
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Shamanth Kumar
Fred Morstatter
Huan Liu

Twitter Data
Analytics

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V.S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Shamanth Kumar • Fred Morstatter • Huan Liu

Twitter Data Analytics

123

Shamanth Kumar
Data Mining and Machine Learning Lab
Arizona State University
Tempe, AZ, USA

Huan Liu
Data Mining and Machine Learning Lab
Arizona State University
Tempe, AZ, USA

Fred Morstatter
Data Mining and Machine Learning Lab
Arizona State University
Tempe, AZ, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4614-9371-6 ISBN 978-1-4614-9372-3 (eBook)
DOI 10.1007/978-1-4614-9372-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013953291

© The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

This effort is dedicated to my family. Thank
you for all your support and encouragement.
– SK
For my parents and Rio. Thank you for
everything. – FM
To my parents, wife, and sons. – HL

Acknowledgements

We would like to thank the following individuals for their help in realizing this book.
We would like to thank Daniel Howe and Grant Marshall for helping to organize the
examples in the book, Daria Bazzi and Luis Brown for their help in proofreading
and suggestions in organizing the book, and Terry Wen for preparing the web site.
We appreciate Dr. Ross Maciejewski’s helpful suggestions and guidance as our data
visualization mentor. We express our immense gratitude to Dr. Rebecca Goolsby for
her vision and insight for using social media as a tool for Humanitarian Assistance
and Disaster Relief. Finally, we thank all members of the Data Mining and Machine
Learning lab for their encouragement and advice throughout this process.

This book is the result of projects sponsored, in part, by the Office of Naval
Research. With their support, we developed TweetTracker and TweetXplorer,
flagship projects that helped us gain the knowledge and experience needed to
produce this book.

vii

Contents

1 Introduction . 1
1.1 Main Takeaways from This Book . 1
1.2 Learning Through Examples . 2
1.3 Applying Twitter Data . 3
References . 3

2 Crawling Twitter Data . 5
2.1 Introduction to Open Authentication (OAuth) . 6
2.2 Collecting a User’s Information. 7
2.3 Collecting a User’s Network . 10

2.3.1 Collecting the Followers of a User . 12
2.3.2 Collecting the Friends of a User . 12

2.4 Collecting a User’s Tweets . 14
2.4.1 REST API . 14
2.4.2 Streaming API . 16

2.5 Collecting Search Results . 17
2.5.1 REST API . 17
2.5.2 Streaming API . 19

2.6 Strategies to Identify the Location of a Tweet . 20
2.7 Obtaining Data via Resellers . 21
2.8 Further Reading . 22
References . 22

3 Storing Twitter Data . 23
3.1 NoSQL Through the Lens of MongoDB . 23
3.2 Setting Up MongoDB on a Single Node . 24

3.2.1 Installing MongoDB on Windows® . 24
3.2.2 Running MongoDB on Windows . 25
3.2.3 Installing MongoDB on Mac OS X® . 25
3.2.4 Running MongoDB on Mac OS X . 26

3.3 MongoDB’s Data Organization . 26
3.4 How to Execute the MongoDB Examples . 26

ix

x Contents

3.5 Adding Tweets to the Collection . 27
3.6 Optimizing Collections for Queries. 27
3.7 Indexes . 28
3.8 Extracting Documents: Retrieving All Documents in a Collection . . 29
3.9 Filtering Documents: Number of Tweets Generated

in a Certain Hour . 29
3.10 Sorting Documents: Finding the Most Recent Tweets 30
3.11 Grouping Documents: Identifying the Most Mentioned Users 31
3.12 Further Reading . 33
References . 33

4 Analyzing Twitter Data. 35
4.1 Network Measures . 35

4.1.1 What Is a Network? . 35
4.1.2 Networks from Twitter Data . 37
4.1.3 Centrality: Who Is Important? . 37
4.1.4 Finding Related Information with Networks 41

4.2 Text Measures. 42
4.2.1 Finding Topics in the Text . 43
4.2.2 Sentiment Analysis . 45

4.3 Further Reading . 48
References . 48

5 Visualizing Twitter Data . 49
5.1 Visualizing Network Information . 49

5.1.1 Information Flow Networks . 49
5.1.2 Friend-Follower Networks . 54

5.2 Visualizing Temporal Information . 55
5.2.1 Extending the Capabilities of Trend Visualization. 56
5.2.2 Performing Comparisons of Time-Series Data 59

5.3 Visualizing Geospatial Information . 62
5.3.1 Geospatial Heatmaps . 63

5.4 Visualizing Textual Information . 65
5.4.1 Word Clouds . 65
5.4.2 Adding Context to Word Clouds. 66

5.5 Further Reading . 68
References . 69

A Additional Information . 71
A.1 A System’s Perspective . 71
A.2 More Examples of Visualization Systems . 72
A.3 External Libraries Used in This Book . 73
References . 74

Index . 75

Chapter 1
Introduction

Twitter®1 is a massive social networking site tuned towards fast communication.
More than 140 million active users publish over 400 million 140-character “Tweets”
every day.2 Twitter’s speed and ease of publication have made it an important
communication medium for people from all walks of life. Twitter has played
a prominent role in socio-political events, such as the Arab Spring3 and the
Occupy Wall Street movement.4 Twitter has also been used to post damage reports
and disaster preparedness information during large natural disasters, such as the
Hurricane Sandy.

This book is for the reader who is interested in understanding the basics of
collecting, storing, and analyzing Twitter data. The first half of this book discusses
collection and storage of data. It starts by discussing how to collect Twitter data,
looking at the free APIs provided by Twitter. We then goes on to discuss how to store
this data for use in real-time applications. The second half is focused on analysis.
Here, we focus on common measures and algorithms that are used to analyze social
media data. We finish the analysis by discussing visual analytics, an approach which
helps humans inspect the data through intuitive visualizations.

1.1 Main Takeaways from This Book

This book provides hands-on introduction to the collection and analysis of Twitter
data. No knowledge of data analysis, or social network analysis is presumed. For
all the concepts discussed in this book, we will provide in-depth description of the
underlying assumptions and explain via construction of examples. The reader will

1http://twitter.com
2https://blog.twitter.com/2012/twitter-turns-six
3http://bit.ly/N6illb
4http://nyti.ms/SwZKVD

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__1, © The Author(s) 2014

1

http://twitter.com
https://blog.twitter.com/2012/twitter-turns-six
http://bit.ly/N6illb
http://nyti.ms/SwZKVD

2 1 Introduction

gain knowledge of the concepts in this book by building a crawler that collects
Twitter data in real time. The reader will then learn how to analyze this data to find
important time periods, users, and topics in their dataset. Finally, the reader will see
how all of these concepts can be brought together to perform visual analysis and
create meaningful software that uses Twitter data.

The code examples in this book are written in Java®, and JavaScript®. Famil-
iarity with these languages will be useful in understanding the code, however the
examples should be straightforward enough for anyone with basic programming
experience. This book does assume that you know the programming concepts
behind a high level language.

1.2 Learning Through Examples

Every concept discussed in this book is accompanied by illustrative examples. The
examples in Chap. 4 use an open source network analysis library, JUNG™,5 to
perform network computations. The algorithms provided in this library are often
highly optimized, and we recommend them for the development of production
applications. However, because they are optimized, this code can be difficult to
interpret for someone viewing these topics for the first time. In these cases, we
present code that focuses more on readability than optimization to communicate the
concepts using the examples. To build the visualizations in Chap. 5, we use the data
visualization library D3™.6 D3 is a versatile visualization toolkit, which supports
various types of visualizations. We recommend the readers to browse through the
examples to find other interesting ways to visualize Twitter data.

All of the examples read directly from a text file, where each line is a JSON
document as returned by the Twitter APIs (the format of which is covered in
Chap. 2). These examples can easily be manipulated to read from MongoDB®, but
we leave this as an exercise for the reader.

Whenever “. . . ” appears in a code example, code has been omitted from the
example. This is done to remove code that is not pertinent to understanding the
concepts. To obtain the full source code used in the examples, refer to the book’s
website, http:// tweettracker.fulton.asu.edu/ tda.

The dataset used for the examples in this book comes from the Occupy Wall
Street movement, a protest centered around the wealth disparity in the US. This
movement attracted significant focus on Twitter. We focus on a single day of this
event to give a picture of what these measures look like with the same data. The
dataset has been anonymized to remove any personally identifiable information.
This dataset is also made available on the book’s website for the reader to use when
executing the examples.

5http://jung.sourceforge.net/
6http://d3js.org

http://tweettracker.fulton.asu.edu/tda
http://jung.sourceforge.net/
http://d3js.org

References 3

To stay in agreement with Twitter’s data sharing policies, some fields have been
removed from this dataset, and others have been modified. When collecting data
from the Twitter APIs in Chap. 2, you will get raw data with unaltered values for all
of the fields.

1.3 Applying Twitter Data

Twitter’s popularity as an information source has led to the development of
applications and research in various domains. Humanitarian Assistance and Disaster
Relief is one domain where information from Twitter is used to provide situational
awareness to a crisis situation. Researchers have used Twitter to predict the
occurrence of earthquakes [5] and identify relevant users to follow to obtain disaster
related information [1]. Studies of Twitter’s use in disasters include regions such as
China [4], and Chile [2].

While a sampled view of Twitter is easily obtained through the APIs discussed
in this book, the full view is difficult to obtain. The APIs only grant us access to
a 1 % sample of the Twitter data, and concerns about the sampling strategy and the
quality of Twitter data obtained via the API have been raised recently in [3]. This
study indicates that care must be taken while constructing the queries used to collect
data from the Streaming API.

References

1. S. Kumar, F. Morstatter, R. Zafarani, and H. Liu. Whom Should I Follow? Identifying Relevant
Users During Crises. In Proceedings of the 24th ACM conference on Hypertext and social media.
ACM, 2013.

2. M. Mendoza, B. Poblete, and C. Castillo. Twitter Under Crisis: Can we Trust What We RT? In
Proceedings of the First Workshop on Social Media Analytics, 2010.

3. F. Morstatter, J. Pfeffer, H. Liu, and K. Carley. Is the Sample Good Enough? Comparing Data
from Twitter’s Streaming API with Twitter’s Firehose. In International AAAI Conference on
Weblogs and Social Media, 2013.

4. Y. Qu, C. Huang, P. Zhang, and J. Zhang. Microblogging After a Major Disaster in China:
A Case Study of the 2010 Yushu Earthquake. In Computer Supported Cooperative Work and
Social Computing, pages 25–34, 2011.

5. T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake Shakes Twitter Users: Real-Time Event
Detection by Social Sensors. In Proceedings of the 19th international conference on World wide
web, pages 851–860. ACM, 2010.

Chapter 2
Crawling Twitter Data

Users on Twitter generate over 400 million Tweets everyday.1 Some of these Tweets
are available to researchers and practitioners through public APIs at no cost. In
this chapter we will learn how to extract the following types of information from
Twitter:

• Information about a user,
• A user’s network consisting of his connections,
• Tweets published by a user, and
• Search results on Twitter.

APIs to access Twitter data can be classified into two types based on their design
and access method:

• REST APIs are based on the REST architecture2 now popularly used for
designing web APIs. These APIs use the pull strategy for data retrieval. To collect
information a user must explicitly request it.

• Streaming APIs provides a continuous stream of public information from
Twitter. These APIs use the push strategy for data retrieval. Once a request for
information is made, the Streaming APIs provide a continuous stream of updates
with no further input from the user.

They have different capabilities and limitations with respect to what and how
much information can be retrieved. The Streaming API has three types of end-
points:

• Public streams: These are streams containing the public Tweets on Twitter.
• User streams: These are single-user streams, with to all the Tweets of a user.
• Site streams: These are multi-user streams and intended for applications which

access Tweets from multiple users.

1http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-
twitter
2http://en.wikipedia.org/wiki/Representational_state_transfer

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__2, © The Author(s) 2014

5

http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-twitter
http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-twitter
http://en.wikipedia.org/wiki/Representational_state_transfer

6 2 Crawling Twitter Data

As the Public streams API is the most versatile Streaming API, we will use it in
all the examples pertaining to Streaming API.

In this chapter, we illustrate how the aforementioned types of information can be
collected using both forms of Twitter API. Requests to the APIs contain parameters
which can include hashtags, keywords, geographic regions, and Twitter user IDs. We
will explain the use of parameters in greater detail in the context of specific APIs
later in the chapter. Responses from Twitter APIs is in JavaScript Object Notation
(JSON) format.3 JSON is a popular format that is widely used as an object notation
on the web.

Twitter APIs can be accessed only via authenticated requests. Twitter uses Open
Authentication and each request must be signed with valid Twitter user credentials.
Access to Twitter APIs is also limited to a specific number of requests within a time
window called the rate limit. These limits are applied both at individual user level
as well as at the application level. A rate limit window is used to renew the quota of
permitted API calls periodically. The size of this window is currently 15 min.

We begin our discussion with a brief introduction to OAuth.

2.1 Introduction to Open Authentication (OAuth)

Open Authentication (OAuth) is an open standard for authentication, adopted by
Twitter to provide access to protected information. Passwords are highly vulner-
able to theft and OAuth provides a safer alternative to traditional authentication
approaches using a three-way handshake. It also improves the confidence of the
user in the application as the user’s password for his Twitter account is never shared
with third-party applications.

The authentication of API requests on Twitter is carried out using OAuth.
Figure 2.1 summarizes the steps involved in using OAuth to access Twitter API.
Twitter APIs can only be accessed by applications. Below we detail the steps for
making an API call from a Twitter application using OAuth:

1. Applications are also known as consumers and all applications are required to
register themselves with Twitter.4 Through this process the application is issued
a consumer key and secret which the application must use to authenticate itself
to Twitter.

2. The application uses the consumer key and secret to create a unique Twitter link
to which a user is directed for authentication. The user authorizes the application
by authenticating himself to Twitter. Twitter verifies the user’s identity and issues
a OAuth verifier also called a PIN.

3http://en.wikipedia.org/wiki/JSON
4Create your own application at http://dev.twitter.com

http://en.wikipedia.org/wiki/JSON
http://dev.twitter.com

2.2 Collecting a User’s Information 7

Registers on Twitter to
access APIs

Issues the consumer
token & secret

Directs user to
Twitter to verify user

credentials

Validates credentials &
issues a OAuth verifier

Enters
credentials

Requests access token
 using the OAuth verifier,
consumer token & secret

Issues access
token & secret

Requests for content
using access token &

secret

Responds with
requested information

Fig. 2.1 OAuth workflow

3. The user provides this PIN to the application. The application uses the PIN to
request an “Access Token” and “Access Secret” unique to the user.

4. Using the “Access Token” and “Access Secret”, the application authenticates the
user on Twitter and issues API calls on behalf of the user.

The “Access Token” and “Access Secret” for a user do not change and can be cached
by the application for future requests. Thus, this process only needs to be performed
once, and it can be easily accomplished using the method GetUserAccessKeySecret
in Listing 2.1.

