into classification. This is one of the
advantages of using high-level knowledge representation language models such as
label semantics.

4.7.3 Classification of Fuzzy Data

In previous discussions LDTs have only been used to classify crisp data where
objects are described in terms of precise attribute values. However, in many real-
world applications limitations of measurement accuracy mean that only imprecise
values can be realistically obtained. In this section we introduce the idea of fuzzy
data and show how LDTs can be used for classification in this context.

Formally, a fuzzy database is defined to be a set of elements or objects each
described by linguistic expressions rather than crisp values. In other words

FD = {〈θ1(i), . . . ,θn(i)〉 : i = 1, . . . ,N}
Currently, there are very few benchmark problems of this kind with fuzzy attribute
values. This is because, traditionally, only crisp data values are recorded even in
cases where this is inappropriate. Hence, we have generated a fuzzy database from
a toy problem where the aim is to identify the interior of a figure of eight shape.
Specifically, a figure of eight shape was generated according to the equation

x = 2(−0.5)(sin(2t)− sin(t)) (4.32)

y = 2(−0.5)(sin(2t)+ sin(t)) (4.33)

where t ∈ [0,2π] (See Fig. 4.23 ). Points in [−1.6,1.6]2 are classified as legal if they
lie within the ‘eight’ shape (marked with ×) and illegal if they lie outside (marked
with points).

To form the fuzzy database we first generated a crisp database by uniformly
sampling 961 points across [−1.6,1.6]2. Then each data vector 〈x1,x2〉 was
converted to a vector of linguistic expressions 〈θ1,θ2〉 as follows: θ j = θR j where

R j = {F ∈ F j : mx j(F) > 0}
An LDT was then learnt by applying the LID3 algorithm to the crisp database. This
tree was then used to classify both the crisp and fuzzy data. The results are shown
in Table 4.9 and the results with NF = 7 are shown in Fig. 4.22 .
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Fig. 4.22 Classification of crisp dataset (a) and fuzzy data without masses (b), where each
attribute is discretized uniformly by 7 fuzzy sets

Table 4.9 Classification accuracy based on crisp data and fuzzy data of the “eight” problem

NF = 3 NF = 4 NF = 5 NF = 6 NF = 7
Crisp Data 87.72% 94.17% 95.94% 97.29% 98.54%

Fuzzy Data 79.29% 85.85% 89.39% 94.17% 95.01%

As we can see from Table 4.9 , our model gives a reasonable approximation of
the legal data area, though it is not as accurate as testing on crisp data. The accuracy
increases with NF the number of fuzzy sets used for discretization. These results
show that the LDT model can perform well in dealing with fuzzy and ambiguous
data. Here the “eight” problem is also used for testing classification with linguistic
constraints in the following example.

Example 4.4 Suppose an LDT is trained on the “eight” database where each
attribute is discretized by five fuzzy sets uniformly: verysmall (vs), small (s),medium
(m), large (l) and verylarge (vl). Further, suppose we are given the following
description of data points:

θ 1 = 〈xisvs∨ s∧¬m,yisvs∨ s∧¬m〉
θ 2 = 〈xism∧ l,yiss∧m〉
θ 3 = 〈xiss∧m,yisl ∨ vl〉

Experimental results obtained based on the approach introduced in Section 4.7 are
as follows:
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Pr(C1|θ 1) = 1.000 Pr(C2|θ 1) = 0.000
Pr(C1|θ 2) = 0.000 Pr(C2|θ 2) = 1.000
Pr(C1|θ 3) = 0.428 Pr(C2|θ 3) = 0.572

As we can see from Fig. 4.23 , the above 3 linguistic constraints roughly
correspond to the areas 1, 2 and 3, respectively. By considering the occurrence of
legal and illegal examples within these areas, we can verify the correctness of our
approach.
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Fig. 4.23 Testing on the “eight” problem with linguistic constraints θ , where each attribute
is discretized by 5 trapezoidal fuzzy sets: very small, small, medium, large and very large

4.8 Summary

In this chapter, a decision tree learning algorithm is proposed based on label
semantics. Unlike classical decision trees, the new algorithm uses probability
estimation based on linguistic labels. The linguistic labels are based on fuzzy
discretization using a number of different methods including uniform partitioning,
a percentile-based partitioning and an entropy-based partitioning. We found that the
percentile-based discretization and entropy-based discretization outperform uniform
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discretization, but no statistical significance was found. By testing our new model
on real-world datasets and compared with three well-known machine learning
algorithms, we found that LID3 outperformed C4.5 on all given datasets and
outperforms Naive Bayes on datasets with numerical attributes only. Also it has
equivalent classification accuracy and better transparency when compared to back
propagation Neural Networks.

In order to obtain compact trees, a forward merging algorithm was proposed
and the experimental results show that the number of branches can be greatly
reduced without a significant loss in accuracy. Finally, we introduce the method
of interpreting a linguistic decision tree into a set of linguistic rules joined by
logical connectives. The methods for classification with linguistic constraints and
fuzzy data classification are discussed, supported by a test on toy problems. In the
subsequent chapter, we will focus on extending the LDT model from classification
problems to prediction problems.
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5

Linguistic Decision Trees for Prediction

Prediction is very difficult, especially if it’s about the future.

– Niels Bohr (1885–1962)

5.1 Prediction Trees

In the last chapter, the LDT model was introduced for classification and its
performance on a range of benchmark data sets was investigated and compared to a
number of well known classifiers such as Naive Bayes and BP-neural networks. In
this chapter, a methodology for extending LDTs to prediction problem is proposed
and the performance of LDTs are compared to other state of the art prediction
algorithms such as a Support Vector Regression (SVR) system and Fuzzy Semi-
Naive Bayes on a variety of data sets, that include some real-world prediction
problems such as sunspot prediction and flood forecasting. The merging algorithm
proposed for classification LDTs is also extended to allow for the generation of
compact prediction trees.

To date, classification problems have been much more widely studied in
machine leaning and pattern recognition than prediction (regression) problems. For
example, in the most popular machine learning repository — UCI Machine Learning
Repository[1], most datasets concern classification but not prediction. However, in
many real-world applications, problems ranging from financial analysis to flood
forecasting, are prediction problems.

Consider the tree learning models. From early discrete decision trees such
as ID3[2] and C4.5 [3] to a variety types of fuzzy decision trees as well as the
linguistic decision tree model proposed in the last chapter, most tree induction
models are designed for classification but not for prediction[4−7]. However, there is
some research on regression trees, for example Breiman et al.’s CART algorithm[8].
Based on the introduction of the LDT model in the last chapter, the output of an
LDT is a probability distribution on classes in stead of a discrete class label. Such
a classifier is referred to as a probabilistic classifier. This provides the possibility
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of extending it from classification to prediction where the probability distribution
will be used to obtain predicted numerical values. In this chapter, we will extend the
LDT model to handle prediction problems.

5.2 Linguistic Prediction Trees

Consider a database for prediction

DB = {〈x1(i), . . . ,xn(i),xt(i)〉 |i = 1, . . . , |DB|}

where x1, . . . ,xn are potential explanatory attributes and xt is the continuous target
attribute. Given a new instance xi = (x1(i), . . . ,xn(i)), we hope to prediction with a
model φ :

φ(x) → x̂t (5.1)

When using the LDT model, the data processing steps are as the same as introduced
in the previous chapters. Unless otherwise stated, trapezoidal fuzzy sets with 50%
overlap are used to discretize each continuous attribute (xt as well) universe and
assume the focal sets are F1, . . ., Fn and Ft . For the target attribute xt :

Ft = {F1
t , . . . ,F |Ft |

t }

For other attributes: x j:

F j = {F1
j , . . . ,F

|F j |
j }

The inventive step is, the focal elements for the target attribute can be regarded as
class labels. Hence, the LDT� model for prediction has the following form:

Definition 5.1 (Linguistic prediction tree) A linguistic decision tree for prediction
is a set of branches with associated probability distribution on the target focal
elements of the following form:

T = {〈B1,P(F1
t |B1), . . . ,P(F |Ft |

t |B1)〉, . . . ,
〈B|T |,P(F1

t |B|T |), . . . ,P(F |Ft |
t )|B|T |)〉}

where F1
t , . . . ,F |Ft |

t are the target focal elements (i.e., the focal elements for the
target attribute or the output attribute.

Fig. 5.1 gives a sample a linguistic prediction tree where each leaf is associated
with a probability distribution on the focal elements of the target attribute. Given the
example in Fig. 5.1 ,

F = {F1, . . . ,F6}

� We will use the same term of “LDT” for representing both linguistic decision trees (for
classification) and linguistic prediction trees.
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A Linguistic Prediction Tree

LF2
LF3

LF4

0.1,0.9

0.20.8, 0.3,0.7

0.5,

LF1

0.5

Fig. 5.1 A linguistic prediction tree example: each leaf is associated with a probability
distribution on the focal set of the target attribute xt . Each focal element is represented by a
trianglar fuzzy membership function

We can consider the prediction problem as a classification problem with 6 classes.
The probability distributions associated with LFi (for i = 1,2,3 and 4) are:

P(LF1) = {F4 : 0.8, F5 : 0.2}
P(LF2) = {F2 : 0.1, F3 : 0.9}
P(LF3) = {F3 : 0.5, F4 : 0.5}
P(LF4) = {F2 : 0.3, F3 : 0.7}

5.2.1 Branch Evaluation

Intuitively, we may like to view the target focal elements as imprecise class labels.
The essential difference is that these “class labels” overlap each other and this must
be taken into account when evaluating branch probabilities. At the training stage, for
a particular instance xi ∈ Ω1×, . . . ,×Ωn, where xi → xt(i) (i.e., xt(i) is the predicted
value for the instance xi) for i = 1, . . . , |DB|, there may be several corresponding
target focal elements rather than just one. By using linguistic translation on xt , we
can obtain:

xt → mxt = F j
t : j ∈ {1, . . . , |Ft |}

The degree to which xi belonging to a particular target focal element F j
t is measured

by ξ j
i defined by:
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ξ j
i = mxt(i)(F

j
t ) (5.2)

where j = 1, . . . , |Ft |. From Eq. (5.2), we can see that ξ j
i is just the associated mass

of F j
t given xt(i). Hence, we can write the corresponding target focal elements with

a membership for xi are as follows:

xi → 〈F1
t : ξ 1

i , . . . ,F |Ft |
t : ξ |Ft |

i 〉 (5.3)

However, since we have made an assumption of 50% overlapping on fuzzy sets,
then it follows that, at most two of the values {ξ 1, . . . ,ξ |Ft |} are non-zero. We can
also view ξ as an indicator: if and only if ξ j

i > 0, F j
t is one of the corresponding

target focal elements for the data element xi, otherwise, it is not. The probability of
a branch given a data element is evaluated based on on Eq. (4.8):

P(B|x) =
|B|
∏
r=1

mxr (Fr)

Based on the class probability calculation for classification problems (see
Eq. (4.12)). The probability of F j

t given B is evaluated as follows:

P(F j
t |B) =

∑i∈DB ξ j
i P(B|xi)

∑i∈DB P(B|xi)
(5.4)

where F j
t ∈ Ft . By combining Eqs. (5.2) and (5.4):

P(F j
t |B) =

∑i∈DB P(B|xi)mxt(i)(F
j

t )

∑i∈DB P(B|xi)
(5.5)

Eq. (5.5) is a general version of Eq. (4.12). In classification problems, the target
labels are discrete, thus ξ is either 0 or 1:

ξ j
i =

{
1 i ∈ DBj
0 otherwise (5.6)

where DB j represents the subset of instances that in the class j. This means that in
classification problems:

∑
i∈DB j

P(B|xi) = ∑
i∈DB

ξ j
i P(B|xi)

In case of the dominator ∑i∈DB P(B|xi) = 0, we use the following equation:

P(F j
t |B) =

1
|Ft | (5.7)

When the dominator equals to zero, it means this branch covers no data and we
do not have any discriminate information on classes, so we just simply assign this
branch a probability which is equal over all the classes.
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Considering the classification problem, Eq. (4.16) can be modified to obtain the
probabilities of target focal elements given a data element x ∈ Ω1 × . . .×Ωn based
on an LDT according to the Jeffrey’s rule [9]:

P(F j
t |x) =

|T |
∑
v=1

P(F j
t |Bv)P(Bv|x) (5.8)

The following example illustrates how such probabilities can be evaluated from
a toy database described by Table 5.1 .

Table 5.1 A small-scale training linguistic database for prediction, where the values are the
associated masses for the corresponding focal elements on 5 given data elements

# Instance
Attribute 1 (x1) Attribute 2 (x2) Target Attribute (xt)

{s1} {s1,l1} {l1} {s2} {s2,l2} {l2} {st} {st , lt} {lt}
1 0.4 0.6 0 0 0.7 0.3 0.9 0.1 0
2 0.2 0.8 0 0.5 0.5 0 0 0.8 0.2
3 0 0.9 0.1 1 0 0 0 1 0
4 0.3 0.7 0 1 0 0 0.7 0.3 0
5 0 0.2 0.8 0.3 0.7 0 1 0 0

Example 5.1 Consider a problem with 2 potential explanatory attributes x1, x2 and
one target attribute xt , where L1 = {small1(s1), large1(l1)}, L2 = {small2(s2),
large2(l2)} and Lt = {smallt(st), larget(lt)}. We assume the focal elements defined
on the attributes are F1 = {{s1}, {s1, l1}, {l1}}, F2 = {{s2}, {s2, l2}, {l2}} and
Ft = {{st}, {st , lt}, {lt}}. The training database obtained by applying linguistic
translation is shown in Table 5.1 . If we are given a branch of the form:

B = 〈〈{s1},{s2}〉,P({st}|B),P({st , lt}|B),P({lt |B})〉

The probabilities of target focal elements are evaluated according to Eq. (5.5) as
follows:

P({st}|B) =
∑5

i=1 mxt (i)({st})∏r=1,2 mxr(i)(Fr)

∑5
i=1 ∏r=1,2 mxr(i)(Fr)

=
∑i=1,4,5 mx1(i)({s1})×mx2(i)({s2})×mxt(i)({st})

∑5
i=1 mx1(i)({s1})×mx2(i)({s2})

=
0.4×0×0.9+0.3×1×0.7+0×0.3×1

0.4×0+0.2×0.5+0×1+0.3×1+0×0.3
= 0.525
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P({st , lt},B) =
∑5

i=1 mxt ({st , lt})∏r=1,2 mxr(i)(Fr)

∑5
i=1 ∏r=1,2 mxr(i)(Fr)

=
∑i=1,2,3,4 mx1(i)({s1})×mx2(i)({s2})×mxt(i)({st , lt})

∑5
i=1 mx1(i)({s1})×mx2(i)({s2})

=
0.4×0×0.1+0.2×0.5×0.8+0×1×1+0.3×1×0.3

0.4×0+0.2×0.5+0×1+0.3×1+0×0.3
= 0.425

P({lt},B) =
∑5

i=1 mxt ({lt})∏r=1,2 mxr(i)(Fr)

∑5
i=1 ∏r=1,2 mxr(i)(Fr)

=
∑i=2 mx1(i)({s1})×mx2(i)({s2})×mxt (i)({lt})

∑5
i=1 mx1(i)({s1})×mx2(i)({s2})

=
0.2×0.5×0.2

0.4×0+0.2×0.5+0×1+0.3×1+0×0.3
= 0.05

5.2.2 Defuzzification

As discussed in the last section, for a given value x = 〈x1, . . . ,xn〉 we need to
estimate the target value x̂t (i.e., xi → x̂t ). This is achieved by initially evaluating the
probabilities on target focal elements: P(F1

t |x), . . . ,P(F |Ft |
t |x) as described above.

We then take the estimate of xt , denoted x̂t , to be the expected value:

x̂t =
∫

Ωt

xt p(xt |x) dxt (5.9)

where:

p(xt |x) =
|Ft |
∑
j=1

p(xt |F j
t ) P(F j

t |x) (5.10)

and

p(xt |F j
t ) =

mxt (F
j

t )∫
Ωt

mxt (F
j

t ) dxt
(5.11)

so that, we can obtain:
x̂t = ∑

j
P(F j

t |x) E(xt |F j
t ) (5.12)

where:

E(xt |F j
t ) =

∫
Ωt

xt p(xt |F j
t ) dxt =

∫
Ωt

xt mxt (F
j

t ) dxt∫
Ωt

mxt (F
j

t ) dxt
(5.13)

In practice the calculation of Eq. (5.13) can be illustrated by the following example.
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0
X1 X2

X3

{ }s { ,s med } { med } { med , l} { l}

a
x
+

b c
x
+

d

Fig. 5.2 Illustration of calculating the expected value for focal elements

Example 5.2 Suppose that the output space xt is partitioned with a set of class
labels Lt = {small(s), medium(med), large(l)}. From this we can obtain mass
assignment values across the focal sets of Lt . For example, suppose the mx({med})
(see Fig. 5.2 ) is defined by

f (x) =

⎧⎨⎩
ax+b X1 ≤ x < X2
cx+d X2 ≤ x < X3
0 otherwise

(5.14)

The expected value for the focal element {med} is evaluated as follows:

E(xt |{med}) =
f (x)
A

(5.15)

where A is the area covered by f (x) as represented by the dark triangle in Fig. 5.2
. The area of the triangle can be obtained by multiplying the base and one-half the
height. Here the height is 1 so that A = X3−X1

2 . f (x) is the function of mx({med})
(see Fig. 5.2 ):

f (x) =
∫ X2

X1

x(ax+b)+
∫ X3

X2

x(cx+d)

=
[

ax3

3
+

bx2

2

]X2

X1

+
[

cx3

3
+

dx2

2

]X3

X2

= X2
3
(a

3
− c

3

)
+X2

2
(

b
2
− d

2

)
−X1

3 a
3
−X1

2 b
2

+X3
3 c

3
+X3

2 d
2

So that,

E(xt |{med}) = f (x)
A =

2
X3 −X1

[
X2

3
(a

3
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3

)
+X2

2
(

b
2
− d

2
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−X1
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3
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2
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+X3
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2

]
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5.2.3 Linguistic ID3 Algorithm for Prediction

In this section, the Linguistic ID3 (LID3) for prediction is introduced. This is
modified from the LID3 for classification described in the previous chapter. The
corresponding definitions are modified from classification problems to take account
of the overlapping focal classes as follows:

Definition 5.2 (Branch entropy for prediction) For a branch B = 〈F1, . . . ,F|B|〉 the
entropy of B is given by

E(B) = −
|Ft |
∑
j=1

P(F j
t |B) log2 P(F j

t |B) (5.16)

Now, given a particular branch B suppose we want to expand it with the attribute x j.
The evaluation of this attribute will be given based on the expected entropy defined
as follows:

EE(B,x j) = ∑
Fj∈F j

E(B∪Fj) ·P(Fj|B) (5.17)

where B∪Fj represents the new branch obtained by appending the focal element Fj
to the end of branch B. The probability of Fj given B can be calculated as follows:

P(Fj|B) =
∑i∈DB P(B∪Fj|xi)

∑i∈DB P(B|xi)
(5.18)

so that the Information Gain (IG) obtained by expanding branch B with attribute x j
in the same way as the classification is as follows:

IG(B,x j) = E(B)−EE(B,x j) (5.19)

The basic difference from classification is in the output space: in classification,
the outputs are discreet classes, while in prediction, overlapping focal elements are
acted as classes. The class probabilities for the evaluation of branch entropy and
expected entropy must to be adopted to take account of this fact. In next section we
adopt the merging algorithm described in Chapter 4 to the prediction case.

5.2.4 Forward Branch Merging for Prediction

One of the inherent disadvantages of tree induction algorithms is overfitting. There
are many pruning algorithms proposed, a good review of which is given in Reference
[5]. Here we present an alternate approach of using “forward merging” instead of
“pruning” to generate compact trees. In this section, a branch merging algorithm for
the prediction LDT model is discussed. The basic idea is that, we employ breadth-
first search in developing an LDT, at each depth. The adjacent branches which give
similar probabilities on target focal elements are merged into one branch according
to a merging threshold:
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Definition 5.3 (Merging threshold for prediction trees) In a linguistic decision
tree, if the maximum difference between the probabilities of target focal elements on
two adjacent branches B1 and B2 is less than or equal to a given merging threshold
Tm, then the two branches can be merged into one branch. Formally, if

Tm ≥ max
Ft∈Ft

(|Pr(Ft |B1)−Pr(Ft |B2)|) (5.20)

where Ft = {F1
t , . . . ,F |Ft |

t } are focal elements for the target attribute, then B1 and
B2 can be merged into one branch MB.

MB = 〈M1, . . . ,M|MB|〉

where M j = {F1
j , . . . ,F

|M j |
j } is a set of focal elements such that Fi

j is adjacent to
Fi+1

j for i = 1, . . . , |M j|−1. The associate mass for M j is given by

mx(M j) =
|M j |
∑
i=1

mx(Fi
j ) (5.21)

where w is the number of merged focal elements for attribute j. The probability of a
merged branch given a data element x ∈ Ω × . . .×Ω can be evaluated by

P(MB|x) =
|MB|
∏
r=1

mxr(Mr) =
|MB|
∏
r=1

(|Mr|
∑
i=1

mxr (F
i
r )

)
(5.22)

where |MB| is the length of the merged branch MB and |Mr| for r = 1, . . . , |MB| is
the number of merged nodes of the attribute r. Based on Eqs. (4.12), (4.13), (5.2),
(5.21) and (5.22), we use the following equation to evaluate the probabilities on
target focal elements given a merged branch.

P(F j
t |MB) =

∑i∈DB ξ j
i P(MB|x)

∑i∈DB P(MB|x) (5.23)

And, the following equation is used when doing classification with a merged LDT:

P(F j
t |x) =

|T |
∑
v=1

P(F j
t |MBv)P(MBv|x) (5.24)

As we have discussed in the previous chapter, when the merging algorithm is
applied in learning a linguistic prediction tree, the adjacent branches meeting the
merging criteria will be merged and re-evaluated according to Eq. (5.23). Then the
adjacent branches after the first round of merging will be examined in a further
round of merging, until all adjacent branches cannot be merged further. We then
proceed to the next depth. For example, Fig. 5.3 shows that leaves LF2 and LF3
are merged in the first round of merging, and LF4 and {LF2,LF3} are then merged
further {LF2,LF3,LF4} if they meet the merging criteria in the second round of
merging.
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Fig. 5.3 A schematic illustration of tree merging

5.3 Experimental Studies

In this section, a range of benchmark prediction problems are tested with the LID3
algorithm. The prediction results obtained are compared with several state of the
art prediction algorithms such as Support Vector Regression System (SVR), Fuzzy
Naive Bayes and Fuzzy Semi-Naive Bayes (FSNB)[10,14]. In this experiment, we
use ε-Support Vector Regression System (ε-SVR) with a Gaussian kernel and an ε-
insensitive loss function [12]. The SVR results presented here are obtained by using
a Matlab toolbox for SVM implemented by Gunn[13] and the parameter settings for
each problem are based on empirical research on these problems by Randon[14].

Fuzzy Naive Bayes is another linguistic model based on label semantics (see
Chapter 6) and Fuzzy Semi-Naive Bayes presented here is modified from Fuzzy
Naive Bayes by weakening the independence assumption of Naive Bayes (more
details are available in[10,14]). The results of Fuzzy Naive Bayes and FSNB
presented in his paper are the best results so far from a set of systematic research[14].

Two kinds of measures are used here for evaluating the prediction performance:
Average Error (AVE) and Mean Square Error (MSE), which are defined as follows:

(1) The Average Error scales the error according to the range of output (target
attribute) space is used for evaluating the algorithms’ performance: Given the
output universe defined by Ωt = [a,b] and a training set DB, AVE is the average
modulus error taken as a percentage of the length of the output universe,
formally:

AVE = ∑i∈DB |x̂t(i)− xt(i)|
|DB|(b−a)

(5.25)

where |DB| represents the number of instances in DB. The standard deviation
across DB is given by

σE =

√
1

|DB| ∑
i∈DB

(εi −AVE)2 (5.26)
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where:

εi =
|x̂t − xt |

b−a
(2) The Mean Square Error is calculated as follows:

MSE =
1

|DB| ∑
i∈DB

(x̂t(i)− xt(i))2 (5.27)

With standard deviation across DB given by

σSE =

√
1

|DB| ∑i
(ei −MSE)2 (5.28)

where:
ei = (x̂t − xt)2 (5.29)

5.3.1 3D Surface Regression

In this toy problem, 529 points were uniformly generated describing a surface
defined by equation

z = sin(x× y) (5.30)

where x,y∈ [0,3] as shown in Fig. 5.4 . 2209 points are sampled uniformly as the test
set. The attributes are discretized uniformly by fuzzy labels, the results in the AV E
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Fig. 5.4 The original surface of function z = sin(x× y)
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Table 5.2 Average error for the sin(x × y) problem with different number of fuzzy sets
(represented by NF ) for discretization in input and output space, respectively

NF Training Error Test Error

Input 4 5 6 7 4 5 6 7

4 7.4290 7.4296 7.4254 7.4419 7.1827 7.1834 7.1785 7.1955
5 4.8314 4.8316 4.8262 4.8456 4.6772 4.6777 4.6695 4.6892
6 3.2266 3.2265 3.2160 3.2357 3.1890 3.1895 3.1776 3.1986
7 2.1734 2.1711 2.1653 2.1864 2.1560 2.1555 2.1464 2.1684

Table 5.3 Mean square error the sin(x× y) problem with different number of fuzzy sets
(represented by NF ) for discretization on input and output space, respectively

NF Training Error Test Error

Input 4 5 6 7 4 5 6 7
4 0.0325 0.0325 0.0325 0.0326 0.0303 0.0303 0.0303 0.0304
5 0.0147 0.0147 0.0147 0.0148 0.0134 0.0134 0.0134 0.0135
6 0.0070 0.0071 0.0071 0.0071 0.0065 0.0065 0.0065 0.0065
7 0.0033 0.0033 0.0033 0.0034 0.0031 0.0031 0.0031 0.0032

Table 5.4 Comparisons of prediction models in average error on the sin(x× y) problem

Fuzzy Naive Bayes FSNB ε-SVR LID3

AVE ± σE 16.042 ± 12.817 2.815 ± 2.268 1.452 ± 0.746 2.146 ± 1.795

are measured with different numbers of fuzzy labels which are respectively defined
on input and output space are listed in Table 5.2 . The results in MSE measure are
shown in Table 5.3 .

It is surprising to see that the number of fuzzy sets used for output (i.e., z) space
does not cause a great difference in error. On the contrary, the resulting model is
very sensitive to the number of fuzzy sets for inputs (i.e., x and y). The more the
fuzzy sets used for discretization, the more accurate the prediction surface we can
obtain. This monotonicity is of course partly dependent on the noise free nature of
the data in this case. Fig. 5.5 shows the predicted surfaces and the error surfaces,
where the input space is discretized with 5, 6 and 7 fuzzy sets, respectively. As we
can see from the figures,the more the fuzzy sets that we used, the more accurate
surface was generated.

We now compare these results to those obtained from the ε-SVR with the
parameters: σ = 1, ε = 0.05, C = ∞ (justificatioin for this parameter can be found
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Fig. 5.6 The prediction surface by ε-SVR with a Gaussian RBF kernel on the z = sin(x×y)
problem

in Reference [14]). The test errors are shown in Table 5.4 . Compared to ε-SVR,
LID3 is slightly worse. As we can see from Fig. 5.6 , the ε-SVR has a very good
approximation to the original surface. By comparing Figs. 5.4 and 5.5 , we can
see that LID3 cannot accurately capture the small ‘tail’ on the left, while the ε-
SVR can. Table 5.4 also shows the results of fuzzy Naive Bayes and Fuzzy Semi-
Naive Bayes. Among them, LID3 (7 fuzzy labels for the input and 6 labels for the
output) is the second best. For such a function regression problems, higher accuracy
could be obtained by increasing the number of fuzzy labels discretized for the input
space. However, the computing complexity will be increased exponentially with the
number of fuzzy labels.

5.3.2 Abalone and Boston Housing Problem

These two problems are taken from the UCI repository[1]. The Abalone database
concerns the problem of predicting the age of abalone from physical measurements.
Abalones are a type of shellfish, the age of which can be accurately determined
by cutting the shell through the cone, staining it, and counting the number of rings
through a microscope, which is a laborious and time consuming task. The Boston
Housing problem contains data on housing values in the suburbs of Boston, USA.
The data set contains 506 instances and 13 continuous attributes (including the target
attribute) and one binary attribute.

In our experiments, the instances for each data set are randomly split into two
parts with approximately the same number of instances, one for training and the
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other for the test (i.e., 50-50 split experiments, see Section 4.4). The test errors from
10 runs of 50-50 split experiments on the two data sets are shown in Table 5.5 with
the results obtained for the Abalone prediction test set by applying ε-SVR with a
Gaussian RBF kernel with parameters: σ = 1, ε = 0.05 and C = 5. The results of
LID3 are obtained from the LDTs are based on 3 uniformly distributed fuzzy labels
and generated at the depth 5. For the Boston Housing problem the ε-SVR parameters
are σ = 3, ε = 0.05 and C = 10. The LID3 results are obtained by the LDTs with
5 uniformly distributed fuzzy labels at the depth 3. The standard deviation (Std.) in
Table 5.5 is the standard deviation of AV E across the experiments.

Table 5.5 Prediction results in AV E from 10 runs 50-50 split experiments for abalone
prediction and the Boston Housing prediction problem, respectively

Prediction Model
Abalone Boston Housing

AVE % σE (%) Std. AVE % σE (%) Std.
Fuzzy Naive Bayes 7.9660 7.2010 0.6638 8.2437 9.0864 0.5034
FSNB 7.0141 6.9277 0.5225 7.7059 8.9876 0.5766
ε-SVR 5.6921 6.0034 0.0894 5.4508 6.7989 0.3874
LID3 6.4327 6.3247 0.3145 8.2022 8.1502 0.4579

From Table 5.5 , we can see that ε-SVR has the best performance on these two
data sets. LID3 is the second best in the Abalone prediction problem. But it does not
perform very well in the Boston Housing problem where LID3 gives the equivalent
average errors to Fuzzy Naive Bayes.

5.3.3 Prediction of Sunspots

This problem is taken from the Time Series Data Library[15] and contains data of
sunspot numbers between the years 1700–1979. For this experiment the data was
organized as described in Reference [6] using a sliding window and the validation
set of 35 examples (1921-1955) was merged into the test set of 24 examples (1956-
1979). This is because a validation set is not required in this framework. Hence, a
training set of 209 examples (1712-1920) and a test set of 59 examples (1921-1979)
are used. The input attributes are xT−12 to xT−1 (the data for previous 12 years) and
the output (target) attribute is xT , i.e., one-year-ahead.

The experimental results for LID3, ε-SVR, Fuzzy Naive Bayes [14] and Fuzzy
Semi-Naive Bayes in the AV E measure are shown in Table 5.6 , where the parameter
setting for ε-SVR is σ = 3, ε = 0.05, C = 5 and the results for FSNB are the best
results from a range of FSNB parameter settings[14]. Results of LID3 present here
are obtained from LDTs discretized by 4 fuzzy labels by a percentile-based method
(both on input and output spaces) and at the depth of 5. The comparisons between
the predictions made by SVR and LDT together with the original data are shown
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in Fig. 5.9 , where the data on the left (1712-1921) are for training data and on the
right are (1921-1979) for the test.

Table 5.6 Prediction results in AV E on the sunspot prediction problem

Prediction Model
AVE (%) σE (%) |LDT |

Training Test Training Test (LDT only)
Fuzzy Naive Bayes 9.5514 13.0588 10.7682 13.0213 -
FSNB 5.1301 10.9064 5.4943 9.5208 -
ε-SVR 5.6988 8.9337 5.8328 9.7766 -
LID3 3.7557 8.6793 3.1859 8.8876 5731
LID3 (Tm = 0.05) 3.9146 8.8925 3.3100 8.9437 2285
LID3 (Tm = 0.10) 4.1259 8.9649 3.5013 9.1994 1493
LID3 (Tm = 0.15) 4.9315 9.8419 4.3850 10.1869 757
LID3 (Tm = 0.20) 5.9327 9.8341 5.1525 10.7063 204
LID3 (Tm = 0.25) 7.2166 10.5858 5.9409 10.3711 81
LID3 (Tm = 0.30) 14.0175 18.9539 12.4700 19.1159 5

Table 5.7 Prediction results in MSE on the sunspot prediction problem

Prediction Model
AVE (%) σE (%) |LDT |

Training Test Training Test (LDT only)

Fuzzy Naive Bayes 493.91 810.74 1223.15 1630.48 -
FSNB 134.70 499.66 364.86 723.58 -
ε-SVR 266.81 418.13 545.27 913.95 -
LID3 57.824 532.73 101.86 1117.90 5731
LID3 (Tm = 0.05) 62.650 549.12 110.95 1077.70 2285
LID3 (Tm = 0.10) 69.807 569.60 120.94 1139.00 1493
LID3 (Tm = 0.15) 103.82 692.63 197.23 1326.30 757
LID3 (Tm = 0.20) 147.20 729.56 316.19 1520.10 204
LID3 (Tm = 0.25) 208.29 756.15 496.02 1498.60 81
LID3 (Tm = 0.30) 839.13 2501.70 1555.00 4398.50 5

Table 5.6 shows the results (in AV E) of LID3 obtained by applying forward
branch merging where the merging threshold varies from 0.05 to 0.30 and Table
5.7 shows the results in MSE. From these tables, we can see that ε-SVR gives
the best results and the LID3 gives the second best. If we increase the merging
threshold Tm, the size of LDT (i.e., the number of branches) is reduced greatly while
the error rate only changes slightly. For example, compare Tm = 0 (no merging)
and Tm = 0.25, with the tree reduced about 98.6% in size and the error rate only
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increasing 1.91%. The prediction peformance for merged LDTs (with Tm = 0.2 and
Tm = 0.25) compared with non-merged LDTs are shown in Figs. 5.7 and 5.8. When
Tm = 0.20, the prediction performance is not significantly influenced compared to
non-merged trees (see Fig. 5.9). However, the prediction performance is greatly
worse when Tm = 0.25 than Tm = 0.20 (see the bottom of Fig. 5.8, there is a bad
regression).
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Fig. 5.7 The prediction results obtained from LID3 without merging and LID3 with
Tm = 0.2, where the data on the left (1712–1921) are for training and the right (1921–1979)
are for test

Fig. 5.10 also shows the scatter plot of the actual sunspot number against the
predicted number on 59 test data by using fuzzy Naive Bayes, fuzzy semi-Naive
Bayes, ε-SVR, non-merged LDT, the merged LDT with Tm = 0.05 and the merged
LDT with Tm = 0.25. In these graphs, for an error free prediction all points will fall
on the line defined by y = x. Roughly, from the illustration, we can see that SVR and
non-merged LDT have better performance, because predicted values are distributed
closer to y = x than the other two models.

5.3.4 Flood Forecasting

In this section, a flood forecasting problem is investigated. We attempt to model
the stream flow characteristics of a river. The database we shall investigate here
describes the Bird Creek river basin in Oklahoma, USA. The data was collected to
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Fig. 5.10 Scatter plot showing original data verses prediction data on the sunspot prediction
problem. From the upper left to the bottom right figures: (a) fuzzy Naive Bayes; (b) fuzzy
semi-Naive Bayes; (c) support vector regression; (d) linguistic prediction tree; (e) merged
linguistic prediction tree with Tm = 0.05; (f) merged linguistic prediction tree with Tm = 0.25
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form part of a real-time hydrological model inter-comparison exercise conducted in
Vancouver, Canada in 1987 and reported by the World Meteorological Organization
(WMO) in 1992. Fig. 5.11 shows the Bird-Creek river basin[17].

The database describing the Bird Creek catchment area gives information on
two attributes: the average rainfall (U) given in mm, derived from 12 rainfall gauges
situated in or near the catchment area and the river’s stream flow (Y ) given in
m3/s, measured using a continuous stage recorder. Both values were recorded in
the database at 6 hour intervals from October 1955 to November 1974. In this
thesis only a subset of the original database is used for modelling. This is comprised
of 2,090 training records of rainfall and stream flow values from November 1972,
00:00, to April 1974, 06:00 and 1,030 test records of rainfall and stream flow values
from November 1974, 12:00 hours, to December 1974, 12:00 hours [14].
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Fig. 5.11 The Bird Creek drainage basin [17]

Flood forecasting is a typical problem of prediction and several models had been
developed based on the Bird-Creek data. Clukie and Han[18] extensively developed
the Weather Radar Information Processor System (WRIP)[19], which is a well-
known rainfall-runoff modeling system. In this research, the LDT model is applied
by using a windowing technique to obtain the required prediction of the stream flow
36 hours ahead (i.e., YT+6).

