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Preface

This edited book contains extended versions of selected papers from ASONAM
2010 which was held at the University of Odense, Denmark, August 9-11, 2010.
From the many excellent papers submitted to the conference, 28 were chosen for this
volume. The volume explores a number of aspects of social networks, both global
and local, and it also shows how social networks analysis and mining may aid web
searches, product acceptances and personalized recommendations just to mention
a few areas where social networks analysis can improve results in other mostly
web-related areas. The application of graph theoretical aspects to social networks
analysis is a recurrent theme in many of the chapters, and terminology from graph
theory has influenced that of social networks to a large extent.

The theme of the book relates to the influence of technology on social networks
and mining. This influence is not new. Technology is the enabling tool for all social
networks except for the most trivial. Indeed without technology the only possible
social networks would be extremely local and the cohesion of the network would
simply have been by oral communication. Wider social networks only became a
possibility with the advent of some sort of pictorial representation, for example,
the technology of carving on stone. This meant that a message of some form could
be read by others when the individual creating the representation was no longer
present. Abstractions in the form of pictographs representing ideas and concepts
and alphabets improved the technology. The advent of the movable print further
sped up the technology. The printing press technology enabled a significant increase
in speed for social network communication. These technologies were still limited in
what could be disseminated both in time and space, however.

The advent of the electronic means of disseminating ideas and communications
together with the development of the Internet opened up the possibility of trans-
mitting ideas and to make connections with an essentially unlimited number of
actors (people) with no geographical limitation at very low cost. This technological
advance enabled the growth of social networks to sizes that could not be realized
with previous technologies. The papers in this volume describe a number of aspects
of this new ability to form such networks and they provide new tools and techniques
for analyzing these networks effectively.
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The first chapter is: EgoClustering: Overlapping Community Detection via
Merged Friendship-Groups by Bradley S. Rees and Keith B. Gallagher. In this
chapter, the authors identify communities through the identification of friendship
groups where a friendship-group is a localized community as seen from an
individual’s perspective that allows him/her to belong to multiple communities.
The basic tools of the chapter are those of graph theory. An algorithm has been
developed that finds overlapping communities and identifies key members that bind
communities together. The algorithm is applied to some standard social networks
datasets. Detailed results from the Caveman and Zachary data sets are provided.

The chapter Evolution of Online Forum Communities by Mikolaj Morzy is a
perfect example of a chapter discussing a theme relating the theme of the volume
since the concept of an “online forum” did not exist prior to the current advances
in technology. While one can trace the forum idea back to posters on bulletin
boards and discussion in the printed literature, the current online forums are highly
dependent on the speed and ease of transmission made possible by the Internet. The
chapter discusses the evolution of these forums and their social implications. There
are large number of forums and that are established that expand, contract, develop,
and wither depending on the interest they generate. The paper introduces a micro-
community-based model for measuring the evolution of Internet forums. It shows
how the simple concept of a micro-community can be used to quantitatively assess
the openness and durability of an Internet forum. The authors apply the model to a
number of actual forums to experimentally verify the correctness and robustness of
the model.

In Integrating Online Social Network Analysis in Personalized Web Search
by Omair Shafiq, Tamer N. Jarada, Panagiotis Karampelas, Reda Alhajj, and
Jon G. Rokne, the authors discuss how a web search experience can be improved
through the mining of trusted information sources. From the content of the sources
preferences are extracted that reorders the ranking of the results of a search engine.
Search results for the same query raised by different users may differ in priority for
individual users. For example a search for “The best pizza house” will clearly have
a geographical component since the best pizza house in Miami is of no interest to
someone searching for the best pizza in New York. It is also assumed that a query
posed by a user correlates strongly with information in their social networks. To
find the personal interest and social context, the paper therefore considers (1) the
activities of users in their social network and (2) relevant information from a user’s
social networks, based on proposed trust and relevance matrices. The proposed
solution has been implemented and tested.

The latent class models (LCMs) used in social science are applied in the context
of social networks in How Latent Class Models Matter to Social Network Analysis
and Mining: Exploring the Emergence of Community by Jaime R. S. Fonseca and
Romana Xerez. The chapter discusses the advantages of reducing complex data
to a limited number of typologies from a theoretical and empirical perspective. A
relatively small dataset was obtained from surveying a community while using the
notion of homophile to establish the survey criteria. The methodology is applied
in the context of a three-latent class social network and the findings are in terms
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of (1) network structure, (2) trust and reciprocity, (3) resources, (4) community
engagement, (5) the Internet, and (6) years of residence.

In Extending Social Network Analysis with Discourse Analysis: Combining
Relational with Interpretive Data by Christine Moser, Peter Groenewegen, and
Marleen Huysman the authors investigate social networks that are related to specific
interest groups such as Dutch Cake Bakers (DCB). These communities may be
quite large (DCB had about 10,000 members at the time of writing the chapter)
and they are characterized by a high level of activity; a strong, active, and small
core; and an extensive peripheral group. They were able to gather very detailed and
massive relational data from their example online communities from which they
explored the connections within the communities. The authors then performed a
discourse analysis on the content of the gathered messages and by this characterized
the interactions in terms of we-them, compliments and empathy, competition and
advice, and criticism, thus enabling a deeper understanding of the communities.

Viewing relational databases through their information content for social net-
works is the topic of the chapter DB2SNA: An All-in-one Tool for Extraction
and Aggregation of Underlying Social Networks from Relational Databases by
Rania Soussi, Etienne Cuvelier, Marie-Aude Aufaure, Amine Louati, and Yves
Lechevallier. The authors propose a heterogeneous object graph extraction approach
from a relational database which they use to extract a social network. This step is
followed by an aggregation step in order to improve the visualization and analysis
of the extracted social network. This is followed by an aggregation step using the
k-SNAP algorithm which produces a summarized graph in order that the resulting
social network graphs can be more easily understood.

The next chapter, An Adaptive Framework for Discovery and Mining of User
Profiles from SocialWeb-Based Interest Communities by Nima Dokoohaki and
Mihhail Matskin, introduces an adaptive framework for semi- to fully automatic
discovery, acquisition, and mining of topic style interest profiles from openly
accessible social web communities. Their techniques use machine learning tools
including clustering and classifying for their algorithms. Three schemes are defined
as follows: (1) depth-based, allowing for discovering and crawling of topics on a
certain taxonomy tree-depth at each time; (2) n-split, allowing iterative discovery
and crawling of all topics while at each iteration gathered data is split for n-times;
and finally (3) greedy, which allows for discovery and crawling the network for all
topics and processing the cached data. They apply the developed techniques to the
social networking site LiveJournal.

The chapter Enhancing Child Safety in MMOs by Lyta Penna, Andrew Clark,
and George Mohay considers the general issue of how the Internet can be made safe
for children, specifically when Massively Multiplayer Online (MMO) games and
environments are involved. A particular issue with respect to children and MMOs is
the potential for luring a child into an off-line encounter which would in many cases
present a hazard to a child. Typical message threads are analyzed for contextual
content that might lead to such harmful encounters. The techniques developed to
detect potentially unfavorable situations are applied to World of Warcraft as a case
study. The chapter extends previous work by the authors.
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Virtual communities are studied in Towards Leader-Based Recommendations
by Ilham Esslimani, Armelle Brun, and Anne Boyer with the aim of discovering
community leaders. These leaders influence the opinion and decision making of
the rest of the community. Discovering these leaders is important, for example,
in the area of marketing, where detecting opinion leaders allows the prediction
of future decision making (about products and services), the anticipation of risks
(due, e.g., to negative opinions of leaders) and the follow-up of the corporate image
(e-reputation) of companies. Their algorithm considers the high connectivity and
the potentiality of propagating accurate appreciations so as to detect reliable leaders
through these networks. Furthermore, studying leadership is also relevant in other
application areas, such as social network analysis and recommender systems.

Name and author disambiguation is an important topic for today’s electronic
article databases. For example, J. Smith, Jim Smith, J. Peter Smith may be (a) one
author using different variations of his name Jim Smith, (b) two authors with
variations in the use of their names, or (c) three authors. The chapter Learning
from the Past: An Analysis of Person Name Corrections in the DBLP Collection
and Social Network Properties of Affected Entities by Florian Reitz and Oliver
Hoffmann tackles this problem for the DBLP bibliographic database of computer
science and related topics. Given the name of an author, the intent is that the DLBP
database will provide a list of papers by that author. Although there are a large
number of algorithmic approaches to solve this problem, little is known on the
properties of inconsistencies in the information in the databases such as variations
of names of one individual. The present paper applies a historical and social network
approach to the problem. Their algorithms are able to calculate the probability that
a name will need correction in the future.