2.2 Collecting a User’s Information

On Twitter, users create profiles to describe themselves to other users on Twitter.
A user’s profile is a rich source of information about him. An example of a Twitter
user’s profile is presented in Fig. 2.2. Following distinct pieces of information
regarding a user’s Twitter profile can be observed in the figure:

8 2 Crawling Twitter Data

Fig. 2.2 An example of a Twitter profile

Listing 2.1 Generating OAuth token for a user

public OAuthTokenSecret GetUserAccessKeySecret() {
. . .
//Step 1 is performed directly on twitter.com after

registration.
//Step 2 User authenticates on twitter.com and generates

a PIN
OAuthConsumer consumer = new CommonsHttpOAuthConsumer(

OAuthUtils.CONSUMER_KEY, OAuthUtils.
CONSUMER_SECRET);

OAuthProvider provider = new DefaultOAuthProvider(
OAuthUtils.REQUEST_TOKEN_URL, OAuthUtils.
ACCESS_TOKEN_URL, OAuthUtils.AUTHORIZE_URL);

String authUrl = provider.retrieveRequestToken(consumer,
OAuth.OUT_OF_BAND);

//Visit authUrl and enter the PIN in the application
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
String pin = br.readLine();
//Step 3 Twitter generates the token and secret using

the provided PIN
provider.retrieveAccessToken(consumer,pin);
String accesstoken = consumer.getToken();
String accesssecret = consumer.getTokenSecret();
OAuthTokenSecret tokensecret = new OAuthTokenSecret(

accesstoken,accesssecret);
return tokensecret;
. . .

}
Source: Chapter2/openauthentication/OAuthExample.java

2.2 Collecting a User’s Information 9

• User’s real name (Data Analytics)
• User’s Twitter handle(@twtanalyticsbk)
• User’s location (Tempe, AZ)
• URL, which typically points to a more detailed profile of the user on an external

website (tweettracker.fulton.asu.edu/tda)
• Textual description of the user and his interests (Twitter Data Analytics is a book

for. . .)
• User’s network activity information on Twitter (1 follower and following 6

friends)
• Number of Tweets published by the user (1 Tweet)
• Verified mark if the identity of the user has been externally verified by Twitter
• Profile creation date

Listing 2.2 Using Twitter API to fetch a user’s profile

public JSONObject GetProfile(String username) {
. . .
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/users/

show.json?screen_name="+username);
HttpURLConnection huc = (HttpURLConnection) url.

openConnection();
huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
huc.disconnect();
Thread.sleep(this.GetWaitTime("/users/

show/:id"));
flag = false;

. . .
// Step 4: Retrieve the user’s profile from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
. . .
profile = new JSONObject(content.toString());
. . .
return userobj;

}
Source: Chapter2/restapi/RESTApiExample.java

tweettracker.fulton.asu.edu/tda

10 2 Crawling Twitter Data

Listing 2.3 A sample Twitter user object

{
"location": "Tempe,AZ",
"default_profile": true,
"statuses_count": 1,
"description": "Twitter Data Analytics is a book for

practitioners and researchers interested in
investigating Twitter data.",

"verified": false,
"name": "DataAnalytics",
"created_at": "Tue Mar 12 18:43:47 +0000 2013",
"followers_count": 1,
"geo_enabled": false,
"url": "http://t.co/HnlG9amZzj",
"time_zone": "Arizona",
"friends_count": 6,
"screen_name": "twtanalyticsbk",

//Other user fields
. . .

}

Using the API users/show,5 a user’s profile information can be retrieved using
the method GetProfile. The method is presented in Listing 2.2. It accepts a valid
username as a parameter and fetches the user’s Twitter profile.

Key Parameters: Each user on Twitter is associated with a unique id and a
unique Twitter handle which can be used to retrieve his profile. A user’s Twitter
handle, also called their screen name (screen_name), or the Twitter ID of the
user (user_id), is mandatory. A typical user object is formatted as in Listing 2.3.

Rate Limit: A maximum of 180 API calls per single user and 180 API calls from
a single application are accepted within a single rate limit window.

Note: User information is generally included when Tweets are fetched from
Twitter. Although the Streaming API does not have a specific endpoint to retrieve
user profile information, it can be obtained from the Tweets fetched using the API.

2.3 Collecting a User’s Network

A user’s network consists of his connections on Twitter. Twitter is a directed network
and there are two types of connections between users. In Fig. 2.3, we can observe an
example of the nature of these edges. John follows Alice, therefore John is Alice’s
follower. Alice follows Peter, hence Peter is a friend of Alice.

5https://dev.twitter.com/docs/api/1.1/get/users/show

https://dev.twitter.com/docs/api/1.1/get/users/show

2.3 Collecting a User’s Network 11

Alice

Bob

John Peter

Fig. 2.3 An example of a
Twitter network with different
types of edges

Listing 2.4 Using the Twitter API to fetch the followers of a user

public JSONArray GetFollowers(String username) {
. . .
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/followers

/list.json?screen_name="+username+"&cursor="
+ cursor);

HttpURLConnection huc = (HttpURLConnection) url.
openConnection();

huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
Thread.sleep(this.GetWaitTime("/

followers/list"));
} catch (InterruptedException ex) {

Logger.getLogger(RESTApiExample.class.
getName()).log(Level.SEVERE, null,
ex);

}
}
// Step 4: Retrieve the followers list from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
StringBuilder content = new StringBuilder();
String temp = "";
while((temp = bRead.readLine())!=null) {

content.append(temp);
}
try {

12 2 Crawling Twitter Data

JSONObject jobj = new JSONObject(content.
toString());

// Step 5: Retrieve the token for the next
request

cursor = jobj.getLong("next_cursor");
JSONArray idlist = jobj.getJSONArray("users");
for(int i=0;i<idlist.length();i++) {

followers.put(idlist.getJSONObject(i));
}

. . .
return followers;

}
Source: Chapter2/restapi/RESTApiExample.java

2.3.1 Collecting the Followers of a User

The followers of a user can be crawled from Twitter using the endpoint follow-
ers/list,6 by employing the method GetFollowers summarized in Listing 2.4. The
response from Twitter consists of an array of user profile objects such as the one
described in Listing 2.3

Key Parameters: screen_name or user_id is mandatory to access the API.
Each request returns a maximum of 15 followers of the specified user in the form of
a Twitter User object. The parameter “cursor” can be used to paginate through the
results. Each request returns the cursor for use in the request for the next page.

Rate Limit: A maximum of 15 API calls from a user and 30 API calls from an
application are allowed within a rate limit window.

2.3.2 Collecting the Friends of a User

The friends of a user can be crawled using the Twitter API friends/list7 by employing
the method GetFriends, which is summarized in Listing 2.5. The method constructs
a call to the API and takes a valid Twitter username as the parameter. It uses the
cursor to retrieve all the friends of a user and if the API limit is reached, it will wait
until the quota has been renewed.

Key Parameters: As with the followers API, a valid screen_name or
user_id is mandatory. Each request returns a list of 20 friends of a user as Twitter
User objects. The parameter “cursor” can be used to paginate through the results.
Each request returns the cursor to be used in the request for the next page.

6https://dev.twitter.com/docs/api/1.1/get/followers/list
7https://dev.twitter.com/docs/api/1.1/get/friends/list

https://dev.twitter.com/docs/api/1.1/get/followers/list
https://dev.twitter.com/docs/api/1.1/get/friends/list

2.3 Collecting a User’s Network 13

Listing 2.5 Using the Twitter API to fetch the friends of a user

public JSONArray GetFriends(String username) {
. . .
JSONArray friends = new JSONArray();
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/friends/

list.json?screen_name="+username+"&cursor="+cursor);
HttpURLConnection huc = (HttpURLConnection) url.

openConnection();
huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
Thread.sleep(this.GetWaitTime("/friends/

list"));
} catch (InterruptedException ex) {

Logger.getLogger(RESTApiExample.class.
getName()).log(Level.SEVERE, null,
ex);

}
}
// Step 4: Retrieve the friends list from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
. . .
JSONObject jobj = new JSONObject(content.toString());
// Step 5: Retrieve the token for the next request
cursor = jobj.getLong("next_cursor");
JSONArray userlist = jobj.getJSONArray("users");
for(int i=0;i<userlist.length();i++) {

friends.put(userlist.get(i));
}
. . .
return friends;

}
Source: Chapter2/restapi/RESTApiExample.java

Rate Limit: A maximum of 15 calls from a user and 30 API calls from an
application are allowed within a rate limit window.

14 2 Crawling Twitter Data

2.4 Collecting a User’s Tweets

A Twitter user’s Tweets are also known as status messages. A Tweet can be at most
140 characters in length. Tweets can be published using a wide range of mobile and
desktop clients and through the use of Twitter API. A special kind of Tweet is the
retweet, which is created when one user reposts the Tweet of another user. We will
discuss the utility of retweets in greater detail in Chaps. 4 and 5.

A user’s Tweets can be retrieved using both the REST and the Streaming API.

2.4.1 REST API

We can access a user’s Tweets by using statuses/user_timeline8 from the REST
APIs. Using this API, one can retrieve 3,200 of the most recent Tweets published
by a user including retweets. The API returns Twitter “Tweet” objects shown in
Listing 2.6.

An example describing the process to access this API can be found in the
GetStatuses method summarized in Listing 2.7.

Key Parameters: We can retrieve 200 Tweets on each page we collect. The
parameter max_id is used to paginate through the Tweets of a user. To retrieve the
next page we use the ID of the oldest Tweet in the list as the value of this parameter
in the subsequent request. Then, the API will retrieve only those Tweets whose IDs
are below the supplied value.

Rate Limit: An application is allowed 300 requests within a rate limit window
and up to 180 requests can be made using the credentials of a user.

Listing 2.6 An example of Twitter Tweet object

{
"text": "This is the first tweet.",
"lang": "en",
"id": 352914247774248960,
"source": "web",
"retweet_count": 0,
"created_at": "Thu Jul 04 22:18:08 +0000 2013",
//Other Tweet fields
. . .
"place": {

"place_type": "city",
"name": "Tempe",
"country_code": "US",
"url": "https://api.twitter.com/1.1/geo/id/7

cb7440bcf83d464.json",
"country": "United States",

8https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

2.4 Collecting a User’s Tweets 15

"full_name": "Tempe, AZ",
//Other place fields
. . .

},
"user": {

//User Information in the form of Twitter user object
. . .

}
}

Listing 2.7 Using the Twitter API to fetch the Tweets of a user

public JSONArray GetStatuses(String username) {
. . .
// Step 1: Create the API request using the supplied

username
// Use (max_id-1) to avoid getting redundant Tweets.
url = new URL("https://api.twitter.com/1.1/statuses/

user_timeline.json?screen_name=" + username+"&
include_rts="+include_rts+"&count="+tweetcount+"&
max_id="+(maxid-1));

HttpURLConnection huc = (HttpURLConnection) url.
openConnection();

huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed */
. . .
//Step 4: Retrieve the Tweets from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getInputStream()));
. . .
for(int i=0;i<statusarr.length();i++) {

JSONObject jobj = statusarr.getJSONObject(i);
statuses.put(jobj);
// Step 5: Get the id of the oldest Tweet ID as

max_id to retrieve the next batch of Tweets
if(!jobj.isNull("id")) {

maxid = jobj.getLong("id");
. . .

return statuses;
}
Source: Chapter2/restapi/RESTApiExample.java

16 2 Crawling Twitter Data

2.4.2 Streaming API

Specifically, the statuses/filter9 API provides a constant stream of public Tweets
published by a user. Using the method CreateStreamingConnection summarized in
Listing 2.8, we can create a POST request to the API and fetch the search results
as a stream. The parameters are added to the request by reading through a list of
userids using the method CreateRequestBody, which is summarized in Listing 2.9.

Listing 2.8 Using the Streaming API to fetch Tweets

public void CreateStreamingConnection(String baseUrl, String
outFilePath) {

HttpClient httpClient = new DefaultHttpClient();
httpClient.getParams().setParameter(CoreConnectionPNames

.CONNECTION_TIMEOUT, new Integer(90000));
//Step 1: Initialize OAuth Consumer
OAuthConsumer consumer = new CommonsHttpOAuthConsumer(

OAuthUtils.CONSUMER_KEY,OAuthUtils.CONSUMER_SECRET);
consumer.setTokenWithSecret(OAuthToken.getAccessToken(),

OAuthToken.getAccessSecret());
//Step 2: Create a new HTTP POST request and set

parameters
HttpPost httppost = new HttpPost(baseUrl);
try {

httppost.setEntity(new UrlEncodedFormEntity(
CreateRequestBody(), "UTF-8"));

. . .
//Step 3: Sign the request
consumer.sign(httppost);
. . .
HttpResponse response;
InputStream is = null;
try {

//Step 4: Connect to the API
response = httpClient.execute(httppost);
. . .
HttpEntity entity = response.getEntity();
try {

is = entity.getContent();
. . .
//Step 5: Process the incoming Tweet

Stream
this.ProcessTwitterStream(is, outFilePath

);
. . .

}
Source: Chapter2/streamingapi/StreamingApiExample.java

9https://dev.twitter.com/docs/api/1.1/post/statuses/filter

https://dev.twitter.com/docs/api/1.1/post/statuses/filter

2.5 Collecting Search Results 17

Listing 2.9 Adding parameters to the Streaming API

private List<NameValuePair> CreateRequestBody() {
List<NameValuePair> params = new ArrayList<NameValuePair

>();
if(Userids != null&&Userids.size()>0) {

//Add userids
params.add(CreateNameValuePair("follow",

Userids));
}
if (Geoboxes != null&&Geoboxes.size()>0) {

//Add geographic bounding boxes
params.add(CreateNameValuePair("locations",

Geoboxes));
}
if (Keywords != null&&Keywords.size()>0) {

//Add keywords/hashtags/phrases
params.add(CreateNameValuePair("track",

Keywords));
}
return params;

}
Source: Chapter2/streamingapi/StreamingApiExample.java

Key Parameters: The follow10 parameter can be used to specify the userids
of 5,000 users as a comma separated list.

Rate Limit: Rate limiting works differently in the Streaming API. In each
connection an application is allowed to submit up to 5,000 Twitter userids. Only
public Tweets published by the user can be captured using this API.

2.5 Collecting Search Results

Search on Twitter is facilitated through the use of parameters. Acceptable parameter
values for search include keywords, hashtags, phrases, geographic regions, and
usernames or userids. Twitter search is quite powerful and is accessible by both
the REST and the Streaming APIs. There are certain subtle differences when using
each API to retrieve search results.

2.5.1 REST API

Twitter provides the search/tweets API to facilitate searching the Tweets. The search
API takes words as queries and multiple queries can be combined as a comma
separated list. Tweets from the previous 10 days can be searched using this API.

10https://dev.twitter.com/docs/streaming-apis/parameters#follow

https://dev.twitter.com/docs/streaming-apis/parameters#follow

18 2 Crawling Twitter Data

Listing 2.10 Searching for Tweets using the REST API

public JSONArray GetSearchResults(String query) {
try {

// Step 1:
String URL_PARAM_SEPERATOR = "&";
StringBuilder url = new StringBuilder();
url.append("https://api.twitter.com/1.1/search/tweets.

json?q=");
//query needs to be encoded
url.append(URLEncoder.encode(query, "UTF-8"));
url.append(URL_PARAM_SEPERATOR);
url.append("count=100");
URL navurl = new URL(url.toString());
HttpURLConnection huc = (HttpURLConnection) navurl.

openConnection();
huc.setReadTimeout(5000);
Consumer.sign(huc);
huc.connect();
. . .
// Step 2: Read the retrieved search results
BufferedReader bRead = new BufferedReader(new

InputStreamReader((InputStream) huc.getInputStream()
));

String temp;
StringBuilder page = new StringBuilder();
while((temp = bRead.readLine())!=null) {

page.append(temp);
}
JSONTokener jsonTokener = new JSONTokener(page.toString

());
try{

JSONObject json = new JSONObject(jsonTokener);
//Step 4: Extract the Tweet objects as an array
JSONArray results = json.getJSONArray("statuses");
return results;
. . .

