
Spectral Feature Selection for Data Mining introduces a novel
feature selection technique that establishes a general platform
for studying existing feature selection algorithms and developing
new algorithms for emerging problems in real-world applications.
This technique represents a unified framework for supervised,
unsupervised, and semisupervised feature selections.

The book explores the latest research achievements, sheds light on
new research directions, and stimulates readers to make the next
creative breakthroughs. It presents the intrinsic ideas behind spectral
feature selection, its theoretical foundations, its connections to other
algorithms, and its use in handling both large-scale data sets and
small sample problems. The authors also cover feature selection
and feature extraction, including basic concepts, popular existing
algorithms, and applications.

A timely introduction to spectral feature selection, this book
illustrates the potential of this powerful dimensionality reduction
technique in high-dimensional data processing. Readers learn how
to use spectral feature selection to solve challenging problems in
real-life applications and discover how general feature selection and
extraction are connected to spectral feature selection.

K12877

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Zhao

Liu

Spectral Feature Selection
for Data Mining

Spectral Feature Selection
for Data Mining

Spectral Feature Selection for D
ata M

ining

Zheng Alan Zhao and Huan Liu

Computer Science

K12877_Cover.indd 1 11/2/11 3:34 PM

Spectral Feature Selection
for Data Mining

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

UNDERSTANDING COMPLEX DATASETS:
DATA MINING WITH MATRIX DECOMPOSITIONS
David Skillicorn

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN
ALGORITHMS, THEORY, AND APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM
AND LAW ENFORCEMENT
David Skillicorn

MULTIMEDIA DATA MINING: A SYSTEMATIC
INTRODUCTION TO CONCEPTS AND THEORY
Zhongfei Zhang and Ruofei Zhang

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu,
Rajeev Motwani, and Vipin Kumar

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

GEOGRAPHIC DATA MINING AND
KNOWLEDGE DISCOVERY, SECOND EDITION
Harvey J. Miller and Jiawei Han

TEXT MINING: CLASSIFICATION, CLUSTERING, AND
APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

INFORMATION DISCOVERY ON ELECTRONIC HEALTH
RECORDS
Vagelis Hristidis

TEMPORAL DATA MINING
Theophano Mitsa

RELATIONAL DATA CLUSTERING: MODELS,
ALGORITHMS, AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

STATISTICAL DATA MINING USING SAS APPLICATIONS,
SECOND EDITION
George Fernandez

INTRODUCTION TO PRIVACY-PRESERVING DATA
PUBLISHING: CONCEPTS AND TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and
Philip S. Yu

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura,
Mykola Pechenizkiy, and Ryan S.J.d. Baker

DATA MINING WITH R: LEARNING WITH
CASE STUDIES
Luís Torgo

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES
AND APPLICATIONS
David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED
APPROACH
Guojun Gan

MUSIC DATA MINING
Tao Li, Mitsunori Ogihara, and George Tzanetakis

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR
ENGINEERING SYSTEMS HEALTH MANAGEMENT
Ashok N. Srivastava and Jiawei Han

SPECTRAL FEATURE SELECTION FOR DATA MINING
Zheng Alan Zhao and Huan Liu

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

Spectral Feature Selection
for Data Mining

Zheng Alan Zhao
 Huan Liu

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111028

International Standard Book Number-13: 978-1-4398-6210-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To our parents:

HB Zhao and GX Xie
— ZZ

BY Liu and LH Chen
— HL

and to our families:

Guanghui and Emma
— ZZ

Lan, Thomas, Gavin, and Denis
— HL

This page intentionally left blankThis page intentionally left blank

Contents

Preface xi

Authors xiii

Symbol Description xv

1 Data of High Dimensionality and Challenges 1

1.1 Dimensionality Reduction Techniques 3

1.2 Feature Selection for Data Mining 8

1.2.1 A General Formulation for Feature Selection 8

1.2.2 Feature Selection in a Learning Process 9

1.2.3 Categories of Feature Selection Algorithms 10

1.2.3.1 Degrees of Supervision 10

1.2.3.2 Relevance Evaluation Strategies 11

1.2.3.3 Output Formats 12

1.2.3.4 Number of Data Sources 12

1.2.3.5 Computation Schemes 13

1.2.4 Challenges in Feature Selection Research 13

1.2.4.1 Redundant Features 14

1.2.4.2 Large-Scale Data 14

1.2.4.3 Structured Data 14

1.2.4.4 Data of Small Sample Size 15

1.3 Spectral Feature Selection 15

1.4 Organization of the Book . 17

2 Univariate Formulations for Spectral Feature Selection 21

2.1 Modeling Target Concept via Similarity Matrix 21

2.2 The Laplacian Matrix of a Graph 23

2.3 Evaluating Features on the Graph 29

2.4 An Extension for Feature Ranking Functions 36

2.5 Spectral Feature Selection via Ranking 40

2.5.1 SPEC for Unsupervised Learning 41

2.5.2 SPEC for Supervised Learning 42

vii

viii Contents

2.5.3 SPEC for Semi-Supervised Learning 42

2.5.4 Time Complexity of SPEC 44

2.6 Robustness Analysis for SPEC 45

2.7 Discussions . 54

3 Multivariate Formulations 55

3.1 The Similarity Preserving Nature of SPEC 56

3.2 A Sparse Multi-Output Regression Formulation 61

3.3 Solving the L2,1-Regularized Regression Problem 66

3.3.1 The Coordinate Gradient Descent Method (CGD) . . 69

3.3.2 The Accelerated Gradient Descent Method (AGD) . . 70

3.4 Efficient Multivariate Spectral Feature Selection 71

3.5 A Formulation Based on Matrix Comparison 80

3.6 Feature Selection with Proposed Formulations 82

4 Connections to Existing Algorithms 83

4.1 Connections to Existing Feature Selection Algorithms 83

4.1.1 Laplacian Score . 84

4.1.2 Fisher Score . 85

4.1.3 Relief and ReliefF . 86

4.1.4 Trace Ratio Criterion 87

4.1.5 Hilbert-Schmidt Independence Criterion (HSIC) . . . 89

4.1.6 A Summary of the Equivalence Relationships 89

4.2 Connections to Other Learning Models 91

4.2.1 Linear Discriminant Analysis 91

4.2.2 Least Square Support Vector Machine 95

4.2.3 Principal Component Analysis 97

4.2.4 Simultaneous Feature Selection and Extraction 99

4.3 An Experimental Study of the Algorithms 99

4.3.1 A Study of the Supervised Case 101

4.3.1.1 Accuracy . 101

4.3.1.2 Redundancy Rate 101

4.3.2 A Study of the Unsupervised Case 104

4.3.2.1 Residue Scale and Jaccard Score 104

4.3.2.2 Redundancy Rate 105

4.4 Discussions . 106

5 Large-Scale Spectral Feature Selection 109

5.1 Data Partitioning for Parallel Processing 111

5.2 MPI for Distributed Parallel Computing 113

5.2.0.3 MPI BCAST 114

Contents ix

5.2.0.4 MPI SCATTER 115

5.2.0.5 MPI REDUCE 117

5.3 Parallel Spectral Feature Selection 118

5.3.1 Computation Steps of Univariate Formulations 119

5.3.2 Computation Steps of Multivariate Formulations . . . 120

5.4 Computing the Similarity Matrix in Parallel 121

5.4.1 Computing the Sample Similarity 121

5.4.2 Inducing Sparsity . 122

5.4.3 Enforcing Symmetry 122

5.5 Parallelization of the Univariate Formulations 124

5.6 Parallel MRSF . 128

5.6.1 Initializing the Active Set 130

5.6.2 Computing the Tentative Solution 131

5.6.2.1 Computing the Walking Direction 131

5.6.2.2 Calculating the Step Size 132

5.6.2.3 Constructing the Tentative Solution 133

5.6.2.4 Time Complexity for Computing a Tentative
Solution . 134

5.6.3 Computing the Optimal Solution 134

5.6.4 Checking the Global Optimality 137

5.6.5 Summary . 137

5.7 Parallel MCSF . 139

5.8 Discussions . 141

6 Multi-Source Spectral Feature Selection 143

6.1 Categorization of Different Types of Knowledge 145

6.2 A Framework Based on Combining Similarity Matrices . . . 148

6.2.1 Knowledge Conversion 150

6.2.1.1 KFEASIM → KSAMSIM 151

6.2.1.2 KFEAFUN ,KFEAINT → KSAMSIM 152

6.2.2 MSFS: The Framework 153

6.3 A Framework Based on Rank Aggregation 153

6.3.1 Handling Knowledge in KOFS 155

6.3.1.1 Internal Knowledge 155

6.3.1.2 Knowledge Conversion 156

6.3.2 Ranking Using Internal Knowledge 157

6.3.2.1 Relevance Propagation with Kint,FEAREL 157

6.3.2.2 Relevance Voting with Kint,FEAFUN 157

6.3.3 Aggregating Feature Ranking Lists 158

6.3.3.1 An EM Algorithm for Computing π 159

x Contents

6.4 Experimental Results . 160

6.4.1 Data and Knowledge Sources 160

6.4.1.1 Pediatric ALL Data 160

6.4.1.2 Knowledge Sources 160

6.4.2 Experiment Setup . 161

6.4.3 Performance Evaluation 162

6.4.4 Empirical Findings . 164

6.4.5 Discussion of Biological Relevance 166

6.5 Discussions . 167

References 171

Index 191

Preface

This book is for people interested in feature selection research. Feature se-
lection is an essential technique for dimensionality reduction and relevance
detection. In advanced data mining software packages, such as SAS Enter-
priser Miner, SPSS Modeler, Weka, Spider, Orange, and scikits.learn, feature
selection procedures are indispensable components for successful data min-
ing applications. The rapid advance of computer-based high-throughput tech-
niques provides unparalleled opportunities for humans to expand capabilities
in production, services, communications, and research. Meanwhile, immense
quantities of high-dimensional data keep on accumulating, thus challenging
and stimulating the development of feature selection research in two major
directions. One trend is to improve and expand the existing techniques to
meet new challenges, and the other is to develop brand new techniques di-
rectly targeting the arising challenges.

In this book, we introduce a novel feature selection technique, spectral fea-
ture selection, which forms a general platform for studying existing feature
selection algorithms as well as developing novel algorithms for new problems
arising from real-world applications. Spectral feature selection is a unified
framework for supervised, unsupervised and semi-supervised feature selection.
With its great generalizability, it includes many existing successful feature
selection algorithms as its special cases, allowing the joint study of these al-
gorithms to achieve better understanding and gain interesting insights. Based
on spectral feature selection, families of novel feature selection algorithms can
also be designed to address new challenges, such as handling feature redun-
dancy, processing very large-scale data sets, and utilizing various types of
knowledge to achieve multi-source feature selection.

With the steady and speedy development of feature selection research, we
sincerely hope that this book presents a distinctive contribution to feature
selection research, and inspires new developments in feature selection. We
have no doubt what feature selection can impact on the processing of massive,
high-dimensional data with complex structure in the near future. We are truly
optimistic that in another 10 years when we look back, we will be humbled
by the accreted power of feature selection, and by its indelible contributions
to machine learning, data mining, and many real-world applications.

xi

xii Preface

The Audience

This book is written for students, researchers, instructors, scientists, and
engineers who use or want to apply feature selection technique in their research
or real-world applications. It can be used by practitioners in data mining,
exploratory data analysis, bioinformatics, statistics, and computer sciences,
and researchers, software engineers, and product managers in the information
and analytics industries.

The only background required of the reader is some basic knowledge of
linear algebra, probability theory, and convex optimization. A reader can ac-
quire the essential ideas and important concepts with limited knowledge of
probability and convex optimization. Prior experience with feature selection
techniques is not required as a reader can find all needed material in the text.
Any exposure to data mining challenges can help the reader appreciate the
power and impact of feature selection in real-world applications.

Additional Resource

The material in the book is complemented by an online resource at
http://dmml.asu.edu/sfs.

Acknowledgments

We are indebted and grateful to the following colleagues for their in-
put and feedback on various sections of this work: Jiepying Ye, Lei Wang,
Jiangxin Wang, Subbarao Kambhampati, Guoliang, Xue, Hiroshi Motoda,
Yung Chang, Jun Liu, Shashvata Sharma, Nitin Agarwal, Sai Moturu, Lei
Tang, Liang Sun, Kewei Chen, Teresa Wu, Kari Torkkola, and members of
DMML. We also thank Randi Cohen for providing help in making the book
preparation a smooth process. Some material in this book is based upon work
supported by the National Science Foundation under Grant No. 812551. Any
opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Zheng Alan Zhao Huan Liu
Cary, NC Tempe, AZ

Authors

Dr. Zheng Alan Zhao is a research statisti-
cian at the SAS Institute, Inc. He obtained his
Ph.D. in Computer Science and Engineering from
Arizona State University (ASU), and his M.Eng.
and B.Eng. in Computer Science and Engineering
from Harbin Institute of Technology (HIT). His re-
search interests are in high-performance data min-
ing and machine learning. In recent years, he has
focused on designing and developing novel analytic
approaches for handling very large-scale data sets
of extremely high dimensionality and huge sample

size. He has published more than 30 research papers in the top conferences and
journals. Many of these papers present pioneering work in the research area.
He has served as a reviewer for over 10 journals and conferences. He was a
co-chair for the PAKDD Workshop on Feature Selection in Data Mining 2010.
More information is available at http://www.public.asu.edu/~zzhao15.

Dr. Huan Liu is a professor of Computer Sci-
ence and Engineering at Arizona State Univer-
sity. He obtained his Ph.D. in Computer Science
from the University of Southern California and his
B.Eng. in Computer Science and Electrical Engi-
neering from Shanghai Jiaotong University. He was
recognized for excellence in teaching and research
in Computer Science and Engineering at Arizona
State University. His research interests are in data
mining, machine learning, social computing, and
artificial intelligence, investigating problems that

arise in many real-world applications with high-dimensional data of disparate
forms such as social media, group interaction and modeling, data prepro-
cessing (feature selection), and text/web mining. His well-cited publications
include books, book chapters, and encyclopedia entries as well as confer-
ence and journal papers. He serves on journal editorial boards and numerous

xiii

xiv Authors

conference program committees, and is a founding organizer of the Interna-
tional Conference Series on Social Computing, Behavioral-Cultural Model-
ing, and Prediction (http://sbp.asu.edu/). More information is available
at http://www.publi.asu.edu/~huanliu.

Symbol Description

n Number of instances
m Number of features
C Number of classes
l Number of selected features
F A set of features
Fi The i-th feature
X Data matrix
fi The i-th feature vector,

X = [f1, . . . , fm]
xi The i-th instance,

X = [x1, . . . ,xn]>

y Target vector
Y Target matrix
W Weight matrix
wi The i-th row of the weight

matrix W
R Residual matrix
A Active set
G A graph
S Similarity matrix
A Adjacency matrix
L Laplacian matrix
D Degree matrix
L Normalized Laplacian ma-

trix, L = D−1/2LD−1/2

ξi The i-th eigenvector
λi The i-th eigenvalue
K Kernel matrix

C Covariance matrix
I Identity matrix
1 1 = [1, . . . , 1]>

λ A regularization parameter
KFEA Knowledge sources related

to features
KSAM Knowledge sources related

to instances
Kint Internal knowledge
Kext External knowledge
exp (·) Exponential function
log (·) Logarithm function
‖ · ‖ A norm
‖a‖2 L2 norm of vector a
‖a‖1 L1 norm of vector a
‖a‖0 L0 norm of vector a
‖A‖2 L2 norm of matrix A
‖A‖2,1 L2,1 norm of matrix A
‖A‖F Frobenius norm of matrix A
M (·) Model function
Trace(·) Trace of a matrix
Card (·) Cardinality of a set
ϕ (·) Feature ranking function
Q (·) Q function
R Real numbers
Rn Real n-vectors (n× 1 matri-

ces)
Rn×m Real n×m matrices

xv

This page intentionally left blankThis page intentionally left blank

Chapter 1

Data of High Dimensionality and
Challenges

Data mining is a multidisciplinary methodology for extracting nuggets of
knowledge from data. It is an iterative process that generates predictive and
descriptive models for uncovering previously unknown trends and patterns via
analyzing vast amounts of data from various sources. As a powerful tool, the
data mining technology has been used in a wide range of profiling practices,
such as marketing, decision-making support, fraud detection, and scientific
discovery, etc. In the past 20 years, the dimensionality of the data sets in-
volved in data mining applications has increased dramatically. Figure 1.1 plots
the dimensionality of the data sets posted in the UC Irvine Machine Learning
Repository [53] from 1987 to 2010. We can observe that in the 1980s, the max-
imal dimensionality of the data is only about 100; in the 1990s, this number
increases to more than 1500; and in the 2000s, it further increases to about
3 millon. The trend line in the figure is obtained by fitting an exponential
function on the data. Since the y-axis is in logarithm, it shows the increasing
trend of the dimensionality of the data sets is exponential.

Data sets with very high (>10,000) dimensionality are quite common nowa-
days in data mining applications. Figure 1.2 shows three types of data that
are usually of very high dimensionality. With a large text corpus, using the
bag-of-words representation [49], the extracted text data may contain tens of
thousands of terms. In genetic analysis, a cDNA-microarray data [88] may
contain the expression of over 30,000 DNA oligonucleotide probes. And in
medical image processing, a 3D magnetic resonance imaging (MRI) [23] data
may contain the gray level of several million pixels. In certain data mining ap-
plications, involved data sets are usually of high dimensionality, for instance,
text analysis, image analysis, signal processing, genomics and proteomics anal-
ysis, and sensor data processing, to name a few.

The proliferation of high-dimensional data within many domains poses
unprecedented challenges to data mining [71]. First, with over thousands of
features, the hypothesis space becomes huge, which allows learning algorithms
to create complex models and overfit the data [72]. In this situation, the
performance of learning algorithms likely degenerates. Second, with a large
number of features in the learning model, it will be very difficult for us to
understand the model and extract useful knowledge from it. In this case, the
interpretability of a learning model decreases. Third, with a huge number of

1

2 Spectral Feature Selection for Data Mining

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1985 1990 1995 2000 2005 2010

Number of Features

FIGURE 1.1: The dimensionality of the data sets in the UC Irvine Machine
Learning Repository. The x-axis is for time in year and the y-axis is for di-
mensionality. The y-axis is logarithmic. It shows an exponentially increasing
trend of data dimensionality over time.

(b) genetic data (a) text data (c) medical image data

FIGURE 1.2: Text data, genetic data, and image data are usually of high
dimensionality.

Data of High Dimensionality and Challenges 3

features, the speed of a learning algorithm slows down and their computational
efficiency declines. Below is an example that shows the impact of the data
dimensionality on learning performance.

Example 1 Impact of data dimensionality on learning performance

When data dimensionality is high, many of the features can be irrelevant
or redundant. These features can have negative effect on learning models,
and decrease the performance of learning models significantly.

To show this effect, we generate a two-dimensional data set with three
classes, whose distribution is shown in Figure 1.3. We also generate different
numbers of irrelevant features and add these features to the data set. We
then apply a k nearest neighbor classifier (k-nn, k=3) with 10-fold cross-
validation on the original data set as well as the data sets with irrelevant
features. The obtained accuracy rates are reported in Figure 1.4(a). We can
observe that on the original data set, the k-nn classifier is able to achieve
an accuracy rate of 0.99. When more irrelevant feature are added to the
original data set, its accuracy decreases. When 500 irrelevant features are
added, the accuracy of k-nn declines to 0.52. Figure 1.4(b) shows the com-
putation time used by k-nn when different numbers of irrelevant features
are added to the original data. We can see when more features present in
the data, both the accuracy and the efficiency of the k-nn decrease. This
phenomenon is also known as the curse of dimensionality, which refers
to the fact that many learning problems become less tractable as feature
number increases [72].

1.1 Dimensionality Reduction Techniques

In data mining applications with high-dimensional data, dimensionality
reduction techniques [107] can be applied to reduce the dimensionality of the
original data and improve learning performance. By removing the irrelevant
and redundant features in the data, or by effectively combining original fea-
tures to generate a smaller set of features with more discriminant power, di-
mensionality reduction techniques bring the immediate effects of speeding up
data mining algorithms, improving performance, and enhancing model com-
prehensibility. Different types of dimensionality reduction techniques generally
fall into two categories: feature selection and feature extraction.

Figure 1.5 shows the general idea of how feature selection and feature ex-
traction work. Given a large number of features, many of these features may
be irrelevant or redundant. Feature selection achieves dimensionality reduc-

4 Spectral Feature Selection for Data Mining

−2 0 2 4 6 8

−2

0

2

4

6

8

FIGURE 1.3: A two-dimensional data set of three different classes.

Data of High Dimensionality and Challenges 5

2 52 102 152 202 252 302 352 402 452 502

0.99 0.78 0.73 0.62 0.61 0.57 0.54 0.53 0.53 0.53 0.52

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

u
ra

cy

k-nn (Accuracy)

(a)

2 52 102 152 202 252 302 352 402 452 502

0.03 0.04 0.07 0.10 0.13 0.18 0.21 0.25 0.28 0.33 0.36

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
c.

k-nn (Time)

(b)

FIGURE 1.4: Accuracy (a) and computation time (b) of k nearest neighbor
classifier (k = 3), when different numbers of irrelevant features are added to
the data.

6 Spectral Feature Selection for Data Mining

tion by removing these irrelevant and redundant features. To achieve this, a
feature evaluation criterion is used with a search strategy to identify the rel-
evant features. And a selection matrix W is used to filter the original data
set and generate a reduced data set containing only the relevant features.1

Unlike feature selection, feature extraction achieves dimensionality reduction
by combining the original features with a weight matrix W′ to generate a
smaller set of new features.2 In the combination process, the irrelevant and
redundant features usually receive zero or very small coefficients, therefore
have less influence on the newly generated features. One key difference be-
tween feature selection and feature extraction is that the data set generated
by feature selection contains the original features, while the data set generated
by feature extraction contains a set of newly generated features.

Feature selection and feature extraction each have their own merits. Fea-
ture selection is able to remove irrelevant features and is widely used in data
mining applications, such as text mining, genetics analysis, and sensor data
processing. Since feature selection keeps the original features, it is especially
applicable in applications where the original features are important for model
interpreting and knowledge extraction. For instance, in genetic analysis for
cancer study, our purpose is not only to distinguish the cancerous tissues
from the normal ones, but also to identify the genes that induce canceroge-
nesis. Identifying these genes helps us acquire a better understanding on the
biological process of cancerogenesis, and allows us to develop better treatments
to cure the disease.

By combining the original features, feature extraction techniques are able
to generate a set of new features, which is usually more compact and of
stronger discriminating power. It is preferable in applications such as image
analysis, signal processing, and information retrieval, where model accuracy
is more important than model interpretability.

The two types of dimensionality reduction techniques have different
strengths and are complementary. In data mining applications, it is often
beneficial to combine the two types of techniques. For example, in text min-
ing, we usually apply feature selection as the first step to remove irrelevant
features, and then use feature extraction techniques, such as Latent Semantic
Indexing (LSI) [100], to further reduce dimensionality by generating a small
set of new features via combining original features.

In this book, we will present a unique feature selection technique called
spectral feature selection. The technique measures feature relevance by con-
ducting spectral analysis. Spectral feature selection forms a very general
framework that unifies existing feature selection algorithms, as well as var-
ious feature extraction techniques. It provides a platform that allows for the
joint study of a variety of dimensionality reduction techniques, and helps us
achieve a better understanding on them. Based on the spectral feature se-

1The element of a selection matrix is either 0 or 1. More details about the selection
matrix will be discussed in Section 1.2.1.

2The element of a weight matrix can be any real number.

Data of High Dimensionality and Challenges 7

n
in

st
an

ce
s

m features
a relevant feature

reduced data
with original

features

original data

W’

n
in

st
an

ce
s

m features

�

reduced data
with new
features

original data weight matrix

(a) feature selection

(b) feature extraction

k

k'

select
features

combine
features

W �

selection matrix

FIGURE 1.5: A comparison of feature selection (a) and feature extraction
(b).

8 Spectral Feature Selection for Data Mining

lection framework, we can also design novel feature selection algorithms to
address new problems, such as handling large-scale data and incorporating
multiple types of knowledge in feature selection, which cannot be effectively
addressed by using existing techniques. Below, we start with a brief introduc-
tion to the basic concepts of feature selection.

1.2 Feature Selection for Data Mining

Feature selection [108, 109] in data mining has been an active research
area for decades. The technique has been applied in a variety of fields, in-
cluding genomic analysis [80], text mining [52], image retrieval [60, 180], and
intrusion detection [102] to name a few. Recently, there have been several
good surveys published that systematically summarize and compare existing
works on feature selection to facilitate the research and the application of the
technique. A comprehensive survey of existing feature selection techniques
and a general framework for their categorization can be found in [113]. In
[67], the authors review feature selection algorithms from a statistical learn-
ing point of view. In [147], the authors provide a good survey for applying
feature selection techniques in bioinformatics. In [80], the authors review and
compare the filter with the wrapper model for feature selection. And in [121],
the authors explore the representative feature selection approaches based on
sparse regularization, which is a branch of embedded feature selection tech-
niques. Representative feature selection algorithms are also empirically evalu-
ated in [114, 106, 177, 98, 120, 179, 125] under different problem settings and
from different perspectives to provide insight into existing feature selection
algorithms.

1.2.1 A General Formulation for Feature Selection

Assume we have a data set X ∈ Rn×m, with m features and n samples (or
instances, data points). The problem of feature selection can be formulated as

max
W

r
(
X̂
)

s.t. X̂ = XW, W ∈ {0, 1}m×l ,
W>1m×1 = 1l×1, ‖ W1l×1 ‖0 = l. (1.1)

In the above equation, r (·) is a score function to evaluate the relevance of

the features in X̂: the more relevant the features, the greater the value. W is
the selection matrix, whose element is either 0 or 1. And ‖ · ‖0 is the vector
zero norm [59], which counts the number of nonzero elements in the vector.
The constraints in the formulation ensure that: (1) W>1m×1 = 1l×1: each

Data of High Dimensionality and Challenges 9

column of W has one and only one “1.” This ensures the original features
rather than a linear combination of them to be selected; (2) ‖ W1l×1 ‖0 = l:
among the m rows of W, only l rows contain one “1,” and the remaining
m − l rows are zero vectors; (3) X̂ = XW: X̂ contains l different columns
of X. This guarantees that l of the m features are selected, and no feature is
repeatedly selected. Altogether, the three constraints ensure that X̂ contains
l different original features of X. The selected l features can be expressed as
X̂ = XW = (fi1 , . . . , fil), where {i1, . . . , il} ⊆ {1, . . . ,m}, and usually, l� m.
Clearly, if r (·) does not evaluate features independently, this problem is non-
deterministic polynomial-time (NP) hard. Therefore, to make the problem
solvable, we usually assume features are independent or their interaction order
is low [220].

Example 2 Filtering a data set with a selection matrix

Figure 1.6 shows how a selection matrix can be used to filter a data
set with the selected features. The data set X contains three features, and
we want to select the first and the third features (corresponding to the
first and the third columns of X). To achieve this, we create a matrix W
that has two columns. The first element of the first column and the third
element of the second column are set to 1, and all the other elements of W
are set to 0. X ×W results in a data set X̂ containing the first and the
third columns of X.

1 7 3
5 6 4
10 9 8

×
1 0
0 0
0 1

=
1 3
5 4
10 8

𝑿 × 𝑾 = 𝑿

FIGURE 1.6: A selection matrix for filtering data with the selected features.

1.2.2 Feature Selection in a Learning Process

Figure 1.7 shows a typical learning process with feature selection in two
phases: (1) feature selection, and (2) model fitting and performance evaluation.
The feature selection phase has three steps: (a) generating a candidate set
containing a subset of the original features via a certain research strategy;
(b) evaluating the candidate set and estimating the utility of the features in
the candidate set. Based on the evaluation, some features in the candidate

10 Spectral Feature Selection for Data Mining

set may be discarded or added to the selected feature set according to their
relevance; and (c) determining whether the current set of selected features
are good enough using a certain stopping criterion. If so, the feature selection
algorithm returns the set of selected features, otherwise it iterates until the
stopping criterion is met. In the process of generating the candidate set and
evaluation, a feature selection algorithm may use the information obtained
from the training data, the current selected features, the target learning model,
and some given prior knowledge [76] to guide their search and evaluation.
Once a set of features is selected, it can be used to filter the training and
the test data for model fitting and prediction. The performance achieved by a
particular learning model on the test data can also be used as an indicator for
evaluating the effectiveness of the feature selection algorithm for that learning
model.

FIGURE 1.7: A learning process with feature selection.

1.2.3 Categories of Feature Selection Algorithms

Feature selection algorithms can be classified into various categories from
different perspectives. Below we show five different ways for categorizing fea-
ture selection algorithms.

1.2.3.1 Degrees of Supervision

In the process of feature selection, the training data can be either la-
beled, unlabeled, or partially labeled, leading to the development of super-
vised, unsupervised, and semi-supervised feature selection algorithms. In the
evaluation process, a supervised feature selection algorithm [158, 192] deter-

Data of High Dimensionality and Challenges 11

mines feature relevance by evaluating their correlation with the class or their
utility for creating accurate models. And without labels, an unsupervised fea-
ture selection algorithm may exploit feature variance or data distribution to
evaluate the feature relevance [47, 74]. A semi-supervised feature selection al-
gorithm [221, 197] can use both labeled and unlabeled data. The idea is to
use a small amount of labeled data as additional information to improve the
performance of unsupervised feature selection.

1.2.3.2 Relevance Evaluation Strategies

Different strategies have been used in feature selection to design feature
evaluation criteria r (·) in Equation (1.1). These strategies broadly fall into
three different categories: the filter, the wrapper, and the embedded models.

To evaluate the utility of features in the evaluation step, feature selection
algorithms with a filter model [80, 147, 37, 158, 74, 112, 98, 222, 161] rely
on analyzing the general characteristics of features, for example, the features’
correlations to the class variable. In this case, features are evaluated without
involving any learning algorithm. The evaluation criteria r (·) used in the
algorithms of a filter model usually assume that features are independent.

Therefore, they evaluate features independently, r
(
X̂
)

= r (fi1)+ . . .+r (fik).

Based on this assumption, the problem specified in Equation (1.1) can be
solved by simply picking the top k features with the largest r (f) value. Some
feature selection algorithms with a filter model also consider low-order feature
interactions [70, 40, 212]. In this case, heuristic search strategies, such as
greedy search, best first search, and genetic-algorithmic search can be used in a
backward elimination or a forward selection process for obtaining a suboptimal
solution.

Feature selection algorithms with a wrapper model [80, 91, 92, 93, 111,
183, 110] require a predetermined learning algorithm and use its performance
achieved on the selected features as r (·) to estimate feature relevance. Since
the predetermined learning algorithm is used as a black box for evaluating
features, the behavior of the corresponding feature evaluation function r (·) is
usually highly nonlinear. In this case, to obtain a global optimal solution is
infeasible for high-dimensional data. To address the problem, heuristic search
strategies, such as greedy search and genetic-algorithmic search can be used
for identifying a feature subset.

Feature selection algorithms with an embedded model, e.g., C4.5 [141],
LARS [48], 1-norm support vector machine [229], and sparse logistic regres-
sion [26], also require a predetermined learning algorithm. But unlike an algo-
rithm with the wrapper model, they incorporate feature selection as a part of
the training process by attaching a regularization term to the original objec-
tive function of the learning algorithm. In the training process, the features’
relevance is evaluated by analyzing their utility for optimizing the adjusted
objective function, which forms r (·) for feature evaluation. In recent years,
the embedded model has gained increasing interest in feature selection re-

12 Spectral Feature Selection for Data Mining

search due to its superior performance. Currently, most embedded feature
selection algorithms are designed by applying an L0 norm [192, 79] or an L1

norm [115, 229, 227] constraint to an existing learning model, such as the
support vector machine, the logistic regression, and the principal component
analysis to achieve a sparse solution. When the constraint is derived from
the L1 norm, and the original problem is convex, r (·) (the adjusted objective
function) is also convex and a global optimal solution exists. In this case, var-
ious existing convex optimization techniques can be applied to obtain a global
optimal solution efficiently [115].

Compared with the wrapper and the embedded models, feature selection
algorithms with the filter model are independent of any learning model, and
therefore, are not biased toward a specific learner model. This forms one ad-
vantage of the filter model. Feature selection algorithms of a filter model are
usually very fast, and their structures are often simple. Algorithms of a filter
model are easy to design, and after being implemented, they can be easily
understood by other researchers. This explains why most existing feature se-
lection algorithms are of the filter model. On the other hand, researchers
also recognize that feature selection algorithms of the wrapper and embedded
models can select features that result in higher learning performance for the
predetermined learning algorithm. Compared with the wrapper model, feature
selection algorithms of the embedded model are usually more efficient, since
they look into the structure of the predetermined learning algorithm and use
its properties to guide feature evaluation and feature subset searching.

1.2.3.3 Output Formats

Feature selection algorithms with filter and embedded models may return
either a subset of selected features or the weights (measuring the feature rel-
evance) of all features. According to the type of the output, feature selection
algorithms can be divided into either feature weighting algorithms or sub-
set selection algorithms. Feature selection algorithms of the wrapper model
usually return feature subsets, and therefore are subset selection algorithms.

1.2.3.4 Number of Data Sources

To the best of the authors’ knowledge, most existing feature selection al-
gorithms are designed to handle learning tasks with only one data source,
therefore they are single-source feature selection algorithms. In many real data
mining applications, for the same set of features and samples, we may have
multiple data sources. They depict the characters of features and samples
from multiple perspectives. Multi-source feature selection [223] studies how
to integrate multiple information sources in feature selection to improve the
reliability of relevance estimation. Figure 1.8 demonstrates how multi-source
feature selection works. Recent study shows that the capability of using multi-
ple data and knowledge sources in feature selection may effectively enrich our
information and enhance the reliability of relevance estimation [118, 225, 226].

Data of High Dimensionality and Challenges 13

Different information sources about features and samples may have very dif-
ferent representations. One of the key challenges in multi-source feature selec-
tion is how to effectively handle the heterogenous representation of multiple
information sources.

in
st

an
ce

s
features

target data

Information of Features (1)

Information of Features (p)

Information
of Samples

(1)

Information
of Samples

(q)

Multi-source
Feature Selection

Relevant Features

FIGURE 1.8: Feature selection with multiple data and knowledge sources.

1.2.3.5 Computation Schemes

Different computation schemes roughly fall into two categories: serial com-
putation and parallel computation. Most existing feature selection techniques
are designed for serial computation in a centralized computing environment.
An advantage of this computing scheme is its simplicity. However, in recent
years, the size of data sets in data mining applications has increased rapidly.
It is common to have a data set of several terabytes (TB, 212 bytes). A data
set of this size poses scalability challenges to existing feature selection algo-
rithms. To improve the efficiency and scalability of existing algorithms, paral-
lel computation techniques, such as such as Message Passing Interface (MPI)
[163, 63] and Google’s MapReduce [1], can be applied [160]. By utilizing more
computing (CPU) and storage (RAM) resources, a parallel feature selection
algorithm is capable of handling very large data sets efficiently.

1.2.4 Challenges in Feature Selection Research

Although much work has been done on research of feature selection and a
large number of algorithms have been developed, as new applications emerge,
many challenges have arisen, requiring novel theories and methods to address
high-dimensional and complex data. Below, we consider some of the most
challenging problems in feature selection research.

14 Spectral Feature Selection for Data Mining

1.2.4.1 Redundant Features

A redundant feature refers to a feature that is relevant to the learning
problem, but its removal from the data has no negative effect.3 Redundant
features unnecessarily increase dimensionality [89], and may worsen learning
performance. It has been empirically shown that removing redundant features
can result in significant performance improvement [69]. Some algorithms have
been developed to handle redundancy in feature selection [69, 40, 56, 210, 6,
43]. However, there is still not much systematical work that studies how to
adapt the large number of existing algorithms (especially the algorithms based
on the filter model) to handle redundant features.

1.2.4.2 Large-Scale Data

Advances in computer-based technologies have enabled researchers and
engineers to collect data at an ever-increasing pace [1, 215, 50]. Data were
measured in megabytes (MB, 26 bytes) and gigabytes (GB, 29 bytes), then
terabytes (TB, 212 bytes), and now in petabyte (PB, 215 bytes). A large-scale
data set may contain a huge number of samples and features. Most exist-
ing feature selection algorithms are designed for handling data with a size
under several gigabytes. Their efficiency may significantly deteriorate, if not
become totally unapplicable, when data size exceeds hundreds of gigabytes. Ef-
ficient distributed computing frameworks, such as MPI [163, 63] and Google’s
MapReduce [1], have been developed to facilitate applications on cloud infras-
tructure, enabling people to handle problems of very large scale. Most existing
feature selection techniques are designed for traditional centralized computing
environments and cannot readily utilize these advanced distributed computing
techniques to enhance their efficiency and scalability.

1.2.4.3 Structured Data

Not only are data sets getting larger, but new types of data are emerg-
ing. Examples include data streams from sensor networks [2], sequences in
proteinic or genetic studies [174], hierarchial data with complex taxonomies
in text mining [49], and data in social network analysis [152] and system
biology [5]. Existing feature selection algorithms cannot handle these com-
plex data types effectively. For instance, in many text mining applications,
documents are organized under a complex hierarchy. However, most existing
feature selection algorithms can only handle class labels with a flat struc-
ture. Also, in the cancer study, feature selection techniques are applied on
microarray data for identifying genes (features) that are related to carcino-
genesis. Genetic interaction networks can be used to improve the precision of
carcinogenic gene detection [224]. For instance, recent studies show that most
carcinogenic genes are the core of the genetic interaction network [134, 189].
However, to the best of the authors’ knowledge, most existing algorithms can-

3Mainly due to the existence of other features which is more relevant.

Data of High Dimensionality and Challenges 15

not integrat the information contained in a genetic interaction network (a
network of feature interaction) in feature selection to improve the reliability
of relevance estimation.

1.2.4.4 Data of Small Sample Size

Opposite to the problem discussed in Section 1.2.4.2, in which sample size
is tremendous, another extreme is a terribly small sample size. The small
sample problem is one of the most challenging problem in many feature se-
lection applications [143]: the dimensionality of data is extremely high, while
the sample size is very small. For instance, a typical cDNA microarray data
set [88] used in modern genetic analysis usually contain more than 30000 fea-
tures (the oligonucleotide probes), yet the sample size is usually less than 100.
With so few samples, many irrelevant features can easily gain their statistical
relevance due to sheer randomness [159]. With a data set of this kind, most
existing feature selection algorithms become unreliable by selecting many ir-
relevant features. For example, in a cancer study based on cDNA microarray,
fold differences identified via statistical analysis often offer limited or inaccu-
rate selection of biological features [118, 159]. In real applications, the number
of samples usually do not increase considerably, since the process of acquiring
additional samples is costly. One way to address this problem is to include
additional information to enhance our understanding of the data at hand. For
instance, recent developments in bioinformatics have made various knowledge
sources available, including the KEEG pathway repository [87], the Gene On-
tology database [25], and the NCI Gene-Cancer database [151]. Recent work
has also revealed the existence of a class of small noncoding RNA (ribonucleic
acid) species known as microRNAs, which are surprisingly informative for
identifying cancerous tissues [118]. The availability of these various informa-
tion sources presents promising opportunities to advance research in solving
previously unsolvable problems. However, as we pointed out in Sections 1.2.3.4
and 1.2.4.3, most feature selection algorithms are designed to handle learn-
ing tasks with a single data source, and therefore cannot benefit from any
additional information sources.

1.3 Spectral Feature Selection

A good feature should not have random values associated with samples.
Instead, it should support the target concept embedded in the data. In su-
pervised learning, the target concept is the class affiliation of the samples.
In unsupervised learning, the target concept is the cluster affiliation of the
samples. Therefore, to develop effective algorithms for selecting features, we
need to find effective ways to measure features’ consistency with the target

16 Spectral Feature Selection for Data Mining

concept. More specifically, we need effective mechanisms to identify features
that associate similar values with the samples that are of the same affiliation.

Sample similarity is widely used in both supervised and unsupervised
learning to describe the relationships among samples. It forms an effective way
to depict either sample cluster affiliation or sample class affiliation. Spectral
feature selection is a newly developed feature selection technique. It evalu-
ates features’ relevance via measuring their capability of preserving the pre-
specified sample similarity. More specifically, assuming the similarities among
every pair of samples are stored in a similarity matrix S, spectral feature
selection estimates the feature relevance by measuring features’ consistency
with the spectrum of a matrix derived from S, for instance, the Laplacian
matrix [33].4

Example 3 The top eigenvectors of a Laplacian matrix

Figure 1.9 shows the contour of the second and third eigenvectors of a
Laplacian matrix derived from a similarity matrix S. The color of the sam-
ples denotes their class or cluster affiliations. The gray level of the back-
ground shows how eigenvectors assign values to the samples. The darker
the color, the smaller the value.

The figure shows that the second and third eigenvectors assign similar
values to the samples that are of the same affiliations. So, if a feature is
consistent with either of the two eigenvectors, it will have a strong capabil-
ity of supporting the target concept, which defines the affiliation of samples.

Spectral feature selection is a general feature selection framework. Its ad-
vantages include:

• A unified framework: Spectral feature selection forms a general frame-
work that enables the joint study of supervised, unsupervised, and semi-
supervised feature selection. With this framework, families of novel fea-
ture selection algorithms can be designed to handle data with different
characteristics.

• A solid theoretical foundation: Spectral feature selection has a solid the-
oretical foundation, which is supported by spectral graph theory [33],
numerical linear algebra [38], and convex optimization [131, 18]. Its prop-
erties and behaviors can be effectively analyzed for us to gain insight for
improving performance.

• Great generability: Spectral feature selection includes many existing suc-
cessful feature selection algorithms as its special cases. This allows us to

4The concepts of similarity matrix and Laplacian matrix will be introduced in Chapter
2.

Data of High Dimensionality and Challenges 17

x
0 2 4 6

x
0 2 4 6

y y

λ2 = 4.3 × 10–5 λ3 = 1.5 × 10–4

8

6

4

2

0

8

6

4

2

0

FIGURE 1.9: (SEE COLOR INSERT) The contour of the second and
third eigenvectors of a Laplacian matrix derived from a similarity matrix S.
The numbers on the top are the corresponding eigenvalues.

study them together to achieve better understanding on these algorithms
and gain interesting insights.

• Handling redundant features: Any algorithm that fits the framework of
spectral feature selection can be adapted to effectively handle redun-
dant features. This helps many existing feature selection algorithms to
overcome their common drawback of handling feature redundancy.

• Processing large-scale data: Spectral feature selection can be conve-
niently extended to handle large-scale data by applying mature com-
mercialized distributed parallel computing techniques.

• The support of multi-source feature selection: Spectral feature selection
can integrate multiple data and knowledge sources to effectively improve
the reliability of feature relevance estimation.

1.4 Organization of the Book

The book consists of six chapters. Figure 1.10 depicts the organization of
the book.

Chapter 1. We introduce the basic concepts in feature selection, present
the challenges for feature selection research, and offer the basic idea of spectral
feature selection.

18 Spectral Feature Selection for Data Mining

Application

Generalization

Implementation

Concepts Introduction

Univariate
Formulations

Multivariate
Formulations

Connections
to Existing
Algorithms

Large-Scale
Problem

(Parallel Feature
Selection)

Small Sample
Problem

(Multi-Source
Feature Selection)

FIGURE 1.10: The organization of the book.

Chapters 2 and 3. Features can be evaluated either individually or
jointly, which leads to univariate and multivariate formulations for spectral
feature selection, respectively. We present a spectral feature selection frame-
work based on univariate formulations in Chapter 2. This general framework
covers supervised, unsupervised, and semi-supervised feature selection. We
study the properties of the univariate formulations for spectral feature selec-
tion and illustrate how to derive new algorithms with good performance based
on these formulations. One problem of the univariate formulation is that fea-
tures are evaluated independently. Therefore redundant features cannot be
handled properly. In Chapter 3, we present several multivariate formulations
for spectral feature selection to handle redundant features in effective and
efficient ways.

Chapter 4. Although spectral feature selection is a relatively new tech-
nique for feature selection, it is closely related to many existing feature se-
lection and feature extraction algorithms. In Chapter 4, we show that many
existing successful feature selection and feature extraction algorithms can be
considered special cases of the proposed spectral feature selection frameworks.

Data of High Dimensionality and Challenges 19

The unification allows us to achieve a better understanding of these algorithms
as well as the spectral feature selection technique.

Chapters 5 and 6. Spectral feature selection can be applied to address
difficult feature selection problems. The large-scale data problem and the small
sample problem are two of the most challenging problems in feature selection
research. In Chapter 5, we study parallel spectral feature selection and show
how to handle a large-scale data set via efficient parallel implementations for
spectral feature selection in a distributed computing environment. In Chap-
ter 6 we illustrate how to address the small sample problem by incorporating
multiple knowledge sources in spectral feature selection, which leads to the
novel concept of multi-source feature selection.

Although readers are encouraged to read the entire book to obtain a com-
prehensive understanding of the spectral feature selection technique, readers
can choose the chapters according to their interests based on Figure 1.10.
Chapters 1, 2, and 3 introduce the basic concept of feature selection, and
show how spectral feature selection works. For the readers who are already
familiar with feature selection and want to learn the theoretical perspectives
of spectral feature selection in depth, we recommend they read Chapters 2, 3,
and 4. Chapters 2, 3, 5, and 6 provide implementation details of spectral fea-
ture selection algorithms, and can be useful for the readers, who want to apply
spectral feature selection technique to solve their own real-world problems.