Factors Enabling Information Propagation in a Social Network Site by Matteo
Magnani, Danilo Montesi, and Luca Rossi discusses the phenomenon that informa-
tion propagates efficiently over social networks and that it is much more efficient
than traditional media. Many general formal models of network propagation that
might be applied to social network information dissemination have been developed
in different research fields. This paper presents the result of an empirical study on
a Large Social Database (LSD) aimed at measuring specific socio-technical factors
enabling information spreading over social network sites.

In the chapter Detecting Emergent Behavior in a Social Network of Agents by
Mohammad Moshirpour, Shimaa M. El-Sherif, Behrouz H. Far, and Reda Alhajj,
the entities of the social networks are agents, that is, computer programs that
exchange information with other computer programs and perform specific functions.
In this chapter, there are agents handling queries, learning and managing concepts,
annotating documents, finding peers, and resolving ties. The agents may work
together to achieve certain goals, and certain behavior patterns may develop over
time (emergent behavior). The chapter presents a case study of using a social
network of a multiagent system for semantic search.

In Detecting Communities in Massive Networks Efficiently with Flexible Resolu-
tion by Qi Ye, Bin Wu, and Bai Wang the authors are concerned with data analysis
on real-world networks. They consider an iterative heuristic approach to extract
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the community structure in such networks. The approach is based on local multi-
resolution modularity optimization and the time complexity is close to linear and
the space complexity is linear. The resulting algorithm is very efficient, and it may
enhance the ability to explore massive networks in real time.

The topic of the next chapter Extraction of Spatio-temporal Data for Social
Networks by Judith Gelernter, Dong Cao, and Kathleen M. Carley is using social
networks for the identification of locations and their association with people.
This is then used to obtain a better understanding of group changes over time.
The authors have therefore developed an algorithm to automatically accomplish
the person-to-place mapping. It involves the identification of location and uses
syntactic proximity of words in the text to link the location to a person’s name. The
contributions of this chapter include techniques to mine for location from text and
social network edges as well as the use of the mined data to make spatiotemporal
maps and to perform social network analysis.

The chapter Clustering Social Networks Using Distance-Preserving Subgraphs
by Ronald Nussbaum, Abdol-Hossein Esfahanian, and Pang-Ning Tan considers
cluster analysis in a social networks setting. The problem of not being able to
define what a cluster is causes problems for cluster analysis in general; however,
for the data sets representing social networks, there are some criteria that aid the
clustering process. The authors use the tools of graph theory and the notion of
distance preservation in subgraphs for the clustering process. A heuristic algorithm
has been developed that finds distance-preserving subgraphs which are then merged
to the best of the abilities of the algorithm. They apply the algorithm to explore
the effect of alternative graph invariants on the process of community finding. Two
datasets are explored: CiteSeer and Cora.

The chapter Informative Value of Individual and Relational Data Compared
Through Business-Oriented Community Detection by Vincent Labatut and Jean-
Michel Balasque deals with the issue of extracting data from an enterprise database.
The chapter uses a small Turkish university as the background test case and develops
algorithms dealing with aspects of the data gathered from students at the university.
The authors perform group detection on single data items as well as pairs gathered
from the student population and estimate groups separately using individual and
relational data to obtain sets of clusters and communities. They then measure
the overlap between clusters and communities, which turns out to be relatively
weak. They also define a predictive model which allows them to identify the most
discriminant attributes for the communities, and to reveal the presence of a tenuous
link between the relational and individual data.

Considering the data from blogs in a social network context is the topic of Cross-
Domain Analysis of the Blogosphere for Trend Prediction by Patrick Siehndel,
Fabian Abel, Ernesto Diaz-Aviles, Nicola Henze, and Daniel Krause. The authors
note first the importance of blogs for communicating information on the web.
Blogging over advanced communications devices such as smartphones and other
handheld devices has enabled blogging anywhere at any time. Because of this
facility, the blogged information is up to date and a valuable source for data,
especially for companies. Relevant date, extracted from blogs, can be used to adjust
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marketing campaigns and advertisement. The authors have selected the music and
movie domains as examples where there is a significant blogging activity and
they used these domains to investigate how chatter from the blogosphere can be
used to predict the success of products. In particular, they identify typical patterns
of blogging behavior around the release of a product by analyzing the terms of
posting relevant to the product, point out methods for extracting features from the
blogosphere, and show that we can exploit these features to predict the monetary
success of movies and music with high accuracy.

Betweenness computation its the topic of Efficient Extraction of High-
Betweenness Vertices from Heterogeneous Networks by Wen Haw Chong, Wei
Shan Belinda Toh, and Loo Nin Teow. The efficient computation of betweenness in
a network is computationally expensive, yet it is often the set of vertices with high
betweenness that is of key interest in a graph. The authors have developed a novel
algorithm that efficiently returns the set of vertices with the highest betweenness.
The convergence criterion for the algorithm is based on the membership stability of
the high-betweenness set. They also show experimentally that the algorithm tends
to perform better on networks with heterogeneous betweenness distributions. The
authors have applied the algorithm developed to the real-world cases of Protein,
Enron, Ticker, AS, and DBLP data.

Engagingness and Responsiveness Behavior Models on the Enron E-mail Net-
work and their Application to E-mail Reply Order Prediction deals with user
interactions in e-mail systems. The authors note that user behaviors affect the way
e-mails are sent and replied. They therefore investigate user engagingness and
responsiveness as two interaction behaviors that give us useful insights into how
users e-mail one another. They classify e-mail users in two categories: engaging
users and responsive users. They propose four model types based on e-mail, e-mail
thread, e-mail sequence, and social cognitively. These models are used to quantify
the engagingness and responsiveness of users, and the behaviors can be used as
features in the e-mail reply order prediction task which predicts the e-mail reply
order given an e-mail pair. Experiments show that engagingness and responsiveness
behavior features are more useful than other non-behavior features in building a
classifier for the e-mail reply order prediction task. An Enron data set is used to test
the models developed.

In the chapter Comparing and Visualizing the Social Spreading of Products
on a Large Social Network by Pgal Roe Sunds@y, Johannes Bjelland, Geoffrey
Canright, Kenth Engg-Monsen, and Rich Ling, the authors investigate how products
and services adoption is propagated. By combining mobile traffic data and product
adoption history from one of the markets for the telecom provider Telenor the
social network among adopters is derived. They study and compare the evolution
of adoption networks over time for several products: the iPhone handset, the Doro
handset, the iPad 3G, and video telephony. It is shown how the structure of the
adoption network changes over time and how it can be used to study the social
effects of product diffusion. Supporting this, they find that the adoption probability
increases with the number of adopting friends for all the products in the study. It
is postulated that the strongest spreading of adoption takes place in the dense core
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of the underlying network, and gives rise to a dominant LCC (largest connected
component) in the adoption network, which they call the social network monster.
This is supported by measuring the eigenvector centrality of the adopters. They
postulate that the size of the monster is a good indicator for whether or not a product
is going to “take off.”

The next chapter is Virus Propagation Modeling in Facebook by W. Fan and
K. H. Yeung, where the authors model virus propagation in social networks using
Facebook as a model. It is argued that the virus propagation models used for
e-mail, IM, and P2P are not suitable for social networks services (SNS). Facebook
provides an experimental platform for application developers and it also provides
an opportunity for studying the spreading of viruses. The authors find that a virus
will spread faster in the Facebook network if Facebook users spend more time on it.
The simulations in the chapter are generated with the Barabasi-Albert (BA) scale-
free model. This model is compared with some sampled Facebook networks. The
results show that applying BA model in simulations will overestimate the number
of infected users a little while still reflecting the trend of virus spreading.

The chapter A Local Structure-Based Method for Nodes Clustering. Application
to a Large Mobile Phone Social Network by Alina Stoica and Zbigniew Smoreda
and Christophe Prieur presents a method for describing how a node of a given graph
is connected to a network. They also propose a method for grouping nodes into
clusters based on the structure of the network in which they are embedded using the
tools of graph theory and data mining. These methods are applied to a mobile phone
communications network. The paper concludes with a typology of mobile phone
users based on social network cluster, communication intensity, and age.

