Sequence Data Mining



ADVANCES IN DATABASE SYSTEMS

Series Editor

Ahmed K. Elmagarmid

Purdue University
West Lafayette, IN 47907

Other books in the Series:

DATA STREAMS: Models and Algorithms, edited by Charu C. Aggarwal,
ISBN: 978- 0-387-28759-1

SIMILARITY SEARCH: The Metric Space Approach, P. Zezula, G. Amato,
V. Dohnal, M. Batko; ISBN: 0-387-29146-6

STREAM DATA MANAGEMENT, Nauman Chaudhry, Kevin Shaw,
Mahdi Abdelguerfi; ISBN: 0-387-24393-3

FUZZY DATABASE MODELING WITH XML, Zongmin Ma;
ISBN: 0-387-24248-1

MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang
and Jiong Yang,; ISBN: 0-387-24246-5

ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB
APPLICATIONS, Yannis Manolopoulos, Alexandros Nanopoulos,
Eleni Tousidou; ISBN: 1-4020-7425-5

ADVANCES IN DIGITAL GOVERNMENT: Technology, Human Factors,
and Policy, edited by William J. Mclver, Jr. and Ahmed K. Elmagarmid;
ISBN: 1-4020-7067-5

INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero
and Marcela Genero,; ISBN: 0-7923- 7599-8

DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee:
ISBN: 0-7923-7215-8

THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the
Memory Hierarchy, Bruce McNutt; ISBN: 0-7923-7945-4

SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING
AND BROWSING, Shu-Ching Chen, R.L. Kashyap, and Arif Ghafoor,
ISBN: 0-7923-7888-1

INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA:
A Metadata-based Approach, Vipul Kashyap, Amit Sheth; ISBN: 0-7923-7883-0

DATA DISSEMINATION IN WIRELESS COMPUTING ENVIRONMENTS,
Kian-Lee Tan and Beng Chin Ooi; ISBN: 0-7923-7866-0

MIDDLEWARE NETWORKS: Concept, Design and Deployment of Internet
Infrastructure, Michah Lerner, George Vanecek, Nino Vidovic,
Dad Vrsalovic;, ISBN: 0-7923-7840-7

ADVANCED DATABASE INDEXING, Yannis Manolopoulos, Yannis Theodoridis,
Vassilis J. Tsotras; ISBN: 0-7923-7716-8

MULTILEVEL SECURE TRANSACTION PROCESSING, Vijay Atluri, Sushil
Jajodia, Binto George ISBN: 0-7923-7702-8

FUZZY LOGIC IN DATA MODELING, Guoging Chen ISBN: 0-7923-8253-6

For a complete listing of books in this series, go to http://www.springer.com




Sequence Data Mining

Guozhu Dong
Wright State University
Dayton, Ohio, USA

and
Jian Pei

Simon Fraser University
Burnaby, BC, Canada

@ Springer



Guozhu Dong, PhD, Professor Jian Pei, Ph.D.

Department of Computer Science and Eng. Assistant Professor

Wright State University School of Computing Science
Dayton, Ohio, 45435, USA Simon Fraser University
e-mail: guozhu.dong@wright.edu 8888 University Drive

Burnaby, BC Canada V5A 1S6
e-mail: jpei@cs.sfu.ca

ISBN-13: 978-0-387-69936-3 e-ISBN-13: 978-0-387-69937-0
Library of Congress Control Number: 2007927815

© 2007 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper.
987654321

springer.com



To my parents, my wife and my children. {G.D.
To my wife Jennifer. {J.P.



Foreword

With the rapid development of computer and Internet technology, tremendous
amounts of data have been collected in various kinds of applications, and data
mining, i.e., finding interesting patterns and knowledge from a vast amount of
data, has become an imminent task. Among all kinds of data, sequence data
has its own unique characteristics and importance, and claims many inter-
esting applications. From customer shopping transactions, to global climate
change, from web click streams to biological DNA sequences, the sequence
data is ubiquitous and poses its own challenging research issues, calling for
dedicated treatment and systematic analysis.

Despite of the existence of a lot of general data mining algorithms and
methods, sequence data mining deserves dedicated study and in-depth treat-
ment because of its unique nature of ordering, which leads to many interesting
new kinds of knowledge to be discovered, including sequential patterns, motifs,
periodic patterns, partially ordered patterns, approximate biological sequence
patterns, and so on; and these kinds of patterns will naturally promote the
development of new classification, clustering and outlier analysis methods,
which in turn call for new, diverse application developments. Therefore, se-
quence data mining, i.e., mining patterns and knowledge from large amount
of sequence data, has become one of the most essential and active subfields
of data mining research. With many years of active research on sequence
data mining by data mining, machine learning, statistical data analysis, and
bioinformatics researchers, it is time to present a systematic introduction and
comprehensive overview of the state-of-the-art of this interesting theme. This
book, by Professors Guozhu Dong and Jian Pei, serves this purpose timely,
with remarkable conciseness and in great quality.

There have been many books on the general principles and methodologies
of data mining. However, the diversities of data and applications call for dedi-
cated, in-depth, and thorough treatment of each specific kind of data, and for
each kind of data, compile a vast array of techniques from multiple disciplines
into one comprehensive but concise introduction. Thus there is no wonder
to see the recent trend of the publication of a series of new, domain-specific
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data mining books, such as those on Web data mining, stream data mining,
geo-spatial data mining, and multimedia data mining. This book integrates
the methodologies of sequence data mining developed in multiple disciplines,
including data mining, machine learning, statistics, bioinformatics, genomics,
web services, and financial data analysis, into one comprehensive and easily-
accessible introduction. It starts with a general overview of the sequence data
mining problem, by characterizing the sequence data, sequence patterns and
sequence models and their various applications, and then proceeds to differ-
ent mining algorithms and methodologies. It covers a set of exciting research
themes, including sequential pattern mining methods; classification, clustering
and feature extraction of sequence data; identification and characterization of
sequence motifs; mining partial orders from sequences; distinguishing sequence
patterns; and other interesting related topics. The scope of the book is broad,
nevertheless the treatment of each chapter is rigorous, in sufficient depth, but
still easy to read and comprehend.

Both authors of the book are prominent researchers on sequence data
mining and have made important contributions to the progress of this dynamic
research field. This ensures that the book is authoritative and reflects the
current state of the art. Nevertheless, the book gives a balanced treatment on
a wide spectrum of topics, far beyond the authors’ own methodologies and
research scopes.

Sequence data mining is still a fairly young and dynamic research field.
This book may serve researcher and application developers a comprehensive
overview of the general concepts, techniques, and applications on sequence
data mining and help them explore this exciting field and develop new methods
and applications. It may also serve graduate students and other interested
readers a general introduction to the state-of-the-art of this promising field.

I find the book is enjoyable to read. I hope you like it too.

Jiawei Han
University of Illinois, Urbana-Champaign
April 29, 2007
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Preface

Sequence data is pervasive in our lives. For example, your schedule for any
given day is a sequence of your activities. When you read a news story, you
are told the development of some events which is also a sequence. If you have
investment in companies, you are keen to study the history of those companies’
stocks. Deep in your life, you rely on biological sequences including DNA and
RNA sequences.

Understanding sequence data is of grand importance. As early as our his-
tory can call, our ancestors already started to make predictions or simply
conjectures based on their observations of event sequences. For example, a
typical task of royal astronomers in ancient China was to make conjectures
according to their observations of stellar movements. Even much earlier be-
fore that, the nature encodes some “sequence learning algorithms” in lives.
For example, some animals such as dogs, mice, and snakes have the capability
to predict earthquakes based on environmental change sequences, though the
mechanisms are still largely mysteries.

When the general field of data mining emerged in the 1990s, sequence
data mining naturally became one of the first class citizens in the field. Much
research has been conducted on sequence data mining in the last dozen years.
Hundreds if not thousands of research papers have been published in forums
of various disciplines, such as data mining, database systems, information
retrieval, biology and bioinformatics, industrial engineering, etc. The area of
sequence data mining has developed rapidly, producing a diversified array of
concepts, techniques and algorithmic tools.

The purpose of this book is to provide, in one place, a concise introduction
to the field of sequence data mining, and a fairly comprehensive overview of
the essential research results. After an introduction to the basics of sequence
data mining, the major topics include (1) mining frequent and closed sequen-
tial patterns, (2) clustering, classification, features and distances of sequence
data, (3) sequence motifs — identifying and characterizing sequence families,
(4) mining partial orders from sequences, (5) mining distinguishing sequence
patterns, and (6) overviewing some related topics.



XII Preface

This monograph can be useful to academic researchers and graduate stu-
dents interested in data mining in general and in sequence data mining in
particular, and to scientists and engineers working in fields where sequence
data mining is involved, such as bioinformatics, genomics, web services, secu-
rity, and financial data analysis.

Although sequence data mining is discussed in some general data mining
textbooks, as you will see in your reading of our book, we conduct a much
deeper and more thorough treatment of sequence data mining, and we draw
connections to applications whenever it is possible. Therefore, this manuscript
covers much more on sequence data mining than a general data mining text-
book.

The area of sequence data mining, although a sub-field of general data
mining, is now very rich and it is impossible to cover all of its aspects in this
book. Instead, in this book, we tried our best to select several important and
fundamental topics, and to provide introductions to the essential concepts and
methods, of this rich area.

Sequence data mining is still a fairly young research field. Much more
remains to be discovered in this exciting research direction, regarding general
concepts, techniques, and applications. We invite you to enjoy the exciting
exploration.
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Introduction

Sequences are an important type of data which occur frequently in many sci-
entific, medical, security, business and other applications. For example, DNA
sequences encode the genetic makeup of humans and all species, and pro-
tein sequences describe the amino acid composition of proteins and encode
the structure and function of proteins. Moreover, sequences can be used to
capture how individual humans behave through various temporal activity his-
tories such as weblogs and customer purchase histories. Sequences can also be
used to describe how organizations behave through sales histories such as the
total sales of various items over time for a supermarket, etc.

Huge amounts of sequence data have been and continue to be collected in
genomic and medical studies, in security applications, in business applications,
etc. In these applications, the analysis of the data needs to be carried out in
different ways to satisfy different application requirements, and it needs to
be carried out in an efficient manner. Sequence data mining provides the
necessary tools and approaches for unlocking useful knowledge hidden in the
mountains of sequence data. The purpose of this book is to present some of
the main concepts, techniques, algorithms, and references on sequence data
mining.

This introductory chapter has four goals. First, it will provide some exam-
ple applications of sequence data. Second, it will define several basic/generic
concepts for sequences and sequence data mining. Third, it will discuss the ma-
jor issues of interest in data mining research. Fourth, it will give an overview
of the entire book.

1.1 Examples and Applications of Sequence Data
This section describes typical applications and common types of sequence

data. It will demonstrate the richness of the types of sequence data, and serve
as illustration of some formal concepts to be given in the next section.
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1.1.1 Examples of Sequence Data
Biological Sequences: DNA, RNA and Protein

Biological sequences are useful for understanding the structures and functions
of various molecules, and for diagnosing and treating diseases. Three ma-
jor types of biological sequences are deoxyribonucleic acid (DNA) sequences,
amino acid (also called peptide or protein) sequences, and ribonucleic acid
(RNA) sequences. Figures [Tl and [[.2] show respectively a part of a DNA se-
quence and a part of a protein sequence. RNA sequences are slightly different
from DNA sequences. Below we briefly discuss some background information
on these biological sequences.

The complete set of instructions for making an organism is called the or-
ganism’s genome. A genome is often encoded in the DNA, which is a long
polyme made from four types of nucleotides: adenine (abbreviated as A),
cytosine (abbreviated as C), guanine (abbreviated as G) and thymine (abbre-
viated as T). The DNA contains both the genes, which encode the sequences
of proteins, and the non-coding sequences.

GAATTCTCTGTAACACTAAGCTCTCTTCCTCAAAACCAGAGGTAGATAGA
ATGTGTAATAATTTACAGAATTTCTAGACTTCAACGATCTGATTTTTTAA
ATTTATTTTTATTTTTTCAGGTTGAGACTGAGCTAAAGTTAATCTGTGGC

Fig. 1.1. A DNA sequence fragment.

Proteins are polymers made from 20 different amino acids, using informa-
tion present in genes. Genes are transcribed into RNA; RNA is then subject to
post-transcriptional modification and control, resulting in a mature messenger

RNA (mRNA); the mRNA is translated by ribosomes into the amino acids of

the corresponding proteins. Each amino acid is the translation of a sequence
interval of length 3 in the mRNA, which is also called a codon. The 20 amino
acids are abbreviated as A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, and Y, respectively. RNA is made from four types of nucleotides: adenine
(A), guanine (G), cytosine (C), and uracil (U). The first three are the same as
those found in DNA, and uracil replaces thymine as the base complementary
to adenine.

There are many data analysis problems of biological interest. Some exam-
ples include

identifying genes and gene start sites from DNA sequences;
identifying intron/exon splice sites from DNA sequences;
identifying transcription promotors etc from DNA sequences;

L A polymer is a generic term referring to a very long molecule consisting of struc-
tural units and repeating units connected by covalent chemical bonds.
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SSQIRQNYSTEVEAAVNRLVNLYLRASYTYLSLGFYFDRDDVALEGVCHFF
RELAEEKREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTPDAMKAA
IVLEKSLNQALLDLHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTN
IQRLVGSQAGLGEYLFERLTLKHD

Fig. 1.2. A protein sequence fragment.

e identifying non-coding RNA (also called small RNA) etc from RNA se-
quences;
analyzing the structure and function of proteins from protein sequences;
identifying the characteristic (motif) patterns of families of DNA, RNA or
protein sequences;
identifying useful sequence families; and
comparing sequence families (e.g. comparing families associated with dif-
ferent species/diseases).

Advances on these problems can help us to better understand life and diseases.

Event Sequences: Weblogs, System Traces, Purchase Histories
and Sales Histories

A major category of sequences are event sequences. Such sequences can be
used to understand how the underlying actors (namely the objects which
generated the event sequences) of the event sequences behave and how to
best deal with them. The following are examples of event sequences.

A weblog is a sequence of user-identifier and event pairs (and perhaps
other relevant information). An event is a request of some web resource such
as a page (usually identified by the URL of the page) or a service. For each
page requested, some additional information may be available, such as the
type and the content of the page, and the amount of time the user spent on
the page. The events in a weblog are listed in the timestamp ascending order.
Figure shows an example weblog, where a, b, ¢, d, e are events, and 100,
200, 300, and 400 are user identifiers. A weblog can also be restricted to a
single user.

(100, a), (100, b), (200, a), (300, b), (200, bY, (400, a), (100, a), (400, b),
(300, a), (100, c), (200, ¢), (400, ), (400, €)

Fig. 1.3. A weblog sequence.

System traces are similar to weblogs in form. They are sequences of records
concerning operations performed by various users/processes to various data
and resources in one or more systems.
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Customer purchase histories are sequences of tuples, each consisting of
a customer identifier, a location, a time, and a set of items purchased, etc.
Figure [[L4] shows an example.

(223100, 05/26/06, 10am, CentralStation, {W hole M eal Bread, AppleJuice}),
(225101, 05/26/06, 11am, Central Station, { Burger, Pepsi, Banana}),
(223100, 05/26/06, 4pm, WalMart, { Milk, Cereal, Vegetable}),

(223100, 05/27/06, 10am, Central Station, {W hole M eal Bread, Apple Juice}),
(225101, 05/27/06, 12noon, Central Station, { Burger, Coke, Apple})

Fig. 1.4. A customer purchase history.

Storewide sales histories are sequences of tuples, each consisting of a store
ID, a time (period), the total sales of individual items for the time (period),
and other relevant information. Such histories can also contain customer group
information and some other information for the sales. Figure shows an
example.

(97100, 05/06, {(Apple : $85K), (Bread : $100K), (Cereal : $150K), ...}),
(90089, 05/06, {{Apple : $65K ), (Bread : $105K), ( Diaper : $20K), ...}),
(97100, 06/06, {(Apple : $95K), (Bread : $110K), (Cereal : $160K), ...}),
(90089, 06/06, {(Apple : $66K), (Bread : $95K), (Diaper : $22K), ...})

Fig. 1.5. A storewide sales history.

1.1.2 Examples of Sequence Mining Applications

We now discuss some example data mining applications on event sequences.

Mining Frequent Subsequences

Ada is a marketing manager in a store. She wants to design a marketing cam-
paign which consists of two major aspects. First, a set of products should be
identified for promotion. Hopefully, for promoting those products, customers
will be retained, and sales on other products will be stimulated. Second, a set
of customers should be targeted so that the promotion information should be
delivered.

To start with, Ada has the transactions of customers in the past. Each
transaction includes the customer-id, the products bought in the transaction,
and the timestamp of the transaction. Grouping transactions by customers
and sorting them in the timestamp ascending order, Ada can get a purchase
sequence database where each sequence records the behavior of a customer.
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Ada may want to find frequent subsequences that are shared by many cus-
tomers. As patterns, those frequent subsequences can help her to understand
the behavior of customers. She can also identify products to be promoted
according to the purchase patterns, and the target customers.

Classification of Sequences

Bob is a safety manager in an airline in charge of braking systems in airplanes.
A sequence of status records is maintained for each aircraft. Maintaining the
braking system of an airplane in a hub airport of the airline is highly desirable
since maintenance cost is often several times higher when the job is done in
a guest airport. On the other hand, being too proactive in maintenance may
also lead to unnecessary cost since parts may be replaced too early and are
not fully used.

Therefore, Bob is facing such a question: given an airplane’s sequence of
status records, predict in high confidence whether the plane needs a mainte-
nance before it goes to the next hub airport. This is a classification problem
(or as known as supervised learning) since the prediction is made based on
some historical data, that is, some records of previous maintenances collected
for references.

Clustering of Sequences

Carol is a medical analyst in charge of analyzing patients’ reactions to a
new drug. For each patient taking the drug (which is referred to as a case),
she collects the sequence of reactions of the patient such as the changes in
temperature, blood pressure, and so on. Typically, there are a good number,
from 20 to more than 100, of such test cases. In order to summarize the results,
she needs to categorize the cases into a few groups — all cases in a group
are similar to each other, and the cases in different groups are substantially
different from each other.

This is a clustering task (or as known as unsupervised learning), since the
sequences are not labeled and the groups should be defined by Carol based
on the similarity among sequences.

Other Examples

It is easy to name another dozens of examples of sequence data mining. For
example, by mining music sequences, we can predict the composers of music
pieces. As another example, an interactive computer game can learn from
players’ behavior sequences to make it more intelligent and more fun.

The point we want to illustrate here is that sequence data mining is very
practical in our lives, which makes it attractive for many researchers and
developers.
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1.2 Basic Definitions

This section defines the concepts of sequences, sequence types, sequence pat-
ternsﬁ, sequence models, pattern matching, and support; it also discusses
major characteristics of sequence data. Some of the definitions are generic,
because there is considerable variation between specific instances in different
applications. Examples of sequences were given in the previous section, and
examples of the other concepts will be given in later chapters.

1.2.1 Sequences and Sequence Types

There is a rich variety of sequence types, ranging from simple sequences of
letters to complex sequences of relations. Here we provide a very general
definition which can capture most practical examples.

For a given application, sequences are constructed from members of some
appropriate element types.

Definition 1.1. Element types are data types constructed from simple data
types using several constructs; some common examples are the following:

e An item type is a finite set X of distinct items. Each x € X is a member
of the type. For example, the DNA sequences are constructed from the item
type of ¥ = {A,C,G,T}. We will frequently refer to the items as letters
or symbols.

e A set type has the form 27, where T is an element type. A member of this

type is a finite set of members of type T.
In particular, for each finite set X of distinct items, 2% is a set type com-
monly referred to as a basket type. For example, market basket sequences
are constructed from the element type of 2%, where X is a fived set of
items.

e A tuple type has the form T = (11, ...,Tk), where each 7; is an element
type, an ID type, a time typﬁ (such as Date and Time), or an amount type.
The members of T are precisely those tuple objects (x1, ..., xx) where each
x; is a member of T;. For example, weblog sequences can be constructed
from the tuple of (Date, Time,URL), where URL is a finite set of URLs.

Clearly, using set types and tuple types one can define types for relations.

2 In the literature the two terms of “sequence pattern” and “sequential pattern”
have been used as synonyms. We will also use them interchangeably in this text.
It should be noted that, except in Chapter 2lwe use these terms in a more general
sense.

3 The domains of Date, Time, and Amount are defined in the natural way.
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Definition 1.2. A sequence over an element type T is an ordered lis § =
81...8m, where

o cach s; (which can also be written as S[i]) is a member of T, and is called
an element of S;

e m is referred to as the length of S and is denoted by |S|;
each number between 1 and |S| is a position in S.

A consecutive interval of sequence positions of the form [i, j], where 1 < i <
7 <m s a window of the sequence; j — i+ 1 is referred to as the length of
the window. n

Parenthesis and commas may be added to make sequences more readable.

Ezample 1.3. DNA sequences such as those shown in Figure [l are sequences
over {A,C,G,T}. The DNA sequence S = ATGT AT A has length 7, each
number between 1 and 7 is a position in S, and S[3] is the letter G.

Protein sequences such as those shown in Figure are sequences over
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.

Weblogs such as those shown in Figure [[3] are over (Date, T'ime, URL).

Customer purchase histories such as those shown in Figure [[4] are over
7 = (CustomerI D, Date, Time, Location,2'), where the domain of Location
is a (simple type) set of locations, and I is the set of product items. Storewide
sales histories are similar. [

The order among the elements of a sequence may be implied by time order
as in event histories, or by physical positioning as in biological sequences.

The following general concepts are frequently used in biological sequence
analysis:

e A site in a sequence (as in transcription binding site) is a short sequence
window having some special biological property/interest. A site can be
described by a start position and window length, or just a position. A site
is usually characterized by the presence of some sequence pattern.

e Given a sequence S = s7...8,, and a position i of S, the prefix s;...5;_1 is
often referred to as the wupstream of i and the suffix s;41...5,, is referred to
as the downstream of i. The concepts are defined similarly for a window
[i,7] (or site) of S, with si...s;—1 as the upstream, and s;y1...5,, as the
downstream. It is common to refer to position ¢ — k of S as the —k region
of position i, and to refer to position ¢ + k as +k region of position 1.

1.2.2 Characteristics of Sequence Data

Sequence data have several distinct characteristics, which lead to many op-
portunities, as well as challenges, for sequence data mining. These include the
following:

4 Mathematically, an ordered list s1...sm over an element type 7 is defined to be a
function from {1..m} to 7, where m is some positive integer.
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e Sequences can be very long (and hence sequence datasets can have very
high dimensionality), and different sequences in a given application may
have a large variation in lengths. For example, the length of a gene can be
as large as over 100K, and as small as several hundreds.

e Absolute positions in sequences may/may not have significance. For exam-
ple, sequences may need to be aligned based on their absolute positions and
there can be a penalty on position changes through insertion/deletions. In
certain situations, one may just want to look for patterns which can occur
anywhere in the sequences.

e The relative ordering/positional relationship between elements in sequen-
ces is often important. In sequences, the fact that one element occurs to the
left of another is usually different from the fact that the first element occurs
to the right of the second. Moreover, the distance between two elements is
also often significant. The relative ordering/positional relationship between
elements is unique to sequences, and is not a factor for relational data or
other high dimensional data such as microarray gene expression data.

e Patterns can be substrings or subsequences. Sometimes a pattern must
occur as a substring (of consecutive elements) in a sequence, without gaps
between elements. At other times, the elements in a pattern can occur as
a subsequence (allowing gaps between matching elements) of a sequence.

