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With the growth in the number of Web users and the necessity for making information available on the
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to customize a Web site to the needs of specific users with the help of knowledge acquired from user
navigational behavior. Since user page visits are intrinsically sequential in nature, efficient clustering
algorithms for sequential data are needed. In this chapter, we introduce a similarity preserving func-
tion called sequence and set similarity measure S3M that captures both the order of occurrence of page
visits as well as the content of pages. We conducted pilot experiments comparing the results of PAM,
a standard clustering algorithm, with two similarity measures: Cosine and S3M. The goodness of the
clusters resulting from both the measures was computed using a cluster validation technique based
on average levensthein distance. Results on the pilot dataset established the effectiveness of S3M for



sequential data. Based on these results, we proposed a new clustering algorithm, SeqPAM, for cluster-
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XML is a rather verbose representation of semistructured data, which may require huge amounts of
storage space. Several summarized representations of XML data have been proposed, which can both
provide succinct information and be directly queried. In this chapter, we focus on compact representa-
tions based on the extraction of association rules from XML datasets. In particular, we show how patterns
can be exploited to (possibly partially) answer queries, either when fast (and approximate) answers are
required, or when the actual dataset is not available; for example, it is currently unreachable. We focus
on (a) schema patterns, representing exact or approximate dataset constraints, (b) instance patterns,
which represent actual data summaries, and their use for answering queries.
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In this chapter, we consider the problem of constrained clustering of documents. We focus on documents
that present some form of structural information, in which prior knowledge is provided. Such structured
data can guide the algorithm to a better clustering model. We consider the existence of a particular form
of information to be clustered: textual documents that present a logical structure represented in XML for-
mat. Based on this consideration, we present algorithms that take advantage of XML metadata (structural
information), thus improving the quality of the generated clustering models. This chapter also addresses
the problem of inconsistent constraints and defines algorithms that eliminate inconsistencies, also based
on the existence of structural information associated to the XML document collection.
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Patterns can be defined as concise, but rich in semantics, representations of data. Due to pattern charac-
teristics, ad-hoc systems are required for pattern management, in order to deal with them in an efficient
and effective way. Several approaches have been proposed, both by scientific and industrial communities,
to cope with pattern management problems. Unfortunately, most of them deal with few types of patterns
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providing an integrated environment for generating, representing, and manipulating heterogeneous
patterns, possibly user-defined. After presenting the PSYCHO logical model and architecture, we will
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Protein sequence motifs describe, through means of enhanced regular expression syntax, regions of amino
acids that have been conserved across several functionally related proteins. These regions may have an
implication at the structural and functional level of the proteins. Sequence motif analysis can bring sig-
nificant improvements towards a better understanding of the protein sequence-structure-function relation.
In this chapter, we review the subject of mining deterministic motifs from protein sequence databases.
We start by giving a formal definition of the different types of motifs and the respective specificities.
Then, we explore the methods available to evaluate the quality and interest of such patterns. Examples
of applications and motif repositories are described. We discuss the algorithmic aspects and different
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Media collections on the Internet have become a commercial success, and the structuring of large media
collections has thus become an issue. Personal media collections are locally structured in very different
ways by different users. The level of detail, the chosen categories, and the extensions can differ com-



pletely from user to user. Can machine learning be of help also for structuring personal collections?
Since users do not want to have their hand-made structures overwritten, one could deny the benefit of
automatic structuring. We argue that what seems to exclude machine learning, actually poses a new
learning task. We propose a notation which allows us to describe machine learning tasks in a uniform
manner. Keeping the demands of structuring private collections in mind, we define the new learning
task of localized alternative cluster ensembles. An algorithm solving the new task is presented together
with its application to distributed media management.
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Analysing and mining image data to derive potentially useful information is a very challenging task.
Image mining concerns the extraction of implicit knowledge, image data relationships, associations
between image data and other data or patterns not explicitly stored in the images. Another crucial task
is to organise the large image volumes to extract relevant information. In fact, decision support systems
are evolving to store and analyse these complex data. This chapter presents a survey of the relevant
research related to image data processing. We present data warehouse advances that organise large vol-
umes of data linked with images, and then we focus on two techniques largely used in image mining.
We present clustering methods applied to image analysis, and we introduce the new research direction
concerning pattern mining from large collections of images. While considerable advances have been
made in image clustering, there is little research dealing with image frequent pattern mining. We will
try to understand why.
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Environmental research and knowledge discovery both require extensive use of data stored in various
sources and created in different ways for diverse purposes. We describe a new metadata approach to
elicit semantic information from environmental data and implement semantics-based techniques to assist
users in integrating, navigating, and mining multiple environmental data sources. Our system contains
specifications of various environmental data sources and the relationships that are formed among them.
User requests are augmented with semantically related data sources and automatically presented as a
visual semantic network. In addition, we present a methodology for data navigation and pattern discovery
using multiresolution browsing and data mining. The data semantics are captured and utilized in terms
of their patterns and trends at multiple levels of resolution. We present the efficacy of our methodology
through experimental results.
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Intense work in the area of data mining technology and in its applications to several domains has resulted
in the development of a large variety of techniques and tools able to automatically and intelligently
transform large amounts of data in knowledge relevant to users. However, as with other kinds of useful
technologies, the knowledge discovery process can be misused. It can be used, for example, by mali-
cious subjects in order to reconstruct sensitive information for which they do not have an explicit access
authorization. This type of “attack” cannot easily be detected, because, usually, the data used to guess
the protected information, is freely accessible. For this reason, many research efforts have been recently
devoted to addressing the problem of privacy preserving in data mining. The mission of this chapter is
therefore to introduce the reader to this new research field and to provide the proper instruments (in term
of concepts, techniques, and examples) in order to allow a critical comprehension of the advantages, the
limitations, and the open issues of the privacy preserving data mining techniques.

Chapter X111
Mining Data-Streams /Hanady, Abdulsalam, David B. Skillicorn, and Pat Martin................cc......... 302

Data analysis or data mining have been applied to data produced by many kinds of systems. Some sys-
tems produce data continuously and often at high rates, for example, road traffic monitoring. Analyzing
such data creates new issues, because it is neither appropriate, nor perhaps possible, to accumulate it
and process it using standard data-mining techniques. The information implicit in each data record must
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it again. Existing algorithms must be modified to apply in this new setting. This chapter outlines and
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Preface

Since its definition, a decade ago, the problem of mining patterns is becoming a very active research
area and efficient techniques have been widely applied to problems either in industry, government, or
science. From the initial definition and motivated by real-applications, the problem of mining patterns
not only addresses the finding of itemsets but also more and more complex patterns. For instance, new
approaches need to be defined for mining graphs or trees in applications dealing with complex data such
as XML documents, correlated alarms, or biological networks. As the number of digital data is always
growing, the problem of the efficiency of mining such patterns becomes more and more attractive.

One of the first areas dealing with a large collection of digital data is probably text mining. It aims at
analyzing large collections of unstructured documents with the purpose of extracting interesting, relevant,
and nontrivial knowledge. However, patterns become more and more complex and lead to open prob-
lems. For instance, in the biological networks context, we have to deal with common patterns of cellular
interactions, organization of functional modules, relationships and interaction between sequences, and
patterns of genes regulation. In the same way, multidimensional pattern mining has also been defined
and a lot of open questions remain according to the size of the search space or to effectiveness consid-
eration. If we consider social networks on the Internet, we would like to better understand and measure
relationships and flows between people, groups, and organizations. Many real-world applications data
are no more appropriately handled by traditional static databases since data arrives sequentially in the
form of continuous rapid streams. Since data-streams are contiguous, high speed, and unbounded, it is
impossible to mine patterns by using traditional algorithms requiring multiple scans, and new approaches
have to be proposed.

In order to efficiently aid decision making and for effectiveness consideration, constraints become
more and more essential in many applications. Indeed, an unconstrained mining can produce such a large
number of patterns that it may be intractable in some domains. Furthermore, the growing consensus that
the end user is no longer interested by a set of all patterns verifying selection criteria led to demand for
novel strategies for extracting useful, even approximate knowledge.

The goal of this book is to provide theoretical frameworks and present challenges and their possible
solutions concerning knowledge extraction. It aims at providing an overall view of the recent existing
solutions for data mining with a particular emphasis on the potential real-world applications. It is com-
posed of XIII chapters.

The first chapter, by Eyke Hiillermeier, explains “Why Fuzzy Set Theory is Useful in Data Mining”.
It is important to see how much fuzzy theory may solve problems related to data mining when dealing
with real applications, real data, and real needs to understand the extracted knowledge. Actually, data
mining applications have well-known drawbacks, such as the high number of results, the “similar but
hidden” knowledge or a certain amount of variability or noise in the data (a point of critical importance
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in many practical application fields). In this chapter, Hiillermeier gives an overview of fuzzy sets and
then demonstrates the advantages and robustness of fuzzy data mining. This chapter highlights these
advantages in the context of exemplary data mining methods, but also points out some additional com-
plications that can be caused by fuzzy extensions.

Web and XML data are two major fields of applications for data mining algorithms today. Web min-
ing is usually a first step towards Web personalization, and XML mining will become a standard since
XML data is gaining more and more interest. Both domains share the huge amount of data to analyze
and the lack of structure of their sources. The following three chapters provide interesting solutions and
cutting edge algorithms in that context.

In “SeqPAM: A Sequence Clustering Algorithm for Web Personalization”, Pradeep Kumar, Raju S.
Bapi, and P. Radha Krishna propose SeqPAM, an efficient clustering algorithm for sequential data and its
application to Web personalization. Their proposal is based on pilot experiments comparing the results
of PAM, a standard clustering algorithm, with two similarity measures: Cosine and S3M. The goodness
of the clusters resulting from both the measures was computed using a cluster validation technique based
on average levensthein distance.

XML is a rather verbose representation of semistructured data, which may require huge amounts of
storage space. Several summarized representations of XML data have been proposed, which can both
provide succinct information and be directly queried. In “Using Mined Patterns for XML Query Answer-
ing”, Elena Baralis, Paolo Garza, Elisa Quintarelli, and Letizia Tanca focus on compact representations
based on the extraction of association rules from XML datasets. In particular, they show how patterns
can be exploited to (possibly partially) answer queries, either when fast (and approximate) answers are
required, or when the actual dataset is not available (e.g., it is currently unreachable).

The problem of semisupervised clustering (SSC) has been attracting a lot of attention in the research
community. “On the Usage of Structural Information in Constrained Semi-Supervised Clustering of
XML Documents” by Eduardo Bezerra, Geraldo Xexéo, and Marta Mattoso, is a chapter considering
the problem of constrained clustering of documents. The authors consider the existence of a particular
form of information to be clustered: textual documents that present a logical structure represented in
XML format. Based on this consideration, we present algorithms that take advantage of XML metadata
(structural information), thus improving the quality of the generated clustering models. The authors
take as a starting point existing algorithms for semisupervised clustering documents and then present a
constrained semisupervised clustering approach for XML documents, and deal with the following main
concern: how can a user take advantage of structural information related to a collection of XML docu-
ments in order to define constraints to be used in the clustering of these documents?

The next chapter deals with pattern management problems related to data mining. Clusters, frequent
itemsets, and association rules are some examples of common data mining patterns. The trajectory of a
moving object in a localizer control system or the keyword frequency in a text document represent other
examples of patterns. Patterns’ structure can be highly heterogeneous; they can be extracted from raw
data but also known by the users and used for example to check how well some data source is represented
by them and it is important to determine whether existing patterns, after a certain time, still represent
the data source they are associated with. Finally, independently from their type, all patterns should be
manipulated and queried through ad hoc languages. In “Modeling and Managing Heterogeneous Pat-
terns: The PSYCHO Experience”, Anna Maddalena and Barbara Catania present a system prototype
providing an integrated environment for generating, representing, and manipulating heterogeneous pat-
terns, possibly user-defined. After presenting the logical model and architecture, the authors focus on
several examples of its usage concerning common market basket analysis patterns, that is, association
rules and clusters.
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Biology is one of the most promising domains. In fact, it has been widely addressed by researchers
in data mining these past few years and still has many open problems to offer (and to be defined). The
next two chapters deal with sequence motif mining over protein base such as Swiss Prot and with the
biochemical information resulting from metabolite analysis.

Proteins are biological macromolecules involved in all biochemical functions in the life of the cell
and they are composed of basic units called amino acids. Twenty different types of amino acids exist,
all with well differentiated structural and chemical properties. Protein sequence motifs describe regions
of amino acids that have been conserved across several functionally related proteins. These regions may
have an implication at the structural and functional level of the proteins. Sequence motif mining can
bring significant improvements towards a better understanding of the protein sequence-structure-function
relation. In “Deterministic Motif Mining in Protein Databases”, Pedro Gabriel Ferreira and Paulo Jorge
Azavedo go deeper in the problem by first characterizing two types of extracted patterns and focus on
deterministic patterns. They show that three measures of interest are suitable for such patterns and they
illustrate through real applications that better understanding of the sequences under analysis have a wide
range of applications. Finally, they described the well known existing motif databases over the world.

Christian Baumgartner and Armin Graber, in “Data Mining and Knowledge Discovery in Metabolo-
mics”, address chemical fingerprints reflecting metabolic changes related to disease onset and progression
(i.e., metabolomic mining or profiling). The biochemical information resulting from metabolite analysis
reveals functional endpoints associated with physiological and pathophysiological processes, influenced
by both genetic predisposition and environmental factors such as nutrition, exercise, or medication. In
recent years, advanced data mining and bioinformatics techniques have been applied to increasingly
comprehensive and complex metabolic datasets, with the objective to identify and verify robust and
generalizable markers that are biochemically interpretable and biologically relevant in the context of
the disease. In this chapter, the authors provide the essentials to understanding the complexity of data
generation and information on data mining principals, specific methods and processes, and biomedical
applications.

The exponential growth of multimedia data in consumer as well as scientific applications poses many
interesting and task critical challenges. There are several inter-related issues in the management of such
data, including feature extraction, multimedia data relationships, or other patterns not explicitly stored
in multimedia databases, similarity based search, scalability to large datasets, and personalizing search
and retrieval. The two following chapters address multimedia data.

In*“Handling Local Patternsin Collaborative Structuring”, Ingo Mierswa, Katharina Morik, and Michael
Wurst address the problem of structuring personal media collection of data by using collaborative and
data mining (machine learning) approaches. Usually personal media collections are locally structured in
very different ways by different users. The main problem in this case is to know if data mining techniques
could be useful for automatically structuring personal collections by considering local structures. They
propose a uniform description of learning tasks which starts with a most general, generic learning task
and is then specialized to the known learning tasks and then address how to solve the new learning task.
The proposed approach uses in a distributed setting are exemplified by the application to collaborative
media organization in a peer-to-peer network.

Marinette Bouet, Pierre Gancarski, Marie-Aude Aufaure, and Omar Boussaid in “Pattern Mining
and Clustering on Image Databases” focus on image data. In an image context, databases are very large
since they contain strongly heterogeneous data, often not structured and possibly coming from different
sources within different theoretical or applicative domains (pixel values, image descriptors, annotations,
trainings, expert or interpreted knowledge, etc.). Besides, when objects are described by a large set of
features, many of them are correlated, while others are noisy or irrelevant. Furthermore, analyzing and
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mining these multimedia data to derive potentially useful information is not easy. The authors propose
a survey of the relevant research related to image data processing and present data warehouse advances
that organize large volumes of data linked with images. The rest of the chapter deals with two techniques
largely used in data mining: clustering and pattern mining. They show how clustering approaches could
be applied to image analysis and they highlight that there is little research dealing with image frequent
pattern mining. They thus introduce the new research direction concerning pattern mining from large
collections of images.

In the previous chapter, we have seen that in an image context, we have to deal with very large
databases since they contain strongly heterogeneous data. In “Semantic Integration and Knowledge
Discovery for Environmental Research”, proposed by Zhiyuan Chen, Aryya Gangopadhyay, George
Karabatis, Michael McGuire, and Claire Welty, we also address very large databases but in a different
context. The urban environment is formed by complex interactions between natural and human systems.
Studying the urban environment requires the collection and analysis of very large datasets, having se-
mantic (including spatial and temporal) differences and interdependencies, being collected and managed
by multiple organizations, and being stored in varying formats. In this chapter, the authors introduce a
new approach to integrate urban environmental data and provide scientists with semantic techniques to
navigate and discover patterns in very large environmental datasets.

In the chapter “Visualizing Multi Dimensional Data”, César Garcia-Osorio and Colin Fyfe focus
on the visualization of multidimensional data. This chapter is based on the following assertion: finding
information within the data is often an extremely complex task and even if the computer is very good
at handling large volumes of data and manipulating such data in an automatic manner, humans are
much better at pattern identification than computers. They thus focus on visualization techniques when
the number of attributes to represent is higher than three. They start with a short description of some
taxonomies of visualization methods, and then present their vision of the field. After they explain in
detail each class in their classification emphasizing some of the more significant visualization methods
belonging to that class, they give a list of some of the software tools for data visualization freely avail-
able on the Internet.

Intense work in the area of data mining technology and in its applications to several domains has
resulted in the development of a large variety of techniques and tools able to automatically and intel-
ligently transform large amounts of data in knowledge relevant to users. However, as with other kinds
of useful technologies, the knowledge discovery process can be misused. In “Privacy Preserving Data
Mining, Concepts, Techniques, and Evaluation Methodologies”, Igor Nai Fovino addresses a new chal-
lenging problem: how to preserve privacy when applying data mining methods. He proposes to the study
privacy preserving problem under the data mining perspective as well as a taxonomy criteria allowing
giving a constructive high level presentation of the main privacy preserving data mining approaches.
He also focuses on a unified evaluation framework.

Many recent real-world applications, such as network traffic monitoring, intrusion detection systems,
sensor network data analysis, click stream mining, and dynamic tracing of financial transactions, call for
studying a new kind of data. Called stream data, this model is, in fact, a continuous, potentially infinite
flow of information as opposed to finite, statically stored datasets extensively studied by researchers of
the data mining community. Hanady Abdulsalam, David B. Skillicorn, and Pat Martin, in the chapter
“Mining Data-Streams”, focus on three online mining techniques of data streams, namely summariza-
tion, prediction, and clustering techniques, and show the research work in the area. In each section, they
conclude with a comparative analysis of the major work in the area.
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ABSTRACT

In recent years, several extensions of data mining and knowledge discovery methods have been devel-
oped on the basis of fuzzy set theory. Corresponding fuzzy data mining methods exhibit some potential
advantages over standard methods, notably the following: Since many patterns of interest are inherently
vague, fuzzy approaches allow for modeling them in a more adequate way and thus enable the discovery
of patterns that would otherwise remain hidden. Related to this, fuzzy methods are often more robust
toward a certain amount of variability or noise in the data, a point of critical importance in many prac-
tical application fields. This chapter highlights the aforementioned advantages of fuzzy approaches in
the context of exemplary data mining methods, but also points out some additional complications that

can be caused by fuzzy extensions.

INTRODUCTION

Tools and techniques that have been developed
during the last 40 years in the field of fuzzy set
theory (FST) have been applied quite successfully
in a variety of application areas. Still the most
prominent example of the practical usefulness of
corresponding techniques is perhaps fuzzy con-
trol, where the idea is to express the input-output
behavior of a controller in terms of fuzzy rules.

Yet, fuzzy tools and fuzzy extensions of existing
methods have also been used and developed in
many other fields, ranging from research areas
like approximate reasoning over optimization
and decision support to concrete applications like
image processing, robotics, and bioinformatics,
just to name a few.

While aspects of knowledge representation
and reasoning have dominated research in FST
for a long time, problems of automated learn-
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ing and knowledge acquisition have more and
more come to the fore in recent years. There are
several reasons for this development, notably the
following: First, there has been an internal shift
within fuzzy systems research from “model-
ing” to “learning”, which can be attributed to
the awareness that the well-known “knowledge
acquisition bottleneck” seems to remain one of
the key problems in the design of intelligent and
knowledge-based systems. Second, thistrend has
been furtheramplified by the greatinterest that the
fields ofknowledge discovery in databases (KDD)
and its core methodological component, data
mining, have attracted in recent years (Fayyad,
Piatetsky-Shapiro, & Smyth, 1996).

It is hence hardly surprising that data mining
has received a great deal of attention in the FST
community in recent years (Hiillermeier, 2005a,
b). Theaim of this chapteristo convince the reader
that data mining is indeed another promising ap-
plicationareaof FST or, stated differently, that FST
isuseful for datamining. To this end, we shall first
give a brief overview of potential advantages of
fuzzy approaches. One of these advantages, which
is in our opinion of special importance, will then
be discussed and exemplified in more detail: the
increased expressive power and, related to this, a
certainkind of robustness of fuzzy approaches for
expressing and discovering patterns of interest in
data. Apart from these advantages, however, we
shall also point outsome additional complications
that can be caused by fuzzy extensions.

The style of presentation in this chapter is
purely nontechnical and mainly aims at convey-
ing some basic ideas and insights, often by using
relatively simple examples; for technical details,
we will give pointers to the literature. Before
proceeding, let us also make a note on the meth-
odological focus of this chapter, in which data
mining will be understood as the application
of computational methods and algorithms for
extracting useful patterns from potentially very
large data sets. In particular, we would like to
distinguish between pattern discovery and model
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induction. While we consider the former to be the
core problem of data mining that we shall focus
on, the latter is more in the realm of machine
learning, where predictive accuracy is often the
most important evaluation measure. According
to our view, data mining is of a more explanatory
nature, and patterns discovered in a data set are
usually of a local and descriptive rather than of
a global and predictive nature. Needles to say,
however, this is only a very rough distinction
and simplified view; on a more detailed level,
the transition between machine learning and data
mining is of course rather blurred.*

As we do not assume all readers to be famil-
iar with fuzzy sets, we briefly recall some basic
ideas and concepts from FST in the next section.
Potential features and advantages of fuzzy data
mining are then discussed in the third and fourth
sections. The chapter will be completed with a
brief discussion of possible complications that
might be produced by fuzzy extensions and some
concluding remarks in the fifth and sixth sections,
respectively.

BACKGROUND ON FUZZY SETS

In this section, we recall the basic definition of
a fuzzy set, the main semantic interpretations
of membership degrees, and the most important
mathematical (logical resp. set-theoretical) op-
erators.

A fuzzy subset of a reference set D is identi-
fied by a so-called membership function (often
denoted u()), which is a generalization of the
characteristic function I () of an ordinary set A
c D (Zadeh, 1965). For each element x € D, this
function specifies the degree of membership of
X in the fuzzy set. Usually, membership degrees
are taken from the unit interval [0,1]; that is, a
membership functionisa D—[0,1] mapping, even
though more general membership scales L (like
ordinal scales or complete lattices) are conceiv-
able. Throughout the chapter, we shall use the
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same notation for ordinary sets and fuzzy sets.
Moreover, we shall not distinguish between a
fuzzy setand its membership function; thatis, A(X)
(instead of p, (X)) denotes the degree of member-
ship of the element X in the fuzzy set A.

Fuzzy sets formalize the idea of graded
membership, that is, the idea that an element can
belong “more or less” to a set. Consequently, a
fuzzy set can have “nonsharp” boundaries. Many
sets or concepts associated with natural language
terms have boundaries that are nonsharp in the
sense of FST. Consider the concept of “forest”
as an example. For many collections of trees and
plants, it will be quite difficult to decide in an
unequivocal way as to whether or not one should
call them a forest. Even simpler, consider the set
of “tall men”. Is it reasonable to say that 185 cm
is tall and 184.5 cm is not tall? In fact, since the
set of tall men is a vague (linguistic) concept,
any sharp boundary of this set will appear rather
arbitrary. Modeling the concept “tall men” as
a fuzzy set A of the set D=(0,250) of potential
sizes (which of course presupposes that the tall-
ness of a men only depends on this attribute), it
becomes possible to express, for example, that a
size of 190 cm is completely in accordance with
this concept (A(190=1)), 180 cm is “more or less”
tall (A(180)=1/2, say), and 170 cm is definitely not
tall (A(170)=0).2

The above example suggests that fuzzy sets
provide a convenient alternative to an interval-

based discretization of numerical attributes, which
is a common preprocessing step in data mining
applications (Dougherty, Kohavi, & Sahami,
1995). For example, in gene expression analysis,
one typically distinguishes between normally
expressed genes, underexpressed genes, and
overexpressed genes. This classification is made
on the basis of the expression level of the gene
(a normalized numerical value), as measured by
so-called DNA-chips, by using corresponding
thresholds. For example, a gene is often called
overexpressed if its expression level is at least
twofoldincreased. Needlessto say, corresponding
thresholds (such as 2) are more or less arbitrary.
Figure 1 shows a fuzzy partition of the expression
level with a “smooth” transition between under,
normal, and overexpression. (The fuzzy sets
{F.}", that form a partition are usually assumed
to satisfy F, +...+ F,, =1(Ruspini, 1969), though
this constraint is not compulsory.) For instance,
according to this formalization, a gene with an
expression level of at least 3 is definitely consid-
ered overexpressed, below 1 it is definitely not
overexpressed, but in-between, it is considered
overexpressed to a certain degree.

Fuzzy sets or, more specifically, membership
degrees can have different semantical interpre-
tations. Particularly, a fuzzy set can express
three types of cognitive concepts which are
of major importance in artificial intelligence,
namely uncertainty, similarity, and preference

Figure 1. Fuzzy partition of the gene expression level with a “smooth” transition (grey regions) between
underexpression, normal expression, and overexpression




(Dubois & Prade, 1997). To exemplify, consider
the fuzzy set A of mannequins with “ideal size”,
which might be formalized by the mapping
A:x— max(l-|x-175|/10,0), where x is the
size in centimeters.

e Uncertainty: Given (imprecise/uncertain)
information in the form of a linguistic state-
ment L, saying that a certain mannequin
has ideal size, A(X) is considered as the pos-
sibility that the real size of the mannequin
is x. Formally, the fuzzy set A induces a
so-called possibility distribution n(-). Pos-
sibility distributions are basic elements of
possibility theory (Dubois & Prade, 1988;
Zadeh, 1978), an uncertainty calculus that
provides an alternative to other calculi such
as probability theory.

e Similarity: A membership degree A(x)
can also be considered as the similarity to
the prototype of a mannequin with ideal
size (or, more generally, as the similarity
to a set of prototypes) (Cross & Sudkamp,
2002; Ruspini, 1991). In our example, the
prototypical “ideal-sized” mannequin is of
size 175 cm. Another mannequin of, say, 170
cm is similar to this prototype to the degree
A(170) = 1/2.

. Preference: In connection with preference
modeling, a fuzzy set is considered as a
flexible constraint (Dubois & Prade, 1996,
1997). In our example, A(X) specifies the de-
gree of satisfactionachieved by amannequin
of size X: A size of =175 is fully satisfactory
(A(X)=1), whereas a size of x=170 is more or
less acceptable, namely to the degree 1/2.

To operate with fuzzy sets in a formal way,
fuzzy settheory offers generalized set-theoretical
resp. logical connectives and operators (as in the
classical case, there is a close correspondence
between set theory and logic). In the following,
we recall some basic operators that will reappear
in later parts of the chapter.
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A so-called t-norm ® is a generalized logi-
cal conjunction, that is, a [0,1]x[0,1]—[0,1]
mapping which isassociative, commutative,
monotone increasing (in both arguments),
and which satisfies the boundary conditions
a®0=0anda®l=aforall0O<a<1 (K-
ement, Mesiar, & Pap, 2002; Schweizer & Sk-
lar, 1983). Well-known examples of t-norms
include the minimum (a,B) — min(a,p),
the product (o, 3) > af3, and the Lukasie-
wicz t-norm (o, ) — max(o +p-1,0). A
t-norm is used for defining the intersection
of fuzzy sets F,G: X —[0,1] as follows:
(FNG)(X)=F(x) ®G(x) for all xeX. Ina
quite similar way, the Cartesian product of
fuzzy sets F: X —[0,1] déflnd G:Y —[0,1]
is defined: (F N G)(x,y)=F(x) ® G(y) for
all (x,y) e X xY.

The logical disjunction is generalized by
a so-called t-conorm @, a [0,1]x[0,1]—
[0,1] mapping which is associative, com-
mutative, monotone increasing (in both
places), and such that o« ® 0 = o and o ®

1=1forall 0 <a <1 Well-known ex-
amples of t-conorms include the maximum
(o,B) > a+p—ap, the algebraic sum
(o, B) > max(a,B) , and the Lukasiewicz
t-conorm(at, B) = min(a + B,1). At-conorm
can be used for ddef:ﬁning the union of fuzzy
sets: (F UG)(x)=F(x) ® G(x) for all x.

A generalized implication ~ is a
[0,1]x[0,1] — [0,1] mapping that is mono-
tone decreasing in the first and monotone
increasing in the second argument and
that satisfies the boundary conditions o ~~
1=1,0~ B=1,1~B=p. (Apart from
that, additional properties are sometimes
required.) Implication operators of that
kind, such as the Lukasiewicz implication
(o,B) > min(l— o +PB,1), are especially
important in connection with the modeling
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of fuzzy rules, as will be seen in the fourth
section.

ADVANTAGES OF FUZZY DATA
MINING

This section gives a brief overview of merits and
advantages of fuzzy data mining and highlights
some potential contributions that FST can make
to data mining. A more detailed discussion with
a special focus will follow in the subsequent
section.

Graduality

The ability to represent gradual concepts and
fuzzy properties in a thorough way is one of the
key features of fuzzy sets. This aspect is also of
primary importance in the context of data min-
ing. In fact, patterns that are of interest in data
mining are often inherently vague and do have
boundaries that are nonsharp in the sense of FST.
To illustrate, consider the concept of a “peak™: It
is usually not possible to decide in an unequivo-
cal way whether a timely ordered sequence of
measurements has a “peak” (a particular kind of
pattern) or not. Rather, there is a gradual transi-
tion between having a peak and not having a
peak; see the fourth section for asimilar example.
Likewise, the spatial extension of patterns like a
“cluster of points” or a “region of high density”
in a data space will usually have soft rather than
sharp boundaries.

Taking graduality into account is also impor-
tantif one must decide whether a certain property
is frequent among a set of objects, for example,
whether a pattern occurs frequently in a data set.
In fact, if the pattern is specified in an overly
restrictive manner, it might easily happen that
none of the objects matches the specification, even
though many of them can be seen as approximate
matches. In such cases, the pattern might still be
considered as “well-supported” by the data; again,

we shall encounter an example of that kind in the
fourth section. Besides, we also discuss a potential
problem of frequency-based evaluation measures
in the fuzzy case in the fifth section.

Linguistic Representation and
Interpretability

A primary motivation for the development of
fuzzy sets was to provide an interface between
a numerical scale and a symbolic scale which is
usually composed of linguistic terms. Thus, fuzzy
sets have the capability to interface quantitative
patternswith qualitative knowledge structures ex-
pressed in terms of natural language. This makes
the application of fuzzy technology very appeal-
ing from a knowledge representational point of
view. For example, it allows association rules (to
be introduced in the fourth section) discovered
in a database to be presented in a linguistic and
hence comprehensible way.

Despite the factthat the user-friendly represen-
tation of models and patterns is often emphasized
as one of the key features of fuzzy methods, it
appears to us that this potential advantage should
be considered with caution in the context of data
mining. A main problem in this regard concerns
the high subjectivity and context-dependency of
fuzzy patterns: A rule such as “multilinguality
usually implies high income”, that might have
been discovered in an employee database, may
have different meanings to different users of a
data mining system, depending on the concrete
interpretation of the fuzzy concepts involved
(multilinguality, high income). It is true that the
imprecision of natural language is notnecessarily
harmful and can even be advantageous.® A fuzzy
controller, for example, can be quite insensitive
to the concrete mathematical translation of a
linguistic model. One should realize, however,
that in fuzzy control the information flows in a
reverse direction: The linguistic model is not the
end product, as in data mining; it rather stands
at the beginning.



It is of course possible to disambiguate a
model by complementing it with the semantics
of the fuzzy concepts it involves (including the
specification of membership functions). Then,
however, the complete model, consisting of a
qualitative (linguistic) and a quantitative part,
becomes cumbersome and will not be easily
understandable. This can be contrasted with
interval-based models, the most obvious alter-
native for dealing with numerical attributes:
Even though such models do certainly have their
shortcomings, they are at least objective and not
prone to context-dependency. Another possibil-
ity to guarantee transparency of a fuzzy model
is to let the user of a data mining system specify
all fuzzy concepts by hand, including the fuzzy
partitions for the variables involved in the study
under consideration. Thisisrarely done, however,
mainly since the job is tedious and cumbersome
if the number of variables is large.

To summarize on this score, we completely
agree that the close connection between a nu-
merical and a linguistic level for representing
patterns, as established by fuzzy sets, can help a
lot to improve interpretability of patterns, though
linguistic representations also involve some com-
plications and should therefore not be considered
as preferable per se.

Robustness

It is often claimed that fuzzy methods are more
robust than nonfuzzy methods. In a data mining
context, the term “robustness” can of course refer
tomany things. In connection with fuzzy methods,
the most relevant type of robustness concerns sen-
sitivity toward variations of the data. Generally, a
datamining method is considered robust if asmall
variation of the observed data does hardly alter
the induced model or the evaluation of a pattern.
Another desirable form of robustness of a data
mining method is robustness toward variations
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of its parametrization: Changing the parameters
of a method slightly should not have a dramatic
effect on the output of the method.

In the fourth section, an example supporting
the claim that fuzzy methods are in a sense more
robust than nonfuzzy methods will be given.
One should note, however, that this is only an
illustration and by no means a formal proof. In
fact, proving that, under certain assumptions, one
method is more robust than another one at least
requires a formal definition of the meaning of
robustness. Unfortunately, and despite the high
potential, the treatment of this point is not as
mature in the fuzzy set literature as in other fields
such as robust statistics (Huber, 1981).

Representation of Uncertainty

Data mining is inseparably connected with un-
certainty. For example, the data to be analyzed
are imprecise, incomplete, or noisy most of the
time, aproblemthatcanbadly deteriorateamining
algorithm and lead to unwarranted or question-
able results. But even if observations are perfect,
the alleged “discoveries” made in that data are of
course afflicted withuncertainty. In fact, this point
is especially relevant for data mining, where the
systematic search for interesting patterns comes
along with the (statistical) problem of multiple
hypothesis testing, and therefore with a high
danger of making false discoveries.

Fuzzy sets and possibility theory have made
important contributions to the representation and
processing of uncertainty. In data mining, like in
other fields, related uncertainty formalisms can
complement probability theory in a reasonable
way, because not all types of uncertainty relevant
to data mining are of a probabilistic nature, and
because other formalisms are in some situations
more expressive than probability. For example,
probability is not very suitable for representing
ignorance, which might be useful for modeling
incomplete or missing data.
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Generalized Operators

Many data mining methods make use of logi-
cal and arithmetical operators for representing
relationships between attributes in models and
patterns. Since a large repertoire of generalized
logical (e.g., t-normsandt-conorms) and arithmeti-
cal (e.g., Choquet-and Sugeno-integral) operators
have been developed in FST and related fields, a
straightforward way to extend standard mining
methods consists of replacing standard operators
by their generalized versions.

The main effect of such generalizations is to
make the representation of models and patterns
more flexible. Besides, in some cases, generalized
operators can help to represent patternsinamore
distinctive way, for example, to express differ-
ent types of dependencies among attributes that
cannot be distinguished by nonfuzzy methods;
we shall discuss an example of that type in more
detail in the fourth section.

INCREASED EXPRESSIVENESS
FOR FEATURE REPRESENTATION
AND DEPENDENCY ANALYSIS

Many data mining methods proceed from a rep-
resentation of the entities under consideration in
terms of feature vectors, that is, a fixed number
of features or attributes, each of which represents
a certain property of an entity. For example, if
these entities are employees, possible features
might be gender, age, and income. A common
goal of feature-based methods, then, is to analyze
relationships and dependencies between the at-
tributes. In this section, it will be argued that the
increased expressiveness of fuzzy methods, which
is mainly due to the ability to represent graded
properties in an adequate way, is useful for both
feature extraction and dependency analysis.

Fuzzy Feature Extraction and Pattern
Representation

Many features of interest, and therefore the pat-
terns expressed in terms of these features, are
inherently fuzzy. As an example, consider the
so-called “candlestick patterns” which refer to cer-
tain characteristics of financial time series. These
patterns are believed to reflect the psychology of
the market and are used to support investment
decisions. Needless to say, a candlestick pattern
is fuzzy in the sense that the transition between
the presence and absence of the pattern is gradual
rather than abrupt; see Lee, Liu, and Chen (2006)
for an interesting fuzzy approach tomodeling and
discovering such patterns.

To give an even simpler example, consider
again a time series of the form:

X = (X(D), X(2)....x(n)).

To bring again one of the topical application
areas of fuzzy data mining into play, one may
think of x as the expression profile of a gene in a
microarray experiment, that is, a timely ordered
sequence of expression levels. For such profiles,
the property (feature) “decreasing at the begin-
ning” might be of interest, for example, in order
to express patterns like*

“A series which is decreasing at the beginning
is typically increasing at the end.”

@

Again, the aforementioned pattern is inher-
ently fuzzy, in the sense that a time series can
be more or less decreasing at the beginning. In
particular, it is unclear which time points belong
to the “beginning” of a time series, and defining it
inanonfuzzy (crisp) way by asubset B={1,2,...,k},
for a fixed k {1...n}, comes along with a certain
arbitrarinessand does notappear fully convincing.



Besides, the human perception of “decreasing”
will usually be tolerant toward small violations
of the standard mathematical definition, which
requires:

VteB:x(t) = x(t+1), 2

especially if such violations may be caused by
noise in the data.

Figure 2 shows three exemplary profiles.
While the first one at the bottom is undoubtedly
decreasing at the beginning, the second one in
the middle is clearly not decreasing in the sense
of (2). According to human perception, however,
this series is still approximately or, say, almost
decreasing at the beginning. In other words, it
does have the corresponding (fuzzy) feature to
some extent.

By modeling features like “decreasing at the
beginning” in a nonfuzzy way, that is, as a Bool-
ean predicate which is either true or false, it will
usually become impossible to discover patterns
such as (1), even if these patterns are to some
degree present in a data set.
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To illustrate this point, consider a simple
experiment in which 1,000 copies of an (ideal)
profile defined by X(t) =[t—-11|, t=1...21 that
are corrupted with a certain level of noise. This
is done by adding an error term to each value of
every profile; these error terms are independent
and normally distributed with mean 0 and stan-
dard deviation . Then, the relative support of
the pattern (1) is determined, that is, the fraction
of profiles that still satisfy this pattern in a strict
mathematical sense:

(Vtefl ... k}:x() > x(t+1)

A(Vte{n—Kk .. n}x(t-1) > x(t))

Figure 3 (left) shows the relative support as
a function of the level of noise () and various
values of k. As can be seen, the support drops
off quite quickly. Consequently, the pattern will
be discovered only in the more or less noise-free
scenario but quickly disappears for noisy data.

Fuzzy set-based modeling techniques offer
a large repertoire for generalizing the formal

Figure 2. Three exemplary time series that are more or less “decreasing at the beginning™
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Figure 3. Left: Relative support of pattern (1) as a function of the level of noise ¢ and various values of
k; Right: Comparison with the relative support for the fuzzy case
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(logical) description of a property, including
generalized logical connectives such as t-norms
and t-conorms, fuzzy relations such as MUCH-
SMALLER-THAN, and fuzzy quantifiers such
as FOR-MOST. Making use of these tools, it
becomes possible to formalize descriptions like
“for all points t at the beginning, x(t) is not much
smaller than x(t+1), and for most points it is even
strictly greater” in an adequate way:

F.(x)=(VteB:x(t+1) > x(t))
® (Vt e B: =MS(x(t +1),x(1)))

where Bisnowafuzzy set characterizing the begin-
ning of the time series, V is an exception-tolerant
relaxation of the universal quantifier, ® isat-norm,
and MS a fuzzy MUCH-SMALLER-THAN rela-
tion; we refrain from a more detailed description
of these concepts at a technical level.

In any case, (3) is an example for a fuzzy
definition of the feature “decreasing at the begin-
ning” (we by no means claim that it is the best
characterization) and offers an alternative to the
nonfuzzy definition (2). According to (3), every
time series can have the feature to some extent.

Analogously, the fuzzy feature “increasing at the
end” (F,) can be defined. Figure 3 (right) shows
the relative support:

L SEx)@RX)

supp(P) = —— 3 supp, (P) = -
@
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of the pattern P for the fuzzy case, again as a
function of the noise level. As can be seen, the
relative supportalso drops offafter awhile, which
is an expected and even desirable property (for a
high enough noise level, the pattern will indeed
disappear). The support function decreases much
slower, however, so the pattern will be discovered
in a much more robust way.

The above example shows that a fuzzy set-
based modeling can be very useful for extracting
certain types of features. Besides, it gives an
example of increased robustness in a relatively
specific sense, namely robustness of pattern dis-
covery toward noise in the data. In this connec-
tion, let us mention that we do not claim that the
fuzzy approach is the only way to make feature
extraction more adequate and pattern discovery



more robust. For example, inthe particular setting
considered in our example, one may think of a
probabilistic alternative, in which the individual
support suprZ(P) in (4) is replaced by the prob-
ability that the underlying noise-free profile does
satisfy the pattern P in the sense of (2). Apart
from pointing to the increased computational
complexity of this alternative, however, we like
to repeat our argument that patterns like (1) are
inherently fuzzy in our opinion: Even in a com-
pletely noise-free scenario, where information is
exact and nothing is random, human perception
may consider a given profile as somewhat decreas-
ing at the beginning, even if it does not have this
property in a strict mathematical sense.

Mining Gradual Dependencies
Association Analysis

Association analysis (Agrawal & Srikant, 1994;
Savasere, Omiecinski, & Navathe, 1995) is a
widely applied data mining technique that has
been studied intensively in recent years. The goal
in association analysis is to find “interesting”
associations in a data set, that is, dependencies
between so-called itemsets A and B expressed in
terms of rules of the form A — B. To illustrate,
consider the well-known example where items
are products and a data record (transaction) I is
a shopping basket such as {butter, milk, bread}.
The intended meaning of an association A — B
is that, if A is present in a transaction, then B is
likely to be presentas well. A standard problemin
association analysis is to find all rules A — B the
support (relative frequency of transactions | with
A U B c ) and confidence (relative frequency
of transactions | with B < | among those with A
c I) that reach user-defined thresholds minsupp
and minconf, respectively.

In the above setting, a single item can be
represented in terms of a binary (0/1-valued) at-
tribute reflecting the presence or absence of the
item. To make association analysis applicable to
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data sets involving numerical attributes, such
attributes are typically discretized into intervals,
and each interval is considered as a new binary
attribute. For example, the attribute temperature
might be replaced by two binary attributes cold
and warm, where cold =1 (warm =0) if the tem-
perature is below 10 degrees and warm =1 (cold
=0) otherwise.

A further extension is to use fuzzy sets (fuzzy
partitions) instead of intervals (interval partitions),
and corresponding approaches to fuzzy associa-
tion analysis have been proposed by several au-
thors (see, e.g., Chen, Wei, Kerre, & Wets, 2003;
Delgado, Marin, Sanchez, & Vila, 2003 forrecent
overviews). In the fuzzy case, the presence of a
feature subset A ={A ... A, }; thatis, acompound
feature considered as a conjunction of primitive
features A ... A, is specified as:

AX)=AKX®ANX®..®A (X

where A (x) €[0,1] is the degree to which x has
feature A, and ® is a t-norm serving as a general-
ized conjunction.

There are different motivations for a fuzzy
approachtoassociationrule mining. Forexample,
again pointingtothe aspect of robustness, several
authors have emphasized that, by allowing for
“soft” rather than crisp boundaries of intervals,
fuzzy sets can avoid certain undesirable threshold
or “boundary effects” (see, e.g., Sudkamp, 2005).
The latter refers to the problem that a slight vari-
ation of an interval boundary may already cause
a considerable change of the evaluation of an
association rule, and therefore strongly influence
the data mining result.

In the following, we shall emphasize another
potential advantage of fuzzy association analysis,
namely the fact that association rules can be rep-
resented in a more distinctive way. In particular,
working with fuzzy instead of binary features
allows for discovering gradual dependencies
between variables.
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Gradual Dependencies Between Fuzzy
Features

On a logical level, the meaning of a standard
(association) rule A — B is captured by the ma-
terial conditional; that is, the rule applies unless
the consequent B is true and the antecedent A
is false. On a natural language level, a rule of
that kind is typically understood as an IF-THEN
construct: If the antecedent A holds true, so does
the consequent B.

Inthe fuzzy case, the Boolean predicates Aand
B arereplaced by corresponding fuzzy predicates
whichassumetruthvaluesintheunitinterval [0,1].
Consequently, the material implication operator
has to be replaced by a generalized connective,
that is, a suitable [0,1] x [0,1] — [0,1] mapping.
In this regard, two things are worth mentioning.
First, the choice of this connective is not unique;
instead thereare various options. Second, depend-
ing on the type of operator employed, fuzzy rules
can have quite different semantical interpretations
(Dubois & Prade, 1996).

A special type of fuzzy rule, referred to as
gradual rules, combines the antecedent A and
the consequent B by means of a residuated im-
plication operator ~-. The latter is a special type
of implication operator which is derived from a
t-norm ® through residuation:

o~ BEsuply| o ® <P} ©)

As a particular case, so-called pure gradual
rules are obtained when using the following im-
plication operator:®

1 ifa<B
@ =P=10 it oo p ©)

The above approach to modeling a fuzzy rule
is in agreement with the following interpretation
of a gradual rule: “THE MORE the anteced-
ent A is true, THE MORE the consequent B is
true” (Dubois & Prade, 1992; Prade, 1988); for

example “The larger an object, the heavier it is”.
More specifically, in order to satisfy the rule, the
consequent must be at least as true as the ante-
cedent according to (6), and the same principle
applies for other residuated implications, albeit
in a somewhat relaxed form.

The above type of implication-based fuzzy
rule can be contrasted with so-called conjunc-
tion-based rules, where the antecedent and con-
sequent are combined in terms of a t-norm such
as minimum or product. Thus, in order to satisfy
aconjunction-based rule, both the antecedentand
the consequent must be true (to some degree). As
an important difference, note that the antecedent
and the consequent play a symmetric role in the
case of conjunction-based rulesbutare handledin
an asymmetric way by implication-based rules.

Thedistinction between different semantics of
a fuzzy rule as outlined above can of course also
be made forassociation rules. Formally, this leads
tousing different types of support and confidence
measures for evaluating the quality (interesting-
ness) of an association (Dubois, Hiillermeier, &
Prade, 2006; Hiillermeier, 2001). Consequently,
it may happen that a data set supports a fuzzy
association A — B quite well in one sense, that
is, according to a particular semantics, but not
according to another one.

The important point to notice is that these
distinctions cannot be made for nonfuzzy (asso-
ciation) rules. Formally, the reason is that fuzzy
extensions of logical operators all coincide on the
extreme truth values 0 and 1. Or, stated the other
way round, a differentiation can only be made
on intermediary truth degrees. In particular, the
consideration of gradual dependencies does not
make any sense if the only truth degrees are 0
and 1.

In fact, in the nonfuzzy case, the point of de-
parture for analyzing and evaluating arelationship
between features or feature subsets A and B is a
contingency table (see Table 1).

In this table, n , denotes the number of ex-
amples x for which A(x) = 0 and B(x) = 0, and
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the remaining entries are defined analogously.
All common evaluation measures for association
rules, suchassupport (n,/n)and confidence (n,, / n,,
) can be expressed in terms of these numbers.
In the fuzzy case, a contingency table can
be replaced by a contingency diagram, an idea
that has been presented in Hiillermeier (2002).
A contingency diagram is a two-dimensional
diagram in which every example x defines a point
(o, B) = (A(x),B(x)) €[0,1] x[0,1]. A diagram of
thattype isable to convey much more information
about the dependency between two (compound)
features A and B than a contingency table. Con-
sider, for example, the two diagrams depicted in
Figure 4. Obviously, the dependency between A
and B as suggested by the left diagram is quite
different from the one shown on the right. Now,
consider the nonfuzzy case in which the fuzzy
sets A and B are replaced by crisp sets A,
and By, , respectively, for example, by using a

Why Fuzzy Set Theory is Useful in Data Mining

[0,1] —{0,1} mapping like o.+— (o > 0.5). Then,
identical contingency tables are obtained for the
left and the right scenario (in the left diagram,
the four quadrants contain the same number of
points as the corresponding quadrantsin the right
diagram). Inother words, the two scenarios cannot
be distinguished in the nonfuzzy case.
InHiillermeier (2002), it was furthermore sug-
gested to analyze contingency diagrams by means
of techniques from statistical regression analysis.
Among other things, this offers an alternative
approach to discovering gradual dependencies.
For example, the fact that a linear regression
line with a significantly positive slope (and high
quality indexes like a coefficient of determination,
R?, close to 1) can be fit to the data suggests that
indeed a higher A(x) tends to result in a higher
B(X); that is, the more x has feature A, the more
it has feature B. This is the case, for example,
in the left diagram in Figure 4. In fact, the data

Table 1.
B(y)=0
A(X)=0 | ny
AX)=1 | n,
N,

B(y) =1

nOl nO
nll nl
n,, n

Figure 4. Two contingency diagrams reflecting different types of dependencies between features A and B.
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in this diagram support an association A — B
quite well in the sense of the THE MORE-THE
MORE semantics, whereas it does not support
the nonfuzzy rule A, — B, .

Note that a contingency diagram can be de-
rived not only for simple but also for compound
features, that is, feature subsets representing
conjunctions of simple features. The problem,
then, istoderive regression-related quality indexes
for all potential association rules in a systematic
way, and to extract those gradual dependencies
which are well-supported by the data in terms of
these indexes. For corresponding mining methods,
including algorithmic aspects and complexity
issues, we refer to Hiillermeier (2002).

Before concluding this section, let us note
that the two approaches for modeling gradual
dependencies that we have presented, the one
based on fuzzy gradual rules and the other one
using statistical regression analysis, share simi-
larities but also show differences. In particular,
the logical modeling of gradual dependencies via
suitable implication operators does not assume a
relationship between A(x) and B(x) which is, say,
indeed “strictly increasing”. For example, if B(X)
= 1, then the rule A — B will be perfectly satis-
fied, even though B(X) is constant and does not
increase with A(x). In fact, more specifically, the
semantical interpretation ofagradual rule should
be expressed in terms of a bound on the degree
B(x) rather than the degree itself: The more X is
in A, the higher is the guaranteed lower bound of
the membership of x in B. Seen from this point
of view, the statistical approach is perhaps even
more in line with the intuitive understanding of
a THE MORE-THE MORE relationship.

COMPUTATIONAL AND
CONCEPTUAL COMPLICATIONS

Inthe previous sections, we have outlined several
potential advantages of fuzzy data mining, witha
special focus on the increased expressiveness of

fuzzy patterns. Needless to say, these advantages
of fuzzy extensions do not always come for free
but may also produce some complications, either
at a computational or at a conceptual level. This
section is meant to comment on this point, albeit
in a very brief way. In fact, since the concrete
problems that may arise are rather application-
specific, a detailed discussion is beyond the scope
of this chapter.

Regarding computational aspects, scalability
is an issue of utmost importance in data mining.
Therefore, the usefulness of fuzzy extensions
presupposes that fuzzy patterns can be mined
without sacrificing computational efficiency.
Fortunately, efficient algorithmic solutions
can be assured in many cases, mainly because
fuzzy extensions can usually resort to the same
algorithmic principles as nonfuzzy methods. To
illustrate, consider again the case of association
rule mining, the first step of which typically
consists of finding the frequent itemsets, that is,
the itemsets A ={A, ... A, }satisfying the support
condition supp (A) > minsupp. Several efficient
algorithms have been developed for this purpose
(Agrawal & Srikant, 1994). For example, in order
toprune the search space, the well-known Apriori
principle exploits the property that every superset
of an infrequent itemset is necessarily infrequent
by itself or, vice versa, that every subset of a fre-
guent itemset is also frequent (downward closure
property). In the fuzzy case, where an itemset is
aset A={A..A } of fuzzy features (items), the
support is usually defined by:

DA =YAXB®A,X®...®A,(X)

where A (x) €[0,1] is the degree to which the
entity x has feature A,. So, the key difference to
the nonfuzzy case is that the support is no longer
an integer but a real-valued measure. Apart from
that, however, it has the same properties as the
nonfuzzy support, in particular the aforemen-
tioned closure property, which means that the
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basic algorithmic principles can be applied in
exactly the same way.

Of course, not all adaptations are so simple.
For example, in the case of implication-based
associationrules (Hiillermeier, 2002), the genera-
tion of candidate rules on the basis of the sup-
port measure becomes more intricate due to the
fact that the measure is now asymmetric in the
antecedent and the consequent part; that is, the
support of a rule A — B is no longer the support
of the itemset A U B.

Apartfrom computational issues, fuzzy exten-
sions may of course also produce complications at
a conceptual level which are of a more principled
nature. As an example, we already mentioned a
problem of ambiguity which is caused by using
linguistic terms for representing patterns: as long
as the precise meaning of such terms is not made
explicit for the user (e.g., by revealing the associ-
ated membership function), patterns of that type
remain ambiguous to some extent. We conclude
this section by indicating another complication
which concerns the scoring of patterns in terms
of frequency-based evaluation measures. An
example of this type of measure, which is quite
commonly used in data mining, is the aforemen-
tioned support measure in association analysis: A
pattern P is considered “interesting” only if it is
supported by alarge enough number of examples;
this is the well-known support condition supp
(P) =Zminsupp.

As already mentioned, in the fuzzy case, the
individual support supp, (P) given to a pattern
P by an example X is not restricted to 0 or 1. In-
stead, every example x, can support a patternto a
certaindegrees, €[0,1]. Moreover, resortingtothe
commonly employed sigma-count for computing
the cardinality of a fuzzy set (Zadeh, 1983), the
overall support of the pattern is given by the sum
of the individual degrees of support. The problem
is that this sum does not provide any information
aboutthe distribution of the s.. In particular, since
several small s, can compensate for a single large
one, itmay happen that the overall supportappears
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to be quite high, eventhough none of the s, is close
to 1. In this case, one may wonder whether the
patternisreally well-supported. Instead, it seems
reasonable to require that a well-supported pat-
tern should at least have a few examples that can
be considered as true prototypes. For instance,
imagine a database with 1,000 time series, each
of which is “decreasing at the beginning” to the
degree 0.5. The overall supportofthis pattern (500)
is as high for this database as it is for a database
with 500 time series that are perfectly decreasing
at the beginning and 500 that are not decreasing
at all. A possible solution to this problem is to
replace the simple support condition by a “level-
wise” support threshold, demanding that, for
each among a certain set of membership degrees
O<a, <a, <..<o, <1 the number of examples
providing individual support> . is at least min-
supp, (Dubois, Prade, & Sudkamp, 2005).

The purpose of the above examples is to show
that fuzzy extensions of datamining methods have
to be applied with some caution. On the other
hand, the examples also suggest that additional
complications caused by fuzzy extensions, either
atacomputational or conceptual level, can usually
be solved in a satisfactory way. In other words,
such complications do usually not prevent from
using fuzzy methods, at least in the vast majority
of cases, and by no means annul the advantages
thereof.

CONCLUSION

The aim of this chapter is to provide convincing
evidence for the assertion that fuzzy set theory
can contribute to data mining in a substantial
way. To this end, we have mainly focused on the
increased expressiveness of fuzzy approaches that
allows one to represent features and patternsin a
more adequate and distinctive way. More specifi-
cally, we argued that many features and patterns
of interest are inherently fuzzy, and modeling
them in a nonfuzzy way will inevitably lead
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to unsatisfactory results. As a simple example,
we discussed features of time series, such as
“decreasing at the beginning”, in the fourth sec-
tion, but one may of course also think of many
other useful applications of fuzzy feature extrac-
tion, especially in fields that involve structured
objects, such as graph mining, Web mining, or
image mining. Apart from extracting features,
we also argued that fuzzy methods are useful for
representing dependencies between features. In
particular, such methods allow for representing
gradual dependencies, which is not possible in
the case of binary features.

Several other merits of fuzzy data mining,
includingapossibly increased interpretability and
robustness as well as adequate means for dealing
with (nonstochastic) uncertainty and incomplete
information, have been outlined in the third sec-
tion. Albeit presented inaquite concise way, these
merits should give an idea of the high potential
of fuzzy methods in data mining.
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ENDNOTES

! Our distinction between machine learning

and data mining can roughly be seen as a

“modern” or extended distinction between

descriptive andinductive statistics. We note,

however, that this view is not an opinio

communis; for example, some people prefer

having an even more general view of data

mining that includes machine learning as a

special case.

This example shows that a fuzzy set is gen-

erally context-dependent. For example, the

Chinese conception of tall men will differ

from the Swedish one.

3 See Zadeh’s (1973) principle of incompat-
ibility between precision and meaning.

4 Patterns of that kind may have an important
biological meaning.

> This operator is the core of all residuated
implications (5).
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ABSTRACT

With the growth in the number of Web users and necessity for making information available on the Web,
the problem of Web personalization has become very critical and popular. Developers are trying to custom-
ize a Web site to the needs of specific users with the help of knowledge acquired from user navigational
behavior. Since user page visits are intrinsically sequential in nature, efficient clustering algorithms for
sequential data are needed. In this chapter, we introduce a similarity preserving function called sequence
and set similarity measure S3M that captures both the order of occurrence of page visits as well as the
content of pages. We conducted pilot experiments comparing the results of PAM, a standard clustering
algorithm, with two similarity measures: Cosine and S3M. The goodness of the clusters resulting from
both the measures was computed using a cluster validation technique based on average levensthein dis-
tance. Results on pilot dataset established the effectiveness of S3M for sequential data. Based on these
results, we proposed a new clustering algorithm, SeqPAM for clustering sequential data. We tested the
new algorithm on two datasets namely, cti and msnbc datasets. We provided recommendations for Web
personalization based on the clusters obtained from SeqPAM for msnbc dataset.

INTRODUCTION the immense popularity of Web technology among

people, have added to the number of consumersas
The wide spread evolution of global information well as disseminators of information. Until date,
infrastructure, especially based on Internet and plenty of search engines are being developed,

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
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however, researchers are trying to build more
efficient search engines. Web site developers and
Web mining researchers are trying to address
the problem of average users in quickly finding
what they are looking for from the vast and ever-
increasing global information network.

Onesolutionto meet the user requirementsisto
develop asystem that personalizes the Web space.
Personalizing the Web space means developing a
strategy, which implicitly or explicitly captures
the visitor’s information on a particular Web site.
With the help of thisknowledge, the system should
decide what information should be presented to
the visitor and in what fashion.

Web personalization is an important task from
the point of view of the user as well as from the
application point of view. Web personalization
helps organizations in developing customer-cen-
tric Web sites. For example, Web sites that display
products and take orders are becoming common
for many types of business. Organizations can
thus present customized Web pages created in
real time, on the fly, for a variety of users such
as suppliers, retailers, and employees. The log
data obtained from various sources such as proxy
server and Web server helps in personalizing
Web according to the interest and tastes of the
user community. Personalized content enables
organizations to form lasting and loyal relation-
ships with customers by providing individualized
information, offerings, and services. Forexample,
if an end user visits the site, she would see pricing
and information that is appropriate to her, while a
re-seller would see a totally different set of price
and shipping instructions. This kind of personal-
ization can be effectively achieved by using Web
mining approaches. Many existing commercial
systems achieve personalization by capturing
minimal declarative information provided by
the user. In general, this information includes
user interests and personal information about the
user. Clustering of user page visits may help Web
miners and Web developers in personalizing the
Web sites better.
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The Web personalization process can be
divided into two phases: off-line and online
(Mobasher, Dai, & Luo, 2002). The off-line phase
consists of the data preparation tasks resulting
in a user transaction file. The off-line phase of
usage-based Web personalization can be further
divided into two separate stages. The first stage is
preprocessing of data and it includes data clean-
ing, filtering, and transaction identification. The
second stage comprises application of mining
techniquesto discover usage patterns viamethods
such as association-rule mining and clustering.
Once the mining tasks are accomplished in the
off-line phase, the URL clusters and the frequent
Web pages can be used by the online component
of the architecture to provide dynamic recom-
mendation to users.

This chapter addresses the following three
main issues related to sequential access log data
for Web personalization. Firstly, for Web person-
alization we adopt a new similarity metric S*M
proposed earlier (Kumar, Rao, Krishna, Bapi &
Laha, 2005). Secondly, we compare the results
of clusters obtained using the standard cluster-
ing algorithm, Partition Around Medoid (PAM),
with two measures: Cosine and S*M similarity
measures. Based on the comparative results, we
designanew partition-clustering algorithm called

Table 1. Table of notations

Symbol Description

D Dataset

N Total number of item sets in D

k Number of clusters

ti Medoid of j" cluster

t, s'" member of j*" cluster

C | Total number of items in the jt"
i cluster

T Tolerance on total benefit
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SegPAM. Finally, in order to validate clusters of
sequential item sets, average Levenstheindistance
was used to compute the intra-cluster distance and
Levensthein distance for inter-cluster distance.

The rest of the chapter is organized as follows.
In the next section, we review related work in
the area of Web personalization. Subsequently,
we discuss background knowledge on similarity,
sequence similarity, as well as cluster analysis
techniques. Following this is a brief description
of our proposed similarity metric, S*M. Descrip-
tion and preprocessing of cti and msnbc datasets
are provided in the next section. Then we present
clustering of Web usage data using PAM with
cosine as well as S®M similarity measures over
the pilot dataset. After that, we propose a new
partitional clustering algorithm, SeqPAM. Finally,
we conclude with the analysis of results on pilot,
cti, and msnbc datasets. Also, a recommenda-
tion for Web personalization on msnbc dataset
is presented. Table 1 provides the symbols used
in this chapter and their description.

RELATED WORK

Web mining techniques are generally used to ex-
tractknowledge from Web datarepository related
to the content, linkage and usage information by
utilizing data mining techniques. Mining Web
usage data enables capturing users’ navigational
patterns and identifying users’ intentions. Once
the user navigational behaviors are effectively
characterized, it provides benefits for further Web
applications such asfacilitation and improvement
of Web service quality for both Web-based organi-
zations and for end-users. As a result, Web usage
mining recently has become active topic for the
researcher from database management, artificial
intelligence, and information systems, etc (Buch-
ner & Mulvenna, 1998; Cohen, Krishnamurthy,
& Rexford, 1998; Lieberman, 1995; Mobasher,
Cooley, & Srivastava, 1999; Ngu & Sitehelper,
1997; Perkowitz & Etzioni, 1998; Stormer, 2005;

Zhou, Hui, & Fong, 2005). Meanwhile, with the
benefits of great progress in datamining research,
many data mining techniques such as clustering
(Han,, Karypis, Kumar & Mobasher, 1998; Mo-
basher et al., 2002; Perkowitz & Etzioni, 1998),
association rule mining (Agarwal & Srikant,
1994; Agarwal, Aggarwal, & Prasad, 1999), and
sequential pattern mining (Agarwal & Srikant,
1995) are adopted widely to improve the usability
and scalability of Web mining techniques.

In general, there are two types of cluster-
ing methods performed on the usage data-user
transaction clustering and Web page clustering
(Mobasher, 2000). One of the earliest applica-
tions of Web page clustering was adaptive Web
sites where initially non-existing Web pages are
synthesized based on partitioning Web pages into
various groups (Perkowitz & Etzioni, 1998,2000).
Another way is to cluster user-rating results. This
technique has been adopted in collaborative fil-
tering application as a data preprocessing step to
improve the scalability of recommendation using
k-Nearest- Neighbor (KNN)algorithm (O’Conner
& Herlocker, 1999). Mobasher et al. (2002) uti-
lized user transaction and page view clustering
techniques, with traditional k-means clustering
algorithm, to characterize user access patterns
for Web personalization based on mining Web
usage data. Safar (2005) used kNN classification
algorithm for finding Web navigational path.
Wang, Xindong, and Zhang (2005) used support
vector machines for clustering data. Tan, Taniar,
and Smith (2005) focus on clustering using the
estimated distributed model.

Most of the studies in the area of Web usage
mining are very new and the topic of cluster-
ing Web sessions has recently become popular.
Mobahser et al. (2000) presented automatic per-
sonalization of a Web site based on Web usage
mining. They clustered Web logs using cosine
similarity measure. Many techniques have been
developed to predict HTTP requests using path
profiles of users. Extraction of usage patterns
from Web logs has been reported using data
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mining techniques (Buchner et al., 1998; Cooley,
Mobasher, & Srivastava, 1999; Spiliopoulou &
Faulstich, 1999).

Shahabi, Zarkesh, Adibi, and Shah (1997)
introduced the idea of Path Feature Spacetorepre-
sentall the navigation paths. Similarity betweena
pair of paths inthe Path Feature Space ismeasured
by the definition of Path Angle, which is actu-
ally based on the Cosine similarity between two
vectors. They used k-means clustering to group
user navigation patterns. Fu, Sandhu, and Shih
(1999) grouped users based on clustering of Web
sessions. Their work employed attribute oriented
induction to transfer the Web session data into a
space of generalized sessions and then they ap-
plied the BIRCH (Balanced Iterative Reducingand
Clustering using Hierarchies) clustering algorithm
(Zhang, Ramakrishnan, & Livny, 1996) to this
generalized session space. Their method scaled
well over large datasets also. Banerjee and Ghosh
(2001) introduced a new method for measuring
similarity between Web sessions. They found
the longest common sub-sequences between two
sessions through dynamic programming. Then
the similarity between two sessions is defined as
a function of the frequency of occurrence of the
longest common sub-sequences. Applying this
similarity definition, the authors built an abstract
similarity graph and then applied the graph parti-
tion method for clustering. Wang, Wang, Yang,
and Yu (2002) had considered each Web session
as a sequence and borrowed the idea of sequence
alignment from the field of bio-informatics to
measure similarity between sequences of page
access. Pitkow and Pirolli (1999) explored predic-
tive modeling techniques by introducing a statistic
called Longest Repeating Sub-sequence model,
which can be used for modeling and predicting
user surfing paths. Spiliopoulou et al. (1999) built
amining system, WUM (Web Utilization Miner),
for discovering of interesting navigation patterns.
In their system, interestingness criteria for navi-
gation patterns are dynamically specified by the
human expert using WUM?’s mining language
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MINT. Mannila and Meek (2000) presented a
method for finding partial orders that describe
the ordering relationship between the events in
a collection of sequences. Their method can be
applied to the discovery of partial orders in the
data set of session sequences. The sequential na-
ture of Web logs makes it necessary to devise an
appropriate similarity metric for clustering. The
main problem in calculating similarity between
sequences is finding an algorithm that computes
a common subsequence of two given sequences
as efficiently as possible (Simon, 1987). In this
work, we use S®M similarity measure, which
combines information of both the elements as
wellastheirorder of occurrencesin the sequences
being compared.

This chapter aims at designing a semi-auto-
matic system that will tailor the Web site based
on user’s interests and motivations. From the
perspective of data mining, Web mining for Web
personalization consists of basically two tasks.
The first task is clustering, that is, finding natural
groupings of user page visits. The second task is
to provide recommendations based on finding
association rules among the page visits for a user.
Our initial efforts have been to mine user Web
access logs based on application of clustering
algorithms.

BACKGROUND: SIMILARITY,
SEQUENCE SIMILARITY, AND
CLUSTER ANALYSIS

Inthis section, we present the background knowl-
edge related to similarity, sequence similarity,
and cluster analysis.

Similarity

In many data mining applications, we are given
with unlabelled data and we have to group them
based on the similarity measure. These data may
arise fromdiverse application domains. They may
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be music files, system calls, transaction records,
Web logs, genomic data, and so on. In these data,
there are hidden relations that should be explored
tofind interesting information. For example, from
Web logs, one can extract the information regard-
ing the most frequent access path; from genomic
data, one can extract letter or block frequencies;
frommusic files, one can extract various numerical
features related to pitch, rhythm, harmony, etc.
One can extract features from sequential data to
quantify parameters expressing similarity. The
resulting vectors corresponding to the various
files are then clustered using existing clustering
techniques. The central problem in similarity
based clustering isto come up with anappropriate
similarity metric for sequential data.

Formally,similarity isafunction Swithnonneg-
ative real values defined on the Cartesian product
XxXofasetX. Itiscalledametricon Xif forevery
X, Y, Z € X, the following properties are satisfied
by S.

1. Non-negativity: S(x, y) > 0.
2. Symmetry: S(X, y) = S(Y, X).
3. Normalization: S(x, y) < 1.

A set X along with a metric is called a metric
space.

Sequence Similarity

Sequence comparison finds its application in
various interrelated disciplines such as computer
science, molecular biology, speech and pattern
recognition, mathematics, etc. Sankoff and Krus-
kal (1983) present the application of sequence
comparison and various methodology adopted.
Similarity metric has been studied in various
other domains like information theory (Bennett,
Gacs, Li, Vitanyi, & Zurek, 1988; Li, Chen, Li,
Ma, & Paul, 2004; Li & Vitanyi, 1997), linguis-
tics setting, (Ball, 2002; Benedetto, Caglioti, &
Loreto, 2002), bioinformatics (Chen, Kwong, &

Li, 1999), and elsewhere (Li & Vitanyi, 2001; Li
etal., 2001).

In computer science, sequence comparison
finds its application in various respect, such as
string matching, text, and Web classification and
clustering. Sequence miningalgorithms make use
of either distance functions (Duda, Hart, & Stork,
2001) orsimilarity functions (Bergroth, Hakonen,
& Raita, 2000) for comparing pairs of sequences.
In this section, we investigate measures for
computing sequence similarity. Feature distance
is a simple and effective distance measure (Ko-
honen, 1985). A feature is a short sub-sequence,
usually referred to as N-gram, where N being
the length of the sub-sequence. Feature distance
is defined as the number of sub-sequences by
which two sequences differ. This measure can-
not qualify as a distance metric as two distinct
sequences can have zero distance. For example,
consider the sequences PQPQPP and PPQPQP.
These sequences contain the same bi-grams
(PQ, QP and PP) and hence the feature distance
will be zero with N = 2,

Another common distance measure for
sequences is the Levenshtein distance (LD)
(Levenshtein, 1966). It is good for sequences of
different lengths. LD measures the minimum
cost associated with transforming one sequence
into another using basic edit operations, namely,
replacement, insertion, and deletion of a sub-se-
guence. Each of these operations has a cost as-
signedtoit. Consider two sequencess, = “test”” and
s,= “test.” As no transformation operation is re-
quired to converts intos,, the LD betweens and
s,, isdenotedas LD (s, s,) = 0. If s, = “test” and
s,="“tent,”thenLD (s,,s,) = 1,asone editoperation
is required to convert sequence s, into sequence
s,. The greater the LD, the more dissimilar the
sequences are. Although LD can be computed
directly for any two sequences, in cases where
there are already devised scoring schemes as in
computational molecular biology (Mount, 2004),
it is desirable to compute a distance that is con-
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sistent with the similarity score of the sequences.
Agrafiotis (1997) proposed a method for comput-
ing distance from similarity scores for protein
analysis, classification, and structure and func-
tion prediction. Based on Sammon’s non-linear
mapping algorithm, Agrafiotis introduced a new
method for analyzing protein sequences.

When applied to a family of homologous
sequences, the method is able to capture the
essential features of the similarity matrix, and
provides a faithful representation of chemical or
evolutionary distance in a simple and intuitive
way. In this method, similarity score is computed
for every pair of sequences. This score is scaled
to the range [0,1] and distance d is defined as: d
= 1-ss, where ss is the scaled similarity score.
Besides practical drawbacks, such as high stor-
age requirements and non-applicability in online
algorithms, the main problem with this measure
is that it does not qualify as a metric in biology
applications. The self-similarity scores assigned
to amino acids are not identical. Thus scoring
matrices such as PAM (point accepted mutation)
or BLOSUM (BLOck SUbstitution Matrix) used
in biological sequence analysis have dissimilar
valuesalong the diagonal (Mount, 2004). Thereby,
scaling leadsto values different from 1 and conse-
quently to distances different from O for identical
amino acid sequences, thus violating one of the
requirements of a metric.

Setubal and Meidanis (1987) proposed a more
mathematically founded method for computing
distance from similarity score and vice versa.
This method is applicable only if the similarity
score of each symbol with itself is the same for
all symbols. Unfortunately, this condition is not
satisfied for scoring matrices used in computa-
tional molecular biology.

Many of the metrics for sequences, including
the ones previously discussed, do not fully qualify
as being metrics due to one or more reasons. In
the next section, we provide a brief introduction
to the similarity function, S*M, which satisfies all
the requirements of being a metric. This function
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considers both the setas well as sequence similar-
ity across two sequences.

Cluster Analysis

The objective of sequential pattern mining is to
find interesting patterns in ordered lists of sets.
These ordered lists are called item sets. This
usually involves finding recurring patterns in
a collection of item sets. In clustering sequence
datasets, a major problem is to place similar item
sets in one group while preserving the intrinsic
sequential property.

Clustering is of prime importance in data
analysis. Itis defined as the process of grouping N
item sets into distinct clusters based on similarity
or distance function. A good clustering technique
would yield clusters that have high inter-cluster
and low intra-cluster distance.

Over the years, clustering has been studied by
across many disciplinesincluding machine learn-
ing and pattern recognition (Duda et al., 2001,
Jain & Dubes, 1988), social sciences (Hartigan,
1975), multimedia databases (Yang & Hurson,
2005), text mining (Bao, Shen, Liu, & Liu, 2005),
etc. Serious efforts for performing efficient and
effective clustering started in the mid 90’s with
the emergence of data mining field (Nong, 2003).
Clustering has also been used to cluster data
cubes (Fu, 2005).

Clustering algorithms have been classified
using different taxonomies based on various im-
portantissuessuchasalgorithmicstructure, nature
of clusters formed, use of feature sets, etc (Jain et
al., 1988; Kaufman & Rousseeuw, 1990). Broadly
speaking, clustering algorithms can be divided
into two types—partitional and hierarchical. In
partitional clustering, the patternsare partitioned
around the desired number of cluster centers. Al-
gorithms of this category rely on optimizing a cost
function. Acommonly used partitional clustering
algorithm is k-Means clustering algorithm. On
the other hand, hierarchical clustering algorithms
produce hierarchy of clusters. These types of
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clusters are very useful in the field of social sci-
ences, biology and computer science. Hierarchical
algorithms can be further subdivided into two
types, namely, divisive and agglomerative. In
divisive hierarchical clusteringalgorithm, we start
with a single cluster comprising all the item sets
and keep on dividing the clusters based on some
criterion function. In agglomerative hierarchical
clustering, all item sets are initially assumed to
be in distinct clusters. These distinct clusters are
merged based on some merging criterion until a
single clusterisformed. Clustering processinboth
divisive and agglomerative clustering algorithms
can be visualized in the form of a dendrogram.
The division or agglomeration process can be
stopped at any desired level to achieve the user
specified clustering objective. Commonly used
hierarchical clusteringalgorithmissingle linkage
based clustering algorithm.

There are two main issues in clustering tech-
niques. Firstly, finding the optimal number of
clustersinagiven datasetand secondly, giventwo
sets of clusters, computing a relative measure of
goodness between them. For both these purposes,
a criterion function or a validation function is
usually applied. The simplest and most widely
used cluster optimization function is the sum of
squared error (Duda et al., 2001). Studies on the
sum of squared error clustering were focused on
the well-known k-Means algorithm (Forgey, 1965;
Jancey, 1966; McQueen, 1967) and its variants
(Jain, Murty, & Flynn, 1999). The sum of squared
error (SSE) is given by the following formula,

kel .

Dt | @

j=1 s=1
where is the cluster center of | cluster, t, is the s
member of j" cluster, |Cj | is the size of j* cluster
and k is the total number of clusters (refer to Table
1 for notations used in the chapter).

In the clustering algorithms previously de-
scribed, the data predominantly are non-sequen-
tial in nature. Since pairwise similarity among
sequences cannot be captured directly, direct

SSE =

application of traditional clustering algorithms
without any loss of information over sequences
is not possible. As computation of centroid of
sequences is not easy, it is difficult to perform
k-Means clustering on sequential data.

S®M: SIMILARITY MEASURE FOR
SEQUENCES

Inthis section, we describe a new similarity mea-
sure S*M that satisfies all the requirements of being
a metric. This function considers both the set as
well as sequence similarity across two sequences.
This measure is defined as a weighted linear
combination of the length of longest common
subsequence as well as the Jaccard measure.

A sequence is made up of a set of items that
happen in time or happen one after another, that
is, in position but not necessarily in relation with
time. We can say that a sequence is an ordered
set of items. A sequence is denoted as follows:
S=<a,a,..a> wherea,a,,..., a are the or-
dered item sets in sequence S. Sequence length is
defined as the number of item sets present in the
sequence, denoted as |S|. In order to find patterns
insequences, itisnecessary to notonly look atthe
items contained in sequences butalso the order of
theiroccurrence. A new measure, called sequence
and set similarity measure (M), was introduced
for network security domain (Kumar etal., 2005).
The S*M measure consists of two parts: one that
quantifies the composition of the sequence (set
similarity) and the other that quantifies the se-
guential nature (sequence similarity). Sequence
similarity quantifies the amount of similarity in
the order of occurrence of item sets within two se-
quences. Length of longest common subsequence
(LLCS) with respect to the length of the longest
sequence determines the sequence similarity
aspect across two sequences. For two sequences
A and B, sequence similarity is given by,

LLCS(A,B)

SegSim(A,B) =
SSIm(A ) = ALIB)

@)

23



SeqPAM: A Sequence Clustering Algorithm for Web Personalization

Set similarity (Jaccard Similarity measure)
is defined as the ratio to the number of common
item sets and the number of unique item sets in
two sequences. Thus, for two sequences A and B,
set similarity is given by:

|ANB|

SetSim(A, B) =
|AUB|

©)

Let us consider two sequences A and B, where
A =<a,b,c,d>and B =<d, c, b, a>. Now, the
set similarity measure for these two sequences is
1, indicating that their composition is alike. But
we can see that they are not at all similar when
considering the order of occurrence of item sets.
This aspect is quantified by the sequence similar-
ity component. For example, sequence similarity
component is 0.25 for these sequences. LLCS
keeps track of the position of occurrence of item
sets in the sequence. For two sequences, C=<a,
b, ¢, d> and D=<b, a, k, c,t, p, d>, LLCS(C, D)
works out to be 3 and after normalization, the
sequence similarity component turns out to be
0.43. The set similarity for these two sequences
is 0.57. The above two examples illustrate the
need for combining set similarity and sequence
similarity components into one function in order
to take care of both the content as well as position
based similarity aspects. Thus, S*™M measure for
two sequences A and B is given by:

S'M (A B)— p_tLCS(AB) L |ANB]
max(|A|,|Bl) ~ |AUB|
@

Here,p +g=1andp, ¢ > 0. p and q deter-
mine the relative weights to be given for order of
occurrence (sequence similarity) and to content
(set similarity), respectively. In practical applica-
tions, user could specify these parameters. The
LLCS between two sequences can be found by
the dynamic programming approach (Bergroth
et al., 2000).
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Characteristics of S°M Similarity
Measure

Let S be a set of finite sequences generated from
a given set of symbols, A. Let R denote the set of
real numbers then sim(si’sj) ;S xS§S—NRiscalled
an index of similarity between sequences s, s,cS
if it satisfies the following properties (Dunham,
2003):

1. Non-negativity: Sim(s, ysj) >0.
2. Symmetry: Sim(s; s) = Sim(s; s)).
3. Normalization: Sim(s; s) < 1.

Proposed similarity function has six param-
eters namely p, g, LLCS (A, B), max (|A|, |B|),
|AnB| and |AUB|. By the two conditions p+q
=1and p, ¢ > 0, we can infer that p and g can
never be negative. Rest of the four parameters,
being absolute values, cannot attain negative
values. Hence, the parameters cannot be nega-
tive. Finally, the sum and division operations on
non-negative values will always result in positive
values. Thus, it is straightforward to see that the
first condition of similarity holds true. Since all
the operations used in computing the similarity
score are symmetric, it is easy to see that the
proposed similarity function also obeys the sym-
metry property. Here, since the proposed measure
is a convex combination with two parameters p
and q lying between 0 and 1, the third property
of normalization also holds true.

Theoretical Justification for Choice
of “P” Parameter

When the length of longest common subsequence
is used as a measure of similarity between pair
of sequences then it becomes important to have
an idea of expected length of longest common
subsequence between them. Equation (5) gives
the expected length of a longest common sub-
sequence over an alphabet of size k over all the
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pair of sequences of length n (Paterson & Dancik,
1994).

ELY =% > LLCS(u,v) ®)

k |ul={vl=n

A bound v, on the expected length of the
Longest Common Subsequence has been derived
by Paterson et al. (1994). For every k > 2 there is
some y, such that,

EL(k)
Y, =lim—=

nN—oo n

©)

Exactvalues of y, are notknown. Upper bound
ony, fork=1,2, ..., 15 as calculated by Paterson
et al. (1994) is 0.47620 for alphabet size 14 and
0.46462 for alphabet size of 15. The upper bound
of y, can be used to specify the value of p and q
for S®M similarity measure. In this work, since
the alphabet size is 17 for the msnbc dataset a p
value of 0.5 is chosen for experimentations. The
alphabet size for cti dataset is 16 hence p = 0:45
is chosen. However, in general since p value is
domain dependent, this should be chosen based
on User’s experience.

WEB USAGE DATA

In this section, we describe the necessary pre-
processing steps on the dataset. We also outline
here the description of the Web usage data that
we have taken for experimental purposes.

Data Preprocessing

A prerequisite step in all of the techniques for
providing users with recommendations is the
identification of a set of user sessions from the
raw usage data provided by the Web server. Ide-

ally, each user session gives an exact account
of who accessed the Web site, what pages were
requested and in what order, and for how long
each page was viewed.

In addition, to identify user sessions, the raw
log must also be cleaned or transformed into a list
of page views. Cleaning the server log involves
removing all of the file accesses that are redun-
dant, leaving only one entry per page view. This
includes handling page views that have multiple
frames and dynamic pages that have the same
template name for multiple page views. It may
also be necessary to filter the log files by mapping
the references to the site topology induced by
physical links between pages. This is particularly
important for usage-based personalization, since
the recommendation engine should not provide
dynamic links to “out-of-date” or non-existent
pages.

Each user session can be thought of in two
ways: either as a single transaction of many page
references or as a set of many transactions each
consisting of a single page reference. The goal
of transaction identification is to dynamically
create meaningful clusters of references for each
user. Based on an underlying model of the user’s
browsing behavior, each page reference can be
categorized as a content reference, auxiliary (or
navigational) reference, or hybrid. In this way,
different types of transactions can be obtained
from the user session file, including content-only
transactions involving referencesto content pages
and navigation-content transactions involving a
mix of page types. The details of methods for
transaction identification are discussed in Cadez,
Heckerman, Meek, Smyth, and White (2000).
For the purpose of this chapter, we assume that
each user session is viewed as a single transac-
tion containing reference to multiple pages in a
session. Finally, the session file may be filtered
to remove very small transactions.
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Description of the Dataset

In this section, we describe two datasets taken
forexperimentation. First, we describe the msnbc
dataset and then followed by cti dataset.

Description of the msnbc Dataset

We collected data from the UCI dataset repository
(http://kdd.ics.uci.edu/) that consists of Internet
Information Server (11S) logs for msnbc.com and
news-related portions of msn.com for the entire
day of September 28, 1999 (Pacific Standard
Time). Each sequence in the dataset corresponds
to page views of a user during that twenty-four
hour period. Each event in the sequence corre-
sponds to a user’s request for a page. Requests
are not recorded at the finest level of detail but
they are recorded at the level of page categories
as determined by the site administrator.

There are 17 page categories, namely, “front-
page,” “news,” “tech,” “local,” “opinion,” “on-air,”
“misc,” “weather,” “health,” “living,” “business,”

Figure 1. Example msnbc web navigation data

T1: on-air misc misc misc on-air misc

T2: news sorts tech local sports sports

T3: bbs bbs bbs bbs bbs bbs

T4: frontpage frontpage sports news news local

T5: on-air weather weather weather sports

T6: on-air on-air on-air on-air tech bbs

T7: frontpage bbs bbs frontpage frontpage news

T8: frontpage frontpage frontpage frontpage frontpage bbs
T9: news news travel opinion opinion m sn-news

T10: frontpage business frontpage news news bbs

Table 2. Description of the msnbc dataset

Total Dataset

Number of users 989,818
Minimum session length 1
Maximum session length 500
Average number of visits per user 5.7
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“sports,” “summary,” “bbs” (bulletin board ser-
vice), “travel,” “msn-news,” and “msn-sports.”
Table 2 shows the characteristics of the dataset.

Each page category is represented by an in-
teger labels. For example, “frontpage” is coded
as 1, “news” as 2, “tech” as 3, etc. Each row
describes the hits of a single user. For example,
the fourth user hits “frontpage” twice, and the
second user hits “news” once and so on as shown
in Figure 1.

In the total dataset, the length of user sessions
ranges from 1 to 500 and the average length of
session is 5.7.

Description of the cti Dataset

The second data set, cti, is from a university Web
site log and was made available by the authors of
Mobasher (2004) and Zhang etal. (2005). The data
is based on a random collection of users visiting
university site for a 2-week period during the
month of April 2002. After data preprocessing,
the filtered data contains 13745 sessions and 683
pages. We further preprocessed cti dataset where
the root pages were considered in the page view
of a session. This preprocessing step resulted in
total of 16 categories namely, search, programs,
news, admissions, advising, courses, people, re-
search, resources, authenticate, cti, pdf, calendar,
shared, forums, and hyperlink. These page views
were given numeric labels as 1 for search, 2 for
programs and so on. Table 3 shows the complete
list of numeric coded Web pages.

Figure 2 shows the sample cti Web navigation
data. Each row describes the hits of a single user.
For example, the seventh user hits “research”
twice then “course” followed by “news” twice.
The session length in the dataset ranges from 2
to 68. Since comparing very long sessions with
small sessions would not be meaningful, hence
we considered only sessions of length between
3 and 7. Finally, we took 5915 user sessions for
our experimentation.
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Figure 2. Example cti web navigation data

news people

programs programs admissions programs courses

resources forums

COUrses Courses Courses courses

courses people

hyperlink news

reasearch research courses news news

authenticate cti programs cti cti

authenticate cti news

people admissions cti cti admissions admissions people people

Table 3. Number coding of Web pages for cti
dataset

Weh Page Number | Web Page Number
Name Coding Name Coding
Search 1 Resources 9
Programs 2 Authenticate | 10
News 3 cti 11
Admissions | 4 Pdf 12
Advising 5 Calendar 13
Courses 6 Shared 14
People 7 Forums 15
Research 8 Hyperlink 16

CLUSTERING OF WEB USAGE
DATA

Web personalization techniques are often based
on matching the current user’s profile against
clusters of similar profiles obtained by the sys-
tem over time from other users. Clustering user
transactions based on mined information from
access logs does not require explicit ratings or
interaction with users.

Inthis chapter, we used PAM, a standard clus-
tering algorithm that represents data in a vecto-
rial form and partitions the space into groups of
items that are close to each other based on cosine
similarity measure. PAM is also used here with

S®M, our proposed similarity measure with a
representation scheme that preserves sequence
information within a session.