In the chapter Building Expert Recommenders from E-mail-Based Personal
Social Networks by Veronica Rivera-Pelayo, Simone Braun, Uwe V. Riss, Hans
Friedrich Witschel, and Bo Hu, the authors investigate how to identify knowledgable
individuals in organizations. In such organizations, it is generally necessary to
collaborate with people in any organization, to establish interpersonal relationships,
and to establish sources for knowledge about the organization and its activities.
Contacting the right person is crucial for successfully accessing this knowledge.
The authors use personal e-mail corpora as a source of information of a user
since it contains rich information about all the people the user knows and their
activities. Thus, an analysis of a person’s e-mails allows automatically constructing
a realistic image of the surroundings of that person. They develop ExpertSN, a
personalized Expert Recommender tool based on e-mail Data Mining and Social
Network Analysis. ExpertSN constructs a personal social network from the e-mail
corpus of a person by computing profiles including topics represented by keywords
and other attributes.

The most common way of visualizing networks is by depicting the networks
as graphs. In Pixel-Oriented Network Visualization: Static Visualization of Change
in Social Networks by Klaus Stein, René Wegener, and Christoph Schlieder, the
networks are described in a matrix form using pixels. They claim that their approach
is more suitable for social networks than graph drawing since graph drawing results
in a very cluttered image even for moderately sized social networks. Their technique
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implements activity timelines that are folded to inner glyphs within each matrix cell.
Users are ordered by similarity which allows to uncover interesting patterns. The
visualization is exemplified using social networks based on corporate wikis.

The chapter TweCoM: Topic and Context Mining from Twitter by Luca Cagliero
and Alessandro Fiori is concered with knowledge discovery from user-generated
content from social networks and online communities. Many different approaches
have been devoted to addressing this issue. This chapter proposes the TweCoM
(Tweet Context Miner) framework which entails the mining of relevant recurrences
from the content and the context in which Twitter messages (i.e., tweets) are
posted. The framework combines two main efforts: (1) the automatic generation
of taxonomies from both post content and contextual features and (2) the extrac-
tion of hidden correlations by means of generalized association rule mining. In
particular, relationships holding in context data provided by Twitter are exploited
to automatically construct aggregation hierarchies over contextual features, while
a hierarchical clustering algorithm is exploited to build a taxonomy over most
relevant tweet content keywords. To counteract the excessive level of detail of the
extracted information, conceptual aggregations (i.e., generalizations) of concepts
hidden in the analyzed data are exploited in the association rule mining process. The
extraction of generalized association rules allows discovering high-level recurrences
by evaluating the extracted taxonomies. Experiments performed on real Twitter
posts show the effectiveness and the efficiency of the proposed technique.

In the chapter Application of Social Network Metrics to a Trust-Aware Col-
laborative Model for Generating Personalized User Recommendations by Iraklis
Varlamis, Magdalini Eirinaki, and Malamati Louta, the authors discuss trustworthi-
ness of recommendations in social networks which discuss product placement and
promotion. The authors note that community-based reputation can aid in assessing
the trustworthiness of individual network participants. In order to better understand
the properties of links, and the dynamics of social networks, they distinguish
between permanent and transient links and in the latter case, they consider the
link freshness. Moreover, they distinguish between the propagation of trust in a
local level and the effect of global influence and compare suggestions provided by
locally trusted or globally influential users. The dataset extended Epinions is used
as a testbed to evaluate the techniques developed.

Optimization Techniques for Multiple Centrality Computations by Christian von
der Weth, Klemens Bohm, and Christian Hiitter applies optimization techniques to
identify important nodes in a social network. The authors note that many types of
data have a graph structure and that, in this context, by identifying central nodes,
users can derive important information about the data. In the social network context,
it can be used to find influential users and in a reputation system it can identify
trustworthy users. Since centrality computation is expensive, performance is crucial.
Optimization techniques for single centrality computations exist, but little attention
so far has gone into the computation of several centrality measures in combination.
In this chapter, the authors investigate how to efficiently compute several centrality
measures at a time. They propose two new optimization techniques and demonstrate
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their usefulness both theoretically as well as experimentally on synthetic and on
real-world data sets.

Movie Rating Prediction with Matrix Factorization Algorithm by Ozan B. Fikir,
flker O. Yaz, and Tansel Ozyer discusses a movie rating recommendation system.
Recommenation systems is one of the research areas studied intensively in the
last decades and several solutions have been elicited for problems in different
recommendation domains. Recommendations may differ by content, collaborative
filtering, or both. In this chapter, the authors propose an approach which utilizes
matrix value factorization for predicting rating i by user j with the sub matrix as
k-most similar items specific to user i for all users who rate all items. Previously
predicted values are used for subsequent predictions and they investigate the
accuracy of neighborhood methods by applying the method to the prizing of
Netflix. They have considered both items and users relationships on Netflix dataset
for predicting ratings. Here, they have followed different ordering strategies for
predicting a sequence of unknown movie ratings and conducted several experiments.

Finally, we would like to mention the hard work of the individuals who have
made this valuable edited volume possible. We also thank the authors who submitted
revised chapters and the reviewers who produced detailed constructive reports which
improved the quality of the papers. Various people from Springer as well deserve
much credit for their help and support in all the issues related to publishing this
book. In particular, we would like to thank Stephen Soehnlen for his dedication,
seriousness, and generous support in terms of time and effort. He answered our
e-mails on time despite his busy schedule, even when he was traveling.

A number of organizations supported the project in various ways. We would
like to mention the University of Odense, which hosted ASONAM 2010; the
National Sciences and Reserch Council of Canada, which supported several of the
editors financially through its granting program; the Joint Research Centre (JRC) of
European Commission, which supported one of the editors from its Global Security
and Crisis Management Unit.

Sogutozu Ankara, Turkey Tansel Ozyer
Calgary, AB, Canada Jon Rokne
Ispra, Italy Gerhard Wagner

Leiden, The Netherlands Arno Reuser
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Chapter 1
EgoClustering: Overlapping Community
Detection via Merged Friendship-Groups

Bradley S. Rees and Keith B. Gallagher

Abstract There has been considerable interest in identifying communities within
large collections of social networking data. Existing algorithms will classify an actor
(node) into a single group, ignoring the fact that in real-world situations people
tend to belong concurrently to multiple (overlapping) groups. Our work focuses on
the ability to find overlapping communities. We use egonets to form friendship-
groups. A friendship-group is a localized community as seen from an individual’s
perspective that allows an actor to belong to multiple communities. Our algorithm
finds overlapping communities and identifies key members that bind communities
together. Additionally, we will highlight the parallel feature of the algorithm as a
means of improving runtime performance, and the ability of the algorithm to run
within a database and not be constrained by system memory.

1.1 Introduction

An escalation in the number of Community Detection algorithms [2,9,11-14,22,24,
26,34-36, 38,40,45, 46] has occurred in recent years. The focus of the algorithms
shifted away from the classical clustering principles of grouping nodes based upon
some type of shared attribute [20,36], to one where the relationships and interactions
between individuals are emphasized. The shift has caused algorithms to view the
data as a graph and focus on exploiting (detecting) the “small-world effect” [44]
found in social networks — the phenomena that a small path length separates any
two randomly selected nodes — and on detecting the clustering property of social
networks in which the density of the edges is higher within the group than between
the groups [2, 13, 14,22,24,26,34-36,38,40,45].
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Moody and White [33] reasoned that communities are held together by the
presence of multiple independent paths between members. Extrapolating from the
goal of discovering clusters, where internal edge density is maximized, it follows
that the identification of cliques [15, 26, 38] {k-cliques, k-clans, or k-cores, where
k is the number of nodes comprising the group} would be a viable approach;
the density is maximal within those structures. However, given that a five-clique,
for example, contains a number of overlapping four-cliques, each of which is a
community in its own right [15], presents the question of whether the algorithm
is really revealing communities or just doing pattern matching.

Other approaches have focused on centrality [17] to identify key nodes or
edges, and follow a hierarchical clustering approach to recursively extract clusters
[13,22,26]. While centrality is a powerful and useful idea for identifying key
(central) actors in a network, many of the centrality approaches require that the
centrality measurement be recalculated after each graph edit, causing the algorithms
to be highly inefficient [13,35,36].