1.2.3 Sequence Patterns and Sequence Models

We now discuss sequence patterns, sequence modelaﬁ, and related topics such
as pattern matching and pattern support in sequence data. Due to the char-
acteristics of sequence data discussed above, there are many possibilities for
defining sequence patterns and sequence models. The purpose of this section
is to provide a high-level unifying overview and show the many possibilities,
rather than the detailed instances, of sequence patterns and sequence models.
The detailed instances will be discussed in the subsequent chapters.

Roughly speaking, a sequence pattern/model consists of a number of
single-position patterns plus some inter-positional constraints. A single-
position pattern is essentially a condition on the underlying element type. A
sequence pattern may contain zero, one, or multiple single-position patterns
for each position, where the single-position patterns for a given position are
perhaps associated with a probability distribution; inter-positional constraints
specify certain linkage between positions; such linkage can include conditions
on position distance, and perhaps also include transition probabilities from
position to position when two or more single-position patterns are present for
some position. Below we give more details on these variations, together with
some examples.

5 We choose to use the word pattern to mean a condition on a subset of the under-
lying data, and use the word model to mean a condition on all of the underlying
data.
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A single-position pattern is a condition on the underlying element type
defined recursively as follows: If 7 is an item type, then a condition on 7
can be “?” or “x” or “” (all denoting a single position wildcard or don’t
care), an element of 7, a subset of 7, or an interval of 7 when 7 is an
ordered type. If 7 is a set type of the form {¢}, then a condition on 7 is
a finite set of conditions on . If 7 is a tuple type of the form (7, ..., %),
then a condition on 7 is an expression of the form (cy, ..., ¢k ), where ¢; is
a condition on 7;. Since patterns are used to capture behavior in data, it
may not make sense to have non-? conditions on ID types.

For example, if 7 = ({A,B,C,D},{E, F,G},int,real), then a single-
position condition can be (4, {E,G},?,(20,45]). If - = {A,C,G, T}, then
a single-position condition can be ?, C, {A, C} etc.

While it is possible to use the Boolean operators “AND” and “OR” to
construct more complex conditions, this is seldom done since data min-
ing of patterns must deal with a huge search space even without these
Boolean operators. The intervals for ordered attributes are usually deter-
mined through a binning/discretization process.

A sequence pattern is a finite set of single-position patterns of the form
{c1, ..., ek }, together with a description of the positional distance relation-
ships on the ¢;’s and some other optional specifications. This formalization
is general enough to include frequent sequence patterns, periodic patterns,
sequence profile patterns, and Markov models. Below we give an overview
of each of these.

A first representative sequence pattern type is the frequent sequence pat-
terns. Each such a pattern consists of one single-position pattern for each
position. For DNA sequences, an example of such a pattern is ATC. In
the simplest case, the positions of the single-position patterns are a con-
secutive range of the positive integers — this is assumed when nothing is
said about the relationships between the positions; in general, constraints
on the positions (often referred to as gap constraints) can be included. For
example, for the simplest case, A, T' and C are at consecutive positions
so that T’s position is after A’s position and C’s position is after T”s; for
the general case, we may say that T’s position is at least 2 and at most 5
positions after the position of A, and that C’s position is at most 3 posi-
tions after T7s position. One can also add a window constraint to restrict
the difference between the positions of the last and the first single-position
patterns to be at most, for example, 7.

Frequent sequence patterns can be viewed as periodic sequence patterns.
We will discuss some distinctions between frequent sequence patterns and
periodic sequence patterns below.

A second representative sequence pattern type is the sequence profile
patterns. Such a pattern is over a set of positions, and it consists of a set
of single-position pattern plus a probability distribution. Examples will be
given in Chapter [4
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A third representative sequence pattern type is the Markov models. Such a
model consists of a number of states plus probabilistic transitions between
states. In some cases each state is also associated with a symbol emission
probability distribution. Examples will be given in Chapter [l
A fourth representative sequence pattern type is the partial order models.
Each such a model contains a set of single-position patterns associated
with a partial order on these patterns. In a sense, the position distance
between pairs of single-position patterns is in the range of [1,00). Such a
model can capture a temporal event ordering on the events. Examples will
be given in Chapter Bl

e In addition to sequence pattern mining discussed above, classification and
clustering are also useful data mining tasks for sequence data. Neither
these tasks nor their products fall under the general definition of sequence
patterns given above. The characteristics of sequence data lead to new
questions for these two tasks. For example, there are more possibilities for
feature construction from sequence data. Moreover, in sequence data one
may want to predict the “class” of a location in a long sequence, which
does not have a counterpart for conventional relational/vector data. More
details will be provided in Chapters Bl and [l

We now turn to the issues regarding pattern matching and sequence pat-
tern support in sequence data. We first need several definitions.

A match between a sequence pattern p = pi...pr and a sequence s =
$1...8y 1is a function f from {1,...,k} to {1,...m} such that the condition p; is
satisfied in sy(;) and the associated constraints on p are satisfied. The concept
of satisfaction is defined in the natural manner.

For each match between a sequence pattern and a sequence, let the match
interval be defined as [low, high|, where low is the smallest position, and
high is the largest position, in the sequence for the match. We note that, for
sequence patterns with gaps, it is possible that the matching interval of one
match is properly contained in the matching interval of a second match.

Several possibilities exist regarding which matches can contribute towards
the count/support of a pattern:

e One sequence contributes at most one match and the support/count of
pattern is with respect to the whole dataset. This simple case is very
similar to the conventional transactional data case.

e One sequence contributes multiple matches and the count of pattern is
with respect to one sequence. Three options exist: (b) Different contribut-
ing matches are completely disjoint, in the sense that the matching in-
tervals of different contributing matches must be completely disjoint. (b)
Different contributing matches are sufficiently disjoint, in the sense that
the matching intervals of different contributing matches must not overlap
more than some given threshold. (c¢) All matches are counted. For options
(a) and (b), it may be computationally expensive to determine the highest
possible number of matches of a pattern in a sequence.
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A sequence model can be used as a generative device. For example, one
can compute the most likely sequence that can be generated by a Markov
model.

Some distinctions can be made between sequence patterns and sequence
models, similar to the distinctions between general patterns and general mod-
els. A pattern is usually partial (or local) in the sense that it may occur only
in a subset of the sequences under consideration. On the other hand, a model
is usually total (or global) in the sense that it can be applied to every sequence
under consideration.

1.3 General Data Mining Processes and Research Issues

In this section we give a brief high level overview of the general data min-

ing process, and the general issues of interest in data mining research and

applications. More details on these can be found in general data mining texts.
The typical steps of the data mining process are the following:

e Understanding the application requirements and the data. In this step
the analyst will need to understand what is important, and how such
importance is reflected in data.

e Preprocessing of the data by data cleaning, feature/data selection, and
data transformation. Data cleaning is concerned with removing inconsis-
tency in data, with integrating data from heterogeneous sources etc. Fea-
ture selection is concerned with selecting the more useful features (for a
particular data mining task) from a large number of candidate features.
Feature construction is about producing new features from existing fea-
tures. Data transformation is concerned with mapping data from one form
to another. Discretization (also called binning) is a common approach of
data transformation, where one maps an attribute with a large domain
into an attribute with a smaller domain. Common discretization meth-
ods include equi-width binning, equi-density binning, and entropy-based
binning.

e Mining the patterns/models. This is done by running some data mining
algorithms on the data produced from the last step above.

e Evaluation of the mining result. In this step the data analyst will apply
various measures to evaluate the goodness of the mined patterns or models
for the application under consideration.

These steps may be iterated to improve the quality of the mining result.
Improvement is possible since one’s understanding of the data/application
deepens after one or more iterations of working through the data.

Naturally, data mining research should address issues of practical/
theoretical interest, and solving important problems, in data mining appli-
cations. Data mining research often considers the following technical issues:
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e Formulating useful new concepts that have high potential to lead to ad-
vances of research in the field.

e Designing novel techniques for efficiency and scalability in computational
space/time, for dealing with large volume of data and with high dimension-
ality of data. The techniques should address the unique challenges and take
advantage of the unique opportunities of the underlying application/data.

e Optimizing cluster/classification quality under measures such as accuracy,
precision and recall, and cluster quality (intra-cluster similarity and inter-
cluster dissimilarity).

e Optimizing pattern interestingness under appropriate measures, such as
support/confidence, surprise, lift /novelty and actionability.

Details on the concepts discussed above, together with examples on the design
of techniques and on various optimizations, will be given in later chapters.

1.4 Overview of the Book

The rest of this book is organized as follows:

Chapter Rl first motivates and defines the task of sequential pattern mining.
Then, it discusses two essential kinds of methods: the Apriori-like, breadth-
first search methods and the pattern-growth, depth-first search methods. It
also discusses constrained sequential pattern mining techniques, and closed
sequential pattern mining. Constrained mining allows a user to get a spe-
cific subset of sequential patterns instead of all patterns by specifying certain
constraints. Closed sequential patterns are useful for removing certain redun-
dancy in the set of sequential patterns and hence for producing smaller sets
of mined patterns without loss of information.

Chapter Bl is concerned with the classification and clustering of sequence
data. It first provides a general categorization of sequence classification and
sequence clustering. There are three general tasks. Two of those tasks are
concerned with whole sequences and will be presented there. The third topic,
namely sequence motifs (site/position-based identification and characteriza-
tion of sequence families), is presented in Chapter @l Chapter Bl also con-
tains two sections on sequence features (concerning various feature types
and general feature selection criteria) and sequence similarity /distance func-
tions. These materials will be useful for not only classification and clustering,
but also other topics (such as identification and characterization of sequence
families).

Chapter M is concerned with sequence motifs. It includes the discussion on
motif finding and the use of motifs in sequence analysis. A motif is essentially
a short distinctive sequence pattern shared by a number of related sequences.
The motif finding task is concerned with site-focused identification and char-
acterization of sequence families. It can be viewed as a hybrid of clustering
and classification, and is an iterative process. Motif analysis is concerned with
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predicting whether sequences match a certain motif, and the sequence position
where a match occurs. This chapter will present some major motif represen-
tations. While there have been many algorithms for motif finding and motif
analysis, most of them are instances of one of the following three algorithmic
approaches, namely dynamic programming, expectation maximization, and
Gibbs sampling. This chapter also presents these algorithmic approaches.

Chapter [B] considers the mining of partial orders from sequence data. Par-
tial orders can be used to capture the preferred ordering among events. We
introduce two types of mining tasks and their methods. First, we discuss a
method to mine frequent closed partial orders from strings, which can be re-
garded as the generalization of sequential pattern mining. Second, we discuss
how to find the best partial order that is shared by the majority in a set of
sequences, which can be modeled as an optimization problem.

Chapter [0l considers the mining of distinguishing sequence patterns and
rare events from sequence data. A distinguishing sequence pattern is a se-
quence pattern that (i) characterizes a family of sequences and distinguishes
the family from other sequences, or (ii) characterizes a special site of sequences
and distinguishes the site from other parts of sequences, or (iii) signals some-
thing unusual about some sequences. This chapter first discusses four types
of distinguishing sequence patterns, and then gives some methods/algorithms
for the mining of two of those types. (The other two types were discussed
in Chapter @) Distinguishing sequence patterns are also useful as candidate
sequence features.

Chapter [ provides a brief overview of related research topics, including
partial periodic pattern mining, structured-data mining (containing sequence
mining, tree mining, graph mining and time series mining as special cases) and
bioinformatics. It also briefly discusses sequence alignment, which is needed for
understanding certain materials in several other chapters. Finally, it provides
some pointers to biological sequence databases and resources.

We try to make each chapter essentially self-contained. That is, each chap-
ter can be read independently. Terms are indexed in the appendix to facilitate
cross referencing.
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Frequent and Closed Sequence Patterns

Sequential pattern mining [3] is an essential task in sequence data mining. In
this chapter, we first motivate the task of sequential pattern mining. Then,
we discuss two kinds of major methods: the Apriori-like, breadth-first search
methods and the pattern-growth, depth-first search methods. More often than
not, a user may want some specific subset of sequential patterns instead of all
patterns. This application requirement can be addressed by the constrained
sequential pattern mining techniques. When mining a large database, there
can be many sequential patterns. Redundancy may exist among sequential
patterns. We discuss mining closed sequential patterns which can remove some
redundancy.

It should be noted that the “sequence patterns” considered in this chapter
are a special class of patterns in sequence data. For historical reasons and the
lack of a better name, we will still call them “sequence patterns.”

2.1 Sequential Patterns

Ezample 2.1 (Sequential patterns and applications). eShop sells technology
products. Each customer shopping at eShop has a customer-id. A customer
transaction contains a set of products bought by the customer at some time
point. eShop maintains a sequence database which contains all transactions
that happened at eShop.

An important marketing approach of eShop is to send promotion adver-
tisements to targeted customers. In order to design attractive promotions to
be sent to relevant customers, it is a good idea to utilize patterns in historical
data. Transaction information can be used to construct the shopping history
sequences of customers: For each customer, we collect all transactions of the
customer and form a sequence in the transaction time-stamp ascending order.
For example, some sequences are shown in Table 2]

A sequence consists of a number of transactions. For example, sequence C'1
of Table[ZTlhas 5 transactions. In the first transaction, the customer buys only
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| Customer-id | Transaction sequence|

C1 a(abe)(ac)d(cf)
C2 (ad)c(be)(ae)
3 (D @b (e
C4 eg(af)cbe

Table 2.1. A customer transaction sequence database.

one product, a. In the second transaction, the customer buys three products,
namely a, b and ¢. A product may appear more than once in a sequence. For
example, in sequence C1, product a appears in the first three transactions.

Can we find some patterns in the sequence database that can help us to
capture the common purchase patterns? Frequent subsequences as sequential
patterns are particularly useful. For example, (ab)dc is a subsequence of C'1
and C3. If the support threshold is set to 2, that is, a sequential pattern
should be a subsequence of at least 2 sequences in the database, then (ab)dc
is a sequential pattern.

Sequential patterns can be used in two aspects in this application. First,
sequential patterns capture the common purchase patterns of customers. For
example, sequential pattern (ab)dc tells that at least 2 customers buy products
a and b in a transaction, then buy d in a later transaction, and then buy c
(after buying d). In the context of marketing campaign design, sequential
patterns can be used to design promotions. For example, suppose c is a highly
profitable product and d is an inexpensive one. Then, knowing sequential
pattern (ab)dc, one may promote product d to attract customers to buy ¢ in
sequence.

Second, sequential patterns can also be used for predicting behavior of
individual customers. For example, if (ab)dc is a sequential pattern, we can
send advertisement and promotions of ¢ to all customers who bought a, b and
d before in sequence, since they may buy c in a future transaction. [

Sequential patterns are useful in many other applications in addition to
marketing, such as web log mining and web page recommendation systems,
bio-sequence analysis, medical treatment sequence analysis, and safety man-
agement and disaster prevention.

Now, let us define the problem of sequential pattern mining formally.

Let I = {i1,io,...,in} be a set of items. An itemset is a subset of items.
A sequence is an ordered list of itemsets. A sequence s is denoted by s1s3 - - - 51,
where each s; (1 < j < ) is an itemset. s; is also called an element or a
transaction of the sequence; a transaction is denoted as (x122 - - &, ), where
zr (1 <k <m) is an item. For the sake of brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. An item
can occur at most once in an element of a sequence, but can occur multiple
times in different elements of a sequence. The number of instances of items



2.1 Sequential Patterns 17

in a sequence is called the i-length of the sequenceEI. A sequence with i-length
[ is called an [-sequence. A sequence o = ajas---a, is called a subsequence
of another sequence 5 = b1bs - - b, and 8 a super-sequence of «, denoted as
a C 3, if there exist integers 1 < j1 < jo < -+ < j, < m such that a; C b,
an gij, ceey Ap gbjn

A sequence database S is a set of tuples of the form (sid, s), where sid is a
sequence_id and s a sequence. A tuple (sid, s) is said to contain a sequence «,
if a is a subsequence of s. The support of a sequence « in a sequence database

S is the number of tuples in the database containing «, that is,

supports(a) =| {(sid, s)|(sid, s) € S) A (a C s)} |
It can be denoted as support(a) if the sequence database is clear from the
context.

Given a positive integer min_support as the support threshold, a sequence
a is called a sequential pattern in sequence database S if supports(a) >
min_support. A sequential pattern with i-length [ is called an [-pattern.

Ezample 2.2 (Running example). Let our running sequence database be S
given in Table 2] and min_support = 2. The set of items in the database is
{a,b,c,d,e, f,g}.

A sequence a(abc)(ac)d(cf) has five elements: (a), (abe), (ac), (d) and (cf),
where items a and ¢ appear more than once, respectively, in different elements.
It is a 9-sequence since there are 9 instances appearing in that sequence. Item
a occurs three times in this sequence, so it contributes 3 to the i-length of the
sequence. However, the whole sequence a(abc)(ac)d(cf) contributes only one
to the support of a. Also, sequence a(be)df is a subsequence of a(abc)(ac)d(cf).
Since sequences C'1 and C'3 are the only two sequences containing subsequence
s = (ab)c, s has a support of 2; so s is a sequential pattern of i-length 3 (that
is, a 3-pattern). ]

Given a sequence database and a minimum support threshold, the sequen-
tial pattern mining problem is to find the complete set of sequential patterns
in the database.

The sequential pattern mining problem [3] was also simultaneously identi-
fied as the frequent episode mining problem by Mannila et al. [75]. Frequent
episode mining can be generalized to frequent partial order mining which will
be discussed in Chapter [B

L Observe that the i-length of a sequence is the total number of items in the se-
quence, whereas the length of the sequence is the total number of positions in
the sequence. The two concepts are equivalent if each sequence position has just
a single item.
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2.2 GSP: An Apriori-like Method

Sequential patterns have a monotonic property. For example, (ab)dc is a se-
quential pattern in Example2.2l Then, all subsequences of the pattern, namely
a, b, d, ¢, (ab), ad, ac, bd, be, dc, (ab)d, (ab)c, ade, and bde, are sequential pat-
terns as well. The reason is that every sequence in the database containing
(ab)dc also (trivially) contains every subsequence.

Theorem 2.3 (Apriori property). For a sequence s and a subsquence s’
of s, support(s) < support(s’). Moreover, if s is a sequential pattern, so is s'.

Proof. Consider each sequence seq in the sequence database in question such
that s is a subsequence of seq. Clearly, s’ must be also a subsequence of
seq since s’ is a subsequence of s. Therefore, the number of sequences that
contain s’ cannot be less than the number of sequences that contain s. That
is, support(s) < support(s’).

If s is a sequential pattern, then support(s) > min_support, where
min_support is the minimum support threshold. Therefore, support(s’) >
support(s) = min_support. That is, s’ is also a sequential pattern. m

Using the Apriori property, we can develop breadth-first search algorithms
to find all sequential patterns. The general idea is that, if s is not a sequential
pattern, we do not search any super-sequence of s.

A typical sequential pattern mining method, GSP [I01], mines sequential
patterns by adopting a candidate subsequence generation-and-test approach
based on the Apriori property. The method is illustrated in the following
example.

Ezample 2.4 (GSP). Given the database S and the minimum support thresh-

old min_support in Example 2.2 GSP first scans S, collects the support for

each item, and finds the set of frequent items, that is, frequent length-1 subse-

quences (in the form of “item:support”): a : 4,b:4,¢:3,d:3,e:3,f:3,g: 1.
By filtering out the infrequent item ¢, we obtain the first seed set

Ll = {a,b,c,d,af},

where each member of L; represents a l-element sequential pattern. Each
subsequent pass starts with the seed set found in the previous pass and uses
it to generate new potential sequential patterns, called candidate sequences.

From L (a set containing 6 length-1 sequential patterns), we generate the
following set of 6 x 6 + % = 51 candidate sequences:

Cy ={aa,ab, ... af ba,bb, ..., [f, (ab),(ac),...,(ef)}.

Then, the sequence database is scanned again, and the supports of se-
quences in Co are counted. Those sequences in Cy passing the minimum
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The 4th scan, 6 candidates

4 length—4 sequential patterns <a(beja> <(@ab)de> | <efbe>| ...

The 3rd scan, 64 candidates
21 length-3 sequential patterns I <aab>|

‘ <a(ab)% ‘ <aac> ‘ ......
13 candidates not appear in database

The 2nd scan, 51 candidates W

22 length-2 sequential patterns

9 candidates not appear in database

The Ist scan, 7 candidates

6 length—1 sequential patterns

|:| Candidate cannot pass support threshold
D Candidate does not appear in database at all

Fig. 2.1. Candidates and sequential patterns in GSP.

support threshold are the length-2 sequential patterns. Using the length-2
sequential patterns, we can generate Cs, the set of length-3 candidates.

The multi-scan mining process is shown in Figure[2.1l The set of candidates
is generated by a self-join of the sequential patterns found in the previous pass.
In the k-th pass, a sequence is a candidate only if each of its length-(k — 1)
subsequences is a sequential pattern found at the (k — 1)-th pass. A new scan
of the database collects the support for each candidate sequence and finds the
new set of sequential patterns. This set becomes the seed for the next pass.
The algorithm terminates when no sequential pattern is found in a pass, or
when no candidate sequence is generated. Clearly, the number of scans is at
least the maximum i-length of sequential patterns. It needs one more scan if
the sequential patterns obtained in the last scan lead to the generation of new
candidates. -

While the general procedure of GSP is easy to understand, the candidate-
generation in the algorithm is non-trivial. Generally, we can list all items in
a transaction of a sequence in the alphabetical order. Suppose that s; and s9
are two length-k sequential patterns (k > 1) such that s; and s are identical
except for the last element. Then, s; and sy are used to generate a length-
(k 4+ 1) candidate if one of the following situations happens.

e The last element of s; contains only one item, and so does the last element
of so. Without loss of generality, we assume that s; = sz and s, = sy
where s is the maximum common prefix of s; and s, and z,y are two
items. Then, the following three length-(k + 1) candidates are generated:
s(zy), szy and syz.

e The last elements of s; and s5 contain more than one item, and except for
the last item in the alphabetical order, the last itemsets of s; and ss are
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identical. Without loss of generality, we assume that s1 = s(x1 -+ Ty— 1% )
and so = $(x1 - Tym—1Tm+1), where s is the maximum common pre-
fix between s; and so. Then, a length-(k + 1) candidate is generated:
s(x1 - T 1TmTmg1)-

e The last element of sy contains one item, and the second last element of
so is identical to the last element in s; except for one item that is the last
one in the last element in s; in the alphabetical order. Without loss of gen-
erality, we assume that s1 = s(z1 -+ Tm_12m) and so = s(z1 -+ Tpm_1)y,
where s is the maximum common prefix between s; and so. Then, a length-
(k 4+ 1) candidate is generated: s1 = s(x1 - Typ—1Tm)Y.

Once a length-(k+1) candidate sequence is generated, we also test whether
every length-k subsequence of it is also a length-k sequential pattern. Only
those candidates passing the tests will be counted against the database in the
next round.

GSP, though benefiting from the Apriori pruning, still generates a large
number of candidates. In Example24] 6 length-1 sequential patterns generate
51 length-2 candidates, 22 length-2 sequential patterns generate 64 length-3
candidates, and so on. Some candidates generated by GSP may not appear
in the database at all. For example, 13 out of 64 length-3 candidates do not
appear in the database.