To read the book, a reader may need some knowledge of linear algebra.
Some basic convex optimization techniques are used in Chapter 3. Some con-
cepts from biology and bioinformatics are mentioned in Chapter 6. These
concepts and techniques are all basic and relatively simple to understand. We
refer readers not familiar with these concepts and technique to the literature
provided as references in the book.

This page intentionally left blankThis page intentionally left blank

Chapter 2

Univariate Formulations for Spectral
Feature Selection

Spectral feature selection tries to select features that are consistent with the
target concept via conducting [171]. In this chapter, we present several uni-
variate formulations for spectral feature selection, and analyze the properties
of the presented formulations based on the perturbation theory developed for
symmetric linear systems [38]. We also show how to derive novel feature se-
lection algorithms based on these formulations and study their performance.
Spectral feature selection is a general framework for both supervised and un-
supervised feature selection. The key for the technique to achieve this is that
it uses a uniform way to depict the target concept in both learning contexts,
which is the sample similarity matrix. Below, we start by showing how a sam-
ple similarity matrix can be used to depict a target concept.

2.1 Modeling Target Concept via Similarity Matrix

Pairwise sample similarity is widely used in both supervised and unsu-
pervised learning to describe the relationships among samples. It can effec-
tively depict either the cluster affiliations or the class affiliations of samples.
For example, assume sij is the similarity between the i-th and the j-th sam-
ples. Without class label information, a popular similarity measurement is the
Gaussian radial basis function (RBF) kernel function [21], defined as

sij = exp

(
−‖ xi − xj ‖2

2δ2

)
,

where exp (·) is the exponential function and δ is the parameter for controlling
the width of the “bell.” This function ensures samples from the same cluster
have large similarity and samples from different clusters have small similar-
ity. On the other hand, when class label information is available, the sample
similarity can be measured by

sij =

{
1
nl
, yi = yj = l

0, otherwise ,

21

22 Spectral Feature Selection for Data Mining

where nl denotes the number of samples in class l. This measurement en-
sures that samples from the same class have a nonnegative similarity, while
samples from different classes have a zero similarity. Given n samples, the
n× n matrix S containing the sample similarity of all sample pairs, S(i, j) =
sij , i, j = 1, . . . , n, is called a sample similarity matrix. S is also called a ker-
nel matrix [150], if any of its submatrices is positive semi-definite. A matrix
A ∈ Rn×n is called semi-positive definite [150] (A � 0), if and only if

x>Ax ≥ 0,∀x ∈ Rn.

Example 4 The consistency of a feature reveals its relevance

In Figure 2.1, the target concept specifies two categories indicated by the
two ellipses: C1 and C2. Different shapes correspond to the feature values
of the samples. As we can see, feature F assigns similar values to the sam-
ples that are of the same category, while F ′ does not. Compared to F ′, by
using F to cluster or classify samples, we have a better chance of obtaining
correct results. Therefore, F is more relevant compared with F ′.

FIGURE 2.1: Consistency of two different features.

Given a sample similarity matrix S, a graph G can be constructed to
represent it. The target concept is reflected by the structure of G. For example,
the samples of the same category usually form a cluster structure with dense
inner connections. As shown in Example 4, a feature is consistent with the
target concept when it assigns similar values to the samples that are from

Univariate Formulations for Spectral Feature Selection 23

the same category. Reflecting on the graph G, it assigns similar values to the
samples that are near to each other on the graph. Consistent features contain
information about the target concept, and therefore help cluster or classify
samples correctly.

Given a graph G, we can derive a Laplacian matrix L (to be discussed in
the next section). According to spectral graph theory [33, 58, 17, 124], the
structural information of a graph can be obtained by studying its spectrum.
For example, it is known that the leading eigenvectors of L have a tendency to
assign similar values to the samples that are near one another on the graph.
Below we introduce some basic concepts related to a Laplacian matrix and
study its properties. Based on this knowledge, we show how to measure fea-
ture relevance using the spectrum of a Laplacian matrix in spectral feature
selection. The proposed formulations are applicable for both supervised and
unsupervised feature selection.

2.2 The Laplacian Matrix of a Graph

According to sample distribution (or sample class affiliation), a sample
similarity matrix S can be computed to represent the relationships among
samples. Given X, we use G(V,E) to denote an undirected graph constructed
from S, where V is the vertex set, and E is the edge set. The i-th vertex vi
of G corresponds to xi ∈ X, and there is an edge between each vertex pair
(vi, vj). Given G, its adjacency matrix, A ∈ Rn×n, is defined as aij = sij . Let
d = {d1,d2,...,dn}, where di =

∑n
k=1 aik, the degree matrix, D ∈ Rn×n, of G

is defined as

D(i, j) =

{
di, i = j
0, otherwise .

Obviously D is a diagonal matrix. Here di can be interpreted as an estimation
of the density around xi, since the more data points that are close to xi, the
larger the di. Given the adjacency matrix A and the degree matrix D, the
Laplacian matrix L and the normalized Laplacian matrix L are defined as

L = D−A; L = D−
1
2 LD−

1
2 . (2.1)

24 Spectral Feature Selection for Data Mining

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 =

0
2
3
∞
∞

2
0

∞
1

∞

3
∞
0
3

∞

∞
1
3
0
2

 ∞
 ∞
 ∞
2
0

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

 𝒙1 𝒙2 𝒙3 𝒙4 𝒙5

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

2

3

3

1

2

1 .14 .01 0 0 1.15 0 0 0 0 .15 -.14 -.01 0 0 .11 -.07 -.01 0 0

.14 1 0 .61 0 0 1.75 0 0 0 -.14 .74 0 -0.6 0 -.07 .24 0 -.2 0

.01 0 1 .01 0 0 0 1.02 0 0 -.01 0 .02 -.01 0 -.01 0 .02 -.01 0

0 .61 .01 1 .14 0 0 0 1.76 0 0 -.61 -.01 0.8 -.14 0 -.2 -.01 .25 -.07

0 0 0 .14 1 0 0 0 0 1.14 0 0 0 -.14 .14 0 0 0 -.07 .11

𝑺 𝑫 𝑳 L

FIGURE 2.2: A graph and its Laplacian matrices.

Example 5 A graph and its Laplacian matrices

Figure 2.2 shows a graph and its Laplacian matrices. In the graph, the
number beside each edge is the length of the edge. To compute the similarity
between xi and xj , we used the Gaussian radial basis function (RBF) [21],
with δ = 1

sij = exp

(
−‖ xi − xj ‖2

2

)
= exp

(
−Distance-Matrix (i, j)

2

2

)
.

We can see that D is a diagonal matrix. S, L, and L are all symmetric
matrices. The off-diagonal elements of L and L are all negative. We notice
that the elements in L are smaller than those in L. This is due to the fact
that Li,j = 1

didj
Li,j . It is also easy for us to verify that L1 = 0, where 1 is

the vector with all its elements equal to 1.

With the following theorem, we show some properties of D and L [33].

Univariate Formulations for Spectral Feature Selection 25

Theorem 2.2.1 Given the Laplacian matrix L of G, we have

1. ∀ x ∈ Rn,

x>Lx =
1

2

n∑

i,j=1

ai,j (xi − xj)2. (2.2)

2. ∀ x ∈ Rn,∀ t ∈ R,

(x− t ∗ 1)>L(x− t ∗ 1) = x>Lx. (2.3)

3. ∀ x ∈ Rn,
x>Lx ≥ 0. (2.4)

4. Let 1 = {1, 1, . . . , 1}> and 0 = {0, 0, . . . , 0}>,

L ∗ 1 = 0× 1 = 0. (2.5)

Proof To prove Equation (2.2), we notice that by the definition of di, we
have

x>Lx = x>Dx− x>Sx =
n∑

i=1

dix
2
i −

n∑

i,j=1

aijxixj

=
1

2




n∑

i=1

dix
2
i − 2

n∑

i,j=1

aijxixj +
n∑

j=1

djx
2
j




=
1

2

n∑

i,j=1

ai,j (xi − xj)2 .

Equations (2.3–2.5) can be easily derived from Equation (2.2).

�

Equation (2.4) shows that the Laplacian matrix L is a positive semi-definite
matrix. And Equation (2.4) and Equation (2.5) together suggest that the
smallest eigenvalue of L is 0 and its corresponding eigenvector is 1. (0,1) is
also called the trivial eigenpair of L.

Theorem 2.2.2 Given the normalized Laplacian matrix L of G, we have

1. ∀x ∈ Rn,

x>Lx =
1

2

n∑

i,j=1

ai,j

(
xi√
di
− xj√

dj

)2

. (2.6)

2. ∀ x ∈ Rn,∀ t ∈ R,

(x− t ∗ d1/2)>L(x− t ∗ d1/2) = x>Lx. (2.7)

26 Spectral Feature Selection for Data Mining

3. ∀ x ∈ Rn,
x>Lx ≥ 0. (2.8)

4. Given d,
L ∗ d

1
2 = 0× d

1
2 . (2.9)

5. ∀i, 1 ≤ i ≤ n,
0 ≤ λi ≤ 2. (2.10)

Proof The proofs of Equations (2.6)–(2.9) are similar to those in Theo-
rem 2.2.1. Equation (2.10) can be proven by noticing the fact that ∀i, 1 ≤
i ≤ n,

λi ≤ sup
‖x‖=1

x>Lx

= sup
‖x‖=1

1

2

n∑

i,j=1

ai,j

(
xi√
di
− xj√

dj

)2

≤ sup
‖x‖=1

1

2

n∑

i,j=1

2ai,j

(
x2i
di

+
x2j
dj

)

= 2‖x‖22 = 2.

In the above derivation, the second inequality holds since (a+ b) ≤
2
(
a2 + b2

)
.

�

Similar to Theorem 2.2.1, Equation (2.8) shows that the normalized Laplacian
matrix L is positive semi-definite. And Equations (2.8) and (2.9) together

suggest that the smallest eigenvalue of L is 0 and d
1
2 is the corresponding

eigenvector. (0,d
1
2) is called the trivial eigenpair of L.

The following examples show us some interesting properties of the eigen-
vectors of the Laplacian matrix.

Univariate Formulations for Spectral Feature Selection 27

Example 6 The spectrum of a Laplacian matrix

Figure 2.3 plots the contours of six eigenvectors of a Laplacian matrix L.
The Laplacian matrix is constructed from a data set with 90 instances. The
instances are drawn from a mixture of three two-dimensional (2D) Gaussian
distributions [190, 166], which have a unit variance and a mean at (5,0),
(0,5), and (5, 5), respectively. The RBF function defined in Equation (2.25)
is used to compute sample similarity with σ being set to 1. Since L ∈
R90×90, let ξ be the eigenvectors of L, so we have ξ ∈ R90×1. Therefore an
eigenvector ξ of L assigns a value to each of the 90 instances sampled from
the 2D Gaussian mixture [15].

For any point in the space without a value, we compute its value by
averaging the values of the nearby points. Note that only the points that
correspond to the 90 instances sampled from the 2D Gaussian mixture are
used for computing the values for other points. In the averaging process,
the values of their neighbors are weighted by their distance to the points
with values.

Let ξi denote the eigenvector corresponding to λi, which is the i-th
smallest eigenvalue of the Laplacian matrix L. Figure 2.3 plots the con-
tours of the eigenvectors ξ1, ξ2, ξ3, ξ4, ξ5, and ξ20. The contours show how
the eigenvectors assign values to the sample. Basically, the darker the color,
the smaller the value. The figure shows that the first eigenvector, ξ1, assigns
the same value to all the instances, which is consistent with Theorem 2.2.1.
Since there are three clusters, the second and the third eigenvectors, ξ2 and
ξ3, capture the cluster structure of the data. The fourth and the fifth eigen-
vectors, ξ4 and ξ5, capture the subcluster structure of the data. And the
20th eigenvector, ξ20, captures the subtle structures of the data, which may
be created by noise. We also noticed that λ1, λ2, and λ3 are significantly
smaller than the remaining eigenvalues. The example shows that the clus-
ter structure of a data set can be extracted from the leading eigenvectors
of its corresponding Laplacian matrix.

28 Spectral Feature Selection for Data Mining

λ1 = 0

x

y

0 2 4 6

0

2

4

6

8

λ2 = 4.3 × 10−5

x
y

0 2 4 6

0

2

4

6

8

λ3 = 1.5 × 10−4

x

y

0 2 4 6

0

2

4

6

8

λ4 = 7.8 × 10−4

x

y

0 2 4 6

0

2

4

6

8

λ5 = 8.3 × 10−4

x

y

0 2 4 6

0

2

4

6

8

λ20 = 5.5 × 10−3

x

y

0 2 4 6

0

2

4

6

8

FIGURE 2.3: (SEE COLOR INSERT) Contours of the eigenvectors
ξ1, ξ2, ξ3, ξ4, ξ5, and ξ20 of L.

Univariate Formulations for Spectral Feature Selection 29

Example 7 The spectrum of a normalized Laplacian matrix

Figure 2.4 plots the contours of six eigenvectors of a normalized Lapla-
cian matrix L: ξ1, ξ2, ξ3, ξ4, ξ5, and ξ20. The normal Laplacian matrix is
constructed from the same data used in Example 6. The figure shows that
the first eigenvector, ξ1, captures the density information of the data, which
is consistent with Theorem 2.2.2. Similar to the last example, the second
and the third eigenvectors, ξ2 and ξ3, capture the cluster structure of the
data. The fourth and the fifth eigenvectors, ξ4 and ξ5, capture the subclus-
ter structure of the data. And the 20th eigenvector, ξ20, captures the subtle
structures of the data, which might correspond to noise. Again, we observe
that λ1, λ2, and λ3 are significantly smaller than the remaining eigenvalues.

According to the spectral graph theory, the eigenvalues of L measure
the “smoothness” of their corresponding eigenvectors. More specifically, the
smaller the eigenvalue, the smoother the corresponding eigenvector. Here the
smoothness measures how often an eigenvector assigns similar values to sam-
ples that are near each other. This can be explained by Equation (2.2)

λi = ξ>k Lξk =
1

2

n∑

i,j=1

ai,j (ξk,i − ξk,j)2.

If an eigenvector does not vary much locally (that is, it always assigns similar
values to samples that are near to each other on the graph), then its corre-
sponding eigenvalue λi will be a very small value. This justifies the usage of
the scale of λi to measure the smoothness of its corresponding eigenvector ξi.
Motivated by the above observation, we study below how the graph Laplacian
matrix can be used for evaluating feature relevance.

2.3 Evaluating Features on the Graph

Equation (2.2) shows that given G, the Laplacian matrix of G is a linear
operator on vectors

< f ,Lf >= f>Lf =
1

2

∑

vi∼vj

aij(fi − fj)2, f = (f1, f2, . . . , fn)> ∈ Rn.

(2.11)
As discussed in the last section, the equation quantifies how much f varies
locally or how “smooth” it is over G. More specifically, the smaller the value
of < f ,Lf >, the smoother the vector f is on G. A smooth vector f assigns

30 Spectral Feature Selection for Data Mining

λ1 = 0

x

y

0 2 4 6

0

2

4

6

8

λ2 = 4.6 × 10−3

x
y

0 2 4 6

0

2

4

6

8

λ3 = 1.6 × 10−2

x

y

0 2 4 6

0

2

4

6

8

λ4 = 8.2 × 10−2

x

y

0 2 4 6

0

2

4

6

8

λ5 = 8.7 × 10−2

x

y

0 2 4 6

0

2

4

6

8

λ20 = 7.6 × 10−1

x

y

0 2 4 6

0

2

4

6

8

FIGURE 2.4: (SEE COLOR INSERT) Contours of the eigenvectors
ξ1, ξ2, ξ3, ξ4, ξ5, and ξ20 of L.

Univariate Formulations for Spectral Feature Selection 31

similar values to the samples that are close to one another on G, thus it is
consistent with the graph structure. < f ,Lf > can be used to measure the
consistency of features on a graph.

However, given a feature vector fi and L, two factors affect the value of
< fi,Lfi >: the norm of fi and the norm of L. The two factors need to be
removed, as they do not contain structure information of the data, but can
cause the value of < fi,Lfi > to increase or decrease arbitrarily. The two
factors can be removed via normalization. Based on the relationship between
L and L, we have

< fi,Lfi >= f>i Lfi = f>i D
1
2LD

1
2 fi = (D

1
2 fi)
>L(D

1
2 fi).

Let f̃i = (D
1
2 fi) denote the weighted feature vector of Fi, and f̂i = f̃i

||f̃i||
the

normalized weighted feature vector. The score of Fi can be evaluated by the
following function:

ϕ1(Fi) = f̂i
>L f̂i. (2.12)

With the following theorem, we show the relationship between ϕ1(Fi) and
the normalized cut of a graph. Normalized cut is a concept from spectral
graph theory. It measures the capability of a cluster indicator for partitioning
the data into well-separated clusters. The following theory suggests that if a
feature is relevant, by using the feature as a “soft” cluster indicator, we can
obtain a “clear cut,” which partitions the data into well-separated clusters.

Theorem 2.3.1 ϕ1(Fi) measures the value of the normalized cut [156] by
using fi as the soft cluster indicator to partition the graph G.

Proof : The theorem holds as

ϕ1(Fi) = f̂i
>L f̂i =

fi
>Lfi

fi
>Dfi

.

�

Given a graph, assume we partition the graph into two clusters C1 and
C2. The normalized cut corresponding to C1 and C2 can be calculated by

cutN (C1, C2) =
cut (C1, C2)

vol (C1)
+

cut (C2, C1)

vol (C2)
, (2.13)

where cut(C1, C2) measures the total weight of the edges connecting two clus-
ters, and vol(C1) measures the total weight of the edges having at least one
endpoint in cluster C1. They are defined as

cut (C1, C2) =
∑

i∈C1,j∈C2

aij , vol (C1) =
∑

i∈C1,∀j

aij . (2.14)

Equation (2.13) shows that the normalized cut prefers a partition with the

32 Spectral Feature Selection for Data Mining

following two properties. First, the normalized cut prefers a partition, in which
the edges between different clusters have low weights, and the edges within
each cluster have high weights. Such a partition ensures that the instances
in different clusters are different, and the instances within the same cluster
are similar. Second, the normalized cut requires the partition to be balanced,
since vol(C1 + C2) is a constant, and 1/vol (C1) + 1/vol (C2) is the minimum
when vol (C1) = vol (C2). Let c = (c1, . . . , cn) be a cluster indicator for C1,

such that if i ∈ C1, ci = 1, otherwise ci = −
∑
i∈C1

di∑
i∈C2

di
, where di is the i-th

diagonal element of the degree matrix D. In [157], it is shown that that

c>Lc

c>Dc
= cutN (C1, C2) . (2.15)

Equation (2.15) computes the normalized cut value corresponding to the

cluster indicator c. The values of the elements in c are either 1 or −
∑
i∈C1

di∑
i∈C2

di
,

therefore it is called a discrete cluster indicator. If we relax this requirement
and allow ci ∈ R, then the corresponding c becomes a soft cluster indicator.
A good soft cluster indicator leads to a small normalized cut value by assign-
ing similar values to samples that are near one another on the graph. Both
theoretical and empirical results show that the normalization step makes the
normalized cut more robust to outliers [157, 39, 128].

cut 2

1

𝒙1
𝒙2 𝒙𝑛−1

𝒙𝑛

3

𝒙𝑛+1
𝒙𝑛+2 𝒙𝟐𝑛−1

𝒙2𝑛

2
𝒙𝟐𝑛+1

cut 1

FIGURE 2.5: Two possible cuts of a graph.

Univariate Formulations for Spectral Feature Selection 33

Example 8 The normalized cut of a graph

In this example, we illustrate the effect of the normalized cut. We compare
the normalized cut to the standard cut. Given two clusters C1 and C2, in
the normalized cut, we define the cluster indicator as

ci =





1, i ∈ C1∑
i∈C1

di∑
i∈C2

di
, i ∈ C2

and

cutN (C1, C2) =
cut (C1, C2)

vol (C1)
+

cut (C2, C1)

vol (C2)
=

c>Lc

c>Dc
.

In the standard cut, the cluster indicator is specified as

ci =

{
1, i ∈ C1

−1, i ∈ C2

and

cut (C1, C2) =
1

4
c>Lc.

Figure 2.5 shows a graph containing three clusters. The first two clusters
both have n instances. In each of the two clusters there is a center point,
and all other instances in the cluster connect to the center point with a
distance of 1. The center points of the two clusters are connected and the
distance is 2. The third cluster has only one instance, and the instance
is connected to the center point of the second cluster with a distance of
3. The figure shows two possible cuts of the graph. The first one cut the
edge connecting the first and the second cluster, and the second one cut
the edge connecting the second and the third cluster. Figure 2.6 shows how
cut (C1, C2) and cutN (C1, C2) vary with the size of the first and the second
clusters.1 When there is only one instance in the first and the second clus-
ter, both cut (·) and cutN (·) assign smaller cut values to cut 2, since cut 2
cuts an edge with a longer distance. In this case both cut (·) and cutN (·)
prefer cut 2. However, when the number of instances, n, increases, cutN (·)
begins to assign a smaller cut value to cut 1, since cut 1 cuts the graph in
a more balanced way. Compared with cutN (·), the value of cut (·) does not
change with n, since it does not consider the size of the clusters.

Given the normalized Laplacian matrix L, we can calculate its eigen-
decomposition (λi, ξi), where λi is the eigenvalue and ξi is the eigenvector

1To compute the similarity matrix for the graph, we use a RBF kernel function with
δ = 2.

34 Spectral Feature Selection for Data Mining

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Normalized Cut vs. Cut

cut 1 cut 2 ncut 1 ncut 2

FIGURE 2.6: (SEE COLOR INSERT) The cut value (y-axis) of different
types of cut under different cluster sizes (x-axis). The x-axis corresponds to
the value of n in Figure 2.5.

(1 ≤ i ≤ n). Assuming λ1 ≤ λ2 ≤ . . . ≤ λn, according to Theorem 2.2.1,

we have: λ1 = 0 and ξ1 = D
1
2 1

‖D
1
2 1‖

, which form the trivial eigenpair of the

graph. Also we know that all the eigenvalues of L are in the range of [0, 2].
Given a spectral decomposition of L, we can rewrite Equation (2.12) using
the eigensystem of L to achieve a better understanding of the equation.

Theorem 2.3.2 Let (λj , ξj), 1 ≤ j ≤ n be the eigensystem of L, and αj =

cos θj where θj is the angle between f̂i and ξj. Equation (2.12) can be rewritten
as

ϕ1(Fi) =
n∑

j=1

α2
jλj , where

n∑

j=1

α2
j = 1. (2.16)

Proof : Let Σ = Diag(λ1, λ2, . . . , λn) and U = (ξ1,ξ2, . . . , ξn). As ‖f̂i‖ =

‖ξj‖ = 1, we have f̂i
>
ξj = cos θj . We can rewrite f̂i

>L f̂i as

f̂i
>Lf̂i = f̂i

>
UΣU>f̂i = (α1, . . . , αn)Σ(α1, . . . , αn)> =

n∑
i=1

α2
iλi.

Since
∑n
j=1 α

2
j = f̂i

>
UU>f̂i, UU

> = I and ||f̂i|| = 1, we have
∑n
j=1 α

2
j = 1.

�

Univariate Formulations for Spectral Feature Selection 35

Theorem 2.3.2 suggests that by using Equation (2.12) the score of Fi is
calculated by combining the eigenvalues of L, and cos θ1, . . . , cos θn are the
combination coefficients. Note, here cos θi measures the similarity between
the the feature vector and the i-th eigenvector of L. Since λ1 = 0, Equa-

tion (2.16) can be rewritten as f̂i
>L f̂i =

∑n
j=2 α

2
jλj , meaning that the value

obtained from Equation (2.12) evaluates the smoothness of f̂i by measuring

the similarities between f̂i and those nontrivial eigenvectors of L. Assuming
that f aligns closely to the top eigenvectors of L, clearly

∑n
j=2 α

2
jλj will be

small. As shown in Figure 2.4, the top eigenvectors of L assign similar values
to the instances from the same cluster. Therefore if a feature aligns closely
with these eigenvectors, it will be smooth on the graph.

Since
∑n
j=1 α

2
j = 1 and α1 ≥ 0, we have

∑n
j=2 α

2
j ≤ 1. The bigger the

α2
1, the smaller the

∑n
j=2 α

2
j is. The value of ϕ1(Fi) can be small if f̂i is very

similar to ξ1. However, in this case, a small ϕ1(Fi) value does not indicate
better separability, since the trivial eigenvector ξ1 does not carry any distri-
bution information except the density around samples. To handle this issue,
we propose to use

∑n
j=2 α

2
j to normalize ϕ1(Fi), which gives us the following

ranking function:

ϕ2(Fi) =

n∑
j=2

α2
jλj

n∑
j=2

α2
j

=
f̂i
>L f̂i

1−
(
f̂i
>
ξ1

)2 . (2.17)

A small ϕ2(Fi) indicates that f̂i aligns closely to those nontrivial eigenvectors
with small eigenvalues, hence it is smooth on the graph.

According to spectral clustering theory, the leading k eigenvectors of L
form the optimal soft cluster indicators that separate G into k parts. The
remaining eigenvectors correspond to the subtle structures formed by noise.
Therefore, if k is known, for instance, we know that the data set contains
samples from k different categories, which should form k dense clusters. We
can also estimate feature relevance by the following function:

ϕ3(Fi) =
k∑

j=2

(2− λj)α2
j . (2.18)

By its definition, ϕ3 assigns bigger scores to features that are more relevant.
This is because if a feature achieves a large score with ϕ3, it must align closely
to the nontrivial eigenvectors ξ2, . . . , ξk, with ξ2 having the highest priority. By
focusing on the leading eigenvectors, ϕ3 can effectively reduce noise. Similar
mechanisms are also used in principal component analysis (PCA) [15] and
spectral dimension reduction [145, 119, 75, 13, 148, 198] for eliminating noise.

36 Spectral Feature Selection for Data Mining

Example 9 Evaluating features with ϕ1(·), ϕ2(·), ϕ3(·)

Figure 2.7 plots the contours of six features: F1, F2, F3, F4, F5, and F6.
Among the six features, F1 and F2 are relevant features and correspond to
the first and second dimensions of the 2D Gaussian mixture generated in
Example 6. F3, . . . , F6 are randomly generated, with their values following
the standard uniform distribution, and thus are irrelevant features. Since
L ∈ R90×90, Fi ∈ R90×1, i = 1, . . . , 6, any of the six features will assign a
value to each of the 90 instances sampled from the 2D Gaussian mixture.
To generate a contour for a feature Fi, for any point in the space without
a value, we compute its value by averaging over the values of its nearby
points, which are assigned values by Fi. In the averaging process, the values
from its neighbors are weighted by their distance to it. The normalized
Laplacian matrix L constructed in Example 7 is used in computing ϕ1(·),
ϕ2(·), and ϕ3(·) for feature evaluation.

From Figure 2.7, we can observe that the two relevant features, F1 and
F2, are smoother than the other four irrelevant features on the graph. They
can all be identified as relevant by the three feature ranking functions. The
results show that they achieve small values with ϕ1(·) and ϕ2(·), and large
values with ϕ3(·).

2.4 An Extension for Feature Ranking Functions

A Laplacian matrix is also used in supervised learning for designing regu-
larization functions to penalize predictors that vary abruptly among adjacent
vertices on a graph. In [162], the authors relate the eigenvectors of L to the
Fourier basis [170] and extend the usage of L to γ(L), where γ(·) is a spectral
matrix function [59] defined as

γ(L) =
∑n

j=1
γ(λj)ξjξ

>
j . (2.19)

In the formulation, γ(λj) is an increasing function that adjusts the eigenvalues
of the normalized Laplacian matrix L. It is pointed out in [217] that due to
the existence of noise, the difference between the small eigenvalues and the
large eigenvalues shrinks. By using a high-order spectral matrix function, we
can effectively enlarge this difference.

Given a normalized Laplacian matrix L, its eigenvalues measure the
smoothness of the corresponding eigenvectors. The smaller the eigenvalue,
the smoother the eigenvector. By applying an increasing function γ(·), we

Univariate Formulations for Spectral Feature Selection 37

ϕ1(F1) = 0.012
ϕ2(F1) = 0.031, ϕ3(F1) = 0.377

x

y

0 2 4 6

0

2

4

6

8

ϕ1(F2) = 0.009
ϕ2(F2) = 0.027 ϕ3(F2) = 0.537

x
y

0 2 4 6

0

2

4

6

8

ϕ1(F3) = 0.239
ϕ2(F3) = 1.030, ϕ3(F3) = 0.015

x

y

0 2 4 6

0

2

4

6

8

ϕ1(F4) = 0.346
ϕ2(F4) = 1.111, ϕ3(F4) = 0.000

x

y

0 2 4 6

0

2

4

6

8

ϕ1(F5) = 0.204
ϕ2(F5) = 0.918, ϕ3(F5) = 0.015

x

y

0 2 4 6

0

2

4

6

8

ϕ1(F6) = 0.266
ϕ2(F6) = 1.059, ϕ3(F6) = 0.003

x

y

0 2 4 6

0

2

4

6

8

FIGURE 2.7: (SEE COLOR INSERT) Contours and the scores of six
features. Among these features, F1 and F2 are relevant, and F3, F4, F5, and
F6 are irrelevant.

38 Spectral Feature Selection for Data Mining

reduce the value of the estimated smoothness of the eigenvectors with large
eigenvalues, which usually contain structure information generated by noise.
It is shown in [217] that using the γ(L) to design the regularization functions
can effectively improvement the robustness of an algorithm in a noisy learning
environment.

Example 10 Eigenvalues of a noise-contaminated Laplacian matrix

Figures 2.8 and 2.9 plot the distributions of the eigenvalues of L, L̃, and
L̃3. Here L is the normalized Laplacian matrix constructed in Example 7.

L̃ is the noise-contaminated Laplacian matrix, with ‖L̃−L‖‖L‖ = 0.5. From the

figure, we can observe that the noise has two different effects on the distri-
bution of the eigenvalues. First, the slope of the distribution becomes flat.
And second, the gaps between the leading eigenvalues become smaller.2

Comparing L̃3 with L̃, the leading eigenvalues of L̃3 are much smaller than
those of L̃, yet on the other hand, the tailing eigenvalues become much big-
ger. The tail eigenvectors usually contain information generated by noise.
In the evaluation process, by using L̃3, we penalize the tail eigenvectors by
reducing the value of their estimated smoothness.

The above example motivates us to extend our feature ranking functions,
ϕ1(·), ϕ2(·), and ϕ3(·) to the following forms for improving their robustness
in a noisy learning environment:

ϕ̂1(Fi) = f̂i
>
γ(L) f̂i =

n∑

j=1

α2
jγ(λj) (2.20)

ϕ̂2(Fi) =

n∑
j=2

α2
jγ(λj)

n∑
j=2

α2
j

=
f̂i
>
γ(L) f̂i

1−
(
f̂i
>
ξ1

)2 (2.21)

ϕ̂3(Fi) =
k∑

j=2

(γ(2)− γ(λj))α
2
j . (2.22)

Calculating the spectral decomposition (or eigen decomposition) of L can
be expensive for data with a large number of samples. However, since γ(·) is
usually a polynomial function γ(L) can be calculated efficiently by regarding
L as a variable and applying γ(·) on it. For example, assume γ(λ) = λ3,
then γ(L) = L3. For ϕ̂3(·), the k leading eigenpairs of L can be obtained
efficiently by using fast eigensolvers such as the implicitly restarted Arnoldi
method [142].

2Except the gap between λ1 and λ2.

Univariate Formulations for Spectral Feature Selection 39

λ (L)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

FIGURE 2.8: The distribution of the eigenvalues of L. L is the Laplacian
matrix obtained from the original data.

λ(L̃)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

λ(L̃3)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

FIGURE 2.9: The distribution of the eigenvalues of L̃ and L̃3. L̃ is the

Laplacian matrix obtained from the noise-contaminated data. ‖L̃−L‖‖L‖ = 0.5.

40 Spectral Feature Selection for Data Mining

2.5 Spectral Feature Selection via Ranking

The feature evaluation criteria we just presented can be used in a unified
framework for spectral feature selection. In this framework, the relevance of
a feature is determined by its consistency with the structure of the graph
induced from the given, sample similarity. The three feature evaluation func-
tions, ϕ̂1(·), ϕ̂2(·), and ϕ̂3(·), lay the foundation of the framework and enable
us to derive families of supervised and unsupervised feature selection in a
unified manner. The pseudo-code of the unified framework is shown in Algo-
rithm 1. It selects features in three steps: (1) building the similarity matrix S
and constructing its graphical representation (Lines 1–3); (2) evaluating fea-
tures using the eigensystem of the graph (Lines 4–6); and (3) ranking features
in descending order according to feature relevance, and feature selection is ac-
complished by choosing the desired number of features from the returned list
(Lines 7–8). We name the framework SPEC [222], stemming from the fact that
the framework is based on analyzing the spectrums of the normalized Lapla-
cian matrix L. Algorithm 1 shows the framework for evaluating features one
by one with a feature evaluation criterion which is independent of any learning
algorithm. Therefore, the framework is a filter model for feature selection.

Algorithm 1: SPEC

Input: X,y, γ(·), l, ϕ̂ ∈ {ϕ̂1, ϕ̂2, ϕ̂3}
Output: a list of l features

1 construct S, the similarity matrix from X (or y);
2 construct graph G from S;
3 build W, D and L from G;
4 for each feature vector fi do

5 f̂i ← D
1
2 fi

||D 1
2 fi||

; SFSPEC(i)← ϕ̂(Fi);

6 ranking features in descending order according to feature relevance;
7 return top l features from the ranked list;

SPEC is a general framework for feature selection. It can be used to sys-
tematically derive novel algorithms for different learning contexts. Its three
key components are:

1. Sample similarity matrix S

For example, the matrix constructed using an RBF function introduced
in Equation (2.25).

2. Spectral matrix function γ(·)
For example, γ(r) = r, γ(r) = r3.

Univariate Formulations for Spectral Feature Selection 41

3. Feature rank function ϕ̂(·).
For example, one of the functions in {ϕ̂1(·), ϕ̂2(·), ϕ̂3(·)}.

By using different combinations of these components, we can generate fam-
ilies of new algorithms for spectral feature selection. For instance, depending
on how label information is used for constructing the similarity matrix S, we
can use SPEC to generate algorithms for unsupervised, supervised, or semi-
supervised feature selection. Below we show how to apply SPEC in different
learning contexts in detail.

2.5.1 SPEC for Unsupervised Learning

When only unlabeled data are provided, the similarity matrix S can only
be constructed in an unsupervised way, and the feature selection algorithms
generated by SPEC in this case are unsupervised. Below we list some of the
popular functions for computing the similarity among instances in an unsu-
pervised learning context.

1. Linear kernel function:
sij = x>i xj + c. (2.23)

The linear kernel function is the simplest kernel function. It is given by
the inner product of two instances, plus an optional constant c.

2. Polynomial kernel function:

sij =
(
αx>i xj + c

)d
. (2.24)

The polynomial kernel function is a non-stationary kernel function. In
the equation, α is the slope parameter, c is the constant term, and d is
the polynomial degree.

3. Radial basis function (RBF):

sij = exp

(
−‖ xi − xj ‖2

2δ2

)
. (2.25)

The adjustable parameter δ plays a very important role in the perfor-
mance of the function, and should be carefully tuned according to the
problem at hand. If overestimated, the exponential will behave almost
linearly, and the higher-dimensional projection will start to lose its non-
linear power. On the other hand, if underestimated, the function will
lack regularization and the decision boundary will be highly sensitive to
noise in training data.

4. Cosine similarity function:

sij =
x>j xi

‖xi‖ · ‖xj‖
.

42 Spectral Feature Selection for Data Mining

Cosine similarity is used to measure the similarity between two vectors
by computing the cosine of the angle between them. It is often used for
high-dimensional applications such as document clustering and catego-
rization in text mining.

2.5.2 SPEC for Supervised Learning

When class label information is available, the sample similarity matrix
can be directly formed from label information. For instance, the following
two functions are usually used for constructing a similarity matrix S in a
supervised way:

sij =

{
1, yi = yj = l
0, otherwise

, (2.26)

sij =

{
1
nl
, yi = yj = l

0, otherwise
. (2.27)

In Equation (2.27), nl is the number of samples in the l class. Compar-
ing with Equation (2.26), Equation (2.27) normalizes the similarity of the
samples from the same class by the size of the class. The mechanism is help-
ful for balancing classes of different sizes. By plugging in a similarity matrix
constructed by using the label information, one can obtain a spectral feature
selection algorithm for supervised learning.

2.5.3 SPEC for Semi-Supervised Learning

In many real applications, such as text mining and image processing, data
are abundant, but labeled data are costly to obtain. It is common to have a
high-dimensional data set with a large number of unlabeled samples but only
a few labeled samples. The data sets of this kind present a serious challenge to
supervised feature selection: the so-called “small labeled-sample problem” [82].
That is, when the labeled sample size is too small to provide sufficient infor-
mation about the target concept, supervised feature selection algorithms may
fail by either unintentionally removing many relevant features or selecting ir-
relevant features, which seems to be significant only on the small labeled data.
Unsupervised feature selection algorithms can be an alternative in this case,
as they are able to use the large amount of unlabeled data. However, as these
algorithms ignore label information, important hints from labeled data are left
out and this will generally downgrade the performance of unsupervised feature
selection algorithms. Under the assumption that labeled and unlabeled data
are sampled from the same population generated by the target concept, using
both labeled and unlabeled data is expected to better estimate feature rele-
vance. Semi-supervised learning is to learn from mixed labeled and unlabeled
data [30].

Univariate Formulations for Spectral Feature Selection 43

The proposed spectral feature selection framework, SPEC, can be naturally
extended to achieve semi-supervised feature selection through a regularization
framework, in which a feature’s relevance is evaluated by its consistency with
both labeled and unlabeled data. The idea can be formulated as

λϕ̂u (Fi) + (1− λ)ϕ̂s (Fi) . (2.28)

The first term and the second terms of Equation (2.28) estimate the con-
sistency of feature Fi with the labeled and the unlabeled data, respectively.
To this end, one can construct two similarity matrices, Ss and Su, from the
labeled and the unlabeled data, respectively. ϕ̂s (·) and ϕ̂u (·) can be obtained
by applying Ss and Su in SPEC. Note, ϕ̂s (·) and ϕ̂u (·) are feature ranking
functions, and are chosen from {ϕ̂1 (·) , ϕ̂2 (·) , ϕ̂3 (·)}. They are marked with
different subscripts, since they are applied to different similarity matrices, Ss
and Su.

For a feature to be identified as relevant, it must be consistent with the
distribution of both the large amount of unlabeled data and the small amount
of labeled data. This idea is illustrated in Figure 2.10. The samples with
“◦” shape are from the negative class, the samples with “+” shape are from
positive class, and the remaining ones are unlabeled samples. The ellipses in
the figure denote clusters. We have two features, F and F ′, and they assign
the same value to samples that are from the same cluster. Note that the
two features are consistent with different cluster structures. As we can see,
since the cluster structure of the unlabeled data is ambiguous, feature F and
feature F ′ are equally smooth on the unlabeled data. However, feature F is
more consistent with the labeled data, which suggests that F is more relevant.

C1

C2

C1'

C2'

Feature vectorFeature vector

FIGURE 2.10: Use label information in semi-supervised feature selection.

44 Spectral Feature Selection for Data Mining

Note, if we replace ϕ̂s in Equation (2.28) with the normalized mutual
information [212] between a feature Fi and the class y, we will obtain the
feature evaluation criterion used in sSelect [221], which is one of the first
semi-supervised feature selection algorithms in the literature.

One issue related to the framework formulated in Equation (2.28) is that
the regularization parameter λ is data dependent. That is, for different data,
the best value for the regularization parameter may vary quite a bit. Therefore,
to find a proper value for the regularization parameter λ is crucial to ensure
the performance of the framework. In [219], a parameter tuning mechanism
is developed based on studying the cut-value3 achieved on the data that only
contain the selected features. We find the mechanism is often effective, but
time-consuming. Therefore developing an efficient and effective technique for
determining the value of the regularization parameter remains an open issue.

2.5.4 Time Complexity of SPEC

The time complexity of SPEC largely depends on the cost of (1) building
the similarity matrix and the calculation of γ(·); (2) feature evaluation with
SPEC; and (3) feature ranking.

First, we analyze the time complexity of constructing the similarity matrix
and calculating the γ(·) in various learning contexts. In the unsupervised case,
if we use the RBF function to build the similarity matrix, and γ(·) is in the
form of Lr, the time complexity of this step is ((rn+m)n2). This is because
we need O(mn2) operations to build S, D, L, and L. We then need O(rn3)
operations to calculate the γ(L). In the supervised case, if Equation (2.27) is
used to construct the similarity matrix, we need O(n2) operations to compute
S and L. It can be verified that in this case, D is an identity matrix, D = I.
L has c (the number of classes) 0 eigenvalues, and all other eigenvalues are
1. Therefore, we do not need to compute L and γ(L). So in the supervised
case, the time complexity for this step is O(n2). In the semi-supervised case,
the similarity matrix is obtained by combining Ss and Su, which are the
similarity matrices constructed in the supervised and the unsupervised ways,
respectively. Therefore, the time complexity of this step is ((rn+m)n2).

Upon obtaining γ(L), we need O(n2) operations to calculate SFSPEC(i) for

each feature: transforming fi to f̂i requiresO(n) operations; and calculating ϕ̂1,
ϕ̂2, and ϕ̂3 needs O(n2) operations.4 Therefore, we need O(mn2) operations
to calculate scores for m features.

Lastly, we need O(m logm) operations to rank the features.
In summary, the overall time complexity of SPEC is O

(
(rn+m)n2

)
for

unsupervised or semi-supervised feature selection, and O
(
mn2

)
for supervised

3Given data X, the cut-value can be calculated as follows: first, constructing the adjacent
matrix A from X; then, forming the normalized Laplacian matrix L using A; last, obtaining
the cut-value by calculating the second smallest eigenvalue of L.

4For ϕ̂3, using the Arnoldi method to calculate a few eigenpairs of a large sparse matrix
needs roughly O(n2) operations, and calculating ϕ̂3 itself needs O(k) operations.

Univariate Formulations for Spectral Feature Selection 45

feature selection. If γ(·) is not used for noise reduction, the time complexity of
SPEC is O

(
mn2

)
for all three learning contexts. Note that in the supervised

case, the similarity matrix S is usually of special structure, which can be
utilized for improving efficiency. For instance, if Equation (2.27) is used to
construct the similarity matrix, the time complexity of SPEC can be improved
to O(cmn). In this case, S has only c nonzero eigenvalues,5 and L = I− S.

Below we analyze the effect of components of SPEC, and provide a guide-
line for users to choose the proper components according to the reality of
different applications.

2.6 Robustness Analysis for SPEC

Being robust is important for feature selection algorithms [146, 211]. A
feature selection algorithm is not robust if a small perturbation of the origi-
nal data can cause a great change in its output. Although the perturbations
can be various (e.g., caused by noise), the underlying target concept remains
unchanged. Therefore a good feature selection algorithm should be robust to
the potential perturbations. Below, we provide a robustness analysis for fea-
ture ranking functions ϕ1(·), ϕ2(·), and ϕ3(·). The analysis is based on the
perturbation theory developed for symmetric linear systems [38], and can be
extended to ϕ̂1(·), ϕ̂2(·), and ϕ̂3(·) easily. We first present two theorems, which
serve as the basis for the following analysis.

Theorem 2.6.1 (Weyl) Let A and E be n-by-n symmetric matrices. Let

λ1 ≤ . . . ≤ λn be the eigenvalues of A and λ̃1 ≤ . . . ≤ λ̃n be the eigenvalues
of Ã = A + E, ‖λj − λ̃j‖ ≤ ‖E‖2.

Assume Ã is the perturbed A, and E corresponds to noise. Theorem 2.6.1
shows that the eigenvalues of the perturbed matrix Ã are bound by their
corresponding eigenvalues of A and the scale of the perturbation matrix E,
which is measured by its norm.

Theorem 2.6.2 Let A and E be n-by-n symmetric matrices. Let A =
QΛQ> = Qdiag(λj)Q

> be an eigen decomposition of A. Let A + E = Â =

Q̃Λ̃Q̃> be the perturbed eigen decomposition. Write Q = [ξ1, . . . , ξn] and

Q̂ = [ξ̃1, . . . , ξ̃n], where ξj and ξ̃j are the unperturbed and perturbed unit eigen-

vectors, respectively. Let θj denote the acute angle between ξj and ξ̃j. Provided
that Gap(j,A + E) > 0, we have the following inequality

1

2
sin 2θj ≤

‖E‖2
Gap (j,A + E)

, (2.29)

Note that when θj � 1, then 1
2 sin 2θj ≈ sin θj ≈ θj.

5All these eigenvalues equal 1.

46 Spectral Feature Selection for Data Mining

Proofs of the two theorems can be found in Section 5.2 of [38]. In The-
orem 2.6.2, Gap(j,A + E) denotes the eigengap [129, 128] of λj , where λj
is the j-th eigenvalue of A + E. Formally we can define Gap(j,A + E) as
Gap(j,A + E)=mini6=j |λi − λj |. According to Theorems 2.6.1 and 2.6.2, the
robustness of the eigenvalues is determined by the scale of the perturbation
matrix E, which is measured by its norm. And the robustness of the eigen-
vectors is determined by the scale of the perturbation matrix E as well as the
eigengap of the corresponding eigenvalue.