Inthecaseof\Webtransactions,eachclusterrepre-
sentsagroup of transactionsthatare similar, based
onco-occurrence patterns of page categories. Let
2 ={p,, P, Py, P} bE the set of page categories,
tbeausersessionand e * where > *represents
the set of all sessions made up of sequences of
page categories.

Let D be the training da-
taset consisting of N user sessions, i.e.,
D={t, t,t,....t }. Eachusersession canbe repre-
sented intwo ways. Inthe vectorial representation,
t.=<f(p). f(p,), f(p,). ... , f(p,) > where each
f(p) can be formulated in three different ways.
f(pj) ¢{0,1} indicating the presence or absence of
j" page category in the i" user session, t.. Boolean
representation has been used in the literature
(Shahabi et al., 1997; Yan et al., 1996). If f(pj)
could represent the duration of time user spends
in the j" page category in the i""user session, then
user session can be vectorially formulated with
respect to the time spent. It has been commented
that time spent is not a good indicator of inter-
est (Konstan et al., 1997). f(pj) can be used to
represent the frequencies of page categories for
a user session. In this chapter, for experiments
with PAM using cosine measure, we used the
third approach.

In the sequence representation scheme, the
user session consisting of page categories, i.e.,
t € Y * is considered directly. We have used this
formulation in all the experiments where S$*M
similarity measure was considered.

Cosine similarity is a common vector based
similarity measure. This metric calculates the
angle of difference inthe direction of two vectors,
irrespective of their lengths. Cosine similarity
between two vectors, V, and V, is given by,

VeV,

7
MV, | )

SMV,V,) =
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Table 4. Sumof squared error for PAM with cosine
similarity measure

C1 Cc2 C3 C4
C1 0 0.85 0.155 0.889
c2 0.85 0 0.749 0.25
C3 0.155 | 0.749 | O 0.906
C4 0.889 | 0.25 0.906 0

Table 6. Comparison of clusters formed with the

two similarity measures

LD with cosine LD with $*M
measure measure

C1 4514 4.448

C2 4.938 4.62

C3 5.593 3.7

C4 4.92 3.908

ALD 4.9905 4.169

Pilot Experiments with PAM

We took 200 arbitrarily chosen Web transactions
from the msnbc dataset and performed the pilot
experiments. The sum of squared error is used to
find the optimal number of clusters in the PAM
clusteringtechnique. Tables4 and 5 showthe inter-
cluster distance between clusters obtained with
cosine and S*M similarity measures, respectively.
It is evident from the Tables that the inter-cluster
distance among clusters with PAM, the cosine
metric is better than the clusters obtained using
S*M metric.

As these clusters are composed of sessions
that are sequential in nature, the cost associated
with converting the sequences within a cluster
to the cluster representative must be minimum.
At the same time, the cost of converting the
sequences from two different clusters must be
high. We computed a well known measure of
the conversion cost of sequences, namely, the
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Table 5. Sum of squared error for PAM with S*M
similarity measure

C1 Cc2 C3 C4
C1 0 0.723 | 0.162 | 0.123
C2 0.723 | 0 0.749 | 0.79
C3 0.162 | 0.749 | O 0.044
C4 0.123 | 0.79 0.044 |0

Table 7. LD between cluster representatives ob-
tained using cosine measure

Cl |C2|C3 |C4

Cl |0 5 3 6

C2 |5 0 5 2

C3 |3 5 0 6

C4 |6 2 6 0

levensthein distance for each cluster. The average
levensthein distance reflects the goodness of the
clusters. Average Levenshtein distance (ALD) is
expressed as,

Cil

k zLD(tJ’ s

1
ALD ==Yk ®)
T

where, k is the total number of clusters, |Cj| is the
number of itemsetsin j"" clusterand LD(isthe lev-
ensthein distance between st element of j" cluster
to its corresponding cluster representative.

As can be seen from Table 6, the ALD for
the clusters formed with the S*M measure is less
than that computed for clusters formed with the
cosine measure. So, the user sessions within the
clusters formed based on SM have retained more
sequential information than those obtained by the
cosine measure.
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Table 8. LD between cluster representatives ob-
tained using SM measure

Cl | C2|C3 |C4

Cl1 |0 6 5 6

C2 |6 0 5 5

C3 |5 5 0 5

C4 |6 5 5 0

Table 10. LD between cluster representatives
obtained from SeqPAM

C1 c2 C3 C4
C1 0 6 5 5
c2 6 0 5 6
C3 5 5 0 5
C4 5 6 5 0

So far, we have looked at the intra-cluster LD
measure where S®M seems to perform better. The
quality of a cluster is also measured by how well
various clusters differ from each other and it is
usually denoted as inter-cluster distance.

Tables 7 and 8 show the LD measure across
cluster representatives formed using the two simi-
larity measures. Since we considered only user
sessions of length 6, the theoretical maximum
and minimum inter-cluster LD would be 6 and 0,
respectively. In Table 7, we find that a minimum
cost of 2 is required to convert a cluster repre-
sentative to another cluster representative (shown
in bold face in Table 7). Whereas, the minimum
cost needed for conversion across clusters is 5
with the S*M measure (see Table 8).

These results clearly point out the advantage
of using a measure such as S°M that preserves
order information for the pilot dataset.

Table 9. comparative results of PAM and SeqPAM
on pilot dataset

LD using PAM LD using
Cosine S$M SeqPAM
C1 4514 4,448 3.427
C2 4,938 4.62 3.493
C3 5.593 3.7 4.04
C4 4.92 3.908 3.78
ALD 4.9905 4.169 3.685

Table 11. LD using SeqgPAM and PAM on cti
dataset

LD using
LD using SeqPAM PAM
C1l 3.412 3.972
C2 3.125 3.784
C3 4.014 4.235
C4 3.762 3.984
C5 3.521 4.024
C6 3.834 4.173
ALD 4.361 4.028

SeqPAM: PARTITION AROUND
MEDOID FOR SEQUENTIAL DATA

From the pilot results presented in the previous
section, it has been observed that the PAM parti-
tioning algorithm performed better for Web usage
datawhensequential information was considered.
With this inspiration, we modified the standard
PAM algorithm and named it SeqPAM, partition
around medoid algorithm for sequential data.

Description of SeqPAM Algorithm

Consider a dataset D with N item sets, D = {t,,
t,....t, }whereeacht=<p,p,,....,p,> Wherg P,
follows p,, p, follows p,, and so on. Our objective
is to cluster these item sets into k distinct clusters.
The sequence clustering problem is to identify
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the underlying clusters based on a given sample
of sequences. Because of the variability of the
lengths of sequences and lack of good distance
metrics for comparing sequences, the sequence
clustering problem is non-trivial.

SegPAM differsfrom PAM intwo aspects. The
first difference is in the medoid selection process
and the second aspect is in the formulation of ob-
jective function. The optimization function used
in SeqPAM accounts for sequence information.
The algorithm constructs similarity matrix using
S*M function.

The initial medoid selection process starts by
randomly selecting the first medoid. The first me-
doid guidesthe process of selecting the remaining
k-1 medoids. The remaining medoids are selected
such thatthe similarity value between any two ad-
jacent medoids is approximately equal to 1/(k—1).
The process of selection from guidance of the first
medoid ensures that the difference between the
similarity values of the first and the k' medoid is
maximal (close to one). These k medoids form the

Algorithm 1. Algorithm for SeqPAM

Input:
D = Dataset of N item sets
k = number of desired clusters
T = Tolerance on total benefit
(stopping criterion)
Output:
Set of k clusters
Begin
Construct the similarity matrix
for the dataset D using S°M.
Select initial medoids.
repeat
Partition the dataset D
around k medoids.
Compute the total benefit.
for all Clusters
do
Compute the new cluster
resentatives.
end for
until the change in total benefit
is withinr
End
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initial representatives of k clusters. Each item set
from the dataset D is now assigned to the cluster
around its nearestmedoid. Thus, the entire dataset
is partitioned around k medoids.

The objective of SegPAM is to find clusters such
that they have maximal intra-cluster similarity
and minimal inter-cluster similarity. To ensure
this property, an optimization function called
total benefit (TB) is devised. Since the aim of
SeqPAM is to cluster sequential data, total benefit
is formulated using our S®M similarity metric.
Total benefit reflects the average intra-cluster
similarity with respect to the k medoids. Total
benefit is given by,

1& 1 IC;l N
TB==—->'$M(t, .t,) ©)

kj:llcjls:l b

A new set of cluster medoids is selected based

on the process of maximizing pairwise similarity
within the respective clusters. For each cluster,
pairwise similarity values among the members
of the cluster are computed and a new cluster
representative, t is chosen that has the maximal
average pairwise similarity as shown next.

ICil

t, =arg max{lcizsgl\/l(t;,tjs)} (10)

g, j | s=1

where, j =1, 2,...,|C J. |-

All the item sets in the dataset D are re-parti-
tioned around the new set of medoids. The total
benefit with respect to new set of medoids is com-
puted. The process of selection of new medoids
and re-partitioningis continued till the di®erence
in the successive total benefit values is within the
user specified tolerance value, 1. An outline of
SegPAM algorithm is given in Algorithm 1.

Pilot Experiments with SeqPAM
Experiments with SegPAM were conducted on

the pilot dataset consisting of 200 Web transac-
tions and the results are shown in Tables 9 and
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10. For the sake of comparison, results of PAM
with cosine and S*M measures are replicated in
Table 9 from Table 6. ALD values are also shown
for all the experiments in Table 9. The ALD ob-
tained with SegPAM (3.685) is better compared
to that obtained with cosine (4.9905) and S*M
(4.169) measures used with the PAM clustering
algorithm.

Minimum value for LD based in-
ter-cluster similarity using SeqPAM is 5
(see Table 10) whereas, for PAM with cosine
measure is 2. Hence, a better inter-cluster as
well as intra-cluster similarity is achieved using
SeqPAM over PAM with cosine measure. Also,
SegPAM results in better intra-cluster similarity
than PAM with S*M measure.

Thus, from the pilot experiments we can con-
clude that the new sequence clustering algorithm
SeqPAM is more suitable for sequential data such

Table 12. Inter-cluster LD with SeqPAM on cti
dataset

C1l
c2
C3
C4
C5

g | O |W |~ O
o oo | o o>
g |~ | »~M|jO 0| ®w
o | OO O
[ B e R A I A
o |0 |lo |0 | o | o

C6

Table 13. Inter-cluster LD with PAM on cti da-
taset

Cl|C2 |C3|C4 |C5|C6
Cl |0 2 3 6 5 3
c2 |2 0 4 2 6 3
C3 |3 4 0 5 2 4
C4 |6 2 5 0 6 5
Cs5 |5 6 2 6 0 6
c6 |3 3 4 5 6 0

as Web usage data. In the next subsection, we
report results on the larger msnbc dataset as well
as the cti dataset.

Experimental Results with SeqPAM
and PAM on cti Dataset

Experiments were conducted on the final pre-
processed cti dataset with SeqPAM and PAM
clustering algorithm. For the experimentation
purpose k was fixed to 6. Table 11 shows the ALD
(intra-cluster distance) using SeqPAM and PAM
clusteringalgorithms. Table shows the superiority
of SeqPAM over PAM. It can be observed that the
ALD value (intra-cluster distance) for SegPAM
was lower than that of PAM. That is, the cost as-
sociated in converting the sequence taken from
SegPAM cluster to its corresponding representa-
tive is less compared to that in PAM clusters. The
results point out that in SeqPAM the sequences
more similar with respect to the editing operation
are grouped together whereas in PAM this might
not have been possible.

Table 14. LD using SeqgPAM and PAM on msnbc
dataset

'5‘3152:\‘/? LD using PAM
Cl | 3265 3.201
c2 | 3532 3.919
C3 | 4952 4.672
c4 | 3905 4.012
cs | 3.997 4.619
C6 | 4.238 4.735
c7 | 4713 4.962
c8 | 4538 4.829
Co | 4681 4.124
C10 | 5293 4.892
ci1 | 3901 4.726
c12 | 4117 4721
ALD | 4.2685 4.4585
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LD measure across each cluster reflects the
inter-cluster distance. Tables 12 and 13 show the
LD (inter-cluster distance) measure with SegPAM
and PAM clustering algorithms on cti dataset. The
values in these Tables establish that sequences
which require more edit distance are placed in
different groups in the case of SeqPAM. In other
words, if we choose two sequences randomly from
two distinct clusters, the cost of converting one
to the other is very high in SeqPAM compared
to that in PAM. Randomly if two sequences are
picked from SeqPAM and PAM clusters there is
high chance that the costassociated in editing one
sequence to another is high for SegPAM cluster.

Experimental Results on msnbc
Dataset using SeqPAM and PAM
Clustering Algorithms

Allthe experiments (pilot, cti,and msnbc dataset)
were carried out on a 2.4 GHz, 256 MB RAM,
Pentium-1V machine running on Microsoft Win-
dows XP 2002 and the code was developed in
Java 1.4. Preprocessed msnbc dataset with 44,062

Table 15. Inter-cluster LD with SeqPAM

user sessions was given as input to SeqPAM. The
results are summarized in Tables 14 and 15. For
this larger datset, k was fixed at 12.

The ALD obtained onthe larger msnbc dataset
using SeqPAM clustering algorithm is 4.2685 as
shownin Table 14 and the inter-cluster levensthein
distances among the 12 clusters ranged from 4 to
6 (see Table 15). Both the values indicate that the
preprocessed as well as pilot dataset groupings
have preserved sequential information embedded
in the msnbc dataset.

As can be seen from the Table 14, the ALD
obtained with SegPAM is less than PAM (4.2685
< 4.4585) thus indicating that the intracluster dis-
tance for SeqgPAM is minimum. We also recorded
the LD for each cluster and observed that for
SeqPAM the LD value was less than that for PAM
(except for the 3 clusters out of the 12 clusters).
This figure indicates that in the SeqPAM cluster-
ing algorithm the cost of converting a sequence
to its cluster representative is less as compared to
PAM. Tables 15 and 16 show the LD (inter-cluster
distance) using SegPAM and PAM, respectively
for msnbc dataset. These values are indicators of

C1 C2 C3 C4 C5 C6 c7 C8 C9 C10 Cl1 | C12
C1 0 5 5 4 6 4 4 5 6 5 5 6
Cc2 5 0 6 6 4 4 4 5 6 6 4 5
C3 5 6 0 5 6 6 6 4 5 5 6 6
C4 4 6 5 0 5 4 6 4 4 5 6 6
C5 6 4 6 5 0 4 4 5 6 6 5 5
C6 4 4 6 4 4 0 5 5 6 6 6 5
c7 4 4 6 6 4 5 0 5 4 4 5 6
C8 5 5 4 4 5 5 5 0 6 5 5 6
C8 5 5 4 4 5 5 5 0 6 5 5 6
C9 6 6 5 4 6 6 4 6 0 6 6 5
C10 5 6 5 5 6 6 4 5 6 0 5 6
Ci1 5 4 6 6 5 6 5 5 6 5 0 4
Ci12 6 5 6 6 5 5 6 6 5 6 4 0
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Table 16. Inter-cluster LD with PAM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 cl1 C12
Cl 0 4 2 3 4 5 2 6 4 3 5 2
C2 4 0 6 5 5 5 2 4 5 4 5 5
C3 2 6 0 4 5 3 4 6 4 2 5 5
C4 3 5 4 0 4 5 2 3 5 2 4 6
C5 4 5 5 4 0 3 6 5 2 4 5 3
C6 5 5 3 5 3 0 4 6 5 2 3 6
C7 2 2 4 2 6 4 0 4 5 3 5 3
C8 6 4 6 3 5 6 4 0 4 4 5 3
C9 4 5 4 5 2 5 5 4 0 4 6 3
C10 3 4 2 2 4 2 3 4 4 0 4 5
cl1 5 5 5 4 5 3 5 5 6 4 0 6
C12 2 5 5 6 3 6 3 3 3 5 6 0
Table 17. Recommendation set
Cl|C2|C3|C4]|Ch C6 [C7 | C8 |C9 C10 | C11 | C12

frontpage | \/ V \/

news N y \/ J \

tech v J V

local N

opinion v V

on-air \ V \ V

misc \/ y J

weather N J

health y y

living v

business | V y

sports \ N

summary \ v y

bbs v oA V J V

travel R J

msn-news \ \ y

msn-sports N N v

distance between cluster representatives. The high
values obtained for LD indicate better clustering

result as compared to PAM.

Since the length of sequences being consid-
ered for experimentation from msnbc dataset is
6, the maximum value for inter-cluster distance

33



SeqPAM: A Sequence Clustering Algorithm for Web Personalization

(LD) can be 6. It can be clearly observed from
Tables 15 and 16 that for SegPAM we obtained
the value of 6 for 26 pairs of clusters whereas for
PAM it was observed only among 9 pairs. Thus,
these results indicate that the cost of converting
a sequence taken from two different clusters
formed in SeqgPAM is higher than those from the
clusters of PAM.

The previous results show that the clusters
formed in SeqPAM have high inter-cluster dis-
tance and low intra-cluster distance than those
formed in PAM.

The aim of this chapter is to suggest ways
of improving personalization using clustering
technique. To this end, we have come up with
a recommendation scheme wherein four most
frequent page categories within each cluster are
identified as shown in Table 17. From the Table, it
can be seen that if a new session falls within the
first cluster, then the following page categories
arerecommended for personalizing the user page:
“frontpage,” “news,” “health,” and “business.”
Table 17 shows the recommendation sets for all
the clusters formed using SeqPAM algorithm for
msnbc dataset.

CONCLUSION

Clustering is an important task in Web person-
alization. User sessions comprising Web pages
exhibitintrinsic sequential nature. We introduced
asimilarity measure for sequential datacalled S*M.
We compared the performance of the standard
clustering algorithm PAM with cosine as well
as S°M measures over a pilot dataset consisting
of 200 Web transactions. Results of the pilot
experiments established that using sequence
sensitive similarity measure such as S®M results
in better clusters. Cluster quality is measured
using a cluster validation index called, average
Levensthein distance (ALD). Based on the pilot
experiments, we devised SeqPAM, a modified
PAM algorithm for clustering sequential data.
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SegPAM differs from PAM in medoid selection
process and optimization criterion. Results on cti
and msnbc dataset were demonstrated to establish
the validity of SeqPAM clustering algorithm. A
simple personalization scheme based on clusters
obtained from SegPAM for msnbc dataset has
been formulated.

Although the number of clusters (k) has been
fixed in this work, optimal number of clusters can
be automatically determined based on the cluster
validity index proposed in the chapter. The Web
transaction data considered for all our experiments
had a fixed session length of 6 and so results need
to be replicated for various fixed session lengths.
Infuture, SegPAM algorithm needs to be general-
ized for clustering sequences of variable lengths.
Recommendation schemes for Web personaliza-
tion can be formulated by mining rules from the
sequence clusters determined by SeqPAM and
this needs to be investigated in future.
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ABSTRACT

XML is a rather verbose representation of semistructured data, which may require huge amounts of
storage space. Several summarized representations of XML data have been proposed, which can both
provide succinct information and be directly queried. Inthis chapter, we focus on compact representations
based on the extraction of association rules from XML datasets. In particular, we show how patterns
can be exploited to (possibly partially) answer queries, either when fast (and approximate) answers are
required, or when the actual dataset is not available; for example, it is currently unreachable. We focus
on (a) schema patterns, representing exact or approximate dataset constraints, (b) instance patterns,
which represent actual data summaries, and their use for answering queries.

INTRODUCTION posed as a standard way to represent, exchange,

and publish information on the Web, but its usage
The extensible markup language (XML) (World has recently spread to many other application
Wide Web Consortium, 1998) was initially pro- fields. To name but a few, XML is currently

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



used for publishing legacy data, for storing data
that cannot be represented with traditional data
models, and for ensuring interoperability among
software systems.

However, XML isarather verbose representa-
tion of data, which may require huge amounts of
storage space. We propose several summarized
representations of XML data, which can both
provide succinct information and be directly
queried. In particular, we propose patterns as ab-
stractrepresentations of the (exact or approximate)
constraints that hold the data, and their use for
(possibly partially) answering queries, either when
fast, though approximate, answers are required,
or when the actual dataset is not available; for
example, it is currently unreachable. In this last
case, the service of a “semantic” proxy, which
caches patterns instead of actual data pages, can
be provided.

In this chapter, we focus on (a) schema pat-
terns, representing exactly or approximately the
dataset constraints, and (b) instance patterns,
which represent, again exactly or approximately,
actual datasummaries. Our summarized represen-
tations are based on the extraction of association
rules from XML datasets, and queried by means
of the GSL graphical query language (Damiani,
Oliboni, Quintarelli, & Tanca, 2003).

Patterns can be exploited to provide inten-
sional query answering. An intensional answer
to a query substitutes the actual data answering
the query (the extensional answer) with a set of
properties characterizing them (Motro, 1989).
Thus, ourintensional answersare in general more
synthetic than the extensional ones, but usually
approximate. Applications of intensional query
answering become more and more useful as the
technology offersimproved means for information
handling; query optimization in large datasets,
decision support, and context based data sum-
marization are only the most important.

Approximate intensional answers may replace
the extensional ones whenever a short response
time is required, even to the cost of a controlled
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lack of precision. Furthermore, decision support
may take advantage of the inherently synthetic
nature of intensional answers. Consider, for ex-
ample, the query: What are the papers written by
John Doe? While an extensional answer, listing
all the papers, is in order in case further transac-
tional processing is required, an answer like 80%
of John Doe’s papers are about Data Mining may
be more interesting if a subsequent decision has
to be taken, as, for instance, the choice of John
Doe as a conference PC member.

Another interesting application domain is the
storage and query of patterns instead of data in
context-based data personalization for mobile
users. Here, data summarization and tailoring
are needed because of two main reasons: (a) the
need to keep information manageable, in order
for the user not to be confused by too much noise,
and (b) the frequent case that the mobile device
be a small one, like a palm computer or a cellular
phone, in which condition only a summary of the
information may be kept on board. In this case,
patterns are kept on the mobile device instead
of the actual data, and context-awareness can
be enforced by keeping on board only the pat-
terns which are relevant to the current situation.
Finally, extracted patterns may also be used to
provide an integrated representation of informa-
tion mined from different XML documents, in
order to answer queries by using all the available
information gathered from different (heteroge-
neous) data sources.

The chapteris organized as follows. In the next
section, the background is discussed. The Mined
Patterns: A New Approach to XML Intensional
Query Answering section introduces the type
of patterns we propose and describes how we
represent them in our graph-based language. In
the Using Patternsto Answer Queries subsection,
we propose an approach to provide intensional
answers to user queries. The Representing and
Querying Instance Patterns section discusses how
patterns are physically represented and queries
actually performed in this representation. The
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Experimental Results section shows some experi-
mental results on schema patterns and instance
patterns, while APrototype Tool section discusses
a prototype tool we have implemented. Finally,
conclusions and possible lines for future work
are presented.

BACKGROUND

In the recent years, the database research com-
munity has devoted significant efforts to the
design of XML query languages, which are both
expressive and intuitive. LOREL (Abiteboul,
Quass, McHugh, Widom, & Wiener, 1997) is
the first proposal of a query language to support
XML data querying. LOREL has a SQL-like
syntax and was originally developed for general
semistructured databases. It includes a mecha-
nism for type coercion and introduces the notion
of path expressions in the query composition
process. After this first attempt, the World Wide
Consortium (W3C) promoted the discussion on
a standard XML language that had in XML-QL
(Deutch, Fernandez, Florescu, Levy, & Suciu,
1998) the first initiative. However, XML-QL is a
quite verbose language because it is based on an
XML-like hierarchical organization of tags.
XPATH (World Wide Web Consortium, 1999)
isanon-XML language developed for specifying
only path expressions, that is, the description of
the paths that the desired portions have to sat-
isfy. XPATH has been extended by introducing
XQuery (World Wide Web Consortium, 2002),
a standard functional query language to process
XML data which mainly use FLWOR expres-
sions, nested to arbitrary depth to build queries.
The syntax of FLWOR expressions is similar to
select statements of SQL: For expressions are
used for iteration; the Let clause allows one to
bind variables; in the Where part, the conditions
on the documents to be retrieved are specified;
and the Return expression is used to generate the

result. Logical expressions and built-in functions
can be part of XQuery expressions.

At the same time, graphical, visual interfaces
were proposed, with the main aim to be intuitive
for naive users: XML-GL (Ceri, Comai, Damiani,
Fraternali, Paraboschi, & Tanca, 1999) is the first
proposal of visual interface for XQuery, which
has been revised and extended by XQBE (Braga,
Campi, & Ceri, 2005), a more intuitive interface
inspired by the query by example (QBE) (Elmasri
& Navathe, 1994) language. Itisbased on the use of
annotated trees for composing queries; such trees
are automatically mapped into XQuery expres-
sionsand processed by an XQuery engine. XQBE
includes most of the expressive power of XPath
expressionsand operators butis more limited than
XQuery, which is Turing-complete.

In this work, we represent both queries and
mined patterns by means of the common formal-
isms of GSL (Damiani et al., 2003), which is an
intuitive, graph-based query paradigm for semi-
structured data. GSL generalizes many features
of several languages proposed in the literature,
in which queries are graphical or based on pat-
terns. Furthermore, it has the expressive power
to represent the set of simple and more complex
queries we can effectively manage with our ap-
proach.

Many query engines have been proposed in
previouswork; someare listed onthe W3C website
(World Wide Web Consortium, 1998). Some ap-
proaches are based on ad-hoc XML native data-
bases, forexample, Berkeley DB XML (Sleepycat
Software, 2006); others store and encode XML
documents in relational databases, for example,
the Monet DB (Boncz, Flokstra, Grust, van Keu-
len, Manegold, Mullender, et al., 2006), while
otherenginesdirectly query the XML documents
without storing them on disk, for example, Saxon-
B8.4 (Kay, 2006). XML native databases allow
achieving high performance by means of ad-hoc
indices and structures for XML data. However,
XML indices are not efficient as relational indi-
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ces yet. Hence, currently the best performance is
provided by engines based onrelational databases,
for example, the Monet DB (Boncz et al., 2006),
because they can exploit the mature relational
data management infrastructure. Many XML
engines directly store entire XML documents in
memory, for example, Saxon-B8.4 (Kay, 2006).
This approach is more system independent, and
can directly query the XML documents without
permanently storing them on disk. However, it
is usually less efficient, because it accesses the
original XML documents, which are often larger
(more verbose) than the internal database repre-
sentation of the same information.

The problem of providing intensional answers
by means of integrity constraints has been ini-
tially addressed in Motro (1989) in the relational
databases context. In this work we extend the
approach to graph-based probabilistic patterns
and XML documents.

Inparticular, the summarized representations
we propose are based on the extraction of as-
sociation rules from XML datasets. Association
rules describe the co-occurrence of data items
in a large amount of collected data (Agrawal &
Srikant, 1994). Rules are usually represented as
implications in the form X = Y, where X and Y
are two arbitrary sets of data items, such that X
N Y=@. In our framework, a data item is a pair
(data-element,value), for example, (Author,Smith).

The quality of an association rule is usually
measured by means of support and confidence.
Support corresponds to the frequency of the set X
U 'Y in the dataset, while confidence corresponds

to the conditional probability of finding Y, having
sup(X wY)

sup(Y)
rule mining isawell-known problem, extensively
dealt with (see, e.g., Agrawal et al., 1994), and we
do not address it in this chapter.

Several works (Buneman, Davidson, Fan,
Hara, & Tan, 2001a; Buneman, Fan, Siméon, &
Weinstein, 2001b) address the problem of defin-

found X, andis given by .Association
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ing constraints for XML data. In Buneman et al.
(2001b), itisargued that, analogously totraditional
databases, XML data need a formal definition
of constraints, and an effort to define the most
important categories of constraints for XML data
isperformed. Inparticular, path constraints, keys,
and foreign keys are considered. Buneman et al.
(2001a) proposes a deeper analysis of the defini-
tion of absolute and relative keys and describes
a new key constraint language for XML, which
can handle keys with a complex structure.

In Grahne and Zhu (2002), adopting the key
definition proposed in Buneman et al. (2001b), a
technique is proposed for obtaining acompact set
ofkeysfroman XML document. Inparticular, only
a minimal set of keys is mined as representative
keys. To identify representative keys, two inter-
est measures similar to support and confidence
are associated to a key, and precise (confidence
= 100%) and valid (confidence > 95%) keys are
mined.

The discovery of functional dependencies in
XML documentsisstill an open problem. Arenas
and Libkin (2004) have devoted some efforts to
the definition of XML functional dependencies,
but, to the best of our knowledge, automatic ex-
traction of XML functional dependencies from
an XML corpus has not been addressed. On the
other hand, discovery of functional dependencies
from relational databases has been extensively
explored (e.g., Huhtala, Karkkainen, Porkka, &
Toivonen, 1999), but these techniques cannot be
straightforwardly applied to XML documents.

Besides constraintextraction, our work also ad-
dressesthe exploitation of the extracted knowledge
to provide approximate answers to XML queries.
Several structural and value indexing techniques
toimprove XML query execution time have been
proposed (Bonczetal.,2006; Chung, Min, & Shim,
2002; He & Yang, 2004; Kay, 2006; Qun, Lim, &
Ong, 2003). Our approach is different, since we
achieve efficiency by querying instance patterns,
which provide a summarized representation of
XML documentsinthe style of materialized views
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fordatawarehouses (Harinarayan, Rajaraman, &
Ullman, 1996), rather than traditional indexing
techniques. Hence, summarized representation
yieldsageneral-purpose, portable, and condensed
representation of XML documents than can be
easily exploited by any XML query engine. Dif-
ferently from materialized views, our summarized
representation may leave out some (less frequent)
information.

A Graphical Language to Present
and Query XML Documents

Onceruleextraction hasbeen performed by using
dataminingalgorithms, anintuitive and effective
language is needed both to represent and query
the extracted knowledge.

We propose the graph-based XML query
language GSL (Damiani et al., 2003) with the
twofold aim to seamlessly represent both sum-
marized information (i.e., patterns) and queries
over it. Graphical query expressions in GSL,
which should allow non-expert users to approach
our method more easily, can be easily translated
into XQuery expressions, in a similar way as in
Augurusa, Braga, Campi, and Ceri (2003) and
Braga et al. (2005).

Inthisway, XML documents, queries, and pat-
ternsadmitauniform representation. Indeed, most
of the well known graph based models proposed
inthe past lend themselves well to represent XML

data by graphs where nodes denote either objects
(i.e., abstract entities) or values (i.e., primitive
values), and edges represent relationships between
them. See, for example, OEM (Papakonstantinou,
Garcia-Molina, & Widom, 1995), UnQL (Bun-
emann, Davidson, Hillebrand, & Suciu, 1996),
GraphLog (Consens & Mendelzon, 1990), and
G-Log (Paredaens, Peelman, & Tanca, 1995).
Accordingly, we represent an XML document
by a labeled tree* (Damiani et al., 2003), where
the nodes have a tag, a type label, which indicates
whether the node is the root, an element, text, or
attribute, and a content label, which can assume
as value a PCDATA or an undefined value (1)
for nonterminals.

Edges represent the “containment” relation-
ship between differentitems ofa XML document,
thus edges do not have names. Moreover, since in
this work we are interested in finding relationships
amongelementary values of XML documents, and
such values may occur either as textual content
of leaf elements or as attribute values, we do not
distinguish between the two kinds of nodes and
do not include edge labels in the figures.

The tree-based representation (with the con-
sidered labels for nodes and edges) of (a portion
of) a well-formed XML document, which will
be used as a running example in the rest of the
chapter, ispictorially represented in Figure 1. The
document reports information about Conference
Proceedings, based on a slight variation of the

Figure 1. A simplified labeled tree of a portion of the XML Sigmod Record document
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SIGMOD Record XML document (Merialdo,
2003) (e.g., information about abstracts has been
added). Attributes and elementsare characterized
by empty circles, whereas the textual content of
elements and the value of attributes is reported as
ablack-filled circle (denoted as content node in the
following). The generality of this model accom-
modates the representation of XML documents
as well as information originally represented by
means of a different data model.

In general, a GSL query is represented by a
graph,whichisusedtoidentify the subgraphs (i.e.,
the portions of asemistructured document) where
the queryistobeapplied. Queriesare represented
as graphs with colored nodes and edges. A query
is characterized by two colors: thin (t) specifies
positive conditions, while thick (T) indicates a
desired situation in the resulting instance. We
represent the t color by thin lines and the T color
by thick lines. A GSL query can also express the
aggregate function COUNT, grouping criterions,
and the possibility to extract the best & answers
with respect to a countervalue.

Informally, an instance (i.e., the tree based
representation of an XML document) satisfies
a query if, whenever the thin part of the query
matches (i.e., itis similar to) a part of the instance,
the whole query matches it too. Note that, at the
node level, matching corresponds to the well-
known concept of unification (Staples & Robinson,
1986). At the graph level, the notion of similarity
used in matching is formally defined later.

Query semantics is given as a set of pairs of
instances (I,1”), where I’ is the result of applying
the query to I. In other words, a GSL query is ap-
plied to an instance that normally does not satisfy
it, and query application consists in a change to
that instance, so that the query is satisfied by the
resulting instance.

For example, the query in Figure 2(a) requires
finding the articles with “XML” among the index
terms. We point out that the T part of the graph
(thick lines) is used to add to the original XML
document an element with tag result (for example,
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a sub-element of the root node) that contains a
copy?of the subtrees similartothetpart (thinline)
of the pattern. The query in Figure 2(b) contains
an aggregate function and requires counting the
articles written by the author Paul Smith.

In order to apply queries to XML trees, we
need to define a notion of similarity between
graphs, to compare trees (or more in general
graphs) representing queriestotreesrepresenting
document instances. We formalize the concept
of similarity between graphs through bisimula-
tion, a relation between graphs that was initially
introduced in Park (1980) and Milner (1980) for
studying concurrent languages semantics.

We say that two labeled graphs G and G, are
functionally bisimilar (Go—2—G)) or that there
is an embedding of G into G, if: (1) b is a total
binary relationonGo x G; (2) two nodes belonging
to relation b have exactly the same type and the
same label; (3) if two nodes n , n, are in relation b,
then every edge having n as an endpoint should
findasacounterpartacorresponding edge withn,
as an endpoint; (4) the relation b is a function.

Figure 2. Two GLS queries: (a) to find the articles
with “XML” among the index terms and (b) to
count the articles written by Paul Smith

result result
article article COUNT
index terms authors
term author
@ @
XML Paul Smith
(a) (b)



Using Mined Patterns for XML Query Answering

MINED PATTERNS: A NEW
APPROACH TO XML INTENSIONAL
QUERY ANSWERING

The notion of pattern introduced in this chapter
yields a general-purpose and summarized repre-
sentation of XML documents that can be easily
exploited to provide answers to XML queries. In
this section, we first classify the set of possible
patterns and introduce a graph-based represen-
tation of the pattern concept. Then, we describe
the classes of queries we can manage with our
approach. Finally, we explain how to provide
intensional answers to user queries.

Pattern Based Representation of
XML Datasets

Patternsare classified intwo orthogonal ways. The
first type of classification refers to the accuracy
with which the pattern represents the dataset.

1. An exact pattern expresses a property
which holds on any instance of the dataset.
Thus exact patterns represent constraints.
For instance, in this chapter, we show how
to represent functional dependencies be-
tween schema elements by means of schema
patterns. An example of exact pattern is 4
conference name and edition determines
the conference location.

2. A probabilistic pattern holds only on a
given (large) fraction of the instances in the
dataset. Itisaweak constraintonthe dataset,
characterized by a quality index describing
its reliability. An example of a probabilistic
pattern is With a confidence 0.5 the author
John Doe is likely to have the word XML
as one of the index terms of his articles.

The second classification dimension corre-
sponds to the different levels of detail (i.e., sum-
marization level) of the represented information.

In particular:

. Schema patterns are expressed on the
structure of the dataset. They are used to
describe general properties of the schema,
which apply to all instances. A schema pat-
tern may be derived as an abstraction of a
set of association rules.

. Domain patternsexpress constraintsonthe
values of the instances of adataset. Examples
are domain constraints, which restrict the
admissible values of a given element.

. Instance patterns are expressed on the
instances of the dataset. In particular, in
this chapter, they are used to summarize the
content of a dataset by means of the most
relevant (frequent) association rules hold-
ing on the dataset. We use them to derive
an approximate answer to a query, without
requiring actually access of the dataset to
compute the answer. The answer may con-
tain a subset or a superset of the required
information, depending on the form of the
query and of the considered instance pat-
tern.

In this chapter, we focus on data summaries
represented by means of probabilistic schema
and instance patterns. We apply the graphical
model for XML documents introduced in Dami-
ani et al. (2003) to describe summarized XML
information.

Representing Patterns

Inthis section, we represent instance and schema
patterns by means of GSL colored trees.

Instance Patterns

Definition 1. A (probabilistic) instance pattern
is a pair <G,<c,s>>, such that:
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. G is arooted GSL tree.

e Thethin () and thick (T) parts of G are not
empty and the root r is thin.

. Each leaf of G is a content node with a
defined content label (i.e., a value).

. <c,s> are the confidence and the support
of the instance pattern; 0<c<1 and 0<s<I.
Note that when ¢ = 1 the instance pattern
is exact and ¢ may be omitted.

For example, the instance pattern in Figure 3
represents an association rule. In the graphical
representation, we place confidence and support

Figure 3. An instance pattern: with confidence 0.5
and support 0.9, the author Paul Smith is likely to
have the XML term among the index terms.

<0.5,0.9>
article
authors index terms
author term
Paul Smith XML

Figure 4. A more complex instance pattern: with
a confidence 0.2 and a support 0.85, the author
Paul Smith is likely to have a publication at the
VLDB 2000 Conference.

<(.2,0.85>
proceedingsPage
articles d/ confcrcn{:e
amcle ¢ confY cm-

Vl DB
Paul Smith author % authors
20()0
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of the instance pattern near the graph root. A
more complex instance pattern expressing an
association rule with more than one path in the
T part of the graph is depicted in Figure 4. Note
that here the confidence is associated to the con-
junction of the two conditions in the T part (i.e.,
the consequent) of the instance pattern.

It is also interesting to combine instance pat-
terns and represent them in a compact way (i.e.,
by aunique GSL tree). For example, in Figure 5(a),
we show a representation of the instance pattern
whichsummarizestwo patternsrelating an author
toconferences where he/she published apaper. The
new instance pattern contains two paths in the T
part (consequent), graphically linked by an arc,
with each confidence reported on the leaf (note
the difference with Figure 4, reporting instead a
conjunctive condition in the T part).

When considering instance patterns whose T
part is composed by a unique path, we call index
a colored tree summarizing a set of instance
patterns which differ only in the content node of
the T path. In Figure 5(b), we extend the pattern
in Figure 5(a) and represent an index summariz-
ing the relationships between the author Paul
Smith and the conferences where he published
a paper.

In general, instance patterns can have more
than one path both in the t and in the T part.
This means that multiple elements or attributes
are considered simultaneously when extracting
association rules; we recall that multiple paths in
the same part of the graphical association rule are
read as a conjunction of conditions.

Schema Patterns

As introduced earlier, schema patterns are a
special case of constraints and, in particular,
lend themselves to represent the notion of func-
tional dependency as it is used in the relational
databases context. A schema pattern represents a
type of implication that differs from a functional
dependency fortwo mainreasons: (1) itis inferred
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Figure 5. (a) A disjunctive instance pattern; (b) an index that summarizes some similar instance pat-

terns

(_4 proceedingsPage
articles (P’]'

som[erence
article
0" @<03.082>

authors () Pods

I Vidh

author ()

Paul Smith (a)

from a dataset (and not given at the schema level)
and (2) it can be probabilistic. We now discuss
how to represent probabilistic schema patterns
by means of GSL rules.

A Bisimilar Rule Base (BRB) R is a set of instance
patterns{<4,,<c,s >>,...,.<4 ,<c s >>}suchthat
Vi, je{L...n} the instance patterns 4, and 4,
representing association rules, deprived of their
content nodes, are functional bisimilar.

A probabilistic schema pattern P can be de-
rived from a BRB {4,<c,,s>>,...,<4 <c s >>}
(we say that the BRB constructs P) and is repre-
sented by a GSL graph. For example, if the BRB
is composed by instance patterns with the form
reported in Figure 6, then the corresponding

Figure 6. An instance pattern

r() <c.s>

Item A Item B

value A, value B,

proceedingsPage
articles {'{
conference
article ()
<02#20.8
authors () Pods

<0.3,0,82>
Vidb
;[ Sigmod
author ()

Paul Smith l (b)

schema pattern — “for each element Item A if
an element B exists, then it must be unique” — is
represented as in Figure 7.

The weight p near the transaction root r is
the probabilistic schema pattern weight which
is a quality index that describes the reliability of
the probabilistic schema pattern. It is computed
as a function of the supports and confidences of
the instance patterns which contribute to P as
follows.

Let {<4,<c,s>>,..,<4 <c s >>} be a BRB.
The weight p is given by p = Z ci x Si, where

ie{l,...n} .
¢, and s, are confidence and support of associa-

tion rule A4..

Figure 7. A probabilistic schema pattern

p

ItemA () .

Tiem B (Ol Tiem B
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Note that when p = 1, the schema pattern is
exact and p may be omitted. The graphical form
of a schema pattern represents the “implication”
whose antecedent is the path rooted in the node
r without any outgoing T edge (in Figure 7, con-
dition for each element Item A child of r), and
whose consequent is composed by two identi-
cal paths connected by a “=" labeled edge. The
consequent is used to represent the functional
dependency property (in Figure 6, if two paths
with a node Item B child of r exist, they must be
the same path). For example, the probabilistic
schema pattern of Figure 8 is extracted from the
BRB relating author names to index terms. Note
that in probabilistic schema patterns, the content
label ofleafnodes isundefined (i.e., no black filled
nodes are represented).

When all leaf elements of a probabilistic
schemapattern, bothinthetand T part, are single-
valued elements, then 0 < p < = 1. This general
property is proved by Theorem 2 below. In the
special case in which all the instance patterns in
the BRB have confidence ¢, = 1 and the sum of
all association rule supports is 1, then p = 1 and
the schema pattern becomes exact, as asserted by
Theorem 1. Inparticular, itrepresentsafunctional
dependency between the corresponding elements.
The proofs of both theoremsare provided in Bara-
lis, Garza, Quintarelli, and Tanca (2006).

Figure 8. A probabilistic schema pattern
0,70

O .
index terms
inde(ftennscf

term (O ) term

article

author
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Theorem 1

Lete,,...,e, be the k different single-valued leaf
elementsofaprobabiIisticschemapatternP(G{t}in-
cludesthefirstlleafelements andGmthelaStk—l leaf
elements), and R = {<4,<c,,$>>,....<4 <C s >>}
the rule base determining P. Then, for all
<4,<c,s>>€R,c=1lifandonlyif p=1

Theorem 2

Lete,....e, be the k different single-valued leaf
elements of a probabilistic schema pattern P
(G, includes the first / leaf elements and G, the
last &-/ leaf elements), and R = {<4,,<c,,5,>>,...
<4 _<c ;s >>}therulebaseassociatedto P. Then,

O<p< =1

Classification of Very Simple
Queries

In this section, we classify the general forms
of the query types we can effectively manage
with our approach, which are called very simple
queries (VSQ).

More complex queries can be dealt with by
means of query decomposition. In this case, the
query answering process consists of several steps:
acomplex query is firstdecomposed, possibly par-
tially, into very simple queries; then, intermediate,
but fast, results yielded by the very simple queries
on patterns are collected; finally, these partial
results are appropriately integrated to provide
the final answer to the original complex query.
Hence, our summarized representation, similar
to a traditional database management system
(DBMS) index, may be exploited to compute (a
portion of) aquery result. Thistechnique israther
effective, for instance, with counting subqueries,
over which our method is particularly efficient.
Note that if some portions of a complex query
cannot be translated into very simple queries, we
may directly query the real datasets for those por-
tions while retaining the fast answering method
for the rest of the query.
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Select Queries

Queries in this class select information satisfy-
ing simple or complex conditions on the value of
content nodes. The class can be further special-
ized as follows:

. Queries imposing a restriction on the value
of the content nodes (see Figure 2(a) for an
example of this kind of query).

. Querieswith AND conditions onthe content
nodes (see the lefthand side graph of Figure
9).

. Queries with OR conditions on the content
nodes (see the righthand side graph of Figure
9).

Counting Queries

An example of a GSL counting query is in Figure
2(b), where the articles written by Paul Smith are
counted. Toanswer this query, we use an instance
pattern whose thin part matches the thin part
of the query, and obtain as an answer sup/conf
(where sup and conf are support and confidence
of the instance pattern used to answer the query).
More specifically, to count the items satisfying
a condition on a content node, we use the equal-

ity conf(4 = B) = sup(4 = B)/sup(4), where 4
= B is an association rule. For example, in the
SIGMOD Record XML document, we can count
the different root instances (e.g., articles) having
XML as an index term. We can use an associa-
tion rule 4 = B having the pair <Term, XML>
in the body, thus the number of articles is given
by sup(4) = sup(4 = B)lconf (4 = B).

Counting and Grouping Queries

They are used for expressing some grouping cri-
teria and then for counting the number of items
satisfying a property in each group. A general
GSL representation of a counting and grouping
query is position in Figure 10(a), where we want
to count the number of Item1 for each ltem2.

Top k Queries

This kind of query selects the best & answers
satisfying a counting condition. Queries in this
class can be seen as GSL counting and grouping
queries with a TOP K thick node. See Figure
10(b) for the general GSL form. In this case, the
answer contains the & groups with the highest
support value.

Figure 9. The GSL representation of select queries with AND and OR conditions

Result
root
Iteml
HemR Item1
Ttem2
vall val?

Result
root
ItemR
Item2
.l val2
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Figure 10. The GSL representation of (a) a counting and grouping query and (b) a top k query

result
aggregation
tem|1 COUNT
Ttem2
(a)

Using Patterns to Answer Queries

We now show the rationale behind our proposal of
using patterns for intensional answers. Consider
the instance pattern in Figure 5(a) specifying
that with a confidence of 0.5, the author Paul
Smith published a paper in the VLDB Confer-
ence Proceedings and with a confidence 0.3 he
published in the PODS Conference Proceedings.
If we consider the query in Figure 11(a), asking
for all proceedings pages of Paul Smith, we can
use the instance pattern of Figure 5(a) to answer
that, with a confidence of 0.5 (i.e., 50% of Paul
Smith’s publications), Paul Smith published in
the VLDB Conference (the query matches with

result
TOPK

group by
tem] COUNT
Ttem2

(b)

each path in the thin part of the instance pattern
in Figure 5(a)), and with a confidence 0.3, he
published in the PODS Conference Proceedings.
If we consider the index in Figure 5(b) (reporting
the conferences where Paul Smith published),
we can still provide a partial but more complete
answer to the query in Figure 11(a), by saying that
with a confidence of 0.5, Paul Smith published in
the VLDB Conference, with a confidence of 0.2
in the SIGMOD Conference, and so forth. The
answer may be partial because instance patterns
are extracted, enforcing support and confidence
thresholds.

Consider nowthe queryin Figure 11(b), asking
for information about articles with the keyword

Figure 11. Two GSL queries: (a) to find information on the author Paul Smith; (b) to find information

about the article with XML in the index terms

Result

proceedingsPage
articles
authors author

article (g—-O*'O—-.
Paul Smith

(a)
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XML among the index terms. If we use the in-
stance pattern of Figure 3, a (partial) answer is
that the author Paul Smith published on the XML
topic (note that here the query matches the thick
part of the instance pattern in Figure 3).

In the first case, where the query matches the
thin part of the instance pattern, we obtain an
answer that has the meaning of an implication.
In the second case, where the query matches the
thick part of the instance pattern, the answer is a
set of items, each with its own reliability value.

Consider now a more complex query (Figure
12), asking for conferences where articles written
by Paul Smith on the XML or the XQuery topic
have been published; here a disjoint condition,

Figure 12. A GSL complex query with AND and
OR conditions

result
article
authors index
g conference:
author (f term
O ® @
Pauyl Smith XML XQUERY

Figure 13. Two GSL queries with an AND condition

which is graphically represented by an arc, is
required between the two terms. The query an-
swering process first decomposes the query into
the simple GSL queries in Figure 13, each one
representing an AND condition; the result of the
global query is the union of the answers to the
two simple queries in Figure 13. To provide an
intensional answer to these queries, we have to
consider three-item instance patterns similar to
them, that is, patterns with two items about the
author Paul Smith and the XML (or XQuery) term
in the antecedent and one item in the consequent
of the related association rules.

I no three-item patterns have been mined, it
is possible to introduce a further approximation
in the result, by using two-item instance patterns
(e.g., instance patterns with the antecedent de-
scribing either articles written by Paul Smith or
articlescontaining XML astermandaconference
name as consequent) and estimating the answer
of the query as the intersection of the two-item
patterns similar to a part of the query.

Mined schema patterns can be used to enlarge
the set of instance patterns that can be used to
answeragivenuser’squery. Consider forexample
the query in Figure 14(a) asking for articles
published on the LNCS series and suppose the
schema pattern in Figure 14(b), stating that the
conference name univocally determinesthe series
where the articles will be published, has been ex-

result
result
article
article
authors ihcton farms
conference authors index terma
conference
author term
suthor (f term
@ @
Paul Smith XML €] [ ]
Paul Smith XQuery
(a) (b)
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tracted from the dataset. Note that the thick part
(consequent) of the schema pattern is similar to
the thin part of the GSL query. Then, if itis know
that the proceedings of a conference (e.g., ICDT)
are published on the LNCS series, then the index
relating that conference with other information
can be used to provide an approximate answer.
Figure 15 shows an example of such an index.
Since schemapatternsare extracted from datasets,
conferences with LNCS proceedings are known.
Furthermore, the BRB to determine a schema
pattern has been mined. Hence, instance patterns
relating conferences to series can be queried.

In the sequel, we give the formal definition of
the semantics of queries when applied to patterns.
Intuitively, applying selection queries to instance
patterns has the effect of producing other patterns
(see Definition 2) which correspond to (a fraction
of) the actual data instances, thus representing a
summarized description of the documents result-
ing from the query.

Definition 2. Given a class 1 query Q =
<<N,E,r>,Col> (N o= @) and a set of instance
patterns G = {<G,<c,,s>>,...,<G_<c s >>}the
semantics of the application of Q to G (named S,.)
is as follows:

Figure 14. (a) A GSL query, (b) a schema pattern

Using Mined Patterns for XML Query Answering

Figure 15. A GSL index

Applying a class 2 query to a set of instance
patterns has the effect of producing the numeric
value (see Definition 3) support/confidence of an
instance pattern whose thin part matches the thin
part of the query:

Definition 3. Given a class 2 query Q =
<<N,E,r>,Col> (NAggr # 0, N, = @) and a set
of instance patterns G = {<G, <c,s>>,...,
<G,.<c,,s,>>}, the semantics of the application
of Q to G (hamed SQ) is as follows:

So(G)=Zsuch that Jiefl...ndsuch that

Qi —>Gi{t}

Applying a class 3 query to a set of instance
patterns has the effect of producing a set of pairs
(see Definition 4), where each pair is composed
by the numeric value support/confidence of an

result
1
article article
Ao conference O =
series( mappe( ) series
LNCS
(a) (b)
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instance pattern whose thin part matches the thin
part of the query, and the nodes of such a pattern
matching the grouping nodes of the query.

Definition 4. Given a class 3 query Q =
<<N,E,r>Col> (NAggrgé g,

Ng, :{(aggregation, sub —element _ of ,L)})
andasetofinstance patterns G ={<G <c,s>>,...,
<G, .<c s >>}, the semantics of the application
of Q to G (hamed SQ) is as follows:

w0={f2x)- 1)

if Q) \Esr—2>Gj{tyand je{l,..,n}

Where the set Xj  Gj is such that X;—>-Y,
withY < Q such that Vy e Y there exists an edge
(t,group_by, y).

A class 4 query is a counting and grouping
query with an extra condition imposing an up-
per bound on the cardinality of the answer set.
Therefore, the semantic is as follows:

Definition 5. Given a class 4 que-
ry Q = <<N,E,r>Col> (NAggr;ﬁ g, Ng, =
{(top_k,sub—element_of , L)}) and a set
of instance patterns G = {<G,<c,s>>,...,
<G, <c,,s,>>}, the semantics of the application
of Q to G (hamed SQ) is as follows:

Let S, (G) = {<§x1><%x.>} be the

semantics of the corresponding counting and

grouping query G. We order in descending order
. Si
the set Sy (G) w.r.t. the numeric value — and ob-

Ci

tain a set {<E X 1><2 X '|>}and then we
C1 S, C

sort the set w.r.t. the —' descending, and give as

Cii
aresulttheﬁrstkpairs{<s—ll, X '1>,...,<S—'k, X k>}
C1 Ck

(withk <1).

The result of the application of queries to
patterns instead of documents is correct by
construction. It follows from the fact that each
<A,,<c,,s>> has been extracted from G, and the
confidence ¢, means that the number of subtrees
of G matching A, given the number of subtrees
matching Ay is ¢,. Moreover, for queries with
the countaggregation function, the semantics has
been based on the fact that given an association

sup(X =)
rule X =Y thensup(X) = conf (X =)
REPRESENTING AND QUERYING
INSTANCE PATTERNS

In this section, we describe how queries, speci-
fied by means of our graphical representation, are
actually applied to XML documents and instance
patterns. We first discuss how instance patterns
are generated. Next, we discuss the physical
representation of the generated patterns. Finally,
we discuss how queries are implemented on the
actual physical data representations.

Generating Instance Patterns

The known algorithms for mining association
rules (e.g., Agrawal et al., 1994) consider a col-
lection of transactions, each containing a set of
items. In the XML context, a transaction is a col-
lection of pairs (data-element, value). To define
the conceptoftransaction, we selectatransaction
root, which is the lowest common ancestor of all
the nodes involved in the considered transaction,
withinthe labeled graph representing the structure
of the considered XML document. Each subtree
ofthe transactionroot defines a transaction. Data-
element is the label of an element with a content,
rooted in the transaction root and specified as a
complete path from the transaction root to the
element. Value is the content of the considered
element. For example, in our experiments on the
DBLP XML document (Ley, 2005), eachtransac-
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tion is associated to an article (transaction root),
and includes all the elements that characterize it
(authors, title, year, conference name, etc.).

The (data-elementyvalue) representation for
data items yields a single item when the XML
element contains a single data value. Instead,
when the XML element has a textual content, in
principle, each word of the text, coupled with the
element label, may yield a data item. In practice,
before transformation into data items, textual
elementsare subjectto stopword elimination (i.e.,
elimination of very frequent and “noisy” words
such as articles) and stemming (i.e., reduction of
words to their semantic stem) (Porter, 1980). Both
operations are commonly performed in textual
data management.

Physical Representation of Instance
Patterns

Two different physical representations may be
used for instance patterns:

. Rule-based physical representation.
Each instance pattern corresponds to one
association rule; that is, there is a one-to-
one mapping between instance patternsand
association rules.

. Itemset-based physical representation.
The set of instance patterns is stored as
a set of itemsets, which are sets of items.
Itemsets are the building blocks from which
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association rules are generated (Agrawal et
al., 1994). In particular, an arbitrary asso-
ciation rule r:A—B, is generated by means
of itemsets A and AUB, where support(r)
= support(AuB), and confidence(r) =
support(AuB)/support(A).

Since each itemset may contribute to the
generation of several rules, the cardinality of the
itemset set is always smaller than the cardinality
of the corresponding association rule set. Hence,
the itemset-based physical representation provides
a more compact representation of the instance
patterns.

Both representations may be stored eitherina
XML document (DTDs in Figure 16 and Figure
18, for rules and itemsets respectively), or in a
relational database (schemata in Figure 17 and
Figure 19). Any XQuery engine can directly be
used on the XML document representation of
patterns. Hence, both the original document and
its pattern representation can be queried by using
the same engine and the same query language
(e.g., XQuery). Furthermore, when needed, both
XML documents can be used in the same query
(e.g., the pattern set representation is used to solve
a subquery and the original XML document is
used in the outer part of the query). On the other
hand, the relational representation is stored in
a relational database and queried by means of
SQL. In this case, the pattern representation and
the original XML document cannot be used in

Figure 16. DTD associated to the XML document for the rule-based physical representation
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<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT RuleSet (AssociationRule+)>

<IELEMENT AssociationRule (RuleBody, RuleHead*)>

<IATTLIST AssociationRule NumberltemHead CDATA #REQUIRED
NumberltemBody CDATA #REQUIRED
support CDATA #REQUIRED
confidence CDATA #REQUIRED>

<IELEMENT RuleBody (item+)>

<IELEMENT RuleHead (item+)>

<IELEMENT Item (#PCDATA)>

<IATTLIST Item DataElement CDATA #REQUIRED>
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the same query (they are stored by means of two
different approaches).

To efficiently query instance patterns, indepen-
dently of the selected representation, the indexing
techniques provided by the query engine of choice
may be exploited.

Physical Representation of Queries
on Instance Patterns

Queries over XML documents expressed in
GSL find a straightforward implementation in
XQuery (Braga et al., 2005). Figure 20(a) shows
the XQuery corresponding to select GSL queries.
The implementation of the same GSL query ona
set of instance patterns is less immediate. Such
implementation must take into account on the
one hand, the physical representation of pat-
terns (itemset-based or rule-based), and, on the
other hand, the support system, that is, XML or
relational.

To describe how query implementation takes
place, we consider select queries as a represen-

tative class of very simple queries. Consider the
general form of select queries “select value of
element Item1 where element Item = ‘val’ . Fig-
ure 20 shows the XQuery and SQL expressions
needed to provide the answer to this query on
instance patterns.

In particular, Figure 20(b) and Figure 20(c)
show the XQuery and SQL expressions on the
itemset-based physical representations of the
instance patterns. The general transformation
process is independent of the instance pattern
physical representation. Hence, the XQuery and
SQL expressionsonthe rule-based representation
are similar.

The transformation process for select queries
produces a query that selects instance patterns
which:

1. Correlate Item and Item1.

2. Satisfy the selection predicate Item =*“val”.
Thispredicate istransformed intoa predicate
selecting the items satisfying the condition
Item[@ DataElement="Item1”]="val”.

Figure 17. Schema of the relational tables for the rule-based physical representation

Rules(IDRule, Support, Confidence, Number ltem Head, Number Item Body)
ItemRules(IDRule, DataElement, Value, Head_Body)

Figure 18. DTD associated to the XML document for the itemset-based physical representation

<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT ItemsetSet(ltemset+)>

<IELEMENT Itemset (Item+)>

<IATTLIST Itemset Numberltem CDATA #REQUIRED
support CDATA #REQUIRED>

<IELEMENT ltem (#PCDATA)>

<IATTLIST Item DataElement CDATA #REQUIRED>

Figure 19. Schema of the relational tables for the itemset-based physical representation

Itemsets(IDltemset, Support, Number Item)
Itemltemsets(IDItemset, DataElement, Value)
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3. Yieldasresult set the values of items where
DataElement="ltem1”.

All the very simple queries described earlier
can be implemented by applying similar trans-
formations.

Long Patterns Support Estimation

The proposed physical representationsare general
and allow representing patterns with an arbitrary
number of items. However, if all patterns are
extracted without enforcing any threshold on the
maximum length, the number of patterns rapidly
grows and the size of the pattern representation
becomes similar to that of the original XML
document. Hence, access may become inefficient.
In this work, we propose to mine only patterns
with at most two items to reduce the size of the
instance pattern set. These patterns may also be
exploited to give approximate answers to queries
requiring longer patterns (e.g., queriesinthe Using
Patterns to Answer Queries subsection).

Pavlov, Mannila, and Smyth (2001) proposed
an approach to estimate the support of an arbi-
trary itemset X (i.e., a query Q in their context)
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by using a probabilistic model generated on the
complete set of T-frequent itemsets (i.e., itemsets
with support higher than T without enforcing any
maximum length constraint). Differently from
Pavlov et al. (2001), we need to estimate the sup-
port of an arbitrary itemset X (i.e., pattern) by
using only T-frequent itemsets with at most two
items. We propose asimple approach based on the
downward closure property of itemsets (Agrawal
etal., 1994).

From the downward closure property of item-
sets, the support sup(X) of a generic itemset X is
lower than or equal to the support sup(Y) of all
the itemsets Y — X. Hence:

sup(X)g( min sup(l v J)

1Ld)1eX, JeX 1£]

where | and Jare items included in X, | U Jis the
itemset obtained by joining I and J,andsup(l v J)
is its support. The support of a pattern X with
more than two items may be estimated as:

EstimatedSup(X) = min

(1L,)leX, JeX 1=

EstimatedSup is an upper bound for the value

of X’s support. Experimental evaluation of this

approximation (see the Experimental Results

section) shows that it provides a fairly accurate
estimation of the actual support of X.

Jsup(l uld)

Figure 20. Select query on content node and its rewritings

return $res

return $res

WHERE I11.IDItemset=112.1DItemset

AND I12.DataElement="ltem1’;

for $res in distinct-values(for $r in doc("document.xml™)//root
where $r/ltem="val"
return $r/ltem1)

(a) Query on the original XML dataset

for $res in distinct-values(for $r in doc("itemsetSet.xml")/ItemsetSet/Itemset
where $r/ltem[@DataElement="Item"]="val"
return $r/ltem[@DataElement="Item1"])

(b) Query on the itemset-based physical representation (XML)

SELECT DISTINCT 112.Value FROM lItemltemsets 111, Itemltemsets 112

AND I11.DataElement="Item' AND II1.Value='val'

(c) Query on the itemset-based physical representation (SQL)
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Wealso consideredadifferentapproach, based
on the independence assumption of items. Given
the support of all items (i.e., patterns of length
one), the support of a generic pattern X can be
estimated by computing the joint probability of
all items composing it (i.e., as the product of the
supports of all the items in X). Experimental
results show that this approach is less accurate
than the former.

EXPERIMENTAL RESULTS

A set of experiments on real and synthetic XML
datasets were performed to evaluate efficiency
and effectiveness of schemaand instance patterns.
We performed our experiments on schema and
instance patterns including at most two items. In
particular, the itemset-based physical representa-
tionincludes itemsets with one or two items, while
the rule-based physical representation includes
both one-element rules (i.e., with an empty head)
and two-element rules (one in the body and one
in the head). The experiments show that pat-
terns composed by at most two items yield quite
accurate answers for the classes of very simple
queries introduced in this chapter.

Table 1 describesthe XML datasets considered
in our experiments. DBLP is a real-life dataset,
downloaded from Ley (2005), where instance pat-
terns have been extracted by defining the article
element as transaction root. TPC-H is a suite of
synthetic datasets generated from the TPC-H
relational tables saved in XML format (TPC-H,

Table 1. Datasets characteristics

2005). In this case, the record element has been
defined as transaction root.

The experiments have been performed on a
3.2GHzPentium IV system with2GB RAM, run-
ning Debian Linux 3.1. To validate executiontime
oninstance patterns, queries have been performed
by means of three well-known XQuery engines:
the Monet DB (Boncz et al., 2006), Saxon-B8.4
(Kay, 2006), and Berkeley DB XML (Sleepycat
Software, 2006). For itemset and association rule
extraction, we use a publicly available version of
Apriori (Agrawal et al., 1994) downloaded from
Goethals and Zaki (2004).

Schema Patterns

In this section, we analyze the characteristics of
the probabilistic schematathat have been extracted
from the TPC-H datasets (Table 1) and discuss
appropriate values of the p quality index. In this
case, where the main issue consists in identify-
ing all schema patterns, instance patterns have
been extracted without enforcing any support
threshold.

On all the considered XML datasets (part,
orders, lineitem), exact schema patterns (p = 1)
have beenfound. The exactschema patterns high-
light the already known functional dependencies
between primary keys and all the other elements,
and between candidate keys and all the other
elements. However, also previously unknown
functional dependencies have been found.

Some of the previously unknown exactschema
patterns are the following:

Dataset Number of Transactions File size (MB) Description
Part-250 50000 15MB Part table in XML (0.25 scale factor)
Orders-250 375000 129MB Order table in XML (0.25 scale factor)
Lineitem-250 1499579 773MB Lineitem table in XML (0.25 scale factor)
DBLP 618145 259MB DBLP XML records (year 2005)
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brand — manufacturer
order-clerk — ship-priority
order-customer — ship-priority
order-priority — ship-priority
lineitem-ship-date — linestatus

All these patterns highlight functional depen-
dencies in the data, which may be exploited to
optimize query computation. Also probabilistic
schema patterns with a high value of p (p > 0.95)
have been obtained:

Probabilistic schema pattern p

lineitem-receipt-date — linestatus 0.996

lineitem-returnflag — linestatus 0.987

orderkey — linestatus 0.987

lineitem-commit-date — linestatus | 0.981

Order-date — order-status 0.978

These probabilistic schema patterns highlight
“quasifunctional” dependencies, that is, depen-
dencies which hold with very few exceptions.
Experimental results highlight that “useful”
schema patterns are characterized by a very high
value of the p quality index (p > 0.9).

Instance Patterns

In this section, we analyze the effectiveness of
instance patterns as a summarized representation
of an XML dataset. In particular, we considered
(1) the compression factor of the instance pattern
representation, (2) the query execution time and
accuracy of the returned result set, and (3) the
scalability of the approach.

Compression Factor

To analyze the compression provided by the XML
instance pattern representation, we compared the
size of the original XML dataset with the size of
the XML pattern set when varying the minimum
support threshold. We considered both XML
rule-based and XML itemset-based physical
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representations. Since XML is a rather verbose
information representation format, the size of the
relational tables for instance patterns (not reported
here) is obviously significantly smaller than that
of the corresponding XML pattern representa-
tion. To analyze the compression provided by
the instance pattern representation, we define the
compression factor as:

(size(original dataset) - size(instance pattern set))
/ size(original dataset)

Figure 21(a) compares the size (in MB) of the
rule and itemset-based XML physical represen-
tations to the size of the original order TPC-H
dataset when varying the (absolute) minimum
support threshold. It also reports the correspond-
ing compression factor. Figure 21(b) plots the
number of extracted rules and itemsets for the
same support configurations. The y-axis of both
diagrams is in log scale.

The instance pattern representation is more
compact than the original dataset for most
minimum support thresholds. Since the number
of rules grows more rapidly than the number
of itemsets, for very low support values (e.g.,
below 5 in the orders TPC-H dataset), only the
itemset-based physical representation provides
a compact representation of the original dataset
(positive compression factor value). Similar results
(not reported here) have been obtained for all the
considered datasets.

Query Execution Time

We compared query execution on instance pat-
terns and on the original dataset by considering
execution time, as well as recall and precision of
the obtained result. Recall measures the fraction of
datainthe complete query resultwhichisactually
returned by querying instance patterns:

Recall = |Sip NS,
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Figure 21. TPC-H order dataset: effect of the minimum support threshold on the size of the instance
pattern set
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Table 2. Benchmarking queries

Query Class Dataset Query

Q1 select query orders-250 select the values of the order status element where customer key
is equal 370.

Q2 count query orders-250 count the number of orders for customer 370.

Q3 select, group, and count query | DBLP For each conference count how many of the accepted papers have
been written by “NameX SurnameX”.

where S is the dataset returned by querying the
original dataset, while S, 'is the dataset obtained
by queryinginstance patterns. Precision measures
the fraction of the returned data which correctly
matches the query:

Precision=1[S,_ NS |/]S, |
ip ip

Both measures take values in the range
[096,100%]. Instance patterns are characterized
by 100% precision for very simple queries, while
recall depends on the support threshold the in-
stance patterns have been generated with.

Our experiments cover some significant kinds
of very simple queries (select and count queries).
Theconsidered queriesarereportedin Table 2. We

have performed the queries on the XML datasets
(original XML document and XML pattern rep-
resentation) by means of three XQuery engines:
Saxon-B8.4 (Kay, 2006), the Monet DB (Boncz
et al., 2006), and Berkeley DB XML (Sleepycat
Software, 2006). However, since the Monet DB
query engine has achieved the best overall perfor-
mance, in this section, we only report its results.
Comparable results have been obtained for the
other engines. Queries on the relational pattern
representation have been performed by means
of the Oracle 9i relational database. Figure 22
through Figure 24 show execution time and recall
for the queries reported in Table 2. The values of
executiontime have been represented inlog scale.
Allqueries have been performed without defining
indices on the corresponding datasets.
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The recall value for instance patterns strongly
depends on the frequency of the searched data.
Only frequent events (i.e., events with frequency
above the minimum supportthreshold inthe origi-
nal dataset) are represented into the instance pat-
tern set. Hence, infrequent pairs (element,value)
cannot be retrieved. In particular, if an element
domainissmall, highrecall may be achieved when
instance patternsare extracted with adequate sup-
port thresholds (e.g., query Q1 in Figure 22). Dif-
ferently, when the element domain is large, recall
is on average low. Consider, for example, query
Q3 (Figure 24). By querying instance patterns, the
system can only retrieve conferences frequently
associated with (author,”’NameX SurnameX”).
Hence, the conferences where lessthan minimum
support articles written by “NameX SurnameX”
have been published cannot be retrieved.

Execution time depends both on query type
and exploited indices. Current experiments have
been performed without indexing XML docu-
ments and patterns. The effect of indexing on
the execution time is discussed in the Scalability
subsection. We first consider a select query (Ql)
where the predicate selectivity is around 0.16%.
Resultsarereported in Figure 22. Since no indices
are defined, one full scan of the dataset is needed.
The XQuery engine scansthe original datasetand
selects data satisfying the constraints. Similarly,
when instance patterns are used, one full scan of
the pattern set is needed. Hence, file size has a
significant impact on query execution time, while
predicate selectivity only slightly affects it. In
Figure 22, the performance of the query onthere-
lational representation of instance patternsisalso
reported. Since this relational representation still
provides a significant performance improvement
with respect to state of the art XQuery engines,
this query may outperform the same query on the
corresponding XML representation by an order
of magnitude. Similar results have been obtained
for all considered queries.

To answer select and count queries (Q2) on
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the original dataset, the XQuery engine scans all
dataand counts the instances satisfying the selec-
tion predicate. When the instance pattern set is
considered, each instance provides, by means of
itssupportvalue, the precomputation of the query
result. Hence, itis possible to answer the query by
retrieving the first instance pattern satisfying the
selection predicate. In the worst case, when the
first useful pattern is near the end of the instance
pattern set, the XQuery engine may need a full
scan of the set (see Figure 23).

Group and count query (Q3) performance is
reported in Figure 24. Queries on the original
dataset require a full scan, followed by group-
ing and counting on each group. When instance
patterns are used, the XQuery engine selects one
instance pattern for each group by performing a
full scan of the instance pattern set and exploits
the support value to answer the query. Since no
grouping operation is needed (each instance pat-
tern already represents a group with its cardinal-
ity), the contribution of the full scan operation
dominates the execution time.

Scalability

To evaluate the scalability of the proposed ap-
proach with respect to the size of the original
dataset, we exploited the TPC-H orders XML file.
In particular, a set of order XML files has been
generated by varying the scale factor parameter of
the dbgen code (TPC-H, 2005). The order XML
file size ranges from SMB (scale factor 0.01) to
5GB (scale factor 10). Rulesand itemsets have been
extracted with minimum support threshold 5.

Scalability experiments have been performed
on (@) non-indexed XML documents and (b) in-
dexed XML documents. We report performance
results for the Monet DB (the most efficient and
scalable) and for Berkeley DB XML (the only one
implementing indices).

Figure 25 reports the execution time for the
Monet DB and Berkeley DB XML. We consid-
ered query Q2 (see Table 2) as a representative
example.
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Figure 22. Q1: Select query
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Figure 23. Q2: Select and count query
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Figure 24. Q3: Group by query
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representation allows us to perform queries that
could not be completed on the original (not sum-
marized) XML document. Hence, by accepting
a slight approximation in the completeness of
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the query answer, our approach allows us to
extend the query power of XML query engines.
Furthermore, on average the XML itemset-based
physical representation yields an 85% reduction
in query execution time.

Since Berkeley DB XML requires more
memory than the Monet DB, it was not possible
toperformthe same query onoriginal XML docu-
ments larger than 500MB (scale factor 1) on our
workstation. However, by appropriately trimming
the support threshold, the size of the summarized
XML file may always be kept lower than 400MB,
even when the original XML document is 5GB.
In this case, also Berkeley DB XML may be
exploited to query summarized data.

We have analyzed the effect of indices on
query execution time by using Berkeley DB
XML (BDBXML). Performance is reported
in Figure 25(b). Appropriate indices improve
query performance on both the original XML
document and its instance pattern representa-
tions. The comparison of query performance on
the indexed original XML document and on its
non-indexed summarized representation shows
that our representation is always more effective
than indices in reducing execution time.
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Long Patterns Support Estimation

We performed experiments to evaluate the ac-
curacy of the support estimation formula for
patterns with more than two items (EstimatedSup)
proposed earlier in the Long Patterns Support
Estimation subsection. In particular, we evalu-
ated on the TPC-H dataset the number of patterns
of length N for which the support estimated by
EstimatedSup corresponds to the real support of
the pattern. We used the following formula to
estimate the number of errors:

# of wrong estimations
# of frequent patterns of length N

error =

We exploited the set of two-item frequent
patterns to estimate the support of all frequent
patterns of length three. Figure 26 shows the er-
ror behavior when varying the minimum support
threshold.

Globally, the average number of incorrect
estimations is about 19%. Hence, by using only
patterns with two items, accurate answers can
be obtained also for counting queries including
more than two elements. We also measured the
average difference between actual and estimated
supports when the estimate is not correct (i.e.,

Figure 25. Execution time on the TPC-H order dataset when varying the scale factor
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actual support#EstimatedSup). In this case, on
average, the estimated support is about twice the
actual support.

A PROTOTYPE TOOL

Wehavebuiltafirst prototype environment imple-
mented in Java to demonstrate the effectiveness
of our approach. It is basically formed by two
components, used to extract instance patternsfrom
XML documents, and by a graphical interface
which allows the user to pose very simple queries
and to obtain an approximate answer. The first
component visualizes the DTD of an XML docu-
ment in a graph-based representation. The user
chooses the elements (the transaction root and all
the other elements) to be included inthe extraction
process of instance patterns by indicating also
where stemming, stopwords, and discretization
procedures are to be applied. The native XML
document is then prepared for processing by the
Apriori algorithm, and instance and schema pat-
terns are mined. The second component stores
the output of the miner into an Oracle database
or in an XML document by using the physical
representations discussed earlier.

The graphical interface supports the user in
querying the extracted knowledge by writing

very simple queries. The system automatically
composes the corresponding SQL queries to be
applied to the MySQL database of patterns, or the
XML queries to be applied to the XML pattern
physical representation.

CONCLUSION AND FUTURE WORK

In this chapter, we have proposed a graph-based
formalism for specifying patterns on XML docu-
ments, and discussed how to exploit patterns to
provide intensional answers to user queries.
Experimental results show both the effectiveness
of schema patterns in highlighting the schema
properties of XML documents, and the efficiency
of instance patternsinanswering queries. Instance
patterns provide a summarized representation of
XML documents which allowed us to overcome
currentlimitations of current XML query engines
on the size of queried XML documents.
Asanon-goingwork, we are considering exten-
sions of our language to deal with more complex
queries and patterns (e.g., containing negative
information and multiple paths both in the thin
and thick part). We are also formalizing query
rewriting rules to seamlessly perform queries on
the different instance pattern representations.

Figure 26. Number of estimation errors when varying the minimum support threshold
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ENDNOTES

! Note that XML documentsare here tree-like
structures (and not generic graphs) because,
following the so-called “literal semantics”,
we do not interpret referencing attributes as
pointers.

2 We recall that we use references formalisms

in this chapter. Thus, since arcs can only

represent containment, the result tag con-
tains a copy of the required information.
N, represents aggregate nodes.

N, represents grouping nodes.
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ABSTRACT

In this chapter, we consider the problem of constrained clustering of documents. We focus on documents
that present some form of structural information, in which prior knowledge is provided. Such structured
data can guide the algorithm to a better clustering model. We consider the existence of a particular
form of information to be clustered: textual documents that present a logical structure represented in
XML format. Based on this consideration, we present algorithms that take advantage of XML metadata
(structural information), thus improving the quality of the generated clustering models. This chapter also
addresses the problem of inconsistent constraints and defines algorithms that eliminate inconsistencies,
also based on the existence of structural information associated to the XML document collection.

INTRODUCTION community. This problem can be stated as follows:

given aset of objects X and some prior knowledge
The problem of semisupervised clustering (SSC) aboutthese objects, the clustering algorithm must
hasbeenattracting alot of attention inthe research produce a partition of X guided by this prior

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
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knowledge. According to Grira, Crucianu, and
Boujemaa (2004), there are two approaches for
semisupervised clustering: distance-based and
constraint-based. In distance-based semisuper-
vised clustering, the prior knowledge about the
data is used to modify the distance metric or
the objective function in order to make distant
objects farther and to make close objects closer
(Chang & Yeung, 2004; Xing, Ng, Jordan, &
Russell, 2002). In constraint-based semisuper-
vised clustering, the prior knowledge is used to
guide the clustering algorithm to a solution that
reflects the user needs; this prior knowledge is
usually in the form of must-link constraints and
cannot-link constraints defined on the objects to
be clustered (Basu, Banerjee, & Mooney, 2002,
2004; Wagstaff & Cardie, 2000). A must-link
constraint ML(o,, oj) states that objects o, and 0,
must be in the same cluster, whereas a cannot-
link constraint CL (0, 0, states that o, and o, must
be put in separate clusters. There are also hybrid
approaches, which try both to learn a metric and
to force the algorithm to obey the user-provided
constraints (Basu, Bilenko, & Mooney, 2004;
Bilenko, Basu, & Mooney, 2004).

Mostsemisupervised clustering algorithmsare
extensions of the well-known K-Means partitional
clusteringalgorithm (MacQueen, 1967), although
there are also approaches for hierarchical algo-
rithms (Davidson & Ravi, 2005b). Experimental
results show that the quality of the clustering
models produced by these algorithms increases
with the amount of provided prior knowledge.
Nevertheless, despite the huge success of the
semisupervised approach for clustering in recent
years, there are still some open problems, espe-
cially when it comes to clustering of semistruc-
tured documents. Below, we summarize some of
these problems.

. Associated to the characteristic of using
external information, there is a first prob-
lem with current semisupervised clustering
algorithms: they assume that the user is sup-
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posedto provide asignificantamount of prior
knowledgetoallowthealgorithmto produce
a clustering model of a reasonable quality.
However, in complex application domains
(like textual document clustering), the user
has to provide an amount of constraints that
reachesthe hundreds. Certainly, thisisnota
practical scenario. Usually, the user does not
want (or is not able) to provide such a large
amount of prior knowledge, particularly in
an online system. Therefore, a first open
problem in semisupervised clustering is to
define approaches to reduce the amount of
necessary constraints to be provided by the
user.

. Another issue that we identified in current
semisupervised clustering algorithmsisthat
they are not prepared to take advantage of
metadata. Thus, they require the provided
constraints to be in the form ML (o, o)) or
CL(o, oj), where o, and o, are two objects
in the collection to be clustered. However,
assumingthatthereisstructural information
associated with the collection of objects,
the constraints could also be defined at
such a level of abstraction. In other words,
it should be possible for the user to define
constraints in which the component objects
are extracted from the metadata associated
with the collection.

In addition, the amount of document col-
lections associated to some form of structural
information, particularly in XML (Bray, Paoli, &
Sperberg-McQueen, 2000), is growing at a fast
rate. The idea of the Semantic Web, for example,
in which the Internet can be automatically navi-
gated by software agents, assumes that data in
this environment are in XML format. Another
domainwhere textual documents are increasingly
growing is in bioinformatics. Huge databases of
textual information about proteins and amino
acids, along with repositories of technical ar-
ticles, have annotations or metadata information
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represented in XML. Frequently, these databases
also present metadata in the form of ontologies
and taxonomies (e.g., the Gene Ontology and the
Medical Subjects Headings). Furthermore, several
existing documentcollectionsare being converted
to XML format (Chu, 2000). Considering that the
semisupervised clustering task is going to be used
to organize these XML document repositories,
the possibility of using structural information to
guide or restrict the clustering process cannot be
ignored. Hence, the problem of howto incorporate
structural information (coming from metadata) in
the clustering process is highly relevant.

We take asastarting point existing algorithms
for semisupervised clustering documents. We
present a constrained semisupervised clustering
approach for XML documents, and we deal with
the following main concern: how can a user take
advantage of structural information related to a
collection of XML documents in order to define
constraints to be used in the clustering of these
documents? The mission of this chapter is to
discuss in detail the following aspects:

e To show how to extend the possibilities
of the user to define constraints over the
objects to be clustered by defining a repre-
sentation of XML documents that enables
this user to specify constraints over the
structural information of the documents.
The representation we adopt is relevant to
several domains of applications that work
with semistructured textual documents in
general, and text-centric XML documents
in particular.

e To define ways of using the same structural
XML information to expand the set of con-
straints defined by the user; this minimizes
the overload on the user side with respect to
the amount of prior knowledge that he/she
must provide to the system in order to obtain
a clustering model of reasonable quality.

e Another goal we have in this chapter it to
describe ways of dealing with an inconsis-

tent set of constraints, in which there are
the constraints ML(o,, oj) and CL(oj, oj),
for some pair of objects 0 and 0. We show
that this problem is of practical interest and
propose some solutions for it.

This chapter is organized as follows. We first
describe some preliminary information, give
some definitions, and describe related work. In
the second section, we detail our approach for
semisupervised clustering of XML documents.
In the following section, we describe some issues
we think are possible avenues of future research
ontheapplication of semisupervised clusteringto
structural information. Finally, inthe last section,
we give some concluding remarks.

BACKGROUND

In this section, we describe related work. We di-
vide this description according to several aspects
that we explore in this chapter. In Section 2.1, we
provide some definitions about the terminology
we use throughout the chapter. In Section 2.2,
we describe some constraint-based algorithms
for SSC in the literature. We also discuss some
problems raised when the set of constraints pro-
vided to a semisupervised clustering algorithm is
inconsistent. In Section 2.3, we finally. In Section
2.4,we describe attemptsinthe literature toassign
a weight to each user-provided constraint.

Terminology

We use the letters r, s, t, and so forth to denote
constraints. We use d; and d, to denote documents
in a collection. Finally, we use v,V V, Vg, and
so on to refer to the values of a multivalued at-
tribute att,.

We define the centroid of a cluster of docu-
ments as the vector representative of such cluster.

Given a cluster C, its centroid, denoted by u(C),
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is the sum of all the vectors corresponding to the
documents within C.

We use ML(o, oj) to denote a must-link con-
straint between objects o, 0. Analogously, we
use CL(o, oj) to denote a must-link constraint
between objects o, 0,

We say that a constraint r refers to a pair of
documents d; and d, whenever they are used in
the definition of the unordered pair correspond-
ing to r. In other words, the constraint r refers to
documents d, and d, if either r = ML (0, 0) or r =
CL(o, oj). Analogously, we say that constraint r
is referred by both d, and dj.

Constraint Based Algorithms for
SSC

An inconsistent set of constraints is character-
ized by the (implicit or explicit) existence of one
or more constraints (r1, r2), where we have rl =
ML, dj) and r2 = CL(d, dj). In Section 2.2.1,
we present two SSC algorithms in the literature
and describe how the existence of inconsistency
can prevent them from finding a good clustering
model. After that, in Section 2.2.2, we discuss the
problems that these algorithms address when the
set of constraints is inconsistent.

Itis important to note that the SSC algorithms
we describe in this section are extensions of clas-
sical K-Means (MacQueen, 1967). In K-Means,
the main goal is to define K centroids (one for
each cluster) by locally optimizing an objective
function.

COP-KMeans and PC-KMeans

Arepresentative algorithm inthe constraint based
approach to SSC is COP-KMeans (Wagstaff,
Cardie, Rogers, & Schréedl, 2001). Thisalgorithm
is a variant of classical K-Means. It incorporates
previous knowledge (in the form of constraints)
to the clustering process. In its initialization step,
COP-KMeans selects seeds (initial centroids)
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randomly. However, as each seed is selected, the
constraintsreferringtothis seedare respected (not
violated) by the algorithm. In other words, given
aseed o, all the objects o,, such that there exists a
constraint in the form ML(o,, 0), are allocated to
the same cluster as o.In addition, these objects o,
cannot be assigned as the centroids of new clus-
ters. After the initialization phase, COP-KMeans
iteratively runs the two following steps:

e Assignment of each object 0 to the cluster
C, such that Mo is the closer centroid to 0,
and no constraint (be it a must-link or a
cannot-link) is violated.

. Updating of the centroid of each cluster C::

=2 %

xeC;

It is relevant to note the inability of COP-
KMeans to deal with inconsistent information.
When the set of constraints provided is incon-
sistent, this algorithm simply stops running and
reports that it was unable to produce a clustering
model.

In Basu et al. (2004), the PC-KMeans algo-
rithm is presented. This algorithm is another
extension of K-Means that considers must-link
and cannot-link constraints. Like Kim and Lee
(2002) and Xing et al. (2002), the authors of PC-
KMeans also use pair-wise constraints to train
the distance metric. In PC-KMeans, the seed
initialization occurs in two phases. First, the set
R of user provided constraints is augmented to
produce the set Closure(R). This is done by ap-
plying the following steps:

1. Add all the must-link constraints in R to
Closure(R).

2. If constraints ML(d, dj) and ML(dJ., d,)are
in R, then add the constraint ML(d,, d,) to
Closure(R).

3. If constraints ML(d,, dj) and CL(dJ., d,) are
in R, then add the constraint CL(d, d,) to
Closure(R).
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4. Repeat Steps 2 and 3 until there are no
more constraints to be added to the set
Closure(R).

From the steps above, we can see that PC-
KMeans computes the transitive closure of the set
of user-provided constraints. Afteraugmenting the
set R of user-provided constraints, PC-KMeans
proceeds to the second phase in the initializa-
tion. In this phase, the algorithm forms several
partitions by applying the following rule: objects
that participate in a must-link constraint are put
in the same partition. These partitions are then
used to compute the initial centroids. The cen-
troids are computed by interpreting the objects
as vectors and by computing the average vector
of the objects in each partition. Hence, instead
of selecting the seeds in a random way (as the
COP-KMeansalgorithm does), PC-KMeans uses
the user-provided constraints to select good seeds
for the initialization.

The advantage of applying this procedure of
transitive closure isthat the amount of constraints
that are passed as input to the SSC algorithm is
greater than the amount provided by the user.
This is a good thing, since quality of the cluster-
ing results of a SSC algorithm improve as the
amountof constraints providedtoitalsoincreases.
Indeed, in Basu et al. (2004), the authors of PC-
KMeans show through empirical experiments
that PC-KMeans generates clustering models
that are much better than COP-KMeans. One
of their conclusions is that this improvement is
due to the initialization procedure adopted by
PC-KMeans, which augments the user-provided
set of constraints by applying the transitive clo-
sure. This conclusion is in conformity with the
fact that partitional clustering algorithms (like
K-Means and its variants) are very dependent on
the initial seeds.