In addition to GSP, some other Apriori-like, breadth-first search methods
have been developed. For example, PSP [(7] improves GSP by exploiting an
intermediate data structure. SPADE [132] uses a vertical id-list format, and
also divides a sequence lattice into small parts.

2.3 PrefixSpan: A Pattern-growth, Depth-first Search
Method

In addition to the Apriori-like, breadth-first search methods, pattern-growth,
depth-first search methods are a category of more efficient approaches for
sequential pattern mining. We first analyze the overhead of Apriori-like,
breadth-first search methods. Then, we introduce PrefixtSpan, a representa-
tive of the pattern-growth, depth-first search methods.

2.3.1 Apriori-like, Breadth-first Search versus Pattern-growth,
Depth-first Search

The Apriori-like, breadth-first search methods bear three kinds of nontrivial,
inherent cost which are independent of detailed implementation techniques.

e Potentially huge sets of candidate sequences. Since the set of can-
didate sequences includes all the possible permutations of the elements
and repetition of items in a sequence, an Apriori-like, breadth-first search
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method may generate a large set of candidate sequences even for a moder-
ate seed set. For example, if there are 1,000 length-1 sequential patterns

ai, as, ..., aip00, an Apriori-like algorithm will generate
1000 x 999
1000 x 1000 + — = 1,499, 500
length-2 candidate sequences. (The first term is derived from the set of
candidate sequences {alal, aiaz, ..., a10a1000, a2a1, a2a2, ..., aloooalooo},
and the second term is derived from the set of candidate sequences {(a1a2),
(a1a3), ..., (age9aiooo)}-)

Multiple scans of databases. Since each database scan considers se-
quences whose i-length is one larger than that of the previous scan, to find a
sequential pattern (abc)(abc) (abc)(abe)(abe), an Apriori-like method must
scan the database at least 15 times.

Difficulties at mining long sequential patterns. A long sequential
pattern must grow from a combination of short ones, but the number of
such candidate sequences is exponential to the i-length of the sequential
patterns to be mined. For example, suppose there is only a single sequence
of length 100, ajas ... aigo, in the database, and the min_support thresh-
old is 1 (that is, every occurring pattern is frequent), to (re-)derive this
length-100 sequential pattern, an Apriori-like method has to generate 100
length-1 candidate sequences, 100 x 100 + M = 14,950 length-2 can-
100
3
Obviously, the total number of candidate sequences to be generated is

greater than 1% (1(30) = 2100 _ 1 ~10%,

didate sequences, = 161,700 length-3 candidate sequencesﬁ,

In many applications, it is not unusual to encounter a large number of

sequential patterns and long sequences.

In this section, we introduce PrefizSpan [88], a pattern-growth, depth-first

search method. The general ideas of PrefizSpan are the following three points.

Instead of generating a large number of candidates, PrefixrSpan preserves
in some compressed forms the essential groupings of the original data ele-
ments for mining. Then the analysis is focused on counting the frequency
of the relevant data sets instead of the candidate sets.

Instead of scanning the entire database to match against the whole set of
candidates in each pass, PrefizSpan partitions the data set to be examined
as well as the set of patterns to be examined by database projection. Such
a divide-and-conquer methodology substantially reduces the search space
and leads to high performance.

2 Notice that Apriori does cut a substantial amount of search space. Otherwise,

the number of length-3 candidate sequences would have been 100 x 100 x 100 +
100 x 100 x 99 + 109x99x98 — 9 151, 700.
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e With the growing capacity of main memory and the substantial reduction
of database size by database projection as well as the space needed for
manipulating large sets of candidates, a substantial portion of data can be
put into main memory for mining. Pseudo-projection has been developed
for pointer-based traversal. Reported performance studies have shown the
effectiveness of such techniques.

2.3.2 PrefixSpan

Let us first introduce the concepts of prefix and suffix which are essential in
PrefixSpan.

Definition 2.5 (Prefix). Suppose all the items within an element are listed
alphabetically. For a given sequence o = ejes - - ey, where each e; (1 < i< n)
is an element, a sequence 3 = ejeh---el. (m < n) is called a prefix of a if
(1) e =e; fori <m—1; (2) e, Cem; and (3) all items in (en, — €l,,) are

alphabetically after those in e, . [

For example, consider sequence s = a(abc)(ac)d(cf). Sequences a, aa, a(ab)
and a(abc) are prefixes of s, but neither ab nor a(be) is a prefix.

Definition 2.6 (Suffix). Consider a sequence o = ejes - - - e, where each e;
(1 <i< n)isan element. Let B =elel---el el (m < n) be a subsequence
of a. Sequence v = e]'ejr1--- ey, is the suffix of o with respect to prefiz (3,
denoted as v = /3, if

1.1 = i, such that there exist 1 < i3 < -+ < iy, < n such that e} C ey
(1 <j<m), and iy, is minimized. In other words, e;...e; is the shortest
prefix of a which contains ejel---el. el as a subsequence; and

2. e/ is the set of items in e; — e}, that are alphabetically after all items in
e,

If €] is not empty, the suffiz is also denoted as (- items in €]')ej41 -+ en.

Note that if B is not a subsequence of «, the suffix of o with respect to (3 is

empty. ]

Ezample 2.7 (Prefix and suffiz). In our running example, for the sequence s =
a(abe)(ac)d(cf), (abe)(ac)d(cf) is the suffiz with respect to a, (-¢)(ac)d(cf) is
the suffiz with respect to ab, and (ac)d(cf) is the suffiz with respect to (ac).

|

Based on the concepts of prefix and suffix, the problem of mining sequential
patterns can be decomposed into a set of subproblems as follows.

1. Let {z1,22,...,z,} be the complete set of length-1 sequential patterns in
a sequence database S. The complete set of sequential patterns in S can
be divided into n disjoint subsets. The i subset (1 < i< n)is the set of
sequential patterns with prefix z;.
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2. Let « be a length-l sequential pattern and {51, 52,...,Bm} be the set of
all length-(I 4+ 1) sequential patterns with prefix a. The complete set of
sequential patterns with prefix «, except for « itself, can be divided into
m disjoint subsets. The j subset (1 < j < m) is the set of sequential
patterns prefixed with 3;.

The above recursive partitioning of the sequential pattern mining problem
forms a divide-and-conquer framework. The above partitioning process can be
visualized as a sequence enumeration tree .

Ezample 2.8 (Sequence enumeration tree). Let the set of items I = {a,b, ¢, d}.
Figure shows a sequence enumeration tree which enumerates all possible
sequences formed using the items.

<>

/\

A N AN
(a] (ac) (ad) aa ab ac ad /bi(bd) ba bb ..
(abc) (abd) (ab)a % (ab)c ...

Fig. 2.2. The sequence enumeration tree on the set of items {a, b, ¢, d}.

The divide-and-conquer partitioning process in PrefixrSpan is to conduct a
depth-first search of the sequence enumeration tree. [

To mine the subsets of sequential patterns, the corresponding projected
databases can be constructed.

Definition 2.9 (Projected database). Let o be a sequential pattern in
a sequence database S. The a-projected database, denoted as S|, is the
collection of suffizes of sequences in S with respect to prefir . [

Let us examine how to use the prefix-based projection approach to mine
sequential patterns.

Ezample 2.10 (PrefizSpan). For the same sequence database S in Table 2]
with min_sup = 2, sequential patterns in S can be mined by a prefix-
projection method in the following steps.
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|prefix|projected (suffix) database |sequential patterns |
a |(abc)(ac)d(cf), (.d)c(be)(ae),|a, aa, ab, a(be), a(bc)a, aba, abe, (ab),
(b)(df)eb, (-f)cbe (ab)e, (ab)d, (ab)f, (ab)de, ac, aca, acb,
acc, ad, ade, af
b |(e)(ac)d(cf), (c)(ae), (df)cb, c |b, ba, be, (be), (be)a, bd, bde, bf
¢ |(ac)d(cf), (bc)(ae), b, be ¢, ca, cb, cc
d_|(cf), c(be)(ae), (-f)cb d, db, dc, dcb
e |(f)(ab)(df)cb, (af)cbe e, ea, eab, eac, each, eb, ebe, ec, ech, ef,
efb, efc, efch.
f|(ab)(df)ch, cbe [, fb, foe, fe, feb

Table 2.2. Projected databases and sequential patterns

1. Find length-1 sequential patterns. Scan .S once to find all the frequent

items in sequences. Each of these frequent items is a length-1 sequential
pattern. They area : 4,b:4,c:4,d:3,e:3,and f : 3, where the notation
“pattern : count” represents the pattern and its associated support count.

. Divide search space. The complete set of sequential patterns can be

partitioned into the following six subsets according to the six prefixes: (1)
the ones with prefix a, (2) the ones with prefix b, ..., and (6) the ones
with prefix f.

. Find subsets of sequential patterns. The subsets of sequential pat-

terns can be mined by constructing the corresponding set of projected
databases and mining each recursively. The projected databases as well as
sequential patterns found in them are listed in Table 2.2] while the mining
process is explained as follows.

a) Find sequential patterns with prefix a. Only the sequences con-
taining a should be collected. Moreover, in a sequence containing a,
only the subsequence prefixed with the first occurrence of a should be
considered. For example, in sequence (ef)(ab)(df)cb, only the subse-
quence (_b)(df)cb should be considered for mining sequential patterns
prefixed with a. Notice that (_b) means that the last element in the
prefix, which is a, together with b, form one element.

The sequences in S containing a are projected with respect to a to
form the a-projected database, which consists of four suffix sequences:
(abe)(ac)d(cf), (-d)e(be)(ae), (-b)(df)eb and (_f)cbe.

By scanning the a-projected database once, its locally frequent items
area :2,b:4,b:2 ¢c:4,d:2,and f : 2. Thus all the length-2
sequential patterns prefixed with a are found, and they are: aa : 2,
ab: 4, (ab) :2,ac:4,ad:2,and af : 2.

Recursively, all sequential patterns with prefix a can be partitioned
into 6 subsets: (1) those prefixed with aa, (2) those with ab, ..., and
finally, (6) those with af. These subsets can be mined by constructing
respective projected databases and mining each recursively as follows.
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. The aa-projected database consists of two non-empty (suffix) sub-
sequences prefixed with aa: {(_bc)(ac)d(cf), {(-e)}. Since there is
no hope to generate any frequent subsequence from this projected
database, the processing of the aa-projected database terminates.
The ab-projected database consists of the following three suffix
sequences: (_¢)(ac)d(cf), (-¢)a, and c¢. Recursively mining the ab-
projected database returns four sequential patterns: (_¢), (_¢)a, a,
and ¢ (that is, a(be), a(be)a, aba, and abe.) They form the complete
set of sequential patterns prefixed with ab.

The (ab)-projected database contains the following two sequences:
(_c)(ac)d(cf) and (df )cb, which leads to the finding of the following
sequential patterns prefixed with (ab): ¢, d, f, and de.

The ac-, ad- and af- projected databases can be constructed and
recursively mined similarly. The sequential patterns found are
shown in Table

b) Find sequential patterns with prefix b, ¢, d, ¢ and f, re-

spectively. This can be done by constructing the b-, ¢- d-, e- and
f-projected databases and mining them respectively. The projected
databases as well as the sequential patterns found are shown in
Table 22

4. The set of sequential patterns is the collection of patterns found
in the above recursive mining process. One can verify that it returns
exactly the same set of sequential patterns as what GSP does. [

Based on the above discussion, the algorithm of PrefixSpan is presented in
Figure

Input: A sequence database S, and the minimum support threshold min_support.
Output: The complete set of sequential patterns.
Method: Call PrefizSpan(,0, S).

Subroutine PrefixSpan(a,l, S|a)
The parameters are (1) « is a sequential pattern; (2) [ is the i-length of ; and (3)
Sl is the a-projected database if o # @), otherwise, it is the sequence database

S.

Method:

1. Scan S|, once, find each frequent item b such that
a) b can be assembled to the last element of « to form a sequential pattern;

or

b) b can be appended to « to form a sequential pattern.

2. For each frequent item b, append it to a to form a sequential pattern o', and
output o;

3. For each o’, construct o’-projected database S|/, and call PrefizSpan(a’,+
1,S|ar)-

Fig. 2.3. Algorithm PrefizSpan.
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Let us analyze the efficiency of the algorithm.

e No candidate sequence needs to be generated by PrefizSpan.
Unlike Apriori-like algorithms, PrefizSpan only grows longer sequential
patterns from the shorter frequent ones. It neither generates nor tests
any candidate sequence non-existent in a projected database. Comparing
with GSP, which generates and tests a substantial number of candidate
sequences, PrefixSpan searches a much smaller space.

e Projected databases keep shrinking. It is easy to see that a projected
database is smaller than the original one because only the suffix subse-
quences of a frequent prefix are projected into a projected database. In
practice, the shrinking factors can be significant because (1) usually, only
a small set of sequential patterns grow quite long in a sequence database,
and thus the number of sequences in a projected database usually reduces
substantially when prefix grows; and (2) projection only takes the suffix
portion with respect to a prefix.

e The major cost of PrefirSpan is the construction of projected
databases. In the worst case, PrefizSpan constructs a projected database
for every sequential pattern. If there exist a good number of sequential
patterns, the cost is non-trivial. Techniques for reducing the number of
projected databases will be discussed in the next subsection.

Theoretically, the problem of mining the complete set of sequential pat-
terns is #P-complete [33]. Therefore, it is impossible to have a polynomial
time algorithm unless P = NP. Even if P = NP, it is still unclear whether a
polynomial time algorithm exists.

Interestingly, we can show that the PrefixSpan algorithm is pseudo-
polynomial. That is, the complexity of PrefixSpan is linear with respect to
the number of sequential patterns, since each projection generates at least
one sequential pattern, and the projection cost is upper bounded by the time
of scanning the database once, and counting frequent items in the suffixes.

2.3.3 Pseudo-Projection

The above analysis shows that the major cost of PrefixSpan is database projec-
tion, that is, forming projected databases recursively. Usually, a large number
of projected databases will be generated in sequential pattern mining. If the
number and/or the size of projected databases can be reduced, the perfor-
mance of sequential pattern mining can be further improved.

One technique which may reduce the number and size of projected data-
bases is pseudo-projection. The idea is outlined as follows. Instead of per-
forming physical projection, one can register the index (or identifier) of the
corresponding sequence and the starting position of the projected suffix in the
sequence. Then, a physical projection of a sequence is replaced by registering a
sequence identifier and the projected position index point. Pseudo-projection
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reduces the cost of projection substantially when the projected database can
fit in main memory.

This method is based on the following observation. For any sequence s,
each projection can be represented by a corresponding projection position (an
index point) instead of copying the whole suffix as a projected subsequence.
Consider a sequence a(abc)(ac)d(cf). Physical projections may lead to re-
peated copying of different suffixes of the sequence. An index position pointer
may save physical projection of the suffix and thus save both space and time
of generating numerous physical projected databases.

Ezample 2.11. (Pseudo-projection) For the same sequence database S in Table
2.1 with min_sup = 2, the sequential patterns in S can be mined by pseudo-
projection method as follows.

Suppose the sequence database S in Table [ZI] can be held in main mem-
ory. Instead of constructing the a-projected database, one can represent the
projected suffix sequences using pointer (sequence_id) and offset(s). For ex-
ample, the projection of sequence s1 = a(abc)d(ae)(cf) with regard to the a-
projection consists two pieces of information: (1) a pointer to s; which could
be the stringid s;, and (2) the offset(s), which should be a single integer,
such as 2, if there is a single projection point; and a set of integers, such as
{2, 3,6}, if there are multiple projection points. Each offset indicates at which
position the projection starts in the sequence.

|Sequence_id| Sequence | a |b| c |d| f | aa | .. |
10 a(abe)(ac)d(cf)|2, 3, 6[4]5, 7|8 $ |3, 6]...
20 (ad)c(be)(ae) 2 |5/4,6|3 0 | 7
30 (ef)(ab)(df)cb | 4 |5| 8 163, 7| 0
40 eg(af)cbe 4 16/ 610 5|0

Table 2.3. A sequence database and some of its pseudo-projected databases

The projected databases for prefixes a-, b-, ¢-, d-, f-, and aa- are shown
in Table Z3] where $ indicates the prefix has an occurrence in the current
sequence but its projected suffix is empty, whereas () indicates that there is
no occurrence of the prefix in the corresponding sequence. From Table 23]
one can see that the pseudo-projected database usually takes much less space
than its corresponding physically projected one. [

Pseudo-projection avoids physically copying suffixes. Thus, it is efficient
in terms of both running time and space. However, it may not be efficient
if the pseudo-projection is used for disk-based accessing since random access
disk space is costly. Based on this observation, the suggested approach is the
following: if the original sequence database or the projected databases are
too big to fit into main memory, then physical projection should be applied;
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however, the execution should be swapped to pseudo-projection once the pro-
jected databases can fit in main memory. This methodology is adopted in the
PrefizSpan implementation.

Based on PrefizSpan, some more efficient pattern-growth, depth-first search
methods have been developed recently. For example, Chiu et al. [I9] propose
a new strategy to reduce support counting in depth-first search. SPAM [5]
adopts a vertical bitmap representation, and can mine longer sequential pat-
terns in the cost of more space. FreeSpan [45] first finds frequent itemsets and
uses frequent itemsets to assemble sequential patterns.

2.4 Mining Sequential Patterns with Constraints

Although efficient algorithms have been proposed, mining a large amount of
sequential patterns from large sequence databases is inherently a computa-
tionally expensive task. If we can focus on only those sequential patterns of
interest to users, we may be able to avoid a lot of computation cost caused by
those uninteresting patterns. This opens a new opportunity for performance
improvement: “Can we improve the efficiency of sequential pattern mining by
focusing only on interesting patterns?”

For effectiveness and efficiency considerations, constraints are essential in
many data mining applications. Consider the following example. To charac-
terize a new disease, researchers may want to find sequential patterns about
symptoms, such as “finding patterns with constraint of 2-7 days of cough fol-
lowed by fever in the range of 37.5-39C' for 2-5 days with average temperature
of 38 £ 0.2C, and all these symptoms appear within a period of 2 weeks.” A
pattern found could be “cough 5 days and fever 4 days with strong headache.”
This mining query contains a few constraints, involving sequences containing
certain constants, and with average functions, etc.

In the context of constraint-based sequential pattern mining, Srikant and
Agrawal [I01] generalized the scope of sequential pattern mining [3] to include
time constraints, sliding time windows, and user-defined taxonomy. Mining
frequent episodes in a sequence of events studied by Mannila et al. [76] can
also be viewed as a constrained mining problem, since episodes are essentially
constraints on events in the form of acyclic graphs. Garofalakis et al. [34]
proposed regular expressions as constraints for sequential pattern mining and
developed a family of SPIRIT algorithms; members in the family achieve vari-
ous degrees of constraint enforcement. The algorithms use relaxed constraints
with nice properties (like anti-monotonicity) to filter out some unpromising
patterns/candidates in their early stage. Pei et al. [89] proposed a system-
atic category of constraints and the pattern-growth methods to tackle the
constraints.
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2.4.1 Categories of Constraints

A constraint C for sequential pattern mining is a boolean function C(«) on se-
quence patterns a. The problem of constraint-based sequential pattern mining
is to find the complete set of sequential patterns satisfying a given constraint
C.

Constraints can be examined and characterized from different points of
view. Below we examine them first from the application point of view and
then from the constraint-pushing point of view, and build up linkages between
the two.

Constraints in Applications

From the application point of view, we present the following seven categories of
constraints based on the semantics and the forms of the constraints. Although
these are by no means complete, they cover many interesting constraints in
applications.

An item constraint specifies subset of items that should or should not be
present in the patterns. It is in the form of

Citem(a) = (QOZ 1< < le'fl(Oé), O[[Z] 0 V),

or
Citem(a) = (pi: 1 < i < len(), ali]l NV #0),

where V is a subset of items, ¢ € {V,3} and § € {C,Z, D, 2, €,¢}. For the
sake of brevity, we omit the strict operators (e.g., C, D) in our discussion here.
However, the same principles can be applied to them.

For example, when mining sequential patterns over a web log, a user may
be interested in only patterns about visits to online bookstores. Let B denote
the set of online bookstores. The corresponding item constraint is

Obookstore(Oé) = (VZ 01 S ) < len(a), Oé[Z] g B)

A length constraint specifies a requirement on the length of the patterns,
where the length can be either the number of occurrences of items or the
number of transactions. Length constraints can also be specified as the number
of distinct items, or even the maximal number of items per transaction.

For example, a user may want to find only long patterns (e.g., patterns
consisting of at least 50 transactions) in bio-sequence analysis. Such a require-
ment can be expressed by a length constraint

Clen(a) = (len(a) = 50)
A super-pattern constraint is in the form of

Cpat(@) = (Fy € P s.t. vy C a),
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where P is a given set of patterns, i.e., to find patterns that contain a particular
set of patterns as sub-patterns.

For example, an analyst might want to find sequential patterns that first
buy a PC and then buy a digital camera. The constraint can be expressed as
Chat(@) = (PC)(digital_camera) C .

An aggregate constraint is a constraint on an aggregate of items in a pat-
tern, where the aggregate function can be sum, avg, max, min, standard devi-
ation, etc.

For example, a marketing analyst may want sequential patterns o where
the average price of all the items in « is over $100.

A regular expression constraint Crp is a constraint specified as a regular
expression over the set of items using the established set of regular expression
operators, such as disjunction and Kleene closure. A sequential pattern satis-
fies Crp if and only if the pattern is accepted by its equivalent deterministic
finite automata.

For example, to find sequential patterns about a Web click stream starting
from Yahoo’s home page and reaching hotels in New York city, one may use
the following regular expression constraint

Travel (New York | New York City ) ( Hotels | Hotels and Motels | Lodging ),
where “|” stands for disjunction. The concept of regular expression constraint
for sequential pattern mining was first proposed in [34].

In some applications, one may want to have constraints on the duration
of the patterns.

A duration constraint is defined only in sequence databases where each
transaction in every sequence has a time-stamp. (It is clear that the principle
can be readily applied to all sequences, by viewing sequence positions as the
timestamps.) It requires that the sequential patterns in the sequence database
must have the property such that the time-stamp difference between the first
and the last transactions in a sequential pattern must be longer or shorter
than a given period.

Formally, a duration constraint is in the form of

Ciur = Dur(a) 0 At,

where 6 € {<, >} and At is a given integer. A sequence « satisfies the con-
straint if and only if

e SDB |31 <i; < - < len(a) S len ()

such that
o[1] C Blir], ..., aflen(a)] T Bliren(a],

and
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(Bliten(ay]-time — Blir].time) 6 At}| > min_sup

In some other applications, the gap between adjacent transactions in a
pattern may be important.

A gap constraint set is defined only in sequence databases where each
transaction in every sequence has a timestamp. It requires that the sequen-
tial patterns in the sequence database must have the property such that the
timestamp difference between every two adjacent transactions must be longer
or shorter than a given gap.

Formally, a gap constraint is in the form of

Cyap = Gap(a) 0 At,

where 6 € {<, >} and At is a given integer. A sequence « satisfies the con-
straint if and only if

|{ﬂ S SDBHl <ip <o < ilen(a) < len(ﬂ)

such that
all] C Blit], ..., allen(a)] T Blien(a)],
and for all 1 < j <len(w),

(Blij).time — Blij—1].time) 0 At}| > min_sup

Among the constraints listed above, duration constraints and gap con-
straints are support-related, that is, they are applied to confine how a sequence
matches a pattern. To find whether a sequential pattern satisfies these con-
straints, one needs to examine the sequence databases. For other constraints,
whether the constraint is satisfied can be determined by the frequent patterns
themselves without referring to the support counting process.