Example 11 The effect of noise on the eigensystem

Figure 2.12 shows how eigenvalues and eigenvectors of L are affected
when different amounts of noise are added to the data. Here L is the nor-
malized Laplacian matrix constructed in Example 7. Let L̃ be the noise-

contaminated Laplacian matrix, and α = ‖L̃−L‖
‖L‖ , α reflects how much noise

has been added to the data. In the figure, the x-axis corresponds to α. To
generate the plots, we gradually increase α from 0 to 0.5. The y-axis of
Figure 2.12(a) corresponds to the scale of the eigenvalues. The y-axis of
Figure 2.12(b) corresponds to the scale of sin(θε), where θε is the angle

between ξ, the original eigenvector, and ξ̃, the noise-perturbed eigenvector.
Figure 2.11 plots the distribution of the samples when the original data

is perturbed using α = 0.3. The chart shows that with noise perturbation,
the cluster structures of the data become blurred. Figure 2.12(a) plots the
values of the λ2, λ3, λ10, and λ30 under perturbations of different scales.
The plot shows that when more noise is added, the leading eigenvalues of
L̃ become bigger and the gap between leading and tail eigenvalues becomes
smaller. This corresponds to the fact that when more noise is added, the
cluster structures of the perturbed data become blurred. Figure 2.12-(b)
plots the values of sin(θε) when the scale of the perturbation varies. The
plot shows that the leading eigenvectors are more robust to noise, since
they have a bigger eigengap, which is consistent with the results presented
in Theorem 2.6.2.

Based on the two theorems, we provide an error upper-bound analysis for
feature ranking functions ϕ1(·), ϕ2(·) and ϕ3(·), when the original data are
perturbed by noise. In general, noise can cause two types of perturbation that
will affect the outputs of ranking functions. They are (1) the perturbation of
the Laplacian matrix L, which is denoted as Lε; and (2) the perturbation of
the feature vector f , which is denoted as fε. Without loss of generality, for the
original data and its perturbation, by assuming εL ≥ 0, we have the following
specifications:

L̃ = L+ Lε, ‖L̃‖2 = ‖L‖2 = 1, ‖Lε‖2 ≤ εL. (2.30)

Univariate Formulations for Spectral Feature Selection 47

α = 0.3

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

FIGURE 2.11: The effect of noise on sample distribution.

(a) λ2, λ3, λ10, λ30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

λ
2

λ
3

λ
10

λ
30

(b) ξ2, ξ3, ξ10, ξ30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ
2

ξ
3

ξ
10

ξ
30

FIGURE 2.12: The effect of noise on eigenvalues and eigenvectors. The x-
axis is the α value, which reflects how much noise has been added to the
data.

48 Spectral Feature Selection for Data Mining

f̃ = f + fε, ‖f̃‖2 = ‖f‖2 = 1, ‖fε‖2 ≤ εf . (2.31)

In the above equations, L is the original Laplacian matrix; L̃ is the per-
turbed Laplacian matrix; and Lε is the corresponding perturbation matrix. A
similar relationship holds for f , fε, and f̃ , where f is a feature vector. With
the following theorem, we show that we can bind the perturbation errors of
the three feature ranking functions ϕ1(·), ϕ2(·), and ϕ3(·) by εL, εf , and the
eigengap of the eigenvalues of L̃.

Theorem 2.6.3 Assume (λj , ξj) is the eigensystem of L, and αj = cos θj,

where θj is the angle between f and ξj. Also let (λ̃j , ξ̃j) be the eigensystem

of L̃, and α̃j = cos θ̃j where θ̃j is the angle between f̃ and ξ̃j. We have




q∑

j=1

α̃2
j λ̃j −

q∑

j=1

α2
jλj


 ≤


q‖Lε‖2 +

q∑

j=1

λj sin

(
1

2
arcsin 2εj, θ

)
+ ε̂f

q∑

j=1

λj


,

(2.32)

where εj, θ =
‖Lε‖2

Gap(j,L+Lε) and ε̂f = 2εf + ε2f . Note that when arcsin 2εj, θ � 1,

q‖Lε‖2 +

q∑

j=1

λj sin

(
1

2
arcsin 2εj, θ

)
+ ε̂f

q∑

j=1

λj

≈


q‖Lε‖2 +

q∑

j=1

λjεj, θ + ε̂f

q∑

j=1

λj


. (2.33)

Proof : We first provide an upper bound for α̃2
j λ̃j using εL, εf and the eigengap

of L̃. For convenience, in the first part of the proof, we drop off the subscript
j from α̃2

j λ̃j , if it does not cause confusion. Let ξ̃ = ξ + ξε, λ̃ = λ + λε. We
have:

α̃2λ̃ = λ̃ cos2
(
θ̃
)

= (λ+ λε)
(

(f + fε)
>

(ξ + ξε)
)2

= λ
(

(f + fε)
>

(ξ + ξε)
)2

+ λε

(
(f + fε)

>
(ξ + ξε)

)2

≤ λ
(

(f + fε)
>

(ξ + ξε)
)2

+ λε (‖f + fε‖ ‖ξ + ξε‖)2

= λ
((

f> (ξ + ξε)
)2

+
(
f>ε (ξ + ξε)

)2
+ 2f> (ξ + ξε) f>ε (ξ + ξε)

)
+ λε

≤ λ
((

f> (ξ + ξε)
)2

+ (‖fε‖2 ‖ξ + ξε‖2)
2

+ 2 ‖f‖2 ‖ξ + ξε‖22 ‖fε‖2
)

+ λε.

Since ‖ξ̃‖2 = ‖ξ‖2 = 1 and ‖f̃‖2 = ‖f‖2 = 1, we have

α̃2λ̃ ≤ λ
((

f> (ξ + ξε)
)2

+ ε2f + 2εf

)
+ λε.

Univariate Formulations for Spectral Feature Selection 49

In the above derivations, we applied the Cauchy-Schwarz inequality:
x>y ≤ ‖x‖‖y‖. By noticing that f> (ξ + ξε) ≤ cos (θ − θε), where θε is the

angle between ξ and ξ̃, we have

(
f> (ξ + ξε)

)2 ≤ cos2 (θ − θε)− cos2 (θ) + cos2 (θ)

= sin (2θ − θε) sin (θε) + cos2 (θ)

≤ | sin (θε) |+ cos2 (θ) .

Based on the two sets of results we just obtained, we have the following in-
equality

α̃2λ̃ ≤ λε + λ
(
ε2f + 2εf

)
+ λ | sin (θε) |+ λ cos2 (θ) ,

and
α̃2λ̃− α2λ ≤ λε + λ

(
ε2f + 2εf

)
+ λ | sin (θε) | .

According to Theorem 2.6.2, we know λε ≤ ‖Lε‖ and | sin (θε) | ≤
sin
(
1
2 arcsin 2εj, θ

)
, where εj, θ =

‖Lε‖2
Gap(j,L+Lε) . We obtain the following result:




q∑

j=1

α̃2
j λ̃j −

q∑

j=1

α2
jλj


 ≤


q‖Lε‖2 +

q∑

j=1

λj sin

(
1

2
arcsin 2εj, θ

)
+ ε̂f

q∑

j=1

λj


.

Also, by noticing that when θ � 1, 1
2 sin 2θ ≈ sin θ ≈ θ, we can obtain

Equation (2.33).

�

In ϕ̂i(·), i = 1, 2, 3, and we apply γ(·) to rescale the eigenvalues of L before
calculating the feature scores. Based on Theorem 2.6.3, we can also provide
a robustness analysis for ϕ̂i(·). In the analysis we assume γ(·) is a rational
function and has the form γ(λ) = λr.

Theorem 2.6.4 Let (λj , ξj) be the eigensystem of L, and αj = cos θj, where

θj is the angle between f and ξj. Let (λ̃j , ξ̃j) be the eigensystem of L̃, and

α̃j = cos θ̃j, where θ̃j is the angle between f̃ and ξ̃j. Also let λ̃j = λj + λε,j,
and assume ρλj ≥ λε,j, for all 1 ≤ i ≤ n. With γ(λ) = λr, the following
inequality holds:




q∑

j=1

α̃2
j λ̃
r
j −

q∑

j=1

α2
jλ
r
j




≤
q∑

j=1

(
‖Lε‖2

(ρ+ 1)
r − 1

ρ
λr−1j +sin

(
1

2
arcsin 2εj, θ

)
λrj + ε̂fλ

r
j

)
, (2.34)

where εj, θ =
‖Lε‖2

Gap (j,L+ Lε)
and ε̂f = 2εf + ε2f . Note, when arcsin εj, θ � 1,

we have

50 Spectral Feature Selection for Data Mining

q∑

j=1

(
‖Lε‖2

(ρ+ 1)
r − 1

ρ
λr−1j +sin

(
1

2
arcsin 2εj, θ

)
λrj + ε̂fλ

r
j

)

≤
q∑

j=1

(
‖Lε‖2

(ρ+ 1)
r − 1

ρ
λr−1j + εj, θλ

r
j + ε̂fλ

r
j

)
. (2.35)

Proof : This is true because of the following inequality

α̃2λ̃r = (λ+ λε)
r

cos2
(
θ̃
)
− λr cos2

(
θ̃
)

+ λr cos2
(
θ̃
)

= ((λ+ λε)
r − λr) cos2

(
θ̃
)

+ λr cos2
(
θ̃
)

= λε
(
λr−1 + λελ

r−2 + · · ·+ λr−2ε λ+ λr−1ε

)
cos2

(
θ̃
)

+ λr cos2
(
θ̃
)

≤ λελ
r−1 (1 + (1 + ρ) + · · ·+ (1 + ρ)r−1

)
cos2

(
θ̃
)

+ λr cos2
(
θ̃
)

= λελ
r−1 (1 + ρ)r − 1

ρ
cos2

(
θ̃
)

+ λr cos2
(
θ̃
)

≤ λελ
r−1 (1 + ρ)r − 1

ρ
+ λr cos2

(
θ̃
)
.

�

When the original data are perturbed by noise, feature scores will change
accordingly. The two theorems show that before and after the perturbation,
the difference of the feature scores is bound by εL, εf , and the eigengap of
L̃. Among these factors, εL corresponds to the matrix perturbation, ε̂f corre-
sponds to the feature vector perturbation, and the eigengap of L̃ corresponds
to matrix stability [38]. According to spectral clustering theory, if a data set
has an easily separable cluster structure, the top eigengaps of its Laplacian
matrix should be large. Since the cluster structure of the data is clear, a small
amount of noise will not be able to alter the structure easily. Therefore, a
Laplacian matrix with larger top eigengaps is considered to be more robust
to noise.

Based on the above theorems, we have the following points regarding the
robustness of the feature ranking functions ϕ̃1(·), ϕ̃2(·), and ϕ̃3(·)

a) Discarding the tail eigenpairs in feature evaluation helps increase ro-
bustness. For a graph with well-separable cluster structures, its tail eigenvalues
are usually packed in a small range, thus having small eigengaps [128]. Equa-
tion (2.34) suggests including eigenpairs with small eigengaps can increase its
sensitivity to noise. Also, it is known that for a graph, its tail eigenvectors usu-
ally correspond to the subtle structures formed due to noise [188]. Therefore,
removing them helps improve robustness.

Univariate Formulations for Spectral Feature Selection 51

b) Among the three feature ranking functions, ϕ3(·) is more robust than
ϕ1(·) and ϕ2(·), since it discards the least robust tail eigenpairs in evaluation.
ϕ1(·) and ϕ2(·) are equally robust, since λ1 and ξ1 are constants. Although
ϕ3(·) is more robust in theory, to perform well, it needs a proper threshold
to determine which tail eigenpairs should be discarded. Discarding either too
many or too few eigenpairs may cause loss of information or inclusion of noise.
In [128] the authors proposed using a spectrum gap (the eigengap that divides
eigenvalues into two well-separable groups) or the known number of clusters
to determine the threshold.

c) Theorem 2.6.4 suggests that if only leading eigenpairs are used for
computing feature scores, then a high-order rational function can increase
robustness, since the leading eigenvalues are usually smaller than one. But,
if all eigenpairs are used, the robustness may decrease, as we usually have∑
λrj ≥

∑
λj . However, in our experiments, we found that even when all

eigenpairs are involved, a high-order rational function still helps improve per-
formance. Two points may support our observation. First,

∑
λrj actually does

not increase much compared with
∑
λj . For example, in our experiments, we

found
∑
λ3j usually increases the value by no more than 25 percent. Second,

with a high-order rational function, ϕ̂i(·) penalizes the large eigenvalues in a
harsher way, effectively increasing the gap between the scores of relevant and
irrelevant features, which makes the algorithm more robust to perturbations.
Therefore, in reality it is reasonable to use high-order rational functions to
improve performance.

52 Spectral Feature Selection for Data Mining

Example 12 The effect of noise on the feature ranking functions

Figure 2.13 shows how feature ranking functions ϕ̂1 (·), ϕ̂2 (·), and ϕ̂3 (·)
are affected by noise. In the figure, L is the normalized Laplacian matrix
constructed in Example 7. Let L̃ be the noise-contaminated Laplacian ma-

trix, and α = ‖L̃−L‖
‖L‖ , where α reflects how much noise has been added to

the data. In the figure, the x-axis corresponds to α. To generate the plots,
we gradually increase α from 0 to 1. The y-axis corresponds to the feature
scores of each feature. For ϕ̂1(·) and ϕ̂2(·), a smaller feature score indicates
more relevance. While for ϕ̂3(·), a bigger feature score indicates more rel-
evance. Six features are tested: F1, F2, F3, F4, F5, and F6. Among the six
features, F1 and F2 correspond to the first and the second dimension of the
2D Gaussian mixture generated in Example 6, and are relevant features.
F3, . . . , F6 are randomly generated with their values following the standard
uniform distribution. Hence, these features are irrelevant.

We obtain three observations. First, among the three feature ranking
functions, ϕ3(·) is the most robust to perturbations. When α = 0.8, both
ϕ1(·) and ϕ2(·) mix up relevant features with irrelevant ones, while ϕ3(·)
can still separate them.6 Second, comparing to ϕ1(·), ϕ2(·) is more robust
due to the fact that the scores returned by ϕ2(·) offer bigger gaps between
the relevant and the irrelevant features. We also notice that the feature
scores returned by ϕ1(·) and ϕ2(·) actually change in a similar trend as
the scale of the perturbation varies. It can be verified that the different
behavior of ϕ1(·) and ϕ2(·) is caused by the mechanism of removing the

trivial eigenpair, (λ1, ξ1) = (0,D
1
2 1/‖D 1

2 1‖), from consideration. Recall

that ϕ2(·)=f̂i
>
L f̂i

(
1−

(
f̂i
>
ξ1
)2

)−1

. It turns out that the relevant features

are usually far from ξ1
6, and therefore have denominators near 1. In con-

trast, the irrelevant ones are often relatively closer to ξ1 and have smaller
denominators. This difference effectively increases the score gaps between
the relevant and irrelevant features. Third, a high-order rational function
also helps increase the score gap. From the chart, we can observe that al-
though ϕ1(λ) mixes up the relevant with irrelevant features when α ≈ 0.53,
with the help of γ(·) = λ3, ϕ̂1(λ) does not mix up the relevant with the
irrelevant until α ≈ 0.67. A similar effect can also be observed on the other
two feature ranking functions, although these trends are less evident.

6When α = 0.8, the scores generated from ϕ3(·) for the six features are 0.0206, 0.0501,
0.0096, 0.0154, 0.0023, and 0.0049, respectively.

Univariate Formulations for Spectral Feature Selection 53

ϕ1(L)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F1
F2
F3
F4
F5
F6

ϕ2(L)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

F1
F2
F3
F4
F5
F6

ϕ3(L)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
F2
F3
F4
F5
F6

ϕ1(L3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
F2
F3
F4
F5
F6

ϕ2(L3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F1
F2
F3
F4
F5
F6

ϕ3(L3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
F2
F3
F4
F5
F6

FIGURE 2.13: (SEE COLOR INSERT) Effects of noise on the feature
ranking functions.

54 Spectral Feature Selection for Data Mining

2.7 Discussions

SPEC is a unified spectral feature selection framework for supervised, un-
supervised, and semi-supervised feature selection. It is based on three univari-
ate formulations for feature evaluation and is of a filter model. We show that
families of effective algorithms can be derived from the framework. We con-
duct robustness analysis based on perturbation theory. The analysis enables
us to obtain better understanding of the behavior of the SPEC in a noisy
learning environment.

The proposed framework consists of three components: the similarity ma-
trix S, the ranking function ϕ̂(·), and the spectral function γ(·). A proper
configuration of the framework ensures good performance. Based on our exper-
imental results and observations, we offer the following guidelines for configur-
ing SPEC: (1) The similarity matrix depicts the relationship among samples.
A matrix which reflects the true relationships among samples is important for
SPEC to select good features. (2) In noisy learning environments, either ϕ̂3(·)
or a high-order rational function γ(·) is helpful for removing noise. (3) For
data with a clear spectrum gap, using ϕ̂3(·) may be very effective. Otherwise
ϕ̂2(·) could be more promising. Compared with ϕ̂3(·), ϕ̂2(·) is less aggressive
and usually provides robust performance. (4) SPEC generates feature weight-
ing algorithms. However, most feature weighting algorithms do not consider
feature redundancy, which may hurt learning performance [212]. To address
the problem, we will propose a multivariate formulation for spectral feature
selection in Chapter 3.

Chapter 3

Multivariate Formulations for Spectral
Feature Selection

Redundant features are those that are relevant to the target concept, but
their removal has no negative effect. Usually, a feature becomes redundant
when it can be expressed by other features. Redundant features unnecessarily
increase data dimensionality [89], which worsens the learning performance.
It has been empirically shown that removing redundant features can result
in significant performance improvement [69, 40, 56, 210, 6, 43]. In the last
section, we introduced the SPEC framework for spectral feature selection. We
notice that the feature evaluation criteria in SPEC are univariate: features
are evaluated individually, therefore the framework is not capable of handling
redundant features.

Example 13 An example of a redundant feature

Assume we have three features F1, F2, and F3. Among the three features,
F3 can be expressed as a linear combination of F1 and F2:

F3 = aF1 + bF2, a, b ∈ R.

Given any function containing the three features, we can write it as a
function that contains only F1 and F2:

φ (F1, F2, F3) = φ (F1, F2, aF1 + bF2) = φ′ (F1, F2) .

Therefore, in this case, F3 is redundant due to the existence of F1 and F2.

Spectral feature selection can handle redundant features by evaluating the
utility of a set of features jointly. In this chapter, we study two multivariate
formulations for spectral feature selection, one based on multi-output regres-
sion [72] with an L2,1-norm regularization, and the other based on matrix
comparison. We analyze their capabilities for detecting redundant features,
and study their efficiency for problem solving. Before we present the two for-
mulations, we first study an interesting characteristic of the SPEC framework,
which we introduced in the last chapter. We show that SPEC selects features

55

56 Spectral Feature Selection for Data Mining

by evaluating their capability of preserving the sample similarity specified by
the given similarity matrix S. Based on this insight, we present two multivari-
ate formulations for spectral feature selection.

3.1 The Similarity Preserving Nature of SPEC

As shown in Chapter 2, given a similarity matrix S, SPEC selects features
aligning well with the top eigenvectors of L. Here L is the normalized Lapla-
cian matrix derived from S. This fact brings us to the conjecture that if we
construct a new sample similarity matrix K, using the features selected by
SPEC, K should be similar to S, in the sense that if the two samples are sim-
ilar according to S, they should also be similar according to K. To precisely
study the similarity preserving nature of SPEC, we reformulate the relevance
evaluation criteria used in the SPEC framework in a more general form:

max
Fsub

(∑

F∈Fsub

ϕ (F)

)
= max

Fsub

(∑

F∈Fsub

f̂> Ŝ f̂

)
; f̂ ∈ Rn, Ŝ ∈ Rn×n. (3.1)

Basically, we want to find a set of selected features, Fsub, such that the
objective specified in Equation (3.1) can be maximized. In the above equation,

f̂ and Ŝ are the normalized feature vector and the normalized sample similarity
matrix derived from f and S, respectively. It is shown in [155] that solving the
following problem

maxK�0 Trace (KS) st. Trace (K) ≤ 1, (3.2)

will result in a kernel matrix K, which preserves the sample similarity specified
in S. Here, the constraint K � 0 requires the matrix K to be positive semi-
definite. We can write Equation (3.1) in the form of Equation (3.2),

max
Fsub

∑
F∈Fsub

f̂>Ŝ f̂ = max
Fsub

∑
F∈Fsub

Trace
(
f̂ f̂>Ŝ

)

= max
Fsub

Trace
((∑

F∈Fsub
f̂ f̂>

)
Ŝ
)
.

We also have
∑
F∈Fsub f̂ f̂> = X>FsubXFsub . Here XFsub is the data con-

taining only the features in Fsub. Thus, we have the following equation:

max
Fsub

∑
F∈Fsub

f̂>Ŝ f̂ = max
Fsub

Trace
((

X>FsubXFsub

)
Ŝ
)
. (3.3)

This equation shows that max
Fsub

∑
F∈Fsub f̂>Ŝ f̂ will select a set of features

Multivariate Formulations 57

Fsub, such that the linear kernel constructed from XFsub can preserve the

pairwise sample similarity specified in Ŝ. In other words, we can say that the
features in Fsub have a strong capability of preserving the pairwise sample
similarity specified in Ŝ. We can also show this in a more intuitive way: since
f̂> Ŝ f̂ =

∑
i

∑
i ŝij f̂if̂j , assuming that features are normalized (‖ f̂ ‖ = 1), to

obtain a large value from Equation (3.1), a feature must assign similar values

to the samples that are similar according to Ŝ. This ensures that the feature
has the strong capability of preserving the sample similarity specified in Ŝ.

Example 14 Measuring consistency between matrices

Trace (KS) can be used to measure the consistency between matrices. To
show this, we generated a two-dimensional data set with three classes,
whose distribution is shown in Figure 3.1(a). We then generate noise-
contaminated data sets by adding different levels of noise to the data set.
Figure 3.1(b), (c), and (d) correspond to the data sets containing 30%, 60%,
and 90% of noise, respectively. We construct linear kernels on both the origi-
nal data set and the noise-contaminated data sets, and compute Trace (KS)
to measure the consistency between matrices. Here S is the linear kernel
constructed on the original data set, and K is the linear kernel constructed
on either the original data set or a noise-contaminated data set. From the
figures the similarity relationships among samples are perturbed propor-
tionally to the level of the noise added to the data. And correspondingly,
the value of Trace (KS) decreases. When K = S, Trace (KS) = 1.282, while
when K is constructed on the data set containing 90% of noise, Trace (KS)
decreases to 0.7994.

In the following, we show how SPEC can be reformulated in the form of
Equation (3.1). We first study a simple case, in which the spectral matrix
function, γ (·), is not applied. Using the following theorem, we show that with

different definitions of f̂ and Ŝ, the three feature ranking functions ϕ1 (·),
ϕ2 (·), and ϕ3 (·) can be written in a common form: max

Fsub

∑
F∈Fsub f̂> Ŝ f̂ .

Here, f̂ and Ŝ are the normalized versions of f and S.

Theorem 3.1.1 Let S be a similarity matrix, and D and L be its degree and
normalized Laplacian matrices, respectively. SPEC selects k features, which
maximize the following objective function:

arg maxFi1 ,...,Fik

k∑

j=1

f̂>ij Ŝ f̂ij . (3.4)

58 Spectral Feature Selection for Data Mining

Trace = 1.1614

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

7

Trace = 1.1056

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

Trace = 0.9915

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Trace = 0.8707

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 3.1: Measure consistency between matrices via Trace (KS).

Multivariate Formulations 59

When ϕ1 (·) is applied, f̂ and Ŝ are defined as

f̂ =
D

1
2 f

‖D 1
2 f‖

, Ŝ = D−
1
2 S D−

1
2 . (3.5)

When ϕ2 (·) is applied, let ξ1 be the first eigenvector of L, which is equal

to D−
1
2 1

‖D−
1
2 1‖−1

2

. f̂ and Ŝ are defined as

f̃ =
D

1
2 f

‖D 1
2 f‖

, f̂ =
f̃ − f̃>ξ1ξ1√
1−

(
f̃>ξ1

)2 , Ŝ = D−
1
2 SD−

1
2 . (3.6)

When ϕ3 (·) is applied, let L = UΣU>, where U = (ξ1, . . . , ξn) and Σ =

diag (λ1, . . . , λn) are the eigen decomposition of L. f̂ and Ŝ are defined as:

f̂ =
D

1
2 f

‖D 1
2 f‖

, Ŝ = Uk (2I− Σk) U>k , (3.7)

where Uk = (ξ2, . . . , ξk) , Σk = diag (λ2, . . . , λk) .

Proof : We start from ϕ1 (·). It is easy to verify that ϕ1 (F) = f̂>
(
I− Ŝ

)
f̂ . In

SPEC, features are evaluated independently; therefore, using ϕ1 (·) to select k
features can be achieved by picking the top k features that have the smallest
ϕ1 (·) values. This process can be formulated as the following optimization
problem:

arg minFi1 ,...,Fik

k∑

j=1

f̂>ij

(
I− Ŝ

)
f̂ij .

Note that in the above equation, features are evaluated independently. Addi-
tionally,

arg minFi1 ,...,Fik

k∑

j=1

f̂>ij

(
I− Ŝ

)
f̂ij = arg maxFi1 ,...,Fik

k∑

j=1

f̂>ij Ŝ f̂ij .

Here we assume the features have been normalized, therefore all have unit
norm.

In the case of ϕ2 (·), it is easy to verify that ‖f̂‖ = 1. Since the first eigen-
value of the normalized Laplacian matrix L is always zero, we have ξ>1 L̂ x = 0
for any x ∈ Rn×1. Based on these two facts, we can verify that Equation (3.6)
holds.

Similarly, in the case of ϕ3 (·), the following equation holds:

f>Uk (2I− Σk) U>k f =
k∑

j=2

(2− λj)α2
j = ϕ3(F).

This proves the equivalence when ϕ3 (·) is used. �

60 Spectral Feature Selection for Data Mining

Theorem 3.1.1 shows that when ϕ1 (·) or ϕ2 (·) is used, SPEC tries to

preserve the sample similarity specified by D−
1
2 SD−

1
2 , which is the normalized

sample similarity matrix. When ϕ3 (·) is used, SPEC tries to preserve the
sample similarity specified by Uk (2I− Σk) U>k , which is derived from L by
adjusting the leading eigenvalues and discarding the tail eigenpairs. In ϕ1 (·)
and ϕ3 (·), the features are first reweighted by D

1
2 f , which forms the density

reweighted features [74]. And they are then normalized to have the unit norm.
This step emphasizes the elements in a feature vector, which correspond to the
samples from a neighborhood with dense sample distribution. In ϕ2 (·), there
is an additional orthogonalization step: features are made to be orthogonal
to ξ1, and then normalized to have unit norm. This step removes ξ1 from
consideration. As we mentioned, by aligning closely with ξ1, a feature can
achieve a large ϕ1 (·) value. However, ξ1 only captures the density information
of the data. The orthogonalization step ensures that we will not assign high
relevance scores to features that align closely with ξ1.

Similarly, when the spectral matrix function γ (·) is used in SPEC, using
the following theorem, we show that the three feature ranking functions ϕ̂1 (·),
ϕ̂2 (·), and ϕ̂3 (·) can also be formulated into the form: max

Fsub

∑
F∈Fsub f̂> Ŝ f̂ .

Theorem 3.1.2 Let S be a similarity matrix, and D and L be its degree and
normalized Laplacian matrices, respectively. Also let γ (·) be a spectral matrix
function. SPEC selects k features that maximize the objective function:

arg maxFi1 ,...,Fik

k∑

j=1

f̂>ij Ŝ f̂ij . (3.8)

Let L = UΣU>, where U = (ξ1, . . . , ξn) and Σ = diag (λ1, . . . , λn).

When ϕ̂1 (·) is applied, f̂ and Ŝ are defined by

f̂ =
D

1
2 f

‖D 1
2 f‖

, Ŝ = U (I− γ (Σ)) U>. (3.9)

Let ξ1 be the first eigenvector of L. When ϕ̂2 (·) is applied, f̂ and Ŝ are
defined as

f̃ =
D

1
2 f

‖D 1
2 f‖

, f̂ =
f̃ − f̃>ξ1ξ1√
1−

(
f̃>ξ1

)2 , Ŝ = U (I− γ (Σ)) U>. (3.10)

When ϕ̂3 (·) is applied, f̂ and Ŝ are defined as

f̂ =
D

1
2 f

‖D 1
2 f‖

, Ŝ = Uk (γ (2I)− γ (Σk)) U>k , (3.11)

Uk = (ξ2, . . . , ξk) , Σk = diag (λ2, . . . , λk) .

�

Multivariate Formulations 61

Theorem 3.1.2 can be proved in a way similar to Theorem 3.1.1. There-
fore we omit its proof. Theorems 3.1.1 and 3.1.2 together demonstrate the
similarity preserving nature of SPEC.

In SPEC, features are evaluated independently. A direct consequence of
this is that redundant features cannot be properly handled by the SPEC
framework. Redundant features unnecessarily increase dimensionality and can
worsen learning performance. They need to be removed in the feature selection
process. To achieve this, we propose in the following sections two multivari-
ate formulations for spectral feature selection, which are able to evaluate the
utility of a set of features jointly. We show that the multivariate formulations
for spectral feature selection can identify redundant features effectively.

3.2 A Sparse Multi-Output Regression Formulation

Let X ∈ Rn×m be a data matrix, where n and m are the numbers of
samples and features, respectively. Given a sample similarity matrix S and a
feature F , different feature evaluation criteria in SPEC can be formulated in
a common form as

ϕ(F, S) = f̂>Ŝ f̂ =

n∑

i=1

λ̂i

(
f̂>ξ̂i

)2
=

n∑

i=1

(
λ̂

1
2
i f̂>ξ̂i

)2
, (3.12)

where f̂ is the normalized feature vector, Ŝ is the normalized similarity ma-
trix, and λ̂i and ξ̂i are the i-th eigenvalue and eigenvector of Ŝ, respectively.
Equation (3.12) shows that these criteria evaluate features individually, and
are therefore unable to identify redundant features.

Let yi = λ̂
1
2
i ξ̂i, Equation (3.12) can be written as

ϕ(F, S) =
n∑

i=1

(
λ̂

1
2
i f̂>ξ̂i

)2
=

n∑

i=1

(
f̂>yi

)2
. (3.13)

To identify redundant features, the features must be evaluated jointly. Instead
of looking for features that are close to yi, as formulated in the above equation,
we should find a set of l features, such that their linear span [77] is close to
yi. This idea can be formulated as

arg min
A,wi,A

‖yi −XAwi,A‖22,

where A = {i1, . . . , il} ⊆ {1, . . . ,m}, XA = (fi1 , . . . , fil), and wi ∈ Rl×1. Note
that in the above equation, we apply the L2 norm on the difference of two

vectors to measure their closeness. When all yi = λ̂
1
2
i ξ̂i are considered, their

62 Spectral Feature Selection for Data Mining

joint optimization can be formulated as

arg min
A,wi,A

n∑

i=1

‖yi −XAwi,A‖22 = arg min
A,wA

‖Y −XAWA‖2F . (3.14)

In the above equation, Y=(y1, . . . ,yn), WA=(w1,A, . . . ,wn,A). Assuming

that S = UΣU> is the SVD of Ŝ, we have Y=UΣ1/2. And ‖ · ‖F is the
Frobenius norm [59], which is defined as

‖R‖F =
√

Trace (R>R). (3.15)

We noticed that whenA contains only one feature, the formulation reduces
to searching for features that maximize the Equation (3.12).

Given Y and XA, the optimal WA in Equation (3.14) can be obtained in
a closed form. However, feature selection needs to find the optimal A, which
is a combinatorial problem being NP-hard. To make the problem solvable, we
can approximate the problem as [9, 44, 95, 126, 132, 214, 218, 116, 115]

arg min
W,λ
‖Y −XW‖2F + λ ‖W‖2,1

s.t. A = {i :
∥∥wi

∥∥
2
> 0}, Card (A) = l, (3.16)

where Card (A) returns the cardinality of the set A, wi denotes the i-th row
of W, and ‖W‖2,1 is the L2,1-norm, defined as

‖W‖2,1 =
m∑

i=1

∥∥wi
∥∥
2

(3.17)

When applied in regression, the L2,1-norm regularization is equivalent to
applying a Laplace prior [153] on wi, which tends to force many rows in W
to become zero row vectors and results in a sparse solution. The effect of the
L2,1-norm constraint can be demonstrated by the following example.

Example 15 The effect of the L2,1-norm regularization

In this example, we randomly construct a data set containing 200 sam-

ples and 200 features, X ∈ R200×200; and
(
λ̂

1
2
1 , ξ̂1

)
, . . . ,

(
λ̂

1
2
100, ξ̂100

)
are

used to form Y, Y ∈ R200×100. We try different λ values for the regular-
ization and plot the obtained W in Figure 3.2. In the figure, a light spot
corresponds to a nonzero element in W. It shows, when λ = 0 (no regular-
ization is applied), all features are selected. Since a larger ‖W‖2,1 applies a
more severe penalty on a dense solution, when we increase λ from 0 to 500,
more and more rows of W are set to 0. Because each row of W corresponds
to a feature in X, by setting many rows of W to zero, we remove many
features from consideration, which helps us achieve feature selection.

Multivariate Formulations 63

There are three advantages of the formulation presented in Equa-
tion (3.16):

(1) It can find a set of features jointly preserving the sample similarity
specified by S.

(2) By jointly evaluating a set of features, it tends to select nonredundant
features.

(3) The problem specified in the formulation is tractable.

First, by the following theorem, we show that the formulation can find a
set of features jointly preserving the sample similarity specified by S.

Theorem 3.2.1 Let S = UΣU>, Y = UΣ1/2 and Ω = Y −XW. We have
∥∥XWW>X> − S

∥∥
F
≤ 2(‖Y‖F + ‖Ω‖F) ‖Ω‖F .

Proof : Since S = YY> and ‖A + B‖F ≤ ‖A‖F + ‖B‖F , we have

‖XWW>X> −YY>‖F = ‖ΩY> + YΩ> + ΩΩ>‖F
≤ ‖ΩY>‖F + ‖YΩ>‖F + ‖ΩΩ>‖F
≤ 2‖Y‖F ‖Ω‖F + ‖Ω‖2F
= (2‖Y‖F + ‖Ω‖F)‖Ω‖F .

In the derivation, we use the inequality ‖AB‖F ≤ ‖A‖F ‖B‖F .

�

In the above theorem, XW is a new representation of samples obtained
by linearly combining the selected features.1 And XWW>X> computes the
pairwise similarity among samples measured by their inner product under
this new representation. The theorem shows that by minimizing ‖Ω‖F , we
also minimize ‖XWW>X> − S‖F , which ensures the selected features can
jointly preserve the sample similarity specified by S.

Second, the formulation tends to select nonredundant features. Assume
two features fp and fq satisfy the following conditions: (1) they are equally
correlated to Y, i.e., f>p Y = f>q Y; (2) fq is highly correlated to fd, i.e., f>q fd →
1, and fq is less correlated to fd, i.e., f>p fd > f>q fd (without loss of generality,
we assume both fp and fq are positively correlated to fd); (3) they are equally
correlated to other features, i.e., f>p fi = f>q fi, ∀i ∈ {1, . . . ,m}, i 6= d. Based
on these assumptions, we attain the following theorem.

Theorem 3.2.2 Given the above assumptions, assuming fd is selected by an
optimal solution of Equation (3.16), then fq has higher priority than fp to be
selected in the optimal solution.

1Note that although W ∈ Rm×k, many of its rows are 0>. Therefore, the representation
is generated by using only a small subset of selected features.

64 Spectral Feature Selection for Data Mining

λ = 0, l = 200 λ = 125, l = 38

λ = 250, l = 15 λ = 500, l = 4

FIGURE 3.2: Different λ values for L2,1-norm regularization and their corre-
sponding sparse solutions. l is the number of rows that have nonzero elements.
As λ becomes larger, more rows of S are set to 0. Note: each row of W cor-
responds to a feature.

Multivariate Formulations 65

Proof : Let Y = (y1, · · · ,yk) be the n × k target matrix, and W be the
m × k weight matrix. The i-th row and j-th column of W are denoted
by Wi: and W:j , respectively. Recall that ‖ · ‖F is the Frobenius norm
and ‖W‖2,1 =

∑m
i=1 ‖Wi:‖2 is the L2,1 norm. Let W be the current so-

lution in which two strongly correlated features fd and fp are selected, i.e.,
‖Wd:‖F > 0, ‖Wp:‖F > 0. Using the technique developed in [144], we can
show that in the optimal solution of Equation (3.16) 〈Wd:,Wp:〉 > 0 when
f>d fp → 1. Assuming the three conditions specified above hold, we show that as
long as fq has a sufficiently small correlation with fd, selecting fq rather than fp
always decreases the objective function. To this end, we define another weight
matrix W̃ as: W̃i: = Wi: for ∀ i 6= p, q, W̃q: = Wp:, and W̃p: = 0. Note that

(1) ‖W̃‖2,1 = ‖W‖2,1; and (2) W̃ and W have no difference except the p-th

and q-th rows. Since ‖Y −XW‖2F =
∑l
j=1 ‖yi −XW:j‖22, we can show that

‖Y −XW‖2F − ‖Y −XW̃‖2F = 2Wp:Y
>(fq − fp) + 2〈Wd:,Wp:〉 (ρdp − ρdq),

where, ρij = f>i fj . In the derivation, we rely on the fact that

l∑

j=1

Wpjy
>
j = Wp:Y

>,
l∑

j=1

WdjWpj = 〈Wd:,Wp:〉.

Based on the equation, we reach the inequality

‖Y −XW‖2F − ‖Y −XW̃‖2F > 0⇔
(ρdp − ρdq) >

(
〈Wd:,Wp:〉

)−1
Wp:Y

> (fp − fq) .

‖Y>fp − Y>fq‖2 = 0, according to the assumption. As far as ρdq < ρdp,
selecting fq rather than fp will always decrease the objective function.

�

The theorem shows that the formulation in Equation (3.16) tends to select
features that are the least correlated, ensuring the selection of non-redundant
features.

Third, the problem specified in Equation (3.16) is tractable. Given a value
for λ, we obtain

arg min
W
‖Y −XW‖2F + λ ‖W‖2,1 . (3.18)

This problem can be solved by applying a general solver [133, 8, 115]. And
given l, the number of features to be selected, its corresponding λ value can
be found by applying either a grid search or a binary search. Usually, a larger
λ value results in selecting fewer features.

Below, we present three efficient solvers for the multivariate spectral fea-
ture selection problem defined in Equation (3.16). The first two are based
on solving the L2,1-regularized regression problem defined in Equation (3.18).

66 Spectral Feature Selection for Data Mining

However, for a given l, using the two approaches, we still need to try many
different λ values to determine the proper regularization parameter, which re-
sults in the selection of exact l features. This requires us to run a solver many
times, which is computationally inefficient. The third solver is a path-following
approach [205, 73, 48] based on solving the multivariate spectral feature selec-
tion problem defined in Equation (3.16) directly. Therefore, the solver is more
efficient comparing to the first two. Note, in Equation (3.18), we assume λ
is given, while in Equation (3.16) we do not assume this. Finding the proper
regularization parameter λ is part of the objective defined in Equation (3.16).

3.3 Solving the L2,1-Regularized Regression Problem

Assuming the regularization parameter λ in Equation (3.18) is known, the
two most efficient solvers for the L2,1-regularized regression problem specified
in Equation (3.18) are the coordinate gradient descent method [185, 29, 186]
and the accelerated gradient descent method [127, 12, 115, 116], and they are
both iterative methods. The difference between the two methods is that in
each iteration, the coordinate gradient descent method picks one row of the
weight matrix W to optimize, while the accelerated gradient method optimizes
the whole weight matrix. Although the two methods use different strategies
for optimization, they are based on solving the same model function, which is
defined as

MWj ,λ (W) =
1

2
‖XWj −Y‖2F + λ‖W‖2,1

+ Trace
(

(XWj −Y)
>

X (Wj −W)
)

+
Lj
2

Trace
(

(Wj −W)
>

(Wj −W)
)
.

In the above function, Wj and λ are given, and W is unknown.
MWj ,λ (W) forms a quadratic approximation of the original objective func-
tion defined in Equation (3.18).

Let

loss (W) =
1

2
‖Y −XW‖2F + λ ‖W‖2,1 .

We can verify that

∂‖XW −Y‖2F
∂W

= 2X> (XW −Y) .

Multivariate Formulations 67

Therefore, MWj ,λ (W) can be rewritten as

MWj ,λ (W) = loss (Wj) + Trace
(

loss′ (Wj)
>

(W −Wj)
)

+ λ‖W‖2,1

+
Lj
2

Trace
(

(Wj −W)
>

(Wj −W)
)
. (3.19)

The above equation shows that the first two terms of the model function
MWj ,λ (W) form the first-order Taylor expansion of ‖Y −XW‖2F at the

point Wj . ‖Y −XW‖2F is differentiable anywhere in the domain of W, and
‖W‖2,1 is not differentiable at the points wi = 0, i = 1, . . . ,m. Therefore, in

loss (W), ‖Y −XW‖2F forms the smooth part, and λ ‖W‖2,1 forms the non-
smooth part. We put the nonsmooth part of the loss function directly into

the model function. The regularization term Trace
(

(Wj −W)
>

(Wj −W)
)

puts a constraint on the distance between Wj and W, and prevents W from
being too far from Wj . This term ensures that the model function can be a
good approximation to the original loss function in the neighborhood of Wj .

Let wi be the i-th row of W. We can also write Equation (3.19) as

MWj ,λ (W) =
1

2
‖XWj −Y‖2F +

m∑

i=1

< f>i (Y −XWj) ,w
i
j −wi >

+ λ‖W‖2,1 +
Lj
2

m∑

i=1

< wi
j −wi,wi

j −wi >, (3.20)

where < · > is the inner product operator on vectors, < x,y >= x>y. It is
easy to see that when W? is the optimal solution of Eq. (3.18), we have

W? = arg min
W
MW?,λ (W) . (3.21)

.
Both the coordinate gradient descent method and the accelerated gradient

method try to generate a sequence of Wj to approach the optimal solution
of Equation (3.18). Assuming Wj is the current solution, the next solution in
the sequence is obtained by solving the following problems,

arg min
W
MWj ,λ (W) , Accelerated gradient descent method; (3.22)

arg min
wi
MWj ,λ (W) , Coordinate gradient method. (3.23)

We will study how the sequence is generated in detail later.
It turns out that Equation (3.22) and Equation (3.23) have closed form

solutions. Let’s assume

V = Wj −
1

Lj
X> (XWj −Y) , ρ =

λ

Lj
. (3.24)

68 Spectral Feature Selection for Data Mining

Then we can reformulate arg min
W
MWj ,λ (W) in the following form:

arg min
W
MWj ,λ (W) = arg min

W

1

2
‖W −V‖2F + ρ‖W‖2,1. (3.25)

This equation can be simply verified by plugging V and ρ on the right side of
the equation. Since ‖A‖2F = Trace

(
A>A

)
=
∑
i a

i, where ai is the i-th row
of A, we have

arg min
W
MWj ,λ (W) = arg min

W

(
m∑

i=1

1

2
‖wi − vi‖22 + ρ‖wi‖2

)
.

Therefore, the minimization of wi is independent of the other rows of W, and
the original problem can be decomposed into m independent sub-problems:

arg min
wi

1

2
‖wi − vi‖22 + ρ‖wi‖2, i = 1, . . . ,m. (3.26)

To obtain the minimizer of the model functionMWj ,λ (W), we notice that∥∥wi − vi
∥∥2
2

is differentiable in the domain of wi, and its gradient is given by

∂
∥∥wi − vi

∥∥2
2

∂wi
= 2

(
wi − vi

)
. (3.27)

Since
∥∥wi

∥∥
2,1

is not differentiable at 0, it has only subgradient [18, 131], which

is given by

∂
∥∥wi

∥∥
2,1

∂wi
=





wi

‖wi‖ , when wi 6= 0

u ∈ R1×k, ‖u‖ ≤ 1, when wi = 0
. (3.28)

SinceMWj ,λ (W) is convex, according to convex optimization theory [18], we
know it has a unique minimal, and its optimal solution can be obtained by
solving the problem

∂MWj ,λ (W)

∂wi
= 0. (3.29)

By plugging the following equation back into Equation (3.29), we can verify
that it is the optimal solution of Equation (3.29). Therefore, it is also the
optimal solution of Equation (3.26).

wi =





vi
(

1− ρ

‖vi‖

)
, when ‖vi‖2 > ρ

0, when ‖vi‖2 ≤ ρ
. (3.30)

Below we present the coordinate gradient descent method and the accel-
erated gradient method for solving the L2,1-regularized regression problem
defined in Equation (3.18).

Multivariate Formulations 69

3.3.1 The Coordinate Gradient Descent Method (CGD)

In the coordinate gradient descent (CGD) method, we generate the so-
lution sequence by iteratively updating the rows of W. This boils down to
solving the sub-problems of Equation (3.25), which is defined as:

arg min
wi

1

2
‖wi − vi‖22 + ρ‖wi‖2, i = 1, . . . ,m.