}
Source: Chapter2/restapi/RESTApiExample.java

Requests to the API can be made using the method GetSearchResults presented in
Listing 2.10. Input to the function is a keyword or a list of keywords in the form of
an OR query. The function returns an array of Tweet objects.

Key Parameters: result_type parameter can be used to select between the
top ranked Tweets, the latest Tweets, or a combination of the two types of search
results matching the query. The parameters max_id and since_id can be used
to paginate through the results, as in the previous API discussions.

Rate Limit: An application can make a total of 450 requests and up to 180
requests from a single authenticated user within a rate limit window.

2.5 Collecting Search Results 19

2.5.2 Streaming API

Using the Streaming API, we can search for keywords, hashtags, userids, and
geographic bounding boxes simultaneously. The filter API facilitates this search and
provides a continuous stream of Tweets matching the search criteria. POST method
is preferred while creating this request because when using the GET method to
retrieve the results, long URLs might be truncated. Listings 2.8 and 2.9 describe
how to connect to the Streaming API with the supplied parameters.

Listing 2.11 Processing the streaming search results

public void ProcessTwitterStream(InputStream is, String
outFilePath) {

BufferedWriter bwrite = null;
try {
/** A connection to the streaming API is already

* created and the response is contained in

* the InpuStream

*/
JSONTokener jsonTokener = new JSONTokener(new

InputStreamReader(is, ‘‘UTF-8’’));
ArrayList<JSONObject> rawtweets = new ArrayList<

JSONObject>();
int nooftweetsuploaded = 0;

//Step 1: Read until the stream is exhausted
while(true) {
try {

JSONObject temp = new JSONObject(jsonTokener);
rawtweets.add(temp);
if (rawtweets.size() >= RECORDS_TO_PROCESS){
Calendar cal = Calendar.getInstance();
String filename = outFilePath + ‘‘tweets_’’ +

cal.getTimeInMillis() + ‘‘.json’’;
//Step 2: Periodically write the

processed Tweets to a file
bwrite = new BufferedWriter(new

OutputStreamWriter(new
FileOutputStream(filename),
‘‘UTF-8’’));

nooftweetsuploaded+=RECORDS_TO_PROCESS;
for (JSONObject jobj : rawtweets) {

bwrite.write(jobj.toString());
bwrite.newLine();
}
bwrite.close();
rawtweets.clear();

. . .
}
Source: Chapter2/streamingapi/StreamingApiExample.java

In method ProcessTwitterStream, as in Listing 2.11, we show how the incoming
stream is processed. The input is read in the form of a continuous stream and

20 2 Crawling Twitter Data

each Tweet is written to a file periodically. This behavior can be modified as per
the requirement of the application, such as storing and indexing the Tweets in a
database. More discussion on the storage and indexing of Tweets will follow in
Chap. 3.

Key Parameters: There are three key parameters:

• follow: a comma-separated list of userids to follow. Twitter returns all of their
public Tweets in the stream.

• track: a comma-separated list of keywords to track. Multiple keywords are
provided as a comma separated list.

• locations: a comma-separated list of geographic bounding box containing the
coordinates of the southwest point and the northeast point as (longitude, latitude)
pairs.

Rate Limit: Streaming APIs limit the number of parameters which can be
supplied in one request. Up to 400 keywords, 25 geographic bounding boxes and
5,000 userids can be provided in one request. In addition, the API returns all
matching documents up to a volume equal to the streaming cap. This cap is currently
set to 1% of the total current volume of Tweets published on Twitter.

2.6 Strategies to Identify the Location of a Tweet

Location information on Twitter is available from two different sources:

• Geotagging information: Users can optionally choose to provide location infor-
mation for the Tweets they publish. This information can be highly accurate if
the Tweet was published using a smartphone with GPS capabilities.

• Profile of the user: User location can be extracted from the location field in the
user’s profile. The information in the location field itself can be extracted using
the APIs discussed above.

Approximately 1% of all Tweets published on Twitter are geolocated. This is
a very small portion of the Tweets, and it is often necessary to use the profile
information to determine the Tweet’s location. This information can be used in
different visualizations as you will see in Chap. 5. The location string obtained from
the user’s profile must first be translated into geographic coordinates. Typically, a
gazetteer is used to perform this task. A gazetteer takes a location string as input,
and returns the coordinates of the location that best correspond to the string. The
granularity of the location is generally coarse. For example, in the case of large
regions, such as cities, this is usually the center of the city. There are several
online gazetteers which provide this service, including Bing™, Google™, and
MapQuest™. In our example, we will use the Nominatim service from MapQuest11

11http://developer.mapquest.com/web/products/open/nominatim

http://developer.mapquest.com/web/products/open/nominatim

2.7 Obtaining Data via Resellers 21

Listing 2.12 Translating location string into coordinates

public Location TranslateLoc(String loc) {
if(loc!=null&&!loc.isEmpty()) {

String encodedLoc="";
try {
// Step 1: Encode the location name

encodedLoc = URLEncoder.encode(loc, "UTF-8");
. . .
/** Step 2: Create a get request to MapQuest API with

the

* name of the location

*/
String url= "http://open.mapquestapi.com/nominatim/v1/

search?q="+encodedLoc+"&format=json";
String page = ReadHTML(url);
if(page!=null) {

try{
JSONArray results = new JSONArray(page);
if(results.length()>0) {

//Step 3: Read and extract the
coordinates of the location
as a JSONObject

Location loca = new Location(
results.getJSONObject(0).
getDouble("lat"),results.
getJSONObject(0).getDouble("
lon"));

return loca;
. . .

}
Source: Chapter2/location/LocationTranslationExample.java

to demonstrate this process. In Listing 2.12, a summary of the method TranslateLoc
is provided, which is defined in the class LocationTranslateExample. The response
is provided in JSON, from which the coordinates can be easily extracted. If the
service is unable to find a match, it will return (0,0) as the coordinates.

2.7 Obtaining Data via Resellers

The rate limitations of Twitter APIs can be too restrictive for certain types of
applications. To satisfy such requirements, Twitter Firehose provides access to
100% of the public Tweets on Twitter at a price. Firehose data can be purchased
through third party resellers of Twitter data. At the time of writing of this book,
there are three resellers of data, each of which provide different levels of access.
In addition to Twitter data some of them also provide data from other social media
platforms, which might be useful while building social media based systems. These
include the following:

22 2 Crawling Twitter Data

• DataSift™12 – provides access to past data as well as streaming data
• GNIP™13 – provides access to streaming data only
• Topsy™14 – provides access to past data only

2.8 Further Reading

Full documentation of v1.1 of the Twitter API can be found at [1]. It also contains
the most up-to-date and detailed information on the rate limits applicable to
individual APIs. Twitter HTTP Error Codes & Responses [2] contains a list of HTTP
error codes returned by the Twitter APIs. It is a useful resource while debugging
applications. The REST API for search accepts several different parameters to
facilitate the construction of complex queries. A full list of these along with
examples can be found in [4]. The article further clarifies on what is possible
using the Search API and explains the best practices for accessing the API. Various
libraries exist in most popular programming languages, which encapsulate the
complexity of accessing the Twitter API by providing convenient methods. A full
list of all available libraries can be found in [3]. Twitter has also released an open
source library of their own called the Hosebird, which has been tested to handle
firehose streams.

References

1. Twitter. Twitter API v1.1 Documentation. https://dev.twitter.com/docs/api/1.1, 2013. [Online;
accessed 19-March-2013].

2. Twitter. Twitter HTTP Error Codes & Responses. https://dev.twitter.com/docs/error-codes-
responses, 2013. [Online; accessed 19-March-2013].

3. Twitter. Twitter Libraries. https://dev.twitter.com/docs/twitter-libraries, 2013. [Online; accessed
9-July-2013].

4. Twitter. Using the Twitter Search API. https://dev.twitter.com/docs/using-search, 2013. [Online;
accessed 9-July-2013].

12http://datasift.com
13http://gnip.com
14http://topsy.com

https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/error-codes-responses
https://dev.twitter.com/docs/error-codes-responses
https://dev.twitter.com/docs/twitter-libraries
https://dev.twitter.com/docs/using-search
http://datasift.com
http://gnip.com
http://topsy.com

Chapter 3
Storing Twitter Data

In the previous chapter, we covered data collection methodologies. Using these
methods, one can quickly amass a large volume of Tweets, Tweeters, and network
information. Managing even a moderately-sized dataset is cumbersome when
storing data in a text-based archive, and this solution will not give the performance
needed for a real-time application. In this chapter we present some common storage
methodologies for Twitter data using NoSQL.

3.1 NoSQL Through the Lens of MongoDB

Keeping track of every purchase, click, and “like” has caused the data needs of many
companies to double every 14 months. There has been an explosion in the size of
data generated on social media. This data explosion calls for a new data storage
paradigm. At the forefront of this movement is NoSQL [3], which promises to store
big data in a more accessible way than the traditional, relational model.

There are several NoSQL implementations. In this book, we choose MongoDB1

as an example NoSQL implementation. We choose it for its adherence to the
following principles:

• Document-Oriented Storage. MongoDB stores its data in JSON-style objects.
This makes it very easy to store raw documents from Twitter’s APIs.

• Index Support. MongoDB allows for indexes on any field, which makes it easy
to create indexes optimized for your application.

• Straightforward Queries. MongoDB’s queries, while syntactically much dif-
ferent from SQL, are semantically very similar. In addition, MongoDB supports
MapReduce, which allows for easy lookups in the data.

1http://www.mongodb.org/

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__3, © The Author(s) 2014

23

http://www.mongodb.org/

24 3 Storing Twitter Data

Q
u

er
y

T
im

e

Data Size

Scalability of NoSQL and Relational Models

NoSQL
Relational

Fig. 3.1 Comparison of traditional relational model with NoSQL model. As data grows to a large
capacity, the NoSQL database outpaces the relational model

• Speed. Figure 3.1 shows a comparison of query speed between the relational
model and MongoDB.

In addition to these abilities, it also works well in a single-instance environment,
making it easy to set up on a home computer and run the examples in this chapter.

3.2 Setting Up MongoDB on a Single Node

The most simple configuration of MongoDB is a single instance running on one
machine. This setup allows for access to all of the features of MongoDB. We use
MongoDB 2.4.4,2 the latest version at the time of this writing.

3.2.1 Installing MongoDB on Windows®

1. Obtain the latest version of MongoDB from http://www.mongodb.org/
downloads. Extract the downloaded zip file.

2. Rename the extracted folder to mongodb.
3. Create a folder called data next to the mongodb folder.

2http://docs.mongodb.org/manual/

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/

3.2 Setting Up MongoDB on a Single Node 25

4. Create a folder called db within the data folder. Your file structure should
reflect that shown below.
/
mongodb

...
data

db

3.2.2 Running MongoDB on Windows

1. Open the command prompt and move to the directory above the mongodb
folder.

2. Run the command mongodb\bin\mongod.exe-dbpath data\db
3. If Windows prompts you, make sure to allow MongoDB to communicate on

private networks, but not public ones. Without special precautions, MongoDB
should not be run in an open environment.

4. Open another command window and move to the directory where you put the
mongodb folder.

5. Run the command mongodb\bin\mongo.exe. This is the command-line
interface to MongoDB. You can now issue commands to MongoDB.

3.2.3 Installing MongoDB on Mac OS X®

1. Obtain the latest version of MongoDB from http://www.mongodb.org/
downloads.

2. Rename the downloaded file to mongodb.tgz.
3. Open the “Terminal” application. Move to the folder where you downloaded

MongoDB.
4. Run the command tar -zxvf mongodb.tgz. This will create a folder with

the name mongodb-osx-[platform]-[version] in the same directory.
For version 2.4.4, this folder will be called mongodb-osx-x86_64-2.4.4.

5. Run the command mv -n mongodb-osx-[platform]-[version]/
mongodb. This will give us a more convenient folder name.

6. Run the command mkdir data && mkdir data/db. This will create the
subfolders where we will store our data.

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

26 3 Storing Twitter Data

3.2.4 Running MongoDB on Mac OS X

1. Open the “Terminal” application and move to the directory above the mongodb
folder.

2. Run the command ./mongodb/bin/mongod-dbpath data/db
3. Open another tab in Terminal (Cmd-T).
4. Run the command ./mongodb/bin/mongo. This is the command-line inter-

face to MongoDB. You can now issue commands to MongoDB.

3.3 MongoDB’s Data Organization

MongoDB organizes its data in the following hierarchy: database, collection, docu-
ment. A database is a set of collections, and a collection is a set of documents. The
organization of data in MongoDB is shown in Fig. 3.2. Here we will demonstrate
how to interact with each level in this hierarchy to store data.

3.4 How to Execute the MongoDB Examples

The examples presented in this chapter are written in JavaScript – the language
underpinning MongoDB. To run these examples, do the following:

1. Run mongod, as shown above. The process doing this varies is outlined in
Sect. 3.2.

Database 1 Database 2 Database n

C
ol

le
ct

io
n

1

C
ol

le
ct

io
n

2

C
ol

le
ct

io
n
k

.

.

.

D 1

D 2

D m

Fig. 3.2 Organization of MongoDB data

3.6 Optimizing Collections for Queries 27

2. Change directories to your bin folder: cd mongodb/bin.
3. Execute the following command: mongo localhost/tweetdata path/

to/example.js. This will run the example on your local MongoDB installa-
tion. If you are on windows, you will have to replace mongo with mongo.exe.

3.5 Adding Tweets to the Collection

Now that we have a collection in the database, we will add some Tweets to it.
Because MongoDB uses JSON to store its documents, we can import the data
exactly as it was collected from Twitter, with no need to map columns. To load
this, download the Occupy Wall Street data included in the supplementary materials,
ows.json. Next, with mongod running, issue the following command3:

mongoimport -d tweetdata -c tweets -file ows.json
mongoimport is a utility that is packaged with MongoDB that allows you to

import JSON documents. By running the above command, we have added all of the
JSON documents in the file to the collection we created earlier. We now have some
Tweets stored in our database, and we are ready to issue some commands to analyze
this data.

3.6 Optimizing Collections for Queries

To make our documents more accessible, we will extract some key features for
indexing later. For example, while the “created_at” field gives us information
about a date in a readable format, converting it to a JavaScript date each time we
do a date comparison will add overhead to our computations. It makes sense to
add a field “timestamp” whose value contains the Unix timestamp4 representing
the information contained in “created_at”. This redundancy trades disk space
for efficient computation, which is more of a concern when building real-time
applications which rely on big data. Listing 3.1 is a post-processing script that adds
fields that make handling the Twitter data more convenient and efficient.

3On Windows, you exchange mongoimport with mongoimport.exe.
4A number, the count of milliseconds since January 1st, 1970.

28 3 Storing Twitter Data

Listing 3.1 Post-processing step to add extra information to data

> //enumerate each Tweet
> db.tweets.find().forEach(function(doc){
... //save the time string in Unix time.
... doc.timestamp = +new Date(doc.created_at);
... //reduce the geobox to one point
... doc.geoflag = !!doc.coordinates;
... if(doc.coordinates && doc.coordinates.coordinates){
... doc.location = {"lat": doc.coordinates.coordinates

[1], "lng": doc.coordinates.coordinates[0]};
... }
... //save a lowercased version of the screen name
... doc.screen_name_lower = doc.user.screen_name.toLowerCase

();
... //save our modifications
... db.tweets.save(doc);
... });
Source: Chapter3/postProcessingExample.js

Listing 3.2 Create an index on the “timestamp” field

> db.tweets.ensureIndex({"timestamp": 1})

3.7 Indexes

We now have inserted some documents into a collection, but as they stand querying
them will be slow as we have not created any indexes. That is, we have not told
MongoDB which fields in the document to optimize for faster lookup.