In this paper, which is an expanded version of the one we presented at ASONAM
2010 [41], we present a radically different approach to group detection that finds
communities based on the collective viewpoint of individuals. The notion postulated
is that each node in the network knows, by way of its egonet [16, 18], who
is in its Friendship-Groups. We use the term friendship-group to represent the
small clusters, extracted from egonets, containing the central node and communal
neighbors. Therefore, by calculating the aggregation of each individual’s friendship-
groups, we find overlapping communities, in a process we term EgoClustering.
Additionally, the algorithm is designed to be highly parallelizable as a means
of improving runtime, and able to operate within a database and therefore not
constrained by system memory.

The contributions of this paper are:

. A precise mathematical formulation of a Friendship-Group

. A full fledged implementation of the EgoClustering algorithm

. An algorithm producing communities with maximal size by allowing for overlap
. A more intuitive approach to community detection

. An algorithm that can be run on disk-based data

. An Algorithm that can be easily parallelized.

AN AW =

1.1.1 Terminology

Social Network Analysis derives from the social sciences with its own taxonomy
and argot, while graph theory derives from mathematics with a different taxonomy.
In graph theory [6], the terms vertex and edge are used to describe a graph, while
social networking [10, 43] uses node or actor and edge, link, or arc to describe a
graph. For the purpose of this paper, the terms are used interchangeably, with a
slight preference toward nodes and edges.
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A graph is defined as G = {V, E} where V is a set of vertices (nodes) and E is
a set of edges, represented by unordered pairs of vertices, called the start node and
end node. The edge set defines connections between pairs of vertices. An optional
weighting can be assigned to the pair. If the pairs are ordered, the graph is directed.
A path is an ordered sequence of edges in the graph where the end node of an edge
is the start node of the next in the sequence. Any two nodes on a path are connected.
The shortest path between to nodes is one with the least number of edges. If there is
no path between two nodes, they are disconnected.

The neighbors of a vertex, v, is defined as the set of vertexes connected by way
of an edge to vertex v, or N(v) ={U} where v € V and Yu € U J edge(v,u) € E.
The degree of a vertex, §(v), is the number of edges incident to that vertex. In the
case where the graph contains no loops (edges that have the same starting and ending
vertex) the degree of a vertex is also equal to the number of neighbors, §(v) = [N(v)|.

The density of a graph, or subgraph, is the measure of the number of edges in
the graph, over the maximum number of possible edges. A value of 1 indicates that
all possible edges are present, while a value of 0 indicates the absence of any edges.
The most edges a node can have is (n — 1); the maximum number of edges possible
in an undirected graph is "("—2_1) Density can then be defined as: d(n) = %,
where 7 is the number of nodes and m is the number of edges. A sparse graph is one
where the number of edges is close to the number of nodes, and a dense graph is
one where the density measurement approaches, or is equal to, 1. There is no agreed
upon threshold between a sparse graph and a dense graph.

Centrality [17] is a measure of how important, or central, a node is in relation to
the whole graph. The betweenness centrality of a node, n, is number of paths that
contain n in the all-pairs-shortest-path set of the graph G. Betweenness centrality
can also be obtained for edges [36].

The term egonet [10, 16, 18] derives from egocentric network. An egonet is an
induced subgraph consisting of a central node, (the ego-node), its neighbors, and all
edges among the neighbors. The individual’s viewpoint reduces the network under
consideration to just those vertices adjacent to the central “ego” node and any edges
between those nodes.

Given a graph G, the egonet on a node, n, is:

ego(n) = the subgraph H of G where

V(H) ={v,N(v)}
E(H) =
V(l’ll,l’lz) € V(H) if
de(ny, ny) € E(G) then
de(ny,ny) € E(H)

A dyad is two nodes joined by an edge. A triad is three nodes connected by a
minimum of two edges and a maximum of three edges.

All graphs in this work are considered to be “sparse”, unweighted, undirected,
and containing no loops. For this work, we define sparse as being graphs with
density less than 0.4.
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Fig. 1.1 Edge betweenness
centrality scores

1.2 Related Work

One of the more prevalent algorithms comes from work by Girvin and New-
man [22,36] (GN). The GN algorithm follows a divisive hierarchical method, which
iteratively removes edges with the highest edge-betweenness centrality score. This
is based on the principle that between community edges have higher centrality than
within community edges, as shown in Fig. 1.1.

The GN algorithm recognized that the centrality score must be recalculated after
each edge removal. However, the recalculating of centrality causes the algorithm
to have high computational demands, running in O(n3) to O(r4) time on sparse
graphs. Newman addressed the performance factor in a subsequent paper [35] by
developing an agglomerative method that reduced runtime to O (n2).

Hierarchical clustering approaches, divisive or agglomerative, present some
problems. As Newman points out [35] “...the GN community structure algorithm
always produces some division of vertices into communities, regardless of whether
the network has any natural such divisions.” Moreover, the “fast-Newman” [35]
algorithm suffers from an NP-complete subproblem [46].

The notion of using some form of centrality as the means for determining edge
removal was extended by Hwang et al. [34], by the concept of Bridging Centrality.
A bridge, in graph theory terms, is an edge whose removal will break the graph
into two disconnected subgraphs. Hwang et al. defined Bridging Centrality as the
ranked product of betweenness centrality and a bridging coefficient. Informally, the
bridging coefficient is the probability of having common neighbors.

Agglomerative methods start with one node per cluster and iteratively joins clus-
ters; divisive methods start with one cluster and iteratively divides. The iterations
of both processes can be represented as a dendrogram. Selecting different stopping
points in those processes will produce different numbers of communities [34, 36].
The challenge is that the decision of where to stop should to be done a priori. The
following illustration, Fig. 1.2, shows a dendrogram with three possible cut points
(A, B, and C), producing two, four, or six possible clusters, each of which does not
necessarily equate to a community [40]. Modularity (a probabilistic method) and
density have both been used as means of determining the stopping point [26, 36].

Modularity was first introduced by Newman and Girvan [36] as a means of
determining when to stop processing within their divisive algorithm. Since then,
modularity has become a widely studied community quality measure [7, 8, 37,42]
(non-exhaustive list). More recently, Brandes et. al. [5] published a critique of
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Fig. 1.2 Dendrogram with
three possible cuts

Agglomerative
BAISING

modularity and illustrated how finding the optimal modularity value is an NP-
complete problem. Modularity can be described as the notion that communities
do not occur by random change. The Modularity, denoted Q, is the measure of a
cluster against the same cluster in a null (or random) graph. A greater than random
probability indicates a good cluster.

These approaches suffer the additional problem that nodes are forced to exist
only in a single community. Real-world networks are not so nicely constrained, and
contain realistic amounts of overlap between communities [9, 33, 38]. Each person
(node) could have a community for family, friends, work, and interest, for example,
and community detection algorithms must allow for, and detect, overlapping groups.
Forcing a node into a single community and not allowing for overlap could prevent
the detection of the true underlying community structures [9, 30, 38].

A number of solutions for finding overlapping communities have been devel-
oped [2,9,13,14,24,38]. Gregory [24], for example, modified the GN algorithm to
highlight overlapping communities by splitting nodes, thus permitting a node to be
represented in the graph multiple times, and allowing each instance of the node to
clustered into a different community. While the modification does find overlapping
communities, it also degrades the algorithm’s performance.

Local clustering has been explored in a number of algorithms [1, 8, 30]. This
technique, which builds communities independently, does not remove nodes from
the graph for subsequent iterations. Overlapping communities can be found using
local clustering. Baumes et al. [2, 3] present a unique two-step approach to finding
overlapping communities. The first part of the algorithm is called Rank Removal,
or RaRe, which iteratively removes high ranked nodes, thus breaking the network
into disconnected clusters. Baumes et al. discuss the use of PageRank and high
degree nodes (degree-centrality) as a means of finding important nodes, however
it would seem logical to expand that process to leverage any of the previously
discussed community detection approaches. The second step is the truly unique
portion of their algorithm, and involves adding nodes that were not part of the
cluster and evaluating whether the clusters density increased. This step considers
all neighboring nodes, rather than all nodes, as a means of improving performance.
Additionally, it is this step that permits the assumption that nodes belong to multiple
communities and therefore overlap.