The pseudo-code of the coordinate gradient descent method is shown in
Algorithm 2. The method contains two major steps: (1) Line 2–Line 15, update
each row of the weight matrix W, wi; and (2) Line 16–Line 21, test whether
the solution converges.2

Algorithm 2: The coordinate gradient descent method

Input: X, Y, λ, W0, L0 > 0
Output: W

1 W = W0, j = 1;
2 for i = 1 . . .m do
3 for L = Lj−1, 2Lj−1, 4Lj−1, . . . do
4 vi = wi − 1

L f>i (XW −Y) , ρ = λ/L;

5 w = arg min
w

1
2‖w − vi‖22 + ρ‖w‖2;

6 if ‖Y −XWwi=w‖2F +λ ‖Wwi=w‖2,1 ≤MW, λ (Wwi=w) then

7 break;

8 d = wi −w;
9 if d 6= 0 then

10 α← line search;
11 wi = wi + αd;

12 j = j + 1, Lj = L;
13 if converge then
14 return W;
15 else
16 goto line 2

The first step of the algorithm can be further divided into two sub-steps:
(a) In Line 2–Line 9, we compute the w for updating wi based on the
current solution. To ensure the validity of the w obtained in Line 5, L in
Equation (3.19) should be large enough so that MW, λ (Wwi=w) can bound

‖Y −XWwi=w‖2F + λ ‖Wwi=w‖2,1 from above. (b) In Line 10–Line 14, in-

stead of replacing wi with w, we adopt a more sophisticated way for updating
wi: we first compute the update direction d = wi−w (Line 12), then use line

2The convergence of the solution can be measured by the norm of difference between
Wi and Wi+1, e.g., ‖Wi+1 −Wi‖2 < ε.

70 Spectral Feature Selection for Data Mining

search to determine how far we should go with this direction, and update wi

using wi = wi + αd (Line 13). The reason for doing this is that using w to
replace wi can be too aggressive, which may interfere with the convergence.
The pseudo-code of the line search procedure is shown in Algorithm 3.

Algorithm 3: Line search

Input: X, Y, λ, W, i, d ∈ R1×k, α0 > 0, δ > 0, σ > 0
Output: α

1 ∆ = d>
(
Y −XW>

)
fi + λ‖wi + d‖2 +

Lj
2 ‖d‖22 − λ‖wi‖2;

2 for α = α0, δα0, δ
2α0, . . . do

3 if f (Wwi=wi+αd)− f (W) ≤ ασ∆ then
4 break;

5 return α;

Algorithm 3 presents an inexact line search procedure using the Armijo
rule [131]. In the procedure, α0 > 0, δ > 0, σ > 0 are input parameters, and
∆ is the improvement of model function by using w = wi + d as the new
solution.

It is shown in [186] that Algorithm 2 has a local linear convergence rate
under certain conditions. Although the algorithm is reported to be very ef-
ficient [213] in real-world applications, its global rate of convergence is still
unknown.

3.3.2 The Accelerated Gradient Descent Method (AGD)

In the accelerated gradient descent (AGD) method, we generate a sequence
of solutions by iteratively updating the W. The pseudo-code of the accelerate
gradient descent method is shown in Algorithm 4. The method is based on
generating two sequences: {Wj}j=1,2,... (Lines 4–9) and {Sj}j=1,2,... (Line 3).

{Wj}j=1,2,... is the sequence of approximate solutions, which asymptotically

approaches the optimal solution of Equation (3.18). And {Sj}j=1,2,... is the
sequence of the search points. A search point Si is the affine combination
of Wj and Wj−1 And Wj is computed by minimizing the model function
MSj−1,λ (W). In Line 6, we check whether the L in Equation (3.19) is large

enough, so that MSj , λ (Wj+1) can bound ‖Y −XWj+1‖2F + λ ‖Wj+1‖2,1
from above.

As shown in [116] the accelerated gradient method has a global convergence
rate of O(1

M2), where M is the number of iterations. Let m be the number of
features, n the number of samples, and C the number of columns of Y. The
time complexity of the accelerated gradient method is given by

O (mnCMlL) , (3.31)

where M is the maximal number of iterations specified in Algorithm 4, and

Multivariate Formulations 71

Algorithm 4: Accelerated gradient descent method

Input: X, Y, λ, W0, L0 > 0, M
Output: WM+1

1 W1 = W0, α−1 = 0, α0 = 1, L = L0;
2 for j = 1 . . .M do

3 βj =
αj−2−1
αj−1

, Sj = Wj + βj (Wj −Wj−1);

4 for L = Lj−1, 2Lj−1, 4Lj−1, . . . do
5 Wj+1 = arg min

W
MSj ,λ (W);

6 if 1
2 ‖Y −XWj+1‖2F + λ ‖Wj+1‖2,1 ≤MSj ,λ (Wj+1) then

7 break;

8 Lj = L, αj+1 =
1+
√

1+4α2
i

2 ;

9 return WM+1;

lL is the averaged number of ties for searching the proper L in the validation
process. The above equation shows that the time complexity of the accelerated
gradient method is linear in terms of the number of samples and the number
of features. Therefore, it is very efficient.

3.4 Efficient Multivariate Spectral Feature Selection

The two methods presented in the last section solve the L2,1-regularized
regression problem specified in Equation (3.18), which has the form

arg min
W
‖Y −XW‖2F + λ ‖W‖2,1 .

It may be inefficient for us to use them to solve the multivariate spectral
feature selection problem specified in Equation (3.16), which has the form

arg min
W,λ
‖Y −XW‖2F + λ ‖W‖2,1

s.t. A = {i :
∥∥wi

∥∥
2
> 0}, Card (A) = l.

In the above formulation, λ is not given. Instead, we are given l, the num-
ber of features to be selected. One can solve this problem indirectly by solving
Equation (3.18). However, this will not be efficient, since it requires us to solve
Equation (3.18) multiple times for searching a proper λ value, which leads to
the selection of exact l features. Here we present an efficient path-following
solver for the problem specified in Equation (3.16). It can automatically detect

72 Spectral Feature Selection for Data Mining

the points when a new feature enters its active set,3 and update its param-
eters accordingly. It can efficiently generate a solution path for selecting the
specified number of features.

We start by deriving the necessary and sufficient conditions for a feature to
have nonzero weight (i.e., being selected) in an optimal solution of Equation
(3.18).

Let
Loss (W, λ) = ‖Y −XW‖2F − λ ‖W‖2,1 .

We notice that Loss (W, λ) is convex, but it is nonsmooth when wi = 0. Ac-
cording to the convex optimization theorem [18], W∗ minimizes Loss (W, λ)
if and only if:

0 ∈ ∂wiLoss (W, λ) |W=W∗ , i = 1, . . . ,m.

Here, ∂wi (W, λ) is the subdifferential of Loss (W, λ) on wi, and has the
following form:

∂wiLoss (W, λ) = f>i (Y −XW) + λvi

vi =
wi

‖wi‖ , if wi 6= 0

vi ∈
{
u|u ∈ R1×k, ‖u‖2 ≤ 1

}
, if wi = 0 . (3.32)

Therefore, W∗ is an optimal solution if and only if:

−λvi = f>i (Y −XW) |W=W∗ , ∀i ∈ {1, . . . ,m}. (3.33)

Based on this observation, we give necessary conditions (weak), and both
necessary and sufficient conditions (strong) for W to be optimal. We show that
a suboptimal solution, which satisfies the necessary conditions, can be easily
obtained. And the obtained suboptimal solution can be efficiently adjusted
to generate an optimal solution, which satisfies the necessary and sufficient
conditions.

Theorem 3.4.1 Assuming wi is the i-th row of W, the necessary conditions
for W to be optimal are: ∀i ∈ {1, . . . ,m},

wi 6= 0 ⇒ ‖f> (Y −XW) ‖2 = λ

wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ. (3.34)

The theorem suggests that for a feature to be selected, its correlation to
the residual, R = Y−XW, must be equal to λ. Here, the correlation between
a feature and the residual is measured by ‖f>R‖2. A feature is selected if it
has a nonzero weight vector in the optimal solution. The above property is also
called the equal correlation condition for these features, since they are equally

3An active set contains the indices of the features that have nonzero weights in W.

Multivariate Formulations 73

correlated to the residual. A solution satisfying this condition can be easily
obtained via applying a forward stepwise search strategy, which is similar to
that introduced in the least angle regression (LARS) [48].

Theorem 3.4.2 Assuming wi is the i-th row of W, the necessary and suf-
ficient conditions for W to be optimal are: ∀i ∈ {1, . . . ,m},

wi 6= 0 ⇒ f> (Y −XW) = −λ wi

‖wi‖2
wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ. (3.35)

Algorithm 5: MRSF: Minimal redundancy spectral feature selection

Input: X, Y, l
Output: W

1 W[1] = 0, λ1 = +∞, i = 1 and R[1] = Y;

2 Compute the initial active set: A1 = arg maxj ‖f>j R[1]‖22;

3 while i ≤ l do

4 Compute the walking direction γAi : γAi =
(
X>AiXAi

)−1
X>AiR

[i];

5 for each j /∈ Ai and an arbitrary t ∈ Ai do
6 Compute the step size αj in direction γAi for fj to enter Ai.

‖f>j
(
R[i] − αjXAiγAi

)
‖2 = (1− αj)‖f>t R[i]‖2;

7 j∗ = arg minj /∈Ai αj ;

8 Ŵ =
((

W[i] + αj∗γAi
)>
,0
)>

;

9 Â = Ai
⋃{j∗}, λi = (1− αj∗)‖f>t R[i]‖2;

10 Solve the smaller optimization problem,

minW̃ ‖Y −X
Â

W̃‖2F + λi‖W̃‖2,1, using a general solver with Ŵ as
the starting point;

11 R̃ = Y −X
Â

W̃;

12 if ∀i /∈ Â, ‖f>i R̃‖2 ≤ λi then

13 Ai+1 = Â, W[i+1] = W̃, R[i+1] = R̃, i = i+ 1;
14 else

15 Â =
{
i : ‖w̃i‖ 6= 0

}⋃{
j : ‖f>j R̃‖2 > λi

}
;

16 Remove w̃i from W̃, if ‖w̃i‖ = 0,

Ŵ =
(
W̃>,0, . . . ,0

)>
, Goto line 11;

17 Extend W[l] to W by adding empty rows to W[l];

18 return W[l];

Based on the above two theorems, we propose an efficient solver for mul-
tivariate spectral feature selection based on L2,1-regularized regression. Its

74 Spectral Feature Selection for Data Mining

pseudo-code can be found in Algorithm 5. In the algorithm, Ai is the “active
set” of the i-th run, and contains the features selected in that run. Algorithm 5
contains two major steps.

1. In Lines 4–8, the algorithm determines γAi , the direction for updating
W[i] (Line 4), and αj∗ , the step size for updating W[i] (Lines 5–8). It then
updates the active set and computes the λi (Line 10). We can verify that

when the regularization parameter is set to λi, the Ŵ generated in this step
is a suboptimal solution satisfying the equal correlation condition specified in
Theorem 3.4.1.

2. In Lines 11–18, the algorithm finds an optimal solution corresponding
to the λi obtained in step 1. Given λi, it first solves an L2,1-norm regularized
regression problem using a general solver (e.g., either the coordinate gradient
descent method or the accelerated gradient method) (Line 11). Note that this
problem is of much smaller scale, since it is based only on the features in the
current active set, but not the whole set. For example, in the i-th iteration,
there are only i features in the active set, and i � m. Also Ŵ is used as
a starting point to accelerate the convergence of the solver. It then checks
whether the obtained solution is also optimal on the whole data (Line 13) by
using the conditions specified in Theorem 3.4.2. If it is true, the algorithm
records the current optimal solution and proceeds to Line 4 for the next run
(Line 14). Otherwise, it adjusts the active set, updates the Ŵ to remove
the unselected features, and makes space to accommodate the newly selected
features. It then returns to Line 11 (Line 17). In this step, we adjust the sub-
optimal solution obtained in the first step and compute the optimal solution
corresponding to λi.

Theorem 3.4.3 (1) Let W[i] be the optimal solution obtained in the i-th

iteration. The Ŵ generated in step 1 (Line 9) satisfies the equal correlation
condition specified in Theorem 3.4.1. (2) The W[i+1] computed in step 2 (Line
14) is an optimal solution corresponding to λi.

Proof : To prove the first part of the theorem, let W[i] be the optimal
solution obtained in the i-th step. Its corresponding residual and regular-
ization parameters are R[i] = Y − XAiW

[i] and λi, respectively. When

Ŵ =
((

W[i] + αj∗γAi
)>
,0
)>

and Â = Ai
⋃{j∗}, the corresponding residue

can be written as

R̂ = Y − (XAi , fj∗)

((
W[i] + αj∗γAi

)>
,0

)>

= Y −XAi

(
W[i] + αj∗γAi

)

= R[i] − αj∗XAiγAi .

Therefore, we have

f>t R̂ = f>t R[i] − αj∗f>t XAiγAi , ∀t ∈ Ai ∪ {j∗}.

Multivariate Formulations 75

When t ∈ Ai, we have

f>t R[i] − αj∗f>t XAiγAi = (1− αj∗)f>t R[i].

To obtain this equation, we need to show

f>t XAiγAi = f>t XAi

(
X>AiXAi

)−1
X>AiR

[i] = f>t R[i], ∀t ∈ Ai.
Let XAi = UΣV> be the SVD of XAi . Since ft is a column of XAi , we have

ft = Ua, a = Σvq>,

where vq is the q-th row of V, and ft is the q-th column of XAi . Based on
this equation, we can obtain the following equation,

f>t

(
XAi

(
X>AiXAi

)−1
X>Ai

)
= f>t UΣV>

(
VΣ2V>

)−1
VΣU>

= f>t UΣV>VΣ−2V>VΣU>

= f>t UU> = (Ua)
>

UU>

= a>U>UU> = a>U>

= f>t .

M = XAi

(
X>AiXAi

)−1
X>Ai ∈ Rn×n defines a projection matrix, which

projects any n-dimensional vector to the space spanned by the columns of
X. Since ft is a column of XAi , it is already in the space spanned by the
columns of X. The above equation shows that in this case, the projection
matrix M will project ft into itself. Based on this observation, for ∀t ∈ Ai we
can obtain the equation

‖f>t R̂‖2 = ‖f>t
(
Y −XAi

(
W[i] + αj∗γAi

))
‖2

= (1− αj∗) ‖f>t R[i]‖2.
Since ‖f>p R‖2 = ‖f>q R‖2 for ∀p, q ∈ Ai (due to the optimality of W[i]), we
have

‖f>p R̂[i]‖2 = ‖f>q R̂[i]‖2, ∀p, q ∈ Ai. (3.36)

When t = j∗, f∗j will be the feature that is about to enter the active set.
According to Line 6 of the algorithm, ∀t ∈ Ai, we have

‖f>j∗R̂‖2 = ‖f>j∗
(
R[i] − αj∗XAiγAi

)
‖2

= (1− αj∗)‖f>t R[i]‖2
= ‖f>t R̂[i]‖2. (3.37)

By combining Equation (3.36) and Equation (3.37), we proved the first part
of the theorem.

The second part of the theorem can be simply verified by applying the
necessary and sufficient conditions for an optimal solution specified in Theo-
rem 3.4.2.

76 Spectral Feature Selection for Data Mining

�

To select l features, Algorithm 5 runs at most l−1 iterations to shrink the
regularization parameter λ from +∞ to a proper value, so that exact l features
can be selected. In each iteration, the algorithm decreases λ by a certain
amount to allow a new feature to enter the active set. Let W[i] and λi be the
optimal solution and the corresponding regularization parameter obtained in
the i-th iteration. According to Theorem 3.4.1, we know that all the active
features in W[i] are equally correlated to the residual: ‖f>

(
Y −XW[i]

)
‖2 =

λi. And all the inactive features are less correlated. In the (i+ 1)-th iteration,
to activate a new feature, the algorithm first determines a direction γAi+1 . In

the proof of Theorem 3.4.3, we show that by updating W[i+1] using αγAi+1 ,

the equal correlation condition always holds for W[i+1] + αγAi+1 , ∀α ≤ 0.
However, we cannot set the α value arbitrarily. Let ft be an arbitrary feature
in the active set. We find the α value by solving the problem

α∗ = arg min
j /∈Ai+1

(
‖f>j

(
R[i+1] − αXAi+1

γAi+1

)
‖2 = (1− α)‖f>t R[i+1]‖2

)
.

(3.38)
The obtained α∗ is the minimal step size for activating a new feature. It is easy
to verify that when α < α∗, all the inactive features are still less correlated to
the residual

‖f>j
(
R[i+1] − αXAi+1

γAi+1

)
‖2 < (1− α)‖f>t R[i+1]‖2.

And when α = α∗, the inactive feature corresponding to α∗ starts satisfying
the equal correlation condition, which provides us a hint that this feature may
become active4 when we update W[i+1] by α∗γAi+1 . Given the equivalence be-
tween the feature-residual correlation and the λ, shown in the Theorem 3.4.1,
we set the value of λi+1 using the equation

λi+1 = (1− α∗)‖f>t R[i+1]‖2.

We also update the weight matrix and the active set to include the newly ac-
tivated feature in the tentative solution. Note that the updated weight matrix
only stratifies the necessary condition for an optimal solution. So it may not
be the optimal one. Therefore, in the second step of the algorithm, we adjust
this weight matrix to an optimal one. Note that it is possible that the optimal
active set may be different from the one determined in the first step.

The second step of the algorithm can be done efficiently. First, in Line
11, we solve an L2,1-norm regularized regression problem based only on the
features in the active set, which is of a much smaller scale compared with
that of the whole feature set; second, we compute the optimal solution based
on the tentative solution obtained in the first step. It turns out that the

4If several features correspond to α∗, they all satisfy the equal correlation condition,
when α = α∗. In this case, at least one of them may become active.

Multivariate Formulations 77

tentative solution is usually close to the optimal one. Therefore, the solver
often converges in just a few iterations for solving the problem specified in
Line 11.

Let m be the number of features, n the number of samples, C the number
of columns of Y, and l the number of selected features. The time complexity
of MRSF is

O

((
lmnC + l2nCMlL

)
lV +

(
l3 + lmC

)
n

)
, (3.39)

where M is the maximal number of iterations specified in Algorithm 4, lL
is the averaged number of ties for searching the proper L in the validation
process, and lV is the number of the backtraces for adjusting A in Lines 16
and 17 of Algorithm 5. If assuming l < CMlLlV , Equation (3.39) can be
simplified to

O

(
lnC (m+ lMlL) lV

)
. (3.40)

78 Spectral Feature Selection for Data Mining

Example 16 An empirical study of the efficiency of MRSF

We construct an artificial data set by randomly generating a data matrix
X ∈ R1000×10000 (1000 samples and 10000 features) and a target matrix
Y ∈ R1000×10.

For comparison, we first apply the accelerated gradient descent method
(AGD) on the artificial data with different λ values for regularization. The
performance of AGD is reported in Table 3.1. From the table we can observe
that as λ decreases, more and more features are selected, which leads to
smaller residual values. On the artificial data, on average, it takes 0.22
seconds for AGD to run one iteration.5 And on average, AGD converges in
about 500 iterations. When λ = 0.5, AGD selects 54 features, which takes
about 122 seconds.

We then apply MRSF to select 50 features on the artificial data. MRSF
runs 40 iterations,6 which takes about 32 seconds, almost 4 times faster
than the case for AGD on the whole data set. The residual of the solution
is 9.79.

Figure 3.3 shows the run time of each AGD solver call in MRSF, which
takes 0.42 ± 0.14 seconds on average. Figure 3.4 presents the number of
iterations for each AGD call to converge. On average, it takes about 30
iterations. This suggests that the run time of each AGD iteration is about
0.02 seconds, which is 10 times faster than the time used by the AGD solver
on the whole data. The reason is that in this case, the AGD solver runs
on a much smaller problem containing only the features activated in the
tentative solution (see Line 11 of Algorithm 5). We notice that the number
of iterations for the AGD solver to converge is also much smaller in this
case. It suggests that the tentative solution is close to the optimal solution.

Figure 3.5 shows the number of features selected by MRSF in each
iteration. It verifies that MRSF may select more than one feature in each
iteration, if more than one feature violates the global optimal condition
(Lines 16 and 17 of Algorithm 5) in the validation step. Figure 3.6 presents
the number of AGD calls in each iteration. It shows that on the artificial
data used in this experiment, on average lV , the number of the backtraces
in the validation step of MRSF, is about 1.25, which is quite small.

This example demonstrates that MRSF is an efficient solver for select-
ing a specific number of features by generating a solution path.

5The experiment is run on a computer with an Intel Core 2 Duo CPU and 4GB memory.
The operating system is Mirosoft Windows 7 64bit. MRSF is implemented using Matlab.
The AGD solver is downloaded from http://www.public.asu.edu/ jye02/Software/SLEP/,
which also runs in MATLAB.

6MRSF may select more than one feature in each iteration, if more than one feature
violates the global optimal condition (Lines 16-17 of Algorithm 5) in the validation step.

Multivariate Formulations 79

TABLE 3.1: The performance of AGD on the artificial data.

λ 1.0 0.9 0.7 0.5 0.3 0.1 0.0

selected features 0 5 17 54 97 196 10000
iterations 2 362 555 561 828 1017 441
time (sec) 0.94 79.30 122.79 122.21 175.59 223.44 96.21
time per iteration 0.47 0.22 0.22 0.22 0.21 0.22 0.22
residual 50.80 15.06 10.95 9.78 9.60 9.05 0.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

FIGURE 3.3: MRSF, run time of each AGD solver call.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

FIGURE 3.4: MRSF, number of iterations for each AGD call to converge.

80 Spectral Feature Selection for Data Mining

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

FIGURE 3.5: MRSF, number of features selected in each iteration.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

FIGURE 3.6: MRSF, number of AGD calls in each iteration.

3.5 A Formulation Based on Matrix Comparison

In spectral feature selection, we try to select features that can preserve the
sample similarity specified in a given similarity matrix S. In Equation (3.16),
this is achieved by solving a sparse multi-output regression problem, in which
the weighted eigenvectors of S are used as the target. As shown in Theo-
rem 3.2.1, using this formulation, we can find a set of features, such that the
linear kernel based on the linear combination of the selected features is very
close to S. When the Frobenius norm is used to measure the closeness of two

Multivariate Formulations 81

matrices, this problem can be formulated as:

argmin
W

∥∥XWW>X> − S
∥∥
F

s.t. A = {i :
∥∥wi

∥∥
2
> 0}, Card (A) = l.

We can simplify the problem as selecting a set of features such that the
linear kernel obtained based on the selected features is close to S:

min
A
‖S−XAX>A‖, (3.41)

where XA = (fi1 , . . . , fil) , ij ∈ A, j = 1, . . . , k.

Treating ‖S−XAX>A‖ as a feature selection criterion, we can use it with
the traditional forward search strategy for feature selection. The algorithm
is named MCSF, which stands for M atrix C omparison for Spectral Feature
selection. The pseudo-code of the algorithm can be found in Algorithm 6. Note
that the card (·) in Line 2 returns the size of a set, and Lines 3 and 7 make
use of the fact

S−XAX>A = S−
∑

i∈A
fif
>
i ,

where XA = (fi1 , . . . , fik) , ij ∈ A, j = 1, . . . , k.

The above equation shows that once a feature fi is selected, we can remove
fif
>
i from S, and use the obtained residual R in the later steps. This strategy

eliminates the redundant computations and makes the algorithm efficient. To
select l features, the algorithm needs to run l iterations. In each iteration, it
greedily picks one feature that is most consistent with the current residue R,
adds the feature to A, and updates the residue by R = R− fif

>
i .

In each iteration, features are compared to R. Note that R is obtained by
substracting the sum of the outer products of the selected features from S.
So, features are not evaluated independently. And the formulation promotes
the selection of uncorrelated features.

The condition specified in Line 4 of Algorithm 6 guarantees that ‖R‖2F
monotonically decreases after each step. It can be shown that the time com-
plexity of the algorithm is O

(
lmn2

)
, where l is the number of selected features.

Assuming features have been normalized to have unit norm, ‖fi‖ = 1, we have
the following equation:

arg mini/∈A ‖R− fif
>
i ‖2F = arg maxi/∈A f>i Rfi.

Therefore the problem specified in Line 3 can be solved in O(mn2) opera-
tions. When l features are selected, the total time complexity of the algorithm
is O(lmn2).

82 Spectral Feature Selection for Data Mining

Algorithm 6: MCSF: Matrix comparison for spectral feature selection

Input: f1, . . . , fm, S, l
Output: A - the selected features

1 A = φ,R = S;
2 while card (A) < l do
3 i∗ = arg mini/∈A ‖R− fif

>
i ‖2F ;

4 if ‖R− fif
>
i ‖2F > ‖R‖2F then

5 return A;
6 else
7 A = A ∪ {i∗}; R = R− fif

>
i ;

8 return A;

3.6 Feature Selection with Proposed Formulations

The proposed multivariate formulations can be used for both supervised
and unsupervised feature selection. The key is how to construct the similarity
matrix S in different learning settings. To address this, the methods introduced
in Section 2.5.1 can be used.

In a supervised learning setting, if Equation (3.16) is used for feature
evaluation, it is more efficiently for us to construct the target matrix Y directly
from the label information. For example, we can define Y as

Yi,j =





√
n
nj
−
√

nj
n

yi = j

−
√

nj
n

otherwise
, (3.42)

or

Yi,j =

{
1 yi = j
−1 otherwise

. (3.43)

Interestingly, in Section 4.2, we will show that when these Y are used in
Equation (3.16), we can actually obtain sparse solutions for the Least Square
Linear Discriminant Analysis (LSLDA) [204] and the Least Square Support
Vector Machine (LSSVM) [178], respectively.

In the next chapter, we will study the connections among spectral feature
selection and some representative dimension reduction algorithms. We will
show that spectral feature selection not only unifies many supervised and
unsupervised feature selection algorithms, but also connects feature selection
with feature extraction via its multivariate formulations.

Chapter 4

Connections to Existing Algorithms

Spectral feature selection is a general framework. In this section we show that
a number of existing feature selection algorithms are essentially special cases of
spectral feature selection. These algorithms include Relief and ReliefF [158],
Laplacian Score [74], Fisher Score [45], HSIC [165], and Trace Ratio [130].
These algorithms are designed to achieve different goals. For instance, Fisher
Score and ReliefF are designed to optimize sample separability, Laplacian
Score is designed to retain sample locality, and HSIC is designed to maxi-
mize feature class dependency. We can show that these algorithms actually
select feature by evaluating features’ capability to preserve sample similarity
in similar ways.

In this chapter, we also study the connections between multivariate spec-
tral feature selection and a number of well-known learning models, includ-
ing principal component analysis (PCA) [85], linear discriminant analysis
(LDA) [199], and least square support vector machine (LS-SVM) [178]. The
study provides us an interesting insight into these existing models, and allows
us to utilize the efficient solvers developed in Chapter 3 to generate sparse
solutions for the models. We notice that spectral feature selection is for se-
lecting original features, while PCA and LDA are for extracting new features
from the original ones. So the multivariate formulations for spectral feature
selection form a bridge connecting the two different types of dimensionality
reduction techniques.

4.1 Connections to Existing Feature Selection
Algorithms

We first show how a number of existing feature selection algorithms can
be unified with our univariate formulations for spectral feature selection. To
achieve this, we prove that all these algorithms can be reformulated in a
common form:

max
Fsub

∑
F∈Fsub

ϕ(F) = max
Fsub

∑
F∈Fsub

f̂> Ŝ f̂ , (4.1)

83

84 Spectral Feature Selection for Data Mining

f̂ ∈ Rn, Ŝ ∈ Rn×n.
Here Fsub is the set of selected features, and f̂ and Ŝ are the normalized

feature vector and the normalized sample similarity matrix, respectively. The
only difference among these feature selection algorithms is that they use differ-
ent ways to compute f̂ and Ŝ. As we have analyzed in Section 3.1, if a feature
selection criterion is in the form of Equation (4.1), it will select features by
evaluating features’ capability of preserving the sample similarity specified by
Ŝ, and can be treated as a special case of spectral feature selection.

4.1.1 Laplacian Score

Laplacian Score [74] is an unsupervised feature weighting algorithm that
uses a filter model. Given an adjacency matrix S, let D and L be its corre-
sponding degree and Laplacian matrices, respectively. The Laplacian Score of
f can be calculated via the equation

ϕL (f) =
f̃>Lf̃

f̃>Df̃
, where f̃ = f − f>D1

1>D1
1. (4.2)

We show that ϕ2 (f) = ϕL (f) in the theorem below. Here ϕ2 (·) is the
feature ranking function defined in Equation (2.17) in Chapter 2.

Theorem 4.1.1 The Laplacian Score [74], an unsupervised feature selection
algorithm, is a special case of SPEC, when ϕ̂(·) = ϕ2(·).

Proof : The feature evaluation criterion of the Laplacian Score is

ϕL (F) =
f̃>Lf̃

f̃>Df̃
, where f̃ = f − fTD1

1TD1
1.

Plugging f̃ in ϕL (F), we have

ϕL (F) =
f>Lf

f>Df − (f>D1)2

1>D1

=
(D

1
2 f)>L(D

1
2 f)

(D
1
2 f)>(D

1
2 f)−

(
(D

1
2 f)>(D

1
2 1)

)2

(D
1
2 1)>(D

1
2 1)

.

If we let ξ1 be the first eigenvector of the normalized Laplacian matrix L, we

have ξ1 = D
1
2 1

||D
1
2 1||

. Also in ϕ2 (·), f̂ = D
1
2 f

||D
1
2 f ||

. Therefore, the following equation

holds:

ϕL (F) =
f̂>L f̂

1−
(
f̂>ξ1

)2 = ϕ2(·)

�

Theorem 4.1.1 shows that the Laplacian Score is a special case of SPEC,
and based on this theorem, we have the following theorem.

Connections to Existing Algorithms 85

Theorem 4.1.2 Let Ŝ be the similarity matrix, selecting l features using the
Laplacian Score can be achieved by maximizing the objective function

arg maxFi1 ,...,Fil

l∑

j=1

f̂>ij Ŝ f̂ij ,

where f̂ and Ŝ are defined as

f̃ =
D

1
2 f

‖D 1
2 f‖

, f̂ =
f̃ − f̃>ξ1ξ1√
1−

(
f̃>ξ1

)2 , Ŝ = D−
1
2 SD−

1
2 .

�

4.1.2 Fisher Score

Fisher Score [45] is a supervised feature weighting algorithm with a filter
model. Given the class label y = {y1, . . . , yn}, Fisher Score prefers features
that assign similar values to the samples from the same class and different
values to the samples from different classes. The evaluation criterion used in
the Fisher Score can be formulated as

ϕF (Fi) =

∑c
j=1 nj (µj − µ)

2

∑c
j=1 njσ

2
j

, (4.3)

where µ is the mean of the feature fi, nj is the number of samples in the
jth class, and µj and σj are the mean and the variance of fi on the class j,
respectively.

As shown in [74], when the similarity matrix S is derived from the class
label using the equation

SFISij =

{
1
nl
, yi = yj = l

0, otherwise
. (4.4)

Laplacian Score and Fisher Score are equivalent in the sense that

ϕL (Fi) =
1

1 + ϕF (Fi)
. (4.5)

Therefore, we have the following theorem.

Theorem 4.1.3 Let Ŝ be the similarity matrix defined in Equation (4.4). To
select l features using Fisher Score can be achieved by maximizing the following
objective function:

arg maxFi1 ,...,Fil

l∑

j=1

f̂>ij Ŝ f̂ij .

86 Spectral Feature Selection for Data Mining

Here f̂ and Ŝ are defined as:

f̃ =
D

1
2 f

‖D 1
2 f‖

, f̂ =
f̃ − f̃>ξ1ξ1√
1−

(
f̃>ξ1

)2 , Ŝ = D−
1
2 SD−

1
2 .

�

4.1.3 Relief and ReliefF

Relief [90] and its multiclass extension, ReliefF [94], are supervised fea-
ture weighting algorithms using the filter model. Assuming M instances are
randomly sampled from the data, the feature evaluation criterion of Relief is
defined as

ϕR (Fi) =
1

2

M∑

t=1

(‖xt,i −NM(xt)i‖ − ‖xt,i −NH(xt)i‖) .

In the equation, xt,i denotes the value of instance xt on feature fi. NH(x)
and NM(x) denote the nearest points to x in the data with the same and
different labels, respectively, and ‖ · ‖ is a distance measurement. To handle
multiclass problems, the above evaluation metric is extended in ReliefF to the
equation

ϕR (Fi) =
1

M
·
M∑

t=1



−

1

Mt,CL(xt)

∑

xj∈NH(xt)

‖xt,i − xj,i‖

+
∑

C 6=CL(xt)


 P (C)

1− P (CL(xt))
× 1

Mt,C
×

∑

xj∈NM(xt,C)

‖xt,i − xj,i‖





 .

(4.6)
Here, CL(xt) returns the class label of the instance xt, and P (C) is the

probability of instances belonging to the class C. xt,i is the value of the feature
fi on the instance xt. NH(x) denotes the set of samples that are nearest to x
and with the same class of x. A sample in NH(x) is called a “nearest hit” of x.
NM(x, C) denotes the set of samples that are nearest to x and with the class
label C (C 6= CL (xt)). And a sample in NM(x) is called a “nearest miss” of
x. Mt,CL(xt) is the size of NH(x), and Mt,C is the size of NM(x, C). Usually,
the sizes of both NH(x) and NM(x, C) are set to a prespecified constant.

The relevance evaluation criteria of Relief and ReliefF show that the two
algorithms seek features that contribute to the separation of samples from
different classes.

Assume that the training data have c classes with p instances in each
class; there are h instances in both NH(x) and NM(x, C); and all features
have been normalized to have the unit norm. As shown in [222], under the

Connections to Existing Algorithms 87

specified assumptions, the feature relevance evaluation criterion of ReliefF can
be formulated as

n∑

i=1




∑

j∈NH(xi)

1

h
(fi − fj)2 −

∑

C 6=yi

∑
j∈NM(C,xi)

(fi − fj)2

(c− 1)h


. (4.7)

In the above equation, fi is the value of the feature f on the i-th instance,
xi. Here we use the Euclidean distance to calculate the difference between
two values, and use all training data to train ReliefF. To study the connection
between ReliefF and spectral feature selection, we define a similarity matrix
S as

SRELi,j =





1 i = j
− 1
k xj ∈ NH (xi)

1
(c−1)k xj ∈ NM (xi, CL(xi))

. (4.8)

To ensure that SREL is symmetric, we assume that if xj ∈ NH (xi), we
also have xi ∈ NH (xj); and if xj ∈ NM (xi, CL(xi)), we also have xi ∈
NM (xj , CL(xj)). By applying Theorem 2.2.1, it is easy to verify that D = I,
and ϕR (Fi) = −1 + f>SRELf is equivalent to the evaluation criterion defined
in Equation (4.7). Since ϕ1 (Fi) = −1 + f>SRELf , where ϕ1 (·) is the feature
evaluation criterion defined in Equation (2.12), we can see that under these
assumptions, ReliefF also forms a special case of SPEC. Based on the above
observation, we have the following theorem.

Theorem 4.1.4 Let Ŝ be the similarity matrix defined in Equation (4.8).
Selecting l features using ReliefF can be achieved by maximizing the objective
function

arg maxFi1 ,...,Fil

l∑

j=1

f̂>ij Ŝ f̂ij .

Here, f̂ and Ŝ are defined as

f̂ =
D

1
2 f

‖D 1
2 f‖

, Ŝ = D−
1
2 S D−

1
2 . (4.9)

�

4.1.4 Trace Ratio Criterion

The Trace Ratio Criterion for feature selection is proposed in [130]. It
defines two adjacency matrices, Sw and Sb. Sw represents the within-class or
local adjacency relationship of instances, whereas Sb represents the between-
class or the global counterpart. Two graphs, Gw and Gb, can be constructed,
and their corresponding graph Laplacian matrices are Lw and Lb, respectively.
Assuming we want to select k features, W = [wi1 ,wi2 , · · · ,wik] ∈ Rn×k is the

88 Spectral Feature Selection for Data Mining

selection matrix, where the column vector wij has one and only one “1” at its
ij-th element, and {i1, i2, · · · , ik} ∈ {1, 2, · · · , n}. The Trace Ratio Criterion
tries to find the best selection matrix W by maximizing the following objective
function

W? = arg max
W

=
trace(W>X>LbXW)

trace(W>X>LwXW)
. (4.10)

As shown in [130], the optimal solution of the problem can be obtained by
iteratively solving the following two subproblems. First, when λi is mixed, we
solve problem (P1):

(P1) : Wi+1 = arg max
W

trace
(
W>X>(Lb − λiLw)XW

)
. (4.11)

Second, when Wi is fixed, we solve problem (P2):

(P2) : λi+1 =
trace(W>

i+1X
>LbXWi+1)

trace(W>
i+1X

>LwXWi+1)
. (4.12)

Since

trace
(
W>X>(Lb − λLw)XW

)
=
∑

i∈{i1,i2,··· ,ik}
f>i (Lb − λLw) fi,

it is easy to verify that when λ is fixed, the subproblem (P1) can be solved
by picking the top k features with large f>i (Lb − λLw) fi values. Therefore,
although the Trace Ratio Criterion is proposed for subset feature selection,
features are actually evaluated independently in the feature selection process.
We have the following theorem to build a connection between the Trace Ratio
Criterion and the SPEC framework.

Theorem 4.1.5 Assume λ∗ is optimal for Equation (4.10). Selecting l fea-
tures using the Trace Ratio Criterion can be achieved by maximizing the fol-
lowing objective function:

arg maxFi1 ,...,Fil

l∑

j=1

f̂>ij Ŝ f̂ij .

Here, f̂ and Ŝ are defined as

f̂ = f , Ŝ = (Lb − λ∗Lw) . (4.13)

�

The theorem suggests that to maximize f>(Lb−λLw) f , a feature needs to
simultaneously maximize f>Lb f , which requires assigning different values to
samples that are from different classes; and minimize f>Lw f , which requires
assigning similar values to samples that are from the same class.1 The Trace
Ratio Criterion selects features in a similar way as the Fisher score. Actually,
it is shown in [130] that with specific definitions for Lw and Lb, The Trace
Ratio Criterion is equivalent to the Fisher Score method.

1λ is used to balance the two components in the criterion.

Connections to Existing Algorithms 89

4.1.5 Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC) was first proposed
in [62] for measuring the dependence between two kernels. In [165], HSIC
is applied for feature selection, and the basic idea is to select a subset of
features, such that the kernel constructed using the feature subset maximizes
HSIC when compared to a given kernel K. In [165], an unbiased estimator of
HSIC is given as:

ϕH (F) =
1

n(n− 3)

[
Trace (KFK) +

1>KF11>K1

(n− 1)(n− 2)

2

n− 2
1>KFK1

]
. (4.14)

In the equation, F is a subset of the original features and KF is the kernel
obtained from F. To achieve an unbiased estimation, HSIC requires the diag-
onal elements of K and KF to be set to 0. Based on HSIC, features can be
selected via either backward elimination or forward selection. Using a general
kernel in HSIC can be very time-consuming, due to the complexity of the
kernel construction step in each iteration. Therefore, a linear kernel is usually
used. It is shown in [164] that when a linear kernel is used for constructing
KF, selecting k features using HSIC can be achieved as solving the problem

arg maxFi1 ,...,Fil

l∑

j=1

f>ij SHSIC fij ,

where

SHSIC =
1

n(n− 3)

[
K +

(
11T − I

) 1TK1

(n− 1)(n− 2)

2

n− 2

(
K11T − diag (K1)

)]
.

(4.15)
It is clear that in this case, HSIC forms a special case of SPEC, which is

formally stated in the following theorem.

Theorem 4.1.6 When a linear kernel is applied, selecting l features using
HSIC can be achieved by maximizing the following objective function:

arg maxFi1 ,...,Fil

l∑

j=1

f̂>ij Ŝ f̂ij , f̂ = f , Ŝ = SHSIC .

�

4.1.6 A Summary of the Equivalence Relationships

We show that five existing representative feature selection algorithms, in-
cluding Laplacian Score, Fisher Score, ReliefF, Trace Ratio, and HSIC, all fit
into the framework formulated in Equation (3.1). In Table 4.1, we summarize
the sample similarity matrix and the corresponding normalization criteria used

9
0

S
pectra

l
F

ea
tu

re
S

electio
n

fo
r

D
a
ta

M
in

in
g

TABLE 4.1: The similarity matrices and feature vectors used in different algorithms.

Algorithm Sample Similarity Matrix Feature Normalization

SPEC - ϕ̂1(·) Ŝ = U (I− γ (Σ)) U> f̂ = D
1
2 f

‖D 1
2 f‖

SPEC - ϕ̂2(·) Ŝ = U (I− γ (Σ)) U> f̃ = D
1
2 f

‖D 1
2 f‖
, f̂ = f̃−f̃>ξ1ξ1√

1−(f̃>ξ1)
2

SPEC - ϕ̂3(·) S = Uk (γ (2I)− γ (Σk)) U>k f̂ = D
1
2 f

‖D 1
2 f‖

Laplacian Score D−
1
2 SD−

1
2 f̃ = D

1
2 f

‖D 1
2 f‖
, f̂ = f̃−f̃>ξ1ξ1√

1−(f̃>ξ1)
2

Fisher Score SFIS f̃ = D
1
2 f

‖D 1
2 f‖
, f̂ = f̃−f̃>ξ1ξ1√

1−(f̃>ξ1)
2

ReliefF SREL f̂ = D
1
2 f

‖D 1
2 f‖

Trace Ratio Criterion Lb − λ∗Lw f̂ = f

HSIC SHSIC f̂ = f

Connections to Existing Algorithms 91

in these algorithms. It turns out that although these algorithms were originally
designed to achieve different goals, they actually select features via estimating
their capability toward preserving sample similarity. One limitation seen in all
these algorithms is that they evaluate features independently, causing them to
be unable to handle redundant features. This is a common drawback of these
algorithms. To address this drawback, the multivariate formulations presented
in Chapter 3 for spectral feature selection can be utilized.

4.2 Connections to Other Learning Models

In the last section, we showed that many existing feature selection algo-
rithms can be reformulated as special cases of the univariate formulations
for spectral feature selection. In this section, we show that the multivariate
formulation for spectral feature selection,

arg min
W, λ

‖Y −XW‖2F + λ ‖W‖2,1
s.t. A = {i :

∥∥wi
∥∥
2
> 0}, Card (A) = l, (4.16)

can also be connected to some well-known learning models, including the
principal component analysis (PCA) [85], the linear discriminant analysis
(LDA) [51], and the support vector machine (SVM) [187], through their least
square formulations [178, 176]. These connections provide us interesting in-
sights, and allow us to compute sparse (or sparser) solutions for these models
using the techniques developed in Chapter 3. Note that spectral feature selec-
tion is for selecting original features, while PCA and LDA are for extracting
new features from the original ones. Therefore, the multivariate formulations
for spectral feature selection form a bridge that effectively connects two dif-
ferent types of dimensionality reduction techniques and allows for their joint
study.

4.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [51, 200, 204, 207, 202, 203, 201, 196]
is a supervised feature extraction approach. Assuming samples are from k
different classes. LDA tries to generate a k − 1 dimensional space to repre-
sent the data, such that in this space the samples from different classes are
well separable. LDA extracts new features by linearly combining the original
features.

92 Spectral Feature Selection for Data Mining

Example 17 Linear Discriminant Analysis (LDA)

Figure 4.1 shows how linear discriminant analysis works. In this ex-
ample, the data X ∈ Rn×2 distribute in a two-dimensional space (x-y
axes), and the samples are from two different classes. LDA determines a
weight vector w ∈ R2×1, and uses w to project the samples to generate
one-dimensional data

X̂ = Xw, X̂ ∈ Rn×1.

Let SEP
(
Ŵ
)

be a measurement that evaluates the separability of the

one-dimensional data X̂, e.g., the measurement defined in Equation (4.20).

LDA tries to find the w that maximizes SEP
(
Ŵ
)

. Note that, in this ex-

ample, X̂ contains only one feature, and it is a linear combination of the
original features in X.

Below, we present the sample separability measurement used in LDA. To
this end, we first define the total covariance matrix and the between-class
covariance matrix. We then define the sample separability measurement based
on the two covariance matrices.

Let n be the number of samples, nj the number of samples in the j-th
class, xi the i-th sample, c the mean of the data, and cj the mean of the
data in the j-th class.2 The total covariance matrix St and the between-class
covariance matrix Sb are defined as

St =
1

n

n∑

i=1

(xi − c)(xi − c)
T
,

Sb =
1

n

k∑

j=1

nj

(
c(j) − c

)(
c(j) − c

)T
,

where c =
1

n

n∑

i=1

xi, c(j) =
1

ni

∑

i∈classj

xi.

Let X̂ = XW be the data obtained by projecting the original data X
into the lower-dimensional space generated by LDA, where W ∈ Rm×(c−1)
is the projection matrix.3 Let Ŝt and Ŝb be the total and the between-class
covariance matrices of the data in the lower dimensional space, respectively.

2xi, c, cj ∈ Rm×1 are column vectors.
3m is the number of features, c is the number of classes. Note that W has c−1 columns,

since rank (Sb) = c− 1.

Connections to Existing Algorithms 93

y

x

FIGURE 4.1: Linear discriminant analysis.