One of the most important concepts to understand for fast access of a MongoDB
collection is indexing. The indexes you choose will depend largely on the queries
that you run often, those that must be executed in real time. While the indexes you
choose will depend on your data, here we will show some indexes that are often
useful in querying Twitter data in real-time.

The first index we create will be on our “timestamp” field. This command is
shown in Listing 3.2.

When creating an index, there are several rules MongoDB enforces to ensure that
an index is used:

• Only one index is used per query. While you can create as many indexes as
you want for a given collection, you can only use one for each query. If you
have multiple fields in your query, you can create a “compound index” on both
fields. For example, if you want to create an index on “timestamp”, and then
“retweet_count”, can pass {"timestamp": 1, "retweet_count": 1}.

3.9 Filtering Documents: Number of Tweets Generated in a Certain Hour 29

• Indexes can only use fields in the order they were created. Say, for example,
we create the index {"timestamp": 1, "retweet_count": 1, "keywords"

: 1}.
This query is valid for queries structured in the following order:

– timestamp, retweet_count, keywords
– timestamp
– timestamp, retweet_count

This query is not valid for queries structured in the following order:

– retweet_count, timestamp, keywords
– keywords
– timestamp, keywords

• Indexes can contain, at most, one array. Twitter provides Tweet metadata in
the form of arrays, but we can only use one in any given index.

3.8 Extracting Documents: Retrieving All Documents
in a Collection

The simplest query we can provide to MongoDB is to return all of the data in a
collection. We use MongoDB’s find function to do this, an example of which is
shown in Listing 3.3.

3.9 Filtering Documents: Number of Tweets Generated
in a Certain Hour

Suppose we want to know the number of Tweets in our dataset from a particular
hour. To do this we will have to filter our data by the timestamp field with
“operators”: special values that act as functions in retrieving data.

Listing 3.4 shows how we can drill down to extract data only from this hour.
We use the $gt (“greater than”), and $lte (“less than or equal to”) operators to
pull dates from this time range. Notice that there is no explicit “AND” or “OR”
operator specified. MongoDB treats all co-occurring key/value pairs as “AND”s
unless explicitly specified by the $or operator.5 Finally, the result of this query
is passed to the count function, which returns the number of documents returned
by the find function.

5For more operators, see http://docs.mongodb.org/manual/reference/operator/.

http://docs.mongodb.org/manual/reference/operator/.

30 3 Storing Twitter Data

Listing 3.3 Get all of the Tweets in a collection

> db.tweets.find()
{ "_id" : ObjectId("51e6d70cd13954bd0dd9e09d"), ... }
{ "_id" : ObjectId("51e6d70cd13954bd0dd9e09e"), ... }
...
has more
Source: Chapter3/find_all_tweets.js

Listing 3.4 Get all of the Tweets from a single hour

> var NOVEMBER = 10; //Months are zero-indexed.
> var query = {
... "timestamp" : {
... "$gte": +new Date(2011, NOVEMBER, 15, 10),
... "$lt": +new Date(2011, NOVEMBER, 16, 11)
... }
... };
> db.tweets.find(query).count();
22169
Source: Chapter3/tweets_from_one_hour.js

Listing 3.5 Sort Tweets by time published

> db.tweets.find().sort({"timestamp": -1})
{ "_id" : ObjectId("51e6d713d13954bd0ddaa097"), ... }
{ "_id" : ObjectId("51e6d713d13954bd0ddaa096"), ... }
has more
Source: Chapter3/most_recent_tweets.js

3.10 Sorting Documents: Finding the Most Recent Tweets

To find the most recent Tweets, we will have to sort the data. MongoDB provides a
sort function that will order the Tweet by a specified field. Listing 3.5 shows an
example of how to use sort to order data by timestamp. Because we used “�1” in
the value of the key value pair, MongoDB will return the data in descending order.
For ascending order, use “1”.

Without the index created in Sect. 3.7, we would have caused the error shown in
Listing 3.6. Even with a relatively small collection, MongoDB cannot sort the data
in a manageable amount of time, however with an index it is very fast.

3.11 Grouping Documents: Identifying the Most Mentioned Users 31

Listing 3.6 Error generated without an index on “timestamp”

> db.tweets.find().sort({"timestamp": -1})
error: {
"$err" : "too much data for sort() with no index. add an

index or specify a smaller limit",
"code" : 10128

}

T1: @jim @sam
T2: @bob @sam

@jim
T3: @sam @mike

T1: @jim @sam

T2: @bob @sam
@jim

T3: @sam, @mike

@bob, 1

@jim, 1
@jim, 1

@mike, 1

@sam, 1
@sam, 1
@sam, 1

@jim

@sam

@jim

@sam

@bob

@mike

@sam

@bob, 1

@jim, 2

@mike, 1

@sam, 3

@bob, 1
@mike, 1
@jim, 2
@sam, 3

Input Split Map ReduceShuffle Output

Fig. 3.3 MapReduce framework. The steps in white are implemented by the reader. MongoDB
takes the documents from the database and runs each one through the map function. It then sorts
the emitted keys and runs each key and its values through the reduce function. The output from the
reduce function is stored in another collection

3.11 Grouping Documents: Identifying the Most
Mentioned Users

With some simple use of the find and count functions, you can learn volumes about
the data you have collected. However, when it comes to aggregating data, we will
need to employ another set of functions, collectively called MapReduce.

MapReduce consists of two steps: “Map”, and “Reduce”. In the map step, data
is extracted, filtered, and processed to be sent to the reduce function. The mapper
processes in the map step emit a series of key/value pairs. These key value pairs are
sorted, and the values associated with each unique key are sent to a reduce process.
Each reduce process then computes a value for the key it is handed. A diagram for
this process is shown in Fig. 3.3. The MongoDB code for this example is shown in
Listing 3.7.

32 3 Storing Twitter Data

Listing 3.7 MapReduce function that lists the most mentioned users

> /*
> * This function extracts each user mentioned,
> * and the count of each mention.
> * The function takes 0 parameters, as the document
> * will be passed through context (the ’this’ object).
> */
> var mapFunction = function(){
... //loop through all of the mentions in the document.
... var userMentions = this.entities.user_mentions;
... for(var i = 0; i < userMentions.length; i++){
... //check that the username is not blank.
... if(userMentions[i].screen_name.length > 0){
... //emit the username (key) and
... //the count (value, in this case always 1).
... emit(userMentions[i].screen_name, 1);
... }
... }
... }

> /*
> * This function sums the number of mentions of each user
> */
> var reduceFunction = function(keyUsername, occurs){
... return Array.sum(occurs);
... }

> // Perform the MapReduce operation, and store the results
> // in a new collection, "most_mentioned_users".
> db.tweets.mapReduce(mapFunction, reduceFunction, {"out": "

most_mentioned_users"});

> // List the top 5 most-mentioned users
> db.most_mentioned_users.find().sort({"value": -1}).limit(5)
{ "_id" : "MikeBloomberg", "value" : 727 }
{ "_id" : "OccupyWallSt", "value" : 588 }
{ "_id" : "OccupyWallStNYC", "value" : 428 }
{ "_id" : "JoshHarkinson", "value" : 295 }
{ "_id" : "ydanis", "value" : 260 }
Source: Chapter3/mapreduce.js

In Listing 3.7, the MapReduce is constructed as follows. The map function, called
mapFunction, looks at each individual Tweet and pulls out the mentioned users.
It then constructs the key/value pair to be sent to the reducer. The key is the user
that was mentioned, and the value is 1. MongoDB then creates a unique reducer for
each unique key and calls the reduce function, reduceFunction, on each key.
The reducer then takes this list of values and calculates the sum. The result is a list
of mentioned users and the count of the number of mentions for that user.

References 33

3.12 Further Reading

More information on MongoDB can be found in [2] and the MongoDB speci-
fication [1]. For more conversions between MongoDB’s document-based syntax
and SQL, see http://docs.mongodb.org/manual/reference/sql-comparison/. More
information on other NoSQL implementations can be found in [3].

References

1. 10gen. The mongodb 2.4 manual. http://docs.mongodb.org/manual/, 2013.
2. K. Chodorow. MongoDB: the definitive guide. O’Reilly, 2013.
3. E. Redmond and J. R. Wilson. Seven Databases in Seven Weeks. Pragmatic Programmers, 2012.

http://docs.mongodb.org/manual/reference/sql-comparison/
http://docs.mongodb.org/manual/

Chapter 4
Analyzing Twitter Data

So far we have discussed the collection and management of a large set of Tweets.
It is time to put these Tweets to work to gain information about the data we have
collected. This chapter focuses on two key aspects of Twitter data for data analysis:
networks and text.

When analyzing Twitter data, we can ask many questions. Who is the most
important? What are people talking about? How are they responding to a product?
In this chapter we will discuss how to answer these questions via data analysis.

4.1 Network Measures

Many of the questions that we ask of our Twitter data can be answered through
network analysis. Questions such as “who is important?”, “who talks to whom?”,
and “what is important?” can all be answered through a network. Using proper
network measures, we can find these important actors or topics in a network.

4.1.1 What Is a Network?

A network1 is a set of vertices linked by a set of edges. While this representation
is very simple, the choices made when creating the network can make a huge
difference in the way it is interpreted.

4.1.1.1 Vertices

Vertices are the elements that comprise a network. In both networks presented in
Fig. 4.1, “Alice”, “Bob”, and “Carol” are the vertices in the network. Vertices can

1This is also commonly referred to as a graph.

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__4, © The Author(s) 2014

35

36 4 Analyzing Twitter Data

a b

Alice

Bob Carol

Alice

Bob Carol

Fig. 4.1 Some basic networks illustrating the different kind of edges in a network. (a) A simple
undirected network. Here, links are symmetric or nondirectional (Alice is joined to Bob and vice
versa). (b) A simple directed network. Here, links are asymmetric or directional (Bob is joined to
Alice but Alice is not joined to Bob)

represent literally anything. Starting with the definition of vertices as “users”, we
will present some basic concepts. In future sections we will show how different
definitions for vertices can lead to different questions from the data.

4.1.1.2 Edges

Simply put, edges join vertices. There are several different types of edges that can
join vertices. Undirected edges join vertices in a symmetric fashion. If two people
engage in a conversation, then this is best represented by an undirected edge because
for User A to converse with User B, User B must also converse with User A.

Contrary to undirected edges are directed edges, which signify a one-way
relationship between two users. A retweet relationship can be thought of as a
directed edge because User A can retweet User B without User B reciprocating.

Another property to consider is “edge weight”. The weight of an edge signifies
its importance when compared to other edges. One natural usage of weighted edges
is in a user mention network, where the weight is the number of times the User A
mentions User B.

4.1.1.3 Paths

A path is a sequence of nodes connected by a sequence of edges. A path always
starts at one vertex, and ends at another vertex. We follow a path by starting at
the first node in the sequence and traveling to each subsequent node in order. If no
edge exists between two adjacent nodes in the sequence, then the path is invalid. In
Fig. 4.1b, a path exists from Bob to Carol, however a path does not exist from Carol
to Bob (directed edges cannot be followed in reverse order).

In addition to paths, we also have shortest paths. While there may be many ways
to get from one node to another, the shortest path is the shortest sequence of nodes.
It is important to find the shortest path from one node to another, as information will
most often travel along this path.

4.1 Network Measures 37

4.1.2 Networks from Twitter Data

In the previous section we discussed the constructs that make up a network. We have
kept our definition of a network general to allow for flexibility in the interpretation
of the calculations performed on these networks when building them with different
definitions in mind. When we build a network, our definition of nodes and edges
determines the meaning of the measures performed. We begin by constructing a
retweet network.

The retweet network is special because it can be derived directly through the
Streaming API, there is no need to wait on the highly-limited REST APIs to
extract this network. Additionally, it carries a very intuitive meaning. The nodes are
individual users. The directed edges indicate the flow of information in the network.
An edge from node A to node B indicates that A has retweeted B, forwarding
B’s information to his followers. Studying the structure of this network yields
information about the ways the users communicate, and how highly they value each
others’ information.

4.1.3 Centrality: Who Is Important?

Often, we want to know who is the most important person in the network. The
question of importance may not be as straightforward as it seems. There are several
dimensions along which one may be considered important. Measures of importance
in social networks are called “centrality measures”. Here, we discuss the three that
are used most frequently in social media analysis. Each provides a different view of
who is important in the network. We will use the retweet network to demonstrate
these centrality concepts.

4.1.3.1 Degree Centrality: Who Gets the Most Retweets?

One of the most commonly-used centrality measures is degree centrality. The
calculation is simple: count the number of links attached to the node, this is their
degree centrality. In the case of a directed graph, there are two interpretations: In-
Degree Centrality, the number of edges entering the node, and Out-Degree, the
number of edges leaving the node. In the context of our retweet networks, In-Degree
Centrality is the number of users that retweet the node, and Out-Degree Centrality is
the number of users the node retweets.2 In Listing 4.1, we present an example of In-
Degree Centrality. In Fig. 4.2, we see an example retweet graph with the nodes sized
by their In-Degree Centrality. Interpreting this picture is simple, since Alice has the
most edges pointing towards her, she is the most important node in the network.

2Notice that we have omitted an edge weight based upon number of times a retweet occurs. We
omit this for simplicity.

38 4 Analyzing Twitter Data

Alice

Bob

Carol

Daniel

Elise

Frank
Gary

Hal

Ian

James
Kristen

Lenore Marie

Ned

Olly

Fig. 4.2 In-Degree Centrality. Alice, who has the most users retweeting her, has the highest In-
Degree Centrality

Listing 4.1 In-Degree Centrality calculation

...
//The graph representation in JUNG.
private Hypergraph<T, ?> graph;
...
/**
* @return The In-Degree Centrality of the vertex.

*/
public Double getVertexScore(T node) {

return (double) graph.getInEdges(node).size();
}

}
Source: Chapter4/util/InDegreeScorer.java

Listing 4.2 Eigenvector Centrality calculation

...
public EigenVectorScorer(Hypergraph<UserNode,

RetweetEdge> graph){
users = new UserNode[graph.getVertexCount()];
graph.getVertices().toArray(users);

/* Step 1: Create the adjacency matrix.

*
* An adjacency matrix is a matrix with N users and N

columns,

* where N is the number of nodes in the network.

* An entry in the matrix is 1 when node i is joined to node
j,

* and 0 otherwise.

*/

4.1 Network Measures 39

SparseDoubleMatrix2D matrix =
new SparseDoubleMatrix2D(users.length, users.length);

for(int i = 0; i < users.length; i++){
for(int j = 0; j < users.length; j++){
matrix.setQuick(i, j, graph.containsEdge(new RetweetEdge

(users[i], users[j])) ? 1 : 0);
}

}

/* Step 2: Find the principle eigenvector.

* For more information on eigen-decomposition please see

* \url{http://mathworld.wolfram.com/EigenDecomposition.html}

*/
EigenvalueDecomposition eig = new EigenvalueDecomposition(

matrix);
DoubleMatrix2D eigenVals = eig.getD();
eigenVectors = eig.getV();

dominantEigenvectorIdx = 0;
for(int i = 1; i < eigenVals.columns(); i++){
if(eigenVals.getQuick(dominantEigenvectorIdx,

dominantEigenvectorIdx) <
eigenVals.getQuick(i, i)){

dominantEigenvectorIdx = i;
}

}
}
...