The window technique is described as follows: The model is first initialized
with rainfall values, UT−2 to UT and stream flow values YT−2 to YT , and optimized
to predict the stream flow value YT+1, We then feedback the newly predicted stream
flow value ŶT+1, along with the real rainfall value for UT+1. We now run the model
using rainfall values, UT−1 to UT+1 and stream flow values YT−1 to ŶT+1 and predict
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the stream flow at YT+2. This process is then repeated four more times until we
obtain a prediction for the stream flow at YT+6 (36 hours in advance). Fig. 5.12
gives an illustration of the windowing process.

The results obtained from LID3 are compared with the results of Fuzzy Semi-
Naive Bayes and ε-SVR. The results in terms of average errors are shown in Table
5.8 , where the results of ε-SVR are based on parameters: σ = 3, ε = 0.05 and
C = 5. The LID3 results are obtained based on the linguistic translation by which
each attribute is discretized uniformly by 3 fuzzy labels and the LDT extends with
a maximum depth 6.
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Fig. 5.12 The windowing technique for the flood forecasting problem

As we can see from Table 5.8 , LID3 outperforms the other models on this
problem. However, the size of the LDT is still very large (2133 branches without
merging). By applying forward merging, the errors increase only slightly while
the number of branches are significantly reduced. With Tm = 0.30, the LID3 still
gives better accuracy to Fuzzy Semi-Naive Bayes. However, the tree has only 108
branches and compared to LID3 without merging, the tree size has been reduced
nearly 94%. The performance on the test set can be seen from Fig. 5.13 . Although
LID3 over-estimates at some peaks, it still captures the original data well.
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Table 5.8 Average errors with standard deviations on test set of the flood forecasting problem

Prediction Model AVE % σE (%) |LDT |
Fuzzy Naive Bayes 2.9922 7.3017 -
FSNB 2.9219 7.1798 -
ε-SVR 3.3555 7.6602 -
LID3 2.5625 6.9160 2133
LID3 (Tm = 0.05) 2.5596 6.8865 815
LID3 (Tm = 0.10) 2.5576 6.1244 652
LID3 (Tm = 0.15) 2.6523 6.9574 389
LID3 (Tm = 0.20) 2.7932 6.9225 225
LID3 (Tm = 0.25) 2.7935 6.9258 203
LID3 (Tm = 0.30) 2.8227 7.0835 118
LID3 (Tm = 0.35) 2.9368 7.5019 79
LID3 (Tm = 0.40) 2.9769 7.7628 37
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Fig. 5.13 The stream flow prediction with a merged LDT with Tm = 0.3
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5.4 Query Evaluation

Intuitively, λ (θ) corresponds to those subsets of F identified as being possible
values of Dx by expression θ . In this sense, the imprecise linguistic restriction “x is
θ” on x corresponds to the strict constraint Dx ∈ λ (θ ) on Dx

[20].

Example 5.3 Given a variable h representing John’s height and Lh = {very short,
short, medium, tall, very tall}, suppose we are told that “John is not very tall but
it is medium to tall”. This constraint can be interpreted as the logical expression

θh = ¬very tall ∧ (medium∨ tall)

According to definition 3.10, the possible label sets of the given linguistic constraint
θh are

λ (θh) = λ (¬very tall ∧ (medium∨ tall)) = {{medium},{medium, tall},{tall}}
Two kinds of queries are discussed here: single queries and compound queries and
the evaluation methods are given in the subsequent sections.

5.4.1 Single Queries

A single query Ft : 〈θ1, . . . ,θn〉 represents the question: Do elements satisfying θ
have a value of xt with description Ft? Consider the vector of linguistic expression
θ = 〈θ1, . . . ,θn〉, where θ j is the linguistic expression on attribute j. The probability
value for Ft conditional on this information using a given a linguistic decision tree
can be evaluated through the following steps:

mθ j(Fj) =

⎧⎪⎨⎪⎩
pm(Fj)

∑Fj∈λ (θ j) pm(Fj)
Fj ∈ λ (θ j)

= 0 otherwise
(5.31)

where pm(Fj) is the prior mass for focal elements Fj ∈ F j derived from the prior
distribution p(x j) on Ω j as follows:

pm(Fj) =
∫

Ω j

mx(Fj)p(x j)dx j (5.32)

Usually, we assume that p(x j) is the uniform distribution over Ω j so that

pm(Fj) ∝
∫

Ω j

mx(Fj)dx j (5.33)

For example, given Lx = {small, large} and x is small (i.e., θ = small). By
applying the λ function (Definition 3.10), we can generate the possible label sets
for x, so that:
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λ (θ ) = λ (small) = {{small}, {small, large}}
Suppose the prior mass assignments are

pm = {small} : 0.3,{small, large} : 0.2,{large} : 0.5

According to Eq. (5.31) we then obtain,

mθ = {small} : 0.3/(0.3+0.2),{small, large} : 0.2/(0.2+0.3)
= {small} : 0.6,{small, large} : 0.4

Hence, mθ ({small}) = 0.6 and mθ ({small, large}) = 0.4 according to the given
the linguistic constraint θ = small. For branch B the probability of B given θ is
evaluated by

P(B|θ) =
|B|
∏
r=1

mθr(Fr) (5.34)

and therefore, by the Jeffrey’s rule [9]

P(Ft |θ ) =
|LDT |
∑
v=1

P(Ft |Bv)P(Bv|θ ) (5.35)

5.4.2 Compound Queries

A compound query θt : 〈θ1, . . . ,θn〉 represents the question: Do elements satisfying
θ have a value of xt satisfies the linguistic expression θt? Given a linguistic
expression θ = 〈θ1, . . . ,θn〉, where θ j for j = 1, . . . ,n is the linguistic expression on
attribute j, and θt (the linguistic expression on the target attribute). The evaluation
method for compound queries is based on the single queries.

P(θt |θ) = ∑
Ft∈λ (θt)

P(Ft |θ) (5.36)

Example 5.4 Consider the y = sin(x× y) problem, 7 fuzzy labels are defined on
input attributes (i.e., x and y) and target attribute z, respectively. Lx = Ly = Lz =
{extremely small(es), very small(vs), small(s), medium(m), large(l), very large(vl),
extremely large(el) }. From this we obtain the focal elements describing each
attribute: Fx = Fy = Fz = {{es,vs}, {vs}, {vs,s}, {s}, {s,m}, {s,m}, {m}, {m, l},
{m, l}, {l,vl}, {vl}, {vl,el}}.

Suppose we are given:
θx = ¬ very small ∧ small ∧ ¬ medium
θy = ¬ large ∧ (very large ∨ extremely large)

Given the query for evaluation Fi
z : 〈θx,θy〉 for i = 1 : |Fz|. According to the above
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Eqs. (5.31), (5.34) and (5.35), we obtain:

P({es,vs}|θ) = P({vs}|θ ) = P({s}|θ) = P({s,m}|θ ) = 0
P({m}|θ) = 0.0003, P({m, l}|θ) = 0.0006, F = P({l}|θ ) = 0.0152,
P({l,vl}|θ) = 0.1646, P({vl}|θ) = 0.2125, P({vl,el}|θ ) = 0.2338

Suppose the query for evaluation is a compound query

θz = ¬large∧ very large

. According to the λ -function, we obtain:

λ (θz) = {{very large},{very large,extremely large}}

Then, according to Eq. (5.36) we obtain:

P(θz|〈θx,θy〉)= P({vl}|〈θx,θy〉)+P({vl,el}|〈θx,θy〉)= 0.2125+0.2338 = 0.4463

5.5 ROC Analysis for Prediction

Currently, all the ROC analysis research is for classification problems. However, in
many real-world applications ranging from financial analysis to flood forecasting
(e.g., Section 5.3.4) are prediction problems. Hence, it is interesting to consider
extend to the ROC analysis to predictors? This is the motivation of this research. A
prediction model can be easily used as a classifier by setting a decision threshold.
Usually, a good prediction model can be a good classifier as well. However, not
all classifiers can be used for prediction. Hence, prediction is at least as important
as classifications in machine learning and data mining. In this section, some
initial investigations are presented where we only consider predictors based on
defuzzification with two fuzzy labels on probabilistic classifiers. This is where the
universe of the variable for prediction is discretized by two focal elements (see
linguistic decision tree for prediction) acting as class labels, and the final prediction
is obtained by defuzzification.

5.5.1 Predictors and Probabilistic Classifiers

Consider a prediction problem where the output space or target attribute t is
numeric. For each instance x (a multi-dimensional vector) the aim is to predict the
corresponding target value t (i.e., xi → t̂i). Suppose we discretize the output universe
with m focal elements �: F1, . . . ,Fm. We can consider each fuzzy set as a single

� The ROC curve for prediction has not necessarily to be in label semantics framework,
where F1, . . . ,Fm are focal elements. We can generalize it by considering F1, . . . ,Fm as
fuzzy sets.
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class label which has weights denoted by ξ and each instance can be mapped to a
representation as follows:

xi → 〈F1 : ξ1, . . . ,Fm : ξm〉

where ∑m
i=1 ξi = 1. We then can use an arbitrary probabilistic classifier to obtain

a series of conditional probabilities on target fuzzy sets given a test instance x:
P(F1|x), . . . ,P(Fm|x). The estimate of t, denoted by t̂, to be the expected value:

t̂ =
∫

Ω
t p(t|x) dt (5.37)

where,

p(t|x) =
m

∑
j=1

p(t|Fj) P(Fj|x) (5.38)

and

p(t|Fj) =
Mt(Fj)∫

Ωt
Mt(Fj) dt

(5.39)

where Mx(Fj) is the membership of x belonging to fuzzy set (or label) Fj . Hence we
obtain:

t̂ =
m

∑
j=1

P(Fj|x) E(t|Fj) (5.40)

where,

E(t|Fj) =

∫
Ωt

t Mt(Fj) dt∫
Ωt

Mt(Fj) dt
(5.41)

where the process of calculating E(xt |Fj) is also called defuzzification in some other
literature. More details about obtaining a predictor from a probabilistic classifier are
available in Reference [21] and Chapter 5.

From the above we can see that, by fuzzifying the continuous target attribute t
into intervals which could be considered as class labels, any probabilistic classifiers
can be extended to a prediction model. However, we need to notice that the class
labels are not discrete but overlap each other and there are many different degrees
of overlapping. For example, Fig. 5.14 shows four different possible overlapping.
In this paper, we only consider the simplest case that m = 2, where one fuzzy label is
represented by − and the other by +. In the following paper, unless otherwise stated,
we will use the fuzzy labels with 50% overlapping (Fig. 5.14 -d), it satisfying:

∀ i : P(−|xi)+P(+|xi) = 1

The basic difference between such predictors and normal probabilistic classifiers
is that the class labels overlap each other. For a particular instance, it has
actual membership probabilities of positives from fuzzy discretization P(+|x) and
predicted class probabilities P̂(+|x) from classifiers. In the following context, unless
otherwise stated, we will focus on the membership probabilities of positives and we
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(a) (b) (c) (d)

Fig. 5.14 Different degrees of overlapping between two fuzzy labels that are used as class
labels

Algorithm 4: ROC Curve for Classification Problems

• Given a test set of size Γ , rank the instances on decreasing predicted membership scores
of the “positive” class p̂i, where i ∈ {1,2, . . . ,Γ }.

• T P0 = 0, FP0 = 0
• FOR i = 1 : Γ , DO:

T Pi = T Pi−1+pi/n+, FPi = FPi−1+(1− pi)/n−
• Starting from (0,0), for i = 1 : Γ , draw the curve by joining (FPi−1,T Pi−1) and

(FPi,T Pi) successively
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Fig. 5.15 An illustration of drawing ROC curve (the black arrows) and AUC calculation by
adding a new point
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Fig. 5.16 ROC curves for a prefect-ranking predictor, a random predictor, and two predictors
obtained from a perfect ranking predictor corrupted by different levels of noise

write P(+|xi) as pi and P̂(+|xi) as p̂i. For example, given the original membership
scores and predicted scores, how can we draw the ROC curve? A simple and
practical method based on discrete class labels is proposed as follows:

In the Algorithm 4, n+ represents the sum of positive parts on all examples, it is
obtained by:

n+ =
Γ

∑
i=1

p(i|+) =
Γ

∑
i=1

p(i) (5.42)

Similarly, we can obtain:

n− =
Γ

∑
i=1

p(i|−) =
Γ

∑
i=1

(1− p(i)) = Γ −n+ (5.43)

Fig. 5.15 shows a set of ROC curves on a real-world prediction problem: the
curve marked with “+” represents a perfect ranking, which means that given a
ranked list decreasing with p̂i (i.e., p̂1 ≥ . . .≥ p̂Γ ), the relation p1 ≥ . . .≥ pΓ holds.
The curves marked with α = 0.2 represents a perfect ranking predictor corrupted by
a uniform distributed noise in the range of [0, 0.2], denoted by U [0,0.2]. So that the
predicted probabilities are:

∀i p̂i = pi ± ε ε ∼U [0,α]

The random classifier is a random guess that follows:
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∀i p̂i ∼U [0,1]

As we can see from those curves, they exhibit similar properties as with discrete
labels, the only difference is that the maximum value for prediction is not 1. This
will be discussed in details in the next section.

5.5.2 AUC Value for Prediction

Fig. 5.15 gives an illustration of the drawing a ROC curve for such prediction
problems. We need to notice that the optimal point is not (1,0) for predictions (i.e.,
AUC value is always less than 1). The reason for this is because we use overlapping
fuzzy labels. ROC analysis reflects the separation of positive and negative examples
by a classifier. In this case, no matter how good a classifier is, it still cannot
completely separate the positives and negatives because they are overlapped to each
other. The different overlapping degrees will result in different maximum AUC
values. Fig. 5.16 depicts the ROC curves with maximum AUC values on the fuzzy
labels with different overlapping degrees shown in Fig. 5.14 . In the legend, the AUC
values that are calculated by the method that will be discussed in the following part
of this section.

Consider the ranking list on decreasing membership scores in the way we draw
the ROC curves. The first example of the ranking list is the one with the highest
predicted score p̂1 with original score of p1. By adding this example to the ROC
space, the area under the ROC curve is a triangle with side lengths of (1− p1)/n−
and p1/n+, respectively (see Fig. 5.17). So that:

AUC1 =
p1(1− p1)

2n+n−
(5.44)

By adding a new example with score of p2, the ROC curve is extended and a new
area in trapezoidal shape is added so that the current AUC becomes:

AUC2 =
1

n+n−

[
p1(1− p1)

2
+(1− p2)

p1 +(p1 + p2)
2

]
Similarly, by adding the third point:

AUC3 =
1

n+n−

[
p1(1− p1)

2
+(1− p2)

p1 +(p1 + p2)
2

+(1− p3)
(p1 + p2)+(p1 + p2 + p3)

2

]
By successively adding the kth example (k �= 1), we can obtain:

AUCk =
1

2n+n−

k

∑
i=1

(1− pi)

(
2

i−1

∑
j=1

p j + pi

)
(5.45)



150 5 Linguistic Decision Trees for Prediction

Eq. (5.45) can be rearranged and the AUC value for prediction on a test set with L
examples is:

AUC =
1

2n+n−

[
L

∑
i=1

pi(1− pi)+2C

]
(5.46)

where,

C =
L

∑
i=2

i−1

∑
j=1

pj(1− pi) (5.47)
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Fig. 5.17 ROC curves with maximum AUC values given fuzzy labels on different degrees
of overlapping in figure 5.14

Consider the Eq. (5.46), the first term ∑L
i=1 pi(1− pi) is invariant to different

rankings. Now we only consider the term C to investigate the relation between AUC
value and example ranking. Term C can be separated into two terms Ai = 1− pi
and Bi = ∑i−1

j=1 pj so that C = ∑i AiBi. Suppose we have the following ranking of
examples according to the B terms:

Rp : · · ·1− pk,1− pk+1 · · ·

if we swap the positions of these two examples to:

Rx : · · ·1− pk+1,1− pk · · ·



5.5 ROC Analysis for Prediction 151

Suppose pk ≥ pk+1. Such swapping is referred to as bad swapping, because Rp is
more desirable than Rx for a better ranking. The swapping will result in a change in
AUC values, if we define:

D(Rp) =
k+1

∑
i=2

AiBi = (1− pk)T +(1− pk+1)(T + pk)

D(Rx) =
k+1

∑
i=2

AiBi = (1− pk+1)T +(1− pk)(T + pk+1)

where T = ∑k−1
j=1 p j and according to Eq. (5.47) we obtain:

C(Rp) = D(Rp)+
L

∑
i=k+2

i−1

∑
j=1

pj(1− pi)

C(Rx) = D(Rx)+
L

∑
i=k+2

i−1

∑
j=1

p j(1− pi)

The latter terms for C(Rp) and C(Rx) have identical values. Therefore, according
to Eq. (5.46), we can calculate the change in AUC values by exchanging these two
examples as follows:

AUC(Rp)−AUC(Rx) =
1

n+n−
[C(Rp)−C(Rx)]

=
1

n+n−
[D(Rp)−D(Rx)] =

pk − pk+1

n+n−
≥ 0

where the equality holds when pk = pk+1. If we suppose pk ≤ pk+1, such a swapping
then becomes a good swapping, the AUC values will be increased by the same value.
For example, we start from a perfect ranking Rp shown in Table 5.9 . We can obtain:

n− = ∑
i

ni = 0.2+0.4+0.6+0.8+1 = 3

n+ = 5−3 = 2

By swapping 0.8 and 0.6, we obtain the change in AUC as follows:

pk − pk+1

n+n−
=

(1−0.6)− (1−0.8)
2×3

= 0.0333

So that the new AUC value for the rearranged list is

AUC(Rx1) = AUC(Rp)−0.0333 = 0.8000

Based on the new ranking list Rx1 , swap 0.8 and 0.4, and we then can obtain a new
ranking list Rx2 , such that:
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pk − pk+1

n+n−
=

(1−0.4)− (1−0.8)
2×3

= 0.0667

AUC(Rx2) = AUC(Rx1)−0.0667 = 0.7333

Similarly, we can obtain another bad ranking list Rx3 by such swapping (i.e., bad
swapping) and the AUC values will keep decreasing.

Table 5.9 AUC values with different rankings by exchanging examples from the perfect
ranking, where ni = 1− pi

n1 n2 n3 n4 n5
pk−pk+1

n+n− AUC

Rp 0.2 0.4 0.6 0.8 1.0 0 0.8333
Rx1 0.2 0.4 0.8 0.6 1.0 0.0333 0.8000
Rx2 0.2 0.8 0.4 0.6 1.0 0.0667 0.7333
Rx3 0.2 0.8 0.4 1.0 0.6 0.0667 0.6667

5.6 Summary

In this chapter, the methodology of using LDT to do prediction (or LPT) was
proposed and tested on several benchmark problems such as function regression,
time series prediction and real-world forecasting applications. By empirical studies,
we show that the LDT model has equivalent prediction ability compared to several
state of the art prediction model such as ε-SVR and Fuzzy Semi-Naive Bayes.
A forward merging has been described to increase transparency without great
sacrifices in accuracy. Finally, we discuss the method to evaluate linguistic queries
by LDT and tested this on a toy problem. Lastly, an extension of using ROC analysis
for prediction is proposed.

Similar to the LDT model in the last chapter, we are not arguing that the LPT
model is the best algorithm in terms of accuracy. Although we cannot say the LDT
model outperform others, we may say that LDT model has equivalent prediction
performance compared to other prediction algorithms. On the other hand, the LDT
model has better transparency in the following two aspects: (a) Unlike other black-
box prediction models, an LDT can be interpreted as a set of linguistic rules, which
may provides the information as to how the predictions are made. (b) The high-
level knowledge representation structure of the LDT model allows us to evaluate
linguistic queries based on the label semantics framework.

References

[1] Blake C., Merz C. J.: UCI machine learning repository.



References 153

[2] Quinlan J. R.: Induction of decision trees, Machine Learning, 1: pp. 81-106.
(1986).

[3] Quinlan J. R.:C4.5: Programs for Machine Learning, San Mateo: Morgan
Kaufmann. (1993).

[4] Janikow C. Z.: Fuzzy decision trees: issues and methods, IEEE Trans. on
Systems, Man, and Cybernetics-Part B: Cybernetics, 28(1): pp. 1-14. (1998).

[5] Olaru C., Wehenkel L.: A complete fuzzy decision tree technique, Fuzzy Sets
and Systems, 138: pp. 221-254. (2003).

[6] Peng Y., Flach P. A.: Soft discretization to enhance the continuous decision
trees, Integrating Aspects of Data Mining, Decision Support and Meta-
Learning, C. Giraud-Carrier, N. Lavrac and S. Moyle, editors, pp. 109-118,
ECML/PKDD’01 workshop. (2001).

[7] Yuan Y., Shaw M. J.: Induction of fuzzy decision trees, Fuzzy Sets and
Systems, 69: pp. 125-139. (1995).

[8] Breiman L., Friedman J. H.: Classification and Regression Trees, Wadsworth
Inc. (1984).

[9] Jeffrey R. C.: The Logic of Decision, Gordon & Breach Inc., New York.
(1965).

[10] Randon N. J., Lawry J.: Linguistic modelling using a semi-Naive Bayes
framework, IPMU-2002, Annecy, France. (2002).

[14] Randon N. J.: Fuzzy and Random Set Based Induction Algorithms, PhD
Thesis, Department of Engineering Mathematics, University of Bristol.
(2004).

[12] Vapnik V.: Statistical Learning Theory, New York: Wiley, (1998).
[13] Gunn S. R.: Support vector machines for classification and regression.

Technical Report of Departartment of Electronics and Computer Science,
University of Southampton. (1998).

[14] Randon N. J.: Fuzzy and Random Set Based Induction Algorithms, PhD
Thesis, Department of Engineering Mathematics, University of Bristol.
(2004).

[15] Hyndman R., Akram M.: Time series Data Library. Monash University.
http://www-personal.buseco.monash.edu.au/∼hyndman/TSDL/index.htm.

[16] Weigend A. A., Huberman B. A., Rumelhart D. E.: Predicting sunspots and
exchange rates with connectionist networks, In M. Casdagli and S. Eubank,
Editors, Non-linear Modelling and Forecasting, SFI Studies in the Science of
Complexity, Proceedings, Vol. XII, pp. 395-432, Addison-Wesley. (1992).

[17] Han D., Cluckie I. D., Karbassioun D., Lawry J., Krauskopf B.: River flow
modelling using fuzzy decision trees, Water Resources Management, 16(6),
pp. 431-445. (2002).

[18] Cluckie I. D., Han D.: Dendritic river modelling system in WRIP, Fifth
International Symposium on Hydraulically Application of Weather Radar,
Heian-Kaikan, Keyoto, Japan. (2001).

[19] Han D.: Weather Radar Information Processing and Real-Time Flood
Forecasting, PhD Thesis University of Salford. (1991).



154 References

[20] Lawry J., Hall J. W., Bovey R.: Fusion of expert and learnt knowledge in a
framework of fuzzy labels, Journal of Approximate Reasoning, 36: pp. 151-
198. (2004).

[21] Qin Z., Lawry J.: Prediction trees using linguistic modelling, to appear
in the Proceedings of International Fuzzy Association World Congress-05,
September 2005, Beijing, China. (2005).



6

Bayesian Methods Based on Label Semantics

Intuition is a poor guide when facing probabilistic evidence.

– Dennis V. Lindley

6.1 Introduction

In previous chapters, we have introduced the Linguistic Decision Tree model and
shown how this model can be used for classification and prediction. However, for
some complex problems, good probability estimations can only be obtained by deep
LDTs, which have low transparency. In such cases, how can we build a model
which has a good probability estimation but which uses compact LDTs? In this
chapter, two hybrid learning models are proposed combining the LDT model and the
fuzzy Naive Bayes classifier. In the first model, an unlabeled instance is classified
according to the Bayesian estimation given a single LDT. In the second model, a
set of disjoint LDTs are used as Bayesian estimators. Experimental studies show
that the first new hybrid models has both better accuracy and transparency when
compared to fuzzy Naive Bayes and LDTs at shallow tree depths. The second model
is shown to have equivalent performance to the LDT model.

Most tree induction models are designed for classification but not for prediction.
Trees that estimate the probability of class membership are also referred to as
Probability Estimation Trees (PETs) [1], where probability of a particular class given
a branch is calculated by the proportion of data belonging to this class to all the data
covered by the branch. For the linguistic decision tree, the probability of a branch
belonging to a particular class is evaluated based on the proportion of data in this
class relative to all the data covered by the linguistic expressions of the branch.
Therefore, the LDT model can be regarded as a probability estimation tree model
based on fuzzy labels. The LDT model has been shown to be an effective model for
both classification and prediction. However, for complex problems, good probability
estimations can only be obtained by deep LDTs, which have a poor transparency.
In such cases, how can we build a model which has a good probability estimation



156 6 Bayesian Methods Based on Label Semantics

with compact LDTs (i.e., LDTs with shallow depths or with a lesser number of
branches)? This question motivates the research presented in this chapter.

Naive Bayes is a well known and much studied algorithm in machine learning.
It is a simple, effective and efficient learning method. Although Naive Bayes
classification makes the unrealistic assumption that the values of the attributes of
an instance are conditionally independent given the class of the instance, this model
is remarkably successful in practice. In this chapter, an extended version of Naive
Bayes based on label semantics is introduced. Two new hybrid models are proposed
combining the Naive Bayes classifier and linguistic decision trees and tested on a
number of UCI datasets [2].

6.2 Naive Bayes

Bayesian learning� provides a probabilistic approach to inference based on the
Bayes theorem. It is one of the most important and commonly used learning
algorithm because it provides a quantitative approach to weighing the evidence
supporting the alternative hypothesis. So-called “naive” Bayesian classification
is the optimal method of supervised learning if the attributes are conditionally
independent given the classes. Although this assumption is almost always violated
in practice, Naive Bayesian learning is remarkably effective in practice[4].

Given a test instance that is presented, the learner is asked to predict its class
according to the evidence provided by the training data. We define c as a random
variable denoting the class of an instance: x = 〈x1, . . . ,xn〉 as a vector of variables
denoting the observed attribute values; C represents the set of classes; Suppose
y = 〈y1, . . . ,yn〉 is a particular observed attribute value vector (a particular instance);
and x = y as shorthand for x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xn = yn. This dependence

(a)
(b)

c x

x1

x2

x
N

N

c

Fig. 6.1 Graphical representations of the Naive Bayes classifier. The dependency
relationships in subfigure (a) can be simplified to subfigure (b) where the plate represents
the duplications

� Bayesian learning is a broad research area and it has become the main stream of machine
learning [3]. In this book, we employ a different approach for handling uncertainty so that
only the Naive Bayes classifier is introduced.
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relationship can be represented by directed graphs shown in Fig. 6.1 . Naive Bayes
is also considered as one of the simplest probabilistic graphical models.

6.2.1 Bayes Theorem

Expected classification error can be minimized by choosing

argmax
c

(P(c = C|x = y))

according to Bayes’s theorem:

P(H|D) =
P(D|H)

H
(6.1)

where H is the hypothesis and D represents the data or evidence. Given a particular
class Cj ∈ C, we can obtain:

P(c = Cj|x = y) =
P(x = y|c = Cj)P(c = Cj)

P(x = y)
(6.2)

=
P(x = y|c = Cj)P(c = Cj)

∑ j P(x = y|c = Cj)P(c = Cj)
(6.3)

Since the denominator in Eq. (6.2) is invariant across classes, we can consider it
as a normalization parameter Z. So, Eq. (6.4) is as follows:

P(c = Cj|x = y) =
P(x = y|c = Cj)P(c = Cj)

Z
(6.4)

so that:
P(c = Cj|x = y) ∝ P(x = y|c = Cj)P(c = Cj) (6.5)

Now suppose we assume for each variable xi that its outcome is independent of
the outcome of all other variables x j, given Cj. Formally, we assume that,

P(x1 = y1|x2 = y2 ∧ . . .∧ xn = yn,c = Cj) = P(x1 = y1|c = Cj) (6.6)

and so on for x2 through xn. The P(x1 = y1 ∧ . . .∧ xn = yn|c = Cj) equals to:

P(x1 = y1|c = Cj)P(x1 = y1|c = Cj) . . .P(xn = yn|c = Cj) =
n

∏
i=1

P(xi = yi|c = Cj)

In discrete cases (i.e., the training data is not continuous), the above product can be
estimated from given training data as follows:

P̂(xi = yi|c = Cj) =
count(xi = yi ∧ c = Cj)

count(c = Cj)
(6.7)

For a qualitative attribute, its probabilities can be estimated from corresponding
frequencies. For a quantitative attribute, either probability density estimation or
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discretization can be employed to estimate its probabilities. Under probability
density estimation, if the assumed density is not a proper estimate of the true density,
the Naive Bayes classification accuracy tends to degrade[5]. Yang and Webb[6]

argue that as long as the attribute independence assumption holds and discretization
satisfies P(c = Cj|x∗ = y∗) = P(c = Cj|x = y) (where instance y∗i is the discretized
version of instance x), discretization will result in Naive Bayes classifiers delivering
probability estimates directly proportional to those that would be obtained if the
correct probability density function were employed. Some other arguments about
the independent assumption and discretization of continuous attribute universes can
be found in References [7] and [8].

6.2.2 Fuzzy Naive Bayes

In the label semantics framework, suppose we are given focal set F j for each
attribute x j. Assuming that attribute x j is numeric with a continuous universe Ω j,
then the likelihood of x j given Ct can be represented by a density function p(x j|Ct)
determined from the database DBt and prior density according to Jeffrey’s rule [9].

∀F ∈ F j p(x j|Ct) = ∑
F∈F j

p(x j|F)P(F |Ct) (6.8)

From the Bayes theorem:

p(x j|F) =
P(F |x j)p(x j)

P(F)
=

mx j(F)p(x j)
pm(F)

(6.9)

where according to Section 3.4.1:

pm(F) =
∫

Ω j

P(F |x j)p(x j)dx j =
∑x∈DB mxj(F)

|DB| (6.10)

Substituting Eq. (6.9) in Eq. (6.8) and re-arranging gives

p(x j|Ct) = p(x j) ∑
F∈F j

mx j(F)
P(F |Ct)
pm(F)

(6.11)

Also P(F |Ct) can be derived from DBk according to

P(F |Ct) =
∑x∈DBk

mxj (F)
|DBk| (6.12)

Given a Naive Bayes classifier as follows

P(Ct |x) ∝ ∏
j

P(x j|Ct)P(Ct) (6.13)

where P(x j|Ct) is evaluated by Eq. 6.8. This model is referred to as fuzzy Naive
Bayes (FNB).
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6.3 Fuzzy Semi-Naive Bayes

The main advantage of using Semi-Naive Bayes over Naive Bayes is that it allows us
to solve non-decomposable problems such as XOR by weakening the independence
assumption of Naive Bayes. However, in order to utilize Semi-Naive Bayes it is
necessary to find effective groupings of attributes within which dependencies must
be taken into account. In this chapter, we present and evaluate a number of heuristic
search algorithms for finding such groups of attributes.

Given a set of attributes: x1,x2, . . . ,xn, they are partitioned into subsets S1, . . . ,Sw
where w ≥ n and for each Si a joint mass assignment mi j is determined as follows:
Suppose, w.l.o.g Si = {x1, . . . ,xv} then the joint mass assignment is

∀T1 × . . .×Tv ∈ 2L1 × . . .×2Lv (6.14)

mi j(T1, . . . ,Tv) =
1

|DBj| ∑
k∈DB

w

∏
r=1

mr j(Ti : xi ∈ Sr) (6.15)

Hence the prototype describing Cj is defined as 〈mi j, . . . ,mw j〉. A prototype of
this form naturally defines a joint mass assignment m j on the whole cross product
space 2L1 × . . .×2Ln conditional on Cj as follows:

∀T1 × . . .×Tn ∈ 2L1 × . . .×2Ln m j(T1, . . . ,Tn) =
w

∏
r=1

mr, j(Ti : xi ∈ Sr) (6.16)

In this formulation we are encoding variable dependence within the variable
groupings Si : i = 1, . . .w, and assuming independence between the groups.

In order to estimate classification probabilities given input vectors of real
attribute values we need a mechanism for mapping from mass assignments on label
space onto density functions on attribute space.

Definition 6.1 (Conditional density given a mass assignment)

Let x be a variable into Ω with prior distribution p(x), L be a set of labels for x
and m be a posterior mass assignment for the set of appropriate labels of x inferred
from some database DB. Then the posterior distribution of x conditional on m is
given by

∀x ∈ Ω , p(x|m) = p(x) ∑
S⊆L

m(S)
pm(S)

mx(S) (6.17)

where pm(S) is the prior mass assignment generated by the prior distribution p(x)
according to

pm(S) =
∫

Ω
mx(S)p(x)dx (6.18)
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This definition is motivated by the following argument based on the theorem of
total probability which is for a mass assignment, describing variables x on Ω .

We now consider methods for finding attribute groupings that increase
discrimination in the model. Two measures have been proposed in Reference [10]:

Definition 6.2 (Importance measure) Let the joint mass assignment for Si given
Cj be denoted mi, j . For any input vector Si the probability of class Cj can be
estimated using Bayes theorem where

P(Cj|Si) =
p(Si|mi, j)|Cj|

p(Si|mi, j)|Cj|+ p(Si|mi,¬ j)|C¬ j| (6.19)

where mi,¬ j denotes the mass assignments for S j given ¬Cj. The importance
measured of group Si for class Cj is then defined by

IMj(Si) =
∑k∈DB j P(Cj|Si(k))

∑k∈DB P(Cj|Si(k))
(6.20)

Effectively, IMj(Si) is a measure of the importance of the set of variables Si as
discriminators of Cj from the other classes.

Definition 6.3 (Correlation measure) Let F1 be the focal sets for S1 and F2 the
focal sets for S2. Now let m1,2, j be the joint mass of S1 ∪S2 given Cj

C(S1,S2) =

√
1

|F1||F1| ∑
R⊆F1

∑
T⊆F2

(m1,2, j(R,T )−m1, j(R)m2, j(T ))2 (6.21)

Here a threshold must be used to determine whether attributes should be grouped.
The nearer the correlation measure gets to 1 the higher the correlation between
attribute groups.

We tested our models with a real-world problem taken from the Time Series
Data Library [11] and contains data of sunspot numbers between the years 1700-
1979. The input attributes are xT−12 to xT−1 (the data for the previous 12 years)
and the output (target) attribute is xT , i.e., one-year-ahead. The experimental results
for LID3, Fuzzy Naive Bayes, Semi-Naive Bayes and ε-SVR[12] are compared in
Fig. 5.10. We can see the results are quite comparable. In these graphs, for an error
free prediction all points will fall on the line defined by y = x. Roughly, from the
illustration, we can see that SVR and non-merged LDT have better performance,
because predicted values are distributed closer to y = x than the other two models.

Using a somewhat weaker version of this assumption Konoenko proposed a
form of Semi-Naive Bayes whereby the set of attributes {x1, . . . ,xn} is partitioned
into groups of correlated attributes S1, . . . ,Sm where m ≤ n [13]. Conditional
independence is then assumed between the attribute groups so that the Naive Bayes
classifier defined by Eq. (6.13) becomes
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P(x|Ct) = P(x1, . . . ,xn|Ct) ∝
m

∏
i=1

P(Si|Ct) (6.22)

The evaluation of P(S|Ct) can be described as follows: Suppose S = {x1, . . . ,xk}, so
that the likelihood P(x1, . . . ,xk|Ct) is calculated as follows:

P(S|Ct) = P(x1, . . . ,xk) ∑
F1∈F1

. . . ∑
Fk∈Fk

m(F1, . . . ,Fk|Ct)
pm(F1, . . . ,Fk)

k

∏
i=1

mxi(Fi) (6.23)

which is an extension of Eq. (6.11) in k-dimensional case, where

m(F1, . . . ,Fk|Ct) =
1

DB ∑
i∈DBt

k

∏
j=1

mxj(i)(Fj) (6.24)

and

pm(F1, . . . ,Fk) =
∏k

j=1
∫

Ω j
mx j dx j

∏k
j=1

∫
Ω j

dx j
(6.25)

which is the extension of Eq. (6.10). Clearly then Naive Bayes is a special case of
Semi-Naive Bayes when Si = {xi} : i = 1 . . . ,n. Randon[14] and Lawry[10,15] propose
a number of search algorithms for identifying the optimal partition of {x1, . . . ,xn}.
These are based mainly on the heuristic that attributes should be grouped if and
when grouping increases their overall level of importance as an identifier of a given
class. These methods are beyond the scope of this thesis.