94 Spectral Feature Selection for Data Mining

We have

Ŝt = W>StW, (4.17)

Ŝb = W>SbW. (4.18)

Based on the the total and the between-class covariance matrices, a popular
criterion for measuring sample separability in LDA [199] is defined as

Trace
(
S−1t Sb

)
. (4.19)

It can be verified that for a data set, when samples from the same class
are near one another, and samples from different classes are far apart, the
above equation will return a large value [201]. Based on this observation, the
projection matrix W in LDA is obtained by solving the problem

W∗ = argmax
W

(
Trace

(
Ŝ−1t Ŝb

))
. (4.20)

It can be shown that the c−1 columns of W∗ are given by the c−1 eigenvectors
of S−1t Sb, corresponding to the c− 1 largest eigenvalues [199].

In Least Square LDA (LSLDA) [204], instead of solving an eigenvalue
problem, we compute W by solving a least square problem. Let yi be the
label of the i-th sample. We can define a target matrix, Y as

YLDA
i,j =





√
n
nj
−
√

nj
n

yi = j

−
√

nj
n

otherwise.
(4.21)

Assuming that X is centralized, we can verify that the following equation
holds:

Sb =
1

n
XYLDAYLDA>X>, St = XX>. (4.22)

And the objective of LSLDA is defined as

min
W
‖XW −YLDA‖2F , W ∈ Rm×k. (4.23)

In [204], it is shown that when rank(St) = rank(Sw) + rank(Sb), LSLDA
is strictly equivalent to LDA. It turns out that this condition is quite mild,
and it usually holds when the dimensionality of the data is high.

Comparing Equation (4.16) with Equation (4.23), we can see that the
multivariate formulation for spectral feature selection and LSLDA share sim-
ilar objective functions. Their sole difference is that the former one applies
a sparse regularization to ensure that only l features are used to construct
the optimal solution. Therefore, when YLDA is used as the target matrix in
Equation (4.16), we can obtain a sparse solution for LSLDA, and the lin-
ear combination of the selected feature will form a lower dimensional space,
in which samples from different classes can be separated well. This analysis

Connections to Existing Algorithms 95

shows that the sparse LSLDA (SLSLDA) forms a special case of the multi-
variate spectral feature selection by using YLDA as the target matrix. Also
we can show that when S is the matrix defined in Equation (4.4), KLSLDA

can be formulated as

KLSLDA = (YLDA)(YLDA)> = nSFIS − 11>. (4.24)

Since the matrix 11> and n are constant, it turns out that the Fisher Score and
the LSLDA essentially specify the same simple similarity. Unlike the Fisher
Score, the LSLDA is a supervised feature extraction algorithm, which gener-
ates new features by combining original features.

4.2.2 Least Square Support Vector Machine

Support Vector Machine (SVM) [34, 36, 167, 150, 73, 229, 27, 22, 34] is a
supervised learning model that has been widely applied in various data mining
applications [216, 83, 68, 103, 184, 55, 20, 84].

1

Support vectors of the positive class

Support vectors of the negative class

FIGURE 4.2: A linear separating hyperplane of support vector machine.

As shown in Figure 4.2, given a binary classification problem, SVM tries to
find a hyperplane, which can separate the samples from different classes with

96 Spectral Feature Selection for Data Mining

a large margin. This idea can be formulated using the following equation.

min ‖w‖
s.t. yi

(
x>i w + b

)
≥ 1− ξi, ∀i

ξi ≥ 0,
n∑

i=1

ξi ≤ C. (4.25)

In the above equation, xi is the i-th sample, and yi ∈ {−1, 1} is its label.
w and b are the weight vector and the interception defining the hyperplane
h =

{
x|x>w + b = 0

}
. Given a sample x, x>w+b computes the distance from

x to the hyperplane h. It is easy to verify that if x is below the hyperplane,
x>w + b ≤ 0, otherwise x>w + b ≥ 0.

Let the region below h correspond to the negative class, and the other side
corresponds to the positive class. The condition, yi

(
x>i w + b

)
≥ 1, forces all

the samples to stay in the region that their classes belong to. And additionally,
they must be at least 1

‖w‖ away from the hyperplane h [72]. Therefore, 1
‖w‖

measures the size of the margin corresponding to classifying the samples using
the hyperplane h.

Since the samples are not always linearly separable, slack variables ξi, i =
1, . . . , n are introduced to allow some samples to stay on the wrong side:

yi
(
x>i w + b

)
≥ 1− ξi, ∀i.

Obviously, if yi
(
x>i w + b

)
< 0, xi will be on the wrong side, and corre-

spondingly, ξi > 0. Similarly, if yi
(
x>i w + b

)
> 1, xi will be on the correct

side, and correspondingly, ξi = 0. This observation suggests that
∑
ξi can be

used to bound the total number of training misclassifications. In SVM, all the
samples that satisfy yi

(
x>i w + b

)
≤ 1 are called support vectors, and they are

either in the margin area, or on the wrong side of the hyperplane h.
The training of SVM involves solving a convex quadratic optimization

problem (QP). Solving QP is computationally expensive, due to the need
to compute a dense Hessian matrix. Solving the QP with a general-purpose
QP solver would have a time complexity of O(n3) [18], which is not scalable.
To address this problem, powerful optimization techniques such as the interior
point method [194] and the coordinate descent method [29] have been applied
for solving the problem in very efficient ways.

Instead of solving a QP problem, in the least square SVM (LSSVM) [178],
the SVM formulation is approximated and reformulated as a least square
problem:

min
W
‖XW −YSVM‖2F , W ∈ Rm×k,

YSVM
i,j =

{
1 yi = j
−1 otherwise.

(4.26)

In [208], it is shown that for high-dimensional data, LSSVM and SVM behave
similarly.

Connections to Existing Algorithms 97

Comparing Equation (4.16) with Equation (4.26), we can see that when
YSVM
i,j is used in both equations, the only difference between the multi-variate

formulation for spectral feature selection and the LSSVM is that the former
applies a sparse regularization to ensure that only l features are used to con-
struct the solution. Therefore, when YSVM is used as the target matrix in
Equation (4.16), we can obtain a sparse solution for LSSVM. This analysis
shows that sparse LSSVM (SLSSVM) forms a special case of multivariate
spectral feature selection by using YSVM as the target matrix.

4.2.3 Principal Component Analysis

Principal component analysis (PCA) [85] is an unsupervised feature ex-
traction approach. Given a data set X, the PCA generates a set of principal
components (the new features), which maximizes the variance of the data pro-

jected on them. Given the covariance matrix C = 1
n

n∑
i=1

(xi − c)(xi − c)
T

, the

principal components of X can be obtained by computing the top eigenvectors
of C corresponding to the largest eigenvalues.

Example 18 Principal components of two-dimensional data

Figure 4.3 shows the distribution of a two-dimensional data set X. Since
X ∈ Rn×2, its covariance matrix C is of rank 2, C ∈ R2×2. Therefore,
using PCA we can obtain two principal components for X: w1 and w2.
w1 is the largest principal component. It is the direction that maximizes
the variances of the projected data, Xw1. w2 is the smallest principal
component. w1 and w2 are orthogonal.

If we let P = I − 1
n11>, we have C = (PX)

>
(PX). Based on this

observation, we can compute the variance of Xw1 using the equation

V ar (Xw1) = (PXw1)
>

(PXw1) = w>1 Cw1.

To maximize the above equation, we have w1 = ξ1, where ξ1 is the
eigenvector of C corresponding to the largest eigenvalue. Similarly, let X
be an m-dimensional data, X ∈ Rn×m. Its first l principal components can
be obtained by computing the top l eigenvectors of C, which corresponds
to the l largest eigenvalues.

Below we show the connection between the multivariate formulation for
spectral feature selection and the least square formulation for PCA.

Assume that m ≥ n, and X = UΣV> is the SVD of X. Let U =
{u1, . . . ,un}, V = {v1, . . . ,vn}, and Σ = diag{λ1, . . . , λn}. It is shown in [230]

98 Spectral Feature Selection for Data Mining

FIGURE 4.3: The principal components determined by PCA.

that the principal components generated by PCA can be equally obtained by
solving the following problem:

wi = arg max
wi
‖yi −Xwi‖2,

yi = λivi, i = 1, . . . , k. (4.27)

Based on this observation, the authors in [230] proposed to obtain the
sparse solutions for PCA by solving an L1-norm regularization problem:

wi = arg max
wi
‖yi −Xwi‖2,

‖wi‖1 ≤ t,
yi = λivi i = 1, . . . , k. (4.28)

By considering the k principal components together, Equation (4.28) can be
written as:

W = arg max
W
‖Y −XW‖F ,

W = {w1, . . . ,wk}, ‖wi‖1 ≤ t,
Y = VkΣk, (4.29)

where Vk = {v1, . . . ,vk}, and Σk = diag{λ1, . . . , λk}.
Comparing Equation (4.27) and Equation (4.29) with Equation (4.16), it

Connections to Existing Algorithms 99

is clear that PCA eccentrically projects samples to a lower-dimensional space,
where the similarity between samples measured by their inner product (in
the original space) is best preserved. Therefore, the sparse PCA formulation,
specified in Equation (4.28), can be regarded as a special case of the multi-
variate spectral feature selection, when a linear kernel is used to define the
similarity among samples. As compared to sparse PCA, the usage of the L2,1

norm in Equation (4.16) makes the formulation more suitable for feature se-
lection. The L1-norm used in Equation (4.28) ensures that each wi is sparse.
However, in different wi, different features are used. When considering all wi

together, many features may still be used in the obtained W. In contrast, the
L2,1 norm ensures that only a small set of the features are used in constructing
the whole W.

4.2.4 Simultaneous Feature Selection and Extraction

Feature selection achieves dimensionality reduction by selecting a small set
of the original features. Feature extraction reduces dimensionality by generat-
ing a small set of new features via combining the original features. Currently,
feature selection and feature extraction are largely studied independently. The
above analysis shows that feature selection and feature extraction can actually
be done simultaneously with the multivariate formulation for spectral feature
selection.

By applying feature selection, the redundant and irrelevant features can
be removed. This helps us effectively reduce the noise in the data. By applying
feature extraction, we can combine the selected features and generate a smaller
set of new features. Compared to the original features, the newly generated
features may possess stronger discriminative power, and usually result in bet-
ter learning performance. The multivariate formulations for spectral feature
selection form a bridge connecting feature selection with feature extraction,
and allow us to take full advantage of both techniques.

4.3 An Experimental Study of the Algorithms

In this section we empirically evaluate the performance of various spectral
feature selection algorithms in both supervised and unsupervised learning con-
texts. In the experiments, we compare nine feature selection algorithms. For
supervised learning, eight feature selection algorithms are chosen for com-
parison: ReliefF, Fisher Score, Trace Ratio Criterion, HSIC, MRSF, MCSF,
mRMR [40], and AROM-SVM [192]. The first six are spectral feature selec-
tion algorithms. The last two are existing state-of-the-art feature selection
algorithms. Both of the algorithms are able to handle redundant features, and
are used in the experiment as the baseline algorithms for comparison. For un-

100 Spectral Feature Selection for Data Mining

TABLE 4.2: Summary of the benchmark data sets

Data Set # Features # Instances # Classes
PIE10P 2400 210 10
ORL10P 10000 100 10
TOX 5748 171 4
CLL-SUB 11340 111 3

supervised learning, six algorithms are used for comparison: Laplacian Score,
SPEC, Trace Ratio Criterion, HSIC, MRSE, and MCSF. They are all spec-
tral feature selection algorithms. For MRSF and MCSF, in supervised learning
context, S is calculated by Equation (4.4); and in unsupervised learning, S
is calculated by the Gaussian RBF kernel function. Four high-dimensional
data sets are used in the experiment. They are two image data sets: PIE10P4

and ORL10P5; and two microarray data sets: TOX and CLL-SUB.6 Detailed
information of the benchmark data sets is listed in Table 4.2.

Let F be a set of the selected features, and XF is the data set only con-
taining the features in F. In the supervised learning setting, algorithms are
compared on (1) classification accuracy and (2) redundancy rate. The
redundancy rate is measured by

RED (F) =
1

m(m− 1)

∑

fi,fj∈F,i>j

ρi,j ,

where ρi,j measures the correlation between the i-th and j-th features. A large
value of RED (F) indicates that many selected features are strongly correlated
and thus redundancy is expected to exist in F.

In the unsupervised learning setting, three measurements are used to com-
pare the performance of the feature selection algorithms: (1) redundancy
rate defined in Equation (4.3); (2) scale of the residue; and (3) Jaccard
score [81]. The scale of the residue is computed by the equation

‖XFXF
> −K‖2F .

The Jaccard score is computed by the equation

JAC (KF,K, k) =
1

n

n∑

i=1

NB (i, k,KF) ∩NB (i, k,K)

NB (i, k,KF) ∪NB (i, k,K)
,

where KF = XFX>F and K are the linear kernel constructed using the selected

4http://peipa.essex.ac.uk/ipa/pix/faces/manchester/. Images are subsampled down to
the size of 60×40.

5http://www.uk.research.att.com/facedatabase.html. Images are subsampled down to
size of 100×100.

6Both data are retrieved from the Gene Expression Omnibus gene expression repository
(http://www.ncbi.nlm.nih.gov/geo/) with retrieval IDs: GDS1454 and GDS968.

Connections to Existing Algorithms 101

features and the input similarity matrix, respectively. Here NB (i, k,K) re-
turns the k nearest neighbors of the i-th instance according to the pairwised
similarity specified by K. The Jaccard score measures the averaged overlap-
ping of the neighborhoods specified by KF and K. A high Jaccard score
indicates that the pairwised similarities specified by the two similarity ma-
trices are consistent. The scale of the residue and the Jaccard score are used
to assess an algorithm’s capability of preserving the sample similarity in the
continuous and the discrete ways, respectively.

In the supervised learning context, for each data set, we randomly sample
50% data for training, and the remaining for testing. The process is repeated
20 times. Different algorithms are evaluated. The results are averaged to obtain
the final results. Linear SVM is used for classification. The parameters for
feature selection algorithms and the SVM are tuned with cross-validation, if
necessary. The Student’s t-test is used to evaluate the statistical significance
with p-value < 0.05. For the unsupervised learning setting, all the samples are
used for feature selection. The selected features are evaluated using the three
measurements mentioned above.

4.3.1 A Study of the Supervised Case

4.3.1.1 Accuracy

The classification accuracy results are shown in Figure 4.4 and Table 6.5.
Figure 4.4 contains the plots of the accuracy of the SVM classifier using the
top 10, 20, . . ., 200 features selected by each algorithm. Table 6.5 shows the
aggregated accuracy of different algorithms on each data set. The aggregated
accuracy is obtained by averaging the averaged accuracy achieved by SVM
using the top 10, 20, . . ., 200 features selected by each algorithm. The value in
the parentheses is the p-Value. In Figure 4.4 and Table 6.5, we can observe that
MRSF produces superior classification performance compared to the other
algorithms. The performance of MCSF is also good, which is the second best
in the test.

4.3.1.2 Redundancy Rate

Table 4.4 presents the averaged redundancy rates of the top n features
selected by different algorithms, where n is the number of samples. We choose
n, as when the number of selected features is larger than n, any feature can
be expressed by a linear combination of the remaining ones, which introduces
unnecessary redundancy in evaluation. In the table, the boldfaced values are
the lowest redundancy rates or the ones without significant difference to the
lowest. The results from the redundancy rates show that MRCF and MRSF
all attain low redundancy rates, which suggests that the redundancy removal
mechanisms in both algorithms are effective. We also observe that the two
baseline algorithms mRMR and AROM-SVM also produce low redundancy

102 Spectral Feature Selection for Data Mining

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

ORL

ReliefF
Fisher Score
Trace−ratio
HSIC
mRMR
AROM−SVM
MCSF
MRSF

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1
PIE

0 50 100 150 200

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

TOX

20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

CLL−SUB

FIGURE 4.4: (SEE COLOR INSERT) Study of supervised cases: Plots
for accuracy (y-axis) vs. different numbers of selected features (x-axis) on the
six data sets. The higher the accuracy, the better.

C
o
n

n
ectio

n
s

to
E

xistin
g

A
lgo

rith
m

s
103

TABLE 4.3: Supervised cases: Aggregated accuracy. The p-value in the parentheses is obtained from t-test.

Algorithm ORL PIE TOX CLL-SUB AVE WIN

ReliefF 0.83 (0.00) 0.94 (0.00) 0.77 (0.03) 0.67 (0.00) 0.80 0
Fisher Score 0.80 (0.00) 0.93 (0.00) 0.72 (0.00) 0.54 (0.00) 0.75 0
Trace-ratio 0.80 (0.00) 0.93 (0.00) 0.72 (0.00) 0.54 (0.00) 0.75 0
HSIC 0.80 (0.00) 0.94 (0.00) 0.73 (0.00) 0.55 (0.00) 0.75 0
mRMR 0.73 (0.00) 0.95 (0.00) 0.70 (0.00) 0.64 (0.00) 0.75 0
AROM-SVM 0.78 (0.00) 0.94 (0.02) 0.64 (0.00) 0.57 (0.00) 0.73 0
MCSF 0.90 (0.05) 0.95 (0.00) 0.74 (0.00) 0.69 (0.34) 0.82 0
MRSF 0.91 (1.00) 0.98 (1.00) 0.79 (1.00) 0.71 (1.00) 0.85 4

TABLE 4.4: Supervised cases: Averaged redundancy rate. The p-value in the parentheses is obtained from t-test.

Algorithm ORL PIE TOX CLL-SUB AVE WIN

ReliefF 0.92 (0.00) 0.36 (0.00) 0.34 (0.00) 0.59 (0.00) 0.55 0
Fisher Score 0.79 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.62 0
Trace-ratio 0.79 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.62 0
HSIC 0.79 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.62 0
mRMR 0.25 (0.29) 0.29 (0.00) 0.26 (0.00) 0.26 (0.00) 0.26 0
AROM-SVM 0.25 (0.44) 0.32 (0.00) 0.15 (1.00) 0.59 (0.00) 0.33 1
MCSF 0.26 (0.00) 0.24 (0.48) 0.30 (0.00) 0.44 (0.00) 0.31 0
MRSF 0.25 (1.00) 0.24 (1.00) 0.16 (0.00) 0.21 (1.00) 0.21 3

104 Spectral Feature Selection for Data Mining

TABLE 4.5: Study of the unsupervised cases: Averaged residue scale, the
lower the better.

Algorithm ORL PIE TOX CLL-SUB AVE WIN

Laplacian Score 112.80 208.97 178.69 127.67 157.03 0
SPEC-1 112.79 220.42 179.21 126.65 159.77 0
SPEC-3 122.51 201.25 176.15 120.74 155.16 0
Trace-Ratio 112.79 200.68 179.30 119.70 153.12 0
HSIC 112.79 200.64 179.24 119.79 153.12 0
MCSF 91.03 183.04 166.23 107.25 136.89 4
MRSF 91.19 187.05 167.07 108.96 138.57 0

rates. Since the two algorithms are able to remove redundant features, the
observation is consistent with our expectation.

4.3.2 A Study of the Unsupervised Case

4.3.2.1 Residue Scale and Jaccard Score

Tables 4.5 and 4.6 present the averaged residue scale and Jaccard score
achieved by different algorithms on the benchmark data sets, when the top n
features are selected. The two measurements assess algorithms’ capability of
similarity preserving. The results show that among all the algorithms, MCSF
and MRSF achieve better performance on all four data sets, indicating their
strong capability of sample similarity preserving.

We observe that the performance of MRSF is inferior to that of MCSF.
The reason is that MRSF optimizes ‖XWW>X> −K‖2F , while in residue
scale and Jaccard score, XFX>F is used to compute KF. It is possible that
the performance of MRSF is underestimated by the two measurements, since
MRSF may select features whose linear combination can produce a similarity
matrix that well preserves the similarity specified by K. To clearly show this,
Table 4.7 lists the aggregated residue scale and Jaccard score of MRSF and
MCSF, when XWW>X> is used to compute KF in the two measurements.
Here the aggregated residue scale and Jaccard score are obtained by averaging
the averaged residue scale and Jaccard score over four benchmark data sets.
The results show that when the weight matrix W is taken into account, MRSF
achieves better results than MCSF. This indicates that the features selected by
MRSF also have strong capability of similarity preserving through their linear
combinations. This fact is also verified by the good classification performance
of the SVM classifier on the features selected by MRSF.

Connections to Existing Algorithms 105

TABLE 4.6: Study of unsupervised cases: Averaged Jaccard score, the higher
the better.

Algorithm ORL PIE TOX CLL-SUB AVE WIN

kNB = 1

Laplacian Score 0.04 0.02 0.08 0.03 0.04 0
SPEC-1 0.04 0.03 0.09 0.02 0.05 0
SPEC-3 0.02 0.06 0.09 0.05 0.05 0
Trace-Ratio 0.06 0.04 0.13 0.06 0.07 0
HSIC 0.06 0.04 0.13 0.03 0.06 0
MCSF 0.53 0.26 0.50 0.19 0.37 2
MRSF 0.60 0.35 0.35 0.19 0.37 3

kNB = 5

Laplacian Score 0.09 0.05 0.14 0.09 0.09 0
SPEC-1 0.09 0.05 0.14 0.11 0.10 0
SPEC-3 0.13 0.07 0.16 0.12 0.12 0
Trace-Ratio 0.08 0.07 0.15 0.12 0.11 0
HSIC 0.08 0.07 0.15 0.13 0.11 0
MCSF 0.72 0.27 0.47 0.23 0.42 3
MRSF 0.70 0.44 0.35 0.22 0.43 1

TABLE 4.7: The aggregated residue scale and Jaccard score of MCSF and
MRSF when the weight matrix W of MRSF is considered in calculating the
measurements.

Algorithm Residue JAC kNB = 1 JAC kNB = 5
MCSF 136.89 0.37 0.42
MRSFW 91.45 0.63 0.53

4.3.2.2 Redundancy Rate

Table 4.8 shows the averaged redundancy rates with the top n features
selected by different algorithms on the benchmark data sets. The results show
that the features selected by the MCSF and MRSF contain much less re-
dundancy comparing with the other algorithms. This is expected, since those
algorithms cannot remove redundant features.

106 Spectral Feature Selection for Data Mining

TABLE 4.8: Study of unsupervised cases: Averaged redundancy rate, the
lower the better.

Algorithm ORL PIE TOX CLL-SUB AVE WIN

Laplacian Score 0.86 0.75 0.46 0.65 0.68 0
SPEC-1 0.86 0.83 0.47 0.64 0.70 0
SPEC-3 0.90 0.68 0.41 0.51 0.63 0
Trace-Ratio 0.86 0.70 0.48 0.58 0.65 0
HSIC 0.86 0.70 0.48 0.58 0.65 0
MCSF 0.28 0.38 0.16 0.15 0.24 3
MRSF 0.28 0.26 0.22 0.29 0.26 2

4.4 Discussions

In this chapter, we studied the connections between spectral feature se-
lection and a variety of exiting feature selection and feature extraction al-
gorithms. The study provides us interesting insights into these existing al-
gorithms, and enables us to develop more powerful dimensionality reduction
approaches based on the presented spectral feature selection frameworks. We
conducted experiments to study the performance of various spectral feature
selection algorithms. The experiment results from both supervised and un-
supervised learning settings showed that the multivariate formulations for
spectral feature selection can select features containing less redundancy and
producing superior learning performance.

Given a high-dimensional space, many approaches have been proposed to
find a low-dimensional space, where the geometric structure of the data is
preserved according to certain criteria. These methods in general fall into
the category of dimensionality reduction via feature extraction, instead of
feature selection. The representative algorithms in this category include Mul-
tidimensional Scaling (MDS) [35], ISOMAP [182], Locally Linear Embedding
(LLE) [145], Laplacian Eigenmaps [13], Semidefinite Embedding (SDE) [191],
Neighborhood Preserving Embedding (NPE) [75], and Structure Preserving
Embedding (SPE) [155], to name a few. The difference between feature extrac-
tion and feature selection is that to reduce dimensionality, feature extraction
generates a small set of new features by combining the original features, while
feature selection selects a small set of original features exactly. By keeping
the original features, feature selection improves the interpretability of learn-
ing models, which is preferred in many real applications, such as text mining
and genetic analysis. Many frameworks have been proposed to unify the afore-
mentioned feature extraction methods in various ways [148, 195, 198, 24, 176].
Comparing with these works, our multivariate formulations for spectral feature

Connections to Existing Algorithms 107

selection form a bridge connecting feature selection with feature extraction,
and allow us to take full advantage of both techniques.

A data set with both very high dimensionality and huge numbers of sam-
ples proposes a serious challenge to feature selection. In the next chapter, we
study how to how handle very large-scale data sets in spectral feature selection
via distributed parallel processing.

This page intentionally left blankThis page intentionally left blank

Chapter 5

Large-Scale Spectral Feature Selection

Continual advances in computer-based technologies have enabled researchers
and engineers to collect data at an increasingly fast pace. Business and sci-
entific data from many fields, such as finance, genomics, and physics, are
often measured in gigabytes (GB, 29 bytes), terabytes (TB, 212 bytes), and
sometimes even petabytes (PB, 215 bytes). For instance, it is reported that
in 2010, one of eBay’s data warehouses reached 10PB and will grow to 20PB
in 2011. Other business operators, such as Bank of America, WalMart, and
Dell also reported their data warehouses to be in a PB range. The enormous
proliferation of large-scale data sets brings new challenges to data mining
techniques. Scalability and efficiency are two critical issues in large-scale ap-
plications [54, 31, 215, 66, 3, 139, 173, 193]. To address these challenges,
existing data mining techniques need to be adapted and improved to handle
large-scale data sets [16, 154, 101, 86, 194, 28, 61, 19].

Given a large-scale data set containing a huge number of samples and
features, the scalability of a feature selection algorithm becomes extremely
important [160, 65, 57]. Most existing feature selection algorithms are de-
signed for handling data with a size under several gigabytes. Their efficiency
may be significantly downgraded, if not totally unapplicable, when the data
size reaches hundreds of gigabytes. Efficient distributed programming models
and protocols, such as the Message Passing Interface (MPI) [163] and Google’s
MapReduce [1], have been proposed to facilitate programming on high perfor-
mance computer grids [105] or clusters [10] to handle large-scale data prob-
lems.1 However, most existing feature selection techniques are designed to run
in a centralized computing environment. For instance, it is assumed that all
data can be held in the memory or, at least, all data are stored in one cen-
tral storage space. Therefore, these algorithms cannot benefit from advanced
distributed parallel computing techniques for improving efficiency and scala-
bility.

In this chapter, we show that the proposed spectral feature selection tech-
nique can be conveniently extended to handle large-scale data via applying
mature distributed parallel computing techniques such MPI or MapReduce.
The key idea is data partition, as shown in Figure 5.1. To fit spectral feature

1Both computer grid and computer cluster refer to a set of computers that are connected
so that they can solve a problem together. The computer nodes of a grid are loosely coupled,
while the computer nodes of a cluster are tightly coupled. Also the computer nodes in a
cluster are homogenous, while the computer nodes in a grid can be heterogeneous.

109

110 Spectral Feature Selection for Data Mining

data partition 1 data partition 3

+ + + + + +

+ + + + + + + +

slave 1

Master

Summation over samples

Computation involved
in spectral feature

selection

data partition 2

slave 2 slave 1

+ +

local result 1 local result 2 local result 3 global result

FIGURE 5.1: Data partition for large-scale spectral feature selection.

selection into a distributed computing environment, we first decompose the
computation involved in feature evaluation into different types of summation
computation over the samples. This allows us to distribute samples to the
computer nodes of a grid (or cluster), so that different portions of the sum-
mation computation can be done in parallel to generate local results. These
local results can then be aggregated to obtain a global result. It can be shown
that when the sample size is huge, this computing scheme can result in a linear
speedup as the number of computer nodes used for computation increases.

In the MPI framework, the computer nodes that generate the local re-
sults are called slaves, and the computer node that controls the slaves and
aggregates the local results is called the master . Similarly, in the MapReduce
framework, the functions that generate the local results (run in parallel) are
called mappers, and the functions that aggregate the local results are called
reducers. In this chapter, we show how spectral feature selection can be im-
plemented using MPI for distributed parallel processing. This technique can
also be implemented using MapReduce in a similar way.

In the following sections, we will first use linear regression as an example
to illustrate how we can implement it in a distributed computing environment
by partitioning data and distributing samples to computer nodes. We then
show how to implement spectral feature selection in a distributed computing
environment using MPI. We study both univariate and multivariate formu-
lations for spectral feature selection. We also conduct complexity analysis to
study the efficiency of the implementations.

Large-Scale Spectral Feature Selection 111

5.1 Data Partitioning for Parallel Processing

It is shown in [32] that many existing machine learning models, such as
Naive Bayes, logistic regression, support vector machine, and k-means, can be
parallelized in four steps:

1. Decompose the training process into summation forms over samples.

2. Partition data and storing data segments on nodes of the cluster.

3. Compute local results in parallel on computer nodes of the cluster.

4. Calculate the global result by aggregating the local results.

Below we use standard linear regression as an example to show how this
idea works. The objective of the standard linear regression is

w∗ = argmin
w
‖y −Xw‖ , (5.1)

and its optimal solution is given by

w∗ =
(
X>X

)−1
X>y. (5.2)

In the above equation, we assume that each row of X is an instance, X =
{x1, . . . ,xn}>. To obtain the optimal solution, we need to compute X>X and
X>y. Let A = X>X and b = X>y, and we can write A and b as two types
of summation computation over the samples:

A = X>X =

n∑

i=1

xix
>
i

b = X>y =

n∑

i=1

yixi. (5.3)

As shown in Figure 5.2, assume our data are stored on three computer
nodes (Slave 1, Slave 2, and Slave 3) of a cluster, and let P1, P2, and P3

denote the index sets containing the indices of the instances stored on the
three slaves, respectively. Equation (5.3) suggests that we can compute three
local results of A on the three slaves as

Aj =
∑

i∈Pj

xix
>
i , j = 1, 2, 3. (5.4)

112 Spectral Feature Selection for Data Mining

+ + + + + +

+ +
, , ,

Slave 1 Slave 2 Slave 3

Master

FIGURE 5.2: Partitioning data for parallel processing.

Since the computations of A1, A2, and A3 are independent, they can
be computed in parallel on each slave. After A1, A2, and A3 are obtained,
they can be sent to the master. We can compute A on the master by A =
A1 + A2 + A3. Similarly, we can also compute b in parallel. After obtaining
A and b, the optimal w∗ can be obtained by computing w∗ = A−1 b.

Let m be the number of features, n the number of samples, and p the
number of slaves. Also denote (Xj ,yj) as the data set containing the samples
on the j-th slave. The time complexities for computing Aj , bj , A, b, A−1,
and A−1b are:

1. Aj , OCPU

(
nm2

p

)
: Aj = X>j Xj , Xj ∈ R

n
p×m.

2. bj , OCPU

(
nm
p

)
: bj = Xjyj , Xj ∈ R

n
p×m, yj ∈ R

n
p×1.

3. A, OCPU
(
m2 log (p)

)
+ONET

(
m2 log (p)

)
: A =

p∑
j=1

Aj , Aj ∈ Rm×m.

4. b, OCPU
(
m log (p)

)
+ONET

(
m log (p)

)
: b =

p∑
j=1

bj , bj ∈ Rm.

Large-Scale Spectral Feature Selection 113

5. A−1, OCPU
(
m3
)
: A ∈ Rm×m.

6. A−1b, OCPU (nm): A−1 ∈ Rm×m, b ∈ Rm×1.

Here, OCPU (·) denotes the computation cost spent on computing the solution.
ONET (·) denotes the communication cost spent on transforming data from
the slaves to the master through the network. Usually, the time consumed
by one network operation is much longer than that used by one computation
operation, time (ONET (1)) � time (OCPU (1)). Therefore, in time complex-
ity analysis, we count the number of operations required for computation
and network transmission separately. For computing A and b, we need to
send data from slaves to the master. Therefore, the time complexity for these
two components contains both OCPU (·) and ONET (·). Here we assume that
a tree-based [63] distributed computation scheme, e.g., MPI REDUCE (see
Section 5.2.0.5), is used for computing A and b. And we will explain why
log (p) appears here in Section 5.2.0.5. Based on the above analysis, the time
complexity of the parallel regression process is

OCPU

(
nm2

p
+m3

)
+ONET

(
m2 log (p)

)
, p = 3.

Assuming that n� m, m� log (p), and the network is fast enough, we have

OCPU

(
nm2

p
+m3

)
+ONET

(
m2 log (p)

)
≈ OCPU

(
nm2

p

)
, p = 3.

This analysis shows that when sample size is large enough, the speedup of
the regression process is linear. In the following sections, we show how similar
processes can be used to parallelize spectral feature selection for handling
large-scale data sets.

5.2 MPI for Distributed Parallel Computing

Before we try to parallelize spectral feature selection, we briefly intro-
duce the message passing interface (MPI) standard.2 MPI defines a standard
interface for writing portable message-passing programs running on parallel
machines. Figure 5.3 shows an example of how MPI works. Given a set of p
computer nodes in the cluster, in most MPI applications, a set of p processes
are created at the initialization step, and one process is created per com-
puter node. These processes may execute different programs. Therefore, the
MPI programming model is referred to as MPMD (Multiple Processes, Mul-
tiple Data) model to distinguish it from the SPMD (Single Process, Multiple

2www.mpi-forum.org.

114 Spectral Feature Selection for Data Mining

CPU

I/O Memory

CPU

I/O Memory

CPU

I/O Memory

CPU

I/O Memory

Rank = 0 master

Rank = 1 slave1 Rank = 2 slave2 Rank = 3 slave3

Network Connection

MPI

FIGURE 5.3: Message passing interface (MPI) for distributed computing.

Data) model. In the SPMD model, every computer node executes the same
program. Therefore, compared with the SPMD model, the MPMD model has
tremendous flexibility for handling complex problems. In an MPI-based appli-
cation, one process may be assigned as the master (or root) and it coordinates
other processes. The remaining processes are managed by the master and are
called the slaves. In MPI, each computer node is associated with a number.
The number is called the rank of the node. Usually the selected master node
is numbered as rank = 0.

MPI defines a set of functions to facilitate the communication among the
processes running on different computer nodes [163]. Below we introduce three
MPI commands that will be used frequently in the following sections.

5.2.0.3 MPI BCAST

MPI BCAST� bu�er� count� datatype� root� comm �

INOUT bu�er starting address of bu�er

IN count number of entries in bu�er

IN datatype data type of bu�er

IN root rank of broadcast root

IN comm communicator

MPI BCAST broadcasts the buffer of the process with its rank = root to
all other processes. When communication needs to be made, all processes call
MPI BCAST. After return, the contents of root’s buffer are copied to all other
processes’ buffer. The first parameter of MPI BCAST, buffer, has different

Large-Scale Spectral Feature Selection 115

roles for different processes. For the process with its rank = root, buffer is an
input; for the processes with their rank 6= root, buffer contains the output.
Figure 5.4 shows how MPI BCAST works. As shown in Figure 5.5, when the
tree-based [63] distribution scheme is used for MPI Bcast implementation,
to broadcast a vector of length n to p computer nodes, the communication
complexity is ONET (n log2 (p)).

P1

P2

P3

P4

MPI-BCAST

P1

P2

P3

P4

rank=0

rank=1

rank=2

rank=3

P1

P2

P3

P4

MPI_BCAST(buffer, 1, INT, 0, …) buffer=1 buffer=1

MPI_BCAST(buffer, 1, INT, 0, …) buffer=0 buffer=1

MPI_BCAST(buffer, 1, INT, 0, …) buffer=0 buffer=1

MPI_BCAST(buffer, 1, INT, 0, …) buffer=0 buffer=1

FIGURE 5.4: MPI BCAST.

5.2.0.4 MPI SCATTER

Collective Communications ���

��	 Scatter

MPI SCATTER� sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype� root� comm�

IN sendbuf address of send bu�er

IN sendcount number of elements sent to each process

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements in receive bu�er

IN recvtype data type of receive bu�er elements

IN root rank of sending process

IN comm communicator

int MPI Scatter�void� sendbuf� int sendcount� MPI Datatype sendtype�

void� recvbuf� int recvcount� MPI Datatype recvtype�

int root� MPI Comm comm�

MPI SCATTER�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNT�

RECVTYPE� ROOT� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNT� RECVTYPE� ROOT� COMM�

IERROR

MPI SCATTER is the inverse operation to MPI GATHER�

The outcome is as if the root executed n send operations� MPI Send�sendbuf�i�

sendcount�extent�sendtype�� sendcount� sendtype� i������ i 	 � to n � �� and each

process executed a receive� MPI Recv�recvbuf� recvcount� recvtype� root������

An alternative description is that the root sends a message withMPI Send�sendbuf�

sendcount�n� sendtype� ����� This message is split into n equal segments� the ith seg�

ment is sent to the ith process in the group� and each process receives this message

as above�

The type signature associated with sendcount and sendtype at the root must be

equal to the type signature associated with recvcount and recvtype at all processes�

This implies that the amount of data sent must be equal to the amount of data

received� pairwise between each process and the root� Distinct type maps between

sender and receiver are still allowed�

All arguments to the function are signi�cant on process root� while on other

processes� only arguments recvbuf� recvcount� recvtype� root� comm are signi�cant�

MPI SCATTER splits the sendbuf of the process with rank = root into
segments of length equals to sendcount, and sends each of the other processes
(rank 6= root) a segment. In the communication process, all processes call
MPI SCATTER. For the process with its rank = root, sendbuf is the input,
and its length equals p × sendcount. For the processes with their rank 6= root,
recvbuf contains the output, and its length equals recvcount. Note sendcount

116 Spectral Feature Selection for Data Mining

P1 P3 P4 P5 P6 P7 P8 P2

iter 1

iter 2

iter 3

finish

FIGURE 5.5: MPI BCAST broadcasts data to p nodes in log2 (p) iterations.

and recvcount should be equal. Figure 5.6 illustrates how MPI SCATTER
works. To scatter a vector of length n to p computer nodes, the communication
complexity is ONET (n). MPI SCATTERV can be used, when data sent to
different nodes have different length.

P1

P2

P3

P4

MPI-SCATTER

P1

P2

P3

P4

2 1 3 4 1

2

3

4

FIGURE 5.6: MPI SCATTER.

Large-Scale Spectral Feature Selection 117

5.2.0.5 MPI REDUCE

Collective Communications ���

message from process i with a call to MPI Recv� recvbuf � displs�i
�extent�recvtype��

recvcounts�i
� recvtype� i� ����� where i 	 � � � � n � ��

All arguments on all processes are signi�cant� The argument comm must specify

the same intragroup communication domain on all processes�

Rationale� The de�nition of MPI ALLTOALLV gives as much �exibility as one

would achieve by specifying at each process n independent� point�to�point commu�

nications� with the exception that all messages use the same datatype� �End of

rationale��

���� Global Reduction Operations

The functions in this section perform a global reduce operation �such as sum� max�

logical AND� etc�� across all the members of a group� The reduction operation

can be either one of a prede�ned list of operations� or a user�de�ned operation�

The global reduction functions come in several �avors� a reduce that returns the

result of the reduction at one node� an all�reduce that returns this result at all

nodes� and a scan �parallel pre�x� operation� In addition� a reduce�scatter operation

combines the functionality of a reduce and of a scatter operation� In order to

improve performance� the functions can be passed an array of values� one call will

perform a sequence of element�wise reductions on the arrays of values� Figure ����

gives a pictorial representation of these operations�

	����� Reduce

MPI REDUCE� sendbuf� recvbuf� count� datatype� op� root� comm�

IN sendbuf address of send bu�er

OUT recvbuf address of receive bu�er

IN count number of elements in send bu�er

IN datatype data type of elements of send bu�er

IN op reduce operation

IN root rank of root process

IN comm communicator

int MPI Reduce�void� sendbuf� void� recvbuf� int count�

MPI Datatype datatype� MPI Op op� int root�

MPI Comm comm�

MPI REDUCE combines the elements provided in sendbuf of each pro-
cess using the operation op and returns the combined value in the recvbuf of
the process whose rank is equal to root. Commonly used op operations sup-
ported in MPI include MPI MAX, MPI MIN, MPI SUM, MPI PROD (prod-
uct), and some logical operations. In the communication process, all processes
call MPI REDUCE. For the process with its rank = root, recvbuf contains the
output and its length is equal to count. For the processes with their rank 6=
root, sendbuf is the input, and its length is also equal to count. MPI REDUCE
applies element-wise operation on the inputs. For instance, assuming that
there are three input vectors x1, x2, and x3, when op = MPI MAX, the el-
ements of the output vector o are computed by oi = max (x1,i, x2,i, x3,i). As
shown in Figure 5.8, when the tree-based [63] distribution scheme is used for
MPI REDUCE implementation, to reduce p vectors of length n, the commu-
nication complexity is ONET (n log (p)) and the computation complexity is
OCPU (n log (p)).

MPI_REDUCE

P1

P2

P3

P4

a

b

c

d

P1

P2

P3

P4

e

e = a+b+c+d

op=MPI_SUM

FIGURE 5.7: MPI REDUCE.

118 Spectral Feature Selection for Data Mining

P1 P3 P4 P5 P6 P7 P8 P2

iter 1

iter 2

iter 3

SUM SUM SUM SUM

1 1 1 1 1 1 1 1

2 2 2 2

4 4

8

finish

FIGURE 5.8: MPI REDUCE (MPI SUM) adds up data on p nodes in
log2 (p) iterations.

5.3 Parallel Spectral Feature Selection

In this section, we study how to implement spectral feature selection al-
gorithms in a distributed computing environment using MPI. The key idea
here is to decompose the feature evaluation process into multiple steps, such
that the majority of the computation of each steps can be written as sum-
mations over samples. This allows us to distribute samples to the computer
nodes of a cluster, so that the computation strategy introduced in Section 5.1
can be utilized for parallel processing. To this end, we first list the major
computation steps involved in spectral feature selection for both univariate
and multivariate formulations.

Large-Scale Spectral Feature Selection 119

5.3.1 Computation Steps of Univariate Formulations

Let S be the similarity matrix and f be a feature vector. According to Sec-
tion 4.1, the major computation steps of univariate spectral feature selection
formulations include:

1. Compute the similarity matrix S.

2. Normalize S and f to obtain Ŝ and f̂ , respectively.

3. Compute feature scores, f̂>Ŝ f̂ .

In real-world applications, we usually use a sparse similarity matrix. In a
similarity matrix, for an instance xi, we keep Si,j only if xj (or xi) is in its k
nearest neighbors of xi or (xj). The reason is that when the sample size is huge,
the size of a dense similarity matrix will be tremendous. Assuming that the
sample size is n, the size of the corresponding dense similarity matrix will be
4n (n+ 1) bytes,3 assuming the matrix is in double precision, and each double
precision float number occupies 8 bytes. From Figure 5.9, we can observe that
when sample size n is 2 million, the size of the corresponding dense similarity
matrix is about 14,901.17 GB.4 Note that if the dimensionality of the data
set is less than 2 million, which is almost always the case in a real-world
application, the size of a dense similarity matrix will be even bigger than the
original data set.

size (GB)

n

Size of a Dense Symmetric Matrix

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

1
.0

E+
0

5

2
.0

E+
0

5

3
.0

E+
0

5

4
.0

E+
0

5

5
.0

E+
0

5

6
.0

E+
0

5

7
.0

E+
0

5

8
.0

E+
0

5

9
.0

E+
0

5

1
.0

E+
0

6

1
.1

E+
0

6

1
.2

E+
06

1
.3

E+
0

6

1
.4

E+
0

6

1
.5

E+
0

6

1
.6

E+
0

6

1
.7

E+
0

6

1
.8

E+
0

6

1
.9

E+
0

6

2
.0

E+
0

6

FIGURE 5.9: Size of a dense symmetric matrix as n increase.

3The similarity matrix is symmetric, we only need to store half of the matrix.
414901.17 ≈ 8×

(
2× 106

)
×
(
2× 106 + 1

)
÷
(
230 × 2

)
.

120 Spectral Feature Selection for Data Mining

In SPEC, for noise reduction, we apply spectral matrix function γ (·) to
adjust the eigenvalues of the normalized similarity matrix (or the correspond-
ing normalized Laplacian matrix) to penalize the high-frequency components5

(see Section 2.4). It turns out that for a data set of very large scale, applying
such an operation may be very expensive. First, the time complexity of com-
puting a matrix-matrix multiplication is O

(
n3
)
. When n is very large, this

operation can be very expensive. Second, although our similarity matrix S is
sparse, Sp can be dense. And this matrix may be too big to store. Alterna-
tively, we can achieve noise reduction by only using the leading eigenvectors of
the similarity matrix. When the similarity matrix is sparse, using the Lanczos
method [142, 38] to calculate a few eigenpairs only requires roughly O

(
n2
)

operations, and the computation can also be parallelized.

5.3.2 Computation Steps of Multivariate
Formulations

For spectral feature selection with a multivariate formulation, the major
computation steps are different for the supervised and the unsupervised cases,
so we discuss them separately.

• Unsupervised Case:

1. Construct the similarity matrix S.

2. Compute its top k eigenpairs and the target matrix Y.

3. Solve the L2,1 regularized multiple output regression problem

arg min
W, λ

‖Y −XW‖2F + λ ‖W‖2,1
s.t. A = {i :

∥∥wi
∥∥
2
> 0}, Card (A) = l.

• Supervised Case:

1. Compute the target matrix Y.

2. Solve the L2,1 regularized multiple output regression problem

arg min
W, λ

‖Y −XW‖2F + λ ‖W‖2,1
s.t. A = {i :

∥∥wi
∥∥
2
> 0}, Card (A) = l.

Similar to the univariate formulation case, we use a sparse similarity matrix
in multivariate spectral feature selection for unsupervised learning.