}
Source: Chapter4/util/EigenVectorScorer.java

4.1.3.2 Eigenvector Centrality: Who Is the Most Influential?

With Degree Centrality the key question was “how many people retweeted this
node?” Eigenvector Centrality builds upon this to ask “how important are these
retweeters?” Figure 4.3 shows the same network as before, this time with nodes
scaled by Eigenvector Centrality. We see that Bob, largely ignored by Degree
Centrality, is the most important node through the lens of Eigenvector Centrality.
This is because Alice, a high-degree node, gets information from Bob. An example
of this calculation is shown in Listing 4.2.

4.1.3.3 Betweenness Centrality: Who Controls the Flow of Information?

Here we view importance from another perspective: the user’s ability to control the
flow of information. When information travels through a network, it takes the most
convenient path possible. The most convenient path in a network is the shortest path.
Betweenness centrality measures the number of shortest paths in which the user is
in the sequence of nodes in the path.

40 4 Analyzing Twitter Data

Alice

Bob

Carol

Daniel

Elise

Frank
Gary

Hal

Ian

James
Kristen

Lenore Marie

Ned

Olly

Fig. 4.3 Eigenvector Centrality. Alice, the user with the most retweets, listens to Bob, elevating
his centrality

Alice

Bob

Carol

Daniel

Elise

Frank
Gary

Hal

Ian

James
Kristen

Lenore Marie

Ned

Olly

Fig. 4.4 Betweenness Centrality. Alice is the most important because most of the shortest paths
go through her

In this measure of centrality, a user is important because he controls the routes
of information flow in the network. His centrality score is the fraction of shortest
paths that travel through the node. An example of the calculation is shown in
Listing 4.3. Figure 4.4 shows an example retweet graph with the nodes sized by
their Betweenness Centrality. This time, Alice is not important because she has the
most adjacent nodes, but because many of the shortest paths go through her.

4.1 Network Measures 41

Listing 4.3 Betweenness Centrality calculation

public class BetweennessCentralityExample {
public static void main(String[] args){

File tweetFile;

if(args.length > 0){
tweetFile = new File(args[0]);

}
else{
tweetFile = new File("synthetic_retweet_network.json");

}

DirectedGraph<UserNode, RetweetEdge> retweetGraph =
TweetFileToGraph.getRetweetNetwork(tweetFile);

//calculate the betweenness centrality
BetweennessCentrality<UserNode, RetweetEdge> betweenness =

new BetweennessCentrality<UserNode, RetweetEdge>(
retweetGraph);

betweenness.evaluate();
betweenness.printRankings(true, true);

}
}
Source: Chapter4/util/BetweennessScorer.java

4.1.4 Finding Related Information with Networks

All of our network constructions so far have only considered users as nodes and
edges as retweets. We can choose any object as a node and any relation as an edge.
Let’s take a look at another network construction that allows us to ask different
questions about our Twitter data.

What if we wanted to see how hashtags are related? There are many valid ways
to measure this, but, true to this chapter, we will measure this using a network-based
approach. We will consider a new network construction where nodes are individual
hashtags and edges are hashtags that co-occur within the same Tweet. We will
weight the edges by the number of times the hashtags co-occur in a Tweet. Because
we do not care about the hashtag order, the edges are not directed. Figure 4.5 shows
an example hashtag network that can be constructed from the topics discussed in
our Occupy Wall Street dataset.

42 4 Analyzing Twitter Data

#occupy

#occupywallstreet

#ows

#tcot

#nypd

#zucotti

#oo

#occupyboston

#p2

#tlot

#libertysq

#teaparty

#occupytogether

#occupycal

Fig. 4.5 Network of co-occurrence of hashtags within Tweets. Edge weight represents number of
co-occurrences

4.2 Text Measures

Previously, we explored a model that exploits the links between the entities to help
us find the key players in the data. Here, we will focus on the Tweet’s text to better
understand what the users are talking about. We move away from the network model
we’ve used previously and discuss other methods for text analysis. We first explore
topic modeling, an approach that finds natural topics within the text. We then move
on to sentiment analysis, the practice of associating a document with a sentiment
score.

4.2 Text Measures 43

Table 4.1 An example of the
most significant words from
one topic from LDA

Word Probability (%)

ows 8.0
nypd 2.0
occupywallstreet 1.0
park 1.0
occupi 1.0
protest 1.0
nyc 1.0
evict 1.0
citi 1.0
polic 1.0
zuccotti 1.0
.

4.2.1 Finding Topics in the Text

The data we collect from Twitter quickly grows to immense proportions. In fact,
they grow so large that attempting to read each individual Tweet quickly becomes
a hopeless cause. A more reachable goal is to get a high-level understanding of
what our users are talking about. One way to do this is by understanding the topics
the users are discussing in their Tweets. In this section we discuss the automatic
discovery of topics in the text through “topic modeling” with latent Dirichlet
allocation (LDA), a popular topic modeling algorithm.

4.2.1.1 What Is a Topic?

Every topic in LDA is a collection of words. Each topic contains all of the words
in the corpus with a probability of the word belonging to that topic. So, while all
of the words in the topic are the same, the weight they are given differs between
topics. For example, we may find a topic related to sports that is made up of 40%
“basketball”, 35% “football”, 15% “baseball”, . . . , 0.02% “congress”, and 0.01%
“Obama”. Another topic related to politics could be made up of 35% “congress”,
30% “Obama”, . . . , 1% “football”, 0.1% “baseball”, 0.1% “basketball”. Because
each topic contains every word we will only view the top words when inspecting a
topic.

LDA finds the most probable words for a topic, associating each topic with a
theme is left to the user. An example topic from the Occupy Wall Street data is
shown in Table 4.1.

44 4 Analyzing Twitter Data

4.2.1.2 LDA Calculation with MALLET

To perform the LDA computation in Java, we use the MALLET©3 library.
Listing 4.4 shows the computation in MALLET. As we can see, most of the work
is done for us, the real effort is in the preprocessing of the documents. To get the
documents ready for LDA, we define a preprocessing pipeline that processes each
document. We’ll enumerate our preprocessing pipeline:

1. Lowercase – Strip casing off of all words in the document. “No more media
blackout hiding #OCCUPYWALLSTREET! :)” becomes “no more media black-
out hiding #occupywallstreet! :)”.

2. Tokenize – Convert the string to a list of tokens based on whitespace. This
process also removes punctuation marks from the text. This becomes the list
Œno, more, media, blackout, hiding, #occupywallstreet�.

3. Stopword Removal – Remove “stopwords”, words so common that their
presence does not tell us anything about the dataset. Œno, media, blackout, hiding,
#occupywallstreet�.

4. Stemming – Reduce each word to its stem, removing any prefixes or suffixes.
Œno, media, blackout, hide, #occupywallstreet�.

5. Vectorization – Convert the sequence of words to a vector that, instead of
containing the words, contains a sequence of numbers for each word in the
vocabulary. The value at each index corresponds to the number of times each
word appears in the document.

Listing 4.4 LDA computation with MALLET

...
private static final String STOP_WORDS = "stopwords.txt";
private static final int ITERATIONS = 100;
private static final int THREADS = 4;
private static final int NUM_TOPICS = 25;
private static final int NUM_WORDS_TO_ANALYZE = 25;

...
// Lowercase, tokenize, remove stopwords, and convert to

features
pipeList.add((Pipe) new CharSequenceLowercase());
pipeList.add((Pipe) new CharSequence2TokenSequence(Pattern.

compile("\\p{L}[\\p{L}\\p{P}]+\\p{L}")));
pipeList.add((Pipe) new TokenSequenceRemoveStopwords(

stopwords, "UTF-8", false, false, false));
pipeList.add((Pipe) new PorterStemmer());
pipeList.add((Pipe) new TokenSequence2FeatureSequence());

InstanceList instances = new InstanceList(new SerialPipes(
pipeList));

3http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/

4.2 Text Measures 45

...
instances.addThruPipe(new StringArrayIterator(textList.

toArray(new String[textList.size()])));

ParallelTopicModel model = new ParallelTopicModel
(NUM_TOPICS);

model.addInstances(instances);
model.setNumThreads(THREADS);
model.setNumIterations(ITERATIONS);
model.estimate();

// The data alphabet maps word IDs to strings
Alphabet dataAlphabet = instances.getDataAlphabet();

int topicIdx=0;
StringBuilder sb;
for (TreeSet<IDSorter> set : model.getSortedWords()) {

sb = new StringBuilder().append(topicIdx);
sb.append(" - ");
int j = 0;
double sum = 0.0;
for (IDSorter s : set) {
sum += s.getWeight();

}
for (IDSorter s : set) {

sb.append(dataAlphabet.lookupObject(s.getID())).
append(":").append(s.getWeight() / sum).
append(", ");

if (++j >= NUM_WORDS_TO_ANALYZE) break;
}
System.out.println(sb.append("\n").toString());
topicIdx++;

}
}

}
Source: Chapter4/tweetlda/LDA.java

4.2.2 Sentiment Analysis

Often its not important to know what users are saying, but how they are saying
it. “Sentiment analysis” seeks to automatically associate a piece of text with a
“sentiment score”, a positive or negative emotional score. Aggregating sentiment
can give an idea of how people are responding to a company, product, or topic.

4.2.2.1 Sentiment Analysis Overview

Sentiment analysis, is done on a per-Tweet basis. The words in each Tweet are
compared with those in other Tweets that have been previously labeled as “positive”,

46 4 Analyzing Twitter Data

Negative

Positive

Lexicon

ows

p()

p()

p()max

Fig. 4.6 The sentiment analysis workflow. John’s Tweet is compared against a lexicon of words
and their likelihood to be positive/negative. The most probable label is then taken as that Tweet’s
sentiment

or “negative”. After looking at these words, the algorithm then judges whether the
text in the Tweet is positive or negative based on the likelihood for each possibility.
A workflow is shown in Fig. 4.6.

To compare the content in the Tweets, we must first find a lexicon, a dictionary of
words and their positive and negative scores.4When choosing a sentiment lexicon,
we need to be careful about the source used to build it. Words have different
sentiments in different contexts. For example, in a lexicon built by looking at
movie reviews, “bomb” would likely have a positive sentiment (“that movie was
the bomb”). In a lexicon built by looking at world news articles, “bomb” would
likely be negative (“the bomb detonated in. . . ”).

The sentiment analysis algorithm we use in this book is based on a Naïve Bayes
Classifier. It classifies a Tweet as positive or negative by comparing each word in
the Tweet with the labeled words in the lexicon. If the words in the Tweet have been
used more in positive Tweets, then the Tweet is labeled as positive. On the other
hand, if the words in the Tweet have been associated more with negative Tweets,
then the Tweet is labeled as negative.

4.2.2.2 Building a Lexicon Automatically

To get around the potential issue of having an unsuitable lexicon, we will construct
our lexicon automatically for each dataset. Because we are using data collected
directly from Twitter, we do not have explicit “positive”, or “negative” labels.

4Some sentiment lexicons are available for free, such as SentiWordNet (http://sentiwordnet.isti.
cnr.it/).

http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/

4.2 Text Measures 47

Instead, we use Tweets that contain emoticons as labeled data. We will mark Tweets
that contain “:)”, “:D”, or similar as positive, and Tweets that contain “:(”, “;-(”, or
similar as negative. In this way we know that the lexicon is built using relevant data.

Figure 4.6 shows the top 25 most likely words for each sentiment in the Occupy
Wall Street dataset. This gives us an idea of what words define each sentiment.
When reading these word clouds, one might get confused about the prominence of
“ows” in both groups. While it is the most prominent word for both sentiments, its
appearance in the Tweet does nothing to help us understand its sentiment. It is more
important to look for words that appear in one sentiment class but not the other, or
those with a large size difference.

4.2.2.3 The Sentiment Analysis Process

We have outlined the process to create a sentiment analysis framework. Listing 4.5
contains a snippet that performs the sentiment analysis task. The code begins by
enumerating each Tweet in the dataset, building a lexicon from the Tweets that use
an emoticon. Next, it enumerates the Tweets again, calculating a sentiment score for
each Tweet that does not have an emoticon. Listing 4.5 shows an example of this
process. For the code that actually builds the lexicon and calculates the sentiment
score, see NaiveBayesSentimentClassifier.java.

Listing 4.5 Sentiment analysis runner

public class TestNBC {
public static void main(String[] args){

String filename = args.length >= 1 ? args[0] :
"testows.json";

//initialize the sentiment classifier
NaiveBayesSentimentClassifier nbsc = new

NaiveBayesSentimentClassifier();

try {
//read the file, and train each document
JsonStreamParser parser =

new JsonStreamParser(new FileReader(filename));
JsonObject elem;
String text;
while (parser.hasNext()) {

elem = parser.next().getAsJsonObject();
text = elem.get("text").getAsString();
nbsc.trainInstance(text);

}

//now go through and classify each line as positive or
negative

parser =

48 4 Analyzing Twitter Data

new JsonStreamParser(new FileReader(filename));
while (parser.hasNext()) {

elem = parser.next().getAsJsonObject();
text = elem.get("text").getAsString();
Classification c = nbsc.classify(text);
System.out.println(c + " -> " + text);

}

...
}

}
Source: Chapter4/classification/bayes/TestNBC.java

4.3 Further Reading

For a detailed introduction to the field of network analysis, we refer the reader to
[3, 5, 7].

Another introduction to LDA by Edwin Chen, a former engineer at Twitter, can
be found on his blog [2]. For a deeper review of LDA, the reader can consult [1, 4].

Many approaches have been taken towards sentiment analysis. For an overview
of the field, see [6].

References

1. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003.

2. E. Chen. Introduction to Latent Dirichlet Allocation. http://blog.echen.me/2011/08/22/
introduction-to-latent-dirichlet-allocation/, August 2011.

3. M. Hennig, U. Brandes, J. Pfeffer, and I. Mergel. Studying Social Networks: A Guide to
Empirical Research. Campus Verlag, 2012.

4. K. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive computation and machine
learning series. MIT Press, 2012.

5. M. Newman. Networks: An Introduction. OUP Oxford, 2009.
6. B. Pang and L. Lee. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr.,

2(1–2):1–135, Jan. 2008.
7. R. Zafarani, M.-A. Abbasi, and H. Liu. Social Media Mining: An Introduction. Cambridge

University Press, Forthcoming.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/

Chapter 5
Visualizing Twitter Data

When users interact on Twitter, network information is generated, and when they
publish Tweets, textual information is generated. Tweets themselves have other
embedded information, such as location information. In addition, users have profiles
where they describe themselves through fields, such as their name and website.
Visualization techniques can help us efficiently analyze and understand how and
why users interact on Twitter. In this chapter, we discuss techniques to create
visualizations for the four types of information: network, temporal, geospatial, and
textual information. While discussing the techniques, we follow the visualization
mantra: “Overview first, then zoom and filter. Details on demand” [4].

5.1 Visualizing Network Information

In the previous chapter, we discussed network measures to identify important people
and concepts in the network. In this section, we will continue that discussion and
present a technique to visualize a network to gain insight into how and why users
interact. We will focus our discussion on two types of networks:

• Information flow networks, and
• Friend-Follower networks.

Below, we discuss each type of networks in detail and provide an example
to illustrate the unique aspects of the network and how visualization can help in
understanding them.

5.1.1 Information Flow Networks

On Twitter, information spreads primarily through retweeting. The resulting Tweet
is called a retweet. When we visualize retweets we are essentially visualizing the
flow of information in the network. In the previous chapter, we discussed centrality

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__5, © The Author(s) 2014

49

50 5 Visualizing Twitter Data

measures used to identify important nodes. By visualizing the network, we can aid
in further analysis of important nodes, by identifying information propagation paths,
as well as observing the interaction between information producers and consumers,
which cannot be effectively conveyed by measures alone.