The notion of local-based community construction was also used by Lanci-
chinetti et al. [30] in what they termed as finding the “natural community” of a node.
Lancichinetti’s algorithm works by randomly selecting a node and iteratively adding
neighboring nodes, checking for an increase in “fitness.” Fitness is roughly similar
to modularity [35] or Radicchi’s definition of community [40], and is defined as the
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measure of edges within a community over the sum of edges within and leaving the
G

community: fg = Gk+
(ki Fkou et

The factor, «, is used to control, or limit, community size. However, as
Lancichinetti points out, the best results are obtained where « = 1. The values of kin
and kout are the degree of edges within the community and leaving the community
respectively. Since each community is built independently, and based on the full
graph, overlap between the communities can occur.

The notion of a clique (a subgraph with maximal density) being synonymous
with a community is not new, and approaches for finding cliques originated as early
as the late 1940s [15]. Palla et al. [38] extended the theory of cliques as communities
by introducing the definition that a community, specifically a k-clique-community,
is a union of all k-cliques that can be reached via adjacent k-cliques. The process
works by rolling, or percolating, a k-clique over the network to find other k-cliques
that share kK — 1 nodes. The percolating [11] is performed by moving the selection
of one node within the k-clique to an unselected neighbor node that also form a
k-clique. Since only one node is selected each time, the subsequent k-clique must
share exactly k — 1 nodes.

1.3 Our Approach

1.3.1 Defining Community

There is no formal, or conventional, definition of social community [12] beyond
“a collection of individuals linked by a common interest” [32]. Rather than trying to
define, or redefining community, we turn instead to work by Moody and White [33],
who focused on defining four characteristics that bind a community together,
referred to as “structural cohesion.” One definition of interest from Moody and
White is that community cohesion is tied to the number of independent paths
between members. That definition is supported by the qualitative observations [40]
that communities have greater internal edge density than external, inter-community,
density. Consider the graph in Fig. 1.3a; it contains two obvious communities with a
single edge between them. As the number of links between communities increases,
the ability of clustering algorithms to find distinct communities degrades [22].
Increasing the number of edges between the two communities, Fig. 1.3a, b poses
the question: Are there still two communities, have the two merged into one, or are
there now three communities?

A second definition from Moody and White is that the removal of one member
(node) should not cause the community to collapse. Therefore, for this version of
the algorithm, a dyad is not a community; likewise a node of degree 1 cannot be
part of a community. However, nodes of degree 1 could be easily subsumed into its
neighbor — future version of the algorithm.
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Fig. 1.3 Example of increased edges between communities
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Fig. 1.4 Need to allow overlap

1.3.2 The Need to Allow Overlapping

A key feature [11] of most real-world communities from social networks is that they
overlap [9, 13,24, 30], allowing a single node to belong to multiple communities.
The notion should be intuitive, and empirically evident [9, 19] that individuals can
belong to multiple simultaneous groups, for example families, social circles, and
work communities. Moreover, in hierarchical clustering, as several have pointed
out [9, 30, 38, 39], the assignment of a node to a single community can cause the
remaining communities to fall apart, thus preventing the detection, or discovery,
of the true social structures. A simple proof to this statement can be seen in the
following example.

We ran two popular community detection algorithms on the simple and very
small graph — for illustration purposes — shown in Fig.1.4a. In this case, the
FastModularity algorithm of Clauset and Newman [7], and the modified GN [22]
algorithm, called “A Fast Algorithm”, from Radicchi et al. [40]. Each of the
algorithms detected the same two communities shown in Fig. 1.4b.

If we examine the smaller community, {E, G, F}, Fig. 1.4b, independent of
the other communities and under the premise that all nodes and edges not within
that community are available for consideration in the community, we can then
evaluate the effect of adding each neighbor node into the community. In this case
the inclusion of node D within the smaller community increases the modularity
score, and therefore uncovers the true community. Both local clustering and our



8 B.S. Rees and K.B. Gallagher

Fig. 1.5 Triangles and the a b c
Forbidden triad B B B

EgoClustering algorithms produce the result of Fig. 1.4c, which we believe are the
valid communities of the graph.

For the purpose of this study, we are interested in finding all communities within
a social network, and not simply on partitioning nodes into clusters. Therefore we
make the statement that detected communities can only be guaranteed to be maximal
if overlap is allowed, and by not allowing overlap, erroneous results can be obtained;
moreover all overlapping nodes must be found.

1.3.3 Triangles

When examining undirected, unweighted, and unlabeled graphs, a few assumptions
need to be made: (1) That there is some form of homophily (common interest)
that binds communities together; (2) that each edge represents the same level of
relationship strength; and, (3) that there is an equal amount of reciprocity in each
edge. With those assumptions in mind, we can look at triads and their relationship
to communities.

Consider a triad comprised of the three nodes {A, B, C}, Fig. 1.5a. If there is a
tie between A and B, and A and C, the probability that B and C are linked is so
much greater than random that Granovetter [23,27] deemed the absence of such a
link as the “Forbidden” triad. The presence of a triad indicates that there is a strong
tie [23] between the nodes and therefore some type of shared interest, which could
be called a community.

For the purpose of this work, we are considering the absence of a link between
node B and C, Fig. 1.5b, to be an indication that B and C are not similar and
therefore, initially, not within the same community. Conversely, the presence of a
tie between B and C, Fig. 1.5c¢, is an indication of a community.

1.3.4 Friendship-Groups

With the rudimentary definition of community, the need to allow overlap, and the
value of triad defined, we can now define the basic building block of our algorithm,
the Friendship-Group. Consider the graph shown in Fig. 1.6a, an egonet build
around node A.
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Fig. 1.6 Friendship-Groups

Node A has a strong connection to nodes B and C, since nodes B and C are
connected. Additionally, node A has a strong connection to nodes C and D, which
are also connected. Without additional information we can infer that node A, B,
C, and D form a community, Fig. 1.6b. At the same time, node A has a strong
connection to nodes E and F, due to the connection between E and F. Since nodes
are allowed to belong to multiple communities, we conclude that nodes A, E, and
F form a community as shown in Fig. 1.6¢c. The connection between node A and G
fits the definition of a dyad, which we have previously defined as not constituting a
community.

We define a Friendship-Group to be the local view of communities within an
egonet from the perspective of the ego node. Or, an induced subgraph extracted
from an egonet, adhering to the same constraints mentioned above for a community;
multiple paths and no dyads or single nodes. We make the distinction between
communities and friendship-group since the friendship-group is myopic view of the
egonet, and one or more friendships-groups can be combined to form a community.
The egonet in Fig. 1.6 contains two friendship-groups as shown in Fig. 1.6d.

1.3.5 Algorithm

The algorithm executes in two phases; the first phase is the detection of friendship-
groups, the second phase comprises the aggregation of friendship-groups into
communities.

In phase 1, the algorithm iterates through every vertex in the graph and
derives the egonet for that vertex. From that derived egonet, friendship-groups are
extracted. The process for finding friendship-groups from the egonet is performed
by first removing the central, or ego, node, since it is known to exist in multiple
friendship-groups. By removing the ego vertex, the graph breaks into multiple
connected components, each of which can be easily found. The egocentric vertex
is then added back to each found component to form the friendship-groups.

For example, given the following simple network, Fig. 1.7a, the egonet for vertex
D would be just those vertices connected to D, or B, C, E, and F, as shown in
Fig. 1.7b.
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Fig. 1.7 Detecting Friendship-Groups

Pseudo code:

1. For each node Vn € {V}

¢ Get egonet of n: H=-ego(n)
* Find Friendship-Groups:

— Remove n from the egonet
— Find the connected components of the remaining subgraph
— Add n to each component

2. Merge and Reduce Sets

* Remove proper subsets
e Merge “close” matches
¢ Repeat until no more merges can be performed

From the point-of-view of vertex D, nodes B and C are friends and E and F are
friends. The removal of D, grayed out in Fig. 1.7c, creates two distinct components.
That yields two friendship-groups, with the ego vertex added back in, of {B, C, D}
and {D, E, F}. That process is repeated for every vertex in the network. The result
of that first phase is a collection of friendship-groups, from an egocentric point-of-
view.