Inconsistent Sets of Constraints

From the above discussion, we can see that both
SCOP-KMeansand PC-KMeansassume the user-
provided constraints are consistent. However, in
practical situations and for several reasons, the
constraints provided by the user can be incon-
sistent. In the particular case of PC-KMeans, the
application of the transitive closure procedure is
only effective when the input set of constraints
is consistent. Consequently, the initialization
procedure of PC-KMeans only works if the
user-provided constraints are consistent. If these
constraintsare not consistent, the use of the transi-
tive closure operation in the initialization process
will generate a new set of constraints even more
inconsistent, and the improvement in clustering
quality would certainly not be achieved. This
drawback of PC-KMeans naturally raises the fol-
lowing question: can inconsistent constraints be
used ina SSC task, in such a way that the results
are better when compared to the situationinwhich
no constraints are used? This is one of the main
topics in this chapter, and in the third section, we
describe our approach to solve this problem.

Anotheraspect thatwe consider inthis chapter
is how to use weights assigned to the constraints
to resolve possible inconsistencies. In Bezerra,
Xexéo, and Mattoso (2006), we propose a semisu-
pervised clustering algorithm that work on XML
documents, MAC-KMeans. Like COP-KMeans
and PC-KMeans, our algorithm also assumes
that user-provided constraints are consistent. In
fact, this is a general assumption in the field of
SSC. In Section 3.3, we move in the direction of
removing such assumption by proposing some
algorithms to remove inconsistency in the set of
user-provided constraints before passing it to our
SSC algorithm.
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Defining Constraints Beyond
Document-Level

Most works on semisupervised constrained
document clustering consider only one type of
constraint, the document-level constraints. A
document-level constraint is defined over two
documents and states that they must be put in
the same or in different clusters. The algorithms
COP-KMeans and SP-KMeans (see Section 2.2)
are examples of algorithms that process docu-
ment-level constraints.

However, it has been recognized by some au-
thors that it is desirable to allow the user to define
constraints in more expressive forms, not only at
the document-level. This certainly gives the user
more flexibility to state its clustering needs. One
of the works that follow this direction is Davidson
and Ravi (2005a), in which two new types of
constraints are defined, the e-constraint and the
d-constraint. The e-constraint enforces that each
instance x inacluster must have another instancey
in the same cluster such that the distance between
xandy is at most €. The 8-constraint enforces that
every instance in a cluster must be at a distance
of at least § from every instance in every other
cluster. Both constraints specify background
information on the minimum distance between
the clusters/objects.

In Klein, Kamvar, and Manning (2002), the
authors present a method for clustering in the
presence of supervisory information, given as
pairwise instance constraints. Their approach is
to allow instance-level constraints to have space-
level inductive implications. They are able to
successfully incorporate constraints for a wide
range of datasets. They also show that their method
improves on COP-KMeans. Although this work
doesnotdefine anew type of constraint, they use a
techniquetoinfer space-level constraints fromthe
user-provided constraints. We also use inference
of constraints in our work, but using information
in the structure (metadata) of the collection of
XML documents to be clustered.
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In Section 3.1, we describe our approach to en-
able the user to define constraints at the metadata
level; that is, the user can define constraints using
information found in the schema of the collection
of XML documents. What we do is to define a
representation for XML documents that enables
the user to define must-link and cannot-link con-
straints both in the document level (as is already
possible insome works) and inthe metadata level.
We also devise a method to automatically infer
document-level constraints from user-provided
metadata-level constraints.

Defining Weights for Constraints

Mostworks on SSC assume that the user-provided
constraints have equal importance, or that the
user can also provide weights for each constraint
she/he defines. Constraints that are considered to
be equally important are called hard constraints.
On the other hand, there are also other works that
consider soft constraints, that is, constraints as-
signed toaweight. Thisweight correspondsto the
degree of reliability in this constraint. Therefore,
while a hard constraint has the form (d,, dj), a soft
constraint has the form (d,, dj, Wij), where w; isthe
weight associated with the pair (d,, dj).

Onework that uses soft constraintsis Davidson
and Ravi (2005a). In their formulation of a soft
constraint model, Kleinberg and Tardos (1999)
allow the definition of constraints in the object
level. Furthermore, they assume that each cons-
traint states that its components have the same
label (which means that they must be put in the
same cluster). Consequently, the constraint model
proposed in Davidson and Ravi (2005a) only
considers must-link constraints. They incorpo-
rate the constraints in the objective function of
the clustering algorithm by computing a penalty
that is proportional to the weights of the violated
constraints. The approach used in this work for
adding constraints to the clustering process uses
a linear programming technique, which makes it
computationally expensive.
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In Wagstaff and Cardie (2000), the author of
COP-KMeans proposes an extension to it, named
SCOP-KMeans (Soft COP-KMeans). The SCOP-
KMeans algorithm considers soft constraints,
whose weights vary between -1 and +1 for both
must-link and cannot-link constraints. Another
extension of COP-KMeans is PC-KMeans (Basu
et al., 2004). This algorithm also uses must-link
and cannot-link soft constraints and its defini-
tion permits the definition of variable weights
for constraint. However, this information must
be provided to the algorithm along with the
constraints.

USING XML METADATA IN
SEMISUPERVISED CLUSTERING

Inthis section, we cover several aspects concern-
ing the use of structural information on SSC of
XML documents. In Section 3.1, we present our
representation of XML documents that allows
us to take advantage of their structure (i.e., their
metadata). Section 3.2 describes our approach to
use structural information automatically generate
document-level constraints from constraints that
the user defines on the metadata level. Finally, in
Section 3.3, we describe some algorithms to deal
with the existence of inconsistency in the set of
user provided constraints.

Considering Both Structure and
Content of XML Documents

There are several SSC algorithms that work only
on the textual contents of XML documents to
be clustered. However, clustering using only the
textual contentignores any metadata information
associated to the XML documents. However, the
adequate cluster for a XML document may be
highly correlated to the structural information
(i.e., metadata) available inside the document.
This fact motivated us to use the dual representa-
tion for XML documents that we describe in this

section. This representation isimportant because
in our approach we need to query both structure
(metadata) and textual content of the XML docu-
ments in the collection to be clustered. A typical
XML document that we consider in our work is
presented in Figure 1.

In XML literature, XML documents are
categorized in two types: data-centric and docu-
ment-centric. Data-centric XML documents are
documents with a regular structure and typically
represent relational data. Document-centric docu-
ments have a less regular structure, with portions
of mixed content for XML elements. In this chap-
ter, we consider a somewhat hybrid type of XML
document that we call text-centric. Thisis for two
reasons. First, the XML documents we consider
have some of their elements with textual content
(e.g., Title and Abstract) (text that can be indexed
from the information retrieval point of view). On
the other hand, a text-centric XML document
also has descriptive elements (e.g., AuthorList
and MeshHeadingL.ist). According to our view,
this descriptive information makes part of the
metadata associated to the documents.

The conventional approach to preprocessing
textual documents (removing stop words, stem-
ming, and dimensionality reduction) ignores any
existing structural information. Since our goal is
to use structural information of XML documents
to improve clustering results, we adopt a differ-
ent approach: we preprocessed the text-centric
XML documents in a collection according to two
perspectives. Consideracollection of text-centric
XML documents. Let E be the set of all XML
subtrees in the schema of this collection. Also,
consider two subsets of E, which we denote by
E,., and E . described below:

* E,, the set of subtrees whose content is
used to represent the documents as a bag of
words. This first perspective represents an
XML documentas d. = (W, W, ..., W),
where w; is the degree of importance of the
j-th termin relation to d.. There are several
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Figure 1. A text-centric XML document

< MedlineCitation >
< PMID=8651511< /PMID >
< Article'l'itle >
The morphology of valves and valve-like
structures in the eanine and feline thoracie duct.
«\ rticleTitle>
<Abstract >
< Abstract Text >
The microanatomy and ultrastructure of ... (t run ca il e d)
' ,"'_-\| etract Text >
< /Abstract >
< AuthorList >
<Author>Bannvkh S. S.</
< Author=Mironov A. A
< Author>Bannykh G. G.<

\uthor>
‘Author>

< /AuthorList >
< MeshHeadinglList >

(truncated
< /MeshHeadinglList >
< Publication Ty pelist >

< /PublicationTypelist >
< [MedlineCitation >

< Author=Mironov A. AL .]r..<;_.-'_\111|m1'_:::>

< MeshHeading > Animals< /MeshHeading >
<.Z::.\1l'-‘\Il[[“"l']ill,'_‘;::*( fatse \[L“hll]]wll]ill;.‘.‘,‘-‘

< MeshHeading >Dogs< /MeshHeading >

< MeshHeading >Endothelinm< /MeshHeading =
< MeshHeading >Thoracie Duet< /MeshHeading >

< PublicationType> Journal< /Publication Type >

ways of computing w;. In this work, we use
the well-known TF/IDF measure (Salton &
Buckley, 1988). The representation obtained
by preprocessing the elements of the setE
corresponds to a bag of words, in which d,
is a vector in a m-dimensional space. This
geometric interpretation of d, is usually
adopted in classical document clustering
algorithms.

. E .- the setof XML subtrees whose content
isusedtorepresentthe documentsasabag of
characteristics corresponding to categorical
attributes. Thissecond perspective viewsan
XML document as a set of multivalued cat-
egorical attributes. Whenwe interpret XML
documentsthis way, ameasure of similarity
for categorical attributes can be applied to
twodocumentsd;andd,, andtheirsimilarity

74

(or complementarily, their dissimilarity) is
a function of the intersection of the sets of
values of the elements in the set E .

Figure 2 illustrates the sets E __ and E___ de-
scribed above. There are four subtrees extracted
from the structure of the XML document shown
in Figure 1. From the first subtree, we can extract
a bag of words to represent the documents in the
collection according to the geometrical perspec-
tive. On the other hand, the subtrees presented
to the right in Figure 2 (with dotted rectangles)
represent multivalued descriptive attributes. For
example, the subtree whose root is AuthorList, is
equivalent to a multivalued categorical attribute,
and the domain of this attribute is the set of all
authors.
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Figure 2. Dual interpretation of an XML document

|A\rtic|eTit|e I |_—\bstract|

AbstractText

jAuthorList §

! iPuhlicmimlT_\'chlst i

T
i‘-‘_—\uthorl

|
i*'_‘PuincmicmT.‘-'P" i

!Mcshl—lcmlmngsl

i*l\[cslchadmg ,I

Let us now formalize the interpretation of an
XML documentasasetof multivalued categorical
attributes. Initially, consider an operator  that
when applied to E,  results in a sequence of
subtrees of E ., and labels each subtree in this
sequence with a positive sequential integer num-
ber. Now, given a collection of XML documents,
we represent the attributes of each document d,
by the tuple T, = (att,, att,, ..., att_ ). Each att,
is a pair [f (k), f,(di, K)], where the function f,()
returns the label of the k-th element in the se-
quence generated by y(E, ), and function f.(, -)
returns the set V, of values corresponding to the
k-thelement of yw(E,. ) thatappear indocumentd,
(note that Vk — Dom(att,)). In order to exemplify
the construction of a tuple T, for a document d,,
consider thatthe subtrees whose roots AuthorList,

Figure 3. Tuple of multivalued categorical attri-
butes extracted from an XML document

PublicationType-List, and MeshHeadingList are
elements of E . (see Figure 1). Figure 3 presents
the tuple T, corresponding to the document of
Figure 1.

Inorderto exemplify the construction ofatuple
T, for a document d,, consider again the docu-
ment in Figure 1. Also, consider that the subtrees
whose roots AuthorList, PublicationTypeList,and
MeshHeadingList are elements of E . Figure 3
presents the tuple T, corresponding to the docu-
ment of Figure 1.

Now consider the definition of document-level
ML and CL constraints given in Section 0. When
documents in a collection are represented only
through the geometric perspective, the user can
only define must-link and cannot-link constraints
in the document level; that is, the user has only
the option of defining constraints in the form
ML, dj) or CL(d, dj), where d. and dj are docu-
mentidentifiers. We call these the document-level
constraints. On the other hand, if we adopt a dual
representation for XML documents as explained
in this Section, new possibilities arise for the
user to define constraints. In the following, we
enumerate these possible scenarios.

1. Document-level constraints: The possibil-
ity of specifying must-link and cannot-link
constraints between a pair of documents
remains in our dual representation. For
example, the user can define that two docu-
ments whose identifiers are d, and d,, must
be put in different clusters: CL(d,, d,,).
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2. Hybridsetofconstraints: Nowthe user can
define constraints at the metadata level and
combine them with constraints at the docu-
ment level. For example, given two authors
identified by a, and a,, and the documents
identified by d, and d,, the user can define
that ML(d,, d,) A ML(a,.a,,).

3. Metadata-level constraints: The user can
also define constraints only by using meta-
data (descriptive) attributes. For example,
consider an attribute att,, where v_ and v,
are values of att,. The user could define that
documentsannotated with value v, and docu-
ments annotated with value v, must remain
in the same cluster, that is, ML(v,, vb).

Another relevant aspect is that there is a
mapping between each multivalued categorical
attribute att, and the set {d } of documents that
are annotated with values of att, . We denote by
Docs(v, K) the set of documents associated to the
value v of the attribute att, . Inversely, we can also
obtain the list of values of attribute att, that are
used to annotate a document d.. We denote by V,
the set of values of att, that are used to annotate
document d.. This two-way mapping is going to
be explored in the Section 3.2.

Definition 1. Docs(v, k). Given a multivalued at-
tribute att, and a value v e Dom(att,), we define
Docs(v, k) as the set of the documents annotated
with value v.

Definition 2. V, . Given a document d, and a
multivalued attribute att , we define V,, as the set
of values of att, that are used to annotate d..

Expansion of User-Defined
Constraints

As we stated in Section 0, a difficulty in the
constrained clustering task is that, in complex
domains of application, the user must provide a
relatively large amount of semisupervision for
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the algorithm to reach a good clustering quality.
In Basu et al. (2004) and in Bilenko et al. (2004),
learning curves are presented that show quality
results for 500 and 1,000 constraints. Although
these quality results are much better when com-
paredtoan unsupervised version of the algorithm,
itis not reasonable to think that the user is willing
to provide such alarge amount of constraints. The
situation gets worse when we think of an online
search engine that uses semisupervised clustering
to group the relevant documents to a user-given
query before presentation.

In this section, we intend to describe an al-
gorithm that takes as input user-provided meta-
data-level constraints. Given m metadata-level
constraints, this algorithm can infer n document-
level constraints. The important fact here is that,
depending on the metadata attribute chosen by
the user to define metadata-level constraints, the
value of m can be much greater than the value of
n. The consequence of applying this algorithm
is that the burden on the user is reduced, since
he/she can specify fewer constraints and have the
system infer an equivalent set of constraints of
greater cardinality.

To explain our algorithm for inference of
document-level constraints, consider U,, and
U, to be the sets of user-provided (metadata-
level) must-link and cannot-link constraints,
respectively. Taking the set U, w U_, as input,
the system can infer two new sets, S, and S_,
of document-level must-link and cannot-link
constraints by applying algorithm InferDocDoc-
Constraints, shown in Figure 1. This algorithm
uses the set Docs(v, k) (see Definition 1) in the
following way: for each metadata-level constraint
referring to values v, and v,, the algorithm uses
the sets Docs(v,, k) and Docs(v,, k) to infer a set
of document-level constraints. Therefore, the
output of this algorithm is a set of document-level
constraints, S=S,, US .

It is important to note that our approach used
toinfer document-level constraints from the user-
provided metadata-level constraints can be easily
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Figure 4. Algorithm InferDocDocConstraints

Algorithm: InferDocDocConstraints

If rlinkType = MUSTLINK, then

a. Vi — Does(v,) — Does(wy)
b. Vo — Does(ty,) — Does(v,)

Input: set U = Uy U ey of user-provided metadata-level constraints

Output: set § = Sy, USey, of inferred document-level constraints
Steps:

1.5—0

2.For each constraint r{v,. ) € U, do

a. 8 — SU{ML(d;, d;) | di, d; € Does(v,).1 # j}

b. 8§ — SU{ML(d,,d;) | d;,d; € Docs(vy).i # j}

c. § — SU{ML(d;.d;) | d;i € Does(v,),d; € Does(vy)}
Else If r.linkType = CANNOTLINK, then

¢. § — SU{CL(d:.d}) | d; € Vi, d; € Vai # 5}

coupled with systems that have SSC algorithms
that only work on document-level constraints.
This is because the final output of InferDocDoc-
Constraints is a set of document-level constraints.
In this situation, InferDocDocConstraints can be
used in a preprocessing phase, taking constraints
at the metadata level and creating equivalent
constraints at the document level.

Dealing with Inconsistent
Constraints

In this section, we analyze a premise that is com-
monly assumed in the SSC task: that the set of
user-provided constraints is consistent, and that
consequently the transitive closure of this set can
be generated. We also intend to show that this as-
sumption is notacceptable in many situations, and
that it can lead to an even more inconsistent set of
constraints. We will finally describe algorithms
to deal with such inconsistency.

An important aspect about the InferDocDoc-
Constraints algorithm is that it infers document-
level constraints from metadata-level constraints
without considering the fact that the resulting
constraint set S can be inconsistent. Therefore,

we need some method to process S (the output of
InferDocDocConstraints) to extract a set S* (S’
< S) of constraints that is consistent. Let us first
formalize the concept of inconsistent set of con-
straints. To do that, we now describe a property
of the document-level constraints: given a meta-
data-level constraint ML(v,, v,), the algorithm
InferDocDocConstraints generates must-link
document-level constraints in the form ML(d,,
dj), where (d,, dj) € Docs(v,, k) X Docs(v,, k) and
d # dj. Based on this property, we now define the
positive neighborhood generated by a metadata-
level constraint.

Definition 3. Positive neighborhood generate
from a metadata-level constraints. Let r =
ML(v,, v,) be a metadata level constraint. Let
R, (v,, v,) be the set of must-link constraints
inferred from r. The positive neighborhood of r
is the set of documents that participate in at least
one constraint in the set R, (v,, v,). We denote
this set by V(r).

According to Definition 3, we have an amount

of neighborhoods that is equal to the quantity of
metadata-level constraints provided by the user.
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We can now define the concept of inconsistent
set of constraints.

Definition 4. Inconsistent set of constraints.
Consider the sets of constraints U and S, where
S=3,, VS, Isobtained by applying InferDoc-
DocConstraints taking U as input. The set S is
inconsistent if exists at least one pair of docu-
ments d. and dj such that d, dj € V(r), for some
constraints r € U, and CL(d, d)) € S .

Note that Definition 4 does not consider trivial
constraints of the form CL(d,, d,), for some docu-
mentd.,, since algorithm InferDocDocConstraints,
by construction, does not infer constraints of
this kind.

The factthataset of document-level constraints
S isinconsistent can be viewed graphically if we
interpretthis setas an undirected graph. Insucha
graph, the vertices are the documents referenced
by at most one constraint in S. In addition, there
exists an edge between documents d, and dj if
and only if there is a document-level (must-link
or cannot-link) constraint involving the pair (d,,
d) and contained in S. In such interpretation, the
set of document-level constraints inferred from
a metadata-level constraint r = ML(v,, v,) cor-

responds to a complete graph, where the vertices
aredocumentsin \V/(r), and each edge corresponds
to amust-link constraint inferred fromr by Infer-
DocDocConstraints. To give an example, Figure
5 presentsanundirected graph that represents the
constraints inferred fromthe setU = {ML (v, v,),
CL(v,, v} of metadata-level constraints. The sets
Docs(v,, k), Docs(v,, k), and Docs(v,, k) are also
presented. We represent must-link constraints by
solid edges and cannot-link constraints by dotted
edges. The set S inferred from U is represented
by the graph. Note, for example, that this graph
contains an edge corresponding to a cannot-link
constraint that involves the pair of documents
d, d3) and that both of them are contained in
V(r), the positive neighborhood of constraint
r,. The same holds for pair (d,, d,). Therefore,
according to Definition 4, the set of constraints
represented by the graph presented in Figure 5 is
inconsistent. It is important to note that, in this
example, the document d, is not involved in any
inconsistency.

Now, consider the subset S, e S, composed
of the must-link constraints inferred by algorithm
InferDocDocConstraints. Here, we would like to
point outan important aspect of our approach: we
donotapply aprocedure to generate the transitive

Figure 5. Example of inconsistency in a set of constraints represented as a undirected graph
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closure of the user-provided set of constraints. The
reasons for such a decision are given below.

A first reason is that there can be inconsisten-
cies in the set of user-provided metadata-level
constraints. In addition, the algorithm InferDoc-
DocConstraints also infers inconsistent con-
straintsinherently (see Figure 5). Therefore, if the
user-provided set of constraints is inconsistent,
the application of the transitive closure procedure
would introduce even more inconsistency.

Another reason for not applying the transitive
closureisrelated to the document-level must-link
constraints inferred by algorithm InferDocDoc-
Constraints. Without loss in generality, consider
that ML(v,, v,) and ML(v,, v,) are two metadata-
level constraints provided by the user. We already
knowthatthevaluesv,,v,, v ,andv,areassociated
to the set Docs(v,, k), Docs(v,, k), Docs(v,, k), and
Docs(v,, k), respectively (see Definition 1). Also,
consider that R, (a,b) and R,, (c,d) are the sets
of must-link constraints inferred from ML(v,,
v,) and ML(v,, v,), respectively. Now, consider
Figure 6, which illustrates the situation we want
to describe. According to Figure 6, adocument dj
participates in a must-link constraint along with
some document referenced by the set R, (a,b).
Also, in Figure 6, the “clouds” represent the sets
ofdocumentsreferencedby R, (a,b)andR,, (c,d).
As we can see from Figure 6, if R, (a,b) and
R,,.(c,d) have at least one document in common,
the application of the transitive closure procedure

(see Section 2.2.1) would collapse these two sets
in a unique set. Further, this collapsed set would
be joined to any other set with at least one ele-
ment in common. In an extreme situation, all
the inferred must-link constraints would end up
joined in a unique big set. In addition, consider
that two constraints exist, one must-link and a
cannot-link. Consider also that these constraints
reference document d, that is not referenced in
the sets R, (a,b) and R, (c,d). Then, the transi-
tive closure on the R,, (a,b) and R,, (c,d) would
resultinthe creation of additional inconsistencies
related to dj. To see this, note that new must-link
constraints would be created between dj and the
documentsreferencedbyR,, (a,b), ifthetransitive
closure were applied.

Therefore, our decision to not use the transi-
tive closure avoids the appearance of additional
inconsistencies. However, as we stated before,
the creation of inconsistencies is inherent to the
behavior of InferDocDocConstraints, because this
algorithm processes each constraint in its input
separately. On the other hand, as the inconsisten-
cies in the input increase, the improvement in
clustering quality due to using this set decreases.
In fact, our experiments show that an inconsis-
tent set of constraints results in poorer quality
when compared to the complete unsupervised
case. Therefore, we need some way to remove
inconsistenciesfrom S (the input set). We describe
some procedures to accomplish this goal in the
next section.

Figure 6. Situation in which new inconsistencies are generated, if the transitive closure is applied on

two sets of must-link constraints
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Removing Inconsistent Constraints

A first solution that we propose for dealing with
an inconsistent set is to define an algorithm to
remove constraints from this set until it becomes
consistent. The following proposition serves
as a starting point for the definition of such an
algorithm.

Proposition (necessary condition for the exis-
tence of inconsistency in a set of constraints).
Let S =S, N S, be the set of must-link and
cannot-link document-level constraints. Let D,,
and D, be the sets of documents referenced in
Sy andS, , respectively. If Sis inconsistent, then
at least one of its constraints references some
documentin the setD,, ., =D,, N D,.

The above proposition declares that, ina given
set S of document-level constraints, constraints
that are involved in inconsistencies always refer
to documents pertainingtoD,, ., , the setof docu-
ments referenced by must-link and cannot-link
constraints. (However, note that this proposition
does not imply that all the documents within

D,, c areinvolved ininconsistencies.) Therefore,

Figure 7. Algorithm EI1

a possible algorithm to remove inconsistencies
from S consists of scanning the elementsinD,, .,
and, for each one of them, assess if it is involved
in some inconsistency. If this is the case, the al-
gorithm removes the corresponding constraints.
We call this algorithm EI1, and its pseudocode is
presented in Figure 7.

Steps 1, 2, and 3 of Ell are self-descriptive.
Steps 4 and 5 deserve some further explanation.
Step 4 considers that there exists a function that
we call MustLinkNeighborhoods. Given the set
Sy, of must-link metadata-level constraints, let
m =[S, |. This function generates m sets (not
necessarily disjoints) of documents. Each one
of these sets generated by MustLinkNeighbor-
hoods corresponds to the documents within the
set Docs(v,, k) U Docs(v,, k), where v_and v, are
such that ML(v,, v,) € S, . Step 5 corresponds
to a loop to iterate over each constraint r(d, dj)
that refers to at least one document in the set
Dy, .- If 1 is a cannot-link constraint, and if
both d, and dj are found in some set generated by
MustLinkNeighborhoods, thenrisremoved from
the constraint set.

EIl’s main characteristic is to remove can-
not-link constraints in favor of must-link con-

Algorithm: Ef!

inconsistencies.

8. — 8. —{r}
6. Return S,

Input: set of document-level constraints & = Sy U Sep
set of metadata-level must-link iy,
Qutput: set of constraints S, such that §. € & e 8, has no

Steps:

.S, —S

2, Pypop — set of documents {d;}. in which each d; is referred to
at least one must-link constraint ry and at least one
cannot-link constraint ra, where v, 12 € §

3. Rarrer — set of constraints that refer to at least one
document in Dypep

L {Vibee1 pay,) — PositiveNeighborhoods(y )

5. For each constraint r(d;. d;) € Ryper. do
If rlinkType = CANNOTLINK and 3V, such that {d,.d,} C V}, then
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straints. To see this, note that once EIl detects
an inconsistency in some positive neighborhood,
it always removes the cannot-link constraint that
participates in this inconsistency. The disadvan-
tage of this is that the algorithm can remove a
cannot-link constraint that reflects the user need
in relation to the resulting clustering model, and
consequently the undesirable must-link constraint
remains in the set. Therefore, EI1 can take the set
of constraints to a consistent state, but by doing
this, the algorithm potentially removes some
useful constraints.

The EI2 algorithm, which we presentin Figure
8, is similar to EIl. The difference is that, when
EI2 detects a pair of documents d, and dj in a
positive neighborhood, and the constraints rl =
ML(d,, d) and r2 = CL(d,, d) exist, both rl and
r2 are removed. This way, differently from EII,
EI2 does not favor one type of constraint over
the other.

Algorithms EIl and EI2 are based only on the
information about the structure that is the source

Figure 8. Algorithm EI2

of inconsistencies. In the specific case of EI2, it
considers the pair of constraints equivalently and
removes both constraints. However, if an algo-
rithm for removing inconsistencies could have
access to the degree of relevance (or weight) for
each constraint, then it could rely on this informa-
tion to decide which constraint(s) to remove. This
algorithm could follow a simple heuristics: for each
pair of constraints that conflict with each other, the
constraint with greater weight remains, and the
other (weaker) constraint is removed. Therefore,
we now describe a third algorithm, named EI3,
for elimination of inconsistencies.

To start with the definition of EI3, let us first
describe our approach to generate weights for the
constraints. First, note that for each constraint
the user provides, she/he does it with some de-
gree of confidence, even though he/she does not
state this explicitly. A solution to have weights
associated to the user-provided constraints is to
have the user provide these values. This is the
solution adopted in Wagstaff and Cardie (2000),

Algorithm: EI2

inconsistencies,

Steps:
1. 8.8

document in Dyspeyr

=

(ks |

5.1. 8§ «— &, — {r1}
D.

S, — 8. — {r2}
6. Return S,

Input: set of document-level constraints & = Sy U Sep,
set of metadata-level must-link constraints Uy,
Output: set of contraints &,, such that S, C § and S, has no

2. Darpeyr + set of documents {d;}, where each d; is referenced
by at least one must-link constraint r; and at least one
cannot-link constraint re, where ry,12 € §

3. Rarrer + set of constraints that refer to at least one

« {Vi}bi=t.pirs — PositiveNeighborhoods(Uz,)
. For each constraint r1(d;.d;) € Ryper. do
If r1.linkType = CANNOTLINK and 3V such that {d;,d;} C Vi, then

2. For each 12 such that r2.linkType = MUSTLINK and d;. d; € V. do
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although the authors use the weights in a context
different from the elimination of inconsistencies.
However, this solution decreases the autonomy
of the system. Instead, we want to describe an
algorithm to automatically generate weights for
the constraints. For this, we assume that the user
defines the constraints at the metadata-level.
Our strategy is to automatically assign weights
to the constraints inferred by the InferDocDoc-
Constraints algorithm. To automatically assign
weights for the inferred constraints, we rely on
the structural information associated to the col-
lection of XML documents to be clustered. We
now describe our strategy do derive weights.

After applying the InferDocDocConstraints
algorithm, the system has two sets of document-
level constraints, S, and S_ (see Section 3.2).
Without loss in generality, assume that one of these
sets refers to the documents d, and d.. According
to our dual representation of XML documents
(see Section 3.1), there is a mapping between d,
and the values of attribute att, e T, vk (the same
holds form dj). Therefore, the system can easily
compute the two sets of values of att, thatare used
to label d, and dj, respectively. Let us call these
sets V; and V, (V,, V,, € Dom(att,)).

We adopt the following hypothesis: given two
setsof valuesV, andV, (V,,,V, € Dom(att,)), the
similarity (or dissimilarity) between these sets is
correlated to the strength of the constraint define
on (d, dj), whether this constraint is a must-link
or a cannot-link. As an example, consider the
MEDLINE collection, from which we extracted
the document presented in Figure 1. Inthis collec-
tion, if two documents are referred in a must-link
constraint and have similar lists of authors, we
assume this fact as clue that the user is looking for
a clustering model that cluster the documents by
authors. Besides, the facts that (1) two documents
have similar lists of descriptorsand (2) participate
in a positive constraint intuitively accounts for a
stronger constraint. Ananalogousargumentcan be
constructed inrelationto the dissimilarity between
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two documents. Therefore, given a constraint r
=, dj), the similarity (dissimilarity) between
d, and dj can be interpreted as the weight of r. To
compute the similarity (dissimilarity) between
two documents, we use the tuples of multivalued
attributes associated with each document in the
collection (see Section 3.1).

If we consider all the unordered pairs in the
sets S, and S, two symmetric matrices WML
and WCL can be formed. The ij-th element of
matrix WML is the weight of must-link con-
straint between documents d, and d.. Elements
of matrix WCL are defined analogously. We use
the elements of these matrices as the similarities
(dissimilarities) betweenthesetsV, and V. Since
these are sets of values of multivalued categorical
attribute, several existing measures of similarity
for categorical attributes can be applied to obtain
the costs corresponding to the elements of these
two matrices.

Now, we finally describe EI3, our third al-
gorithm to remove inconsistencies. Consider
Figure 9, in which we again interpret a set of
constraints as an undirected graph. Figure 9(a)
schematically illustrates a situation in which
there is inconsistency, because documents d.
and dj simultaneously satisfy the two following
conditions: (1) they participate in a cannot-link
constraintand (2) they are contained in a positive
neighborhood. Note that there are cycles (in the
graph) involving the edge corresponding to the
cannot-link constraintr=CL(d, dj). On the other
hand, Figure 9(b) provides an instance of such a
situation for a neighborhood of four documents,
d,d, d,andd,.

There are three possible ways to remove the
inconsistency described in Figure 9: (1) remove
the cannot-link constraint between d. and dj; @
remove the must-link constraints in which docu-
mentd, participates; and (3) remove the must-link
constraints in which dj participates. The main
question is what alternative is better. To give an
answer to this question, we define the problem
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Figure 9. (a) Situation in which documents d. and djparticipate in a inconsistent set, (b) specific example

for a neighborhood of four documents

of removing constraints as an integer linear pro-
gramming (ILP) problem. In the definition of this
problem, consider the following variables:

*  X,isequalto 1if the cannot-link constraint
should remain; or else 0.

*  Xi_ isequaltolifthe must-link constraints
in which d. participates should remain; or
else 0.

* X, isequaltolifthecannot-link constraints
in which dj participates should remain; or
else 0;

Note that the three variables above have an
integer domain. We can now define the two com-
ponents of the ILP problem: the objective function
(to be maximized) and the constraints over the
variables x , xi_, and xj . This ILP problem is
defined in Figure 10. In this problem, we have
three coefficients, ¢, C,, and C,. The coefficient
¢, is equal to the value w; obtained from the
matrix of cannot-link weights, and corresponds
to the weight of the cannot-link constraint r =
CL(d,, d). We define the coefficients ¢, and c, as
the average values of the weights associated to
the must-link constraints in which d, and d, par-
ticipate, respectively. The values of coefficients
¢, and c, are obtained from the weight matrices.

Note that these values are fixed, given two docu-
ments d, and d..

Thevaluesforthevariablesx , xi_,andxj _ are
obtained by solving the PLI problem. These values
can then be used to determine what constraints
must be removed. If we solve this PLI problem for
each pair of documents involved in a constraint
that pertain to a positive neighborhood, the incon-
sistencies in the set of constraints are completely
removed. We summarize all this process in the
algorithm EI3, presented in Figure 10.

Figure 10. ILP problem associated with the EI3
algorithm

maximize Z = cjxyq + CoXlpy + €32 Ju

subject to
P = Ll +’<”.m.’ i -rjmf

and to the following bound variables
Zpx2
zq € 40,1}
Tl € {[}. 1}
Thmtl € {[l. J.}
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Figure 11. Algorithm EI3

Algorithm: EI?

inconsistencies.

Steps:
1. S, =8

document in Dyper

Else If xj,; =0, then

6. Retwrn S,

FUTURE TRENDS

It is natural to conjecture that researchers in the
field of semisupervised clustering will start to
look for new kinds of data in which methods can
be applied. In fact, this has already started, as we
can see in some works (Ceccarelli & Maratea,
2005; Grira, Crucianu, & Boujemaa, 2005), where
semisupervised clustering methods are applied to
biological data and to image data.
Anotheravenue for future work is to investigate
how structural information (i.e., XML metadata)
can be used in the fuzzy clustering case. An
open problem here is how to define the concepts
of must-link and cannot-link constraints when a
document can be put in more than one cluster. In
addition, in our present work, we used MeSH, a
hierarchy of concepts (descriptors) used to anno-
tate documents in MEDLINE. However, we did
not consider the relationships between descriptors.
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Input: set of document-level constraints § = Sy, U Sep.

QOutput: set of constraints &, such that S. € 8 e &, has no

2. Dyper — set of documents {d;}, in which each d; is referved
by at least ont must-link constraint ry; and at least one
cannot-link constraint ry, where ry.rs € 8§

3. Rarner — set of constraints that refer to at least one

4. {Vi b=y — PositiveNeighborhoods(y, )
5. For each constraint r(d;.d;) € Rypep. do
If v linkType = CANNOTLINK and 3V, € V such that {d;.d;} C V,, then

5.1. Get the values x4, i and xj,m that solve the ILP in Figure 10
5.2, If iy = 0. then
Se— 8. —{r}
Else If xi,,; = (. then

8§, — S, - {Constraints in V. that vefer to d;}

8. — 8, - {Constraints inV}, that refer to d;}

Therefore, we also intend to investigate how a
hierarchical taxonomy of concepts associated to
the collection of documents can be used to both
improve and explain clustering results.

Anotherissue that could be further explored is
on defining more expressive ways for the user to
define constraints. In this chapter, we introduced
the concept of metadata-level constraints, which
are more expression than document-level con-
straints. But we think there is much more space
for investigation here. For example, in a fully
expressive language for defining constraint, the
user could define that her/his clustering need is
related to grouping the documents that have the
same authors or the same descriptors. We think
such a language could be defined as a subset of
first order logics.

Finally, an experimental evaluation of the
algorithms we proposed for elimination of in-
consistency is highly relevant. We are planning
to provide such results in future work.
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CONCLUSION

Inthis chapter, we have presented anew approach
to take advantage of structural information asso-
ciated with textual documents in semisupervised
clustering. We first defined our dual view of an
XML document, in which it can be viewed both
as a bag of words and as a bag of multivalued
categorical attributes. This view unleashed the
possibility of defining constraints at the metadata
level. Inaddition, we used this dual view to derive
aprocedure to expand the user-provided metadata
level constraints into document-level constraints.
This approach alleviates the burden on the user,
since he/she now is required to provide much less
constraintstothe semisupervised clustering algo-
rithm, without loss in the clustering quality.

Our dual representation for XML documents
also opens up new possibilities in the definition
of constraints: now, the user can define metadata-
level constraints. Such dual representation also
makes structural information available to guide
execution of the SSC algorithm itself, as we have
doneinBezerraetal. (2006). By using such repre-
sentation, instead of only working on the textual
content of text-centric XML documents, a SSC
algorithm can also query structural information
associated with the collection. We want to stress
that the representation for XML documents we
adoptisrelevantto several domains ofapplications
that work with semistructured textual documents
in general and text-centric XML documents in
particular. For example, in digital libraries, it is
common to add some descriptive information to
articles. Authors, keywords inapredefined set,and
concepts of ataxonomy are examples of informa-
tion frequently found in such repositories.
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ABSTRACT

Patterns can be defined as concise, but rich in semantics, representations of data. Due to pattern charac-
teristics, ad-hoc systems are required for pattern management, in order to deal with them in an efficient
and effective way. Several approaches have been proposed, both by scientific and industrial communities,
to cope with pattern management problems. Unfortunately, most of them deal with few types of patterns
and mainly concern extraction issues. Little effort has been posed in defining an overall framework
dedicated to the management of different types of patterns, possibly user-defined, in a homogeneous
way. In this chapter, we present PSYCHO (Pattern based SYstem arCHitecture prOtotype), a system
prototype providing an integrated environment for generating, representing, and manipulating hetero-
geneous patterns, possibly user-defined. After presenting the PSYCHO logical model and architecture,
we will focus on several examples of its usage concerning common market basket analysis patterns, that
is, association rules and clusters.

INTRODUCTION plication environments usually does not constitute

knowledge by itself for the end users. Indeed, little
The large volume of heterogeneous raw data information can be deduced by simply observing
collected from various sources in real-world ap- suchahuge quantity of data, and advanced knowl-

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
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edge management techniques are required to ex-
tract from them concise and relevant information
that can help human users to drive and specialize
business decision processes. Of course, since raw
data may be very heterogeneous, different kinds
of knowledge artifacts, representing knowledge
hidden into raw data, can be extracted.

We use the generic term patterns to denote
in a concise and general way such compact but
rich in semantics knowledge artifacts. Patterns
reduce the number and size of data, to make
them manageable from humans while preserving
as much as possible their hidden information or
discovering new interesting correlations.

Pattern management is an important issue in
many different contexts and domains. However,
without doubt, the most relevant context in which
pattern management is required is data mining.
Clusters, frequent itemsets, and association rules
are some examples of common data mining
patterns. The trajectory of a moving object in a
localizer control system or the keyword frequency
in a text document represent other examples of
patterns.

Since patterns can be generated from differ-
ent application contexts, their structure can be
highly heterogeneous. Moreover, patterns can
be extracted from raw data by applying some
data mining tools (a-posteriori patterns) but also
known by the users and used, for example, to
check how well some data source is represented
by them (a-priori patterns). In addition, it is im-
portant to determine whether existing patterns,
after a certain time, still represent the data source
they are associated with, possibly being able to
change pattern information when the quality of
the representation changes. Finally, independently
from their type, all patterns should be manipu-
lated (e.g., extracted, synchronized, deleted) and
queried through ad hoc languages. Those specific
characteristics make traditional database manage-
ment systems (DBMSs) unsuitable for pattern
representation and management. Therefore,
the need arises for the design of ad hoc pattern
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managementsystems (PBMSs), that is, systems for
handling (storing/processing/retrieving) patterns
defined over raw data (PANDA, 2001).

Many efforts have been devoted towards this
issue. Scientific community efforts are mainly
devoted to develop frameworks providing a full
support for heterogeneous pattern management.
The 3W Model (Johnson, Lakshmanan, & Ng,
2000) and the PANDA framework (PANDA,
2001) are examples of such approaches, in which
raw data are stored and managed in a traditional
way by using, for example, a DBMS whereas
patterns are stored and managed by a dedicated
PBMS. On the other hand, under the inductive
databases approach, mainly investigated in the
context of the CINQ project (CINQ, 2001), raw
data and patterns are stored by using the same
data model and managed in the same way by the
same system. Industrial proposals mainly deal
with standard representation purposes for patterns
resulting from data mining, in order to support
their exchange between different platforms. Ex-
amples of such approachesare the predictive model
markup language (PMML, 2003), an XML-based
language for common data mining representa-
tion, and the Java data mining aPI (JDM, 2003), a
Java API for pattern management. In both cases,
no user-defined patterns can be specified, and
manipulation functionalities are quite limited.
Finally, in the commercial world, the most im-
portant DBMSs address the pattern management
problem by offering features for representing and
managing typical data mining patterns.

In general, existing proposals do not provide
aunified framework dealing with heterogeneous
patterns in a homogeneous way. Indeed, usually
they cope with some predefined pattern types,
and they do not provide advanced capabilities for
pattern extraction, querying, and management.

Starting from the limitations of existing
proposals and taking into account the results
presented in the context of the PANDA project
(Bertino, Catania, & Maddalena, 2004; Catania,
Maddalena, Mazza, Bertino, & Rizzi, 2004; Rizzi,
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Bertino, Catania, Golfarelli, Halkidi, Terrovitis,
et al., 2003), we have designed and implemented
a PBMS coping with most of the features previ-
ously introduced.

The system, called PSYCHO, from Pattern
based management SYstem arCHitecture prOto-
type, allows the manipulation of heterogeneous
patterns and the definition of user-defined pat-
terns, not necessarily coming from a data min-
ing context. It provides a pattern manipulation
language (PSY-PML) for the management of both
a-posteriorianda-prioripatterns, whichalso sup-
ports synchronization between patterns and raw
data, in ordertoreflect changes occurred in source
data to the pattern extent, and a pattern query
language (PSY-PQL), offering query capabilities
for selecting and combining patterns, possibly of
different types, and for combining patterns and
data, in order to get a deeper knowledge of their
correlations (cross-over queries).

The aim of this chapter is to present the main
features of PSYCHO. To this end, we present an
application experience in the context of market
basket analysis. In particular, we describe how
PSYCHO can be effectively used to model and
manage common types of data mining patterns,
that is, association rules, 2D point clusters, and
clusters of association rules (Han & Kamber,
2001). The choice to focus PSYCHO presenta-
tion over these simple pattern types is basically
motivated by the fact that these are well known
patterns that, at the same time, raise interesting
issues concerning modeling management. They
are therefore a good choice in order to explain
the basic peculiarities of PSYCHO, giving to the
reader the basic intuition of its flexibility.

The remainder of this chapter is organized as
follows. We first discuss the application needs
requiring the management of different types of
patterns. Then, we survey existing proposals
coming from scientific and industrial communi-
ties for pattern management. After that, we pres-
ent PSYCHO, describing the underlying pattern
model and architecture. Then, before concluding

the chapter, we present some examples of PSY-
CHO usage focused over market basket analysis
patterns. Such examples are primarily aimed at
demonstrating the following two PSYCHO fea-
tures: (1) management of datamining patternsand
(2) management of user-defined patterns based on
pattern hierarchies.

HETEROGENEOUS PATTERN:
BACKGROUND

Patterns resulting from data mining tasks can be
quite different. As an example, in the context of
the market basket analysis, association rules over
sale transactions are often generated. Moreover,
in order to perform a market segmentation, the
user may also be interested in identifying clusters
of customers, based on their buying preferences,
or clusters of products, based on customer buy-
ing habits.

According to that previously stated, patterns
can be generated from different application con-
texts resulting in very heterogeneous structures.
Besides that, the process by which they are gen-
erated can be different. Indeed, as already said,
patterns can be a-posteriori patterns (i.e., resulting
from a mining process) but also a-priori patterns
(i.e., known by the users).

Nevertheless, heterogeneous patterns often
have to be managed together. For instance, in a
Web market basket analysis context, in order to
understand well the e-commerce buying habits
of Web users, the following patterns can be
combined: (1) navigational patterns (identified
by clickstream analysis) describing their surf-
ing and browsing behavior; (2) demographic
and geographical clusters, obtained with market
segmentation analysis based on personal dataand
geographical features; and (3) association rules,
describing correlations between sold items. By
leveraging from their heterogeneity, all kinds of
patterns should be manipulated (e.g., extracted,
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synchronized, deleted) and queried through
dedicated languages.

All the previous reasons motivate the need for
the design of ad hoc (PBMSs), that is, systems for
handling (storing/processing/retrieving) patterns
defined overraw data in order to efficiently support
pattern matching and to exploit pattern-related
operations generating intensional information.
The set of patterns managed by a PBMS is called
pattern base (Rizzi et al., 2003).

We remark thata PBMS is not a simple knowl-
edgerepository; itisanengine supporting pattern
storage (according to a chosen logical model)
and processing (involving also complex activi-
ties requiring computational efforts). Thus, the
design of a PBMS relies on solutions developed
in several disciplines such as data mining and
knowledge discovery, for a-posteriori pattern
extraction; database management systems, for
pattern storage and retrieval; data warehousing,
for providing raw data sets; artificial intelligence
and machine learning, for pattern extraction and
reasoning; and metadata management, for data
exchange and interoperability.

In the following, we point out which require-
ments must be supported by a PBMS in order to
cope with heterogeneous patterns in an effective
and efficient way. In particular, we first discuss
pattern model characteristics, making the PBMS
able to represent heterogeneous patterns in a
unified way; then we introduce query language
features, for retrieving heterogeneous patternsin
ahomogeneous way, possibly combining patterns
of different types inside the same query process;
and, finally, we focus on manipulation language
features, for manipulating patterns according to
their specific characteristics.

In presenting those requirements, we give
particular attention to the marketanalysis context,
where two well-known data mining patterntypes
arise, that is, association rules and clusters.

An association rule expresses a correlation
between sold itemsets. In more detail, given a
domain D of values and a set of sale transac-
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tions T, each corresponding to a subset of D, an
association rule has the form A>B, where A
c D, B < D, A n B #J formalizes that “often,
when the set of items A is sold, the set of items
B is sold as well”. Usually, A is called the “body”
of the rule, whereas B is the “head” of the rule.
In order to quantify the meaning of the word
“often”, statistical measures are associated with
each rule. The most common measures are sup-
port and confidence, expressing, respectively,
how many sale transactions contain items in A
with respect to the total number of transactions
and, among them, how many contain also items
in B. On the other hand, a cluster is a group of
elements sharing some similar characteristics or
behaviors. Therefore, due to their diffusion, in
presenting PBMS requirements, we use associa-
tion rules and clusters as reference examples in
order to point out and clarify the basic aspects
we cope with.

Pattern Model Characteristics

The logical model adopted for representing
patterns is a formalism by which patterns are
described and manipulated inside the PBMS. We
claim that, in order to be able to deal with hetero-
geneous patterns, the logical model should take
into account at least the following issues:

. Multi pattern types support: The ability
to model heterogeneous patterns is very
important to make the PBMS flexible and
usable in different contexts.

. User-defined pattern types support:
The ability to support user-defined pattern
types, generated in any possible application
context, is fundamental foraPBMS guaran-
teeing full support for pattern heterogeneity
and extensibility.

. Relation between raw data and patterns:
By definition, each pattern represents a
possibly huge set of source data. There ex-
ists, therefore, a relationship between each



pattern and the data source it represents.
Thus, in order to enhance pattern semantics
and provide additional significant informa-
tion for pattern retrieval, it may be useful
to store some information concerning such
relation. In case of patterns generated by
applyingaminingtechnique, the datasource
corresponds to the data set from which the
patternshave been mined. Besidesthe source
dataset, it may be useful to exactly know the
subset of the source data set represented by
the pattern. For examples, the rule bread >
milk represents only transactions contain-
ing “bread” and “milk” in the overall set
of transactions in the source data set. This
subset can be represented in a precise way,
by listing its components (i.e., all transac-
tions containing “bread” and “milk”), or in
anapproximate way, by providingaformula
satisfied by the transactions of the source
data set from which the pattern has been
generated.

Quality measures support: Itis important
to be able to quantify how well a pattern
representsaraw dataset, by associating each
patternwith some quantitative measures. For
example, each association rule mined from
transactional datais usually associated with
confidence and support values. However, we
may want to associate with a certain pattern
type quality measures different from the
usual ones. For instance, considering as-
sociation rules, confidence and support are
the most widely used, but there exist other
quality measures such as coverage, lever-
age, and lift (Han & Kamber, 2001), which
could be used. The capability of considering
different quality measures could be useful
in order to support heterogeneous patterns,
even ifitissupported by only a few existing
systems.

Pattern validity support: As already dis-
cussed, data change with a frequency rate
higher than the pattern change rate. There-
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fore, it is important to establish whether
existing patterns, after a certain time, still
represent the data source from which they
have been generated or, more in general,
which they represent. To this end, some no-
tion of pattern validity should be exploited.
Inparticular, we devise two different notions
of validity that could be associated with a
pattern: a semantic validity and a temporal
validity. We say that a pattern p, inserted
in the system at time t and representing a
certain raw dataset D, is semantically valid
at an instant of time t” > t with respect to D
if at t” p still represents raw data in D with
measure values over a given threshold. In
practice, it may also be useful to assign to
each pattern a validity period, represent-
ing the interval of time in which it can be
considered reliable with respect to its data
source. We say thata pattern p is temporally
valid at an instant of time t if t falls inside
the pattern validity interval.

Pattern type hierarchy support: Another
important feature amodel for heterogeneous
pattern representation should provide is the
capability to define some kind of hierarchy
over the existing pattern types, in order to
increase expressivity, reusability, and modu-
larity. For instance, a shop vendor dealing
with association rules can be interested in
more complex patterns corresponding to
groups or clusters of association rules. In
this case, the considered patterns—that is,
association rules and clusters of association
rules—share two distinct hierarchical rela-
tionships: a first one expressing the fact that
clusters have been generated from a source
data set of association rules and a second
one specifying that a cluster structure is
indeed defined based on association rules
(e.g., the cluster representative could be an
associationrules). We call the first hierarchi-
cal relationship “refinement hierarchy” and
the second one “composition hierarchy”.
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Querying Features

The following querying features are considered
fundamental for any PBMS in order to support
pattern retrieval and analysis:

. Queries against patterns: The PBMS has
to provide a query language supporting pat-
tern retrieval according to some specified
conditions. Forexample, all associationrules
having “bread” in their body may need to
be retrieved. To support the pattern query
processing ina DBMS-like manner, pattern
collections have to be supported by PBMs
in order to be used as input for queries.

. Pattern combination: Operations for com-
bining patterns together should be provided
as an advanced form of reasoning over
heterogeneous patterns. Combination can
be seen as a sort of “join” between patterns.
For example, transitivity between associa-
tion rules can be seen as a kind of pattern
join.

. Queriesinvolving patternsand raw data:
A system managing heterogeneous patterns
should provide operations not only for que-
rying patterns in isolation, but also data by
applying a cross-over processing between
them. Cross-over queriesare fundamental in
order to get adeeper knowledge concerning
the relationship between a pattern and data
it represents.

Manipulation Features

Besides querying capabilities, a PBMS has to
provide manipulation capabilities in order to sup-
portat least pattern generation, modification, and
deletion. To this extent, we claim that any PBMS
should support, as minimum requirements, the
following manipulation features:
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Automatic extraction: In order to support
a-posteriori patterns management, aPBMS
has to provide the capability to generate
patterns starting from raw data. This pat-
tern generation process corresponds to the
application of an extraction algorithm over
raw data, and it constitutes a special case
of insertion operation.

Direct insertion of patterns: Besides
a-posteriori patterns, the user may know
a-priori some patterns and may wish to
verify whether they represent a certain data
source. Such patternsare notextracted from
raw data, but directly inserted from scratch
in the system. Ad hoc manipulation primi-
tives are therefore needed to perform this
operation.

Modification and deletion: Patterns can
be modified or deleted. For example, users
may be interested in updating information
associated with patterns (such as their va-
lidity in time or their quality measure val-
ues) or in dropping patterns having (or not
having) certain characteristics. Moreover,
when considering hierarchical patterns, the
system has to provide support for cascade
modifying or deleting patterns involved in
a hierarchy.

Synchronization over source data: An
important issue to be taken into account
is the ability to address unexpected, un-
forecasted changes in raw data, which may
require changing the patterns representing
them. Indeed, since source data change with
high frequency, it becomes fundamental to
determine whether existing patterns, after a
certain time, still represent the data source
from which they have been generated (i.e.,
whether they are still semantically valid),
possibly being able to change pattern infor-
mation when the quality of the representa-
tion changes (i.e., synchronizing raw data



Modeling and Managing Heterogeneous Patterns: The PSYCHO Experience

and patterns). This issue constitutes a key
feature forany pattern managementsystem,
and it is an interesting topic for researches
in the areas of machine learning and data
mining. It is often referred in literature as
the virtual concept drift problem (Tsymbal,
2004). In the presence of concept drifts, it
could be useful to be able to synchronize
patterns with the modified source data set.
This realignment may update the measure
values associated with the patterns. Syn-
chronization can be performed against the
source data set the pattern is associated
with or with respect to a different data set.
In this second case, we call this operation
recomputation. Forexample, suppose ashop
vendor knows that association rules AR1
and AR2 hold over a data set D concern-
ing sales in the month of January 2005 in
her shop. Assuming that during February
new sales are recorded into D, if the shop
vendor is interested in determining whether
association rules AR1 and AR2 still hold
for the updated data set D, she has to apply
a synchronization operation. On the other
hand, suppose she receives a new data set
D’, concerning sales in the months of Janu-
ary and February 2005 in another shop. In
order to check whether association rules
AR1 and AR2 are reasonable patterns also
for D’, she has to apply a recomputation of
the association rules AR1 and AR2 over
D’

. Mining function: As we have already said,
patterns can be extracted from raw data by
applying some kind of mining function. For
example, the APriori (Agrawal & Srikant,
1994) or the FP-growth (Han, Pei, & Yin,
2000) algorithms can be used to generate
association rules; on the other hand, the
Single-Link, Complete-link, or K-means
(Han & Kamber, 2001) are possible algo-
rithms to be used for generating clusters.

The presence ofalibrary of mining functions
and the possibility to define new functions, if
required, makes pattern manipulation much
more flexible.

HETEROGENEOUS PATTERNS:
THE CURRENT APPROACHES

As we have already stressed, the need for a
framework supporting heterogeneous pattern
managementinahomogeneousway iswidespread
and it impacts over many different contexts and
domains. For this reason, many efforts have been
put in this direction from the academic and the
industrial communities. In the remainder of this
section, we briefly present existing proposals
starting from theoretical solutions and moving
towards industrial and commercial ones.

Theoretical Proposals

Within the scientific world, many efforts have been
put in the formalization of the overall principles
under which a PBMS can be realized, providing
the theoretical foundations for the development of
pattern-based technologies. The most important
research efforts are the following:

. Inductive databases approach (De Raedt,
2002; Imielinsky & Mannila, 1996) par-
ticularly investigated in the context of the
CINQ Project (CINQ, 2001);

. 3-worlds model (Johnson et al., 2000);

. PANDA Project (Bertino et al., 2004; Ca-
tania et al., 2004; PANDA, 2001; Rizzi et
al., 2001).

Inductive databases. Theresearch areaof induc-
tive databases is very active, and many research
efforts have been devoted in laying the foundations
of an inductive framework where both data and
patterns are stored in the same layer. Under this

93



Modeling and Managing Heterogeneous Patterns: The PSYCHO Experience

integrated perspective, the knowledge repository
is assumed to contain both data and patterns.
Thus, the same data model is used for both data
and pattern representation, and the knowledge
discovery process is interpreted as an extended
querying process (De Raedt, Jaeger, Lee, & Man-
nila, 2002; Meo, 2004). Therefore, a language
for an inductive database is an extension of a
database language that allows one to (1) select,
manipulate, and query data as in standard que-
ries; (2) select, manipulate, and query patterns;
and (3) execute cross-over queries over patterns.
Queries can also be stored in the repository as
views; in this way, data sets and pattern sets are
intensionally described. From a practical point
of view, several languages extending SQL with
data mining algorithm have been provided (Han,
Fu, Wang, Koperski, & Zaiane, 1996; Imielinski
& Virmani, 1999; Meo, Psaila, & Ceri, 1998).
However, in general, they rely on specific types
of patterns, mainly association rules or clusters.

3-worlds model. The 3-worlds model (3W model)
is a unified framework for pattern management
based on the definition of three distinct worlds: an
intensional world (I-World), containing intension-
al descriptions of patterns; an extensional world
(E-World), containing an explicit representation
of patterns; and a world representing raw data
(D-World). The type of patterns that can be repre-
sented in the I-World is a region in the collection
of points representing the data space, described
by means of linear constraints. For example, a
cluster of customers based on their age can be
described by the following constraint: “18<=age
<=35". More complex regions, called dimensions,
can be defined, composed of a set of constraints.
In the E-World, each region is extensionally
represented by listing all members of the source
space satisfying the constraint characterizing
the region. Finally, the D-World corresponds to
the source data set, in the form of relations, from
which regions and dimensions can be created as
a result of a mining process. Note that regions
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in the I-World are not predefined, thus user-de-
fined patterns are allowed. Each region can be
associated with a number of attributes, including
measures, which do not have a special treatment.
No pattern temporal management is provided.
From the manipulation side, the framework does
not support a-priori patterns. Indeed, operations
to directly insert patterns in the system are not
provided. Query languages for all the worlds have
been proposed. In particular, for the D-World
and the E-World, traditional relational languages
can be used (with some minor extensions for the
E-World). On the other hand, a specific algebra
has been defined over regions in the I-World,
providing support for basic queries over regions
and for cross-over queries involving patterns,
their extensions, and data.

PANDA model. Within the PANDA Project,
a unified framework for the representation of
heterogeneous patterns has been proposed. The
PANDA solution relies on an ad hoc, dedicated
logical model for representing heterogeneous pat-
tern types, possibly user-defined. It also provides
supportfor both a-prioriand a-posteriori patterns,
and it allows the user to define ad-hoc mining
functions for generating a-posteriori patterns.
Moreover, pattern quality measures and pattern
validity notions are modeled, as well as relation-
ships between patterns and raw data that can be
stored in an explicit or approximated way. For
instance, a cluster of customers can be explicitly
(orextensionally) described by listing all custom-
ers belonging to it, or it can be approximately
(or intensionally) described through a formula
expressing the characteristics raw datashould have
in order to belong to the cluster. For example, an
age-based cluster can be described by a constraint
formulaof the form “m<=age<=n"saying thatonly
customers whose age is between m and n belong
tothe cluster. Furthermore, complex patterntypes
based on composition and refinement hierarchies
can be defined by using the PANDA model.
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Considering pattern manipulation and
querying, the PANDA approach proposes spe-
cific languages for patterns (Bertino et al., 2004;
Cataniaetal., 2004) taking into account temporal
characteristics of pattern validity. In particular,
the pattern manipulation language supports
pattern manipulation operations involving both
a-posteriori and a-priori patterns, such as pattern
insertion, modification (e.g., update, synchroni-
zation, and recomputation), and deletion. On the
other hand, by using the proposed pattern query
language, patterns can be retrieved and queried
by specifying filtering conditions involving all
pattern characteristics supported by the model.
Additionally, different patterns can be combined
and correlated with raw data (i.e., cross-over
operations are supported).

By concluding, for what concerns pattern rep-
resentation, the more general model seemsthe one
proposed in the context of the PANDA Project,
where there is no limitation on the pattern types
that can be represented. PANDA is also the only
approach taking into account temporal aspects,
hierarchies, and providing both a precise and an
approximated relationship between patterns and
source data. In particular, it can be shown that the
approximated representation in PANDA is quite
similar to the region representation in 3W.

Concerning the manipulation language, the
3W Model and inductive database approaches do
not explicitly support direct insertion of patterns
as well as deletion and update operations. On the
other hand, all the proposals take into account
synchronization (recomputation) issues, either
by providing explicit recomputation operations
or by exploiting the logical integration of patterns
with raw data in the case of the inductive database
approach. Concerning the query language, all the
approaches propose one (or more) calculus-based
or algebraic languages. As a final consideration,
we observe that when dealing with applications
managing different types of patterns (this is the
case of advanced knowledge discovery applica-

tions), the 3W Model and PANDA theoretical
frameworks are the best solutions since they
provide support for heterogeneous patterns in
a unified way. On the other side, the inductive
databases approach provides better solutions for
specific data mining context, such as association
rules management, with a low impact on existing
SQL-based applications.

Standards

The industrial community proposed some
standards to support pattern representation and
management in order to achieve interoperability
and knowledge sharing between different envi-
ronments. Thus, they provide the right front-end
for pattern management applications.

In general, they do not support generic pat-
terns and, similarly to the inductive database ap-
proach, specific representations are provided for
specific types of patterns and usually low support
for interpattern manipulation is provided. In the
following, the most important standard proposals
are briefly reviewed.

. Predictive model markup language: The
predictive model markup language (PMML,
2003) is an XML-based standard aimed at
describing data mining models (i.e., data
mining results, algorithms, procedures, and
parameters). It is mainly devoted to repre-
senting data mining information in order to
facilitate their exchange between different
applicationenvironments providing import/
export support for PMML data.

. SQL/MM - DM: The ISO efforts rely on
SQL technology and it is called SQL/MM
— DM (ISO SQL/MM Part 6, 2001). By
exploiting SQL potentialities, it provides
supportnotonly for data representation, but
also for pattern representation. Therefore,
dataand pattern manipulationand querying
can be performed inan SQL-based environ-
ment.
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. Javadatamining API: Withasimilaraim,
inorderto provide dataminingsupportinthe
context of the Java programming language,
the Java data mining API specification
has been proposed (JDM, 2003). It can be
considered a pattern management solution
supporting the integration of data mining
applications with other Java-based appli-
cations. Similarly to the case of SQL/MM,
using JDM, manipulation and querying are
possible by using typical languages used for
accessing data.

. Commonwarehouse metamodel: Thecom-
mon warehouse metamodel (CWM, 2001)
approach is another standardization effort
of the Object Management Group aimed
at representing metadata for exchanging
patterns of knowledge between warehouse
platforms.

Among the presented standards, PMML and
CWM-DM simply address the problem of pat-
tern representation and they mainly deal with
data mining and data warehousing patterns. On
the other hand, SQL/MM and JDM cope with
both pattern representation and management. All
standards provide a support for the representa-
tion of common data mining patterns. However,
the set of pattern types is not extensible; thus, no
user-defined patterns can be modeled.

All standards allow the user to specify the
mining algorithms to apply. However, in the case
of PMML, this is just a string used only for user
information purposes. Furthermore, all consid-
ered approaches support measure computation
and description of the source data set, which is
used in SQL/MM and JDM for pattern extrac-
tion. None of the standards supports advanced
modeling features concerning patterns such as
temporal information management and pattern
hierarchy definition.

Concerning pattern management, no dedicated
languages for pattern manipulation are supported.
Moreover, a-priori patterns cannot be handled by
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using the proposed standards; actually, a limited
support for them is provided by JDM, which al-
lows pattern import.

Finally, we remark that SQL/MM and JDM
can be used for developing specific data mining
applications on top of existing technologies. In
particular, SQL/MM can be put on top of an
ORDBMS environment, whereas JDMworksina
Java-based environment. Differently, PMML and
CWM-DM are mainly used for pattern exchange
between different environments.

Pattern Support in Commercial
DBMSs

Since the ability to support business intelligence
solutions enhances the market competitiveness of
a DBMS product, all the most important DBMS
producers supply their products with solutions for
business intelligence supporting data mining and
pattern management processes. In the remainder
of this section, we briefly discuss data mining
solutions proposed by three leading companies
in database technology—Oracle, Microsoft, and
IBM—with respect to the previously identified
PBMS requirements.

. Oracle data mining: Oracle Data Mining
(ODM, 2005) is a tool tightly integrated
with Oracle DBMS supporting several data
mining activities (such as classification,
prediction, clustering, and association rule
discovery) generating different kinds of
patterns (such as Naive Bayes network or
support vector machine classifiers, clusters,
and association rules) from source data
stored in the underlying Oracle database.
We outline that mining algorithms and
machine learning methods are built-in in
ODM, but the user may change some set-
tings and/or define new parameters for the
mining model through the ODM Java API.
Statistical measures can be associated with
classifiers and association rules.
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. Microsoft SQL Server: The approach for
business intelligence proposed by Microsoft
SQL Server 2005 exploits OLAP, data min-
ing, and data warehousing tools (MS SQL,
2005). SQL server 2005 allows the user to
build different types of mining models deal-
ing with traditional patterns (such as deci-
sion trees, clusters, Naive Bayes classifiers,
time series, association rules, and neural
networks) and to test, compare, and man-
age them in order to drive business decision
processes. The entire knowledge manage-
ment processis performedthroughamining
model editor, that allows the user to define,
view, compare, and apply models. Besides
this editor, additional tools are provided to
exploit other mining phases (for example,
data preparation). Within SQL server 2005,
through OLE DB for data mining (OLEDB,
2005), itis possibleto integrate data-mining
capabilities in other database applications.
Indeed, it provides SQL-like storage and
manipulation features for mined patterns,
which are stored in a relational database.
To create amining model, a CREATE state-
ment, similar to the SQL CREATE TABLE
statement, can be used; to insert new pat-
ternsinamining model, the INSERT INTO
statement can be used; finally, patterns can
be retrieved and predictions made by using
the usual SQL SELECT statement. For the
sake of interoperability and compatibility
with standards, OLE DB for data mining
specification incorporates PMML.

»  DB2Intelligent Miner: The DB2 database
managementenvironment provides support
for knowledge management by means of a
suite of tools, called DB2 Intelligent Miner
(DB2,2005), dedicated to the basic activities
involved in the whole data mining process.
In particular, the latest version of DB2
Intelligent Miner supports fraud detection,
market segmentation, customer profiling,
and market basket analysis. Thus, users

may use data mining functionalities as any
othertraditional relational function provided
by the DBMS. The interaction among DB2
Intelligent Miner’s toolstakes place through
PMML, SQL, and Java. In particular, the
DB2 Extender for data mining tool allows
the construction of PMML mining models
within DB2/SQL applications and their
update with respect to changes occurringin
the underlying data. The generated PMML
mining models are stored as Binary Large
Objects (BLOBS). The other DB2 tools sup-
portingtraining, scoring (or prediction),and
visualization of a model works on PMML
models, thus they can manage, without
additional overhead, third-party PMML
models. Finally, since the mining results
are stored as BLOB, the user may interact
with the system through an SQL API, and
through ODBC/JDBC or OLE DB, data
mining results can be integrated within
business applications developed using a
general-purpose programming language
such as Java.

From the previous discussion, it follows that
commercial DBMSs do not provide a dedicated
logical model for pattern representation and que-
rying, since these aspects are demanded to the
applications using the mined results. An excep-
tion is represented by SQL Server 2005 where,
through OLE DB, pattern storage, manipulation,
and querying is made through OLE DB for Data
Mining.

Moreover, we outline that in all commercial
systems only a set of predefined pattern types
can be used and mining functions are built-in
in the system even if the user can modify some
settings in order to specialize the algorithm to
the case he/she is interested in. Finally, none
of the considered DBMSs takes into account
advanced modeling aspects involving patterns,
such as temporal information management and
the existence of hierarchical relationships between
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patterns. Actually, only DB2 considers pattern-
data synchronization issues, through a scoring
mechanism that can be started up by sometriggers
monitoring raw data changes.

PSYCHO: AN INTRODUCTION

Fromthe discussion presented inthe previous sec-
tion, it follows that a unified framework dealing
with heterogeneous patterns in a homogeneous
way, addressing all the identified requirements, is
still missing. Inorder to determine what the impact
is of the identified characteristics over advanced
data-intensive applications, we have developed
PSYCHO (Pattern based SYstem arCHitecture
prOtotype), a PBMS system prototype for hetero-
geneous pattern management. In the remainder
of this section, we introduce PSYCHO in terms
of its underlying data model and architecture,
and we discuss how it addresses the previously
discussed requirements.

Figure 1. The PSYCHO logical model

PSYCHO: THE MODEL

The PSYCHO data model relies on the PANDA
logical model first introduced in Rizzi et al.
(2003) and then extended with temporal features
in Catania et al. (2004). According to those pro-
posals, the PSYCHO logical model is based on
three basic concepts: pattern types, providing a
formal description of the structure of a specific
type of patterns; patterns, instances of a given
pattern type; and classes, sets of semantically
related patterns used for querying purposes. All
such logical entities along with their relationships
are graphically shown in Figure 1.

A pattern type acts as a template for patterns,
since it defines the schema of a group of patterns.
Itis characterized by six components: (1) the pat-
ternname; (2) the structure schema, describing the
structure of the patterns instances of the pattern
type being defined; (3) the source schema, describ-
ing the data set from which patterns, instances of
the patterntype being defined, are constructed; (4)
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the measure schema, which is a tuple describing
the measures expressing the quality of the source
data representation achieved by the pattern; (5)
the validity period schema, defining the schema
of the temporal validity interval associated with
each instance of the pattern type; and (6) the
formula, describing, possibly in an approximate
way, the relation between data represented by
the pattern and the pattern structure. Within the
current PSYCHO implementation, the formulais
a conjunction of linear disequalities, whose free

variablesrange over patternstructure schemaele-
ments and pattern source schema elements. The
formula component then represents a constraint
that is true for all the items of the data source
which are represented by the pattern.

Patterns are instances of a specific pattern
type, containing the proper instantiation of the
corresponding schema components in the pat-
tern type. In particular, the formula component
of a pattern is obtained from the one in the cor-
responding pattern type by instantiating each

Table 1. PSYCHO support for the identified PBMS requirements

Requirement PSYCHO support PSYCHO module
Multipattern type support No predefined pattern type set Pattern Base
User-defined pattern types support PSY-PDL primitives for defining new pattern types PDL Interpreter +
Pattern Base
2 Relationship between raw data and Source data information represented inside the logical Pattern Base +
o patterns model in two different ways PQL Interpreter +
é Formula Handler
c Quality measure support Pattern quality measures represented inside the logical Pattern Base +
% model PQL Interpreter
& Pattern validity support Pattern validity information represented inside the Pattern Base +
logical model PQL Interpreter
Pattern type hierarchy support PSY-PDL primitives for defining complex hierarchical PDL Interpreter +
pattern types Pattern Base
Queries against patterns PSY-PQL primitives for performing different types of Query Processor +
= queries Formula Handler +
g Pattern Base
qg’. Pattern combination PSY-PQL primitives to perform pattern joins Query Processor +
c Pattern Base
j&d
b= Queries involving patterns and raw PSY-PQL primitives supporting cross-over queries Query Processor +
o data Pattern Base +
Datasource
Automatic extraction PSY-PML primitive for generating a-posteriori patterns | PML Interpreter +
Datasource +
Pattern Base
c
2 Direct insertion PSY-PML primitive for a-priori pattern insertion PML Interpreter +
< Pattern Base
(=R
'g Modification and deletion PSY-PML primitives for updating and dropping existing | PML Interpreter +
IS pattern types, patterns, and classes Pattern Base
o
E Synchronization over source data PSY-PML primitives for synchronizing and/or Query Processor +
§ recomputing patterns Pattern Base +
Datasource
Mining function PSY-PML primitive for defining new mining functions PDL Interpreter +
Pattern Base
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attribute appearing in the structure schema with
the corresponding value and letting the attributes
appearing in the source schema ranging over
source space elements.

A class is a collection of semantically related
patterns and constitutes the key concept in defin-
ing a pattern query language (see below). A class
is defined for a given pattern type and contains
patterns instances of that type. A pattern may
belong to any number of classes defined for its
patterns type. If a pattern does not belong to any
class, it cannot be queried.

Concerning pattern extraction, several differ-
ent mining functions can be defined to extract
patterns of a certain pattern type. A mining func-
tion, defined for a certain pattern type, takes in
input a raw data set and some threshold values
for pattern measures and produces as output a
set of instances of the proper pattern type, whose
measure values are equal to or better than the
specified thresholds. Generally, a set of built-in
mining functions for standard patterns can be
assumed to be available in the system. However,
the user can define new mining functions in
order to tailor pattern extraction with respect to
specific needs. Similarly to the case of mining
functions, several different measure functions
can be defined to evaluate the measure values
associated with a pattern of a certain type over a
certain input data set.

In the context of the PANDA Project (Catania
et al., 2004; Rizzi et al., 2003), some interesting
relationships supporting hierarchical pattern defi-
nition have also been proposed. Among them, we
recall the composition relationship—between a
pattern and those used to define its structure—and
the refinement relationship—between a pattern
and those belonging to its data source. PSYCHO,
which implements the logical model for patterns
proposed in the context of the PANDA Project,
supports both hierarchies.

Accordingtothe logical model used for pattern
representation, PSYCHO supports two types of
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validity: temporal validity and semantic validity.
A pattern is temporally valid with respect to a
certaindate (oradate interval) ifits validity period
contains the specified date (or the date interval).
A pattern is semantically valid with respect to a
certain data set and a set of thresholds if the pat-
tern measure values computed over the input data
set are better than the threshold values provided
as input. The pattern validation process, which is
primarily aimed at determining whether a pattern
is still a good representation of a certain data set,
essentially relies on the pattern semantic validity
notion. Indeed, it often happens that a pattern,
representing a data source at a certain instant of
time, does notrepresentthe same data source after
several modifications occur in it (see below the
first scenario for more details). As far as we know,
no system supports this kind of analysis.

Based on the considered pattern model,
PSYCHO provides three languages for pattern
management:

. Thepattern definition language (PSY-PDL),
used for defining new pattern types, classes,
mining, and measure functions;

e The pattern manipulation language (PSY-
PML), used to perform operations such as
insertions, extraction, deletions, updates,
synchronization, and recomputation of the
patternsinthe systemwith respecttosource
data. Moreover, it allows the user to insert
or remove a pattern into or from a class;

. The pattern query language (PSY-PQL),
used to query the PBMS in order to retrieve
patterns and correlate them with data they
represent (Cross-over queries).

For all the three languages, an SQL-like
syntax has been provided to simplify the request
specification.

Table 1, for each cited requirement, summa-
rizes how PSYCHO supports it (third column)
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and which are the involved PSYCHO software
components (last column). We refer the reader
to the next section for more details about the
PSYCHO software architecture.

PSYCHO: THE ARCHITECTURE

Indesigningthe PSYCHO architecture, werelyon
object-relational technology: raw data are stored
as tables of complex values in an object-relational
DBMS and patterns corresponds to complex
objects, which can be easily implemented within
an object-relational DBMS. More precisely, the
PSYCHO architecture relies on Oracle and Java
technologies and can exploit Oracle Data Mining
(ODM) server functionalities when dealing with
standard data mining patterns. The architecture
is composed of three distinct layers (Catania,
Maddalena, & Mazza, 2005):

. Physical layer: It contains the Pattern Base
andthe Data Source. The Pattern Base stores

Figure 2. The PSYCHO architecture

pattern types, patterns, and classes and it
provides the implementation of the basic
operations dealing with patterns. Concern-
ing the pattern formula, we consider two
distinct representations: an operational one,
by which the formula is indeed a predicate
over data source elements implemented as
an Oracle PL/SQL stored function, and a
declarative one, by which the formula is a
linear constraint formula, managed by the
Formula Handler component (see below).
The Data Source stores all raw data from
which patterns have been extracted. For the
sake of simplicity, in the current PSYCHO
version, we assume source data is stored in
an Oracle DBMS.

Middle layer: It containsthe PBMS Engine,
which corresponds to the kernel of the
system. It supports all functionalities for
pattern manipulation and retrieval interact-
ing with both the Pattern Base and the Data
Source componentsinthe physical layer. The
PSYCHO Engine takes a request from the
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external layer—specified by using a specific
SQL-like PSYCHO command—and calls
the right functions/procedures at the physi-
cal layer. Itis entirely written in Java, and it
contains four different software modules: the
PDL Interpreter and the PML Interpreter,
which deal with the execution of PSY-PDL
and PSY-PML commands, respectively;
the Query Processor, which is dedicated to
execute queries expressed using PSY-PQL;
and the Formula Handler, which provides
support for the management of intensional
aspects related to pattern formulas through
the usage of a Prolog constraintsolverengine
(Sicstus, 2004), which can be accessed by the
Javaapplication through the Jasper package
(Jasper, 2005).

. External layer: It corresponds to a user
interface from which the user can send re-
quests to the engine by using the primitives
of the provided languages (i.e., PSY-PDL,
PSY-PML, and PSY-PQL).

The whole PSYCHO architecture is shown
in Figure 2, where the software components
populating the three layers of the architecture are
depicted along with their interactions.

Animportantaspect concerningthe PSYCHO
architecture ishowthe differentcomponents com-
municate between them. We start our description
bottom-up, from the lowest layer to the highest.
The Pattern Base, as stated before, is integrated
withinthe DBMS. The PSYCHO Engineisplaced
immediately above the Pattern Base. It creates
and manages the connection with the DBMS and,
therefore, with the Pattern Base. The communi-
cation is, therefore, the classical communication
between a Java application and a DBMS, through
a JDBC driver.

On the other hand, the communication be-
tween the PSYCHO Engine and the external
layer is established using sockets. In this way,
the system is more flexible, and a completely
distributed architecture can be realized. In details,
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the PSYCHO Engine opens a socket on a fixed
port and waits for connections from the outside.
When the external module needs to communicate
with the server, it makes a connection, creates a
serializable object that encapsulates the request,
and sends it to the PSYCHO Engine. In this way,
using serialization, sockets and JDBC driver, the
different components corresponding to patterns
and datasources, the engine, and external modules
can be placed on different hosts.

PSYCHO USAGE

When using PSYCHO, we may identify several
basic phases that occur in almost every pattern
management session, independently from the
handled pattern types and the considered refer-
ence domain. Such phases are: (1) set-up of the
PBMS environment; (2) population of the pattern
base; (3) analysis of the pattern base contents; and
(4) pattern maintenance and updating phase. In
general, we may assume that several standard data
mining pattern types (such as association rules),
along with their mining and measure functions,
are built-in in the system.

In case the required pattern types are missing
in the PBMS, phase 1 allows the user to set up
the PSYCHO environmentby creating all schema
objectsrequired for representingand managing the
instances of the new pattern type. More precisely,
phase 1 allows the definition of the following
elements: (1) the pattern type we are interested
in (if it does not already exist in the system); (2)
at least one mining function implementing an
extraction algorithm generating instances of the
pattern type of interest; and (3) one (or more)
measure functions computing measure values
to be associated with pattern instances of the
new pattern type. The syntax of the PSY-PDL
commands to be used for the goals listed above
is shown in Figure 3.

In the remainder of this section, we present
various scenarios describing different PSYCHO
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Figure 3. PSY-PDL syntax for creating pattern types, mining functions, and measure functions

: CREATE PATTERN TYPE <Pattern_Type_Name>

T CODE <Code> RETURN <Name>
8: FOBMULA INTENSIONAL <Name™);
o

11: USING <Data Source Name=>

12: WITH <Field Declaration> AS <Field Declaration>
13. BEGIN

14:  <Mining Code=

15: END;

16:

18: USING <Data_Source Name™ AS <Field Declaration™
19: BEGIN

200 <Code>

21: RETUEN Measure(<List of Valueg=);

22: END;

1
2: STRUCTURE <Tield Declaration> [DEFINT. EQUALS ON <Pattem_Variable> USING <Field_Declarati on>
3 CODE <Code> BETURN <Name>],

4: MEASURE <Field Dedaralion> [DEFINE THETA ON <Paltern Variable> USING <Field Dedaralion=

5 CODE <Code> RETURN <MName=>],

6. FORMULA EXTENSIONAL ON <Data_Source Name> USING <Field_Declaration™>

10: CREATE MINING FUNCTION <Name> FOR <Paftern Type Name>

17: CREATE MEASURE FUNCTION <Name> FOR <Pattern_Type Name>

applications. For each scenario, we point out
the main goal and several operations, written
in PSYCHO languages, aimed at showing the
potentialities of the system.

SCENARIO 1: DATA MINING
PATTERNS

The aim of the first scenario is to illustrate repre-
sentation, generation, manipulation,and querying
activitiesfor patterns of the sametype in PSYCHO.
Tothispurpose, asalready said, we consider asso-
ciationrulesand clusters of 2-dimensional points.
We remark that such data mining pattern types
are managed by any commercial system dealing
with data mining. However, PSYCHO allows one
to perform several operations that are not directly
supported by other existing tools.

Association Rules
Set-up. Weassume source dataare storedinatable

withschema (DSid, Item_1,...,Item_n), whereeach
tuple represents a sales transaction identified by

DSid, Item_iiseither 1 or0,and Item_i=1means
that the corresponding transaction identified by
DSid contains Item_i. Furthermore, we assume a
basic Oracletype, named CharArray, formodeling
arrays of chars is available and provides a method
for checking equality between pairs of CharArray
instances, named Chararray_Equal.

As already said, in this phase, we define the
pattern type, the mining function required to
extract association rules from source data, and
the measure function, required to recompute mea-
sures upon a given data source. For association
rules, we may assume such objects already exist
in the system, since the association rule type is
a standard data mining pattern.

The code required to set up the pattern type
AssociationRule is shown in Figure 4. We notice
that:

. As default, an extensional formula (lines
16-18) returning the whole pattern data
source is associated with a pattern of type
AssociationRule; whenever the user specifies
an extensional formula code, this overrides
the default behavior.
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. Concerningtheintensional formula, the user
hasto specify the name of an existing Prolog
predicate, intensionally checking whether a
source data item is represented by the pat-
tern (ARFormulaINT in this example, see
line 19).

e The structure is associated with a function
EQUALS, checking the equality between
two structure values for the pattern type
under definition (lines 4-8).

e The measure is associated with a function
THETA, checking whether ameasure value
is “better than or equal to” another (lines
9-15).

Concerning the mining function for associa-
tion rules, within PSYCHO, a Java implementa-
tion of the Apriorialgorithm (Agrawal & Srikant,
1994) exists. Additional mining functions can
however be made available. Inthe current version
of PSYCHO, this can be done by defining some
Oracle functions. Various measure functions
can also be defined. As an example, lines 21-26
of Figure 4 present the statement for creating a

measure function for computing confidence and
support over a given data source (identified by
variable varDS).

Population. In this step, we show how PSYCHO
can be used to (1) use various mining functions to
extract patterns of agiven type; (2) directly insert
patterns; and (3) recompute patterns. We wish to
outline that only few systems provide support for
mining patterns using differentmining functions,
possibly user-defined. Therefore, this constitutes
an important, innovative aspect increasing the
extensibility and flexibility of the proposed
system. Examples of insertion commands are
presented in Figure 5. We first show association
rules extraction, using the PSYCHO Java min-
ing function Apriori implementing the A-Priori
algorithm. We createaclass, called AR30_psycho,
where storing the extracted patterns (line 1). We
remark that, if no class is used to store extracted
patterns, they are inserted in the system but they
cannot be used in queries. Then, we extract as-
sociationrules fromadatasource ltemsDS_30 by
using the existing function Apriori, and we store

Figure 4. Creation of the AssociationRule pattern type

1-CREATE PATTERN TYPE AssociationRule

STRUCTURE head CharArray, body CharArray

DEFINE EQITALS ON p1 TI3THG ret it CODE

if Chararray_Equal(self shead, pl.shead)=1 AND Chararray_Equal(selfsbody pl sbodyr=1
then ret=1;
else ret:=0;

end iE;

T return ret;

MEASURE support REAL, contidence REAL

: DEFINE THETA ON p2 USING ret int CODE
o b (zelfm support >=p2 msupport AND selfm conbidence>=p 2. m confidence)

thenrel =1,
else ret:=0;

. endif,

o return ret,

. FORMULA EXTENSIONAL ON varDS TISING condB varchar2(100), condH varchar2(100)
: CODE

* evaluation of the suhset of varD 8 approximated by a pattern of type AssociationRule®/

© FORMULA INTEMSIONAL ARFormula INT,

20

21 .CREATE MEASURE FUNCTION AR_measure_func FOR AssociationRule ar
22-TIEING varD3

23: A2 . *local parameter declaration®/

24: BEGIN

23:
26: END;

...f*code for computing confidence and support for association rules over the input dataset®/
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the result in class AR30_psycho (lines 3-5). To
this purpose, we specify that the support of the
extracted rules must be higher than 0.4 and the
confidence higher than 0.7 (line 3); the validity
period of the extracted rules is set from 01-jul-
2005 to 10-aug-2005 (line 4).

Other association rules can be extracted by
using the mining algorithms available in Oracle
Data Mining ODM (ODM, 2005). Assume amin-
ingfunction Apriori_ODM, callingthe ODM one,
isavailable within PSYCHO; new patterns can be
extracted from ItemDS_30 using such a mining
function. The resulting patterns can be stored in
a new class, named AR30_ODM. The PSYCHO
code for this operation is presented at lines 7-11,
where only rules with support higher than 0.4 and
confidence higher than 0.7 are generated.

Single association rules can also be directly
inserted in PSYCHO by specifying each com-
ponent. For example, the direct insertion state-
ment presented at lines 17-21 inserts in class
AR30_psycho a rule having items “bread” and

Figure 5. AssociationRule pattern generation

“milk” in its head and items “jam”, “butter”, and
“wine” in its body, representing sale transactions
in ItemsDS_ 30 data set with supportequalsto 0.5
and confidence equals to 0.7, valid from 01-aug-
2005 till 15-aug-2005.

Finally, within PSYCHO, new patterns can be
generated by recomputing measures of existing
patterns over anew data source. Line 23 shows an
example of amanipulation operation recomputing
association rules over the data set ItemsDS_5 us-
ingthe AR_measure_funcmeasure function. The
execution of this operation returns new associa-
tion rules identical to the existing ones, except
for their data source and measure components.
In detail, their data source is set to ItemsDS_5,
and their measure component contains the proper
measure values evaluated over ItemsDS_5 using
the input measure function.

Queries. PSY-PQL supports the following
querying features: (1) simple queries involving
predicates dealing with pattern components; (2)
pattern composition; (3) nested queries; and (4)

2

5: INTO CLASS AR30_psycho;
6:

7
8

11: INTO CLASS AR30_ODM;
12:
13: SELECT *

16:
19: MEASURE (05,07)

21: INTO CLASS AR30 psycho;
22:

1: CREATE CLASS AR30_psycho OF AssociationRule;

3: EXTRACT PATTERNS OF AssociationRule ar FROM ItemsDS_30 USING Apriori(0.4,0.7)
4: VALID FROM *01-jul-2005° "TO *10-aug-2005°

: CREATE CLASS AR30_ODM OF AssociationRule;

9: EXTRACT PATTERNS OF AssociationRulc ar FROM ItemsDS 30 USING AprioriODM(0.4,0.7)
10: VALID FROM °10-jun-2005" TO *10-aug-2005"

14: FROM AR30_ODM or INTERSECT JOIN AR30_psycho pr
15: WHERE Chararray_Ecual(or.s.head pr.shead)=1 AND Chararray Ecqual(or.s.body pr.s.body)=1;

17: DIRECT INSERT PATTERN OF AssociationRule FROM ItemsDS 30
18; STRUCTURE (CharArmray (‘bread’,‘milk*), CharAmay(‘jain’,*buller’, “wine”) )

20: VALID FROM <01-aug-2005° TO *15-aug-2005°

23: RECOMPUTE PATTERNS of AssociaionRule ar ON ItemsDS 5 USING AR _measure_func;
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pattern-data reasoning (cross-over queries). In
the following, we present examples for each class
of queries.