Retweets are marked by the characteristic prefix “RT” followed by the name of
the user who originally published the Tweet. For example, consider the following
Tweet published by the user John:

RT @Peter: Full-time: Chelsea 3-1 Steaua Bucharest. (3-2 on agg) and we’re through to the
quarter-finals. #CFC

Here “Peter” is the name of the user who originally posted the Tweet, which
was retweeted by “John”. Using this information, an information flow network
can be created by connecting information producers with information consumers.
When collecting Tweets, one can identify retweets by checking for the presence
of the element “retweeted_status” in the JSON response. As an example, a part of
the element is presented in Listing 5.1.

5.1.1.1 Retweet Network Fallacy

An important yet subtle property of this network is that one can only identify
the original source of the information and not the intermediate users along the
information propagation path. For example consider the above example and imag-
ine two users “Alice” and “Bob” who retweet the Tweet from “John”. The
“retweeted_status” element of this Tweet will contain the original producer of the
Tweet i.e., “Peter” as the source of the Tweet. In Fig. 5.1a. We can see that the tweet
from “Peter” is retweeted by “John”, which is subsequently retweeted by “Alice”
and “Bob”. However, when these Tweets are collected via the Twitter APIs, we only
observe the propagation path seen in Fig. 5.1b. This means that we cannot identify
the full path of propagation, but only the source and the destination.

Listing 5.1 Retweet object inside a Tweet object

{
//Other Tweet elements
. . .
"created_at": "Thu Mar 14 23:25:03 +0000 2013",
"text": "RT @Peter: Full-time: Chelsea 3-1 Steaua Bucharest

. (3-2 on agg) and we’re through to the quarter-finals.
#CFC",

"retweeted_status": {
"text": "Full-time: Chelsea 3-1 Steaua Bucharest. (3-2

on agg) and we’re through to the quarter-finals. #
CFC",

"retweeted": true,
. . .
//other retweet elements

}

5.1 Visualizing Network Information 51

Peter

John

Alice Bob

Peter

John

Alice Bob

a

b

Fig. 5.1 Perceived and actual information propagation path of Tweets on Twitter. (a) Actual
propagation path. (b) Path extracted from Twitter API

5.1.1.2 Visualizing Retweet Propagation

A popular technique to visualize graphs is the force-directed layout. We will now
briefly explain how this layout can be used to visualize information propagation
networks.

Force-Directed Layout: To clearly identify the information propagation in a
graph, the nodes must be spread out, especially when the number of nodes in
the graph is large. The force-directed layout tackles the problem of placing nodes
within a restricted space while simultaneously ensuring that the resulting layout is
aesthetically pleasing. Force-directed layout is intuitive and suitable for network
graphs extracted from Twitter. There are two principles in graph drawing:

• Nodes connected to each other should be placed as close to each other as possible.
• Nodes should not be drawn too close to each other.

In the force-directed layout, every node exerts a repelling force on every other
node. The edges act as springs and exert an attractive force between connected
nodes. Typically, the layout starts with a random placement of the nodes in the space.
The constraint of keeping connected nodes close to each other ensures that the layout
is also compact. In the example discussed here, we will use the implementation
in D3.1

Applying the Force-Directed Layout to Retweet Network: Visualizing large
networks generated from the Tweets is quite expensive and can lead to “spaghetti”
networks, which are not very useful as they can consist of too many nodes and
edges. For a single Tweet alone, the retweet network could consist of thousands
of users. The visualization can be simplified and simultaneously made more

1https://github.com/mbostock/d3/wiki/Force-Layout

https://github.com/mbostock/d3/wiki/Force-Layout

52 5 Visualizing Twitter Data

interesting by adding context to the network. During an event, a user would want
to analyze the event from different perspectives. For example, in a natural disaster
like a thunderstorm, instead of analyzing all the retweets related to the disaster, a
first responder might be more interested in reports of damage or flooding. Thus,
by filtering the information, we can make the visualization manageable while
enhancing the ability to focus on topics of interest.

To achieve this, we define groups of words called topics. For example, we
create topic 1 with “#zuccotti” (Light) and topic 2 with “#nypd” (Dark). We
can now generate a retweet network consisting of people who retweeted text
matching these topics. Before we visualize the network, we must first extract and
format it. This can be done using the method ConvertTweetsToDiffusionPath in class
CreateD3Network, which is summarized in Listing 5.2.

The extracted network can be visualized using the method create_network, which
is summarized in Listing 5.3. Figure 5.2 shows the visualization of the top five most
frequently retweeted nodes and those who retweeted them on topics 1 and 2. The
size of a node indicates its importance in the network. Larger nodes have been
retweeted more often than smaller nodes. Nodes are colored according to their
topic preference. The links are directed and show the flow of information. Here,
not only can we identify important information producers (large nodes) as well
as information consumers (nodes with a large number of inlinks). Additionally,
the network shows that people retweet across topics, which is evident from the
connections between the users.

Listing 5.2 Extracting the retweet network

public JSONObject ConvertTweetsToDiffusionPath(String inFilename
,int numNodeClasses, JSONObject hashtags, int num_nodes) {

//Step 1: Read through the file and process Tweets
matching the topics
. . .

//Step 2: Identify the size of the nodes based on the
number of times they are retweeted

ArrayList<NetworkNode> nodes = ComputeGroupsSqrt(
returnnodes, max, min, numNodeClasses);

. . .
/** Step 3

* Prune the network to keep only the top |
nodes_to_visit| nodes in the network.

* Recursively visit all top nodes and retain their
connections.

*/
for(int k=0;k<nodes_to_visit;k++) {
NetworkNode nd = nodes.get(k);
nd.level = 0;
HashMap<String,NetworkNode> rtnodes =

GetNextHopConnections(userconnections,nd,new
HashMap<String,NetworkNode>());

. . .
/** Step 4: Compact the nodes of the network by removing

* all nodes who have never been retweeted

*/
Set<String> allnodes = prunednodes.keySet();

5.1 Visualizing Network Information 53

//Store the list of retweeted nodes
ArrayList<NetworkNode> finalnodes = new ArrayList<

NetworkNode>();
for(String n:allnodes) {
. . .
}
//Sort in ascending order of the Node ID
Collections.sort(finalnodes,new NodeIDComparator());
//Step 5: Reformat the network into D3 format
return GetD3Structure(finalnodes);

}
Source: Chapter5/network/CreateD3Network.java

Listing 5.3 Visualizing the retweet network using force-directed layout

create_network: function() {
. . .

// Step 1: Create the nodes and the links in the network
network_page.net = network_page.create_dataset(network_page.

jsondata, network_page.net, network_page.getGroup);
/**

* Step 2: Initialize the D3 layout with the data and node
settings that

* define the forces acting on the nodes and start the layout

*/
network_page.force = d3.layout.force()

.nodes(network_page.net.nodes)

.links(network_page.net.links)

.size([width,height])

.charge(-500)

.linkDistance(80)

.theta(0.8)

.gravity(0.2)

.start();
. . .

/**
* Step 3: Compute the distance between nodes after each

iteration

* the forces are computed using the tick event.

*/
network_page.force.on("tick", function() {

link.attr("x1", function(d) { return d.source.x; })
.attr("y1", function(d) { return d.source.y; })
.attr("x2", function(d) { return d.target.x; })
.attr("y2", function(d) { return d.target.y; });

node.attr("cx", function(d) {
return d.x = Math.max(r, Math.min(width - r, d.x));

}).attr("cy", function(d) {
return d.y = Math.max(r, Math.min(height - r, d.y));

});
}

Source: TwitterDataAnalytics/js/network.js

54 5 Visualizing Twitter Data

Fig. 5.2 A retweet network containing nodes from the topics “#zuccotti” (Light) and “#nypd”
(Dark)

Adding context to the network: The network in Fig. 5.2 describes the
relationship between nodes, but does not provide sufficient. Here, Tweets can help
in further investigation of the role of the user in the event. They can also be used
to identify parts of the network, which were instrumental in propagating relevant
information. This is relevant in applications such as marketing, where a customer
would be interested in maximizing the spread of a message at minimum cost.

Figure 5.3 shows the information panel created when the largest node in Fig. 5.2
is clicked. The panel shows the users who retweeted his Tweet. Each unique retweet
is identified by a color and the aggregation of the number of retweets for each unique
Tweet is presented in the form of a pie chart on the bottom of the panel highlighting
the most retweeted Tweets.

5.1.2 Friend-Follower Networks

A friend-follower network consists of users as nodes and the edges describe
who follows whom. Each user on Twitter is able to create two types of explicit
relationships with another Twitter user. Suppose we have two users: Alice and Bob.
If Alice starts following Bob, then we say that Alice is a “follower” of Bob. Here, the
decision to initiate the connection is made by Alice. Bob is known as the “friend”
of Alice.

The friends and followers of a user can be extracted directly using the Twitter
REST APIs discussed in Chap. 2. Applying the force-directed layout would separate
the connected component from the rest of the group.

5.2 Visualizing Temporal Information 55

Fig. 5.3 Information panel
showing the Tweets from
most retweeted user

5.2 Visualizing Temporal Information

Time-series data is time sensitive information about a variable. Such variables in
the case of Twitter include the volume of Tweets and daily interactions between
users. Time-series are also referred to as trends. Visualizing trends helps us detect
temporal patterns in the data, such as the periodic activity of users, which can help
us understand their actions on Twitter.

Time-series visualization can be used to

• Analyze information associated with time, and
• Present a natural ordering of time-oriented information.

Time-series visualization is typically a chart with one axis (generally the
x-axis) representing time and the y-axis representing a measurement along another
dimension, such as the volume of Tweets. Figure 5.4 presents the natural rep-
resentation of the volume of Tweets collected per minute on Nov 15 in the
sample dataset. The information needed to generate this trend can be extracted

56 5 Visualizing Twitter Data

110

100

N
um

be
r

of
 T

w
ee

ts

90

80

70

60

50

40

30

20

10

0
Tue 15 03 AM 06 AM 09 AM 12 PM 03 PM 06 PM 09 PM

Fig. 5.4 Number of Tweets generated per minute on November 15, 2011

using the method GenerateDataTrend defined in the class ExtractDatasetTrend and
summarized in Listing 5.4.

5.2.1 Extending the Capabilities of Trend Visualization

A simple trendline provides only an overview of the data and cannot support
in-depth analysis. Operations such as zoom and filter can empower a user to
drill-down and investigate the data more effectively. There are two techniques which
can improve the user experience and add value to the visualization discussed above:
brushing & linking and focus+context. Together, they can be used to facilitate drill-
down analysis of information.

Brushing & Linking Brushing and linking is a technique to effectively use
multiple views of the data to perform zoom and filter operations. In the collective
action of brushing and linking, multiple views are linked to each other, with each
view providing a different perspective of the data. Actions in the views are linked
by means of user interaction. Selecting a region in one view simultaneously affects
a change in the other view.

Focus+Context Focus+context is a technique to enable drilling down into the data.
Trendlines provide an effective overview of some quantity, which in the case of
Fig. 5.4, is the number of Tweets per minute. Focusing the view causes the view to
zoom into the data to provide information in greater detail. Context is the action of
de-magnifying to zoom out of the series at a particular point and it allows a user to
obtain the overview of the data.

5.2 Visualizing Temporal Information 57

Listing 5.4 Extracting the time-series of the volume of Tweets

// Time pattern used to count the volume of Tweets
final SimpleDateFormat SDM = new SimpleDateFormat("dd MMM yyyy

HH:mm");

public JSONArray GenerateDataTrend(String inFilename) {
HashMap<String,Integer> datecount = new HashMap<String,

Integer>();
// Step 1: Parse the time of publication of each Tweet and

count the number of Tweets using SDM
. . .
/** DateInfo consists of a date string and the

corresponding count.

* It also implements a Comparator for sorting by time

*/
ArrayList<DateInfo> dinfos = new ArrayList<DateInfo>();
Set<String> keys = datecount.keySet();
for(String key:keys) {

DateInfo dinfo = new DateInfo();
try {

dinfo.d = SDM.parse(key);
} catch (ParseException ex) {

ex.printStackTrace();
continue;

}
dinfo.count = datecount.get(key);
dinfos.add(dinfo);

}
// Step 2: Sort the counts in the increasing order of

the time
Collections.sort(dinfos);
// Format and return the date string and the

corresponding count
. . .

}
Source: Chapter5/trends/ExtractDatasetTrend.java

An example of the two actions described above can be seen in Fig. 5.5. Initially
the trend lines/views present the same overview of the trend as in Fig. 5.4. Brushing
a region in the trendline at the bottom selects a time range. Since the two views are
linked, this action causes the series on the top to focus into the selected time range,
which in this case is 12–3 PM. The user can then observe the information in greater
detail and identify finer patterns in the data. Removing the brushed region causes
the original trend to re-appear and present the context. This helps a user analyze the
overview of the time-series all the time and obtain details when necessary, which
can be useful when investigating time-series data over extended periods of time.
This visualization can be implemented using the function summarized in Listing 5.5,
which is defined in TrendLine.js.

58 5 Visualizing Twitter Data

110

100

N
um

be
r

of
 T

w
ee

ts

90

80

70

60

50

40

30

20

10

0

Tue 15

12 PM 12:15 12:30 12:45 01 PM 01:15 01:30 01:45 02 PM 02:15 02:30 02:45 03 PM

03 AM 06 AM 09 AM 12 PM 03 PM 06 PM 09 PM

Fig. 5.5 A focus+context interface with brushing and linking

Listing 5.5 Extending trend lines with brushing and focus+context

window.onload = function() {
// Step 1: Initialize the chart
trendline.initialize();

// Step 2: Fetch data using AJAX
. . .

//Step 3: Initialize the focus handlers
trendline.focus.append("path").datum(data).attr("clip-

path", "url(#clip)").attr("d", trendline.area);
trendline.focus.append("g").attr("class", "x axis").

attr("transform", "translate(0," + trendline.
height + ")") .call(trendline.xAxis);

trendline.focus.append("g").attr("class", "y axis").
call(trendline.yAxis).append("text").attr("class",
"ylabel").attr("text-anchor", "end").attr("y",
-40).attr("dy", ".75em").attr("transform", "rotate
(-90)").text("Number of Tweets");

//Step 4: Context is initialized to series 2
trendline.context.append("path").datum(data).attr("d",

trendline.area2);
trendline.context.append("g").attr("class", "x axis").

attr("transform", "translate(0," + trendline.
height2 + ")").call(trendline.xAxis2);

// Step 5: Select the brushed region and focus on it
trendline.context.append("g").attr("class",
"x brush").call(trendline.brush).selectAll("rect").

attr("y", -6).attr("height", trendline.height2 +
7);

}
Source: TwitterDataAnalytics/js/trendLine.js

5.2 Visualizing Temporal Information 59

0

2

4

6

8

10

12

14

16

18

20

N
um

be
r

of
 T

w
ee

ts

Tue 15 03 AM 06 AM 09 AM 12 PM 03 PM 06 PM 09 PM
#nypd
protest

#nypd
protest

Fig. 5.6 Comparison of the volume of Tweets collected for “protest” and “#nypd”

5.2.2 Performing Comparisons of Time-Series Data

A typical application of trend lines is to perform comparative analysis. When
dealing with time-oriented information, we often want to compare two or more
quantities to gain a better understanding of the differences in temporal patterns.
Time-series visualizations can help perform comparative analysis quickly with little
effort from the user. As an example, we present a comparison of the word “protest”
and the hashtag “#nypd” in Fig. 5.6.