In both univariate and multivariate spectral features, we need to compute
the similarity matrix. In the next section, we study how to efficiently compute
a sparse similarity matrix for a large-scale data set using a computer cluster.

5For normalized similarity matrix, the high-frequency components correspond to those
eigenvectors having small eigenvalues, and for normalized Laplacian matrix, they correspond
to the eigenvectors with large eigenvalues.

Large-Scale Spectral Feature Selection 121

5.4 Computing the Similarity Matrix in Parallel

To construct a sparse similarity matrix S, we may retain Si,j only if xj
(or xi) is among the k-nearest neighbors of xi (or xj). Typically k is a small
number (k � n).

Suppose p computer nodes are allocated in a computer cluster for parallel
spectral feature selection, and our data are partitioned in p parts and stored
distributedly in the p computer nodes. As shown in Figure 5.10(a), we want
to construct S in parallel and store a portion of it on each computer node.
The advantages of this strategy are twofold. First, by splitting S into many
parts and storing them distributedly, we can put the entire S in memory.
This allows us to do computation efficiently without accessing the hard disk.
Second, by storing S distributedly, we show that the computation related to
constructing S and evaluating features can all be done in parallel efficiently.

5.4.1 Computing the Sample Similarity

Assume that we compute sample similarity using an RBF kernel defined
as

K (xi,xj) = exp
(
‖xi − xj‖2

)
.

Figure 5.10(b) illustrates how the first column of S can be computed in parallel
on the p computer nodes of the cluster. The process contains the following
two steps:

1 Node1 broadcasts (MPI Bcast) x1 and ‖x1‖2 to all the other computer
nodes.

2 Nodet, t = 1, . . . , p, computes similarity between x1 and the samples on
the nodet

K (x1,xi) = exp
(
‖x1 − xi‖2

)
, i ∈ Partitiont, t = 1, . . . , p.

Since ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2x>i xj , we can accelerate the dis-
tance computation by precomputing ‖xi‖2 for all samples, and caching them
on the computer nodes. In this process, broadcasting x1 and ‖x1‖2 requires
ONET ((m+ 1) log (p)) for network transmission,6 and the computation re-

quires OCPU

(
mn
p

)
operations. By repeating this process for all samples, we

can obtain the complete similarity matrix S. The total cost is

ONET ((m+ 1)n log (p)) +OCPU

(
m
n2

p

)
. (5.5)

6Here, we assume that the tree-based distribution scheme is used for MPI Bcast imple-
mentation [63].

122 Spectral Feature Selection for Data Mining

n

m
1

p

n

n

n

n

1

p

S

X

(a) distributed data storage (b) parallel computation

S

FIGURE 5.10: The similarity matrix S is computed and stored in a dis-
tributed manner.

5.4.2 Inducing Sparsity

To construct a sparse similarity matrix efficiently, we can associate each
row with a priority queue [96], which helps track the k largest elements in
the row. Assuming that a binary heap is used for implementing the priority
queue, the time complexity for obtaining the smallest element in the queue is
O(1), and for insertion and deletion are both O (log (l)), where l is the size of
the queue. Considering the computation involved in queue operations, so far,
the cost for constructing S is

ONET ((m+ 1)n log (p)) +OCPU

(
(m+ log (k))

n2

p

)
. (5.6)

5.4.3 Enforcing Symmetry

S should be symmetric. However, the S we obtained so far is not. To ensure
that S is symmetric, we need to go through the following two steps:

1. Construct a list for each row of S that contains the k nonzero elements
of the row. In the list, the elements are ordered by their column index
in ascending order.

2. For each row of S, Si,:, comparing it with all other rows, Sj,:, j 6= i.
Update the elements in Si,: and Sj,: by Si,j = Sj,i = max (Si,j ,Sj,i).

The first step of the above process forms a list of lists (LIL) representation
of the sparse similarity matrix S [137]. The computation for converting the

content of the priority queues can be finished inOCPU

(
n
p k log (k)

)
operations.

The second step makes S symmetric, e.g., if Sj,i = 0 and Si,j 6= 0, then
Sj,i = max (Si,j ,Sj,i) = Si,j . The time complexity of this step is

ONET

(
{k log (p) + l}n

)
+OCPU

(
n2

p

)
,

Large-Scale Spectral Feature Selection 123

where l is the maximal size of the neighborhood of a sample. Note that l ≥ k,
since for each row some of the zero elements may be set to nonzero after
the symmetry enforcement process. Figure 5.11 shows how we can make S
symmetric by updating its rows.

𝑺𝑖,:

𝑺

𝑺𝑖+1,:

𝑺𝑖+𝑞,:

𝑺𝑛,:

𝑺𝑖,:

(a) (b)

𝑡𝑖

𝑡𝑖+1

𝑡𝑖+𝑞

𝑡𝑛 𝑡𝑗 > 𝑖 ⇒ 𝑺𝑗,𝑖 = 0

𝑖

FIGURE 5.11: Update rows to make S symmetric.

First, as shown in Figure 5.11(a), for row Si,:, we only send its section
Si,(i+1:n) to the rows Si+1,:, . . . ,Sn,: for comparison. The reason is that Si,(1:i)
and S(1:i),i have already been updated previously. Second, in the comparison
process, we always maintain a pointer for each list, which points to the position
t of the row. Here t is the smallest column index corresponding to a nonzero
element of the row and is larger than i − 1, e.g., Sj,t > 0, t > i − 1. These
pointers help us find Sj,i in O(1) operation. When Si,j 6= 0 and Sj,i = 0, we
update the row Sj,: by inserting Si,j in Sj,: as Sj,i. Similarly, if Si,j = 0 and
Sj,i 6= 0, we update Si,: by inserting Sj,i in Si,: as Si,j . After updating Sj,i,
for each row, if the tj is equal to i, tj = i, then the pointer is updated by
being pointed to the next nonzero element in the list. Each computer node
also sends its updates for Si,(i+1:n) back to the computer node that holds Sj,:
to update the original Sj,:.

In ONET ((k log (p) + t)n)+OCPU

(
n2

p

)
, ONET (nk log (p)) corresponds to

the network transmission for broadcasting Si,(i+1,n). ONET (nt) corresponds
to the network transmission for sending the updated for Si,: back to the com-

puter node that contains Si,: (via MPI Scatter). And OCPU

(
n2

p

)
corresponds

to the computation required for updating the rows of S. Considering the cost
of making S symmetric, the total cost of constructing a sparse symmetric
similarity matrix S is

ONET

(
{(m+ k) log (p) + t}n

)
+OCPU

(
(m+ log (k))

n2

p

)
. (5.7)

124 Spectral Feature Selection for Data Mining

After obtaining the similarity matrix S, we may also need to extract the
top k eigenpairs of S. This can be achieved by applying the implicit restarting
Lanczos method [77]. The mechanism of this algorithm is beyond the scope of
this book, and we refer readers to [38, 77] for details. It can be shown when
p computer nodes are used for computation, the time complexity of a parallel
implicitly restarted Lanczos method is

{
OCPU

(
u3 +

(
nu

p
+
nt

p

)
× (u− k)

)

+ONET {n (u− k) log (p)}
}
× iterations, (5.8)

where u is the total number of Lanczos vectors (Arnoldi length, u > k), t
is the maximal neighborhood size of the samples, and iteration is the total
number of restart iterations. Existing toolboxes, such as PARPACK7 and
ScaLAPACK,8 can also be used to compute the eigenpairs of a symmetric
matrix efficiently in parallel.

5.5 Parallelization of the Univariate Formulations

As discussed in Section 5.3.1, after obtaining the similarity matrix S, there
are two steps for spectral feature selection with a univariate formulation, in-
cluding (1) normalizing S and f to obtain Ŝ and f̂ , and (2) computing feature

scores via f̂>Ŝ f̂ . It turns out that in a distributed computing environment
it is usually beneficial to combine the two steps, since this will reduce the
unnecessary network communication among computer nodes. Below we use
the second feature evaluation criterion in SPEC, ϕ2 (·) as an example to show
how a univariate spectral feature selection formulation can be parallelized.

Let D be the degree matrix of S, and L = D−
1
2 (D− S) D−

1
2 be the

normalized Laplacian matrix. If ξ1 = D
1
2 1

||D
1
2 1||

and f̂ = D
1
2 f

||D
1
2 f ||

, we have

ϕ2(F) =
f̂>L f̂

1−
(
f̂>ξ1

)2 .

7PARPACK: http://www.caam.rice.edu/∼kristyn/parpack home.html.
8ScaLAPACK: http://www.netlib.org/scalapack/.

Large-Scale Spectral Feature Selection 125

Plugging L, f̂ , and ξ1 in the above equation, we obtain

ϕ2(F) =
1− f>Sf

f>Df

1−
(

f>D1√
1>D1f>D1

)2

=

(
1>D1

) (
f>Df

)
−
(
1>D1

) (
f>S f

)

(1>D1) (f>Df)− (f>D1)
2 . (5.9)

The equation shows that to compute ϕ2(F), we need to obtain five in-
termediate results, including D, f>Df , 1>D1, f>D1, and f>S f . The first
four intermediate results can be written directly into summation forms over
samples and computed in parallel:

di =
n∑

j=1

si,j (5.10)

f>Df =
n∑

i=1

f2i di =

p∑

j=1

∑

i∈Pj

f2i di (5.11)

1>D1 =
n∑

i=1

di =

p∑

j=1

∑

i∈Pj

di (5.12)

f>D1 =

n∑

i=1

fidi =

p∑

j=1

∑

i∈Pj

fi di. (5.13)

In the above equations, di is the i-th diagonal element of the degree matrix
D, and fi is the i-th element of the feature vector f . Assuming that the data
set is distributedly stored on p slaves, Figure 5.12 shows that we can obtain
the four intermediate results in three steps:

1. Compute di on each slave using Equation (5.10) in parallel.

2. Compute
∑
i∈Pj

f2i di,
∑
i∈Pj

di, and
∑
i∈Pj

fi di, j = 1, . . . , p on each slave in

parallel.

3. Send local results from the p slaves to the master, and the master com-
puting 1>D 1, 1>D f , and f>D f .

In the first two steps, there is no communication between the slaves and the
master. In the third step, the slaves need to send out their local results, and
the communication cost is ONET (3p) for one feature. Therefore, the total

computation cost of the three steps is OCPU

(
n2 + 6np + 3log (p)

)
for each

feature. Note that in the process of computing feature scores for all the m
features, the intermediate results for di and 1>D 1 just need to be computed

126 Spectral Feature Selection for Data Mining

slaves master

𝑑𝑖 𝑑𝑖
𝑖∈𝑃𝑗

, 𝑑𝑖
𝑖∈𝑃𝑗

𝑓𝑖 , 𝑑𝑖𝑓𝑖
2

𝑖∈𝑃𝑗

slaves

𝟏⊤𝑫𝟏, 𝟏⊤𝑫𝒇, 𝒇⊤𝑫𝒇

(1) (2) (3)

FIGURE 5.12: Parallel univariate spectral feature selection.

once. Therefore, to compute the first four intermediate results, D, f>Df ,
1>D1, and f>D1, for all m features, the total cost is:

ONET (2mp+ p) +OCPU

(
n2 +

n

p
+ 5m

n

p
+ 2m log (p) + log (p)

)

≈ ONET (mp) +OCPU

(
n2 +m

n

p
+m log (p)

)
. (5.14)

It turns out that computing f>S f is more complex than computing the
other four intermediate results. This is because to compute f>S f , a feature
needs to see all the elements in S, which are distributedly stored in the p
slaves. Figure 5.13 shows an efficient way for computing f>S f . Since the data
set is distributedly stored in p slaves, a feature f is partitioned to p segments,

and each slave holds a portion of the feature. Let f =
(
f>1 , . . . , f

>
p

)>
, and

we assume that fi is stored in the i-th slave. The similarity matrix S is also
distributedly stored in p slaves, and each slave holds n

p rows of S. We denote

S =
(
S>1 , . . . ,S

>
p

)>
, and assume that Sj ∈ R

n
p×n is stored in the j-th slave.

Large-Scale Spectral Feature Selection 127

Based on these notations, we can decompose the computation of f>S f as

f>S f =
(
f>1 , . . . , f

>
p

)



S1

...
Sp


 f

=




p∑

j=1

f>j Sj


 f

=
((

f>S
)
1
, . . . ,

(
f>S

)
p

)



f1
...
fp




=

p∑

j=1

(
f>S

)
j
fj . (5.15)

In the above equations, f>S ∈ R1×n is an n-dimensional row vector, and(
f>S

)
j
∈ R1×np is the j-th segment of f>S. f>S is computed on the master

using the local results obtained by the slaves. And
(
f>S

)
j

is sent from the

master to the j-th slave for computing
(
f>S

)
j
fj . Figure 5.13 shows how to

compute f>Sf in five steps.

1. Compute f>j Sj on the j-th slave. Here f>j Sj ∈ R1×n is a m-dimensional

row vector. The cost of this step is OCPU

(
nnp

)
.

2. Slaves send f>j Sj to the master and compute f>S =
p∑
j=1

f>j Sj

(via MPI Reduce). The cost of this step is OCPU (n log (p)) +
ONET (n log (p)).

3. The master sends f>Sj to the j-th slave (via MPI Scatter). The cost is
ONET (n).

4.
(
f>S

)
j
fj are computed by the slaves, and the cost is OCPU

(
n
p

)
.

5. Slaves send the obtained
(
f>S

)
j
fj to the master to compute

p∑
j=1

(
f>S

)
j
fj (via MPI Reduce). The cost of this step is OCPU (log (p))+

ONET (log (p)).

128 Spectral Feature Selection for Data Mining

n

n

1

p

S

(1) (2) (3)

(4)

(5)

on slaves on slaves on the master

on slaves on the master

FIGURE 5.13: Parallel univariate spectral feature selection.

When m features are evaluated, the total cost is:

ONET (mn log (p) +mn+m log (p))

+OCPU

(
mn2

p
+mn log (p) +

mn

p
+m log (p)

)

≈ ONET (mn log (p)) +OCPU

(
mn2

p
+mn log (p)

)
. (5.16)

In Chapter 3, we study the multivariate formulations for spectral feature
selection. In the next two sections, we show how to parallelize the multivariate
formulations for large-scale spectral feature selection.

5.6 Parallel MRSF

Presented in Section 3.4, MRSF is a multivariate spectral feature selection
framework based on sparse multiple output regression. Its key component is
a multi-output regression with a sparse regularization on the weight matrix
W, which has the form

arg min
W, λ

‖Y −XW‖2F + λ ‖W‖2,1
s.t. A = {i :

∥∥wi
∥∥
2
> 0}, Card (A) = l. (5.17)

As we show in Sections 3.6 and 4.2, by defining Y in different ways, we can
achieve different types of multivariate spectral feature selection. The problem

Large-Scale Spectral Feature Selection 129

defined in Equation (5.17) is a convex problem. In Section 3.4, we present
an efficient solver, MRSF, for solving the problem, and the pseudo-code of
the algorithm can be found below in Algorithm 7. It turns out that the major
computational load of the algorithm comes from four key steps, which include:

1. Initialize the active set (Line 2).

2. Compute a tentative solution (Lines 4–10).

3. Obtain an optimal solution based on the current active set (Lines 11–12).

4. Check the global optimality of the solution obtained in Step 3 (Lines
13–18).

Algorithm 7: MRSF: Minimal redundance spectral feature selection
(see Section 3.4)

Input: X, Y, l
Output: W

1 W[1] = 0, λ1 = +∞, i = 1 and R[1] = Y;

2 Compute the initial active set: A1 = arg maxj ‖f>j R[1]‖22;

3 while i ≤ l do

4 Compute the walking direction γAi : γAi =
(
X>AiXAi

)−1
X>AiR

[i];

5 for each j /∈ Ai and an arbitrary t ∈ Ai do
6 Compute the step size αj in direction γAi for fj to enter Ai.

‖f>j
(
R[i] − αjXAiγAi

)
‖2 = (1− αj)‖f>t R[i]‖2;

7 j∗ = arg minj /∈Ai αj ;

8 Ŵ =
((

W[i] + αj∗γAi
)>
,0
)>

;

9 Â = Ai
⋃{j∗}, λi = (1− αj∗)‖f>t R[i]‖2;

10 Solve the smaller optimization problem,

minW̃ ‖Y −X
Â

W̃‖2F + λi‖W̃‖2,1, using a general solver with Ŵ as
the starting point;

11 R̃ = Y −X
Â

W̃;

12 if ∀i /∈ Â, ‖f>i R̃‖2 ≤ λi then

13 Ai+1 = Â, W[i+1] = W̃, R[i+1] = R̃, i = i+ 1;
14 else

15 Â =
{
i : ‖w̃i‖ 6= 0

}⋃{
j : ‖f>j R̃‖2 > λi

}
;

16 Remove w̃i from W̃, if ‖w̃i‖ = 0,

Ŵ =
(
W̃>,0, . . . ,0

)>
, Goto line 11;

17 Extend W[l] to W by adding empty rows to W[l];

18 return W[l];

130 Spectral Feature Selection for Data Mining

Below we study how to parallelize these key steps to improve the scalability
and the efficiency of the original MRSF solver.

5.6.1 Initializing the Active Set

We initialize the active set by solving the problem

A1 = arg maxj ‖f>j R[0]‖22, R[0] = Y. (5.18)

Assuming that X and Y are partitioned and stored in p slaves, we have

f =
(
f>1 , . . . , f

>
p

)>
, and Y =

(
Y>1 , . . . ,Y

>
p

)>
, where fi and Yi are the i-th

partition of f and Y stored in the i-th slave, respectively. Using the above
notations, we can rewrite f>Y as

f>Y =

p∑

j=1

f>j Yj . (5.19)

n

Y

on slaves on the master

FIGURE 5.14: Initializing the active set.

As illustrated in Figure 5.14, to compute ‖f>Y‖, we first compute f>i Yi

on each slave in parallel, which results in p row vectors of C dimension.
Here C is the number of columns of Y. The time complexity of this step

is OCPU

(
C n
p

)
. We then aggregate f>j Yj , j = 1, . . . , p to the master and

obtain f>Y =
∑p
j=1 f>i Yj (via MPI Reduce). The time complexity of this

step is OCPU (C log (p)) + ONET (C log (p)). Finally, we compute ‖f>Y‖ on
the master, and the time complexity is OCPU (C). We need to go through this
process for all m features. Therefore, the total time complexity is

OCPU

(
mC

(
n

p
+ log (p)

)
+m

)
+ONET

(
mC log (p)

)
, (5.20)

where the additional CPU(m) corresponds to the cost of finding the fea-

ture with the maximal ‖f>Y‖ value. When n
p � log(p), and OCPU

(
n
p

)
�

Large-Scale Spectral Feature Selection 131

ONET
(

log (p)
)
, we have

OCPU

(
mC

(
n

p
+ log (p)

)
+m

)
+ONET

(
mC log (p)

)

≈ OCPU

(
mC

(
n

p

))
. (5.21)

In this case, by using multiple slaves to construct the initial active set, we
can achieve a linear speedup in terms of p.

5.6.2 Computing the Tentative Solution

After obtaining the active set of the i-th step, we need to compute a
tentative solution based on the active set. The pseudo-code of this process is
shown in Figure 5.15. It consists of three steps:

1. Compute the walking direction γAi .

2. Calculate the step size corresponding to each feature.

3. Construct the tentative solution based on the feature with the shortest
step size.

Among the three substeps, the third substep can be computed on the
master, and the other two can be computed on the slaves in parallel. Below,
we show how the three substeps can be efficiently computed in detail.

22 CHAPTER 1. MULTIVARIATE FORMULATIONS

for W to be optimal are: ∀i ∈ {1, . . . ,m},

wi 6= 0 ⇒ f> (Y −XW) = −λ wi

‖wi‖2

wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ (1.34)

Algorithm 4: MRSF:Sparse multiple output regression for spectral feature selection

Input: X, Y, l
Output: W

1 W[1] = 0, λ1 = +∞, i = 1 and R[1] = Y;
2 Compute the initial active set: A1 = arg maxj ‖f>j R[1]‖2

2;
3 while i ≤ l do

4 Compute the walking direction γAi
: γAi

=
(
X>Ai

XAi

)−1
X>Ai

R[i];
5 for each j /∈ Ai and an arbitrary t ∈ Ai do
6 Compute the step size αj in direction γAi

for fj to enter Ai.
‖f>j

(
R[i] − αjXAi

γAi

)
‖2 = (1− αj)‖f>t R[i]‖2;

7 end
8 j∗ = arg minj /∈Ai

αj;

9 Ŵ =
((

W[i] + αj∗γAi

)>
,0
)>

;

10 Â = Ai

⋃{j∗}, λi = (1− αj∗)‖f>t R[i]‖2;

11 Solve the smaller optimization problem, minW̃ ‖Y −XÂW̃‖2
F + λi‖W̃‖2,1, using a

general solver with Ŵ as the starting point;

12 R̃ = Y −XÂW̃;

13 if ∀i /∈ Â, ‖f>i R̃‖2 ≤ λi then
14 Ai+1 = Â, W[i+1] = W̃, R[i+1] = R̃, i = i+ 1;
15 else

16 Â = {i : ‖w̃i‖ 6= 0}⋃
{
j : ‖f>j R̃‖2 > λi

}
;

17 Remove w̃i from W̃, if ‖w̃i‖ = 0, Ŵ =
(
W̃>,0, . . . ,0

)>
, Goto line 11;

18 end
19 end
20 Extend W[l] to W by adding empty rows to W[l];
21 return W[l];

Based on the above two theorems, we propose an efficient solver for multivariate spectral

feature selection based on L2,1-regularized regression. Its pseudo code can be found in Algo-

rithm 4. In the algorithm, Ai is the “active set” of the i-th run, and contains the features

selected in that run. Algorithm 4 contains two major steps.

FIGURE 5.15: Computing the tentative solution as in Algorithm 7.

5.6.2.1 Computing the Walking Direction

In the first step of computing the tentative solution, we need to compute
the walking direction γAi , where γAi ∈ Rk×C is the solution to the multi-
output regression XAiγAi = R[i]. It can be computed in a similar way as in
Section 5.1. In the i-th step, there are i features in the active set. There-
fore, X>AiXAi is an i× i matrix. The time complexity for computing X>AiXAi

132 Spectral Feature Selection for Data Mining

is OCPU

(
i2 np + i2 log (p)

)
+ ONET

(
i2 log (p)

)
. Similarly, we can show that

the time complexity for computing X>AiR
[i] is OCPU

(
Ck np + Ck log (p)

)
+

ONET (Ck log (p)), where C is the number of columns of R[i]. After obtaining

X>AiXAi and X>AiR
[i],
(
X>AiXAi

)−1
X>AiR

[i] can be computed on the master,

and the time complexity is OCPU
(
i3 + k2C

)
. In the above process, for X>AiXAi

and X>AiR
[i], p local results are computed on the slaves, and the global result

is obtained on the master by aggregating the local results (via MPI Reduce).(
X>AiXAi

)−1
X>AiR

[i] is also computed on the master. Assuming n
p � C log (p),

and n
p � i, the total time complexity of this step is

OCPU

((
i2 + Ci

) n
p

)
+ONET

((
i2 + Ci

)
log (p)

)
. (5.22)

The above equation shows that when i is small, and the network is fast enough,

the time complexity is dominated by OCPU

((
i2 + Ci

)
n
p

)
. In this case, the

speedup ratio of the computation is linear in terms of p.

5.6.2.2 Calculating the Step Size

In the second step of computing the tentative solution, we need to compute
the step size αj corresponding to each feature fj . αj defines the minimal length
we need to proceed in the direction of γAi until fj enters the active set.9 To
compute αj , we need to solve the equation

‖f>j
(
R[i] − αjXAiγAi

)
‖2 = (1− αj)‖f>t R[i]‖2.

As shown in Figure 5.16, αj can be computed in four substeps.
In the first substep, we compute three row vectors: f>j R[i], f>j XAi ,

and f>t R[i], where f>j R[i], f>t R[i] ∈ R1×C , and f>j XAi ∈ R1×i. Each
of the three vectors can be computed in parallel in a similar way as
we show in Section 5.6.1. The time complexity of computing f>j R[i] and

f>j XAi is OCPU

(
(C + i) np + (C + i) log (p)

)
+ ONET ((C + i) log (p)). Sim-

ilarly, the time complexity of computing f>t R[i] is OCPU

(
C n
p + C log (p)

)
+

ONET (C log (p)). After the first step, f>j R[i], f>j XAi , and f>t R[i] are all ob-
tained on the master.

In the second substep, we compute f>j XAiγAi on the master, which requires
OCPU (iC) operations, and results in a C dimensional vector.

In the third substep, we compute ‖f>t R[i]‖. The computation is done by
the master. And the time complexity is OCPU (C).

9A feature enters the active set when it has the same amount of correlation to the residual
as the features in the active set.

Large-Scale Spectral Feature Selection 133

𝒇𝑗
𝑇𝑹[𝑖]

𝒇𝑗
𝑇𝑿𝐴𝑖

slaves master

𝒇𝑗
𝑇𝑿𝐴𝑖

𝛾𝐴𝑖

master

𝒇𝑡
𝑇𝑹[𝑖] 𝑐 = 𝒇𝑡

𝑇𝑹[𝑖]

𝒂

𝒃

master

𝛼𝑗

master

(1) (2) (4) (3)

FIGURE 5.16: Computing the step size αj in four substeps. The step 1 ac-
counts for the major computational load for calculating αj , and is parallelized.

In the fourth substep, we compute αj . Let c = ‖f>t R[i]‖, a> = f>t R[i], and
b> = f>j XAiγAi . αj can be obtained by solving the problem

xα2 − 2yα+ z = 0, 0 ≤ α ≤ 1,

where x = b>b− c2,
y = a>b− c2,
z = a>a− c2. (5.23)

The time complexity of solving this problem is OCPU (C).
If we assume that n

p � C log (p), n
p � i, and m� i, the time complexity

of computing the step size for all m− i features is

OCPU

(
m (C + i)

n

p

)
+ONET

(
m (C + i) log (p)

)
. (5.24)

Note that c in Equation (5.23) can be shared by all features, and just needs
to be computed once.

The above analysis shows that the substep 1 accounts for the major com-
putational load for calculating αj . Since the majority of the computation is
done by the slaves, when i is small and the network is fast enough, we can
achieve linear speedup in terms of p.

5.6.2.3 Constructing the Tentative Solution

In the third step of computing the tentative solution, we need to update
the weight matrix Ŵ, the active set, and λ. The computation is done on the
master and the time complexity is OCPU (log (m) + iC).

134 Spectral Feature Selection for Data Mining

5.6.2.4 Time Complexity for Computing a Tentative Solution

Assuming that m � i, based on the above analysis, the total time com-
plexity for computing a tentative solution according to Ai is

OCPU

(
m (C + i)

n

p

)
+ONET

(
m (C + i) log (p)

)
. (5.25)

It shows that when m � i, the computation in the second step (calculating
the step size) dominates the computational load. And when n is large enough,
increasing the number of slaves leads to linear speedup in terms of p.

5.6.3 Computing the Optimal Solution

After obtaining the tentative solution, we need to compute a solution that
is optimal on the current active set with the updated regularization parameter
λ. This corresponds to solving a smaller optimization problem defined as

minW̃ ‖Y −X
Â

W̃‖2F + λ‖W̃‖2,1. (5.26)

As shown in Section 3.3, this problem can be solved efficiently by either the co-
ordinate gradient descent method or the accelerated gradient descent method.
In the following, we use the accelerated gradient descent method as an exam-
ple to illustrate how the method can be parallelized for solving the problem
specified in Equation (5.26).

Algorithm 8 contains the pseudo-code of the accelerated gradient descent
method. It defines an iterative process to compute the optimal solution of
Equation (5.26). In each iteration, three steps are taken to compute Wj , the
weight matrix of the j-th iteration:

1. Compute βj and Sj .

2. Calculate the minimizer of the model function, MSj ,λ (W).

3. Update Lj and αj+1.

Since W0 is stored on the master and is small, we can compute Steps 1
and 3 on the master. Below we show how the second step can be decomposed
and accomplished in parallel.

In the second step, we need to compute the minimizer of the model function
MSj ,λ (W). As shown in Section 3.3, this boils down to computing the matrix
V, which is defined as

V = Sj −
1

Lj
X>A (XASj −Y) . (5.27)

And the weight matrix W can be derived from V using the equation

wi =





vi
(

1− ρ

‖vi‖

)
, when ‖vi‖2 > ρ

0, when ‖vi‖2 ≤ ρ
. (5.28)

Large-Scale Spectral Feature Selection 135

Algorithm 8: Accelerated gradient descent method (see Section 3.3.2)

Input: XA, Y, λ, W0, L0 > 0, M
Output: WM+1

1 W1 = W0, α−1 = 0, α0 = 1, L = L0;
2 for j = 1 . . .M do

3 βj =
αj−2−1
αj−1

, Sj = βj (Wj −Wj−1);

4 for L = Lj−1, 2Lj−1, 4Lj−1, . . . do
5 Wj+1 = arg min

W
MSj ,λ (W);

6 if 1
2 ‖Y −XAWj+1‖2F + λ ‖Wj+1‖2,1 ≤MSj ,λ (Wj+1) then

7 break;

8 Lj = L, αj+1 =
1+
√

1+4α2
i

2 ;

9 return WM+1;

In the above equation, ρ is defined as: ρ = λ
Lj

. The equations show that the

major computational load in the second step comes from computing V. Since
S, V, and W are all of small size, once we obtain V, we can easily obtain W
on the master. Below, we demonstrate how to compute V in parallel.

To compute V, we need to compute two components including X>A XA ∈
Ri×i and X>A Y ∈ Ri×C . Assuming that XA and Y are both partitioned
into p parts, XA,i, Yi, i = 1, . . . , p, and each part is stored on a slave, the
computation of X>A XA and X>A Y can be decomposed and done in parallel as

X>A XA =

p∑

i=1

X>A,iXA,i (5.29)

X>A Y =

p∑

i=1

X>A,iYi. (5.30)

The decomposition suggests that we can compute X>A,iXA,i ∈ Ri×i and

X>A,iYi ∈ Ri×C on the i-th slave and aggregate the local results on the mas-

ter (via MPI Reduce) to obtain X>A XA and X>A Y. The time complexity of
computing X>A XA and X>A Y is

OCPU

((
i2 + iC

) n
p

+
(
i2 + iC

)
log (p)

)
+ONET

((
i2 + iC

)
log (p)

)
. (5.31)

After obtaining X>A XA and X>A Y, V can be computed on the master as

V = Sj −
1

Lj
X>A (XASj −Y) = Sj −

1

Lj

(
X>A XASj −X>A Y

)
. (5.32)

And the corresponding time complexity is OCPU
(
i2C
)
. Based on V, we can

obtain W using Equation (5.28), and the time complexity is OCPU (iC).

136 Spectral Feature Selection for Data Mining

After obtaining Wj+1, we need to check whether the current L is valid by
requiring

1

2
‖Y −XAWj+1‖2F + λ ‖Wj+1‖2,1 ≤MSj ,λ (Wj+1) .

We can show that

1

2
‖Y −XAWj+1‖2F + λ ‖Wj+1‖2,1 (5.33)

=
1

2
Trace

(
Y>Y

)
+

1

2
Trace

(
W>

j+1X
>
A XAWj+1

)

−Trace
(
W>

j+1X
>
A Y
)

+ λ‖Wj+1‖2,1;

and

MSj ,λ (W) =
1

2
‖XASj −Y‖2F + Trace

(
(XASj −Y)

>
XA (Sj −W)

)

+λ‖Wj+1‖2,1 +
Lj
2

Trace
(

(Sj −Wj+1)
>

(Sj −Wj+1)
)

=
1

2
Trace

(
Y>Y

)
+

1

2
Trace

(
S>j X>A XASj

)
− Trace

(
S>j X>A Y

)

+Trace
(
S>j X>A XA (Sj −W)

)
− Trace

(
Y>XA (Sj −W)

)

+λ‖Wj+1‖2,1 +
Lj
2

Trace
(

(Sj −Wj+1)
>

(Sj −Wj+1)
)
.

The above two equations show that in the validation process, except Y>Y,
all the computations involving Y and XA are in the form of X>A XA or X>A Y,
which have already been computed on the master in the last step. Since Y>Y
appear in both 1

2 ‖Y −XAWj+1‖2F + λ ‖Wj+1‖2,1 and MSj ,λ (W), and can
be canceled, we do not need to compute it in the validation process. The time
complexity of the validation step is OCPU

(
i2C + iC2

)
.

After the validation step, we need to send W̃ = WM+1 back to the slaves
(via MPI Bcast) for computing R̃i, i = 1, . . . , p, which is the residue corre-
sponding to W̃, and will be used in the next step. Since R̃i = Yi −X

Â,iW̃,
the time complexity for computing it is

OCPU

(
iC
n

p

)
+ONET

(
iC log (p)

)
. (5.34)

In summary, assuming that n
p � log (p), the total time complexity of

computing the optimal solution based on the current active set is

OCPU

(
MlL

(
i2 + iC

) n
p

)
+ONET

(
MlL

(
i2 + iC

)
log (p)

)
, (5.35)

where M is the maximal number of iterations specified in Algorithm 8, and
lL is the averaged number of tries for searching the proper L in the validation
process. The analysis shows that when i and C are small and n

p is large, we
can obtain near linear speedup in terms of p.

Large-Scale Spectral Feature Selection 137

5.6.4 Checking the Global Optimality

Finally, we need to check whether the obtained W̃ is globally optimal. The
pseudo-code of this step is presented in Figure 5.17.

22 CHAPTER 1. MULTIVARIATE FORMULATIONS

for W to be optimal are: ∀i ∈ {1, . . . ,m},

wi 6= 0 ⇒ f> (Y −XW) = −λ wi

‖wi‖2

wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ (1.34)

Algorithm 4: MRSF:Sparse multiple output regression for spectral feature selection

Input: X, Y, l
Output: W

1 W[1] = 0, λ1 = +∞, i = 1 and R[1] = Y;
2 Compute the initial active set: A1 = arg maxj ‖f>j R[1]‖2

2;
3 while i ≤ l do

4 Compute the walking direction γAi
: γAi

=
(
X>Ai

XAi

)−1
X>Ai

R[i];
5 for each j /∈ Ai and an arbitrary t ∈ Ai do
6 Compute the step size αj in direction γAi

for fj to enter Ai.
‖f>j

(
R[i] − αjXAi

γAi

)
‖2 = (1− αj)‖f>t R[i]‖2;

7 end
8 j∗ = arg minj /∈Ai

αj;

9 Ŵ =
((

W[i] + αj∗γAi

)>
,0
)>

;

10 Â = Ai

⋃{j∗}, λi = (1− αj∗)‖f>t R[i]‖2;

11 Solve the smaller optimization problem, minW̃ ‖Y −XÂW̃‖2
F + λi‖W̃‖2,1, using a

general solver with Ŵ as the starting point;

12 R̃ = Y −XÂW̃;

13 if ∀i /∈ Â, ‖f>i R̃‖2 ≤ λi then
14 Ai+1 = Â, W[i+1] = W̃, R[i+1] = R̃, i = i+ 1;
15 else

16 Â = {i : ‖w̃i‖ 6= 0}⋃
{
j : ‖f>j R̃‖2 > λi

}
;

17 Remove w̃i from W̃, if ‖w̃i‖ = 0, Ŵ =
(
W̃>,0, . . . ,0

)>
, Goto line 11;

18 end
19 end
20 Extend W[l] to W by adding empty rows to W[l];
21 return W[l];

Based on the above two theorems, we propose an efficient solver for multivariate spectral

feature selection based on L2,1-regularized regression. Its pseudo code can be found in Algo-

rithm 4. In the algorithm, Ai is the “active set” of the i-th run, and contains the features

selected in that run. Algorithm 4 contains two major steps.

FIGURE 5.17: Checking the global optimality.

In this step, we need to compute the correlation between each unselected
feature fi and the current residual R̃, then check whether the correlation is
larger than λ. Assuming there are features with correlations larger than λ, we
want to pick the feature with the largest correlation and add it to the active
set. In this process, computing f>i R̃ is the most expensive part. Its compu-
tation can be decomposed and done in parallel as described in Section 5.6.1.
We can show that the time complexity of this step is

OCPU

(
C (m− i) n

p
+ C (m− i) log (p)

)
+ONET

(
C (m− i) log (p)

)
. (5.36)

When n
p � log (p), this can be simplified to

OCPU

(
C (m− i) n

p

)
+ONET

(
C (m− i) log (p)

)
. (5.37)

5.6.5 Summary

Tables 5.1 and 5.2 summarize the time complexity of the four key steps
listed on page 129, and the computations that can be parallelized in these
steps, respectively. In the analysis, we assume that n

p ,m� l, C, p.
The first step is performed just once at the very beginning. The second

step will be done l times, where l is the number of selected features. The third
and the fourth steps will be done l×lV times, where lV is the averaged number
of backtraces for adjusting the active set Â, when the solution obtained on Â
is not globally optimal. When these factors are considered, we can obtain the

138 Spectral Feature Selection for Data Mining

TABLE 5.1: The time complexity of each step.

Step Time Complexity

1 OCPU

(
mC n

p

)
+ONET

(
mC log (p)

)

2 OCPU

(
m (C + i) np

)
+ONET

(
m (C + i) log (p)

)

3 OCPU

(
MlL

(
i2 + iC

)
n
p

)
+ONET

(
MlL

(
i2 + iC

)
log (p)

)

4 OCPU

(
C (m− i) np

)
+ONET

(
C (m− i) log (p)

)

TABLE 5.2: Parallel computation involved in each step.

Step Parallel Computation

1 f>j Y

2 X>A XA, X>A R[i], f>j R[i], f>j XAi , f>t R[i]

3 X>Â XÂ, X>Â Y, Y −X
Â

W̃

4 f>j R̃

total time complexity of parallel MRSF as

OCPU

(
mC

n

p
+

l∑

i=1

m (C + i)
n

p
+

l∑

i=1

MlLlV
(
i2 + iC

) n
p

+
l∑

i=1

lV C (m− i) n
p

)

= OCPU

(
mC

n

p
+ml (C + l)

n

p
+MlLlV l

2 (l + C)
n

p
+ ClV l (m− l)

n

p

)

= OCPU

((
ml (ClV + l) +MlLlV l

2 (l + C)
)n
p

)
.

Large-Scale Spectral Feature Selection 139

ONET

((
mC +

l∑

i=1

m (C + i) +
l∑

i=1

MlLlV
(
i2 + iC

)

+
l∑

i=1

lV C (m− i)
)

log (p)

)

= ONET

((
mC +ml (C + l) +MlLlV l

2 (l + C) + ClV l (m− l)
)

log (p)

)

= ONET

((
ml (ClV + l) +MlLlV l

2 (l + C)
)

log (p)

)
.

Total time complexity

OCPU

((
ml (ClV + l) +MlLlV l

2 (l + C)
)n
p

)

+ONET

((
ml (ClV + l) +MlLlV l

2 (l + C)
)

log (p)

)
. (5.38)

The decription of the variables in Equation (5.38) can be found in Ta-
ble 5.3.

TABLE 5.3: Description of the variables in Equation (5.38).

Variable Description

m number of features
n number of samples
p number of slaves
l number of selected features
C number of columns of Y
M number of accelerate gradient iterations

lV number of backtrace for adjusting Â
lL number of iterations for searching L

5.7 Parallel MCSF

Presented in Section 3.5, MCSF is a multivariate spectral feature selection
framework based on matrix comparison. In MCSF, we want to select a set of

140 Spectral Feature Selection for Data Mining

k features such that the linear kernel constructed on the features is close to
the given sample similarity matrix S,

min
A
‖S−XAX>A‖, (5.39)

where XA = (fi1 , . . . , fil) , ij ∈ A, j = 1, . . . , k.

Assuming that features have been normalized to have unit norm, we
showed in Section 3.5 that MCSF needs to run k iterations to select k features.
And in each iteration, it selects a feature using the criterion

arg maxj /∈Ai f>j Rifj , (5.40)

where Ri = S−XAiX
>
Ai

is the residual matrix in the i-th iteration.
It turns out that for a large-scale problem, we cannot use Equation (5.40)

to select features. The reason is that the residual matrix Ri may not be sparse.
When the sample size is large, we may not be able to store it, even on the
hard disk. To address this problem we can rewrite the computation specified
in Equation (5.40) as

arg maxj /∈Ai f>j Rifj = argmaxj /∈Ai f>j
(
S−XAiX

>
Ai

)
fj

= argmaxj /∈Ai
(
f>j Sfj − f>j XAiX

>
Ai

fj
)
. (5.41)

In the first iteration, A1 = ∅, and we select the first feature by using the
criterion

argmaxj=1,...,m f>j Sfj . (5.42)

Assume that i features have been selected. Let the i-th selected feature be
f [i], and the score of the j-th feature fj in the i-th iteration be sci (j). We can
show that the score of fj in the (i+ 1)-th iteration is

sci+1(j) = f>j
(
S−XAiX

>
Ai

)
fj

= f>j

(
S−XAi−1X

>
Ai−1

− f [i]f [i]
>)

fj

= f>j

(
S−XAi−1

X>Ai−1

)
fj − f>j f [i]f [i]

>
fj

= sci(j)− f>j f [i]f [i]
>

fj .

Therefore, given sci(j), sci+1(j) can be computed as

sci+1(j) = sci(j)− f>j f [i]f [i]
>

fj . (5.43)

Equation (5.43) shows that after selecting the first feature, in each of the

remaining iterations, we can update feature scores by subtracting f>j f [i]f [i]
>

fj
from their current score. We then select the feature with the largest score, and
continue with the next iteration.

Large-Scale Spectral Feature Selection 141

As shown in Section 5.5, f>j Sfj can be computed in parallel, and the time
complexity is

OCPU

(
mn2

p
+mn log (p)

)
+ONET (mn log (p)) . (5.44)

Similarly, after the first step, we can parallelize the computation of each iter-
ation specified in Equation (5.43), which has the time complexity of

OCPU

(
mn

p
+m log (p)

)
+ONET (m log (p)) . (5.45)

Therefore, for selecting l + 1 features, the total time complexity is

OCPU

(
(n+ l)

(
mn

p
+m log (p)

))
+ONET

(
(n+ l)m log (p)

)
. (5.46)

The above equation shows that when n � l, the major computational load
of parallel MCSF comes from the first iteration of the algorithm. Also, when
n
p � log (p), and the network is fast enough, we can obtain near linear speedup
as the number of computer nodes p increases.

5.8 Discussions

In this chapter, we discuss how different univariate and multivariate for-
mulations for spectral feature selection can be implemented in a distributed
computing environment. The key is to decompose the computation involved
in these formulations into various summation forms over the samples. The
decomposition allows us to parallelize the computation by computing local
results in parallel on the computer nodes of a cluster. And the global results
can be efficiently obtained by aggregating the local results. Our analysis sug-
gests that the technique presented in this chapter can effectively improve the
scalability and the efficiency of spectral feature selection algorithms. In most
cases, the technique provides a near linear speedup, as the number of computer
nodes used for computation increases.

When we face the small sample problem, if the number of features is larger,
we will not have enough information to reliably estimate the relevance of
features. The small sample problem is a very challenging problem in feature
selection [143, 93, 42, 41, 159, 125]. Using multiple knowledge sources available
for feature selection provides a promising way of handling this problem. In
the next chapter, we study how to use multiple knowledge sources in spectral
feature selection to achieve multi-source feature selection.

This page intentionally left blankThis page intentionally left blank

Chapter 6

Multi-Source Spectral Feature
Selection

One challenging problem in many feature selection applications is the small-
sample problem [143, 93, 42, 41, 159, 125], where the dimensionality of data
is extremely high, while the sample size is very small. For instance, a typical
cDNA microarray data [88]) used in modern genetic analysis usually contains
more than 30,000 features (the oligonucleotide probes), but the sample size is
often less than 100. With so few samples, many irrelevant features can easily
gain their statistical relevance due to randomness [159]. With a data set of this
kind, most existing feature selection algorithms become unreliable by selecting
many irrelevant features. For example, in cancer study based on cDNA mi-
croarray, researchers found that traditional feature selection algorithms offer
limited or inaccurate selection of biological features [118, 159]. Fold change1

is a popular method used in gene selection.
To study its actual performance when sample size is small, we obtain a

microarray data set from Gene Expression Omnibus (GEO) [11] with the ref-
erence id GSE2403. We randomly partition samples into positive and negative
groups with 10 samples in each group. We then apply the fold change measure-
ment on the split sample to identify significantly regulated genes. We repeat
this process 10 times, and the number of significantly regulated genes identi-
fied each time is shown in Figure 6.1. On average, we identify 12.7 significantly
regulated genes on each random split. We also apply the t-test [123] on the
original split,2 and identify 16 significantly regulated genes, which is only a
little bit larger than the average number obtained on the random splits. This
example shows that when sample size is small (20), and the number of fea-
tures is very large (11,362), many features can be identified as significant on
an arbitrary split of the samples. This implies that on the original split, some

1The ratio between the positive sample mean, µ+, and the negative sample mean, µ−,
of the expression of a gene. When µ+ ≤ µ−, the ratio is computed as: µ+/µ− and the
gene is called up-regulated. Otherwise, it is computed as µ−/µ+ and the gene is called
down-regulated. To improve reliability, we usually apply the t-test [123] to verify whether
the positive and the negative sample means are statistically different. When the p-value
computed from the t-test is small enough, e.g., ≤0.05, and the fold change is large enough,
e.g., ≥2, we say the gene is significantly regulated.

2The data are split into the positive and the negative sample sets using the class label
information.