Simple queries allow the user to select pat-
terns from a given class, according to a variety of
predicates. In the WHERE clause of a SELECT
statement, selection predicates can be combined
using Boolean operators (i.e., NOT, AND, OR).
Moreover, PSYCHO supportsthe analysis of both
temporal and semantic pattern validity, through
the use of proper querying predicates, according
to the notion of pattern validity supported by the

logical model. Queries 1,2, 3,and 9 in Table 2 are
examples of simple queries expressible within
PSYCHO over patterns of type AssociationRule.
In particular, queries 3 and 6 rely on a temporal
validity predicate, whereas query 9 applies a
semantic validity predicate.

Concerning pattern composition, in the actual
release of PSYCHO, two types of join are pro-
vided: a general join, called CJOIN, and a specific
join, called INTERSECTION JOIN. The CJOIN
relies on a user specified composition (or joining)
function, defining the structure of the resulting
patterns. In particular, it takes two classes and,

Table 2. Simple queries involving AssociationRule patterns

N. Query

PSY-PQL code

support smaller than or equal to 0.75

Retrieve all association rules from AR30_psycho with

SELECT *
FROM AR30_psycho ar
WHERE ar.m.support <= 0.75;

2 Retrieve all association rules from AR30_psycho
having at least 1 item in their head and 3 items in
their body

SELECT *
FROM AR30_psycho ar
WHERE ar.s.Head.count>=1 AND ar.s.Body.count>=3;

3 | Retrieve all association rules from AR30_psycho
having a confidence value greater or equal to 0.75 or
which are temporally valid on August, 15 2005

SELECT *

FROM AR30_psycho ar

WHERE ar.m.confidence >= 0.75 OR
isTvalid(ar, 15-aug-2005")=1;

4 | Determine all association rules, obtained as the
transitive closure (using the Trans_closure_ar
composition function) of two existing association
rules, and having at least two items in the body

SELECT *

FROM AR30_psycho arl CJOIN
AR30_psycho ar2

WITH Trans_closure_ar

WHERE ar2.s.body.count >= 2;

5 | Determine all pairs of association rules, generating
their intersection

SELECT *
FROM AR30_psycho arl INTERSECT JOIN AR30_
psycho ar2

6 | Determine all data represented by association rules in
class AR30_psycho

DRILL THROUGH AR30_psycho ar;

7 Determine whether the association rule with
PI1D=10013 and support at least 0.4 is suitable to
represent the data set ItemsDS_30, possibly different
from the one from which the rule has been generated

DATA COVERING (

SELECT *

FROM AR30_psycho pr

WHERE pr.PID = 10013 AND pr.m.support>=0.4) ar
FOR ItemsDS_30;

8 | Determine among rules in AR30_psycho the ones
with confidence at least 0.8 suitable to represent the

from which the rule has been generated)

data set ItemsDS_30 (possibly different from the one

PATTERN COVERING ItemsDS_30
FOR AR30_psycho ar
WHERE ar.m.confidence >= 0.8;

9 | Retrieve from AR30_psycho all semantically valid
rules (with respect to their data source), with support
and confidence greater than or equal to 0.4

SELECT *

FROM AR30_psycho ar

WHERE isSvalid(ar,ar.d, ‘AR_measure_func’,
AssociationRuleMeasure(null,0.4,0.4))=1;
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for each pair of patterns, the first belonging to the
first class and the second belonging to the second
one, it applies the specified composition function
to produce output patterns. On the other hand,
the INTERSECTION JOIN takes two classes
and returns new patterns, whose structure is a
combination of the input structures and whose
intensional formula is the conjunction of the
input intensional formulas. Queries 4 and 5 in
Table 2 are examples of association rule joins. In
particular, the CJOIN presented in query 4 relies
on the Trans_closure_ar composition function,
we assume previously defined, which, given a
pair of association rules (e.g., A>B and B->C),
constructs their transitive closure (i.e., A>C in
this case).

PSYCHO also supports pattern-data reason-
ing; that is, it allows the user to specify PSY-PQL
queries involving both data and patterns, the so
called cross-over queries. Such kind of queriesare
quiteimportantin pattern management, since they
allow the user to discover interesting (possibly
new) correlations between patterns and data. In
Table 2, queries 7,8, and 9 are examples of possible
cross-over queries. Moreover, as shown in query
7, PSY-PQL queries can also be nested.

Other Manipulation Operations. PSYCHO sup-
ports various types of update operations.

Synchronization operation allows one to
synchronize pattern measures with their current

data source. For example, statement 1 in Table
3 synchronizes all association rules contained
in class AR30_psycho, using measure function
AR_measure_func.

After performing association rules synchro-
nization, it may be useful to validate updated
association rules. Validating patterns means
possibly recomputing new patterns when the
quality of the representation of adata setachieved
by the patterns themselves decreases (thus, the
recomputed measures are worse than the existing
ones) or just synchronizing their measure when
the quality increases. For instance, statement 2
in Table 3 validates rules in class AR30_psycho
and inserts the new created patterns inside the
same class.

Clusters of 2D Points

As a further example, we consider clusters of 2D
points. Such clusters can be represented in several
ways. We consider two distinct representations:

. Extensional clusters: In this case, we as-
sume a cluster is represented by the set of
points belonging to it.

. CH-clusters: In this case, we assume that
each cluster is identified by the convex re-
gion containing all the points belonging to
it. Such region corresponds to the convex
hull of such points. We assume to represent
the region by listing its vertexes.

Table 3. Update operations involving AssociationRule patterns

N. Manipulation Operation

PSY-PML code

func.

Synchronize association rules in class AR30
psycho, using measure function AR_measure_

UPDATE PATTERNS OF AssociationRule ar
SYNCHRONIZE

USING AR_measure_func

WHERE INCLASS(ar,*AR30_psycho’)=1;

2 Validate rules in class AR30_psycho and

class.

inserts newly created patterns inside the same

UPDATE PATTERNS OF AssociationRule ar
VALIDATE

USING AR_measure_func

WHERE inclass(ar, ‘AR30_psycho’)=1
INTO CLASS AR30_psycho;
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The quality of the representation achieved by
bothtypes of clusters can be evaluated by the intra
distance measure (Han & Kamber, 2001). The
definition of such pattern type shows the PSYCHO
capabilities in representing and manipulating the
pattern formula.

Set-up. We assume that a cluster contains at most
100 points. We also assume two basic Oracle
types, named Point2D and Point2DArray, for
modeling 2D points and arrays of 2D points, are
available as well as methods for checking equal-
ity between pairs of Point2D and Point2DArray
instances. In Figure 6, the PSY-PDL definitions
of two distinct pattern types, one for exten-
sional clusters (named EXTCluster) and one for
CH-clusters (named CHCluster), are reported.
For both of them, the data source is a relational
table with schema (DSID, P), where DSID is a
point identifier and P is an instance of Point2D.

In defining both pattern types, an extensional
formula method is provided (see lines 10-11 and
lines 23-24). This method returns, amongall points
in the pattern data source, the points represented
by the cluster. In case of EXTCluster, this cor-
responds to exactly all points belonging to the
cluster structure, whereas in case of CHCluster,
it returns the subset of the data source containing
the points which fall inside the convex hull whose
vertexesare the onesinthe patternstructure. Thus,
in this second case the result of the extensional
formula constitutes an approximation of the point
set represented by the cluster, since it may hap-
pen that some points internal to the convex hull
describing the cluster structure do not effectively
belong to the cluster itself. Additionally, in the
case of CHClusters, the intensional formula
is a Prolog predicate named convex_hull (see
line 25), defined in file convex_hull.pl (Figure
7), which evaluates to true for each point fall-

Figure 6. EXTCluster and CHCluster pattern type definitions

: CREATE PATTERN TYPE EXTCluster
: STRUCTURE pointset Point2DArray

. RETURN ret;
: MEASURE IntraDist REAL

RETURN ret;
2: FORMULA INTENSIONAL convex_hull;
: CREATE PATTERN TYPE CHCluster

: STRUCTURE puinlsel Poinl2DArray

RETURN rel;
: MEASURE IntraDist REAL

RETURN rel;

: FORMULA INTENSIONAL convex_hull;

: DEFINE EQUALS ON pl USING ret int CODE
if Pointarray_Equal (gelf.s.pointset, pl.s.pointset)=1 then ret:=1; elseret:=0; endif;

: DEFINE THETA ON p2 USING ret int CODE
if (self.m.IntraDist >= p2.m.IntraDist) then ret:=1; else ret:=0; end if;

: FORMULA EXTENSIONAL ON varDS USING dummy varchar2(100) CODE
... /* evaluation of the subset of varD S approximated by a pattern of type EXTCluster*/

il Poinlarray Equal (sells.pointset, pl.s.pointset)=1 then ret:=1; else rel:=0; endil;

DEFINE THETA ON p2 USING rel inl CODE
if (self. m.IntraDist == p2.m.IntraDist) then ret;= 1; else ret:=0; end if;

: FORMULA EXTENSIONAL ON varDS USING dummy varchar2(100) CODE

1
2
3
4
5
[}
T
&
9
10
11
12
13
14
15
16: DEFINE EQUALS ON pl USING rel inl CODE
17
18
19
20
21
22
23
24: ... /* evaluation of the subset of varD S approximated by a pattemn of type CHCluster*/
25
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Figure 7. convex_hull Prolog predicate

polylype(Lambdas).

polylype(Xs) :- positive_sum(Xs, 1).
positive_sum([], Z) :- Z=0.

zero([])-

zero([Z£]2s]) :- £-0, zero(Zs).

lin_comb(], []. 1, S1).

lin_comb (], , [1, [].

convex hull(Points, Xs) :- lin_comb(Points, Lambdas, Zero, Xs), zero(Zero),

positive_sum([X[Xg], SumX) :- X >=0, SumX = X+Sum , positive sum(Xs, Sum).

lin_comb([Ps[Reat], [K|Ks], S1, S3) ;- lin_comb r(Ps, K, S1, 52), lin_comb(Rest, Ks, S2, S3).

lin_comb_r([PPs], K, [S]Ss], [Kps|Ss1]) :- Kps=K*P+3, lin_comb _r(Ps, K, Ss, Ss1).

Figure 8. Measure function definition for EXTCLuster pattern type

2: USING varDS
3: AS ... /¥ local variable declaration */
4: BEGIN

7: END;

1: CREATE MEASURE FUNCTION EC_Measure func FOR EXTCluster ec

5: ... /* code for computing the average intra-distance value for
6: patterns of type EXTCluster over the input dataset varDS +/

ing inside the convex hull corresponding to the
pattern structure.

We also consider two mining functions, one
for each cluster type. The implementation of both
mining functions is based on the K-means algo-
rithm (Han & Kamber, 2001) provided by ODM
and is parametric with respect to the value of pa-
rameter K. We call such functions KMeansODM
andKMeansODM _convex, respectively. InFigure
9 at lines 4-8 and lines 10-14, two examples of
extraction operations producing patterns by using
these two mining functions are reported.

Similarly to the mining function case, we
consider a measure function for each cluster
type, named EC_Measure_func and CH_Mea-
sure_func, respectively; the first one computes
measures for EXTcluster patterns and the second
one computes measures for CHcluster patterns.
Bothmeasure functions compute the intradistance
value with respect to the points belonging to the

patternstructure. The PSY-PDL statement used to
define EC_Measure_func is shown in Figure 8.

Population. In this step, we show how PSY-
CHO can be used to (1) use various mining func-
tions to generate patterns of type EXTCluster
and CHCluster and (2) directly insert patterns.
Suppose the user wants to extract patterns of
type EXTCluster from the data set Points30 by
using the KmeansODM mining function. First, the
user creates two classes for storing the extracted
extensional clusters, named Classk5 EC and
ClasskK5_CH, respectively. Then, the user extracts
clusters with intradistance greater than 0.3 from
dataset Points30 by using the two available mining
functions, sets the validity period of the extracted
clusters from 10-jun-2005 to 10-jul-2005, and
inserts the extracted patterns into the proper class
(see Figure 9, lines 4-8). Note that the user may
customize the previous extraction operations by
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Figure 9. EXTCluster and CHCluster pattern generation

1: CREATE CLASS ClassK5_EC OF EXTCluster;
2: CREATE CLASS ClassK5_CH OF CHCluster;
i

4

5. USING KmeansODM(5)

6. WITH (0.3)

7: VALID FROM *10-jun-2005° TO “10-ang-2005°
8: INTO CLASS ClassK5_EC;

o

11: USING KmeansODM_Convex(5)

12: WITH (0.3)

13: VALID FROM €10-jun-2005° TO 10-jul-2005°
14;: INTO CLASS ClassK5 CIT;

15:

20: INTO CLASS ClassK5S_EC;
21:

24: MEASURE (03)

26:INTO CLASS ClassK5_CH;

: EXTRACT PATTERNS OF EXTCluster ec FROM Points30

10: EXTRACT PATTERNS OF CHCluster cc FROM Points30

16: DIRECT INSERT PATTERN OF EX TCluster FROM Pointsb0

17: STRUCTURE(POINT2D ARRAY(POINT2D(1,1), POINT2D(2,1), POINT2D(3,1),
18: POINTZD(2,2), POINT2D(3,2), POINTZD(2 3)) )
19: VALID FROM CURRENT DATE TO CURRENT DATE+30

22: DIRECT INSERT PATTERN OF CICluster FROM Points60
23: STRUCTURE(POINT2DARRA Y(POINT2D(1,1), POINT2ZD(3,1), POINT2ZD(3.2), POINT2D(2.3)) )

25: VALID FROM <01-aug-2005° TO *15-aug-2005°

specifying how many clusters the user wants to
obtain as output of the clustering algorithm (the
value of parameter K). As already discussed in
the case of association rules, PSYCHO supports
the direct insertion of patterns. The PSY-PML
statement presented at lines 16-20 shows the
direct insertion of an EXT_Cluster instance in
Classk5_EC. Similarly, at lines 22-26, the direct
insertion ofa CHCluster instancein Classk5 CH
is reported.

Queries. Table 4 presents several PSYCHO
queries involving EXTCluster and CHCluster
patterns. In particular, these queries are primary
aimed at pointing out the various pattern repre-
sentations available in PSYCHO, that is, (1) the
pattern data source; (2) items in the data space
represented by a pattern; and (3) the subset of the
data source which is effectively represented by a
certain pattern. In particular, query 1 enumerates
the overall set of data from which the cluster has
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beenextracted, whereas query 2 determineswhich
data are represented by a certain cluster, through
its intensional formula. Query 3 determines
which data items contained in the source data set
Points30 are effectively represented by a certain
cluster of class Classk5_EC. We notice that, for
this query, we can use the DATA COVERING
operation, relying on the extensional formulaand
returning the subset of the data source actually
represented by the pattern. The obtained data
satisfy the intensional formulaassociated with the
selected pattern, since data covering relies on the
application of the extensional formula.
Moreover, queries4and5are primary aimed at
showing the usage of the intensional formula.
In particular, query 4 relies on the predicate
icontain, checking whether a given region of
space is contained in the space described by the
intensional formula of agiven pattern. We outline
that this predicate is checked at intensional level,
by using the Prolog definition of the intensional
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Table 4. Queries involving EXTCluster and CHCluster patterns

N. Query

PSY-PQL code

Determine data from which cluster with
PID=1001615 has been extracted.

DRILL THROUGH ClassK5_EC cl
WHERE cl.PID = 1001615;

source data set Points30 are represented by
the cluster with PID=1001615, contained in
class Classk5_EC.

2 Determine data approximated by the cluster | SELECT *
with PID=1001615, contained in class FROM ClassK5_EC cl
Classk5_EC. WHERE cl.PID = 1001615;

3 Determine which data items contained in the | DATA COVERING (SELECT *

FROM ClassK5_EC cl
WHERE cl.PID = 1001615) ¢
FOR Points30
WHERE c.PID = 1001615;

4 Determine clusters in class ClassK5_EC,
extracted from data source Points30,
containing a certain region of space,
characterized by the following formula
[X>=2,X=<7,Y>=3,Y=<10].

SELECT *

FROM ClassK5_EC cl

WHERE cl.d = ‘Points30’ I_AND icontain(cl.formulal,[X>=2,
X=<7,Y>=3,Y=<10]);

5 Determine clusters in class Classk5_EC,
extracted from data source Points30
intersecting a certain region of space,
characterized by the following formula
[X>=2,X=<7,Y>=3,Y=<10].

SELECT *

FROM ClassK5_EC cl

WHERE cl.d = ‘Points30’ I_AND iintersect(cl.formulal ,[X>=2
X=<7,Y>=3,Y=<10]);

formula (therefore, no access to data sources is
required). As a consequence, the obtained result
is an approximation of the real one since actual
points belonging to the cluster are not explicitly
taken into account.

SCENARIO 2: PATTERN
HIERARCHIES

Theaimofthe second scenario isto show represen-
tation, manipulation, and querying activities for
hierarchical patterns. Tothis purpose, we consider
clusters of association rules. In this scenario, we
group association rules based on their semantic
validity with respecttoacertain datasource. Even
if we apply a very simple clustering criteria, this
does notimpact the issue we wish to demonstrate.
Indeed, it is even possible to extend PSYCHO
library with more sophisticated data mining or

machine learning algorithmsin order to deal with
more complex clustering purposes.

Set-up. The considered data source consists in
classesofassociation rules, created in the previous
scenario. Starting from those data, clusters of as-
sociation rules can be modeled by using a pattern
type EXTClusterOfRules, defined in PSY-PDL as
shown in Figure 10. We outline that, as default, an
extensional formula returning the whole pattern
data source is associated with a pattern of type
EXTClusterOfRule, but no intensional formulais
associated with patterns of this type. Since, for
the sake of simplicity, we want to define clusters
of association rules based on validity, the used
mining function is very simple and just divides
a set of association rules into two clusters; such
a function is called EXTClusterOfRulesMF.
Furthermore, we assume the measure function
just returns 1 when the pattern is semantically
valid with respect to the specified data source.
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Otherwise, it returns 0. The measure function
CRules_measure_func can be easily defined as
shown at lines 22-26.

Population. We consider only pattern extraction
as shown in Figure 11. We first create a class for
storing the extracted clusters, named ClassCR_1
(see line 1). After that, patterns of type EXTClus-
terOfRules are extracted from the PSYCHO class
AR30_psycho by using the EXTClusterOfRuleMF
mining function introduced above, setting the
validity period of the extracted clusters starting
from August 1, 2005 and ending on September

Figure 10. EXTClusterOfRules pattern type creation

30, 2005 (see lines 3-7). Note that in this case,
the data source is the class AR30_psycho and the
mining function has aparameter that corresponds
to a source data set for association rules, used to
check their semantic validity.

Queries. Table 5 presents two queries involving
patterns of type EXTClusterOfRules. The first one
determines clusters of rules containing at least
four association rules, whereas the second one is
across-over query retrieving all association rules
contained in a certain cluster of rules.

1 IS ... /* local variable declaration */
: BEGIN

1
2
3: AUTHID CURRENT USER
1
5
6
7: END ARsel Equal;
8:
9: CREATE PATTEEN TYPE EXTClusterOfRules
10: STRUCTURE nileset ARset
11: DEFINE EQUALS ON rl USING ret int CODE
13:  rctumn ret;
14: MEASURE Svalidity REAL
15: DEFINE THETA ON 12 USING ret int CODE

17:  return ret;
20: FORMULA INTENSIONAL dummmny predicale;
23: DEGIN

25: RETURN MEASURE(val);
26: END:

: CREATE TYPE ARset AS varray(100) OF REF AssociationRule;
: CREATE OR. REPLACE FUNCTION ARsel Equal (a ARsel, b ARsel) RETURN INTEGER

: ... /* code for checking equality between a and b +/

12; il ARsel Equal(self, pl)=1 then rel:=1; else rel:=0; endif;

16:  if self. m. Svalidity > r2.m.Svalidity then ret:=1; else ret:= 0; end if,

18: FORMITLA EXTENSIONAT, ON varDS TTISING p AssociationRule CODE

19: ... /* evaluation of the subeet of varD 5 approximated by a pattern of type EXTClusterofRules®/

22: CREATE MEASURE FUNCTION CRules measure func FOR EXTClusterO[Rules cr USING varD'S AS val real

24: val ;= isSvalidicr, *varD3’, *CRules_own_measure’, EXTClusterOfRulesMeasure{null,0));

Figure 11. EXTClusterOfRules pattern extraction

: WITH (0)

=1 O Lh o ld b e

: INTO CLASS ClassCR. 1;

: CREATE CLASS ClassCR_1 OF EXTClusterOfRules;

: EXTRACT PATTERNS OF EXTCIusterOfRules ec TROM AR30_psycho
: USING EXTClusterOfRuleMF(‘ItemsDS_30°)

: VALID FROM *01-aug-2005° TO *30-s¢p-2005°
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Table 5. Queries involving patterns of type EXTClusterOfRules

N. Query

PSY-PQL code

least four rules

Retrieve all patterns from class ClassCR_1 containing at

SELECT *
FROM ClassCR_1 cr
WHERE cr.s.ruleset.count >= 4;

1, has been generated

2 Determine the association rule data set from which the
cluster with a certain PID, belonging to class ClassCR_

DRILL THROUGH ( SELECT *
FROM ClassCR_1 ¢
WHERE c.PID = 1001454) g;

CONCLUSION

In this chapter, we have presented PSYCHO, a
prototype system for the management of hetero-
geneous patterns. PSYCHO hasbeenimplemented
by exploiting object-relational database technolo-
gies (provided by the Oracle platform) integrated
with logical constraint solving features (provided
by the Sicstus Prolog engine) through the usage
of object-oriented programming. More precisely,
after presenting the main requirements a system
for heterogeneous pattern management must sup-
port, we have discussed existing solutions and we
have then presented PSYCHO features through
the illustration of different usage scenarios.

Inorderto become an effectively usable system
for patterns management, PSYCHO functional-
ities have to be consolidated and extended. Sev-
eral directions for future work can be identified,
including:

. Interoperability aspects allowing the inte-
gration of PSYCHO with existing standards
for pattern representation, such as PMML,
constitute a key functionality in order to
make PSYCHO a usable system for pattern
management in real applications. To this
purpose, animport/exportmodule dedicated
to PMML is currently under development.
We point out that PMML has been chosen
by the authors as the basis for improving
interoperability due to the fact that its
popularity is rapidly increasing, and it will
probably become the de-facto standard for

knowledge exchange among distributed
sources soon, since it is based on XML.
The design and development of an open-
source version ofthe systemisaninteresting
challenge. To this end, we need to become
independentby alicensed constraintsolving
engine—like Sicstus Prolog—and by a pro-
prietary DBMS technology— like Oracle. A
new PSYCHO version for which we plan to
consideranopensource DBMS environment
is currently under development.

The development of a graphical user in-
terface to interact with the system and to
visualize discovered knowledge in a user-
friendly way.

The experimentation of PSYCHO over real
application domains such as retail analysis,
clickstream analysis concerning Web navi-
gations, or biomedical applications.

The enhancement and consolidation of
manipulation functionalities provided by
PSYCHO for semantic alignment between
patterns and the raw data they represent is
another interesting topic for future work.
Indeed, since in many modern applications,
we cannot assume raw data being stable, it
would be very helpful for handling concept
drift issues to support agile and, possibly,
automatic manipulation mechanisms in
order to recognize data changes having an
impact over patterns and to update them.
To this end, we plan to improve the virtual
concept drift support already provided by
PSYCHO by giving PSYCHO users the
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ability to promptly recognize data changes
and the possibility to deal with them in a
real-time fashion. Additionally, in order to
fully support real-time alignment between
the informative content of the pattern base
and the informative content of the data
sources, our approach should be revised and
enhanced to cope with reactivity, consist-
ency, and maintenance issues. The ability
to address these problems becomes very
useful in order to deal with stream data,
which are very common in many different
existing real-world applications.
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ABSTRACT

Protein sequence motifs describe, through means of enhanced regular expression syntax, regions of
amino acids that have been conserved across several functionally related proteins. These regions may
have an implication at the structural and functional level of the proteins. Sequence motif analysis can
bring significant improvements towards a better understanding of the protein sequence-structure-func-
tion relation. In this chapter, we review the subject of mining deterministic motifs from protein sequence
databases. We start by giving a formal definition of the different types of motifs and the respective spe-
cificities. Then, we explore the methods available to evaluate the quality and interest of such patterns.
Examples of applications and motif repositories are described. We discuss the algorithmic aspects and
different methodologies for motif extraction. A brief description on how sequence motifs can be used to
extract structural level information patterns is also provided.

INTRODUCTION formation isencoded in regions of the DNA helix,

and these molecules are synthesized through a
Proteins are biological macromolecules involved two step process: translation and transcription
in all biochemical functions in the life of the cell (Cooper, 1994; Hunter, 1993). Proteins are com-
and therefore in the life of the being. Protein in- posed of basic unit molecules called amino acids.
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Twenty different types of amino acids (AAS)
exist, all with well differentiated structural and
chemical properties.

After being synthesized, proteins acquire a
complex 3-dimensional structure in a process
called folding. The resulting 3D structure, which
corresponds to a state of greatest stability (mini-
mal energy), isessential for protein function. This
structure is ultimately determined by the linear
sequence of amino acids, also called primary
structure. Therefore, a closer look at the primary
sequence will certainly provide valuable insights
about the protein structure and function.

When a set of functionally related sequences
is closely analyzed, one can verify that parts of
those sequences (subsequences) are common
to several or all the analyzed sequences. These
subsequences consist of a pattern and are called
sequence patterns or motifs. These motifs occur
in protein sequences because they have been
preserved through the evolutionary history of
the proteins. This suggests that they might play a
structural and/or a functional role in the protein’s
mechanisms. On the other hand, AAs outside
these critical regions tend to be less conserved.
The discovery of these motifs can be used to
support a better understanding of the protein’s
structure and function. This is due to the fact
that the AAs that compose these motifs can be
close in the tridimensional arrangement of the
protein. Additionally, these motifs can be used
to provide evidences and to determine relations
with yet uncharacterized proteins.

At the time of this writing,' Swiss-Prot
(Gasteiger, 2003), which is a comprehensive,
annotated, and nonredundant protein knowledge
base, contained approximately 208,000 sequences
from 9,749 species, with an average length per
sequence of 364 AAs. This volume of informa-
tion demands intelligent and efficient sequence
analysis techniques. These methods should look
for similarities among the selected proteins and
discriminate the regions that have been conserved
among a significant number of proteins. These

regions contain well-conserved positions, where
the substitutions among different AAs for those
positions are less frequent. Motifs can be used to
capture the nature of those regions.

In this chapter, we present an overview on
the subject of protein motif mining. The chapter
has the following outline: First a characterization
on the type of extracted patterns is given. Two
main classes of motifs are introduced and briefly
described (Motif Definition section). Since these
two classes have differentanalysisand algorithmic
requirements, we will focus our attention on the
class of deterministic patterns. In the Determin-
istic Motifs section, details of the characteristics
of this type of patterns are provided. Next, dif-
ferent ways to evaluate the interest of the motifs
(Significance Measures section) are presented,
followed by examples of the application of motifs
indifferent contexts (Motif Applications section).
In the Motif Databases section, several of the In-
ternet databases that compile and manage protein
motifsare surveyed. The motif mining algorithms
section describes the algorithmic aspects of the
motif extraction process, and some of the most
well-known and successful methodologies for
motif mining are presented. In the Structural
Motifs section, the concept of structural motifs
is introduced, and examples of motifs and algo-
rithms are provided. To finish, some conclusions
and final remarks are given.

Motif Definition

As previously introduced, a sequence motif de-
scribes a region of conserved elements from a set
of related sequences. These motifs are eventually
relatedtoanimportantstructural and/or functional
role of the proteins. Two classes of motifs exist:
probabilistic and deterministic.

Probabilistic motifs consist in a model that
simulates the sequences or part of the sequences
under consideration. When a given sequence is
compared against the motif, the probability of that
sequence matching the given motif can be easily
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calculated. Probabilistic motifs are typically ex-
pressedthrough position weight matrices (PWM)
(Gribskov, McLachlan, & Eisenberg, 1987), also
called, among other things, Position Specific Scor-
ing Matrices, Templates, or Profiles. APWM s a
matrix of the weighted matches of each of the 20
AAs in each position of the motif. An extra row
is added to denote a “do not care” symbol, that
is, a symbol that matches any of the AAs. Table 1
shows the scheme of a PWM, which represents a
motif of size N. The rows describe a list of amino
acids and the columns the motif positions. The
value of the cell P, describes the probability of
the amino acid i being found in position j of the
motif. In this model, independence is assumed
between positions. For a sequence S =S S,...S,
of length N, the likelihood of it being matched
by a PWM P is given by formula (1). Since for
sequence comparison purposes the logarithms
are handled easier than probability values, the
log-odds of the Pij cells are usually used. Now,
the likelihood of S being matched by P is given
by formula (2).

[P0 o
3 logP(s, i) @

Table 1. Example of a probabilistic weight matrix

Deterministic Motif Mining in Protein Databases

Deterministic motifs can be divided into two
types: fixed-length and extensible-length. Fixed-
length motifs, also known as (1,d)-motifs (Buhler
& Tompa, 2001; Pevzner & Sze, 2000), consist
of motifs of a fixed size of | symbols, where d
possible symbols may have a mismatch with the
matched subsequences in the input database. We
will discuss more about this type of motifs later
in this chapter. Extensible-length motifs have
an arbitrary length and are expressed through
enhanced regular expressions. Depending on the
applications that generate the motifs, different ver-
sions of regular expression syntax can be used. A
generic format for these matifs is as follows:
Ai_x(pl’ql)_AZ_X(pZ’qZ)_"'_A1 (3)
where A isasequence of consecutiveaminoacids
and —x(p,,q,)— a gap greater than p, and smaller
than g.. A gap corresponds to positions that can
be matched by any amino acid. If p, equals g, the
gap notation is usually abbreviated to —x(p,))-. If
a position is occupied with more than one amino
acid, a bracket notation is used. For instance, the
notation [ACG] denotes a position that can be oc-
cupied by the amino acids A, C, or G.

Position
Amino 1 2 N
Acid
A PAl PAZ PAN
C PCl PC2 PCN
V PVl PVZ PVN
* P *] P*Z P*N
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For the sake of simplicity, from now on, we will
refer to extensible-length motifs as deterministic
motifs, and an explicit reference will be made for
fixed-length motifs.

The pattern [AG]-x(4)-G-K-[ST] corresponds
totheentry PS00017 onthe Prosite database (Hulo,
2006). This pattern describes a motif where the
first position can be occupied by the amino acid
Alanine (A) or Glycine (G), followed by any other
four AAs (do not care positions), a Glycine (G), a
Lysine (K), and in the last position, it can appear
as a Serine (S) or a Threonine (T). A “do not
care” position can also be expressed through the
symbol “.”, so the above pattern can be rewritten
as [AG]. . . .G-K-[ST]. In a following section, we
will describe in more detail some of the motif
databases, including Prosite.

Both ways of describing motifs have been
pointed out as having advantages and drawbacks
(Koonin & Galperin, 2003). Deterministic motifs
make use of widely known regular expression
syntax, so they are easily understandable by
humans. They can be used in any simple ap-
plication to perform fast searches and matches
in large databases. One of the drawbacks of this
class of patterns is that they do not capture the
complete diversity of the matched sequences. For
instance, deterministic patterns do not capture the
distribution of the AAs in a given position, for
example, the first and last positions of the above
example motif. Probabilistic motifs provide more
precision for the sequence analysis, at the cost of
harder human interpretability. In the nextsection,
we will describe the different types and details
concerning deterministic motifs.

Deterministic Motifs

As a result of its representation with regular
expressions, deterministic motifs have a great ex-
pressive power, as good descriptors for well-con-
served regions across several protein sequences.

Furthermore, since they are not confined to a fixed
length, they can indicate relations among distant
related AAs. Four types of deterministic motifs
can be distinguished:

. Concrete motifs are patternsadmitting only
contiguous events; that is, no gaps are al-
lowed. Inthis case, each position isundoubt-
edly occupied by the respective AA symbol.
Example: R-G-D (Prosite entry PS00016).

e Ambiguous motifs only contain contiguous
events, but some positions may be occupied
by more than one symbol. Example: L-M-
A-[EQ]-G-L-Y-N (Prosite entry PS00033).

*  Rigid gap motifs only contain gaps with a
fixed length; this corresponds to a situation
where p, =q;, Vi in formula (3). Example:
Y..Y-Y.C.C (Prosite entry PS00121).

. Flexible gap motifs allow gaps of vari-
able length; this corresponds to a situation
where p. <q;,Vi in formula (3). Example:
C.C..[GP][FYW]-x(4,8)-C (Prosite entry
PS01186).

For a pattern like C.[AG].C, many combina-
tions of subsequences can be matched, more
exactly 20 x 2 x 20. Each of these combinations
is called specialization, for example, CVAMC. A
more generic combination will be called a gener-
alization. C.[AG].C is a generalization of C.A.C
and C.A.C a generalization of CVA.C.

A motif M’ is contained in a motif M and is
called submotif of M, if it can be obtained by
dropping some symbols from M. For example,
C.[AG] or [AG].C are submotifs of C.[AG].C.
Extending a motif corresponds to appending new
symbols to its left or right side. A motif is called
frequent if it is found in a number of sequences,
from the input database, greater or equal than a
user specified threshold value. This value is gen-
erally called minimum support, and it is denoted
as o. The cover of the motif represents the list of
sequence identifiers where the motif occurs. The
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cardinality of this list corresponds to the support
of the motif.

According to the information that it captures,
a motif can be classified as one of three classes:
Maximal, Closed, or All. A motif is said to be
Maximal (Ester & Zhang, 2004) when it is not
contained in any other motif. A motif is called
Closed (Califano, 2000; Rigoutsos & Floratos,
1998) when all its extensions and specializations
resultinmotifs with smaller support. The All class
of motifs corresponds to all the possible motif
specializations. Maximal motifs are a subset of
closed motifs, which are consequently a subset
of the All class. Table 5 in the motif mining al-
gorithms section presents a list of several motif
mining algorithms and the respective features
regarding the class and the type of the extracted
patterns.

When a user has some predefined idea of the
characteristics of the motifs the user is looking
for, this previous knowledge can be directly incor-
porated in the analysis process. This will provide
a more focused and efficient motif search. Con-
straints (Ferreira & Azevedo, 2005a; Jonassen,
Collins, & Higgins, 1995; Sagot & Viari, 1996)
are then used to specify this a priori knowledge
and can be enumerated as:

. Symbols constraint: Restrict the set of
symbols that may appear in the motifs.

. Gap constraint: Define the minimum dis-
tance or the maximum distance that may
occur between two adjacent symbols in the
motif.

. Duration or window constraint: Define
the maximum distance between the first
and the last symbol of the motifs.

»  Start and end symbol constraint: Deter-
mines that the extracted motifs should start
and/or end with the specified symbols.

Each AA has characteristics that make it

unique. However, some have similar structural or
chemical properties. Table 2 shows an example of
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AAs grouped according to a common property.
These groups of AAs are usually called substitu-
tion sets, since they express equivalence relations
between AAs. Substitution sets are best suited
to be used in the deterministic motif extraction
(Ester & Zhang, 2004; Sagot & Viari, 1996).
For probabilistic motifs, substitution matrices
(Durbin, Eddy, Krogh, & Mitchison, 1998) are
used. These are AA x AA matrices, where each
cell C expresses a similarity value between AA
i and AA j. The most well known are the PAM
and the BLOSUM matrices (Henikoff & Heni-
koff, 1993).

When substitution sets are used in the motif
analysis, AAs within the same group can be
exchanged without loss of equivalence. In prac-
tice, this feature is equivalent to the concept of
ambiguous positions, where positions occupied
by more than one AA of the same group are rep-
resented by the group label. According to Table
2, the above mentioned motif [AG]. . . .G-K-[ST]
is now rewrittenas « . . . .G-K-p.

SIGNIFICANCE MEASURES

Deterministic motifs are extracted through com-
binatorial algorithms that perform an exhaustive
traversal of the search space, and output motifs
are based on the support metric. Protein datasets

Table 2. Example of substitution sets and the
respective common property

Label Group Property
o AGP Small polar
B ST Small hydroxyl
v FWY Aromatics
o HKR Basic
€ ILMV Medium hydrophobic
¢ EDNQ Acid/Amid
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are typically characterized by having a relative
medium number of sequences (ranging from sets
of tens to a few hundreds), a relative long length
of the sequences (several hundreds of AAS)
and a large density, which is a consequence of
a small alphabet size. It results in the fact that
if the minimum support is set too high, too few
motifs may arise. However, if the support is set
too low, too many motifs will be enumerated.
Not all these motifs are particularly interesting,
and most of them arise by chance. This requires
that motifs are evaluated by another measure of
significance rather than support. In the litera-
ture, many measures of interest and significance
have been proposed. Usually, for each proposed
motif mining algorithm, a different measure is
also proposed. In this section, we will introduce
three categories of measures. We will illustrate
each category with examples. Some of these mea-
sures are not exclusive from the bioinformatics
field and can also be found in data mining and
machine learning literature. The criterion used
for choosing these measures lie in the fact that
previous use yielded good results in identifying
relevant patterns.

As in Brazma, Jonassen, Eidhammer, and
Gilbert (1998a), we assume that a significance
measure can be defined as a function in the format
f(m,T) —> R, where m stands for the motif be-
ing evaluated, T a set of possibly related protein
sequences. This function returns a number that
expresses how relevant or significant m is with
respect to T. Although m may be significant with
relation to T, it can also occur in many other se-
guences not related to T. In order to avoid such
cases, negative information can be provided to
the evaluation function (Barash, Bejerano, &
Friedman, 2001; Takusagawa & Gifford, 2004),
whichisnowrewrittenas f (m,T,N) — R, where
N is a set of sequences considered as negative
information. Inthis case, itwill be expected thata
motif m will be relevant to set T and not to the set
N. If N is omitted, we then consider the negative
information as the remaining sequences in the set

of all known sequences—the Swiss-Prot database.
Significance measures may have a biological or
a statistical meaning. Some measures are calcu-
lated exclusively based on the motif information
and others on how motifs relate to the sequences
where they appear.

Here, we consider that a measure may belong
to one of the three following categories:

1.  Class-based measures are calculated based
on the information of the motif with rela-
tion to the target and the remaining protein
classes/families.

2. Theoretic-information measures are calcu-
lated based solely on theoretic models like
probabilistic orentropy models. Inthis case,
the measure calculation is self-contained;
that is, the necessary information is found
in the motif itself.

3. Mixedmeasuresuse bothclassandtheoretic
information.

In the next sections, we introduce some mea-
sures of interest according to the three categories.
It is not our intention to provide an extensive
enumeration of all the existing measures, but
only to provide the reader a brief introduction
to the subject.

Class-Based Measures

The ideal motif is the one that matches all the
sequences within the target family and no other
sequence outside this family. These patterns are
also known as signatures (Jonassen et al., 1995)
and are the perfect tool to distinguish sequences
among different families. Unfortunately, such
motifs are not as frequent as desirable. In the bio-
informatics context, three measures — sensitivity
(also known as recall), specificity, and precision
(also known as positive predicted value)—are
frequently used to express the quality of the motifs
(Brazma et al., 1998a; Hulo, Bairoch, Bulliard,
Cerutti, De Castro, Langendijk-Genevaux, et al.,
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2006; Jonassen, 2000; Witten & Frank, 2005).
Sensitivity (Sn) is used to measure the propor-
tion of sequences of the target family correctly
covered by the motif. Specificity (Sp) is used to
measure the proportion of sequences outside the
target family that are not covered by the motif.
Precision measures the proportion of sequences
covered by the pattern that belong to the target
family. We can therefore distinguish four pos-
sible cases:

»  True Positive (T): A sequence that be-
longs to the target family and matches the
motif.

»  True Negative (T, ): A sequence that does
not belong to the target family and does not
match the motif.

. False Negative (F,): A sequence that be-
longsto the target family and does not match
the motif.

. False Positive (F.): A sequence that does
not belong to the target family and matches
the motif.

The three measures are then defined as:

To

Sn= x100%; @
T, +Fy
Sp=— N %100% ©)
N + I:P
precision = T x100%); 6)
T +F

A motif is considered a signature if both sen-
sitivity and precision are 100%. When a unique
value is necessary to score the motifs, measures

Table 3. Confusion matrix for the four cases

Deterministic Motif Mining in Protein Databases

that combine the information from Table 3 can
be used. For instance, the F-measure (formula 7),
widely used in the machine learning field (Witten
& Frank, 2005), results from a combination of
recall and precision and is defined as:

_ 2xrecall x precision 2xT,
recall + precision  2xT,+F, +F,

@)

Another combined measure is the correlation
coefficient (Baldi, Brunak, Chauvin, Andersen, &
Nielsen, 2000; Brazmaetal., 1998a). This measure
uses all the class information, T, T, F,, and F
Therefore, it can provide a much more balanced
evaluation than the F-measure. It is equivalent to
the Pearson correlation coefficient and is given
by the following formula:

To xTy +F xFy
r=
\/(TP + I:N )(TP + FP)(TN + FP)(TN + FN)
®)

Cor

Asalastmeasure, we introduce the D measure.
This measure corresponds to the discrimination
power (Ben-Hur & Brutlag, 2005) and is particu-
larly useful as a filter. The greater the value of D,
the more selective the pattern is:

T B
ICl IC|

In this formula, |C|=T, + F, and
IC|= F, + T, are, respectively, the number of
sequences in the target family and outside that
family.

A characteristic of the class-based measures

©)

Covered Family

Positive

Negative

Positive

True Positive (T,)

False Negative (F,)

Target Family

Negative

False Positive (F,)

True Negative (T,)
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is that they do not rely on the motif itself in order
to be calculated. Hence, they can be applied to
any type of deterministic motif.

Probability Analysis

When analyzing the probabilistic aspects of the
protein sequences, it is generally assumed that
sequences can be generated according to one of
two models. The Bernoulli model considers that
symbols of a sequence are generated according
to an independent identically distributed (i.i.d.)
process; that is, there is no dependency between
the probability distribution of the symbols. The
second model is the Markov model. It assumes
that the probability distribution of a given symbol
depends on the n previous symbols, where n de-
termines the order of the Markov chain (Durbin
etal., 1998).

If a Bernoulli model is considered, the occur-
rence of amotif M inagiven sequence isassumed
tobeani.i.d. process (Apostolico, Comin, & Pari-
da, 2005). In practice, this means that sequences
are considered to be independent and that AAs
occur independently of each other. Although this
argument is not entirely true, since sequences are
believed to be biologically related, it provides a
simplification which is a good approximation to
theactual verified values (Nevill-Manning, Sethi,
Wu, & Brutlag, 1997). Thus, consideringamotif M
ashaving the formatof formula(3) and, according
to Nevill-Manning etal. (1997), the probability of
a motif M can be given by the formula:

P(M) =P(A)xP(-X(p.,q,)-)
x P(A)x P(x(p;.,0,)-) x---P(A)) (10)

Since the probability of matching any AA is
1, P(.) =1 then P(—x(p,q)-) =1 Thus, the prob-
ability of M can be resumed as:

P(M)=][P(A) (1)

The probability of a subsequence A is given
by:

Al
P(A): H(zp(ajk)] (12

ajeh k=1

The probability of an AA a, P(aj) is given
by its frequency? at the Swiss-Prot database.
Formula (12) is used to calculate the probability
of subsequences of AAs. The summation part
of the formula handles the ambiguous positions,
where a, stands for the k-th AA in position j of
the subsequence. For example, the probability of
the subsequence A-[GC].V is 0.0783 x (0.0693 +
0.0152) x 1 x 1 x 0.0671 =4.44 x 10*. Multiplying
the probability of the motif by the total number
of symbols (AAs) in the database provides a
good approximation of the number of expected
sequences matched by the motif:

Table 4. Example motifs, actual and expected number of matches in the Swiss-Prot database according

to the formula 13

Mott Expected Matches (rele'.':‘scet L:'.ZI. fﬂsit?;?;rot)
A-C-x(2)-E 5993 4192
A-C-x(2)-E-D-x(1)-L 30 17
Y-X(3)-F-x(3)-F-x(6)-T 201 224
A-[GC]-x(2)-V 33673 33380
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EXDyaicnes = P(M) x Num 13)

symbols

Table 4 presents the expected and the actual
number of matches in the Swiss-Prot database
for some example motifs.

In general, only positive information is avail-
able, that is, the set of sequences under analysis.
Therefore, for the obtained patterns, information,
like the number of false positives F, is not pro-
vided and needs a posteriori calculation. In those
cases, the computation of the expected matches,
according to formula (13), is particularly useful.
An alternative would be to get a local copy of
the entire database, for instance, the Swiss-Prot,
which is available by file transfer protocol (FTP),
and run a program that finds matches of the motif
in the local database.

Theoretic-Information Measures

Theoretic-information measures quantify the
degree of information encoded in a motif. In this
section, we provide examples of three of these
measures.

In Jonassen et al. (1995), a new measure was
introduced to rank the flexible patterns obtained
fromthe Prattalgorithm. This measure expresses
the information content of amotif by summingthe
information of its components (AAs) and decreas-
ing the uncertainty that results from the existence
of gaps. It does not take into account the support
of the pattern. High information content provides
evidences to the significance of the pattern.

InNevill-Manningetal. (1997) and Ukkonen,
Vilo, Brazma, and Jonassen (1996), the minimum
description length (MDL principle) isused toscore
the patterns and to measure the fitness of these
patterns with respect to the input sequences. The
basic idea of the MDL principle is summarized
as: if these sequences hypothetically needed to
be transmitted, how much could be saved in the
transmission knowing about the presence of the
motifs? Thus, according to the MDL principle,
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the best motif (or set of motifs) is the one that
minimizes the sum of two components: the length
of the motif and the length of the sequences when
encoded with the motifs.

In Apostolicoetal. (2005) and Califano (2000),
a Z-Score function is used to evaluate over-rep-
resented motifs. For a motif M, this function
takes the form:

f(M)—E(M)
N(M)

f(M) isthe actual number of occurrences (sup-
port) of M, E(M) the expected number of occur-
rences of M, and N(M) represents the expected
value of some function of M, for example, the
square root of the variance of the support of M in
arandom database with equal size and composi-
tion of the database in analysis. The E(M) can be
provided by formula (13), and in the Bernoulli
model, the square root of the support variance
(Apostolico, 2005) can be calculated according
to formula (15).

Z(M)= (14)

N(M) = /Ny x P(M)x (1= P(M))  (15)

In Apostolicoetal. (2005) and Califano (2000),
it was generally verified that statistically relevant
motifs, discriminated through the Z-Score func-
tion, match functionally important regions of the
proteins. Another important conclusion obtained
from Apostolico et al. (2005) is that for over-rep-
resented motifs, the nonmaximal motifs (which
are contained on other motifs) have a lower degree
of surprise than the maximal motifs. This result
yields a clever mechanism to prune motifs just
before their significance is computed.

Mixed Measures

A probabilistic or statistically significant pat-
tern may not necessarily occur frequently. The
support metric might not always be the most
adequate measure of significance. In this case,
a significant pattern can be defined as a pattern
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that occurs more frequently than expected. In
this case, significance will represent a measure
of expectation.

We will use the definitions from Wu and
Brutlag (1995) and Yang and Yu (2001) to define
ameasure of “surprise” of apattern. The informa-
tion content | of a pattern measure will determine
how likely apatternistooccur, orequivalently, the
amount of “surprise” of the pattern when it actu-
ally occurs. The information content (Abramson,
1963) of a motif M is given by:

I(M)=-log, P(M)

=1(A)+1(A)+--+1(A) (16)
where
I(A) =~log,, P(A) and| 3 |= 20 (w7)

The information gain (IG) measure is intro-
duced to measure the accumulated information
of a motif in an amino acid sequence and is
given by:

IG(M)=1(M)x[Support(M) —1] (18)

The fraction Support(M ) —1 gives the recur-
rence of the motif M in the input database. Since
this formula does not account for the motif dis-
tribution in the whole universe of sequences, a
more balanced measure isthe (S)urprise measure.
It can be defined as:

Support(M nC)
Support(M)
ZI(M)x—Te (19)
T, +F

In the formula above, C corresponds to the
set of sequences under analysis, that is, the tar-
get family, and Support(M nC) the number of
sequences in C covered by M (T,).

S(M)=1(M)x

Finally, we present two widely used informa-
tion-theoretic measures. The first is called the

Mutual-Information measure, derived from the
Shannon’s entropy theory (Abramson, 1963).
The mutual information of two variables X and
Y tells how much the knowledge of Y reduces the
uncertainty in knowing X. This can be used to
determine the uncertainty reduction about a set
of sequences C, when the motif M is given. The
second measure is the J measure introduced by
Smyth and Goodman (1990). This measure com-
bines three important properties: (1) it expresses
how well a motif M describes a set of sequences
C; (2) how M reduces the uncertainty in knowing
C; and (3) the average content information of M.
These two measures have many data mining and
machine learning applicationsandare particularly
useful for classification purposes.

MOTIF APPLICATIONS

Although motifs are relevant to support a better
understanding of the sequences under analysis,
they have a wide range of other applications. In
this section, we describe some of these applica-
tions.

. Classification: Classification is the task
of finding a set of models or functions that
describe and distinguish the different classes
of data (Han & Kamber, 2001). These models
are built based on a set of previously labeled
data. In the bioinformatics context, classes
of data may correspond to protein families.
In this scenario, classification is used to
find for an uncharacterized sequence which
family it most resembles. Since motifs may
have atightrelation to the proteins function,
they can be used as a differentiation factor
and therefore provide an important protein
function prediction mechanism. In Ben-Hur
and Brutlag (2003, 2005), motifs present in
a set of sequences are extracted in order to
create a feature space, which is then applied
toaSVM classifier. In Ferreiraand Azevedo
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(2005b), rigid gap patterns common to the
query sequence and the protein families
are extracted. Then, its characteristics are
weighted with a Bayes classifier to provide a
degree of similarity with relation to the dif-
ferent protein families. Other methods like
Blekas, Fotiadis, and Likas (2005) combine
probabilistic motifs and neural networks to
perform classification. Motifs can also be
used in the detection of subfamilies within
a larger set of sequence from one family
(Ukkonen et al., 1996).

Clustering: Clustering can be defined as
the task of grouping similar objects into
classes. This is an unsupervised learning
technique since it does not make use of the
class label information of the objects. Thus,
itcanbe used inthose cases where the object
information is not known in advance. The
goal is to arrange the objects into classes,
in a way that the similarity within the class
is maximized and the similarity between
classes minimized (Han & Kamber, 2001).
Once again, the descriptive power of the
motifs can be used to perform protein se-
guence clustering. In Guralnik and Karypis
(2001), protein sequences are mapped into
motif feature space, after which a K-means
(Han & Kamber, 2001) based algorithm is
used to find clusters in that space.

Gene analysis: One of the most interesting
areas of biology is the study of coregulated
genes. These are genes regulated by the
same protein, and they are expected to
have a common motif. Motifs can be used
to make inferences about the gene function
and their relationship with other genes. In
Hill, Hlavacek, Ambrosiano, Wall, Sharp,
Cleland, et al. (2001) and Jensen, Shen, and
Liu (2005), motif similarity is used to find
clusters of coregulated genes. A different
approach taken by Rigoutsos, Floratos,
Parida, Gao, and Platt (2000) was to apply
a motif discovery algorithm (Rigoutsos &
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Floratos, 1998) to analyze temporal gene
expression data. The algorithm found motifs
that express clusters of genes which have
a similar or a symmetric behavior during
certain time intervals.

MOTIF DATABASES

UniProtKB/Swiss-Prot
[http://www.expasy.org/sprot/]

The UniProtKB/Swiss-Prot Protein Knowledge-
base (Gasteigeretal., 2003) contains the sequence
information of almost all the discovered and se-
guenced proteins. It has a high level of annotation
for each sequence, providing information like the
description of the protein function, its domains
structure or post-translational modifications. It
has a very low level of redundancy. Although
it is not a motif repository, we mention it here
due to its high level of integration with motif
databases. Typically, these databases provide
links to the Swiss-Prot sequences where their
patterns occur.

Prosite Database
[http://www.expasy.org/prosite/]

Prosite (Gasteiger et al., 2003; Hulo et al., 2006)
is the oldest and best known sequence motif da-
tabase. It is a semimanually annotated database.
The sequence motifs are characterized by having
ahighbiological significance, typically showinga
region inthe protein with animportant functional
or structural role. A family of protein sequences
is then described by one or more motifs. Initially,
the Prosite entries reported only motifs in the
form of regular expressions (with its own adapted
syntax). Today, entries are complemented with
textual descriptions and PWMs. It also provides
references to the literature and to other protein
families where the motif occurs. The two key as-
pects of the Prosite motifs are (1) its capability to
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identify highly functional regions of the proteins
and (2) its ability to be used as a tool to distin-
guish the members of the families. The quality
of these motifs makes this database a reference
for comparison of the results from new methods
and algorithms. In order to better understand the
characteristics of the motifs, we provide some
figures and statistics obtained from the analysis
of the Prosite database. In release 19.2 (February
2006), Prosite contained 1,929 entries, fromwhich
1,330 were deterministic motifs. From these mo-
tifs, 1,030 (77.44%) were rigid gap motifs and 300
(22.56%) from the flexible gap type. The majority
of the gaps are of size 1 or 2, with an average gap
length of 1.93 and a standard deviation of 1.52.
Theaverage precision and sensitivity of the Prosite
motifs is respectively 95.9% and 90.16%, which
is an indicator of the high quality of the motifs
in this database.

As an example of a Prosite entry, we will
examine one specific motif from this database.
The selected entry is PS00017 which reports
the ATP/GTP-binding site motif A, also known
as P-loop. This motif appears in a considerable
number of proteins that bind ATP or GTP. It is
a motif with a high probability of occurrence. A
scan to Swiss-Prot (release 49.1) shows that this
motifhas 17,861 hitsin 16,550 different sequences.
The pattern has the following format:  [AG] -
X@) - G- K- [ST]. We recommend that the reader
consult this database and to try out the different
tools provided on the Web site.

Blocks [http://blocks.fhcrc.org/]

The Blocks WWW Server (Henikoff & Henikoff,
1994) is a tool that allows a protein or a DNA
query sequence to be compared against a data-
base of protein blocks. Each block corresponds
to multiple aligned ungapped segments that
report highly conserved regions in a family of
proteins. The blocks in the database are obtained
automatically from groups of proteins from the
InterPro (Mulder, Apweiler, Attwood, Bairoch,

Bateman, Binns, etal., 2005). A tool called Block
Maker (Henikoff & Henikoff, 1994) can be used
to create blocks from a set of related sequences
provided by the user.

Prints [http://lumber.sbs.man.ac.uk/
dbbrowser/PRINTS/]

The Prints database (Attwood, Mitchell, Gaulton,
Moulton, & Tabernero, 2006) is a collection of
protein motifs fingerprints. A motif corresponds
to a local alignment of highly conserved regions
of the proteins, and a fingerprint corresponds to
a set of motifs that can be used to predict the oc-
currence of similar motifsin other sequences. Two
types of fingerprints exist: (1) simple fingerprints
that consist in single motifs and (2) composite
fingerprints which combine multiple motifs.
The majority of reported fingerprints are of the
second type as they have a great expressive and
discriminative power.

Pfam
[http://www.sanger.ac.uk/Software/
Pfam/index.shtml]

Pfam (Finn, Mistry, Schuster-Bockler, Grif-
fiths-Jones, Hollich, Lassmann, et al., 2006) is
a database of multiple sequence alignments and
Hidden Markov Models that cover many protein
families and domains. This database consists
in two parts. The first part is the Pfam-A which
provides curated and high quality coverage of a
large number of protein families. The second part
of the database, Pfam-B, contains automatically
generated alignments for small protein families
and which do not overlap with Pfam-A.

InterPro
[http://www.ebi.ac.uk/interpro/]

The InterPro database (Mulder et al., 2005) is an
integrated resource of protein families, domains,
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and sites. This database combines information
frommultiple databases with different methodolo-
giesanddifferenttypesofbiological information.
It unifies information for the protein sequences of
the Swiss-Prot database with data on functional
sites and domains from Prosite, Prints, Pfam,
ProDom (Servant, Bru, Carrere, Courcelle, Gou-
zy, Peyruc, et al., 2002), and the Smart (Schultz,
Milpetz, Bork, & Ponting, 1998) databases. By
combining all thisinformation, itresultsinavery
powerful integrated diagnostic tool.

eMotif Database
[http://motif.stanford.edu/emotif/]

The eMotif database (Huang & Douglas, 2001)
provides three different tools for the generation
and analysis of protein motifs: Maker, Scan, and
Search. The eMotif-Maker program generates
rigid gap motifs, using regular expression syntax
identical to the one used in Prosite. These motifs
are generated from protein sequence multiple
alignments. The source of the alignments can be
the Prints and the Blocks database or a user input
alignment. The motifs are generated according
to some degree of specificity, which in this par-
ticular case corresponds to the probability of the
motif being matched by random sequences. The
eMotif-Search is used to search motifs that match
subsequences of a given query sequence, and the
eMotif-Scan will retrieve protein sequences that
match a user input regular-expression (motif).
Different databases report, generate, and
provide analysis tools covering different aspects
and information about protein families. In prac-
tice, this results in each database having its own
operational definition of a protein family. In this
section, we provided abrief overview to databases
somewhat related to sequence motifs. Therefore,
many interesting protein databases like SMART,
ProDom, DOMO, PIR, ProtoMap, SYSTERS,
COG, ProDom-CG, ProClass, and MetaFam,
among others, were left out of this analysis. For
further details, one should read Henikoff and
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Henikoff (2001), which provides a clear and com-
prehensive overview on the thematics of protein
family databases.

MOTIF MINING ALGORITHMS

The problematic of mining motifs and sequence
patterns has gathered a great deal of attention
from biologists and computer scientists and has
been widely investigated for more than 15 years.
From the biological point of view, the analysis of
sequence motifs provides valuable insights for
the comprehension of the sequence-structure-
function paradigm. From the computer science
point of view, it represents an interesting and
challenging problem.

To tackle this problem, many different algo-
rithms and methodologies have been proposed.
Some are refinements on previous approaches,
while others are completely new ideas. Itis difficult
to provide a direct comparison on the different
algorithmic aspects (like time, space complex-
ity, or the quality of the reported patterns), since
the algorithms are usually designed to perform
a specific search. For instance, it is difficult to
compare two algorithms, when one extracts rigid
gap motifs and another is designed for extracting
flexible gap motifs or motifs under some specific
constraints.

In general, the motif extraction process itself
follows asequence, which has already beenidenti-
fied and described in Brazma et al. (1998a) and
Jonassen (2000) as a three-step paradigm:

1. Solution space definition
2. Score and significance definition
3. Algorithm application

In step one, the user defines exactly the type
of patterns the user is looking for. According to
the Deterministic Motifs section, this implies the
definition on the type, class, constraints, substi-
tution sets, minimum support of the motifs, and
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otherrelevantinformation. Thisstepisequivalent
to the introduction of background or a priori
knowledge into the extraction process, since the
user is focusing the search on some subset of the
solution space.

Depending on the restrictiveness of the con-
ditions applied in step one, a smaller or larger
number of motifs can be reported. In both cases,
a discrimination function is required in order to
score the motifs according to their significance.
In the Significance Measures section, we pro-
vided some ideas on how to rank a motif and
how the different types of measures can be used
to evaluate a motif. A critical aspect is the search
of over-represented motifs, that is, motifs that
appear a number of times greater than expected.
If a motif is over-represented and has a low prob-
ability of appearance, then there must a biological
reason for this. As a result, these motifs should be
highlighted to the user. The minimum support,
although not the only one, is a measure of over-
representation. Hence, the significance of a motif
is usually defined as a combination of a scoring
function and the support value. Another critical
aspect is the length of the motifs. Longer motifs
with small support are usually more interesting
than smaller motifs with high support. This is
due to the fact that the former motifs have prob-
ably some biological meaning in contrast to the
latter that may arise mainly by chance. Finally,
the user should select an algorithm that handles
all the input information. Given a set of input
sequences and parameter values, the algorithm
should return a list of the frequent and best high
scoring motifs or a list of all motifs above some
predefined level of support and score.

The problem of motif finding is combinato-
rial in its nature. The performance of the mining
algorithms is essentially affected by the size of
the output, that is, the number of reported motifs
(Califano, 2000; Ester & Zhang, 2004; Ferreira
& Azevedo, 2005a; Rigoutsos & Floratos, 1998).
Thisquantity depends onthe following variables:
number of input database sequences, length of

the sequences, similarity between the sequences,
and minimum support threshold and constraints.
Typical input data are characterized by having a
relatively small number of sequences (from tens
to a few hundred), with a long length and a small
alphabet size (20 symbols in proteins and 4 in
DNA sequences). Itisgenerally assumed that these
sequences are unaligned. However, algorithms
(Huang & Douglas, 2001) have been introduced
to extract motifs from an input set of aligned
sequences. The difficulty of the motif finding
problem demands clever and efficient pruning
mechanisms which make the application of such
algorithms feasible with responses inuseful time.
Most of the actual algorithms run on average in
almost linear time with respect to the output, and
in the worst case, they achieve an exponential
time. In particular, it has been proved (Li, Ma,
& Wang, 1999) that some of the motif discovery
problems are NP-hard. In those cases, in order to
find a solution in polynomial time, a relaxation
of the original problem is made, where the set of
optimal patterns is no longer guaranteed to be
found. This is achieved through the introduc-
tion of heuristics, randomized and probabilistic
strategies, and approximation schemes (Lonardi,
2002).

Next, we provide a brief overview of dif-
ferent methodologies and algorithms that have
been designed to tackle this problem. We do
not provide a comprehensive survey, since only
some of the most representative algorithms of
each class are presented. We start distinguishing
two motif enumeration approaches: Bottom-Up
and Top-Down. In the Bottom-Up approach, the
algorithm starts with an empty motif. Then, it
extends the motifs with all the possible symbols,
one symbol at a time. If the defined constraints
and significance measures are satisfied, the motif
continues to be extended; otherwise the exten-
sion stops. The process stops when no motifs are
left to be extended. In the Top-Down (Ester &
Zhang, 2004) approach, the algorithm starts with
longer sequences where symbol generalizations
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and length decrease is successively applied until
the sequences fulfill a defined criteria and can
be reported as motifs. This latter approach is not
as common as the former. For the Bottom-Up
approach, the search space can be traversed in a
Breadth-first (BFS) or Depth-first manner (DFS).
In BFS mode, the motifs are all extended at the
same time, level by level. In DFS mode, a motifis
successively extended until it does not fulfill the
imposed conditions. Then, the algorithm back-
tracks in the search tree and extends a new motif.
Figure 1 shows a lattice structure that represents
the search space for an alphabet of two letters and
the respective flow of a DFS traversal. Note that
not all sequences are traversed. This is due to the
minimum support pruning (see the Depth-First
Search subsection).

Next, different methodologiesand representa-
tive algorithms for motif discovery are described.
In Lonardi (2002), a detailed description and
complexity analysis are provided.

. Exhaustive search: This is the simplest ap-
proach and consists of a four step method.
The user starts by defining the search space
and the respective constraints. Next, an
exhaustive enumeration of all the motifs in
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the search space is made. The third step isto
compute the support and the significance of
eachmotif. Finally, the motifswith the high-
est score or with a score above the defined
threshold are outputted. The advantage of
this method is that it is a simple approach
that is guaranteed to find the best motifs.
The greatest drawback lies in the fact that it
has a time complexity of O(| Z|") for motif
length of m and alphabet X, which makes
this method only suitable to discover small
length motifs. Thisisavery naive approach,
requiring the introduction of pruning tech-
niques. A variation of this methodology,
which makes use of an efficient data struc-
ture called suffix tree (McCreight, 1976;
Weiner, 1973), is proposed in an algorithm
called verbumculus (Apostolico, Gong, &
Lonardi, 2003). It provides an exhaustive
enumeration in a linear space and time
complexity. The biggest drawback is that it
only reports concrete patterns, whichhave a
limited expression power. Another algorithm
inthis class is the Weeder (Pavesi, Mauri, &
Pesole, 2001) algorithm. Itusesanexhaustive
enumeration to find rigid motifs allowing a

Figure 1. Tree structure of the search space for an alphabet of two symbols: (a, b); for each sequence
the respective support with relation to the example database is presented, dashed lines indicate the flow

of the DFS search.
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number of mismatches proportional to the
length of the pattern.

Depth-firstsearch: Thisclass ofalgorithms
combines Bottom-Up with a DFS approach
as described above. Here, the key concept
is the minimum support pruning strategy.
The concept states that if a sequence is not
frequent, all the sequences containing (ex-
tensions of it) it will also be not frequent.
Thus, a sequence is successively extended
until it becomes infrequent. The search is
guided by a lattice structure like the one in
Figure 1. Note thatin thisexample, sequences
bba and bbb are not visited during the DFS
traversal. This is so because sequence bb is
not frequent for aminimum support of 50%
inthe example sequence database. Examples
of algorithms in this class are the Pratt al-
gorithm (Jonassen et al., 1995) which finds
high quality frequent flexible gap motifs,
and the gIL (Ferreira & Azevedo, 2005) that
uses a DFS approach to find all the frequent
rigid or flexible gap motifs.

Shorter pattern combination: Analterna-
tive to the DFS approach is the combination
of shorter frequent motifs to form longer
motifs. If the suffix of a motif is equal to
the prefix of another, they can be combined
into a unique and longer motif. This is a
suitable strategy to find long motifs. This
strategy is divided in two steps. In step one,
an enumeration of all motifs with a certain
length and user defined characteristics is
performed. In step two, an exhaustive com-
bination of the motifs obtained in step one is
made. Teiresias (Rigoutsos et al., 1998) and
Splash (Califano, 2000) are two examples of
algorithms that find closed rigid gap motifs
following this approach. These algorithms
run on average with a polynomial time with
respect to the output, that is, the number of
reported motifs.

Exhaustive graph search: This type of
algorithm is based on the idea of searching

through all the subsequence combinations
of the input sequences that can be possible
occurrences of a motif. These algorithms
were specially designed to tackle the (I,
d)-motif problem (Pevzner & Sze, 2000).
This problem consists in finding from a set
of n input sequences a motif M of length
I which occurs in all the sequences with
at most d mismatches. Therefore, any two
occurrences of M differ at most 2d different
positions. Since this can be formulated as a
graphtheory problem, the central idea of the
method is based on the notion of expandable
clique ofagraph. The Winnower (Pevzner &
Sze,2000) algorithm was designed to tackle
this specific problem. It uses randomized
graphs and therefore does not guarantee
finding the best solution. It assumes that
the motif occurs exactly once per sequence.
Depending on the input parameters, it can
have a very high time complexity.
Random projection search: The projection
algorithm proposed by Buhler and Tompa
(2001) was also designed to tackle the (I,
d)-motif problem. It uses the projection idea
to deduce motif occurrences. Projection
can be described as the process of hash-
ing subsequences of the input sequences.
For each subsequence, a key is generated,
which is based on random subset features
of the subsequences like for example some
amino acid positions. The keys are then
inserted into the hash table cells. A post-
processing step uses high scoring cells to
cluster instances of motifs. The greatest
advantage of this algorithm is the fact that
it handles the scalability issues associated
with the problem. The biggest drawback is
the fact that it is a randomized algorithm.
Thus, no guarantees of finding the optimal
solution can be given. Typically, the output
of this algorithm is used as the input of the
Expectation Maximization (Lawrence &
Reilly, 1990) refinement algorithm.
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Some of these algorithms were originally
developed to mine motifs in DNA sequences.
Nevertheless, with minor programming changes,
they can be used to mine protein sequence da-
tabases as well. Typically, two versions of the
algorithms are provided for mining the two types
of biological sequences. Table 5 summarizes the
features of the algorithms described above. The
type and class of extracted motifs were already
described in deterministic motifs section. The
“Best Motif” feature refers to algorithms that
optimize their search to find the best scoring
motif. The feature “Heuristics” refers to the cases
where heuristics are introduced in the mining
process to improve the algorithm’s efficiency or
the quality of the reported motifs. Although the
use of such heuristics will eventually lead to the
best solution, no absolute guarantee is given in
those cases.

STRUCTURAL MOTIFS

In previous sections, we discussed the extraction
process of sequence motifs from a set of related
sequences. It was also briefly discussed how
these motifs can be used to assign function to a
newly discovered protein sequence (a task called
classification). The central idea behind function
classification is that proteins with very similar

Table 5. Algorithms and respective features
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sequence encoding will most probably share the
same function.

It is well known that during the evolutionary
history of a protein, structure is better conserved
than sequence (Chothia & Lesk, 1987; Johnson
& Lehtonen, 2000). Therefore, it is common to
find two proteins with the same function which
have significant structural similarity but low
resemblance at the primary structure. Extracting
patterns in a higher stratum than the sequence
level can provide new insights into understanding
how proteins acquire their final structure and how
structure relates to their function.

Proteininformationis typically categorized in
four different levels (Jones & Hadley, 2000). The
firstlevel corresponds to the amino acid sequence
information, and it is called primary structure.
Secondary structure elements (SSEs) consist in
local regions of the protein with well-defined
geometry characteristics. The two basic second-
ary structures are the a-helix and the f-strand.
A third element that establishes the connection
between elements of both types is called loop or
coil (Heringa, 2000). Since 50% of the amino
acids will be part of an a-helix or a S-strand,
it is common to describe a protein in terms of
its secondary structure. The tertiary structure
corresponds to the coordinate information of
atoms in the protein. This information allows a
complete visualization of the protein in a 3-di-
mensional space. Ifthe protein is coupled to other

Algorithm Concrete Ambiguous Rigid Flexible | Best Motif | All Closed Heuristics
Teiresias X X
Splash X X
Pratt X X X
giL X X X
Verbumculus X X
Winnower X X X
Weeder X X
Projection X X X
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proteins to form a complex macromolecule, the
intermolecular interactions are described by the
quaternary structure.

A structural motif is a pattern that provides
foraset of functionally related proteins a descrip-
tion of conserved properties at a higher level than
the primary structure. Since structure can be
described at different levels (e.g., atomic, amino
acid, SSEs, etc.) and several features can be re-
ported (e.g., geometry, topology, physic-chemi-
cal properties of the amino acids, etc.), different
definitions and algorithms for extracting structural
motifs have been proposed. Here, we will briefly
describe two techniques that use sequence motifs
and sequence motif mining algorithms to extract
structural motifs.

SPratt: The SPratt (Jonassen, 2000; Jonassen,
Eidhammer, Conklin, & Taylor, 2002) method
was designed to extract structural motifs from
a set of proteins, using the previously proposed
method for sequence motif extraction—~Pratt
(Jonassen, 2000; Jonassen et al., 1995). This
is a four step method that can be described as
follows: (1) Features describing the structural
neighborhood of each amino acid are encoded in
astring format; (2) The sequence motif discovery
algorithm Pratt is used to extract sequence pat-
terns common to the set of sequences given in
the input; (3) Whether the similarity found at the
string level is preserved at the structural level is
verified. This can be done through a measure of
superposition, namely RMSD—root mean square
deviation—between the described substructures.
(4) Structural patterns are ranked according to
a score function that combines the information
contentofthe neighborhood stringsandthe RMSD
values of the substructures.

In a second version of this method—SPratt2
(Jonassen, 2003), the authors follow a similar
methodology of SPratt but instead of extracting
Prosite-like patterns (see the motif databases
section), they devised a new pattern search pro-

cedure where the extracted string patterns consist
of sequences of single amino acids separated by
gaps of arbitrary size. This improvement allows
the mining of a larger number of input structure
strings and quicker finding of a more general
class of patterns.

SeqFEATURE: The segFEATURE method
(Liang, 2003) relies on the definition of structural
motifsfromthe FEATURE system (Bagley & Alt-
man, 1995; Banatao, Huang, Babbitt, Altman, &
Klein, 2001; Liang, 2003; Wei & Altman, 1998).
It automatically extracts structural motifs that
describe the structural environment around a
sequence motif. The FEATURE system extracts
structural motifs by describing the physic-chemi-
cal environment around functional sites. This
description is given by measuring the incidence
of the physic-chemical properties at three levels:
atomic, residue, and secondary structure for dif-
ferent radial distances. It then compares the set
of positive examples of the functional site with a
negative control set. This process yields a deci-
sion on the significance of the found motifs. The
seFEATURE method makes use of sequence
motifs from the eMotif database (Huang &
Douglas, 2001) as seed for the automatic crea-
tion of structural motifs. The eMotif database is
particularly useful in this context since sequence
motifs can be obtained at different levels of sen-
sitivity and specificity. After the motifs related to
the functional site have been selected, structures
from the PDB—Protein Data Bank (Berman,
Westbrook, Feng, Gilliland, Bhat, Weissig, et al.,
2000), matching the sequence motifs are selected
toformthetrainingset. FEATURE isthenapplied
to this set to find structural motifs.

The Calcium binding proteins are involved
in a set of vital biological activities. The most
common motif found in these proteins is the
EF-Hand. This motif (see Table 6) is described
at the primary structure level by the sequence
motif entry PS00018 at Prosite. At the secondary
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structure level, this motif typically occurs as a
Helix-Loop-Helix pattern (Argos, 1977). The
FEATURE model represents a motif in tertiary
structure level that describes the 3-dimensional
environment around the functional site.

Deterministic Motif Mining in Protein Databases

In the same way as several databases have
been proposed to manage different types of
sequence motifs, structural motif databases also
startto emerge. Table 7 summarizes three of these
databases and the respective type of structural
motifs they provide.

Table 6. Representations of the EF-Hand motif at different structural levels; the primary structure level
is described by a sequence motif (Prosite entry PS0018); the secondary structure motif is described by
the sequence of its SSEs; the tertiary structure pattern presented is an excerpt of the calcium binding
site taken for the webFEATURE database available at http://feature.stanford.edu/webfeature/. The FEA-
TURE model describes the 3-dimensional environment around the functional site of the calcium binding
proteins; rows describe the different physic-chemical properties and the columns the radial distance.
Dark areas represent a high incidence of the respective property.

Structure Level

Pattern

Primary D - {W} - [DNS] - {ILVFYW?} - [DENSTG] - [DNQGHRK] - {GP} - [LIVMC]
- [DENQSTAGC] - X(2) - [DE] - [LIVMFYW]

Secondary

Helix-Loop-Helix

Tertiary
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CONCLUSION

In this chapter, we have provided an introduction
to the problem of finding patterns in collections
of protein sequences. Since this is a broader sub-
ject, we have focused on the specific problem of
mining deterministic motifs in protein databases.
Molecular sequence information is growing atan
explosive rate. Such increase inthe volume of data
demands for the development of automatic and
efficient methods for pattern extraction. Human
and classical data analysis methods are no lon-
ger feasible. Knowledge discovery in databases
(KDD), where the datamining and bioinformatics
techniques are included, seems to be a promising
approach to the problem.

The biological motivation for the development
of suchtechniqueswas givenasan introductionto
the problem. Next, we differentiated the two types
of patterns that can be extracted from sequence
databases, focusing the analysis on deterministic
motifs. Details regarding the different features that

characterize a motif were provided. Very easily,
the motif extraction process may report too many
motifs. Thus, significance measures are required
to highlight the more biological or statistically
significant patterns. Different analysis can be
taken to obtain the required effect. Additionally,
to the fact that they provide support for a better
understanding of the biological processes, deter-
ministic motifs have a wide range of applications
in the bioinformatics context. Applications like
classification, clustering, or gene analysis are good
examples, to name afew. Deterministic motifsare
useful to different research communities. This
motivates the development of databases with free
and worldwide access that gathers and manages
sequences and motif information. We dedicated
a section to introduce some of these databases.
We then described the motif extraction process
and introduced several approaches and example
algorithms that can be applied in this problem.
Since additional protein information is typically
available, patternsoccurringatthe structural level

Table 7. Descriptions of different types of structural motifs, literature references, applications, and the

respective databases

Database References Structural Motif Goal
Catalytic Site Atlas (Bartlett,Porter,Borkakoti, | Represents and describes several | Identify and
& Thornton, 2002; Porter, | properties of the amino acids | documentingenzyme
Bartlett, & Thornton, | residues involved in catalytic | active sites.

2004; Torrance, Bartlett,
Porter, & Thornton, 2005)

reactions.

Fuzzy Functional Forms (FFF)

(Cammer, Hoffman, Speir,

FFF represents distances and | Identify Functional

and Active Site Profiling | Canady, Nelson, et al., | variancesbetweencriticalresidues | Sites in  protein
(ASP) at the 2003; Fetrow, Godzik, & | of the Functional Sites. structures.
Structure-Function  Linkage | Skolnick, 1998; Fetrow & | ASP combines signatures based
Database (SFLD) Skolnick, 1998; on sequence and structural
Pegg, Brown, Ojha, | information.
Seffernick, Meng, Morris,
et al., 2006)
FEATURE (Bagley & Altman, 1995; | Represents Physic-Chemical | Describe the 3D
Banatao et al., 2001; | properties at different radial | environment around
Liang, 2003; Wei & | distances around Functional | Functional Sites.
Altman, 1998) Sites.
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can be extracted and combined with sequence
information. Inthe previous section, exampleson
how sequence motifsand motif mining algorithms
can be used to extract structural motifs were
presented. Such high level motifs will certainly
provide the means for a better understanding of the
protein sequence-structure-function paradigm.
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ABSTRACT

This chapter provides an overview of the knowledge discovery process in metabolomics, a young dis-
cipline in the life sciences arena. It introduces two emerging bioanalytical concepts for generating
biomolecular information, followed by various data mining and information retrieval procedures such
as feature selection, classification, clustering, and biochemical interpretation of mined data, illustrated
by real examples from preclinical and clinical studies. The authors trust that this chapter will provide an
acceptable balance between bioanalytics background information, essential to understanding the com-
plexity of data generation, and information on data mining principals, specific methods and processes,
and biomedical applications. Thus, this chapter is anticipated to appeal to those with a metabolomics
background as well as to basic researchers within the data mining community who are interested in

novel life science applications.

INTRODUCTION

Metabolomics is an evolving discipline that
studies unique chemical fingerprints reflecting
metabolic changes related to disease onset and
progression. Metabolite profiling, an area within

metabolomics, measures small molecules, or
metabolites, contained in a human cell, tissue,
or organ and involved in primary and interme-
diary metabolism. The biochemical information
resulting from metabolite analysis reveals func-
tional endpointsassociated with physiological and
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pathophysiological processes, influenced by both
genetic predisposition and environmental factors
such as nutrition exercise or medication (Daviss,
2005; Harrigan & Goodacre, 2003; Ryals, 2004;
Schmidt, 2004).

Recently, due to significant advances in high-
throughputtechnologies, awider set of the human
metabolome—athus far largely unexplored source
of bioinformation—is now accessible (Beecher,
2003; Dunn, Bailey, & Johnson, 2005). Statisti-
cal comparison of metabolite profiles can expose
multivariate patterns that have the potential to
revolutionize the health care system by specifi-
cally capturing latent warning signs of upcom-
ing diseases before any disease symptoms show
up. Early disease screening and prevention, as
opposed to late disease detection and expensive
therapeutic interventions, is probably the primary
health care coverage solution for the future.

By definition, these so-called biomarkers
are “objectively measured indicators of normal
biological processes, pathogenic processes or
pharmacological responses to a therapeutic in-
tervention, and ... are intended to substitute for a

clinical endpoint (predict benefit or harm) based
on epidemiological, therapeutic, pathophysi-
ological or other scientific evidence” (Biomarkers
Definitions Working Group, 2001). Interest in the
discovery of novel biomarkers originates from
their broad range of potential applications and
fundamental impact on pharmaceutical industry
dynamicsand currenthealth care sector principles.
Successful implementation of biomarkersindrug
discovery can reduce the time and cost of drug
development while the application to molecular
diagnostics will improve patient compliance in
clinical settings and reduce unnecessary costs
resulting from false diagnosis in addition to late
disease detection (McCandless, 2004; Morris &
Watkins, 2005; Stoughton & Friend, 2005).
Qualitative and quantitative metabolite profil-
ing technologies comprise a range of advanced
analytical and data processing tools, with the
objective of utilizing potential markers as a result
of comparison of small molecule components of
biological systems. Tandem mass spectrometry
(MS/MS), for example, detects hundreds of me-
tabolites simultaneously from microliter quanti-

Figure 1. Mass spectrometry (MS) based technologies used in metabolite profiling. Specific steps for
qualitative nontargeted and quantitative targeted profiling are highlighted.
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ties of biological samples, such as whole blood,
serum, plasma, urine, or other body fluids, from
minute amounts, with high precision and sen-
sitivity (Kaltashov & Eyles, 2005; Roschinger,
Olgemoller, Fingerhut, Liebl, & Roscher, 2003;
Strauss, 2004). Relative quantification is achieved
by reference to a wide range of appropriate inter-
nal standards. Quality assured data, generated by
modern LIMS-controlled technology platforms
comprising automated sample preparation, mass
spectrometer based analytics and technical vali-
dation (Weinberger, Ramsay, & Graber, 2005),
are rapidly becoming too voluminous to catalog
and interpret by hand. As a result, cutting-edge
data mining tools are needed to identify novel
and highly relevant information on preprocessed
sample data (Baumgartner et al., 2004; Fiehn &
Spranger; Huyn, 2001; 2003). However, the iden-
tification of biologically meaningful markers is
challenged by the deficiency of a priori knowledge
related to the molecular nature of the disease as
well as the biological variability of data.

In recent years, advanced data mining and
bioinformatics techniques have been applied to
increasingly comprehensive and complex meta-
bolic data sets, with the objective to identify and
verify robust and generalizable markers that
are biochemically interpretable and biologically
relevant in the context of the disease. Ultimately,
validated and qualified predictive models can
be used for disease screening and therapeutic
monitoring (Baumgartner & Baumgartner, 2006;
Norton, Huyn, Hastings, & Heller, 2001).

IMPORTANT ASPECTS OF
METABOLITE PROFILING

Metabolite Profiling Approaches

As shown in Figure 1, a variety of technologies
are exploited for sample preparation, separa-
tion, analysis, and data processing in metabolite
profiling. Gas (GC) and liquid chromatography

(LC), orcapillaryelectrophoresis (CE) largely use
mass spectrometry (MS) to identify and quantify
metabolites after separation (Halket, Water-
man, Przyborowska, Patel, Fraser, & Bramley,
2005; Jonsson, Gullberg, Nordstrom, Kusano,
Kowalczyk, & Sjostrom, 2004; Soga, Ohashi,
Ueno, Naraoka, Tomita, & Nishioka, 2003). MS
based metabolite profiling technologies typically
comprise qualitative nontargeted and quantitative
targeted approaches. The selected strategy widely
determines the extent of subsequent data prepro-
cessing such as retention time (rt) and mass (m/z)
alignment and metabolite identification steps.

The nontargeted approach offers the prospec-
tive of covering a broad range of endogenous and
drug metabolites. However, the tedious, time-con-
suming biomolecule identification process based
on derived features, that is, primarily retention
time and exact mass, limits its throughput perfor-
mance and hampers a subsequent comprehensive
functional interpretation. A targeted profiling
scheme is typically used to quantitatively screen
for known small molecule compounds, which
frequently depict relevant metabolic pathways of
the disease being investigated. The targeted mol-
ecules areidentified by tandem mass spectrometry
(MS/MS) utilizing characteristic mass transitions
inmultiple reactionmonitoring (MRM), precursor
(PS) and neutral loss (NL) scans. Quantitation is
achieved by reference to stable isotopes or other
appropriate internal standards added to the pre-
processed sample.

Aplacebo-controlled preclinical trial on diabe-
tesmellitustype Il (T2D), exploiting a qualitative
and quantitative metabolite profiling approach,
was conducted for metabolic characterization of
a disease mouse model (db/db) and detailed phar-
macodynamic description of a novel candidate
drug class. Six groups were studied consisting
of healthy and diseased mice, which were either
not treated, treated with the novel compound,
or placebo-treated (Figure 2). Advantages and
limitations of the two complementary profiling
methodologies were discussed (Graber, Wein-
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berger, Ramsay, & Wingate, 2005). In particular,
differences in performance characteristics, re-
producibility of chromatography, complexity of
datapreprocessing and identification, and derived
information contentareillustrated. In conclusion,
qualitative profiling seems to perform well for
exploratory investigations, while the quantita-
tive method has the potential to be employed as
a high-content screening technology.

For qualitative LC/MS metabolite profiling,
mouse urine and plasma samples were separated
by liquid chromatography and analyzed with a
quadrupole time of flight (qTOF) MS equipped
with an electrospray source. Retention times and
masses were aligned utilizing known values of the
added internal standards. Raw spectra intensities
were filtered with a signal-to-noise threshold,
normalized, and scaled, followed by statistical
data analysis. Asto quantitative targeted MS/MS
analysis, mouse urine, plasma, erythrocytes, and
liver samples were derivatized (amino acids, acyl-

Data Mining and Knowledge Discovery in Metabolomics

carnitines, sugars) and extracted by solid-phase
or in Folch solution (glyco- and phospholipids).
These sample preparation procedures were
implemented on a liquid handling system. The
extracted metabolites were subsequently analyzed
by flow injection in combination with multiple
reaction monitoring, precursor, and neutral loss
scansonatriple quadrupole (QqQ) MS equipped
withan electrospray source. Concentrations were
calculated from the raw MS spectra exploiting
known quantities of the spiked stable isotopes,
signal-to-noise filtered and scaled, followed by
statistical analysisand biochemical interpretation
of the preannotated metabolites (Figure 3).

Data Preprocessing and Metabolite
Identification

The nontargeted approach revealed approximately
2,000 peaks per spectrum in full ion scans. As
chromatographic column conditions frequently

Figure 2. Placebo-controlled preclinical study on diabetes mellitus type 1l (T2D). The targeted approach
allows quantitative analysis and biochemical interpretation of biofluids and tissue samples in justifiable
time. Standard operating procedures (SOPs) target specific compound classes.
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Figure 3. Workflow of two complementary metabolite profiling approaches
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change between LC-MS runs, known retention
times of internal standards were used to correct
retention time drifts. Furthermore, spectra were
mass aligned to match related peaks representing
the same underlying chemical component across
data sets derived from different samples. Known
masses of internal standards were exploited to
compensate for such peak drifts and distortions.
Additionally, intensities of spectra were nor-
malized utilizing known quantities of internal
standards. In this context, merely computational
approacheswithout the need for internal standards
are evolving, whereas mass recalibration and
intensity normalization are performed exploiting
characteristic peaks across runs. Scaling proce-
dures such as z-score can help to enhance the
visual comparison between runs. Pareto scaling
was used in this study.

Principal component analysis (PCA) dis-
criminated the groups and enabled the selection
of putative biomarker candidates. Although the
loading plots showed the m/z and retention time
pairs that contributed the most to the separation
of the groups, interpretation turned out to be

cumbersome as significant effort was involved
identifying corresponding metabolites (Figure
4). Additionally, concerns about reproducibility
of chromatography and standardization of spec-
tra alignment and normalization are all known
inherent problems of this approach.