6.4 Online Fuzzy Bayesian Prediction

All the algorithms we have discussed belong to offline learning where a static model
is learned from history data. This type of modeling is appropriate if the underlying
dynamics of the system under consideration does not change over time. However,
it is not always the case in many real-world problems that evolve over time. In this
section, we introduce an online learning using a Bayesian model based on label
semantics. The original results of this research were published in Reference [16]
and this section is heavily based on this paper as well.

6.4.1 Bayesian Methods

Consider the following formalization of a prediction problem: Given random
variables: x1, . . . ,xn,xn+1 with universes Ω1, . . . ,Ωn,Ωn+1, suppose that xn+1 is
dependent on x1, . . . ,xn according to some functional relation

xn+1 = f (x1, . . . ,xn)

In fuzzy Bayesian models, the appropriateness of using a label L to describe x can
be interpreted as the probability that L is valid given value x, i.e.,
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∀x ∈ Ω μL(x) = P(L|x) (6.26)

Since there could be more than one labels be appropriate to describe x, and hence
we cannot directly define the probability distribution on the set L = {L1, . . . ,Ln}.
Instead, we must base our analysis on the set of atoms generated from L, each
identifying a possible state of the world by taking the from:

α =
n∧

i=1

±Li (6.27)

where,
+Li = Li, −Li = ¬Li

For example, given two labels: L = {L1,L2} then there are for possible items;

α1 = L1 ∧L2, α2 = L1 ∧¬L2, α3 = ¬L1 ∧L2, α4 = ¬L1 ∧¬L2

In general, there are 2m items given the cardinality of |L| = m. Let P denote the set
of atoms with non-zero probability � for at least some x ∈ Ω .

For given x ∈ Ω the distribution on atoms P(α|x) for α ∈ P can be represented
by a mass assignment mx on the power set of L as follows:

∀S ⊆ P, P(αS|x) = mx(S) (6.28)

where αS is the alpha-function (Eq. (3.34) in Definition 3.12) of given S:

αS =

(∧
L∈S

L

)
∧
(∧

L/∈S

¬L

)

For example, given L = {L1, . . . ,Ln} with 50% overlapping as shown in Fig. 6.2 .

L1 L2 L3
L4 L5

L
n

Fig. 6.2 A set of labels L1, . . . ,Ln with 50% overlapping

� Given a set of labels L, P is different from its focal set F where P contains the negations of
labels. If given some assumptions (e.g., consonance, 50% overlapping and fuzzy linguistic
covering), there is a function mapping: g(F) → P.
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P

(
L1 ∧L2 ∧

n∧
i=3

¬Li|x
)

= mx({L1,L2}) (6.29)

where mx(S) is the probability that the set of all labels appropriate to describe x is
S. Given the assumption of 50% overlapping, there are at most two labels that have
non-zero probability. In this case, αS is corresponding to the focal elements of L

and we can obtain P = F (see Fig. 6.3 ). For example:

α1 = L1 ∧¬L2 ∧ . . .∧¬Ln = F1

α2 = L1 ∧L2 ∧¬L3 ∧ . . .∧¬Ln = F2

In the fuzzy Naive Bayes algorithm each input universe is fully covered using
trapezoidal fuzzy labels (see Fig. 6.2 ) and the probability function for the atoms
generated as in Fig. 6.3 . Let Pi denote the atoms generated for variable xi for
i = 1, . . . ,n. Then, from the output atom αn+1 ∈ Pn+1 and input atom α j ∈ P we
infer the conditional probability P(α j|αn+1) from the training database

DB = {〈x1(i), . . . ,xn(i),xn+1(i) : i = 1, . . . ,N} (6.30)

as follows:

P(α j|αn+1) =
∑i∈DB P(α j|x j(i))P(αn+1|xn+1(i))

∑i∈DB P(αn+1|xn+1(i))
(6.31)

1 2 3 2 1n
� � � � �2 2n

Fig. 6.3 Given the labels in Fig. 6.2 , probability function P(α|x) for atom α ∈ P is as the
same as focal elements

From this we can use Jeffrey’s rule [9] to infer a marginal density conditional on
αn+1 such that:

f (x j|αn+1) = ∑
α j∈P j

P(α j|αn+1) f (x j|α j) (6.32)

We assume a uniform prior distribution on the input universe Ω j:

∀x j ∈ Ω j, α j ∈ P j, f (x j|α j) =
P(α j|x j)∫

Ω j
P(α j|x j)dx j

(6.33)
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Based on the Bayesian theorem we can obtain the conditional probability
P(αn+1|x1, . . . ,xn) of each output atom given the input vector 〈x1, . . . ,xn〉 as follows

P(αn+1|x1, . . . ,xn) =
P(αn+1)∏n

j=1 f (x j|αn+1)

∑αn+1∈Pn+1 P(αn+1)∏n
j=1 f (x j|αn+1)

(6.34)

Hence, we can obtain a density function on output valves by summing over αn+1,
i.e.,

P(xn+1|x1, . . . ,xn) = ∑
αn+1∈Pn+1

f (xn+1|αn+1)P(αn+1|x1, . . . ,xn) (6.35)

A estimated output can be obtained by taking the expectation so that:

x̂n+1 =
∫

Ωn+1

xn+1 f (xn+1|x1, . . . ,xn)dxn+1 (6.36)

6.4.2 Online Learning
When we consider a dynamic problem, we hope to find the a functional mapping (at
time t) from input 〈x1, . . . ,xn〉 to xn+1, formally:

gt : Ω1 × . . .×Ωn → Ωn+1

Assuming we are given a training database DB (see Eq. (6.30)) and a new example
xi+1 = 〈x1(i + 1), . . . ,xn(i + 1),xn+1(i + 1). The conditional probabilities for each
output atom can be updated by follows:

P̃(α j|αn+1) =
|αn+1|P(α j|αn+1)+wP(α j|x j(i+1))P(αn+1|xn+1(i+1))

|αn+1|+wP(αn+1|xn+1(i+1))
(6.37)

where P(α j|αn+1) is the current probability estimate obtained through the
current training database DB and P̃(α j|αn+1) denotes the updated probability by
considering the new example xi+1. |αn+1| indicates the degree to which output atom
αn+1 has been previously encountered during learning given by:

|αn+1| =
i−1

∑
k=1

P(αn+1|xn+1(k)) (6.38)

Here, w is the learning rate. For example, it can take the value of

w(|αn+1|) =
c

|αn+1| +1 (6.39)

where c is a constant controlling the level of initial updating. In the absence of any
data concerning the atom αn+1 conditional probabilities are uniform:

P(α j|αn+1) =
1
|P| : α j ∈ P j (6.40)

Randon et al. first apply an online fuzzy Bayesian learning to river flow modeling
in order to set up a warning system on flooding. The experimental studies show that
the online learning model outperforms the offline fuzzy naive Bayesian model [16].
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6.5 Bayesian Estimation Trees

A decision tree, more properly a classification tree, is used to learn a classification
function which predicts the value of a target attribute (class attribute) given the
values of the independent (input) attributes by a tree-structured model. A node
with no split is called a leaf, which is associated with a particular class label. A
new unlabeled data is classified by determining which leaf it leads to. Decision tree
induction attracts a great attention for its simplicity and effectiveness. Algorithms
such as ID3[17], C4.5[18] have been well-known only only in machine learning
and but also other scientific communities as well. Traditionally, this setting was
sufficient for most of the classification problems and applications. However, more an
more applications require some kind of reliability, likelihood or numeric assessment
of the quality of each classification. In other words, we do not only want that the
model predicts a class value for each example but also that it can be given an
estimate of the reliability of each prediction. Such classifiers are usually called
soft classifiers[19]. The most general presentation of a soft classifier is a probability
estimator, i.e., a model that estimates the probability of a particular class given an
unlabeled example. A decision tree classifier is defined as a decision tree with an
associated labelling of the leaves with classes. A PET is a decision tree where each
leaf is assigned a probability distribution over classes. These probability estimates
can for instance be relative frequencies [19]. A thorough study of what are the best
methods for PETs would be a successful contribution to machine learning research
is given in Reference [1].

6.5.1 Bayesian Estimation Given an LDT

Given a decision tree T is learnt from a training database DB, according to the
Bayesian theorem a data element x = 〈x1, . . . ,xn〉 can be classified by

P(Ct |x,T ) ∝ P(x|Ct ,T )P(Ct |T ) (6.41)

We can then divide the attributes into 2 disjoint groups denoted by xT = {x1, . . . ,xm}
and xB = {xm+1, . . . ,xn}, respectively. xT is the vector of the variables that are
contained in the given tree T and the remaining variables are contained in xB.
Assuming conditional independence between xT and xB we obtain:

P(x|Ct ,T ) = P(xT |Ct ,T )P(xB|Ct ,T ) (6.42)

Because xB is independent of the given decision tree T and if we assume the
variables in xB are independent of each other given a particular class, we can obtain

P(xB|Ct ,T ) = P(xB|Ct) = ∏
j∈xB

P(x j|Ct) (6.43)

Now consider xT . According to Bayes theorem,
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P(xT |Ct ,T ) =
P(Ct |xT ,T )P(xT |T )

P(Ct |T )
(6.44)

Combining Eqs. (6.42), (6.43) and (6.44),

P(x|Ct ,T ) =
P(Ct |xT ,T )P(xT |T )

P(Ct |T ) ∏
j∈xB

P(xl |Ct) (6.45)

Combining Eqs. (6.41) and (6.45),

P(Ct |x,T ) ∝ P(Ct |xT ,T )P(xT |T ) ∏
j∈xB

P(x j|Ct) (6.46)

Further, since P(xT |T ) is independent from Ct , we have that:

P(Ct |x,T ) ∝ P(Ct |xT ,T ) ∏
j∈xB

P(x j|Ct) (6.47)

where P(x j|Ct) is evaluated according to Eq. (6.11) and P(Ct |xT ,T ) is just the
probability of class Ct evaluated from the decision tree T according to Eq. (4.16).

The basic idea of using Bayesian estimation given a LDT is to use the LDT as
one estimator and the rest of the attributes as other independent estimators. Consider
the two extreme cases for Eq. (6.47). If all the attributes are used in building the tree
(i.e., xT = x), the probability estimations are from the tree only, that is:

P(Ck|x,T ) ∝ P(Ck|xT ,T )

If none of the attributes are used in developing the tree (i.e., x = xB), the
probability estimation will become

P(Ck|x,T ) ∝ ∏
j∈xB

P(x j|Ck)

which is simply a Naive Bayes classifier. This relation is illustrated by Fig. 6.4 . If
we now extend this idea and use a set of small-sized LDTs as estimators, we then
have the second hybrid model which is described in the next section.

Naive Bayes BLDT LDT

No attributes
is in the tree

Some attributes
are in the tree

All attributes
are in the tree

Fig. 6.4 A schematic illustration of the relations among Naive Bayes, BLDT and LDT.
BLDT can be consider as a hybrid model between Naive Bayes and LDT
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6.5.2 Bayesian Estimation from a Set of Trees

Given a training dataset, a small-sized tree (usually the depth is less than 3) can be
learnt based on the method we discussed in the last section. We then learn another
tree with the same size based on the remaining attributes, i.e., the attributes which
have not been used in previous trees. In this manner, a set of trees can successively
be built from training set. We denote this set of trees by T = 〈T1, . . . ,TW 〉 and where
the set of attributes xTw for w = 1, . . . ,W for a partition of {x1, . . . ,xn} (see Fig.
6.5 for a schematic illustration). For a given unclassified data element x, we can
partition it into W groups of a disjoint set of attributes 〈xT1 , . . . ,xTW 〉. If we assume

P(Ct |x) = P(Ct |xT1 , . . . ,xTW ) ≈ P(Ct |T1, . . . ,TW ) (6.48)

then, according to the Bayes theorem:

P(Ct |T) = P(Ct |T1, . . . ,TW ) =
P(T1, . . . ,TW |Ct)P(Ct)

P(T1, . . . ,TW )
(6.49)

Assuming that the trees are generated independently, then it is reasonable to assume
that the groups of attributes are conditionally independent of each other. Hence

P(T1, . . . ,TW |Ct) =
W

∏
w=1

P(Tw|Ct) (6.50)

For a particular tree Tw for w = 1, . . . ,W , we have

P(Tw|Ct) =
P(Ct |Tw)P(Tw)

P(Ct)
(6.51)

So that,
W

∏
w=1

P(Tw|Ct) = ∏W
w=1 P(Ct |Tw)∏W

i=1 P(Tw)
P(Ct)W (6.52)

Combining Eqs. (6.49), (6.50) and (6.52), we obtain

P(Ct |T) ∝ ∏W
w=1 P(Ct |Tw)∏W

w=1 P(Tw)
P(Ct)W−1 (6.53)

Since ∏W
w=1 P(Tw) is independent from Ct , we finally obtain:

P(Ct |T) ∝ ∏W
w=1 P(Ct |Tw)
P(Ct)W−1 (6.54)

where P(Ct |Tw) is evaluated according to Eq. (4.16).
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x x x x1 2 3 4

x1x2

x3

x4

Fig. 6.5 An schematic illustration of Bayesian estimation from a set of linguistic decision
trees

6.6 Experimental Studies

We evaluated the hybrid LDT models (Bayesian estimation tree denoted by BLDT)
by comparing the performance of a single LDT without Bayesian estimation and
Bayesian estimation with a set of trees (denoted by FLDT, i.e., a forest of LDTs) on
10 datasets taken from the UCI Machine Learning repository[2]. The descriptions
are shown in Table 6.1 . Unless otherwise stated, attributes are discretized by 2
trapezoidal fuzzy sets with 50% overlap based on percentile-based discretization
(see Chapter 4), and classes are evenly split into two sub-datasets randomly, one
half for training and the other half for testing. This is referred to as a 50-50 split
experiment. For each dataset, we ran a 50-50 experiment with a random split 10
times and the average test accuracies with standard deviations are shown against
depths of the trees in Figs. 6.6 and 6.7 . The results for C4.5 �, Fuzzy Naive Bayes
(FNB), FLDT and the best results of LDT and BLDT are shown in Tables 6.2—6.8,
where the depth for LDT and BLDT represents the depth at which the best results
are obtained.

We also performed t-tests with a confidence level of 90% � to compare the
models at depth 2 (except for C4.5 and FNB) and the results are shown in Table 6.8
. We can see that BLDT and FLDT models are better than Fuzzy Naive Bayes and
C4.5. However, if we compare BLDT and FLDT with LDT, we find that the BLDT
model outperforms LDT at shallow depths and the FLDT model has the equivalent
performance. equivalent instead of which one is better than another one. From Fig.
6.6 , we found that most of the best results for BLDT are obtained at shallow depths,

� The results for C4.5 are obtained by WEKA [20] machine toolkit with default settings.
� We generally believe that the confidence level of 90% is enough to be significant for

comparisons among different learning models given these relatively simple data sets.
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Table 6.1 Descriptions of the datasets for experiments selected from the UCI machine
learning repository [2]

Dataset Classes Size Attributes Missing Values

Balance 3 625 4 No
Ecoli 8 336 8 No
Glass 6 214 9 No
Heptitis 2 155 19 Yes
Iris 3 150 4 No
Liver 2 345 6 No
Pima 2 768 8 No
Sonar 2 208 60 No
Wine 3 178 14 No
Wcancer 2 699 9 No

but for LDTs the best results are always obtained with deep trees. Hence, we can
conclude that the BLDT model is more efficient than LDT. Compared to BLDT,
the FLDT model performs relatively worse and is less efficient. The reasons for
this are probably that small trees are not good estimators,but this still needs further
investigation.

From Figs. 6.6 and 6.7 , we can see that the BLDT model generally performs
better at shallow depths than the LDT model. However, with the increase in the tree
depth, the performance of the BLDT model remains constant or decreases, while the
accuracy curves for LDT increase. For datasets Balance, Ecoli, Wisconsin-Cancer
(Wcancer) and Wine, the BLDT model performs better at most of depths. For Iris
and Heptitis, the differences are insignificant at all depths. For Pima, the LDT
model performs better than the BLDT model at most depths and the differences
are significant. For the rest of the datasets, the accuracy curves cross somewhere in
the middle and the differences are not significant.

6.7 Summary

In this chapter we have introduced Bayesian models based on label semantics.
Specifically, we discussed the fuzzy Naive Bayes, Semi-Naive Bayes and two
hybrid Bayesian models based on the LDT by combining the Naive Bayes classifier
and the linguistic decision trees. Through experimental studies, we found that the
BLDT (i.e., Bayesian estimation given an LDT) model outperforms the fuzzy Naive
Bayes, C4.5 and the linguistic decision tree model at shallow tree depths. However,
the FLDT (i.e., using a set of small size LDTs as Bayesian estimators) model
outperforms fuzzy Naive Bayes classifier and C4.5 but has equivalent accuracy to
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Fig. 6.6 Results for single LDT with Bayesian estimation: Average accuracy with standard
deviation on each dataset against the depth of the tree
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deviation on each dataset against the depth of the tree

LDTs. Future research will focus on investigating the reasons why FLDTs do not
seem to improve on the performance of LDTs at shallow depths.
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Table 6.2 Experimental results (average accuracy with standard deviation) on UCI data sets
based on PET models with discrete and fuzzy labels, where d represents the depth at which
the results were obtained. The best results are highlighted

Discreet Labels Fuzzy Labels

Data depth LDT BLDT LDT BLDT
Balance 1 54.54±1.34 69.04±1.82 62.33±1.60 79.53±1.90

2 62.25±1.38 71.34±1.89 68.12±1.57 74.76±1.89
3 68.23±2.56 74.47±3.49 75.01±1.66 77.49±2.20
4 80.74±3.47 77.74±2.26 87.70±1.13 81.96±1.79

Ecoli 1 51.94±1.75 79.24±1.88 44.12±0.00 84.53±1.60

2 70.47±1.88 78.35±1.66 63.88±0.97 83.76±1.82
3 71.94±2.30 78.47±3.00 67.59±0.76 84.41±2.00
4 73.53±4.58 77.06±2.63 72.29±1.53 84.76±1.67
5 73.53±4.58 77.06±2.63 72.53±1.52 84.76±1.67
6 73.76±4.52 77.24±2.34 80.59±1.41 84.47±1.96
7 73.12±2.32 77.71±1.95 85.76±1.03 84.88±1.21

Glass 1 38.81±4.17 61.38±5.16 41.28±3.35 59.63±8.17
2 40.37±3.72 60.28±3.46 44.68±3.32 59.08±7.92
3 45.69±5.91 60.64±5.46 46.88±2.22 59.08±8.92
4 53.67±5.32 60.92±5.92 53.58±6.36 57.89±6.98
5 52.84±3.49 60.00±4.22 56.51±6.96 59.72±5.13
6 51.83±4.64 58.81±5.65 60.55±7.33 59.72±5.83
7 51.93±3.36 58.26±5.34 64.31±3.83 62.11±5.21
8 52.11±3.40 58.72±5.69 64.68±4.54 61.83±5.26
9 52.20±3.19 58.35±5.30 67.16±4.57 64.13±3.47

Heptitis 1 79.49±0.00 80.51±2.33 80.13±0.91 80.38±2.34
2 79.62±3.39 82.05±2.34 82.31±1.79 81.15±2.57
3 80.13±4.33 81.03±2.89 82.44±2.27 81.28±2.65
4 80.38±3.42 80.77±2.42 82.18±2.38 81.92±2.13

Iris 1 92.67±3.34 92.53±3.57 92.93±2.52 94.80±1.93
2 94.93±2.07 91.87±4.89 94.93±1.23 95.20±1.43

3 94.27±2.60 92.27±3.97 94.67±2.27 94.93±1.64
4 93.87±2.75 92.67±3.51 94.67±2.18 95.20±1.43

Liver 1 55.66±3.96 63.24±3.36 59.02±1.67 65.95±2.38

2 60.81±4.63 61.68±3.79 67.63±3.37 64.91±3.17
3 60.81±2.40 62.72±4.23 67.05±3.03 64.80±3.25
4 61.39±3.71 62.66±4.48 68.96±1.18 63.24±3.02
5 59.89±3.79 62.72±4.20 68.73±3.90 64.05±2.92
6 59.65±2.67 62.25±3.61 68.27±3.62 63.24±2.44



References 173

Discreet Labels Fuzzy Labels

Data depth LDT BLDT LDT BLDT
Pima 1 73.49±1.58 71.48±2.52 73.67±0.96 72.84±2.12

2 73.52±2.62 69.77±2.84 74.40±1.37 70.47±1.62
3 71.80±2.47 69.97±2.98 74.66±1.26 70.36±2.14
4 68.10±2.20 68.52±2.69 74.90±1.20 69.82±1.72

Wisconsin-Cancer 1 90.60±1.83 96.54±0.39 90.54±2.17 96.77±0.47

2 93.09±1.12 95.80±0.81 94.69±1.15 96.43±0.47
3 94.51±1.16 94.49±1.04 95.34±0.85 95.03±0.56
4 94.29±0.92 94.26±0.81 95.06±0.70 95.20±0.66

Wine 1 75.89±7.18 94.22±3.66 77.44±5.79 96.67±1.17
2 87.22±2.41 92.89±4.03 88.44±2.97 95.89±1.49
3 85.56±2.92 89.67±3.31 91.22±2.12 96.44±1.02
4 82.78±3.32 88.00±4.38 94.33±2.37 97.22±1.20

5 85.22±2.87 87.11±1.41 96.22±1.90 96.22±2.35

Table 6.3 Experimental results on 10 UCI datasets: average accuracy with standard deviation
from 10 runs of random 50-50 split experiments

C4.5 FNB LDT BLDT FLDT

Database Acc Acc Acc d Acc d Acc(d=1) Acc(d=2)
Balance 79.20±1.53 73.77±2.43 87.70±1.13 4 83.23±1.97 4 66.26±2.81 79.42±1.99
Ecoli 78.99±2.23 76.53±4.19 85.76±1.03 7 84.53±1.60 1 80.18±3.45 78.76±1.60
Glass 64.77±5.10 48.35±6.80 59.17±3.70 9 64.13±3.47 9 52.94±8.74 58.53±5.28
Heptitis 76.75±4.68 80.13±2.28 82.44±2.27 3 81.92±2.13 4 80.26±3.15 79.26±0.41
Iris 93.47±3.23 93.73±2.60 94.93±1.23 2 95.20±1.43 2 93.73±1.89 92.00±3.38
Liver 65.23±3.86 63.35±2.38 68.96±3.18 4 65.95±2.38 1 62.43±4.62 59.65±2.09
Pima 72.16±2.80 72.29±2.25 74.90±1.20 4 72.84±2.12 1 72.40±1.48 66.07±1.04
Sonar 70.38±5.23 74.76±4.96 81.05±5.24 6 74.57±5.26 2 76.48±4.82 75.62±2.21
Wcancer 94.38±1.42 96.74±0.54 95.34±0.85 3 96.77±0.47 1 97.17±0.93 98.77±0.85
Wine 88.09±4.14 96.22±1.67 96.22±1.90 5 97.22±1.20 4 96.11±0.79 98.56±1.66
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Table 6.4 Result comparisons (with LDT, BLDT and FLDT are at depth 2) based on t-test
with 90% confidence, where “

√
” represents significant better, “−” represents equivalence

and “×” represents significant worse

# BLDT vs C4.5 BLDT vs FNB BLDT vs LDT FLDT vs C4.5 FLDT vs FNB FLDT vs LDT

Balance
√ √ √ − √ √

Ecoli
√ √ √ − − √

Glass − √ √ − √ √

Heptitis
√ − − − − ×

Iris − − − − − −
Liver − − − − − ×
Pima − − × − − ×
Sonar − − − − − −
Wcancer

√ − √ √ √ √

Wine
√ − √ √ − √

Table 6.5 Experimental results based on discrete labels

NB PET BPET

Data Accuracy Accuracy depth Accuracy depth

Balance 78.45±3.43 80.74±3.47 4 77.74±2.26 4
Ecoli 78.29±2.29 73.76±4.52 6 79.24±1.88 1
Glass 57.06±5.22 52.20±3.19 9 60.92±5.92 4
Heptitis 80.64±2.38 80.38±3.42 4 82.05±2.34 2
Ionosphere 83.30±3.50 82.39±2.32 3 85.28±2.07 3
Iris 92.53±2.96 94.93±2.07 2 92.53±3.57 1
Liver 63.24±2.42 61.39±3.71 4 63.24±3.36 1
Pima 72.06±2.86 73.52±2.62 2 71.48±2.52 1
W-cancer 96.63±0.40 94.51±1.16 3 96.54±0.39 1
Wine 94.33±3.61 87.22±2.41 2 94.22±3.66 1
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Table 6.6 Experimental results based on fuzzy labels

FNB LDT BLDT

Data Accuracy Accuracy depth Accuracy depth

Balance 81.87±2.24 87.70±1.13 4 81.96±1.79 4
Ecoli 76.53±4.19 85.76±1.03 7 84.53±1.60 1
Glass 48.35±6.80 67.16±4.57 9 64.13±3.47 9
Heptitis 80.13±2.28 82.44±2.27 3 81.92±2.13 4
Ionosphere 76.02±3.82 88.47±2.60 2 77.44±4.76 1
Iris 93.73±2.60 94.93±1.23 2 95.20±1.43 2
Liver 63.35±2.38 68.96±3.18 4 65.95±2.38 1
Pima 72.29±2.25 74.90±1.20 4 72.84±2.12 1
W-cancer 96.74±0.54 95.34±0.85 3 96.77±0.47 1
Wine 96.22±1.67 92.66±1.90 5 97.22±1.20 4

Table 6.7 Average accuracy for LDT and FLDT from 10 runs of random 50-50 split
experiments

LDT FLDT

Database Accuracy depth Accuracy (depth=1) Accuracy (depth=2)
Balance 87.70±1.13 4 66.26±2.81 79.42±1.99
Ecoli 85.76±1.03 7 80.18±3.45 78.76±1.60
Glass 59.17±3.70 9 52.94±8.74 58.53±5.28
Heptitis 82.44±2.27 3 80.26±3.15 79.26±0.41
Iris 94.93±1.23 2 93.73±1.89 92.00±3.38
Liver 68.96±3.18 4 62.43±4.62 59.65±2.09
Pima 74.90±1.20 4 72.40±1.48 66.07±1.04
W-cancer 95.34±0.85 3 97.17±0.93 98.77±0.85
Wine 96.22±1.90 5 96.11±0.79 98.56±1.66
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− √ √ − √ √ √
√ − − − − × √

− − − − − × −
− − × − − × √

− − − − − − −√ − √ √ − √ −√ − √ √ √ √ √

[12] Gunn S. R.: Support vector machines for classification and regression.
Technical Report of Departartment of Electronics and Computer Science,
University of Southampton. (1998).

[13] Konoenko I.: Semi-Naive Bayesian classifier, Proceedings of EWSL-91 6th
European Workshop on Learning, Springer, pp. 206-219. (1991).

[14] Randon N. J.: Fuzzy and Random Set Based Induction Algorithms, PhD
Thesis, Department of Engineering Mathematics, University of Bristol.
(2004).

[15] Randon N. J., Lawry J.: Linguistic modelling using a semi-Naive Bayes
framework, IPMU-2002, Annecy, France. (2002).

[16] Randon N. J., Lawry J., Cluckie I. D.: Online learning for fuzzy Bayesian
prediction, Soft Methods in Probability and Statistics (SMPS) Advances in
Soft Computing, 6: pp. 405-412.

[17] Quinlan J. R.: Induction of decision trees, Machine Learning, 1: pp. 81-106.
(1986).

[18] Quinlan J. R.:C4.5: Programs for Machine Learning, San Mateo: Morgan
Kaufmann. (1993).

[19] Ferri C., Flach P. A., Hernández-Orallo J.: Improving the AUC of
probabilistic estimation trees, Proceedings of ECML-03, LNAI 2837, pp.
121-132. (2003).

[20] Witten I. H., Frank E.: Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann. (1999).



7

Unsupervised Learning with Label Semantics

Things of a kind come together. People of a mind fall into the same group.

– Chinese Proverb

7.1 Introduction

Unsupervised learning is a class of problems in machine learning where the goal
is to determine how data is structured and organized. It is distinguished from
supervised learning, semi-supervised learning and reinforcement learning in that
the learner is given only unlabeled data. Unsupervised learning is closely related to
the problem of density estimation in statistics. However unsupervised learning also
encompasses many other techniques that seek to summarize and explain key features
of the data [1]. In this section, we will mainly discuss two sorts of unsupervised
learning models based on label semantics, probability estimation and clustering.

Probability density estimation is used to construct an unobservable underlying
probability density function (PDF) based on randomly sampled data. The
approaches to density estimation are usually classified as parametric and non-
parametric. In parametric estimation, it is assumed that the underlying PDF f (x)
belongs to a family distribution characterized by parameters θ = {θ1, . . . ,θm}. A
density estimate f̂ is then obtained by computing from the data an estimate θ̂ of the
parameters θ and having

f̂ = f (x|θ̂ )

Non-parametric approaches do not assume a particular family of distributions.
In this chapter, we will first discuss how to use label semantics for non-
parametric density estimation based on given observed data. Then, we will consider
the clustering of these unlabeled data within the label semantics framework.
Particularly, we use a new proposed distance measurement to cluster imprecise
concepts and data.

Cluster analysis is considered as the most important form of unsupervised
learning. It deals with finding similar patterns in a collection of unlabeled data. A
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cluster is therefore a collection of objects which are “similar” and are “dissimilar”
to the objects belonging to other clusters. Another kind of clustering is conceptual
clustering. Two or more objects belong to the same cluster if this one defines a
concept common to all objects. In other words, objects are grouped according to
their fit to descriptive concepts, not according to simple similarity measures.

7.2 Non-Parametric Density Estimation

In statistics, kernel density estimation is a non-parametric method of estimating the
probability density function of a random variable. Kernel density estimates [2] are
closely related to histograms, although the former have several advantages. In Fig.
7.1 , we compare the construction of histogram and kernel density estimators, using
these 6 data points: x1 = −2.1, x2 = −1.3, x3 = −0.4, x4 = 1.9, x5 = 5.1, x6 = 6.2.
For the histogram, first the horizontal axis is divided into sub-intervals or bins which
cover the range of the data (e.g., Fig. 7.1 (a)). In this case, we have 6 bins each of
width 2. For the kernel density estimate, we place a normal kernel with variance
δ = 2.25 (see Fig. 7.1 (b)) on each of the data points xi. The kernels are summed
to make the kernel density estimate (solid curve). The smoothness of the kernel
density estimate is evident compared to the discreteness of the histogram. This
discrete appearance is a result of the inherent statistical inefficiency of histograms
as compared to kernel estimators.
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Fig. 7.1 Kernel density estimation using normal kernels with variance δ = 2.25. This figure
is originally from Reference [2]

Definition 7.1 Let D = {X1, . . . ,Xn} be a sample of data where the underlying
variable x takes values in a closed interval Ω = [l,u] ⊂ R according to an
unknown density function f (x). Let L be a set of labels forming a full linguistic
covering (Definition 3.5) of the universe Ω . The density estimate f̂ (·) is obtained



7.2 Non-Parametric Density Estimation 179

by conditioning on the mass obtained from D, mD, assuming a uniform prior
distribution on Ω , that is

∀x ∈ Ω , f̂ (x) = p(x|mD) = CΩ ∑
S⊂L

mD(s)
pm(S)

mx(S) (7.1)

where CΩ is the constant function of the uniform density in Ω , mD is the mass
assignment conditional on the information provided by D (see Definition 3.8), pm(·)
is the prior mass assignment generated by the uniform distribution and mx is the
mass assignment for x ∈ Ω determined from {μL(x) : L ∈ L}
Definition 7.2 A measure of the discrepancy of the density estimator f̂ (x) from the
true density f (x) at a single point is the mean square error

MSEx( f̂ ) = E[ f̂ (x)− f (x)]2 (7.2)

The proposed estimate is consisted with MSE under certain regularity
conditions[3]:

Theorem 7.1 Let f be a C2 function with bounded derivatives and let L be a
uniform full linguistic covering of Ω . Then ∀x ∈ Ω , f̂ is consistent in the MSE,
that is, if m denotes the number of labels in L and n the sample size

m → ∞,
n
m

→ ∞ ⇒ MSEx( f̂ ) → 0 (7.3)

The proof is very similar to that of binned kernel estimators, using the
decomposition of MSE as a combination of bias and variance at x, MSEx( f̂ ) =
E[ f̂ (x)− f (x)]2 −Var[ f̂ (x)]. Given the smoothness of f , both the bias and the
variance can be rewritten using a Taylor series expansion. The resulting expressions
can be seen to be bounded by functions that converge to 0 as the number of labels
tends to infinity.

Example 7.1 This example is modified from[3]. Given an function of mixed
Gaussian:

f (x) =
1
2
(N (2,3)+N (8,0.5)) (7.4)

We have generated 100 random samples. We use 5 trapezoidal shape fuzzy labels
{very small (vs)}, {small (s)}, {medium (m)}, {large (l)} and {very large (vl)} that
cover the sampling universe [−2,10] using the percentile method. For these labels,
the mass assignment conditional on the sample DB is given by:

mDB = {vs} : 0.151,{vs,s} : 0.107,{s} : 0.12,{s,m} : 0.043,{m} : 0.063,

{m, l} : 0.165,{l} : 0.095,{l,vl} : 0.151,{vl} : 0.105

Fig. 7.2 shows the estimated PDF against the original function of Eq. (7.4). The
estimated values of the sample data f̂ (xi) : i = 1, . . . ,100 are also labelled on the
graph. The MSE is:

MSE =
1

100

100

∑
i=1

[ f (xi)− f̂ (xi)]2 = 9.13×10−7
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Fig. 7.2 Estimated density using label semantics: the target function f (dashed line), f̂ (solid
lines) and samples DB that are denoted by “+”

7.3 Clustering

Clustering algorithms can be applied in many fields, such as marketing,
bio-informatics, video analysis and so on[4]. Hence, in past decades, many
classical clustering algorithms, for example K-means, Fuzzy K-means, hierarchical
clustering algorithms, have been proposed and some of them have been successfully
applied in resolving practical problems. They group the “similar” objects into
one cluster. In this sense, the clustering result is depend heavily on the distance
measure between objects. Euclidean distance and Mahalanobis distance are two
of the most used distance measures. Other (dis)similarity measures may be used
for some particular data type. For example, Kullback-Leibler (KL) distance is
good for measuring the divergence between two probability distributions. But its
unsymmetrical properties make it unsuitable to be a good universal measure of
data distance. In the literature, the objects handled by these classical clustering
algorithms are restricted to numerical data, though they could be high-dimensional
complex data. However, what we hope to cluster is not limited to numerical
data, it could be some high-level knowledge of imprecise concepts or linguistic
descriptions[5].

Unfortunately, these objects can not be well handled by the existing clustering
algorithms. The main reason is that there is no good metric for measuring
dissimilarity between numerical data and linguistic descriptions [6,7]. In this
chapter, we proposed a novel distance measure which can measure the distance
between numeral data and logical expressions of linguistic labels based on Label
Semantics [8]. This new measure makes it possible to cluster a set of objects
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including numerical data, concepts, and linguistic descriptions, by modifying the
distance measure based on the classical K-means clustering algorithms.

7.3.1 Logical Distance

Based on the theory of fuzzy sets, many similarity/dissimilarity measures[6,7] have
been proposed for measuring the degree of similarity between fuzzy sets. But
those measures are not proper for dealing with the similarity/dissimilarity measures
between logical expressions which are concepts based on given linguistic variables.
Label semantics focus on the decision making process, an intelligent agent must
go through in order to identify which labels or logical expressions can actually be
used to describe an object or value. For this reason, the appropriateness degree is
proposed for measuring the appropriateness of using a particular subset of labels
to describe an object or value. One step further, we present a measure to evaluate
the dissimilarity of logical expressions based on the mass assignments which
can quantize the divergences between logical expressions. This measure is also
extendable to measure distance between any two granular sets.