The trendline shows that while both words were discussed during the initial
hours of the day, the discussion of “#nypd” died quickly while the discussion of
“protest” continued throughout the day. The chart can be generated using the method
GenerateGraph, which is presented in Listing 5.6. The data for the chart can be
extracted using the method GenerateDataTrend in class TrendComparisonExample.
This method is similar to the one described in Listing 5.4, with the difference that
each Tweet is first compared to the supplied words and only counted if it matches a
word.

Listing 5.6 Generating trend lines to compare multiple time-series

function GenerateGraph(data) {
. . .

//Step 1: Initialize the chart
trendcomp.svg.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + trendcomp.height +
")")

.call(trendcomp.xAxis);
trendcomp.svg.append("g")

.attr("class", "y axis")

.call(trendcomp.yAxis)

.append("text")

.attr("transform", "rotate(-90)")

.attr("class", "ylabel")

60 5 Visualizing Twitter Data

.attr("y", 6)

.attr("dy", ".71em")

.style("text-anchor", "end")

.text("# of Tweets");
// Step 2: Append the time series information for each word
var word = trendcomp.svg.selectAll(".word")

.data(words)

.enter().append("g")

.attr("class", "word");
word.append("path")

.attr("class", "line")

.attr("d", function(d) { return trendcomp.line(d.
values); })

.style("stroke", function(d) { return trendcomp.color
(d.word); });

. . .
//Step 3: Add the legend to the chart
var legend = trendcomp.svg.selectAll(".legend")

.data(trendcomp.color.domain().slice().reverse())

.enter().append("g")

.attr("class", "legend")

.attr("transform", function(d, i) { return "translate
(0," + i * 20 + ")"; });

. . .
}
Source: TwitterDataAnalytics/js/trendComparison.js

Listing 5.7 Creating sparklines to compare multiple time-series

GenerateSparkLines:function(data) {
//loop through the data and load sparkline for each word
for(key in data) {

$("#vizpanel").append(this.CreateTextElement(
key)).append(this.CreateSpanElement(key));

$("span[data=’"+key+"’]").sparkline(data[key]);
}

}
Source: TwitterDataAnalytics/js/sparkLine.js

5.2.2.1 Sparklines

Sparklines are simple and typically small graphics. They are a miniaturized version
of the full trend line designed to provide a quick overview of the variation in
a quantity over time. They are designed to be displayed along with the text

that describes them, so they are minimalistic. For example, #nypd

is a sparkline for #nypd. Sparklines can be embedded in text as well as other
visualizations to summarize time-series information. Sparklines can be created
using the method GenerateSparkLines, which is summarized in Listing 5.7.

Small multiples: This refers to the concept of creating a series of mini charts
which can be used for quick comparison and summarization of information.

5.2 Visualizing Temporal Information 61

Fig. 5.7 An example of
small multiples using
sparklines to compare the
trend of different words and
hashtags

4

3

2

1

0

-1

-2

-3
Tue 15 03 AM 06 AM 09 AM 12 PM 03 PM 06 PM 09 PM

stdev-3

stdev+3

stdev+3

count

mean

stdev-3
count

mean

N
um

be
r

of
 T

w
ee

ts

Fig. 5.8 An example of a control chart with the control line set to 3 standard deviations

Here, sparklines can be efficiently used to generate trending information of
multiple entities for quick analysis, as in Fig. 5.7.

5.2.2.2 Control Charts

A control chart is a statistical tool used to detect abnormal variations in a process.
This task is performed by measuring the stability of the process through the use of
control limits. A control limit is a threshold which helps a user detect anomalous
periods of activity. If the data falls within the control limits, then the process is
considered stable. 3-standard deviations is typically chosen as the control limit.
If the activity falls outside the 3-standard deviations, then it is considered abnormal
and worthy of investigation.

As an example, let’s look at Fig. 5.8. Here, we present the volume of Tweets
generated every minute. Each value in the distribution is subtracted from the mean
and the difference is divided by the standard deviation to center as well as scale
the distribution using the methods in Listing 5.8. Therefore, the distribution has
a mean 0 and a standard deviation of 1. The lower and upper control limit are
set to 3 standard deviations. On Twitter, this could be used to detect events by

Listing 5.8 Methods to calculate mean and standard deviation

public double GetStandardDev(ArrayList<DateInfo> dateinfos,
double mean) {

double intsum = 0;
int numperiods = dateinfos.size();

62 5 Visualizing Twitter Data

for(DateInfo dinfo:dateinfos)
{

intsum+=Math.pow((dinfo.count - mean),2);
}
return Math.sqrt((double)intsum/numperiods);

}

public double GetMean(ArrayList<DateInfo> dateinfos) {
int numperiods = dateinfos.size();
int sum = 0;
for(DateInfo dinfo:dateinfos)
{

sum +=dinfo.count;
}
return ((double)sum/numperiods);

}
Source: Chapter5/trends/ControlChartExample.java

monitoring the times at which the traffic exceeds the upper control limit or falls
below the lower control limit. A user can then be notified, so the event can be further
investigated. In Fig. 5.8, one such instance occurred in the first few hours when the
traffic exceeded the upper control limit.

5.3 Visualizing Geospatial Information

Geospatial visualization can help us answer the following two questions:

• Where are events occurring?
• Where are new events likely to occur?

Location information of a Tweet can be identified using two techniques as explained
in Chap. 2:

• Accurately through the geotagging feature available on Twitter.
• Approximately using the location in the user’s profile.

The location information is typically used to gain insight into the prominent
locations discussing an event. Maps are an obvious choice to visualize location
information. In this section, we will discuss how maps can be used to effectively
summarize location information and aid in the analysis of Tweets. A first attempt
at creating a map identifying Tweet locations would be to simply highlight the
individual Tweet locations. Each Tweet is identified by a dot on the map, and such
dots are referred to as markers. Typically, the shape, color, and style of a marker
can be customized to match the application requirements. Maps are rendered as
a collection of images, called tiles. An example of the “dots on map” approach
is presented in Fig. 5.9. The map uses OpenStreetMaps tiles and presents two
differently colored dots. The blue dots are plotted using the location field in the
user’s Twitter profile, while the green dots represent geotagged Tweets.

5.3 Visualizing Geospatial Information 63

Fig. 5.9 An example of “dots on map” approach

5.3.1 Geospatial Heatmaps

The “dots on map” approach is not scalable and can be unreadable when there are
too many markers. Additionally, when multiple Tweets originate from a very small
region, the map in Fig. 5.9 can mislead readers into thinking that there are fewer
than actual markers due to marker overlap. One approach to overcome this problem
is to use heatmaps. In a geospatial visualization, we want to quickly identify regions
of interest or regions of high density of Twitter users. This information for example
could be used for targeted advertising as well as customer base estimation. Kernel
Density Estimation is one approach to estimating the density of Tweets and creating
such heatmaps, which highlight regions of high density.

Kernel Density Estimation (KDE): Kernel Density Estimation is a non-
parametric approach to estimating the probability density function of the distribution
from the observations, which in this case are Tweet locations.

KDE attempts to place a kernel on each point and then sums them up to discover
the overall distribution. Appropriate kernel functions can be chosen based on the
task and the expected distribution of the points. A smoothing parameter called
bandwidth is used to decide if the learned kernel will be smooth or bumpy.

Using KDE, we can generate a heatmap from the Tweet locations, which is
presented in Fig. 5.10. This figure clearly highlights the regions of high density
and effectively summarizes the important regions in our dataset when compared
to Fig. 5.9. Listing 5.9 summarizes the function kernelDensityEstimate, which can
be used to generate a KDE estimate from the Tweets.

64 5 Visualizing Twitter Data

Fig. 5.10 An example of KDE heatmap on the map

Listing 5.9 Computing the KDE of the Tweet locations

kernelDensityEstimate: function(screenWidth, screenHeight, data,
bandwidth, kernelFunction, distanceFunction) {

// Step 1: Default to Epanechnikov kernel and Euclidean
distance

. . .
//matrices that hold the points at various stages in the

computation. Each will be the size of the screen (in pixels
).
var pointMatrix = kernel_density_object.makeZeros(

screenHeight, screenWidth, 0),
bandwidthMatrix = kernel_density_object.makeZeros(

screenHeight, screenWidth, 0),
kernelDensityMatrix = kernel_density_object.makeZeros(

screenHeight, screenWidth, 0),
maxPoint = 0;

// Step 2: Compute bandwidth matrix which stores the radius
required to find <bandwidth> points at each cell
for(var row = 0; row < screenHeight; row++){

for(var col = 0; col < screenWidth; col++){
. . .

//Step 3: kernel matrix is the result of bandwidthMatrix pushed
through the kernel function

for(var row = 0; row < screenHeight; row++){
for(var col = 0; col < screenWidth; col++){

. . .
//kernelDensityMatrix now holds a matrix of intensity values

for each point
return {
’estimate’: kernelDensityMatrix,
’maxVal’: maxPoint };

. . .
}
Source: TwitterDataAnalytics/js/kernelDE.js

5.4 Visualizing Textual Information 65

5.4 Visualizing Textual Information

Text is an integral part of Twitter. Here, we describe two approaches to visualize text.

5.4.1 Word Clouds

Word clouds highlight important words in the text. Typically, the frequency of
a word is used as a measure of its importance. Word clouds are an effective
summarizing technique. In word clouds, importance of a word is highlighted using
its font size. The language used on Twitter is multilingual and mostly informal.
Punctuations and correctness of grammar are often sacrificed to gain additional
characters. Abbreviations are also frequently employed. To generate a word cloud,
first we remove these elements and break the text into tokens. Then the frequency
of each token is counted in the text using the method GetTopKeywords, which is
summarized in Listing 5.10.

Listing 5.10 Extracting word frequencies from Tweets

public JSONArray GetTopKeywords(String inFilename, int K,
boolean ignoreHashtags, boolean ignoreUsernames, TextUtils
tu) {

//Read each JSONObject in the file and process the Tweet
. . .
/** Step 1: Tokenize Tweets into individual words. and

count their frequency in the corpus

* Remove stop words and special characters. Ignore
user names and hashtags if the user chooses to.

*/
HashMap<String,Integer> tokens = tu.TokenizeText(text,

ignoreHashtags,ignoreUsernames);
Set<String> keys = tokens.keySet();
for(String key:keys) {

if(words.containsKey(key)) {
words.put(key, words.get(key)+tokens.get

(key));
}
else {

words.put(key, tokens.get(key));
}

}
. . .
// Step 2: Sort the words in descending order of

frequency
Set<String> keys = words.keySet();
ArrayList<Tags> tags = new ArrayList<Tags>();
for(String key:keys) {

Tags tag = new Tags();
tag.setKey(key);

66 5 Visualizing Twitter Data

tag.setValue(words.get(key));
tags.add(tag);

}
Collections.sort(tags, Collections.reverseOrder());
// Step 3: Return the first K words
. . .
return cloudwords;

}
Source: Chapter5/text/ExtractTopKeywords.java

To prevent information overload, we generally choose the top K words to create
a word cloud using the method DrawWordCloud summarized in Listing 5.11. An
example of a word cloud containing the top 60 most frequent words from the sample
dataset is presented in Fig. 5.11. The word cloud effectively highlights the key events
of the day, which consisted of mass arrests of protesters of the Occupy Wall Street
movement by the NYPD in Zuccotti Park.

5.4.2 Adding Context to Word Clouds

Word clouds are effective in summarizing text. However, they place the responsi-
bility of understanding the context of usage of these words on the reader. This is
often not straightforward due to the limited information present in the word clouds.
For example, if two words are used with relatively similar frequency, they are both
highlighted equally in the visualization. However, a reader cannot determine if the
words were used together or separately. This problem can be alleviated by using
another dimension to add context to word clouds. Here we show how to use the
time of usage of words to create a visualization with more context. To demonstrate
this idea, we pick the top keywords observed in the word cloud in Fig. 5.11 and
organize them into five broad topics as follows:

Fig. 5.11 An example of a
word cloud containing the top
60 words

5.4 Visualizing Textual Information 67

Listing 5.11 Creating word clouds

DrawCloud:function(words) {
var fill = d3.scale.category10();
d3.select("#cloudpane").append("svg")
.append("g")
.attr("transform", "translate(400,400)")
.selectAll("text")
.data(words)
.enter().append("text")
.style("font-size", function(d) { return d.size + "px";

})
.style("font-family", "Impact")
.attr("text-anchor", "middle")
.attr("transform", function(d) {
return "translate(" + [d.x, d.y] + ")rotate(" + d.

rotate + ")";
})
.text(function(d) { return d.text; });

}
Source: TwitterDataAnalytics/js/wordCloud.js

Fig. 5.12 Heatmap of the five topics combined with temporal information

1. People: protesters, people
2. Police: nypd, police, cops, raid
3. Judiciary: court, eviction, order, judge
4. Location: nyc, zuccotti, park
5. Media: press, news, media

The time and volume of usage of these topics is presented in a topic chart in
Fig. 5.12.

68 5 Visualizing Twitter Data

Listing 5.12 Creating the topic chart

CreateTopicChart:function(json) {
var r = Raphael("vizpanel");
r.dotchart(10, 10, 1000, 500, json.xcoordinates, json.

ycoordinates, json.data, {symbol: "o", max: 20, heat:
true, axis: "0 0 1 1", axisxstep: json.axisxstep,
axisystep: json.axisystep, axisxlabels: json.
axisxlabels, axisxtype: " ", axisytype: "|",
axisylabels: json.axisylabels})

.hover(function() {
this.marker = this.marker || r.tag(

this.x, this.y, this.value, 0,
this.r + 2).insertBefore(this);

this.marker.show();
},
function () {

this.marker && this.marker.
hide();

});
}
Source: TwitterDataAnalytics/js/topicChart.js

The topic chart can be created using the method CreateTopicChart, which is
presented in Listing 5.12. In the chart, the granularity of the time is set to 1 h.
Information is presented in the form of a heatmap, where both the color and the
size of the node represent the frequency of the occurrence of the topic. Police
related words are discussed more often than other groups. We also observe that
the discussion related to Judiciary does not gain traction until the middle of the day.
Time here can also be replaced by other dimensions such as the location, depending
on the intended application of the visualization. This visualization goes beyond just
the frequency of the words by leveraging the time dimension to help elicit interesting
patterns in the text.

5.5 Further Reading

Various visualization approaches presented in this chapter are organized according
to seven important data types discussed as part of the “task by data type” taxonomy
by Shneiderman [4]. The visualization mantra, which is used as the guideline for
building the visualizations in this chapter is also discussed in [4]. The principles
of graph drawing were proposed by Fruchterman and Rheingold in their paper on
the use of force-directed layout in graph drawing [3]. D3 uses the Quad-tree based
optimization technique proposed by Barnes-Hut to reduce the complexity of com-
puting forces between nodes from O.n3/ to O(n log n). Barnes-Hut optimization
aggregates the nodes into groups by storing them in a data structure called the quad-
tree. Each node of the tree then represents a region in the space and forces only

References 69

need to be computed between a node and a region if it is sufficiently farther away in
the tree. Zooming and focus+context are popular techniques to make visualizations
more useful. A review of the different uses of the techniques can be found in [1].
Additional information in Kernel Density Estimation can be found in [6]. The choice
of a color scheme is crucial for the interpretation of the task. To represent the
importance of the nodes in the network and density of the Tweets in heatmaps,
we use a 7-class sequential color scheme from ColorBrewer 2©.2 Guidelines for
choosing the right color scheme can be found in [5]. The layout of the word clouds
to visualize text is based on the popular Wordle system by Jonathan Feinberg [2].

References

1. Andy Cockburn, Amy Karlson, and Benjamin B Bederson. A Review of Overview+Detail,
Zooming, and Focus+Context Interfaces. ACM Computing Surveys (CSUR), 41(1):2, 2008.