143

144 Spectral Feature Selection for Data Mining

of the significant features identified by fold change may gain their statistical
significance by sheer randomness.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Number of Significant Genes According to Fold Change

FIGURE 6.1: Significantly regulated genes identified by fold change when
samples are randomly split into positive and negative groups. The dash line
stands for the number of significantly regulated genes identified using the
original split.

To improve the reliability of statistical analysis, we need to increase sample
size. However, in many real applications, it is impossible for us to increase the
size considerably, since the process of acquiring additional samples can be very
costly. One way to address this problem is to include additional information
sources to enhance our understanding of the data in hand. For instance, the
recent developments in bioinformatics have made various knowledge sources
available, including the KEGG pathway repository [87], the Gene Ontology
database [25] and the NCI Gene-Cancer database [151], etc. Recent work has
also revealed the existence of a class of small noncoding RNA (ribonucleic
acid) species known as microRNAs, which are surprisingly informative for
identifying cancerous tissues [118]. The availability of these various knowledge
sources presents unprecedented opportunities to advance research by solving
previously unsolvable problems. However, most feature selection algorithms
are designed to handle learning tasks with a single data source, and cannot
benefit from any additional knowledge sources.

To address this limitation, in this chapter, we discuss novel multi-source
feature selection algorithms for integrating different types of knowledge in
the feature selection process. In different domains, the relationships among
knowledge sources can be very different. To facilitate our study, we focus on
genetic analysis based on microarray data. We show that using different types
of knowledge such as gene annotation and biological network can improve
the reliability of gene relevance estimation. In genetic analysis, different types
of knowledge describe genes or samples from different perspectives and have
heterogenous representations. One major challenge in multi-source feature se-
lection is how to address the heterogeneity in different types of knowledge
sources. In the following, we first categorize different types of knowledge that

Multi-Source Spectral Feature Selection 145

can be used in multi-source feature selection, which helps us identify the com-
mon characters of the knowledge from the same category, to facilitate us in
handling the heterogeneity of knowledge representations. We then describe
two multi-source feature selection algorithms. One is based on the combina-
tion of similarity matrices, and the other on rank aggregation. Both algorithms
can effectively integrate multiple knowledge sources with heterogeneous rep-
resentations.

6.1 Categorization of Different Types of Knowledge

In order to handle different types of knowledge properly in multi-source
feature selection, we first study how to categorize different types of knowl-
edge for feature selection. To facilitate analysis, we fix our domain in genetic
analysis, where genes correspond to features.

(b)

p53: cctggagcacggaagattctctcctccagccgaggactacccgatcgtcgttgtgcgga …
mdm2: gctttgttaacggggcctcccgtgagtctggacatctgcgctatgccactctggccgagcc …
ras: gaattccggtgtgtgggaccgtgggatccccattcagctgccagcgtctcttctggcagca …

(a)

(c)

Transcription

Transcription
DNA-dependent

Transcription
from RNA pol-II

promoter

Regulation
of transcription

Regulation of
transcription

DNA-dependent

ARNT CTK3CTK2CTK1RPB4

Nucleic acid
metabolicP14-ARF

MDM2

P53

ATR

CHK1

BCR-ABL

FIGURE 6.2: Knowledge of genes (features): (a) metabolic pathway, (b) gene
ontology annotation, and (c) gene sequence.

Categorically, there are two types of knowledge: knowledge about features,
and knowledge about samples. The knowledge about features usually contains
information about the properties of features and their relationships. Figure 6.2
presents three different types of knowledge about features (genes) that can be
used in genetic analysis: (a) metabolic pathway, which depicts a series of bio-
chemical reactions occurring in cells and reflects how genes interact with one

146 Spectral Feature Selection for Data Mining

another to accomplish a specific function; (b) gene ontology (GO) annota-
tion [25], which uses a controlled vocabulary to describe the characteristics of
genes; and (c) gene sequence, which describes the order of the nucleotide bases
of genes. The figure shows that the three types of knowledge have heteroge-
nous representations. The nature of the knowledge determines how it can be
used in feature selection. According to the way knowledge is used in feature
selection, we further divide different types of knowledge into three categories:

1. Knowledge about feature similarity: KFEASIM .

For instance, with gene sequence information, gene similarities can be
obtained by applying a sequence alignment algorithm.

2. Knowledge of feature functions: KFEAFUN .

For instance, in a metabolic pathway, a set of genes act together to
accomplish a biological function. The functions of genes are also provided
in gene ontology annotation.

3. Knowledge of feature interaction: KFEAINT .

For instance, in the BioGRID [169], over 198K genetic interactions re-
lated to different types of biological processes are recorded.

The knowledge of features is accumulated and cross-examined by human
researchers via multiple independent experiments. Therefore, it is relatively
reliable, and independent of any specific experiment.

The knowledge of samples is usually about sample categories, KSAMCAT , or
their similarity, KSAMSIM . Samples can be categorized by either a flat structure,
as shown in Figure 6.3(a), which forms the standard class label, or a hier-
archical structure, as shown in Figure 6.3(b). The similarity among samples,
depicted by the pairwise sample similarity matrix, can be derived from a given
auxiliary data set. Auxiliary data refers to the data containing additional in-
formation of the same set of samples in the target data. The target and the
auxiliary data depict the same set of samples, while using different measure-
ments. Auxiliary data may help us get a better understanding of the geometric
pattern of the samples. For example, as shown in Figure 6.3(c), for gene se-
lection, the microRNA microarray can serve as auxiliary data, which measure
the microRNA expression of samples. cDNA microarray (messenger-RNA mi-
croarray) and microRNA microarray are collected from the same set of sam-
ples. Compared with cDNA microarray, microRNA microarray contains the
expression of only several hundred microRNA and is found to be surprisingly
informative in separating tissues of cancer from noncancer, as well as tissues
of different types of cancers [78]. Using microRNA microarray as auxiliary
data helps improve our understanding about how cancerous samples cluster
together. Compared with knowledge about features, knowledge about samples
is obtained from an individual experiment. Therefore, it is more specific.

Table 6.1 summarizes different categories of knowledge that can be used
for feature selection in genetic analysis. Some types of knowledge may fall

Multi-Source Spectral Feature Selection 147

(b)

(c)

(a) Acute lymphoblastic leukemia (ALL)

Chronic Myelogenous Leukemia (CML)

Acute Myelogenous Leukemia (AML)

Chronic Lymphocytic Leukemia (CLL)

LEU

CMLAMLCLLALL

MLLL

mRNA
Microarray

miroRNA
Microarray

(Target Data) (Auxiliary Data)

G1 Gp mG1 mGq

I1

In

FIGURE 6.3: Knowledge of samples: (a) the class label information, (b) a
sample hierarchy, and (c) an example of the auxiliary data.

TABLE 6.1: Categories of different types of knowledge for gene selection.

Knowledge

Sample
KSAMCAT - Category Class Label, Sample Hierarchy

KSAMSIM - Similarity
miRNA Expression Profile,
mRNA Expression Profile

Feature
KFEASIM - Similarity

Gene Sequence, Gene Ontol-
ogy Annotation, Gene Lin-
eage, Gene Locus

KFEAFUN - Function
Gene Ontology Annota-
tion, Metabolic Pathway,
Gene-Disease Association

KFEAINT - Interaction
Metabolic Pathway, Protein-
Protein Interaction

148 Spectral Feature Selection for Data Mining

into more than one category. For instance, gene ontology annotation can be
used for obtaining the knowledge of both gene similarities and gene functions:
gene similarities can be obtained by comparing the annotation terms shared
among genes; and knowledge of gene function can be identified by checking
the annotation terms related to gene functions. Different types of knowledge
describe features or samples from different perspectives. The categorization
of different types of knowledge helps us identify their common characters and
allows us to develop common approaches to analyze the knowledge from the
same category.

6.2 A Framework Based on Combining Similarity Ma-
trices

Given multiple knowledge sources carrying information about features and
samples, we need to exploit them effectively in feature selection. The hetero-
geneity of knowledge representations necessitates a common way to represent
knowledge that meets the following requirements: (1) information can be easily
extracted for both features and samples; (2) information can be combined for
integration; and (3) information can be effectively used for feature selection.
In this section, we use the similarity among samples as the common repre-
sentation. We show: (1) given relationships among features, we can obtain
the similarity among samples; (2) upon obtaining sample similarity matrices
from various knowledge sources, we can combine them to form a global sample
similarity matrix; and (3) using the obtained global sample similarity matrix
we can select features using spectral feature selection algorithms.

The high level idea of this multi-source feature selection approach is shown
in Figure 6.4 as three steps:

(1) Knowledge Conversion — knowledge understandable for human beings
may not be directly applicable in a learning model. Therefore, the first step
is to extract knowledge for learning. Assume we have L different knowledge
sources K1, . . . ,KL. For the i-th knowledge source, we can apply a conversion
operator ci (·) to extract a local specification of the sample similarity matrix,
Si. This allows us to formalize the knowledge conversion step as

Si = ci (Ki) , i = 1, . . . , L. (6.1)

(2) Knowledge Integration — Given multiple local sample similarity ma-
trices, we can obtain a global similarity matrix by linearly combining local
similarity matrices [228],

Sglobal =
L∑

i=1

aiSi, (6.2)

where αi is the combination coefficient, which can be assigned by domain

Multi-Source Spectral Feature Selection 149

1 G

G G
h 1 S

S S
h

FIGURE 6.4: The framework of multi-source spectral feature selection.

150 Spectral Feature Selection for Data Mining

experts according to their domain knowledge [228]. If the label information is
available, αi can also be learned automatically via convex optimization, which
is related to kernel learning. The study of kernel learning goes beyond the
scope of this book, and we refer readers to the literature for a comprehensive
introduction [99, 206].

(3) Feature Selection — after the Sglobal is obtained, it can be used in
a spectral feature selection algorithm for feature selection. Since Sglobal is
constructed using multiple knowledge sources, the feature selection conducted
in this step forms a type of multi-source feature selection.

Since Step 1 is source-dependent, we discuss next how to define the conver-
sion operators c (·) to extract local sample similarity from different knowledge
sources with heterogeneous representations.

6.2.1 Knowledge Conversion

The conversion from KSAMCAT (the knowledge of sample category, e.g., class
label) to KSAMSIM (the knowledge of sample similarity, e.g., sample similarity
matrix), KSAMCAT → KSAMSIM , is straightforward. For example, given the class
label y, we can use the following equation to obtain the sample similarity
matrix S:

SFISij =

{
1
nl
, yi = yj = l

0, otherwise
.

As we show in Chapter 4, by applying SFISij in the spectral feature selection
framework SPEC, we obtain the Fisher score feature selection algorithm. Be-
low, we discuss how to perform conversions from other knowledge sources to
the knowledge of sample similarity:

• KFEASIM , knowledge of feature similarity

→ KSAMSIM , knowledge of sample similarity.

• KFEAFUN , knowledge of feature function

→ KSAMSIM , knowledge of sample similarity.

• KFEAINT , knowledge of feature interaction

→ KSAMSIM , knowledge of sample similarity.

Figure 6.5 illustrates how to convert KFEASIM and KFEAFUN to KSAMSIM . The
idea is to use KFEASIM and KFEAFUN to influence the computation of the pairwise
sample similarity. When KFEASIM is given, we can use it to compute the feature
covariance, which then can be used in Mahalanobis distance [122] to derive
the pairwised sample similarity. When KFEAFUN is given, we can use it to filter
the data, and then compute the pairwised sample similarity using the filtered
data. Below we show how to convert KFEASIM , KFEAFUN , and KFEAINT to KSAMSIM in
detail.

Multi-Source Spectral Feature Selection 151

Covariance
Among Features

Target Data

Similarity
among Samples

Feature Selection

Similarity
among Samples

Similarity
among Samples

Mahalanobis Distance

Similarity
Among Genes

Feature Function

Filtering

FIGURE 6.5: Converting KFEASIM and KFEAFUN to KSAMSIM .

6.2.1.1 KFEASIM → KSAMSIM

Given similarities among features, feature covariance can be constructed
and used in calculating the pairwise sample similarity via Mahalanobis dis-
tance [122] as

‖x− y‖2M = (x− y)
T

C−1 (x− y) , (6.3)

where x,y ∈ Rm are two samples with m features F1, . . . , Fm, and C ∈ Rm×m
is the covariance matrix. In comparison with the standard Euclidean distance,
Mahalanobis distance provides a better way to determine the similarities
among samples by considering the probability distribution of the underly-
ing model. The ellipsoid best representing the probability distribution can be
estimated from C [72]. In real-world applications, C is usually estimated using
the equation

C =
1

n− 1

n∑

k=1

(xk − x̄) (xk − x̄)
>
, (6.4)

where x1, . . . ,xn are the n samples of the data, and x̄ is their mean. Let
I− 1

n11> be the projection matrix [59] that centralizes the data to have zero
mean. It has the properties

(
x1 − x̄, . . . ,xn − x̄

)
= X

(
I− 1

n
11>

)
, (6.5)

(
I− 1

n
11>

)>
=

(
I− 1

n
11>

)
, (6.6)

152 Spectral Feature Selection for Data Mining

(
I− 1

n
11>

)(
I− 1

n
11>

)
=

(
I− 1

n
11>

)
. (6.7)

Hence, we can also write Equation (6.4) in the form

C =
1

n− 1
X

(
I− 1

n
11>

)
X>. (6.8)

Although Equation (6.4) specifies an unbiased estimator of the covariance
matrix, when sample size is small, its estimation can be poor [97]. In addition,
the covariance matrix can also be obtained from our knowledge of feature simi-
larities, providing another (maybe more stable and reliable) way for estimating
C. For instance, in genetic analysis, the similarities among genes (features) are
usually specified by: graphs (or kernels), e.g., biological pathway and protein-
protein interaction; or they can be derived from gene descriptions, e.g., gene
annotation [25]. The similarities among features are usually described by a
similarity matrix of features, SFEA. And SFEA,(i,j) presents the similarity be-
tween features fi and fj . Given SFEA, we can calculate an embedding [14] for
the features, which can be then used in Equation (6.8) to construct C. Below
we study how to compute C from SFEA in detail.

Given a feature similarity matrix SFEA, we first construct a commute time
embedding [188]. The commute time embedding preserves commute distance
that measures the expected time that takes for a random walk to travel from
one vertex to another and back [117]. It has been shown effective in preserving
similarities in the embedding space. Let L = D− S and L = UΣU> be the

SVD of L, the embedding of the features is given by XFEA = (Σ+)
1
2 UT ,

where each column of XFEA corresponds to a feature vector fi. By transposing

XFEA, we obtain the explicit expression of features: XW
EM = U (Σ+)

1
2 . By

substituting XW
EM in Equation (6.8), we can obtain the covariance matrix C.

We use the following proposition to summarize how to compute C from SFEA.

Proposition 1 Given a feature similarity matrix S depicting similarity
among features, using commute time embedding, the covariance matrix C is
given by

C = U

(
Σ+ − 1

l

(
Σ+
) 1

2 11>
(
Σ+
) 1

2

)
U>, L = D− S, L = UΣU>. (6.9)

6.2.1.2 KFEAFUN ,KFEAINT → KSAMSIM

In real-world applications, some particular feature functions or certain
types of feature interactions may be of interests according to a specific research
purpose. For example, in gene selection for cancer study, genes with certain
types of functions or genes participating in certain types of biological processes
(e.g., genetic interactions) are of special interest to biologists.

Given KFEAFUN or KFEAINT , and F, a set of feature functions, or I, a set of

Multi-Source Spectral Feature Selection 153

feature interactions, data can be filtered by the features associated with F, or
I:

XF = ΠFF (X) , XI = ΠFI (X) . (6.10)

Here FF and FI are the features related to F and I, respectively, and Π (·) is the
projection operator. Using the filtered data XF or XI, we can obtain a pairwise
sample similarity matrix S through any similarity measure. Since all features
in FF (or FI) are related to the feature functions (or feature interactions)
of interest, sample similarity matrix S should reflect the distribution under
the influence of the functions (or the interactions). In case that the functions
(or the interactions) are closely related to the target concept under study,
the distribution will give us an insight of the target concept, and help us to
select relevant features. Using features that are known to have a particular
function or participate in a particular interaction as the seeds (or a initial set
of selected features), we can select features that perform the same function or
participate in the same interaction.

6.2.2 MSFS: The Framework

The above discussion paves the way to a framework for Multi-Source
Feature Selection based on spectral feature selection: MSFS. The detail of
the framework can be found in Algorithm 1, which consists of three major
steps: (1) obtaining local sample similarity from each data source (Lines 1–3);
(2) combining local sample similarity to construct a global sample similar-
ity (Line 4); and (3) using the global sample similarity in a spectral feature
selection algorithm to select features (Line 5).

Algorithm 9: MSFS: Multi-Source Feature Selection

Input: K1 . . .KL and X
Output: ListF - the selected feature list

1 forall the Ki ∈ (K1 . . .KL) do
2 construct Si, the local sample similarity;

3 obtain global sample similarity S from S1, . . . ,SL;
4 feed S in to SPEC to select feature and form ListF ;
5 return ListF ;

6.3 A Framework Based on Rank Aggregation

One limitation of MSFS is that it replies on combining sample similarity,
which restricts its flexibility in handling small-sample data. To address this

154 Spectral Feature Selection for Data Mining

limitation we propose in [226] a general approach to systematically integrate
different types of knowledge for Knowledge-Oriented multi-source feature se-
lection, named KOFS. Figure 6.6 presents the major steps in the approach.

Feature Ranking K

internal knowledge features ranking list

ranking

relevance criter ion

Ranking Aggregation

LKnowledge Conversion
external

knowledge
internal

knowledge
convert

final ranking list

aggregation

ranking lists

21 K

21 t

FIGURE 6.6: KOFS, a framework for knowledge-oriented multi-source fea-
ture selection.

Step 1: Knowledge conversion — Knowledge understandable for human
beings may not be directly applicable in a learning model. Therefore, the first
step is to convert different types of human or external knowledge to certain
types of internal knowledge that can be used by gene selection algorithms.
Assume we have L different external knowledge sources Kext1 , . . . ,KextL . For
the ith external knowledge source, we can apply a conversion operator ci (·) to
convert the external knowledge Kexti to the corresponding internal knowledge
Kinti , and this allows us to formalize knowledge conversion with the following
equation:

Kinti = ci
(
Kexti

)
, i = 1, . . . , L. (6.11)

Step 2: Feature ranking — Assume K sets of internal knowledge

Multi-Source Spectral Feature Selection 155

KNOW1, . . . , KNOWK is used to rank features, where KNOWi is defined as

KNOWi =
{
Kinti1 . . . Kintiti

}
. Let Ci be a relevance criterion, F = {F1, . . . , FM}

be a set of M features, and Ri (·) be a feature ranking function. The task of
feature ranking is to use the internal knowledge with the given criterion to
rank the relevance of the features in F. This can be formulated as

Rranki = R (KNOWi, Ci,F) . (6.12)

Step 3: Rank aggregation — After obtained the K ranking lists, they
need to be integrated to generate the final ranking to estimate the relevance
of features. Let A (·) be an aggregating operator for ranking lists and C be an
aggregation criterion, we use A (·) to aggregate the K ranking lists. This can
be formulated as

RrankF = A
(
Rrank1 , . . . , RrankK , C

)
. (6.13)

The final feature ranking list can be obtained by considering the ranking
lists from all internal knowledge sources in either a supervised or an unsuper-
vised fashion, depending upon how C is specified.

KOFS and MSFS are different in the following ways:

1. KOFS explicitly defines the concepts of external and internal knowledge,
and organizes different types of knowledge into well-defined categories,
while this is not the case for MSFS.

2. In KOFS, the coefficient combination can be automatically learned,
while this problem is not addressed in MSFS.

3. KOFS is based on combining ranking lists, while MSFS relies on com-
bining sample similarity, which restricts the model flexibility.

4. MSFS forms a special case of KOFS, if we specify sample similarity,
KSAMSIM , as the only representation for internal knowledge in KOFS, and
converge all other representations to it.

6.3.1 Handling Knowledge in KOFS

Different types of external knowledge and internal knowledge need to be
handled properly in KOFS. In Section 6.1, we studied how to categorize differ-
ent types of external knowledge sources. Below we define different types of the
internal knowledge that can be used with KOFS. We also show how to convert
different types of external knowledge to corresponding internal knowledge.

6.3.1.1 Internal Knowledge

While defining internal knowledge, the following two issues should be con-
sidered. First, the definition should ensure that certain types of external
knowledge can be easily converted to its form. Second, it can be effectively

156 Spectral Feature Selection for Data Mining

used to rank features. Based on these two considerations, in KOFS, we use
the following types of knowledge:

• Knowledge about samples:

– sample category, Kint,SAMCAT

– sample geometric pattern, Kint,SAMSIM

• Knowledge about features:

– feature relation, Kint,FEAREL

– feature function, Kint,FEAFUN

Here feature relation can refer to either the similarity among features or the
interaction among features, since both types of knowledge provides us with the
information about the relationship among the features. Later on, we will show
how to propagate feature relevance on the network derived from Kint,FEAREL .
KOFS is not restricted to the four types of internal knowledge defined above.
As long as new knowledge can be used to rank features, it can be treated
as a type of internal knowledge. This ensures the extendability of KOFS. In
real-world applications, we found that most available external knowledge in
feature selection for genetic analysis can be conveniently converted to one of
the four types of internal knowledge. Next we show how to convert various
types of external knowledge to internal knowledge.

6.3.1.2 Knowledge Conversion

Table 6.2 contains the information of how different types of external knowl-
edge can be mapped to their corresponding internal knowledge.

TABLE 6.2: The conversion of different types of external knowledge to in-
ternal knowledge.

External Knowledge Internal Knowledge

Kext,SAMSIM , Kext,FEAFUN , Kext,FEASIM , Kext,FEAINT Kint,SAMSIM

Kext,FEASIM , Kext,FEAINT Kint,FEAREL

Kext,FEAFUN Kint,FEAFUN

Kext,SAMCAT Kint,SAMCAT

The conversions of Kext,SAMSIM → Kint,SAMSIM , Kext,SAMCAT → Kint,SAMCAT ,

Kext,FEASIM → Kint,FEAREL , Kext,FEAINT → Kint,FEAREL , and Kext,FEAFUN → Kint,FEAFUN are

straightforward. For example, Kext,FEASIM , the similarity among features, and

Kext,FEAINT , the interaction among features, can be directly used to construct

feature relation graphs, corresponding to Kint,FEAREL . Also, we have studied

Multi-Source Spectral Feature Selection 157

the conversion of Kext,FEASIM → Kint,SAMSIM and Kext,FEAFUN → Kint,SAMSIM in Sec-
tion 6.2.1. Below, we show how to use different types of internal knowledge to
rank features.

6.3.2 Ranking Using Internal Knowledge

Now that we have the various types of internal knowledge ready, we can
study how to use them to rank features as well as how to combine various
ranking lists to obtain a final list.

The internal knowledge can be used to rank features in various ways.
Selecting features using Kint,SAMCAT , corresponding to traditional supervised

feature selection algorithms, has been well studied. Given Kint,SAMSIM , features
can also be ranked via spectral feature selection algorithms. Below we show
how to rank features using the other two types of internal knowledge.

6.3.2.1 Relevance Propagation with Kint,FEAREL

Given Kint,FEAREL , the knowledge of feature relation, we can derive a graph
G to depict the knowledge. Given a set of features F = {F1, . . . , Ft}, which
are known to be relevant, we can propagate their relevance on the graph to
nearby nodes. Assuming Kint,FEAREL is built from Kext,FEASIM , the knowledge of
feature similarity, relevance propagation corresponds to the hypothesis that if
a feature is relevant, the features, which are similar to it, may also be relevant.
We can formulate the idea using the concept from random walk theory [117].
Assume SF is the similarity matrix corresponding to G, which is derived from
Kint,FEAREL . The transition probability matrix is defined as

PF = D−1F SF ,

DF = diag
(
dF1 , . . . , d

F
M

)
,

dFi =
∑

k
SF (i, k).

Assuming r is the vector containing the initial relevance of features, the final
relevance of features is given by

r∗ = r + . . .+ (λPF)
k

r + . . .+ (λPF)
∞

r

= (I− λPF)
−1

r. (6.14)

In the above equation, (λPF)
k

r corresponds to the relevance gained by genes
after k steps of propagation, and 0 < λ < 1 is the decay parameter, which is
used to reduce the magnitude of the relevance when it is propagated from one
node to another node. After obtained r∗, features can be ranked according to
their corresponding value in r∗.

6.3.2.2 Relevance Voting with Kint,FEAFUN

The functions of features are usually depicted by a controlled vocabulary.
In this case, the terms can be regarded as the hyper features of the original

158 Spectral Feature Selection for Data Mining

features. Let Fi be the i-th feature in the feature list, its function can be
obtained from Kint,FEAFUN , which is described by a vector vi = (vi,1, . . . , vi,T).
Here T is the total number of functions. And vi,j = 1, if and only if the feature i
is related to the function j, otherwise vi,j = 0. Assuming we know the relevance
of all the functions, which is described by a vector rfun =

(
rfun1 , . . . , rfunT

)
, the

relevance of Fi can be obtained by the following equation:

ri =
T∑

l=1

vi, l × rfunl . (6.15)

The equation sums the relevance of all the functions related to the feature
as its relevance score. rfun can either be assigned by researchers according
to their research purpose or learned automatically. In Section 6.4, we show
an example on how to learn the relevance of feature functions from the data
automatically.

6.3.3 Aggregating Feature Ranking Lists

Using different types of knowledge, we can obtain multiple lists that rank
features in different ways. Aggregating these rankings has been studied as rank
aggregation in both machine learning and information retrieval [149]. In this
section, we propose a probabilistic model for rank aggregation. While existing
rank aggregation algorithms treat different ranking lists equally in the com-
bination process, e.g., the methods presented in [149], the proposed method
is able to automatically learn a set of combination coefficients according to
the importance of different ranking lists. This is achieved by maximizing the
relevance likelihood of the features in a given feature set. When the set only
contains features that are known to be relevant, the model achieves rank ag-
gregation in a supervised way. When the set contains all features, it combines
ranking lists in an unsupervised way.

Let Fi denote the i-th feature, 1 ≤ i ≤ M , and its rank in ranking list l
be rl,i. We define the probability of Fi to be relevant according to its rank in
the ranking list l as

P (rl,i) =
1

B
exp

(
1

rl,i

)
, B =

∑M

j=1
exp

(
1

j

)
.

In the equation, B is the normalization factor for the distribution. For defining
the probability, the exponential function exp(·) is adopted to emphasize the
top ranked features. Given L ranking lists R1, . . . , RL, let the prior probability
of picking the l-th ranking list, Rl, to rank features as πl with π1+. . .+πL = 1.
πl reflects the reliability of Rl. To construct a mixture model [15], for each
feature Fi, we introduce an L-dimensional latent variable zi = {zi,1, . . . , zi,L}
indicating which ranking list is used to rank Fi. That is, if Fi’s rank is taken
from its rank in Rl, then zi,l = 1, and all other elements in zi are set to

Multi-Source Spectral Feature Selection 159

0. Based on these definitions, we can formulate the joint likelihood of the
relevance of a feature set G = {F1, . . . , FK} as

p (F1, . . . , FK , Z|R1, · · · , RL,Θ) =
K∏

i=1

L∏

l=1

π
zi,l
l P (rl,i)

zi,l . (6.16)

In Equation (6.16), Z is the set of latent variables, Z = (zi,l)K×L
=(z1, . . . , zK). π = {π1, . . . , πL} can be obtained by maximizing the joint
likelihood specified in Equation (6.16) with an EM algorithm.

6.3.3.1 An EM Algorithm for Computing π

Expectation maximization (EM) is a standard iterative approach for
finding the maximum likelihood estimates of parameters in a probabilistic
model [15]. The probabilistic model specified in Equation 6.16 can be solved
by the EM approach in the following way:

E Step. Assuming that π is known, the posterior distribution of Z takes
the form

P (Z|R1, · · · , RL,G) ∝ P (Z)P (G|K1, · · · ,KL, Z)

=
N∏

i=1

L∏

l=1

π
zi,l
l

N∏

i=1

L∏

l=1

N
(
ti|m(l)

i,c,
(
σ
(l)
i,c

)2)zi,l

=
K∏

i=1

L∏

l=1

{πlP (rl,i)}zi,l .

Using standard techniques, we can show that γi,l, the responsibility of Ll for
Fi, is given by

γi,l = E (zi,l) =
πlP (rl,i)
L∑
j=1

πjP (rl,i)

. (6.17)

γi,l can be used to determine the expectation of the complete log likelihood,
which defines the Q function [15] as

Q
(
Θ,Θold

)
= Ez (lnP (G, Z|Θ))

=
K∑

i=1

L∑

l=1

γi,l {lnπl + lnP (rl,i)}.

M Step. Assuming that Z is known, we can find the Θ by maximizing
the Q function under the constraint of π1 + . . . + πL = 1. And this leads to
the equation for updating πi as

πnewl =
1

K

K∑

i=1

γi,l. (6.18)

160 Spectral Feature Selection for Data Mining

The algorithm is guaranteed to converge as shown in [15]. After obtained
π, the probability of Fi to be relevant can be calculated by marginalizing the
joint probability P (Fi, Rl):

P (Fi) =
L∑

l=1

P (Fi, Rl) =
L∑

l=1

P (Fi|Rl)P (Rl)

=
L∑

l=1

P (rl,i)P (Rl) =
L∑

l=1

P (rl,i)πl. (6.19)

The final feature ranking list can be obtained by ranking the obtained rele-
vance likelihood of features.

6.4 Experimental Results

We empirically evaluate the effect of multi-source feature selection in the
domain of genetic analysis. As we mentioned in Section 6.3, if we specify
sample similarity, KSAMSIM , as the only representation for internal knowledge in
KOFS, MSFS actually forms a special case of KOFS. Therefore, the KOFS
framework forms a more general case than the MSFS framework. Hence, in
this section we focus on evaluating the performance of the KOFS framework
for multi-source feature selection.

6.4.1 Data and Knowledge Sources

6.4.1.1 Pediatric ALL Data

The data is obtained from the Gene Expression Omnibus (GEO).3 The
data contain the expression profiling of 4,670 genes in bone marrow from 18
pediatric patients with acute lymphoblastic leukemia (ALL): 10 B-cell ALL,
5 T-cell ALL, and 3 B-cell ALL with the MLL/AF4 chromosomal rearrange-
ment. Each bone marrow is measured twice, resulting in 36 samples. The
data provide insight into the pathogenesis of childhood acute lymphoblastic
leukemia.

6.4.1.2 Knowledge Sources

Five different knowledge sources are used in the experiments:

1. Sample category:

Patients are assigned to one of the three classes, B-ALL, T-ALL, or ML-
L/AF4. The sample category information forms one type of Kext,SAMCAT .

3http://www.ncbi.nlm.nih.gov/geo. Access ID: GSE2604.

Multi-Source Spectral Feature Selection 161

2. Gene expression:

The expression profiles of genes are used to obtain sample pairwise sim-
ilarity with Mahalanobis distance, forming one type of Kext,FEASIM .

3. Metabolic pathway:

The 208 Homo sapiens metabolic pathways are obtained from the KEGG
pathway repository [87]. Six ALL-related pathways, including B-cell
receptor pathway and T-cell receptor pathway are selected by the
biologist. These pathways form one type of the Kext,FEAFUN (gene function),
and the genes involved in these pathways are used to filter data for
calculating Kint,SAMSIM .

4. Cancer-gene annotation:

The cancer gene annotation data are obtained from three knowledge
sources: IPA gene annotation,4 NCI Gene-Cancer database [151], and
Cancer Gene Census project.5 The cancer gene annotation data form
one type of Kext,FEAFUN , which is used to construct both Kint,SAMSIM and

Kint,FEAFUN .

5. Gene ontology (GO):

We obtain the GO annotations for genes from the Gene Ontology
Database [25]. The information forms one type of Kext,FEAFUN and one

type of Kext,FEASIM (gene similarity). Kext,FEASIM is extracted from GO an-
notation using an information content based measure proposed in [135].

The obtained Kext,FEASIM is used to construct Kint,SAMSIM with Mahalanobis

distance and Kint,FEAREL for relevance propagation.

6.4.2 Experiment Setup

By using different types of knowledge, and their combinations we can ob-
tain eight ranking lists. Detailed information of how these lists are obtained
can be found in Tables 6.3 and 6.4. Among the eight lists, SPEC (ϕ2) and
Fisher score correspond to using the traditional unsupervised and supervised
feature selection algorithms on microarray data to select genes, respectively.
The other six ranking lists correspond to using one or two types of external
knowledge to select genes. The eight lists are used as baselines in the experi-
ment for comparison. For GO-REL-VOTE and GO-CAN-MAH, the relevance
of a GO term is determined by Mcan/Mall, where Mall denotes the number
of the genes associated with the term and Mcan denotes the number of the
cancer-related genes associated to the term.

4http://www.ingenuity.com/.
5http://www.sanger.ac.uk/genetics/CGP/Census/.

162 Spectral Feature Selection for Data Mining

The eight ranking lists are aggregated in three ways:

1. KOFSBorda:

Rank aggregation with Borda count [46].

2. KOFSProb:

Rank aggregation using the probabilistic model proposed in Section 6.3.3
with all genes.

3. KOFSProb−SUP:

Rank aggregation using the probabilistic model proposed in Section 6.3.3
with only the acute lymphoblastic leukemia (ALL)-related genes.

The Borda count [46] is a representative rank aggregation algorithm based
on majority voting. It is used as a baseline in the experiment for comparison.

6.4.3 Performance Evaluation

To evaluate the performance of different methods, we use four evaluation
criteria: (1) Accuracy: accuracy of 1NN achieved on the top ranked genes
provided by different algorithms; (2) Simanno: the similarity between selected
genes and the known ALL-related genes according to GO annotation; (3)
Hitcanc; and (4) HITleu. The last two are the counts of known cancer-related
genes and ALL-related genes in the top ranked genes provided by methods.

Among the four, Accuracy is the standard criterion for evaluating the
statistical relevance of the selected genes. For genes that are related to the bio-
logical process inducing different phenotypes, their expression patterns should
be different on samples of different phenotypes. Therefore, using these genes in
classification or clustering should result in high accuracy. However, due to the
small sample problem in cDNA microarray analysis, genes that result in high
accuracy may not be biologically relevant. The next three criteria, Simanno,
Hitcanc, and HITleu, are designed to provide evidence of how many selected
genes are biologically relevant according to literature. They form “evidence
criteria” for performance evaluation. The hypothesis is that if a gene list re-
sults in high accuracy and contains many genes that are biologically relevant
according to literature, it indicates that (1) the corresponding algorithm can
select biologically relevant genes; and (2) other genes in the list may also
be biologically relevant. Achieving high values on the three evidence criteria
with low accuracy indicates that genes do not show a discriminative expres-
sion pattern with different phenotypes. Therefore, it requires high value on
both accuracy and evidence criteria to confirm the biological relevance of a
gene list. In the following, we compare ranking lists obtained using the tra-
ditional gene selection algorithms, using one or two types of knowledge, and
using multiple types of knowledge.

M
u

lti-S
o
u

rce
S

pectra
l

F
ea

tu
re

S
electio

n
163

TABLE 6.3: The details of how ranking lists are generated. SPEC and Fisher score correspond to traditional unsupervised
and supervised gene selection algorithms based on microarray data, respectively.

Knowledge Sources External Knw. Internal Knw. Ranking Criterion Ranking Method

cDNA Expression Kext,SAM
SIM Kint,SAM

SIM Similarity Preserving SPEC

Sample Category Kext,SAM
CAT Kint,SAM

CAT Supervised Gene Selection Fisher score

Metabolic Pathway Kext,FEA
FUN Kint,SAM

SIM Similarity Preserving Pathway-FILT

Gene Ontology Kext,FEA
FUN Kint,FEA

FUN Functional Relevance Voting GO-REL-VOTE

Gene Ontology Kext,FEA
SIM Kint,SAM

SIM Similarity Preserving GO-MAH

Gene Ontology, Cancer-Gene Kext,FEA
SIM , Kext,FEA

FUN Kint,SAM
SIM Similarity Preserving GO-CAN-MAH

Gene Ontology, Cancer-Gene Kext,FEA
SIM , Kext,FEA

FUN Kint,FEA
REL , Kint,FEA

FUN Relevance Propagation GO-REL-PROP

Cancer-Gene Kext,FEA
FUN Kint,SAM

SIM Similarity Preserving Leukemia-FILT

TABLE 6.4: The conversion of different types of external knowledge to internal knowledge.
Ranking Method Knowledge Conversion

SPEC The whole gene expression data are used to construct Kext,SAM
SIM with Mahalanobis distance.

Fisher score Kext,SAM
CAT , the label information, is used as Kint,SAM

CAT in supervised gene selection.

Pathway-FILT Genes in the selected pathways (Kext,FEA
FUN) are used to filter the data, based on which Kint,SAM

SIM is obtained.

GO-REL-VOTE GO terms (Kext,FEA
FUN) are used as Kint,FEA

FUN , and are weighed according to their relevance for ranking genes.

GO-MAH GO based gene similarity (Kext,FEA
SIM) in Mahalanobis distance to extract Kint,SAM

SIM . See Section 6.2.1.1

GO-CAN-MAH Similar to GO-MAH, but only cancer-related GO terms are used to calculate gene similarity (Kext,FEA
SIM).

GO-REL-PROP Relevance (Kint,FEA
FUN) is propagated on the graph (Kext,FEA

REL) constructed from gene similarity (Kext,FEA
SIM).

Leukemia-FILT Use genes of ALL-related functions (Kext,FEA
FUN) to filter data. Kext,SAM

SIM is obtained on the filtered data.

164 Spectral Feature Selection for Data Mining

6.4.4 Empirical Findings

Table 6.5 contains the results obtained from methods using different types
of knowledge.

First, in terms of accuracy, the gene lists obtained from the Fisher Score,
KOFSBorda, KOFSProb, and KOFSProb−SUP achieve good performance. High
accuracy indicates that the genes in these lists are statistically relevant, since
they can separate samples from different phenotypes. We also notice that
compared with SPEC, GO-MAH achieved higher accuracy. Both SPEC and
GO-MAH use Mahalanobis distance, but GO-MAH uses the gene covariance
learned from GO-based gene similarity. This suggests that the strategy pro-
posed in Section 6.2.1 is effective.

Second, in terms of the three evidence criteria (Simanno, HITcanc, and

HITleu), the two methods using Kint,FEAFUN (GO-REL-VOTE and GO-REL-
PROP), and the two methods of KOFS (KOFSProb and KOFSProb−SUP)
achieve good performance, while the Fisher score and the other ranking meth-
ods do not perform well. This is reasonable, since in Simanno, HITcanc, and
HITleu we actually use Kint,FEAFUN to evaluate genes. As GO-REL-VOTE and

GO-REL-PROP are provided with Kint,FEAFUN , it is understandable that they
can achieve better performance. We notice that by using only the terms re-
lated to cancer for learning gene similarity, GO-CAN-MAH achieves a bet-
ter performance than GO-MAH according to the three evidence criteria. For
the methods of KOFS, the two methods using the probabilistic model pro-
posed in Section 6.3.3 achieve good performance. Compared with KOFSProb,
KOFSProb−SUP achieves better performance with the evidence criteria. This
clearly suggests that the label information used in KOFSProb−SUP helps. Both
KOFSProb and GO-REL-PROP generate gene lists that have strong support
from evidence criteria. However, in terms of accuracy, GO-REL-PROP’s per-
formance is about 20% lower than that of KOFSProb. To intuitively observe
the expression pattern of genes in each list, we apply cluster analysis on the
genes selected by the two algorithms. The obtained heatmaps are presented
in Figure 6.7. Results show that although many genes selected by the GO-
REL-PROP are reported to be leukemia related in other studies, most of
these genes do not show discriminative expression patterns on the current
data. When clustering data using these genes, samples of different phenotypes
are mixed up. The fact suggests that these genes may not be related to the
current study. As compared with GO-REL-PROP, we observe that the genes
selected by KOFSProb show discriminative expression patterns and lead to
good clustering performance.

Last, considering both accuracy and evidence criteria, the experiment re-
sults in Table 6.5 show that the traditional algorithms and the algorithms
using just one or two types of knowledge can only achieve either high statisti-
cal relevance, or strong support for evidence criteria, but not both. Compared
with these algorithms, the algorithms derived from KOFS can achieve a high
performance with both types of criteria. The results clearly demonstrate the

M
u

lti-S
o
u

rce
S

pectra
l

F
ea

tu
re

S
electio

n
165

TABLE 6.5: Performance comparison for gene ranking lists generated by different methods.

Ranking Methods ACC-10 ACC-30 ACC-50 ACC Ave Simanno HITcanc HITleu

SPEC 0.64 0.66 0.83 0.71 797 2 0
Fisher score 0.97 0.97 0.97 0.97 823 8 2
Pathway-FILT 0.61 0.81 0.89 0.77 807 4 0
GO-REL-VOTE 0.56 0.69 0.83 0.70 7686 26 8
GO-MAH 0.69 0.80 0.86 0.78 759 3 0
GO-CAN-MAH 0.62 0.83 0.86 0.77 2996 5 1
GO-REL-PROP 0.70 0.78 0.86 0.78 7688 22 15
Leukemia-FILT 0.55 0.62 0.64 0.60 687 4 1

KOFSBorda 0.91 0.95 0.97 0.95 1723 6 2
KOFSProb 0.97 0.94 0.94 0.95 6954 21 12
KOFSProb−SUP 0.94 0.91 0.91 0.92 7766 25 17

Note: Bold numbers indicate good performance. ACC-10, ACC-30, and ACC-50 correspond to the accuracy achieved on
the top 10, 30, and 50 genes provided by different algorithms, respectively. ACC-AVE is the averaged accuracy achieved by
genes using the top 10, 30, and 50 genes provided by the algorithms. Simanno is the functional similarity between selected
genes and known ALL related genes according to GO annotation. Hitcanc and HITleu are the hit ratios of known cancer and
leukemia related genes, respectively. To confirm the biological relevance of a gene list requires both high accuracy and
strong supports from evidence criteria.

166 Spectral Feature Selection for Data Mining

FIGURE 6.7: (SEE COLOR INSERT) Cluster analysis on the genes
selected by KOFSProb (left) and GO-REL-PROP (right), respectively. The
color lines on the bottom of the figure correspond to the samples from patients
of B-cell ALL (blue), T-cell ALL (red), and B-cell ALL with the MLL/AF4
chromosomal rearrangement (green), respectively.

efficacy of the proposed integrative approach for identifying biologically rele-
vant genes.

6.4.5 Discussion of Biological Relevance

In order to more closely examine the biological relevance of the selected
genes, we perform some further study, in which our biologist collaborators
examine the top 50 genes selected by KOFSProb−SUP. The information of
relevant genes is summarized in Table 6.6. The upper part of the table con-
tains the genes whose relevance to leukemia has been confirmed by the lit-
erature. The lower part of the table contains the genes, whose relevance is
unknown but cannot be ruled out. Analysis of these genes may yield the dis-
covery of new leukemia-related genes. 17 leukemia-relevant genes are selected
by KOFSProb−SUP. This list involves several crucial genes, such as USP33,
LMO1, TIMP1, TIMP2 and STAT5B, which play important roles in the
leukemia-related tumorigenesis and may lead to different subtypes of acute
lymphoblastic leukemia (ALL). For instance, USP33 is reported to be con-
sistently over-expressed in B-ALL samples but not in T-ALL samples [138].
LMO1 is mapped to an area of consistent chromosomal translocation in chro-

Multi-Source Spectral Feature Selection 167

mosome 11, disrupting it in T-cell ALL. The LMO1 gene family is also defined
as a class of T-cell oncogenes [181]. TIMP1 and TIMP2, members of Tissue
Inhibitor of Metallo-Proteinases, are found to be related to the infiltration
of ALL leukemia cells into extramedullary organs [175]. STAT5B is a mem-
ber of the Signal Transducers and Activator of Transcription (STAT). The
dysregulation of the signaling pathways mediated by this protein may be the
cause of the ALL and other human cancers [209]. Twelve genes are found to be
possibly leukemia or cancer related due to the following reasons: (1) their func-
tions are related to tumorigensis and cell cycle control (e.g., PPARA, TIMP4,
and CDK4); (2) they have cAMP-dependence (PRKACA and PRKAR1A);
(3) they are transcription factors (BRD8 and NCOR1), whose expressions
are closely related to other known ALL genes mentioned above; (4) they are
known to have high expression in leukemia (e.g., SIVA). Recent research re-
sults reveal a role of SIVA inactivation in leukemia-related tumorigenesis, pre-
sumably through enhancing NF-kappaB-mediated anti-apoptotic activity [64].
The study of these genes may help identify new biomarkers that are crucial
to leukemia tumorigenesis.

6.5 Discussions

In gene selection research, various types of knowledge can be used to as-
sist gene selection. For instance, the authors in [4] propose using different
types of knowledge about genes to calculate gene similarity, which is then
used to identify genes that are closest to the given example genes. In [172]
the authors focus on using gene sets, which are groups of genes that share
common biological functions, chromosomal locations, or regulations to inter-
pret the gene selection outputs. In [136], gene annotation is used for choosing
the optimal gene ranking criterion. In [7], protein interaction, gene-disease as-
sociation, and gene function annotation are used for choosing cancer-related
genes. Gene selection approaches using gene regulatory network and gene on-
tology are also studied in [104] and [140, 168], respectively. Since most existing
work is designed for specific research purposes, they can only handle one or
limited types of knowledge of the same category. For instance, the models
proposed in [172, 4, 7] can only handle knowledge about genes (features), but
not knowledge about samples. To address this limitation, we present an inte-
grative approach in this chapter to systematically incorporate different types
of knowledge in feature selection.