In contrast, quantitative targeted metabolite
profiling concentrates on analytes that are known
and preannotated and can be detected by MRM,
precursor, and neutral lossscans. As flow injection
analysis (FIA) supplies a steady stream of ions to
the MS over a period of time, intensities can be
averaged leadingto robust signals. Characteristic
mass transitions are used for identification of me-
tabolitesand associated internal standards (Figure
5). De-isotoping is a common practice in protein
analysis. However, isotope correction is also rec-
ommended for certain small molecule compounds
and classes (Liebisch, Lieser, Rathenberg, Drob-
nik, & Schmitz,2004). These algorithms calculate
the theoretical isotope distributions of targeted
analytes and compare these isotopic frequencies
with measured peak intensities for their isotopic
overlap. Compound interferences can be detected,
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Figure 4. Example of peak identification in nontargeted metabolite profiling
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and intensity values for monoisotopic masses can
be corrected. Finally, metabolite concentrations
are calculated by relating the known concentra-
tions of stable isotopes with the measured ion
counts per second (cps).

The applied targeted metabolite profiling
methodology utilized a liquid-handling system
for fully automated and parallel sample prepa-
ration in microtiter format guaranteeing high
reproducibility and low coefficients of variation
(CVs). Furthermore, analytes and corresponding
metabolites were annotated in advance so as to
enable fast and direct biochemical and biological
interpretation. Up to 825 metabolites were ob-
tained from each compartment, and comparison
of the groups enabled identification of the animal
disease model and facilitated the immediate bio-
chemical characterization of drug effects.

Role of Data Mining for Biomarker
Discovery

Objectives

Targeted metabolite concentration profiling
facilitates higher throughput and the versatility
for standardized analysis of various biofluids and
tissues, which is especially important for com-
prehensive disease characterizations and efficacy
and toxicity assessments in animal model experi-
ments. Direct or surrogate, uni- or multivariate
markers are revealed by data mining techniques
with the objective to describe diseases at the
molecular level, which are subsequently often
used to study metabolic and pharmacodynamic
changes in various compartments and organs. In
general, the identical technology can be applied
invarious stages of pharmaceutical development,
ranging from cell-based systems and animal
models to clinical studies. For example, putative
biomarkers discovered and verified in the pre-
clinical phase, such as for the characterization
of normal biological and pathogenic processes
or pharmacological responses to a therapeutic

intervention can be clinically validated with the
same analytical technology in human studies. In
anintended diagnostic application, clinical studies
will have to assess the predictive performance and
generalization power of candidate biomarkers in
clinical routine, where high specificity is typically
required to rule out other diseases.

Data Mining Principles

In addition to descriptive and test statistics, data
mining techniques for the analysis of mass spec-
trometric data primarily include the analysis of
mass spectrometric data feature subset selection
methods such as PCA, filters, and wrappers (Hall
& Holmes, 2003) and classification methods such
as logistic regression analysis, support vector
machines or neural networks, genetic program-
ming, and cluster analysis (Cristianini & Shawe-
Taylor, 2000; Everitt, Landau, & Leese, 2001;
Gelman, Carlin, Stern, & Rubin, 2004; Hosmer &
Lemeshow, 2000; Mitchell, 1997; Raudys, 2001,
Shawe-Taylor & Cristianini, 2004).

Instances of metabolic data derived from
biological samples are represented asanumerical
vector inamultidimensional space. Here, dimen-
sions or features reflect peaks of aligned mass
spectra, that is, corrected m/z and retention time
pairs with associated normalized intensity values
(nontargeted approach), or avector of analytes with
calculated concentrations thatrelate to predefined
and preannotated metabolites (targeted approach).
As principal data mining tasks in biomarker dis-
covery are “supervised”, data vectors are defined
by a set of tuples T, = {(cj, m) | ceCme M},
where ¢, is the class label of the collection C of
preclassified cohorts (diseased, various stages
of disease, treated, normal), and M = {m | m,,
..., m } is the given feature set, that is, peaks of
spectra or metabolite concentrations.

Success of data mining is affected by factors
suchasnoise, redundancy, relevance, or reliability
inherent in the experimental data. Thus, feature
selection is focused on the process of identifying
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and removing as much of irrelevant or redundant
information as possible and is used as a prepro-
cessing step before classification and biochemical
interpretation. One popular categorization of su-
pervised feature selection technigues has coined
the terms “filter” and “wrapper” to describe the
nature of the metric used to evaluate the worth of
features (Hall & Holmes, 2003; Kohavi & John,
1998).

Filtersuse general characteristics of the datato
evaluate attributes and operate independently of
any learningalgorithm by producing aranked list
of feature candidates. Wrappers evaluate feature
subsets by using accuracy estimates provided by
machine learningalgorithms. In general, forward
selectionsearchisusedto producealistof features,
ranked according to their overall contribution to
the accuracy of the attribute subset with respect
to the target learning algorithm. Wrappers gener-
ally give better results than filters because of the
interaction between the search and the learning
scheme’s inductive bias. However, improved
performance comes at the cost of computational
expense due to invoking the learning algorithm
for every attribute subset considered during the
search.

In addition to supervised approaches, PCA is
a very popular unsupervised preprocessing step
that calculates linear combinations based on the
variance of the original data space. Unlike filters or
wrappers that identify and assess attributes based
on their original variables, PCA is an effective
projection method suitable for data compression
and dimensionality reduction, where a subset
of the new features can be used to describe the
instances on a certain percentage of the original
information. In general, the first principal com-
ponent (PC) explains the most variance of data
of the original variables; the second PC describes
the highest variance in the remaining data after
removal of the contribution of the first PC; and so
on. In many applications, this sequential reduc-
tion leads to a variance concentration in the first
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few PCs that can be easily visualized for further
interpretation.

Filter-Based Feature Selection for
Biomarker Discovery

Filter-based feature selection techniques assess
features ofagiven collection (e.g., alist of derived
metabolite concentrations, targeted approach) by
an appropriate quality measure. Such algorithms
finally produce aranking of the features according
totheir quality to discriminate predefined classes.
Popular methods, forexample, are the information
gain (IG) that computes how well a given feature
separates data by pursuing reduction of entropy,
or relief/reliefF, which is an exponent of a cor-
relation-based selection method evaluating the
worth of an attribute by repeatedly sampling an
instance and considering the value of the given
attribute for the nearest instance of the same and
different class (Hall & Holmes, 2003).

However, entropy-based or correlation-based
approaches are not the single best approaches for
all situations, particularly as they do not optimally
reflect the characteristics of given MS data struc-
turesatnormal or disease/treated state. Inan effort
to improve the performance of feature selection
algorithms, data miners should not only have a
profound knowledge of different techniques, but
shouldalso consider the strengthsand weaknesses
of the chosen paradigms in the applied domain
and derived preprocessed data.

The biomarker identifier (BMI), an algo-
rithm recently described by Baumgartner and
Baumgartner (2006), makes use of atwo-step data
processing procedure to discern the discrimina-
tory attributes between two classes of interest
(i.e., a set of metabolite profile MS traces from
diseased people vs. a set derived from normal
samples). Both steps include qualifying and
ranking potential marker candidates fromagiven
metabolite collection and discarding irrelevant
metabolites (if desired) by thresholding. More
specifically, three parameters describing disease
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related metabolic concentration changes, that is,
discriminatory performance, extentofdiscrimina-
tory space, and variance of concentration values at
disease state, were taken into account to develop
a quality (score) measure for selecting potential
markers candidates.

Figure 6 depicts the BMI scores of measured
acylcarnitines on MCADD (n = 63) vs. controls
data (n = 1240). Medium chain acyl CoA dehy-
drogenase deficiency (MCADD), an inborn error
of metabolism, is a fatty acid oxidation defect

which leads to an accumulation of medium chain
acylcarnitinesandthustoadecrease incell energy
metabolism (Clayton, Doig, Ghafari, Meaney,
Taylor, Leonard, Morris, & Johnson, 1998; Deza-
teux, 2003; Rinaldo, Matern, & Bennett, 2002).
Inborn errors are primarily monogenic diseases
due to the change of a single gene, resulting in
an enzyme or other protein not being produced
or having altered functionality. Such single
pathway blockade disorders are characterized
by abnormal concentration changes of only a few
key metabolites.

Figure 6. Identified key metabolites of the fatty acid metabolism in MCADD using BMI. TS is the dis-
criminatory threshold (umol/L) between diseased and normal classes, TP* describes the discriminatory
power, Adiff indicates the relative concentration changes, and CV specifies the coefficient of variation
at disease state. Parameters TP*, Adiff, and CV are used to calculate the BMI-score.
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Table 1 gives a brief description of seven in-
born errors of metabolismregarding their enzyme
defects, established diagnostic markers and their
natural history to be investigated for identifying
disease-specific metabolites. Using BMI, all key
metabolites could be identified and prioritized as
primary (indicated in bold) and secondary markers
according to the current biochemical knowledge
on disease metabolism. Here, a score value of |s|
>100 enabled a categorization of all established
primary markers, and a score value between 20 <
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|s| < 100 enabled a categorization of all secondary
markers, which makes BMI an excellent tool for
identifying and prioritizing selected metabolites in
single pathway blockade disorders (Baumgartner
& Baumgartner, 2006).

Arrows T and 4 indicate abnormally en-
hanced and diminished metabolite concentrations.
Bold metabolites denote the established primary
diagnostic markers (American College of Medical
Genetics/American Society of Human Genetics
Test and Technology Transfer Committee Work-

Table 1. Survey of seven inborn errors of metabolism and established diagnostic markers
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Amino acid disorders Enzyme defect/ affected Diagnostic Symptoms if untreated
pathway markers
Phenylketonuria (PKU) Phenylalanine hydroxylase PHE T Microcephaly, mental
or impaired synthesis of TYRY retardation, autistic-like
biopterin cofactor behavior, seizures
Organic acid disorders
Glutaric acidemia, Type | (GA-I) Glutaryl CoA cspe Macrocephaly at birth,
dehydrogenase neurological problems,
episodes of acidosis/ ketosis,
vomiting
3-Methylcrotonylglycinemia deficiency 3-methyl-crotonyl CoA C50H 7T Metabolic acidosis and
(3-MCCD) carboxylase hypoglycemia,
some asymptomatic
Methlymalonic acidemia (MMA) Methlymalonyl CoA mutase | C3 T Life threatening/fatal

or synthesis of cobalamin c4apct ketoacidosis, hyper-

(B,,) cofactor ammonemia, later symptoms:
failure to thrive, mental
retardation

Propionic acidemia (PA) Propionyl CoA carboxylase | C3 T Feeding difficulties, lethargy,
o or B subunit or biotin vomiting and life threatening
cofactor acidosis
Fatty acid oxidation disorders
Medium chain acyl CoA dehydrogenase | Medium chain acyl CoA ce T Fasting intolerance,
deficiency (MCADD) dehydrogenase cs? hypoglycemia,
ciot hyperammonemia,
c10:1 1 acute encephalopathy,
cardiomyopathy
3-OH long chain acyl CoA Long chain acyl CoA C160H T Hypoglycemia, lethargy,
dehydrogenase deficiency (LCHADD) dehydrogenase or C180H 7T vomiting, coma,
mitochondrial trifunctional C18:10H T seizures, hepatic disease,
protein cardiomyopathy
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Figure 7. Feature selection with Information gain and Relief filters. The 12 top ranked metabolites
are displayed. The first four bars (Information gain) represent the established diagnostic markers for

MCADD (see Table 1).
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ing Group, 2000; Baumgartner & Baumgartner,
2006).

Comparing BMI results with 1G and Relief
on MCADD data, IG returned a ranking similar
to BMI, but does not allow a convincing priori-
tization, in particular between the predominant
marker C8 (octanyl-carnitine) and the second
and third ranked metabolites C10:1 (decenoyl-
carnitine) and C10 (decanoyl-carnitine) (Figure
7). Reliefturned out inferior, as its heuristics take
into account the usefulness of attributes for class
prediction along with the level of intercorrelation
among them, which seems to be useless on such
specific data characteristics. Using PCA, the

groups were discriminated in a meaningful way
and enabled the selection of all key metabolites
(Figure 8). However, a ranking or even a priori-
tization of identified subsets with respect to their
loadings is not practical by this method.
Metabolite profiles in multigenic diseases such
as metabolic syndrome or diabetes mellitus type
II reflect more complex metabolic changes typi-
cally caused by the interplay of various affected
genes and regulatory, signaling, and biochemi-
cal pathways. This regularly leads to multiple
abnormal enzyme reactions involving several
metabolic pathways. In this context, the charac-
terization of the diabetes disease mellitus type 11
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Figure 8. PCA on MCADD data: Principal component 2 with high loadings of C8-, C10:1-, C10- and
C6-acylcarnitines (circle) contributed the most to the separation of the groups. This subset corresponds

to the established diagnostic metabolites.
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model (Figure 2) revealed several markers that
metabolically characterize the mouse model. The
study demonstrates that targeted metabolomics
is ideally suited to deliver functionally relevant
information about the pathophysiology of meta-
bolicdisordersincluding the assessment of ketosis,
gluconeogenesis, short term metabolic control,
beta-oxidation, oxidative stress, and lipid peroxi-
dation. For instance, the amino acids yielded a
wealth of information about the general metabolic
condition of the animals, which was consistently
confirmed in cellular and extracellular compart-
ments. All the branched-chainaminoacids, valine
(Val) and leucine/isoleucine (Xle), were elevated
in the diabetic animals reflecting a well-known
finding in diabetes patients.

This rise most likely results from impaired
utilization of these amino acids in peripheral tis-
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sue, where they usually serve as a major energy
source, and is commonly thought to indicate a
bad short-term metabolic control (Figures 9A
and 9B). Furthermore, phenylalanine (Phe) levels
increased while tyrosine (Tyr) concentrations
discreased, clearly indicating a reduced activity
of the phenylalanine hydroxylase. One of the most
plausible explanations for this effect would be a
depletion of the enzyme’s essential cofactor, tet-
rahydrobiopterin (BH4), in a situation of marked
oxidative stress (Figure 9A). Last of all, the main
amino acids, alanine (Ala), glycine (Gly), and
serine (Ser), serving as a source for gluconeogen-
esis, showed consistently lowered concentrations.
Elevated gluconeogenesis is acommon finding in
diabetes models, and the source for this process
is very likely to get partly depleted.

These experimental results clearly demonstrate
how the incorporation of specific characteristics
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Figure 9A. Identified key metabolites of the analyzed amino acid spectrum in diabetes mellitus type 11
(T2D) data using BMI (mouse model diseased vs. controls); Phe = phenylalanine, Xle = Leucine (Leu)
+ Isoleucine (lle), Val = valine, Gly = glycine, Orn = ornathine, and Arg = arginine
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on biological data remarkably improves the per-
formance of feature selection and dimensionality
reduction. Ultimately, new developments in this
field require target-oriented mining approaches
that focus on questions of subset identification
combined with straightforward strategies for
biochemical interpretation and validation.

Classification on Metabolic Data

The performance of identified marker candidates
isdetermined ontheirability to classify instances.
Usually, for a supervised classification problem,
the training data sets are in the form of a set of
tuples TR = {(cj, m) | ceCome M}, where C;
is the class label and M is the set of attributes
(metabolites) for the instances. The task of the
learning algorithm is to produce a classifier to
classify the instancesintothe correctclass. Valida-
tion is now the process of estimating how well a
model you have learned from some training data
is going to perform on future as-yet-unseen data.
Various validation strategies can be applied: The
holdout method (train and test approach) splits
the data set into two groups, where the training
set is used to train the classifier and the test set
TS ={m | m € M} is used to estimate the error
rate of the trained classifier. For smaller data sets
due to study design, cross-validation (10-fold or
leave-one-out cross validation) can be applied.
Ten-fold cross validation, for instance, generates
a 10-fold repetition of the data set. In each of the
10 experiments, nine folds are used for training
and the remaining one for testing (Witten &
Frank, 2005).

The most common quality measures in a
diagnostic setting (diseased vs. normal class)
to estimate a classifier’s discriminatory perfor-
mance are accuracy, sensitivity, and specificity.
Letting TP stand for true positives, FP for false
positives, TN for true negatives, and FN for false
negatives, accuracy is calculated by the term
(TP+TN)/(TP+FP+TN+FN). Sensitivity is defined
as TP/TP+FN, and specificity as TN/TN+FP.
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Thus, sensitivity can be seen as a measure of how
accurate we are at predicting the positive class,
whereas specificity is ameasure ofhow accurately
negatives are identified.

Several popular machine learning methods
are currently used for classifying metabolomic
data: discriminantanalysis methods suchas linear
discriminantanalysis or logistic regression analy-
sis constructing a separating linear hyperplane
between two data sets (Hosmer & Lemeshow,
2000); classification trees (which are rooted), usu-
ally binary trees, with simple classifiers placed at
each internal node and a class label at each leaf
(Mitchell, 1997); k-NN, an instance-based learn-
ing paradigm, where a query object is assigned to
the majority class of k-nearest neighbors based on
a distance measure (Mitchell, 1997); Bayes clas-
sifier, a probabilistic method based on applying
Bayes’ theorem (Gelman et al., 2004); support
vector machines, a method that uses a kernel
technique to apply linear classification techniques
tononlinear classification problems (Cristianini &
Shawe-Taylor, 2000; Shawe-Taylor & Cristianini,
2004); or artificial neural networks, an information
processing paradigm inspired by the biological
nervous systems (Raudys, 2001).

Taking a more detailed look at quantified MS
data, datadistribution in classes can show regions
of differentdensities. If one class contains regions
of extremely varying density, many paradigmsare
not able to globally specify the density of a class.
Nevertheless, it is possible to locally examine the
density of each class in the region of the sample
to be classified, for example, described by a set of
k-nearest neighbors. In this context, an important
aspect is to separately consider the local cluster
structure of each class in order to determine the
degree to which a query sample is an outlier.
As classes often form clusters, the hypothesis
is to introduce a concept combining the “direct
density” view with an accurate outlier factor so
that a query sample is assigned to the cluster of
that class where it fits best. This concept was
implemented in a new instance-based algorithm,
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LCF, described by Plant, Boehm, Tilg,and Baum-
gartner (2006), which significantly outperforms
traditional classification algorithms, particularly
whenbiological dataare characterized by varying
local class densities.

Disease Screening

Fortheclinical routine, the predictive performance
and generalization power of candidate biomark-
ers is utilized to build classification models for
disease screening. Typically high sensitivity and
specificity are required to rule out other diseases.
Additionally, the models have to consider and
adjust to the real incidence rate of a disease to
calculate false-positive rates, assuming that the
prevalence of the disease was artificially con-
trolled in the study.

For the model-building process, feature
selection approaches, filters, and wrappers are
suitable to define the model inputs. Using the
filter approach, the first few top ranked metabo-
lites best distinguish diseased individuals from
healthy controls. However, the data miner keeps
the task of identifying the relevant subset through
continued testing of the classifier’s accuracy with
the aim of step-by-step optimization. When us-
ing wrappers, the interaction between the search
and the learning scheme’s inductive bias ensures
improved classification accuracy, but comes at the
cost of computational expense. In this context, it
is important to note that identified subsets using
wrappers do not ultimately correspond to the top
ranked filter results. Consequently, important
subsets can be lost, which are ultimately needed
when all key metabolites in affected pathways
are reviewed for biochemical interpretation and
further validation.

More often, apriori knowledge on metabolic
pathways is considered for defining the classifier’s
inputs. Demonstrated in a simplified way, an ab-
normal biochemical reaction can be modeled by an
easy ratiodescribinganirreversible conversion of
areactantintoaproduct (A—B), however affected

by alower activity up to ablockade of the involved
enzyme. For example, due to a blockade of the
enzyme phenylalanine hydroxylase, the amino
acid phenylalanine (Phe) cannot be metabolized
totyrosine (Tyr). Thissingle pathway defect leads
tostrongly elevated Phe andslightly decreased Tyr
concentration levels in fluid and can be modeled
by the term Phe/Tyr. A set of single metabolites
combined by constructed features (ratios) as
model inputs are helpful tools to further enhance
the classification accuracy of a screening model,
which in turn reduces unnecessary costs result-
ing from false diagnosis. In this context, Chace,
Sherwin, Hillman, Lorey, and Cunningham (1998)
confirmed the improvement of newborn screening
for phenylketonuria (PKU) for the first time by the
use of the phenylalanine-to-tyrosine ratio. More
recent experiments emphasized this hypothesis
(Baumgartner Bohm, & Baumgartner, 2005).

Figure 10 illustrates an example of PAHD
(phenylalanine hydroxylase deficiency), a disor-
der embracing both a more severe (classic PKU)
and a milder (non-PKU HPA) form, by showing
a receiver operating curve (ROC) analysis. A
comparison of the screening performance on
univariate and multivariate markers including
ratios exemplifies a significant increase of sensi-
tivity (primary marker Phe alone: 95.7% vs. Phe
+ Phe/Tyr: 96.8%) and positive predictive value
(44% vs. 50%, the latter value represents 93 false
positive cases of 100,000 healthy controls). Pre-
liminary studies (unpublished) on more complex
multigenic metabolic diseases tend to express
the discriminatory power of multivariate classi-
fiers even more pronounced by modeling apriori
knowledge of disease metabolism.

Particularly for screening applications,
model-based classifiers such as logisticregression
analysis or classification trees are ratherused than
instance- or kernel-based methods. The use of ex-
plicitrulesdescribed by the models’ targetdecision
function is more practical for the daily screening
routine and has shown the highestacceptance rates
among clinical personnel. Logistic regression
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analysis is one of the methods of choice because

here class membership is predicted by ?L prob-

ability measure P(disorder =1)=sz”

, an additional decision indicator, u%iJﬁg a cu't—off
value of P = 0.5 by default. By employing sharper
cut-offs (e.g., 0.25 < P < 0.75, that is, between
the first and third quartile), this approach can be
extended toaprognostic “alarm system” allowing
a more effective response to cases of metabolic
disorders detected during the screening procedure
(Baumgartneretal., 2004; Hosmer & Lemeshow,
2000).

Unsupervised Data Mining for
Biomarker Discovery

If class membershipisunknown, MS datasetsare
given as a set of tuples in the form of T = {x. | x,
€ IR*, i =1,...,n}. Therefore, many unsupervised
feature selection methods approach this task as
a search problem, where each state in the search
space specifies a distinct subset of the possible
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features. Since the space is exponential in the
number of examined attributes, this necessitates
the use of aheuristic search procedure. The search
procedure is combined with a feature utility esti-
mator to evaluate the relative merit of alternative
subsets of attributes.

In general, dimensionality reduction and fea-
ture selection techniques map the whole feature
space onto a lower dimensional subspace of rel-
evant attributes in which clusters can be found.
Unsupervised feature selection is often based on
attribute transformations by creating functions of
attributes. Examples are PCA, methods based on
singular value decomposition (SVD), and other
techniques based on waveletstransformation. The
major drawbacks are that the transformed attri-
butes often have no intuitive meaning or that data
are clustered only inone particular subspace using
established dimensionality reduction methods.
However, recentapproachesto subspace selection
methods (RIS) or comparable subspace clustering
(CLIQUE, SUBCLU) rely ondensity-based clus-
tering notations (Agrawal, Gehrke, Gunopulos,

Figure 10. Performance of PAHD screening using ROC-analysis: Improvement of screening by consid-
ering apriori knowledge (ratios) in multivariate markers is demonstrated.
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& Raghavan, 1998; Kailing, Kriegel, Kroger, &
Wanka, 2003). The most severe problem of these
methods is the use of a global density threshold
for the definition of clusters due to efficiency
reasons. The following difficulties occur when
using a global density parameter: The data space
dimensionality naturally increases exponentially
with each dimension added to the subspace, and
the application of one global density parameter
to all clusters in one subspace of a fixed dimen-
sionality is not acceptable since the clusters may
exceed different density parameters.

SURFING (Baumgartner et al., 2004) tries to
overcomethisproblem by computing all subspaces
exhibiting an interesting hierarchical clustering
structure ranked according to a quality criterion.
This approach facilitates the identification of
interesting subspaces of high-dimensional data
ranked according to a quality measure and helps
tosupportthe complex subspace selection problem
of unclassified metabolic data in “unsupervised”
biomarker discovery.

For clustering metabolic datainto meaningful
groups based on the similarity of their aggregate
metabolite profiles, established partitioning
or hierarchical methods (k-means, single, or
average link) are used (Everitt et al., 2001). To
better consider local density structures in data,
density-based methods, such as DBSCAN (Ester,
Kriegel, Sander, & Xu, 1996) or Optics (Ankerst,
Breunig, Kriegel, & Sander, 1998), are becoming
more popular in this area. Supervised clustering,
which, to our knowledge, has not yet been applied
todatainthe context of metabolite profiling, opens
achallenging research field to be employed when
class labels of all data are known, with the objec-
tive of finding class pure clusters. Data mining
innovations in life sciences are definitely needed
to better address the issue of given biological data
structures.

Biochemical Interpretation, Pathway
Visualization, Mapping, and
Reconstruction

In a targeted metabolite profiling pilot study on
the metabolic syndrome, 375 metabolites were
simultaneously quantified in plasma. Unsuper-
vised and supervised data mining techniques
were applied to reveal statistically significant,
putative markers for disease classification. For
instance, the high and low concentration levels of
arginine (Arg) and ornithine (Orn), respectively,
in patients afflicted with severe metabolic syn-
drome and cardiovascular disease (MS+) relative
to healthy controls, implied an impacted enzyme
arginase in the urea cycle, which could be con-
firmed elsewhere (Jorda, Cabo, & Grisolia, 1981;
Wu & Meininger, 1995). A fundamental step of
data mining is to verify putative biomarker can-
didates in a biochemical context by mining the
most likely pathways. Therefore, for querying
appropriate knowledge bases, powerful search
and retrieval tools are needed that map and link
discovered marker candidates against a variety
of sources such as online repositories or internal
databases.

A suite of metabolic explorer tools was de-
veloped and exploited to visualize directly af-
fected biochemical pathways, map experimental
metabolite concentrations on these graphs, and
reconstruct a spectrum of theoretically possible
pathways between relevant metabolites. Meta-
bolic information was primarily extracted from
the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Ogata, Goto, Sato, Fujibuchi, Bono, &
Kanehisa, 1999) and stored in a relational data-
base. Dynamic visualization tools and compound,
structure, and route finding algorithms were de-
signed and implemented for interactive mining of
biochemical pathways and related entities such as
reactions, enzymes, and metabolites, facilitating
a direct functional annotation of experimental
results (path finder retrieval and reconstruction
tool, Biocrates life sciences, Innsbruck, Austria).
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The main functionality is grouped into three
modules:

First, the SEARCHER module allows query-
ingabout 4,500 endogenous metabolitesand links,
each of them to annotated biochemical pathways,
where specific entities, for example, reactions and
enzymes, are identified that might directly influ-
ence the concentration of selected metabolites.
Directhyperlinksto databases, suchas GenBank,
SWISS-PROT, Prosite, PDB, and OMIM reveal
supplementary information about entities. Fur-
thermore, structure based search helpsto discover
chemically related endogenous compounds that
share (Figure 11), for example, substructures, and
thus perhaps fragmentsimilarly in atandem mass
spectrometer, which can be very relevant both for
method development and compound identifica-
tion. In this context, metabolites such as arginine
and ornithine were searched and investigated,
emphasizing their common biochemical pathway,
reaction, and involved enzyme, that is, the urea
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cycle, arginine amidinohydrolase, and arginase,
respectively (Figure 11).

Second, the BROWSER module displays bio-
chemical pathways with their involved enzymes
and metabolites, also showing their structures.
A variety of graphical layout options support
user-friendly navigation in complex pathways.
A species filter removes non-existing reactions
and enzymes. Metabolite concentrations can
be mapped onto biochemical pathways. In this
respect, experimentally derived metabolite con-
centrations, such as arginine and ornithine, were
loaded and displayed, revealing that impaired
arginase enzyme activity might cause signifi-
cantly elevated arginine and low ornithine values,
respectively (Figure 12).

Third, the ROUTER module reconstructs and
displays alternative reaction sequence pathways
between two metabolites. Various options are
available to reduce the number of possible path-
ways. For instance, only routes can be considered

Figure 11. SEARCHER module for entity mining and annotated pathway association
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Figure 12. BROWSER module for mapping experimental metabolite concentrations
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that either have no enzyme or metabolite in com-
mon. All enzyme disjoint pathways connecting
the two metabolites arginine and ornithine were
visualized. Individual reaction steps are depicted
in the right panel, whereas the current path is the
second one from the left (Figure 13).

Verification, Validation, and
Qualification of Marker Candidates

The discovery, biochemical and biological inter-
pretation, statistical verification, and independent
validation of biomarker candidates typically re-
quirethe interdisciplinary expertise and teamwork
of biostatisticians, clinicians, biologists, analytical
chemists, biochemists, and bioinformaticians, and
involve the professional planning, implementa-
tion, and control of all steps in a study, ranging
from experimental or clinical trial design to the
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discovery and validation of putative markers,
respectively (Figure 14).

Independently validated biomarkers might be
subsequently commercially evaluated for potential
clinical use. Biomarkers applied in a molecular
diagnostic test have to go through clinical valida-
tion, qualification, and regulatory approval prior
to commercialization and any use of the molecu-
lar diagnostic or theranostic product in clinical
routine. Development of an in vitro molecular
diagnostic device (VD) andtest, typically includ-
ing an apparatus, software, standard operating
procedures (SOPs), and consumables, cantake up
to 10 yearsfromthediscovery ofanovel biomarker
(Frontline, 2003). However, there is considerable
variation depending on several factors, including
the resourcesavailable tothe originating inventors
and to what extent diagnostic tests are already in
place for the disease in question.

Figure 14. Biomarker discovery, verification, and validation process
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CLINICAL APPLICATIONS IN THE
DRUG DEVELOPMENT ARENAS

Interest in the discovery of novel biomarkers
originates from their broad range of potential
applications and fundamental impact on phar-
maceutical industry dynamics and current health
care sector principles. Successful implementation
of biomarkers in drug discovery can reduce the
time and cost of drug development while ap-
plication to molecular diagnostics will improve
patient compliance in clinical settings and reduce
unnecessary costs resulting from false diagnosis
in addition to late disease detection.

In particular, biochemical and clinical markers
are critical for efficient drug development. Biologi-
cal markers of drug effect, sometimes referred
to as surrogate markers, are used when clinical
outcome measures such as survival are substan-
tially delayed relative to predictive biochemical
changes or clinical effects of the investigational
compound. Biomarkers have generally been used
for early-phase decision-making studies and ac-
celerated regulatory approvals for much-needed
drugs to treat cancer, neurological diseases, and
acquired immune deficiency syndrome (Floyd &
McShane, 2004).

Preclinical and clinical evaluation of apotential
biomarker is often the longest stage of biomarker
development, and the required standards and ef-
forts for evaluation or validation depend on the
intended use of clinical development. Biomarkers
verified for use in preclinical studies can be used
to help select appropriate animal models and lead
compounds. Biomarkers qualified foruse in clini-
cal trials can confirm a drug’s pharmacological
or biological mechanism of action, guide protocol
design, aid patient and dose selection, and help
to minimize safety risks.

Theranostics is another emerging field utilizing
molecular biomarkers to select patients for treat-
ments thatare mostly expected to benefitthemand
are unlikely to produce side effects. Additionally,
theranostics provide an early and objective indica-

tion of treatment efficacy in individual patients,
which allows for immediate therapeutic changes
if necessary. Therefore, theranostic tests are
increasingly used in the areas of cardiovascular
disease, cancer, infectious diseases, and predic-
tion of drug toxicity. These tests lead to rapid and
accurate diagnosis, contributing to better initial
patient management and more efficient use of
drugs (Jain, 2005; Picard & Bergeron, 2002; Ross
& Ginsburg, 2002)

CONCLUSION

A successful metabolite profiling biomarker
discovery study relies on a carefully planned ex-
perimental design with clearly defined objectives,
a detailed plan and quality control procedures in
advance, as is a common practice in controlled
clinical trials. Well thought-through experimental
designs maximize the information obtained from
a given experimental effort, yielding valid and
objective conclusions (Ransohoff, 2004).

Experimental flaws and bias jeopardize the
predictive performance and generalization power
of statistically determined biomarkers. In this
context, metabolite profiling has to learn from the
past, where insufficient experimental design and
deficientreproducibility in early clinical validation
studies have acted torestrained the widespread use
of serum protein profiling technologies (Baggerly,
Morris, Edmonson, & Coombes, 2005; Ransohoff,
2005).

Of course, beyond statistical significance
lies the problem of biological significance. Just
because a change in expression or concentration
is statistically significant, this does not always
imply that the change affects the underlying
biology. Some genes, proteins, and metabolites
are tightly regulated so that small changes in
abundance are biologically relevant, while others
are loosely regulated and can vary considerably
with no biological effect.
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Since metabolomicsisavery youngdiscipline,
open standards for conducting and reporting
metabolomic studies are still in development
(Metabolomics Standards Initiative Group, 2006).
The current focus is on establishing standards for
metabolite dataannotation and exchange, facilitat-
ingthe creation of repository databasesand related
software implementing these standards and pro-
moting the sharing of high-quality, well annotated
data within the life science community. Another
goal for the future is to extend and consolidate
this notion with other functional high-throughput
technologies in genomics and proteomics. The
data processing standardization group works on
reporting requirements associated with statistical
analysis and data mining of metabolite data. The
ontology group seeks to facilitate the consistent
annotation of metabolomics experiments by
developing ontology to enable the broader sci-
entific community to understand, interpret, and
integrate data. Both guidelines will have a huge
impact on the metabolomics-user community,
allowing consistent semantic understanding and
exchange of data across diverse technologies and
laboratories worldwide.

Insummary, targeted metabolite concentration
profiling in combination with appropriate data
mining approaches have the potential to revolu-
tionize clinical diagnosis and drug development.
In particular, big pharma is under continuous
pressure todiscover newtargets, novel, more effec-
tive, and safer compounds, to speed up biomarker
and drug discovery and to generally reduce the
cost of pharmaceutical development. Big pharma
increasingly relies on biotech companies to fill
this innovative gap and future pipelines. In this
context, innovative bioanalytical and datamining
techniques will play a fundamental role in saving
costs by reducing time tomarketand drug attrition
rates (Di Masi, Hansen, & Grabowski, 2003).
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ABSTRACT

Media collections on the Internet have become a commercial success, and the structuring of large
media collections has thus become an issue. Personal media collections are locally structured in very
different ways by different users. The level of detail, the chosen categories, and the extensions can differ
completely from user to user. Can machine learning be of help also for structuring personal collections?
Since users do not want to have their hand-made structures overwritten, one could deny the benefit of
automatic structuring. We argue that what seems to exclude machine learning, actually poses a new
learning task. We propose a notation which allows us to describe machine learning tasks in a uniform
manner. Keeping the demands of structuring private collections in mind, we define the new learning
task of localized alternative cluster ensembles. An algorithm solving the new task is presented together
with its application to distributed media management.

INTRODUCTION or Yahoo!, structure their collections based on

metadata about the songs like artist, publication
Today, large collections of music are available date, album, and genre. Individual media col-
on the Internet. Commercial sites, such as iTunes lections are organized in very different ways by
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different persons. A user study reports several
organization principles found in physical music
collections (Jones, Cunningham, & Jones, 2004),
among them the time of day or the situations in
which the music is best listened to, the year in
which a song has been the favorite, and the room
in which to play it (e.g., kitchen, living room,
car). In a student project, we found categories of
mood, time of day, instruments, occasions (e.g.,
“when working” or “when chatting”), memories
(e.g., “holiday songs from 2005” or “songs heard
with Sabine”), and favorites. The same applies for
other media collections as, for example, texts or
videos. The level of detail depends onthe interests
of the collector. Where some students structure
instruments into electronic and unplugged, oth-
ers carefully distinguish between string quartet,
chamber orchestra, symphony orchestra, requiem,
and opera. A specialistofjazz designs a hierarchi-
cal clustering of several levels, each with several
nodes, where a lay person considers jazz just one
category.

Where the most detailed structure could be-
come a general taxonomy, from which less finely
grained, local structures can easily be computed,
categories under headings like “occasions” and
“memories” cannot become a general structure
for all users. Such categories depend on the per-
sonal attitude and life of a user, only. They are
truly local to the user’s collection. Moreover, the
classification into a structure is far from being
standardized. This s easily seen when thinking of
anode “favorite songs”. Several users’ structures
show completely different songs under this label,
because different users have different favorites.
The same is true for the other categories. We
found that even the general genre categories can
extensionally vary among users, the same song
being classified, for example, as “rock’n roll” in
one collection and “blues” in another one. Hence,
even if (part of) the collections’ structure looks
the same, their extensions can differ considerably.
In summary, structures for personal collections
differ in:
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The level of detail.
e The chosen categories.
The extensions for even the same labels.

This diversity gave rise to new applications
under the Web 2.0 paradigm. Systems as flikr or
del.icio.us allow users to annotate objects with
arbitrary tags. Such tags complement global
properties like artist, album, genre, and so forth,
for music collections. In contrast to the global
properties, the additional user-assigned tags are
local; that is, they represent the personal views
of a certain user not aiming at a global structure
or semantic. These approaches do not include any
machine learning supportfor users. They obey the
ruletonotdestroy hand-made, carefully designed
personal structures.

While users like to classify some songs into
their own structure, they would appreciate it if a
learning system would clean up their collection
“accordingly”. This means to sort-in songs into
the given structure. In addition, users often need
to refine their structure since a node in their hier-
archy or a class of objects has become too large.
Hand-made well-designed structures are often
superiorto learned ones. Therefore, collaborative
approaches are welcome, which allow users to
share preferences and knowledge without requir-
ing common semantic or explicit coordination. A
structure of another user mightserve asablueprint
forrefining or enhancing another’s structure. The
success of collaborative filtering (as in Amazon)
shows that users also like to receive personalized
recommendationsin orderto enlarge their collec-
tion. Hence, there is some need of support, but it
should not force users into a general scheme. An
approach which fits the characteristics of users’
collections should:

. Not overwrite hand-made structures.

. Not aim at a global model, but enhance a
local one.

*  Addstructure where a category’s extension
has become too large.
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. Take structures of others into account in a
collaborative manner.

*  Recommend objects which fit nicely into
the local structure.

. Deliver several alternatives among which
the user can choose.

Due to the last point, such support would not
deliver just one result which the user has to ac-
cept or otherwise has to stay with the disorderly
collection. This of course is also adesirable prop-
erty of such an approach. Now, the application
of structuring music collections has led us to a
set of requirements which a machine learning
algorithm has to fulfill in order to be of help for
users. We do not want to give an ad hoc solution,
but try to generalize to collaborative structuring
of personal collections. Although we will use the
setting of the organization of media collections
as an example throughout this chapter, the reader
should notice that the techniques presented here
are not restricted to this domain.

In order to obtain a clear definition of this
new learning task, we need to formalize the re-
quirements. The formal notation itself should not
be ad hoc, but principled and well based in the
general picture of machine learning. Hence, we
have developed a uniform description of learning
tasks which starts with a most general, generic
learning task and is then specialized to the known
learning tasks. We derive our new learning task
by further specialization and thus embed it into
the overall framework (Section 2). While such a
uniform framework is of theoretical interest in its
own right, we still want to solve the new learning
task. We present an approach in the third section.
Its use in a distributed setting is exemplified by
the application to collaborative media organization
in a peer-to-peer network in the fourth section.
Experiments on real-world audio data collections
in the fifth section show that, in fact, our approach
is capable of supporting users to structure their
private collections collaboratively.

GENERIC LEARNING TASKS

Inthe following, we will argue that current learn-
ing tasks are not sufficient for the collaborative
structuring of personal collections. A learning
task is defined by its input and output. In the
following, we describe a very general class of
learning tasks and show how common learning
tasks, as clustering or classification, can be defined
by constraining this general class. For each of
these learning tasks, we will present at least one
example. Also, for each of these classes, we discuss
its lack of capabilities for structuring collections
according to the given constraints.

Let X denote the set of all possible objects. A
function @: S = G is a function that maps objects
S ¢ Xto a (finite) set G of groups. We denote the
domain of a function ¢ with D, In cases where
we have to deal with overlapping and hierarchical
groups, we denote the set of groups as 2¢. The
input for all learning tasks is a finite set of func-
tionslc®={¢|¢:S > G} The same holds
forthe output O c ®={ | ¢: S > G} We can
now define a class of generic learning tasks:

Definition 1 (Generic Learning Task)
Given a set S < X, a function set | < @, and a
quality function:

g:2°x2°x2°> R

with R being partially ordered, a set of output
functions O should be found so that q(1,0,S) is
maximized.

Constraining the function domains and car-
dinality of the in- and output functions of this
formalization, we can describe many common
learning tasks by specifying some details of the
functions discussed above. We first describe the
abstract formalizations of known learning tasks
before we discuss some examples for each task
class and also discuss why the known learning
tasksare notapplicable for collaborative structur-
ing as described above:
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[I1=1,]0] =1, D, = X, Classification:

The input is [ = { ¢: S = G }where S is finite
and S < X. Inthis case, S represents the labeled
training examples. G is aset of predefined classes.
The task is to find exactly one function O = { ¢: X
- G }thatis able to assign all possible objects to
exactly one class in G. The classification setting

canbe extended to hierarchical classification with
[={e:S>2}landO={ ¢: X > 2¢ }.

[1=0,|0|=1, D,=S, Clustering:

For traditional clustering, the input set | is empty.
The output is O = { ¢: S = G } for a partitioning
clusteringand O = { ¢: S = 2¢} for a hierarchical
and overlapping clustering. S is usually assumed
to be finite.

[l=1,10|=1, D,=S, Supervised clustering:

In contrast to traditional clustering, these clus-
tering schemes use an input set containing one
function I = { ¢: S = G }. The output is O = {
¢: S > G } for a partitioning clustering and O =
{ ¢: S > 26} for a hierarchical and overlapping
clustering. S is usually assumed to be finite.

[l>1,10]=1, D, = X, Classifier ensembles:

For classifier ensembles, a set of classifiers is
given, which is then combined into a global
classification function. Thus, [ < { ¢ | ¢: X 2>
G }, where I is usually assumed to be finite. The
output is a single function O = { ¢: X 2> G } that
represents the global classifier model. Please note
that the only difference to cluster ensembles is
the domain of the input and output functions.
Again, hierarchical classifier ensembles could be
defined similarly with I < { ¢ | : X > 2¢ } and
O={e:X>26}

[1>1,]0]=1, D,=S, Cluster ensembles:
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For cluster ensembles, asetl c { ¢, | 9,: S 2 G,
} of partitions of the objects in S is given. The
output is a single partition O = { ¢: S > G }.
Hierarchical cluster ensembles could be defined
similarly with I c { ¢, | ¢: S > 2% }and O ={
¢:S>2°%}

[l =1, 0| >1, D, = X, Alternative classifica-
tion:

As for traditional classification, the input set I
containsagiven functionindicating the supervised
training points. As output, however, a finite set of
functionsO < { ¢ | : X = G } should be found
thatis able to assign all possible objects to exactly
one class in G. The classification setting can be
extended to hierarchical classification with I = {
e:S>2°YandOc{op|e: X>2°}

[11=0,|0|>1, D,=S, Alternative clustering:

As for traditional clustering, the input set | is
empty. As output, however, a finite set of clus-
terings on the objects in S is delivered, thus O
c{o|9:S> G, }. Againitis easy to define
hierarchical alternative clustering with O c { o,
l9:S> 2%}

Known Learning Tasks and
Collaborative Structuring

After the formal definition of known learning
tasks in the previous section, we will now discuss
known instances of these classes of learning tasks
and their lack of ability to directly handle the
problem of collaborative structuring.

Classification: If there are enough annotated ob-
jects, classification learning can deliver adecision
function ¢ which maps objects x of the domain X
toaclass g in aset of classes G. New objects will
be classified as soon as they come in, and the user
has no burden of annotation anymore. However,
classification does not refine the structure.
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Clustering: If there is no structure given yet,
clustering is the method to choose. The aim of
traditional cluster analysis is to group a set of
previously non-annotated objects into clusters
of similar objects. There are several variants of
this basic clustering task. Each of them creates
a structure of groups G for the not yet annotated
objects S < X. Traditional clustering schemes
neither take into account the structure which
users already have built up nor deliver several
alternatives.

Supervised clustering: Semisupervised or
constraint clustering algorithms allow users to
pose constraints on the resulting cluster struc-
ture. Constraints state, for example, that two
objects must be assigned to the same cluster
(Cohn, Caruana, & McCallum, 2003). A vari-
ant of semisupervised clustering is supervised
clustering (Finley & Joachims, 2005). The user
provides a cluster structure on a small subset of
objects which is then used to cluster the resulting
objects. This case can be writtenasI={ ¢: S’ >
G } where S’ < X, we wish to obtain an output
function O = { ¢: S 2 G’ }. Although supervised
clustering obeys given groupings, it is not able
to incorporate more than one input clustering, it
does not preserve label structure, and it does not
take locality into account.

Nonredundant data clustering creates alter-
native structures to a set of given ones (Gondek
& Hofmann, 2004). Given a structure G for all
objects in the collection, it creates an alternative
structure G’ for all objects. However, it does
not focus on the not yet annotated objects S but
restructures also the objects which were already
carefully structured. Nonredundant clustering is
connected to another area that has recently found
increasing attention: clustering with background
knowledge. Ingeneral, the idea of exploiting (user
supplied) background knowledge has shown ad-
vantages, for example, in text clustering (Hotho,
Staab, & Stumme, 2003) or lane finding in global

positioning system (GPS) data (Wagstaff, Cardie,
Rogers, & Schroedl, 2001). However, these ap-
proaches use a feature-based clustering instead
of given input clusterings and are hence not ap-
plicable to our problem.

Incremental clustering refers to the task of
clustering streams of objects, thus to adapt the
cluster structure to new objects automatically.
Given one input function I={ ¢: > > G }, we
wish to obtain an output function O = {¢: S’ U S
- G’} thatadditionally clustersthe objects S. The
cluster quality should be optimized. Often, it is
additionally required to alter existing clusters G
on S’ as little as possible. A very simple method
is to check whether a new object is sufficiently
similar to one of the current clusters. If this is the
case, itisassignedto this cluster; otherwise a new
cluster is created that contains only this object
(Jain, Murty, & Flynn, 1999). A more sophisti-
cated approach and a theoretical analysis of the
problem canbe found in Charikar, Chekuri, Feder,
and Motwani (2004). Hennig and Wurst (2006)
proposed an approach that takes the cost forauser
to adapt to a new cluster structure explicitly into
account. Again, incremental clustering does not
exploit several input clusterings and is hence not
applicable for collaborative structuring.

Classifier ensembles: Classifier ensembles are
one of the most important techniques in super-
vised learning (Hastie, Tibshirani,and Friedman,
2001). As for traditional classification, classifier
ensembles do not refine the structure of the ob-
jects.

Cluster ensembles: We may consider the structur-
ing achieved so far as a set of partitions ¢, each
mapping Stoasetof groups G,. Ensemble cluster-
ing then produces a consensus @ which combines
these input partitions (Strehl & Ghosh, 2002). To
date, almost all research is concerned with flat
cluster ensembles and especially with partition
ensembles. Another common assumption of all
approaches is that all partitions cover the same
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set of objects. Several approaches were proposed
to merge partitions. The most simple one uses the
co-association of objects in the given partitionsto
derive a binary similarity measure which is then
used together with a traditional similarity-based
clustering algorithm. The major advantage of this
algorithm is its simplicity and the ability to plug
it into any state of the art clustering algorithm.
Empirical results suggest that it works very well
on different problems (Topchy, Jain, & Punch,
2003). A major drawback is the consumption of
storage space, because a |S|?matrix has to be cre-
ated as input to the clustering procedure.

Another general approach is to search for a
median partition among the input partitions, thus
a partition that has a maximum average simi-
larity to all other partitions. Several similarity
measures are possible. Strehl and Ghosh (2002)
proposed mutual information. This measure has
however the disadvantage that itcannot be directly
optimized. Topchy et al. (2003) proposed other
measures like generalized mutual information as
itis used in COBWERB. For both, it can be shown
that by transforming the input partitions to a set of
features (each cluster results in one feature), the
problem of finding a median partition is reduced
to the k-means clustering problem applied in this
feature space.

Athird family of algorithms is based on hyper
graph separation (Strehl & Ghosh, 2002). First, a
hyper graphis generated fromthe input partitions.
This hyper graph contains an edge between two
objects for each concept they are assigned to.

In addition, in many current applications it
is important to consider structures of several
users who interact in a network, each offering a
clustering ¢, S, = G,. A user with the problem
of structuring her leftover objects S might now
exploit the cluster models of other users in order
to enhance his/her own structure. Distributed
clustering learns a global model integrating the
various local ones (Datta, Bhaduri, Giannella,
Wolff, & Kargupta, 2005). However, this global
consensus model, again, destroysthe structureal-
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ready created by the user and does not focus onthe
set S of not appropriately structured objects.

Cluster ensembles are almost what we need.
However, there are three major drawbacks: first,
all input clusterings must be defined at least on
S. Second, the consensus model does not take
the locality of S into account. Finally, merg-
ing several heterogeneous user clusterings by a
global consensus does not preserve valuable label
information.

Alternative classification: To our best knowl-
edge, no classification scheme exists which
directly delivers several alternatives for a given
classification problem. Although it would be
possible to restart nondeterministic classification
learners several times, this simple approach would
not lead to a diverse set of solutions and is hence
not of interest to the user.

There are, however, first approaches for alter-
native classifier learning ifthe important problem
of automatic feature selection is also taken into
account. For supervised learning, there is usually
an objective function (as accuracy) that can be
optimized by selecting subsets of features (John,
Kohavi, & Pfleger, 1994). The total number of
features should be minimized during selection
since smaller feature sets ease understanding.
This leads to a natural competition between the
used performance criterion and the number of
features, since omitting important features will
decrease the performance. Using multi-objective
optimization for feature selection leads to several
output functions using different feature subsets
(Emmanouilidis, Hunter, & Maclntyre, 2000).
Such an approach is oriented towards the task of
structuring personal collections, but it lacks the
opportunity to refine the structure of the given
objects.

Alternative clustering: For alternative clustering,
only subspace clustering delivers more than one
solutiontothe user (Agrawal, Gehrke, Gunopulos,



Handling Local Patterns in Collaborative Structuring

& Raghavan, 1998}. The authors make use of the
fact that the density of cells can only decrease
with increasing dimensionality. The algorithm
therefore searches for dense clusters of maximal
dimensionality.

Multi-objective feature selection, as depicted
above, can also be applied to clustering. It turns
out that, in contrast to the supervised case, the
number of features must be maximized in order
to find proper solutions (Mierswa & Wurst, 2006).
This algorithm naturally yields a diverse set of
cluster alternatives respecting different feature
subsets. However, both subspace clustering and
unsupervised feature selection do not exploit
given input functions.

However, still the characteristics of collab-
orative structuring are not yet met. Whether the
user’s partial clusterings or those of other peers
in a network are given, the situation is the same:
current clustering methods deliver a consensus
model overwriting the given ones and do not take
into account the query set S. In addition, users
might want to select among proposed models
whichthe learner delivers. Inthe mediacollection
setting described before, thiswould mean that the
user might want to select from several different
solutions, for example, a structure based on the
genre vs. a structure based on musical moods.
The practical need of the user in organizing a
media collection is not yet covered by existing
methods. The situation we are facing is actually
a new learning task which will be discussed in
the next section.

New Learning Tasks

Following the structure depicted above, we can
define several new learning tasks which are in
principle better suited for the structuring problem
discussed in the introduction:

[l >1, O] > 1, D,=S, Alternative cluster en-
sembles:

Both the input and the output are a finite set of
functionslc {¢,[9,:S> G, }andOc { ¢, | ;.
S = G, } Again, it is easily possible to embed
hierarchical clusterings with I  { ¢, 9,: S > 2°,
YandOc { o |0o:S>2°}.

[ >1, O] > 1, D, = X, Alternative classifier
ensembles:

Foralternative classifier ensembles, both the input
and the output are a finite set of functions [ < { ¢
lo: X>G}andOc {¢|e: X> G} Again, it
is easily possible to embed hierarchical classifiers
with functions I  { ¢ | ¢: X = 2 }and functions
O c { 9| ¢: X > 2°¢}. Please note that the only
difference to alternative cluster ensembles is the
domain of the input and output functions.

In this chapter, we will focus on alternative
cluster ensemblesand embed the problem of local-
ity into this learning task. Locality can be defined
twofold. First, locality can be defined regarding
the domains S, of objects on which the input and
the output functions are defined. Forall ensembles
discussed above, these setsare identical. All input
functions are defined for the same objects, which
is also the set on which the output functions are
defined. In general, this must not be the case.
Some input functions could be defined only on
a local subset of objects, describing a concept
that is only locally valid. This is automatically
the case if one takes several users into account
with, for example, different collections or media
data. Second, locality is found in the set of solu-
tion functions. While traditional methods deliver
exactly one global result, there could be several
local results that are valid, as well. To capture
this kind of locality, the algorithm must deliver
more than one global solution. In the following,
we extend the learning task of alternative cluster
ensembles in a way that it takes both aspects of
locality explicitly into account.
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Definition 2 (Localized Alternative Cluster
Ensembles)

Given aset S < X, a set of input functions | = {
¢, | 9, S, = G, }, and a quality function:

g:2°x2*°x 25> R

with R being partially ordered, localized alterna-
tive clustering ensembles deliver output functions
Oc {9 ]9.:S G, }sothatq(l,0,S)ismaximized,
and for each @, € O, it holds that S D,

Note that in contrast to cluster ensembles, the
input clusterings can be defined on any subset
S, of X. Since for all ¢, € O, it must hold that S
c Dm, all output clusterings must at least cover
the objects in S. This will ensure that at least the
query items which should be structured will be
covered by the returned solutions.

AN APPROACH TO LOCALIZED
ALTERNATIVE CLUSTER
ENSEMBLES

In the following, we describe a clustering method
that is based on the idea of bags of clusterings:
deriving a new clustering from existing ones by
extending the existing clusterings and combining
them such, that each of them covers a subset of
objects in S. In order to preserve existing label
information but allowing the group mapping for
new objects, we define the extension of func-
tions @

Definition 3 (Extended function)

Given a function ¢;: S, = G,, the function ¢’;: S’.
- G, is the extended function for ¢, if S, S,
and vx €S;: ¢,(x)= ¢’,(X).

Extended functions allow us to define a bag of

extensions of non-overlapping originally labeled
subsets that covers the entire collection:
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Definition 4 (Bag of clusterings)
Given a set | of functions. A bag of clusterings
is a function:

phlz), ifzeS;
pi(r) = { ¢@i;(x), ifxes]
p“:"fl{:c)' if:c E Sl{ﬂl

where each ¢’; is an extension of a ¢, € | and
{S’...., S’} is a partitioning of S.

Since each ¢ is an extension of an input
clustering ¢, ona subset S the label information
is preserved. Now, we can define the quality for
the output, that is, the objective function for our
bag of clusterings approach to local alternative
clustering ensembles.

Definition 5 (Quality of an Output Function)
The quality of an individual output function is
measured as:

g (Liwi;8) = Z !l’%a?}i sim(x,z") with j = hi(x)

TES

where sim is a similarity function sim: X x X -
[0,1] and h, assigns each example to the corre-
sponding functioninthe bag of clusters, thatis, h .
S>{L...m}withh(X)=j<x e S The quality
of a set of output functions now becomes:

Besidesthis quality function, we wantto cover
the set S with a bag of clusterings that contains
as few clusterings as possible.

The Algorithm
Inthe following, we present a greedy approach to

optimizing the bags of clusterings problem. The
main task is to cover S by a bag of clusterings
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¢, The basic idea of this approach is to employ
a sequential covering strategy. In a first step, we
search for a function ¢, € I that best fits the set
of query objects S. For all objects not sufficiently
covered by ¢, we search for another function in
I that fits the remaining objects. This process
continues until either all objects are sufficiently
covered, amaximal number of stepsisreached, or
there are no input functions left that could cover
the remaining objects. All objects that could not
be covered are assigned to the input function ¢,
containing the object which is closest to the one to
be covered. Alternative clusterings are produced
by performing this procedure several times, such
that each input function is used at most once.

Before we describe this algorithm in a more
formal way, we discuss its function for our media
collection example. A user might have a set S of
songswhich should be structured. Given thataset
| of possible structuresalready exist, thealgorithm
now tries to find an optimal structure from those
which fits a subset of S. The songs of S which are
covered by the selected structure are removed
from the query set and the process is started
anew. Songs which cannot be covered by any of
the existing structures are just classified into the
already selected structures. The whole process
is restarted for the complete set S of songs with
the remaining input structures which will lead to
alternative solutions for your media collections.
The user can then select the final solution which
best suits her needs.

We now have to formalize the notion of a
function sufficiently covering an object and a
function fitting a set of objects such that the
quality function is optimized. When is an object
sufficiently covered by an input function so that it
can be removed from the query set S? We define
a threshold based criterion for this purpose:

Definition 6
A function ¢ sufficiently covers an object X € S
(writtenas X Cn o), if,

XCag:emax, e, sim(x,x’) > a.

The set Z of items is delivered by ¢. The
threshold a allows the balancing of the quality of
the resulting clustering and the number of input
clusters. A small value of a allows a single input
function to cover many objects in S. This, on
average, reduces the number of input functions
needed to cover the whole query set. However,
it may also reduce the quality of the result, as
the algorithm covers many objects in a greedy
manner, which could be covered better using an
additional input function.

Turning it the other way around, when do we
consider an input function to fit the objects in S
well? First, it must contain at least one similar ob-
jectforeachobjectinS. Thisisessentially what is
stated inthe quality function g*. Second, it should
cover as few additional objects as possible. This
condition follows fromthe locality demand. Using
only the first condition, the algorithm would not
distinguish between input functionswhich spana
large part of the data space and those which only
spanasmall local part. This distinction, however,
is essential for treating local patterns in the data
appropriately. Thesituationweare facingissimilar
tothatininformationretrieval. The target concept
S—the ideal response—is approximated by ¢
delivering a set of objects—the retrieval result.
If all members of the target concept are covered,
the retrieval result has the highest recall. If all
objects in the retrieval result are members of S,
it has the highest precision. We want to apply
precision and recall to characterize how well ¢
covers S. Let Z¢, be the set of objects delivered
by ¢,. We can define

and
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Please note that using a similarity function
which maps identical objects to 1 (and 0 other-
wise) leads to the usual definition of precision
and recall. The fit between an input function and
a set of objects now becomes:

Recall directly optimizes the quality function
g*, and precision ensures that the result captures
local structures adequately. The fitness q f*(Z¢,
S) balances the two criteria as it is well known
from the f-measure.

Deciding whether o fits S or whether an object
X € S is sufficiently covered requires computing
the similarity between an object and a cluster. If
the cluster is represented by all of its objects (Zo,
=S, as used in single-link agglomerative cluster-
ing), thisimportant step becomes inefficient. Ifthe
cluster is represented by exactly one point (|Z¢ | =
1, for example, a centroid in k-means clustering,
the similarity calculation is very efficient, but

sets of objects with irregular shape, for instance,
cannot be captured adequately. Hence, we adopt
the representation by “well scattered points” Zo,
as representation of ¢, (Guha, Rastogi, & Shim,
1998), where 1 < | Zg, | < |S|. These points are
selected by stratified sampling according to G.
Please note that this approach will not ensure that
the selected points are prototypical in any sense.
In our media collection setting, just a random
sample from the clusters are drawn—a set of
songs describing the clusters.

We can now dare to compute the fitness q . * of
all Zo, € | with respect to a query set S in order
to select the best ¢, for our bag of clusterings. The
whole algorithm works as depicted in Figure 1.
We start with the initial set of input functions I
and the set S of objects to be clustered. In a first
step, we select an input function that maximizes
d *(Z¢, S). ¢, is then removed from the set of
input functions leading to a set I’. For all objects
S’ that are not sufficiently covered by o, we
again select a function from I’ with maximal fit
to S’. This process is iterated until all objects are

Figure 1. The sequential covering algorithm finds bags of clusterings in a greedy manner. max,, denotes
the maximum number of alternatives in the output, and max,, . denotes the maximum number of steps
that are performed during sequential covering. The function bag constructs a bag of clusterings by as-
signing each object x € S to the function ¢, € B that contains the object most similar to x.

o=10

Pk

while (|O| < maz,;) do
.=
B=9
step=10

— - = ']

by = argmax g (Zp ')
I'=I'\{¢:}
B=BU{p}
S =8'\{z € 8rCa pi}
step = step + 1

end while

O =0U{bag(B,S)}

end while

while ((S' # 0) A (I' # D) A (step < masyeps)) do

176



Handling Local Patterns in Collaborative Structuring

sufficiently covered, a maximal number of steps
is reached, or no input functions left that could
cover the remaining objects. All input functions
selected in this process are combined to a bag of
clusters, as described above. Each object x € S
is assigned to the input function containing the
object most similar to x. Then, all input functions
are extended accordingly (cf. Definition 3). We
start this process anew with the complete set S
and the reduced set I’ of input functions until the
maximal number of alternatives is reached.
Regarding computation complexity, the
approach works linear in the number of input
structures | and query items (e.g., songs) S. As
each function is represented by a fixed number
of representative points, the number of similarity
calculations performed by the algorithm is linear
in the number of query objects and in the number
of input functions, thus O([I| [S| |Z¢,). The same
holds for the memory requirements. Ifthe number
of representation objects grows, the runtime is
quadratic in the query set S for the worst case.

Incremental Clustering

The aim of incremental clustering is to enrich
an existing cluster structure with new objects.
The cluster quality should be optimized without
altering the given clustering more than necessary.
This can easily be achieved in our approach. In
the first step of the inner loop of the algorithm
described above, we always select the original
clustering created by the user. The algorithm
then proceeds as usual, exploiting all available
clusterings as input functions in order to cover
the objects which are not covered by the original
structure.

Hierarchical Matching

A severe limitation of the algorithm described
so far is that it can only combine complete input
clusterings. In many situations, a combination
of partial clusterings or even individual clusters

would yield a much better result. This is espe-
cially true if local patterns are to be preserved,
being captured by maximally specific concepts.
Moreover, the algorithm does not yet handle hier-
archies. Our motivation for this research was the
structuring of media collections. Flat structures
are not sufficient with respect to this goal. For
example, music collections might be divided into
genres and subgenres. We cannot use a standard
hierarchical clustering algorithm, since we still
want to solve the new task of local alternative
clusterensembles. Inthe following, we extend our
approach tothe combination of partial hierarchical
functions. A hierarchical function maps objects
to a hierarchy of groups.

Definition 7 (Group Hierarchy)

The set G, of groups associated with a function
o, builds a group hierarchy if there is a relation
<such that (9<g’) : = (VX € S: 0 € p(X) = ¢
€ ¢, (X)) and (G, <) is a tree. The function ¢, is
then called a hierarchical function.

It should be possible to match functions that
correspond to only a partial group hierarchy. We
formalize this notion by defining a hierarchy on
functions, which extends the set of input func-
tions such that it contains all partial functions,
as well.

Definition 8 (Function Hierarchy)
Two hierarchical functions ¢, and ¢, are in direct
subfunction relation ¢, < ®p iff G, c Gj, VX e
Siox)=¢x) NG,and =3 ¢: GG\ <G,
Figure 2 depicts both notions.

Let the set I* be the set of all functions which
can be achieved following the direct subfunction
relation starting from 1, thus:

where < * is the transitive hull of <. While it
would be possible to apply the same algorithm
as above to the extended set of input functions
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Figure 2. The function ¢, is a subfunction of function ¢, i.e. p, < ¢,. The groups g, and g, are subgroups
of g,, and the groups g,, 9,, 9,, and g, are sub groups of g,.

I*, this would be rather inefficient, because the
size of I* can be considerably larger than the
one of the original set of input functions I. We
therefore propose an algorithmwhich exploits the
function hierarchy and avoids multiple similarity
computations. Each function ¢, € I* is again as-
sociated with a set of representative objects Zo,.
We additionally assume the standard taxonomy
semantics:

Now, the precision can be calculated recur-
sively in the following way:

178

where Zo* =Z(pi\U(pj< ¢ Zg,.For recall,asimilar
function can be derived. Note that neither the
number of similarity calculations is greater than
in the base version of the algorithm nor are the
memory requirements increased.

Moreover, the bottom-up procedure alsoallows
for pruning. We can optimistically estimate the
best precision and recall that can be achieved in
function hierarchy using all representative objects
Z, for which the precision is already known. The
following holds:

withZ < Zg,. Anoptimistic estimate for the recall
is one. If the optimistic f-measure estimate of the
hierarchy’s root node is worse than the current
best score, this hierarchy does not need to be
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processed further. This is due to the optimistic
score increasing with |Z¢, and [Z¢, | > |Zg)| for
all subfunctions ¢, <¢,. No subfunction of the
root can be better than the current best score, if
the score of the root is equal or worse than the
current best score.

This conversionto hierarchical cluster models
concludes our algorithm for Local Alternative
Cluster Ensembles (LACE).

A DISTRIBUTED ALGORITHM

The LACE algorithmiswell suited for distributed
scenarios. We assume a set of nodes connected
over an arbitrary communication network. Each
node has one or several functions ¢, together with
the sets S,. If a node A has a set of objects S to
be clustered, it queries the other nodes and these
respond with a set of functions. The answers of
the other nodes form the input functions I. The
node A computes the output O for S. The node B
being queried uses its own functions ¢, as input
and determines the best fitting ¢, for S and sends
this output back to node A. The algorithm is the
same for each node and each node executes the
algorithm independently of the other nodes.

We introduce three optimizations to this
distributed approach. First, given a function
hierarchy, each node returns exactly one opti-
mal function in the hierarchy. This reduces the
communication cost, without affecting the result,
because all but the optimal function would not be
chosen anyway (see pruning in the last section).

Second, input functions returned by other
nodes can be represented more efficiently by
only containing the objects in the query set, that
are sufficiently covered by the corresponding
function. Together with the f-measure value g
- for the function, this information is sufficient
for the querying node in order to perform the
algorithm.

Inmany applicationareas, we canapply athird
optimization. If objects are uniquely identified,

such as audio files, films, Web resources, and so
forth, they can be represented by these IDs only.
In this case, the similarity between two objects
is 1, if they have the same ID and O otherwise. A
distributed version of our algorithm only needs to
query other nodes using aset of IDs. This reduces
the communication costand makes matching even
more efficient. Furthermore, such queries are al-
ready very well supported by current technology,
such as p2p search engines.

In a distributed scenario, network latency
and communication cost must be taken into ac-
count. If objects are represented by 1Ds, both are
restricted to an additional effort of O(|S| + |I*]).
Thus, the algorithm is still linear in the number
of query objects.

Distributed Media Management

Together with a group of students, we have
developed Nemoz as a framework for studying
collaborative music organization. Nemozis made
for experimenting with intelligent functionality
of media organization systems. Of course, the
basic functions of media systems are imple-
mented: download and import of songs, playing
music, retrieving music from a collection based
on given metadata, and creating play lists. The
data model covers not only the standard metadata
(performer, composer, album, year, duration of the
song, genre, and comment) and a reference to the
location of the song, but also features extracted
from the raw data.

Communication among (W)LAN nodes via
TCP and UDP is supported by a network ser-
vice.

Intelligent functions are based on taxonomy
data structures. A collection can be organized
using several taxonomies in parallel. At each
taxonomy node, an extended function can be
stored, which decides whether anew song belongs
to this node or not. This classifier is the learned
model, wherethe learning task hasbeen performed
by one of the methods supplied by the machine
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learning environment YALE (Mierswa, Wurst,
Klinkenberg, Scholz, & Euler, 2006; available at
http://yale.sf.net). Based on this data structure,
Nemoz already implements several intelligent
functions:

e Taxonomies can be defined extensionally
by the user.

e Taxonomy nodes can be intensionally de-
fined by a (learned) model.

. New music can be classified into the tax-
onomy.

. Users can search for similar taxonomies in
the network.

*  Users can search to music similar to a se-
lected song.

e A taxonomy can be enhanced through the
taxonomies of other users automatically
(LACE).

Confronted with music data, machine learning
encounters a new challenge of scalability. Music
databases store millions of records, and each item
contains up to several million values. In addition,
the shape of the curve defined by these values
does not express the crucial aspect of similarity
measures for musical objects. The solution to over-
come these issues is to extract features from the
audio signal which leads to a strong compression
of the data set at hand. Feature extraction from
audio data has become a hot topic recently. Many
manually designed audio features extracted from
polyphonic music have been proposed for differ-
ent applications in music information retrieval
(e.g., Moerchen, Ultsch, Thies, & Loehken, 2005;
Pampalk, Dixon, & Widmer, 2003; Tzanetakis &
Cook, 2002).

Regarding local patternsisalso crucial for the
process of feature extraction, since a feature set
which is valid for the overall collection is hard to
find (Pohle, Pampalk, & Widmer 2005). It is not
very likely that a feature set delivering excellent
performance on the separation of classical and
popular music works well also for the separation
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of music structured according to occasions. This
problem already arises for high-level structures
like musical genres and is even aggregated due to
the locality induced by personal structures.

If there would exist one complete set of fea-
tures, from which each learning task selects its
proper part, the feature problem could be reduced
to feature selection. However, thereisnotractable
feature set to select from. The number of possible
feature extractions is so large—virtually infi-
nite—that it would be intractable to enumerate
it. Mierswa and Morik (2005) proposed a unified
framework for extraction methods which allows
for automatically learning the optimal feature
extractors for a given learning task. The result
is a (nested) sequence of data transformations
which calculates the optimal feature set. Learn-
ing feature extraction delivers good results, but
training the feature extraction is time-consuming
and demands a sufficient set of examples.

Beside these problems, emotional or sociocul-
tural aspects of music can hardly be expressed by
feature values at all. Clustering schemes merely
using audio features as a basis of a similarity
measure will fail for this reason. Since Nemoz
exploits the hand-made structures provided by
other users, these aspects canalso be covered. Fur-
thermore, the similarity measures can be improved
by transferring successful features together with
the structuring (Mierswa & Wurst, 2005).

In Nemoz, each user may create arbitrary,
personal classification schemes to organize music.
For instance, some users structure their collec-
tion according to mood and situations, others
according to genres, and so forth. Some of these
structures may overlap; for example, the blues
genre may cover songs which are also covered by
a personal concept “melancholic” of a structure
describing moods. Nemoz supports the users in
structuring their media objects while not forcing
themto use the same set of concepts orannotations.
If an ad hoc network has been established, peers
support each other in structuring. A user who
needs to structure a set of media objects S (e.g.,
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refining an over-full node in a taxonomy) invokes
the distributed algorithm described above. Then,
the system offers a set of alternative clusterings,
eachcombined from peers’ response and covering
S (cf. Figure 3).

By recommending tags and structures to
other users, we establish emerging views on the
underlying space of objects. An important point
here is that the LACE approach naturally leads to
asocialfiltering of such views. If someone creates
a (partial) taxonomy found useful by many other

users, it is often copied. If several taxonomies
equally fit a query, a well-distributed taxonomy
is recommended with higher probability. This
pushes high quality taxonomies and allows to
filter random or non-sense taxonomies. While the
collaborative approach offers many opportunities,
audio features can still be very helpful. The most
important is that they allow replacing of exact
matches by similar matches. Thisisessential when
dealing with sparse data: that is, the number of
objects in the taxonomies is rather small.

Figure 3. Other users have sent taxonomies ¢, and ¢, which best fit the query S. LACE sorts objects
of S into the selected structure ¢,. The remaining objects S’ form a second query set leading to a new
response set. The second structure ¢’ is added together with ¢ _under a new merge node.
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EXPERIMENTS

The evaluation of LACE is performed on a real-
world benchmark data set gathered in a student
project on distributed audio classification based
on peer-to-peer networks (Nemoz). The data set
contains 39 taxonomies (functions ,,..., ¢,;) and
overall 1,886 songs (Homburg, Mierswa, Moeoller,
Morik, & Wurst, 2005). All experiments described
in this chapter were performed with the machine
learning environment YALE. The evaluation of
LACE is performed by subsequently leaving out
one function ¢, of the data set. Then we apply
clustering to reconstruct this taxonomy. Hence,
we can evaluate cluster models in away similar to
classification learning. We have a “ground truth”
available. A user taxonomy ¢, is compared with a
taxonomy ¢, created automatically by clustering
as follows. We construct the usual tree distance
matrices M and M’ for the two taxonomies (cf.
Definition 7) and compare these matrices on all
pairs (x,, xj) of objects in the set S. Each entry Mij
of the matrix M is computed as:

for M’ the function ¢, is used. For instance, the
objects x, and x, from Figure 2 are both members
of g, and g, and have a tree distance of 2. For
the absolute distance criterion, the differences
between the entries of M and M’ are summed-up
and divided by the total number of entries. As a
second criterion, we use the correlation between
these tree distances.

Finally, for each cluster in the left-out taxono-
my, we search for the best corresponding cluster
in the learned taxonomy according to f-measure.
The average performance over all user-given
clusters is then used as the FScore evaluation
measure (Steinbach, Karypis, & Kumar, 2000).
Note that although we report the FScore, it is not
normalized with respect to the number of cre-
ated clusters. Finer grained structures therefore
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always lead to equal or better performance than
their coarse grained variants. This, however, does
often not reflect the similarity to the user-given
taxonomy.

We compare our approach with single-link
agglomerative clustering using cosine measure,
top-down divisive clustering based on recursively
applying kernel k-means (Dhillon Guan & Kulis,
2004) (TD), with random clustering. Localized
Alternative Cluster Ensembles were applied using
cosine similarity asinnersimilarity measure. The
parameters for all algorithms were chosen glob-
ally optimal. This is possible as our evaluation
procedure is basically a variant of leave-one-out
cross validation. Thus, we can start the evalua-
tion several times on different parameter sets. It
turns out that small values for a perform best.
In our experiments, we used o = 0.1. For B, the
optimal value was 1.

TD and random clustering were started five
times with different random initializations. We
use a set of 20 features which were shown to work
well in a wide range of applications (Moerchen,
Ultsch, Thies, Loehken, Noecker, & Stamm,
2004) as underlying audio features. Since, here,
we want to test the new clustering method, we do
not investigate different feature sets. Please refer
to Wurst, Morik, and Mierswa (2006) for further
details on the experiments.

Table 1 shows the results. As can be seen,
the local alternative cluster ensembles approach
LACE performs best. Note however, that ab-
solute distance does not lead to results that are
representative for agglomerative clustering as
such, because it usually builds-up quite deep hi-
erarchies, while the user constructed hierarchies
were rather shallow.

A second experiment inspects the influence
of the representation on the accuracy. The results
of LACE with different numbers of instances at
anode are shown in Table 2. Representing func-
tions by all points performs best. Using a single
centroid for representing asubtree leadsto inferior
results, as we already expected. Well-scattered
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points perform well. We obtain good results even
for a very small number of representative objects
at each node of the cluster model.

We also evaluated how the number of output
functions influences the quality of the result. The
result should be clearly inferior with a decreasing
number. Table 3 shows the results. On one hand,
we observe that even with just one model, that is
|O| = 1, LACE still outperforms the other meth-
ods with respect to tree distance. On the other
hand, the results are, indeed, getting worse with
fewer alternatives. Providing alternative solutions
seems to be essential for improving the quality

of results at least in heterogeneous settings as the
one discussed here.

CONCLUSION

Services formediacollections are demanded, both
for the client side and the server side. In addition
to basic services (e.g., player, viewer, etc.) struc-
turing tools are requested. Clustering is a basic
technique for this problem. A correct or optimal
clustering of objects depends strongly on inten-
tions and preferences of the user. An important

Table 1. The results for different evaluation measures. It can clearly be seen that LACE performs best
(Correlation and FScore should be maximized; the distance should be minimized).

Method Correlation  Absolute distance FScore
LACE 0.44 0.68 0.63
TD audio 0.19 2.2 0.51
TD ensemble 0.23 2.5 0.55
single-link audio 0.11 9.7 0.52
single-link ensemble 0.17 9.9 0.60
random 0.09 1.8 0.5

Table 2. The influence of the concept representation (i.e., the cardinality of |Z|)

Representation Correlation Absolute distance FScore
all points 0.44 0.68 0.63
1Z| = 10 0.44 0.68 0.63
|Z| =5 0.41 0.69 0.63
|Z]| =3 0.40 0.69 0.62
centroid 0.19 1.1 0.42
Table 3. The influence of the response set cardinality |O)|
Alternatives Correlation Absolute distance FScore
5 0.44 0.68 0.63
3 0.38 0.73 0.60
1 0.34 0.85 0.56
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challenge for new clustering techniques is the
question of how to integrate clusterings provided
by other users in a way that allows for a certain
personalization which reflects the locality of the
data and preserves user created clusterings.

We introduced a generic notion of machine
learning which can be constrained in order to
define well-known learning tasks. We argued
that none of these tasks can be used to fulfill the
conditions of collaborative structuring. Follow-
ing this generic notion, we were able to derive
several learning tasks like alternative cluster
ensembles which are the departing point for
solving the collaborative structuring problem.
In contrast to other cluster ensemble methods or
distributed clustering, aglobal model (consensus)
is not the aim.

Investigating the practical needs carefully
has led to the definition of a new learning task,
namely learning localized alternative cluster en-
sembles, where a set of given clustering is taken
into account and a set of proposed clusterings
is delivered. We have formalized the learning
task and developed a greedy approach to solve
it. Enhancements for hierarchical structures ac-
complish the LACE algorithm. It is well suited
for distributed settings.

The performance of algorithms solving the
localized alternative cluster ensembles task can
be measured by a leave-one-structuring-out ap-
proach. The proposed algorithm outperforms
standard clustering schemes on a real-world data
set in the domain of music collections. We also
investigated the influence of the number of rep-
resentative points and the influence of response
set cardinality which are important in distributed
scenarios.

In our opinion, applications in the Web 2.0
context offer many interesting opportunities for
machine learning. Corresponding methods must
be user-centricand inherently robustand scalable.
LACE is the first and very promising approach to
overcome some of the problems associated with
this new kind of machine learning application.
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ABSTRACT

Analysing and mining image data to derive potentially useful information is a very challenging task.
Image mining concerns the extraction of implicit knowledge, image data relationships, associations
between image data and other data or patterns not explicitly stored in the images. Another crucial task
is to organise the large image volumes to extract relevant information. In fact, decision support systems
are evolving to store and analyse these complex data. This chapter presents a survey of the relevant
research related to image data processing. We present data warehouse advances that organise large
volumes of data linked with images, and then we focus on two techniques largely used in image mining.
We present clustering methods applied to image analysis, and we introduce the new research direction
concerning pattern mining from large collections of images. While considerable advances have been
made in image clustering, there is little research dealing with image frequent pattern mining. We will
try to understand why.

INTRODUCTION ent formats such as images, audio formats, video

formats, texts, graphics, or XML documents. For
In recent years, most organisations have been example, a lot of image data have been produced
dealing with multimedia data integrating differ- for various professional or domestic domains
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such as weather forecasting, surveillance flights,
satellites, bio-informatics, biomedical imaging,
marketing, tourism, press, Web, and so forth.
Such data have been at the disposal of all audi-
ences. Faced with the amount of information
produced in numerous domains, there has been
a growing demand for tools allowing people to
efficiently manage, organise, and retrieve multi-
media data.

In this chapter, we focus our attention on the
media image. Images may be characterised in
terms of three aspects—the volume of the data,
the pixel matrix, and the high dimensionality of
the data. The first aspect is linked to the huge
volume of these data (from a few hundred bytes to
several gigabytes for the remote sensing images);
the second one reflects the intrinsic nature of the
pixel matrix. A pixel or a pixel sequence itself does
notmeananything: imagesdo notdirectly contain
any information. Yet the presence of one or more
pixel sequences often points to the presence of
relevantinformation. In fact, image interpretation
and exploitation need extra relevant information
including semantic concepts such asannotations or
ontologies, cluster characterisation, and so forth.
Today, image and, more generally, multimedia
retrieval systems have reached their limits owing
to this semantic information absence.

Moreover, in the image retrieval context, a
logical indexation process is performed to associ-
ate a set of metadata (textual and visual features)
with images. These image features are stored in
numeric vectors. Their high dimensionality, the
third image aspect, constitutes a well known
problem. All these different points are, in fact,
related to image complexity.

Classical data mining techniques are largely
used toanalyse alphanumerical data. However, in
an image context, databases are very large since
they contain strongly heterogeneous data, often
notstructured and possibly coming from different
sources within different theoretical or applicative
domains (pixel values, image descriptors, annota-
tions, trainings, expertor interpreted knowledge,
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etc.). Besides, when objects are described by a
large set of features, many of themare correlated,
while others are noisy or irrelevant. Furthermore,
analysing and mining these multimedia data to
derive potentially useful information is not easy.
Forexample, image mining involvesthe extraction
of implicit knowledge, image data relationships,
associations between image data, and other data
or patterns not explicitly stored in the images.

To circumvent this complexity, we can mul-
tiply the number of descriptors. The problem is
now to define multidimensional indexes so that
searching the nearest neighbours becomes more
efficient using the index rather than a sequential
search. Intheimage case, the highdimensionality
due to complex descriptors is still an unsolved
research problem.

Moreover, another problem is to use external
knowledge that could be represented using on-
tologies or metadata. Taking account of a priori
knowledge, such as annotation and metadata to
build an ontology dedicated to an application,
is also a challenge and implies the definition of
new descriptors that integrate semantics. As an
example, the Web contains many images that are
not exploited using the textual part of the Web
pages. In this case, the combination of visual and
textual information is particularly relevant.

Finally, acrucial task is to organise these large
volumes of “raw” data (image, text, etc.) in order
to extract relevant information. In fact, decision
support systems (DSS) such as data warehous-
ing, data mining, or online analytical processing
(OLAP) are evolving to store and analyse these
complex data. OLAP and data mining can be seen
as two complementary fields. OLAP can easily
deal withstructuring data before their analysisand
with organising structured views. However, this
technique s restricted to asimple data navigation
and exploration. Data warehouse techniques can
help data preprocessing and offer agood structure
for an efficient data mining process.

Consequently, new tools must be developed
to efficiently retrieve relevant information in
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specialised and generalised image databases. Dif-
ferent data mining techniques contributions have
been or may be developed: reducing the retrieval
space inthe multidimensional indexation domain,
learning by relevance feedback and without rel-
evance feedback, and using the synergy between
textual and visual features to better explore
and exploit the image database. For instance, a
usual way to address the problem of retrieval of
relevant information is to perform an automatic
classification of images, that is, to classify im-
ages into different categories so that each one is
composed of images that have asimilar content. A
more recent approach consists in pattern mining
such as rule mining: associations between image
content features and non-image content features,
associations of different image contents with no
spatial relationships, and associations among im-
age contents with spatial relationships.

In this chapter, we present a survey of the
relevantresearch related to image processing. We
presentdatawarehouse solutionsto organise large
volumes of data linked with images, and we focus
on two techniques used in image mining. On one
hand, we present clustering methodsappliedtoim-
age analysis, and on the other hand, we introduce
the new research direction concerning pattern
mining from large collections of images.

Because there is a lack of hybrid data min-
ing methods and methodologies which use the
complementarity of these image or video data in
a collaborative way, and which considers them
from different points of view, we shall sketch
a multistrategic data mining approach able to
handle complex data.

Therestof this chapter is organised as follows.
The second section presents data warehouses,
classification, and pattern mining techniques
related to classical data. The third section pres-
ents some relevant work related to these three
aspects applied to image mining. The fourth
section describes some issues and applications
linked with these approaches. The fifth section
concludes our study.

DATA WAREHOUSE, PATTERN
MINING, AND CLASSIFICATION IN
CLASSICAL DATA PROCESSING

This section presents data warehouses, classifi-
cation, and pattern mining techniques related to
classical data. Datawarehouses techniques can be
seen as a preprocessing stage used to strengthen
data structuring. Data mining techniques, such
as pattern mining (association rules or frequent
pattern search), have been intensively used for
many applications. This technique consists
in generating rules from facts according to a
threshold. Data clustering can be divided into
partition, hierarchical, density-based, and concep-
tual clustering. Some methods are also based on
neuronal methods such as self-organised maps.
In most cases, the choice of a similarity measure
is a crucial point.

Data Warehouses

Data warehousing and OLAP technologies (In-
mon, 2005; Kimball & Ross, 2002) are now con-
sidered well established. They aim, for instance,
to analyse the behaviour of a customer, a product,
or a company, and may help monitoring one or
several activities (commercial or medical pursuits,
patent deposits, etc.). In particular, they help
analyse such activities in the form of numerical
data. A data warehouse is a subject oriented, in-
tegrated, time-variant, and nonvolatile collection
of data that supports managerial decision making
(Inmon, 2005). Data warehousing has been cited
as the highest-priority postmillennium project of
more than half of information technology (IT)
executives. A large number of data warehousing
methodologies and tools are available to support
the growing market. However, with so many
methodologies to choose from, a major concern
for many firms is which one to employ in a given
data warehousing project.

Online transactional processing (OLTP) sys-
tems are useful for addressing the operational

189



data needs of a firm. However, they are not well
suited for supporting decision-support queries
or business questions that managers typically
need to answer. Such queries are analytical and
can be answered using roll up aggregation, drill
down, and slicing/dicing of data, which are best
supported by OLAP systems. Data warehouses
support OLAP applications by storing and main-
taining data in multidimensional format (Chaud-
huri & Dayal, 1997; Kimball & Ross, 2002). Data
in an OLAP warehouse are extracted and loaded
from multiple OLTP datasources (including DB2,
Oracle, IMS databases, and flat files) using Extract,
Transform, and Load (ETL) tools. The warehouse
is located in a presentation server. It can span
enterprise-wide data needs or can be a collection
of “conforming” data marts. Data marts (subsets
of data warehouses) are conformed by following
a standard set of attribute declarations called a
data warehouse bus (Kimball & Ross, 2002).
The data warehouse uses a metadata repository
to integrate all of its components. The metadata
store the definitions of the source data, the data
models for target databases, and the transforma-
tionrulesthat convertsource dataintotarget data.
The concepts of time variance and nonvolatility
are essential for a data warehouse (Inmon, 2005).
Inmon emphasised the importance of cross-func-
tional slices of data drawn from multiple sources
to support a diversity of needs (Inmon, 2005); the
foundation of his subject-oriented design was an
enterprise data model. Kimball and Ross (2002)
introduced the notion of dimensional modeling,
which addresses the gap between relational da-
tabases and data warehouses.

In classical data warehouses, data volumetry
now constitutes the main problem. To tackle the
performance problem, several solutions, such as
materialised views and index selection or frag-
mentation, are proposed in the literature. Star
schemas are probably the simplest and most used
data warehouse models. A star schema is charac-
terised by one or more very large fact tables that
containthe primary information in the data ware-
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house, and a number of much smaller dimension
tables (or lookup tables), each of which contains
information about the entries for a particular
attribute in the fact table (Chaudhuri & Dayal,
1997; Kimball & Ross, 2002). In a warehousing
process, multidimensional modeling allows the
creation of appropriated analysis contexts.

The datawarehousingand OLAP technologies
are now well-suited to be applied in management
applications, especially when data are numerical.
However, in many domain applications, such as
medical or geographical ones, data coming from
heterogeneous sources may be represented in dif-
ferent formats (text, images, video, etc.) and/or
diversely structured. They may also be differently
expressed and periodically changed. These data
are called complex data. This complexity may
concernthe syntactic or the semantic aspect of data
and, sometimes, it also concerns data processing.
In this chapter, we have chosen to address the
particular problem of image data, which represent
a typical example of complex data. In the litera-
ture, there are alot of image database applications
which are OLTP-oriented databases; that is, their
vocation is image data management and not im-
age data analysis. However, a few image data
warehouses exist. They are all closely linked to
specificapplications, such as medical applications
(e.9., Wong, Hoo, Knowlton, Laxer, Cao, Hawkins,
etal., 2002). The proposed architectures of image
data warehouses may be applied only to a given
field. They cannot be generalised to other fields.
No general methodological approach suitable for
image data warehouses has been defined. To do
S0, we extend the images with the complex data.
Henceforth, we will consider the complex data
in a general way.