The next step, phase 2, is to merge all the friendship-groups into communities.
That process is done by first merging all exact matches, groups that are either
complete or proper subsets of other groups. The final step is to merge groups that are
“relatively close”; in this case, groups that match all but one item from the smaller
group. Given two sets, SI and Ss, where SI is larger than, or equal to, Ss, then the
sets are merged (union) if the size of the intersection is equal to one less than the
size of the smaller set: S; () S;| = |Ss| — 1; i.e., the size of the set difference is 1.
This step compensates for egonets not having a complete picture of the community,
and allows communities of different sizes to be compared. Continuing the example
from above, Fig. 1.7a, group {A, B, C}, obtained from egonet centered on node A,
would merge with group {B, C, D}, from egonet centered on B and/or C, to form
{A, B, C, D}. Notice that even though A and D are not directly connected, they are
in the same community.
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1.3.6 Performance

The runtime performance of the algorithm is greatly influenced by the density of the
graph being analyzed. Consequently, we will compute performance for the boundary
conditions, density = 0 and density = 1, and for the anticipated runtime when
applied to sparse graphs, typical of social networks. For performance definition,
we use n to represent the number of nodes, m to represent the number of edges,
8 to represent the average degree of a node, and s to represent the number of
friendship-groups sets identified. We will delay reducing any equation until after
the base equation has been defined. Lastly, as with any algorithm, the method of
implementation can affect performance. Here we assume that the graph is stored
either as an adjacency matrix, or spared edge list.

The first phase of the algorithm comprises the identification of friendship-groups
within derived egonets. The process of identifying the egonet can be done in
constant time, since the base graph does not have to be modified. The process only
needs to identify the neighbors of the selected node. If the data is stored in an edge
matrix, then the neighbors are specified in the row corresponding to the ego-node.
The complexity of iterating over each node is captured in the following description.

The process of finding the egonet friendship-groups, or disjoint connected
components, can be done using the classic union-find algorithm, in O(log(n)) time.
The process of finding the friendship groups requires that the approximately §
incident nodes of the egonode be compared against the § incident nodes of each
neighbor of the egonode, gives O(82). Since the process of finding friendship-
groups is done for each node in the network, the runtime for the first phase is
0(ns?).

The second step is filtering and merging, which can be accomplished with
a modified merge-sort algorithm. A traditional merge-sort runs in O(slog(s)),
however the merging process in this case produces a new set (partial community)
that needs to be reexamined and compared to the remaining set. That modification
increases runtime to O (s%log(s)).

Lower Boundary: When density equals O (i.e. there are no edges), all nodes are
disconnected. Therefore, the average degree of a node is 0 and § = 0. That reduces
the first phase to O(n). As detected friendship-groups consist of only the ego-node,
the number of sets is equal to the number of nodes, s = n. Additionally, since we
know that each set is unique, no merges will occur and the algorithm will not need
to reexamine any merged sets. This brings the runtime of the second phase down
to O(nlog(n)). The total runtime is then O(n*log(n)). Since we know that single
node sets cannot merge during the second phase, we could programmatically have
removed those sets and not done the all-pair comparison, further reducing runtime
to: O(n).

Upper Boundary: When density equals 1 (i.e. every possible edge exists), then the
graph is one large clique. The average degree of every node is § = (n — 1), which
we reduce to just § = n. This causes the first phase to have a runtime of O(n?).
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Fig. 1.8 Runtime

For the second phase, each node will have detected only a single friendship-group,
s = n. However, all friendship-groups will be the same, hence the first pass will
merge all sets down to a single set. This reduces the runtime of the second phase to
O(n). The total runtime is thus: O(n + n3).

Anticipated Runtime: For sparse graphs where the number of edges scales
linearly with the number of nodes, Hwang et al. [26] points out that the average
degree is approximately logn, which we will use for the anticipated engonet size of
a sparse graph, § = log(n). The first phase becomes: O(nlog*(n)). For the second
phase, we assume that the maximum number of sets per friendship-groups is the
same as the average degree, or s = log(n). Runtime for phase 2 then becomes:
O(n*log(n)), and the total runtime is: O(n(log*(n)) + n*log(n)).
The runtime performance of the algorithm can now be expressed as:

0(n) < O(n(log*(n)) + n*log(n)) < O(n®)

Figure 1.8 depicts the performance of running the algorithm over a graph with
100 nodes and increasing the density from O to 1. The inserted box represents the
targets sparse area.
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Fig. 1.9 Caveman graph
1.3.7 Improving Performance

The runtime performance shown above is not an improvement, and in some cases
inferior, to existing algorithms. Conversely, our algorithm is designed to operate in
a parallel fashion as a means of improving performance and scalability.

The initial phase of the algorithm is the identification of friendship groups by
iterating over all nodes in the graph. Friendship groups are found for each node,
independent of the other nodes, and therefore can be performed in a parallel fashion.
The second phase is an all-pair comparison, where a selected set (friendship-group
or community) is compared with all others to determine if the set warrants merging,
deletion, or retention. As each comparison is acted independently from the previous
examination, these processes can also be performed in parallel.

Disk-Resided Processing

One advantage of the algorithm is that it does not need to operate on the graph as a
whole; this is true for sparse graphs that are the focus of this work. The algorithm
can extract egonets from database resident adjacency matrixes and save detected
friendship-groups as sets within a caches database table for the merge and reduce
phase. This allows the algorithm to operate against very large graphs that would be
too large to fit within available memory.

1.4 Application

1.4.1 Caveman

The algorithm was first applied against a Caveman graph, Fig. 1.9, a term coined
by Watts and Strogatz [44] for a network containing a number of fully-connected
clusters (cliques) or “caves.” The number of connections between the caves is
increased to determine at which point the algorithm stops identifying the core cave
groups.
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Fig. 1.10 Fully connected
Caveman graph

In the case of the three examples shown in Fig. 1.9, the algorithm found the
groups with no errors. Although this was a simple case and the links were not
really added at random — additional links did not form any new triads and thus
no additional groups were detected. When additional links were added linking all
the center nodes, Fig. 1.10, the algorithm then detected the six original groups plus a
new overlapping community formed by the center nodes. The introduction of a new
community is an indication that linkages between communities cannot be added
without regard for the implication of the newly formed relationships.

1.4.2 Zachary

The Zachary [47] Karate Club dataset is well studied, and widely utilized as a
test bed for many community detection algorithms [13, 22, 24,34-36,45]. Zachary
observed the social interactions of members of his karate club over a period of
2 years. By chance a dispute broke out between two members that caused the club
to split into two smaller groups.

When our algorithm was applied to the Zachary dataset, four communities were
found. The following graph, Fig. 1.11, illustrates the discovered networks as well
as highlighting the two clubs formed after the split, group 1 is shown by the circles
hexagons and group 2 shown by squares and triangles.

Cluster A: [1,17,7, 11,6, 5]

Cluster B: [13, 33, 1, 4, 14, 3, 22, 20, 2, 9, 18, 8]

Cluster C: [25, 32, 26]

Cluster D: [29, 33, 1, 21, 3, 31, 9, 15, 34, 28, 24, 30, 16, 27, 32, 19, 23]
Not a member of a community: 10, 12

At first glance, it might appear that our algorithm was in error when it detected
four communities in contrast with what the Zachary states as the final outcome.
However, the focus of the Zachary paper was on group fission and not on communi-
ties, or overlapping communities, within the group. Additionally, the Zachary paper
presented a method for creating edge weights based on an aggregation of the number
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Fig. 1.11 The Zachary Karate club dataset

of different social interaction domains at individuals attended together. Each of these
domains has the possibility of defining a community.

Hierarchical clustering allows for the algorithm to be stopped at various points,
producing from 1 to n clusters. Since the anticipated results were two clusters, that
is the stopping point of most benchmarks against the Zachary dataset. The GN [22]
algorithm, for example, identifies the two communities within the dataset, when
programmed to extract only two communities.

The FastModularity algorithm of Clauset and Newman [7], selects a stopping
point by optimizing modularity. Their algorithm finds three communities, denoted
as circles, squares, and triangles as shown in Fig. 1.12.

As we mentioned in Sect. 1.3.2, a community can only be guaranteed to be
maximal — inclusion or removal of one additional node decreases quality of the
community — if overlap is allowed. Since the FastModularity algorithm does not
allow for overlap, it appears as if one community, denoted as squares, is a collection
of left over nodes. The inclusion of node “1” within the square community would
increase modularity and density.

As an additional comparison, Donetti and Mufioz [12] presented an overlapping
algorithm based on modularity that stops processing when modularity is maximized.
Their algorithm finds four clusters and one single node.