2. Jonathan Feinberg. Wordle. Beautiful Visualization, pages 37–58, 2010.
3. Thomas MJ Fruchterman and Edward M Reingold. Graph Drawing by Force-Directed Place-

ment. Software: Practice and experience, 21(11):1129–1164, 1991.
4. Ben Shneiderman. The Eyes Have It: A Task By Data Type Taxonomy for Information

Visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343.
IEEE, 1996.

5. Julie Steele and Noah Iliinsky. Beautiful Visualization. O’Reilly Media, 2010.
6. Tan Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Pearson

Education, 2007.

2http://colorbrewer2.org/

http://colorbrewer2.org/

Appendix A
Additional Information

In this appendix, we provide more information on building practical applications
using the techniques discussed in the chapters of this book. In Sect. A.1, we discuss
two systems built utilizing many of the techniques discussed in this book. In
Sect. A.2, we discuss various academic and commercial systems built using Twitter
data. In Sect. A.3, we provide more information on the libraries used to construct
the examples described in this book and provide links to other resources.

A.1 A System’s Perspective

Throughout this book, we have discussed techniques to build the necessary com-
ponents for a system which collects information from Twitter and facilitates and
analysis and visualization of the data. For those interested in examples of systems,
which can be built using the techniques discussed in this book, we will present two
systems, which demonstrate how the techniques can be used to build a solution to a
real world problem.

TweetTracker© [1], is a platform to collect and analyze Tweets in near real-time.
The objective of the system is to facilitate near real-time Tweet aggregation and to
support search and analysis of the collected Tweets. In TweetTracker Tweets are
organized into events to facilitate the study of related Tweets. Each event can be
described as a collection of hashtags/keywords, geographic boundary boxes, and
Twitter user IDs. Users create and edit events, which TweetTracker then uses to
collect Tweets using the Streaming API. Tweets are indexed and stored in MongoDB
using the techniques discussed in Chap. 3.

Analysis of the data is supported by various visual analytics. Temporal informa-
tion of keywords and hashtags can be compared using the technique described in
Chap. 5. Geospatial visualization is performed using the “dots on map” approach
discussed in Chap. 5. Geographic location of the Tweets is obtained by using the
contents of the Twitter profile location field in the absence of geotagging. Tweet
text is summarized using a word cloud and a summary of the frequently mentioned

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3, © The Author(s) 2014

71

72 A Additional Information

Fig. A.1 A screenshot of the main screen of TweetTracker. The figure shows the Tweets generated
from the New York region during Hurricane Sandy. Tables below the map summarize the frequently
mentioned users and resources in the Tweets

resources and people in the Tweets is also presented to the user. Boolean search
capability is provided using a specific index built on tokenized text in MongoDB.
Search is made flexible by the combination of text with other parameters such as
the language of the Tweet and specific geographic regions. Figure A.1 shows an
illustrative screenshot of TweetTracker.

TweetXplorer© [5] is a visual analytics platform to analyze events using Twitter
as the data source. A user can analyze the data along four dimensions: temporal,
geospatial, network, and text discussed in Chap. 5. A screenshot of the components
of the system can be observed in Fig. A.2. User analysis of the Tweets is organized
along specific themes comprised of keywords and hashtags. The network component
is implemented in a fashion similar to the one described in Chap. 5. A user can
zoom-in to a specific region to visualize the text in the form of a word cloud. The
time series presents a global comparison of the traffic for the defined themes. The
network component is also implemented in a similar fashion to the one described
in this book. Each node is associated with a specific theme and internal node color
instead of size is used to indicate the number of retweets received (darker colored
nodes are retweeted more often). The network and map visualizations are also
connected to each other. A selection in one causes the other to be automatically
filtered to show the corresponding information.

A.2 More Examples of Visualization Systems

Building Twitter-based systems to solve real world problems is an active area of
research. Twitris [6] is an online platform for event analysis using Twitter. The
system combines geospatial visualization, user network visualization, and sentiment

A Additional Information 73

Fig. A.2 A view of the different components of TweetXplorer. The figure shows information
pertaining to three themes

analysis to aid its users in analyzing events via different perspectives in near real-
time. TwitterMonitor [4] is a system to detect emerging topics or trends in a Twitter
stream. The system identifies bursty keywords as an indicator of emerging trends,
and periodically groups them together to form emerging topics. Detected trends
can be visually analyzed through the system. TEDAS [2] is an event detection
and analysis system focused on crime and disaster events. TEDAS crawls event
related Tweets using a rule-based approach. Detected events are analyzed to extract
temporal and spatial information. The system also uses the location information
of the author’s network to predict the location of a Tweet when the Tweet is not
geotagged. SensePlace2 [3] supports collection and analysis of Tweets for keyword
searches on-demand. The system focuses on three primary views: text, map, and
timeline, to enable exploration of data and to acquire situational awareness.

A.3 External Libraries Used in This Book

All the examples in this chapter are written primarily using Java and open source
libraries which can be downloaded at no cost to the reader. All the code samples
discussed in this book can be obtained at the book’s companion website http://
tweettracker.fulton.asu.edu/ tda.

http://tweettracker.fulton.asu.edu/tda
http://tweettracker.fulton.asu.edu/tda

74 A Additional Information

The examples in Chap. 4 use a public network analysis library, JUNG.1 Visualiza-
tion examples discussed in Chap. 5 are created using JSP and JavaScript. A majority
of the visualizations are built using D3 visualization library and JQuery toolkit. D3
provides a wide array of visualization constructs from which to build interesting
visualizations. The library also has numerous examples2 from which the reader can
learn to build visual analytics not covered in this book. We also use the InfoVis
toolkit in the network visualization for the pie chart and Raphael to create the topic
charts. The code snippets included in the chapters are intended for illustrating the
concepts and techniques and not necessarily provide all the details. We encourage
the reader to visit the website to obtain complete examples and play with them to
gain better understanding.

References

1. S. Kumar, G. Barbier, M. A. Abbasi, and H. Liu. Tweettracker: An analysis tool for humanitarian
and disaster relief. In Proceedings of the 2011 International Conference on Weblogs and Social
Media, 2011.

2. R. Li, K. H. Lei, R. Khadiwala, and K.-C. Chang. TEDAS: a twitter-based event detection
and analysis system. In Proceedings of the 2012 IEEE International Conference on Data
Engineering (ICDE), pages 1273–1276. IEEE, 2012.

3. A. MacEachren, A. Jaiswal, A. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, X. Zhang,
and J. Blanford. SensePlace2: GeoTwitter analytics support for situational awareness. In
Proceedings of 2011 IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 181–190, Oct. 2011.

4. M. Mathioudakis and N. Koudas. Twittermonitor: Trend Detection Over the Twitter Stream.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 1155–1158. ACM, 2010.

5. F. Morstatter, S. Kumar, H. Liu, and R. Maciejewski. Understanding Twitter Data with Tweet-
Xplorer. In Proceedings of the 2013 ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2013.

6. H. Purohit and A. Sheth. Twitris v3: From citizen sensing to analysis, coordination and action.
In Proceedings of the 2013 International Conference on Weblogs and Social Media, 2013.

1http://jung.sourceforge.net/
2https://github.com/mbostock/d3/wiki/Gallery

http://jung.sourceforge.net/
https://github.com/mbostock/d3/wiki/Gallery

Index

Symbols
InDegreeScorer.java, 38
find, 29
sort, 30

B
BetweennessScorer.java, 41
big data, 23, 27
brushing, 56

C
centrality

betweenness, 39–41
degree, 37, 38
eigenvector, 38–40
in-degree, 37, 38

collection, 26
add data, 27
optimization, 27

control chart, 61
control limit, 61, 62
visualizing, 61

ControlChartExample.java, 62
CreateD3Network.java, 52–53

D
documents

extracting, 29
filtering, 29

E
EigenVectorScorer.java, 38–39
emoticon, 47
ExtractDatasetTrend.java, 57
ExtractTopKeywords.java, 65–66

F
find_all_tweets.js, 30
firehose, 21
force-directed layout, 51, 54

G
gazetteer, 20

MapQuest, 20
geolocated, 20
geospatial

visualizing, 62
geotagging, 20
graph, see network

I
InDegreeScorer.java, 37–38
index, 28

compound, 28
rules, 28

J
JavaScript, 26, 27

K
KDE, see Kernel Density Estimation
Kernel Density Estimation, 63
kernelDE.js, 64

L
latent Dirichlet allocation, 43, 44, 48
LDA, see latent Dirichlet allocation
LDA.java, 44–45
linking, 56

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3, © The Author(s) 2014

75

76 Index

location information, 62
LocationTranslationExample.java, 21

M
map

dot, 62
heatmap, 63
marker, 62
visualizing, 62

MapQuest
gazetteer, 20
Nominatim, 20

MapReduce, 23, 31, 32
map, 32
reduce, 32

mapreduce.js, 31–32
MongoDB, 23, 24, 33

data org., 26
installing, OS X, 25
installing, Windows, 24
running examples, 26
running, OS X, 26
running, Windows, 25
single node instance, 24

mongoimport, 27
most_recent_tweets.js, 30

N
Naïve Bayes Classifier, 46, 47
NBC, see Naïve Bayes Classifier
network, 35

edge, 10, 35, 36
directed, 36
undirected, 36
weight, 36

friendship, 54
information flow, 49, 50
measure, 35
measures, 35
propagation path fallacy, 50
retweet, 52

context, 54
node, 52
visualizing, 51

types, 49
vertex, 35, 36
visualizing, 49

network analysis, 35, 48
network.js, 53
NoSQL, 23, 24, 33

O
OAuth, see Open Authentication
OAuthExample.java, 8
Open Authentication, 6

access secret, 7
access token, 7
calling API, 6
consumer, 6
verifier, 6

P
path, 36, 39, 40

shortest, 36, 39, 40
postProcessingExample.js, 27–28
public API, 5

Q
query

operators, 29
speed, 24

R
rate limit, 6, 10, 12–14, 17, 18, 20

window, 6, 10, 12–14, 18
REST API, 5, 14, 54

followers/list, 12
friends/list, 12
search/tweets, 17
statuses/user_timeline, 14
tweet search, 17–18
user’s followers, 12
user’s friends, 12–13
user’s profile, 10, 10
user’s tweets, 14–15
users/show, 10

REST architecture, 5
RESTApiExample.java, 9, 11–13, 15, 17–18
retweet, 14
Retweet object, 50

S
sentiment

label, 46, 47
lexicon, 46, 47

choosing, 46
score, 45–47

sentiment analysis, 45–48
small multiples, 60

Index 77

sparkline, 60, 61
sparkLine.js, 60
stemming, 44
stopword, 44
streaming API, 5, 6, 10, 14, 17, 20

cap, 20
filter, 19
public stream, 5, 6
site stream, 5
statuses/filter, 16
tweet search, 19–20
user stream, 5
user’s tweets, 16–17

StreamingApiExample.java, 16–17, 19

T
TestNBC.java, 47–48
text

heatmap, 68
measures, 42
topic, 66
topic chart, 67
visualizing, 65

time-series
brushing, 56, 57
comparing, 59
context, 56, 57
filter, 56
focus, 56
linking, 56
small multiples, 60
visualizing, 55, 59
zoom, 56

tokenization, 44
topic, 52
topicChart.js, 68
trendComparison.js, 59–60
trendline, 56, 57, 59
trendline.js, 58
trends, 55

tweet location, 20
identifying, 20

Tweet object, 14–15, 18
Tweet search

filter, 19
tweet search, 17

REST API, 17–18
search/tweets, 17
streaming API, 19–20

tweets_from_one_hour.js, 30
Twitter handle, 10

U
unix timestamp, 27
User object, 10, 12
user’s network, 5, 10

followers
REST API, 12

followers/list, 12
friends

REST API, 12–13
friends/list, 12

user’s profile, 7
REST API, 10, 10
users/show, 10

user’s tweets, 14
REST API, 14–15
statuses/filter, 16
statuses/user_timeline, 14
streaming API, 16–17

V
vectorization, 44

W
word cloud, 47, 65, 66

context, 66
wordCloud.js, 66–67

	Acknowledgements
	Contents
	1 Introduction
	1.1 Main Takeaways from This Book
	1.2 Learning Through Examples
	1.3 Applying Twitter Data
	References

	2 Crawling Twitter Data
	2.1 Introduction to Open Authentication (OAuth)
	2.2 Collecting a User's Information
	2.3 Collecting a User's Network
	2.3.1 Collecting the Followers of a User
	2.3.2 Collecting the Friends of a User

	2.4 Collecting a User's Tweets
	2.4.1 REST API
	2.4.2 Streaming API

	2.5 Collecting Search Results
	2.5.1 REST API
	2.5.2 Streaming API

	2.6 Strategies to Identify the Location of a Tweet
	2.7 Obtaining Data via Resellers
	2.8 Further Reading
	References

	3 Storing Twitter Data
	3.1 NoSQL Through the Lens of MongoDB
	3.2 Setting Up MongoDB on a Single Node
	3.2.1 Installing MongoDB on Windows®
	3.2.2 Running MongoDB on Windows
	3.2.3 Installing MongoDB on Mac OS X®
	3.2.4 Running MongoDB on Mac OS X

	3.3 MongoDB's Data Organization
	3.4 How to Execute the MongoDB Examples
	3.5 Adding Tweets to the Collection
	3.6 Optimizing Collections for Queries
	3.7 Indexes
	3.8 Extracting Documents: Retrieving All Documents in a Collection
	3.9 Filtering Documents: Number of Tweets Generated in a Certain Hour
	3.10 Sorting Documents: Finding the Most Recent Tweets
	3.11 Grouping Documents: Identifying the Most Mentioned Users
	3.12 Further Reading
	References

	4 Analyzing Twitter Data
	4.1 Network Measures
	4.1.1 What Is a Network?
	4.1.1.1 Vertices
	4.1.1.2 Edges
	4.1.1.3 Paths

	4.1.2 Networks from Twitter Data
	4.1.3 Centrality: Who Is Important?
	4.1.3.1 Degree Centrality: Who Gets the Most Retweets?
	4.1.3.2 Eigenvector Centrality: Who Is the Most Influential?
	4.1.3.3 Betweenness Centrality: Who Controls the Flow of Information?

	4.1.4 Finding Related Information with Networks

	4.2 Text Measures
	4.2.1 Finding Topics in the Text
	4.2.1.1 What Is a Topic?
	4.2.1.2 LDA Calculation with MALLET

	4.2.2 Sentiment Analysis
	4.2.2.1 Sentiment Analysis Overview
	4.2.2.2 Building a Lexicon Automatically
	4.2.2.3 The Sentiment Analysis Process

	4.3 Further Reading
	References

	5 Visualizing Twitter Data
	5.1 Visualizing Network Information
	5.1.1 Information Flow Networks
	5.1.1.1 Retweet Network Fallacy
	5.1.1.2 Visualizing Retweet Propagation

	5.1.2 Friend-Follower Networks

	5.2 Visualizing Temporal Information
	5.2.1 Extending the Capabilities of Trend Visualization
	5.2.2 Performing Comparisons of Time-Series Data
	5.2.2.1 Sparklines
	5.2.2.2 Control Charts

	5.3 Visualizing Geospatial Information
	5.3.1 Geospatial Heatmaps

	5.4 Visualizing Textual Information
	5.4.1 Word Clouds
	5.4.2 Adding Context to Word Clouds

	5.5 Further Reading
	References

	Appendix A Additional Information

	A.1 A System's Perspective
	A.2 More Examples of Visualization Systems
	A.3 External Libraries Used in This Book
	References

	Index