Characterization of Constraints

In the recent studies of constrained frequent pattern mining [811 [86] 87, [5],
constraints are characterized based on the notion of monotonicity, anti-
monotonicity, succinctness, and whether they can be transformed into these
categories if they do not belong to them. This has become a classical frame-
work for constraint-based frequent pattern mining. This framework can also
be extended to constrained sequential pattern mining.

A constraint C'4 is anti-monotonic if a sequence « satisfying C4 implies
that every non-empty subsequence of « also satisfies C'4. A constraint C; is
monotonic if a sequence « satisfies Cy; implies that every super-sequence of
« also satisfies Cy;. The basic idea behind succinct constraint is that, with
such a constraint, one can explicitly and precisely generate all the sets of
items satisfying the constraint without recourse to a generate-everything-and-
test approach. A succinct constraint is specified using a precise “formula”.
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According to the “formula”, one can generate all the patterns satisfying a
succinet constraint. There is no need to iteratively check the constraint in the
mining process. Limited by space, we omit the formal definitions here.

For example, length constraint Ciep,(a) = len(o) < 10 and duration con-
straint Dur(o) < 30 are anti-monotonic, while super-pattern constraint and
the duration constraint Dur(«) > 30 are monotonic. It is easy to show that
item constraints, length constraints and super-pattern constraints are all suc-
cinct.

Based on the above definition, the anti-monotonic, monotonic and succinct
characteristics of some commonly used constraints for sequential pattern min-
ing are shown in Table 241

| Constraint | Anti-mono | Mono| Succ |

Item Citem(a) = (Vi : 1 < i < len(a), afi]dV) Yes No | Yes

(0 € {<, 2}
Citem(a) = (Vi : 1 <4 < len(a), Yes No | Yes

['] ﬂ V#0)
Citem(a) = (Fi: 1 < i < len(a), afi|6V) No Yes | Yes

(0 € {<,2))
Citem(a) = (Fi: 1 < i < len(a), No Yes | Yes

alil NV #£0)
Length len(a) <1 Yes No | Yes
len(a) > 1 No Yes | Yes
Super-pattern Cpat(@) =(Fy e Pst.yC a) No Yes | Yes
Simple maz(a) < v), min(a) > v Yes No | Yes
aggregates maz(a) > v), min(a) < v No Yes | Yes
sum(a) < v (with non-negative values) Yes No | No
sum(c) > v (with non-negative values) No Yes | No
Tough gsum: sum(a) O v, 0 € {<, >} (1) No No | No
aggregates average: avg( )6 v No No | No
RE (Regular Expression) ® No No | No
Duration Dur(a) < At Yes No | No
Dur(a) > At No Yes | No
Gap Gap(a) 0 At (0 € {<,>2}) Yes No | No

Table 2.4. Characterization of commonly used constraints. ( with positive and neg-
ative values. ¥ in general, a regular expression (RE) constraint is not necessarily anti-
monotonic, monotonic, or succinct, though there are cases that are anti-monotonic,
monotonic, or succinct. For example, constraint “x” (every pattern satisfies this
constraint) is anti-monotonic, monotonic and succinct.)

From Table 24l one can see that the classical constraint-pushing frame-
work [8T] based on anti-monotonicity, monotonicity, and succinctness can be
applied to many constraints. Thus the corresponding constraint-pushing strat-
egy can be integrated easily into any sequential pattern mining algorithms,
such as GSP, SPADE, and PrefixSpan. However, some important classes of
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constraints, such as RE (regular expressions), average(i.e., avg(«) 6 v, where
0 € {<,>2}), and g_sum (i,e., sum of positive and negative values), do not fit
into this framework.

This problem, with respect to commonly used regular expression con-
straints, has been pointed out by Garofalakis et al. [34]. They provided a
solution of a set of four SPIRIT algorithms, each pushing a stronger relax-
ation of regular expression constraint R than its predecessor in the pattern
mining loop. The first SPIRIT algorithm SPIRIT(N) (“N” for “Naive”) only
prunes candidate sequences containing elements that do not appear in R. The
second one, SPIRIT(L) (“L” for “Legal”), requires every candidate sequence
to be legal with respect to some state of Ag. The third, SPIRIT(V) (“V” for
“Valid”), filters out candidate sequences that are not valid with respect to any
state of Ag. The fourth, SPIRIT(R) (“R” for “Regular”), pushes R all the
way inside the mining process by counting support only for valid candidate
sequences. SPIRIT(R) looks most promising in constraint pushing. However,
when the RE constraint is not highly selective, the experiments reported in
[34] show that the number of candidates generated by SPIRIT(R) explodes
and the algorithm fails to even complete execution for certain cases (run out of
virtual memory). Thus finally, SPIRIT (V) was recommended as the overall
winner.

2.4.2 Mining Sequential Patterns with Prefix-Monotone
Constraints

As shown in Table 2.4 some important and popularly used constraints do
not have the anti-monotonic or monotonic property. Instead of considering
such constraints as tough ones and finding different kinds of relaxation or
patching tricks to “squeeze” them into the Apriori framework, we explore
an intuitive way by adopting the pattern-growth sequential pattern mining
framework so that such ugly constraints can be naturally pushed deeply into
the mining process. A tough constraint, such as a regular expression con-
straint, matches naturally with prefix-based expansion and can be pushed
deeply into the subsequence expansion-based mining process. Moreover, the
classical anti-monotonic, monotonic, and succinct constraints can be easily
adapted to this evaluation framework as well.

We first present a prefiz-monotone property for constraints and show that
most of the constraints discussed so far are prefix-monotone. Then, we develop
an efficient mining algorithm to push such constraints into sequential pattern
mining.

2.4.3 Prefix-Monotone Property

Let R be an order of items in a sequence database. Since the item ordering
in the same transaction is irrelevant to sequential patterns, it is convenient to
assume that all items in a transaction are written with respect to the order R.
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For example, let R be the alphabetical order. A sequence should be written
in the form of (ade)(bc) instead of (dae)(cb). The fact that item x precedes
item y in order R is denoted by x < y.

A constraint Cp, is called prefix anti-monotonic if for each sequence «
satisfying the constraint, it is the case that every prefix of « also satisfies the
constraint. A constraint Cy,, is called prefix monotonic if for each sequence «
satisfying the constraint, every sequence having « as a prefix also satisfies the
constraint. A constraint is called prefiz-monotone if it is prefix anti-monotonic
or prefix monotonic.

It is easy to see that an anti-monotonic constraint is prefix anti-monotonic.
A monotonic constraint is also prefix monotonic. For example, the length con-
straint len(a) < 10 is anti-monotonic. It must also be prefix anti-monotonic.
This is because if the length of a sequence « is no more than 10, the length
of every prefix of o must be no more than 10 as well. Similarly, len(a) > 10
is prefix monotonic since if the length of any prefix of « is no less than 10, «
must be no less than 10 as well.

A succinct constraint is not necessarily prefix anti-monotonic or prefix
monotonic. However, since succinct constraints can be pushed deep directly
into the mining process (no matter which sequential pattern mining method
is applied), the pushing of such constraints will not be analyzed further here.

Now, let us examine the regular expression constraints. A well-known re-
sult from the formal language theory is that for every regular expression F,
there exists a deterministic finite automata Mg such that Mg accepts exactly
the language generated by FE.

Given a regular expression E, let Mg be the corresponding (deterministic
finite) automata. Let a be a sequence. « is called legal with respect to E if a
state in Mg can be reached following «. From a regular expression constraint
FE, we can derive a constraint Lg such that a sequence « satisfies Lg if and
only if « is legal with respect to E. Clearly, for each sequence « satisfying the
regular expression constraint F, every prefix of o must be legal with respect
to E. Furthermore, for each sequence 3 legal with respect to E, every prefix
of 8 must also be legal with respect to E. Thus, for a given regular expression
constraint F, let Ly be the constraint on legal prefix with respect to E.
Constraint Lg is prefix anti-monotonic.

So far, we have shown that all the commonly used constraints discussed in
Section P24.T], except for g_sum and average, have prefix-monotone property.

The prefix-monotone property covers more commonly used constraints
than traditional anti-monotonic and monotonic properties, since the prefix-
monotone property is weaker than the anti-monotone and monotone proper-
ties. All anti-monotonic or monotonic constraints are prefix-monotonic, but
the reverse direction is not true.

Often, mining with a weaker constraint may lead to the less efficiency.
Thus, one may wonder whether mining with the prefix-monotone property is
less efficient than mining using the classical anti-monotonicity-based Apriori
methods. It turns out that using the prefix-monotone property is more efficient
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since the pattern-growth, depth-first search methods are more efficient than
the breadth-first search methods.

2.4.4 Pushing Prefix-Monotone Constraints into Sequential
Pattern Mining

Now, let us examine an example of constraint pushing.

Ezample 2.12 (Pushing prefiz-monotone constraints). Consider the sequence
database SDB in Table and the task of mining sequential patterns with
a regular expression constraint C' = a * {bb|(bc)d|dd} and support threshold
min_sup = 2. The mining can be conducted in the following steps.

[Sequence_id] Sequence ]

10 a(bc)e

20 e(ab)(bc)dd
30 c(aef)(abe)dd
40 addcb

Table 2.5. Sequence database SDB.

1. Find length-1 patterns and remove irrelevant sequences. Similar to sequen-
tial pattern mining without constraint C, one needs to scan SDB once,
which identifies patterns a, b, ¢, d, and e as length-1 patterns. Infrequent
items, such as f, are removed. Also, in the same scan, the sequences
that contain no subsequence satisfying the constraint, such as the first
sequence, a(bc)e, should be removed.

2. Divide the set of sequential patterns into subsets without overlap. Without
considering constraint C, the complete set of sequential patterns should
be divided into five subsets without overlap according to the set of length-
1 sequential patterns: (1) those with prefix a; (2) those with prefix b; .. .;
and (5) those with prefix e. However, since only patterns with prefix a
may satisfy the constraint C, i.e. only a is legal with respect to constraint
C, the other four subsets of patterns are pruned.

3. Construct a-projected database and mine it. Only the sequences in SDB

containing item a and satisfying constraint C' should be projected. The
a-projected database, SDB|, = {(-b)(bc)dd, (-e)(abc)dd, ddcb}. Notice
that e(ab)(bc)dd is projected as (_b)(bc)dd, where symbol “_” in the first
transaction indicates that it is in the same transaction with a.
During the construction of the a-projected database, we also find locally
frequent items: (1) b can be inserted into the same transaction with a to
form a longer frequent prefix (ab), and (2) b, ¢ and d can be concatenated
to a to form longer frequent prefixes, i.e., ab, ac and ad. Locally infre-
quent items, such as e, should be ignored in the remaining mining of this
projected database.
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Then the set of patterns with prefix a can be further divided into five
subsets without overlap: (1) pattern a itself; (2) those with prefix (ab);
(3) those with prefix ab; (4) those with prefix ac; and (5) those with
prefix ad. With the existence of constraint C, pattern a fails C' and thus
is discarded; and (ab) is illegal with respect to constraint C, so the second
subset of patterns is pruned. The remaining subsets of patterns should be
explored one by one.

. Mine subsets recursively. To mine patterns having ab as a prefix, we form

the ab-projected database SDB|,, = {(-c)dd, (-¢)dd}. By recursively min-
ing the projected database, we identify sequential pattern a(bc)d which
satisfies the constraint.

To mine patterns with prefix ac, we form ac-projected database SDB,. =
{dd,dd,b}. Every sequence in the projected database contains no sub-
sequence satisfying the constraint. Thus, the search within TDB|,. can
be pruned. In other words, we will never search any projected database
which does not potentially support patterns satisfying the constraint.
Similarly, we search the ad-projected database and find add is a sequential
pattern satisfying the constraint.

In summary, during the recursive mining, if the prefix itself is a pattern
satisfying the constraint, it should be an output. The prefixes legal with
respect to the constraint should be grown and mined recursively. The
process terminates when there is no local frequent item or there is no
legal prefix. It results in two final patterns: {a(bc)d, add}. L]

Let’s verify the correctness and completeness of the mining process de-

scribed in Example As shown in the example, if 1, ..., x, are the
complete set of length-1 patterns, the complete set of sequential patterns can
be divided into n subsets without overlap and the mining can also be reduced
to the mining of n projected databases. Such a divide-and-conquer strategy
can be applied recursively. This is the depth-first search in the PrefizSpan
algorithm.

We can remove a sequence that does not satisfy the constraint according

to the following rule.

Lemma 2.13. Let the given constraint be C.

1. In a sequence database SDB, if a sequence « does not contain any sub-

sequence satisfying C, then the set of sequential patterns satisfying C
in SDB is identical to the set of sequential patterns satisfying C in
SDB — {a}.

2. Let - 8 be a sequence in the a-projected database SDB|.. If there exists

no a subsequence o -y T «a - (3 satisfying C, then the set of sequential
patterns satisfying C' in SDB|, is identical to the set of sequential patterns
satisfying C in SDB|, — {a - 5}.

Proof. We prove the first claim. The second claim can be proved similarly.
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Since SDB — {a} C SDB, every sequential pattern in SDB — {a} is also
a sequential pattern in SDB. Thus, every sequential pattern in SDB — {a}
satisfying C' is also a sequential pattern in SDB satisfying C'. Moreover, for
any sequence 3 that is not a subsequence of «, the support of 3 in SDB —{«}
is identical to the support of § in SDB.

Suppose there exists a sequential pattern « satisfying C' in S DB but not in
SDB — {a}. v must be a subsequence of a.. That contradicts the assumption
that o does not contain any subsequence satisfying C'. Thus, every sequential
pattern satisfying C'in S DB is also a sequential pattern satisfying C' in SDB—
{a}. The claim is proved. m

With a prefix-monotone constraint, one only needs to search in the pro-
jected databases having prefixes potentially satisfying the constraint, as sug-
gested in the following lemma.

Lemma 2.14. Given a prefiz-monotone constraint C'. Let « be a sequential
pattern.

1. When C' is prefix anti-monotonic, if C(«) = false, then there exist no
sequential patterns that have o as a prefix and also satisfy constraint C.

2. When C'is prefix monotonic, if C(«) = true, then every sequential pattern
having « as a prefix satisfies C.

3. When C' is a reqular expression constraint, if « is illegal with respect to
C, then there exist no sequential patterns that have « as a prefix and also
satisfy constraint C.

Proof. The lemma follows the prefix-monotone property immediately. In
case 2, constraint testing can be waived for mining in SDB|,. ]

Based on the above discussion, we have the constrained sequential pattern
mining algorithm Prefiz-growth as given in Figure 241

Let us analyze the efficiency of the Prefiz-growth algorithm.

First, Algorithm Prefix-growth takes PrefiztSpan as the basic sequential
pattern mining algorithm and pushes prefix-monotone constraints deeply into
the PrefizSpan mining process. The performance study in [88] shows that
PrefizSpan outperforms GSP, owing to the following factors.

o PrefixSpan adopts a prefix growth and database projection framework:
for each frequent prefix subsequence, only its corresponding suffix subse-
quences need to be projected and examined without candidate generation.

e PrefixSpan applies a divide-and-conquer strategy so that sequential pat-
terns are grown by exploring only local frequent patterns in each projected
database.

e PrefixrSpan explores further optimizations, including a pseudo-projection
technique when the projected database and its associated pseudo-
projection processing structure fits in main memory, etc.
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Input: A sequence database SD B, support threshold min_sup, and prefix-monotone
constraint C';
Output: The complete set of sequential patterns satisfying C';
Method:
call prefiz_growth(0, SDB).
Function prefiz_growth(a, SDB|a)
// a: prefix; SDB|q4: the a-projected database
1. Let [ be the length of a. Scan SDB|. once, find length-(I 4+ 1) frequent
prefix in SDB|a, and remove infrequent items and useless sequences;
2. for each length-(I+1) frequent prefix o’ potentially satisfying the constraint
C (Lemma 2T4)) do
a) if o' satisfies C, then output o’ as a pattern;
b) form SDB|,;
c) call prefiz_growth(a',SDB|,/)

Fig. 2.4. The Prefiz-growth algorithm.

Second, Prefiz-growth handles a broader scope of constraints than anti-
monotonicity and monotonicity. A typical such example is regular expression
constraints, which are difficult to address using an Apriori-based method, as
shown in SPIRIT. By Prefiz-growth, such constraints can be naturally pushed
deeply into the mining process.

Both Prefiz-growth and SPIRIT [34] push regular expression constraints
by relaxing the constraint to achieve some nice property facilitating the
constraint-based pruning. In particular, SPIRIT(V) requires every candi-
date sequence to be valid with respect to some state of the automata Ag,
which shares a similar idea with Prefiz-growth. However, the SPIRIT meth-
ods adopt the candidate-generation-and-test framework, which is more costly
than the pattern growth methods. Moreover, the SPIRIT methods are dedi-
cated to pushing regular expression constraints, while Prefix-growth is capable
of pushing many constraints more than regular expression ones. For example,
anti-monotonic or monotonic constraints that are not regular expression con-
straints, such as super-pattern constraints and some aggregate constraints in
Table 24l can be consistently pushed in Prefiz-growth, but cannot be handled
by SPIRIT. As shown in the experimental results, Prefiz-growth outperforms
SPIRIT in pushing regular expression constraints.

Third, constraint checking by Lemma PT3] further shrinks projected
databases effectively, due to its removal of useless sequences with respect to a
given constraint during the prefix growth. This ensures that search is pursued
in promising space only. Since many irrelevant sequences can be pruned in
large databases, the projected databases keep shrinking quickly.

One may wonder whether the Apriori-based methods, such as GSP and
SPADE, can do similar prefix-based pruning using prefix-monotone con-
straints. Taking a non-anti-monotonic regular expression constraint as an ex-
ample, for Apriori-based methods, a pattern whose prefix fails a constraint
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cannot be pruned since inserting more items/transactions to the pattern at
some other positions may still lead to a valid pattern. However, by exploring
prefix-monotone constraints, Prefiz-growth puts stronger restrictions on the
possible subsequences to grow and thus prunes search space more effectively.

In summary, although prefiz-monotone property is weaker than Apriori
property, since Prefix-growth uses a different methodology for the mining, it
still achieves better performance than Apriori-based methods.

2.4.5 Handling Tough Aggregate Constraints by Prefix-growth

Besides regular expression constraints, one may wonder whether Prefiz-growth
can effectively handle the two tough aggregate constraints in Table[2.4] average
and g_sum? Both constraints are neither anti-monotonic nor monotonic. Even
worse, they are not prefix-monotone! Let’s examine such an example.

Ezample 2.15. Let us mine sequential patterns with constraint C' = avg(a) <
25 in a sequence database SDB as shown in Table 6] with support
threshold = 2. The four items in the database are of values 10, 20, 30 and 50,
respectively. For convenience, the item values are used as Ids of items.

|Sequence_id| Sequence |

10 50 10 20 20
20 30 50 20
30 501020 10 10
40 3020 10

Table 2.6. Another sequence database SDB.

Constraint C' cannot be directly pushed into the PrefixSpan mining pro-
cess. For example a@ = 50 cannot be discarded even avg(a) € 25, since by ap-
pending more elements to a, we may have o/ = 50 10 20 10 and avg(a’) < 25.
Also, one can easily verify that C' is not prefix-monotone.

In [87], a technique was developed to push convertible constraints, like
avg(X) > 25, into frequent itemset mining on transactional databases. The
general idea is to use a proper order of frequent items, like value descending
order for constraint avg(X) > v, such that the list of frequent items according
to the order has a nice anti-monotonic or monotonic property.

Can we apply the technique in [87)] to tackle the aggregate constraints for
sequential pattern mining? Unfortunately, the answer is negative. For every
sequence, a temporal order has been pre-composed and we do not have the
freedom to re-arrange the items in sequences. The trick of simple ordering
does not work well here.

Thus, new constraint pushing methods should be explored. [
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Let’s examine how to push constraint “avg(a) < v” deep into the Prefiz-
growth mining process.

Value-ascending order over the set of items should be used to determine
the order of projected databases to be processed. An item ¢ is called a small
item if its value i.value < v, otherwise, it is called a big item.

In the first scan of a (projected) database, unpromising big items in se-
quences should be removed according to the following two rules.

Lemma 2.16 (Pruning unpromising sequences). In mining sequential
patterns with constraint avg(a) < v, for a sequence «, let n be the number
of instances of small items and s be the sum of them. If there are multiple
instances of one small item, the value of that item should be counted multi-
ple times. For any big item x in o such that Hfliﬁl“e > v, there exists no

subsequence 3 C « that contains x and avg(f) < v.

Proof. Consider any 3 C « such that x is in . Clearly, the occurrences of
small items in [ are a subset of the occurrences of small items in «. Thus,

avg(B) > 7S+fl'i‘;l”e > 0. n

The big items identified by Lemma[ZT6lare called unpromising. Removal of
unpromising big items do not imply that we will miss any sequential patterns
satisfying the constraint. Instead, it helps us to shrink the sequence database
and it facilitates the mining.

Similarly, unpromising sequence pruning rule can be recursively applied
in an a-projected database. For a projection v = 3/, let n be the number
of instances of small items appearing in v but not in « and s be the sum
of them. A big item x in « is unpromising and should be removed if (s +
sum(a)+x.value)/(n+ #items(a) + 1) violates the constraint. Here, function
#items(a) returns the number of instances of items in sequence a.

Moreover, an item marking method can be developed to mark and further
prune some unpromising items as follows. In the a-projected databaseﬁ, when
a pattern 3 is found where the first item following « is a small item, we
check whether that small item can be replaced by a big item = frequent in the
projected database and still can get average value satisfying the constraint.
If so, prefix « - x is marked promising and does not need to be checked and
marked again in this projected database. When all patterns with some small
item as the first one following a have been found, for the prefixes with a big
item z following o having not been marked, o - = as well as the projected
databases can be pruned if « - x violates the constraint. We call this the
unpromising pattern pruning rule.

The rationale of this rule is as follows. For a big item x, if a -z violates the
constraint but a - x - § is a sequential pattern satisfying the constraint, then
there must be some 3’ C 3 such that 3’ starts with a small item and « - 3’ is
a sequential pattern satisfying the constraint.

3 The whole database SDB can be regarded as SDB|.
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We elaborate on the rules and the mining procedure using the SDB in
Example 2.15] as follows.

Ezample 2.17. Let us consider mining SDB in Table [Z.6] with constraint C' =
avg(a) < 25.

In the first scan of SD B, we remove the unpromising big items in sequences
by applying the unpromising sequence pruning rule. For example, in the second
sequence, 20 is the only small item and 20—42'50 = 35 > 25. This sequence cannot
support any sequential patterns having item 50 and satisfying the constraint
C. Thus, item 50 in the second sequence should be moved.

In the same database scan, we also find length-1 patterns, 10, 20, 30 and
50. The set of patterns can be partitioned into four subsets without overlap:
(1) those with prefix 10; (2) those with prefix 20; (3) those with prefix 30; and
(4) those with prefix 50. These subsets of patterns should be explored one by
one in this order.

1. The set of patterns with prefix 10 can be found by constructing 10-
projected database and mining it recursively. The items in 10-projected
database are small ones, so all patterns in it have average no greater than
25 and thus satisfy the constraint. There are two patterns there: 10 and
10 20.