If the goal was to simply produce two clusters, then a few additional communities
merging would have to occur. Looking at Community A, this community is virtually
independent from the rest of the communities, with the overlap occurring solely due
to node “1”. When the split in the karate group happened, this group would follow
node “1” and community A would merge in with community B. Looking at the
dendrogram from the GN [22] and the Donetti [12] papers, the node comprising
cluster A and B are merged in the final step. Community C is less independent than
A, but only has an overlap with community D at node “32” and would merge in
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Fig. 1.12 Results using FastModularity

with that cluster. A merger of cluster A with cluster B and cluster C with cluster D
would produce two communities, with the only error being the overlapping nodes
that appear within both communities.

Yet the purpose of our algorithm was to find overlapping communities and
not graph partitioning. In detecting communities, the algorithm also identifies
those nodes that form the overlap and act as brokers, or social bridges, between
communities. Of particular interest from the karate club are nodes 1, 3, 9, and 33.
Those four nodes appear to be the glue that held the groups together. For example,
breaking the edge between nodes 3 and 33 and nodes 9 and 1 causes our algorithm
to remove the overlap between the two groups. From that we can deduce that any
strife within the group affected those four nodes, has the potential to impact the
entire karate club.

1.4.3 Other Datasets and Follow-on Work

A number of other datasets were processed by our algorithm and are shown in
Table 1.1. However, as the sizes of the graphs being examined grew, so did the
complexity of displaying and analyzing the results. The table shows some basic
metrics — number of nodes (order), the number of edges (size), the average degree,
and the density — on each dataset along with the number of detected communities
and the number of nodes not assigned to any community, show in parentheses.
Additionally, the number of communities detected from running the FastModularity
from Clauset and Newman [7] and the CFinder algorithm of Palla et al. [38] are
shown for comparison. For CFinder, the results for k = 3 were used. (Each author on
his or her respected web sites generously provided source code for each algorithm).
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Table 1.1 Additional datasets and number of communities detected

Communities Fast
Avg. detected # Runtime modul-
Dataset Nodes Edges degree Density (single) (s) arity CFinder
Dolphins? 62 159 5.13  0.084 6 (16) 0.117 4 4
Zachary® 34 78 46 0.14 4(2) 0.45 3 3
Football® 115 613 10.66 0.0935 23(0) 0.277 7 4
Jazz¢ 198 2,742 27.69 0.14 64 (6) 0.86 4 2
Email® 1,133 5452 9.6  0.008 390 (293) 24.38 12 41
PGPf 10,680 24,316  4.55 0.26 793 (7,181) 654.74 698 734

Datasets from http://deim.urv.cat/~Eaarenas/data/welcome.htm
2See reference [31].

bSee reference [47].
¢See reference [22].
dSee reference [21].
¢See reference [25].
fSee reference [4].

1.5 Follow-on Work

Since our algorithm presents a new definition of community, it was anticipated
that there would be significant deviation in results between our algorithm and
what others have achieved. Identifying the most efficient methods to measure and
compare our results against other algorithms, beyond a simple Jaccard similarity
score, is an area for future research. As our algorithm also identifies the nodes that
form the overlap, an analysis of those nodes for their ability to act as brokers, and
as structural holes, should be cultivated.

In processing the larger datasets, a growing number of nodes not belonging
to any community were detected, raising two questions that we plan to further
investigate: (1) Is our assumption that a single edge node does not belong to a
community valid? (2) Can link weighting be used to further cast a node into one
community or another?

Another technique for evaluating our algorithm is to compare it using the
LFR [28,29] benchmark from Lancichinetti, Fortunato, and Radicchi. The bench-
mark includes a data generator that produces a graph with a known number of
communities, and a known internal structure of those communities. Furthermore,
the generator does allow communities to overlap. The generator can produce a
number of graphs with varying amount of interaction (i.e. links) between the
communities. The benchmark measures an algorithm’s ability to detect communities
as the numbers of cross-community edges are increased. Excepting the algorithm to
constantly detect the original communities as the number of cross-community edges
increases we believe to be erroneous.

The main focus of this research has been on the community detection portion of
the algorithm and not on the merging of the friendship groups. An investigation of
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that set merging is expected to aid in the reduction of overall runtime. Lastly, we
would like to further study the parallel capabilities of the algorithm by exploring
multi-threading options or rewriting the algorithm in OpenCL.

1.6 Conclusion

Detection of the underlying community structure is an important part of intuitive
network analysis. Failure to consider and account for overlapping groups creates a
situation where the true community structure can go undetected. In this paper, we
have presented a new approach for detecting overlapping communities, based on
the unique perspective of individual group members, which we called friendship-
groups. This approach, we believe, defines a more insightful notion of community
and creates a potential for future performance enhancements.

Acknowledgements The authors are grateful to Graham Cruickshank for his proofreading skill.
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Chapter 2
Optimization Techniques for Multiple Centrality
Computations

Christian von der Weth, Klemens Bohm, and Christian Hiitter

Abstract A broad range of data has a graph structure, such as the Web link
structure, online social networks, or online communities whose members rate each
other (reputation systems) or rate items (recommender systems). In these contexts,
a common task is to identify important vertices in the graph, e.g., influential users in
a social network or trustworthy users in a reputation system, by means of centrality
measures. In such scenarios, several centrality computations take place at the same
time, as we will explain. With centrality computation being expensive, performance
is crucial. While optimization techniques for single centrality computations exist,
little attention so far has gone into the computation of several centrality measures
in combination. In this paper, we investigate how to efficiently compute several
centrality measures at a time. We propose two new optimization techniques
and demonstrate their usefulness both theoretically as well as experimentally on
synthetic and on real-world data sets.

2.1 Introduction

Centrality measures [30] allow identifying important vertices in graphs. Such
measures assign a numerical score to each vertex to quantify its importance
among all nodes, based on the graph structure. On a large scale, Eigenvector-
based measures have been successfully applied to the Web graph to rank search
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Fig. 2.1 Example of a feedback graph

results, e.g., [16, 19]. Further applications include online social network analysis
to identify individuals that are influential, e.g., [6, 13], and recommender systems
to find similar items, e.g., [1, 35]. In this work, we use reputation systems [21]
as our running example. With such systems, participants of social networks or
members of online communities can issue feedback, i.e., rate previous interactions
with others. Reputation systems differ in the way they process feedback to derive the
reputation of participants. Various existing reputation systems [15,22,33] make use
of centrality measures, the feedback forms a graph, the feedback graph. Vertices are
the participants, edges represent the feedback items. However, existing reputation
systems use fixed evaluation schemes to determine the reputation of participants,
i.e., a centrality measure together with fixed parameter values is given. This is
restrictive from a user perspective. We envision a more flexible system where
participants can formulate behavioral trust policies. Such policies allow participants
to specify how to compute the reputation of others. This includes the flexible
application of various centralities measures on arbitrary subgraphs of the feedback
graph; see the following example.

Examples 1. Figure 2.1 (left) shows a feedback graph. The nodes A-D represent
the individuals. The label of each node is its age. Edges represent feedback between
individuals. Edge weights represent the rating scores of the corresponding feedback
items. Various trust policies are conceivable, e.g.:

P;: “A participant is trustworthy if he belongs to the top 2 individuals according

to PageRank based on the feedback from adult participants (PageRank,gyy).”
P,: “A participant is trustworthy if he belongs to the top 2 individuals according to

both PageRank and HITS.”

P, is true for members D and C, P; is true for member D; see Fig. 2.1 (right). This
example illustrates that the evaluation of trust policies may require several centrality
computations at the same time. O

When participants formulate policies themselves, we observe that several centrality
computations take place at the same time, for the following reasons: (a) While
centrality measures in general are accepted to determine the reputation of indi-
viduals, it is not obvious which one should be used in which situation [27]. An
approach from data mining is to compute several measures at a time and to pay
attention to the data objects whose values regarding one measure are distinctive.
(b) In environments with a large number of individuals, the frequency of interactions
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is high; hence, the number of policies that need to be evaluated at the same time
is large. (c) Literature has investigated attacks against centrality-based reputation
systems and has proposed countermeasures [34]. A proposal that identifies vertices
with different centrality indices for ‘similar’ centrality measures is particularly
promising.