Frequent Pattern Mining

Frequent patternsresulting fromminingare repre-
sented inaspecific form called associationrule. A
typical example of association rule mining ismar-
ket basketanalysis. Toanalyse customer behaviour
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(i.e., to obtain information about customers and
why they make purchases), Agrawal, Imielinski,
and Swami (1993) introduced the association
rule concept. Faced with the very huge amount
of sales data, the authors developed an algorithm
generating all significant rules between items in
the database (i.e., an itemset is the set of items in
transactions or rules). Such computed rules may
be useful for taking decisions and are very easy
to interpret. For example, placing products often
purchased together at opposite ends of the store
may entice customers buying such products to
pick up other products along the way. Thus, the
discovered association rules may allow stores to
lay out products on the shelves more efficiently.
An association rule example is “if a customer
buys plants, then he also buys compost”. Since
1993, a lot of studies concerning extensions (the
method may be applied inany domainwhere object
clustering is judicious) and improvements (more
efficient algorithms) of association rule mining
problems have been proposed; more details may
be found in surveys (Goethals, 2005). The asso-
ciation rule search in a database is probably the
problem which most strongly contributed to the
emergence of data mining.

Today, association rule mining is one of the
most popular problems when we look for interest-
ing associations or correlations from a large data
itemsset. More precisely, associationrule mining
is based on the following concepts. A transaction
corresponds to a transaction identifier associated
with a finite set of items called itemset. While
a transaction database D is a finite multiset of
transactions, an association rule isan implication
of the form X = Y where the body or anteced-
ent X and the head or consequent Y are itemsets
having no item in common. Two measures of
rules interestingness are defined: rule support
and rule confidence. The support of an associa-
tion rule X = Y in D is the support of X U Y in
D where the support of an itemset X in D is the
number of transactions in the cover of X in D
and the cover of an itemset X in D corresponds

to the transaction identifier set in D that supports
X. The confidence of an association rule X = Y
in D corresponds to the conditional probability
of having Y contained in a transaction, given
that X is already contained in this transaction.
More intuitively, the rule support represents the
usefulness of mined rules while the rule confi-
dence corresponds to their certainty. In fact, an
association rule is considered interesting if and
only if it is both a frequent association rule (i.e.,
a rule whose support exceeds a given minimal
support threshold) and a confident association
rule (i.e., arule whose confidence exceeds a given
minimal confidence threshold). In the same way,
a frequent itemset is an itemset whose support
exceeds a given minimal support threshold. Thus
givenatransactionset, the general frequent pattern
mining problem consists ingenerating all associa-
tion rules whose support and confidence exceed
the user or expert-specified minimum threshold
values (rf. Agrawal et al., 1993, for further details
on the problem description).

In Han and Kamber (2001), association rules
are classified into several categories according
to different criteria. The authors distinguish
association rules according to either the type of
values they handle (such as Boolean values and
guantitative values), the dimension of dataimplied
intherules (single/dimensional rules), the level of
abstraction ofthe rules (single/multilevel associa-
tionrules), or the various extensions to association
mining (maximal frequent pattern, frequent closed
itemsets). Methods for mining each one of these
types of association rules is studied in Han and
Kamber (2001, ch. 6).

The problem of association rule mining from
large databases is generally decomposed into two
steps: the frequent itemset discovering process
and the frequent and confident association rule
generating process from the previous discovered
frequent itemsets. The frequent itemset discover-
ing processistime-consumingas the search space
has an exponential size in terms of the number
of items occurring in the transaction database.
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The first algorithm called AIS (Agrawal et al.,
1993) proposed to solve the frequent set mining
problem was improved and gave rise to the well-
known Apriori algorithm published independently
by Agrawal and Srikant (1994) and Mannila,
Toivonen, and Verlamo (1994). The improve-
ment is based on the set support monotonicity
property that states “every subset of a frequent
itemset is itself a frequent itemset”. The Apriori
algorithmisbased onan iterative approach known
as level-wise search, where k-itemsets (i.e., an
itemset containing k items) are used to explore
(k+1)-itemsets. A lot of studies on association
rule mining techniques in large databases have
beenproposed. These studies coverabroad active
spectrum of topics concerning fast algorithms
based onthe level-wise Apriorisearch (Agrawal &
Srikant, 1994; Klemettinen, Mannila, Ronkainen,
Toivonen, & Verkamo, 1994) and its variations
such as table hashing (Park, Chen, & Yu, 1995),
transaction reduction (Agrawal & Srikant, 1994;
Han & Fu, 1995; Park et al., 1995), partitioning
(Savasere, Omiecinski, & Navathe, 1995), sam-
pling (Toivonen, 1996) with incremental updat-
ing and parallel algorithms (Cheung, Han, Ng,
& Wong, 1996; Han, Karypis, & Kumar, 1997;
Park, Chen, & Yu, 1995a) while passing by min-
ing of generalised and multilevel rules (Han &
Fu, 1995; Srikant & Agrawal, 1995). We can also
mention mining long patterns and dense data sets
(Bayardo, 1998; Bayardo, Agrawal, & Gunopulos,
1999), mining correlations and causal structures
(Brin, Motwani, & Silverstein, 1997; Silverstein,
Brin, Motwani, & Ullman, 1998), mining ratio
rules (Korn, Labrinidis, Kotidis, & Faloutsos,
1998), query-based constraint mining of asso-
ciations (Ng, Lakshmanan, Han, & Pang, 1998;
Srikant, Vu, & Agrawal, 1997), mining cyclicand
calendric associationrules (Ozden, Ramaswamy,
& Silberschatz, 1998; Ramaswamy, Mahajan, &
Silberschatz, 1998), mining partial periodicities
(Han, Dong, & Yin, 1999), rule mining query
languages (Meo, Psaila, & Ceri, 1996), mining
of quantitative and multidimensional rules (Fu-
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kuda, Morimoto, Morishita, & Tokuyama, 1996;
Kamber, Han, & Chiang, 1997; Lent, Swami, &
Widom, 1997; Miller & Yang, 1997; Srikant &
Agrawal, 1996), and mining of frequently occur-
ring patterns related to time or other sequences
(Agrawal & Srikant, 1995).

Data Clustering

The goal of clustering is to identify subsets of
data called clusters (or groups) where a cluster
usually corresponds to objects that are more
similar to each other than they are to objects from
other clusters.

There are different ways to group objects. In
hard clustering, each object belongs to one and
only cluster: the clusters are disjoints. In a soft
approach, clusters can be overlapped: an object
can belong to zero, one, or several clusters. The
probabilistic approach assumes that each object
belongs to clusters depending on a probability.
Finally, in a fuzzy clustering approach, each ob-
ject belongs to all the clusters with an assigned
membership for each cluster.

Although a lot of clustering algorithms have
been developed with a lot of application fields, no
one can be used to solve all the problems (Klein-
berg, 2002). Comprehensive surveys of clustering
principlesandtechniques can be found in Berkhin
(2002), Jain, Murty, and Flynn (1999), and Xu and
Wunsch (2005). Traditionally, clustering methods
aredivided into hierarchical and partitioning tech-
niques. Whereas partitioning algorithms produce
aflatstructure, hierarchical clustering algorithms
organise data into a hierarchical structure such as
a tree of clusters or a dendrogram: a cluster node
contains child-clusters which are a partitioning
of this cluster.

Hierarchical clustering methods, such as
CURE (Guha, Rastogi, & Shim, 1998), ROCK
(Guha, Rastogi, & Shim, 2000), Chameleon
(Karypis, Han, & Kumar, 1999), and BIRCH
(zhang, 1997), are categorised into agglomerative
and divisive approaches. Starting with the one
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object cluster, agglomerative methods iteratively
merge clusters, depending on their similarity.
Divisive methods start with one cluster contain-
ing all objects to be clarified and recursively split
clusters until a criterion (number of clusters, size
of clusters, etc.) is achieved. To merge or split
subsets of objects, the distance between clusters
(linkage metric) has to be defined. In fact, most
hierarchical clustering algorithms are variant of a
single link (minimum distance between objects),
a complete link (minimum distance between
objects), or an average link. The type of the link
metric used significantly affects results: a com-
plete-link algorithm produces tightly bound or
compact clusters (Baeza-Yates, 1992) whereas a
simple-link algorithm suffers from the chaining
effect (Nagy, 1968).

While hierarchical algorithms build clusters
iteratively, partitioning algorithms learn clusters
directly. The most popular partitioning algorithms
are partitioning relocation methods. Suchamethod
tries to discover clusters by iteratively relocating
data between subsets. These methods can be cat-
egorised into probabilistic clustering, forexample,
the EM framework (Mitchell, 1998), k-medoid
methods, such as CLARA (Kaufman & Rous-
seew, 1990), and squared-error based methods
like K-means (MacQueen, 1967). Adensity-based
partitioning algorithm such as DBSCAN (Ester,
Kriegel, Dansder, & Xu, 1996) tries to discover
dense connected components which are flexible
in terms of their shape.

Partitioning methods take advantage in ap-
plications involving large data sets for which the
construction of adendrogram is computationally
prohibitive. In most cases, however, the difficult
problem is the choice of the number of output
clusters. Some methods are proposed to resolve
this problem such as ISODATA (Ball & Hall,
1967). In practice, the algorithm is typically run
multiple timeswith differentstarting states (initial
centers of clusters, numbers of clusters), and the
“best” output clustering is kept. More complex

search methods, such as evolutionary algorithms
(Fogel, 1994), can also be used to explore the
solution space better and faster.

Competitive neural networks are often used
to cluster data. Based on data correlation, similar
data are grouped by the network and represented
by a neurone. Data are presented at the input
and are associated with the output neuron; the
weights between the input neurons and the output
neuronsare iteratively changed. Among this type
of algorithm, the most popular algorithm is the
self-organising map (SOM) (Kohonen, 1990).

IMAGE PROCESSING USING DATA
WAREHOUSES, PATTERN MINING,
AND CLASSIFICATION

Different types of information are related to
images: those related to a low-level description
(pixels, resolution, texture, and size), content
information, and lastly, information linked to the
context (domain, etc.). The use of this information
must take into account data processing: relevant
data should be extracted and structured as a pre-
processing stage. Complex data warehousing is a
solution allowing us to describe analysis contexts.
Among all the existing analysis techniques, pat-
terns discovery can outline associations between
images, evolution of geographical areas, and so
forth. Image clustering is used to summarise
and structure data, and can be useful in the case
of image content-based retrieval to reduce the
search space.

Complex Data Warahouses: How
Image Data Can Be Managed in Such
Data Warehouses

In complex data warchouses, new difficulties
appear because of data nature and specificity.
Structuring, modeling, and analysing image data
is a difficult task that requires the use of efficient
techniques and powerful tools, such as data
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mining. complex data produce different kinds
of information that are represented as metadata.
These metadata are essential when warehousing
complex data. Furthermore, domain-specific
knowledge becomes necessary to warehouse
complex data properly, for example, under the
form of ontologies.

Analysing complex data raises, among oth-
ers, the issue of selecting analysis axes. Data
mining may help reach this goal. Furthermore,
OLAP operators are not well suited for non-ad-
ditives complex data measures. In this context,
data mining techniques such as clustering can
be used to develop appropriate OLAP operators
for complex data (Ben Messaoud, Boussaid, &
Loudcher Rabaseda, 2006). Such data mining
techniques allow us to perform exploratory
analyses while exploiting causality relationships
in complex data.

The growing interest concerning the stor-
age and knowledge discovery in complex data
has lead research communities to look for new
architectures and more suitable processing tools.
Indeed, organisations need to deploy data ware-
houses in order to integrate access and analyse
their complex data. For example, a medical file
usually consists of datadrawn fromvarious forms.
A patient’s medical history might be recorded
as plain text; numerous biological exam results
might be differently represented. The medical
file could also include radiographies (images)
or echographies (video sequences). Successive
diagnosis and therapies might be recorded as text
or audio documents, and so on. If one needs to
explore this kind of data, then the warehousing
approach should be adapted to take into account
the specificity of such data.

In opposition to classical solutions, complex
data warehouse architectures may be numerous
and very different from one another. However,
two approaches emerge. The first family of ar-
chitectures is data-driven and based on a clas-
sical, centralised data warehouse where data are
the main focus. XML document warehouses are
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an example of such solutions (Boussaid, Ben
Messaoud, Choquet, & Anthoard, 2006a; Nas-
sis, Rajagopalapillai, Dillon, & Rahayu, 2005;
Pokorny, 2001; Rusu, Rahayu, & Taniar, 2005).
They often exploit XML views, which are XML
documents generated from whole XML docu-
ments and/or parts of XML documents (Baril &
Bellahsene, 2000). A data cube is then a set of
XML views. The second family of architectures
includes solutions based on virtual warehousing,
which are process-driven and where metadata
play a major role. These solutions are based on
mediator-wrapper approaches (Maiz, Boussaid,
& Bentayeb, 2006; Wiederhold, 1995) and exploit
distributed data sources. The schemas of such
sources provide the most important information
that mediators exploitto answer user queries. Data
are collected and modeled in a multidimensional
way (as data cubes, to constitute an OLAP analy-
sis context) on the fly to answer a given decision
support need.

Note that complex data are generally repre-
sented by descriptors that may either be low-level
information (an image size, an audio file duration,
the speed of a video sequence, etc.) or related to
semantics (relationships between objects in a
picture, topic of an audio recording, identifica-
tion of a character in a video sequence, and so
on). Processing the data thus turns out to process
their descriptors. Original data are stored, for
example, as binary large objects (BLOBS), and
can also be exploited to extract information that
couldenrichtheirown characteristics (descriptors
and metadata) (Boussaid, Tanasescu, Bentayeb,
& Darmont, 2006b).

In today’s competitively managed environ-
ment, decision makers must be able to interpret
trends, identify factors, and utilise information
based on clear, timely data presented in a mean-
ingful format. Warehousing complex data, and
particularly image data, is well suited to structur-
ing, storing, accessing, and querying these data.
The capacity to organise the image data in the
data warehouse structure allows us to carry out
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online analytical processing of the warehoused
data. To increase this ability, it is necessary to
enhance the classical OLAP operators with data
mining techniques, such as clustering or pattern
mining, and to elaborate exploratory and predic-
tive analyses (Ben Messaoud et al., 2006).

Pattern Mining

Image mining (Simoff, Djeraba, & Zaiane, 2002;
Zhang, Hsu, & Lee, 2001) isstill arecentresearch
field and is not very well developed yet because
extracting relevant knowledge from image data
still remains a difficult task. Mining association
rules relating to images cannot be considered as
simply taking each image as a transaction and
computing frequent patterns that occur among
different images. Image mining raises some new
issues (Han & Kamber, 2001) such as rule mining
which considers various resolutions, measures,
and rules adjustment to the nature of images as
well as a detailed attention to the spatial relation-
ships within the images.

In Han and Kamber (2001), three association
rule categories are distinguished: associations
between image content features and non-image
content features, associations among image con-
tentswith no spatial relationships, and associations
among image contents with spatial relationships.
Inrecentyears, there hasbeensome research deal-
ing with rule association mining in image data.

In Zaine, Han, and Zhu (2000), authors have
proposed methods for mining content-based as-
sociations with recurrent items and with spatial
relationships from large visual data repositories.
A progressive resolution refinement approach has
beenproposedinwhich frequentitemsets at rough
resolutions levels are mined, and progressively,
finer resolutions are mined only on candidate
frequent itemsets derived from mining through
rough resolution levels. The proposed algorithm
is an extension of the well-known Apriori algo-
rithm taking account of the number of object
occurrences in the images.

Ordonez and Omiecinski (1999) state that the
image mining problem relates not only to the data
mining field, but also to the fields of the data-
bases, image understanding, and content-based
image retrieval. He has proposed a first attempt
to combine association rules and images: an
algorithm which would discover object associa-
tion rules in image databases and which would
be based on image content. The algorithm relies
on four majors steps: feature extraction, object
identification, auxiliary image creation, and object
mining. The main advantage of this approach is
that it does not use any domain knowledge and
does not produce meaninglessrulesor falserules.
However, it suffers from several drawbacks, most
importantly, the relative slowness of the feature
extraction step. Itdoes notwork well with complex
images either.

Djeraba (2002) proposes an architecture
which integrates knowledge extraction from im-
age databases with the image retrieval process.
Association rules are extracted to characterise
images, and they are also used to classify new
images during insertion. In Tollari, Glotin, and
Le Maitre (2005), a recent experiment has been
carried out to show the dependencies between
textual and visual indexation. This experiment
was performed on different corpuses containing
photographs which were manually indexed by
keywords. The authors then compared text-only
classification, visual-only classification, and the
fusion of textual and visual classification. They
have shown that the fusion significantly improves
text-only classification.

In Ardizzone, Daurel, Maniscalco, and Rigotti
(2001), association rules between low-level de-
scriptors (i.e., colour descriptors) and semantic
descriptors (i.e., names of painters) are extracted.
The authors recommend using discovered asso-
ciation rules as complementary information to
improve indexing, query optimisation in image
databases.

Finally, in Morin, Kouomou Chopo, and
Chauchat (2005) datamining techniquesare used
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in order to improve time and quality of the con-
tent-based retrieval in animage database, namely
clustering and association rules. The suggested
strategy is based on both an automatic selection
of the content-based retrieval features and on the
association rules in order to reduce the number
of descriptors. Thus the users may carry out their
image research without being concerned with
nature or quality of the subjacent descriptors. The
results so obtained remain relatively satisfactory
compared to an exhaustive sequential search.
Moreover, during search processing, intermediate
results are progressively merged and proposed
to the user.

The brevity of this section dedicated to images
and pattern mining shows howtiny the intersection
of these two fields is. What pattern mining can
contribute to image retrieval and image under-
standing thus remains an open question.

Image Classification

Two domains are concerned with image cluster-
ing. On one hand, a key step for structuring the
database is image content clustering employed in
ordertoimprove “search-by-query”inlarge image
databases. Eachimage is viewed asacollection of
local features (acolour histogram, atextural index,
etc.). The goal is to find a mapping between the
archive imagesand the classes (clusters) sothat the
set of classes provides essentially the same predic-
tion, orinformation, aboutthe image archive asthe
entireimage-set collection. The generated classes
provide aconcise summarisationand visualisation
of the image content: this process is considered as
image-set clustering. Note that the definition of a
clustering scheme requires the determination of
two major components in the process: the input
representation space (used feature space, global
vs. local information) and the distance measure
defined in the selected feature space.

Onthe other hand, partitioning pixels froman
image into groups of coherent properties by clus-
tering isapopular method of image segmentation:
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pixels that are similar in low level features (e.g.,
color or radiometric features) and are connected
in the image (4 or 8 connectivity) are grouped
into one region. However, the problem lies in the
difficulty to define the similarity measurements,
for example, to define them in terms of inten-
sity, colour, texture, or other parameters. Each
element can be used alone, but they can also be
compounded together to representan image pixel.
Thus, each pixel can be associated to become a
feature vector.

This section presents three approaches to per-
pixel image clustering: the K-meansalgorithm, the
EM one, and the multistrategical approach.

The K-means Algorithm

The K-means algorithm (MacQueen, 1967)
attempts to minimise the cost function,
F= Y > d(x.c), where K is the number of

ke[1,K]xeC, .
clusters and c, is the center of the k-th cluster.

First, the initial set of centers israndomly cho-
sen. Then to minimise F, the K-means algorithm
iterates two steps:

. Labeling: Each object in the data set is as-
signed to the nearest cluster.

. Recentering: A new center for all the clus-
ters is recalculated.

The K-means algorithm is very simple and
easy toimplement. Itstime complexity is O(NKd)
where d is the dimension of the objects: such an
algorithm can be used to cluster large data sets
such as image data.

Figure 1 showsanexample of aremotely sensed
image. The area (approximately 10 km?) is the
eastern part of the agglomeration of Strasbourg
(France) witharesolutionof 20m inamultispectral
mode (three radiometric bands). Its size is 250 x
200 pixels.

Figure 2 shows an instance of a K-means
running (with 5 classes and 10 iterations) on the
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SPOT remote sensing image. The circle on the
first image (on the left) highlights the sub-area
which evolves during the 10 iterations. The area
is the downtown of Strasbourg and is composed
of building areas. At the beginning, some pix-
els are blue, a colour which corresponds to the
“water” class. One can see that almost all these
pixels emigrate towards the “gray” class which
corresponds to the class of “building” (in agree-
ment with expert evaluation).

Model-Based Clustering

In model-based clustering, individual clusters
are described by a probability distribution. Each
pixel is assumed to be produced by a probability
density associated with one of the K clusters. The
maximum likelihood (ML) approachthen consid-

Figure 1. Spot image (Strasbourg)

Spot Image ©CNES

Figure 2. Example of K-means evolution

ers that the best estimate for 6 ={6, }, j, ., (6, is
the unknown parameter for the density associated
with the k-th cluster) is the one that maximises
the log-likelihood given by:

In(X,0)= > Iog[ > nk.p(xi|9k)]

ie[1,N] ke[1,K]

where m, is the prior probability for cluster C,.

Inmost circumstances, the solution of the like-
lihood equation cannot be analytically computed.
Efficient iterative Expectation-Maximisation
(EM) schemes exist to perform the log-likelihood
optimisation (Dempster, 1977; McLachlan, 1997).
Insuch schemes, each object x.carries notonly its
observableattributes butalsoahidden cluster label
vector z; = (z; )iy With ;, =1if x, € C,.

Thus the log-likelihood for the data set is
given by:

E(X.0)= >, > z,.logp(x0,)
ie[1,N]ke[1,K]
The summation terms inside Pog have been
eliminated. One can observe that:

. If the density parameters are known, the
cluster label vector can be easily set.

. If cluster label vectorsare known, estimating
the density parameters is easy.

Iteration 1 Iteration 4

Iteration 8 -
Final result
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In fact, the EM algorithm iterates two steps:

. E-step (Expectation) to compute the expecta-
tion of the complete data.

. M-step (Maximisation) to maximise the
log-likelihood of the complete dataand then
estimate 0.

In the case of multivariate normal (Gaussian)
density, the most used for image segmentation,
the unknown parameters (u, ,, ) and =, for each
cluster are estimated by the Expectation-Maxi-
misation.

Although the K-means and EM algorithms
have been quite successful in both theory and
practice, they present some problems. First, these
algorithmsare very sensitive to the selection of the
initial partition: they may converge towardsalocal
minimum if the initial partition is not properly
chosen. Second, the number of clusters must be
known. Unfortunately, there is no efficient and
universal method to identify the number of clusters
and the initial partitions. Certain strategies could
be used to circumvent these problems. The most
frequently used strategy consists in carrying out
the algorithms several times with random initial
partitions, with or without the same number of
clusters, oneitherthe whole data or on subsets from
the original data only: the « best » result is then
kept. Some techniques deal with the estimation
of the number of clusters: ISODATA dynamically
adjusts the number of clusters by merging and
splitting clusters according to several criteria.

Another relatively recent approach can also
be also used. It is based on the idea that the in-
formation concerning objects offered by different
classifiersis complementary (Kittler, 1998). Thus,
the combination of different classification methods
may increase their efficiency and accuracy. A
single classification is produced from results of
methods which have different points of view: all
individual classifier opinions are used to derive
a consensual decision.

These combining of methods circumventsome
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of the limitations of the methods used alone by
taking advantage of the complementarities of the
different classification methods used. Forexample,
some classifiers only propose a partitioning of the
data, whereas others give a hierarchy of classes
or concepts as result. Combining the results al-
lows us to automatically adjust the number of
clusters of the partitioning methods according to
the results presented by the hierarchical methods.
Experiments show that this approach decreases
the importance of the initial choices.

A collaborative multistrategical clustering
process is proposed in (Gancarski & Wemmert,
2005). This process is composed of three main
steps: First, a phase of initial classifications is
performed: classifications are computed by each
method with its parameters. Then, an iterative
phase of convergence of the results is performed.
The three phases are repeated as long as the
results improve in terms of their quality and as
long as they converge to become more and more
similar:

1.  Astepofevaluationofthe similarity between
the results with mapping of the classes.

2. Astep of refinement of the results: (1) Con-
flict detection by evaluating the dissimilari-
ties between results; (2) Local resolution of
such conflicts; and (3) Management of these
local modifications in the global result.

3. A step of combination of the refined re-
sults.

For example, we present a test with six ex-
pected classes. The unsupervised classification
methods used are:

e The K-means algorithm with four initial
random nodes.

*  The K-means algorithm with eight initial
random nodes.

e The EM algorithm with 15 classes.

. The conceptual classifier Cobweb with an
acuity of 18.



Pattern Mining and Clustering on Image Databases

Figure 3. Initial clusterings

SOM - 16 classes

AL e

Kmeans — 8 classes

Cobweb — 27 classes

Figure 4. Final clusterings

SOM -5 classes

oL

Cobweb — 4 classes
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We have obtained the resultst (Figure 3). These
results have been refined according to multistrate-
gical algorithm. We have obtained the following
results (Figure 4).

We appliedthe multiview voting algorithm
described in (Wemmert & Gancarski, 2002) on
these results. The unifying result (Figure 5a) is
composed of five different classes. We presentalso
in Figure 5b the voting result for all the objects:

. In white: All the methods agreed on the
classification.

. In gray: One method disagreed with the
other ones.

. In black: The nonconsensual objects (two
or more results classified these objects dif-
ferently).

IMAGE MINING ISSUES

In this section, we present applications using the
concepts described above. The first section tries to
give some perspectives forimage pattern mining.
The second section deals with the extraction of
information from images and briefly describes its
application for the semantic Web. The last section
describes an application in the field of remote
sensing image databases.

Figure 5. Unification

Pattern Mining and Clustering on Image Databases

Image Pattern Mining

Image pattern mining can be used for images
represented by low-level features such as earth
explorationapplications orimages builtfrom sonar
or radar signals. These applications have a com-
mon point: the notion of evolution is very impor-
tant. For example, in the case of images extracted
fromasonar signal, the characterisation of seabed
sediments and its evolution should be performed
using pattern mining techniques. Consider, for
example, that the records are grouped according
to their localisation (i.e., the geographical areas
in which the sonar has been used). Suppose that
for one localisation, we have the sediment evolu-
tion. Then, it will be easy, using pattern mining
techniques, to find common evolutions for a set
of localisations.

In the case of earth observation, a potential
applicationistostudy the evolution of aparticular
object or geographic area, such as a dense urban
area for example. Pattern mining for content-
based image retrieval seems to be less relevant,
but should be useful to reduce the search space.
Association rules can be defined to determine
an image cluster for a particular description. For
example, you can state that if the dominant co-
lours are yellow and brown, the images related to
this description should be contained in cluster 2.

() Unifying result

(b) Consensus
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Few experiments have been realised to use such
a technique to reduce the search space. We think
that research work could be done in the case of
images represented by a set of pixel in order to
describe data evolution.

Clustering and Characterisation
Rules with the Service of Image
Retrieval by Similarity

The content-based image retrieval in large da-
tabases is based on two modules: the logical
indexation and the retrieval. While the first one
extracts the metadata (textual descriptors: key-
words, annotations, and so forth; visual features
like colour, shape, texture; spatial localisation,
spatial constraints, etc.) associated to images and
stores the extracted metadata in the database;
the second one assists final users to efficiently
retrieve images based ontheir visual and/or textual
descriptions. The retrieval process, by means of
a suited distance for each feature, computes the
similarity between the user’s query and the im-
age database. The best similar images in terms
of their similarity value are then displayed by
decreasing similarity. In this context, the scope
of queries addressed to multimedia databases is
very large and may include both objective and
subjective content. Three levels of abstraction
are distinguished (Eakins, 2002): (1) syntactic
level: visual features, spatial localisation, and
spatial constraints are used to retrieve images.
This level is purely algorithmic. For instance, a
query may be “Give me all the images contain-
ing red circles”; (2) semantic level including only
objective content. In this level, objects appearing
in images have to be identified. A query example
may be “Give me all the images in which my chil-
dren appear”; (3) semantic level with subjective
content. This level involves complex reasoning
about objects or scenes using human perception.
Such a query may be “Give me all the images
representing the notion of liberty” or “Give me
all the images in which my friends are happy”.

This level is also related to scene recognition as,
for example, a child’s birthday: this scene can be
characterised by balloons, young faces, candles,
cakes, and so forth.

However, content-based image retrieval
has reached some limitations, in particular
a lack of semantics integration. Textual and
visual feature combinations are sometimes not
sufficient, particularly when semantic querying
is predominant, that is, when the image and its
contextare necessary (as, for instance, theretrieval
of audiovisual sequences about unemployment,
the retrieval of images in which there is a strong
feeling of sadness). This limit is known as the
semantic gap between the visual appearance of an
image and the idea the user has in mind of what
images, including semantics, the user wants to
retrieve. Thus, the content-based retrieval suffers
from a lack of expressive power because it does
notintegrate enough semantics. Semanticsistoday
a crucial point which it is impossible to circum-
vent as soon as one wishes to integrate, unify, or
bring closer the metadata resulting from different
sources. A lot of research is going in this direc-
tion. For example, we can mention the fusion of
ontologies to search resources regardless of their
nature (Hunter, 2001). We can also mention the
definition of Web page semantics to improve the
Web information retrieval since the semantics of
aWeb page is expressed through both its contexts
(static context: author’s contributionand dynamic
context: user’s contribution) and through its con-
tent (Grosky, Sreenath, & Fotouhi, 2002). Worth
mentioning is also the proposed architecture in
Troncy (2003) to reason on descriptions of video
documents thanks to an audiovisual ontology.

In the context of content-based retrieval, the
problem of lack of semantics prevents final users
from making good explorations and exploitations
of the image database. In Bouet and Aufaure
(2006), image mining is proposed to allow for a
better image database exploration by exploiting
the visual and textual image characterisation com-
plementarily. The proposed approach is situated
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in an exploratory context (descriptive data min-
ing). The desired objective may not be achieved
without a strong synergy between image mining
and visual ontology. On the hand, image mining
concerns making associations between images
from a large database. To produce a summarised
view of anannotated image database and to reduce
the research space, clustering and characterisation
rulesare combined. These datamining techniques
are performed separately on visual descriptors
and textual information (annotations, keywords,
Web pages). On the other hand, a visual ontology
is derived from the textual part and enriched with
representative images associated to each concept
of the ontology. Ontology-based navigation can
also be seen as a user-friendly and powerful
tool to retrieve relevant information. These two
approaches should make the exploitation and the
exploration of a large image database easier.
The process called “multimedia mining” is
detailed more precisely in the Figure 6. Multime-
dia mining consists of several methods such as
clustering and extraction of characteristic rules
from clusters. These clusters and rules extracted
from visual and textual descriptors may be seen
as metadata associated to the considered image
database. While clusteringis performedtoreduce
the research space, the characterisation rules
are used to describe each cluster and to classify
automatically a new image in the appropriate
clusters. Because of their intrinsic nature differ-
ence (humeric vs. symbolic), textual descriptions
(keywords, annotations, etc.), and visual descrip-
tions (colour, shape, texture, spatial constraints)
are dealt with separately, using well-suited tech-
niques. Starting from feature sets (such as colour
set, keyword set, texture set, colour and shape set,
etc.), the system automatically clusters together
similarimages using awell-suited method. Then,
in order to qualify the previous clusters, a more
powerful representation than the cluster centroid
may be chosen. These characterisation rules may
be obtained either from all the points of a cluster
(in order to have the most frequent patterns) or
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from a data aggregation (for example, a median
histogram in the case of colour clusters, which
is representative of the cluster content). In the
image context, these rules are in the form of
antecedent = consequent with certain accuracy,
where antecedent and consequent correspond
respectively to a visual feature value and a clus-
ter. The accuracy is fundamental to estimate the
quality of the induced rules. Statistical measures
are used to estimate the rule accuracy. As far as
the textual description processing is concerned,
it requires a preprocessing phase in order to re-
duce the number of keywords and to keep only
relevant keywords. This task is difficult and
time-consuming, and needs an expert to validate
the results obtained. Textual descriptions need to
find arelevant similarity measure. Clustering can
be performed by conceptual clustering such as
the Cobweb, or by other techniques such as the
K-means after the transformation of the initial
keywords into numerical vectors. The extracted
concepts are then hierarchically organised, using
a priori knowledge, hierarchical classification
techniques, or the expert’s knowledge of the ap-
plication domain.

Once the search space reduction and the clus-
ter characterisation by means of rules has been
performed, descriptive metadata are stored in the
database. These metadata represent the character-
istics discovered and shared by images appearing
in the same cluster, and they play an important
role because they allow the user to navigate from
the textual world towards the visual world, and
conversely. Thearchitecture presented in Figure 6
iswell-suited to specific databases like fingerprint
databases, face databases, and so forth. Indeed,
image mining results depend on both the chosen
clustering method and the estimated similarity
quality. Without a real synergy between appli-
cation fields, considered visual features, their
modeling and the estimation of their similarity
degree, the obtained descriptive metadata are
not relevant to allow for a more interesting im-
age database exploration. This architecture may
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also be adapted to general databases, and more
particularly tothe Web. As Web databases contain
images ofany domain, visual features are not very
representative of particular concepts. This is the
reason only the concept extraction phase is made.
Visual clusters are deduced from textual clusters
since they contain semantics by nature. The visual
clusterswhichwe obtainare then characterised by
means of rules. This proposed architecture adap-
tation may be a new way to navigate Web image

Figure 6. The multimedia mining process

databases. Web search engines are able to index
only Web images having a particular tag related
to the image legend. For example, if you search
images of “Champs Elysées” using Google Im-
age, the result contains only images whose legend
corresponds to the specified keyword. Results are
thenranked and presented to the useraccording to
their relevance. Some metadata concerning these
images are also added, for example, the format
(gif, pdf, etc.), the colour, and so forth. But, if
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the user wants to retrieve images of the “Champs
Elysées” by night and only in black and white, no
results are given by the search engine.

Thus, in order to improve the Web images
search, we should take into account both textual
information in the Web pages and visual infor-
mation. Textual information can be the legend
represented by a special tag, a text under the
image, and a free text in the Web page. In this
last case, we can extract a word from paragraphs
appearing before and after the image, and search
frequent words to try to label the images. Some
research has been done in this field. Integrating a
visual and textual descriptor to improve the Web
image search is still an unsolved problem.

Multistrategical Mining of Remote
Sensing Images Databases

In the last two decades, the Earth observation of-
fer in optical and radar fields has been multiplied.
With the new types of remote sensing images that
have appeared since 1999 and the multiplication
of the hyperspectral sensors that have several
hundreds of bands, the users are faced with a
huge stream of images. Since 1999, new types of
images (HSR sensors like Quickbird, Orbviewor,
hyperspectral sensors like AVIRIS, DAIS, CASI)
have been providing ahuge amount of datathe user
has to cope with in terms of spatial, spectral, and
temporal resolution, depending on the objectives.
In a context of city planning, it is necessary to
supportthe identification, the localisation, and the
formalisation of the urban elements (impervious
surfaces, vegetation, water).

Very often, the identification step requires
some complementary aspects of a set of images
and also ancillary data: seasonal to discriminate
mineral surfaces (these may or may notbe agricul-
tural zones), spectral to supplement the range of the
effective spectral answers, and finally, spatial to
take intoaccount (1) the relationships between the
studiedareaand (2) the adequacy of the resolution
of the pixel in relation to the objects of interest
(for example, irrigated natural zones).
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However, the lack of methods facilitating
the selection of useful data, the improvement of
extraction of knowledge and the interpretation
assistance adapted to the needs is still compel-
ling. Moreover, these methods do not allow for
simultaneous and complementary approaches.

Currently, the tendency is the development of
object oriented methods where each object rep-
resents a set of homogeneous pixels and is built
around some elementary characteristics (spectral,
geometrical) andthe spatial relationships between
objects (contextual texture and topological rela-
tions). Monoformalism does not allow for an un-
equivocal way to identify heterogeneous objects
inan urban area. The formalism must be adapted
to each scale of analysis. The Fodomust project?
proposes a multiformalist approach, taking into
account the level of creation of the object and its
use. This solution provides a complete data min-
ing process allowing for information extraction
without data fusion (if not needed).

Due to the heterogeneity and the complexity
of remote sensing images, the current methods
of extraction and assistance to interpretation are
not effective enough to take into account the
complementarity of the data. In this project, it is
argued that the problem lies in the need to use
multiformalisation onseveral levels of abstraction
according to images resolutions. Thus, the main
aim of our project is to study and define methods
and tools able to simultaneously use different
knowledge databases to localise, identify, and
characterise objects as being urban elements.
These databases are associated with different
sources (radiometric sensors, aerial and areal
photographs, etc.), data representing the same
object information but at different times or in
various formats, scales, and file types (free texts,
Web documents, taxonomy, etc.)

This is the reason why a complete process of
mining complex datasets, using expertknowledge
for selecting, extracting, and interpreting remote
sensing images, is proposed (Figure 7):
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. Data structuring and organising: The
authors propose an architecture to structure
and organise the set of data and metadata
that are collected from the various physical
datasources. They thendesign query mecha-
nisms for image databases that exploit both
low-level descriptors (date, location, etc.) and
high-level semantic descriptors depicting
the actual content of the images. This can
allow us, on one hand, to select and cluster
datasources (by fusion, for instance) and, on
the other hand, to eliminate in these sources
the noise, redundancies, and nonrelevant
information that are massively present in
remote sensing images. When exploiting
several sources of knowledge and images,
datamining may also be performed directly
on the raw data.

. Obiject construction step: Image process-
ing techniques (such as image segmentation
which change the observed scale from pixels
to regions) may greatly help to improve the
quality of identification and classification of
objects contained in the considered images.
Numerous segmentation techniques exist,
and we propose to focus on the mathemati-
cal morphology principles. Indeed, math-
ematical morphology is not so often used in
remote sensing, whereas it clearly presents
several advantages in this application field,
in particular, the possibility to characterise
the different objects considering some of
their properties such as shape, texture, size,
topology, spatial relations, and so forth. The
objectives are to elaborate multi-images
morphological tools, to integrate knowledge
into morphological analysis processes and
to validate the methods over a large set of
images.

. Multistrategical classification and in-
terpretation: The authors extend their
multistrategy classification methods in order
to be able to deal with data from different
sources, and to take into account the multi-

formalism paradigm to which the different
strategies can contribute some different
but complementary skills. Considering a
unified representation, it will be possible to
performamultistage learning corresponding
to different abstraction levels. Moreover,
this extension will result in classification of
heterogeneous objects and semisupervised
feature selection based on a coevolution of
extractors. The results will make the un-
derstanding and the use of remote sensing
information for general end users easier.
User knowledge has to be integrated for
operational guidance. It is worthwhile to
use given expert knowledge to simplify
extraction and classification procedures.

These three distinct phases respectively make
it possible to make extractions from the geo-
graphical objects initiated from several images,
to characterise them by awhole set of descriptors,
to treat them using techniques of classification
according to multiple strategies, and to identify
them while being based on ontology. The process
functions in an iterative way, until a satisfactory
identification of the objects has been reached. If
such objects are neither in ontology, nor in the
database, they will be enriched.

The proposed process is under development.
Thefirststage is the most advanced in its develop-
ment. Architecture has been developed to store
the mass of data image as well as the geographi-
cal objects which will be built progressively. It
is based on PostgreSQL and the associated API
PostGIS to manage spatial data. A conceptual
diagram of data, which reflects the structure of
geographical objects, as well as the bonds which
connect them, was defined as a preliminary. This
made it possible to implement the database of
geographical objects. These geographical objects
thus stored will be useful both as a reference and
for the process of identification.

In addition, the ontology of the geographi-
cal domain was defined to represent knowledge
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useful for the identification of the objects. This
knowledge was acquired in two different ways:
() by methods of elicitation, in collaboration
with geography photo interpreters, to extract and
formalise the discriminating attributes and (2) by
supervised machine learning (Sheeren, Quirin,
Puissant, & Gancarski, 2006). The ontology was
developed in OWL under Protégé 2000.

Themechanism makingitpossible toassociate
the objects stored in the base with the concepts of
ontology is currently being studied. The principle
is to extract an object from an image (by using a
classifier) and to perform a matching between this
object and the concepts of the ontology. Accord-
ing to the degree of similarity of the attributes
with the properties of the concepts of ontology,
the object will be labeled by the best-matching
concept.

Figure 7. Interpretation of remotely sensed image
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CONCLUSION

Detection and recognition of semantic concepts
from image databases is a major research chal-
lenge. A promising way could be the unsupervised
mining of patterns. Patterns are recurrent, pre-
dictable occurrences of one or more entities that
satisfy statistical, associative, or relational condi-
tions. Together with the statistical aspect, we have
presented some research related to the clustering
methods applied to knowledge discovery fromim-
ages inorderto summarise image databases. But,
we did not find many uses of the pattern mining
method when employed to discover associative
rules among images or between pixels from one
or several images. This raises two questions. The
first is trying to discover such relations from im-
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ages relevant. Second, if the answer is yes, how
can we make this research effective? Neverthe-
less, we believe that such an approach can be
very useful to highlight relations at the feature
level (high level) as well. Patterns at the feature
level may represent the occurrence of primitive
concepts such as pixel clusters or relations be-
tween pixels. At the higher level, patterns may
outline relations between semantic concepts and
extracted clusters, or relations between semantic
concepts themselves.

Even if the clustering approach seems more
mature than the approach related to the associa-
tionrules discovery, we are still faced with many
challenges in both domains. The most important
in our opinion is to find adequate representations
of data: experiments which show that using an
image or a pixel directly as a transaction or as an
item in a transaction is not efficient.

More specific questions have to be answered,
for example: How do we detect patterns starting
from images with heterogeneous representation?
How do we deal with patterns that may have
relatively sparse occurring frequencies? How do
we take into account temporality?

And, last but not the least, how do we evaluate
the quality of mining results given its unsuper-
vised nature?
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ABSTRACT

Environmental research and knowledge discovery both require extensive use of data stored in various
sources and created in different ways for diverse purposes. We describe a new metadata approach to
elicit semantic information from environmental data and implement semantics-based techniques to assist
users in integrating, navigating, and mining multiple environmental data sources. Our system contains
specifications of various environmental data sources and the relationships that are formed among them.
User requests are augmented with semantically related data sources and automatically presented as a
visual semantic network. Inaddition, we present a methodology for data navigation and pattern discovery
using multi-resolution browsing and data mining. The data semantics are captured and utilized in terms
of their patterns and trends at multiple levels of resolution. We present the efficacy of our methodology
through experimental results.
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INTRODUCTION

The urban environment is formed by complex
interactions between natural and human systems.
Studying the urban environment requires the col-
lectionand analysis of very large datasets that span
many disciplines, have semantic (including spatial
andtemporal) differencesand interdependencies,
are collected and managed by multiple organiza-
tions, and are stored in varying formats. Scientific
knowledge discovery is often hindered because
of challenges in the integration and navigation of
these disparate data. Furthermore, as the number
of dimensions in the data increases, novel ap-
proaches for pattern discovery are needed.

Environmental data are collected in a variety
of units (metric or SI), time increments (minutes,
hours, or even days), map projections (e.g., UTM
or State Plane) and spatial densities. The data are
stored in numerous formats, multiple locations,
and are not centralized into a single repository for
easy access. To help users (mostly environmental
researchers) identify data sets of interest, we use a
metadataapproachto extractsemantically related
data sources and present them to the researchers
as a semantic network. Starting with an initial
search (query) submitted by a researcher, we
exploit stored relationships (metadata) among
actual data sources to enhance the search result
with additional semantically related informa-
tion. Although domain experts need to manually
construct the initial semantic network, which
may only include a small number of sources, we
introduce an algorithm to let the network expand
and evolve automatically based on usage patterns.
Then, we present the semantic network to the
user as a visual display of a hyperbolic tree; we
claim that semantic networks provide an elegant
and compact technique to visualize considerable
amounts of semantically relevant data sources in
a simple yet powerful manner.

Once users have finalized a set of environ-
mental data sources, based on semantic networks,
they can access the actual sources to extract data
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and performtechniques for knowledge discovery.
We introduce a new approach to integrate urban
environmental data and provide scientists with
semantic techniques to navigate and discover
patterns in very large environmental datasets.

Our system provides access to a multitude of
heterogeneous and autonomous data repositories
and assists the user to navigate through the abun-
dance of diverse data sources as if they were a
single homogeneous source. More specifically,
our contributions are:

1. Recommendation of additional and
relevant data sources: We present our
approach to recommend data sources that
are potentially relevant to the user’s search
interests. Currently, it is tedious and im-
practical for users to locate relevant infor-
mation sources by themselves. We provide
a methodology that addresses this problem
and automatically supplies users with addi-
tional and potentially relevant data sources
that they might not be aware of. In order to
discover these additional recommendations,
we exploit semantic relationships between
data sources. We define semantic networks
for interrelated data sources and present
an algorithm to automatically refine, aug-
ment, and expand an initial and relatively
small semantic network with additional and
relevant data sources; we also exploit user
profiles to tailor resulting data sources to
specific user preferences.

2. Visualization and navigation of relevant
datasources: Thesemantic network withthe
additional sources is shown to the user as a
visual hyperbolictree improving usability by
showing the semantic relationships among
relevant data sources in a visual way. After
the user has decided onthe choice of relevant
data sources of interest (based on our meta-
data approach) and has accessed the actual
data, we also assist the user in navigating
through the plethora of environmental data
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using visualization and navigation tech-
niquesthatdescribe dataat multiple levels of
resolution, enabling pattern and knowledge
discovery at different semantic levels. We
achieve that, using wavelet transformation
techniques, and we demonstrate resilience
of wavelet transformation to noisy data.

3. Implementation of a prototype system:
Finally, we have designed and implemented
a prototype system as a proof of concept
for our techniques. Using this system we
have demonstrated the feasibility of our
contributions and have conducted a set of
experiments verifying and validating our
approach.

This article is organized as follows. First, we
present related work on data integration using se-
mantics, and on exploration of multi-dimensional
data. Next, we present our research methodology
on semantic networks and pattern discovery with
wavelet transformations. Then, we describe our
prototype implementation and the experiments
we conducted. Our conclusions are presented in
the final section.

RELATED WORK
Data Integration

There is a rich body of existing work on data
integration problems. The fundamental problem
is to enable interoperation across different het-
erogeneous sources of information. In general,
this problem manifests itself either as schema
mismatches (schema integration) or data incom-
patibilities (data integration) while accessing
disparate datasources. Several surveysidentifying
problemsand proposed approaches onschemaand
data integration have been written over the years
(Batini, Lenzerini, & Navathe, 1986; Ouksel &
Sheth, 1999; Rahm & Bernstein, 2001). There has
been a significant amount of work on data inte-

gration, especially on resolving discrepancies of
different data schemas using a global (mediated)
schema (Friedman, Levy, & Millstein, 1999; Levy,
Rajaraman, & Ordille, 1996; Miller et al., 2001,
Papakonstantinou, Garcia-Molina, & Ullman,
1996; Rahm & Bernstein, 2001; Ram, Park, &
Hwang, 2002). More recently, there exists work
ondecentralized data sharing (Bowers, Lin, & Lu-
dascher, 2004; Doan, Domingos, & Halevy, 2003;
Halevy, Ives, Suciu, & Tatarinov, 2003; Rodri-
guez-Gianolli, Garzetti, Jiang, Kementsietsidis,
Kiringa, Masud, Miller, and Mylopoulos, 2005;
Tatarinov, & Halevy, 2004) and on integrating
data in web-based databases (Bowersetal., 2004;
Chang, He, & Zhang, 2005; Dispensa & Brulle,
2003). Clustering, classification and ontologies
have also been extensively used as a tool to solve
semantic heterogeneity problems (Jain & Zhao,
2004; Kalfoglou & Schorlemmer, 2003; Ram &
Park, 2004; Sheth et al., 2004; Sheth, Arpinar, &
Kashyap, 2003; Sheth et al., 2002; Zhao & Ram,
2002, 2004).

Allthe previously mentioned work takes adeep
integration approach, where the data schemas (or
query interface for integrating web databases) of
all sourcesare integrated. However, thisapproach
is oftentoo restrictive for environmental research
because: (1) there are so many different types of
data collected by so many different groups that
it is impractical for all of them to agree on a uni-
versal mediated schema; (2) unlike companies,
environmental researchers often share data in
an ad hoc way, e.g., a company may purchase
products from several fixed suppliers while
environmental researchers may use any dataset
collected by other researchers but related to their
current research task.

There has been much effort by the ecology
research community to integrate its data (EML,
ORS, SEEK). These systems take a shallow in-
tegration approach where only metadata is inte-
grated; they allow researchers to store metadata
in a centralized database and to select datasets by
searching the metadata using keyword or SQL-
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based search. Such systems avoid the problem
of defining a global-mediated data schema and
allow researchers to share data in an ad hoc way.
A semantics-based integration approach for geo-
spatial data is presented in (Ram, Khatri, Zhang,
& Zeng, 2001).

The main problem of existing systems for in-
tegrating environmental data is that they provide
limited support to assist users in finding data
sources semantically related to their research.
Most existing systems assume researchers have
full knowledge of what keywords to search and
provide no assistance in selecting data sources
based on relationships between them. However,
unlike business applications, environmental
research is more explorative and researchers are
interested insearching semantically related datas-
ets. Although experienced researchers may find all
related keywords, inexperienced researcherssuch
as graduate students may have trouble doing this.
Theonly exceptionisthe SEEK project (Bowers et
al., 2004; Bowers & Ludascher, 2004), which uses
an ontology for ecology concepts to find related
datasets. However, SEEK assumes the ontology
will be completely given by domain experts,
while our approach augments such knowledge
by incremental and automatic refinement of the
semantic network.

There has also been work on discovering
semantic similarity in (Fankhauser, Kracker, &
Neuhold, 1991) based on generalization/special-
ization, and positive/negative association between
classes; in our article, we do not restrict our work
to these types of classes only, instead, we let the
users identify the degree of relevance between
datasourcesastheir ownsemantic interpretation.
Although our approach gives more emphasis on
the user’s semantics, it may require more manual
work to calculate the semantic relationships in
the semantic network, since it is user-based. To
reduce the amount of manual work, we start with
a small manually created semantic network, and
then we apply an algorithm that we designed and
implemented, to automatically expand, refine,
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and augment the semantic network by taking
advantage of observed usage patterns. Another
difference with (Fankhauser et al., 1991) is the
way that the degree of relevance is calculated.
They use triangular norms (T-norms) from fuzzy
logic, while we use conditional probabilities. Rel-
evant to our work is the topic of discovering and
ranking semantic relationships for the Semantic
Web (Aleman-Meza, Halaschek-Wiener, Arpinar,
Ramakrishnan, & Sheth, 2005; Shethetal., 2004).
However, relationship ranking is not in the scope
of this article.

Using Wavelets for Exploration of
Multidimensional Data

Inorderto study long-term environmental factors,
we need to evaluate measures across multiple
dimensions such as time and geographic space
at different dimensional hierarchies. An example
of the type of queries that have to be answered
is, “How do stream temperature and precipitation
change over time and space?” In order to answer
such queries, the system must integrate diverse
sets of information, which is typically facilitated
by dimensional modeling techniques (Kimball,
2002) and online analytical processing (OLAP).
The challenge stems from the fact that such
dimensional models grow exponentially in size
with the number of dimensions and dimensional
hierarchies. Current OLAP techniques, however,
rely on the intuition of the decision maker in
navigating throughthis lattice of cuboids and only
provide navigation tools such as drill down and
roll up. There have been very few attempts made
to address this issue, most notably the work done
by (Sarawagi, Agrawal, & Megiddo, 1998) and
(Kumar, Gangopadhyay, & Karabatis, in press).
However, the major deficiency of the existing work
in this area is that the volume of data after a few
drill-downs becomes prohibitively large, which
hinders the effectiveness of the method. In order
tohelpendusers (scientists or engineers) discover
and analyze patterns from large datasets, we have
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developed amethodology for visualization of data
at multiple levels of dimensional hierarchy and
pattern discovery through dataminingtechniques
(Han & Kamber, 2000; Mitchell, 1997) at multiple
levels of resolution.

The last decade has seen an explosion of inter-
est in wavelets (Daubechies, 1992; Goswami &
Chan, 1999), asubjectareathat has coalesced from
roots in mathematics, physics, electrical engineer-
ing and other disciplines. Wavelets have been
developed as a means to provide low-resolution
views of data with the ability to reconstruct high-
resolution views if necessary. Wavelet transforma-
tionhasbeenapplied innumerousdisciplinessuch
as compression and de-noising of audio signals
andimages, finger print compression, edge detec-
tion, object detection intwo-dimensional images,
and image retrieval (Stollnitz, Derose, & Salesin,
1996). There have been few studies on approximate
query answering through lossy compression of
multi-dimensional data cubes (Matias, Vitter, &
Wang, 1998; Smith, Li, & Jhingran, 2004; Vitter
& Wang, 1999; Vitter, Wang, & lyer, 1998), data
cleaning, and time-series data analysis (Percival
& Walden, 2000). However, no study has been
done on utilizing wavelet transformation to pro-
vide decision support. We use wavelets to provide
coarse, low-resolution views to researchers with

the capability of retrieving high-resolution data
by zooming into selected areas.

Generally speaking, wavelet transformation
is a tool that divides up data, functions, or op-
erators into different frequency components and
then studies each component with a resolution
matchedtoitsscale (Daubechies, 1992). Awavelet
has many desirable properties such as compact
support, vanishing moments and dilating relation
and other preferred properties such as smooth-
ness (Chui & Lian, 1996). The core idea behind
a discrete wavelet transformation (DWT) is to
progressively smooth the data using an iterative
procedure and keep the detail along the way. The
DWT is performed using the pyramid algorithm
(Mallat, 1989) in O(N) time.

RESEARCH DESIGN AND
METHODS

Overview of the Architecture

The overall architecture of our system is shown
in Figure 1. It consists of a data integration com-
ponent, a data warehouse, and visualization,
navigation, and pattern discovery component, all
for the semantic utilization of heterogenecous data

Figure 1. System architecture with data integration and knowledge discovery components

Y
—

Source  f——ppi
DB

N—

Data Integration

Metadata
Repository

Data
Warehouse

Source >

File Original data

L7 Conversion

Functions

Wavelet
coefficients

Source

Spread  [—]

sheet

\_/_

Visualization, Navigation Web Clients

and Pattern Discovery

Multi-resolution
view of data

Data Mining &

— Semantic <
Ne— 1 Network
Source [P

DB
N~

v

Pattern
Discovery

217



Semantic Integration and Knowledge Discovery for Environmental Research

sources. The data integration component consists
of a metadata repository, a semantic network,
and a set of conversion functions. The metadata
repository stores information about the source
data including descriptions of each particular
source along with information on its syntax and
semantics. In our approach the metadata layer is
not a global schema. Instead we collect various
information artifacts about the sources to assist
in finding relationships and correspondences
among data in different sources. We also store
information on how to access the data (including
location identifier, access method, access rights,
username, etc.) and how to transform the data to
the canonical form if needed through conversion
functions (on measurement units, formats, etc.),
as explained in the following section.

The semantic network contains relationships
between sources. Users request data sources by
searching the metadatarepository and our system
will automatically use the semantic network to
return not only the requested ones but also to
recommend additional and related data sources
that users might not know about. Once the users
decide on the final selection of the sources they
may download data directly to their local ma-
chines. Data being downloaded can be converted
to canonical form for possible analysis. This is
achieved by a set of conversion functions that are
part of the integration component. Data that are
integrated are stored in the data warehouse. The
data warehouse is a multidimensional model of
commonly used source data, which also stores
wavelet coefficients. Once users have obtained
data, they can visualize, navigate, and discover
patterns at different dimensions and resolutions
to aid knowledge discovery.

Data Integration
In this section, we address issues related to (1)
data sources and relationships that form among

them, (2) semantic networks, for recommendation
of additional and relevant data sources visualized
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as hyperbolic trees, and (3) automatic expansion
and augmentation of the semantic network by
observing user patterns.

Describing Data Sources and Their
Relationships

The plethora of diverse data in environmental
research poses significant integration problems.
Some data sources may be structured or semi-
structured databases with varying data models
(relational, object-oriented, object-relational, etc.);
some may be available as spreadsheets, while oth-
ers may be flat files. Data may also contain spatial
information in raster or vector formats.

We take ametadataapproach, inwhichwe store
information about the data, whichis collected and
stored inthe metadata layer with details from both
scientific and storage perspectives. For example,
many ecosystem study projects collect datarelated
to climate (e.g., precipitation depth, wind speed,
wind velocity, air temperature, humidity), soils
(e.g., temperature, water content, trace gases),
and streams (e.g., depth, flow rate, temperature,
nutrients, pathogens, toxics, biota). For each such
category, we store its definition, measurement
unit, collection frequency, and measurement lo-
cation, to create an accurate description of what
is being collected, how it is measured, where it
is stored, and how it is accessed. Usually, this
type of information is available from the data
sources themselves. It is part of a routine process
to specify specific metadata information when
users submit data at the data sources. Additional
information may also be stored from external
sources (e.g., the Open Research System (ORS)).
In general, information about data sources is not
significantly large, especially when compared
with the amount of actual data at the sources;
metadata information can be collected from the
sources either automatically (through an applica-
tion programming interface (API) if available)
or manually. All such information is kept in the
metadata repository and it serves the purpose of
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a universal registry; similar but not identical to
universal description, discovery and integration
(UDDI) for Web services. The metadata reposi-
tory, stored in an object-relational database, is
augmented with information on additional data
sources as needed.

This work expands on the specification of
relationshipsamong database objects stored in het-
erogeneous database systems (Georgakopoulos,
Karabatis, & Gantimahapatruni, 1997; Karabatis,
Rusinkiewicz, & Sheth, 1999; Rusinkiewicz,
Sheth, & Karabatis, 1991; Sheth & Karabatis,
1993). We have created amethodology allowing re-
searchers to derive semantic relationships among
data sources based on source descriptions in the
metadata layer. These semantic relationships form
asemantic network of related information, which
assists users to discover additional information,
relevant to their search but possibly unknown to
them. We realize that some relationships may not
be captured initially in the metadata repository,
especially when semantic incompatibilities pre-
ventdirectidentification of data (such as problems
related to synonyms, homonyms, etc.). Neverthe-
less, missing relationshipsare captured and added
tothe metadata repository by observing research-
ers’ usage patterns when they interact with the
semantic network, as will be explained further in
the current section. The notion of relationships
between concepts is also related to the topic maps
or concept maps (TopicMap), and Semantic Web
(W3C) for XML and web documents containing
metadataabout concepts. However, ourwork does
not limit itself only to XML or web data, but can
be used to describe data in general.

Converting Data to a Canonical Form

Environmental data sources may have differ-
ences in formats, data units, spatial and temporal
granularities, and may be collected at different
time intervals. We have implemented methods
and/or applications to convert between different
unitsand formats. Inaddition, spatial and temporal

disparitiesare resolved using spatial and temporal
join/aggregation operations and integrating data
at the appropriate level. As an example, suppose
that we need to integrate stream chemical and
biological data collected at each site with land
use and land cover data. In our data warehouse
model, each site belongs to a stream reach, and
each stream reach belongs to a sub-watershed (the
land area that drains to a particular point along a
stream segment and is represented by a polygon
feature). Land use/land cover dataisalso collected
on areas represented by polygons (although these
polygons are different and smaller than polygons
for sub-watersheds). Thus, we aggregate stream
data to sub-watershed level, and then aggregate
land use/land cover data to areas represented
by the same set of polygons for sub-watersheds
using re-projection, spatial joins, or overlay func-
tions provided by ArcObjects, the API included
in the ESRI’s ArcGIS software suite (Www.esri.
com/software/arcgis).

Using Semantic Networks to Expand
User Queries

In this section, we provide details on the creation
and utilization of semantic networks. We for-
mally define semantic networks and we present
techniques to extract information from semantic
networksand recommend additional and relevant
data sources to users in their search of related
data sources. We also present an algorithm to
automatically refine, and dynamically augment
semantic networks; Semantic networks have long
been usedto representrelationships (Masterman,
1961). We take advantage of their structure to
elicit additional semantic information for envi-
ronmental data.

Definition 1. We formally define a semantic net-
work G(V,E,W) as a graph G where:

. V is the set of nodes in the network. Each
node represents a data source or data set.
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For convenience, we use data source and
data set interchangeably in this article.

. E isthe set of directed edges in the network.
An edge (v, vj) indicates that node v, is se-
mantically related to node v,

e Wisa |F] * |V] relevance score matrix,
where W(i,j) is a number in range of [0,1]
and represents the degree of relevance (or
relevance score) between nodes v, and v,.

Figure 2 depicts an example semantic network
related to fish population. The number on each
edge representsthe relevance score associated with
the two adjacent nodes. Based on these scores, we
can infer the relevance between any two nodes in
the network. We consider each relevance score
as a conditional probability and assume they are
independent of each other (Rice, 1994). For ex-
ample, the relevance score between fish population
and stream temperature can be considered as the
conditional probability of a researcher interested
in stream temperature given that he or she is
interested in fish population.

Using the standard notation for conditional
probability, we have:

P(surfaces | fish) = P(surfaces, stream tempera-
ture | fish) because the user will be interested in
impervious surfaces, assuming the user is also
interested in stream temperature.

Using chainrulesand assumingall conditional
probabilities are independent (Rice, 1994), we
have:

Figure 2. An example semantic network

Fish 0.9 Stream
Population Temperature
Land Use/ 0.9 Impervious
Land Cover Surfaces
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P(surfaces, temperature | fish) = P(temperature
| fish) * P(surfaces | temperature) = 0.9 * 0.9 =
0.8L

Ingeneral, if v,and v;are two nodes, there are
k paths p,,..., p, between v, and Vi where path p,
(1 <= I <=k) consists of nodes v,,,..., Vijplpes (Ip,l
is the length of path p).

The relevance score rs between v, and v, is,

rs=min@ > [T w(,.1,.) 1)
pl 1<i<|pl|

The above formula computes the relevance
score between v, and v, as the sum of relevance
scores for all paths connecting v, and v, For each
such path, the relevance score between the two
endpoints is computed as the product of relevance
scores for all edges along the path. There can be
more detailed types of semantic relationships
(cause-effect, is-a, and is-part-of), or to use more
advanced inference rules withoutthe independent
assumption on the conditional probabilities, but
these extensions are beyond the scope of this
article.

Construction of Semantic Network

We assume that domain experts have provided
an initial semantic network, i.e., a set of edges
and nodes with their relevance scores. Based on
this initial semantic network, we compute the
relevance scores between any pair of nodes in
the network, and create the matrix W.

Let us consider the example in Figure 2. Sup-
pose matrix R stores the relevance scores of all
edges in the initial semantic network. The first,
second, third, and fourth row (column) in the
matrix corresponds to edges from (to) fish, tem-
perature, surface data, and land data. Rij stores
the relevance score from node i to node j.
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009 0 O
Jo 0 09 0
o 0 0 oo
0 0 0 O

Based on formula (1), the relevance score
between any pair of nodes equals the sum of rel-
evance scores of all paths between them. Using
matrix multiplicationrules, and for any given pair
(i, j) with i # , we calculate the sum of relevance
scores of all paths between i and j with length k.
Itis equal to R, where R*is the multiplication of
k matrices R. For example, the relevance scores
of all paths with length 2 is:

0008 0
R2=R*R=|0 0 0 081
00 0 O
00 0 0

There are two non-zero entries: Rz13 = 0.81,
identifying the relevance score between fish data
to surface data, and R?,, = 0.81 identifying the
score between temperature and land data. Hence,
the relevance score rs between any pair of nodes
in the network can be computed using the fol-
lowing formula:

rs= > R )

1<i<N

Using Semantic Networks to Elicit
Additional Semantics

A user in search of ecosystem data sources may
performakeyword search orsubmitaregular SQL
query to our system, which in turn will find data
sources that directly satisfy the user’s conditions.
We call these data sources exact answers. In ad-
dition to the exact answers, we describe a novel

approach to enhance and augment the result set
with additional sources, semantically relevant to
the exact answers, which the user might not be
aware of. We achieve this goal by exploiting the
semantic network, and returning all data sources
whose relevance score with the exact answers is
higherthanathreshold. For simplicity, we have set
the threshold in our system to 0.5 but a user can
adjust it according to how closely additional data
sources should be related to the exact answers.

For example, suppose a user wants to find all
datasourcesrelated to ‘fishpopulation.” The exact
answer contains only the fish population data set
because only that data set contains the keyword
“fish population.” However, using the semantic
network in Figure 2, our system will return all
other three data sources in the figure because they
are also related to the fish population according
to the semantic network. Therefore, we can au-
tomatically recommend to the users additional
semantic information (data sources) relevant to
the exact answers.

Visualizing Semantic Networks

Most existing systems for ecological research
(EML) return data sources as a list, and it is
difficult for users to go through them when the
list is long. Our system utilizes a hyperbolic tree
technique (Lamping, Rao, & Pirolli, 1995) to
visualize data sources and the semantic relation-
ships they form. Figure 3 shows an example of
such a tree. The main benefit of this technique
is to show users the entire set of exact answers
and additional related data sources at a glance,
as a visualization of all relevant nodes and edges
forming a semantic network. In addition, users
can dynamically adjust the display size of a data
source of their choice and automatically bring
it to the foreground concentrating on a specific
data source and all its edges connecting it to the
relevant sources.
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Dealing with Different User Preferences

We also consider the issue that different domain
experts may not have the same interests; instead
they may need to utilize different semantic net-
works (if available) pertaining to their own spe-
cialties. For example, a stream chemist may not
be interested in land use/land cover, contrary to
an urban developer who would certainly focus on
it. We address this problem by creating different
user profiles, each corresponding to a separate
semantic network with its own bias towards a
certain specialty. Initially, domain experts will
define a set of profiles. A new user will select a
profile before using our system, and can change
this selection at any time. For each profile, we
also track the usage patterns by users and collect
information thatisused to dynamically refine and
augment the network based on these patterns.
Therefore, although an initial profile may not
completely satisfy every user, it will adapt to user
preferences after some period of time.

Refining and Augmenting the Semantic
Network

The key idea to automatically refine, evolve, and
augment the semantic network isto monitor usage
patterns. Once the initial semantic network (or a

givenprofile) hasbeen created by adomain expert,
users can query the metadata repository for data
sources. The system provides exact answers and
recommends additional data sources (displayed
visually as in Figure 3). Then, the users select
(click on) those data sources potentially relevant
to their research. They submit their queries to
the data sources, while the metadata repository
keeps copies of queries to identify query pat-
terns. Based on the usage of these patterns by
users, we can infer additional relationships that
form between data sources. These relationships
are used to automatically expand, enhance and
refine the semantic network.

As an example, suppose two users have asked
for data sources related to ‘“fish population.” Userl
selects all four data sources in Figure 2, while
User2 selects only fish, temperature, and land
data. Let F, T, S, L represent fish, temperature,
surfaces, and land, respectively. We assume that
users agree to incorporate every edge connecting
two sources that they selected in the network, but
disagree with all other edges of sources they did
not select. For example, Userl agrees with the
edges F-T, T- S, and S-L. However, User2 agrees
with the edge F-T, but not the other two. The is-
sue is how User?2 selects the land data, which is
only related to fish via surface data in the current
network, and User2 does not select surface. We

Figure 3. Visualiing a semantic network as a hyperbolic tree
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assume the user agrees with relationship between
fish and land, where fish is an exact answer and
land isaselected source that is not covered by any
existing edges that the user agrees with. Thus, we
propose the Algorithm 1 to automatically augment
and refine the network.

This algorithm first creates a copy of the cur-
rent network at step 1. At step (2a) it identifies
the edges that users agree on based on usage pat-
terns. At step (2b), the algorithm identifies new
edges not in the current network, but necessary
for users to select those sources connected by
these edges. For instance, in the above example,
if the usage patterns consists of Q = {F, T, S,
L}, and Q, = {F, T, L}. At step 2a), the algorithm
will add to S, edges F-T, T-S, S-L for Q,, and F-T
for Q,. Thus, S, = {F-T, T-S, S-L, F-T}. At step
2b), the algorithm will add to S, edge F-L. Thus,

S, ={F-L}. Atstep 3, the algorithm re-computes
the relevance scores for the existing edges. The
new score consists of two components, the first
component is the current score, and the second
component is the score based on usage patterns.
These two components are combined using a
weight d, which is also called an aging factor
because it determines how quickly the new score
converges to the usage patterns. We set the aging
factord=0.5inthisarticle. In the above example,
the new scores are:

R(fish-temperature) = 0.9 * 0.5+ 1 * 0.5=10.95
R(temperature-surfaces) = 0.9 * 0.5 + 0.5 * 0.5
=07

R(surfaces-land) =09 *0.5+0.5*05=07
R(fish-land) = 0.5 * 0.5 = 0.25.

Algorithm 1. Automatic refinement of semantic network

a set of related answers selected by users.

Output: a refined network N’

add them to a multi-set S1.

selected in usage patterns.

unchanged.

Input: current network N, a set of usage patterns {Q1, ..., Qm}, where each Qi consists of a set of exact answers and

1. Create N’ as exact copy of N
2. For each user query Qi,
a. Identify all edges in the current network N that link two selected sources and

b. For any source selected by users but is not covered by an edge in N, generate
an edge from the exact answer to that source and add it to a multi-set S2.
3. For each edge AB in existing network N
There are three possible cases:
a. AB appears in S1. The new relevance score r(AB) equals
#(AB) *d + Occ(AB) / Occ(4) * (1-d)
where d is an aging factor ranging from 0 to 1, Occ(AB) is the number of

times edge AB appears in S1, and Occ(A) is the number of times node A is

b. AB does not appear in S1, and A is never selected. The score of AB remains

c. AB does not appear in S1, but A is selected. The new score equals r(AB) *d
4. For each edge AB in S2, add it to the new network N’ with relevance score Occ(AB)/

Occ(A), where Occ(AB) is the number of times edge AB appears in S2, and Occ(A) is
the number of times node A is selected in usage patterns.
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Data Navigation: A Visual Approach

Visualization of data can be proven to be a sig-
nificant decision support tool. It can provide deep
insights into data that are very difficult to capture
by automatic means. Since environmental data of-
ten have different spatial and temporal granulari-
ties, environmental researchers are interested in
viewing dataat multiple resolutions. Forexample,
a spike in stream flow, precipitation, and nitrogen
content will tell a scientist that there is an influx
of nitrogen in the stream due to a precipitation
event. However, a steady increase or decrease in
stream flow, precipitation, and nitrogen content
for several years will indicate a possible change
inthe longer term. Furthermore, the recent devel-
opment of wireless sensors and sensor networks
has allowed for the collection of environmental
dataat high temporal resolution. In consequence,
researchers often need to visualize this data for
long time scales, that is, at lower resolutions.

Therefore, we present an effective multi-
resolution visualization method using wavelets
to help researchers discover patterns, trends, and
surprises. The main benefit of using wavelets
compared to using fixed levels of resolutions is
that wavelets allow finer and more flexible levels
of resolutions. For example, fixed levels allow us-
ersto view stream temperature at minutes, hours,
and days, while wavelets allow users to view the
temperature at one minute, two minute, or four
minute spans, and so on.

In this article, we apply wavelet transforma-
tions—we used Haar wavelets (Goswami & Chan,
1999), and we are currently experimenting with
other wavelet transforms—for numerical at-
tributes. If the data contains spatial or temporal
attributes (e.g., indicating the location or time the
measurements were collected), we always sortthe
data records in the spatial or temporal order and
apply wavelet transformations to the sequence
of the measurement attributes in this order. Oth-
erwise, we view the measurement attributes as a
sequence in the order that records are stored in
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the database, and apply wavelet transformations.
Of course, in the latter case, the different levels
of resolutions do not have spatial or temporal
meanings, and only provide a lower-resolution
view of the data.

The generated wavelet coefficients are then
stored in an object-relational database (Oracle
10g). We have developed an algorithm (see Gos-
wami & Chan, 1999) to reconstruct not only the
complete set of the original data but also a certain
subset of it, at appropriate levels of resolutions.
The utility of reconstructing a subset of the
original dataset stems from the fact that a deci-
sion maker may want to find out only that part
of the original dataset that was used to generate
a particular coefficient.

We developed a visualization tool to help en-
vironmental scientists visually inspect temporal
and spatial datasets for noticeable trends and re-
lationships. Figure 4 depicts a prototype interface
developed in Visual Basic which allows users to
spatially locate and select data collection sitesand
visualize time-series data for the selected sites.
The top pane connects to the ESRI’s ArcSDE®
Geodatabase system where the user can navigate
spatially using zooming and panning tools. The
bottom pane connects to a DBMS which stores
raw data along with wavelet-transformed data
at various levels of temporal resolution. The left
side of the interface allows the user to (1) select
the site or sites of interest spatially or from a list,
(2) select the time period of the visualization, (3)
select the dataset (4) select the type of visualiza-
tion, and (5) interactively control the temporal
resolution of the visualization. The user can
select a site, or sites, either spatially by using the
GIS interface, or by selecting specific sites based
on the site name. Once a site is chosen, the user
can select the time period of the visualization by
providing the date and time. Then the user can
select whether he or she may want to visualize
the data using a line graph, bar graph, or scatter
plot. The visualization is then displayed in the
bottom pane of the interface. The slider below
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Figure 4. Visual navigation of data
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the displayed data allows the user to control the
temporal resolution of the visualization. Theslider
goes from the resolution of the raw data on the
left to the level n wavelet transformation on the
right. The scale on the slider can change, based
on a combination of the time period of the raw
dataset and the level of wavelet transformations
available. Data at the selected resolution will
be reconstructed from the stored wavelet coef-
ficients and shown to users. Figure 4 shows the
McDonogh stream temperature site along with
time series data at the 64 minute resolution for
the month of June, 2004.

Pattern Discovery Through
Multi-Resolution Data Mining

Multi-resolution dataminingissimilarinconcept
to online analytical mining (OLAM) (Han, 1998;
Han, Chee, & Chiang, 1998). Conceptually, it al-
lows a user to mine the data at different levels of
the dimension hierarchy. We propose to augment
the dimensional hierarchies with wavelet coef-

ficients at different levels of decomposition and
provide mining capabilities including association
rule mining, classification, and clustering. This
approach provides the benefits of OLAM, but in
addition, itenables users to select the appropriate
levels of resolution that would be ideally suited
for mining the data. If the data is noisy, wavelet
decomposition could reduce noise in the data and
would result in a better classifier. We illustrate
the efficacy of using wavelet decomposition in
classification and its resilience on noise in the
following section.

IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have conducted preliminary experiments
to validate our approaches of using semantic
networks to help environmental researchers find
related datasources and using wavelets to identify
patterns in different data resolutions. Our major
findings are:
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*  Usersofoursystem concludedthatourquery
expansion and visualization interface sur-
passes the traditional exact query interface.
In all cases we tested, our query expansion
interface returned more data sources than
the exact query interface. They also found
value in the automatic adaptation and aug-
mentation of the semantic network based
on profiles and refinement techniques.

e Wavelet transformation is a promising tool
to discover patterns at different resolutions
of data. Our experiments demonstrated
that for a real data set and a benchmark
data set, wavelet transformation preserved
most patterns in the data while it was used
to convert data to a lower resolution. More
interestingly, our results also showed that
wavelet transformationisvery robustto noise
in dataand in some cases even improved the
quality of discovered patterns.

We first describe the implementation details,
and then proceed to experimental results.

Implementation

We used Oracle 10g to store metadata of data
sourcesand semantic networks using the database
schemain Figure 5. We use three relational tables
(sources, edges, network) to store information
about data sources, keywords, and relevance
scores. The Edges table stores the edges and their
relevance scores in the semantic network. The
Network table stores the relevance scores between
any pair of nodes in the semantic network, which
iscomputed fromthe Edge table. We implemented
the algorithms described in the previous section
asPL/SQL stored procedures for the construction,
guery expansion, and dynamic augmentation of
the semantic network.

We implemented a semantic network query
interface (written in Visual Basic) for research-
ers to search data sources with semantic terms
related to their research; this interface is based
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on the semantic network and metadata repository
and is shown in Figure 6. The user first needs to
select a profile then provide keywords and finally
submit the search to database. Our query expan-
sion procedure will augment the query and return
all sources related to the given keywords in the
results window. The user can then visualize the
relationships (as edges) betweenreturned sources
by clicking the “view network’ button. Figure 7
shows the hyperbolic visualization of the results
obtained in Figure 6. We use a publicly available
Hyperbolic Tree Java Library (http://sourceforge.
net/projects/hypertree/) to display hyperbolic
trees. Users canalsorecord their selections by first
checking the sources of interest and then clicking
‘record.” Recorded selections are used as usage
patterns to dynamically augment the network as
described in the previous section. We have also
implemented a Haar wavelet transformation as a
stored procedure in an Oracle server and inserted
the results into a table, which will be later used
for pattern discovery.

Experiments with Semantic
Networks

Setup: We evaluated our semantic network ap-
proach using data sets collected by the Baltimore
Ecosystem Study (http://www.beslter.org/). Table
1 summarizes the details of these data sets.

Figure 5. Database schema for the semantic
network

Edges
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Sources
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Figure 6. Query interface using semantic networks

» vegetation

+ hydrology

« stream temperature
: |~ landscape

Figure 7. Visualization of results of Figure 6

We asked an environmental researcher to
define the edges in the initial semantic network
between these data sets. The researcher created
three different semantic networks corresponding
to three different profiles of users interested in
vegetation, stream temperature, and stream chem-
istry respectively. Figure 8 shows the networks
where Pi identifies the score in the it" profile. In
this experiment, the researcher considered the
relationships bidirectional.

We ran two experiments to test our search
interface and the semantic network refinement
algorithm. In the first experiment, we asked
another researcher to use our search interface to
find related data sources and asked him to give
us feedback on the appropriateness of the results.
Dueto limited resources, we asked that researcher

to take on alternate roles of three different types
of users and then we selected one of the three
profiles. The researcher posted three example
queries as follows:

e Query 1: What data sets are related to ri-
parian vegetation? The researcher selected
profile 1 and searched the data sources with
keyword ‘vegetation.’

e Query 2: What factors contribute to the
fluctuations in stream temperature? The
researcher selected profile 2 andused ‘stream
temperature’ as the keyword.

e Query 3: What factors may affect the
stream chemistry? The researcher selected
profile 3 and used ‘stream chemistry’ as the
keyword.
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Table 1. Data sources used in semantic network experiments

Data Source Name Description

Location

Gwynns Falls in Baltimore area

Vegetation Riparian vegetation of the Gwynns Falls | http://www.ecostudies.org/pub/besveg/
Watershed in Baltimore area riparian.zip
Hydrology Streamflow data collected along the http://waterdata.usgs.gov/md/nwis/

nwisman?site_no=01589352

Stream Temperature
Watershed

Stream temperature of the Gwynns Falls

As an Excel file on local file server

Meteorology

Baltimore meteorological station data

http://www.ecostudies.org/pub/bes_
206.zip

Stream Chemistry
Falls Watershed

Stream chemistry data of the Gwynns

As a text file on local file server

Landscape

Satellite image data of Baltimore area
landscape (forests, grass, crops, etc.)

As a text file on local file server

Table 2. Adapted from A Primer on Landsat 7 (http://imaging,geocomm,com/features/sensor/land-

sat7)

Spectral Bandwidth Ranges for Landsat 7 ETM+ Sensor (1)

Band Number Wavelength Range Recommended Application

Band 1 0.45 - 0.52 (blue-green) soil apd vegetation discrimination and forest type
mapping

Band 2 0.53 - 0.61 (green) vegetation discrimination, plant vigor

Band 3 0.63 - 0.69 (red) detection of roads, bare soil, and vegetation type

Band 4 0.78 - 0.90 (near-infrared) blomas_s estlm_atlon_, separa_tlon_ of wa_ter from
vegetation, soil moisture discrimination

Band 5 1.55 - 1.75 (mid-infrared) discrimination of roads, bare soils, and water

10.4 - 12.5 (thermal . .

Band 6 infrared) measuring plant heat stress and thermal mapping

Band 7 2.09 - 2.35 (mid-infrared) dlscrlm_matlon of mmergl anq rock types, interpreting
vegetation cover and soil moisture

Band 8 .52 - .90 (panchromatic) for enhanced resolution and increased detection ability

In the second experiment, we asked the re-
searchertoselectasetof datasourcesintheresults
of Query 4 that he thought was most related to the
question he asked. We then ran our algorithm to
refine the semantic network based on his selec-
tion and compared the results for Query 4 with
the results using the original network. Our search
interface returned the following results:

. Query 1. Vegetation, hydrology, stream
temperature, and landscape.
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. Query 2: Streamtemperature, meteorology,

and landscape.

e Query 3: Hydrology, meteorology, stream

chemistry, and landscape.

In all cases, the exact search interface only
returned one datasource with the search keyword,
while our search interface returned multiple
sources (4 for Query 1 and 3, and 3 for Query
2). We also asked the researcher to look at the
results returned by our interface, and he found the
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answersreturned by our search interface actually
related to these research questions.

In the second experiment, the user selected
only the first three data sources for Query 3.
When the researcher ran Query 3 on the refined
network, the ‘landscape’ data source is no longer
in the search results due to the refinement. This
reflected the user selection.

In summary, our experiments verified that
our system exploits data source relationships that
are maintained in semantic networks and sup-
plies users with additional data sources that are
relevant to their original search, but they might
not be aware of.

Experiments for Knowledge
Discovery using Wavelet
Transformations

We conducted several experiments to test our
hypothesis that wavelet transformation results in
preserving patternsin data. Inthe firstexperiment,
we used remote sensing data from the Landsat
7 ETM+ sensor. Data from the Landsat 7 ETM+
sensor is typically used by environmental sci-
entists to characterize the landscape in terms of

Figure 9. Performance comparison

land cover. The Landsat 7 ET M+ sensor captures
wavelength values for 8 spectral bands based
on the reflectance of the earth’s surface. Table 2
shows the range of wavelengths captured in each
band and its recommended application.

We downloadedaLandsat 7 ETM+scene from
October5, 2001, covering central Maryland (path
15/row 33), from the Global Land Cover Facility
(http:/fglcf.umiacs.umd.edu/data/). We extracted
spectral information from the Landsat image
and a subset was evaluated for a 1.2 km?2area in
northern Baltimore County, Maryland. We then
manually classified land cover values of crop,
grass, forest, or water based on high resolution
aerial photography.The resulting dataset consisted
of eight attributes representing the spectral bands
and one class attribute representing the four dis-
tinct land cover values. The spectral bands were
used to identify whether the land cover is ‘grass,’
“forest,” “‘water,’ or ‘crops’.This yielded 1193 in-
stances that were divided into two groups. Group
1 had 616 instances that were used for training
and group 2 had 577 instances that were used for
testing. We performed the following steps. We
(1) divided the data into two disjoint sets—a test
set and a training set; (2) performed first level of

Performance comparison

Predictive accuracy
o
®

Adaptive Bayes Network

O Raw data

Naive Bayes

Data mining algorithms

— |M@50% stratified sample

O Wavelet transfomed data

—

Support Vector Machine

229



Semantic Integration and Knowledge Discovery for Environmental Research

Figure 10. Performance comparison on noisy data
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(c)

Haar wavelet transformation on the raw data; (3)
created a 50% stratified sample of the training set
of the raw data; (4) created three classifiers based
on raw data, 50% stratified sample, and wavelet
transformed data; and (5) compared the predic-
tive accuracy on test data for the three classifiers.

230

Two sets of three different classifiers were built
using an adaptive Bayes network, a naive Bayes
method, and supportvector machines (with linear
kernel function) for the raw data and approximate
coefficients from a Haar wavelet transformation of
the raw data. We used Oracle 10g as the database
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and Oracle Data Miner for the mining functions.
The reason for testing with a stratified sample is
that the Haar wavelet transform reduces the data
size by half. Hence the size of the training set for
raw data is twice as large as that of the wavelet
transformed data. AsshowninFigure 9, intwo out
of three methods (naive Bayes and support vector
machine), the use of a Haar wavelet transform
resulted in a better classifier than both (1) the raw
data with twice the size of the training set and (2)
a 50% stratified sample that had the same size of
thetraining set. For the adaptive Bayes network, a
wavelet transform resulted in 2% loss of predictive
accuracy as compared with the raw data, but had
aslightly higher predictive accuracy when tested
with a training set of the same size.

In addition, we decided to test the sensitivity
of classifier accuracy on anoisy dataset. For these
experiments, we used the Iris plant dataset from
the UCI machine learning repository (http:/www.
ics.uci.edu/~mlearn/MLSummary.html). Theda-
taset contained 150 instances with four attributes
and three class labels. The attributes represent
sepal length, sepal height, petal length, and petal
width and the class variable refers to one of three
types of iris plant. Again, the same environment
was used to test the predictive accuracy of three
classifiers: an adaptive Bayes network, a naive
Bayes method, and support vector machine. In
each case, we introduced random noise following
standard normal distribution to 10%-40% of the
instances. As shown in Figures 10a-c, use of the
Haar wavelet transform resulted in a classifier
with a comparable predictive accuracy to the raw
data. It is evident that the raw data outperforms
the wavelet transformed data with 40% noise
with the disparity in performance being more
pronounced in the adaptive Bayes and naive
Bayes methods. This indicates a threshold in the
noise-to-signal ratio below which the benefit of
wavelet transformation is lost. Wavelets can be
applied to any numerical attributes assuming
that the data is sorted in the order that they are
stored in the database. This approach has also

been used by many existing studies (Matiasetal.,
1998; Smith et al., 2004; Vitter & Wang, 1999;
Vitter et al., 1998). The only difference is that
the levels of resolutions do not have temporal or
spatial meanings. While more research is needed
to establish the efficacy of wavelet transforma-
tion, these preliminary experiments do indicate
that wavelet transformation holds promise as
a robust tool for pattern discovery at multiple
levels of data and as a method for data reduction
in very large datasets with little degradation in
predictive accuracy.

CONCLUSION

In this article, we have described a methodology
for data integration and pattern discovery for
environmental research using data semantics.
We used semantics to integrate multiple data
sources to answer user queries for environmental
research. Our methodology to describe the data
sources is based on a metadata approach and
takes advantage of data interrelationships repre-
sented as a semantic network. User queries are
automatically expanded using a relevance score
matrix and a semantic network, which can be
visualized as a hyperbolic tree. We have utilized
user profiles to capture diverse user preferences to
precisely answer user queries, and have presented
an algorithm to automatically expand, augment
and refine the semantic network by observing
usage patterns. We have demonstrated that our
semantic integration techniques offer a power-
ful, straightforward and user-friendly approach
for the visualization of significant amounts of
environmental data sources.

In addition to enabling search for data in the
integrated system described above, we also allow
usersto navigate through multi-dimensional data
through visualization, implemented using wavelet
transformation. We have used Haar wavelets that
decompose data by averaging and differencing
consecutive, non-overlapping pairs of dataateach
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level of decomposition. Thus, users can visualize
multiple levels of data and roll-up or drill down at
different levels of hierarchy. They can also apply
data mining techniques such as classification at
different levels of resolution. We have illustrated
that patterns in the data are well preserved at first
level decomposition with 50% reduction in data
size. We have also demonstrated the resilience of
wavelet transformation to noisy data.