When pattern 10 is found, it can be regarded as a small item 10 following
the empty prefix. Thus, we apply the unpromising pattern pruning rule to
mark and prune patterns. Prefix 30 is marked as promising, since avg(30 -
10) = 20 < 25. Prefix 30 will not be checked against any other pattern
after it is marked.

None of the patterns with prefix 10 can be used to mark prefix 50.

2. Similarly, we can find patterns with prefix 20 by constructing and mining
20-projected database. They are 20 and 20 10. None of the patterns with
prefix 20 can be used to mark prefix 50.

3. 30 is a big item and prefix 30 violates the constraint. For patterns with
prefix 30, since prefix 30 is marked, we need to construct 30-projected
database and mine it. Pattern 30 20 is found.

4. Prefix 50 has not been marked. According to the unpromising pattern
pruning rule, no pattern with prefix 50 can satisfy the constraint. We do
not need to construct or mine 50-projected database. ]

Constraint avg(e) > wv is dual with respect to constraint avg(a) < v.
Therefore, we can prune unpromising (small) items and patterns similarly.
Moreover, with the same idea, constraint sum(«) 6 v (where 0 € {<, >}, and
items can be with non-negative and negative values) can also be pushed deeply
into Prefiz-growth mining process. This is left as an exercise for interested
readers.

Thus, although the two concrete rules discussed above are specific for con-
straint avg(a) < v, the idea is general and can be applied to some other
aggregate constraints. The central point is that we can prune unpromising
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items and patterns as the depth-first search goes deep. In summary, with mi-
nor revision, Prefix-growth can be extended to handle some tough aggregate
constraints without prefix-monotone property. With such extensions, all es-
tablished advantages of Prefiz-growth still retain and the pruning is still sharp.
This is also verified by experimental results.

Pushing Multiple Constraints

We have studied the push of individual constraints into sequential pattern
mining. Can we push multiple constraints deep into sequential pattern mining
process?

Multiple constraints in a mining query may belong to the same category
(e.g., all are anti-monotonic) or to different ones. Moreover, different con-
straints may be on different properties of items/transactions (e.g., some could
be on item price, while others could be on timestamps, etc.).

A constraint in the form of conjunctions and/or disjunction of prefix-
monotone constraints still can be pushed deep into a Prefiz-growth mining
process. We only need to keep track of which sub-constraints have been sat-
isfied /violated. Based on that, whether the whole constraint is satisfied and
whether further recursive mining of projected databases is needed can be de-
termined. The details will be left to interested readers as an exercise.

For constraints involving aggregates avg() and sum() (where items can
be with non-negative and negative values), Prefiz-growth uses a global order
over all items to push them into the mining process. However, when a con-
straint involves more than one of such aggregates, and the orders required by
these sub-constraints are conflicting, some coordination is needed. The gen-
eral philosophy is to conduct a cost analysis to determine how to combine
multiple order-consistent constraints and how to select a sharper constraint
among order-conflicting ones. The details will be left to interested readers as
an exercise.

2.5 Mining Closed Sequential Patterns

The complete set of sequential patterns in a sequence database may contain
redundant information. In this section, we identify such redundancy and in-
troduce the notion of closed sequential patterns. Moreover, we also discuss
how to mine closed sequential patterns efficiently.

2.5.1 Closed Sequential Patterns

Ezample 2.18 (Redundancy in sequential patterns). Consider a sequence
database SDB in Table[27l Suppose the support threshold is min_support= 1.
Let us consider the sequential patterns in the database.
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[Sequence-id] Sequence |

10 a - - -aso

20 ai -+ - aipo

Table 2.7. A database of long sequences.

Clearly, any sequence a;, - - a;, (1 < i3 < --- < i < 100) is a sequential
pattern. The total number of sequential patterns is

<~ (100
> ( ; ) =219 — 1 = 1,267,650, 600, 228, 229, 401, 496, 703, 205, 376.
=1

For a sequential pattern a;, - - - a;, , if i < 50 then sup(a;, - - - a;,) = 2. On
the other hand, if iy, > 50, then sup(a;, ---a;,) = 1.

In other words, the more than 1.2 x 1030 sequential patterns can be sum-
marized by two patterns, s; = a1 - - - asg and s = aj - - - a19p and their support
information, sup(s1) = 2 and sup(sz) = 1. Due to the anti-monotonic property
(Theorem [23)), every subsequence of s; has support 2, and every subsequence
of so but not a sequence of s; has support 1. [

The idea elaborated in the above example motivates the proposal of closed
sequential patterns [125], which is an extension of the idea of frequent closed
itemsets [84].

Definition 2.19 (Closed sequential pattern). A sequential pattern s is
called closed if there is no proper super-pattern s’ 3 s such that sup(s) =
sup(s'). m

The set of closed sequential patterns is a lossless compression of the set
of all sequential patterns. For a sequence p, whether p is a sequential pattern
and its support information can be derived from the set of closed sequential
patterns as follows.

e p is not a sequential pattern (that is, sup(p) is less than the minimum
support threshold) if and only if there exists no any closed sequential
pattern s such that p C s.

e If p is a sequential pattern, then sup(p) = sup(s) where s is a closed
sequential pattern such that p C s and there exists no any other closed
sequential pattern s’ such that p C s’ C s.

The correctness of the above rules can be proved using the anti-monotonic
property (Theorem 23)) and the definition of closed sequential patterns. It can
also be shown that, in the second item, closed sequential pattern s is unique.
We leave the details as an exercise for the interested readers.
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2.5.2 Efficiently Mining Closed Sequential Patterns

Given a sequence database and a minimum support threshold, how can we
mine the complete set of closed sequential patterns efficiently?

One naive approach works as follows. First, we can find the complete set
of sequential patterns using a sequential pattern mining algorithm such as
those discussed before. Then, for each sequential pattern, we test whether it
is closed. Only those closed patterns are reported.

However, the naive method is too costly. First, it has to find all sequen-
tial patterns. In Example ZI8] it still has to find the more than 1.2 x 103°
sequential patterns! Second, testing whether sequential patterns are closed is
non-trivial. For each sequential pattern, we may have to check it against many
other sequential patterns to test whether it is a subpattern of the others and
has the same support.

A few efficient algorithms have been proposed to mine closed sequen-
tial patterns, such as [109] [I14] [125]. Here, we discuss the major ideas in
BIDE [114], which is a representative method.

BIDE is an extension of PrefixrSpan for closed sequential pattern mining.
Several important techniques are developed to prune the search space so that
many non-closed sequential patterns do not need to be searched. One central
idea is the so-called Bl-directional extension closure checking scheme.

To keep our discussion easy to follow, let us assume that each element
contains only one item. Suppose in the depth-first search, a sequential pattern
s =e1---e, is found. How can we determine whether s is closed or not? Do
we need to search any super-sequences of s that have s as a prefix?

If s is not closed, at least one of the following two cases must happen.

e There exists a sequential pattern s; = ej---ene’ such that sup(s) =
sup(s’). In other words, in every sequence that contains s, ¢’ appears af-
ter a prefix that is a super-sequence of s. We call s’ a forward-extension
sequence of s, and e’ a forward-extension event.

e There exists a sequential pattern s; = ej---ei€’eji1 - €, or s =
e'er -+ -e, such that sup(s) = sup(s1). We call s1 a backward-extension
sequence of s, and €’ a backward-extension event.

Clearly, a sequential pattern p is closed if and only if there exists neither
a forward-extension event nor a backward-extension event. Now, the question
is how to find forward- and backward- extension events quickly.

Finding forward-extension events is straightforward. For a sequential pat-
tern p, we can form the p-projected database which has all sequences contain-
ing p. Then, we check the suffixes of the sequences. If an item e’ appears in
every suffix, ¢/ must be a forward-extension event.

Finding backward-extension events is a little bit tricky. An item may ap-
pear multiple times in a sequence. Therefore, to check whether there is a
backward-extension event between e; and e; 1, for each sequence containing
p, we look at the subsequence between the first occurrence of e ---e; and
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the last occurrence of e;1---e,. If there is an event ¢’ appearing in that
subsequence of every sequence containing p, then ¢’ is a backward-extension
event.

By the above Bl-directional extension closure checking, we can determine
whether a sequential pattern p is closed when it is generated in the depth-
first search process. The only information needed in the checking is the set of
sequences containing p. Since projected databases are used in PrefizSpan, we
only need to extend the projected databases in PrefizSpan by including the
whole sequences instead of only the suffixes.

The backward-extension events can also be used to prune a search subspace
where there exists no closed sequential patterns. Suppose when we search a se-
quential pattern p = eq - - - €,,, and a backward-extension event €’ is found, that
is, each sequence containing p also contains ¢ = e - - - e;€’e; 11 - - - €,. Not only
we can immediately determine that p is not closed, but also we can determine
that, if a pattern p’ has p as a prefix, then p’ cannot be closed if p’ is formed
using subsequences having ¢ in the projected database. To see the reason, con-
sider a pattern p’ = ey ---epeni1 - - - € that has p as a prefix, and the matching
of ;41 - - - e; in the sequences follow with the matching of g. Clearly, every such
sequence containing p’ also contains ¢’ = ey ---e;e’e;r1 -+ - epeni - - €. That
is, sup(q’) = sup(p’). Thus, p’ is not closed.

As reported in [114], mining closed sequential patterns not only can re-
duce the number of patterns substantially, but also can reduce the mining
time. Mining dense sequence databases where there are many long sequen-
tial patterns becomes feasible by using the closed sequential pattern mining
techniques.

2.6 Summary

Sequential pattern mining is an essential task in mining sequence data. In the
following chapters, we will see that sequential patterns are used in various
advanced analytical tasks on sequence data.

In this chapter, we discussed two fundamental frameworks of sequential
pattern mining methods: the Apriori-like, breadth-first search methods and
the pattern-growth, depth-first search methods. The pattern-growth, depth-
first search methods are generally more capable of mining long sequential
patterns from large sequence databases.

We also discussed the extensions of the pattern-growth, depth-first search
methods to mine sequential patterns with constraints. Different kinds of
constraints are examined from both the application point of view and the
constraint-pushing point of view. We elaborated on how to handle tough ag-
gregate constraints as well.

Redundancy may exist among sequential patterns in a large database. To
tackle the problem, the concept of closed sequential patterns was introduced.
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Moreover, we illustrated the major ideas of extending the pattern-growth,
depth-first search methods in mining closed sequential patterns efficiently.
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Classification, Clustering, Features
and Distances of Sequence Data

This chapter is concerned with the classification and clustering of sequence
data, together with sequence features and sequence distance functions. It is
organized as follows:

Section 3.1l provides a general categorization of sequence classification and
sequence clustering tasks. There are three general tasks. Two of those
tasks concern whole sequences and will be presented here. The third topic,
namely sequence motifs (site/position-based identification and characteri-
zation of sequence families), will be presented in Chapter dl The existence
of a third task is due to the facts that (a) positions inside sequences are
important, a factor which is not present for non-sequence data, and (b)
succinct characterizations of sequence families are desired for identifying
future members of the families.

Section discusses sequence features, concerning various feature types
and general feature selection criteria. Section is about sequence sim-
ilarity/distance functions. The materials in Sections and will be
useful not only for classification and clustering, but also for other topics
(such as identification and characterization of sequence families).
Section 34 discusses sequence classification. Several popular sequence clas-
sification algorithms are presented and a brief discussion on the evaluation
of classifiers and classification algorithms is given.

Section discusses sequence clustering; it includes several popular se-
quence clustering approaches and a brief discussion on clustering quality
analysis.

3.1 Three Tasks on Sequence Classification/Clustering

On sequence data, the following three data mining tasks are related to the
general data mining tasks of classification and clustering.
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. The classification task is about building classifiers for given classes of se-

quence data. This is usually achieved by combining some general classifi-
cation methods, together with appropriate feature selection/construction
methods. The classification can be whole sequence based, where one is
interested in whether a sequence belongs to a certain class; it can also be
site based, where one is interested in (a) whether a sequence contains a
site of interest and (b) the actual position of the site in the sequence if it
exists.

. The clustering task is about the grouping of given sequences into clusters.

This is usually achieved by selecting a general clustering method, and
selecting/designing an appropriate distance function on sequences. The
distance functions need to address the special properties of sequences and
the particular needs of the underlying applications.

. The third task can be considered as a hybrid of clustering and classifi-

cation. It is concerned with the identification of certain sequence clusters
(usually referred to as sequence families), together with the characteri-
zation of the sequence clusters expressed in terms of some patterns or
models. The characterizing patterns or models can then be used for clas-
sifying sequences into the corresponding families, in addition to providing
discriminative information to scientists.

This task has two flavors. In the first flavor, the criteria for grouping
sequences consider the entire sequences under consideration. In the second
flavor, the criteria for grouping sequences consider certain windows in
which the sequence shows certain discriminative similarities.

For all three tasks, the clusters or sequence families may be disjoint, or

may overlap each other. Moreover, the clusters or families do not need to cover
all of the given data.

We consider the first two tasks in this chapter, and will consider the third

task in the next chapter.

3.2 Sequence Features

3.2.1 Sequence Feature Types

Sequence featured] can be considered along the following perspectives:

Explicit versus implicit (constructed): Some features are (based on) pat-
terns that occur in the sequences while others are constructed from prop-
erties of the sequences or the objects underlying the sequences. Examples
of the former type include various sequence patterns; examples of the lat-
ter type include physical /chemical /spatial properties of protein structures
associated with the protein sequences.

! Feature selection for general, non-sequence data is covered in [67].
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Simple versus complex and rigid versus flexible: Among the sequence pat-
terns that are useful as features, some are very simple and rigid (e.g. k-
grams or k-gapped pairs where the relative distance between positions is
fixed), while others are complex and flexible (e.g. distinguishing sequence
patterns with gap constraints where the relative distance between positions
is constrained by a bound).

Presence/match versus count: A pattern can generate two types of fea-
tures. In the first, one uses the pattern as a Boolean feature, by simply
considering the presence/absence (or match) of the pattern in the sequence
(or its corresponding object). In the second, one uses the pattern as a nu-
merical feature, by considering the count of the pattern in the sequence
(or its corresponding object). The match/count can be position/site de-
pendent (only matches at certain positions count) or position/site inde-
pendent (all matches count, regardless of the position). It is also possible
to consider inexact matches.

GAATTCTCTGTAACCTCAGAGGTAGATAGA

Fig. 3.1. A DNA sequence

We now describe some of the major types of sequence features; all but

the last one are sequence pattern based; the last one is “property”-based. Let
S = s1...s,, be a sequence over an alphabet A. We will use the DNA sequence
in Figure Bl which has length of 30, to illustrate some of the feature types.

Each sequence element (together with its position) can be a feature. Typ-
ically the sequences are aligned and element-wise comparison is used to
determine similarity between sequences.

k-grams (or k-mers) are features. Let k£ > 1 be a positive integer. A k-gram
is a sequence over A of length k. For a sequence, the k-grams of interest
are those that occur in the sequence.

For the sequence in Figure Bl the 2-gram G A occurs in S but GC does
not. The frequency of the 2-gram G A in the sequence is 4.

Let k£ > 0 be an integer and z,y be (possibly identical) elements in .A.
Then the ordered pair (z,y) can be viewed as a k-gapped pair (or gapped
residue couple [20] R3] B9, 51]), and its k-gapped occurrence frequency in
S, denoted by F'(xy, k) is defined by

1

F(zy, k) = n—k—1

S 00y i+ K+ 1)

where Oy (4, i +k+1)=1if s;=x and s; 41 =y, and Oy (4,1 +k+1)=0
otherwise. So F(xy, k) is the fraction of matches of z,y in S as a k-
gapped pattern over the maximal number of matches possible. (It should
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be pointed out that k is the exact fixed gap between the two symbols, and
is not used as a maximum gap constraint.) When k = 0, the k-gapped pair
is equivalent to a 2-gram.

For the DNA sequence in Figure Bl F(GA,0) = %, F(GA,1) = 23—8,
F(GA,2) = &, etc.

e One may also consider cumulative running counts as features [I134]. For
each pattern P over A and each position i, we have a count C(P, ), which is
the number of matches of P in s;...s; (the prefix of S up to s;). For example,
for the DNA sequence of Figure Bl we have C'(A,1) = 0, C(A4,3) = 2,
C(T,9) =4, etc.

e In general, arbitrary sequence patterns (either their presence/absence or

counts) can be used as features, including frequent sequence patterns (see
Chapter 2) and distinguishing sequence patterns (see Chapter [G]).
One can partition the alphabet into equivalence classes (or exchange
groups), and then consider k-grams of equivalence classes [123] [IT6]. This
technique has been used for protein sequences, since different amino acids
may behave similarly and can be considered as equivalent. The technique
can help reduce the number of features when there are too many. For
example, we can partition the amino acids of proteins into 6 equivalence
classes represented by {ej, ea, €3, €4, €5, €6}, where

€1 :{HvRaK}a
62:{D,E,N,Q},
63:{0}7

€4 = {S7T3PaA7G}7
€5 = {M7I7L7V}7
s = {F,Y,W}.

(Such equivalence classes represent conservative replacements through evo-
lution; such equivalence among amino acids is derived from PAM [122].)
The protein sequence KALSLLAG can be considered as the sequence
eieqeseqeseseqey over the equivalence classes, and hence it can be consid-
ered to match the 2-gram of eqes.

e Features can also be property based. For example, for protein sequences,
one can use physical/chemical properties of the protein as features. More
specifically, one can use the shape, charge, and hydrophobicity at a se-
quence/structure location as features.

Features in the form of k-grams and k-gapped pairs have been used extensively
in biological sequence analysis.

3.2.2 Sequence Feature Selection

Once the set of potential features is determined, there need to be some criteria
for selecting the “good” features for potential usage in data mining tasks. Two
general criteria can be used:
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e Frequency based feature selection: The features with high frequencies,
namely those having frequency over a given threshold, are selected. One
may use window-based frequency or whole-sequence frequency.

e Discrimination based feature selection: Features with relatively higher fre-
quency at a desired site or in some selected classes than elsewhere are
preferred. To find features for identifying a desired site, one prefers fea-
tures which occur quite frequently around the site than elsewhere. To find
features for identifying classes, one prefers features which occur more fre-
quently in one class than in other classes.

Some method is needed to determine patterns’ frequency differences as
discussed above. This can be done by directly comparing a site against other
parts of the sequences, or comparing one class against other classes. In the
biological literature, it is often the case that one actually computes the fre-
quency at the desired site or in a class, but uses the so-called “background”
probabilities to determine the frequency away from the given site or the given
class. The background probabilities can be sampled from large datasets, e.g.
all potential sequences in the application.

Chapter [0 gives more details on mining patterns that distinguish a
site/class against other parts of the sequences or other classes.

3.3 Distance Functions over Sequences

Sequence distance functions are designed to measure sequence (dis)similarities.
Many have been proposed for different sequence characteristics and purposes.
After an overview, this section will discuss several major types of sequence
distance functions.

3.3.1 Overview on Sequence Distance Functions

A sequence distance is a function d mapping pairs of sequences to non-negative
real numbers so that the following four properties are satisfied:

d(z,y) > 0 for sequences x and y such that z # y,
d(xz,x) = 0 for all sequences z,

d(x,y) = d(y, z) for all sequences = and y,

d(z,y) < d(z,2) + d(z,y) for all sequences z, y and z.

Moreover, d is a normalized distance function if 0 < d(x,y) < 1 for all se-
quences x and y. These properties and definitions are special cases of those
for general distance functions.

Sequence distance functions can be used for many different purposes, in-
cluding clustering, finding known sequences similar to a new sequence (to
help infer the properties of new sequences), determining the phylogenetic tree
(evolution history) of the species, etc.
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Roughly speaking, distance functions can be character (alignment) based,
feature based, information theoretic (e.g. Kolmogorov complexity) based [64],
conditional probability distribution based [126], etc. In the feature based ap-
proach, one would first extract features from the sequences, and then compute
the distance (e.g. Euclidean or cosine) between the sequences by computing
the distance between the feature vectors of the sequences. The character align-
ment based ones can be local window based or whole sequence based; they
can also be edit distances or more general pairwise similarity score based
distances. Details on most of these approaches are given below.

3.3.2 Edit, Hamming, and Alignment based Distances

The edit distance, also called the Levenshtein distance, between two sequences
S1 and S5 is defined to be the minimum number of edit operations to transform
S1 to Sy. The edit operations include changing a letter to another, inserting a
letter, and deleting a letter. For example, the edit distance between “school”
and “spool” is 2 (we need one deletion and one change), and the edit distance
between “park” and “make” is 3.

Some authors [I126] argue that the edit distance may not be the ideal so-
lution to measure sequence similarity. Consider the following three sequences:
aaaabbb, bbbaaaa, and abcdefg. The edit distance between aaaabbb and bb-
baaaa is 6, and the edit distance between aaaabbb and abcdefg is also 6. In-
tuitively aaaabbb and bbbaaaa are more similar to each other than aaaabbb
and abcdefg are, but the edit distance cannot tell the difference.

The Hamming distance between two sequences is limited to cases when
the two sequences have identical lengths, and is defined to be the number of
positions where the two sequences are different. For example, the Hamming
distance is 1 for “park” and “mark”, it is 3 for “park” and “make”, and it is
4 between “abcd” and “bede”.

The edit and Hamming distances charge each mismatch one unit of cost
in dissimilarity. In some applications where different mismatches are viewed
differently, different costs should be charged to different mismatches. Those
costs are usually given as a matrix; examples include PAM [122] (a transition
probability matrix) and BLOSUM [49] (blocks substitution matrix). More-
over, insertions/deletions can also be charged differently from changes. It is
also a common practice to charge more on the first insertion than subsequent
insertions, and to charge more on the first deletion than subsequent deletions.

Many fast software tools exist for finding similar sequences through se-
quence alignment; examples include BLAST and variants [4], FASTA [85],
Smith-Waterman [98]. These algorithms compare a given sequences against
sequences from a given set, to find homologous (highly similar) sequences.
PSI-BLAST [4] and HMM-based methods [59] can be used to find remote
homologous (less similar) sequences.
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3.3.3 Conditional Probability Distribution based Distance

Reference [126] considers a conditional probability distribution (CPD) based
distance. The idea is to use the CPD of the next symbol (right after a seg-
ment of some fixed length L) to characterize the structural properties of a
given sequence (or set of sequences). The distance between two sequences is
then defined in terms of the difference between the two CPDs of the two
sequences. The similarity between two CPDs can be measured by the varia-
tional distance or the Kullback-Leibler divergence between the CPDs. Let A
be a given alphabet. Let S; and S5 be two sequences. Let {2 be the set of
sequences of length L which occur in either S; or Ss. Let P; denote the CPD
for S;. The variational distance between S; and S is then defined as

Z |P1(2]X) — Py(z]X)]

XeNzeA
and the Kullback-Leibler divergence between S; and S; is defined as

P (z|X)
XG;GA(R (2|X) — Py(z|X)) - zogm.

This distance can be easily extended to distance between sets (clusters) of
sequences. The computation of CPD based distance can be expensive for large
L. The clustering algorithm given in [126] computes the distance of a sequence
S with each cluster C'; that distance is simulated as the the error of predicting
the next symbol of the sequence S using the CPD of the cluster C. Only
frequent sequences in a cluster C' are used in defining CPDs; if a sequence of
length L is not frequent in C, its longest frequent suffix is used in its place.