Definition 7.3 (Distance between data points) Given two data points x1 and x2
from an multi-dimensional universe Ω which is fully covered by n labels
L = {L1, . . . ,Ln}, then the distance between x1 and x2 in this linguistic label space
is defined by:

D(x1,x2) =
R−1

∑
i=0

D(ui,ui+1) (7.5)

where
D(ui,ui+1) = ∑

S∈λ (L)
(mui

(S)−mui+1
(S))2 (7.6)

ui = x1 +
i
R

(x2 − x1) (7.7)

Fig. 7.3 intuitively explains the above definition. To calculate the distance
between two data points, we divide the distance between them into R (R > 0) pieces
and calculate the dissimilarity D(ui,ui+1) between two neighboring points (ui,ui+1)
in the space of linguistic labels. The overall dissimilarity D(x1,x2) is the sum of the
above R pieces of dissimilarity. Thus the accuracy of the distance measure will be
improved with the increase in the value of R. As we can easily see, this measure can
be generalized to calculate the dissimilarity between any granular sets or a data point
to a granular set. In addition, this distance measure has two important properties.

Theorem 7.2 The distance defined by Eq. (7.5) is symmetric.

D(xi,x j) = D(x j,xi) (7.8)
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Fig. 7.3 Illustration of calculating the distance between two data points. The overall
dissimilarity between x1 and x2 is the aggregated dissimilarity of all the neighboring points
ui and ui+1 for i ∈ R

Theorem 7.3 If given x1 < x2 < x3
�, then

D(x1,x3) ≥ D(x1,x2) (7.9)

Theorem 7.3 demonstrates that this measure has non-negative correlation with the
distance of x.

Proof

D(x2,x1) = lim
M→∞

M

∑
m′=1

D(u′,v′) (7.10)

where

u′ = x2 +
m′

M
(x1 − x2) = x1 +

M−m′

M
(x2 − x1) (7.11)

v′ = x2 +
m′ −1

M
(x1 − x2) = x1 +

M−m′ +1
M

(x2 − x1) (7.12)

M−m
′
+1 has the same value domain. Thus

D(u′,v′) = D(v,u) (7.13)

In addition, because of the symmetry of D defined by Eq. (7.6), the following
conclusion can be deduced

D(x2,x1) = D(x1,x2) (7.14)

So the distance between variables is symmetric.

Theorem 7.3 demonstrates that this measure has non-negative correlation with
the distance of x, which can be easily proved as follows:

Proof

D(x1,x2) = lim
M→∞

M

∑
m=1

D(u,v) (7.15)

� if dim(x) > 2, we define: x1 ≥ x2 if d(x1,0) ≥ d(x2,0), where d(·) is the Euclidean
distance.
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where
u = x1 +

m
M

(x2 − x1) (7.16)

v = x1 +
m−1

M
(x2 − x1) (7.17)

D(x1,x3) = lim
M→∞

M

∑
m=1

D(u′,v′) (7.18)

where
u′ = x1 +

m
M

(x3 − x1) (7.19)

v′ = x1 +
m−1

M
(x3 − x1) (7.20)

obviously,
∀m,u′ − v′ > u− v (7.21)

because D(u′,v′) >= D(u,v), thus

D(x1,x3) ≥ D(x1,x2) (7.22)

Now proof of Theorem 7.3 has been completed.

Given a data point x0 and a linguistic label set S ∈ F that covers a continuous
area δ (S) on the universe Ω , the distance between x0 and S is defined as follows:

D(x0,S) =

∫
δ(S) D(x0,x)dx

δ (S)
(7.23)

Furthermore, the distance of sets of labels which is used to measure the
divergence between them can be defined as follows:

Definition 7.4 (Distance between sets of labels) Given two sets of labels Si, S j ∈F

and Si covering a continuous area δ (Si) and S j covering a continuous area δ (Sj).
Then the distance between these two sets is defined as

D(Si,Sj) =

∫
δ (Si)

∫
δ(S j) D(xi,x j)dxidx j

δ (Si)δ (S j)
(7.24)

where xi ∈ δ (Si),x j ∈ δ (Sj), and when i = j:

D(Si,S j) = D(Si,Si) = 0 (7.25)

For the symmetry of the distance between two variables, it is obviously that the
distance of the sets of labels is also symmetric. As we have discussed in Section 3.2,
λ -function provides a way of mapping from logical expressions of labels to random
set descriptions of labels. So we also can define the distance between two logical
expressions as the following.
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Definition 7.5 (Distance between logical expressions) Given two logical
expressions θ ,ϕ ∈ LE, then the distance between θ and ϕ is

D(θ ,ϕ) =
1
pr

r

∑
i=1

p

∑
j=1

D(Sθ∧¬ϕ
i ,Sϕ

j )

− 1
qt

t

∑
k=1

q

∑
l=1

D(Sϕ∧¬θ
k ,Sθ

l ) (7.26)

where p,q,r, t respectively represent the cardinality of label set S
ϕ , S

θ , S
θ∧¬ϕ ,

S
ϕ∧¬θ , where:

Sθ
i ∈ S

θ = {S|S ∈ λ (θ )}, i = 1,2, ...,q

Sϕ
j ∈ S

ϕ = {S|S ∈ λ (ϕ)}, j = 1,2, ..., p

Sθ∧¬ϕ
k ∈ S

θ∧¬ϕ = {S|S ∈ λ(θ )
⋂

λ (ϕ)},k = 1,2, ...,r

Sϕ∧¬θ
l ∈ S

ϕ∧¬θ = {S|S ∈ λ (ϕ)
⋃

λ (θ)}, l = 1,2, ...,t

When Sϕ∧¬θ = /0,

D(θ ,ϕ) =
1
pr

r

∑
i=1

p

∑
j=1

D(Sθ∧¬ϕ
i ,Sϕ

j ) (7.27)

When S
θ∧¬ϕ = /0,

D(θ ,ϕ) =
1
qt

t

∑
k=1

q

∑
l=1

D(Sϕ∧¬θ
k ,Sθ

l ) (7.28)

The above logical expression is one dimensional, which can be used by agents
to describe one of the features of the object. If we have a multi-dimensional objects,
linguistic rule can be used to described the object such as “x is big AND y is medium
∧ large”. Based on the definition of logical expressions (Definition 3.9), a linguistic
rule is a rule that can be represented as a multi-dimensional logical expressions of
linguistic labels.

Definition 7.6 (Multi-dimensional logical expressions of labels) MLE(n) is the
set of all multi-dimensional label expressions that can be generated from the logical
label expression LE j : j = 1, ...,n and is defined recursively by

(i) If θ ∈ LEj for j = 1, ...,n then θ ∈ MLE(n).

(ii) If θ ,ϕ ∈ MLE(n) then ¬θ ,θ ∧ϕ ,θ ∨ϕ,θ → ϕ ∈ MLE(n)



7.3 Clustering 185

Similarly we could give the definition of distance between two MLE(n).

Definition 7.7 (Distance between multi-dimensional logical expressions) Given
two n-dimensional logical expressions: Φ ,Ψ with

Φ = θD1 ∧θD2 ∧ ...∧θDn

Ψ = ϕD1 ∧ϕD2 ∧ ...∧ϕDn

where θDi , ϕDi respectively means the logical expressions in dimension Di. Hence,
the distance between Φ and Ψ is defined as follows:

D(Φ ,Ψ) =

√
n

∑
i=1

|D(θDi ,ϕDi)|2 (7.29)

7.3.2 Clustering of Mixed Objects

Based on the above dissimilarity measure, the distance between objects including
numerical data, concepts and linguistic description can be easily measured. Further
more, a set of these objects can be grouped into clusters using clustering algorithms.

K-means is one of the simplest unsupervised learning algorithms that solve
clustering problem[9]. The procedure follows a simple way to group a given
data set to a certain number of clusters. Suppose that we have n sample feature
vectors x1,x2, ...,xN , where each element is a d-dimensional real vector, a K-means
algorithm aims to partition the observations into K sets (K ≤N) S = {S1,S2, . . . ,SK}
so as to minimize the within-cluster sum of squares J:

J = argmin
S

K

∑
i=1

∑
x j∈Si

∥∥x j −μi
∥∥2 (7.30)

where μi is the mean of points in Si.
The most common algorithm uses an iterative refinement technique. Due to

its ubiquity it is often called the K-means algorithm; Given an initial set the
algorithm proceeds by alternating between two steps [10]: Assignment step: Assign
each observation to the cluster with the closest mean.

S(t)
i =

{
x j :

∥∥x j −μ (t)
i

∥∥≤ ∥∥x j −μ(t)
i∗

∥∥ for all i∗ = 1, . . . ,K
}

Update step: Calculate the new means to be the centroid of the observations in
the cluster.

μ (t+1)
i =

1

|S(t)
i | ∑

x j∈S(t)
i

x j

The algorithm is deemed to have converged when the assignments no longer change.
Fig. 7.4 gives a schematic illustration of mixed objects clustering where

the ellipses represent some imprecise concepts that can could be interpreted into
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linguistic labels or other granularity. Such mixed objects can be clustered by
combining the classical clustering algorithms with our proposed distance measure.
Formally, suppose we are given an unlabeled data set o1, . . . , on, in which there are
numerical data, labels (concepts) and logical expressions (linguistic description).
Now we focus on clustering them using a K-means algorithm. The algorithm is
as the same as the classical K-means clustering and the pseudo-code is shown in
Table 7.1 .

Table 7.1 Generalized K-means algorithm for clustering vague concepts and data
Given unlabeled data set DB = {oi : i = 1, ...,N} in Rd and cluster number K > 0, p = 0, ε > 0
Randomly initialize the K cluster centers μ1,..., μK .

While (TRUE): p++

Step 1: For each i ∈ {1, ...,N}, determine the cluster for all objects in DB:
oi ← μ j, if: D(oi, μ(p−1)

j )=min{D(oi, μ(p−1)
k ) : k = 1, ...,K }

Step 2: Compute the cluster centers μ(p)
i which satisfy:

∑o j∈Si
D(μ(p)

i ,o j)=min{ ∑o j∈Si
D(x,o j) }

Until |μ(p)-μ(p−1)| < ε .

Cluster 2

Cluster 1

Fig. 7.4 A schematic illustration of mixed objects clustering

There are two points which are worthy of highlighting in . First and the most
important, we adopted the new proposed distance metric in the last section as the
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distance measure of these mixed objects. The novel distance definition makes it
possible to cluster data and imprecise concepts represented by linguistic labels.
Second, in the algorithm implementation, the center of each cluster should be
numerical data but not logical expressions.

7.4 Experimental Studies

In this section we did two experiments to verify the new proposed measure and the
clustering problem. The first experiment is to illustrate the properties of the proposed
logical distance measure. The second experiments shows image scene clustering
based on a benchmark problem.

7.4.1 Logical Distance Example

Color of an object is a vague concept and largely depends on the observer’s
subjective belief. The human eye can distinguish about 10 million different colors
but we only use a very limited number of words to describe them. There is no general
principle for human beings to decide using the most appropriate word such as yellow
or red to describe the color of an object. However, people know the difference
between these colors, which is difficult to be define by some specific numerical
value. We often make classifications based on these vague and subjective differences
among objects. We can use the method proposed in this research to quantize these
differences in order to let the agents have the ability to distinguish different objects.

HSV color space can be well visualized by the conical representation model that
accords with human beings’ visual features. Fig. 7.5 shows three linguistic labels
defined on the Hue (H) value. Based on Definition 3.6, we can infer that the focal
set is

F = {{r},{r,o},{o},{o,y},{y}}
The distances between these label sets based on Definition 7.4 is calculated and
shown in Table 7.2 , from which we can clearly see the symmetric property of this
distance measure.

Table 7.2 Distances between sets of labels defined on H values

{r} {r,o} {o} {o,y} {y}
{r} 0 0.0288 0.0626 0.0950 0.1246
{r,o} 0.0288 0 0.0354 0.0673 0.0968
{o} 0.0626 0.0354 0 0.0336 0.0626
{o,y} 0.0950 0.0673 0.0336 0 0.0304
{y} 0.1246 0.0968 0.0626 0.0304 0
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Fig. 7.5 Three linguistic labels: red (R), orange (O) and yellow (Y). They are defined by
bell-shape fuzzy sets on the Hue (H) values
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Fig. 7.6 Distance between variables with x0 = 0, x1 varying from 0 to 90

Given the same example above, if there is an imprecise concept of the color that
is not orange, or formally denoted by θ :

θ = ¬orange

There are also two other descriptions for the colors ϕ and γ:

ϕ = red ∨orange
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γ = red

According to Definition 3.10, the possible label sets of the given logical
expressions θ , γ and ϕ are calculated as follows:

λ (¬o) = {{r},{y}}
λ (r) = {{r},{r,o}}

λ (o) = {{r,o},{o}{o,y}}
so that

λ (θ ) = {{r},{y}}
λ (ϕ) = {{r},{r,o},{o}{o,y}}

λ (γ) = {{r},{r,o}}
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Sunset Garden Beach Polar bear

Fig. 7.7 Four image labels are predefined on the HSV space. This is the mapping of the
labels on the Hue (H) axis

Then, according to Definition 7.5 and Table 7.2 , we could calculate all the
distances and fill in Table 7.3 . It is illustrated that distances between LEs are
symmetric and could reasonably reflect the logical divergences between LEs.

Table 7.3 Distances between each two logical expressions θ , ϕ and γ defined on H values

θ = ¬orange ϕ = red ∨orange γ = red

θ = ¬orange 0 0.1413 0.1735

ϕ = red ∨orange 0.1413 0 0.0650
γ = red 0.1735 0.0650 0



190 7 Unsupervised Learning with Label Semantics

Polar Bear

Beach

Sunset

Garden

Fig. 7.8 Sample results of images and linguistic labels clustering. Linguistic labels sunset,
garden, beach and polar bear are areas of color in HSV space. For each cluster, four images
and one label (the colored shape on the top of the stack of images) are shown

7.4.2 Images and Labels Clustering

To show how to use our proposed approach to cluster data and an imprecise concept,
we built a toy application which can cluster images and image labels which are
defined based on the image global color feature. One hundred images are evenly
picked from four categories of the Corel image data set [11,12]. We then artificially
designed four linguistic labels “sunset”, “beach”, “garden”, and “polar bear” based
on their colors. These labels can be considered as the linguistic descriptors of images
which convey the semantics of images (see Fig 7.6). Fig. 7.7 shows the mappings of
these predefined labels on the Hue (H) axis. The original labels are 3-dimensional
granularity in the HSV space.

Low-level image features, such as color and texture, are useful information to
describe images in this experiment. For each image, the only feature we used is the
global average of HSV color because we only hope to show how to use the proposed
approach to cluster mixed objects. Actually in practice the features extraction is very
important and the clustering algorithms are always only one step of the procedure.
Thus after artificially designing the image labels and extracting image color feature,
the data set needs to be clustered with one hundred images and the above four image
labels which are represented by granularity on HSV space. Fig. 7.9 illustrates the
flow chart of our experiment.

The experimental results are shown in Table 7.4 . In the future work, such
linguistic labels can be used as constraints to guide clustering process by using
high-level knowledge. It allows us to develop a new human-machine interface by
using linguistic labels.
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Fig. 7.9 Flow chat of the image classification experiment

Table 7.4 Performance of the image clustering

sunset beach garden polar bear

Performance 72% 60% 64% 96%

The sample results are shown in Fig. 7.8 . In the future work, such linguistic
labels can be used as constraints guide clustering process by using high-level
knowledge. It allows us to develop a new human-machine interface by using
linguistic labels.

7.5 Summary

In this chapter we discussed unsupervised learning based on label semantics. We
mainly introduced the methods for probability density estimation and clustering. We
proposed a novel clustering algorithm by employing a new distance measure based
on label semantics. The new algorithm can be used to cluster data and imprecise
concepts. The distance defined in linguistic label space differs from the other
measures by focusing on the difference in logical meanings the objects convey. It has
the ability to measure the linguistic divergence between numerical data and concepts
which are presented in the form of linguistic labels. Experimental studies on a toy
image clustering problem showed that our approach is effective in grouping data
and linguistic labels reasonably, because the new proposed measure is calculated by
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considering the accumulated dissimilarities alone the trials connecting to imprecise
concepts. It is extendable to measuring distance between any granularity.
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8

Linguistic FOIL and Multiple Attribute Hierarchy for

Decision Making

Most of the fundamental ideas of science are essentially simple, and may, as a rule, be
expressed in a language comprehensible to everyone.

– Albert Einstein (1879-1955)

8.1 Introduction

Rule induction has been well accepted as a transparent learning system for its
interpretable rules in decision making. In this chapter, a new linguistic rule induction
algorithm is proposed by incorporating label semantics into the FOIL (First-Order
Inductive Learning) algorithm. The latter is a well-known first-order rule induction
algorithm in Inductive Logical Programming (ILP) proposed by Quinlan[1]. The
new algorithm is guided by information based heuristics in accordance with label
semantics. Some benchmark problems are tested and the results show that the new
algorithm has comparable accuracy with linguistic rules. In the second part of this
chapter, the multiple attribute decision making based on linguistic decision trees is
given and illustrated by using an example.

8.2 Rule Induction

The use of high-level knowledge representation in data modeling allows for
enhanced transparency in the sense that the referred models can be understood
by practioners who are not necessarily experts. Rule based systems inherently
tend to be more transparent than other models such as neural networks and
Bayesian classifiers. A set of concise and understandable rules can provide a better
understanding of how the classification or prediction has been conducted. There
are two general types of algorithms for rule induction, top down and bottom up
algorithms. Top-down approaches start from the most general rule and specialize
it gradually. Bottom-up methods start from a basic fact given in the training
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database and generalize it. In this chapter we will focus on a top-down model
for generating linguistic rules based on Quinlan’s First-Order Inductive Learning
(FOIL) Algorithm[1].

The FOIL algorithm is based on classical binary logic where attributes are
typically assumed to be discrete. Numerical variables are usually discretized
by splitting the numerical domain into a finite number of intervals. However,
because of the uncertainty involved in most real-world problems, sharp boundaries
between intervals often lead to a loss of robustness and generality [2]. Fuzzy logic
has been used to solve the problem of sharp transitions between two intervals.
Fuzzy rule induction research has been popular in both fuzzy and machine
learning communities as a means to learning robust transparent models. Many
algorithms have been proposed including simple fuzzy logic rule induction[3],
fuzzy association rule mining[4] and first-order fuzzy rule induction based on
FOIL[2,5]. In this chapter, we will focus on an extension to the FOIL algorithm
based on label semantics. A new type of FOIL model, linguistic FOIL (LFOIL),
is proposed for generating a set of linguistic rules based on label semantics.
The experimental results on a number of real-world problems show that LFOIL
has comparable accuracy to C4.5[6] and other linguistic models while generating
compact interpretable rules.

IF-THEN rule is a basic concept in fuzzy logic, it plays a central role in most of
its applications especially in fuzzy control. IF-THEN rule knowledge base contains
a number of fuzzy rules in the following form:

• IF x1 is A and x2 is B THEN y is C.

where A, B and C are general fuzzy sets of attribute x, consider a hypothetical
example of “tipping” of a restaurant dinner. We want to give tips in proportion to
the two input variables, service and food. Let us partition each of the two input
variables into three regions: poor, good and excellent for service, and rancid, good
and delicious for food. Without reducing the number of rules, either heuristically or
otherwise, if we are to apply the conventional grid partitioning method to the input
domain, we need 32 = 9 fuzzy rules, e.g.:

• Rule 1: If service is poor and food is rancid then the tip is cheap.
• Rule 2: If service is poor and food is good then the tip is better-than-cheap.
• · · · · · ·
• Rule 9: If service is excellent and food is delicious then the tip is generous.

Fig. 8.1 illustrates the surface of “tipping” based on the IF-THEN rules given in
the above hypothetical example. IF-THEN rules can be used to describe complex
real-world problems using non-liner approximation.

One of the most expressive and humanly readable representations for learned
hypotheses is a set of rules. There are two kinds of rules for learning from data:
propositional rules and first-order rules�. In this section, we will briefly introduce

� The names are based on the property of the rule, whether it is in propositional logic or
first-order logic.
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Fig. 8.1 An intuitive explanation of IF-THEN rules where a customer’s tip is based on the
quality of the food and service

some general ideas for rule learning and a particular algorithms for learning first-
order rules, or Horn clauses, called FOIL. Let’s consider a family of algorithms for
learning rule sets based on the strategy of learning one rule, removing the data it
covers, then iterating this process. Such algorithms are called sequential covering
algorithms. Sequential covering algorithms learn one rule at a time, removing the
covered examples and repeating the process on the remaining examples. In contrast,
decision tree algorithms such as ID3 learn the entire set of disjuncts simultaneously
as part of the single search for an acceptable decision tree. We might therefore, call
algorithms such as ID3 simultaneous covering algorithms[7].

To generate candidate specializations of the current rule, FOIL generates a
variety of new literals, each of which may be individually added to the rule body.
More precisely, suppose the current rule being considered is

P(x1, . . . ,xk) ← L1, . . . ,Ln

where L1, . . . ,Ln are literals forming the current rule and P,x1, . . . ,xk is literals that
form the rule head. The selection of the most promising liter from the candidates
is guided by heuristic search. Given a rule θ and a candidate literal L that might
be added to the body of θ , let ϕ be the rule created by adding literal L to θ (i.e.,
ϕ ← θ L). The information gain of adding L is defined as follows:

IGFOIL(θ ,L) = t
(

log2
pϕ

Pϕ +nϕ
− log2

pθ
pθ +nθ

)
where pθ is the number of positives covered by rule θ and, nθ is the number of
negatives covered by θ , pϕ is the number of positives covered by ϕ , and nϕ is the
number of negatives covered by ϕ . Finally, t is the number of positives covered by
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rule θ that are still covered after adding literal L to θ . This function IGFOIL has a
straightforward interpretation in terms of information theory, and it also considers
the coverage of positives and negatives in order to avoid overspecialized rules (see
Fig 8.2).
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Fig. 8.2 Rule induction: what are good rules? A perfect rule is generated by adding term
after term until the rule gives no error on the training set. This rule may be overspecialized
(a). However, A rule may not perfect but covers a large number of examples, this rule has a
good generation (b)

8.3 Multi-Dimensional Label Semantics

In previous chapters, we have introduced label semantics and shown how it can
be used for data modeling. A few linguistic data mining models (e.g., linguistic
decision trees and Bayesian estimation trees) have been proposed. In the following
section, we will consider a linguistic rule induction model based on label semantics.
We begin by attempting to clarify what we mean by a linguistic rule. Based on
Definition 3.9, a linguistic rule is a rule that is represented in multi-dimensional
logical expressions of labels.

Definition 8.1 (Linguistic rule as multi-dimensional logical expressions of labels)

MLE(n) is the set of all multi-dimensional label expressions that can be gener-
ated from the logical label expression LE j: j = 1, . . . ,n and is defined recursively by:

(i) If θ ∈ LE j for j = 1, . . . ,n then θ ∈ MLE(n)

(ii) If θ ,ϕ ∈ MLE(n) then ¬θ , θ ∧ϕ , θ ∨ϕ , θ → ϕ ∈ MLE(n)

Any n-dimensional logical expression θ identifies a subset of 2L1 ×. . . × 2Ln ,
denoted λ (n)(θ ), constraining the cross product of logical descriptions on each
variable: Dx1 × . . . × Dx1 . In such a way the imprecise constraint θ on n variables
can be interpreted as the precise constraint Dx1 × . . .× Dx1 ∈ λ (n)(θ ). We can easily
extend λ -function to the multi-dimensional case, such that the set of n-dimensional
label expressions MLE(n) is defined by:
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Definition 8.2 (Multi-dimensional λ -function) λ (n): MLE(n) → 2(2L1×...×2Ln ) is
defined recursively as follows: Let F j denote the set of focal elements for L j:
j = 1, . . . ,n then ∀θ ∈ MLE(n), λ (n) ⊆ F1 × . . .×Fn.

Given a particular data, how can we evaluate it if a linguistic rule is appropriate for
describing it? Based on the one-dimensional case, we now extend the concept of
appropriateness degrees to the multi-dimensional case as follows:

Definition 8.3 (Multi-dimensional appropriateness degrees) Given a set of n-
dimensional label expression MLE(n):

∀ θ ∈ MLE(n),∀x j ∈ Ω j : j = 1, . . . ,n

μn
θ (x) = μn

θ (x1, . . . ,xn) = ∑
〈F1,...,Fn〉∈λ (n)(θ)

mx(F1, . . . ,Fn)

= ∑
〈F1,...,Fn〉∈λ (n)(θ)

n

∏
j=1

mx j(Fj)

The appropriateness degrees in one-dimension are for evaluating
the appropriateness of a single label for describing a single data element, while in
multi-dimensional cases they are for evaluating the appropriateness of a linguistic
rule for describing a multi-dimensional data. The following example illustrates the
evaluation of multi-dimensional appropriateness degrees.

Example 8.1 Consider a modellng problem with two variables x1 and x2 for which
L1 = {small (s), medium (med), large(lg)} and L2 = {low(lo), moderate (mod),
high(h)}. Also suppose the focal elements for L1 and L2 are:

F1 = {{s},{s,med},{med},{med, lg},{lg}}
F2 = {{lo},{lo,mod},{mod},{mod,h},{h}}

Given a logical expression (i.e., a linguistic rule):

θ = (med ∧¬s)∧¬lo

Then, according to the multi-dimensional generalization of Definition 3.10 we have
that

λ (2)((med ∧¬s)∧¬lo) = λ (2)(med ∧¬s)∩λ (2)(¬lo)
= λ (med ∧¬s)×λ (¬lo)

Now, the set of possible label sets is obtained according to the λ -function in the
one-dimensional case (Definition 3.10):

λ (med ∧¬s) = {{med},{med, lg}}
λ (¬lo) = {{mod},{mod,h},{h}}
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Hence, based on Definition 8.2 we can obtain:

λ (2)((med ∧¬s)∧¬lo) = {〈{med},{mod}〉,〈{med},{mod,h}〉,
〈{med},{h}〉,〈{med, lg},{mod}〉,〈{med, lg},{mod,h}〉,〈{med, lg},{h}〉}
The above calculation based on a random set interpretation of label expressions

and using the λ -function is illustrated in Fig. 8.3 : given focal set F1 and F2, we can
construct a 2-dimensional space where the focal elements have corresponding focal
cells. Representation of the multi-dimensional λ -function of the logical expression
is represented by gray cells.

{ }s

{ ,s med}

{med}

{med , lg}

{lg}

{ }lo { , }lo mod { }mod { , }mod h { }h

Fig. 8.3 Representation of the multi-dimensional λ -function (gray cells) of the logical
expression θ = (med ∧ ¬ s) ∧ ¬lo showing the focal cells F1×F2

Suppose we are given the following data element in the 2-dimensional case:

x = 〈x1,x2〉 = 〈x1 = {med} : 0.6,{med, lg} : 0.4〉
= 〈x2 = {lo,mod} : 0.8,{mod} : 0.2〉

According to Definition 8.3 we can obtain:

μθ (x) = (m({med})+m({med, lg}))× (m({mod})+m({mod,h})+m({h}))
= (0.6+0.4)× (0.2+0+0) = 0.2

and according to Definition 3.10 and 8.2:

μn
¬θ (x) = 1−μθ (x) = 0.8

In other words, we can say that the rule θ covers 20% of the data x. This
interpretation of appropriateness for a rule is highlighted in the next section of
linguistic rule induction.
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8.4 Linguistic FOIL

In the last section, we have shown how to evaluate the appropriateness of a linguistic
rule to describe a data vector. In this section, a new algorithm for learning a set
of linguistic rules is proposed based on the FOIL algorithm[1] and is referred to
as Linguistic FOIL (LFOIL). Essentially, the search heuristic for this rule learning
model is an entropy measure for assessing the usefulness of a literal as the next
component of the rule.

8.4.1 Information Heuristics for LFOIL

The heuristics used for LFOIL are a modified version of those of used in the FOIL
algorithm to take account of labels semantics [1]. Consider a classification rule of the
form:

Ri = θ →Ck where θ ∈ MLE(n)

Given a data set DB and a particular class Ck, the data belonging to class Ck are
referred to as positive examples and the rest of the data negative examples. For a
given rule Ri, the coverage of positive data is evaluated by

T +
i = ∑

l∈DBk

μθ (xl) (8.1)

and the coverage of negative examples is given by

T−
i = ∑

l∈(DB−DBk)
μθ (xl) (8.2)

where DBk is the subset of the database which consists of the data belonging to class
Ck. The information for the original rule Ri can by evaluated� by

I(Ri) = − log2

(
T +

i

T +
i +T−

i

)
(8.3)

Suppose we then propose adding another label expression ϕ to the body of Ri
generating a new rule

Ri+1 = ϕ ∧θ →Ck

where ϕ,θ ∈ MLE(n). By adding the new literal ϕ , the positive and negative
coverage becomes:

T+
i+1 = ∑

l∈DBk

μθ∧ϕ(xl) (8.4)

T−
i+1 = ∑

l∈(DB−DBk)
μθ∧ϕ(xl) (8.5)

� In this chapter, we use two different notations of appropriateness degrees for the rule
Ri = θ → Ck: μθ and μRi . The former is used in logical expressions and the latter is
used in the rule learning algorithm.
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Therefore, the information becomes,

I(Ri+1) = − log2

(
T +

i+1

T +
i+1 +T−

i+1

)
(8.6)

Then we can evaluate the information gain from adding expression ϕ according to:

G(ϕ) = T +
i+1(I(Ri)− I(Ri+1)) (8.7)

We can see that this measure of information gain consists of two components. T +
i+1

is the coverage of positive data by the new rule Ri+1 and (I(Ri)− I(Ri+1)) is the
increase in information. The probability of Ck given a linguistic rule Ri is evaluated
by:

P(Ck|Ri) =
∑l∈DBk

μθ (xl)

∑l∈DB μθ (xl)
=

T +
i

T +
i +T−

i
(8.8)

When P(Ck|Ri+1) ≥ P(Ck|Ri) (i.e., by appending a new literal, more positive
examples are covered), we can obtain that (I(Ri)− I(Ri+1)) ≥ 0. By choosing a
literal ϕ with maximum G value, we can identify the new rule which covers the
most extra positive examples and thus increase the accuracy of the rule.

8.4.2 Linguistic Rule Generation

We began by defining a prior knowledge base KB ⊆ MLE(n) and a probability
threshold PT ∈ [0,1]. KB consists of fuzzy label expressions based on labels defined
on each attribute. For example, given fuzzy labels {small1 large1} to describe
attribute 1 and {small2 large2} to describe attribute 2, a possible knowledge base
for the given two variables is: KB = {small1, ¬small1, large1, ¬large1, small2,
¬small2, large2, ¬large2}. In practice, it could become more general to include
expressions like small1 → small2. We are not discussing this kind of rules in this
chapter.

The idea for FOIL is as follows: starting from a general rule, we make it more
specific by adding new literals in order to cover more positive examples and less
negative examples according to the heuristics introduced in the last section. After
developing one rule, the positives are deleted from the original database. We then
need to find a new rule based on this reduced database until all positives are covered.
Here in this chapter, because of the new semantics we used, we can only partially
cover data by some degrees. For a single rule, it is impossible to cover positives only
for most cases. That is the reason why we need a probability threshold PT .

Figure 8.4 qualitatively illustrates the LFOIL algorithm. Each box represents
a data in the left-hand figure, which in most cases cannot be fully covered. For
example, see the left-hand figure of Fig. 8.4 , the data lying in the overlapping area
of Rule A and B cannot be fully covered due to the limitations of the rule base.
We need to find those rules with better generalization as well as good accuracy. For
example, in the right-hand side of figure of Fig. 8.4 rule D is a rule that only covers
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positives, and therefore it may not be the best choice when with Rule C and Rule A.
Although Rule A covers a negative example, it also covers the area of positives fairly
well. Such a rule has a better generalization than Rule D. If we set PT too high, this
may result in too many specific rules like Rule D, which may have perfect training
accuracy but bad test accuracy because of the lack of generalization. The pseudo-
code of LFOIL consists of two parts which are described as follows: (a) Generating
a rule (Algorithm 5) and (b) generating a rule base (Algorithm 6).

Rule A

Rule B

Rule A

Rule B

Rule D

Rule C

Fig. 8.4 Illustrations of the LFOIL algorithms. In the left-hand side figure each data has
associated masses and it may not be fully covered. Consider that the positive data lies in the
overlapping area of Rule A and Rule B, there is still a small square that cannot be covered
due to the limitation of the rule base. Right-hand figure: in order to avoid generating too
specified rules, we set a threshold to determine the purity in terms of a mixture of positives
and negatives covered for a rule

Algorithm 5: Generating a Rule

• Given rule Ri = θ1 ∧ . . .∧θd →Ck be the rule at step i:
Find the next literal θd+1 ∈ KB−{θ1, . . . ,θd} for which G(θd+1) is maximal.

• Replace rule Ri with Ri+1 = θ1 ∧ . . .∧θd ∧θd+1 →Ck
• If P(Ck|θ1 ∧ . . .∧θi+1) ≥ PT

Then: terminate
Else: repeat the whole process.

Let Δi = {R1 → Ck, . . . ,Rt → Ck} be the rule base at step i. We evaluate the
coverage of Δi as follows:

CV (Δi) =
∑l∈DBk

μR1∨...∨Rt (xl)
|DBk| (8.9)

We define a coverage function δ : Ω1 × . . .×Ωn → [0,1] according to:
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Algorithm 6: Generating a Rule Base

• Given a rule base Δi = {R1 →Ck, . . . ,Rt →Ck} at time step i:
Computing coverage of Δi which is denoted by CV (Δi)

• if CV (Δi) < CT
Then: generate a new rule Rt+1 →Ck and add R j to form a new rule base Δi+1

• Else If: CV (RBi+1) ≥CT or CV (RBi+1)−CV (RBi) < ε
• Then: terminate the process

δ (x|Δi) = μ¬Δi(x) = μ¬(R1∨...∨Rt )(x) (8.10)

= 1−μ(R1∨...∨Rt )(x) = 1−
t

∑
w=1

μRw(x)

where δ (x|Δi) represents the degree to which x is not covered by a given rule base
Δi. If CV is less than a predefined coverage threshold CT ∈ [0,1]:

CV (Δi) < CT

then we generate a new rule for class Ck according to the above rule generation
algorithm to form a new rule base Δi+1 but where the entropy calculations are
amended such that for a rule R = θ →Ck,

T + = ∑
l∈DBk

μθ (xl)×δ (xl |Δi) (8.11)

T− = ∑
l∈(DB−DBk)

μθ (xl) (8.12)

The algorithm terminates when CV (RBi+1) ≥ CT or CV (RBi+1)−CV (RBi)< ε
where ε ∈ [0,1] is a very small value, i.e., if there are no improvements in covering
positive data, we then terminate the algorithm in order to avoid an infinite loop.

8.4.3 Class Probabilities Given a Rule Base

Given a rule base Δi = {R1 → Ck, . . . ,Rt → Ck} and an unclassified data x, we can
estimate the probability of Ck, P(Ck|x), as follows: Firstly, we determine the rule
Rmax →Ck for which μR j(x) is maximal: i.e.,

Rmax = max
j∈Δi

μRk (8.13)

Therefore, given the unclassified data x, rule Rmax is the most appropriate rule from
the rule base for describing and classifying x. For the rule Rmax → Cj we evaluate
two probabilities pmax and qmax where,
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pmax = P(Cj|Rmax) (8.14)

qmax = P(Cj|¬Rmax) (8.15)

We then use Jeffrey’s rule [8] to evaluate the class probability of eac hclass given x
according to,

P(Cj|x) = pmax ×μRmax(x)+qmax × (1−μRmax(x)) (8.16)

Here is the summary of this algorithm: we use the most appropriate rule for
classification in this algorithm. Given a data element, we will select the most
appropriate rule from the rule base. Using this rule we then obtain an estimate of
class probabilities and subsequently identify the class with maximal probability.

8.5 Experimental Studies

In this section we first test the new algorithm with a toy problem which has been
used in previous chapters. A figure of eight shape was generated according to the
equation

x = 2(−0.5)(sin(2t)− sin(t))

and
y = 2(−0.5)(sin(2t)+ sin(t))

where t ∈ [0,2π] (see Fig. 8.5 ). Points in [−1.6,1.6]2 are classified as legal if they
lie within the ‘eight’ shape (marked with ×) and illegal if they lie outside (marked
with points).