The research presented in this article is being
enhanced by further development of the described
methodologies and further experimentation with
pattern discovery at multiple levels of resolution.
We plan to incorporate data mining and machine
learning techniques to aid in the enhancement
and refinement of the semantic network. The
methodology presented in this article can also be
applied to other application areas where search,
visualization, and pattern discovery of data from
multiple sources are needed.
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ABSTRACT

This chapter gives a survey of some existing methods for visualizing multi dimensional data, that is, data
with more than three dimensions. To keep the size of the chapter reasonably small, we have limited the
methods presented by restricting ourselves to numerical data. We start with a brief history of the field
and a study of several taxonomies; then we propose our own taxonomy and use it to structure the rest of
the chapter. Throughout the chapter, the iris data set is used to illustrate most of the methods since this
is a data set with which many readers will be familiar. We end with a list of freely available software
and a table that gives a quick reference for the bibliography of the methods presented.

INTRODUCTION

Theadventof the personal computer has provided
mankind with enormous benefits: we have access
to more information than ever before and have
such access virtually 24 hours per day, 7 days
per week thanks to the Internet. However, it is
in the nature of humankind that we always wish
for more: in this case, we have all this data but
actually finding information within the data is

often an extremely complex task. This chapter
will devote itself to this problem. We will restrict
ourselves to numeric data: this is the simplest
and perhaps most frequent form of data in which
we seek information. The numeric data will
often be multi dimensional: we might envisage
information about an individual consisting of
height, weight, bank balance, and so on, so that
each of these fields constitutes one dimension of
a long description of the individual. Thus, if we
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have 10 fields, we have a 10-dimensional vector
describing each individual. The task then might
be to identify groups of individuals, all of whom
share some common characteristic. For example,
itis known that tall people tend to earn more than
their shorter brethren (a fact which causes some
of us some disquiet). In order to ascertain this
fact, we must have a way of identifying structure
across dimension boundaries. This chapter will
investigate methods for performing such identi-
fications in a semi-automated manner.

We state semi-automated since we believe
that the computer and the human both have roles
to play in identifying structure: the computer is
very good at handling large volumes of data and
manipulating such data in an automatic manner;
but humans are very good at pattern identifica-
tion much better than computers (consider how
face recognition systems have failed to live up
to our expectations, even now). Therefore, we
envisage a partnership between the human and
the computer software with each performing the
role to which they are best suited. The computer
software will manipulate the multi dimensional
data and present it to the human in a way which
facilitates the human’s pattern matching. An
example of this is Exploratory Projection Pursuit
(see later) in which the high-dimensional data is
projected onto atwo dimensional subspace insuch
a way that the structure of the data (for example,
clusters) is most easily identified by the human
eye. Another example is the use of Andrews’
Curves in which each data point is represented
by a curve. A human can run an eye along a set
of curves (representing the members of the data
set) and identify particular regions of the curve
which are optimal for identifying clusters in the
data set.

However, interestingly, several of the methods
which we use to find structure (i.e., the computer
software part of the partnership) are based on
neural networks, the network of neuronswhich we
have in our brains. Does this suggest that humans
might be able to dispense with the computer soft-

ware and perform the whole task themselves? Itis
a nice thought but common experience suggests
that it is not so; we require intelligent software
to help us find structure in multi dimensional
data sets.

HISTORY

Let us see first a quick review of the history of
visualization techniques. Theroots of information
visualization as a practical field can be established
in the works of Tukey (1977), Bertin (1981, 1983),
and Tufte (1983) who focused on 2D and 3D visu-
alization and produced general rules for the plane,
colourcomposition, and attribute mapping, among
others. The use of the attributes of a database as
dimensions was the rationale behind the study of
the multi dimensional techniques. The contents of
this chapter can be classified into this last category.
However, the study of multivariate visualization
began some centuries before; following Wong and
Bergeron (1997), the evolution of the field can be
divided into four periods:

1. The searching stage (from 1782 to 1976):
Characterized by relatively small sized data
and tools for data visualization that usu-
ally consisted of colour pencils and graph
paper.

2. Theawakeningstage (from 1977 to 1985):
Two and three dimensional spatial datawere
the most common data types being studied,
although multivariate data started gaining
more attention.

3. Thediscovery stage (from 1986 to 1991):
The limited availability of high speed graph-
ics hardware during the previous stage was
gradually conquered. Most of the visualiza-
tion methods presented in this chapter were
developed in this period.

4.  The elaboration and assessment stage
(from 1992 to present): This period has
been a retrenchment in the development of
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new visualization techniques. Some of the
most recently developed tools are elabora-
tions of work done in previous stages.

In this chapter, we will focus on visualization
techniques for numerical data, when the number
of attributes to represent is higher than three. The
datavisualization field includes also visualization
of non-numerical data, hierarchical and graph
relations, and time series and temporal data. A
full review of the entire field is beyond the scope
of this chapter. A general overview can be found
inWong and Bergeron (1997); Ferreirade Oliveira
and Levkowitz (2003); and Keim (1997, 2002).
Nevertheless, we start with a short description
of some taxonomies of visualization methods,
and then we present our own vision of the field
that we have used to structure the remainder of
the chapter. After that, we explain in detail each
classinour classification emphasizing some of the
more significant visualization methods belonging
to that class. We will finish by giving a list of
some of the software tools for data visualization
freely available on the Internet.

TAXONOMIES OF VISUALIZATION
METHODS

There is no universal consensus on the best tax-
onomy. In the following subsections, we present
two of the more elaborate ones. As well, we give
our own vision of the field, a taxonomy use to
organize this chapter.

Taxonomy of Techniques by
Shneiderman

In addition to the visual information seeking
mantra—"“Overview first, zoom and filter, then
details-on-demand—Shneiderman (1996) pro-
pounded atask by datatype taxonomy of informa-
tion visualizations. The seven tasks are:
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Overview: Gain an overview of the entire
collection.

Zoom: Zoominonitemsof interestallowing
a more detailed view.

Filter: Filter out uninteresting items reduc-
ing the size of search.
Details-on-demand: Selectanitemorgroup
and get details when needed.

Relate: View relationships among items
History: Keepahistory of actionsto support
undo, replay, and progressive refinement al-
lowing a mistake to be undone, or a series
of steps to be replayed.

Extract: Allow extraction of subcollections
and saving, printing, or dragging to another
application.

The seven data types considered are:

1-dimensional: Linear data types include
textual documents, program source code,
and lists of names in alphabetical order.
2-dimensional: Planar or map data include
geographic maps, floor plans, or newspaper
layouts.

3-dimensional: Real-world objects such as
molecules, the human body, and buildings.
The user must cope with understanding their
position and orientation when viewing the
objects.

Multi dimensional: Items with n attributes
become points in a n-dimensional space.
Temporal: This data type is different from
the 1-dimensional data type because nowthe
items have a start and finish time and items
may overlap.

Tree: Collections of items, where each item
has a link to one parent item (except the
root). Items and the links between parent
and children can have multiple attributes.
Network: The items are linked to an arbi-
trary number of other items and the relation-
ships among items cannot be captured with
a tree structure.
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Taxonomies of Techniques by Keim

Keimand Kriegel (1996) categorize the visualiza-
tion techniques into the following:

. Geometric techniques. The aim of those
techniques is to find “interesting” transfor-
mations of multi dimensional datasets. This
classincludes Scatterplot Matrix (Becker &
Cleveland, 1987; Chambers, Cleveland, Ke-
liner & Tukey, 1983), Principal Component
Analysis (Jolliffe, 1986), Factor Analysis
(Lewis-Beck, 1994), Multi dimensional
Scaling (Kruskal & Wish, 1978; Shepard,
Romney, & Nerlove, 1972; Torgerson, 1952),
Projection Pursuit (Huber, 1985), Parallel
Coordinates (Inselberg, 1985; Inselberg,
Chen, Shieh, & Lee, 1990), and so forth.

. Icon-based techniques. Every multi dimen-
sional item is mapped onto an icon or glyph.
The data values determine the geometric
and/or colour characteristics of the glyph.
The amount of observations that it is pos-
sible to visualize at the same time is quite
limited, and depends on the characteristics
of the icon. Examples are Chernoff Faces
(Chernoff, 1973), Star Icons (Ward, 1994),
Colour Icons (Levkowitz, 1991), and Stick
Figure Icons (Grinstein, Pickett, & Williams,

1989). Later, we will give more details about
the first of these methods.

Pixel-oriented techniques. In these tech-
niques, the data attributes are mapped onto
pixels; the colour of each pixel depends on
the values of the attributes. An important
aspectisthe spatial distribution of the pixels
(Keim & Kriegel, 1994); some examples
are the recursive pattern technique, the
circle segments technique, and the spiral
technique.

Hierarchical techniques. The multi di-
mensional space is divided hierarchically
in subspaces. Examples are Dimensional
Stacking (LeBlanc, Ward, & Wittels, 1990)
and Worlds-within-Worlds (Behsers &
Feiner, 1990).

Graph-based techniques. These are spe-
cialized techniques for presenting large
graphs using specific layout algorithms, que-
ry languages, and abstraction techniques.
For example, the Treemap (Shneiderman,
1992), a method that recursively subdivides
a 2-D rectangular space to visualize large
hierarchies.

The previous classification is extended by

Keim (2000) with another two orthogonal crite-

ria:

the distortion technique and the interaction

Figure 1. The classification of information visualization techniques (Adapted from Keim, 2000)
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Figure 2. The classification of information visualization techniques (Adapted from Keim, 2002)
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technique. The first is to show portions of the data
with different levels of detail. The second allows
the userto directly interact with the visualization.
The three criteria are shown as orthogonal axes
of a classification system as we can see in Figure
1. It is worth noting that the distortion techniques
alone deserve their own taxonomy that has been
analyzed by Leung and Apperley (1994).

In Keim (2002), the interaction and distortion
criteria are combined in one axis, the data to be
visualized is added as a new criteria, and the
visualization techniques are presented slightly
changed as we can see in Figure 2. The methods
proposed in this chapter fall into the geometric
techniques category of Keim (2000), or similarly
inthe geometrically transformed display category
used in Keim (2002).

Our Own Taxonomy

We have grouped the visualization methods
presented in this chapter, all of them to deal
with numerical data,* according to the following
classification:

. Linear projection methods. A lower
dimensional representation of the data is
obtained using a linear projection of the
multi dimensional space. Some examples
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are Principal Component Analysis (PCA)
(Hotelling, 1933; Jolliffe, 1986), Exploratory
Projection Pursuit (EPP) (Friedman, 1987,
Friedman & Tukey, 1974; Jones & Sibson,
1987), and Scatterplot Matrix (Becker &
Cleveland, 1987; Chambers et al., 1983).

e Topology preservation methods. Anonlin-
ear mapping between the multi dimensional
space and the lower-dimensional representa-
tion is used trying to maintain the topology
of the multi dimensional space: Sammon
mapping (Sammon, 1969), Curvilinear
Component Analysis (CCA) (Demartines &
Hérault, 1997), Self Organizing Maps (SOM)
(Kohonen, 1992, 2001), and Spring Models
(Chalmers, 1996; Morrison & Chalmers,
2003).

. Multi dimensional representations. This
timethereisnodimension reduction; instead
of that, all the values of the coordinates are
used to obtain the graphical representation;
examples are Chernoff Faces (Chernoff,
1973), Parallel Coordinates (Inselberg &
Dimsdale, 1990; Wegman, 1991), Andrews’
Curves (Andrews, 1972), and Multi dimen-
sional Stacking (LeBlanc et al., 1990).

. Grand tour methods. Instead of one static
representation of the data, a sequence of
projections is used to study the structure of
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Figure 3. The Gaussian distribution and its higher order moments
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the data. Some of the algorithms (Asimoyv,
1985; Wegman, 1990; Wegman & Solka,
2002) used to obtain such a sequence are
the Asimov-Buja winding algorithm, the
random curve algorithm, the fractal curve
algorithm, and the pseudo grand tour.

LINEAR PROJECTION METHODS

Sometimes, it is possible to see the structure of
a multi dimensional data set just by changing
the basis of the considered space. However, the
decision as to what basis to use would require
a fore-knowledge of the pattern one wants to
identify. One possible solution to this problem
is the use of the directions which explain most
of the variance in the data set; such directions
are called the principal component directions of
the data set. The rationale for this is that without
any information about the distribution of the
data set, the standard assumption is to suppose
that the data set follows a Gaussian distribution

(see Figure 3), and in Gaussian distributions the
amount of information is directly proportional
to the variance. Even if the distribution is not
Gaussian, there is liable to be more information in
high variance projections than in a low variance
projection. The use of the principal component
projections to analyze a data set is known as
Principal Component Analysis (Hotelling, 1933;
Jolliffe, 1986). When the distribution is not a
Gaussian, instead of maximizing the variance,
we can try to maximize other moments of the
distribution? (Table 3). This last approach gives
rise to a set of techniques known as Exploratory
Projection Pursuit (Friedman, 1987; Friedman
& Tukey, 1974; Jones & Sibson, 1987). In the
following sections, we give more details about
these two techniques.

Principal Component Analysis
For some data sets, the projection onto the princi-

pal components (or PCs) lets us visualize clearly
their structure. In this way, we can try to discover
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Figure 4. An example in which the projection onto the PC directions reveals for us structure in the dataset

(in this case, the existence of two clusters)

the structure of a multi dimensional data set by
projecting it onto the subspace defined by the
first principal components (usually the first two
or three). The projection onto the first principal
component explains most of the variance of the
data; then the projection onto the second principal
component, which is orthogonal to the first one,
explains the next most, and so on. In Figure 4, we
cansee an example of this. We have adata set with
three variables (in this case the dimensionality

of the data set makes a graphical representation
possible, but with greater than three dimensions,
this is not the case), and we can discover the
existence of the clusters when we project it onto
the one dimensional space of the first principal
component (actually, in this case, we can see the
histogram of the projection).

The principal components represent the most
important linear characteristics of the data. The
aim of PCA is the identification of the dependency

Figure 5. The first two principal components of the iris data set

15
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existing between the variables; see Jolliffe (1986)
for an extensive treatment of this technique. The
higher the correlation between the variables and
the fewer the number of the independent variables,
the more the dimensionality can be reduced.

Using PCA a multi dimensional data set can
be represented by a few principal components
(from the point of view of graphical representa-
tion, the ideal number is two or three), so PCA
can be considered as much a feature extraction
technique asadatacompression technique. Figure
5 shows the first two principal components of a
four dimensional data set, the well known iris
data set (Ripley, 1996).

How to Calculate the Principal
Components

Thereexistseveral algebraic methodsto calculate
the principal components of a data set: the power
method, Householder transformation and Lanczos
method, and also neural networks algorithms; a
good review of these is presented by Diamantaras
and Kung (1996). The most famous of the neural
network methods is Oja’s algorithm (Oja, 1982,
1989; Oja, Ogawa, & Wangviwattana, 1992a,
1992h); here we are interested in a negative feed-

back implementation of PCA defined by (1)-(3)
(Fyfe, 1993, 1995a). Letushave an N-dimensional
input vector, x, and an M-dimensional output
vector, y, with w; as the weight linking the j*
input to the i" output. The learning rate n is a
small value which will be annealed to zero over
the course of training the network. The activation
passing from input to output through the weights
isdescribed by (1). The activation is then fed back
though the weights from the outputs and the error,
e, calculated for each input dimension. Finally
the weights are updated using simple Hebbian
learning (see later).

@
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Several variations of this network have been
used to perform clustering with topology preser-
vation (Fyfe, 1995b), to perform Factor Analysis
(Charles & Fyfe, 1998; Fyfe & Charles, 1999), and

Figure 6. An example in which the projection onto the first PC does not give information about the

structure of the data set
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to perform Exploratory Projection Pursuit (Fyfe,
1997; Fyfe & Baddeley, 1995).

Exploratory Projection Pursuit

Sometimes the projection onto the principal
components does not give any clue about the
structure of the data set; in Figure 6, we can see
thatthis time the projection onto the first principal
component direction (that is approximately the
x-axis direction) does not give any information
about the structure in the data set. Something
similar happens with the projection onto the y
axis. On the contrary, the projection onto the z-
axis reveals the existence of two clusters to us. In
circumstances like this, we can use Exploratory
Projection Pursuit.

Exploratory Projection Pursuit (Friedman,
1987) is a generic name for the set of techniques
designed to identify structure in multidimension
data sets. In such data sets, structure often ex-
ists across data field boundaries, and one way to
reveal such structure is to project the data onto a
lower dimension space and then look for struc-
ture in this lower dimension projection by eye.
However, we need to determine what constitutes
the best subspace onto which the data should be
projected.

Exploratory Projection Pursuit is a technique
for exploring multi dimensional spaces. As we
have seen, PCA searches for filters in a data set
which maximize the variance of the projections
of the data onto these filters. EPP can be thought
of as an extension of PCA since it is a technique
for finding projections which maximise some
statistic over the data set. For example, when
we wish to identify clusters in a data set, their
presence might be revealed by a negative fourth
moment (kurtosis) in the projections. EPP hasalso
been implemented using artificial neural networks
(Fyfe, 1997; Fyfe & Baddeley, 1995).

As noted by Diaconis and Freedman (1984),
the typical projection of multi dimensional data
will have a Gaussian distribution, and so little
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structure will be evident. Thishas led researchers
to suggest that what they should be looking for is
aprojectionwhich givesadistributionasdifferent
from a Gaussian as possible. Thus we typically
define an index of “interestingness” in terms of
how far the resultant projection is from a Gauss-
ian distribution. Since the Gaussian distribution
is totally determined by its first two moments,
we usually sphere the data (make it zero mean
and with covariance matrix the identity matrix)
so that we have a level playing field to determine
departures from Gaussianity. In this section, we
will review two methods of performing Explor-
atory Projection Pursuit with neural algorithms
based on the network introduced in the previous
section. In Garcia-Osorio and Fyfe (2003), we
propose a new method which is a combination of
these two and compare the three methods.

The Output Functions EPP Algorithm

Two common measures of deviation from a
Gaussian distribution are based on the higher
order moments of the distribution (see Figure 3).
Skewness is based on the normalized third moment
of the distribution and basically measures if the
distribution is symmetrical. Kurtosis is based on
the normalized fourth moment of the distribution
and measures the heaviness of the tails of a dis-
tribution. A bimodal distribution will often also
have a negative kurtosis, and therefore, kurtosis
can signal that a particular distribution shows
evidence of clustering. Whilst these measures
have their drawbacks as measures of deviation
from normality (particularly their sensitivity to
outliers), their simplicity makes them ideal for
explanatory purposes.

The only difference between the PCA network
and the EPP network is that a function of the
output activations is calculated and used in the
simple Hebbian learning procedure. We have for N
dimensional input data and M output neurons,
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where r. is the value of the function () on the i®
output neuron. Thus (8) may be written in matrix
form as:

AW(l) = n(t)[I- WEOW (@)]x(t)f(x" ()W (1))

©)

where t is an index of time and I is the identity
matrix.

Following Karkunen and Joutsensalo (1994),
we can derive (9) as an approximation to the
maximization of a function of the weights
JW) =M B(g[xTw,]|w;) with E() the
expectation operator and w; the weight vector
into the i™" output neuron.

We must ensure that the optimal solution
is kept bounded; otherwise there is nothing to
stop the weights from growing without bound.
Formally,

M

let J(W) = Z E(g[x" wi]|w;)

Aij [w;"w.,- — ag;) (10)

where the last term enforces the constraints
WiTWJ.—aij using the Lagrange multipliers Ay AS
usual, we differentiate this equation with respect
to the weights and with respect to the Lagrange
multipliers. This yields respectively, at a station-
ary point,

aJ(W) S g e ) e
W E(xg (x" W)|W)+ WA =0 and
(11)
wiw A (12)

where g'(x"W) is the elementwise derivative of
g'(x"W) with respect to W, A is the matrix of
parameters a, (often the identity matrix) and A
is the matrix of Lagrange multipliers. Equations
(11) and (12) define the optimal points of the
process. Premultiplying (11) by W™ and inserting
(12), we get,

A= AW B(xg (xTW)|W)

and using this value and reinserting this optimal
value of A into (11) yields the equation,

aJ(W)

W~ [I- WA'WT|B(xg (x" W)|W)

13)

We wish to use an instantaneous version of
this in a gradient ascent algorithm,

DI (W)

—— adW

to yield

AW = u[I - WA'WT|xg (xT"W)
(14)

We will be interested in the special case where
the W values form an orthonormal basis of the
data space and so A = I, the identity matrix.
Therefore, we can equate (14) with (9).
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Summing up, the network operation is
Feedforward:

N
= quwy.\?’i
j=1
Feedback:

M
=37

€j =T — 2 , Wijli
i=1

Weight change:
Awi; = nf(y:)ey

where the function f() is determined by the func-
tion g(.) which we wish to maximize.

The Maximum Likelihood EPP
Algorithm

Various researchers (Karhunen & Joutsensalo,
1994; Xu, 1993) have shown that the learning
rules (1)-(3) can be derived as an approximation
to the best linear compression of the data. Thus
we may start with the cost function,

J =1TE{(x - Wy)*} (15)

which we minimize to get (3).

We may show that the minimization of J is
equivalent to minimizing the negative log prob-
abilities of the residual, e, if e is Gaussian and
thus is equal to maximizing the probabilities of
the residual (Bishop, 1995). Let the probability
of the residuals p(e) = (1/Z)exp(—e?) where Z is a
normalization term. Then we can denote a general
cost function associated with the network as,

J = —logp(e) = (e)* + K (16)

Intuitively, J gives a measure as to how prob-
able the residual is under the current model pa-
rameters. Since the only parameters which can be
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changed are the weights which both feed forward
and backward, these are the parameters which we
must adapt in order to make the residuals more
likely under the model. Therefore, performing
gradient descent on J we have,

al _ aJ de

AWE T = T

y(2e)” 17)
where we have discarded arelatively unimportant
term (Karhunen & Joutsensalo, 1994).

An extension of the above was considered by
Corchadoand Fyfe (2002) and Fyfe and McDonald
(2002) with a more general cost function:

J = Jile) = [i(x — Wy) (18)

Let us now consider the residual after the
feedback to have probability density function:

p(e) =  exp(~[el?) (19)

Then we can denote a general cost function
associated with this network as,

J=—logp(e) =(e)’ + K (20)

where K is a constant. Therefore performing
gradient descent on J we have,

a.J aJ de T
- = —- =3 leP—1 sig 2
W = e aw ~ Py (lel" sign(e))

(21)

AW x

We would expect that for leptokurtotic residu-
als (more kurtotic than a Gaussian distribution),
values of p < 2 would be appropriate, while
platykurtotic residuals (less kurtotic thana Gauss-
ian), values of p > 2 would be appropriate. It has
been shown (Hyvarinen, Karhunen, & Oja, 2001)
that it is less important to get exactly the correct
distribution when searching for a specific source
than it is to get an approximately correct distri-
bution; that is, all super-Gaussian signals can be
retrievedusingageneric leptokurtotic distribution
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and all sub-Gaussian signals can be retrieved us-
ing a generic platykurtotic distribution.

Therefore, the network operation is:
Feedforward:

N
= qu;}:y.\?’i
j=1
Feedback:

M
=37

€j =T — 2 , Wijli
i=1

Weight change:

Aw;j = ny; sign(e;)|e;|P~!

where the value of p is determined by the type of
structure we seek.

Now the nature and quantization of the inter-
estingness is in terms of how likely the residuals
are under a particular model of the probability
density function of the residual. As with standard
EPP, we also sphere the data before applying the
learning method to the sphered data.

Scatter Plot Matrix

Thistechnique is one of the oldest and most popu-
lar methods for projecting multi dimensional data
(Becker, Cleveland, & Wilks, 1987; Cleveland
& McGill, 1988). With this technique, instead of
having only one representation of the data, we
can view the data from different perspectives.
In the scatterplot matrix, which is also named
the Draftman’s display of axes, if we have an
N-dimensional data set, the scatter plot matrix
will have N rows and N columns, and the it
row and j" column of this matrix is a plot of the
data projected onto the i and j axes, showing the
relations between each pair of variables and the
nature of these relationships (direct or indirect,
linear or nonlinear, degree of relationship, etc.).

The presence of outliers and clusters in the data
can be identified as well. Figure 7 shows the scat-
terplot matrix for the iris data set.

The basic idea of the scatter plot matrix can
be presented with a few variations:

1. The diagonal plot is simply a 45 degree
ling, so an alternative to that is to plot the
univariate histogram (as in Figure 7) or to
print the variable label.

2. Sincethescatter plot matrix is symmetrical,
it is possible to omit the plots below the
diagonal, or use the upper portion to print
the correlation coefficients.

3. It can be helpful to overlay some type of
fitted curve on the scatter plots.

4.  As proposed by Becker and Cleveland
(1987), we can use the scatter plot matrix
with interaction techniques such asbrushing
and linking. Below we go a bit more deeply
into these techniques.

The main drawback of the scatter plot matrix
is that as we increase the dimensionality, we
leave less screen space for each projection. Ware
and Beatty (1988) present a technique to lighten
this problem by means of the use of colour. Each
point is a coloured patch rather than a black point
on a white background. We can use three of the
dimensionsto determinetheamountofred, green,
and blue that gives the final colour.

Other visualization tools that use some of the
ideas in the scatter plot matrix representation are
the Hyperbox of Alpern and Carter (1991) and the
HyperSlice of Wijk and Leire (1993). The former
presentsthe different orthogonal projections of the
data set onto the faces of an N-dimensional box,
that is depicted in a 2-dimensional way, instead
of onto the cells of a matrix grid. The latter uses
the same matrix arrangement but presents slices
of scalar functions of many variables instead of
orthogonal data projections.
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Figure 7. Scatterplot for the iris dataset
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Brushing and Linking

The brushing technique has its origin as an
interaction technique used in combination with
scatterplot matrices. Beckerand Cleveland (1987,
p. 128) state:

The central object in brushing is the brush, a
rectangle that is superimposed on the screen ....
The data analyst moves the brush to different
positions on the scatterplot matrix by moving
a mouse. There are four basic brushing opera-
tions—highlight, shadow highlight, delete, and
label. Each operation is carried outin one of three
paintmodes—transient, lasting, and undo. Atany
time, the data analyst can stop the brushing and
change one or more of the features—the shape of
the brush, the operation, or the paint mode—and
then resume the brushing. The brushing meth-
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odology provides a medium within which a data
analyst can invent data analytic methods, which
we call brush techniques.

Basically, with brushing operations, we change
some of the attributes (e.g., colour, glyph, vis-
ibility, labeling) of the points or lines we use to
represent the data. The idea is to isolate clusters
or other interesting subsets of a data set by, for
example, painting that subset with a colour. Then
the linking lets us identify the selected points in
all the other projection panels in the scatterplot
matrix, since the changed attribute changes at the
same time in all views of the data. In this way, the
highlight operation changes the colour or glyph
of the points within the current panel in all the
other panels, the shadow highlight changes the
visibility in the other panels, the delete operation
simply eliminates the points withinthe brush, and
the label shows the associated label, if any, for the
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brushed points. Intransient mode, only the points
underthe brushare affected by the corresponding
operation. In lasting mode, points inside the brush
remain affected even after the brush no longer
covers them. Finally, the undo mode is used to
restore the attribute value changed by a previous
brushing operation.

Although brushingand linking were proposed
originally in the context of scatterplot matrices,
these techniques can be used with any kind of
graphical representation. With the use of the same
attribute value for the data points in all represen-
tations, we can track coherent clusters or subsets
of the data through different representations.
With an animation, we can follow the cluster of
subsets of the data through the time evolution of
the animation.

TOPOLOGY PRESERVATION
METHODS

The techniques shown in the previous section
are not adequate to reveal nonlinear structures,
suchasstructures consisting of arbitrarily shaped
clusters or curved manifolds, since they describe
the data in terms of a linear subspace.

So, we need techniques that project the data
in higher dimensions to lower dimensions (2 or
3 dimensions) without losing the characteristics
of the local topology of the data. One way to
achieve topology preservation is to preserve the
distances between the points in the original data
set, which means that:

1. The projections of two close points should
remain close (conversely, the projection of
distant points should be distant).

2. If the projections of two points are close, it
isbecause, inthe original multi dimensional
space, the two points were close (if the pro-
jections are distant, the original points were
distant).

Techniques such as multi dimensional scaling
(Kruskal & Wish, 1978; Shepardetal., 1972; Torg-
erson, 1952) achieve both of the previous proper-
ties. Techniques such as the self organizing map
(Kohonen, 1992, 2001) only achieve the second
property. In the following we give details of some
of the topology preservation techniques.

Multi dimensional Scaling

Everytime we viewaworld map, we are seeing the
result of applying a process of multi dimensional
scaling (Kruskal & Wish, 1978; Shepard et al.,
1972; Torgerson, 1952). Basically, in the world
map, we have a2-dimensional representation of the
distance between cities that are on the surface of
a sphere, and hence in a 3-dimensional space.
The key idea of MDS is to give a visual repre-
sentation of the distances betweenaset of pointsin
amultidimensional space. We wantto maintain as
muchas possible the distances between the points
in the multi dimensional space.® To measure how
closely we have reproduced the distances, a stress
function is used, whose general form is:

S= Zﬂij(‘sij = dij)2 (22)

¢

where &, is the distance between two data points
X, and x; , d, is the distance between the corre-
sponding projected points y, and Y, and a, isa
scale or weighting factor. Taking:

—

E : 2
ij

gives a classical stress function, known as
Kruskal’s stress (Kruskal & Wish, 1978). We
wantto minimize the stress function. There exists
multiple variants of MDS that use slightly differ-
ent cost functions and optimization algorithms.
In the following subsection, we give details of
one of these.
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Sammon Mapping

Sammon mapping (Sammon, 1969) performs
MDS by using as a weighting factor:

—1.

aij = | 85 ) 0y

that gives the stress function,

1 (5-"3' — ({’?'j)z
S == - 23)
Leﬁ_j Oij g '

which emphasizes the preservation of the local
distances. One possible way to obtain a con-
figuration of projected points that minimizes this
stress function is to employ a gradient descent
algorithm:

3. Initialize the Sammon mapping withrandom
coordinates (2D).

Figure 8. Sammon projection of the iris data set
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4.  Calculate the relative pair wise error of each
data point between spaces.

5. Calculate a gradient which shows the direc-
tion to minimize the error.

6. Move the data points in the Sammon map-
ping according to the gradient.

7. Repeat steps 2-4 until the error is below a
given limit, or no improvement is seen.

Thisalgorithm has some disadvantages. First,
it lacks generalization, which means that if we
want to add new points, we need to recalculate
the projection. Second, a local minimum in the
error surface could be reached, therefore we may
need to try a significant number of experiments
with different random initializations. Finally, it
is very computationally intensive: with N points,
in each iteration N(N-1)/2, distances must be
calculated, resulting in O(N?) complexity per
iteration. However the problem of generalization
canbealleviated using neural network implemen-
tations of the Sammon mapping; de Ridder and
Duin (1997) present a comparison. In Figure 8,
we can see the result of apply this algorithm to
the iris data set.
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Spring Models

Within the class of MDS algorithms, one of the
simpler are the spring model algorithms. These
are based on the work of Fruchterman and Rein-
gold (1991) who simulate the forces within a set
of springs that interconnect a set of rings, until
equilibrium is obtained. In their original work,
the rings were associated with nodes of a graph
and the springs with the arcs. The equilibrium
of the system gives a configuration with certain
aesthetic characteristics (for example, the same
length for all the arcs). In the context of MDS,
it is considered that the springs are connecting
every pair of points of a data set; the repulsion or
attractionspring forcesare proportional to the dif-
ference between the multi dimensional distances
and the bidimensional distances of the layout we
want to obtain. The combination of forces applied
over a point is used to calculate its velocity, and
the velocity is used to obtain its position. At the
equilibrium of the system, the projection main-
tains the similarities and dissimilarities of the
multi dimensional data set. Since it is necessary
to calculate the forces for every pair of points and
the number of iterations is proportional to N, the
number of data points, the simulation gives an
algorithm of complexity O(N?).

Chalmers (1996) presents a way to obtain a
good approximation to the final configuration with
less complexity. The key idea of the algorithm
is the reduction of the amount of forces that it
is necessary to calculate for each point. Every
point has two associated sets. One is ordered
and maintains the closest neighbours found so
far. The second is recalculated at every iteration
by randomly sampling the full data set; if one of
the points in the second set is closer than one of
the points in the first; the former is substituted
by the latter. In this way, with each iteration, the
neighbour set will be more representative of the
most similar points. For each point, only the forces
applied by the springs associated with points in
these two sets are considered. Since the sizes

of these sets are constant, the complexity of the
algorithm is reduced to O(N?) and the quality of
the obtained layout is still good.

Morrison, Ross, and Chalmers (2002, 2003)
introduce an additional improvement. In a first
phase, only a set S of sqrt(N) points randomly
sampled from the original data set is considered,
and the full simulation is performed. The com-
plexity of this step is O(sqrt(N)-sqrt(N)), that is,
O(N). Now, for every of the N—sqrt(N) remaining
elements, the closest pointwithinthe sqrt(N) point
used in the first step is found; that closest point
is called the “parent” point. The point is located
around the parent point taking also into account
the forces of a sample of points over S. As a final
stage of fine-tuning, a constant number of itera-
tions of the simulation over the full data set are
executed. The final complexity of the process is
O(N-sgrt(N)).

A last improvement is proposed by Morrison
and Chalmers (2003). This time the search for the
parent elements is performed using distance dis-
cretization and a subset of selected points (pivots).
The idea is to precalculate the distances to the
pivots, and use those distances and the triangle
inequality to reduce the distance calculations.
With this strategy, it is possible to reduce the
complexity down to O(N°4).

Self Organizing Map

Contrary to the MDS methods, self organizing
maps do not preserve distances, but these artificial
neural networks are also used for dimensionality
reduction, clustering, and visualization. They were
first described by Teuvo Kohonen (1995), and so
are also known as Kohonen maps.

The SOM hasusually arectangular or hexago-
nal two dimensional structure of interconnected
artificial neurons (see Figure 9). The weights of
these neurons can be seen as the coordinates of
a vector that lies in the multi dimensional space
we want to explore (they are called model vec-
tors, prototype vectors, or centres). The process
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that organizes the positions of these vectors is an
unsupervised competitive learning mechanism
that works as follows:

12. Randomly select a training pattern, X, from
the input data set.

13.  Find the neuron, ¢, whose centre is closest
to the input pattern*; that neuron will be
the winning neuron or the so called Best
Matching Unit (BMU) for the pattern.

14.  Adjust the centres toward the data vector
for the winning neuron and all its neigh-
bours using the following equation:

AW, = n(x-W)A(i, c)

where 1 is the learning rate, and A is often
a monotonically decreasing function of the
distance between i and ¢, known as the
neighbourhood function. Normally this
function is a Gaussian of a difference of
Gaussians (though this is not monotonically
decreasing).

15. Repeat steps 1-3 for new inputs until some
convergence criterion is reached.

This results in the network learning positions
forthe centres of its neurons which cover the input
space and are determined by the density of the
data in the input space.

The computational complexity of the SOM is
O(K?), where K is the number of neurons in the
grid: each learning step requires O(K) computa-
tions, and to achieve a sufficient statistical accu-

Figure 9. Examples of SOM architectures
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racy, the number of iterations should be at least
some multiple of K. In some uses of the SOM, the
number of neurons is of the order of the number
of inputsamples; inthese situations, the computa-
tional complexity of the SOM is of the same order
of magnitude as in the MDS algorithms.

Once trained, it is possible to use different
methods to visualize the SOM structure (Vesanto,
1999). In Figure 10, we can see four different
ways to represent a SOM trained using the iris
data set (as it is usual with this three clusters data
set, one of the clusters is easily identifiable). The
U-matrix (unified distance matrix), is perhaps the
most popular method of displaying SOMs. The
distance between adjacent neurons is calculated
and presented with different colourings, darker
colours representing larger distances. Lightareas
represent clusters and dark areas indicate cluster
boundaries. The D-matrix canbe constructed asan
averaged version of the U-matrix, in which the size
of each map unit is inversely proportional to the
average distance to its neighbours. The similarity
colouring is obtained by spreading a colour map
on top of the principal component projection of
the prototype vectors. Areas with similar colours
are close to each other in the input space.

A New Family of Algorithms
Most topology preserving algorithms have con-

centrated on modifying adaptive clustering rules
so the final mapping has an element of topology

2D onecom architecture
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Figure 10. Examples of SOM visualisations methods
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preservation. However, an alternative was sug-
gested by Bishop, Svensén, and Williams (1998)
who created a probabilistic model of data analysis
based on a mixture of experts. Each expert is
represented by a point in latent space, t,t,,....,t, .
Each latent point is mapped through a series of
basis functions, ¢,(t,)., (). ...0,,(t), toan interme-
diate feature space before being mapped linearly
to the data space so that each t, —m. through
m = iwj(pj (t ) a prototype in data space. The
param’éters of the model are adjusted to make the
data as likely as possible under this model.

We (Fyfe, 2000, 2006) have used this model
with a product of experts underlying model and
shown that by updating the parameters accord-
ing to,

Anwmd =ng(pm (tk)(xsn) - m:k))rkn (27)

where we have used A to signify the change
when the n'" data point is presented, 1) is a learn-
ing rate, and x!" denotes the d" dimension of the
n" data point. A similar convention is used with
the prototypes. r,_is the responsibility that the
k™" latent point takes for the n" data point and is
calculated from,
_exp(-yd (x,,m,))

kn K .

D exp(=yd (x,,m;))

j=1

(28)

Thiswas shownto performatopology preserving
mapping of data sets.
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Now, while the basic method has a probabi-
listic underpinning, it may also be seen to be a
minimization of the mean square error between
the prototypes and the data while allocating re-
sponsibilities to the prototypes for the data. It has
recently beenshown (Zhang, 2000; Zhang, Hsu, &
Dayal, 1999) that replacing the mean squared error
withanerror function based on harmonic averages
gives an algorithm for clustering K-means in a
manner which solvesthe problem of local minima
for K-means (it is well known that the final con-
verged prototypes for K-means is dependent on
the initial conditions of the prototypes). We have
applied this algorithm with the above underlying
latent space and shown that it too can provide a
topology preserving mapping (Fyfe, 2006; Pena
& Fyfe, 2005). An example of this mapping on
a data set of 118 samples of 18 dimensional data
representing the quantity of pigments at various
frequencies is shown in Figure 11. To create this
diagram, we trained a map and then allocated

Figure 11. The nine species of algae as represented
on a two dimensional latent space
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the data points to the underlying 2-dimensional
latent space using the responsibilities of each la-
tent point for the data point as a measure of how
strong it should be in the allocation of the point

to latent space. Thus each data pointx_is mapped
to > r,t,. We see that the mapping (which was

not "given the class information) has allocated
the points to clusters which in general identify a
single type. In Figure 12, we show the results of
zooming into the central part of Figure 11: two
classes which appeared confounded are actually
easy to disambiguate using the responsibilities.
This is something which is not possible if we
simply quantize to a single latent point.

Other Methods

All the visualization methods presented in this
section can also be categorized within the field of
manifoldlearning. Thatfield isrich in techniques;
the ones presented above are only some of them.
Let us now briefly present some others.

Figure 12. Zooming into the central portion of
Figure 11
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Principal Curves

Principal curves are one of the nonlinear gener-
alizations of principal components. They were
first defined by Hastie and Stuetzle (1989) as
self-consistent, smooth, 1-dimensional curvesthat
pass through the middle of a p-dimensional data
set, providing a nonlinear summary of the data
(see Figure 13). An introduction and very good
review of the field can be found at http:/www.iro.
umontreal.ca/~kegl/research/pcurves/.

The Elastic Net

Also known as the elastic map, it was first sug-
gested by Durbin and Willshaw (1987) as a solu-
tion to the traveling salesman problem, although
Gorban and Zinevyev (2001) have also applied
it to visualization and manifold learning. It can
be thought of as a variant of the SOM with a dif-
ferent learning rule. Recently, a model has been
proposed that unifies both paradigms (Tereshko
& Allinson, 2000, 2002a, 2002b).

Curvilinear Component Analysis

Previously known as vector quantization and
projection (VQP), but renamed CCA in order to

evoke other *CA,; itis a neural implementation of
Sammon mapping preceded by a vector quantiza-
tionto reduce the computational load (Demartines
& Herault, 1993, 1997). As with Sammon maps, it
favours the local topology but the weighting does
not use distance values in the multi dimensional
space; instead CCA usesadecreasing function, F,
of the low-dimensional distances. The function F
is also parameterized by a neighbourhood width,
A, in the style of the neighbourhood parameter of
the SOM. The error function is:

E(.'(.-_4 = Z(Ol‘J o= d;‘.j)F,\(f w‘j) (29)

?J

The result of applying this projection method to
the iris data set is shown in Figure 14.

Isomap and Curvilinear Distance
Analysis

The key idea in both algorithms is the use of an
approximation to the geodesic distances instead
of Euclidean distances. Every point is linked to
the k closest points or, alternatively, to the set of
points closer than a radius €. This gives a graph
that is used to approximate the geodesic distances,
first determining the shortest path between two

Figure 13. Example of principal curve through the middle of a bidimensional data set
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Figure 14. The CCA projection of the iris data set
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points in the graph, then summing the Euclidean
distances between the sequence of points in the
path. Figure 15 clarifies the difference between the
Euclidean distance and the geodesic distance.
In both algorithms, instead of using the full
data set, a reduced set of points is selected. The
differences between the two algorithms are in
the way they select the subset of points and in the
way they use the obtained geodesic distances. In
the modern version of Isomap proposed by Ten-
enbaum, de Silva, and Langford (2000),° a subset
of pointsis obtained by random selection fromthe
original data set. After computing the geodesic
distances, the obtained matrix of distances is
used to perform traditional metric MDS and to
obtain the projection of the subset of points. In
Curvilinear Distance Analysis (Lee, Lendasse,
Donckers, & Verleysen, 2000), the points in the
graph are obtained through vector quantization
of the original data set. Then CCA is applied
over the subset using the geodesic distances. Fi-
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nally, the projection of the original data points is
computed using a piecewise linear interpolator.
Lee, Lendasse, and Verleysen (2002) have made
a comparison between the two methods.

Locally Linear Embedding

Contrary to the metric MDS, the method of Lo-
cally Linear Embedding, proposed by Roweisand
Saul (2000), does not try to preserve distance but
the local structure of the data. It assumes that the
data manifold is locally linear, and hence each
datapointcanbe obtained asalinear combination
of its nearest neighbours. First, it calculates the
weights, W, that best describe each point x; as a
function of its neighbourhood, that is, the weights
that minimize the error function:

W)=Y |- wox| o
i J

=
o
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Figure 15. (a) Two points in a spiral, (b) the Euclidian distance between the two same points, and (c)

the geodesic distance

(a)

(b)

(©

subject to X, W, =1 and W, = 0 if x; does not be-
long to the set of neighbours of x.. Second, it finds
the projections y, associated with each x; that best
reproduce the same reconstruction weights, that
is, that minimize the following error function:

o)=Y - W @
i J

Both problems can be solved using algebraic
techniques.

Isotop

Designed by Lee and Verleysen (2002) to over-
coming some of the limitation of the SOM, Isotop
shares with CDA the initial vector quantization to
obtain prototypes (or model vectors) of the original
dataset, the construction ofagraphtoapproximate
geodesic distances between these prototypes and
the use of apiecewise linear interpolator inthe last
stage of the algorithm to obtain the projection of
the original points by means of the projection of
the prototypes. The main difference is how they
obtain the projections of the prototypes. Now,
instead of using CCA, an update rule similar to
the SOM is used. However, the neighbourhood
of the model vector is determined by the graph
obtained in the first stages.

A comparison with LLE is presented in Lee,
Archambeau, and Verleysen (2003a).

REPRESENTATION OF
MULTI DIMENSIONAL DATA

Inthe previous sections, we have outlined some of
the existing methods to project the multi dimen-
sional data onto a lower dimension that makes the
graphical representation possible. In this section,
we present methods that, instead of searching for
projections ofthe data, try to representgraphically
all the dimensions of the data.

Chernoff Faces

The original idea was presented by Chernoff
(1973). It consists of representing each multi di-
mensional observation with a face cartoon. The
multiple values of the observations are used in
the drawing process as parameters used, which
control features such as:

e Theshape of the upper and lower part of the
face (5 variables).

e The length of nose (1 variable).

e The vertical position, curvature, and width
of mouth (3 variables).

»  The vertical position, separation, slant, ec-
centricity, and size of eyes (5 variables).

. The position of pupils (1 variable).

. The vertical position, size, and slant of
eyebrows (3 variables).

257



Figure 16. Three examples of Chernoff ’s faces
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Hence, different values give different face
cartoons (see Figure 16). The use of Chernoff ’s
faces makes the visually identification of clusters
easy and also facilitates the detection of outliers
in multi dimensional data. The explanation of
this is that people have built-in face recognizers,
or as Chernoff (1973, p. 363) says: “People grow
up studying and reacting to faces all of the time.
Small and barely measurable differences are eas-
ily detected and evoke emotional reactions from
long catalogue buried in the memory.”

This method has been used inabroad range of
disciplines: economics (Moriarity, 1979; Smith &
Taffler, 1996), marketing (Nel, Pitt & Webb, 1994),
medicine (Lott & Durbridge, 1990), sociology
(Apaiwongse, 1995; Sawasdichai & Poggenpohl,
2002), and so on. One problem with this method is
the subjective assignment of variablesto features.
Different assignments will give different face
shapes. The effect of these assignments has been
investigated by Chernoff and Rizvi (1975). As
pointed out by Saxena and Navanneetham (1991),
the comparison with other methods, discussed in
Hampner, Turner, and Young (1987); Saxena and
Navaneetham (1986); and Tidmore and Turner
(1983), shows that Chernoff faces perform quite
well in the identification of clusters. Saxena and
Navanneetham themselves analyze the effect of
the size, dimensionality, and number of clusters
when using Chernoff ’s faces. In Lee, Reilly, and
Butavicius (2003b), this visualization tool is evalu-
ated in the context of binary data visualization.

Subsequent researchers have wanted to in-
crease the dimensionality of the data set with
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which Chernoff faces can be used, by means
of using asymmetric faces (Flury & Riedwyl,
1981). Another variant uses, as graphical objects,
schematic pictures of castles and trees (Kleiner
& Hartigan, 1981) or, more recently, pictures that
resemble bugs (Chuah & Eick, 1998). Taking ad-
vantage of the powerful graphical capabilities of
the moderncomputer, more recently, the construc-
tion of more realistic faces (not just caricatures) has
been proposed (Loizides & Slater, 2002; Miiller
& Alexa, 1998), and instead of doing a mapping
from the data to face features, the data is used
to change the emotional features of the faces;
in this way, even an isolated face can transmit
information to the viewer (for example, a happy
face could mean a good financial situation).

Andrews’ Curves

Andrews (1972) described his curves early on in
the computing era; itisan interesting observation
that he thought it necessary to counsel: “an output
device withrelatively high precision...isrequired”.
Current standard PC software is quite sufficient
for the purpose. The method is another way to
attempt to visualize and hence to find structure
in multi dimensional data. Each data point x = {
X,y X,y ey X } defines a finite Fourier series:

fx(t)=x1/ V2 + ry cos(t)

+ g sin(t) + x4 cos(2t) +xp sin(2t) + ..
(32)
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andthisfunctionisthenplotted for-r<t<m. Thus
each data point may be viewed as a line between
-t and mt. This formula can be thought of as the
projection of the data point onto the vector:

(%‘sin((}.(‘t')ﬁ[l’}.siﬂ('ﬁi’}. cos(2t)... )

v2

If there is structure in the data, it may be visible
in the Andrews’ Curves of the data. An example
of Andrews’ Curves on the iris data set is shown
in Figure 17. The data set is four dimensional
(only the first four terms of (32) are used). We
see that one type of iris is easily identifiable
from the other two, but there is some difficulty
in differentiating between these two. Thus t =
3 gives us a value for a linear projection of the
data which differentiates one type of data from
the rest. But the fact that we cannot see any clear
distinction between the other two types of iris in
the figure does not necessarily mean that it is not
possible to find a projection which will do so: the
Andrews parameters are limited by the proper-

ties of the trigonometric functions (e.g., sin%()
+ cos?() = 1), which means that we have a very
constrained relationship between the parameters
of the projection for x, and x,.

These curves have been utilized in fields as
different as neurology (Kokiol & Hacke, 1991),
sociology (Spencer, 2003), biology (Murphy,
2003), and semiconductor manufacturing (Riet-
man, Lee, & Layadi, 1998; Rietman & Layadi,
2000). Some of their uses include the quality
control of products (Kulkarmi & Paranjape,
1984), the detection of period and outliers in time
series (Embrechts, Herzberg, & Ng, 1986), or
the visualization of learning in artificial neural
networks (Gallagher, 2000). Khattree and Naik
(2002) have suggested their utilization in robust
design and in correspondence analysis.

Properties

These curves have several useful properties, some
of which are:

Figure 17. An Andrews’ Plot of the iris data set. It is clear that one type of iris is distinct from the other
two but differentiating between the other two is less easy
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16. Mean preservation. The function corre-
sponding to the mean of a set of N multi-
variate observations is the pointwise mean
of the functions corresponding to these

1
fa(t) = 5 2 fu(®)

i=1
17.  Distance preservation. The distance between
two function is,

”fx (f) = fy(tmﬁz

- / [Fult) — fy ()] dt

which is proportional to the Euclidean
distance between the corresponding points

Ilfx(f) - fy{ﬂ”LQ

=nllx-ylP=7) (= —w)?

18. One-dimensional projections. Foraparticu-
lar value of t=1_, the function value f (t ) is
proportional to the length of the projection
of the vector (x,, x,, ..., X,) on the vector,

fi(to) = (1/\/5. sin(tq).

sin(2tg). cos(2tp), - - )

19. Linear relationships. If a point y lies on a
line joining x and z, then for all values of t,
fy(t) is between f (t) and f (t).

Also, if the components of the data are uncor-
related with common variance o?, the Andrews’
Curves representations preserve that variance.
This variance preservation property lets us
perform a test of significance using the curves,
althoughthis “is less useful since most multivariate
data are either correlated and/or have unequal
variances across the variables” (Khattree &
Naik, 2002, p. 413).
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All these properties were noted by Andrews
(1972). The last one was generalized by Good-
child and Vijayan (1974) to the case of unequal
and not necessarily orthogonal variances. Tests
of significance at particular values of t are still
possible, but not so the overall tests mentioned
by Andrews (1972).

However, the Andrews’ Curves also have a
drawback, in that they suffer from strong de-
pendence on the order of the variables; that is,
if we change the order of variables, the shape of
the curves is completely different. That is why
Embrechts and Herzberg (1991) propose to try
different arrangements of the variables to find
more suitable Andrews’ Curves. In Garcia-Osorio
and Fyfe (2005b), we propose a way of combin-
ing in the display two different arrangements.
Besides, as pointed out by Andrews (1972), in the
plots, low frequencies are more readily seen than
high frequencies. For this reason, it is useful to
associate the most important variables with low
frequencies.

Variations

Some variations of the Andrews’ Curves have
been proposed throughout the years. Andrews
(1972) proposed the use of different integers to
give the general formulation:

Ifx(t)=wysin(nyt) +

+xa cos(nyt) + g sin(nat) +uy cos(nat) +. .. (33)

The restriction to using integers is because of the
distance preserving property; without integers,
this property is lost. Andrews compared the
curve with values n, = 2, n, = 4, n,=38, ... with
the original formulation and concluded that the
former is more space filling but more difficult to
interpret when it is used for visual inspection.
Embrechts and Herzberg (1991) investigate the
effect of rescaling and reordering the coefficients
and the interpretation of the plots when one or more
coordinates are made equal to zero. They propose
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the use of other kinds of orthogonal functions such
as Legendre and Chebychev polynomials. They
give many examples of these variations using the
iris data set. Embrechts, Herzberg, Kalbfleisch,
Traves, and Whitla (1995) completes this study
with a new variation consisting of the use of
wavelet functions. All these variations have been
used later by Rietman and Layadi (2000) asa help
to monitor the manufacture of silicon wafers;
they also point to a previous work (Rietman et
al., 1998) in which they used another variation
consisting of drawing the Andrews’ Curvesusing
polar coordinates.

Abivariate version of Andrews’ Plots has been
proposed by Koziol and Werner (1991):

Given two vectors of observations X' = (x,, ...,
xp) andy" = (y,, ..., yp) where the (x, y), 1=1, 2,
..., p are naturally paired, from the functions,

fo(t)=x1/V2+ zasin(t)

{ 253c08(t) + 2450 (2t)+ w5c0S(2t) 4 ---

.fy(f): yl/\/E

fyasin(t) + yzcos(t) + yasin(2t) + yscos(2t) | ---

and plot (t, f (t), fy(t)) for a set of t-values in the
range -t <t <m.

A similar idea to the previous one, but this
time to obtain a three dimensional Andrews’
Plot, has been proposed by Wegman and Shen
(1993). They were concerned with the connection
between Andrews’ Curves and the grand tour®
noted by Crawford and Fall (1990). They show
that Andrews’ Curvesare notareal 1-dimensional
grand tour. The problem is that Andrews’ Curves
do not exhaust all possible orientations of a 1-di-
mensional vector. They propose a generalization
of Andrews’ Curves which is more space filling
and which can be used to obtain a bidimensional
pseudo grand tour. Now, two orthogonal vectors
are used:

2
W]_ = El

(sin()\lt). cos(Aqt), ...,sin(A d t), cos(Ay t))

2

d

Wa —
(c-os(/\lf), —sin(Agt), ..., cos(Agt), — sin{/\%f))

with the, linearly independent over the rationals
toincrease the spacefilling property of the curves,
but losing the distance preservation property.’

If we use surfaces instead of curves, we can
obtainthree orthogonal vector we can use to obtain
a3-dimensional pseudo grand tour (Garcia-Osorio
& Fyfe, 2005b):

W1 xX
(("(JH(A-!?‘-_] cos(fe15). cos(At) sin{pqs), sin(Aqt), .. )
Wa X
(r_»'in()\]f} cos(ptys), sin(At) sin(p s), cos(Af), .. )
Wiz X (siu{pls). cos(ft14),0,.. )

Khattree and Naik (2002) have suggested the

function,

gy(t) = %{yl + yo (sin(t)

t cos(t)) + ys(sin(t) — cos(t))

+y(sin(2t) 4 cos(2t))

IA

t<mw

+ys (sin(2t)—cos(2t) )+ } ,—1T
(34)
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So, every y, is exposed to a sine function as
well as a cosine function. As they note, one of the
advantages of this formulation is that the trigono-
metric termsin (34) do not simultaneously vanish
at any given t. They also establish an interesting
relation between the Andrews’ Curves and the
eigenvectors of a symmetric positive definite
circular covariance matrix.

Parallel Coordinates

Parallel coordinates are an invention of Alfred
Inselberg originally developed as a device for vi-
sualizing multi dimensional geometry (Inselberg,
1985); it was their utility as air traffic collision
detectors (Inselberg, Chen, Shieh, & Lee, 1990)
whichinitially broughtseriousand broader interest
to this new tool (Inselberg, n.d.). Later, Wegman
(1991) proposed their use as a data analysis tool
and enhanced them by combining them with the
grand tour (Wegman & Luo, 1991).

The parallel coordinate plots can be thought of
asageneralization ofthe 2-dimensional Cartesian
plot. Instead of using orthogonal axes, the axes
are drawn parallel to each other. Instead of us-
ing a “dot” to represent the location of a “point”
and the values of its coordinates, a “line” is used
which connects the coordinates of the point on
the axes. So the points became lines. If we draw
the lines associated with points lying on the same
line, we discover that they intersect at a point,
which is the dual of the line where the points
lie. So, in parallel coordinates plots, the dual of
points are lines and the dual of lines are points.
Also, now we can draw as many axes as we want,
so we can represent points of dimensionality
greater than three. In Figure 18, the iris data set
is represented using parallel coordinates. The set
of dualities are:

e A point in Cartesian coordinates becomes

a line in parallel coordinates (a poly line if
we consider more than two dimensions, and
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hence we draw more than two parallel axes)
and vice versa.

*  AnellipseinCartesian coordinates maps into
a “line hyperbola ” in parallel coordinates.
Maybe Figure 19 can clarify the strange
notion of line hyperbola. In general, a point
conic in Cartesian coordinates becomes a
line conic in parallel coordinates.

. Rotations in Cartesian coordinates become
translations in parallel coordinates and vice
versa.

. Points of inflection in Cartesian space be-
come cusps in parallel coordinate space and
vice versa.

Because of these duality properties, parallel
coordinate displaysallow interpretations of statis-
tical datainananalogous way to the 2-dimensional
Cartesian scatter plots. In the statistical setting,
as pointed out by Wegman and Luo (1991), the
following interpretations can be made:

. For highly negatively correlated pairs, the
dual line segments in parallel coordinates
tend to cross near a single point between the
two parallel coordinates axes. Soan X-shape
between axes signals negative correlation
between the respective variables.

. For highly positively correlated data, lines
tend not to intersect between the parallel
coordinates axes. Parallel or almost parallel
lines between axes indicates positive cor-
relation between variables.

Two of the mostcommon objectionsto parallel
coordinate plots are the dependency on the order
of the axes in order to identify the relations be-
tween variables (the pairwise comparison between
consecutive axes is easy, but this comparison is
not so easy when the axes are not adjacent) and
the bad data-ink ratio® or heavy overplotting (as
lines are used to represent points, when the size
of the data set is too large, the parallel coordinate
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plotbecomes a messy clutter of ink). To minimize
the first, Wegman (1991) presents in Appendix A
an algorithm for constructing a minimal set of
permutations to insure adjacency of every pair
of axes. If the number of axes is d, only (d+1)/2
permutationsare needed. Toaddressthe second, in
the same paper, Wegman proposes the utilization
of parallel coordinate density plots, thatis, the use
of coloursto represent the density of observations.
More details were given in a subsequent paper
(Wegman & Luo, 1997).

The use of parallel coordinates as a data
analysis tool has been perfected later by means of
using the grand tour and the saturation brushing
mechanism (Wegman & Luo, 1991; Wegman,
Poston, & Solka, 1998). This last technique al-
lows a very fast calculation of the densities of the
lines. Quoting Wegman and Solka (Wegman &
Solka, 2002, p. 449):

Theideaof saturation brushing istodesaturate
a brushing colour until it contains only a very

small component of colour and hence is very
nearly black. Most modern computers have a so-
called a-channel which allows for compositing
of overplots. The a-channel is used in computer
graphics as a device for incorporating transpar-
ency. However, by using such a device to build up
colour intensity, we can obtain a visual indication
of how much overplotting there is at a pixel. In
effect, the brighter, more saturated a pixel is, the
more overplotting.

An alternative to saturation brushing for pro-
cessing high volume data sets is the hierarchical
parallel coordinates proposed by Fua, Ward, and
Rundensteiner (1999). They “use data aggrega-
tion techniques to collapse data into clusters,
and show the population and extents of clusters
with bands of varying translucency”(Fua et al.,
1999, p. 44). Other improvements have to do with
interactiontechniques (Graham & Kennedy, 2003;
Hauser, Ledermann, & Doleisch, 2002; Siirtola,
2000, 2003).

Figure 18. The parallel coordinates resentation of the iris data set

sepal length

sepal width

petal length

petal width

263



Figure 19. Parallel coordinate plot of ellipse points
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Theideaof saturation brushing isto desaturate
a brushing colour until it contains only a very
small component of colour and hence is very
nearly black. Most modern computers have a so-
called a-channel which allows for compositing
of overplots. The a-channel is used in computer
graphics as a device for incorporating transpar-
ency. However, by using such a device to build up
colour intensity, we can obtain a visual indication
of how much overplotting there is at a pixel. In
effect, the brighter, more saturated a pixel is, the
more overplotting.

GRAND TOUR

The idea of the grand tour method, introduced
by Asimov (1985) and Buja and Asimov (1986),
is to generate a continuous sequence of low di-
mensional projections of amulti dimensional data
set. The animation obtained can be thought of as
a generalization of rotations in multi dimensional
space. From that point of view, the grand tour
shares a common objective with exploratory
projection pursuit techniques. In both cases, the
human ability for visual pattern recognition is
exploited.
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To create a two dimensional grand tour, we
need to generate a sequence of planes in the multi
dimensional space of the data. Two conditions
are required: (1) the sequence should be dense
in the set of all planes in the multi dimensional
space, and (2) the sequence should be smooth to
give a visual impression of the data points mov-
ing in a continuous way. Several algorithms have
been proposed to achieve these two conditions
(Asimov, 1985; Asimov & Buja, 1994; Wegman
& Solka, 2002). They are based on obtaining a
general rotation in the multi dimensional space,
the dimension of which is d. To obtain a frame
of the grand tour, we multiply the data set by
a generalized rotation matrix Q of dimension
dxd. The matrix Q is obtained by multiplying p
=d(d-1)/2 matrices, Rij(ﬁij), each of which rotates
the eg, plane through an angle of o, (an outline of
this matrix is shown below). Now the algorithms
differ in the way they obtain the angles g;-1n The
Asimov-Buja winding algorithm, the p angles 0,
are taken from the coordinates of the vector oyt)
= (LA, ...kpt) that defines a mapping from R
onto [0,27]°, where t is the time parameter, the kjt
are taken modulo 27 and A.t, ...kpt, and are real
numbers linearly independent over the rational
numbers. With these conditions, this vector de-
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fines a curve over a p-torus that does not intersect
itself. The random curve algorithm justrandomly
takes two points $,8; € [0,27]° and creates alinear
interpolant between them going froms; to S, then
takes a third point s, and joins it with S, and soon.
In The fractal curve algorithm, a p-dimensional
Hilbert or Peano curve is constructed that tours
through the p-dimensional hypercube [0,27]".
(See Box 1).

As we have commented in the section about
Andrews’ Curves, although it does not strictly
obtain a grand tour, the more simpler of the
algorithms is based on the use of the variant of
Andrews’ Curves proposed by Wegman (1990).

Originally, the grand tour was designed with
the aim of obtaining two dimensional projections;
with the arrival of parallel coordinates is possible
to use higher dimensional projections, which was
noted first by Edward J. Wegman (1990). Weg-
man and Luo (1997) give an interesting example
about the combined use of parallel coordinates
and grand tours.

An enhancement of the grand tour, called the
tracking grand tour (TGT), is presented by Huh
and Kim (2002). In the TGT during the grand
tour, the old frames instead of being substituted
by the new ones, are maintained for a while “that
shows the trace of the touring process as small
‘comet trails’ of the projected points” (Huh &
Kim, 2002, p. 721).

In Wegman, Poston, and Solka (1998), the
image grand tour, another variation of the grand
tour, is proposed. This time the idea of the grand
tour is used to combine in a single gray scale
image several multispectral images of the same
scene. The grand tour is, through the different
combinations of the multispectral images, a con-
tinuously changing gray scale image with variable
contributions from the collected images. The im-
age grand tour has been successfully applied to
the detection of mines in a minefield. Symanzik,
Wegman, Braverman, and Luo (2002) show more
applications of the image grand tour.

SOFTWARE TOOLS AND
REFERENCE TABLE

Since most of the methods presented in this chapter
are dynamic or have a component of interaction,
the best way to understand them is to use them.
For most of them, there exist tools that automate
the process of obtaining the graphical representa-
tion. Here we give a list with the Web addresses
from which they can be downloaded and a short
comment about their visualization capabilities (for
some of them it is possible to find a more complete
review in ATKOSoft S.A., 1997).

Box 1.
i column
i 0
0 - cos(6;)
R;6)=|: :
0 sin(@;)
0 --- 0

M column
0 e NI
-sin(g;) -+ OF— i"row
cosi@l}.) ver Ope— j‘“ —
-
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XmadvTool (http://davis.wpi.edu/~xmdv/):
Scatter plots, star glyphs, hierarchical par-
allel coordinates, dimensional stacking,
proximity colouring, pixel-oriented tech-
niques.

GGobi (http://www.ggobi.org/): Parallel
coordinates, grand tour, brushing and link-
ing, scatter plots.

VisDB (http://www.dbs.informatik.uni-
muenchen.de/dbs/projekt/visdb/visdb.
html): Pixel-oriented techniques, stick
figure icons, parallel coordinates.

Parallel Coordinate Explorer (http://
www.cs.uta.fi/~hs/pce/): Parallel coordi-
nates and brushing.

CrystalVision (ftp://www.galaxy.gmu.
edu/pub/software/CrystalVision.exe):
Parallel coordinates, grand tour, saturation
brushing.

parvis (http:/home.subnet.at/flo/mv/par-
vis/): Parallel coordinates, axis histograms,
brush fuzziness.

ViDaExpert (http://www.ihes.fr/
~zinovyev/vida/vidaexpert.htm): Linear
discriminant analysis, PCA, elastic maps.
HiSee (https://sourceforge.net/projects/
hisee/): PCA, Sammon mapping.

Visual Attribute Explorer (http:/www.
alphaworks.ibm.com/tech/visualexplor-
er): Parallel coordinate plots, attribute bar
chart.

Martin’s Parallel Coordinate Curves
Applet (http://www.dcs.napier.ac.uk/
~marting/parCoord/): Parallel coordinates
curves.

SOM Toolbox for Matlab (http://www.cis.
hut.fi/projects/somtoolbox/): Selforganiz-
ing maps, Sammon mapping, CCA, PCA.
Datatool (http://www.datatool.com/):
Scatter plots, colour scatter plots.
Parallax (http://www.kdnuggets.com/
software/parallax/): Parallel coordinates
(from the inventor of parallel coordinates,
nonfree).
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. Data L.oom (http://s92417348.onlinehome.
us/software/dataloom/): Parallel coordi-
nates (for Macintosh).

. The Visualization Toolkit (http:/www.
visualizationtoolkit.org/): C++ library to
make the creation of useful graphics and
visualization applications much easier.

. Mondrian (http://rosuda.org/Mon-
drian/): Parallel coordinates, saturation
brushing, mosaic plot, scatter plots, maps,
bar charts, histograms, box plots.

. Manet (http://rosuda.org/Manet/): Scatter
plots, box plots, mosaic plots, histograms,
polygon plots.

. Matlab package for Isomap (http://iso-
map.stanford.edu/lIsomapR1.tar): Isomap
projections.

. Matlab code for LLE (http://www.
cs.toronto.edu/~roweis/lle/code.html):
LLE projections.

e JohnAldo Leecodefor Nonlinear Projec-
tions (http://www.dice.ucl.ac.be/~lee/):
Self organizing maps, Sammon mapping,
CDA, Isotop.

*  TreeMap (http://www.cs.umd.edu/hcil/
treemap/index.shtml#download), TreeMap
javaLibrary (http://sourceforge.net/projects/
treemap/), and Microsoft Treemapper with
Excel Add-In (http://research.microsoft.
com/community/treemapper/).

. MANI fold learning Matlab demo (http://
www.math.umn.edu/~wittman/mani/):
Principal Component Analysis, Multi di-
mensional Scaling, Isomap, Local Linear
Embedding.

. Interactive Java tools for exploring high
dimensional data (http://www.jstatsoft.
org/v06/i01/bradley/): parallel coordinates,
scatter plot matrix.

This chapter was designed to be mainly an
entry point to the field of multi dimensional repre-
sentation and visualization; it has provided many
references to the methods and variations of the
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Box 2.

Technique

References

Andrews’ Curves

(Andrews, 1972; Garcia-Osorio & Fyfe, 2005b; Khattree & Naik, 2002; Wegman
& Shen, 1993)

Chernoff Faces

(Chernoff, 1973)

Colour Icons

(Levkowitz, 1991)

Curvilinear Component Analysis

(Demartines & Hérault, 1997)

Curvilinear Distance Analysis

(Lee, 2000)

Dimensional Stacking

(LeBlanc et al., 1990)

Elastic Net or Elastic Map

(Durbin & Willshaw, 1987; Gorban & Zinevyev, 2001)

Exploratory Projection Pursuit

(Friedman, 1987; Friedman & Tukey, 1974; Jones & Sibson, 1987)

Factor Analysis

(Lewis-Beck, 1994)

Grand Tour Methods

(Asimov, 1985; Wegman, 1990; Wegman et al., 1998; Wegman & Solka, 2002)

Harmonic Topographic Map Products of Experts

(Pefia & Fyfe, 2005)

Hyperbox (Alpern & Carter, 1991)
HyperSlice (Wijk & Leire, 1993)
Isomap (Tenenbaum et al., 2000)
Isotop (Lee & Verleysen, 2002)

Locally Linear Embedding

(Roweis & Saul, 2000)

Multi dimensional Scaling

(Kruskal & Wish, 1978; Shepard, Romney & Nerlove, 1972; Torgerson, 1952)

Multi dimensional Stacking

(LeBlanc et al., 1990)

Parallel Coordinates

(Inselberg, 1985; Inselberg et al., 1990; Wegman, 1991; Wegman & Luo, 1991;
Wegman & Solka, 2002)

Parallel Coordinates

(Inselberg & Dimsdale, 1990; Wegman, 1991)

Pixel-oriented Techniques

(Keim & Kriegel, 1994)

Principal Component Analysis

(Hotelling, 1933; Jolliffe, 1986)

Principal Curves

(Hastie & Stuetzle, 1989)

Projection Pursuit

(Huber, 1985)

Sammon Mapping

(Sammon, 1969)

Scatterplot Matrices

(Chambers et al., 1983; Becker & Cleveland, 1987)

Self Organizing Maps

(Kohonen, 1992, 2001; Vesanto, 1999)

Spring Models

(Chalmers, 1996; Fruchterman & Reingold, 1991; Morrison & Chalmers, 2003)

Star Icons

(Ward, 1994)

Stick Figure Icons

(Grinstein et al., 1989)

Treemap

(Shneiderman, 1992)

Worlds-within-Worlds

(Behsers & Feiner, 1990)
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basic methods and applications have been given
throughout the chapter. As a convenient way to
summarize the background here, we give a table
with the main references for each of the methods
and its main variations. (See Box 2).

CONCLUSION

In this chapter, we have shown how wide and
diverse the data mining and visualization fields
are. This fact is even more clear if we consider
the lack of a commonly accepted taxonomy for
the field. The variety of tools, far from being a
drawback, is an advantage, or actually a need.
Some of them are more suitable for identifying
clusters, others can handle more data records.
For each data set there exists an appropriate
tool. The main conclusion we can state here is
that there is not a tool better than the others over
all data sets. The important thing is to provide
data analysts with a set of tools, in which they
can choose the tool most suitable for the data set
they are investigating.
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ENDNOTES

! Although the Andrews’ Curves have been
used by Embrechts, Herzberg,and Ng (1986)
to represent time series, as well.

2 Depending on the values of these moments,
we can speak about skewed distributions
when distributions are not symmetric; lep-
tokurtotic or super-Gaussian distributions
when distributions are more kurtotic than
a Gaussian distribution, and conversely
platykurtotic or sub-Gaussiandistributions
when distributions are less kurtotic than a
Gaussian distribution.

8 Actually, MDS is not limited to the use of a
distance matrix; itis possible to use any other
kind of dissimilarity or similarity matrix (for
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example, the matrix of correlations among
variables).

The closeness criterion is usually the Eu-
clidean distance between the model vectors
and the input pattern.

There exists a previous version of the algo-
rithm (Tenenbaum, 1998) that used a dif-
ferent method to approximate the geodesic
distances.

Visualizing Multi Dimensional Data

Multivariate visualization method that con-
sists of looking at the data from all points of
view by presenting acontinuous sequence of
low dimensional projections; we will discuss
this in more detail in Section 7.

Khattree and Naik (2002) point to Gnan-
adesikan (1977) who attribute a special case
of this formulation to Tukey. Tukey used as
lambdas the square rootsof 1,2, 3,5, ... (the
prime numbers).

This concept is discussed by Tufte (1983).
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Chapter XIlI
Privacy Preserving Data
Mining, Concepts, Techniques,
and Evaluation Methodologies

Igor Nai Fovino
Joint Research Centre, Italy

ABSTRACT

Intense work in the area of data mining technology and in its applications to several domains has resulted
into the development of a large variety of techniques and tools able to automatically and intelligently
transform large amounts of data in knowledge relevant to users. However, as with other kinds of useful
technologies, the knowledge discovery process can be misused. It can be used, for example, by mali-
cious subjects in order to reconstruct sensitive information for which they do not have an explicit access
authorization. This type of “attack™ cannot easily be detected, because, usually, the data used to guess
the protected information, is freely accessible. For this reason, many research efforts have been recently
devoted to addressing the problem of privacy preserving in data mining. The mission of this chapter is
therefore to introduce the reader to this new research field and to provide the proper instruments (in term
of concepts, techniques, and examples) in order to allow a critical comprehension of the advantages,
the limitations, and the open issues of the privacy preserving data mining techniques.

INTRODUCTION are retrieved, shared, and analyzed by someone.

On the basis of the information stored in a data-
We live today in the information society. Every base, people develop economical strategies and
second, millions of information are stored in some make decisions having an important effect on the
“Information Repository” located everywhere in lives of other people. Moreover, this information
the world. Every second, millions of information is used in critical applications, in order to man-
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age and to maintain, for example, nuclear plants,
defense sites, energy and water grids, and so on.
Information is a precious asset for the life of our
society.

In such a scenario, information protection
assumes a prominent role. A relevant amount
of information stored in a database is related to
personal data or, more in general, to information
accessible only by a restricted number of users
(we call this information “Sensitive Informa-
tion™). Let us consider as an example the case of
a Hospital Health Database. In such a database,
records are collected related to the patients of
the hospital. The data stored in such database
are extremely useful; in fact they allow keeping
track of the medical history of the patients, to
make an automatic profile analysis, to extract
statistical data related to a certain disease, and so
on. However, such data can even be considered
extremely sensitive. For example, the informa-
tion “Patient A has been, in the past, affected by
the psychological problem Y is an information
which, if freely accessible, could have a strong
impact on the social life of Mr. A.

It is evident that the concept of Information
Privacy is a not negligible issue in this context.
Inthe scientific literature, several definitions exist
for privacy. At this moment, in order to introduce
the context, we briefly define privacy as limited
access to a person and to all the features related
to the person. In the database context, the privacy
property is usually satisfied by the use of access
control techniques. This approach guarantees a
high level of privacy protection against attacks,
having as the final goal the direct access to the
information stored in a database. Access control
methods, however, result nowadays prone to a
more sophisticated family of privacy attacks
based on the use of data mining techniques. Data
mining (DM) techniques has been defined as
“The nontrivial extraction of implicit, previously
unknown, and potentially useful information from
data” (Frawley, Piatetsky-Shapiro, & Matheus,
2002). In other words, by using DM techniques,
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it is possible to extract new and implicit informa-
tion from known information. This characteristic
constitutes, per se, an enormous advantage in the
analysis of immense datasets. However, the mali-
cious use of such techniques is a serious threat
against privacy protection.

In a typical database, a large number of rela-
tionships (bothexplicitand implicit) existbetween
the different information. These relationships
constitute a potential privacy breach. In fact, by
applying some access control methods, one can
avoid the direct access to sensitive information.
However, sensitive information, by the presence
of these relationships, influences in some way or
other information. Itis then possible, by applying
DM techniques to the accessible information to
reconstruct indirectly the sensitive information,
violating in such a way the privacy property.

Let us consider the previous Health Database
example. In such a case, we can make the hypoth-
esis that only authorized personnel have full access
to all the data stored in the database. However,
considering that such data can be useful even for
some analysis based on statistics, we can imagine
a control access policy which allows different
levels of access; that is, there exist different user
profiles which can access different portions of
data. Such a scenario is very common in the real
world and guaranteed toavoidthe directaccesstoa
target data by non-authorized people. However, as
claimed previously, due to the relationshipsamong
the different data contained in a database, one, by
the use of data mining technigues, someone may
be able to indirectly infer sensible data starting
from the analysis of the public data.

Recently, a new class of data mining methods,
knownas privacy preserving datamining (PPDM)
algorithms, has been developed by the research
community working on security and knowledge
discovery. The aim of these algorithms is the
extraction of relevant knowledge from large
amounts of data, while protecting at the same
time sensitive information. The main scope of
this chapter is then to give a high level overview
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of the existing privacy preserving data mining
techniques giving to the reader the proper instru-
ments to understand how such techniques can be
evaluated in order to identify the most suitable
for a target real case.

The chapteris organized as follows: after abrief
overview of the datamining techniques, allowing
the creation of a “common starting base”, in the
third section, the privacy preserving problem is
presented within the data mining perspective.
Then, taxonomy criteria are defined, allowing us
to give a constructive high level presentation of
the main PPDM approaches. Inthe fourth section,
after a preliminary description of the state of the
art in the field of evaluation methodologies for
PPDM, an unified evaluation framework is pre-
sented. Finally, in the fifth section, a discussion
on the future directions of PPDM is presented.

A DATA MINING OVERVIEW

Datamining canbeassumedtobeaparticulartype
of knowledge discovery process. More precisely,
it can be defined as the analysis of observational
data sets to find unsuspected relationships and to
summarize the datainnovel ways, understandable
and useful to the owner. From a historical point
of view, we can see the data mining techniques
as the natural result of the database technology
evolution started with the introduction of data
collection techniques, continued with the de-
velopment of data management techniques, and
followed by the introduction of the data analysis
techniques of which DM is a part.

Data mining can be assumed to be a combina-
tionoftechniquesandtheories from other research
fields (machine learning, statistics, database
systems). For this reason, different classification
schemas can be used to characterize the data
mining methods. Asexplained by Chen, Han, and
Yu (1996), it is possible to classify data mining
techniques by adopting different metrics:

. Kinds of target databases: Relational,
transaction, object-oriented, deductive, spa-
tial, temporal, multimedia, heterogeneous,
active, and legacy databases.

. Kind of knowledge to be mined: As we
have mentioned, different kinds of knowl-
edge (or patterns) exist that are possible to
extract from a database: association rules,
classification rules, and clusters.

. Kinds of techniques to be utilized: Data
mining algorithms can also be categorized
according to the driven method into autono-
mous knowledge, data-driven, query-driven,
and interactive data miners.

In the following, very brief, overview of data
mining techniques (we remember here that the
topic of this chapter is related to privacy preserv-
ing data mining and not to data mining), we will
follow the “Kinds of Knowledge” classification.

Association Rule Mining

The main goal of association rule mining is to
discover frequent patterns, associations, corre-
lations, or causal structures among sets of items
or objects in transaction databases, relational
databases, and other information repositories. An
association rule is an expression X — Y, where X
and Y are sets of items. A good example allow-
ing for the understanding of the concept of rule
association is the classic market-basket database,
where rules like “A customer that buys products
x1and x2 will also buy producty with probability
c%” can be mined.

More formally:

Definition 1. LetJ={i,, i,, i., in} be a set of items.
Let D a set of database transactions where each
transaction T is a set of items such that T < J.
Let A be a set of items. A transaction T contains
an itemset A if and only if A = T. An association
rule is an implication of the form A — B where
AclJBcJlandANB=g.
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Definition 2. The rule A— Bholdsinthetransac-
tionset Dwithasupportswheresisthe percentage
of transactions in D that contains A U B.

Definition 3. The rule A — B has a confidence
c in the transaction set D if c is the percentage
of transaction in D containing A that also con-
tain B.

Roughly speaking, confidence denotes the
strength of implication, and support indicates
the frequencies of the occurring patterns in the
rule. Usually, especially in sparse databases, it is
possible to extract a wide number of rules. Intui-
tively, not all these rules can be identified as “Of
Interest”. Piatetsky-Shapiro (1991) and Agrawal,
Imielinski,and Swami (1993) therefore introduced
the concept of strong rule, that is, a rule with a
reasonable (under such criteria) level of support
and confidence. Traditionally, the associationrule
mining task consists in identifying a set of strong
association rules.

Clustering Techniques

The main goal of a clustering operator is to find a
reasonable framing of the records (data) accord-
ing to some criteria (Han & Kamber, 2000). If
we consider a machine learning point of view, we
can think of the frames as non-evident (hidden)
patterns; the individuation of such patterns can
be seen as unsupervised learning and the results
as a data concept. Itis possible to give here a very
brief classification of the clustering techniques:

. Hierarchical methods: Hierarchical clus-
tering builds a cluster hierarchy or, in other
words, a tree of clusters, also known as a
dendrogram. Some interesting algorithms
based on such an approach are the SLINK
algorithm (Sibson, 1973), the CLINK algo-
rithm (Defays, 1977), and the AGlomerative
NESting (AGNES) algorithm (Kaufman &
Rousseeuw, 1990).
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Partitioning relocation methods: They
divide data into several subsets. Because
checking all possible subsets is computa-
tionally infeasible, some greedy heuristics
are used in order to obtain an iterative op-
timization. This introduces the concept of
Relocation Schemathat reassigns the points
in the different clusters during this process.
Some of these methods can be classified as
probabilistic models (MClachlan & Bas-
ford, 1988). In such a context, the SNOB
algorithm (Wallace & Dowe, 1994) and
the AUTOCLASS algorithm (Cheeseman
& Stutz, 1996) have a significant position
in the scientific literature.

Density-based partitioning: Such a class
of algorithmsrepresents the implementation
of the idea that an open set in a Euclidean
space can be divided into a set of its con-
nected components. The discriminator is
then the density; in this way, a cluster grows
in any direction allowing clusters with not
well-defined or pre-fixed shape. The algo-
rithm density based spatial clustering of
applications with noise (DBSCAN) (Ester,
Kriegel, Sander, & Xu, 1996) represents a
reference point in this context.

Methods Based on co-occurrence of cat-
egorical data: These methodsare developed
in order to identify clusters in the context
of categorical database. We recall here that
a categorical database is one in which the
values of the items can assume a limited
range of fixed values. A typical example
is the Market Basket database, in which
each record contains sequences of 0 and 1
representing what the customer has in the
shopping basket. Inthis context, cluster must
be created searching for the co-occurrence
between the different records. The shared
nearest neighbors (SNN) algorithm (Ertoz,
Steinbach, & Kumar, 2003) isrepresentative
of this class of methods.
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Classification Techniques

Data classification is the process which finds the
common properties among a set of objects in a
database and classifies them into different classes,
according to a classification model. The basic
idea of Classification Techniques is to use some
limited set of records, named Sample or Training
set, in which every object has the same number
of items of the real database, and in which every
object has already associated a label identifying
its classification. The objective of the classification
methodologies can be summarized as:

e Sample set analysis: The sample set is
analyzed in order to produce a description
or a model for each class using the features
available in the data.

. Accuracy evaluation: The accuracy of the
model is evaluated. Only if the accuracy is
over a certain threshold, the model will be
used in the following step.

e Testdata analysis: Using the model previ-
ously obtained, a classification of new test
data is executed. Moreover, the model can
be used to improve an already existing data
description.

The possible approaches to classification are
traditionally divided into four main classes:

. Decision tree induction: This is a super-
vised learning method that constructs deci-
sion trees from a set of examples (Quinlan,
1993).

e Bayesian classification: Itusesthe principle
of Bayesian Classification Error in order to
build classification models (Domingos &
Pazzani, 1996).

. Backpropagation: It is a neural network
based process which performs learning
on a multilayer feedforward network layer
(Rumelhart, Hinton, & Williams, 1986).

. Classification based on association rule
mining: it is based on the possibility to
transform every implication X->Y (associa-
tion rule) into a classification.

PRIVACY PRESERVING DATA
MINING

As already claimed in the introduction, the rapid
evolution of datamining has given a lot of benefits
in data analysis and knowledge discovery. Such
technology has been applied to a wide range of
fields from financial data analysis (Dhar, 1998)
to intrusion detection systems (Lee & Stolfo,
1998) and so on. However, as any technology,
it is not good or malicious by definition. That
is obvious even for data mining. The example
of the Health Database made in the previous
section easily explains which is the main threat
represented by the malicious use of data mining
techniques. This type of “attack” cannot easily
be detected, because, usually, the data used to
guess the protected information are freely acces-
sible. To address this problem is the main goal of
a relatively new field of research named privacy
preserving data mining.

The “Privacy Preserving” Problem

Before going through a classification of the exist-
ing PPDM techniques, it is necessary to give at
least a description of the problem for which such
techniques have been developed.

As described by Lindel and Pinkas (2002), to
define correctly the privacy preserving problem,
itisnecessary first to define a data representation.
One of the most popular data representations is
by data tables (Pawlak, 1991). Adopting such a
representation, itiseasy tothinkaboutarelational
database as a collection of data tables linked by
some “relations”. Starting from the datarepresen-
tation suggested by Pawlak (1991), adatatable can
be defined as a pair T = (U,A) such that:
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1. U is a non-empty finite set, called the uni-
verse.

2. Ais anon-empty finite set of primitive at-
tributes.

3. Every primitive attribute a € A is a total
functiona : U — V_, where V, is the set of
values of a, called the domain of a.

The attributes associated with a data table
can be generally divided into three sets (Hsu et
al., 2001):

. Key attributes: They are used to identify a
datarecord. Theydirectly identify individu-
als (which are, of course, directly associated
to elements in the universe U).

. Publicattributes: Theirvaluesare normally
accessible to the authorized people. These
attributes, as we will see in the rest of the
chapter, if not adequately protected, may be
used to break the privacy of an individual
record.

. Confidential attributes: The values that
are considered sensible and that we want
to absolutely protect.

Hsu, Liau,and Wang (2001), in order to identify
the privacy problem well, reorganize a data table
as a data matrix, mapping the universe U to the
rows of a matrix T, in a way that allow us to have
in the first part of the matrix (positions 1..m, ) all
the public attributes (pub(T)) and, in the second
part (position m_+1..m.), the private (or sensible)
attributes (conf(T)). Ideally, as introduced by Hsu
etal. (2001) database managers or people with full
access rights are in possession of a triple (U, T,J)
where U is the universe of individuals, T is the
data matrix, and J is a function J:U — ¢...t_that
assigns to each individual a data record. On the
other hand, a user who accesses the database
also has another triple (U,pub(T),J)), where J, is
a function defined as J,- U — pub(t), pub(t,)...,
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pub(t ) and where pub(t,) is the portion of a given
record t, of the matrix containing the public data.
Given this formal definition, it is possible now
to characterize the Privacy Preserving Problem
as follow:

How can T be modified in such a way the user
would not know any individual’s confidential
attribute values and the modified matrix is
kept as informative as possible?

Mapping this problem on the specific case of
data mining, it can be rewritten as follows:

How can T be modified in such a way the use
of data mining techniques do not give as re-
sult any individual’s confidential attribute or
confidential “information”, while preserving
at the same time the utility of such data for
authorized uses?

More formally, a Privacy Breach in such a
context can be defined as:

Definition 4. Let Tk be a tabular DB (as in the
previousdescription), aprivacy breachunder the
data mining perspective exist if exists a function
B:T—TsuchthatB(J,(T,))=T whereT, c T, and
at; €T, |t; econf (T,).