3.3.4 An Example of Feature based Distance: d2

An example of feature based sequence distance is d2 [T08], which uses k-grams
as features. It uses two parameters: a window length W and a gram (word)
length w. It considers frequency of all w-grams occurring in a window of length
W. The distance between two windows is the Euclidean distance between the
two vectors of frequencies of w-grams in the two windows. The d2 distance
between two sequences is the minimum of the window distances between any
two windows, one from each sequence.

GACTTCTATGTCACCTCAGAGGTAGATAGA
CGAATTCTCTGTAACACTAAGCTCTCTTCC

Fig. 3.2. Two DNA sequences

For example, consider the two sequences given in Figure for W = 8
and w = 2. To compute the d2 distance between the two sequences, we need
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to compute the window distance between all pairs of windows W and Ws.
Consider the following pair of windows: Wy = ACTTCTAT (starting from
the second position of the first sequence) and Wy = AATTCTCT (starting
from the third position of the second sequence). The two vectors of frequencies
of 2-grams are:

| [AAAC AG AT CA CC CG CT GA GC GG GT TA TC TG TT)|

Wwiyjo 1 0 1 0 0 0 2 0 O 0 0 1 1 0 1
W, 1 0 0 1. 0 0 0 2 0 0 0 0 0 2 0 1

So d2(Wi,Wa) = /(0—1)2+(1—-0)2+ (1-0)2+(1—2)2=2.

We should note that this is a simplified definition; the more general defi-
nition allows one to consider an interval of gram lengths.

The d2 distance is not really a distance metric, since it violates the triangle
inequality. Consider the three sequences of aabb, abbc, and bbcc for W = 3
and w = 2. Then d2(aabb, abbc) = 0, d2(abbc, bbee) = 0 and d2(aabb, bbec) =
V/2; 50 d2(aabb, abbc) + d2(abbe, bbee) < d2(aabb, bbec).

3.3.5 Web Session Similarity

Web session sequences are sequences of URLs. Since each URL (see Figure B.3))
can be viewed as a sequence, we need to consider web session sequences as
nested sequences. So distance functions over web session sequences (which
are sequences of URLS) need to consider similarity between individual URLs
(representing web pages) and similarity between sequences of URLs. Reference
[118] considers a distance defined following such an approach.

On URL similarity, [T18] determines a similarity weight between two given
URLs in two steps. In step 1, the two URLs are compared to get the longest
common prefix. Here, each level in URLSs (a level is a nonempty string between
“/7) is viewed as a token. In step 2, let M be the length of the longer URL
between the two, where each level contributes 1 to the length. Then a weight
is given to each level of this longer URL: the last level is given the weight of 1,
the second to the last is given the weight of 2, etc. The similarity between the
two URLs is defined as the sum of the weight of the longest common prefix
divided by the sum of the total weights. Observe that, if the two pages are
totally different, i.e. the common prefix is the empty sequence, their similarity
is 0.0. If the two URLs are exactly the same, their similarity would be 1.0.

For example, consider the three URLs given in Figure URL#1 and
URL#2 are more similar to each other than URL#1 and URL#3 are. Sim-
ilarity between URL#1 and URL#2 is obvious: They are very similar pages
with a similar topic about the research work in the Data Mining Laboratory
of Wright State University. The similarity between URL#1 and URL#3 is
weaker, simply reflecting the fact that both pages come from the same server.

Using the approach discussed above on URL#1 and URL#2, the weights
for the tokens of current.html, datamine, labs, and www.cs.wright.eduare
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respectively 1 2, 3, and 4, and the similarity between URL#1 and URL#?2 is
% = 10 (The two URLs have equal length. So we can break the tie by
saying that URL#1 is the longer one.) For URL#1 and URL#3, the longer
URL is still URL#1 and so the Welghts for the tokens are as above, and the

similarity between the two URLs is m 10

URL#1: www.cs.wright.edu/labs/datamine/current.html
URL#2: www.cs.wright.edu/labs/datamine/publications.html
URL#3: www.cs.wright.edu/theses/

Fig. 3.3. Three URLs

On URL sequence similarity, URL sequence alignment can be performed
through dynamic programming, in order to find the best match between two
given URL sequences. The score of an alignment is the sum of the individual
weights of the web pages, plus insertion/deletion penalties.

3.4 Classification of Sequence Data

In this section we will discuss several popular classification methods, and their
applications to sequence classification problems. We will also briefly discuss
several metrics for classification evaluation.

3.4.1 Support Vector Machines

Support vector machines (SVMs) have been one of the most widely used
classifiers for sequence classification in recent years. In this section we present
the basics of SVM, followed by discussion on how SVM has been used for
sequence classification. More details on SVM can be found in [113] 12].

To use SVM for sequence classification, feature vectors are constructed
from sequences as input to SVMs. Classification for more than two classes
can be reduced to classification for two classetﬁ, so we discuss SVMs for two-
class classification below.

Roughly speaking, SVMs map input vectors to new vectors in a higher
dimensional space, where an optimal separating hyperplane (see Figure [3.4))
is sought. Points lying on one side of the separating hyperplane belong to

2 When more than two classes are present, a number of SVMs are built for the
application. T'wo approaches can be used: In the “one class against another class”
approach, for each pair of classes we build one SVM to discriminate the two
classes. In the “one class against all other classes” approach, for each class we
build one SVM to discriminate the class and the union of all other classes. Some
method is needed to determine the winning class from the classification results of
these classifiers.
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one of the two classes, and points lying on the other side belong to the other
class. Each side has an associated hyperplane parallel to the separating hy-
perplane, which contains some training data vectors and which are nearest to
the separating hyperplane. The separating hyperplane is chosen to maximize
the margin; the margin is defined as the distance between the two parallel
planes.

wx—b = +1
+ + wx—b =0
+ wx—b = -1

Fig. 3.4. The separating hyperplane and the two support vector hyperplanes of an
SVM. Points belong to either the “+” class or the “—” class.

We now briefly discuss the technical details of SVM. Suppose the train-
ing data is {(x1,¢1), ..., (Xn,¢n)}, where x; is a vector and ¢; is the class of
x;. The two classes are written as —1 and +1 to facilitate the expression of
optimization objectives in a numerical manner.

We first consider the linear SVM, where we assume that the training data
can be separated by a linear hyperplane. Then the separating hyperplane is
described by the following equation:

w-x—b=0.

The vector w is perpendicular to the separating hyperplane. The data vectors
from the two classes nearest to the separating hyperplane are respectively on
two parallel hyperplanes, which are described by the following equations:

w-x—b=+1,

w-x—b=-—1.

The data points on these two parallel hyperplanes are referred to as the sup-
port vectors. The distance between the two hyperplanes is %; this is the
margin which we want to maximize. The optimization can be done through
quadratic programming.

When the data vectors cannot be completely separated by a linear hy-
perplane, we aim to find a separating hyperplane to maximize the margin
and minimize the classification error (distance). This two factor optimization
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problem is converted to a one factor optimization problem through a linear
transformation.

The non-linear SVM is similar to the linear SVM, except that each dot
product of the form x - x’ in the quadratic programming conditions is re-
placed by a kernel function k(x,x’). The kernel trick has been used often
and offers significant computational advantages. Commonly used kernel func-

tions include polynomial (k(x,x’) = (x-x)% or k(x,x') = (x-x' + 1)¢

for some d), radial basis function (k(x,x’) = exp(—v||x — x'||?) for some
112

~v > 0), Gaussian radial basis function (k(x,x’) = exp(—%) and sig-

moid (k(x,x’) = tanh(kx - x" 4 ¢) for some k > 0 and ¢ < 0).

Applications of SVM for Sequence Classification

The subcellular location of a protein is closely correlated to the function of the
protein. A special location-based type of proteins, namely the outer membrane
proteins (or OMPs), are of primary research interest for antibiotic and vaccine
drug design purposes, as they may be on the surface of bacteria and so are
the most accessible targets to develop new drugs against. Several papers use
SVMs to predict the subcellular location of a protein or whether a protein is
outer membrane protein, based on the sequence of the protein.

e Reference [83] considered 12 subcellular locations in eukaryotic cells. Sev-
eral kernel functions (the simple linear kernel, the polynomial kernel, and
the RBF kernel) were used to build the SVMs, using five different types
of features. A SVM is built in one of two manners, either the one location
against another location manner, or the one location against all other lo-
cations manner. Several types of features were used, namely amino acids,
amino acid pairs, one-gapped amino acid pairs (allowing exactly one gap
between two amino acids), two-gapped amino acid pairs, and three-gapped
amino acid pairs. A data set of proteins with known locations was extracted
from the SWISS-PROT database for the experiments.

Reference [51] used SVM to predict whether a protein is outer membrane,
using gapped amino acid pairs as features.

e Reference [95] also used SVM to predict whether a protein is outer mem-
brane, using frequent subsequences as features. It also used the simple
linear kernel, the polynomial kernel, and the RBF kernel.

e Reference [100] used multi-kernel SVM for the problem of splice site identi-
fication. The main motivation is to produce interpretable SVM classifiers.
It achieves this goal by using many kernels, one for each position/length
pair. The SVMs can be used to identify the important kernels (e.g. posi-
tion/length pairs).

3.4.2 Artificial Neural Networks

We first provide some basic information on artificial neural networks (ANN).
ANNsSs are a classification method motivated by biological neural networks. An
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ANN can be viewed as a system of a large number of interconnected simple
components (the neurons/nodes). A neuron takes the output of some other
neurons or some original input to the network as input, and produces its own
output. Artificial neural networks can be divided into two major categories,
namely the feedforward networks and the feedback/recurrent networks. In the
feedforward category the neurons can be divided into layers and a neuron of a
given layer only takes the output of neurons at the previous layer as input. In
the feedback/recurrent category the networks can be viewed as an arbitrary
directed graph with loops. See reference [54] (a tutorial on ANN) for more
details.

We now discuss some studies that use ANN to classify sequence data.
Reference [123] used ANN for protein sequence family classification. Sequences
are mapped to vectors of k-gram frequencies and the vectors are used as input
to the ANN. Two methods were used to reduce the dimensionality of k-gram
frequency vectors: One reduces the number of letters by mapping amino acids
into equivalence groups (as discussed early), and the other uses the SVD
method to reduce the dimensionality.

Reference [72] used neural networks and expectation maximization to clas-
sify E. coli promoters. Given a sequence, an expectation maximization algo-
rithm is used to locate the -35 and -10 binding sites. Then the nucleotides of
17 positions around the -35 binding site, 11 positions around the -10 binding
site, and 7 positions around the transcription start site are used as feature
vector for the ANN. In the feature vector, each nucleotide is represented as 4
binary bits.

3.4.3 Other Methods

Reference [134] used Fisher’s discriminant algorithm [80] for protein cod-
ing gene recognition (in yeast). It represents DNA sequences using the so-
called z-curves (which are essentially the cumulative counts of each letter in
{4,C,G, T} for all sequence positions).

Reference [35] proposed the so-called “segment and combine” approach to
classify sequences. First, it builds a set of classifiers; each classifier is built
from a sample of subsequences randomly extracted from the sequences given
in the original training set. Then an ensemble classifier is built from this set
of classifiers.

3.4.4 Evaluation of Classifiers and Classification Algorithms

In this section we briefly discuss the evaluation of classifiers, and the eval-
uation of classification algorithms. There is a distinction between the two,
since a classification algorithm can be used to produce many classifiers, by
adjusting the parameters, of a style or approach.

The performance of a classifier is usually measured by classification accu-
racy, precision and recall. These measures are defined based on a matrix as
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shown in Table 3.1l The table assumes that there are two classes, referred to
as “Positive” and “Negative”.

Table 3.1. Confusion Matrix in Classification

|| |Actual Positive |Actual Negative ||

Classified as Positive |TP (true positive) |FP (false positive)
Classified as Negative|FN (false negative)| TN (true negative)

The measures of accuracy, precision and recall are defined as follows:

e Accuracy is defined by (TP +TN)/(TP + FP + FN + TN). Accuracy

measures the percentage of data from both classes which are correctly
classified.
Very often the two classes of data are not balanced. For example the
negative class is usually huge compared to the positive class. Moreover, the
costs of different types of classification errors are different. For example,
it may be a bigger mistake to classify a cancerous tissue as non-cancerous
than the other way around. In such cases, a weighted accuracy measure
can be defined.

e Precision of the positive class is defined by TP/(TP + FP). This is the
percentage of correctly classified Positive instances among the instances
which are classified Positive.

e Recall of the positive class is defined by TP/(TP + FN). This is the
percentage of correctly classified Positive instances among the instances
which are actual Positive.

For example, consider the case where Positive contains 100 instances and
Negative contains 1000. Suppose that, for a classifier f, we have TP = 50,
FP =100, FN = 50, and TN = 900. Then the accuracy is (900 + 50)/(50 +
100 + 50 + 900) = 900/1100 =~ 81.8%, the precision of the positive class
is 50/(50 + 100) = 50/150 ~ 33.3%, and the recall of the positive class is
50/(50 + 50) = 50/100 = 50%.

Classifier performance is usually carried out by k-fold cross validation: The
available data is randomly shuffled and divided into k£ parts. For each part,
a classifier is built by using the other £ — 1 parts as training data, and then
tested by using the given part as testing data. The average performance over
the k classifiers is considered to be the performance of the classifier.

It is common to use the area under the ROC (Receiver Operating Charac-
teristics) curve (AUC) to evaluate the quality of a classification methodology.
(Accuracy, precision and recall are measures to evaluate the quality of a clas-
sifier.) In the ROC curve one plots a curve over the two-dimensional plane
with T'P as the Y-axis and F'P as the X-axis; the curve is drawn by changing
some parameters to yield a range of classifiers with varying (T'P, F'P) pairs.
Classification methods with larger area under the curve are considered better.
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True positive rate —

1

(0]

False positive rate

Fig. 3.5. The AUC (area under the ROC curve) as a measure of the quality of a
classification algorithm.

3.5 Clustering Sequence Data

Clustering has been widely recognized as a powerful data mining approach.
The general goal of clustering is to identify groupings of a given set of objects
so that the objects in each group are highly similar to each other and objects
in different groups are highly dissimilar to each other. Such groups can capture
important phenomenon or concepts for the application under investigation.

In this section we describe several popular sequence clustering algorithms,
and briefly discuss the topic of cluster quality evaluation.

3.5.1 Popular Sequence Clustering Approaches

To cluster sequence data, it is necessary to select a suitable clustering al-
gorithm for the data at hand, to select an appropriate distance function,
and to address special characteristics of sequence data. Below we will present
several popular sequence clustering algorithms, including hierarchical algo-
rithms and graph-based algorithms!d These algorithms have been studied for
DNA /protein sequence clustering, and for web access sequence clustering.

One important characteristic of sequence data is that sequence similarity
can be the result of subsequence similarity in multiple sequence intervals. The
implication is that sequence similarity is not transitive, which can lead to
unwanted clustering results if not handled properly.

Hierarchical Clustering Algorithms

One of the popular clustering algorithms is the agglomerative hierarchical
clustering algorithm [57]. This is a merge-based hierarchical clustering algo-
rithm, which operates in a bottom-up manner. Figure gives the pseudo

3 Besides the two major classes of clustering algorithms discussed here, [99] consid-
ers the clustering of sequences using HMM. The paper tries to discover k clusters
of sequences, each described by an HMM (see Chapter M]). The whole dataset is
then described as a finite mixture of the kK HMMs.
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code. In contrast, there is also a divisive hierarchical clustering algorithm,
which operates in a top-down manner.

Input: a set {51, ..., Sn} of sequences and a distance function d between sequences;
Output: a hierarchy of clusters;
Method:
1: let C; = {S;} be a leaf, non-merged cluster for each 1 < i < n;
2:  repeat steps (3-5) until just one non-merged cluster remains
3: select a pair C; and C; of non-merged clusters such that
d(Cs, C5) = min{d(Cs, Ct) | Cs, Cy are different non-merged clusters};
// see below regarding ways to define d on clusters from d on sequences
4: let C; U Cj be a new cluster with C; and C; as children;
5: mark C; and C; as merged;
6: return the hierarchy of all clusters;

Fig. 3.6. The Agglomerative Hierarchical Clustering algorithm.

The hierarchy of clusters is usually shown as a dendrogram (tree). Fig-
ure [3.7] gives an example dendrogram.

o o

A B C D E

Fig. 3.7. A dendrogram for clustering 5 sequences. There are a total of 9 clus-
ters, including 5 single-sequence clusters. The edges show the parent-child relation-
ship between the clusters. For example, {A, B} and {D, E} are clusters merged
from single-sequence clusters, and {C, D, E'} is a parent cluster of clusters {C'} and
{D, E}.

Several issues must be addressed in order to use this algorithm.

(a) How to choose an appropriate distance function.

(b) How to get k clusters given a hierarchy of clusters for a given integer k?

(¢) How to define the distance between clusters, given a distance function on
individual sequences?

Regarding issue (a), we considered how to define distance functions earlier.
The selection decision may be made by considering domain knowledge.

Regarding issue (b), we note that one can get k clusters through a hori-
zontal cut through the hierarchy, removing the part of the hierarchy below the
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cut. For the hierarchy of clusters in Figure 3.7 one can get 2 clusters from the
two children of the root. In general, the sizes of the clusters and their quality
are factors that should be considered in determining where the horizontal cut
is.

We now turn to issue (c). There are several approaches to defining dis-
tance d(C, C") between two clusters C' and C’ from a distance function d on
sequences:

e In the single-linkage approach, d(C,C") is defined to be the smallest dis-
tance between pairs of sequences, where each pair contains one member of
cluster C' and one member of cluster C":

d(C, C/) = minch,S’ec/d(S, SI)

e In the complete-linkage approach, d(C,C") is defined to be the largest
distance between pairs of sequences, where each pair contains one member
of cluster C' and one member of cluster C’:

d(C, OI) = mamgec,slec/d(s, S/).

e In the average-linkage approach, d(C,C") is defined to be the average dis-
tance between pairs of sequences, where each pair contains one member of
cluster C' and one member of cluster C”:

d(O, C/) = avgch,Sfec/d(S, S/).

The single-linkage approach has been often used for sequence clustering. For
example, the d2_cluster algorithm [I3] uses the single-linkage Agglomerative
Hierarchical Clustering algorithm to cluster expressed sequence tagsi.

The single-linkage approach should be fairly robust in the sense that the
final clustering result is not affected by the orderinéa of the cluster mergers.
This property may imply that we can discover arbitrarily shaped clusters:
two sequences S and S’ will belong to a common cluster if there exists a list
of sequences S = 571,59, ..., Sm—1, Sm = S’ such that d(S;—1,5;) is relatively
small for each 7. In contrast, the final result of the complete-linkage approach
can be easily affected by the ordering of the mergers.

However, the single-linkage approach has challenges. First, the approach
may group the majority of sequences into a single large cluster. A second
challenge occurs when the distance function is determined by similarity of
subsequence segments and hence sequence similarity is not transitive (see
Figure B.8). This causes problems for the clustering of protein sequences,

4 An expressed sequence tag or EST is a short sub-sequence of a transcribed spliced
nucleotide sequence. ESTs are intended as a way to identify gene transcripts, and
are instrumental in gene discovery and gene sequence determination.

® Different orders are possible since ties can exist for selecting a pair C; and C; of
non-merged clusters in step 3 of the hierarchical clustering algorithm.
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where the aim is to identify protein families. As illustrated in Figure[3.8] some
proteins can belong to multiple domains. Such proteins can induce mergers of
two or more clusters (each corresponding to a domain) into one cluster (see
Figure [3.9). Reference [30] gives an algorithm to solve this problem, which in-
cludes a step to handle multi-domain sequences after single-linkage clustering.

S1
AAAAAAAAAAAA BBBBBB
S2
BBBBBB
S3
’ AAAAAAAAAAAA ‘

Fig. 3.8. Sequence similarity is not transitive: sequences S; and S» are similar
(sharing a common segment), and sequences S1 and S3 are also similar (sharing a
common segment), but sequences Sz and Ss are not similar.

C E

Fig. 3.9. Two domains in one cluster. A,B,C,D, and E are 5 sequences. A,B,
and C are similar by sharing a common pattern (a domain motif), and A,D, and
E are similar by sharing another common pattern (a domain motif). A is similar
to all of the other 4 sequences and hence all 5 sequences are in one cluster under
single-linkage clustering. But the five sequences do not share a common pattern.
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Graph based Clustering Algorithms

The clustering problem can be naturally cast as a graph optimization problem.
Many graph based clustering algorithms have been proposed. In this section
we first describe the general framework of graph-based clustering algorithms.
Then we discuss several representative variants of such algorithms.

The general framework of graph-based clustering algorithms is given in
Figure It involves two major parts. In the first part, a weighted graph is
constructed from the sequences. In the second part, the graph is segmented
into subgraphs which correspond to the clusters.

Input: a set {51, ..., Sn} of sequences and a distance function d between sequences;
Output: a clustering C1, ..., C)y, of the given sequences;
Method:
1:  build an edge-weighted graph G = (V, E,w) from {Si,..., S}, where
e V =1{51,...,Sn} is the set of nodes,
e [/ CV x V is the set of edges, and
e w is the weight function on the edges defined (for all (u,v) € E) by
w(u,v) = mat(y yepd(w,v") — d(u,v) (the similarity between v and v);
2:  find subgraphs Gi, ..., G, of G by maximizing total intra-subgraph edge weight
(or node similarity) and minimizing total inter-subgraph edge weight;
let C; be the nodes (sequences) in G; for each i;
4: return the clusters C1, ..., Cp;

w

Fig. 3.10. The Graph-based Clustering algorithm.

For building the weighted graph in graph-based clustering, various distance
functions on sequences such as those discussed in Section can be used.
In addition, sequence alignment algorithms such as BLAST [4] and Smith-
Waterman [98] can be used to derive similarity scores. Sometimes, edges with
very low similarity weight are ignored.

There are many variants of the graph-based clustering algorithm. They
usually differ on the optimization objective that they use.

e Several variants try to minimize the weights of the cross-over edges (u,v)
whose end nodes belong to different subgraphs (i.e. u occurs in G; and v
occurs in Gj and ¢ # j). Let w(u, v) denote the weight of an edge (u,v). For
each i, let V; be the set of nodes of G;. Let w(V;,V;) = Zuew,vew w(u,v),
and let ws = >, ;< w(Vi, Vj). Observe that w(V;,V;) is the sum of
weights for edges in V; x V;, and ws is the total weights of all edges that
connect different subgraphs. The objective is then to find G, ...,G,, so
that ws is as small as possible.

Reference [60] gives an algorithm for the case m = 2, which we call weighted
graph cut minimization (WGCM). WGCM starts by randomly dividing V'
into two sets, V7 and V5. Then it performs a number of passes until the
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move does not reduce ws. In each pass, it repeatedly checks if ws can be
reduced by moving one sequence from Vj to V5 or vice versa, and it picks
the move that maximizes the reduction. The reduction for moving v; € Vj
to V5 can be computed by

wVi, Vo) —w(Vi = {vi}, VaU{m}) = Y wlvr,ve) = Y w(vr,vy).

va€V2 viEVL

(The reduction for moving vy € V5 to V; is similar.) In each pass WGCM
moves each given node at most once, and the number of moves is chosen
to maximize the sum of the reductions of the moves.

e Several others try to maximize the density of edges in the subgraphs. Ref-
erence [47] uses the notion of edge-connectivity to find highly “coherent”
subgraphs. The graph is first converted to a normal graph — only edges
whose similarity weights are higher than a threshold are used. The edge-
connectivity k(G') of a graph G’ is the minimum number of edges whose
removal results in a disconnected graph. A graph G’ is called a highly
connected graph if k(G") > % edges, where n/ is the number of nodes
of G'. The paper proposes a so-called Highly Connected Subgraphs (HCS)
algorithm, which produces the clusters by finding the maximal highly con-
nected subgraphs of G.

e Reference [31] considers a Markov Cluster (MCL) algorithm to discover
good clusters from weighted similarity graphs. The algorithm uses ran-
dom walk probabilities to guide the search for natural sequence clusters,
based on the intuition that random walks should mostly start and end
within natural clusters and infrequently lead one from one natural cluster
to another natural cluster.