To illustrate that our concern is broad, we briefly leave aside our running
example. In social network analysis (see Example 2), one might be interested in
the centrality values of individuals according to different centrality measures (Q;),
in the centrality values of individuals with respect to different subgraphs of the
network (Qy), or in the temporal development of centrality values, e.g., by looking
at snapshots of a social network (Q3).

Examples 2. Consider the following analysis questions given the friendship
network between members of a social networking platform like FACEBOOK:

Qi: “Who is most influential according to both PAGERANK and HITS?”
Q;: “What is the PAGERANK value of a female member with respect to the
complete friendship network and with respect to the network consisting of

female members only?”
Qs: “The PAGERANK value of which member shows the most significant increase

over the last month?” 0
From a performance perspective, centrality computation is expensive. While the
optimization of a single centrality computation has been addressed, e.g., [14, 17],
the computation of more than one measure at a time is challenging and remains to
be investigated. This work focuses on Eigenvector-based centrality measures where
the centrality score of a vertex depends on the centrality scores of the vertices it is
adjacent to. PageRank [19] and HITS [16] serve as examples. Algorithms for these
measures incorporate the power method [10], a numerical method to compute the
largest Eigenvector of a matrix. This chapter makes the following contributions.

Classification of combined centrality computation. Centrality computations
may ‘overlap’ in various ways, i.e., they share different commonalities which give
way to a combined computation. For instance, one may want to compute two
(different) measures on the same data set or to compute the same measure on data
sets that are slightly different. We provide a classification of these variants of overlap
and say how centrality computations can be combined in each case, at least in theory.

Techniques for combined centrality computation. We propose two new opti-
mization approaches: (1) Loop fusion techniques exploit commonalities of centrality
computations on the physical level, i.e., the data structures representing the graph
data as well as the algorithms, allowing for the computation of several measures
within one execution of the power method. (2) The power method starts with
an initialization of the centrality values and adapts them in subsequent iterations.
Re-use of computation results means that the result of a previous centrality
computation serves as initialization. This results in fewer iterations.
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Theoretical analysis. The improvements due to loop fusion depend on the internal
representation of the graph data. Thus, we first present the graph representation
we have used for our evaluation. Based on this we provide a theoretical analysis
of the performance of loop fusion in the worst and in the best case as well as
in average cases. One result is that the improvement depends on how different
graph data overlaps. While the analysis is general in its nature, we present specific
numbers for our graph representation, to compare them with our experimental
results.

Evaluation. We have carried out extensive experiments both with synthetic and
with real-world data to investigate the performance improvements of our optimiza-
tion techniques. We conducted experiments for each ‘overlap variant’ according
to our classification. Our main results are as follows: While re-use yields an
improvement in specific situations only, loop fusion always yields an improvement.
However, its extent in quantitative terms depends on various parameters and may be
difficult to predict. For example, fusing centrality computations on the same data set
yields a much higher speed-up than fusing centrality computations on different sets.

Chapter outline: Section 2.2 reviews related work. We discuss centrality com-
putation in Sect.2.3. Section 2.4 presents our optimizations and Sect.2.5 our
implementation. Section 2.6 presents the theoretical analysis regarding the effect of
loop fusion. Section 2.7 features an evaluation. Section 2.8 concludes. This article
is an extended version of [28]. It contains a comprehensive theoretical analysis of
loop fusion and an extended evaluation section.

2.2 Related Work

Researchers have successfully applied centrality measures on graphs in various
settings, see [9]. PageRank [19] and HITS [16] are popular measures for web-graph
analysis. Variants of those algorithms have been proposed, e.g., personalization of
the ranking [5, 12], stability of the algorithms [18], and distributed environments
[20,29]. Applications of centrality measures include social network analysis [6, 13]
to identify influential participants, and recommender systems [1, 35] to find similar
items. Several reputation systems rely on centrality measures, e.g., [15, 22, 33].
While these systems use fixed evaluation schemes for trust, [26] proposes behavioral
trust policies based on centrality. von derWeth and Béhm [27] compares centrality
measures for reputation systems. It shows that various measures yield good results,
but only Eigenvector-based ones have good runtime performance as well. Other
centrality-based reputation systems take into account social relations between
participants [23,24] and propose decentralized trust models for P2P systems [8,32].

Loop fusion is a technique for compiler optimization [2, 3]. It exploits common-
alities of loops (e.g., centrality computations) on the physical level. Optimization
techniques for Eigenvector-based centrality computation deal with the power
method itself. There are two main research thrusts, to modify the method to reduce
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the work per iteration [17], and to reduce the number of iterations [14]. However,
these optimizations exploit a priori knowledge regarding the structure of the graph.
In general — given dynamic data sets like feedback — this knowledge is not available.
Other optimizations focus on parallelization, e.g., [7, 31]. While parallelization
can bring down absolute runtimes, the total extent of resources required is not
reduced. We are the first to address the combined computation of several centrality
measures.

2.3 Centrality Computation

In the following, we first review the power method which serves as the basis
of centrality computation. See [10] for the mathematical background. We then
categorize how centrality computations may differ from each other.

2.3.1 The Power Method

Eigenvector-based centrality-index values are the largest Eigenvector of an n x n
Matrix M representing the graph structure, and n is the number of vertices. To
compute the centrality index values, numerical methods are typically used. One is
the so-called power method (Algorithm 1). It consists of a loop which multiplies a
vector with M in each iteration. According to theory [10], for an arbitrary non-zero
start vector Vo, V; converges to the largest Eigenvector of M. The process stops
when the norm of the difference of 7, and _v),f_l is smaller than a user-specified
threshold ¢, i.e., v, does not change significantly any more. Different centrality
measures lead to different matrices M. Some measures have a argument list L;
Function f in Line 5 reflects this. To give an example, the PageRank definition
features the so-called damping factor d, i.e., L =< d >, and function f is defined

— —
as f(v;,d) = (1—d)- 1 +d-V,, where 1 is the vector with all elements equal
to 1.

Thus, four parameters describe the execution of a power method for centrality
measures: M, f, the measure-specific argument list L, and error threshold €. — Our
evaluation will cover PageRank, HITS and Positional Weakness (PW). The power
iterations for these three measures are as follows:

FED (- d)T +d TV

PageRank v PageRank
—>k+1) _ AaT—=>(K) —>k+1) _ A=k
4 Authority — A"V Hub’ Vaw = AV Authority

1 —
Vow ! = MBT( 1+ Vi
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A = (a;j) is the adjacency matrix of a graph G(V, E) with aj; = w;j, where w;;
is the weight on an edge from v; to vj, 0 if there is no such edge. AT is
the transposed adjacency matrix. T = (t;;) is the transition matrix of G with
tiy = wii/ ZVkEOut(Vi ) Wik Out (v) denotes the set of vertices with an edge from v. BT
is a variant of the transposed adjacency matrix B = (b;;) with by = wjj/max; i (Wix).
For all definitions, 1 < i, j,k <n, withn = |V]|.

Algorithm 1 Basic algorithm of power method
1: t=0;
2: repeat
3 t=t+1;
4 Y, =M- 7(1—1)§
50V, =f(¥.L):
6
7

- =
§=|vi =7V (1—1)||;
until § < €

2.3.2 Classes of Multiple Computations

We see three main situations where the computation of several centrality measures
within one power iteration or other, similar optimizations are likely to be useful,
or other optimizations might be possible: (1) several measures, i.e., computation of
several measures on the same data set, (2) multiple data sets, i.e., the computation of
one measure with identical parameter settings on different data sets, and (3) multiple
parameter settings, i.e., the computation of one measure with different parameter
settings on the same data set. Combinations of these cases can of course happen.
We now discuss each case separately.

Several measures. We observe that behavioral trust policies which require the
evaluation of several centrality measures are natural (cf. Policy P, in Example 1),
or that a system frequently has to evaluate several trust policies containing different
centrality measures at the same time (cf. Sect. 2.1).

Multiple data sets. Different data sets induce different graph structures, like two
behavioral trust policies referring to the same centrality measure, but using different
feedback (see P; and P, in Example 1). Two directed, weighted graphs G(V, E) and
G/'(V', E) can differ in several ways. The sets of vertices V/V’ and the sets of edges
E/E’ can either be equal, be distinct, intersect or have a subset relationship. Note
that there are dependencies between relationships, e.g., two distinct set of vertices
imply, in general, distinct sets of edges. Finally, the weights of the edges may d