The database is consisted of 961 examples generated from a regular grid on
[−1.6,1.6]2 for training, and 961 unseen examples from the same distribution as the
test data set.

The following rules are generated by the LFOIL algorithm with PT = 0.7,
CV = 0.9 and ε = 0.005:

R1 : x is ¬ very small ∧ small ∧ medium ∧ ¬ large and y is ¬ small ∧ medium → legal
R2 : x is ¬ small ∧ medium and y is ¬ very small ∧ small ∧ medium ∧ ¬ large → legal
R3 : x is medium ∧ ¬ large and y is large ∧ very large → legal
R4 : x is large ∧ very large and y is medium ∧ ¬ large → legal
R5 : x is very small ∧ small ∧ ¬ medium and y is medium ∧ ¬ large → legal
R6 : x medium ∧ ¬ large and y is very small ∧ small ∧ ¬ medium → legal

These rules are symmetric and as we can see from the Fig. 8.5 and capture the
legal area very well. The area covered by R1 is marked by a box shown in Fig. 8.5 .

We also test LFOIL on benchmark problems taken from the UCI machine
learning repository[9]. The data descriptions are listed in the left-hand column
of Table 8.1 . For each variable, we use of 3 fuzzy labels with percentile-based
discretization (see Section 2.1). For each data set, we randomly split it into two
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Fig. 8.5 The illustration of the ‘eight’ problem, where each attribute is uniformly discretized
by 5 linguistic labels: very small, small, medium, large and very large, respectively

equal parts, one half for training and the other half for the test (i.e., 50-50 split
experiments [10]. We ran 10 50-50 experiments on each data set and the average
accuracy is listed in Table 8.1 together with the sizes of linguistic decision trees
and the number of linguistic rules on the right. The parameter settings for LFOIL
are PT = 0.7, CV = 0.9 and ε = 0.005. We also compare LFOIL with C4.5� and

Table 8.1 Experimental results on 7 numerical data sets from UCI repository [9]

Descriptions TestAccuracy(%) Num. of Rules

Dataset Size Attri C4.5 FNB LID3 LFOIL LID3 LFOIL
BreastCancer 286 9 69.16 68.22 73.02 64.10 20 17
Breast-W 699 9 94.38 96.74 96.20 95.63 59 8
Heart-c 303 13 75.50 76.85 76.87 74.55 48 22
Heart-stalog 270 13 75.78 78.34 76.52 71.89 42 17
Heptitis 155 19 76.75 80.13 82.94 75.64 27 8
Liver 345 6 65.23 63.35 56.86 54.98 85 3
Pima 768 8 72.16 72.29 76.54 71.67 31 4

� The results for C4.5 are obtained from a free machine learning toolkit Weka[11] with
default settings. The parameter settings for LID3 are according to Reference[10].
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Table 8.2 T-test on on experimental results with 90% confidence. ‘−’ represents equivalence
and ‘×’ represents worse

Dataset LFOIL vs. C4.5 LFOIL vs. FNB LFOIL vs. LID3

BreastCancer − − ×
Breast-W − − −
Heart-c − − −
Heart-stalog − × ×
Heptitis − × ×
Liver × × −
Pima − − ×

the other two linguistic models. Tthe results of the t-test with 90% confidence are
shown in Table 8.2 .

As we can see from Tables 8.1 and 8.2 , though the predictive accuracy
of LFOIL is worse than LID3 and FNB, it is fairly comparable to C4.5. More
importantly in this context, we can extract a much smaller number of rules for
classification from a large database than for either C4.5 or LID3. For example,
let us consider the Pima Indian problem. The database contains the details of 768
females from the population of Pima Indians living near Phoenix Arizona, USA. The
diagnostic binary-valued variable investigated is whether the patient shows signs of
diabetes according to the World Health Organisation criteria. We use 3 fuzzy labels:
low, medium and high for each of the 8 attributes. Using LFOIL we obtain the
following rules to decide whether or not a patient has diabetes:

R1: Plasma concentration (Attribute 2) is low ∧ medium and the number of times pregnant
(Attribute 1) is medium ∧ ¬ high → diabetes
R2: Plasma concentration is medium and age (Attribute 8) is ¬ low → diabetes
R3: Plasma concentration is low ∧ medium and the number of times pregnant is high →
diabetes
R4: Plasma concentration is ¬ medium ∧ high and diabetes pedigree function (Attribute 7) is
medium → diabetes

Hence, although the accuracy is worse than LID3, the transparency is greatly
improved by using only 4 rules (while the linguistic decision tree has 31 branches)
that give a much better understanding of this problem. For some real-world
situations, these rules could be much more useful than some probabilistic models
for a clinical doctor.
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8.6 Multiple Attribute Decision Making

In multiple-attribute decision making the underlying relationships between
attributes and classification, decision or utility variable are often highly imprecise
or uncertain. Recently, Van-Nam et al. proposed a methodology of aggregating
evidence from different attributes on weighed combination rules in evidence
theory[12]. This approach is a successful attempt to unify probability and fuzziness
based on mass assignment.

8.6.1 Linguistic Attribute Hierarchies

The multiple-attribute decision making problem engages in the propagation of
information that is often highly uncertain and imprecise. Fuzzy measures have
played an important role in the fusion of multiple attributes. Recently, Van-Nam
et al. have proposed to aggregate evidence from different attributes on the basis of
weighted combination rules in evidence theory, where the underlying idea is to use
mass assignment to provide a unified model of probability and fuzziness[12].

The process of aggregation of evidence in a multi-attribute decision problem
based on a given set of attributes x1, . . . ,xn can be viewed as a functional
mapping y = f (x1, . . . ,xn), where typically y corresponds to some measure of utility
according to which different examples can be evaluated and ranked. Given the utility
function f , attribute hierarchies break down the function into a hierarchy of sub-
functions where each of them can represent a new intermediate attribute (see Fig.
8.6). For a example, the original set of attribute

X = {x1,x2, . . . ,xn}
can be partitioned into subsets of attributes S1,S2, . . . ,Sm and the the new attribute
zi is defined as a function of Si, where i ∈ {1,2, . . . ,m}. Formally:

∀ i ∈ {1,2, . . . ,m} zi = Gi(Si) (8.17)

The utility function f () is defined by a new function F() of the new attributes
z1,z2, . . . ,zm, so that:

y = f (x1, . . . ,xn) = F(z1, . . . ,zm) = F(G1(S1), . . . ,Gm(Sm)) (8.18)

Definition 8.4 (Linguistic definitions) A linguistic definition of label expressions
Ly in terms of the logical expressions LEk : k = 1, . . . ,m is a set of linguistic
probability rules of the following form:

Δi → αF : P(αF |Δi)

for every atom αF where F ∈ Fy for i = 1, . . .T , and where Δ j is a conjunction of
expression from LEk : k = 1, . . .m. P(αF |Δi) denotes the conditional probability that
αF is appropriate to describe y given that z1,zm are described by Δi.
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Fig. 8.6 Attribute hierarchy by partitioning the original set of attributes into m subsets. The
new attribute zi is a function G over attribute subset Si

Given such a set definitions we can determine the mass assignment my for a
given example with attribute values z1, . . . ,zm according to Jeffrey’s rule [8] by:

my(F) = μαF (y) =
T

∑
i=1

P(Δi|z1, . . . ,zm)P(αF |Δi) (8.19)

where if Δi is the conjunction θi1 ∧ . . .∧θik for θi j ∈ LEi j then:

P(Δi|z1, . . .zm) =
k

∏
j=1

μθi j
(zi j) (8.20)

Example 8.2 Consider a decision problem with utility variable y depend on
attributes z1,z2,z3. Output y is labelled using just two overlapping labels

Ly = {poor(p),good(g)}

so that
Fy = {{p},{p,g},{g}}

Attributes z1,z2,z3 are each described using three labels as follows:

L1 = {small(s),medium(m), large(l)}
L2 = {cold(c),warm(w),hot(ht)}
L3 = {low(lw),middle(md),high(h)}

with focal sets:
F1 = {{s},{s,m},{m},{m, l},{l}}
F2 = {{c},{c,w},{w},{w,ht},{ht}

F3 = {{lw},{lw,md},{md},{md,h},{h}}
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Fig. 8.7 Linguistic decision tree involving attributes z1, z2 and z3

Consider the LDT shown in Fig. 8.7 involving all these three above attributes.
In this case:

L1,1 = {{small,¬small} ⊆ L1

L1,2 = {{cold ∧¬warm,warm∧¬hot,¬warm∧hot} ⊆ L2

L1,3 = {warm,¬warm} ⊆ L2

L2,2 = {low,middle∧¬low∧¬high,high} ⊆ L3

Given a branch:

B = (z1 is ¬s)∧ (z3 is md ∧¬lw∧¬h)∧ (z2 is w)

It encodes three rule with probabilistic weights and each with identical antecedents
as the following:

B → (y is p∧¬g) : 0.6

B → (y is p∧g) : 0.4

B → (y is ¬p∧g) : 0

Given the equivalence between focal elements and atoms then B identifies the mass
assignment on 2Ly given by:

my = {p} : 0.6,{p,g} : 0.4

Hence, the rule can be summarized by:

(z1 is ¬s)∧ (z3 is md ∧¬lw∧¬h)∧ (z2 is w) →{p} : 0.6,{p,g} : 0.4
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A particular example will then satisfy the antecedents of a number of rules with
some probability. We can then generate a mass assignment describing the value of
y for that example by taking a weighted combination of the mass assignments from
those rules with non-zero probability. For instance, suppose for a given example we
have the following appropriateness measure values for attributes z1,z2,z3:

μs(z1) = 1, μmd∧¬lw∧¬h(z3) = 1, μw(z2) = 0.6

Hence, we have non-zero probability values of 0.6 and 0.4 for the following two
rules respectively:

(z1 is ¬s)∧ (z3 is md ∧¬lw¬h)∧ (z2 is w) →{p} : 0.6,{p,g} : 0.4

(z1 is ¬s)∧ (z3 is md ∧¬lw¬h)∧ (z2 is ¬w) →{p,g} : 0.7,{g} : 0.3

From this we can infer a mass assignment my:

my = 0.6× ({p} : 0.6,{p,g} : 0.4)+0.4× ({p,g} : 0.7,{g} : 0.3) (8.21)
= {p} : 0.36,{p,g} : 0.52,{g} : 0.12

8.6.2 Information Propagation Using LDT

In order to have a better understanding of information propagation through a
linguistic hierarchy, we will use an example to highlight the process.

Example 8.3 Suppose we are given a random variable with 4 attributes x1,x2,x3
and x4 each with an underlying universe [0,1] and each the same set of basic labels:

L = {very small(vs),small(s),medium(m), large(l),very large(vl)}

These labels are defined by trapezoidal fuzzy labels shown in Fig. 8.8 , where the
corresponding focal elements are also shown in the same figure:

F = {{vs},{vs,s},{s},{s,m},{m},{m, l},{l},{l,vl},{vl}}

Given the attribute hierarchy shown in Fig. 8.9 , there are two intermediate
attributes:

z1 = G1(x1,x2) (8.22)

z2 = G2(x3,x4) (8.23)

and utility function:
z2 = F(z1,z2) (8.24)

where the functions G1,G2 and F are defined by linguistic decision trees T2, T3 and
T1, respectively. If labels defined on y are:

Ly = {very bad(vb),bad(b),average(a),good(g),very good(vg)}
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Fig. 8.8 Fuzzy labels defined in the universe of the given base attributes in Example 8.3. Each
linguistic label is defined by a uniformly distributed trapezoidal fuzzy set while corresponding
to focal elements in triangle shapes
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Fig. 8.9 Example of a simple linguistic attribute hierarchy using linguistic decision trees
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then its corresponding focal set is:

Fy = {{vb},{vb,b},{b},{b,a},{a},{a,g},{g},{g,vg},{vg}}

Suppose the linguistic decision trees T1,T2, and T3 are defined at below, where
Ti �→ B j denotes the jth branch in tree Ti.

T1 �→ B1 (z1 is vs∨ s) → {vb} : 0.9, {vb, b}: 0.1
T1 �→ B2 (z1 is ¬s∧m) ∧ (z2 is l) → {g}: 0.4, {g, vg}: 0.6
T1 �→ B3 (z1 is ¬s∧m) ∧ (z2 is ¬l) → {g, vg}: 0.7, {vg}: 0.3
T1 �→ B4 (z1 is ¬m∧ l) → {a}: 0.6, {a, g}: 0.2,{g}: 0.2
T1 �→ B5 (z1 is ¬l ∧ vl) → {b, a}: 0.7, {a}: 0.3

T2 �→ B1 (x1 is vs∧ s) ∧ (x2 is l) → {l} : 0.8, {l, vl}: 0.2
T2 �→ B2 (x1 is vs∧ s) ∧ (x2 is ¬l) → {s, m} : 0.5, {m}: 0.1, {m, l}: 0.4
T1 �→ B3 (x1 is ¬s∧ s) ∧ (x2 is m∨ l) → {l, vl}: 0.1, {vl}: 0.9
T2 �→ B4 (x1 is ¬vs∧ s) ∧ (x2 is ¬l ∧ vl) → {s, m}: 0.2, {m}: 0.6,{m, l}: 0.2
T2 �→ B5 (x1 is ¬vs∧ s) ∧ (x2 is (vs∨ s)∧¬m) → {vs}: 0.6, {vs, s}: 0.4
T2 �→ B6 (z1 is ¬s) → {vs}: 0.9, {vs, s}: 0.1

T3 �→ B1 (x4 is vl) → {vs} : 0.95, {vs, s}: 0.05
T3 �→ B2 (x3 is m∨ l) ∧ (x4 is ¬vl) → {m, l} : 0.1, {l}: 0.2, {l, vl}: 0.3, {vl}: 0.4
T3 �→ B3 (x3 is ¬m∧¬l) ∧ (x4 is ¬vl) → {s} : 0.1, {s, m}: 0.6, {m}: 0.3

Now consider an example

x = 〈x1 = 0.18,x2 = 0.44,x3 = 0.57,x4 = 0.85〉

which has the following mass assignments based on the definitions of labels:

μvs(x1) = 1,μs(x1) = 0.8 ⇒{vs} : 0.2,{vs,s} : 0.8
μs(x2) = 0.6,μm(x2) = 1 ⇒{s,m} : 0.6,{m} : 0.4
μm(x3) = 1,μl(x3) = 0.7 ⇒{m} : 0.3,{m, l} : 0.7
μl(x4) = 0.5,μvl(x4) = 1 ⇒{l,vl} : 0.5,{vl} : 0.5

Based on linguistic decision tree T2 we can have:

μvs∧s(x1) = 0.8
μ¬vs∧s(x1) = 0
μ¬s(x1) = 0.2
μl(x2) = 0
μ¬l(x2) = 1
μ¬l∧vl(x2) = 0
μ(l∨vl)∧¬m(x2) = 0
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Hence, we can calculate the branch probability of each branch in T2:

P(T2 �→ B2|x) = μvs∧s(x1)×μ¬l(x2) = 0.8×1 = 0.8 (8.25)

P(T2 �→ B6|x) = μ¬s(x1) = 0.2 (8.26)

P(T2 �→ B1|x) = P(T2 −B3|x) = P(T2 −B4|x) = P(T2 −B5|x) = 0 (8.27)

By considering the above equations we can obtain:

P(T2|x) = {T2 �→ B2 : 0.8,T2 �→ B6 : 0.2} (8.28)

The propagated mass assignment of variable z1 given x is calculated by:

mz1(x) = ∑B∈T2 P(z1|B)P(B|x)

= P(T2 �→ B2|x)×P(T2 �→ B2)+P(T2 �→ B6|x)×P(T2 �→ B6)

= 0.8× ({s,m} : 0.5,{m} : 0.1,{m, l} : 0.4)+

0.2× ({vs} : 0.9,{vs,s} : 0.1)

= {vs} : 0.18,{vs,s} : 0.02,{s,m} : 0.4

{m} : 0.08,{m, l} : 0.32

(8.29)

Similarly, from T3 we can infer the following mass assignment mz2 that:

mz2(x) = ∑B∈T3 P(z2|B)P(B|x)

= {m, l} : 0.1,{l} : 0.2,{l,vl} : 0.3,{vl} : 0.4
(8.30)

Based on the mass assignment on z1 and z2 given x, we can calculate the branch
probability of each branch in T1.

P(T1 �→ B1|x) = 0.6, P(T1 �→ B2|x) = 0.24, P(T1 �→ B1|x) = 0.16

P(T1 �→ B4|x) = P(T1 �→ B5|x) = 0

Therefore, we can infer a mass assignment on utility, my according to:

my = 0.6× ({vb} : 0.9,{vb,b} : 0.1)+0.24× ({g} : 0.4,{g,vg} : 0.6)

+0.16× ({g,vg} : 0.7,{vg} : 0.3)

= {vb} : 0.54,{vb,b} : 0.06,{g} : 0.096

{g,vg} : 0.256,{vg} : 0.048

(8.31)

The propagation of mass assignment on labels up the hierarchy are in this example.
Given my we can now evaluate the appropriateness of any expression from LEy to
describe the utility value example x. For example we have that,
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μvb∨b(x) = μvb∨b(y) = 0.54+0.06 = 0.6

μg∨vg(x) = 0.4, μ¬a(x) = 1

In this section, we discussed linguistic attribute hierarchies as a presentational
tool for describing imprecise, uncertain and multi-dimensional functional
relationships between basic attributes and high-level decision variables in multiple
attribute decision problems. We gave an example using linguistic decision trees to
define the functional relations between lower-level attributes and high-level vague
concepts.

8.7 Summary

In this chapter, we have introduced another label semantics based data mining
model. In particular, a new algorithm is proposed based on the FOIL algorithm and
tested on a toy problem and some benchmark problems from the UCI repository.
The results show that very compact linguistic rules can be learned that reflect the
essence of the problem. Although the new algorithm is not better than the other
two linguistic models in terms of accuracy, it has much better transparency and
comparable accuracy to C4.5. In the second part of this chapter, we introduce the
multiple attribute hierarchy for decision making. We used linguistic decision trees
as the basic function. A detailed example was given to illustrate how to do decision
making in this framework.

The main contribution of this chapter is to describe a method of evaluating
linguistic rules through label semantics and to propose a new FOIL based algorithm
for linguistic rule induction. In this new algorithm, we use a information based
heuristics to guide the rule construction. This is not the only way of constructing
good rules. Another approach is to search exhaustively through the knowledge
base KB. Assuming that we do not use too many fuzzy labels for discretization,
this approach may also be computationally tractable. The rules which covers less
positive examples will be discarded according to a predefined threshold. Baldwin
and Xie report a similar idea for generating simple fuzzy logic (IF-THEN) rules[3].
This approach could also be used in linguistic rule learning. Parameter setting of
LFOIL is from trial and error experiments, and some further study is necessary to
understand the influence of parameter settings.
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9

A Prototype Theory Interpretation of Label Semantics

What the use of P implies, therefore, is that a hypothesis that may be true may be rejected
because it has not predicted observable results that have not occured.

– Harold Jeffreys

9.1 Introduction

Using words rather than numbers to convey vague information as part of uncertain
reasoning is a sophisticated human activity. The theory of fuzzy sets is now a
popular tool for computing with words[1,2] which attempts to formally capture this
human reasoning process[3−4]. Furthermore, linguistic modeling based on fuzzy
IF-THEN rules [6−8] has achieved promising results in many application areas.
However, the currently proposed interpretations of the membership function in
fuzzy set theory are not consistent with the truth-functional calculus of fuzzy
logic [9]. Alternatively, from the philosophical viewpoint of the epistemic stance,
Lawry proposed a functional (but non-truth functional) calculus, label semantics,
for computing with words[10,11]. In this framework, the meaning of linguistic labels
is encoded by mass functions which represent the subjective probabilities that a
given set of labels is appropriate to describe a given instance. Label semantics is
a powerful new tool for modelling with vague concepts, the possible applications
of which include knowledge fusion[12], decision tree learning[13], linguistic rule
induction[14], and collective decision making[15,16].

Recently, Lawry and Tang have investigated the relationship between the theory
of prototypes for vague concepts and the label semantics framework[17,18]. In
this work, the meaning of linguistic labels can also be captured by the similarity
between the underlying instances and the prototypes for linguistic labels. The
calculus derived from this semantic interpretation results in the same calculus as
label semantics. This chapter further explores the prototype theory interpretation
of label semantics and introduces new methods for vague information coarsening
and rule learning from data sets. We show that appropriateness measures of
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linguistic expressions for describing underlying instances can also be interpreted
as probabilities that these instances are contained within uncertain neighborhoods
as determined by the given linguistic expressions. Moreover, we show that in
prototype theory vague information can be coarsened in a natural way. We then
introduce linguistic inference systems in prototype theory, which have a similar
structure to fuzzy inference systems, but which have a different way of modeling
the vagueness of linguistic labels. Using the information coarsening process, we
propose a linguistic rule induction method from data sets, where each linguistic IF-
THEN rule has the following transparent structure: IF X is about DBXi THEN Y is
about DBYi, where DBXi and DBYi are the prototype sets of the rule antecedent and
consequence labels, respectively. More importantly, we show that the approximation
and generalization capability of the rule base are controlled by the information
granularity which is represented by the rule number and the size of prototype set
associated with each linguistic label in the rule base.

The proposed approach to linguistic modeling and reasoning is distinct from that
of fuzzy set theory. The fundamental difference lies in the semantic interpretation
and uncertainty measurement of the linguistic expressions. Given an expression
θ and element x, the membership μθ (x) has no clear interpretation in the theory
of fuzzy sets, although the intuitive idea is that μθ (x) represents the membership
degree of x belonging to the extensions of linguistic expression θ . In label
semantics, μθ (x) quantifies the appropriateness measure of linguistic expression θ
for describing the instance x. In the prototype model this further reduces to the
probability that x belongs to the uncertain neighborhood determined by θ . The
second difference is the calculus for the combination of linguistic expressions. In the
theory of fuzzy sets, the calculus is truth-functional, but in the theory of prototypes
(label semantics), the calculus is not truth-functional, although it may be functional
in a weaker sense[11,19].

Compared with fuzzy inference systems, the proposed linguistic inference
systems have the following prominent advantages: The first is the high level
of transparency of the proposed rule structure as discussed above. The second
advantage is the efficiency of the rule induction algorithm. For each training data
pair (x,y)∈DB, we can derive a linguistic IF-THEN rule of the form: IF X is about x
then Y is about y. Our experiments shows that this induction method is very efficient
and has very high accuracy. Another advantage is the adjustable generalization
capability. We can improve the generalization capability of the rule base by firstly
partitioning the training data set and then coarsening the rule base. Our experiments
show that the balance between the prediction accuracy for the training data set
and the generalization capability for the test data set can be easily achieved using
clustering and the information coarsening method.
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9.2 Prototype Semantics for Vague Concepts

In this section we review a new semantic interpretation for the vague concepts
based on the theory of prototypes which has recently been proposed by Lawry and
Tang[17,18]. This theory attempts to answer the following questions:

(1) How do we measure the vagueness of concept L = about P where P is a set of
prototypes for linguistic label L? In other words, to what extent can we say that
x is similar to the prototypes for L?

(2) Moreover, how do we measure the vagueness of complex linguistic expression
θ which is a logical combination of basic linguistic labels?

The proposed theory of prototypes attempts to answer these questions by
quantifying the uncertain boundaries of similarity neighborhoods determined by
basic labels. We firstly outline the calculus for evaluating the linguistic expressions
within the prototype theory in Section 9.2.1, and then discuss the relationship
between the prototype theory and label semantics. More detailed discussions on
prototype theory are given in References [17] and [18]. For practical applications
such as the linguistic modelling in Section 9.4 and Section 10.1 we then introduce
a Gaussian-type density function δ(c,σ) which describes the uncertainty of the word
“about” in Section 9.2.3.

9.2.1 Uncertainty Measures about the Similarity Neighborhoods
Determined by Vague Concepts

We assume that L = {L1, . . . ,Ln} is the set of labels for elements from Ω , the
underlying universe (in the sequel Ω will typically correspond to some convex
subset of R

k), and d is a mapping from Ω ×Ω to [0,+∞) such that d(x,x) = 0
and d(x,y) = d(y,x) for all x,y ∈ Ω (in this chapter, we take the Euclidean distance
d). Moreover we define d(x,P) = infy∈P d(x,y) for any x ∈ Ω ,P ⊆ Ω . For each
label Li we suppose that Li can be described as “about Pi”, where Pi ⊆ Ω is a set
of prototypical cases of concept Li. Then one natural question is: what elements are
sufficiently similar to the prototypes of Li for it to be appropriate to describe them
using the label Li? Suppose there exists a threshold ε ≥ 0 such that {x : d(x,Pi)≤ ε}
can be considered as a neighborhood which includes all elements being sufficiently
similar to the prototypes of Li to be describable using the label Li. So we have the
following definition of the similarity neighborhood of the label.

Definition 9.1 For any Li ∈L and ε ≥ 0 the similarity neighborhood N ε
Li

is defined
as follows:

N ε
Li

= {x : d(x,Pi) ≤ ε} (9.1)

We can further define the similarity neighborhood for any complex linguistic
expression θ which is a combination of some basic linguistic labels and logical
connectives. We firstly give the formal definition of linguistic expression.
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Definition 9.2 The set of linguistic expressions, LE, is defined recursively as
follows:

L ⊆ LE;
If θ ∈ LE,ϕ ∈ LE, then θ ∧ϕ ∈ LE,θ ∨ϕ ∈ LE,¬θ ∈ LE.

LE is actually a T -free algebra on L where T = {∧,∨,¬}. We now give
the formal definition of the similarity neighborhood for any linguistic expression
ψ ∈ LE.

Definition 9.3 ∀ε ≥ 0 and ψ ∈ LE, the similarity neighborhood N ε
ψ is defined

recursively as follows:

N ε
ψ = N ε

Li
, if ψ = Li where Li ∈ L

N ε
ψ = N ε

θ ∩N ε
ϕ , if ψ = θ ∧ϕ where θ ,ϕ ∈ LE

N ε
ψ = N ε

θ ∪N ε
ϕ , if ψ = θ ∨ϕ where θ ,ϕ ∈ LE

N ε
ψ = (N ε

θ )c, if ψ = ¬θ where θ ∈ LE

The neighborhood size of the linguistic label “about P” is described by the word
“about”. Due to the vagueness of word “about” we assume ε is a random variable
with a density function δ defined on [0,∞) such that δ (ε) ≥ 0 for any ε ∈ [0,+∞)
and δ ([0,+∞))= 1 (for I ⊆Ω we denote δ (I) =

∫
I δ (ε)dε). From this we can obtain

the probability of any x ∈ Ω belonging to the similarity neighborhood determined
by θ by integrating δ (ε) over {ε : x ∈ N ε

θ }.

Definition 9.4 ∀θ ∈ LE, ∀x ∈ Ω , the probability of x belonging to the similarity
neighborhood with respect to θ is defined as:

μθ (x) = δ ({ε : x ∈ N ε
θ }) (9.2)

μθ (x) also provides a measure of the typicality degree of x with respect to the
linguistic expression θ . Notice that we do not have an explicit definition of the
prototypes for complex linguistic expressions as we do for the linguistic labels in L.
However, we might view x ∈ Ω as a prototype for expression θ if μθ (x) = 1.

In fact the set {ε : x ∈ N ε
ψ } for x ∈ Ω is given by a recursively defined

measurable subset I(ψ ,x) of [0,+∞).

Definition 9.5 ∀x ∈ Ω and ψ ∈ LE, I(ψ,x) ⊆ [0,∞) is defined recursively as
follows:

I(ψ ,x) = [d(x,Pi),∞), if ψ = Li where Li ∈ L

I(ψ ,x) = I(θ ,x)∩ I(ϕ ,x), if ψ = θ ∧ϕ where θ ,ϕ ∈ LE

I(ψ ,x) = I(θ ,x)∪ I(ϕ ,x), if ψ = θ ∨ϕ where θ ,ϕ ∈ LE

I(ψ ,x) = I(θ ,x)c, if ψ = ¬θ where θ ∈ LE



9.2 Prototype Semantics for Vague Concepts 219

The following theorem shows that I(θ ,x) is actually the set of all values ε for
which the similarity neighborhood N ε

θ includes x.

Theorem 9.1 ( [18]) ∀x ∈ Ω ,θ ∈ LE,

{ε : x ∈ N ε
θ } = I(θ ,x) (9.3)

Proof Let LE0 = L, LEm+1 = LEm ∪{φ ∧ϕ,φ ∨ϕ : φ ,ϕ ∈ LEm} for m > 0, then
LE = ∪+∞

m=0LEm. Then it is easy to prove the above conclusion by carrying out the
induction on m.

Corollary 9.1 ( [18]) ∀x ∈Ω ,θ ∈ LE, the probability of x belonging to the similarity
neighborhood with respect to the linguistic expression θ is:

μθ (x) = δ (I(θ ,x)) (9.4)

Proof According to Definition 9.4 and Theorem 9.1, the result is obtained
immediately.

Notice that if we view N ε
θ as a random set from [0,+∞) into 2Ω then

μθ (x) corresponds to the single point coverage function of N ε
θ . This has a clear

connection to the random set interpretation of fuzzy sets as proposed by Goodman
and Nguyen[20,21].

Theorem 9.2 For any θ ,ϕ ∈ LE the following hold:

μθ∧ϕ(x) ≤ min{μθ (x),μϕ(x)} (9.5)

μθ∨ϕ(x) ≥ max{μθ (x),μϕ(x)} (9.6)

Proof Note that for any θ ,ϕ ∈ LE, according to Definition 9.5, we have

I(θ ∧ϕ,x) ⊆ I(θ ,x), I(θ ∧ϕ,x) ⊆ I(ϕ,x)

I(θ ∨ϕ,x) ⊇ I(θ ,x), I(θ ∧ϕ,x) ⊇ I(ϕ,x)

Hence, according to Corollary 9.1, it is easy to prove the results.

In the following we will discuss a subset of linguistic expressions. Let LE∧,∨
be the set of linguistic expressions generated by applying connectives ∧ and ∨ to
linguistic labels in L.

Definition 9.6 For any θ ∈ LE∧,∨ the real number lb(θ ) is defined recursively as
follows:

lb(θ ) = d(x,Pi) if θ = Li (9.7)

lb(θ ) = max(lb(φ), lb(ϕ)) if θ = φ ∧ϕ (9.8)

lb(θ) = min(lb(φ), lb(ϕ)) if θ = φ ∨ϕ (9.9)
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Theorem 9.3 For any θ ∈ LE∧,∨ the following hold:

I(x,θ ) = [lb(θ),+∞} (9.10)

Proof Let

LE∧,∨
0 = L, LE∧,∨

m+1 = LE∧,∨
m ∪{φ ∧ϕ,φ ∨ϕ : φ ,ϕ ∈ LE∧,∨

m }
for m > 0, then

LE∧,∨ = ∪+∞
m=0LE∧,∨

m .

We now carry out the induction on m. If θ = Li then the results hold immediately.
Assume that θ ∈ LE∧,∨

m the results hold. Then for any θ ∈ LE∧,∨
m+1 either θ ∈ LE∧,∨

m ,
for which case the results hold trivially, or

θ ∈ {φ ∧ϕ,φ ∨ϕ : φ ,ϕ ∈ LE∧,∨
m }

for which one of the following holds:

(1) If θ = φ ∧ϕ where φ ,ϕ ∈ LE∧,∨
m then

I(x,θ)= I(x,φ ∧ϕ)= I(x,φ)∩I(x,ϕ) = [lb(φ),+∞}∩[lb(ϕ),+∞}= [lb(θ ),+∞}
.

(2) If θ = φ ∨ϕ where φ ,ϕ ∈ LE∧,∨
m then

I(x,θ)= I(x,φ ∨ϕ)= I(x,φ)∪I(x,ϕ) = [lb(φ),+∞}∪[lb(ϕ),+∞}= [lb(θ ),+∞}
.

Theorem 9.4 For any θ ∈ LE∧,∨ the following hold:

μθ (x) =
∫ +∞

lb(θ)
δ (ε)dε (9.11)

Proof The result is from the Corollary 9.1 and Theorem 9.3.

9.2.2 Relating Prototype Theory and Label Semantics

As we have seen from the introduction to label semantics from previous chapters.
It is a theory for modeling vague concepts which encodes the meaning of linguistic
labels according to how they are used by a population of communicating agents
to convey information. From this perspective, the focus is on the decision making
process an intelligent agent must go through in order to identify which labels
or expressions can actually be used to describe an object or value. In other
words, in order to make an assertion describing an object in terms of some set of
linguistic labels, an agent must first identify which of these labels are appropriate
or assertable in this context. Given the way that individuals learn language through
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an ongoing process of interaction with the other communicating agents and with
the environment, then we can expect there to be considerable uncertainty associated
with any decisions of this kind. In label semantics we quantify this uncertainty in
terms of appropriateness measures, linked to an associated mass function through a
calculus which, while not truth-function, can be functional in a weaker sense[10].

The underlying philosophy of label semantics[11] is very close to the epistemic
view of vagueness as expounded by Timothy Williamson[22]. Williamson assumes
that for the extension of a vague concept there is a precise but unknown dividing
boundary between it and the extension of the negation of that concept. However,
while there are marked similarities between the epistemic theory and the label
semantics view, there are also some important differences. For instance, the
epistemic view would seem to assume the existence of some objectively correct, but
unknown, definition of a vague concept. Instead of this we argue that individuals
when faced with decision problems regarding assertions find it useful as part of a
decision making strategy to assume that there is a clear dividing line between those
labels which are and those which are not appropriate to describe a given instance.
We refer to this strategic assumption across a population of communicating agents
as the epistemic stance, a concise statement of which is as follows:

Each individual agent in the population assumes the existence of a set of
labelling conventions, valid across the whole population, governing what
linguistic labels and expressions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the appropriate use of labels
would not be imposed by some outside authority. In fact, they may not exist
at all in a formal sense. Rather they are represented as a distributed body of
knowledge concerning the assertability of predicates in various cases, shared
across a population of agents, and emerging as the result of interactions and
communications between individual agents all adopting the epistemic stance. The
idea is that the learning processes of individual agents, all sharing the fundamental
aim of understanding how words can be appropriately used to communicate
information, will eventually converge to some degree on a set of shared conventions.
The very process of convergence then to some extent vindicates the epistemic stance
from the perspective of individual agents.

Hence, the epistemic stance requires that agents make decisions on what is or is
not appropriate to assert, based on their past experience of language use and on the
assumption that there are existing linguistic conventions that should be adhered to
if they do not wish to be misunderstood or contradicted. This decision problem
would naturally lead agents to consider their subjective beliefs concerning the
appropriateness of the available description labels in a given context. Uncertainty
about such beliefs could then be quantified by using subjective probabilities, as
proposed originally by de Finetti [23] and Ramsey[24] for other types of epistemic
uncertainty.

When applying label semantics to some practical applications such as linguistic
modelling or linguistic information fusion, a basic problem is how to determine the
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mass function mx. In order to solve this problem Lawry then introduced an ordering
�x on L where Li �x L j means that the linguistic label L j is more appropriate
than the linguistic label Li for describing the instance x ∈ Ω . From this ordering
assumption the mass function mx is consonant (i.e., nested). In fact, from the theory
of prototypes we can also derive a mass function mx for each x ∈ Ω , which validates
the ordering �x assumption in label semantics. In the following we show how to
derive a mass function mx according to the theory of prototypes.