In this chapter, we investigate a novel problem arising from the need to se-
lect features on one data source given multiple additional information sources.
We extend the proposed spectral feature selection frameworks to achieve
multi-source feature selection based on similarity combination (MSFS), which
is further extended to achieve knowledge-oriented multi-source feature se-

1
6
8

S
pectra

l
F

ea
tu

re
S

electio
n

fo
r

D
a
ta

M
in

in
g

TABLE 6.6: The biologically relevant genes in the top 50 gene list provided by KOFSProb−SUP. The upper part contains
17 genes which are known to be leukemia related according to literature. The lower part contains 12 genes whose biological
relevance cannot be ruled out according to their biological functions or roles in pediatric ALL.

Rank Gen Symbol Gene Name Related Cancers
Genes Known to Be Leukemia Related (17)

1 LMO1 LIM domain only 1 (rhombotin 1) leukemia
2 CBFA2T3 core-binding factor, runt domain, α subunit 2; translocated to, 3 leukemia, breast cancer, + 2 more
4 TYROBP TYRO protein tyrosine kinase binding protein leukemia
5 STAT5B signal transducer and activator of transcription 5B leukemia, breast cancer, + 2 more
6 IGFBP3 insulin-like growth factor binding protein 3 leukemia, breast cancer, + 4 more
7 JUN jun oncogene leukemia, breast cancer, + 4 more
8 USP33 ubiquitin specific peptidase 33 leukemia
9 GSN gelsolin (amyloidosis, Finnish type) leukemia, bladder tumours
10 BTG1 B-cell translocation gene 1, anti-proliferative leukemia, ovarian carcinomas
11 TFRC transferrin receptor (p90, CD71) leukemia, breast cancer, + 2 more
13 PTK2 PTK2 protein tyrosine kinase 2 leukemia, lung cancer, + 2 more
15 PDE7A phosphodiesterase 7A leukemia
16 TIMP1 TIMP metallopeptidase inhibitor 1 leukemia, bladder cancer, + 11 more
17 AKT1 v-akt murine thymoma viral oncogene homolog 1 leukemia, prostate cancer, + 4 more
19 FLT1 fms-related tyrosine kinase 1 leukemia, breast cancer, + 4 more
47 CEBPD CCAAT/enhancer binding protein (C/EBP), delta leukemia
48 TIMP2 TIMP metallopeptidase inhibitor 2 leukemia, bladder cancer, + 6 more

Potential Leukemia-Related Genes (12)
18 TIMP4 TIMP metallopeptidase inhibitor 4 breast cancer, glioma
23 TYK2 tyrosine kinase 2 fibrosarcoma
25 CDK4 cyclin-dependent kinase 4 retinoblastoma, melanoma, glioma
31 SERPINF2 serpin peptidase inhibitor, clade F, member 2
32 PRKACA protein kinase, cAMP-dependent, catalytic, alpha pituitary tumor
34 NCOR1 nuclear receptor co-repressor 1 prostate cancer, breast cancer
36 SIVA1 SIVA1, apoptosis-inducing factor
38 BRD8 bromodomain containing 8 pancreatic cancer
40 CAPN7 calpain 7
43 SPATA2 spermatogenesis associated 2
49 PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, alpha adrenocortical cancer, myxoma,
50 PPARA peroxisome proliferator-activated receptor alpha colorectal cancer, bladder cancer

Multi-Source Spectral Feature Selection 169

lection (KOFS) through rank aggregation. We design and conduct exten-
sive experiments to objectively and systematically evaluate the KOFS frame-
work, in comparison with existing representative single-source feature selection
methods. The affirmative results demonstrate that using multiple knowledge
sources can help improve feature selection of the target data. As multi-source
data become more common, feature selection using multi-source data will be
in high demand in many real applications.

This page intentionally left blankThis page intentionally left blank

References

[1] Jeffrey Dean and Sanjay Ghemawat, System and method for efficient
large-scale data processing, January 2010.

[2] Daniel J. Abadi, Wolfgang Lindner, Samuel Madden, and Jorg Schuler.
An integration framework for sensor networks and data stream manage-
ment systems. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases, 2004.

[3] Jean-Marc Adamo. Data Mining for Association Rules and Sequential
Patterns: Sequential and Parallel Algorithms. Springer, 2000.

[4] Stein Aerts, Diether Lambrechts, Sunit Maity, Peter Van Loo, Bert Co-
essens, Frederik De Smet, Leon-Charles Tranchevent, Bart De Moor,
Peter Marynen, Bassem Hassan, Peter Carmeliet, and Yves Moreau.
Gene prioritization through genomic data fusion. Nature Biotechnology,
24:537–545, 2006.

[5] Uri Alon. An Introduction to Systems Biology: Design Principles of
Biological Circuits. Chapman & Hall/CRC, 2006.

[6] Annalisa Appice, Michelangelo Ceci, Simon Rawles, and Peter Flach.
Redundant feature elimination for multi-class problems. In Proceed-
ings of the Twenty-First International Conference on Machine Learning
(ICML), 2004.

[7] Ramon Aragues, Chris Sander, and Baldo Oliva. Predicting cancer
involvement of genes from heterogeneous data. BMC Bioinformatics,
9:172, 2008.

[8] A. Argyriou, T. Evgeniou, and Massimiliano Pontil. Convex multi-task
feature learning. Machine Learning, 73(3):243–272, 2008.

[9] F. Bach. Consistency of the group lasso and multiple kernel learning.
Journal of Machine Learning Research, 9:1179–1225, 2008.

[10] Mark Baker, editor. Cluster Computing White Paper. http://arxiv.org,
2000.

[11] T. Barrett and R. Edgar. Gene expression omnibus: microarray data
storage, submission, retrieval, and analysis. Methods in Enzymology,
411:352–369, 2006.

171

172 References

[12] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2:183–202, 2009.

[13] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Advances in Neural Information Process-
ing Systems, 15, 2003.

[14] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François
Paiement, Pascal Vincent, and Marie Ouimet. Learning eigenfunc-
tions links spectral embedding and kernel PCA. Neural Computation,
16(10):2197–2219, 2004.

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[16] P. Biswanath, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo.
Planet: Massively parallel learning of tree ensembles with mapreduce.
In 35th International Conference on Very Large Data Bases (VLDB),
2009.

[17] Turker Biyikoglu, Josef Leydold, and Peter F. Stadler. Laplacian Eigen-
vectors of Graphs. Springer, 2007.

[18] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[19] Joseph Bradley, Aapo Kyrola, Daniel Bickson, and Carlos Guestrin.
Parallel coordinate descent for L1-regularized loss minimization. In The
28th International Conference on Machine Learning, 2011.

[20] P. S. Bradley and O. L. Mangasarian. Feature selection via concave
minimization and support vector machines. In Proceedings of Fifteenth
International Conference on Machine Learning, pages 82–90, 1998.

[21] Martin D. Buhmann. Radial Basis Functions: Theory and Implementa-
tions. Cambridge University Press, 2003.

[22] C.J.C. Burges. A tutorial on support vector machines for pattern recog-
nition. Journal of Data Mining and Knowledge Discovery, 2, 121–167,
1998.

[23] Stewart C Bushong. Magnetic Resonance Imaging: Physical and Bio-
logical Principles. Mosby, 2003.

[24] Deng Cai, Xiaofei He, and Jiawei Han. Spectral regression: A unified
approach for sparse subspace learning. In Proceedings of International
Conference on Data Mining (ICDM), 2007.

References 173

[25] Evelyn Camon, Michele Magrane, Daniel Barrell, Vivian Lee, Emily
Dimmer, John Maslen, David Binns, Nicola Harte, Rodrigo Lopez, and
Rolf Apweiler. The gene ontology annotation (GOA) database: Shar-
ing knowledge in uniprot with gene ontology. Nucleic Acids Research,
32:262–266, 2004.

[26] G. C. Cawley, N. L. C. Talbot, and M. Girolami. Sparse multinomial
logistic regression via Bayesian l1 regularisation. In Advances in Neural
Information Processing Systems, 2007.

[27] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library
for Support Vector Machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[28] Edward Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan
Qiu, and Hang Cui. Parallelizing support vector machines on distributed
computers. In Advances in Neural Information Processing Systems 20,
pages 257–264, 2008.

[29] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent
method for large-scale l2-loss linear support vector machines. Journal
of Machine Learning Research, 9:1369–1398, 2008.

[30] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learn-
ing. MIT Press, 2006.

[31] Jaturon Chattratichat, John Darlington, Moustafa Ghanem, Yike Guo,
Harald Huning, Martin Kohler, Janjao Sutiwaraphun, Hing Wing To,
and Dan Yang. Large-scale data mining: Challenges and responses.
In The Third ACM SIGKDD International Conference of Knowledge
Discovery and Data Mining (KDD), 1997.

[32] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Brad-
ski, Andrew Ng, and Kunle Olukotun. Map-reduce for machine learning
on multicore. In Proceedings of Neural Information Processing Systems
Conference (NIPS), 2007.

[33] F. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

[34] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273–297, 1995.

[35] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, 2001.

[36] Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods. Cambridge
University Press, 2000.

174 References

[37] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for
clustering – A filter solution. In Proceedings of International Conference
on Data Mining (ICDM), 2002.

[38] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[39] I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means,
spectral clustering and graph partitioning. Technical report, Depart-
ment of Computer Sciences, University of Texas at Austin, 2005.

[40] C. Ding and H. Peng. Minimum redundancy feature selection from
microarray gene expression data. In Proceedings of the Computational
Systems Bioinformatics Conference (CSB ’03), pages 523–529, 2003.

[41] E. Dougherty. Feature-selection overfitting with small-sample classifier
design. IEEE Intelligent Systems, 20(6):64–66, November/December
2005.

[42] E. R. Dougherty. Small sample issue for microarray-based classification.
Comparative and Functional Genomics, 2:28–34, 2001.

[43] R. Duangsoithong. Relevant and redundant feature analysis with ensem-
ble classification. In Proceedings of the Seventh International Conference
on Advances in Pattern Recognition (ICAPR ’09), 2009.

[44] J. Duchi and Y. Singer. Online and batch learning using forward back-
ward splitting. Journal of Machine Learning Research, 10:2899–2934,
2009.

[45] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John
Wiley & Sons, second edition, 2001.

[46] C. Dwork, R. Kumar, M. Naor, and D. R. Sivakumar. Aggregation
methods for the web. In Proceedings of the 10th International World
Wide Web Conference, 2001.

[47] Jennifer G. Dy and Carla E. Brodley. Feature selection for unsupervised
learning. Journal of Machine Learning Research, 5:845–889, 2004.

[48] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle re-
gression. Annals of Statistics, 32:407–49, 2004.

[49] Ronen Feldman and James Sanger. The Text Mining Handbook: Ad-
vanced Approaches in Analyzing Unstructured Data. Cambridge Uni-
versity Press, 2007.

[50] F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of
techniques for large-scale feature selection. In Pattern Recognition in
Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Sys-
tems, pages 403–413. Elsevier, 1994.

References 175

[51] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179–188, 1936.

[52] George Forman. An extensive empirical study of feature selection met-
rics for text classification. Journal of Machine Learning Research,
3:1289–1305, 2003.

[53] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[54] Alex A. Freitas and Simon H. Lavington. Mining Very Large Databases
with Parallel Processing. Springer, 1997.

[55] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer,
and D. Haussler. Support vector machine classification and validation of
cancer tissue samples using microarray expression data. Bioinformatics,
16:906–914, 2000.

[56] Evgeniy Gabrilovich and Shaul Markovitch. Text categorization with
many redundant features: Using aggressive feature selection to make
SVMS competitive with c4.5. In Proceedings of the Twenty-First Inter-
national Conference on Machine Learning (ICML’04), 2004.

[57] Daniel J. Garcia, Lawrence O. Hall, Dmitry B. Goldgof, and Kurt
Kramer. A parallel feature selection algorithm from random subsets. In
International Workshop on Parallel Data Mining in Conjunction with
ECML/PKDD, 2006.

[58] Chris Godsil and Gordon F. Royle. Algebraic Graph Theory. Springer,
2001.

[59] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, third edition, 1996.

[60] R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley,
2nd edition, 1993.

[61] Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Dourdanovic, and
Vladimir Vapnik. Parallel support vector machines: The cascade SVM.
In Advances in Neural Information Processing Systems, 17, 2005.

[62] A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Measuring sta-
tistical dependence with Hilbert-Schmidt norms. In Proceedings of In-
ternational Conference on Algorithmic Learning Theory, pages 63–78,
2005.

[63] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1999.

176 References

[64] R. Gudi, J. Barkinge, S. Hawkins, F. Chu, S. Manicassamy, Z. Sun, J. S.
Duke-Cohan, and K. V. Prasad. Siva-1 negatively regulates nf-kappab
activity: Effect on t-cell receptor-mediated activation-induced cell death
(aicd). Oncogene, 8:3458–62, 2006.

[65] Alberto Guillen, Antti Sorjamaa, Yoan Miche, Amaury Lendasse, and
Ignacio Rojas. Efficient parallel feature selection for steganography
problems. In Bio-Inspired Systems: Computational and Ambient In-
telligence, volume 5517/2009, pages 1224–1231, 2009.

[66] Yike Guo and Robert Grossman, editors. High Performance Data Min-
ing: Scaling Algorithms, Applications, and Systems. Springer, 2000.

[67] I. Guyon and A. Elisseeff. An introduction to variable and feature se-
lection. Journal of Machine Learning Research, 3:1157–1182, 2003.

[68] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46(1–3):389–422, 2002.

[69] M. A. Hall. Correlation Based Feature Selection for Machine Learning.
PhD thesis, Department of Computer Science, University of Waikato,
1999.

[70] M.A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. In Proceedings of Seventeenth International Con-
ference on Machine Learning (ICML-00). Morgan Kaufmann, 2000.

[71] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

[72] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[73] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The
entire regularization path for the support vector machine. Journal of
Machine Learning Research, 5:1391–1415, 2004.

[74] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, Cambridge, MA, 2005. MIT Press.

[75] X. He, D. Cai, S. Yan, and H. J. Zhang. Neighborhood preserving
embedding. In International Conference on Computer Vision (ICCV),
2005.

[76] Thibault Helleputte and Pierre Dupont. Partially supervised feature se-
lection with regularized linear models. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML 2009), 2009.

References 177

[77] Leslie Hogben, editor. Handbook of Linear Algebra. CRC Press, 2006.

[78] J. C. Huang, T. Babak, T. W. Corson, G. Chua, S. Khan, B. L. Gallie,
T. R. Hughes, B. J. Blencowe, B. J. Frey, and Q. D. Morris. Using
expression profiling data to identify human microRNA targets. Nature
Methods, 4:1045–1049, 2007.

[79] Kaizhu Huang, Irwin King, and Michael R. Lyu. Direct zero-norm op-
timization for feature selection. In Proceedings of The Eighth IEEE
International Conference on Data Mining, 2008.

[80] Inaki Inza, Pedro Larranaga, Rosa Blanco, and Antonio J. Cerrolaza.
Filter versus wrapper gene selection approaches in DNA microarray do-
mains. Artificial Intelligence in Medicine, 31:91–103, 2004.

[81] Paul Jaccard. Étude comparative de la distribution florale dans une por-
tion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences
Naturelles, 37:547–579, 1901.

[82] A. Jain and D. Zongker. Feature selection: Evaluation, application, and
small sample performance. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 19(2):153–158, 1997.

[83] R. Jin and H. Liu. Robust feature construction for support vector ma-
chines. In Proceedings of the 21th International Conference on Machine
Learning (ICML-04), July, 2004, Bannf, Canada, 2004.

[84] T. Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. In C. Nedellec and C. Rouveirol, ed-
itors, Proceedings of 10th European Conference on Machine Learning,
pages 137–142, Chemnitz, Germany, 1998. Springer.

[85] I. T. Jolliffe. Principal Component Analysis. Springer, second edition,
2002.

[86] M. Joshi, G. Karypis, and V. Kumar. Scalparc: A new scalable and
efficient parallel classification algorithm for mining large datasets. In
International Parallel Processing Symposium (IPPS), pages 573–579,
1998.

[87] M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Research, 28:27–30, 2000.

[88] Fumiaki Katagiri and Jane Glazebrook. Overview of mRNA expres-
sion profiling using DNA microarrays. Current Protocols in Molecular
Biology, 22.4:s85, 2009.

[89] M. J. Kearns and U. V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

178 References

[90] K. Kira and L. A. Rendell. A practical approach to feature selection. In
Sleeman and P. Edwards, editors, Proceedings of the Ninth International
Conference on Machine Learning (ICML-92), pages 249–256. Morgan
Kaufmann, 1992.

[91] R. Kohavi and G. H. John. Wrappers for feature subset selection. Ar-
tificial Intelligence, 97(1–2):273–324, 1997.

[92] R. Kohavi and G. H. John. The Wrapper Approach, pages 33–50. In
Liu and Motoda [107], 1998. Second Printing, 2001.

[93] R. Kohavi and D. Sommerfield. Feature subset selection using the wrap-
per method: Overfitting and dynamic search space topology. In Proceed-
ings: First International Conference on Knowledge Discovery & Data
Mining, pages 192–197, Montreal, Canada, 1995. Morgan Kaufmann.

[94] I. Kononenko. Estimating attributes: Analysis and extension of RE-
LIEF. In F. Bergadano and L. De Raedt, editors, Proceedings of the
European Conference on Machine Learning, April 6–8, pages 171–182,
Catania, Italy, 1994. Springer-Verlag.

[95] M. Kowalski. Sparse regression using mixed norms. Applied and Com-
putational Harmonic Analysis, 27:303–324, 2009.

[96] R. Kruse, C. L. Tondo, and B. Leung. Data structures & program design
in C. Prentice Hall, 1996.

[97] Bor-Chen Kuo and D.A. Landgrebe. A covariance estimator for small
sample size classification problems and its application to feature extrac-
tion. IEEE Transactions on Geoscience and Remote Sensing, 40:814–
819, 2002.

[98] Carmen Lai, Marcel J. T. Reinders, Laura J. van’t Veer, and Lodewyk
F. A. Wessels. A comparison of univariate and multivariate gene selec-
tion techniques for classification of cancer datasets. BMC Bioinformat-
ics, 7:235, 2006.

[99] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El
Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidef-
inite programming. Journal of Machine Learning Research, 5:27–72,
2004.

[100] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An intro-
duction to latent semantic analysis. Discourse Processes, 25:259–284,
1998.

[101] A. Lazarevic. The distributed boosting algorithm. In SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD), 2001.

References 179

[102] W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive intrusion detection: A
data mining approach. AI Review, 14(6):533–567, 2000.

[103] E. Leopold and J. Kindermann Text categorization with support vector
machines. How to represent texts in input space? Machine Learning,
46:423–444, 2002.

[104] Caiyan Li and Hongzhe Li. Network-constrained regularization and vari-
able selection for analysis of genomic data. Bioinformatics, 24(9):1175–
1182, May 2008.

[105] Maozhen Li and A. Baker Mark. The Grid: Core Technologies. Wiley,
2005.

[106] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selec-
tion and multiclass classification methods for tissue classification based
on gene expression. Bioinformatics, 20:2429–2437, 2004.

[107] H. Liu and H. Motoda, editors. Feature Extraction, Construction and
Selection: A Data Mining Perspective. Kluwer Academic Publishers,
1998. Second Printing, 2001.

[108] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic Publishers, 1998.

[109] H. Liu and H. Motoda, editors. Computational Methods of Feature Se-
lection. Chapman & Hall/CRC Press, 2007.

[110] H. Liu and R. Setiono. Feature selection and classification: A proba-
bilistic wrapper model. Technical report, Department of Information
Systems and Computer Science National University of Singapore, 1995.

[111] H. Liu and R. Setiono. Feature selection and classification — a proba-
bilistic wrapper approach. In T. Tanaka, S. Ohsuga, and M. Ali, editors,
Proceedings of the Ninth International Conference on Industrial and En-
gineering Applications of AI and ES, pages 419–424, Fukuoka, Japan,
1996.

[112] H. Liu and R. Setiono. A probabilistic approach to feature selection
— a filter solution. In L. Saitta, editor, Proceedings of International
Conference on Machine Learning (ICML-96), July 3-6, 1996, pages 319–
327, Bari, Italy, 1996. Morgan Kaufmann.

[113] H. Liu and L. Yu. Toward integrating feature selection algorithms for
classification and clustering. IEEE Transactions on Knowledge and Data
Engineering, 17:491–502, 2005.

[114] Huiqing Liu, Jinyan Li, and Limsoon Wong. A comparative study on
feature selection and classification methods using gene expression pro-
files and proteomic patterns. Genome Informatics, 13:51–60, 2002.

180 References

[115] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via
efficient L2,L-norm minimization. In The Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence (UAI 2009), 2009.

[116] Jun Liu and Jieping Ye. Efficient L1-Lq norm regularization. Technical
report, Arizona State University, 2010.

[117] L. Lovasz. Random walks on graphs: A survey. Combinatorics, Paul
Erdos is Eighty, 2:353–397, 1993.

[118] J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck,
A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. Ferrando, J. R. Downing,
T. Jacks, H. R. Horvitz, and T. R. Golub. MicroRNA expression profiles
classify human cancers. Nature, 435:834–838, 2005.

[119] Bin Luo, Richard C. Wilson, and Edwin R. Hancock. Spectral embed-
ding of graphs. Pattern Recognition, 36:2213–2230, 2003.

[120] Shuangge Ma. Empirical study of supervised gene screening. BMC
Bioinformatics, 7:537, 2006.

[121] Shuangge Ma and Jian Huang. Penalized feature selection and clas-
sification in bioinformatics. Briefings in Bioinformatics, 9(5):392–403,
Sept. 2008.

[122] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings
of the National Institute of Science of India, 12:49–55, 1936.

[123] W. Mendenhall and T. Sincich. Statistics for Engineering and the Sci-
ences. Prentice Hall, fourth edition, 1995.

[124] Piet Van Mieghem. Graph Spectra for Complex Networks. Cambridge
University Press, 2011.

[125] Carl Murie, Owen Woody, Anna Lee, and Robert Nadon. Comparison of
small n statistical tests of differential expression applied to microarrays.
BMC Bioinformatics, 10(1):45, Feb. 2009.

[126] S. Negahban, P. Ravikumar, M. Wainwright, and B. Yu. A unified frame-
work for high-dimensional analysis of m-estimators with decomposable
regularizers. In Advances in Neural Information Processing Systems
(NIPS), pages 1348–1356, 2009.

[127] Y. Nesterov. Gradient methods for minimizing composite objective func-
tion. In CORE Discussion Papers, 2007, 06. University Catholique de
Louvain, Center for Operations Research and Econometrics (CORE),
2007.

[128] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Proceedings of 14th Advances in Neural Information
Processing Systems (NIPS), 849–856, 2001.

References 181

[129] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Link analysis,
eigenvectors and stability. In International Joint Conference on Artifi-
cial Intelligence, 2001.

[130] Feiping Nie, Feiping Nie, Shiming Xiang, Yangqing Jia, Changshui
Zhang, and Shuicheng Yan. Trace ratio criterion for feature selection.
In Proceedings of the 23rd National Conference on Artificial Intelligence
(AAAI), 2008.

[131] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer,
second edition, 2000.

[132] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection for
grouped classification. Technical report, Statistics Department, Univer-
sity of California at Berkeley, 2007.

[133] G. Obozinski, M. J. Wainwright, and M. I. Jordan. Highdimensional
union support recovery in multivariate regression. In Neural Information
Processing Systems, 2008.

[134] Arzucan Ozgur, Thuy Vu, Gunes Erkan, and Dragomir R. Radev. Iden-
tifying gene-disease associations using centrality on a literature mined
gene-interaction network. Bioinformatics, 24:i277–i285, 2008.

[135] Catia Pesquita, Daniel Faria, Hugo Bastos, Antonio E. N. Ferreira, An-
dre O. Falcao, and Francisco M. Couto. Metrics for GO based protein se-
mantic similarity: A systematic evaluation. BMC Bioinformatics, 9:S4,
2008.

[136] John H. Phan, Qiqin Yi Goen, Andrew N. Young, and May D. Wang. Im-
proving the efficiency of biomarker identification using biological knowl-
edge. In Pacific Symposium on Biocomputing, pages 427–438, 2009.

[137] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, 1984.

[138] C. D. Pitta, L. Tombolan, M. Campo Dell’Orto, and B. Accordi. A
leukemia-enriched CDNA microarray platform identifies new transcripts
with relevance to the biology of pediatric acute lymphoblastic leukemia.
Haematologica, 90:890–898, 2005.

[139] F. Provost and U. Fayyad. A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery, 3:131–169, 1999.

[140] Jianlong Qi and Jian Tang. Gene ontology driven feature selection from
microarray gene expression data. In Computational Intelligence and
Bioinformatics and Computational Biology, 2006.

[141] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

182 References

[142] Richard J. Radke. A MATLAB implementation of the implicitly
restarted arnoldi method for solving large-scale eigenvalue problems.
Master’s thesis, Department of Computational and Applied Mathemat-
ics, Rice University, 1996.

[143] Sarunas J. Raudys and Anil K. Jain. Small sample size effects in sta-
tistical pattern recognition: Recommendations for practitioners. IEEE
Transa Pattern Anal. Mach. Intell., 13:252–264, 1991.

[144] V. Roth and B. Fischer. The group-lasso for generalized linear mod-
els: Uniqueness of solutions and efficient algorithms. In International
Conference on Machine Learning, pages 848–855, 2008.

[145] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290:2323–2326, 2000.

[146] Yvan Saeys, Thomas Abeel, and Yves Van de Peer. Robust feature
selection using ensemble feature selection techniques. In Proceedings of
European Conference on Machine Learning (ECML), 2008.

[147] Yvan Saeys, Iaki Inza, and Pedro Larraaga. A review of feature selection
techniques in bioinformatics. Bioinformatics, 23(19):2507–2517, Oct.
2007.

[148] L. K. Saul, K. Q. Weinberger, F. Sha, J. Ham, and D. D. Lee. Spectral
Methods for Dimensionality Reduction, chapter 16, pages 279–293. MIT
Press, 2006.

[149] Frans Schalekamp and Anke van Zuylen. Rank aggregation: Together
we’re strong. In Proceedings of the Tenth Workshop on Algorithm En-
gineering and Experiments (ALENEX), 2009.

[150] B. Scholköpf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond (Adaptive Com-
putation and Machine Learning). MIT Press, 2001.

[151] Christine M.E. Schueller, Andreas Fritz, Eduardo Torres Schumann,
Karsten Wenger, Kaj Albermann, George A. Komatsoulis, Peter A.
Covitz, Lawrence W. Wright, and Frank Hartel. Towards a compre-
hensive catalog of gene-disease and gene-drug relationships in cancer.
Technical report, National Cancer Institute, 2005.

[152] John P Scott. Social Network Analysis: A Handbook. Sage Publications,
2000.

[153] M. W. Seeger. Bayesian inference and optimal design for the sparse
linear model. Journal of Machine Learning Research, 9:759–813, 2008.

References 183

[154] J. C. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel
classifier for data mining. In International Conference on Very Large
Data Bases (VLDB), pages 544–555, 1996.

[155] Blake Shaw and Tony Jebara. Structure preserving embedding. In
Proceedings of the 26th International Conference on Machine Learning
(ICML 2009), 2009.

[156] J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 1997.

[157] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[158] M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of
Relief and ReliefF. Machine Learning, 53:23–69, 2003.

[159] C. Sima and E. R. Dougherty. What should be expected from feature
selection in small-sample settings. Bioinformatics, 22:2430–2436, 2006.

[160] Sameer Singh, Jeremy Kubica, Scott Larsen, and Daria Sorokina. Par-
allel large scale feature selection for logistic regression. In SIAM Data
Mining Conference (SDM), 2009.

[161] Sanasam Ranbir Singh, Hema A. Murthy, and Timothy A. Gonsalves.
Feature selection for text classification based on Gini coefficient of in-
equality. In The Fourth Workshop on Feature Selection in Data Mining,
2010.

[162] A. J. Smola and I. R. Kondor. Kernels and regularization on graphs.
In Proceedings of the Annual Conference on Computational Learning
Theory (COLT), 2003.

[163] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Reference. MIT Press Cambridge, 1995.

[164] L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature
selection via dependence maximization. Journal of Machine Learning
Research, 2007.

[165] L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supervised
feature selection via dependence estimation. In International Conference
on Machine Learning, 2007.

[166] M. R. Spiegel. Theory and Problems of Probability and Statistics. New
York: McGraw-Hill, second edition, 1992.

[167] Ingo Steinwart and Andreas Christmann. Support Vector Machines.
Springer, 2008.

184 References

[168] Shireesh Srivastava, Linxia Zhang, Rong Jin, and Christina Chan. A
novel method incorporating gene ontology information for unsupervised
clustering and feature selection. PLoS ONE, 3(12):e3860, 2008.

[169] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher,
Ashton Breitkreutz, and Mike Tyers. Biogrid: A general repository for
interaction datasets. Nucleic Acids Research, 34:535–539, 2006.

[170] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction.
Princeton University Press, 2003.

[171] Petre Stoica and Randolph L. Moses. Introduction to Spectral Analysis.
Prentice Hall, 1997.

[172] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan
Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich,
Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and Jill P. Mesirov.
Gene set enrichment analysis: A knowledge-based approach for in-
terpreting genome-wide expression profiles. Proceedings of National
Academy of Sciences (PNAS), 102:15545–15550, 2005.

[173] Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan
Chafi, Michael Wu, Anand Atreya, Martin Odersky, and Kunle Oluko-
tun. Optiml: An implicitly parallel domain-specific language for machine
learning. In The 28th International Conference on Machine Learning,
2011.

[174] Marc Sultan, Marcel H. Schulz, Hugues Richard, Alon Magen, Andreas
Klingenhoff, Matthias Scherf, Martin Seifert, Tatjana Borodina, Alek-
sey Soldatov, Dmitri Parkhomchuk, Dominic Schmidt, Sean O’Keeffe,
Stefan Haas, Martin Vingron, Hans Lehrach, and Marie-Laure Yaspo. A
global view of gene activity and alternative splicing by deep sequencing
of the human transcriptome. Science, 321:956–960, 2008.

[175] A. Suminoe, A. Matsuzaki, H. Hattori, Y. Koga, E. Ishii, and T. Hara.
Expression of matrix metalloproteinase (mmp) and tissue inhibitor of
mmp (timp) genes in blasts of infant acute lymphoblastic leukemia with
organ involvement. Leukemia Research, 10:1437–40, 2007.

[176] Liang Sun, Shuiwang Ji, and Jieping Ye. A least squares formulation
for a class of generalized eigenvalue problems in machine learning. In
Proceedings of the 26th International Conference on Machine Learning,
2009.

[177] Y. Sun, C. F. Babbs, and E. J. Delp. A comparison of feature selection
methods for the detection of breast cancers in mammograms: adaptive
sequential floating search vs. genetic algorithm. In Proceedings of the
27th International Conference of IEEE Engineering in Medicine and
Biology Society, 6:6532–6535, 2005.

References 185

[178] J.A.K. Suykens and J. Vandewalle. Least squares support vector ma-
chine classifiers. Neural Processing Letters, 9(3):1370–4621, 1999.

[179] Michael D. Swartz, Robert K. Yu, and Sanjay Shete. Finding factors
influencing risk: Comparing Bayesian stochastic search and standard
variable selection methods applied to logistic regression models of cases
and controls. Statistics Medicine, 27(29):6158–6174, Dec. 2008.

[180] D. L. Swets and J. J. Weng. Efficient content-based image retrieval
using automatic feature selection. In IEEE International Symposium
on Computer Vision, pages 85–90, 1995.

[181] T. Boehm, L. Foreni, Y. Kaneko, M. F. Perutz, and T. H. Rabbitts.
The rhombotin family of cysteine-rich lim-domain oncogenes: Distinct
members are involved in t-cell translocations to human chromosomes
11p15 and 11p13. Proceedings of National Academy of Sciences (PNAS),
88:4367–71, 1991.

[182] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[183] L. N. Teow, H. Liu, H. T. Ng, and E. Yap. Refining the wrapper ap-
proach — smoothed error estimates for feature selection. In Proceedings
of the Nineteenth International Conference on Machine Learning, pages
626–633, 2002.

[184] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. Machine Learning Research, 2:45–66,
2001.

[185] P. Tseng. Convergence of block coordinate descent method for nondif-
ferentiable minimization. Journal of Optimization Theory and Applica-
tions, 109:474–494, 2001.

[186] P. Tseng and S. Yun. A coordinate gradient descent method for non-
smooth separable minimization. Mathematical Programming, 117(1):
387–423, 2009.

[187] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[188] U. von Luxburg. A tutorial on spectral clustering. Technical report,
Max Planck Institute for Biological Cybernetics, 2007.

[189] Shinichiro Wachi, Ken Yoneda, and Reen Wu. Interactome-
transcriptome analysis reveals the high centrality of genes differentially
expressed in lung cancer tissues. Bioinformatics, 21:4205–4208, 2005.

186 References

[190] R. E. Walpole and R. H. Myers. Probability and Statistics for Engineers
and Scientists. Macmillan, fifth edition, 1993.

[191] K. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimension-
ality reduction by semidefinite programming and kernel matrix factor-
ization. In Proceedings of the Tenth International Workshop on AI and
Statistics (AISTATS-05), 2005.

[192] J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero
norm with linear models and kernel methods. Journal of Machine Learn-
ing Research, 3:1439–1461, 2003.

[193] Tom White. Hadoop: The Definitive Guide. Yahoo Press, 2010.

[194] Kristian Woodsend and Jacek Gondzio. Hybrid mpi/openmp parallel
linear support vector machine training. Journal of Machine Learning
Research, 10:1937–1953, 2009.

[195] Lin Xiao, Jun Sun, and Stephen Boyd. A duality view of spectral meth-
ods for dimensionality reduction. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, 2006.

[196] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-
class support vector machines. In AAAI-05, The Twentieth National
Conference on Artificial Intelligence, 2005.

[197] Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, and Irwin King.
Discriminative semi-supervised feature selection via manifold regular-
ization. In IJCAI ’09: Proceedings of the 21th International Joint Con-
ference on Artificial Intelligence, 2009.

[198] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang
Yang, and Stephen Lin. Graph embedding and extensions: A general
framework for dimensionality reduction. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 29(1):40–51, 2007.

[199] J. Ye. Characterization of a family of algorithms for generalized discrim-
inant analysis on undersampled problems. Journal of Machine Learning
Research, 6:483–502, 2005.

[200] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear discriminant
analysis. In NIPS, 2004.

[201] J. Ye, R. Janardan, Q. Li, and H. Park. Feature extraction via general-
ized uncorrelated linear discriminant analysis. In Proceedings of ICML,
2004.

[202] J. Ye and T. Xiong. Null space verus orthogonal linear discriminant
analysis. In Proceedings of ICML, 2006.

References 187

[203] J. Ye, L. Yu, and H. Liu. Sparse linear discriminant analysis. Techni-
cal Report Department of Computer Science and Engineering, Arizona
State University, 2006.

[204] Jieping Ye. Least squares linear discriminant analysis. In Proceedings
of the 24th International Conference on Machine Learning (ICML’07),
2007.

[205] Jieping Ye, Jianhui Chen, Ravi Janardan, and Sudhir Kumar. Develop-
mental stage annotation of drosophila gene expression pattern images
via an entire solution path for LDA. ACM Transactions on Knowledge
Discovery from Data, special issue on Bioinformatics, 2:1–21, 2007.

[206] Jieping Ye, Shuiwang Ji, and Jianhui Chen. Multi-class discriminant
kernel learning via convex programming. Journal of Machine Learning
Research, 9:719–758, 2008.

[207] Jieping Ye and Tao Xiong. Computational and theoretical analysis of
null space and orthogonal linear discriminant analysis. Journal of Ma-
chine Learning Research, 7:1183–1204, 2006.

[208] Jieping Ye and Tao Xiong. SVM versus least squares SVM. In The
Eleventh International Conference on Artificial Intelligence and Statis-
tics, pages 640–647, 2007.

[209] Hua Yu and Richard Jove. The stats of cancer — New molecular targets
come of age. Nature Reviews Cancer, 4:97–105, 2004.

[210] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research, 5(Oct):1205–1224,
2004.

[211] Lei Yu, Chris Ding, and Steven Loscalzo. Stable feature selection via
dense feature groups. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-08),
2008.

[212] Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance
and redundancy. Journal of Machine Learning Research, 5:1205–1224,
2004.

[213] Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A
comparison of optimization methods and software for large-scale L1-
regularized linear classification. Journal of Machine Learning Research,
11:3153–3204, 2010.

[214] M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B,
68:49–67, 2006.

188 References

[215] Mohammed J. Zaki and Ching-Tien Ho, editors. Large-Scale Parallel
Data Mining. Springer, 2000.

[216] H. Zhang, J. Ahn, X. Lin, and C. Park. Gene selection using support
vector machines with non-convex penalty. Bioinformatics, 22:88–95,
2005.

[217] Tong Zhang and Rie Ando. Analysis of spectral kernel design based
semi-supervised learning. In Advances in Neural Information Processing
Systems 18, pages 1601–1608, 2006.

[218] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family
for grouped and hierarchical variable selection. Annals of Statistics,
37:3468–3497, 2009.

[219] Zheng Zhao and Huan Liu. Semi-supervised feature selection via spectral
analysis. Technical Report TR-06-022, Computer Science and Engineer-
ing, Arizona State University, 2006.

[220] Zheng Zhao and Huan Liu. Searching for interacting features. In Inter-
national Joint Conference on AI (IJCAI), 2007.

[221] Zheng Zhao and Huan Liu. Semi-supervised feature selection via spectral
analysis. In Proceedings of SIAM International Conference on Data
Mining (SDM), 2007.

[222] Zheng Zhao and Huan Liu. Spectral feature selection for supervised
and unsupervised learning. In International Conference on Machine
Learning (ICML), 2007.

[223] Zheng Zhao and Huan Liu. Multi-source feature selection via geometry-
dependent covariance analysis. In Journal of Machine Learning Re-
search, Workshop and Conference Proceedings, Volume 4: New Chal-
lenges for Feature Selection in Data Mining and Knowledge Discovery,
pages 36–47, 2008.

[224] Zheng Zhao, Jiangxin Wang, Huan Liu, and Yung Chang. Biological
relevance detection via network dynamic analysis. In Proceedings of 2nd
International Conference on Bioinformatics and Computational Biology
(BICoB), 2010.

[225] Zheng Zhao, Jiangxin Wang, Huan Liu, Jieping Ye, and Yung Chang.
Identifying biologically relevant genes via multiple heterogeneous data
sources. In The Fourteenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD 2008), 2008.

[226] Zheng Zhao, Jiangxin Wang, Shashvata Sharma, Nitin Agarwal, Huan
Liu, and Yung Chang. An integrative approach to identifying biologi-
cally relevant genes. In Proceedings of SIAM International Conference
on Data Mining (SDM), 2010.

References 189

[227] Zheng Zhao, Lei Wang, and Huan Liu. Efficient spectral feature selection
with minimum redundancy. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI), 2010.

[228] D. Zhou and C. Burges. Spectral clustering and transductive learning
with multiple views. In Proceedings of the 24th International Conference
on Machine Learning, 2007.

[229] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm
support vector machines. In Advances in Neural Information Processing
Systems 16, 2003.

[230] Hui Zou, Trevor Hastiey, and Robert Tibshirani. Sparse principal com-
ponent analysis. Technical report, Department of Statistics, Stanford
University, 2004.

This page intentionally left blankThis page intentionally left blank

x
0 2 4 6

x
0 2 4 6

y y

λ2 = 4.3 × 10–5 λ3 = 1.5 × 10–4

8

6

4

2

0

8

6

4

2

0

COLOR FIGURE 1.9: The contour of the second and third eigenvectors
of a Laplacian matrix derived from a similarity matrix S. The numbers on
the top are the corresponding eigenvalues.

x
0 2 4 6

y
λ2 = 4.3 × 10–5λ1 = 0

λ4 = 7.8 × 10–4λ3 = 1.5 × 10–4

λ20 = 5.5 × 10–3λ5 = 8.3 × 10–4

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

COLOR FIGURE 2.3: Contours of the eigenvectors ξ1, ξ2, ξ3, ξ4, ξ5, and
ξ20 of L.

y
λ2 = 4.6 × 10–3λ1 = 0

λ4 = 8.2 × 10–2λ3 = 1.6 × 10–2

λ20 = 7.6 × 10–1λ5 = 8.7 × 10–2

8

6

4

2

0

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

COLOR FIGURE 2.4: Contours of the eigenvectors ξ1, ξ2, ξ3, ξ4, ξ5, and
ξ20 of L.

COLOR FIGURE 2.6: The cut value (y-axis) of different types of cut
under different cluster sizes (x-axis). The x-axis corresponds to the value of
n in Figure 2.5.

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

x
0 2 4 6

y
ϕ

1 (F1) = 0.012
ϕ

2 (F1) = 0.031, ϕ3 (F1) = 0.377

ϕ
1 (F2) = 0.009

ϕ
2 (F2) = 0.027, ϕ3 (F2) = 0.537

ϕ
1 (F3) = 0.239

ϕ
2 (F3) = 1.030, ϕ3 (F3) = 0.015

ϕ
1 (F5) = 0.204

ϕ
2 (F5) = 0.918, ϕ3 (F5) = 0.015

ϕ
1 (F6) = 0.266

ϕ
2 (F6) = 1.059, ϕ3 (F6) = 0.003

ϕ
1 (F4) = 0.346

ϕ
2 (F4) = 1.111, ϕ3 (F4) = 0.000

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

y

8

6

4

2

0

COLOR FIGURE 2.7: Contours and the scores of six features. Among
these features, F1 and F2 are relevant, and F3, F4, F5, and F6 are irrelevant.

0.1 0.80.70.60.50.40.30.2 0.1 0.80.70.60.50.40.30.2

0.1 0.80.70.60.50.40.30.2 0.1 0.80.70.60.50.40.30.2

0.1 0.80.70.60.50.40.30.2 0.1 0.80.70.60.50.40.30.2

ϕ1 (L) ϕ2 (L)

ϕ
3 (L) ϕ

1 (L
3)

ϕ
2 (L3) ϕ

3 (L3)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.7

0.6

0.5

.4

0.3

0.2

0.1

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0.7

0.6

0.5

.4

0.3

0.2

0.1

0

0.7

0.6

0.5

.4

0.3

0.2

0.1

0

1.4

1.2

1

0.8

0.6

0.4

0.2

0

F
1

F
2

F
3

F
4

F
5

F6

F
1

F
2

F
3

F
4

F
5

F6

F
1

F
2

F
3

F
4

F
5

F6

F
1

F
2

F
3

F
4

F
5

F6

F
1

F
2

F
3

F
4

F
5

F6

F
1

F
2

F
3

F
4

F
5

F6

COLOR FIGURE 2.13: Effects of noise on the feature ranking functions.

ORL PIE

TOX CLL−SUB

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 20 40 60 80 100 120 140 160 180 200

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

1

0.95

0.9

0.85

0.8

0.75

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.7

0.65

0.6

0.55

0.5

Relief
Fisher Score
Trace−ratio
HSIC
mRMR
AROM−SVM
MCSF
MRSF

COLOR FIGURE 4.4: Study of supervised cases: Plots for accuracy
(y-axis) vs. different numbers of selected features (x-axis) on the six data
sets. The higher the accuracy, the better.

COLOR FIGURE 6.7: Cluster analysis on the genes selected by
KOFSProb (left) and GO-REL-PROP (right), respectively. The color lines on
the bottom of the figure correspond to the samples from patients of B-cell
ALL (blue), T-cell ALL (red), and B-cell ALL with the MLL/AF4
chromosomal rearrangement (green), respectively.

Spectral Feature Selection for Data Mining introduces a novel
feature selection technique that establishes a general platform
for studying existing feature selection algorithms and developing
new algorithms for emerging problems in real-world applications.
This technique represents a unified framework for supervised,
unsupervised, and semisupervised feature selections.

The book explores the latest research achievements, sheds light on
new research directions, and stimulates readers to make the next
creative breakthroughs. It presents the intrinsic ideas behind spectral
feature selection, its theoretical foundations, its connections to other
algorithms, and its use in handling both large-scale data sets and
small sample problems. The authors also cover feature selection
and feature extraction, including basic concepts, popular existing
algorithms, and applications.

A timely introduction to spectral feature selection, this book
illustrates the potential of this powerful dimensionality reduction
technique in high-dimensional data processing. Readers learn how
to use spectral feature selection to solve challenging problems in
real-life applications and discover how general feature selection and
extraction are connected to spectral feature selection.

K12877

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Zhao

Liu

Spectral Feature Selection
for Data Mining

Spectral Feature Selection
for Data Mining

Spectral Feature Selection for D
ata M

ining

Zheng Alan Zhao and Huan Liu

Computer Science

K12877_Cover.indd 1 11/2/11 3:34 PM

	Dedication
	Contents
	Preface
	Authors
	Symbol Description
	1. Data of High Dimensionality and Challenges
	2. Univariate Formulations for Spectral Feature Selection
	3. Multivariate Formulations
	4. Connections to Existing Algorithms
	5. Large-Scale Spectral Feature Selection
	6. Multi-Source Spectral Feature Selection
	References