In other words, the breach exists if it is possible
toidentify afunctionwhich, taking as input a set of
public data (we remember herethatJ (T,)=pub(T));
itisable to constructanew database T, containing
some item t, which was originally in the subset
of the confidential items. Intuitively, function B
might exist because a relationship exists between
confidential data and public data which can be
used in order to reconstruct or guess the sensible
information. The PPDM techniquesthen, usually,
have as one of their topics the suppression or the
“falsification” of such relationships.
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Methods Taxonomy

In this section, a first complete taxonomy and
classification of the PPDM algorithms is given,
based on the analysis by Verykios, Bertino,
Nai Fovino, Parasiliti, Saygin, and Theodoridis
(2004). Inthisanalysis, various PPDM techniques
are mainly classified on the basis of the privacy
preservation technique used for the data modi-
fication (PPDM techniques are always based on
data modification):

1 Heuristic-based: Make use of some heu-
ristics in order to modify selected values of
the database.

2  Cryptography-based: Make use of cryp-
tographic schemas in order to protect the
sensible data (i.e., secure multiparty com-
putation).

3 Reconstruction-based: Where the original
distribution of the data is reconstructed from
the randomized data.

Figure 1 shows a taxonomy of the existing
PPDM algorithms according to those dimen-
sions.

Heuristic Based Techniques

Atallah, Bertino, Elmagarmid, Ibrahim, and
Verykios (1999) have shown how the selective data
sanitization is a NP-Hard problem. However, the
use of specific heuristics can be used to approxi-
mate and, in some way, circumvent the optimal
sanitization problem. In the same work, Atallah
et al., in order to protect some large itemsets,
propose a heuristic for the modification of the data
contained in a categorical database based on data
perturbation. More specifically, the procedure was
to change a selected set of 1-values to 0-values,
so that the support of sensible rules is lowered in
such away that the utility of the released database
is kept to some maximum value.

A derived approach presented by Dasseni,
Verykios, EImagarmid, and Bertino (2001) ex-

Figure 1. A taxonomy of the developed PPDM algorithms
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tends the sanitization of sensitive large itemsets
to the sanitization of sensitive rules.

Thetechnique adopted inthisapproachtriesto
avoidthe generation of sensitive rules by adopting
two alternative solutions:

. Hiding the frequent itemsets from which
they are derived.

. Decreasing the confidence of the sensitive
rules under a target threshold.

The goal of these strategies is obtained by
modifying the 1-value in the binary database
into a 0-value or the 0-value turned into a 1-
value, in such a way to modify the support or
the confidence of the rule one wants to protect.
However, such strategies have some side effects.
In fact, the modification of the database can be
equated to the injection of new false information.
Such a phenomenon is known in the literature as
“Ghost Rule Injection”. Moreover, by modifying
the items in the database, there is even the risk to
hide nonsensitive rules, downgrading in such a
way the information content of the database. We
name these rules “Lost Rules”.

A complete approach based on this idea has
been presented by Verykios, EImagarmid, Ber-
tino, Saygin, and Dasseni (2003). In the same
context, Oliveira and Zaiane (2002) propose a
heuristic-based framework for preserving privacy
in mining frequent itemsets. They focus on hid-
ing a set of frequent patterns, containing highly
sensitive knowledge.

The algorithms they propose only remove in-
formation from a transactional database and can
be easily classified as honperturbative algorithms.
Such algorithms are based on a item-restriction
approach, allowing the avoidance of additional
noise to the data and limit the removal of real
data. What is interesting is that proposing such
algorithms, Oliveira and Zaiane introduce some
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measures quantifying the effectiveness and the
efficiency of their algorithms.

A completely different approach was intro-
duced by Sweeney (2002). Sweeney proposes
a heuristic-based approach for protecting raw
data through generalization and suppression
techniques. The methods she proposes provide
what is known in the literature as K-Anonymity.
More in detail, we can say that a database is K-
anonymous with respect to some attributes if at
least k transactions exist in the database for each
combination of the attribute values. Therefore, we
can convert a database A into a new database A
that guarantees the K-anonymity with respect to
a target, sensible attribute, by performing some
generalizations on the values of such attributes. As
a side-effect, however, the generalized attributes
are susceptible to a cell distortion due to the dif-
ferent level of generalization applied in order to
achieve K-anonymity.

The problem of privacy preservation in data
mining has also been addressed in the context
of clustering techniques. Oliveira and Zaiane
(2003) have introduced a family of geometric
data transformation methods for performing a
clustering analysis while ensuring at the same
time privacy preservation.

Conventional perturbation methods proposed
in the context of statistical databases do not apply
well to data clustering, leading to very different
resultsin clusteringanalysis. Therefore, they adopt
some techniques proposed for image processing
in order to distort data before the mining process.
More in detail, they consider the case in which
confidential numerical attributes are distorted
in order to meet privacy protection in clustering
analysis, notably on partition-based and hierar-
chical methods. In this specific situation, they
introduce a particular transformation (GDTM),
in which the inputs are a vector V composed of
confidential numerical attributes and a vector N
representing the uniform noise, while the output
is the transformed vector subspace VO.
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Reconstruction Based Techniques

The reconstruction based techniques address the
data mining privacy problem by perturbing the
data and reconstructing the distributions at an
aggregate level. An example of a reconstruction
based technique is the one proposed by Agrawal
and Srikant (2000) for estimating the probability
distribution of original numeric data values, in
order to build a decision tree classifier from per-
turbed training data. More in detail, the question
they addressed was whether, givenalarge number
of users who want to make this perturbation, it is
still possible to construct a sufficiently accurate
predictive model. They suggest two algorithms
for the case of classification. The algorithms were
based on a Bayesian procedure for correcting
perturbed distribution. This approach obviously
preserves the individual privacy; in fact, recon-
structing the distribution does not release any type
of information related to a target individual.

Another reconstruction based approach was
proposed by Agrawal and Aggarwal (2001). It
is based on an Expectation Maximization (EM)
algorithm for distribution reconstruction, which
converges to the maximum likelihood estimate
of the original distribution on the perturbed data.
The basic idea of this class of algorithms is the
following: by perturbing the dataand reconstruct-
ing distributions at an aggregate level in order to
performthe mining, itis possibletoretain privacy
while accessing the information implicit in the
original attributes. However, the problem of this
techniqueis related with the reconstruction of the
data. In fact, depending on the approach adopted,
the datareconstruction may cause an information
loss. Even if in some situation this information
loss can be ignored, it is important to pay atten-
tion to the reconstruction process. Agrawal and
Aggarwal propose the use of the EM algorithm
to make the reconstruction in order to mitigate
this problem.

In the context of categorical databases, Ev-
fimievski, Srikant, Agrawal, and Gehrke (2002)

propose a framework for mining associationrules
from transactions, guaranteeing at the same time
that only true associations are mined. However,
the most relevant contribution from the work
of Evfimievski et al. (2002) is the first formal
definition of privacy breach. In fact, they show
that an itemset A results in a privacy breach of
level p if the probability that an item in A belongs
to a nonrandomized transaction, given that A
is included in a randomized transaction and is
greater or equal to p.

Finally, to conclude the overview of the recon-
struction based techniques, another reconstruction
based technique is proposed by Rivzi and Haritsa
(2003). Their approach is based on a two-step
mining process. In the first step, they suggest
applying a distortion method to preprocess the
data, and in the second step, a mining process is
applied on the data.

Cryptography Based Techniques

The cryptography techniques have been intro-
duced in PPDM in order to solve the secure mul-
tiparty computation (SMC) problem. In detail, in
order to understand what the SMC problem is, let
us consider the following example: two or more
partnerswantto make acomputation thatneedsas
input some private data which any partner wants
to maintain reserved. The problem is then how to
allow the different partners to be able to compute
the results without disclosing the private data.

An example of cryptography based technique
is the one proposed by Kantarcioglu and Clifton
(2002). In their work, the authors address the
problem of privacy-preserving association rule
mining over a horizontally partitioned database
by applying cryptographic techniques in order
to keep the amount of shared information low.
The proposed solution can be divided into three
phases:

1. Each party first encrypts its own itemsets
using commutative encryption.
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2. Each party encrypts the already encrypted
itemsets of the other parties.

3. A party transmits a token containing its
frequency count and a random value to its
neighbor.

4.  The neighbor adds its frequency count and
sends the token to the other parties.

5. A comparison is realized between the final
and initiating parties in order to identify if
the final result is greater than the threshold
plus the random value.

Another cryptography based approach is
described by Vaidya and Clifton (2002). This
approach addresses the problem of association
rulemininginvertically partitioned data. In other
words, its aim is to determine the item frequency
when transactions are split across different sites,
without revealing the contents of individual
transactions.

PPDM EVALUATION
METHODOLOGIES

Considering the large amount of different privacy
preserving datamining techniquesthat have been
developed over the last years, it could be difficult
to understand which method is the most suitable
inatarget context. Moreover, there is an effective
difficulty in the results comparison between dif-
ferent approaches. Itis then necessary to provide
a complete suite of parameters allowing to the
clear evaluation and comparison of the different
approaches (Oliveira & Zaiane, 2004).

In this section, we present the results on this
topic (Bertino & Nai Fovino, 2005; Bertino, Nai
Fovino, & Parasiliti, 2005) and, more in detail,
a framework which allows one to compare the
various privacy preserving techniques on a com-
mon platform.
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State of the Art in the Evaluation
Methodologies for PPDM

By recalling the approaches analyzed in the
previous sections, we focus in this section on
the parameters used by the different authors of
PPDM algorithms in order to prove the properties
of their algorithms. Moreover, on the basis of the
presented parameters, we make some consider-
ations on the goals that PPDM must (or should)
satisfy. This short presentation will act as the
basis on which we will build the remaining part
of this chapter.

In the evaluation of their heuristic-based
framework for preserving privacy in mining
frequent itemsets, Oliveira and Zaiane (2002)
introduce some measures quantifying the effec-
tiveness and the efficiency of theiralgorithms. The
first parameter is evaluated in terms of:

. Hiding failure: The percentage of restric-
tive patterns that are discovered from the
sanitized database.

. Misses cost: The percentage of nonrestric-
tive patterns that are hidden after the sani-
tization process.

e Artifactual pattern: The percentage of
discovered patterns that are artifacts.

Moreover, the specification of a disclosure
threshold o, representing the percentage of sensi-
tive transactions that are not sanitized, allows us
to obtain a trade-off between the hiding failure
and the number of misses.

Oliveiraand Zaiane, in the same work, measure
the efficiency of their algorithms in terms of:

. CPU time: Used by keeping constant both
the size of the database and the set of restric-
tive patterns, and then increasing the size of
the input data, to measure the scalability.
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. Frequency histograms dissimilarity:
Allows the measurement of the dissimilar-
ity between the sanitized and the original
database.

. Size differences: Used in order to obtain
another dissimilarity parameter.

. Content differences: Used as third dis-
similarity parameter.

Asexplained insection 3.2.1, Sweeney (2002)
proposesaheuristic based approach for protecting
raw data through generalization and suppression
techniques. We can consider the cell distortion
that normally affects a database sanitized by
K-anonymity a first measure of DQ impact of
the sanitization process on the target database.
Sweeney measures the cell distortion as the ratio
of the domain of the attribute to the height of the
attribute generalization whichis a hierarchy. In the
same article, the concept of precision is also in-
troduced. Givenatable T, the precision represents
the information loss incurred by the conversion
process from a table T to a K-anonymous table
Tk. More in detail, as reported by Sweeney, the
precision of a table Tk is measured as follows:

Given a database DB with NA attributes and
N transactions, if we identify as generalization
scheme a domain generalization hierarchy GT
withadepthh, itis possible to measure the quality
of a sanitized database SDB as:

i=N, j=N h

2 26T

Quality(SDB) =1 =L 312 Al "
|DB|*|N, |
where represent the detail loss for each
|_G_TAi |
cell sanitized.

Agrawal and Srikant (2002) introduce a quan-
titative measure to evaluate the amount of privacy
offered by a method and evaluate the proposed
method againstthis measure. More in detail, if we

assume to know that, with a certain confidence
conf(v), a value v falls in a certain interval, then
we can use the dimension of such interval as the
measure of the amount of privacy guaranteed. In
the same work, Agrawal and Srikant assess the
accuracy of the proposed algorithms for Uniform
and Gaussian perturbation and for fixed privacy
level.

Moreover, Agrawal and Aggarwal (2001)
propose some metrics in order to evaluate privacy
and information loss. These authors in their con-
siderations start from a point of view completely
different from the one specified in Agrawal and
Srikant (2002). In fact, in this work, the authors
take into account the possibility that both the per-
turbed individual records and the reconstructed
distribution are available to the user as well as
the perturbing distribution, as it is specified by
Evfimievski (2002). The metric resulting by
this hypothesis is based then on the concept of
mutual information between the original and the
perturbed records.

In other words, in order to evaluate the pri-
vacy introduced by the use of a PPDM algorithm,
Agrawal and Aggarwal suggest modeling even
the hypothetical knowledge owned by an adver-
sary who wants to maliciously guess sensitive
data. Therefore, the average conditional privacy
of an attribute A, given some other information,
modeled with a random variable B, is defined as
2h(A|B), where h(A|B) is the conditional differen-
tial entropy of A given B representing a measure
of uncertainty inherent in the value of A, given
the value of B.

In order to assess the information loss, that
is, the lack of precision in estimating the original
distribution fromthe perturbed data, Agrawal and
Aggarwal suggest calculating half of the expected
value of the L1-norm between the original distri-
bution and the reconstructed one. Such a metric
measures the difference between the original
distribution and its estimated reconstruction in
terms of area. All these metrics have non-neg-
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ligible property as universal since they can be
applied to any reconstruction algorithm.

Evfimievski (2002), in order to evaluate the
privacy breaches, counts the occurrences of an
itemset in a randomized transaction and in its
sub-items in the corresponding nonrandomized
transaction. Out of all sub-items of an itemset,
the item causing the worst privacy breach is cho-
sen. Therefore, considering each combination of
transaction size and itemset size, the worst and the
average value of this breach level are computed
over all frequent itemsets. The itemset size giv-
ing the worst value for each of these two values
is selected.

Rivzi and Haritsa (2003) propose a privacy
measure dealing with the probability with which
the user’s distorted entries can be reconstructed.
Roughly speaking, the probability thatagiven 1 or
Oinatransactional database can be reconstructed
is estimated as a privacy measure.

Kantarcioglu and Clifton (2002) evaluate the
methods they propose in terms of communication
and computation costs:

. Communication cost: The number of mes-
sages exchanged among the sites, required
by the protocol in order to reach its scope.

. Computation cost: The number of encryp-
tion and decryption operations required by
the specific algorithm.

Oliveira and Zaiane (2003), in their work on
Clustering PPDM, define a performance measure
that quantify the fraction of data points that are
preserved in the corresponding clusters mined
from the distorted database. More in detail, a
specific parameter, called misclassification error,
is also introduced for measuring the amount of
legitimate data points that are not well-classified
in the distorted database. Finally, the privacy
ensured by such techniques is measured as the
variance difference between the actual and the
perturbed values.

288

A Unified Evaluation Methodology

In order to define which set of parameters is the
most suitable to evaluate PPDM algorithms, it
is previously necessary to define which are the
main goals a PPDM algorithm should satisfy and
then, starting from these considerations, reflect
on the dimensions to be taken into account in the
evaluation phase. On the basis of the content of the
previous section, it is evident that a PPDM algo-
rithm must satisfy the following requirements:

1. It should prevent the discovery of sensible
information.

2. The sanitized database should be resistant
to the various data mining techniques.

3. Itshould notcompromise the access and use
of nonsensitive data.

4. It should be usable on large amounts of
data.

5. Itshould not have an exponential computa-
tional complexity.

6. It should not consume a high amount of
resources.

The actual generation of PPDM algorithms
does not satisfy completely all these goals at the
same time. Let us take as an example the point
(2): its satisfaction implies that an algorithm has
to make its sanitization process taking into con-
sideration the different data models under which
the same information may be represented and then
guessed by the use of different DM techniques.
Such characteristic is, to our knowledge at the
moment, not fully satisfied by any of the existing
PPDM algorithms.

Bertinoetal. (2005) proposed afirst framework
intended to be used for the evaluation of different
kinds of PPDM techniques. Such a framework is
based on the following evaluation dimensions:

e Efficiency: It measures how good the per-
formances ofaprivacy preservingalgorithm
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are in terms of resources consumption. It
can be used to measure goal (6).

. Scalability: Itevaluates the efficiency trend
of a PPDM algorithm for increasing sizes of
the data. It can be used to measure the goal
number (4).

»  Dataquality: It measures the impact of the
sanitization on the quality of the informa-
tion contained in the sanitized database. It
is related with goal number (3).

. Hiding failure: It measures the ability of a
target PPDM algorithm to fulfill completely
its mission (hide all the requested informa-
tion). It is related to the goal (2).

. Privacy level: It estimates how well the
information have been hidden. It can be
used to give an alternative measure to the
goal (1) and partially to the goal (2).

In the following, we will each evaluation
criteria in-depth.

Operational Parameters

The Operational parameters are mainly related
tothe computational properties of the algorithms.
In this class of parameters, we consider the ef-
ficiency, scalability, hiding failure, and complex-
ity. In what follows, a detailed definition of these
parameters is given.

Efficiency

Asintroduced previously, the amount of resources
used by a privacy preserving data mining algo-
rithm gives insome way ameasure of its Efficiency.
Thiskind of performance is assessed considering
three main dimensions: time and space, and, for
distributed algorithms, communication costs
caused by the traffic generated for information
exchange among the distributed entities involved
in the sanitization process. More in detail:

e Timerequirementsare evaluated measuring
the consumed CPU time, the theoretical

computational cost, or the average of the
number of operations required by the PPDM
technique.

. Space requirements are measured by evalu-
ating the average amount of memory that
must be allocated in order to implement and
run the given algorithm.

e Communication requirements, as already
defined before, are evaluated in terms of the
number of communications among all the
sites involved in the distributed data mining
task.

Scalability

Eager, Zahorjan, and Lazowska (1989) claim
that, intuitively, scalability implies a favorable
comparison between a larger version of some
parallel system with either a sequential version of
that same system or atheoretical parallel machine.
He relates scalability to the concept of speedup.
More in detail, let time(n,x) be the time required
by an n—processor system to execute a program
to solve a of problem of size x; the speedup on a
problem of size x with n processors is the execu-
tion time on one processor divided by the time
0N N processors:

time(l, x)

speedup(n, X) = time(n.x)

©)

Moreover, Eager relates Efficiency with
speedup as follows:

speedup(n,x)  time(1, x)
n n*time(n, x)

©)

efficiency(n, x) =

Intuitively, a system with a linear speedup
(speedup(n, X) = n) can be assumed to be scalable.
We can thus propose a first definition:

Definition 5. 4 system is scalable if efficiency (n,

X) = 1 for all algorithms, number of processors
n, and problem sizes x.
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This is not a useful definition, however. As
Amdhal (1967) notes, many parallel algorithms
have a sequential (or at least not completely
parallel) component, yielding poor efficiency
for a sufficiently large number of processors.
Moreover, there exists the size problem: is it
constant or not?

Some approaches to scalability are based
on the concept of theoretical parallel machines
(Fortune & Wyllie, 1978) and on the comparison
between the efficiency of the real machine with
the theoretical one. A PPDM algorithm has to be
designed and implemented so that it is scalable
with larger and larger data sets. The less rapid the
decrease in the efficiency of a PPDM algorithm
forincreasing data dimensions, the better its scal-
ability. We can then define the scalability as:

Definition 6. Letting A be analgorithmfor PPDM
and D a database to be sanitized, we define the
scalability of the algorithm A as the efficiency
trend for increasing values in data sizes of D.

Therefore, the parameter concernsthe increase
of both performance and storage requirements
together with the costs of the communications
required by a distributed technique when data
sizes increase.

Formally, we define the scalability as the
speedup of a monoprocessor computation in a
function of the size increase of the database:

Scalab = (speedup(1, size(t))) @)

Obviously, given this definition, it is easy to
extend it in the case in which we want to evaluate
the PPDM algorithm in a multiprocessor context.
However, we are not actually interested in this
type of application.

Hiding Failure

As defined before, such a metric is quantified by
calculating the percentage of sensitive informa-
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tion that is still discovered, after the data has
been sanitized. It is interesting to note here that
actually, most of the existing Privacy Preserving
datamining techniques guarantee by construction
a level of hiding failure equal to zero.

Complexity

If an algorithm halts, we define its running time
to be the sum of the costs of each instruction car-
ried out. Within the RAM model of computation,
arithmetic operations involve a single instruc-
tion and could be assumed to have a unit cost.
By computing then the computational cost of an
algorithm, we have in some way an alternative
measure of the efficiency and scalability of an
algorithm. It represents the theoretical measure
of the algorithm behavior.

Privacy Level

In our society the, term “Privacy” is overloaded,
and can, in general, assume a wide range of dif-
ferent meanings. From a philosophical point of
view, Schoeman (1984) and Walters (2001) identify
three possible definitions of privacy:

1. Privacyastherightof apersontodetermine
which personal information about himself/
herself may be communicated to others.

2. Privacy as the control over access to infor-
mation about oneself.

3. Privacy as limited access to a person and to
all the features related to the person.

What is interesting from our point of view is
the concept of “Controlled Information Release”
emerging from the previous definitions. From
this idea, as in Bertino et al. (2005), we consider
privacy:

Definition 7. “The right of an entity to be se-
cure from unauthorized disclosure of sensitive
information that are contained in an electronic
repository or that can be derived as aggregate
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and complex information from data stored in an
electronic repository”.

As we already noted, PPDM algorithms actin
very different ways in order to hide the sensitive
information. For this reason, we believe that when
evaluating a set of PPDM algorithms, it is neces-
sary to take into account such considerations.

The Privacy Evaluation in PPDM

The question we want to answer in this section is:
Arethere some observable phenomenalinked with
the privacy variation? By analyzing the privacy
definition, it is evident that it is strongly related
to the information contained in the sanitized
database. The sanitization acts as a “Confusion
Agent” that avoids the Malicious User be able to
see clearly the reality. In physics, the confusion
of a system is strongly related to the Entropy of
a system. The Oxford English Dictionary gives
the first definition of entropy: “For a closed sys-
tem, the quantitative measure of the amount of
thermal energy not available to do work”. If we
substitute “Thermal Energy” with “Information”,
we obtain that the entropy in some way is the
amount of information not available to do work
(to be used). Moreover, if we assume the original
database to be an ordered universe, the sanitiza-
tion introduces some disorder. The biggest is the
disorder, the biggest is the number of possibilities
in which it is possible to rearrange the universe,
and then more difficult is to recover the sensitive
information.

To summarize, the intuition is that in some
way the entropy of the database is related to the
privacy introduced by the sanitization. In 1949,
Shannon and Weaver wrote a famous paper: “A
Mathematical Theory of Communication”. What
is interesting to underline is that, when talking
about the information and communication chan-
nel, they defined the concept of Information
Content, claiming that the information contained
in a data sent along a communication channel is
inversely related to the probability of occurrence.

Thus, our hypothesis is that it is possible to mea-
surethe privacy introduced by aPPDM algorithm
measuring the variation of Information Content
associated to the database.

The Privacy Level Measure
A metric for evaluating the privacy level offered
by aPPDM method is proposed from Agrawal and
Srikant (2000). In their work, the authors argue
that if the perturbed value of an attribute can be
estimated, with a confidence c, to belong to an
interval [a,b], then the privacy is estimated by (b—
a) with confidence c. Even if the intuition behind
this privacy evaluation technique is interesting,
such a metric has a non-negligible lack; in fact,
it does not take into account the distribution of
the original data along with the perturbed data.
Agrawal and Aggarwal (2001), in order to solve
such a problem, propose a new metric based on
the concept of information entropy.

Shannon (1949) defines the concept of Infor-
mation Entropy as:

Let X be a random variable which takes on a
finite set of values according to a probability
distribution p(x). Then, the entropy of this prob-
ability distribution is defined as:

h(x) == p(x) #log, (p(x)) ©)

or, in the continuous case:
h(x) == f (x)*log, (f (x)) 6)

where f(x) denotes the density function of the
continuous random variable X.

By projecting the Shannon definition of in-
formation in the Privacy Preserving data mining
context, Agrawal and Aggarwal argue that because
the entropy represents the information content of
adatum, the entropy after data sanitization should
be higher than the entropy before the sanitization.
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For this reason, Agrawal and Aggarwal (2001)
measure the level of privacy inherent in an at-
tribute X, given some information modeled by
Y, by the following quantity:

H(X |Y) 2 jfxy X,y)*log, fx y_y (X))dxdy (7)

in which the exponent is the conditional entropy
of a random variable X (modeling the original
data) given a random variable Y, modeling the
sanitized (perturbed) data. The measure of the
privacy level by measuring the entropy level, has
the non-negligible property to be very general and
applicable with some refinement, to a wide range
of different PPDM contexts.

Inordertogiveanexample of itsuse, Bertino et
al. (2005) show how to apply the Entropy concept
to the Association Rule context. The approach
adopted is based on the work of Smyth and Good-
man (1992). In their work, they use the concept
of Information Entropy to measure the amount
of information contained in the association rules
extracted fromadatabase, with the aim of ranking
and thus characterizing the most important rules
in terms of information they contain.

Roughly speaking, they representaruley =
x as a condition if Y =y then X = x with a certain
probability p. Making a step in the direction of
the Entropy Theory, the two random variables
can be assumed as two communicating entities
connected by a discrete memoryless channel.
The channel transition probabilities are the con-
ditional probabilities between the two variables.
A rule corresponds to a particular input event Y
=y, rather than the average overall input events
as is defined for communication channels, and p,
the rule probability, is the transition probability
P(X=x]Y =y).

With such considerations, it is easy to calcu-
late the hypothetical Instantaneous Information
(i.e., the information we have about X knowing
that Y =y occurs), which can be represented as a
function f(X:Y =y). Shannon (1949) defines one
of the requirement for f as:
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Ey[f(X:Y = y)] = I(XY) ®

where Ey is the expectation with respect to the
random variable Y.

Blachman (1968) showed that f(X:Y=y) is not
unique, and it has two possible solutions, the i-
measure and the j-measure:

i(X:Y=y)
= ; p(X) * Iog(ﬁ) —g p(x|y)=*log(

1
p(x| y))

©)

i(X 2 =)= 3 p(x] ) *log B2 10

Moreover, Blachman showed that only the j
measure is not negative. Adapting this measure to
the case of a rule (a rule gives information about
the event X = x and its complement X), it is pos-
sible to obtain the following function:

p(x]y)
p(x)
1-p(x)
representing the cross-entropy of a rule.

Finally, it is possible to define a J-measure
representing the entropy of a rule as:

- (%Y =y)=p(x]y)*log——==

+ (- p(x]y))*log

JXY =y) =pWir(X, Y =y) (12)

where the term p(y) is the probability of the rule
antecedent.

If we consider the association rules model and
a specific rule y = X, the value p(y), that is, the
probability of antecedent, is equal to frequency
of y and the value p(xly) is the probability that the
variable X assumes the value x, given that y is
the value of variable Y. It represents the strength
of the rule if Y =y then X = x and it is referred
to as confidence of the rule. Bertino et al. (2005)
define a parameter entropy privacy (EP) as:
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EP = J(X,Y=y) — J1(X,Y= ) 13)

where J1 is the J-measure after the operation of
data hiding.

Some preliminary tests we executed show
that the simple J-measure does not provide
an intuitive evaluation parameter. In fact, as
the Information Theory suggests, we would
expect as a result that when the confidence
decreases, the level of entropy increases.
Indeed, in some particular cases, trend is not
what we expected to obtain. This is due to the fact
that the J-measure represents the average condi-
tional mutual information or, in other words, the
difference between the a priori and a posteriori
probabilistic distributions of the two random
variables X and Y.

On the base of this observation, we note that
if:

. P(XAY ) <P(X) x P(Y ) the two variables
X and Y are negatively correlated.

. P(X AY)>P(X) x P(Y ) the two variables
X and Y are positively correlated.

o P(XAY)=P(X)xP(Y) the two variables
X and Y are independent.

By remembering that:

P(X AY)
P(Y)

we observe that the J-measure does not take into
account the type of correlation between the in-
volved random variables. In fact that can happen
only in the case where during the sanitization
process, the confidence of the rule remains under
the value of the support. In this case, when the
confidence value decreases, the J-measure value
increases. Studying the J-measure function, it is
possible to see that it always has aminimum. The
derived function is negative when p(X]y) < p(X)
and positive when p(x|y) > p(x). For this reason,
we finally adopt as measure the derivative of the
J-measure (for making the steps easy to under-

=P(X|Y) (14)

stand, s is equal to p(x), b is equal to p(y), and x
is equal to (p(x|y))):

J(X 1Y = y) = p(y) * (log, (PX1Y))

1) p(x)
1-p(x|y
SR (15)

Finally, we measure the amount of privacy
introduced by the following expression:

_Ing(

Level of privacy = (3’1 = J") (16)

where J’1 is the calculated after the sanitization
and J’ 1s measured before sanitization.

Data Quality

As noted before, the main part of the PPDM tech-
niques has an impact on the data quality of the
information contained in the sanitized database.
If such aspect could be not relevant in certain
contexts, itassumesaprominent position in those
contexts inwhich, on the basis of the information
stored in a database, relevant, critical decisions
are made. Let us consider, for example, the case
already described of a medical database. What
might happen if during the sanitization critical
items of the patient records have been changed?
It is then extremely important to be able to
identify the PPDM techniques which, in a given
context, minimize the impact of the information
data quality.

We are then interested in assessing whether,
givenatarget database, the sanitization phase will
compromise the quality of the mining results that
can be obtained from the sanitized database. In
order to understand better how to measure DQ
we introduce a formalization of the sanitization
phase. InaPPDM process, a given database DB is
modified in order to obtain a new database DB'.

Definition 8. Let DB be the database to be
sanitized. Let P be the set of all the aggregate

information contained in DB. Let H j, < P,
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be the set of the sensitive information to hide. A
transformation & : D — D, where D is the set of
possible instances of a DB schema, is a perfect
sanitization if P e P,s—H

(DB) ' DB.

In other words, the ideal sanitization is the one
that completely removes the sensitive high level
information, while preserving at the same time
the other information. This would be possible in
the case in which constraints and relationship
between the data and between the information
contained in the database do not exist or, roughly
speaking, assuming the informationtobeasimple
aggregation of data, if the intersection between
the different information is always equal to .
However, this hypothetical scenario, due to the
complexity of modern databases, isnot possible. In
fact, we must take into account not only the high
level information contained in the database, but
we must also consider the relationships between
different information or different data. In order
to identify the possible parameters that can be
used to assess the DQ in the context of PPDM
algorithms, we performed a set of sanitization
tests over different databases.

Observing the results, we identified the follow-
ing four categories of damages (or loss of quality)
to the informative asset of the database:

e Ambiguous transformation: This is the
case inwhichthe transformation introduces
some uncertainty in the nonsensitive in-
formation, that can then be misinterpreted.
It is, for example, the case of aggregation
algorithms and Perturbation algorithms.
It can be viewed even as a precision lack
when for example some numerical data are
standardized in order to hide some informa-
tion.

. Incomplete transformation: The sanitized
database results are incomplete. More
specifically, some values of the attributes
contained in the database are marked as
“Blank”. For this reason, information may
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resultincompletely and cannot be used. This
istypically the effect of the Blocking PPDM
algorithm class.

. Meaningless transformation: In this case
the sanitized database contains information
without meaning. That happens in many
cases when perturbation or heuristic based
algorithms are applied without taking into
account the meaning of the information
stored in the database.

. Implicit constraints violation: Every
database is characterized by some implicit
constraints derived from the external world
that are not directly represented in the data-
base in terms of structure and relation (the
example of medicines A and B presented in
the previous section could be an example).
Transformations that do not consider these
constraintsrisk compromising the database,
introducing inconsistencies in the data-
base.

Therefore, we identify as most appropriate
DQ parameters for PPDM algorithms:

e Accuracy: It measures the proximity of a
sanitized value @’ to the original value a

. Completeness: It evaluates the percentage
of data from the original database that are
missing from the sanitized database

. Consistency: It measures the amount of
semantic constraints holding on the data
that are still satisfied after the sanitization

In the following, we present the formal defini-
tions of these parametersas introduced by Bertino
and Nai (2005). Let OD be the original database
and SD be the sanitized database resulting from
the application of the PPDM algorithm. Without
losing generality and in order to make simpler
the following definitions, we assume that OD
(and consequently SD) be composed by a single
relation. We also adopt the positional notation to
denote attributes in relations. Thus, let od, (sd.) be
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the i-th tuple in OD (SD), then od, (sd.) denotes
the k™ attribute of od, (sd). Moreover, let n be
the total number of the attributes of interest, we
assume that attributes of positions 1,...,m (m<n)
are the primary key attributes of the relation.

Definition 9. Let sdj be a tuple of SD. We say
that sd, is Accurate if —3 od, € OD such that
((od, =sd;) v k=1.m"3(od, #sd,),(sd, = NULL),
f=m+1,..,n)

Definition 10. A sdj is Complete if (3od, € OD
suchthat (od; =sd,) v k=1..m)" (=3 (sd, =NULL),
f=m+1,..,n)

Let C be the set of the constraints defined on
database OD. In what follows, we denote with C,
the jt" constraint on attribute i. We assume here
constraints on a single attribute, but, as we show
in Section 4, it is easily possible to extend the
measure to complex constraints.

Definition 11. An instance sd, is Consistent if
—d ¢; € Csuch that ¢ (sd,)=false, i=1..n

Starting from these definitions, it is possible
to introduce three metrics (Table 1) that allow us
to measure the lack of accuracy, completeness,
and consistency. More specifically, we define the
lack of accuracy asthe proportion of non-accurate
items (i.e., the amount of items modified during the
sanitization), with respect to the number of items
contained inthe sanitized database. Similarly, the
lack of completeness is defined as the proportion

Table 1. Data quality parameters

of noncomplete items (i.e., the items substituted
with a NULL value during the sanitization) with
respect to the total number of items contained in
the sanitized database. The consistency lack is
simply defined as the number of constraints viola-
tion in SD due to the sanitization phase.

The Information Quality Model

In the previous section, we have presented a way
to measure DQ in the sanitized database.

These parameters are, however, not sufficient.
In fact, a high number of aggregated informa-
tion are usually stored in a database. Moreover,
different information stored in a real database
may have a different relevance and then when
measuring the impact of a PPDM algorithm on
the data quality, it is necessary even to take into
account if it has been modified relevant or not
relevant information.

Bertino and Nai (2005) provide a formal
description that allows the magnification of the
aggregate information of interest for a target
database and the relevance of DQ properties for
each aggregate information (Al) and for each at-
tribute involved in the Al. They call such schema
Information Quality Schema (1QS).

Data Quality Evaluation of 1QS

By adopting the 1QS scheme, it is possible then to
associate to every relevantinformation contained
in the analyzed database, a minimum level of
quality required (represented by Definitions 9, 10,

Name Short Explanation Expression
Accuracy Lack The proportion of non-accurate items in SD | SD e |
sD | SD |
Completeness Lack The proportion of noncomplete items in SD 9. = | SD, |
SD | SD |
Consistency Lack The number of constraints violations in SD e = N,
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Figure 2. An information quality schema associated with a target aggregate information
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and 11). Starting from this schema, Bertino and
Nai (2005) propose a methodology allowing us
to measure the quality impact of a target PPDM
algorithm overadefined database. This methodol-
ogy is organized in two main phases:

. Search: Inthis phase, all the tuples modified
in the sanitized database are identified. The
primary keys of all these transactions (we
assume that the sanitization process does
not change the primary key) are stored in
a set named evalset. This set is the input of
the Evaluation phase.

. Evaluation: In this phase, the accuracy,
consistency, and completeness associated
with the information quality model are
evaluated using information onthe accuracy
and completeness weight associated with
the DMG and related to the transactions in
Evalset.

Once the evaluation process is complete, a set
of values is associated the database that gives the
balanced level of accuracy, completeness, and
consistency.
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A Three-Steps Framework for the
Evaluation of PPDM Algorithms

In many real world applications, it is necessary
to take into account also other parameters that
are not directly related to DQ. On the other hand,
DQ should represent the invariant of a PPDM
evaluation and should be used to identify the best
algorithmwithinaset of previously selected “Best
Algorithms”. To preselect this “best set”, we sug-
gestusing the Operational Parameters presented
before plusacoarse dataquality measure (depend-
ing on the specific class of PPDM algorithms) as
adiscriminator to select the algorithms that have
an acceptable behavior. Once we have identified
the Best Set, we are able to apply our DQ-driven
evaluation. We now presentathree-step evaluation
framework based on the previous concepts.

1. A set of “Interesting” PPDMs is selected.
These algorithms are tested on a generic
database and evaluated according the general
parameters (efficiency, scalability, hiding
failure, coarse data quality, level of privacy).



Privacy Preserving Data Mining, Concepts, Techniques, and Evaluation Methodologies

The result of this step is a restricted set of
Candidate algorithms

2. Atestdatabase with the same characteristics
of the target database is generated. An IQM
schema with the AIS and the related DMG
is the result of this step.

3. The information driven DQ evaluation al-
gorithm is applied in order to identify the
algorithm that finally will be applied.

This top down analysis is useful not only for
the specific case of PPDM evaluation, but, if well
developed, is a powerful tool to understand the
real information contents, its value, and the rela-
tion between the information stored in a given
database.

Figure 3. The evaluation framework

CONCLUSION

This chapter presents an overview of the most
relevant contributions in the context of Privacy
Preserving Data Mining. Starting from a survey
of the existing PPDM algorithms, we have pre-
sented a classification of these algorithms using
as criteria several parameters related to the type
of data mining techniques for which they are
developed and the type of technique adopted to
hide the data (distortion, blocking, etc.). Moreover,
techniques allowing the evaluation and choosing
of the most suitable PPDM algorithm for a target
scenario have been presented.

However, the PPDM world is far from being
completely explored; there exist a large number
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of aspects that are not yet analyzed. The PPDM
algorithms of the present generation have a
non-negligible impact on the data quality of the
sanitized database, as showed by Bertino et al.
(2005). For this reason, there is today the need to
develop a new generation of PPDM algorithms
which take into consideration the data quality
and then the usability of the data to be protected.
In this context, a second interesting direction is
the exploration of the presented DQ concepts in
the context of distributed database (Vertically
and Horizontally partitioned), focusing the at-
tention on the trade-off between DQ, privacy,
and trust.

The PPDM approach is based on prevention:
we modify adatabase inorder to prevent the infor-
mation disclosure. In some particular and critical
context, the datamodificationisunacceptable. The
third direction to be explored in the future is then
related to the study of a malicious data mining
intrusion detection system that should be useful
in the context of critical online database.
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ABSTRACT

Data analysis or data mining have been applied to data produced by many kinds of systems. Some systems
produce data continuously and often at high rates, for example, road traffic monitoring. Analyzing such
data creates new issues, because it is neither appropriate, nor perhaps possible, to accumulate it and
process it using standard data-mining techniques. The information implicit in each data record must
be extracted in a limited amount of time and, usually, without the possibility of going back to consider
it again. Existing algorithms must be modified to apply in this new setting. This chapter outlines and
analyzes the most recent research work in the area of data-stream mining. It gives some sample research
ideas or algorithms in this field and concludes with a comparison that shows the main advantages and
disadvantages of the algorithms. It also includes a discussion and possible future work in the area.

INTRODUCTION

Since many recent applications such as Internet
traffic monitoring, telecommunications billing,
near-earth asteroid tracking, closed-circuittelevi-
sion, and sales tracking produce a huge amount

of data to be monitored, it is not practical to store
the data physically. The data is instead presented
as continuous streams. We define a data-stream to
be an endless, real-time, and ordered sequence of
records. Systems that analyze such streams have
been called data-stream management systems
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(DSMSs). Because streams are endless, results
and models that depend on observing the entire
data cannot be computed exactly, and some kind
of approximation is required. Because streams
are real-time, analysis should be fast enough to
accommodate high input rates. Otherwise, the
underfitting problem might occur; thatis, although
there is enough data to produce complex models,
only simple and inaccurate models are produced
since the system is unable to take full advantage
of the data (Domingos & Hulten, 2001). Analysis,
moreover, cannot require more than amortized
constant time for each record, and analysis that
dependsonmultiple passes over the datacannotbe
carried out, at least not without new algorithms.

A number of example DSMSs appear in the
literature. Some are general DSMSs, for example,
STREAM (Arasu, et al., 2003; Babcock, Babu,
Datar, Motwani, & Widow, 2002), the Stanford
data-stream management system, and Aurora
(Abadi, et al., 2003). Others were developed for
special applications; for example, COUGAR
(Bonnet, Gehrke, & Seshadri, 2001) is a sensor
system developed at Cornell University, used in
sensor networks for monitoring and managing
data, and the Tribeca network monitoring system
('Sullivan & Heybey, 1998) is a DSMS designed
to support network traffic analysis.

We now consider the main subject of this
chapter: data-stream mining. Data-stream mining
poses new challenges, such as understanding the
trade-offs between accuracy and limited access
to the data records; developing new algorithms
that avoid multiple passes over the data while
still producing similar results; and understanding
the relationship between the amount of data seen
and accuracy. Performance issues are of critical
importance since they determine how much pro-
cessing can be applied per data object.

Three Kinds of data-stream mining can be
distinguished:

1. Occurrencemining: Thestreamiscontinu-
ously scanned for occurrences ofaparticular

pattern or set of patterns. For example, the
stream may be scanned for records with
particular attribute values that trigger an
alarm, or for certain combinations of records
occurring in close proximity. Occurrence
mining is similar to the use of continuous
queries (Terry, Goldberg, Nichols, & OKi,

1992) in database systems, which are que-

ries issued once and executed continuously

over a data-stream upon receiving new data
points. We will not discuss occurrence min-
ing further.

Multipass mining: Extracting informa-

tion requires more than one pass over the

data. Clearly such a model cannot be built
from the stream directly but requires some
sample to be collected and used as if it were

a standard dataset.

Windows of adjacent records are often used

to extract a sample that can be made avail-

able for off-line analysis. Windows may be
defined as:

e Timebased: Aninterval of timestamps
on the data records, for example, all
records from the last hour.

*  Order based: An interval of record
identifiers, for example, the last 100
records or the recent set of records that
can fit into the memory buffer.

Standard data-mining techniques can be

applied in multipass mining with little, if

any, change so we will not discuss them
further.

Online mining: A model of the data is

built continuously and incrementally from

the records as they flow into the system.

Such models can be simple, for example,

accumulating the sum of some attribute of

each of the records, or can be complicated,
for example, building a decision tree based
on the stream as training data.

There are three important classes of online

mining techniques:
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e Constructing summaries of the data so
far in a compact format. Many types
of summaries have been suggested:
synopses (Acharya, Gibbons, & Poo-
sala, 1999b; Babcock, Babu, Datar,
Motwani, Widom, 2002), sketches
(Ganguly, Garofalakis, & Rastogi,
2004; Krishnamurthy, Sen, Zhang, &
Chen, 2003), random sampling (Acha-
ryaetal., 1999a; Babcock et al., 2002;
Chaudhuri & Motwani, 1999; Chaud-
huri, Motwani, & Narasayya, 1999),
histograms (loannidis & Poosala, 1999;
Zhou, Qin, & Qian, 2005), wavelets
(Chakrabarti, Garofalakis, Rastogi, &
Shim, 2000; Vitter & Wang, 1999; Zhu
& Shasha, 2003), or batch processing
(Babcocketal., 2002), which all record
aselected history of what has been seen
in the stream so far.

»  Buildingpredictorsfromthedata. Such
models predict some property, either a
class label or anumerical value for new
records. Prediction techniques from
mainstream data mining must usually
be modified substantially to work in an
online way.

e Clustering the data. Such models
group records in ways that reflect their
underlying similarities and dissimi-
larities. Again, clustering techniques
from mainstream data mining must be
adapted to be used on stream data.

Stream-based data-miningalgorithmscanalso
be categorized by their requirements for the data,
and the quality of their results:

. Is the result of the stream-based algorithm
equivalent to one of the results produced by
a standard algorithm, or is it an approxima-
tion to such a result?

304

Mining Data-Streams

. Isthe model builtincrementally and smooth-
ly from records in the stream, or must there
be some batching of the data?

. Must the model builder see every record of
the stream, or can it use a sample?

. Does the algorithm discount older data,
either by reducing or removing its effects?

We focus in this chapter on the three online
mining techniques of data-streams, namely
summarization, techniques, and clustering tech-
niques, and show the research work in the area.
The chapter is structured as follows: The next
section introduces stream-based summarization
techniques. The section after describestechniques
for stream-based prediction. The later section
describes techniques for stream-based cluster-
ing. Each section concludes with a comparative
analysis of the major work in the area. The last
section states some conclusions and outlines pos-
sible future research in this area.

DATA-STREAM SUMMARIZATION

In this section, we consider three major forms of
data-stream summarization, namely maintaining
statistics of data-streams, identifying frequent
records in data-streams, and detecting changes
in data-streams.

Maintaining Statistics of
Data-Streams

One of the important problems in the field of
data-stream mining is maintaining statistics of
data records. Examples of such statistics are
mean, median, standard deviation, sum, max,
and min. Approximation techniques are required
to estimate these statistics of data-streams, in
the sense that they always capture properties of
the stream “so far”. Such statistics are useful for
understanding astream’s overall behavior, aswell
as detecting deviations from stationarity.
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To solve the problem of maintaining statistics
of data-streams, two approaches have been con-
sidered. The first is to use incremental calcula-
tions that reflect only a recent window of data
(Zhu & Shasha, 2002). This approach does not
really use approximation techniques, nor does it
reflect properties of the whole stream. It is useful
for applications that need to know recent statis-
tics, such as the number of current users using a
network router.

The second solution is to store summaries of
the properties of the data records. The calculated
statistics capture all the history of the stream,
but with some approximation (Babcock, Datar,
& Motwani, 2003; Bulut & Singh, 2005; Datar,
Gionis, Indyk, & Motwani, 2002). Algorithms
differ in the precise way they capture and record
summaries but, almost always, they give more
weight to recent data. A simple example of an
application using this approach is recording the
maximum temperature reached so far in a city to
be kept in forecasting records. We now give some
example algorithms.

Algorithms

STATSTREAM is a data-stream monitoring system
proposed by Zhu and Shasha (2002). Its main idea
istodivide windows into subwindows, called basic
windows, that fit into main memory. Summaries
are stored for each basic window and the sum
over the entire window is updated by adding the
summary for the new basic window and remov-
ing the summary of the oldest basic window.
Using basic windows enables the algorithm to
find statistics for large windows that cannot fit
into memory.

Bulut and Singh (2005) propose a framework
for monitoring streams. The main contribution of
the framework is its feature extraction technique.
They maintain the function to be monitored at
multiple resolutions so that the higher-level ag-
gregates depend on the lower levels to compute
their values. They use multiple levels to be able

to work with variable-length queries. More space
is required, however, to store the aggregates
of all the levels. The authors therefore propose
either batch processing, or what they called the
minimum bounding rectangle (MBR). The MBR
only stores the minimum and maximum values
over a number of windows, c, in the same level,
and uses them to approximate the required ag-
gregate. The required space is therefore reduced
by a factor of c.

Datar et al. (2002) use a different approach to
maintaining stream statistics. They assume that
streams contain binary data, and they count the
number of 1s appearing in the stream. They call
their algorithm Basic CounTinG. It maintains an
exponential histogram (EH), which stores the
timestamps of all the 15’ bits that are within the
current sliding window. The total count is then
approximated by having two counters; one is for
the last bucket (LAST) and the other for the total
count including the last bucket (TOTAL), so the
approximate countis TOTAL—¥2 LAST, since the
last bucket may have expired records.

Babcock et al. (2003) propose an algorithm
for maintaining the variance over a data-stream.
The algorithm defines a set of buckets, within an
exponential histogram, called the suffix buckets
{B,.. B,......, B, .}, where m is the total number of
buckets inthe window, and B_ is the oldest bucket
that may contain expired records. A suffix bucket
B.. is defined to be the set of elements that ar-
rived after the bucket B,that is B, = J . B,. To
approximate the average at time t, B | statistics
and the active portion of the oldest bucket B_
are used.

Analysis

We give our analysis of the above mentioned
algorithms in the area of maintaining statistics of
data-streams. See Tables 1 and 2 for performance
and design choices, respectively. Note that, in all
the stream-summarization techniques, we do not
consider the time complexity in our analysis since
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allthealgorithms maintain simple and inexpensive
statistics, so we assume constant per-record time
complexity for all of them.

Identifying Frequent Records
(Hot Lists)

Identifying frequentrecords (hot lists) isaproblem
that can be thought of in two ways: either finding
those records whose frequency is above some
threshold, or finding the k most frequent records
in a stream. Both problems are important prob-
lems with practical applications. Approximation
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techniques are required to estimate the counts
or frequencies of the records. Hot list algorithms
can be divided into counter-based algorithmsand
sketch-based algorithms (Metwally, Agrawal, &
El Abbadi, 2005).

Counter-Based Algorithms

Counter-based algorithms (Arasu & Manku,
2004; Gaber, Krishnaswamy, & Zaslavsky, 2004;
Karp, Papadimitriou, & Shenker, 2003; Manku &
Motwani, 2002; Metwally et al., 2005) are proba-
bilisticalgorithmsbased onsampling. They select

Table 1. Performance for algorithms that maintain statistics of data-streams

Space Complexity

e STATSTREAM (Zhu & Shasha, 2002):
°  Best space complexity.
e Bulut and Singh:
factor of c.
°  Worst space complexity.

o

O(log n) ,where n is the size of the stream seen so far.

o

O(k) where k is the number of the basic windows of the current sliding window.

Requires space to store the aggregates at multiple levels. However, when using the MBRs, the space complexity reduces by a

« Algorithms using histograms (Babcock et al., 2003; Datar et al., 2002):

Moderate algorithms; they require reasonable space and give reasonable approximations.

Table 2. Design choices for algorithms that maintain statistics of data-streams

Technique

Flexibility

*  STATSTREAM (Zhu & Shasha, 2002) does not use approximate
answers

Both Datar et al. and Babcock et al. use histograms.
°  Bulut and Singh use the MBR.
°  Histograms give better approximation than MBRs since

which might have some expired records.
°  MBR is poor for non-normally distributed data-streams.

» Others (Babcock et al., 2003; Bulut & Singh, 2005; Datar et al.,
2002), each approximate the required aggregates in a different way:

histogram approximation is only done on the oldest bucket,

e STATSTREAM (Zhu & Shasha, 2002) and BAsicCouNTING

(Datar et al., 2002):

°  Not flexible enough to be applied to different
durations of a stream.

°  Only computes the required aggregates for the most
recent window.

e The other two algorithms (Babcock et al., 2003; Bulut &

Singh, 2005):

°  Have the ability to approximate the aggregates over
earlier durations of the stream given that they are
within a reasonable period of time from the current
time (not very old).
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a sample of the stream using some probabilistic
criterion and keep a counter for each record in
the set that reflects its approximated frequency at
anytime. The set of sampled records changes with
time according to some algorithmic constraints.

One of the major results in this area is due to
Mankuand Motwani (2002). The authors consider
only the problem of finding the most frequent
records. They propose an algorithm called Stick-
vySampLING that requires the user to specify three
parameters: a threshold percentage s, an error
€ (e << s), and a failure probability 6. Suppose
that the length of the stream seen so far is n. The
algorithm guarantees that all the output records
have frequency counts greater than sn with error
€ and probability (1-0). That is, there are no false
negatives, but there might be false positives that
have true frequencies not less than (s — € )n. The
input elements are sampled using a sampling rate
that is exponentially decremented every 2t time
steps, where t = log(s '67") /.

Another counter-based algorithm, called the
Space Savine algorithm, is proposed by Metwally
etal. (2005). Itisanintegrated approach for solving
both the most frequent records and the top k ele-
ment problems. The authors argue that a solution
for both problems can be found by estimating the
frequencies of the elements of the sampled set, and
always storing them in a sorted order (sampled
list) using a summary data structure. They moni-
tor only the sampled records and replace the less
promising records with new records.

Sketch-Based Algorithms

Sketch-based algorithms (Arasu & Manku, 2004;
Charikar, Chen, & Farach-Colton, 2002; Golab,
DeHaan, Demaine, Lopez-Ortiz, & Munro, 2003;
Manku & Motwani, 2002) are deterministic al-
gorithms that monitor the entire stream of data
by keeping summaries of the past data. For this
purpose, they use histograms, bit-maps, or ap-
plication-specific data structures.

LossyCounTING is a sketch-based algorithm
proposed by Manku and Motwani (2002). It takes
a percentage threshold s and an error € as inputs.
The input stream is divided into buckets of width
w =[1/e | Eachbuckethasan ID associated with it
and the currentbucket IDisb_ _ =n/w,wheren
isthe number of elements seen so far. Each bucket
keeps track of the counts of the records included
in it. Nonpromising records having small counts
are deleted to save memory.

CounTSKETCH is a sketch-based algorithm
proposed by Charikar et al. (2002) to find the top
k records of a stream. It uses a humber of hash
functions applied to input records to update a
set of counters associated with each hash func-
tion. In other words, each record arrival updates
a different set of counters, giving better overall
estimation. The total count of a record is then
retrieved by taking the median of the expected
values of the counters it has updated. The authors
use the median since it is less sensitive to outliers
and more robust than the mean.

Table 3. Performance of algorithms that identify frequent records in data-streams

Accuracy of results

Space Complexity

o Sketch-based give better accuracy in general.
o0 Good for bursty data-streams
e Counter-based are better for normally distributed data since
they represent the whole stream with a small sample.
0 They need less per-record time to compute their
results.

Sketch-based algorithms need more space to store the
summaries— their space is dependent on stream size.
Counter-based algorithms need less space since they only
store a sample of the data points — their space is independent
of the stream size.
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Analysis

We summarize hot-list algorithm accuracies and
space complexities in Table 3.

Detecting Changes in Data-Streams

Detecting changes in data-streams has applica-
tions in areas such as network monitoring, traffic
management, intrusion detection, and system
analysis. In addition, change detection can be
considered asa precursor of some stream applica-
tionsthat build models fromthe data. Data-stream
change-detection algorithms can be divided into
two types, namely those that detect a change in
the distribution of the underlying process that is
generating the data (Dasu, Krishnan, Venkata-
subramanian, & Yi, 2005; Kifer, Ben-David, &
Gehrke, 2004; Krishnamurthy et al., 2003) and
those thatdetectstream bursts, thatis, sudden large
and unusual changes in a data-stream (Zhou et
al., 2005; Zhu & Shasha, 2003), which can be of
interest for applications such as stock markets.

Detecting Distribution Changes

We consider two approachesto detecting distribu-
tion changes. The first approach is based on what
is called the two-window paradigm. The system
keeps track of two windows of data: the current
window of data, and a reference window that
capturesthe underlyingdistribution of the stream.
The system comparesthe datadistributions of both
windows using some distance measure.

The second approach is to use the old data
distribution to predict the new incoming data
distribution, and then compare the predicted
distribution with the actual one. If the prediction
error is significant, then the distribution of the
stream has changed.

Kifer et al. (2004) and Dasu et al. (2005) pro-
pose algorithms for detecting distribution changes
in a stream that are based on using multiple pairs
of the two-window paradigm. Kifer et al. use a
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distance measure based on the total variation
measure (Ihara, 1993), replacing the probability
distributions with the empirical weights of re-
cords, since there is no prior knowledge of the
distributions of the two samples. Dasu et al. use
the well known KL distance (relative entropy)
(Ihara, 1993) to measure the difference between
two windows’ distributions. The KL distance isa
distance measure that depends on the probability
mass function of two known distributions. The
algorithmof Dasuetal., however, assumes no prior
knowledge of the two windows’ distributions, and
therefore, measures the empirical probability mass
function for each window’s records. It also tests
the change significance, using bootstrap methods
(Davison & Hinkley, 1997) and hypothesis testing
that depend on a user-defined threshold.

Krishnamurthy et al. (2003) use a prediction
model to detect streamdistribution changes. They
use sketches to summarize the data based on some
probability measures. The proposed algorithm
has only been tested for off-line data. However,
the authors claim that it is suitable for stream ap-
plications. The main idea of the algorithm is to
depend on the sketches to compute an observed
value for the current time interval, compute a
forecast value for the same interval depending
on the past observed values, and then find the
difference between the two computed values. If
the differenceisgreater than some threshold, then
a change has been detected.

Detecting Stream Bursts

Detecting stream bursts is easier than detecting
distribution changes since a stream burst can
be deduced directly from the summaries of the
data. Zhou et al. (2005) propose an algorithm for
detecting stream bursts. They rely on having a
ratio threshold and adaptive window sizes. The
algorithm depends on a linear scan of a data
structure, which they call an inverted histogram
(IH), for summarizing an incoming stream by
storing suffix sums. They check the most recent
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two consecutive windows for bursts using the
summaries in the IH when each record arrives.
Zhu and Shasha (2003) propose an algorithm
for detecting bursts in data-streams using wave-
lets. They use what they call the elastic sliding
window model, which is a model that has a range
of windowsto be checked to detect differenttypes
of stream bursts, either small sudden bursts or
long-lasting stream bursts. They propose a modi-
fied version of Haar wavelets which they call the
Shifted Wavelet Tree (SWT). This gives overlaps
between windows in the same level such that any
window of size w < 2'is covered by intervals at
level i+1 and all the higher levels. They use either
anonlineapproach or abatchapproach tocompute
their required statistics and update the SWT.

Analysis

We summarize the accuracies and complexities
for algorithms to detect changes in stream in
Table 4.

DATA-STREAM PREDICTION

The goal of prediction is to build a model that

relates the attributes of data records to some prop-
erty of interest. If the property is a label for each

record, then prediction is called classification. If
the property is a numerical value, then prediction
is called regression. For example, we may want to
predict whether each frame captured by a closed-
circuittelevision cameracontainsahuman face or
not (classification), or we may want to predict the
wind velocity in each frame based on the position
of objects such as flags (regression).

Standard prediction is usually considered in
three phases. In the first phase, a model is built
using data, called the training data, for which
the property of interest is already known. In the
second phase, the model is used to predict the
property of interest for data, called test data, for
whichthe property of interestis known, butwhich
the model has not previously seen. In the third
phase, the model is used to predict the property of
interest for new data (deployment). The model’s
performance ontestdata provides agood estimate
of how well it will perform on new data, and so
provides a way of assessing the adequacy of the
model before deployment.

The three phases are carried out in sequence
in conventional prediction. In a stream setting,
there is no natural way to separate the phases, so
we must formulate the problem inadifferent way.
In what follows, we assume that some subset of
the stream records are already labeled with the
property of interestand so can be used for training

Table 4. Performance for algorithms that detect changes of data-streams

Accuracy of results

Space Complexity

¢ Algorithms that store the actual data (Dasu et al., 2005;
Kifer et al., 2004) are more accurate than algorithms that use
summaries (Krishnamurthy et al., 2003; Zhou et al., 2005;
Zhu & Shasha, 2003).

e Checking the change-significance affects accuracy as well.

°  Dasu et al. use a bootstrap method to check the
significance, while others (Kifer et al., 2004;
Krishnamurthy et al., 2003; Zhou et al., 2005; Zhu
& Shasha, 2003) check for change significance using
a threshold value. The bootstrap method is a well-

accurate results.

known and efficient statistical measure that gives more

Detecting distribution changes:

°  Algorithms that need space to store multiple data
samples to represent the previous distribution of the
data-stream and the most recent data (Dasu et al.,
2005; Kifer et al., 2004) need more space.
Algorithms that Store only summaries of old data
(Krishnamurthy et al., 2003) need less space.
Detecting a stream burst needs less space than detecting
distribution changes.

°  Zhou et al. require linear space to store the IH they
use in their computations, while Zhu and Shasha
need to store more data since SWT requires storing
summaries for overlapping windows.
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or testing. Other records are not labeled, and we
wishto generate appropriate labels forthemasthey
arrive. In some settings, it is appropriate to insist
that predictions must be made for all unlabeled
records, perhaps after some initial time. Alter-
natively, predictions may only need to be made
for some records defined by an external analyst,
perhaps for a particular window of data.

Conventional predictionhandles conceptdrift,
that is a change in the criteria for prediction, by
rebuilding the predictive model from scratch
whenever necessary (Hulten, Spencer, & Domin-
gos, 2001). In a stream setting, it is possible to
incorporate incremental rebuilding in a natural
way so that the current model always reflects
recent labeled data.

In fact, in the area of data-stream prediction,
research is only concerned about the stream clas-
sification algorithms. No real work has been done
on the data-stream regression. We will, therefore,
not discuss any regression algorithms further.

Standard Classification

A popular technique for standard classification is
the decision tree (DT). A decision tree is a tree

Figure 1. Example of a decision tree

Mining Data-Streams

data structure in which internal nodes contain
rules, usually (in)equalities on attribute values,
and leaves have assigned class labels (that is, one
of a set of predicted values for the property of
interest). Decision trees are built from training
data by determining the attribute whose value
is most informative, based on one of a number
of criteria such as information gain, and using a
rule based on that attribute as the root of the tree.
Rules at the next level of the tree are determined
in a similar way using the records that satisfy
the initial inequality or not and the remaining
attributes. When the set of training records that
remain at the end of a branch is entirely or almost
entirely from a single class, the branch is not
extended further, and the leaf is labeled with the
class label. An example of a simple decision tree
is shown in Figure 1.

A decision tree is used for prediction by test-
ing a new record against the rule at the root of
the tree, passing it down to one of the branches
depending on the outcome of the rule application,
and repeating until the record reaches a leaf. The
class label of that leaf is used as the predicted
class. Two popular decision tree predictor build-
ing algorithms are the 1D3 and C4.5 algorithms
(Dunham, 2003).
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Data-Stream Classification
Techniques

Many data-stream classification techniques are
based on decision trees with some variations
because of the requirements of streams (Chu,
Wang, & Zaniolo, 2004; Domingos & Hulten,
2000; Fan, 2004, Fan, Huang, & Yu, 2004; Gama,
Medas, & Rocha, 2003, 2004; Hulten et al., 2001;
Wang, Fan, Yu, & Han, 2003; Zhu, Wu, & Yang,
2004). The biggest problem is that measures of
attribute importance used to determine the best
choice of attribute and the inequality usually
require counts or probabilities computed over all
of the training data. Clearly, this is not possible
when the data is a stream.

One solution is to use the Hoeffding bound to
estimate when avariable such asinformation gain
is sufficiently well approximated from a sample of
the attribute values (Domingos & Hulten, 2000).
Inother words, the Hoeffding bound tells us when
a sample of the data records is large enough that
the information we learn from it is good enough
to make a decision about the next rule to apply.

The Hoeffding bound states that: “Given a
random variable r in the range R, and n indepen-
dent observations of r, having mean value T, the
true mean of r is at least F— ¢, where:

R?In(L/3)

2n

with probability /-6, where ¢ is a user-defined
threshold probability” (Domingos & Hulten,
2000). In other words, using Hoeffding bounds
assures thatno splitismade unless there is a confi-
dence of /-0 that this attribute is the best attribute
for splitting at that point of the execution.

The Hoeffding bounds are achieved by the fol-
lowing. Assume thatwe have ageneral function G
thatchecksanattribute’sgoodness for splitting ata
specific internal node of the decision tree. Ateach
point in tree construction, G is calculated for all
attributes, and the best and second best attributes

are chosen to calculate AG= Gy~ G.cong nighest
Thealgorithmthenrecalculates G forall attributes
as each new record arrives and updates AG con-
tinuously until it satisfies the stopping condition,
that is, AG > ¢. That means the true value of the
largest G is within a range of the value ¢ of the
approximated G with probability /-6. Therefore,
the attribute with the highest G is the best choice
for splitting at the current node with confidence
1-6. The tree grows with time, since the input
stream is infinite. Whenever a new record must
be classified, the current tree is used.

We now discuss the key ideas of some ex-
ample stream-classification algorithms that are
based on the decision tree family of algorithms.
Domingos and Hulten (2000) propose the very
fast decision tree (VFDT) algorithm for clas-
sifying high-speed streaming data. VFDT is
the base for many algorithms that use decision
trees. It is capable of building decision trees that
require constant memory and constant per-record
construction time.

VFEDT follows the basic steps of building a
Hoeffding tree described above, but with some
modifications. When there are two close best G
values while building the decision tree (i.e., AG
> ¢ is false for a long time), VFDT considers the
situation to be a tie. Therefore, it allows a user to
define a threshold value, t, and split on the best
attribute found so far whenever AG < ¢ <t holds,
in order to break the tie. Also, VFDT computes G
for tree nodes periodically instead of after each
single record arrival to save processing time, and
it drops unpromising attributes with small values
of G to save memory. To achieve better efficiency,
VFDT uses a standard decision-tree algorithm to
createaninitial tree off-line, usingasmall number
of records. This provides a reasonable initial ap-
proximation to the online classification tree.

VFDT is efficient; however, it does not con-
sider concept drift. Therefore, an improvement
for VFDT was proposed by Hulten et al. (2001),
called the concept-adapting very fastdecisiontree
(CVFDT) algorithm, which addresses concept
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drift while maintaining similar efficiency and
speed to VFDT. It is an incremental algorithm
based on windows.

Themainideabehind CVFDT isto grow alter-
native subtrees for intermediate nodes. Whenever
there is an internal subtree that poorly reflects the
current concept, CVFDT replaces this node with
thealternative subtree that has better performance.
Depending on the available memory, CVFDT
defines a maximum limit on the total number
of alternative subtrees that can exist at the same
time. If there are alternative subtrees that are not
making any progress, CVFDT prunes them to
save memory.

Another improvement onthe VFDT approach
is to use ensembles (Chu et al., 2004; Fan, 2004;
Gama et al., 2004; Wang et al., 2003; Zhu et al.,
2004), which are trees built using different parts
of the data-stream. These trees are deployed as
an ensemble by using each of them to classify
new records and then using voting to combine the
predictions of each individual tree. For example,
five trees could be grown independently using
five different windows of data from the stream.
These five trees would produce five predictions
of the class label for new records, and the class
with a plurality of votes would be the prediction
of the whole ensemble. Itisalso possible to extend
this simple voting scheme so that each individual
tree’s prediction is given a weight, perhaps based
on its test accuracy, or its size. The overall pre-
diction becomes the plurality of the weighted
votes. Another possible extension is to use only
the prediction of the most-accurate tree out of a
number of current trees in the ensemble, based
on some test criterion. We present some example
algorithms in the following paragraphs.

Wang et al. (2003) propose a weighted-clas-
sifier ensemble algorithm. Classifier weights
depend on the data distribution of the windows
used to train them, so that the classifiers built from
data having a distribution similar to the current
distribution are assigned higher weights. Clearly,
this addresses the concept-drift problem, as the
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classifiers representing the current and recent
distributions are more heavily favored.

Each classifier is given a weight that is in-
versely proportional to its expected classification
error using the mean-square error measure. The
expected error is approximated by comparing the
new classifier results to the results of the latest
classifier. After assigning the weights, only the
best k classifiers are considered, if necessary, for
the testing phase, and their results are combined
using weighted averaging.

Zhu et al. (2004) propose an algorithm called
attribute-oriented dynamic classifier selection
(AO-DSC). It is based on the dynamic classifier
selection technique (DCS) that trains multiple
classifiers on the data-stream as it flows in, and
chooses the most accurate classifier. Only the
most recent k classifiers are considered and an
evaluation set to measure the accuracy of the
base classifiers is used.

All of the above stream classification algo-
rithmsare based ondecisiontrees. Thereare other
stream-classification algorithms that are based
on the K-Nearest Neighbors (KNN) algorithm
(Aggarwal, Han, Wang, & Yu, 2004; Gaber et
al., 2004). The KNN considers the entire training
data as the prediction model, and predicts new
records to have the class label of the majority of
the nearest k records in the training set. As for
decision-tree-based algorithms, the problem in
applying the KNN idea to streaming data is that
the training set is infinite. The data used for clas-
sification must therefore be asubset of the available
data, so there are issues about which data should
be chosen and how it should be summarized.

Gaberetal. (2004) propose a light weight clas-
sification (LWClass) algorithm based onthe KNN
algorithm and the concept of output granularity.
They define the algorithm’s output granularity to
be the number of results that can fit into the main
memory before performing an incremental step
(i.e., going to next window). To build a classifier
from a stream, LWClass stores a number of train-
ing records, according to the output granularity.
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Then, for each new arrival of a training record,
LWClass finds the nearest training record already
stored, using some distance measure, and checks
if the new record has the same class as the near-
est stored record. If so, the weight of the stored
record is increased; otherwise, it is decreased.
Whenever the weight of any stored record reaches
zero, it is deleted from memory to create space
for new records.

Aggarwal et al. (2004) propose an algorithm
that uses an off-line model for training the sys-
tem, and an online model for the classification
phase on user request. They rely on the off-line
microclustering concept (Aggarwal, Han, Wang,
& Yu, 2003). The microclustersstore training data
statistics in snapshots and consider them as the
prediction model. The user specifies the duration
at which the classification processis to be applied,

Table 5. Data-stream classification algorithm performance

Time Complexity

Space Complexity

¢ Testing phase time is of more concern.

e ForDT:
°  Worst case: O(log t) where t is the number of nodes in
the tree.

Expected: O(t).
°  Light calculations per testing sample.
Using ensemble classifiers: O(m log t) where m is the
number of ensembles.
°  However, m can be neglected since the number of
classifiers is always limited, except for the AO-DSC
(Zhu et al., 2004), since it takes time to evaluate the
classifiers and choose the most accurate one.
¢ For KNN:
°  Worst case: O(nd), where n is the number of stored data
and d is the number of attributes.
°  Need expensive calculation per testing sample.
* Obviously, DT-based algorithms have a better time
complexity than KNN-based algorithms.

DT: O(ldvc), where:

° |: number of leaves

° d: number of attributes

°  v: maximum number of values per attribute

°  c: number of classes

¢ Independent of data size — scalable

°  CVFDT (Hulten et al., 2001) need space to store
alternative trees — O(wdvc), w: number of nodes in the
tree and alternative subtrees.

°  Ensemble classifiers (Chu et al., 2004; Fan, 2004; Gama
etal., 2004; Wang et al., 2003; Zhu et al., 2004) need
more space to build multiple DTs, however, they all fit
into memory.

KNN: depends on the size of training data — not scalable.

Table 6. Data-stream classification algorithms design choices

Underlying Classification Techniques

Classification Accuracy

e DT based algorithms:
°  Most popular for streaming applications.
¢ Simple and efficient.
Time and space complexities are independent on data size

o

— scalable.
¢ KNN based algorithms:
°  Simple.

o

Not scalable — not practical.

Both DT and KNN give good accuracy.

However, KNN builds the predictor on part of the data —
accuracy reduced.

DT is preferred because it is based on the Hoeffding bounds.
DT may lead to overfitting.

KNN is better for outlier handling because it only depends
on the k nearest neighbors.

KNN is better for data that change in nature, such that it
builds the predictor on the recent window of data.

DT algorithms that do not consider the concept drift problem
(Domingos & Hulten, 2000; Gama et al., 2003, 2004) have
the least accuracy.
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and the system chooses the appropriate snapshots
of training data. The system considers an evalu-
ation data set (1% of training records) to be used
in measuring the most accurate k microclusters.
Then the KNN algorithm is applied. Atany time,
the number of the stored microclusters is C log n,
where C is the maximum capacity of a snapshot
and n is the size of the input stream seen so far.
Each microcluster requires O(d) memory, where
d is the number of attributes.

Analysis

We now analyze the above stream-classification
algorithms. Tables5and 6 compare the algorithms’
performance and design, respectively. Table 5
gives a comparison of the algorithms’ time and
space complexities. Table 6 considers the main
design choices, their underlying classification
techniques and classification accuracies.

DATA-STREAM CLUSTERING

Data clustering is the process of gathering input
data into a number of groups or clusters. Each
cluster contains data records that are similar to
each other, while being dissimilar to records in
other clusters. The difficulty in applying such
techniques to data-streams is that it is impossible
to see all of the data records before deciding the
best way to cluster them. Therefore, clustering
algorithms over data-streams use approximation
techniques that store important statistics needed
by the clusteringalgorithms, and tentative clusters
that reflect the data seen so far. In this section, we
describe how standard data-clusteringalgorithms
can be modified to apply to streaming data, and
examine and compare the different data-stream
clustering techniques.
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Standard Data Clustering

Standard clustering algorithms can be divided into
two main types, namely hierarchical clustering
algorithms and partitional clustering algorithms
(Dunham, 2003; Kantardzic, 2003). Hierarchical
clusteringalgorithms produce atree inwhicheach
leaf represents a data record, and each internal
node represents a cluster. The parent of a set of
nodes represents a cluster that is the union of the
clusters below it, so that the clustering structure
can be understood at different granularities by
considering different levels of the tree. The tree
structure is called a dendrogram. An example is
shown in Figure 2. The main advantage of hier-
archical clustering is that it does not require the
number of clusters to be known in advance.
Two kinds of algorithms are used to build hi-
erarchical clustering. Agglomerative algorithms
start by assuming each data record is a cluster on
its own, and then repeatedly join the two most
similar clusters until all of the records are in a
single cluster (at the root of the tree). They build
the dendrogram upwards from the leaves to the
root. Divisive algorithms start by assuming that
the data records form a single cluster, and then
repeatedly divide one of the existing clusters
into two subclusters. They build the dendrogram
downwards from the root to the leaves.
Partitional clustering algorithms divide the
datarecords into a fixed number of disjoint clusters

Figure 2. Example of a dendogram
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(sometimes records may be members of more than
one cluster probabilistically). These algorithms
need to know the number of clusters in advance,
which can be problematic in practice. Partitional
algorithmsare preferred for large datasets because
their results are easier to interpret than those of
hierarchical algorithms.

Bothkindsof clustering algorithms (hierarchi-
caland partitional) use some measure of similarity
between records and/or clusters to decide where
boundaries between clusters should be. Some
common measures of similarity are distance (for
example, Euclidean distance) or likelihood (for
example, based on a set of distributions).

K-means is a common partitional clustering
algorithm (Dunham, 2003; Kantardzic, 2003). It
is widely used, perhaps because of its simplicity,
although itassumes that the best model for cluster
shape isspherical, and that most clusters are about
the same size. When these assumptions are vio-
lated, k-means can produce quite poor results.

The goal of k-means is to find a clustering that
minimizes the total squared-error, E?, of the dis-
tance of each record from its cluster center. This
can be accomplished by first finding the centroid
for each cluster. Suppose we have k clusters and
each cluster CJ., 1<j<khas n data records. The
centroid of a cluster C, is the mean vector M, of
that cluster:

M= @n )3 x,

where x, is the i data sample included in cluster
C The squared-error, €2, for C is then calculated
using:

n; 2
& Z;(Xij _Mj)'

Finally, the total squared-error E? for the
clustering is calculated as:

The simplestimplementation of k-meansstarts
by assigning data records to k clusters randomly,
and then finds the centroid for each of the initial
clusters. Each record is then assigned to the clos-
est cluster centroid. The centroids of these new
clusters are calculated, records are reassigned,
andthe process repeats. The algorithmterminates
whenno change inallocations of recordsto clusters
takes place. K-means has a well-known variant
that is used, for example, in discrete input data
problems. It is called the k-medians algorithm.
In this variant, the centroid must be one of the
input data records, usually the one closest to the
calculated centroid.

Data-Stream Clustering Techniques

We now consider how clustering algorithms can
be applied to data-streams. As mentioned before,
clustering algorithms over data-streams must use
approximation techniques. Most existing data-
stream clustering algorithms are based on the
k-means algorithm in one way or another. This
is because the k-means algorithm is incremental
in nature since it accesses the inputs one by one
and updatesthe clustering structure incrementally,
unlike other clustering algorithms that consider
the whole dataset and have multiple generations,
asin genetic algorithms and self organizing maps.
Also, the k-meansalgorithm calculationsare light
calculations compared to other algorithms as it
only calculates the Euclidean distance between
any incoming itemand the existing cluster centers.
The per-item time is therefore minimized. Because
the k-means algorithm inherently requires mul-
tiple passes over the data, applying the algorithm
requires collecting windows of data.

Many solutions have been proposed to the
problem of applying k-means on streaming data.
We consider three common solutions. The first
solution is to have the clustering done in multiple
layers (Babcock et al., 2003; Guha et al., 2000).
Each window of data is clustered into a number
of clusters, and only the cluster centers and some
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summary data (for example, diameters) are kept
inmemory. Then, whenever the number of cluster
centers becomes large, these centers are reclus-
tered to form another layer of clustering, and the
summaries are updated to represent the new layer
of clustering as well.

The second solution is to use an incremental
clustering method with generations (Gaber et al.,
2004; Gupta & Grossman, 2004; Ordonez, 2003).
Aqgenerationisactuallyawindow of recentdata. In
this solution, important calculations for each data
record are done upon each new record’s arrival,
however, the clustering operation that produces
the final clustering structure of the current stage
is performed whenever all the window’s records
accumulate. Incremental algorithms have a con-
stant space complexity and a time complexity of
O(n), where n is the number of data points seen
so far.

The third solution is not to create an approxi-
mate clustering at all times. Algorithms instead
find clusters for a defined set of records, perhaps
defined by an analyst. The advantage of this
solution is that it only needs to maintain simple
online summaries, and the actual clustering is
done off-line on request.

Guhaetal. (2000) use the multiple layers idea
for clustering. They use constant-factor approxi-
mation algorithms (Hochbaum, 1997) to compute
k-medians in one pass and store a summary of
past data to be used in clustering computations.
Similar work is done by Babcock et al. (2003).
They rely on the multiple layer clustering idea
as well, but they use an exponential histogram
(EH) to store summary information about the
data. Both algorithms require a space of O(n 9),
for windows of size n¢, where ¢ < % and n is the
number of data records seen so far, and a time
complexity of O(n#*Y) using an approximation
factor of 2004,

The Genlc algorithm proposed by Gupta
and Grossman (2004) is an example of an in-
cremental algorithm. Genlc, which stands for
single-pass generalized incremental algorithm
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for clustering, combines ideas from incremental
algorithms and windowed algorithms. It updates
the existing clusters with each new data record’s
arrival (incremental step) by finding the nearest
cluster center to it. At the end of each window
of data (a generation), it merges clusters to get k
final clusters (window step). Cluster centers are
assigned aweight value depending on the number
of points assigned to each of them. The centers
are considered in the next-generation clustering
results only if the ratio between the number of
points assigned to this center and the total number
of data points is above some selected threshold.
The first incoming points of the data-stream are
chosento beinitial cluster centers. Some variations
include keeping the discarded clustersin case they
can be used later, or combining the lightweight
clusters that are assigned to be discarded with
heavy-weight clusters if they exist within their
neighbors’ boundaries.

Aggarwal etal. (2003) propose two algorithms
that produce clustering based on a defined period
of time: CluStream, a framework for clustering
streamsthatare of changing nature, and HPStream
(Aggarwal etal., 2004), aframework for projected
clustering of high-dimensional data-streams.
Projected clustering means that the clustering
process does not take all the attributes into con-
sideration when finding similarities; instead, it
clusters the data using the similarities of a subset
of attributes.

Theunderlying ideaof both of these algorithms
is to use two components: an online component
and an off-line component. The online compo-
nent, called the online microclustering compo-
nent, maintains summary statistics of the data
seen so far. The off-line component, called the
off-line macroclustering component, uses these
stored summaries to cluster the data. HPStream
is an extension of CluStream to handle projected
clustering.

Although all of the above mentioned algo-
rithms use the k-means clustering algorithm
in one way or another, there are algorithms for
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stream clustering that are based on other ideas.
The STREAM system (Arasu et al., 2003) uses a
clusteringalgorithmthatrelies onaconceptcalled
the facility cost, which involves finding clusters
such thatthe total costis minimized (O’Callaghan,
Mishra, Meyerson, Guha, & Motwani, 2002). The
number of clusters k is not fixed; instead the best
k is found such that the total cost is minimized.
This is usually more desirable than having to
specify a fixed k in advance, since in practice the
appropriate number of clusterstorepresentagiven
data-stream may not be known in advance.

STREAM clusters datawindows using a local
search method, and only the cluster centers are
stored, each with the number of data points as-
signed to it. The cluster center cost is calculated
using the center weight and the distance from
each point to this center. Whenever the number of
stored cluster centers becomes large, the centers
themselves are reclustered. It is important to note
thatnosingle step thataffectsthe overall changein
clusterstructure is performed if the new structure
has greater cost than the current one. The number
of centerstotest forachange isarandomly chosen
log k points. Therefore, this algorithm has a time
complexity of O(hm + k log k), where n is the
number of data points seen so far and m is the
number of the initial facilities (cluster centers).
The space complexity is constant.

Rodrigues, Gama, and Pedroso (n.d.) propose
the online divisive agglomerative clustering sys-
tem (ODAC) as a hierarchical stream-clustering
approach. For each window of data, ODAC starts
with the divisive step that searches the clusters
from the largest diameter to the smallest, trying
to find a cluster that has a good splitting point
according to a predefined splitting threshold. If
it finds a cluster worth splitting, then it does so.
If no candidates are found, the system proceeds
to an agglomerative step, where it searches for a
possible aggregation of two clusters.

ODAC uses the correlation between two re-
cords as its distance measure. A change of cluster
structure (split or aggregate) is not actually per-

formed unless it produces a better cluster quality.
Since ODAC uses a hierarchical structure to store
the cluster structures, its space complexity is O(log
n), and its time complexity is O(n log n), where n
is the number of data records seen so far.

Finally, a novel approach to data-stream
clustering was proposed by Motoyoshi, Miura,
and Shioya (2004). They cluster data-streams
incrementally using regression analysis (Dunham,
2003). They assume that there are linear correla-
tions among the records in the data-stream, so
that the clusters should form linear subspaces in
the attribute space. With this assumption, local
regression can be used to detect clusters.

The algorithm proposed by Motoyoshi et al.
(2004) accesses the data as windows. For each
window, it creates a number of initial clusters by
finding sets of approximately collinear records
using inner products (which correspond to the
cosine of the angle between records regarded as
vectors). Clusters are combined using two mea-
sures: the Mahalanobis distance between them,
and asimilarity measure, the F-value test method
for multiple regression analysis. Both tests have
to be successful in order to be able to combine
two clusters. The time and space complexities
are O(hm?) and O(m), respectively, where n is
the number of data records seen so far and m is
the number of values kept in memory. The value
of m is large since the algorithm does not sum-
marize the input data values; instead, it keeps
the actual values.

Analysis

We give our analysis of stream-clustering tech-
niques. Tables 7 and 8 compare the stream-cluster-
ing algorithms with respect to performance and
design choices, respectively. Table 7 considers
performance in terms of the time and space com-
plexities. The design choices listed in Table 8 are
the approximation technique used, the clustering
technique used, and the output format.
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Table 7. Data-stream clustering algorithm performance
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Time Complexity

Space Complexity

Optimal: O(n)
Algorithms that have O(n) complexity:

°  Incremental (Gaber et al., 2004; Gupta & Grossman, °

2004; Ordonez, 2003).

°  Online component of the online-off-line algorithms
(Aggarwal et al., 2003; Aggarwal et al., 2004). .

e Optimal: O(1)

Reasonable

¢ Algorithms that have O(1) complexity:

Incremental (Gaber et al., 2004; Gupta & Grossman,
2004; Ordonez, 2003).

°  STREAM (O’Callaghan et al., 2002).
Online-off-line algorithms have O(log n) complexity —

Table 8. Data-stream clustering algorithms design choices

Approximation technique:
Sliding Window

Underlying clustering technique

Output format

Consider new data with some

percentage of old structure (Gaber

et al., 2004; Motoyoshi et al., 2004;

O’Callaghan et al., 2002; Ordonez,

2003).

°  Good for applications with data
changing in nature.

Consider old data summaries (Guha

et al., 2000; Rodrigues et al., n.d.)

°  Good for stable data-stream
applications.

Consider only heavy-weighted old

clusters (Gupta & Grossman, 2004).

°  Modest and fair solution.

Partitional: k-means/k-medians

¢  Defined number of clusters.

Light calculations — Less time/

record.

Hierarchical (Rodrigues et al., n.d.)

°  Expensive computations for
splitting/aggregating. — More time

°  Not suitable for streams

Regression analysis (Motoyoshi et al.,

2004)

°  Only good for line-shaped clusters
— Not general.

We consider k-means based stream

clustering algorithms the most suitable

o

.

Continuous (Babcock et al., 2003;
Guha et al., 2000).
Use approximations — least
efficient.
Upon user request (Aggarwal et al.,
2003; Aggarwal et al., 2004; Babcock
et al., 2003).
°  Flexible and general.
°  Most efficient.
°  More time.
Periodic (Gaber et al., 2004; Gupta
& Grossman, 2004; Motoyoshi et
al., 2004; O’Callaghan et al., 2002;
Ordonez, 2003; Rodrigues et al., n.d.).

algorithms.

for streaming data among other used °

Modest and fair solution.

RESEARCH ISSUES

Although researchers in the data-stream mining
field have successfully addressed many of the
issues that are of major concern of data-streams,
the area is still new and it has many open prob-
lems. Actually, what has been addressed so far
is related to having stream-mining systems that
can handle the endless flow data of data by being
incremental, fast, and clever enough to approxi-
mate answers with a certain level of accuracy,
based on the stream samples that have been seen
so far. The concept drift problem has also been
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a major concern of the existing stream-mining
systems. It is still, however, an open problem for
lots of stream-mining algorithms.

Despite all the addressed problems in the field
of data-stream mining, there are other interesting
open research issues to consider. We list some of
the most important ones here:

e Thetrade-offs between model performance
and computational capability needs to be
understood.

e The accuracy of the data-stream mining
systems does not reflect real-life applica-
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tion needs. A system should be able to give
accuracy according to the requirements of
the application.

e The area of data-stream regression algo-
rithms should be further improved.

. Although the field of distributed data-stream
mining systems is one of the research di-
rections that are recently considered, the
interaction between different data-stream
mining systems or data-stream mining
systems and standard data-mining systems
is an issue that is not yet addressed.

*  The privacy of data coming from different
sources for data-stream mining systems is
one of the important problems that have
not been considered by data-stream mining
techniques.

e The practical upper limits of data rates
should be studied in order for the current
data-stream mining algorithms to remain
effective.

e Theopportunities to go beyond adaptations
of standard data-mining algorithms to dis-
cover entirely new algorithms appropriate
for stream data is an interesting open prob-
lem.

CONCLUSION

Data-streams represent the continuous data
generated by reactive systems, which produce
a conceptually endless stream of data, often at
high speed. Data-stream analysis and mining
requires novel algorithmsthat are able to produce
models of the data in an online way, looking at
each data record only once, and within a limited
amount of time. Although standard data-analysis
and data-mining algorithms are a useful starting
point, they must typically be adapted to operate
in the stream setting. We have described some
of the ideas that have been suggested and tried,
analyzed them, and provided an assessment of
their effectiveness.

For data summarization, most stream-based
algorithms provide approximations with bounded
errors to properties or statistics of the stream as a
whole. Some of these techniques are unexpectedly
effective, suggesting that they have a role to play
in standard data mining as well.

For prediction, techniques for only a limited
number of models are known. The use of Hoeffd-
ing bounds has been important, since it allows
attribute selection methods used in decision
trees to be generalized to stream data. The idea
of bounding the error of an approximate value
based on how much raw data has been seen once
again plays an important role.

For clustering, the challenge is that standard
partitional clustering algorithms are almost all
based on iterations of two-phase algorithms; the
first phase determines the fit of model parameters
based onthe data, and the second phase determines
the fit of the data based on the model parameters.
Simulating the effect of such iterations is difficult
with only one pass over the data. Most algorithms
replace each iteration by a new window of data,
assuming an underlying stationarity in the dis-
tribution of the attribute values.
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