3.5.2 Quality Evaluation of Clustering Results

For clustering, two types of measures of cluster goodness or quality can be
used. One type of measures allows us to compare different sets of clusters with-
out reference to external knowledge and is called an internal quality measure.
This might be defined as the average pairwise similarity between elements
in common clusters. The other type of measures lets us evaluate how well
the clustering is working by comparing the groups produced by the clustering
techniques to known classes. This type of measure is called an external quality
measure. An example of external measures is the F-measure, which combines
the precision and recall ideas from information retrieval. The F-measure is
basically the harmonic mean of precision and recall:

2 x Precision * Recall

Precision + Recall

The last formula is the non-weighted version of F-measure. More details on
quality evaluation of clustering can be found in [102].
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Sequence Motifs: Identifying
and Characterizing Sequence Families

This chapter is concerned about sequence motifs. It discusses finding motifs
and using motifs in sequence analysis.

A motif is essentially a short distinctive sequence pattern shared by a num-
ber of related sequences. The distinctiveness of a motif is mainly reflected in
the over representation of the motif pattern at certain locations in the related
sequences and the under representation elsewhere (at other locations in the
related sequences and at all locations in other sequences). Motifs have been
mostly studied in biological sequence analysis applications. In such applica-
tions, motifs are believed to be the result of conservation during evolution; the
conservation is witnessed by the sharing of the motif by multiple sequences
in different individuals, perhaps from different species. Based on that belief,
motifs can have important biological functions/structures. This reasoning has
been experimentally verified many times.

Roughly speaking, the motif finding task is concerned with site-focused
identification and characterization of sequence families. It can be viewed as a
hybrid of clustering and classification, and is an iterative process. The identi-
fication of sequence families is based on distinctive characteristics of certain
short sequence windows; the short windows are identified by local alignment;
the local alignment involves some (or all) of the given sequences.

On the other hand, motif analysis is concerned with predicting whether
sequences match a certain motif, and the sequence position where the match
occurs. Two types of activities can happen here, one involving the scoring of a
sequence against a motif, and the other one involving explaining the sequence
in terms of the sequence of actions (more formally, states) when the motif
“processes” the sequence.

Various motif representations and associated algorithms have been re-
ported. In this chapter we will present some major motif representations.
While there have been many algorithms, most of them are instances of one
of three algorithmic approaches, namely dynamic programming, expectation
maximization, and Gibbs sampling.
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Section 1] gives the motivations for motif studies, and lists four general
motif analysis problems. Section discusses major motif representations,
together with the simpler algorithmic solutions to the motif finding and motif
analysis problems. Section [.3] presents the non-trivial representative algorith-
mic approaches to the motif finding and motif analysis problems. Section 4]
discusses related topics and future research problems.

4.1 Motivations and Problems

In this section we first provide some motivating motif examples from biological
applications. Then we define the concept of motif. Finally, we define four motif
analysis problems. The solutions to these problems will be considered in the
next two sections.

Definition 4.1. A motif is a short distinctive sequence pattern shared by mul-
tiple related sequences. [

The definition is not very precise. It is only intended to be used as a
guideline. The meaning will become clear from the examples given in the next
two sections.

4.1.1 Motivations

There are many applications for motifs. Generally speaking, whenever there
is a need to identify short distinctive sequence patterns, we have a potential
application for motif analysis. Typical applications include the following:

e The identification of boundary /join positions of special types of biological

objects represented as sequences. Examples of such objects include genes,
introns, exons, promoters, etc. It is of interest to know the starting/ending
sites of genes [71], to know the boundary points of introns and exons and
points for alternative splicing [97], and to know where the transcription
promoters are and where the transcription factor binding sites are [90].
Many more applications exist.
One possible reason why DNA /RNA motifs are short distinctive sequence
patterns is the following: Many biological activities are performed by
molecules such as transcription factors and RNA polymerase. The size
of such molecules limits the length of the DNA/RNA sequence they can
make contact with at once, which may imply that their associated sequence
patterns should be short. (It is also conceivable that such molecules cannot
have long term memories, another reason for motifs to be short.) More-
over, to conserve energy, they also need to be selective in when to perform
biological transformations/actions, which implies that their associated se-
quence pattern should be distinctive.
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The identification of proteins with certain distinctive topological struc-
tures or with certain binding properties or enzymatic activities. The de-
termination of the structure of a protein is a tedious process. One way
to get around this difficulty is to use resemblance of a protein with un-
known structure to a protein with a known structure, to help determine the
structure of the unknown protein [58| 50]. Many important resemblances
appear in the form of short sequence patterns. (One possible reason for
many patterns that determine protein structures to be short is that an
amino acid will only be able to be in contact, either physically or through
various attracting/repelling forces, with a limited number of other amino
acids.) The use of protein sequence patterns (or motifs) to determine the
“active sites” or “functional sites” of proteins is an essential tool of se-
quence analysis. Databases of such patterns have been created. One such
database is PROSITEE, which consists of documentation entries describing
various protein domains, families and functional sites as well as associated
patterns and profiles to identify them.

Very often motifs are conserved through the long history of evolution.

Many motifs are shared by various species; this fact has been often used in
locating motifs by cross-species comparison [78].

4.1.2 Four Motif Analysis Problems

The following are four main problems in the study of motifs:

1. The motif representation problem. The problem is to design various mo-

tif representations suitable for different application needs. Depending on
the task at hand, different types of motifs with various flexibility might
be wanted. For example, it makes biological sense that regulatory sites
should allow more freedom, whereas restriction sites should be more rigid
[104]. Moreover, an application may have a limitation on computation
power. One may want to have a simple motif representation if one has
less computation power, and to have a more powerful motif representa-
tion when more computation power is available. We will give five types of
motif representations below, together with some minor variants.

. The motif finding problem. In the most general forrrE7 we are given a

set D of sequences, and the goal is to build a motif model for some site
shared by some sequences from the given sequences in D. This is a very
challenging problem, since one needs to do several things: (a) partition D
into two subsets, where D; contains the members of the desired family and

! http://expasy.org/prosite/
2

In practice, a user may collect a set of sequences which are believed to contain
some important patterns for motif finding. For example, some would pick the
upstream promoter regions of a certain length of transcriptional start sites. Such
regions may still be very long, and they can contain zero, one or more occurrences
of a desired motif.
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D5 contains the non-members of the family; (b) identify a window (the
desired site) in each sequence of Dy (or equivalently, give a local alignment
of the sequences in D7); and (c) build the motif model from the result of
(b). The goodness of the motif will be evaluated, and the process may
need to be iterated if improvement is desired. There are more possibilities
for further complications, depending on, for example, whether a sequence
can have at most one occurrence of the motif, or it can have multiple
occurrences of the motif.

There are more specific and simpler variants of the problem. For example,
a user may indicate that all sequences of D contain matches of the motif,
or the user may have provided the local alignment of the sequences, or the
user may indicate that each sequence contains at most one occurrence of
the desired motif.

Recall that motifs are distinctive sequence patterns. Usually distinctive-
ness is indicated by having the patterns occur more frequently at the
site but infrequently elsewhere. Another approach is to compare the fre-
quency of the pattern at the site against a uniform background distri-
bution which might be estimated from all sequences of interest (e.g. all
sequences of the genome of a species). It should be noted that straight
frequency counting might be too simple minded; some kind of conditional
probability /frequency (relative to another motif/site) is likely needed in
practice.

Sequence scoring. Given a motif and a sequence, the problem is to compute
the score/probability of the sequence being generated by (or matching)
the motif. The score can be used to locate new occurrences of a motif.
The algorithms for this problem should also be able to identify the likely
positions of the occurrences.

Sequence explanation. Given a sequence and a motif with hidden states,
provide the most likely state path that produced the sequence. While the
previous problem is applicable to all motif representations, the current
problem is only applicable to motif models with hidden states. The most
likely sequence of the hidden states may reveal likely switching points,
in the input sequence, from regions of one property (class) to regions of
another property (class).

4.2 Motif Representations

In this section we present several major types of motif representations, from
simple to complex. Here we also present some simple training algorithms for
model building and for sequence scoring, but we leave the more complex al-
gorithms to the next section.



4.2 Motif Representations 71

The example given in Figure Bl about the —10 regiorﬁ of six E. coli
promoters [91], will be used to illustrate many concepts and techniques below.

...TACGAT...
...TATAAT...
...TATAAT...
...GATACT...
...TATGAT...
W TATGTT...

Fig. 4.1. Six Aligned DNA Sequences

4.2.1 Consensus Sequence

For a set of sequences over a sequence alphabet A, a consensus sequence is a
sequence over sets in 24 — {(}. A nonempty subset X of A is usually written
by enclosing the members of X in square brackets. For example, {A4,C} is
written as [AC]. The set X = A can be written as the wild card “.”. In
addition to sets in 2 — {()}, one can also include their complements in order
to simplify the consensus sequence. Other shortening notations can also be
used, e.g. “[ST](2)” is the shorthand for “[ST]|[ST]”. If a consensus sequence
only uses elements in A (or singleton sets in 24), then it is rigid in matching;
otherwise it is flexible in matching.

For DNA or protein sequences, the ITUPAC code (or TUPAC ambigu-
ity code) uses special symbols to represent some important subsets of the
DNA /protein alphabet. For example, R represents [AG], S represents [GC],
V represents [ACG], etc.

For the sequences in Figure [£.J] TATAAT is a rigid consensus sequence,
whereas TAT[AG].T (or TATR.T in IUPAC code) is a flexible one.

Consensus sequences can be viewed, constructed and used as special ex-
amples of position weight matrix discussed in the next subsection. So we will
leave the discussion on their construction and usage to the next subsection.

4.2.2 Position Weight Matrix (PWM)

Let A be an alphabet and w > 0 be a window width. A position weight matriz
(PWM), also called position specific weight matriz (PSWM) or position specific
scoring matriz (PSSM), is an |A| x w matrix M where M (z,p) is a number,
for each z € A and 1 < p < w. Each row of M corresponds to a letter in the
alphabet A, and each column corresponds to a position in the window of the

3 This region starts at the 10th position to the left of the transcription start site
(hence —10); the transcription start site is referred to as position +1 [22].
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motif. The number M (z,p) is usually proportional to the frequency of x at
position p, although it can also be influenced by other factors.

Table BTl is an example PWM. Here the values indicate the frequency of
letters for given positions.

Table 4.1. A 4 x 6 PWM for Figure (1]

A

o
—
o

o olw o olw
o= © ol= Ol

0
0
0
1

C
G
T

o
ol o o=

SN[SICN
o

A consensus sequence can be constructed from a PWM, by including the
symbols with high values for each position. For example, the consensus se-
quence TATAAT can be obtained from the PWM in Table [41] by includ-
ing the most frequent symbol for each position, and the consensus sequence
TAT[AG]AT can be obtained by including the symbols whose frequency is
above > 0.50 for each position.

Given a PWM M and a sequence S of length w, a similarity score
Score(M, S) can be defined as Score(M,S) = X M(p, S[p]). Given a se-
quence S longer than w and a position 7 < |S| —w+ 1 of S, we can compute a
similarity score for the window starting at 4. This score can be used to identify
positions of sequences as likely occurrences of the motif.

Ezample 4.2. For the PWM in Table L1l and the sequence S = TATGAT, we

have . . ’

For sequence S = GACAAC, we have

1 1 3 4 15
MS)=-4+1+-4+-+-4+0=—.
Score(M,S") 6+ +6+6+6+0 5
These scores indicate that S is more similar than S’ to the motif represented
by M. [

A PWM can also be visualized as sequence logos [94] in a graphical man-
ner. A logo consists of stacks of symbols, one stack for each position in the
PWM. The overall height of a stack indicates the sequence conservation at
that position, while the height of a symbol indicates the relative frequency of
the symbol at that position. In general, a sequence logo can provide a richer
and more precise description of, for example, a binding site, than a consensus
sequence. Figure shows the sequence logo for the PWM in Table 4.1
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Fig. 4.2. A sequence logo representation of the PWM in Table [4.1]
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We now turn to methods for computing a PWM from a given set of aligned
sequences. The case for unaligned sequences will be dealt with in Section [1.3.2]
using the Gibbs sampling algorithm.

Let A be an alphabet and w be a window size, and D = {S1,...,Sn}
be a set of N aligned sequences over A. Let a; be the first position of S;
in the aligned window. Let n(x,p) denote the number of occurrences of = at
position p of the window; i.e. n(z,p) is the number of 2’s among S;(a; + p),
...y Sn(any + p). The following are three possible methods for computing a
PWM. The third one allows us to include similarity between pairs of letters
in the definition, while the first two do not.

1. The direct frequency method: In this method, M (z,p) is defined to be the
relative frequency of x at position p of the window:
n(z,p)
M =——".
(x7p) N

Table [£]] is computed using this method from the six aligned DNA se-
quences in Figure [£1] In the M (x,p) matrix computed by this method,
each column is a probability distribution. Moreover the letters with the

highest value from the columns form the consensus sequence of the motif.
2. The log odds method: This method defines M (z,p) by

M(a,p) = log(Pr(z. )/bx) = log( "5 1)

where b, is the background frequency of x.

3. The frequency+similarity method: This method defines a PWM by com-
bining a frequency based weighting matrix W and a pairwise similarity
matrix Y between the letters in the alphabet. The weighting matrix W
can be the PWM defined by either of the two methods above. (It can also
include other information. For example, when several of the sequences are
very similar, one may want to decrease their importance by giving them
less weight.) An example of the matrix Y is Dayhofl’s mutational distance
matrix [23] between amino acids. For each letter 2z € A and position p,
M (z,p) is defined by

M(z,p) =Y Y(z,y) x W(y,p).
yeA
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The use of Y allows us to utilize similarity information among the letters
obtained outside of the given sequences.

Sometimes one may want to allow insertion/deletion in motif matching.
This can be done by adding another row to the PWM, to specify the inser-
tion/deletion penalty.

In the approaches discussed above, we assumed a zero probability for let-
ters not occurring in a position of the aligned sequences. This might not be
very desirable, especially when the training data is small or the the train-
ing data collection process is biased. To solve the problem, it is common to
use pseudocounts (or Dirichlet priors). For example, the frequency method
can be changed to the following: For each position p and each letter y, let
PC(y,p) = 0 be a number. Define M (x,p) as follows:

_ n(z,p) + PC(z,p)
Miwp) =57y >yea PCly,p)’

A simple way to define PC is to have PC(y,p) = 1 for all y and p. Another
way is to have PC(y,p) = b, * N, where b, is the (background) probability
of y occurring in other regions of the sequences or other sequences in the
application and N is the number of sequences in D.

Ezample 4.3. Table is the PWM computed using the direct frequency
method and the simple pseudocount of 1, from the six aligned DNA sequences
in Figure [£1l Observe that each column is still a probability distribution. m

Table 4.2. A 4 x 6 PWM for Figure [41] Using Pseudocounts

AllL 7 1 4 5 1

Clt 1 2 1 2 1

Gl2 1 1 4 1 1

4.2.3 Markov Chain Model

The motif models presented so far have no memory in the sense that the
positions in the motif are completely independent of each other. To capture the
dependence between positions, we need to add states. Several approaches are
possible. This section presents the Markov chain model, the simplest extension
to PWM.

In general, for a given data distribution and a given sequence S = s1...5,,
one can estimate the probability of S occurring in the distribution using the
following:



4.2 Motif Representations 75
Pr(S) = Pr(sm | $m-1--51)Pr(sm—1 | Sm—2.-81)...Pr(s2 | s1)Pr(s1).

The first order Markov property assumes that the next state only depends
on the present state but not the past states. With that assumption, we can
rewrite Pr(S) as follows:

Pr(S)= Pr(sm | $m-1)Pr(sm—-1| Sm—2)...Pr(s2 | s1)Pr(s1)
= Pr(s1)I™5Pr(s; | si—1).

Higher order Markov property assumes that the next state depends on the
present state plus some fixed number (k—1, where k is the order of the Markov
chain) of past states. Below we focus on the first-order Markov model.

A (first-order) Markov chain model is a 5-tuple (A, @, qo, nxt, emt) where

A is a finite set (the alphabet) of symbols (or letters);

Q is a finite set of states;

qo is the start state;

nxt is the transition mapping; it is a total function, assigning probabilities

to state pairs in @ x @, such that the following two conditions are satisfied:

(a) 0 < nzt(q,q') < 1 for all ¢,¢' € Q, and

(b) the set of transitions from any given state ¢ defines a probability dis-
tribution over the possible next states, i.e.

Z nwt(q,q) = 1;

qEQ

e emt is an emission function; it is a partial function from @ to A; ¢ is a
silent state if emt(q) is not defined, and ¢ is an emitting state otherwise.

For DNA /protein sequences, it is often the case that all non-start states
of the Markov models are precisely the letters in the alphabet. Hence the
emission function is essentially the identity function.

Example 4.4. We now give an example Markov chain model for the data in
Figure 1] The alphabet is {A, C, G, T}. The states are {qo, A, C, G, T}, with
qo being the start state. The emission function is emt(X) = X for X €
{A,C,G,T}. qo is a silent state. The transitions are given in Table For
brevity, all transitions with probability zero are omitted. The transitions can
also be given as a |@| X |Q| matrix.

n

First-order Markov chain models can be displayed as directed graphs,
where the edges have the transition probabilities as labels.

Given a sequence S = s189...8,, and a Markov chain model M, the score
of S against M is defined as

Score(S, M) = nat(qo, s1) "7 ' nat(si, siv1)-
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Table 4.3. The Transitions in nxzt

q|A |8 C|G|3
qu% CT%
EIE: GJA[2
qo| T |4 G|T|3
AlAlZ T|A[S
AlCl& T|G|&
AlT[Z T|T|+

Example 4.5. For the Markov model in Table and the sequence S =
TATGAT, we have

17 8 9 2 3 9
M = — —_— _— —_— - .
Seore(S, M) = e T* 3* 1 * 1% 13

For sequence S = GACAAC, we have

4 3 2 2 2
/ = — — —_— —_— —_—
Score(S’, M) 36*4*13*0*13*13

Pseudocounts can also be used to deal with letters with zero observed
frequencies, similarly to the case for PWM as discussed in the previous section.

To use Markov chain models to classify two classes, C; and Cs, of se-
quences, we would build two Markov chain models, one for each class. Given
a sequence S, we could use the scores of S against the two models to decide
the membership of S. Normally, the larger score should indicate the correct
class of S.

One might wonder why positions in the motif window are not part of the
states in the Markov chain models. In the next section we will see that posi-
tions can help, and they have been used in hidden Markov models (discussed
in Section A.2.4]).

For Markov chain models, there is a one-to-one correspondence between
the emitted (or observed) sequence and the sequence of states. This will no
longer be true for the hidden Markov models.

Interpolated Markov (IMM) Motif Models

In a kth-order Markov chain model, each future state depends on the current
state and the k—1 previous states. The training of such a model may require a
large training dataset, even for a moderate value of k. Since it is expensive to
collect a large amount of data, it is desirable to make the Markov model more
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flexible so that less training data is required. Instead of having each future
state depending on the current state and the k — 1 previous states, one can
let some future states depend on fewer states when there is not enough data
or when fewer states are enough to lead to good performance, and let other
future states still depend on k previous states. This is the idea of interpolated
Markov models [24].

4.2.4 Hidden Markov Model (HMM)

In regular Markov chain models discussed earlier, the states are directly visible
to the observer and there is a one-to-one correspondence between the sequence
of states and the sequence of emitted symbols. In a hidden Markov model
(HMM), these are no longer true: one only observes the emitted symbols but
can not observe the sequence of states. These differences arise because a hidden
Markov model can emit, in a given state, many symbols in a probabilistic
manner, instead of emitting at most one symbol as is the case for a Markov
chain model.

Hidden Markov models are useful for situations where certain sequences
can be generated from different (biologically) important states/classes. For
example, one may want to have one model to describe the probabilities of
symbol generation in two classes, where one class is near a site of interest (e.g.
gene start site) and another class is far away from that site. In contrast, using
Markov chain models one would need to build two or more models, one for
each class. By finding the most likely state sequence for a symbol sequence in
a given HMM, one can identify the points where biological important switches
occurred.

A hidden Markov model is a 6-tuple (A, Q, o, ¢e, nat, emt) where

A is a finite set (the alphabet) of symbols (or letters);

Q is a finite set of states;

qo is the start state and ¢, is the end state;

nxt is the transition mapping, which is a total function assigning proba-

bilities to state pairs in @ X @, satisfying the following two conditions:

(a) 0 < nzt(q,q') < 1 for all ¢,¢' € Q, and

(b) the set of transitions from any given state ¢ defines a probability dis-
tribution over the possible next states, i.e.

Z nwt(q,q) = 1;

qEQ

e emt is the emission mapping, which is a partial function assigning proba-
bilities to pairs in @ X A, satisfying the following two conditions:
(a) 0 < emt(q,x) < 1if it is defined, for all ¢ € Q and = € A,
(b) for any state ¢ such that emt(q,y) is defined for some y € A, it is the
case that emt(q, ) is defined for all x € A and that
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Z emt(q,z) = 1.

zeA

A state ¢ is a silent state if emt(g,x) is not defined for any = € A, and ¢
is an emitting state otherwise.

Example 4.6. A simple example is the following HMM M.,.qnsun. For brevity,
we omit the transition/emission entries with zero probabilities.

The alphabet consists of three observations: walk, shop, clean.
The states are: start, rainy, sunny, end.
The transition probabilities are:

nxt(start, rainy) = 0.6,
nat(start, sunny) = 0.4,
nat(rainy, rainy) = 0.6,
nat(rainy, sunny) = 0.3,
xt(rainy, end) = 0.1,
(
(
(

S

nat(sunny, rainy) = 0.4,
xt(sunny, sunny) = 0.5,
nat(sunny, end) = 0.1,
nxt(end, end) = 1.

3

e The emission probabilities are:

emt(rainy, walk) = 0.1,
emt(rainy, shop) = 0.6,
emt(rainy, clean) = 0.3,
emt(sunny, walk) = 0.3,
emt(sunny, shop) = 0.5,
emt(sunny, clean) = 0.2.

Since there is no one-to-one correspondence between the sequence of emit-
ted letters and the sequence of states, we will need to distinguish the two
sequences. In fact, two of the three main problems for HMM deal with the
determination of the optimal correspondence between the two sequences. The
three main problems are:

e Given an HMM model and a sequence, compute the probability that the
sequence is emitted by the HMM. This problem is solved by the forward-
backward procedure discussed in Section 31

e Given an HMM model and a sequence, find the most likely sequence of
hidden states that could have emitted the given sequence. This problem is
solved by the Viterbi algorithm discussed in Section [£.3.1]

e Given an output sequence or a set of such sequences, find the most likely
state transition and output probabilities. In other words, train the param-
eters of the HMM given a dataset of sequences. This problem is solved by
the Baum-Welch algorithm discussed in Section
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Reference [92] is a tutorial on hidden Markov models, containing discussion
on related topics and applications of HMM.