Definition 9.7 For x ∈ Ω and ε ∈ [0,+∞), define

Dε
x = {Li ∈ L : d(x,Pi) ≤ ε} (9.12)

mx(S) = δ ({ε : D ε
x = S}) (9.13)

Intuitively speaking Dε
x identifies the set of labels with prototypes lying within

ε of x. Notice that the sequence D ε
x as ε varies generates a nested hierarchy of label

sets. Consequently mx is a consonant mass function. Actually, the distance metric
d naturally generates a total ordering � on the appropriateness of labels for any
element x ∈ Ω , where Li �x Li, Li �x L j if d(x,Pi) > d(x,Pj), and for i �= j the
ordering between Li and Lj can be arbitrary if d(x,Pi) = d(x,Pj). A more important
conclusion on the relationship between label semantic and prototype theory is as
follows:
Theorem 9.5 [17,18] For any θ ∈ LE and x ∈ Ω we have

I(θ ,x) = {ε : Dε
x ∈ λ (θ)} (9.14)

Proof Let us carry out the induction on m of LEm. If θ ∈ LE0 then the result holds
trivially. Assume that it holds for θ ∈ LEm. Then for any θ ∈ LEm+1 either θ ∈ LEm,
for which case the result holds trivially, or θ ∈ {φ ∧ϕ,φ ∨ϕ ,¬φ : φ ,ϕ ∈ LEm} for
which one of the following holds:

(1) θ = φ ∧ϕ where φ ,ϕ ∈ LEm. Then

I(θ ,x) = I(φ ∧ϕ ,x) = I(φ ,x)∩ I(ϕ,x) = {ε : Dε
x ∈ λ (φ)}∩{ε : Dε

x ∈ λ (ϕ)}
= {ε : Dε

x ∈ λ (φ)∩λ (ϕ)} = {ε : Dε
x ∈ λ (θ)}.

(2) θ = φ ∨ϕ where φ ,ϕ ∈ LEm. Then

I(θ ,x) = I(φ ∨ϕ ,x) = I(φ ,x)∪ I(ϕ,x) = {ε : Dε
x ∈ λ (φ)}∪{ε : Dε

x ∈ λ (ϕ)}
= {ε : Dε

x ∈ λ (φ)∪λ (ϕ)} = {ε : Dε
x ∈ λ (θ)}.

(3) θ = ¬φ where φ ∈ LEm. Then

I(θ ,x) = I(¬φ ,x) = I(φ ,x)c = ({ε : D ε
x ∈ λ (φ)})c

= {ε : Dε
x ∈ (λ (φ))c} = {ε : Dε

x ∈ λ (θ)}.
From Eq. (9.14) in this theorem and the definition of appropriateness measures,

we can see that the appropriateness measure νθ (x) in label semantics and the
probability of x belonging to N ε

θ , μθ (x), are equivalent.
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Corollary 9.2 [17,18] For any θ ∈ LE and x ∈ Ω , we have

μθ (x) = νθ (x) (9.15)

where μθ (x) and νθ (x) are defined in Eqs. (9.4) and (3.7), respectively.

Proof

μθ (x) = δ (I(θ ,x)) = δ ({ε : Dε
x ∈ λ (θ)})

= ∑
S∈λ (θ)

δ ({ε : Dε
x = S}) (9.16)

= ∑
S∈λ (θ)

mx(S) = νθ (x).

Although we can relate the theory of prototypes and label semantics through
Definition 9.7 and Theorem 9.5, it may not always be necessary to derive the mass
function mx according to Definition 9.7 in some practical applications. Instead
we can directly derive the appropriateness measure μθ (x) for any θ ∈ LE and
x ∈ Ω according to Definition 9.4 from the similarity neighborhood N ε

θ . The main
difference between the theory of prototypes and label semantics is that the mass
functions mx on labels for all x ∈ Ω are the starting points in label semantics,
however, in the theory of prototypes the starting points are the prototypes for all
basic labels and a density function δ on [0,+∞) which describes the uncertainty
conveyed by the word “about”.

9.2.3 Gaussian-Type Density Function

According to the prototype semantics for vague concepts, the meaning of linguistic
expressions is determined by the prototypes of linguistic labels in L and the density
function δ on the neighborhood size represented by the constraint “about”. In
practical applications the density function δ plays a very important role. In the
following we propose a Gaussian-type density function δ(c,σ) on [0,+∞) with the
following form:

δ(c,σ)(ε) =
1√
2πσ

exp
(

(ε − c)2

−2σ 2

)
+

1√
2πσ

exp
(

(ε + c)2

−2σ 2

)
,ε ≥ 0 (9.17)

where c and σ are the center and width of the Gaussian-type density function
respectively.

Hence the linguistic label Li = about Pi has the following appropriateness
measure:

μLi(x) = δ ([d(x,Pi),+∞)) = 1−F(d(x,Pi) | c,σ)+F(−d(x,Pi) | c,σ) (9.18)

where



224 9 A Prototype Theory Interpretation of Label Semantics

F(d | c,σ) =
1√
2πσ

∫ d

−∞
exp((ε − c)2/(−2σ 2))dε

is the normal cumulative distribution function with the mean c and standard
deviation σ .

Fig. 9.1 shows a number of Gaussian-type density functions with different
centers and widths. Fig. 9.2 shows the functions Δ (ε) � δ(c,σ)([ε,+∞)) derived
from the Gaussian-type density functions illustrated in Fig. 9.1 .

We now give an example of the prototype interpretation of label semantics based
on the Gaussian-type density function.
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Fig. 9.1 The Gaussian-type density functions δ(c,σ)(ε) with (c,σ) = (1,0.5), (1,1), (1,1.5),
(2,0.5), (2,1) and (2,1.5) respectively
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Fig. 9.2 The functions Δ(ε) � δ(c,σ)([ε ,+∞)) with (c,σ) = (1,0.5), (1,1), (1,1.5), (2,0.5),
(2,1) and (2,1.5) respectively
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Example 9.1 Assume that Ω = [0,1] and L1 = about 0.3, L2 = about 0.5 and
L3 = about 0.7. We take the Gaussian-type density function δ(0,0.1) and Euclidean
distance d, and we assume that the prototypes of L1, L2 and L3 are P1 = {0.3},
P2 = {0.5} and P3 = {0.7}, respectively. According to the Eq. (9.18), we have
appropriateness measures

μLi(x) = δ(0,0.1)([d(x,Pi),+∞)) f or i = 1,2,3

as shown in Fig. 9.3 . Alternatively, if we take the Gaussian-type density function
δ(0.3,0.1), then we obtain appropriateness measures as shown in Fig. 9.4 .

�
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x

L L L

Fig. 9.3 The appropriateness measures for the linguistic labels about 0.3, about 0.5 and
about 0.7, where the density function δ is a Gaussian-type density function δ(0,0.1)

�

L L L

	
(

)
x

Fig. 9.4 The appropriateness measures for the linguistic labels about 0.3, about 0.5 and
about 0.7, where the density function δ is a Gaussian-type density function δ(0.3,0.1)
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If we take Ω = [0,1]2 with the following basic labels L1 = about (0.3,0.7),L2 =
about (0.5,0.5) and L3 = about (0.7,0.3) together with density function δ = δ(0,0.1),
then the resulting appropriateness measures are shown in Fig. 9.5 . If the Gaussian-
type density function δ = δ(0.3,0.1) is used, then their appropriateness measures
obtained are shown in Fig. 9.6 . From these examples, we can see that the parameter
c reflects the coverage sizes of basic labels and the parameter σ reflects the degree
of coverage of basic labels.
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Fig. 9.5 The appropriateness measures for the linguistic labels about (0.3,0.7), about
(0.5,0.5) and about (0.7,0.3), where the density function δ is a Gaussian-type density function
δ(0,0.1)
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Fig. 9.6 The appropriateness measures for the linguistic labels about (0.3,0.7), about
(0.5,0.5) and about (0.7,0.3), where the density function δ is a Gaussian-type density function
δ(0.3,0.1)



9.3 Vague Information Coarsening in Theory of Prototypes 227

9.3 Vague Information Coarsening in Theory of Prototypes

The theory of prototypes also provides a possible framework to represent vague
information having different degrees of granularity. In this framework vague
information can be transformed according to fine-to-coarse mapping. In this section
we introduce a unified framework within the theory of prototypes to deal with
information coarsening. The basic idea is to partition the underlying domain vaguely
in such a way that the domain is covered by a set of vague concept labels
which are represented by the prototypical elements and a density function on
their neighborhood sizes. From the initial vague partitioning, the concepts can be
coarsened using the logical operations defined in the sequel.

An important application of information coarsening is knowledge induction
from data sets. Given a data set DB = {(xi,yi) : i = 1, . . . ,N}, we assume each pair of
data (xi,yi) in the training data set determines a pair of concepts (about xi,about yi).
We then use the information coarsening process to derive more coarse concept pairs
(about DBXi,about DBYi), where DBXi and DBYi are the subsets of prototypes. In
this way we can achieve a simplified and transparent knowledge base to reflect the
correspondence relationship between input space and output space. This is in fact
a mapping from a fine granular partition to a coarse partition. Further details of the
application of information coarsening to data mining is given in Sections 9.4 and
10.1.
Definition 9.8 (Information Coarsening) A coarsened label set CLA =
{L∨

1 , . . . ,L∨
m} from L satisfies the the following two conditions: (a) CLA ⊆ LE∨

where LE∨ is the set of linguistic expressions generated by applying connective
∨ to the symbols in L, (b) and each symbol L ∈ L is a component of some label in
CLA. If the coarsened label L∨ = ∨ j∈OLj, where O ⊆ {1, . . . ,n}, then the prototype
P∨ for L∨ is a subset of Ω

P∨ =
⋃
j∈O

Pj

where Pj is the set of prototypes of L j, and the distance d(x,P∨) is defined as

d(x,P∨) = min
j∈O

d(x,Pj).

Theorem 9.6 For any L∨ ∈CLA having the form L∨ = ∨ j∈OLj, we have

μL∨(x) = max
j∈O

μL j(x).

Proof According to the definition of appropriateness measure (see Eq. (9.2)), we
have

μL∨(x) = δ (ε : x ∈ N ε
L∨,CLA) = δ (ε : d(x,P∨) ≤ ε) = δ (ε : min

j∈O
d(x,Pj) ≤ ε)

= max
j∈O

δ (ε : d(x,Pj) ≤ ε) = max
j∈O

μL j(x)
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In the above proof, we use the notation N ε
L∨,CLA but not N ε

L∨ to emphasize the
symbol L∨ is a linguistic expression generated from CLA.

In fact, we have the following lemma on the similarity neighborhood determined
by each L∨ ∈CLA.

Lemma 9.1 For any L∨ = ∨ j∈OL j ∈CLA, the following equation holds:

N ε
L∨,CLA = N ε

L∨,L

Proof For any L∨ = ∨ j∈OL j ∈CLA,

N ε
L∨,CLA = {x : d(x,P∨) ≤ ε} = {x : min

j∈O
d(x,Pj) ≤ ε}

= ∪ j∈O{x : d(x,Pj) ≤ ε} = ∪ j∈ON ε
L j ,L

= N ε
L∨,L

So we can achieve the following more general conclusion from this lemma.

Theorem 9.7 For any θ ∈CLE, the following equation holds:

N ε
θ ,CLA = N ε

θ ′
,L

where θ ′
is the expression resulting from replacing every occurrence of L∨ =∨ j∈OL j

in θ by ∨ j∈OL j.

Proof Let CLE0 = CLA and for n > 0, let

CLEn = CLEn−1 ∪{θ ∧ϕ ,θ ∨ϕ,¬θ | θ ,ϕ ∈ LEn−1}.
Hence LE =

⋃
n LEn. It is clear that for any

θ ∈CLE0 N ε
θ ,CLA = N ε

θ ′
,L

according to Lemma 9.1. Assume that it is true for any
ψ ∈ CLEk. Then for ψ ∈ LEk+1 either ψ ∈ LEk, in which case the result holds
trivially by the inductive hypothesis, or one of the following holds:

(1) ψ = θ ∧ϕ =⇒ N ε
ψ = N ε

θ∧ϕ = N ε
θ ∩N ε

ϕ = N ε
θ ′ ∩N ε

ϕ ′ = N ε
θ ′∧ϕ ′ = N ε

ψ ′ .

(2) ψ = θ ∨ϕ =⇒ N ε
ψ = N ε

θ∨ϕ = N ε
θ ∪N ε

ϕ = N ε
θ ′ ∪N ε

ϕ ′ = N ε
θ ′∨ϕ ′ = N ε

ψ ′ .

(3) ψ = ¬θ =⇒ N ε
ψ = N ε

¬θ = (N ε
θ )c = (N ε

θ ′ )c = N ε
ψ ′ .

Based on the coarsened label set CLA, we then have a more coarse
knowledge representation framework CLE than LE allowing us to process linguistic
information at different granularity. In particular, for any x∈Ω we can derive a mass
function mx,CLA on CLA from the appropriateness measures μL∨(x) for all L∨ ∈CLA.
From this we can then derive the appropriateness measure

μθ (x) = δ (ε : x ∈ N ε
θ ,CLA) = ∑

F∈λCLA(θ)
mx,CLA(F),

where
mx,CLA(F) = δ (ε : Dε

x,CLA = F).

The following theorem shows that appropriateness measure are invariant to
translation from CLE to LE.
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Theorem 9.8 For any θ ∈CLE,

∑
F∈λCLA(θ)

mx,CLA(F) = ∑
F∈λL(θ ′ )

mx,L(F),

where θ ′
is the expression resulting from replacing every occurrence of L∨ =∨ j∈OL j

in θ by ∨ j∈OL j.

Proof Notice that according to Theorem 9.7 for any θ ∈CLE,

∑
F∈λCLA(θ)

mx,CLA(F) = μθ (x) = δ (ε : x ∈ N ε
θ ,CLA) = δ (ε : x ∈ N ε

θ ′
,CLA

)

= μθ ′ (x) = ∑
F∈λL(θ ′ )

mx,L(F).

The above discussion on information coarsening within the theory of prototypes
shows that we can process information based on a coarsened label set CLA, so
as to preserve the information contained in the label set L. More importantly, the
coarsened label L∨ also has the form “about P∨”, where P∨ is a prototype subset.
This kind of coarsened linguistic label will be applied to our proposed linguistic
modelling and rule induction method in Sections 9.4 and 10.1.

9.4 Linguistic Inference Systems

Given two variables X and Y into universes ΩX and ΩY (⊆ R) respectively, where
the uncertain relationship between these two variables is described by a set of IF-
THEN rules which involve linguistic labels and vague concepts, we now consider
to formally model the mapping between X and Y . In particular, in the following two
sections we will focus on the following three issues:

(1) How to interpret linguistic IF-THEN rules within the theory of prototypes?
(2) What is the inference process given such a set of IF-THEN rules?
(3) How can we learn a rule base of linguistic IF-THEN rules from a training data

set?

Assume that the basic label sets on ΩX and ΩY are LX = {L1, . . . ,Lm} and
LY = {H1, . . . ,Hm}, respectively. The knowledge base consists of the following m
rules:

IF X is Li THEN Y is Hi, i = 1, . . . ,m (9.19)

These rules provide an approximation to the underlying mapping y = f (x) from ΩX
to ΩY . This approximation mapping can be obtained as follows.

From these IF-THEN rules we have

Hi = f (Li) for i = 1, . . . ,m,

this means that for any x ∈ ΩX we have
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μHi( f (x)) = μLi(x) for i = 1, . . . ,m.

Moreover, from the appropriateness measures

μHi( f (x)) for i = 1, . . . ,m

We can derive a mass function m f (x) on LY (see Definition 9.7). We then convert
the mass function m f (x) into a probability distribution p(· | mf (x)) from which
we can estimate the output ȳ ≈ f (x). In this section we introduce two conversion
mechanisms from the mass function mf (x). Initially however we give the following
definition.
Definition 9.9 [10] The conditional probability distribution p(· | θ ) given a
linguistic expression θ on ΩY is defined as follows:

p(y | θ) =
μθ (y)p(y)∫

ΩY
μθ (y)p(y)dy

(9.20)

where p(·) is a prior probability distribution on ΩY .

We now consider possible conversion mechanisms which can convert the mass
function m f (x) into a probability distribution on ΩY . One conversion method is based
on the pignistic probability derived from the mass function m f (x)

[25].

Definition 9.10 The conditional probability distribution p1(· | mf (x)) given a mass
function m f (x) is defined as follows:

p1(y | m f (x)) = ∑
H∈LY

BetP(H)p(y | H) (9.21)

where p(y | H) is defined in Definition 9.9 and BetP(H) is the Pignistic probability
derived from mf (x)

[25]:

BetP(H) = ∑
H∈T,T⊆LY

m f (x)(T )
(1−m f (x)( /0))|T | .

Another conversion method is based on the single point coverage function
derived from the mass function mf (x).

Definition 9.11 The conditional probability distribution p2(· | mf (x)) given a mass
function m f (x) is defined as follows:

p2(y | mf (x)) = ∑H∈LY spc(H)p(y | H)
∑H∈LY spc(H)

(9.22)

where spc(H) is the single point coverage of H derived from mf (x):

spc(H) = ∑
H∈T,T⊆LY

m f (x)(T ) = μH( f (x)) = μL(x).
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In general the reasoning process in the linguistic inference systems having a rule
base of the form given in Eq. (9.19) is outlined as follows:

(1) Given input X = x, compute the appropriateness degrees

μLi(x) for i = 1, . . . ,m

(2) Compute the mass function m f (x) on LY from

μHi( f (x)) = μLi(x) for i = 1, . . . ,m

(3) Compute the conditional probability distribution p(· | m f (x)) on ΩY according
to Eqs. (9.21) or Eq. (9.22) (Note the computation of mass function m f (x) can
be omitted if Eq. (9.22) is applied).

(4) Estimate the value f (x) on ΩY according to the following equation:

f (x) =
∫

ΩY

yp(y | m f (x))dy. (9.23)

For the practical applications considered in Section 10.2 we use Eq. (9.22) to
estimate output f (x) because the computation of Eq. (9.22) is simpler than the
Eq. (9.21) and the performances of these two methods are almost identical in
our experiments. In summary, according to Eq. (9.22) the mapping f (x) is then
approximated by:

f (x) = ∑m
i=1 μLi(x)ci

∑m
i=1 μLi(x)

(9.24)

where

ci =
∫

ΩY

yp(y | Hi)dy =

∫
ΩY

yp(y)μHi(y)dy∫
ΩY

p(y)μHi(y)dy
=

∫
ΩY

yμHi(y)dy∫
ΩY

μHi(y)dy
(9.25)

and where we assume that the prior probability distribution p(·) is a uniform
distribution.

Notice that the proposed linguistic inference systems have the same reasoning
steps as the inference systems based on the theory of fuzzy sets[6−8,26]. In the fuzzy
inference systems each of the linguistic labels involved is interpreted as a fuzzy
set which has its own independent membership function. However, in our proposed
linguistic inference systems, each linguistic label while having its own prototypes,
shares the density function δ with all other linguistic labels. Consequently the
parameters involved in the linguistic rule base are reduced significantly. More
importantly, the following section that the linguistic rule induction from the training
data set is comparatively straightforward.

9.5 Summary

In this chapter we have proposed a basic linguistic label of the form about ;P where
P is the prototype set of the underlying vague concept. The neighborhood size of
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the underlying concept is described by the word “about” which represents a density
function on [0,+∞). We have then described a theory of prototypes for representing
this kind of vague concept. In particularly we have focused on linguistic modellng
and information coarsening in the theory of prototypes.
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10

Prototype Theory for Learning

10.1 Introduction

Assume that X is the input variable defined on the domain Rk, and Y is the output
variable defined on the domain R. Now assume that we have a training data set
DB = {(x1

j , . . . ,x
k
j,y j) : j = 1, . . . ,N}. We now consider how to derive a linguistic

rule base from this training data set, which can fit this training data set accurately
and at the same time has a high generalization capability. In the following we firstly
propose a rule induction method which is very simple and natural. Then in order to
improve the generalization capability of the rule base we present a clustering based
method to coarsen the rule base.

10.1.1 General Rule Induction Process

According to the proposed prototype theory for labels, it is natural to derive the
following rule base from the training data set DB of the form

DB = {(x1
j , . . . ,x

k
j,y j) : j = 1, . . . ,N}

IF X is about xi THEN Y is about yi, i = 1, . . . ,N,

where xi = (x1
i , . . . ,x

k
i ).

So we can define the label sets LX = {L1, . . . ,LN} on Rk and LY = {H1, . . . ,HN}
on R, where Li is the label having the prototype (x1

i , . . . ,x
k
i ) and density function δX

and Hi is the label having the prototype yi and density function δY . The density
functions δX and δY can take the forms of Gaussian-type functions (see Eq. (9.18)).

In general, the value N may be very large in which case computation costs are
high when reasoning based on this rule set. Also, a large number of rules may result
in over-fitting of the training data set and consequently poor generalization. Hence,
it is necessary to coarsen the rule base using the information coarsening method
proposed in the previous section.
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The basic idea of our rule coarsening algorithm is to firstly partition the data set
DB based on some clustering algorithm, and then to coarsen the knowledge base
based on the clustering result.

More specifically, assume that the data set is partitioned into M(M � N) subsets
such that DB =

⋃M
i=1 DBi and DBi ∩DB j = /0 for any i �= j. Then each subset DBi

determines a coarsened label pair 〈L∨
i ,H∨

i 〉, where L∨
i has the prototype set

DBXi = {(x1
j , . . . ,x

k
j) : (x1

j , . . . ,x
k
j,y j) ∈ DBi}

such that d(x,DBXi) = minp∈DBXi d(x, p) for any x ∈ Rk, and H∨
i has the prototype

set DBYi = {y j : (x1
j , . . . ,x

k
j,y j) ∈ DBi} such that

d(y,DBYi) = min
p∈DBYi

d(y, p), ∀y ∈ R

From these partitions we obtain a coarsened label set CLX = {L∨
1 , . . . ,L∨

M} on Rk

and a coarsened label set CLY = {H∨
1 , . . . ,H∨

M} on R. Hence we have the following
coarsened knowledge base:

IF X is L∨
i THEN Y is H∨

i , i = 1, . . . ,M.

Notice that according to the prototype semantics for the vague concepts, each
coarsened label is determined by its prototype set and the corresponding density
function δ on its neighborhood size. So the coarsened linguistic IF-THEN rules can
be rewritten as the following transparent forms:

IF X is about DBXi THEN Y is about DBYi, i = 1, . . . ,M

where the coarsened labels about DBXi and about DBYi are equivalent to the
linguistic expressions ∨p∈DBXi about p and ∨p∈DBYi about p, respectively.

In fact, according to the estimation method defined in the Eq. (9.24) and
Eq. (9.25) the coarsened rules are equivalent to the following more transparent rules:

IF X is about DBXi THEN Y is about ci, i = 1, . . . ,M(M � N)

where

ci =
∫ +∞
−∞ yμabout DBYi(y)∫ +∞
−∞ μabout DBYi(y)

≈ ∑N
j=1 μabout DBYi(y j)y j

∑N
j=1 μabout DBYi(y j)

(10.1)

10.1.2 A Clustering Based Rule Coarsening

It is clear that the coarsened knowledge base depends on the partitioning of the
training data set DB. Different partitioning results in a different knowledge base
since each cluster determines a linguistic rule. In the following we give a simple
and effective partitioning method for linguistic rule coarsening. In this partitioning
method, we minimize the following objective function:
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J =
N

∑
j=1

M

∑
i=1

μabout DBYi(y j)(ci − y j)2 (10.2)

where ci is the cluster center of sub-data set DBYi and
⋃M

i=1 DBYi = DBY and
DBYi ∩DBYj = /0 (i �= j).

Clearly it is only when
∂ J
∂ ci

= 0 that the objective function J is minimal. Hence,

by letting
∂J
∂ci

= 0 we have

ci =
∑N

j=1 μabout DBYi(y j)y j

∑N
j=1 μabout DBYi(y j)

(10.3)

which is consistent with the Eq. (10.1). This suggests that J is a reasonable objective
function in the context of our proposed inference method.

On the other hand, by fixing the cluster centers ci for i = 1, . . . ,M, for a given
element y j we can derive the distances d(y j,ci) for all cluster centers ci. W.l.o.g.
assume that (d(y j,c1))2 ≥ . . . ≥ (d(y j,cM))2. Then, only when the following
equation hold

μabout DBY1(y j) ≤ . . . ≤ μabout DBYM (y j) = 1 (10.4)

The function
M

∑
i=1

μabout DBYi(y j)(d(y j,ci))2 (10.5)

is minimal. From this we can derive y j ∈ DBYM . So for each y j ∈ DBY , y j ∈ DBYi
only if (d(y j,ci))2 = min1≤h≤M(d(y j,ch))2, that is

d(y j,ci) = min
1≤h≤M

d(y j,ch)

So we have a new clustering algorithm (see Fig. 10.1 for a brief description)
which is appropriate for linguistic rule coarsening. This algorithm is similar to
the fuzzy c-means clustering algorithm[1], but is more concise and has a clear
operational interpretation. In addition, the above clustering algorithm can be directly
generalized to multi-dimensional data clustering.

Overall, an outline of the proposed linguistic rule induction process is as follows:

(1) Firstly partition the data set DBY on R into M clusters DBYi for i = 1, . . . ,M.
(2) For each data point (p,y) in DB, if y ∈ DBYi then p is a member of subset DBXi

for i = 1, . . . ,M.
(3) According to the Eq. (10.1) compute ci for each subset DBYi, i = 1, . . . ,M.
(4) For simplicity set the density function δX = δY on [0,+∞) (Such as the

Gaussian-type density function δ(c,σ)).

Using the above partitioning algorithm, the rule base can be simplified by
specifying a small rule number M and computing the rule consequences ci off-
line. However, the prototype set DBXi in the rule antecedents may still be very
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large. In this situation, we generate new elements to represent the prototype set
of the coarsened label in each rule antecedent. Assume that DBXi is the original
prototype set for the coarsened label L∨

i , we then may determine Mi(� |DBXi|)
cluster centers as the new prototypical elements for the coarsened label L∨

i by
using the proposed clustering algorithm ( multi-dimensional partitioning). The first
advantage of this further clustering for the prototype sets of the coarsened labels
in the rule antecedents is that it may avoid over-fitting and hence improve the
generalization capability of the rule base. The second advantage is that it can
simplify the reasoning process of the rule base. In the following section we will
test our proposed linguistic modeling and rule induction method on two benchmark
time series prediction problems.

Given data set DBY = {y j : j = 1, . . . ,N} and cluster number M,
Partition data set DBY randomly, such that

⋃M
i=1 DBYi = DBY , DBYi ∩DBYj = /0 (i �= j) and

DBYi �= /0.

For l = 1,2, . . .
Step 1: Determine the partition matrix:
μ(l−1)

i j = δ{ε : d(y j,DBYi) ≤ ε}, where d(y j,DBYi) = miny j′ ∈DBYi |y j − y j′ |

Step 2: Compute the cluster centers:

c(l)
i =

N
∑

j=1
(μ(l−1)

i j )y j

N
∑

j=1
(μ(l−1)

i j )
, 1 ≤ i ≤ M.

Step 3: Update prototype set DBYi associated with each cluster i:
DBYi = {y j : d(y j ,c

(l)
i ) = min1≤h≤M d(y j ,c

(l)
h )} for i = 1, . . . ,M.

Until |c(l) − c(l−1)| < ε .

Fig. 10.1 The description of prototype-based c-means algorithm for rule coarsening in
prototype theory.

10.2 Linguistic Modeling of Time Series Predictions

In this section we apply the proposed linguistic inference system to the Mackey-
Glass time series prediction problem and sunspots prediction problem. In these
applications, we take d to be Euclidean distance. The experiments on the first
example show that the linguistic inference system and its corresponding rule
induction method are very efficient for linguistic modeling. The performance is
superior to other learning methods applied to this example. The experiments on
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the second example show that our information coarsening method is very effective
at improving the generalization capability of the knowledge base.

10.2.1 Mackey-Glass Time Series Prediction

We construct a linguistic inference system to predict a time series that is generated
by the following Mackey-Glass (MG) time-delay differential equation:

ẋ(t) =
0.2x(t − τ)

1+ x10(t − τ)
−0.1x(t)

This time-series is chaotic, and so there is no clearly defined period. The
series will not converge or diverge, and the trajectory is highly sensitive to initial
conditions. This is a benchmark problem in the neural network and fuzzy modeling
research communities2−4.

To obtain the time series value at integer points, we applied the fourth-order
Runge-Kutta method to find the numerical solution to the above MG equation. Here
we assume x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0.

In this time-series prediction the objective is to use known values of the time
series up to the point in time t, in order to predict the future time point t + 6. For
each t, the input training data for the linguistic model is a four dimensional vector
of the form

X(t) = [x(t −18),x(t −12),x(t −6),x(t)]

The output training data corresponds to the trajectory prediction, y(t) = x(t + 6).
With t ranging from 118 to 1117, we obtain 1000 input/output data values. We use
the first 500 data values for the linguistic model training (these become the training
data set DB), while the remaining values are used as test data.

Firstly we consider the extreme situation where each training data point
determines one IF-THEN rule, so we can derive a knowledge base having 500 IF-
THEN rules:

IF X is about X(t) THEN Y is about y(t), t = 118, . . . ,617

where (X(t),y(t)) is a training data point. The neighborhood size of the underlying
vague concept is described by the word “about” which represents a Gaussian-type
density function δ(c,σ) (see Eq. (9.17)). We run this linguistic model with the fixed
center c = 0 and varying width σ from 0.001 to 0.06. Of course, we can also vary
the center c of the density function to optimize the performance of our linguistic
model, but for simplicity we fix the center c = 0. We plot the RMSE of the training
and test data against the width σ of the density function δ(0,σ) in Fig. 10.2 . The
best prediction result RMSE = 0.0059 for the test data is achieved when c = 0 and
σ = 0.026. Table 10.1 shows a comparison of the prediction performance on this
problem across various learning algorithms. The previous results were taken from
References [2] and [3]. As is apparent from Table 10.1 our approach outperforms
all the other algorithms on this problem. The best result reported in the literature
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derived from a genetic fuzzy learning, which requires 50,000 iterations and 100
individuals in the genetic learning. Hence, our proposed linguistic inference system
improves on both the prediction performance and the computational cost of the
learning process.
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Test Data
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Fig. 10.2 The RMSE of Mackey-Glass training and test data vs the width σ of the Gaussian-
type density function δ with the fixed center c = 0, where each training data determines one
rule

Table 10.1 Comparison of results for different learning algorithms

Learning algorithm RMSE

Kim & Kim 0.026
Wang (product operator) 0.091

Min operator 0.090
ANFIS 0.007

Auto Regressive Model 0.19
Cascade Correlation NN 0.06

Back. Pro. NN 0.02
6th order polynomial 0.04

Linear Predictive model 0.55
GEFREX 0.0061

Linguistic Model With 500 Rules 0.0059

One interesting phenomenon is that RMSE of the training data approaches 0
when σ → 0. That is, we can get any high prediction accuracy for the training
data set when each training data determines one linguistic rule. Denote the tth
rule determined by (X(t),y(t)) as Rt . Then, given training data X(t), the activation
degree of rule Rs (s �= t) will tend to zero, and the activation degree of rule Rt , as
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given by the appropriateness measure of the antecedent label for X(t), will tend
to one, as the width σ of the Gaussian-type density function δ tends to zero.
However, for the test data or any data which is different from the training data the
activation degrees of all rules tends to zero when the width σ of the Gaussian-
type density function δ tends to zero, resulting in low prediction accuracy for
the test data. Hence, appropriately increasing the width σ of the Gaussian-type
density function can improve the generalization capability of the linguistic model.
Although the generalization capability can be improved by increasing the width σ ,
the complexity of the linguistic model is not reduced. The information coarsening
presented in the previous section provides a way to reduce the complexity of the
linguistic model, while at the same time improving the generalization capability of
the reduced linguistic model.

We now apply the information coarsening process to the knowledge base
derived from the Mackey-Glass training data. We know that the key to information
coarsening is to partition the training data set appropriately and determine the
prototypical elements for the coarsened concepts. In this example, we partition the
training data {y(t) : t = 118, . . . ,617} into 20 clusters DBYi for i = 1, . . . ,20 using
the clustering algorithm proposed in the previous section, where DBYi is a subset
including all elements belonging to the ith cluster (in clustering we assume c = 0
and σ = 0.1). From this we derive a linguistic model with the following rules:

IF X is about DBXi THEN Y is about DBYi : i = 1, . . . ,20

where DBXi is a subset of input vectors corresponding to the output values in DBYi.
We ran this linguistic model with the fixed center c = 0 and varying width σ

from 0.02 to 0.21 for the training data and test data respectively. Fig. 10.3 and Fig.
10.4 show the RMSE of the training data and test data against the width σ of the
Gaussian-type density function δ(0,σ). The RMSE curves labelled “|DBi| Clusters”
show that the best prediction results for the test data is RMSE = 0.0104 when c = 0
and σ = 0.03. Note from Table 10.1 that only GEFRESX and ANFIS have better
performance than this coarsened rule-base. When c = 0 and σ = 0.03 we plot the
prediction results of the linguistic inference system for the training data and test data
as time series in Figs. 10.5 and 10.6 , respectively. Figs. 10.7 and 10.8 show the
results as scatter plots of actual against predicted values.

As pointed out in Section 10.1, this linguistic inference system is equivalent to
the following rule base:

IF X is about DBXi THEN Y is about ci : i = 1, . . . ,20

where DBXi is a subset of input vectors corresponding to the output values in DBYi,
and ci is as follows (see Eq. (10.1)):

ci =
∫ +∞
−∞ yμabout DBYi(y)∫ +∞
−∞ μabout DBYi(y)

≈ ∑y∈DBYi y
|DBYi| = c̃i

Hence, for any training data (X(t),y(t)) if X(t) ∈ DBXi then f (X(t)) → c̃i as the
width σ of the Gaussian-type density function tends to 0. This means that the RMSE
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Fig. 10.3 The RMSE of Mackey-Glass training data vs the width σ of the Gaussian-type
density function δ with the fixed center c = 0, where the rule number is 20
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Fig. 10.4 The RMSE of Mackey-Glass test data vs the width σ of the Gaussian-type density
function δ with the fixed center c = 0, where the rule number is 20
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Fig. 10.5 Mackey-Glass prediction result of the training data using 20 rules (c = 0,σ =
0.01): solid line is the actual output, dotted line is the predicted output
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Fig. 10.6 Mackey-Glass prediction result of the testing data using 20 rules (c = 0,σ = 0.03):
solid line is the actual output, dotted line is the predicted output
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Fig. 10.7 Scatter plot showing the actual output vs the predicted output of Mackey-Glass
training data using 20 rules (c = 0,σ = 0.03)
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Fig. 10.8 Scatter plot showing the actual output vs the predicted output of Mackey-Glass
test data using 20 rules (c = 0,σ = 0.03)
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of the training data tends to a fixed value when σ → 0. However, for any other test
data it is possible that no rule is activated which may result in poor generalization
capability. Consequently, we would expect a non-zero value of σ to result in the
best generalization from training to the test data.

We can now further coarsen the previous knowledge base by clustering DBXi,
the prototypical elements associated with the antecedent of the ith rule for i =
1, . . . ,20. Here, we partition each DBXi into 1, 2, 3, and 4 clusters, and take the
cluster centers of DBXi as the prototypical elements of the antecedent in the ith rule.
The coarsened knowledge base then has the following rules:

IF X is about cluster centers o f DBXi THEN Y is about ci : i = 1, . . . ,20.

We also plot the RMSE of the training data and test data with the different
cluster numbers against the width σ of the Gaussian-type density function δ(0,σ) in
Figs. 10.3 and 10.4 . The results in Table 10.2 show that even a very coarsened
knowledge base can predict MG time series with very high accuracy, which is
comparable with some well-known prediction algorithms in Table 10.1 .

Table 10.2 Learning Results for the Linguistic Models

Linguistic Model RMSE
500 Rules with (c,σ) = (0,0.026) 0.0059

20 Rules with (c,σ) = (0,0.03) and |DBi| Clusters 0.0104
20 Rules with (c,σ) = (0,0.06) and 4 Clusters 0.0256
20 Rules with (c,σ) = (0,0.08) and 3 Clusters 0.0321
20 Rules with (c,σ) = (0,0.08) and 2 Clusters 0.0506
20 Rules with (c,σ) = (0,0.19) and 1 Cluster 0.0714

This example shows that information coarsening can reduce the complexity
of the linguistic model and improve the transparency of the linguistic model,
however it may also decrease the prediction performance of the linguistic model.
In this example, the best prediction result for the test data is achieved when
each training data determines one rule. However, when the training data is noisy,
information coarsening may help overcome the over-fitting problem, and hence
improve generalization capability. In the following, we apply our proposed linguistic
model and information coarsening process to the sunspots prediction problem which
is a noisy and a high-dimensional prediction problem.

10.2.2 Prediction of Sunspots

This problem is taken from the Time Series Data Library[5]. Sunspots, which are
often considerably larger than the earth, were first discovered in about 1610 shortly
after the invention of the telescope, and have an average life time of about 11 years,
although this can vary between 7 to 15 years. Sunspot numbers have been recorded
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since 1700 but no method has been found to accurately predict or determine when
or why these events occur. It is known however, that sunspot numbers are related
to solar activity such as the magnetic field of the sun changing, which occurs about
every 22 years. In this experiment we use sunspot relative numbers between the
years 1700–1979 which was organized as described in Reference [6]. We use 209
examples (1712–1920) as the training data, and 59 examples (1921–1979) as the
test data. The input attributes were xt−12 to xt−1 and the output attribute was xt (i.e.,
one-year-ahead).

In this experiment, we still use Gaussian-type density function δ(c,σ) to
determine the appropriateness functions of all labels. Initially, we ran the prediction
model which is directly derived from the training data. This generates 209 rules
where each training data point determines one rule. For the density function δ(c,σ),
we select the center c = 0 and vary the width σ from 18 to 60. From Fig. 10.9
, we can see that the RMSE for the sunspot training data increases as the width
σ of the density function increases from 18 to 60. In the previous sub-section we
have pointed out that RMSE for the training data will tend to 0 as the width σ of
the Gaussian-type density function δ tends to 0. Fig. 10.9 is consistent with this
analysis. On the other hand, from Fig. 10.10 we can see that the minimal RMSE
for the sunspot test data is achieved when σ = 36. By comparing Fig. 10.9 and
Fig. 10.10 , we can say that the prediction results over fit the training data when
the width σ of the density function is less than 38. Hence, from the viewpoint of
the generalization capability of the linguistic model, the results suggest that the rule
base with density function δ(0,36) is optimal. The prediction results for the sunspot
training data and test data under the situation (c,σ) = (0,36) are plotted in Fig.
10.11 and Fig. 10.12 , respectively. The comparisons show that our linguistic model
can effectively predict the trend of the sunspot time series. Moreover, in Figs. 10.13
and 10.14 we give the scatter plots showing the predicted results against the actual
results of sunspot training data and test data, respectively. These scatter plots show
that for low sunspot numbers the prediction results are overestimated, and for high
sunspot numbers the prediction results are underestimated. One possible reason for
this phenomenon is that the labels in the input space concentrate on some local area
and are consequently too fine. Hence, it may be necessary to coarsen the rule base.
Coarsening may overcome the phenomena of underestimation and overestimation.

We now use our proposed c-means clustering to partition the 209 examples
(1712–1920) into 5 clusters. This results in 5 linguistic IF-THEN rules. Each cluster
i determines a sub-training data set DBi where DBXi and DBYi are the prototype set
of the antecedent and consequence in the ith rule. In this situation, we have the rule
base:

IF X is about DBXi THEN Y is about DBYi, i = 1, . . . ,5.

Here, the neighborhood size of the underlying vague concept is described by the
word “about” which represents a Gaussian-type density function δ(c,σ). We run
this rule base with the fixed center c = 0 and varying width σ from 18 to 60.
From Figs. 10.15 and 10.16 we can see that the RMSE for the test data in this
coarsened linguistic model (the curve labelled “|DBi| Clusters”) is less than RMSE
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Fig. 10.9 The RMSE of sunspot training data vs the width σ of the Gaussian-type density
function δ with the fixed center c = 0, where each training data determines one rule
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Fig. 10.10 The RMSE of sunspot test data vs the width σ of the Gaussian density function
δ with the fixed center c = 0, where each training data determines one rule

1750 1800 1850 1900

0

50

100

150

200

Year

N
u
m

b
er

o
f

su
n
sp

o
ts

Predicted Output

Actual Output

RMSE = 11.36

Fig. 10.11 Sunspot prediction result of the training data using 209 rules (c = 0,σ = 36),
where each training data determines one rule
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Fig. 10.12 Sunspot prediction result of the test data using 209 rules (c = 0,σ = 36), where
each training data determines one rule
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Fig. 10.13 Scatter plot showing the actual output vs the predicted output of sunspot training
data using 209 rules (c = 0,σ = 36), where each training data determines one rule
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Fig 10 14 Scatter plot showing the actual output vs the predicted output of sunspot test data
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derived from the linguistic model having 209 rules. This means that the prediction
performance of the coarsened linguistic model is improved. As mentioned in the
previous sub-section, RMSE for the training data would attend to a fixed value when
σ → 0.
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Fig. 10.15 The RMSE of sunspot training data vs the width σ of the Gaussian-type density
function δ with the fixed center c = 0, where the rule number is 5
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Fig. 10.16 The RMSE of sunspot test data vs the width σ of the Gaussian-type density
function δ with the fixed center c = 0, where the rule number is 5

We further partition DBXi into 1, 2, 3, and 4 clusters, and take the cluster centers
as the prototypical elements of the antecedent in the ith rule for i = 1, . . . ,5. That is,
the rule base has the form:

IF X is about Cluster Centers of DBXi THEN Y is about DBYi, i = 1, . . . ,5.
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In Figs. 10.15 and 10.16 we also show the prediction performances of these 4
coarsened linguistic models with different cluster numbers. Roughly speaking, the
RMSE for the test data decreases as the cluster number of DBXi decreases from
|DBi| to 2. Table 10.3 shows the RMSE for the test data for the different linguistic
models with different granularity. The optimal performance of the rule base is
obtained when the cluster number is reduced to 2.

Table 10.3 Learning results for the linguistic models

Linguistic Model RMSE
209 Rules with (c,σ) = (0,36) 29.4139

5 Rules with (c,σ) = (0,36) and |DBi| Clusters 28.3229
5 Rules with (c,σ) = (0,46) and 4 Clusters 28.2590
5 Rules with (c,σ) = (0,32) and 3 Clusters 25.9793
5 Rules with (c,σ) = (0,38) and 2 Clusters 21.9113
5 Rules with (c,σ) = (0,54) and 1 Cluster 24.0986

When the cluster number of DBXi is 2, we obtain the best performance (RMSE
= 21.91) for the test data. Figs. 10.17 and 10.18 show the prediction results of this
coarsened linguistic model with (c,σ) = (0,38) for the training data and test data,
respectively. We also show the scatter plots of the predicted results of this coarsened
linguistic model with (c,σ) = (0,38) against the actual results for the sunspot data
in Figs. 10.19 and 10.20 . Table 10.4 shows the comparison results of the prediction
performance among various learning algorithms. The first three results were taken
from Reference [6]. The performance of our proposed linguistic inference system is
comparable with the best of these algorithms.

Table 10.4 Comparison of results for the different learning algorithms

Learning algorithm RMSE

Fuzzy Naive Bayes 28.4735
ε−Support Vector Regression System 20.4481

Best Fuzzy Semi-Naive Bayes 22.3530
Back. Pro. NN 32.0341

ANFIS 25.8950
Linguistic Model with 5 Rules 21.9113

In Table 10.4 we also list the results we derive from a backpropagation neural
network[7] and ANFIS (an adaptive network-based fuzzy inference system[8]). With
the backpropagation neural network for this example, we obtain the best prediction
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Fig. 10.17 Sunspot prediction result of the training data using 5 rules (c = 0,σ = 38), where
the antecedent of each rule has two prototypical elements. Solid line is the actual output,
dotted line is the predicted output
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Fig. 10.18 Sunspot prediction result of the test data using 5 rules (c = 0,σ = 38), where the
antecedent of each rule has two prototypical elements. Solid line is the actual output, dotted
line is the predicted output

performance for the test data RMSE = 32.452 (its corresponding RMSE of the
training data is 3.6820) when the number of hidden nodes is 3. In our experiments,
neural networks where the number of hidden nodes is greater than 3 tend to overfit
the training data. With ANFIS for this example, the rule number is 5 which is the
same as that of our linguistic model. In this case, the performance of ANFIS is not
better than that of our linguistic inference system.

10.3 Summary

In this chapter we proposed a new rule learning algorithm based on the prototype
theory based label semantics. Our proposed linguistic model has a simple and
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Fig. 10.19 Scatter plot showing the actual output vs the predicted output of sunspot training
data using 5 rules (c = 0,σ = 38), where the antecedent of each rule has two prototypical
elements
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Fig. 10.20 Scatter plot showing the actual output vs the predicted output of sunspot test data
using 5 rules (c = 0,σ = 38), where the antecedent of each rule has two prototypical elements
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transparent structure, and rule induction from training data is relatively easy and
direct. The general characteristics of the proposed algorithm can be summarized as
follows:

(1) The linguistic IF-THEN rule has a transparent and simple form:

IF X is about P THEN Y is about p

where P is the prototype set of the rule antecedent, and p is the prototype of the
rule consequence.

(2) Compared with fuzzy inference systems, there are a relatively small number of
parameters making the process of parameter estimation more straightforward.

(3) Other learning algorithms such as ANN, GAs or statistical learning methods
could be easily incorporated into the linguistic inference system to improve the
performance of the linguistic model further.
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11

Prototype-Based Rule Systems

11.1 Introduction

Chapter 9 introduced a prototype-based interpretation for label semantics[1−3].
According to this interpretation, each basic label L has the form of “about P”[3],
where P is a set of prototypes of L and the constraint “about” is represented by a
random threshold ε with associated probability distribution δ . ε is interpreted as the
uncertain upper bound on the distance an element x can be from the prototypes P for
L to be appropriate to describe x. Moreover, using a prototyped-based interpretation,
the appropriateness measure μL(x) of a basic label L for describing a instance x
can also be expressed as the probability of the underlying instance x lying within
ε of the associated set of prototypes P. Using this new interpretation and the
associated representation framework, Tang and Lawry proposed a prototype-based
IF-THEN rule of the form “IF X is about P THEN Y is about Q”, this type of
rule has a very transparent structure with a natural semantic interpretation [3]. The
induction of prototype-based rules is then shown to be relatively straightforward and
computationally efficient [3].

This chapter further explores prototype-based linguistic inference systems by
proposing a more general prototype-based IF-THEN rule of the form “IF X is
about P THEN Y is about f (X)”, where f (X) is a linear function of the input
variables X . This type of rule has a similar structure to T-S fuzzy IF-THEN rules[4],
but has a different interpretation and consequently requires a new type of rule
induction algorithm. A fundamental difference between prototype-based rules and
T-S fuzzy rules lies in the interpretation of the linguistic expressions. Fuzzy set
theory uses membership functions to define linguistic expressions, while in label
semantics meanings are determined using appropriateness measures. Furthermore,
the calculus for the combination of linguistic expressions differs between fuzzy sets
and appropriateness measures. For instance, in fuzzy set theory, the calculus is truth-
functional, but in label semantics the calculus is not truth-functional, although it may
be functional in a weaker sense[5,6].
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A rule learning algorithm is proposed to infer general prototype-based IF-THEN
rules from a data set. This rule learning algorithm has two steps. The first step is to
identify the rule structure using a new clustering algorithm combined with least-
square regression. The second step is to optimize the probability density function δ
associated with the constraint “about” as well as the coefficients of linear functions
involved in the rules by using a conjugate gradient algorithm. Experiments on a
number of benchmark problems show that the proposed prototype-based linguistic
inference system is very robust. In particular it performs well on high-dimensional
and noisy data.

11.2 Prototype-Based IF-THEN Rules

In this section we propose a prototype-based IF-THEN rule for linguistic modeling.
The proposed rule has a similar structure to T-S fuzzy rules[4], but has a different
underlying uncertainty model. The reasoning process for this prototype-based
linguistic inference system is based on the prototype theory for vague concepts
presented in the previous section.

The proposed prototype-based IF-THEN rule base has the following form: for
i = 1, . . . ,M,

IF X is about Pi THEN Y is about fi(X) (11.1)

where Pi is a subset of Rn and fi(X) is a mapping from Rn to R. For simplicity we
assume that

fi(X) = Ai[1,X ]T = ai
0 +ai

1x1 + . . .+ai
nxn (11.2)

where X = (x1, . . . ,xn)T and Ai = (ai
1, . . . ,a

i
n), a linear combination of input

variables in the rule antecedents. In the following we assume that the constraint
“about” is represented by a Gaussian additive probability density function δ(c,σ) on
[0,+∞) with the following form:

δ(c,σ)(ε) =
1√
2πσ

[
exp

(ε − c)2

−2σ 2 + exp
(ε + c)2

−2σ 2

]
(11.3)

where c and σ are the center and width of the Gaussian additive probability density
function respectively.

This type of probability density function for δ was first proposed in Reference
[3]. Using the Gaussian additive probability density function the linguistic label
Li = about Pi has the following appropriateness measure:

μLi(x) = δ ([d(x,Pi),+∞))
= 1−F(d(x,Pi) | c,σ)+F(−d(x,Pi) | c,σ) (11.4)

where

F(d | c,σ) =
1√
2πσ

∫ d

−∞
exp((ε − c)2/(−2σ 2))dε (11.5)
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It is the normal cumulative distribution function with mean c and standard
deviation σ .

We assume that output variable Y is a random variable which has a prior
probability distribution p(·) on R. Given any X ∈ R

n, then how do we update the
probability distribution p(·) on R based on the linguistic rule base? That is, what
is the posterior probability distribution pRB(· | X), where RB denotes the linguistic
rule base. Note that for any X ∈ R, we can obtain the appropriateness measures
μabout Pi(X) for i = 1, . . . ,M. It is natural to assume that

μabout fi(X)(y) = μabout Pi(X) (11.6)

for i = 1, . . . ,M, where y ∈ R is the unknown value corresponding to the input X .
By normalizing the appropriateness measures μabout fi(X)(y) we obtain a weight for
each linguistic label about fi(X). So we have the following definition:

Definition 11.1 Given X ∈ Rn the posterior probability distribution pRB(· | X) on
R is defined as follows: for any y ∈ R

pRB(y | X) =
M

∑
i=1

[
μabout Pi(X)

∑M
i=1 μabout Pi(X)

p(y | about fi(X))
]

(11.7)

In the above definition the conditional probability p(y | about fi(X)) is given in
Reference [7] as follows:
Definition 11.2 [7] The conditional probability distribution p(· | θ) given a linguistic
expression θ on R is defined as follows: for any y ∈ R

p(y | θ ) =
μθ (y)p(y)∫

R
μθ (y)p(y)dy

(11.8)

where p(·) is a prior probability distribution on R.
After we obtain the posterior probability distribution pRB(· | X) on R, we take

the expectation E(y | X) as the estimate of f (X):
Definition 11.3 Given input X ∈ R, the output f (X) of the linguistic rule base RB
is defined as follows:

f (X) =
∫

R

ypRB(y | X)dy

=
M

∑
i=1

[
μabout Pi(X)

∑M
j=1 μabout Pj(X)

∫
R

yp(y | about fi(X))dy

]

Assume that the prior probability distribution p(·) on R is a uniform distribution,
then the output f (X) of the linguistic rule base can be simplified further.

Theorem 11.1 Given M rules having the form as in Eq. (11.1), then for any input
X ∈ Rn the estimated f (X) from the rule-base is as follows:

f (X) =
∑M

i=1 μabout Pi(X) fi(X)

∑M
i=1 μabout Pi(X)

(11.9)
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Proof Since the prior probability distribution p(·) on R is a uniform distribution,
then according to Eq. (11.8), we have:∫

R

yp(y | about fi(X))dy =

∫
R

yμabout fi(X)(y)dy∫
R

μabout fi(X)(y)dy
(11.10)

Moreover, ∫
R

yμabout fi(X)(y)dy

=
∫ fi(X)

−∞
yμabout fi(X)(y)dy+

∫ +∞

fi(X)
yμabout fi(X)(y)dy

=
∫ 0

−∞
( fi(X)+ y)δ (|y|,+∞))dy+

∫ 0

−∞
( fi(X)− y)δ (|y|,+∞)dy

= fi(X)
∫ +∞

−∞
δ (|y|,+∞)dy

On the other hand, we have∫
R

μabout fi(X)(y)dy =
∫ +∞

−∞
δ (|y− fi(X)|,+∞))dy

=
∫ +∞

−∞
δ (|y|,+∞)dy (11.11)

So we can derive the following formula∫
R

yμabout fi(X)(y)dy = fi(X)
∫

R

μabout fi(X)(y)dy (11.12)

Hence, according to Definition 11.2, the result follows immediately.

If functions fi(X) involved in the rule base are single constants fi(X) = ai, then
we obtain rules of the form:

IF X is about Pi THEN y is about ai, i = 1, . . . ,M, (11.13)

where Pi is a subset of R
n and ai is a real number for i = 1, . . . ,M. And for any input

X ∈ R
n the output of this linguistic inference system is as follows:

∑M
i=1 μabout Pi(X)ai

∑M
i=1 μabout Pi(X)

(11.14)

We can see that this linguistic inference system with constant consequences is
actually the one proposed in Reference [3]. In this case, all input values X ∈ R

n

share the same linguistic rule base denoted by RB(a1, . . . ,aM). On the contrary, for
rules with the functional consequences different inputs have different rule bases. For
input X ∈ R

n the corresponding rule base is RB( f1(X), . . . , fM(X)). So the current
rule base can be considered as a dynamic rule base which is potentially more flexible
for modelling uncertain phenomena.
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11.3 Rule Induction Based on Data Clustering and Least-Square

Regression

Given a training data set DB which includes N data pairs (Xi,yi) where Xi =
(xi

1, . . . ,x
i
n) is an n-dimensional vector in R

n, we now consider how to induce rules
of the form given in Eq. (11.1)?

For rules of the form in Eq. (11.14) a rule induction method based on the
clustering and information coarsening was proposed in[3]. This early work motivates
us to propose a rule induction method based on a clustering algorithm for the general
rule base given in Eq. (11.1).

In the following, we take the linear combination functions fi(X) as the
consequences of rules. Notice that we can derive a linear combination function fi(X)
which is best fitting a given sub-data set DBi = {(Xj,y j) : j = 1, . . . ,Ni} by applying
least squares regression

Oi = ∑
(Xj ,y j)∈DBi

(y j − fi(Xj))2. (11.15)

This can be done by letting the gradient information ∂Oi
∂Ai

= 0:

BiAi = Ci

where

Bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ni
Ni
∑
j=1

x j
1 · · ·

Ni
∑
j=1

x j
n

Ni
∑
j=1

x j
1

Ni
∑
j=1

x j
1x j

1 · · ·
Ni
∑
j=1

x j
1x j

n

...
... · · · ...

Ni
∑
j=1

x j
n

Ni
∑
j=1

x j
nx j

1 · · ·
Ni
∑
j=1

x j
nx j

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11.16)

Ci =
( Ni

∑
j=1

y j
Ni
∑
j=1

x j
1y j · · ·

Ni
∑
j=1

x j
ny j

)T

(11.17)

So we have fi(X) = Ai[1,X ]T, where

Ai = B−1
i Ci (11.18)

Eq. (11.18) is concise in notation. However, it is expensive in computation when
dealing with matrix inversion and, moreover, it becomes ill-defined if Bi is singular.
As a result, we can employ sequential formulas to compute Ai for i = 1, . . . ,M.
Assume that DBi = {[Xj,y j] : j = 1, . . . ,Ni} then Ai can be iteratively calculated
using the sequential formulas adopted in the following learning algorithm[8]:

Ai( j +1) = Ai( j)+S( j +1)[1,Xj+1]T (y j+1 − [1,Xj+1]Ai( j))
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S( j +1) = S( j)− S( j)[1,Xj+1]T [1,Xj+1]S( j)
1+[1,Xj+1]S( j)[1,Xj+1]T

, j = 0, . . . ,Ni

where S( j) is often called the covariance matrix and the least squares estimate Ai
is equal to Ai(Ni). The initial conditions are Ai(0) = 0 and S(0) = γI, where γ is a
large positive number and I is the (n+1)× (n+1) identity matrix.

The above discussions on the estimations of linear functions fi(X) motivate us
to propose a rule induction method based on the clustering of the training data set
DB and least square criterion. Initially we apply a clustering algorithm to obtain
M clusters DBi of the training data set DB, and then we apply linear regression
to determine a functional mapping Y = fi(X) for each cluster DBi. For each
(Xj,y j) ∈ DBi the rule base effectively captures the data provided that d(y j, fi(Xj))
is small. This is formalized by the following condition:

(Xj,y j) ∈ DBi ⇔ d(y j, fi(Xj)) = min
1≤k≤M

d(y j, fk(Xj)) (11.19)

for i = 1, . . . ,M.
However, classical clustering algorithms such as c-means and FCM[9] do not

generally result in clusters having this requirement. Hence, we propose a new
clustering algorithm for linguistic rule induction. Eq. (11.19) naturally generates
a partition updating criterion for clustering as follows:

Minimize J =
M

∑
i=1

∑
(Xj ,y j)∈DBi

d(y j, fi(Xj)) (11.20)

Hence, the basic procedures for this clustering algorithm can be outlined as
follows: Given an initial partition {DBi : i = 1, . . . ,M} of the training data set
DB, estimate the linear combination function fi(X) for each cluster DBi using
Eq. (11.18), then using Eq. (11.19) to update the partition by computing the
distances d(y j, fi(Xj)) for all training data and linear combination functions fi(X).
Continue this iteration until the objective function J converges to a minima. Fig.
11.1 gives a brief description of our proposed clustering algorithm for linguistic
rule induction.

After obtaining the clusters {DBi : i = 1, . . . ,M} for the training data set DB, we
can immediately derive a rule base of the form in Eq. (11.1):

IF X is about DBXi THEN Y is about fi(X), i = 1, . . . ,M

where DBXi = {Xj : (Xj,y j) ∈ DBi}. The Gaussian additive probability density
function δ(c,σ) can be estimated using the following formulas:

c = ε/(2M) (11.21)

σ =
2
M

(
1
N

N

∑
j=1

(d(Xj,X)− ε)2

)1/2

(11.22)
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Given data set DB = {(Xj ,y j) : j = 1, . . . ,N} and cluster number M, partition data set DB
randomly, such that

⋃M
i=1 DBi = DB, DBi ∩DBk = /0 and DBi �= /0.

For l = 1,2, . . .
Step 1: Determine the linear combination functions for the clusters DBi:

fi(X) = Ai[1,X ]T ,

where Ai is derived from Eq. (11.18) for i = 1, . . . ,M.
Step 2: Compute the objective function J(l):

J(l) =
M

∑
i=1

∑
(Xj ,y j)∈DBi

d2(x j, fi(Xj))

Step 3: Update the clusters DBi:
DBi = {(Xj,y j) : d(y j, fi(Xj)) = min

1≤k≤M
d(y j, fk(Xj))} for i = 1, . . . ,M

Until |J(l) − J(l−1)| < ε .

Fig. 11.1 The description of clustering algorithm for the linguistic rule induction.

where

X =
1
N

N

∑
j=1

Xj (11.23)

ε =
1
N

N

∑
j=1

d(Xj,X) (11.24)

Moreover, we can further coarsen the rule base using the cluster centers of DBXi
to represent the prototypes of the ith rule antecedent label. In general we use crisp
c-means to obtain the cluster centers Pi of DBXi for i = 1, . . . ,M. In this way we can
simplify the rule base and improve the transparency. The key to this rule coarsening
is to determine the prototype numbers |Pi| for i = 1, . . . ,M. In the following we
present a method to estimate the prototype number of DBXi. Assume that Pi is the
set of cluster centers (or prototypes) of DBXi, then it is required that

∑Xj∈DBXi μabout Pi(Xj)

|DBXi| ≥ β (11.25)

where β is a threshold (∈ (0,1]) represention the lowest degree of representative.
Notice that the threshold β depends on the probability density function δ . By
increasing the value of β we can obtain a more precise model for the training data.
On the contrary, by decreasing the value of β we can obtain a more coarse and
transparent model. The motivation here is that the left hand side of Eq. (11.25) is
the probability that an element picked up at random from DBXi will lie within ε
of Pi.
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11.4 Rule Learning Using a Conjugate Gradient Algorithm

For the induction method proposed in the previous section the identification of linear
functions does not take into account the influence of the probability density function
δ . Furthermore, the induced rule base is only optimal in the sense of objective
function J (Eq. 11.20) and least square criterion (Eq. 11.19). This may suggest that
we can further fine tune the induced rules by adjusting the linear functions and
probability density function δ . In this section an algorithm based on a conjugate
gradient method is proposed to optimize the parameters of the prototype-based IF-
THEN rules generated by the induction method proposed in the previous section.

In the following we only consider rules in the form:

IF X is Li THEN Y is about fi(X), i = 1,2, . . . ,M (11.26)

where Li = about DBXi or Li = about Pi (where Pi ⊆ Rn is the set of cluster centers
of DBXi), and fi(X) is a linear function from R

n to R such that fi(X) = Ai[1,X ]T =
ai

0 +ai
1x1 + · · ·+ai

nxn.
Given a training data set DB = {(Xi,yi) : Xi ∈ R

n,yi ∈ R, i = 1, . . . ,N}, we
assume that a rule base is learnt from DB by using the clustering algorithm proposed
in the previous section. In order to fine tune this rule base we take the MSE of the
training data set as a measure of performance of the linguistic model, defined as
follows:

O =
1
N

N

∑
j=1

( f (Xj)− y j)2 (11.27)

where f (Xj) is the output of the linguistic inference system for the input Xj given
by:

f (Xj) =
∑M

k=1 μLk(Xj) fk(Xj)

∑M
k=1 μLk(Xj)

(11.28)

The parameters involved in this linguistic inference system consist of the
prototypes DBXi (or its cluster centers Pi), the coefficients Ai for i = 1, . . . ,M, and
the center c and width σ of the Gaussian additive probability density function. These
parameters can be initially estimated from the clustering algorithm proposed in
the previous section. Here we propose a gradient-based learning algorithm to tune
these parameters further. In order to simplify the learning process we only learn
the parameters Ai for i = 1, . . . ,M and the Gaussian additive probability density
function. The prototypes DBXi or Pi for i = 1, . . . ,M are determined by the clustering
algorithm.

The total number of parameters for optimization is (n + 1)M + 2. Let v =
[A1, . . . ,AM,c,σ ] denote the vector of parameter values, and let O denote the
objective function. Let g be defined by:

g =
[

∂ O
∂A1

, . . . ,
∂O

∂ AM
,

∂O
∂c

,
∂O
∂σ

]
(11.29)
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We now use the conjugate gradient algorithm to optimize these parameters based on
the following updating rules:

vk+1 = vk +αkdk,dk = −gk +βkdk−1

d0 = −g0,βk =
gkgT

k

gk−1gT
k−1

where v0 is determined by the clustering algorithm proposed in the previous section,
and the search distance αk along the direction dk is determined by a line search
algorithm such as a golden section search[10].

All the gradient information involved in Eq. (11.29) is determined as follows:

∂O
∂ Ai

=
2
N

N

∑
j=1

( f (Xj)− y j)
∂ f (Xj)

∂ Ai
(11.30)

∂O
∂ c

=
2
N

N

∑
j=1

( f (Xj)− y j)
∂ f (Xj)

∂c
(11.31)

∂O
∂σ

=
2
N

N

∑
j=1

( f (Xj)− y j)
∂ f (Xj)

∂σ
(11.32)

where

∂ f (Xj)
∂ Ai

=
μLi(Xj)

M
∑

k=1
μLk(Xj)

[1,Xj]

∂ f (Xj)
∂c

=

M
∑

i=1
fi(Xj)

∂ μLi (Xj)
∂c

M
∑

i=1
μLi(Xj)(

M
∑

i=1
μLi(Xj)

)2 −

M
∑

i=1
μLi(Xj) fi(Xj)

M
∑

i=1

∂ μLi (Xj)
∂c(

M
∑

i=1
μLi(Xj)

)2

∂ μLi(Xj)
∂ c

=
1√

2πσ

[
exp

(d(Xj,Pi)− c)2

−2σ 2 − exp
(d(Xj,Pi)+ c)2

−2σ 2

]

∂ f (Xj)
∂σ

=

M
∑

i=1
fi(Xj)

∂ μLi (Xj)
∂σ

M
∑

i=1
μLi(Xj)(

M
∑

i=1
μLi(Xj)

)2 −

M
∑

i=1
μLi(Xj) fi(Xj)

M
∑

i=1

∂ μLi (Xj)
∂σ(

M
∑

i=1
μLi(Xj)

)2
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and

∂ μLi(Xj)
∂σ

=
(d(Xj,Pi)− c)√

2πσ 2
exp

(
(d(Xj,Pi)− c)2

−2σ 2

)
+

(d(Xj,Pi)+ c)√
2πσ2

exp
(

(d(Xj,Pi)+ c)2

−2σ 2

)
If the prototype in the ith rule is DBXi, then the distance d(Xj,Pi) in the above

formulas should be replaced by d(Xj,DBXi).
According to the above discussion we can see that the proposed identification

of prototype-based rules consists of two steps. The first step is to use the
proposed clustering algorithm together with least squares regression to determine
the prototype sets for the linguistic labels in rule antecedents and linear functions in
the rule consequences, and also to estimate the initial Gaussian additive probability
density function parameters using Eqs. (11.21) and (11.22). In this step we can also
use cluster centers determined from the training data as prototypes for linguistic
labels in the rule antecedents, so as to improve generalization. The second step is to
fine tune the parameters of the rule base using the conjugate gradient algorithm
proposed in this section. These two steps are then iterated until a user defined
maximum iteration number is reached.

11.5 Applications in Prediction Problems

In this section we apply the prototype-based linguistic inference system to three
prediction problems. In these applications we take d to be the Euclidean distance.
The first example is a 2-dimensional nonlinear function estimation problem. This
simple example illustrates that the proposed induction algorithm can generate
effective rules based on multi-modal clusters. The second prediction problem is
the Mackey-Glass time series which is often used as a benchmark problem in
artificial neural networks and fuzzy modeling. Our results are comparable with
the best algorithms in the literatures. The final example is the sunspots time
series which is not only high dimensional, but also a noisy prediction problem. A
linguistic inference system with only 2 prototype-based rules works very well for
this difficult problem, suggesting that our linguistic inference system can generate
robust, effective and simple models.

11.5.1 Surface Predication

In this example a training data set based on a grid of 23×23 points and a test data
set based on a grid of 45×45 points were generated to describe the surface defined
by equation z = sin(x× y) where x,y ∈ [0,3].

By fixing the prototype sets Pi of rule antecedent labels, we then used the
conjugate gradient algorithm presented in Section 11.4 to adjust the coefficients
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Fig. 11.2 The objective function J with 3 clusters for the training data set generated from
equation z = sin(x× y)
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Fig. 11.3 The prototype sets Pi of Li for i = 1,2,3, where points marked “o” represent
the elements of P1, points marked “*” represent the elements of P2, and points marked “+”
represent the elements of P3
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of linear functions fi(x,y) for i = 1,2,3 in the rule consequences and the parameters
of Gaussian additive probability density function δ(c,σ) (the initial values of c and σ
were estimated using Eqs. (11.21) and (11.22)). Fig. 11.4 shows the RMSE for the
training data set and test data set against the epoch number. From this figure we can
see that the clustering algorithm results in a rule base with a relatively low RMSE,
which is then significantly improved by the conjugate gradient algorithm. Fig. 11.4
also shows that convergence of the conjugate gradient algorithm is very quick in

this example.
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Fig. 11.4 (a) RMSE against epoch for the training data generated from equation z =
sin(x× y) for the linguistic model with 3 prototype-based rules. (b) RMSE against epoch for
the test data generated from equation z = sin(x×y) for the linguistic model with 3 prototype-
based rules

The final estimates obtained for the linear functions were as follows:

f1(x,y) = 0.4513−0.0886x−0.0886y

f2(x,y) = 0.7503+0.0793x+0.0793y

f3(x,y) = 0.1730−0.2576x−0.2576y

The resulting parameters for the Gaussian additive probability density function were
c = 0.158 and σ = 0.1136. Hence the final prototype-based rules were as follows:
for i = 1,2,3

IF (x,y) is Li = about Pi THEN z is about fi(x,y) (11.33)

where for i = 1,2,3 Pi is the prototype set of Li, which is the ith cluster derived
from the training data set using the clustering algorithm outlined in Fig. 11.1 .
The appropriateness measures for the learnt labels Li = about Pi and the associated
linear functions z = fi(x,y) for i = 1,2,3 are shown in Figs. 11.5 , 11.6 , and 11.7
respectively, where about is described by a Gaussian additive probability density

function δ(0.158,0.1136). Figs. 11.8 and 11.9 show comparisons between the predicted
surface derived from the rule base and original surface for the training and test data
sets respectively.
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11.5.2 Mackey-Glass Time Series Prediction

In this subsection we investigated the construction of a linguistic inference system to
predict the time series generated by the following Mackey-Glass (MG) time-delay
differential equation:

ẋ(t) =
0.2x(t − τ)

1+ x10(t − τ)
−0.1x(t)
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Fig. 11.8 (a) The original surface of equation z = sin(x×y) for the training data set. (b) The
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Fig. 11.9 (a) The original surface of equation z = sin(x× y) for the test data set. (b) The
prediction surface generated from linguistic model for the test data set

This time-series is chaotic with no clearly defined period. The series does not
converge or diverge, and the trajectory is highly sensitive to initial conditions.
This is a benchmark problem in the neural network and fuzzy modeling research
communities[11−13]. To obtain the time-series values at integer points, we applied
the fourth-order Runge-Kutta method to find the numerical solution to the above
MG equation. Here we assumed x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0.

In this time-series prediction, the objective is to use known values up to time
t, in order to predict future values at time point t + 6. For each t, the input
training data for the linguistic model is a four dimensional vector of the form,
X(t) = [x(t − 18),x(t − 12),x(t − 6),x(t)]. The output training data corresponds
to the trajectory prediction, y(t) = x(t + 6). With t ranging from 118 to 1117, we
obtained 1000 input/output data values of which the first 500 formed the training set
DB and the second 500 the test set.

We assumed that the rule number was M = 16. By running the clustering
algorithm proposed in Section 11.3 we obtained an initial set of clusters DBi. Using
Eqs. (11.21) and (11.22) we obtained c = 0.0137 and σ = 0.0150 for Gaussian
additive probability density function δ . Fig. 11.10 shows that the convergence of
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Fig. 11.10 The objective function J with 16 clusters for the MG training data set

the objective function J (see Eq. (11.20)). Applying the clustering algorithm we
obtained the following rule base:

IF X is Li THEN Y is about fi(X), i = 1, . . . ,16 (11.34)

where Li = about DBXi and fi(X) = Ai[1,X ]T.
In this rule base we took the cluster DBXi as the prototypes of the label in

the ith rule antecedent. We then used the conjugate gradient algorithm to train this
linguistic model by tuning the linear combination functions fi(X) for i = 1, . . . ,16
and the Gaussian additive probability density function δ(c,σ). Fig. 11.11 shows the
RMSE curves of the training data set and test data set plotted against the epoch
for this linguistic model. We can see that the clustering algorithm gives a good
estimate for the parameters of the linguistic model, which is subsequently improved
by applying the conjugate gradient algorithm. This indicates that our proposed
clustering algorithm can give a good initial estimation for the linguistic model. In
order to see the impact of the probability density function on the performance of the
linguistic model, we also plot the center and width curves for the Gaussian additive
probability density function in Fig. 11.12 . During the learning process, the center c
of the Gaussian additive probability density function varies in an unusual way, while
the width σ converges in an almost monotonic manner. The value of center c finally
converged to c = 0.0132 and the value of width σ converged to σ = 0.0255. Given
these parameter values, the RMSE of the training data set and test data are 0.0059
and 0.007, respectively. Table 11.1 gives the performance of a number of well-
known learning algorithms on the MG data (results are taken from[3,8,11]). From
this we can see that our linguistic model has the same performance as ANFIS which
also has 16 fuzzy IF-THEN rules. Notice that the best performance on this data set is
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from the prototype-based linguistic inference system with constant consequences[3],
in which each rule has the form as in Eq. (11.13). However that linguistic inference
system has a huge rule base where each training data (Xi,yi) determines a prototype-
based rule about Xi → about yi for i = 1, . . . ,500. The current prototype-based
linguistic inference system with linear functions as consequences, only has 16 rules
and hence is considerably more concise. GEFRES in Table 11.1 also has better
accuracy than our model. However, GEFRES is a genetic fuzzy learning algorithm
with 20 fuzzy IF-THEN rules, which requires 50,000 iterations and a population of
100 individuals.
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Fig. 11.11 The performance of linguistic model with 16 prototype-based rules. (a) RMSE
against epoch for MG training data. (b) RMSE against epoch for MG test data
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Fig. 11.12 The Gaussian additive probability density function δ(c,σ) for the linguistic model
with 16 prototype-based rules. (a) The curve of center c against epochs. (b) The curve of
width σ against epochs

We now consider the coarsened rule base consisting of the following prototype-
based rules: for i = 1, . . . ,16

IF X is about Pi THEN Y is about fi(X) (11.35)

where Pi is the set of crisp means of DBXi and fi(X) = Ai[1,X ]T for i = 1, . . . ,16.
Here we used Eq. (11.25) to determine the prototype number |Pi| for DBXi by setting
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Table 11.1 Comparison results for different learning algorithms

Learning algorithm RMSE
Kim & Kim 0.026

Wang (product operator) 0.091
Min operator 0.090

ANFIS with 16 Rules 0.007
Auto Regressive Model 0.19
Cascade Correlation NN 0.06

Back. Pro. NN 0.02
6th order polynomial 0.04

Linear Predictive model 0.55
GEFREX 0.0061

500 Prototype-based Rules (Constants) 0.0059
16 Prototype-based Rules (linear functions) 0.007

β = 0.04. This rule base had the same parameters as the rule base shown in Eq.
(11.34) except for the rule antecedents. We then used conjugate gradient algorithm
to train the model by fixing the prototypes Pi in the rule antecedent labels. The
RMSE curves of the training data set and test data set for this linguistic model are
shown in Fig. 11.13 . The RMSE of the test data for this coarsened linguistic model
is 0.0176, which is worse than that of linguistic model given in Eq. (11.34). We also
plot the curves for the center c and width σ of Gaussian additive density function
against epochs in Fig. 11.14 . The final values of c and σ for this coarsened linguistic
model are c = 0.0415 and σ = 0.0628, respectively. By comparing Figs. 11.12 and
11.14 , we can see that the curves for the parameters c and σ are similar for both
rule bases.

11.5.3 Prediction of Sunspots

The sunspot time-series is a well known high-dimensional prediction problem with
a noisy and sparse data set. Hence, we use this problem to investigate the robustness
of our proposed prototype-based linguistic inference system.

The sunspot database is taken from the Time Series Data Library[14]. In this
experiment we used sunspot relative numbers between the years 1700–1979 which
was organized as described in Reference [3] and [15]. We use 209 examples (1712–
1920) as the training data, and 59 examples (1921–1979) as the test data. The input
attributes were xt−12 to xt−1 and the output attribute was xt (i.e., one-year-ahead).

By setting the rule number M = 2 and running the clustering algorithm proposed
in Section 11.3 only four epochs were required (See Fig. 11.15 ) to obtain two
clusters DB1 and DB2 of the sunspot training data set. We also obtained two linear
functions f1(X) and f2(X) associated with the clusters DB1 and DB2 respectively,
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Fig. 11.13 The performance of linguistic model with 16 coarsened rules. (a) The RMSE
against epochs curve for the MG training data. (b) The RMSE against epochs curve for the
MG test data
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Fig. 11.14 The Gaussian additive probability density function δ(c,σ) for the linguistic model
with 16 coarsened rules. (a) The curve of center c against epochs. (b) The curve of width σ
against epochs

where X = (xt−12, . . . ,xt−1). From these clustering results, we then obtained two
linguistic IF-THEN rules:

IF X is about DB1 THEN Y is about f1(X)
IF X is about DB2 THEN Y is about f2(X)

where the Gaussian additive probability density function δ(c,σ) associated with the
constraint about was estimated using Eqs. (11.21) and (11.22).

We then used the conjugate gradient algorithm to adjust the coefficients of the
linear functions f1(X) and f2(X) as well as the Gaussian additive density function
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Fig. 11.15 The objective function J of clustering algorithm for the sunspot training data

parameters c and σ . Fig. 11.16 shows the RMSE curves of sunspot training and test
data. From this figure, we can see that the performance of the linguistic model for
the sunspot test data set is not improved when the conjugate gradient algorithm is
applied. The RMSE of sunspot test data set oscillates through the iteration process
which may indicate the following:

(1) The sunspot data set is noisy and the behavior of the sunspot training data set
and test data set is dissimilar.

(2) The sunspot training data set is sparse with respect to its high dimensionality. In
this example the dimension number is 12. However there are only 209 training
examples.

(3) The learnt linguistic model over-fits the training data set and has a poor
generalization capability for the test data set.

Hence, we need a more robust and coarsened linguistic model for the sunspot
prediction problem. There are two ways to coarsen the linguistic rule base. One is
to reduce the rule number, the other is to reduce the number of prototypes in each
rule antecedent. Note that in this linguistic model the rule number M = 2 can not
realistically be reduced further. We can only coarsen the rule base by reducing the
number of prototypes of the rule antecedents. Using the method suggested in Eq.
(11.25) where β = 0.08 we obtained two reduced prototype sets P1 = {p1

1, p1
2, p1

3}
and P2 = {p2

1, p2
2, p2

3} from two clusters DB1 and DB2 of sunspot training data set.
That is, Pi is the set of cluster centers of DBi for i = 1,2.

We then used the conjugate gradient algorithm to adjust this coarsened rule base
by fixing the prototype sets P1 and P2. After 100 learning epochs and optimizing
f1(X), f2(X), c and σ we obtained the following two rules:
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Fig. 11.16 (a) The RMSE of sunspot training data against epochs. (b) The RMSE of sunspot
test data against epochs. Here, the prototype sets DB1 and DB2 are the clusters of training
data set DB, such that DB1 ∪DB2 = DB and DB1 ∩DB2 = /0

IF X is about P1 THEN Y is about f1(X)
IF X is about P2 THEN Y is about f2(X)

where the center and width of the Gaussian additive density function δ(c,σ) are
c = 28.8854 and σ = 29.6356.

Fig. 11.17 shows the RMSE of the sunspot training data set and test data set.
From this figure we can see that the generalization capability of the rule base is
improved by reducing the number of prototypical elements in the rule antecedents.
As a result of the learning process performance of both the sunspot training data and
test data set was improved. Both the RMSE for the training data set and test data
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Fig. 11.17 (a) The RMSE of sunspot training data against epochs. (b) The RMSE of sunspot
test data against epochs. Here, the prototype sets P1 and P2 are the sets of cluster centers of
DB1 and DB2, respectively
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set converged to local minima. The best RMSE for the test data set was 19.715. Fig.
11.18 shows the prediction results for the training data set and test data set using
the learnt rule base. Fig. 11.19 shows a scatter plots of predicted against actual
values. A comparison of results for different learning algorithms for this prediction
problem is shown in Table 11.2 where the prediction results of the other learning
algorithms are taken from References [3] and [16]. Note that the prediction accuracy
of our prototype-based linguistic inference system is superior to the other learning
algorithms applied to this example.

Table 11.2 Comparison results for different learning algorithms applied to the sunspot
problem

Learning algorithm RMSE
Fuzzy Naive Bayes 28.4735

ε−Support Vector Regression System 20.4481
Best Fuzzy Semi-Naive Bayes 22.3530

Back. Pro. NN 32.0341
ANFIS 25.895

5 prototype-based rules (Constants) 21.9113
2 prototype-based rules (Linear functions) 19.715

1750 1800 1850 1900
0

20

40

60

80

100

120

140

160

Year
(a)

N
u
m

b
er

o
f

su
n
sp

o
ts

Predicted Output Actual Output

RMSE = 13.3071

1920 1930 1940 1950 1960 1970 1980
0

50

100

150

200

Year
(b)

N
u
m

b
er

o
f

su
n
sp

o
ts

Predicted Output
Actual Output

RMSE = 19.715

Fig. 11.18 (a) Sunspot prediction result for the training data using 2 rules (c = 35.9125,σ =
29.6356). (b) Sunspot prediction result for the test data using 2 rules (c = 35.9125,σ =
29.6356). Here the antecedent of each rule has 3 prototypical elements. The solid line is the
actual output, the dotted line is the predicted output
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Fig. 11.19 (a) Scatter plot showing the desired output vs the predicted output of sunspot
training data using 2 rules (c = 35.9125,σ = 29.6356). (b) Scatter plot showing the desired
output vs the predicted output of sunspot test data using 2 rules (c = 35.9125,σ = 29.6356).
Here the antecedent of each rule has 2 prototypical elements

11.6 Summary

In this chapter we have proposed a prototype-based linguistic inference system
which is a generalization of the linguistic inference system proposed in Reference
[3]. The rule form adopted by this more general linguistic inference system is as
follows:

IF X is about P THEN Y is about f (X)

where P is a prototype set of the rule antecedent label, f (X) is a linear function of
the input variables, and “about” is represented by a probability density function δ
on [0,+∞).

These prototype-based linguistic rules have a similar form to T-S fuzzy rules[4],
but have a different calculus for modelling uncertainty. The reasoning method in the
proposed inference system is based on the prototype model for label semantics [1,2]

which has a clear operational interpretation for uncertainty measures on linguistic
labels. In this chapter we also developed a clustering-based rule induction method
to identify the prototype-based IF-THEN rules from data. Our experiments on a
number of benchmark prediction problems show that the proposed prototype-based
linguistic inference system is very effective and robust. In particular, it is appropriate
for high-dimensional modelling with sparse and noisy data, in that it is able to reach
a trade-off between the prediction accuracy and generalization capability.
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12

Information Cells and Information Cell Mixture

Models

12.1 Introduction

Based on the prototype theory interpretation[1,2], this chapter develops a new
framework for concept modeling and learning: the framework of information cell
mixture models. We firstly introduce an information cell model to represent a
vague concept having the form “Li = about Pi”. An information “cell” has a
transparent structure and operational semantics derived from the prototype theory
interpretation of label semantics[1−4]. We then develop the information cell mixture
model for modellng a complex concept having form “about P”, where P has n
possible states Pi with probability Pr(Li). In other words, an information cell
mixture model is actually a set of weighted information cells. This type of
knowledge representation can model the behavior of disjunction of basic concepts.
Based on this new knowledge representation, we further develop an information
cellularization algorithm for concept learning. The basic aim is to learn a set
of most appropriate concepts L = {L1, . . . ,Ln} with a probability distribution
{Pr(L1), . . . ,Pr(Ln)} from a data set DB. Finally we illustrate the basic idea and
efficiency of the information cell mixture models by some examples.

12.2 Information Cell for Cognitive Representation of Vague

Concept Semantics

We assume that L = {L1, . . . ,Ln} is a set of labels for elements from domain
Ω = Rm. For each label Li we assume that Li is a linguistic expression having a
form as “about P”, where Pi ⊆ Rm is a set of prototypical cases of concept Li.
Clearly this type of concept is very common in the human natural language to
make communication and convey information. In some sense, it is the smallest
unit for concept description. Appropriately modeling this type of concept unit has a
fundamental importance in knowledge representation and machine learning. Due to
the vague constraint “about” involved in the concept unit Li the semantics of concept
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are obviously vague. In the following, a transparent cognitive structure referred to
as an information cell is proposed to model the concept semantics.

Definition 12.1 (Information cell) An information cell (or a semantic cell) for
vague concept Li = about Pi on the domain Ω is a 3-tuple representation 〈Pi,di,δi〉,
where Pi is a set of prototypes for concept Li, di is a distance function on Ω where
for any X ,Y ∈ Ω di(X ,Y ) = di(Y,X) and di(X ,X) = 0, and δi is a density function
on [0,+∞) (For I ⊆ [0,+∞) we denote δi(I) =

∫
I δi(ε)dε).

In this definition Pi we use the term information nucleus to refer to the set of
all prototypical cases of Li, and we implicitly introduces an information membrane
which bounds the positive neighborhood for Li softly. The distance function di is
used to measure the size ε of the positive neighborhood, and due to the vagueness
of “about” the density function δi reflects the distribution of size ε of the positive
neighborhood. For simplicity, Pi is assumed to be a single element in Ω , for any
X ,Y ∈ Ω the distance

di(X ,Y ) � ‖X −Y‖(Euclidean distance)

and the density function δi(ε) is a normalized normal density function

δ (ε | ci,σi) =
f (ε | ci,σi)

Fσi
ci

where f (ε | ci,σi) is a normal density function

1√
2πσi

exp
(ε − ci)2

−2σ 2
i

and Fσi
ci is the normalization factor∫ +∞

0
f (ε | ci,σi)dε.

Based on this transparent cognitive structure, information cell Li = 〈Pi,di,δi〉,
we can define a positive density function δLi(X) on Ω .

Definition 12.2 (Positive density function)

The positive density function associated with the information cell Li = 〈Pi,di,δi〉,
δLi , is defined as follows: for any X ∈ Ω ,

δLi(X) = δi(di(X ,Pi)) (12.1)

where di(X ,Pi) = infY∈Pi di(X ,Y ).

Notice that the positive density function and density function associated with
the same information cell have the similar notation, but they have different domains.
Their meanings can be easily distinguished in the context.
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Definition 12.3 (Positive neighborhood) For any Li ∈ L and ε ≥ 0 the positive
neighborhood PN ε

Li
for information cell Li is defined as follows:

PN ε
Li

= {X : di(X ,Pi) ≤ ε} (12.2)

where di(X ,Pi) = infY∈Pi di(X ,Y ).

Intuitively speaking PN ε
Li

identifies the set of positive neighbors lying within
ε of prototypes Pi for label Li. Here the neighborhood radius of PN ε

Li
is measured

by the threshold ε , and ε is a random variable with a density function δi. From this
we can obtain the belief (degree) of each point X in Ω being a positive neighbor for
Li by integrating δi(ε) over {ε : X ∈ PN ε

Li
}.

Definition 12.4 (Positive neighborhood function) ∀Li ∈ L, ∀X ∈ Ω , the belief
(degree) of X being a positive neighbor for information cell Li is given by:

μLi(X) = δi({ε : X ∈ PN ε
Li
}) = δi([di(X ,Pi),+∞)) (12.3)

We also use notation Δ(ε) to represent the integration δ ([ε,+∞)). Sometimes
we use notation ΔLi(X) or Δi(X) to represent the positive neighborhood function

μLi(X) � δi([di(X ,Pi),+∞)).

Therefore, for each information cell Li there are two functions, positive density
function δi(X) and positive neighborhood function Δi(X), defined on the domain Ω .
Clearly the positive neighborhood function of information cell Li is similar to the
membership function of a fuzzy set. Hence we can use information cells to represent
vague concepts in many uncertain situations such as group decision making[5] and
information aggregation[6].

Given a data set DB = {X1, . . . ,XN} and an information cell Li = 〈Pi,di,δi〉, we
may want to know how many elements in DB are covered by information cell Li.
The following definition gives one possible answer to this question.
Definition 12.5 The number of elements in DB covered by information cell Li =
〈Pi,di,δi〉, |Li|DB, is defined as follows,

|Li|DB =
∫ +∞

0
|PN ε

Li
∩DB|δi(ε)dε. (12.4)

Intuitively speaking, the set of elements in DB covered by the positive
neighborhood PN ε

Li
of information cell Li is PN ε

Li
∩DB. In other words, with

the probability δi(ε), the number of elements in DB covered by information cell Li
is

|PN ε
Li
∩DB|,

so the number of elements in DB covered by information cell Li is the integration of

|PN ε
Li
∩DB|δi(ε) over [0,+∞).

Clearly, |Li|DB can also be calculated from the positive neighborhood degrees
μLi(Xi) for Xi ∈ DB.
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Proposition 12.1 The number of elements in DB covered by information cell Li =
〈Pi,di,δi〉, |Li|DB, is as follows,

|Li|DB =
N

∑
k=1

μLi(Xk). (12.5)

Clearly, if DB has only one element X then |Li|{X} = μLi(X).

12.3 Information Cell Mixture Model (ICMM) for Semantic

Representation of Complex Concept

We can see that the positive neighborhood functions μLi(X) or Δi(X) of information
cells Li = 〈Pi,di,δi〉 are all uni-modal, which may not represent more complex
concepts having multi-modal neighborhood functions, if we assume that Pi is a
single prototype. In this section we introduce a new tool to represent complex
concepts.

Definition 12.6 (Information cell mixture model) An information cell mixture
model is formally represented as L P = 〈L,Pr〉, where L is a set of information
cells Li = 〈Pi,di,δi〉 for i = 1, . . . ,n
and Pr is a probability distribution on L such that ∑n

i=1 Pr(Li) = 1.

The information cell mixture model L P uses a set of information cells
to represent a complex concept, where each information cell Li is assigned a
probability Pr(Li). In this definition, the information cells can be considered as
the basic blocks for knowledge representation, and more complex knowledge can
be constructed using mixture models of information cells. In general, for simplicity
we assume that each information cell has a single prototype. This assumption may
limit the knowledge representation capability of information cells. However, the
information cell mixture model provides a way to represent the complex concept
with multiple prototypes. Hence, the mixture model of information cells still has a
transparent structure and operational semantics. In other words, the information cell
mixture model L P = 〈L,Pr〉 represents a complex concept about P where P has n
crisp but uncertain states Pi for i = 1, . . . ,n. In the following section, we will develop
a reliable learning algorithm to create an information cell mixture model from data
set.

For the information cell mixture model we can also define the positive density
function and the positive neighborhood function in the domain Ω .

Definition 12.7 (Positive density function δL P ) The positive density function of
a mixture model of information cells L P , δL P , is defined as follows: for any
X ∈ Ω

δL P(X) =
n

∑
i=1

δi(X)Pr(Li) (12.6)

where δi(X) are the positive density functions of information cells Li for i = 1, . . . ,n
(see definition 12.2).
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Definition 12.8 (Positive neighborhood function ΔL P) The
positive neighborhood function of an information cell mixture model L P , μL P

(or ΔL P ), is defined as follows: for any X ∈ Ω

μL P(X) =
n

∑
i=1

μLi(X)Pr(Li) (12.7)

For the information cell mixture model L P we can not consider that the
elements Pi for i = 1, . . . ,n are the prototypes of the underlying concept. The
prototypes of L P are uncertain and can take value Pi with probability Pr(Li).
Actually, in general μL P(X) �= 1 for X ∈ Pi.

Definition 12.9 The number of elements in DB covered by an information cell
mixture model L P , |L P|DB, is defined as follows,

|L P|DB =
n

∑
i=1

|Li|DBPr(Li). (12.8)

A direct application of information cell mixture models is classification, since
each mixture model of information cells represents a concept which in general
corresponds to a class on the domain Ω . Note that the positive neighborhood
function Δ(X) reflects the degree of element X being a positive case of the
underlying concept. This indicates that we can adopt Δ(X) to make a classification
decision.

Definition 12.10 (Δ Decision rule for classification) Given two information cell
mixture models L P1 and L P2, X ∈ Ω belongs to the concept L P1 if

μL P1(X) > μL P2(X) (12.9)

In order to represent a concept using an information cell mixture model, we
only need (m + 3)n parameters in which there are n m-dimensional prototypes Pi,
n probability values assigned to the prototypes, and n normalized normal density
functions. This type of representation for a complex concept is still very simple, and
has a very transparent cognitive structure and operational semantics.

12.4 Learning Information Cell Mixture Model from Data Set

This section presents a method for learning an information cell mixture model
L P from a data set DB. We assume that the basic concept Li involved in L P
is represented by an information cell having a single prototype Pi ∈ Ω and a density
function δ (ε | ci,σi) on [0,+∞). In the proposed learning algorithm we use k-
means algorithm to determine all prototypes Pi involved in L P and learn the
density functions and probabilities associated with information cells by optimizing
an objective function J(L P) from a data set DB. The learning algorithm for
optimizing the objective function J(L P) is analyzed in detail, which involves the
updating of density functions and probabilities of information cells.
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12.4.1 Objective Function Based on Positive Density Function

Given a data set DB = {X1, . . . ,XN}, our objective is to derive an information cell
mixture model L P = 〈L,Pr〉 where L = {L1, . . . ,Ln} are the most appropriate
information cells for describing the underlying data set DB. We call this induction
process the information cellularization or conceptualization driven by the data set.
Notice that the prototypes involved in the information cell mixture model have
clear and operational semantics: they are the typical cases or average cases of the
underlying concepts. This means we can take the k-mean algorithm to determine
the prototypes Pi of information cell mixture model L P . Once the prototypes Pi
are given, we should learn the density functions δi of information cells Li and the
probability distribution Pr of information cells. They can be learnt by maximizing
the positive density function δL P(X) on the data from the training data set DB,
since δL P(X) reflects the likelihood of X ‘generated’ from the information mixture
model L P . The log likelihood function of L P given the data set DB is defined
as follows:

maximizeJ(L P) = lnδL P(DB) � ln
N

∏
k=1

δL P(Xk) =
N

∑
k=1

lnδL P(Xk)

=
N

∑
k=1

ln

(
n

∑
i=1

δ (εik | ci,σi)Pr(Li)

)
(12.10)

where for i = 1, . . . ,n and k = 1, . . . ,N:

εik = di(Xk,Pi) = ‖Xk −Pi‖,δ (εik | ci,σi) =
f (εik | ci,σi)

Fσi
ci

The above log likelihood function is very difficult to optimize because it contains
the log of the sum. But if we assume the existence of unobserved data whose values
inform us which information cell “generated” each data, then we can define the
complete log likelihood function as follows:

Jc(L P) =
N

∑
k=1

n

∑
i=1

zik ln(δ (εik | ci,σi)Pr(Li)) (12.11)

where zik ∈ {0,1} and ∑n
i=1 zik = 1.

12.4.2 Updating Probability Distribution of Information Cells

Then we may use the Expectation-Maximization (EM) algorithm to optimize
the above complete log likelihood function, which comprises two steps: the
computation of conditional expectation of complete log likelihood function given
the current estimate ˆL P , and its maximization.

According to the EM algorithm we firstly compute the following conditional
expectation of the complete log likelihood function:
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Q (L P, ˆL P) = E(Jc(L P) | ˆL P) =
N

∑
k=1

n

∑
i=1

q̂ik ln(δ (εik | ci,σi)Pr(Li))

=
N

∑
k=1

n

∑
i=1

q̂ik

(
(εik − ci)2

−2σ 2
i

− ln
√

2πσi − lnFσi
ci

+ lnPr(Li)
)

(12.12)

where

q̂ik = E(zik | ˆL P) =
δ (εik | ĉi, σ̂i)P̂r(L̂i)

∑n
i=1 δ (εik | ĉi, σ̂i)P̂r(L̂i)

(12.13)

From the expression Q(L P, ˆL P), our goal is to obtain the optimized values
of Pr for the probability distribution of information cells, and the density functions
δ (· | ci,σi) of information cells.

To find the expression for Pr(Li), we introduce the Lagrange multiplier λ with
the constraint that ∑n

i=1 Pr(Li) = 1, and solve the following equation:

∂
∂ Pr(Li)

[
Q(L P, ˆL P)+λ

(
n

∑
i=1

Pr(Li)−1

)]
= 0

or
N

∑
k=1

1
Pr(Li)

q̂ik +λ = 0

Summing both sizes over i, we obtain λ = −N resulting in the following
updating formula for the probability distribution of information cells, for i =
1, . . . ,n:

Pr(Li) =
1
N

N

∑
k=1

q̂ik (12.14)

12.4.3 Updating Density Functions of Information Cells

However, it is difficult to obtain the optimized density functions of information cells
L from the expression Q(L P, ˆL P). So we try to obtain the sub-optimal values
of information cells L by introducing an auxiliary function U(L P, ˆL P):

U(L P, ˆL P) =
N

∑
k=1

n

∑
i=1

q̂ik

(
(εik − ci)2

−2σ 2
i

− ln
√

2πσi + lnPr(Li)
)

Due to − lnFσi
ci ≥ 0 we have the following conclusion:

U(L P, ˆL P) ≤ Q(L P, ˆL P) (12.15)

By maximizing the lower bound function U(L P, ˆL P) we can obtain the sub-
optimal values of density functions δ (· | ci,σi) of information cells Li. Letting

∂
∂ci

U(L P, ˆL P) = 0
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and
∂

∂σi
U(L P, ˆL P) = 0,

we obtain the formulae:

ci =
∑N

k=1 q̂ikεik

∑N
k=1 q̂ik

(12.16)

σ 2
i =

∑N
k=1 q̂ik(εik − ci)2

∑N
k=1 q̂ik

(12.17)

The above computation of conditional expectation of complete log likelihood
function and parameter estimation steps can then be repeated as necessary. Our
classification experiments show that updating Eqs. (12.16) and 12.17) are feasible
and have a good performance.

12.4.4 Information Cell Updating Algorithm

Given a data set DB = {Xk : k = 1, . . . ,N} and a cell number n, the information
cellularization algorithm is outlined as follows:

(1) Obtain the prototypes Pi by using k-mean algorithm and assume

Pr(Li(0)) =
1
n

for i = 1, . . . ,n.

(2) Compute distances: for i = 1, . . . ,n and k = 1, . . . ,N,

εik = di(Xk,Pi) = ‖Xk −Pi‖

(3) Initialize ci(0) and σi(0) for i = 1, . . . ,n using the following formulae:

ci(0) =
1
N

N

∑
k=1

εik,(σi(0))2 =
1
N

N

∑
k=1

(εik − ci(0))2

(4) Compute weights: for i = 1, . . . ,n and k = 1, . . . ,N,

qik(0) =
δ (εik|ci(0),σi(0))Pr(Li(0))

∑n
i=1 δ (εik|ci(0),σi(0))Pr(Li(0))

(5) Repeat
(a) t = t +1
(b) Update the probability distribution of information cells: for i = 1, . . . ,n,

Pr(Li(t)) =
1
N

N

∑
k=1

qik(t −1)
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(c) Update density functions δ (· | ci(t),σi(t)) for i = 1, . . . ,n:

ci(t) =
∑N

k=1 qik(t −1)εik

∑N
k=1 qik(t −1)

,

(σi(t))2 =
∑N

k=1 qik(t −1)(εik − ci(t))2

∑N
k=1 qik(t −1)

(d) Compute weights: for i = 1, . . . ,n and k = 1, . . . ,N,

qik(t) =
δ (εik(t)|ci(t),σi(t))Pr(Li(t))

∑n
i=1 δ (εik(t)|ci(t),σi(t))Pr(Li(t))

(e) Compute objective function J(L P(t)).
(6) Until |J(L P(t)) − J(L P(t − 1))| is less than a user defined positive

threshold.

By applying the above information cellularization algorithm to data set DB, we
can explicitly obtain a set of information cells L with a probability distribution Pr.
We can then determine the values ΔL P(X) using Eq. (12.7). Hence, if information
cell mixture models are applied to a classification problem, we can learn an
information cell mixture model for each class, and use Δ decision rule to make
classification for any data on the domain Ω .

12.4.5 Learning Component Number of ICMM

Another key issue in the ICMM learning algorithm from a data set DB is the
determination of component number n of L P . In this section, we propose a
possible method to determine the component number n using the information
conveyed by |L P|DB.

According to the current learning algorithm of ICMM, the objective is to
minimize the function δL P(DB) given the component number n of ICMM L P .
Increasing the component number n we may increase the learning accuracy of
ICMM, but also increase the complexity of ICMM. Furthermore, one risk of
increasing the component number n may cause the over-fitting problem to the
training data set DB and poor generalization capability. The best ICMM should
have good learning accuracy for the training data set DB with the least component
number n.

|L P|DB reflects the average number of elements in DB covered by the
information cell mixture model L P . In general, we prefer the ICMM having
larger |L P|DB. Increasing the component number n may also cause the increase
in |L P|DB. This indicates that we can select the component number n according
to the value |L P|DB. So the ICMM having sufficient large |L P|DB and small
component number n is the desired ICMM. In the following experiments, we will
illustrate the method to determine the component number n in detail.
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12.5 Experimental Study

The first example shows the concept learning process of the proposed information
cellularization algorithm on a 2-dimensional data set. In this example the data set
DB has 140 data points on [0,1]2. The distribution of data set DB is illustrated in
Fig. 12.1 .
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Fig. 12.1 (a) The distribution of the data set DB in R
2, where P1 = (0.7119,0.2770) and P2 =

(0.3241,0.6929). (b) The objective function vs the iteration of information cellularization
algorithm. (c) The neighbor number in DB covered by ICMM vs the iteration of information
cellularization algorithm

According to this distribution of data set, the number of information cells is
then assumed to be 2. We then apply the information cellularization algorithm to
this data set DB. After 20 iterations, the objective function J(L P) converges (Fig.
12.1 ), we finally obtain an information cell mixture model 〈{L1,L2},Pr〉, where
the parameters associated with the information cell L1 = 〈P1,d1,δ (· | c1,σ1)〉 are
P1 = (0.7119,0.2770), c1 = 0.1458 and σ1 = 0.0734, and the parameters associated
with the information cell L2 = 〈P2,d2,δ (· | c2,σ2)〉 are P2 = (0.3241,0.6929),
c2 = 0.1777 and σ2 = 0.0601. The probability values associated with information
cells are Pr(L1) = 0.3341 and Pr(L2) = 0.6659. In figure 12.1 , we also show
the the neighbor number in DB covered by ICMM against the iteration number of
the information cellularization algorithm. Roughly speaking, |L P|DB converges
decreasingly to a local minimum. However, the objective function J(|L P|DB)
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converges increasing to a maximum. This kind of phenomenon may suggest that
the functions J(L P|DB) and |L P|DB have the different properties to control the
learning accuracy and generalization capability of ICMM. Actually, on the one hand
we should maximize the function J(L P|DB) which reflects the likelihood of data
set DB generated from the ICMM. On the other hand, we also want to maximize
the function |L P|DB which reflects the neighbor number in DB covered by ICMM
L P . But increasing |L P|DB purely may cause the poor generalization capability
of ICMM L P , which indicates the function |L P|DB can not be defined as the
objective function of information cellularization algorithm.

Two derived information cells L1 and L2 are visualized in Fig. 12.2 . The derived
one dimensional density functions associated with information cells, δ (ε | c1,σ1)
and δ (ε | c2,σ2), both of which are normalized normal density functions, are
shown in Fig. 12.2 (a). And the corresponding two positive neighborhood functions
μL1(x,y) (or ΔL1(x,y)) and μL2(x,y) (or ΔL2(x,y)) are both illustrated in Fig. 12.2
(b). In particular, the positive neighborhood function ΔL P(x,y) of the information
cell mixture model L P is visualized in Fig. 12.2 (c). This function incorporates
the information cells and their probabilities, which is a kind of compromise of
information cells.
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Fig. 12.2 (a) The density functions δi of information cells Li for i = 1 and 2,
where δ1(ε) = δ (ε | 0.1458,0.0734) and δ2(ε) = δ (ε | 0.1777,0.0601). (b) The positive
neighborhood functions μLi(x,y) of information cells Li for i = 1 and 2, where μLi(x,y) =
δi([di((x,y),Pi),+∞)) for i = 1 and 2. (c) The positive neighborhood function Δ(x,y) �
μL P (x,y) of information cell mixture model L P , where μL P (x,y) = μL1(x,y)Pr(L1)+
μL2(x,y)Pr(L2)
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In order to show the impact of component number n of ICMM L P , we run
the information cellularization algorithm by varying the component number n from
2 to 20. From Fig. 12.3 we can see that the neighbor number |L P|DB covered
by ICMM L P increases as the component number n varies from 2 to 5, and
|L P|DB varies from small when n is bigger than 5. Roughly speaking, |L P|DB is
a monotonic increasing function of component number n, and has an upper bound
N. Clearly, |L P|DB reflects the performance of the learned ICMM L P , and n
reflects the complexity of the learned ICMM L P . The optimized ICMM L P
would be a compromise of |L P|DB and n. In this example, a near optimized ICMM
L P has 5 component numbers.
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Fig. 12.3 The neighbor number |L P|DB in DB covered by ICMM L P against the
component number n of L P

The classification problem we have worked with is Iris Plants Database which
was created by R.A. Fisher. The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. The number of instances in the Iris
Plants Database is 150 (50 in each one of three classes), and the number of attributes
is 4.

The information cellularization algorithm is then applied to three sub data sets
where each one only contains one class. In the algorithm, the involved information
cell number is assumed to be 2. Three information cell mixture models L P i for
i = 1,2,3 are then obtained, their parameters are listed in Table 12.1 .

After obtaining the information cell mixture models from the iris data set, we
then use the decision rule introduced in Eq. (12.9) to make classification. The
classification results of the information cell mixture models are compared with the
given classes, and discrepancies arising from mismatch between the given classes.
For the Iris Plant database, the discrepancies between the actual classes and the
achieved classes is very few, and the classification rate is 97.33%.

The second classification problem we have worked with is Pima Indians
Diabetes Database which was created by Vincent Sigillito of Johns Hopkins
University. The data set contains 2 classes, Diabetes and No-Diabetes. The number
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Table 12.1 Information cell mixture models learnt from Iris data sets

Pi δ (· | ci,σi) Pr(Li)
L P1 L1 (53.7,38.0,15.2,2.8) δ (· | 4.5,1.3) 0.3

L2 (48.2,32.7,14.3,2.3) δ (· | 4.2,2.0) 0.7
L P2 L1 (63.1,29.2,46.1,14.6) δ (· | 5.6,2.0) 0.52

L2 (55.3,26.0,38.8,11.8) δ (· | 5.9,2.9) 0.48
L P3 L1 (73.9,31.3,62.3,20.9) δ (· | 6.59,2.22) 0.25

L2 (62.8,29.1,52.9,20.0) δ (· | 6.4,2.7) 0.75

of attributes is 8, all numeric-valued and the relevant information of Pima Indians
Diabetes Database is in Table 12.2 . The total number of instances is 768. we use
512 instances (345 No-Diabetes, 167 Diabetes) to construct the two information cell
mixture models: one model corresponds to the No-Diabetes concept C1, the other
model corresponds to the Diabetes concept C2. We then use 256 instances (155
No-Diabetes, 101 Diabetes) to test the performance of the information cell mixture
models.

The information cellularization algorithm is then applied to two training sets
where each one only contains one class. In the algorithm, the involved information
cell number is also assumed to be 2. Two information cell mixture models L P i for
i = 1,2 are then obtained, their parameters are listed in Table 12.3 . The classification
accuracy for the test data set is 66.7%. We also run the K-NN algorithm to this
example and the classification rate for the test data set is 67%. However, compared
with K-NN, the information cell mixture models are more concise and transparent.

Table 12.2 Relevant information of Pima Indians Diabetes Database

C: C1, No-Diabetes; C2, Diabetes

Attribute Name Min Max Mean SD
X1 Number of times pregnant 0 17 3.8 3.4

X2

Plasma glucose
concentration at 2
hours in an oral glucose
tolerance test

0 199 120.9 32.0

X3 Diastolic blood pressure 0 122 69.1 19.4
X4 Triceps skin fold thickness 0 99 20.5 16.0
X5 2-Hour serum insulin 0 846 79.8 115.2
X6 Body mass index 0 67.1 32.0 7.9
X7 Diabetes pedigree function 0.084 2.42 0.5 0.3
X8 Age (years) 21 81 33.2 11.8
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Table 12.3 Information cell mixture models learnt from Pima Indians Diabetes Database
data sets

Pi δ (· | ci,σi) Pr(Li)
L P1 L1 (3.4,105.3,67.6,17.4,31.5,29.5,0.4,31.7) δ (· | 49.4,15.4) 0.70

L2 (2.7,129.8,70.8,29.5,227.9,33.9,0.5,29.2) δ (· | 118.7,80.7) 0.30

L P2 L1 (4.6,152.0,73.9,33.3,264.4,35.9,0.7,37.6) δ (· | 139.2,86.3) 0.5
L2 (4.9,136.4,69.5,17.2,26.7,34.8,0.5,36.8) δ (· | 51.2,14.7) 0.5

12.6 Summary

The information cell mixture model uses a set of weighted information cells to
model a complex concept, where each information cell can be considered as the
smallest unit of concept representation with its own prototype(s). The proposed
information cell mixture model can be considered as an approximate representation
of the disjunction of the underlying information cells, which keeps the transparent
structure and operational semantics like the information cells themselves. The
positive neighborhood function Δ of the information cell mixture model provides
a powerful tool to measure the uncertainty of the underlying concept. More
importantly, the information cellularization algorithm developed in this paper gives
an iterative procedure to learn the parameters of the information cell mixture model
from training data. A direct application of information cell mixture models is the
supervised classification, where each class is represented by an information cell
mixture model. Another potential application is unsupervised concept learning.
Actually the learning algorithm developed in this paper uses an unsupervised way to
learn an information cell mixture model from each class. The classification decision
is then made by using the Δ decision rule.
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