The construction of an HMM from training data can be costly, involving
both the search of the states, and the parameters for the transitions between
the states and the emission of symbols. The topology of an HMM, namely the
number of states and how they are linked through transitions, is referred to
as the architecture of the HMM. It may help by separating the choice of the
architecture and the determination of the parameters. This approach has been
taken many times; the next subsection provide more details on this approach.

Profile HMM Model

Special HMM architectures can limit the complexity, and hence speed up the
training time, of the HMM. Moreover, a simple structure implies that the
associated model has a small number of parameters and can be trained on
a small amount of data. Special HMM architectures may also lead to good
models if they fit the structure of the application nicely.

An example HMM architecture is profile HMM [62], which is well suited
as a motif representation for interesting sites in sequences. Profile HMM is
also called linear HMM [38].

The structure of the profile HMMs is suitable as a motif representation for
sites for two reasons: it has a linear structure to match that of a site, and it
attempts to reflect the process of evolution. The backbone of a profile HMM
is a sequence of states, called “match states,” which represent the canonical
sequence (rigid consensus sequence) for the family under consideration. Each
match state corresponds to one position in the canonical sequence. The series
of states is similar to a PWM (also called a profile), since each state contains a
frequency distribution across the entire alphabet. The linear topology implies
that, once a state has been traversed, it cannot be entered a second time.

To model the process of evolution, two additional types of states, insert
and delete states, are included in profile HMM. One delete state lies in parallel
with each match state and allows the match state to be skipped. Since delete
states do not emit characters, aligning a sequence to a delete state corresponds
to the sequence having a deletion at that position. Insert states with self-loops
are juxtaposed between match states, allowing one or more bases to be inserted
between two match states.

4.3 Representative Algorithms for Motif Problems

In this section we present several main algorithmic techniques for solving
several motif finding and motif analysis problems. These include dynamic
programming, Gibbs sampling, and expectation maximization. These tech-
niques will be used to solve the problems of sequence scoring given an HMM
model, sequence explanation (most likely state path) given an HMM model,
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motif finding for the PWM representation, and motif finding for the HMM
representation.

4.3.1 Dynamic Programming for Sequence Scoring
and Explanation with HMM

In this section we solve two problems, sequence scoring and sequence explana-
tion (most likely state path), using the dynamic programming technique. The
algorithms are respectively called the “Forward” algorithm and the “Viterbi”
algorithm. More detailed discussion on these algorithms can be found in many
tutorials on HMM, e.g. [92].

Dynamic programming is a very powerful algorithmic approach. It solves
a problem by decomposing the problem into many subproblems, solving the
subproblems one by one, and building the solution of the larger problems by
using the answers to smaller ones, until all of the problems are solved.

We first consider the sequence scoring problem. Suppose we are given an
HMM M = (A, Q, g, ge, nxt, emt) and a sequence S = s1...s,. Our goal is to
compute the probability of S being emitted by M. In brute force computation,
one will enumerate all possible state paths that can generate S, compute the
probability of S being generated by each such path, and then sum up those
probabilities. The brute force approach is too expensive.

In the dynamic programming approach, we consider the following small
subproblems. For each 1 < i < n and each state ¢ € @), we will compute the
probability of M being in state ¢ immediately after the time when the first
¢ symbols in the sequence (namely the prefix si...s;) have been emitted. Let
fq(i) denote that probability. For the original scoring problem, we want to
compute fq. (n). The dynamic programming algorithm is shown in Figure 3]

Input: an HMM M = (A, Q, o, ¢, nxt,emt) and a sequence S = $1...5n;

Output: the probability of S being generated by M;

Method:

let fq,(0) =1, and let f;(0) = 0 for each silent state g;

for i =1..n do
let for (i) = emt(q',5:) >, fq(i — 1) nxt(q,q’) for each emitting state ¢’;
let for (i) = 3, fq(i) nat(q,q’) for each silent state ¢';

return Pr(S) = fq.(n).

Fig. 4.3. The Forward algorithm.

Example 4.7. Let Myginsun be the HMM given in Example .6 and let S =
shop, walk. To find the probability for S, the algorithm will compute many
other probabilities. We will only show the computation of the subproblems
that contributed to the final answer.
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fstart(o) = 1;

Fraing(1) = 0.6 % 0.6 = 0.36,

Founmy(1) = 0.5 0.4 = 0.2,

Fraing(2) = 0.1 % (0.36 0.6 + 0.2 + 0.4) = 0.0296,
Founmy(2) = 0.3 % (0.36 % 0.3 + 0.2 % 0.5) = 0.0624,
fena(2) =0.0296 % 0.1 4 0.0624 % 0.1 = 0.0092.

So the probability of S being generated by M, qinsun is 0.0092.

For any integer n > 1, it can be shown that >, _, Pr(S, M) = 1. Since
there are a total of 9 paths of length 2, .S = shop, walk can not be the most
probable emitted sequence of length 2 for M;qinsun- n

Next we consider the sequence explanation problem. Suppose we are given
an HMM M = (A, Q, qo, qe, nat,emt) and a sequence S = s1...s,. Our goal
is to compute the most likely state path that generated S. In the dynamic
programming approach, let mpg(¢) denote the probability of the most probable
state path that ends in state ¢ after generating exactly the prefix s7...s;. To
answer the original problem, we want to get mpg, (n) and want to get the most
probable path. The dynamic programming algorithm computes the answers
to |@] x n subproblems. The algorithm is called the “Viterbi” algorithm and
its pseudo-code is given in Figure 4l The algorithm is very much like the
Forward algorithm, except that pointers ptr,(i) are used for retrieving the
most probable path at the end of the computation (step 11). It returns the
most probable path and its probability.

Input: an HMM M = (A, Q, qo, ¢, nxt,emt) and a sequence S = $1...8n;
Output: the most probable state path that generated S|
Method:
let mpg, (0) = 1, and let mpq(0) = 0 for each emitting state g;
fori=1..n do
for each emitting state ¢’
let mp, (i) = emt(q’, s;) maxq[mpq(i — 1) nwt(q, q')];
let ptry (i) = argmax, [mpq(i — 1) nxt(q, q')];
for each silent state ¢’
let mp, (i) = maxq[mpq(i) nzt(q,q")];
let ptry (i) = argmax, [mpq (i) nzt(q,q'));
9: let Pr(S,m) = max,[mpq(n) nzt(q,qe)];
10: let 7, = argmax, [mpg(n) nrt(q, ge)l;
11: fori=n—1..1let m = ptry, (3);
12: return 7 as the most probable state path and Pr(S,n) as its probability.

Fig. 4.4. The Viterbi algorithm.

Ezample 4.8. Let M, qinsun be the HMM given in Example 6] and let S =
shop, walk. To find the most probable path for S, the algorithm will compute
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many probabilities. We will only show the computation of the subproblems
that contributed to the final answer.
initialization:
mpstart(o) =1, mprainy(o) =0, mpsunny(o) =0,

¢ = 1, emitting states:
MPrainy (1) = emt(rainy, shop) * maxe[mpy(0) * nxt(q, rainy)]

=0.6%0.6 =0.36,
MPsunny (1) = emt(sunny, shop) * maxy[mpq(0) * nxt(q, sunny)]
—0.5%0.4 = 0.20,

ptrrainy(l) = ptrsunny(l) = StCLTt,

i = 1, silent states:
MPstart (1) = maxq[mpq(1l) * nat(q, start)] = 0,
MPenda(l) = maze[mpq(1) * nxt(g, end)] = 0.36 0.1 = 0.036,
ptrend(l) = Tainyv

1 = 2, emitting states:
MPrainy (2) = emt(rainy, walk) * maxy[mpq(1) * nxt(q, rainy)]
= 0.1 x maxz(0.36 % 0.6,0.20 x 0.4) = 0.0216,
MPsunny (2) = emt(sunny, walk) * maz,[mpq (1) * nxt(q, sunny)]
= 0.3 *x maz(0.36 %« 0.3,0.2 x 0.5) = 0.0324,
Ptraing (2) = Ptrounny (2) = rainy.

So the most probable path for generating S is start, rainy, sunny, and the
probability of the path is 0.0324. [

4.3.2 Gibbs Sampling for Constructing PWM-based Motif

This section has two goals. First we answer the following question:
How to construct a PWM motif from a set of (unaligned) sequences?

Second, we present the Gibbs sampler as a search algorithm for motif finding.
Specifically, we first present the Gibbs-sampling based algorithm for dy-
namically aligning multiple sequences and finding a PWM motif from them,
for a fairly restricted scenario where each sequence in the input contains ex-
actly one occurrence of the motif to be found. Then we discuss extensions for
finding motifs from general input sequences without those constraints.

We begin with some brief background information on Gibbs sampling.
More detailed discussion can be found in [I5]. Gibbs sampling is an algorithm
to generate a sequence of samples from the joint probability distribution of
N > 2 random variables. It is a special case of the Metropolis-Hastings algo-
rithm, and thus an example of a Markov chain Monte Carlo algorithm. The
sampling is performed over one particular random variable at a time, while
keeping the other random variables fixed. Sampling in the entire space is
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achieved by round-robin one-variable sampling (see the next paragraph) until
some stopping condition is reached. Given a function f, by approximating the
probability of the samples X to be proportional to f(X), we can use Gibbs
sampling to search for the point X where f(X) is maximal. The algorithms
that we will discuss below are examples of this idea.

To illustrate round-robin one-variable sampling of Gibbs sampling, sup-
pose we have three variables, (z1,z2,x3). Let Pr(x; | z;,zx) denote the con-
ditional probabilities. Let (x (O),xgo), (O))
variables at round zero. The superscript denotes the

be the initial values of the three
“round number.” For
round ¢ + 1 Gibbs sampler draws $§t+1) from the conditional distribution of
Pr(zy | 332 ,333 ) draws a:(tﬂ) from Pr(zo | x:(LtH),xét)), and draws a:gtﬂ)
from Pr(xs | azgtﬂ),a:gtﬂ)).

The first algorithm we discuss is from [63]. The input to the algorithm
is a set of NV sequences Si, ..., Sy over an alphabet A, and a fixed window
width W. The algorithm assumes that each sequence contains exactly one
occurrence of the motif to be found, and the motif contains no gap. The
algorithm maintains three evolving data structures. The first is the PWM
Q(i,7), a |A] x W matrix describing the motif to be found. The second is a
probabilistic description P(x) about the background frequencies of symbols of
A in regions not described by the motif. The third data structure is an array
Posit(i) that describes the sites of the motif in the sequences: Posit(i) is a
starting position of the motif in sequence S;.

The objective is to identify the most probable common pattern among the
N sequences. This pattern is obtained by locating the alignment that max-
imizes the ratio of the probability of the pattern to background probability.
The algorithmic process to achieve this is through many iterations of two steps
of the Gibbs sampler.

In this Gibbs-sampling based algorithm, we treat each sequence S; as a
random variable, and we treat each position in the sequence as a possible
sample. A sample is weighted by the ratio of its score in the motif @) to the
ratio of its score in the background model P. Since Gibbs sampling maximizes
(locally at least) the ratio, the final motif found should be fairly common in
the selected sites of the given sequences but not in other windows of the
sequences.

The algorithm can be stopped after a large number of iterations (e.g. 500
or 1000). Since the computation is non-deterministic, it is advisable to run
the algorithm multiple times.

Several extensions to the above algorithm have been reported, including
some reported in [63]. In particular, reference [69] considers the following
extensions:

4 When drawing samples from a distribution, the probability of a particular value
v being drawn is proportional to the probability of v in the given distribution.
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Input: a set of N sequences Si, ..., Sy over A, and a window width W;
Assumptions: each sequence contains one occurrence of the motif to be found;
pseudocounts b, (z € A) are also given (with 1 as default values);
Output: a PWM describing a motif for the N sequences;
Method:
1: Initialize Posit by choosing a random starting position for each sequence S;;
2: Repeat the Predictive Update and Sampling steps:
Predictive Update Step:

3: one of the N sequences, S., is chosen at random (or in round-robin fashion);
: update Q and P as follows:
5: let Q(x,j) = if‘_jlt_b;7 where ¢;; (z € A, 1 < j < W) is the count of
x in the multi-set {S;(Posit(i) 4+ j) | i # 2z} and B =3, ba;
6: let P(x) be =, where 7, is the number of occurrences of x in non-motif

positions (namely positions j of S; such that ¢ # z and [j < P(i) or
j = P(i) + W]) of the N — 1 sequences and ¢ is the total number of
non-motif positions;
Sampling Step:
7 for each position k (1 < k < |S.| —W +1) of S, let A(k) = 22%22:;7
where Scoreg(k) is the probability of generating S (k)...S.(k+ W — 1)
by @ and Scorep(k) is that of generating S.(k)...S.(k + W — 1) by P;
8: randomly select one ko based on the weighting A(k) for all k, and let
Posit(z) = ko;

Fig. 4.5. The Gibbs-Sampling PWM Finding algorithm.

e It considers the situation where some sequences in the input may have
no copies of a motif while others may have multiple copies. This is an
important relaxation, since the target family of sequences characterized
by the motif will have to be discovered, together with the local alignment
and the motif.

e It also studies how to find motifs which are located in two or more blocks
(which can be separated by gaps), and to find palindromic motifs.

e To better capture the characteristics of local sequence environment, a high-
order Markov model for the background is adopted (which looks at suc-
cessive duplet or triplet of symbols at a time).

4.3.3 Expectation Maximization for Building HMM

In this section we present the expectation maximization technique, for the
problem of “How to build an HMM from a set of unaligned training se-
quences?” More detailed discussion on this algorithm can be found in many
tutorials on HMM, e.g. [92].

The construction of HMM from given sequences is made harder because
the states are hidden. The hidden states make the counting of state transitions
and of symbol emissions difficult. In the expectation maximization approach,
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we get these counts by computing their expected values (defined as the prob-
abilistic average of their counts over all possible state paths).

The expectation maximization based algorithm is called the Baum-Welch
algorithm. It is also called the Forward-Backward algorithm, because it com-
bines both the Forward algorithm and the Backward algorithm (the latter is a
dual of the former). The main steps of the algorithm are given in Figure
We discuss each of these steps below.

Input: a set D of sequences over an alphabet A;
Output: an HMM;

Method:

1: initialize the parameters of the HMM;

2: repeat the following two steps until convergence

3: compute the expected number of occurrences of each state transition
and the expected number of occurrences of each symbol emission;
4: adjust the parameters to maximize the likelihood of these expected values;

Fig. 4.6. The Baum-Welch algorithm.

The initialization step will need to determine the number of states, and the
transition and emission probabilities. One needs to fix the desired number of
states. The transition and emission probabilities can be initialized randomly.

In the expectation step (step 3), we need to compute, for each sequence
S = s1...8,, in D, the probability of the ith symbol being produced by state g

in some state path: Pr(g,i | S). By definition, Pr(g,i | S) = %(,2)5). Now,

Pr(q,i,S) = Pr(s1...8;, state = q)Pr(s;y1...5, | state = q),

where Pr(s;...s;, state = ¢) is the probability that the HMM is at state ¢
after the prefix s;...s; has been emitted, and Pr(s;;+1...s, | state = q) is the
probability that the suffix s;11...s, is emitted after the HMM is at state q.

Observe that Pr(si...s;, state = q) is precisely fq(¢) defined earlier and
can be produced by the Forward algorithm. We define b, (i) = Pr(sit+1...5n |
state = g¢), which can be computed by the Backward algorithm given in
Figure [47]

Using fq(2) and by(¢), we can rewrite Pr(g,i | S) as

Pr(q,i,5) _ fa()bq(9)
Pr(S) Pr(S) -

Pr(g,i|5) =

We can now estimate the expected numbers for transitions and emissions.
Let ¢(q, s) denote the expected number of times symbol s is emitted at state
q, and let ¢(q,¢’) denote the expected number of times the transition from
state ¢ to ¢’ occur in “processing” S. Then
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Input: an HMM M = (A, Q, qo, ¢e, nxt,emt) and an emitted sequence S = s1...5n;
Output: the probabilities by (4);
Method:
let bg(n) = naxt(q, ge) for states ¢ with a transition to the end state ge;
2: fori=mn.1do
let bq/(i) = Zq is emitting state emt(q, si+1) bg(i +1) nl’t(q/,q)
+ Zq is stlent state b ( ) ’n’xt(qu q)?
4:  return] the set of probabilities {b,(i) | ¢ € Q,1 < i < n}.

—_

@

Fig. 4.7. The Backward algorithm.

ZPT‘ Z fa(i)

SeD S[z] s

)= e O Salmatla et Sli+ )b+ 1)

SeD ( 1<i<|S|

if ¢’ is an emitting state, and

a0.0) =) 5o Z fa(inat(q, ¢ )by (i + 1)

SED 1< <|S|

if ¢’ is a silent state.
In the expectation step (step 4), we use the expected numbers to derive
the maximum likelihood estimators:

emt(Qa S) = %7

N L‘Jl)
nxt(q, q ) - Zq,, c(q, q”)'

Pseudocounts can also be used to avoid zero probabilities.

The maximum likelihood estimators are parameter values in a model under
consideration that optimize the likelihood that the model produced the data.
That is, we look for solutions to the following expression: argmax, Pr(D | \).

The Baum-Welch algorithm will find locally optimal parameters. It is not
guaranteed to find the globally optimal solution. Luckily, for many situations,
the locally optimal solutions can produce fairly satisfactory HMM models.

4.4 Discussion

It is of interest to compare two motifs to see how similar they are. The prob-
lem can be cast as the search of the optimal alignment of two motifs. This
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problem was considered for PWM in [26]. The paper considered various scor-
ing functions using similarity measures between two score vectors over a given
alphabet, including dot product, averaging, Kullback-Leibler divergence, sym-
metrized entropy, Jensen-Shannon divergence, Euclidean distance, Pearson
correlation, etc.

We note that the algorithms discussed in this chapter only find one or
several motifs of a given model from a given dataset. One research question
is the following: Are there efficient algorithms for finding all possible motifs
of a given model from a given dataset, for given thresholds?

For general data, there have also been studies similar to the topic of this
chapter, where data clustering is combined with the construction of models
of the clusters. Examples include conceptual clustering [79] [32] and succinct
and discriminative description of clustering [16].



5

Mining Partial Orders from Sequences

A major type of information to be discovered from sequence data mining
comes from finding the ordering information hidden in the data. In Chapter[2],
we illustrated sequential pattern mining which finds the common subsequences
shared by many sequences in question. However, sequential patterns may not
be sufficient in disclosing the ordering information in some applications.

Ezxample 5.1. Suppose the students in a part-time technical certificate pro-
gram need to take the six courses in Table Bl A student takes only one
course at a time.

|Course-id| Course title |
PG Programming
DS Data Structures
SE Software Engineering
DB Database Management Systems
IR Information Retrieval
DM Data Mining

Table 5.1. The set of courses in Example [5.11

Let us analyze the students’ sequences of taking the courses in Table
to investigate whether there are some orders which students follow.

Finding the frequent patterns may help to capture the possible “tem-
plates” of students’ course taking. Naturally, we may try mining sequential
patterns. Let the minimum support threshold min_sup = 3. The following
four sequences are sequential patterns since they are subsequences of three
sequences, 1, 2 and 4 in the database.

PG — DS — DB — IR;
PG — DS — DB — DM;
PG — SE — DB — IR;
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[Student-id] Course sequence |
1 PG — DS — SE — DB — IR — DM
2 PG — SE — DS — DB — IR — DM
3 DS — PG — DM — IR — SE

4 PG — DS — SE — DB — DM — IR

Table 5.2. The sequences of taking courses.

PG — SE — DB — DM
However, the sequential patterns cannot completely capture the ordering
shared by students 1, 2 and 4. It is easy to see that the ordering shared by
these three students is the partial order R shown in Figure 511

Programming (PG)

Data Structures (DS) Software Engineering (SE)

\/

Databases (DB)

/\

Information Retrieval (IR) Data Mining (DM)

Fig. 5.1. A frequent partial order R in Example 5.1l

We can make two interesting observations. First, the partial order R sum-
marizes the four sequential patterns — the four sequential patterns are paths
in R. Second, the partial order R provides more information about the order-
ing than the sequential patterns. For example, R indicates that some students
often take Software Engineering and Data Structures in any order, but those
two courses are taken before Databases. This may reflect that Data Struc-
tures and Software Engineering may be the prerequisites of Databases. Such
information is not presented in the sequential patterns explicitly.

Partial order R is shared by a good number of students and is meaningful
in the application. For example, after a student finishes the Programming
course, a program advisor may provide the students more information on Data
Structures and Software Engineering. However, at this point, the information
about Databases is not needed yet.

This example motivates the idea of using frequent partial orders to ef-
fectively summarize sequential patterns and provide more general and more
concise ordering information. n

In this chapter, we discuss how to discover partial orders from sequence
data. We introduce two types of methods. First, we discuss a method to mine
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frequent closed partial orders from strings. Second, we discuss how to find the
best partial order that is shared by the majority in a set of sequences.

5.1 Mining Frequent Closed Partial Orders

Let us first look at the problem of finding frequent partial orders in a large
set of strings.

5.1.1 Problem Definition

A partial order is a binary relation that is reflexive, antisymmetric, and tran-
sitive. A total order (also called linear order) is a partial order R such that
for any two items x and y, if x # y then either R(x,y) or R(y,x) holds.

A partial order R can be expressed as a directed acyclic graph (DAG for
short): the items are the vertices in the graph and  — y is an edge if and
only if (z,y) € R and x # y. We also write an edge © — y as (z,y) or zy. For
example, Figure [£.2(a) shows a partial order R, which has 13 edges.

b c b/\c
N
e f e/d\f

(a) A partial order (b) The transitive reduction

Fig. 5.2. A partial order and its transitive reduction.

Since a partial order is transitive, some edges can be derived from the
others and thus are redundant. For example, in Figure 5:2(a), edge a — d is
redundant given edges a — b and b — d. Generally, an edge © — y is redundant
if there is a path from x to y that does not contain the edge. For a partial
order R, the transitive reduction of R can be drawn in a Hasse diagram: for
(z,y) € Rand x # y, x is positioned higher than y; edge x — y is drawn if and
only if the edge is not redundant. Figure[5.2[(b) shows the transitive reduction
of the same partial order R in Figure[5.2)a). The transitive reduction has only
6 edges. For an order R, the transitive reduction may have much fewer edges.

In this chapter, we draw a partial order in a Hasse diagram, that is, its
transitive reduction, and omit the isolated vertices. For example, Figure
shows four partial orders Ry, Rs, R3 and R4, and R; is further a total order.

Let V be a set of items, which serves as the domain of our string database.
A string defines a global order on a subset of V. Here, we focus on strings
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R R2 R3 R4
b b/ic\\d b ¢ c/\
Y Y
IR
e

f

Fig. 5.3. Four orders R1 D R2 D R3 D Ra.

instead of general sequences, and assume that each item appears in a string
at most once, but not necessarily every item appears in a string.

A string can be written as s = x1 - - - x;, where x1, ..., z; € V. [ is called the
length of string s, i.e., len(s) = . For strings s = z1---x; and 8’ = y1 -+ - Ym,
s is called a super-string of s and s" a sub-string of s if (1) m < I and (2)
there exist integers 1 <y < -+ < iy, <[ such that z;;, =y; (1 <j<m). We
also say s contains s’. For a string database SDB, the support of a string s,
denoted by sup(s), is the number of strings in SDB that are super-strings of
s.

The total order defined by string s can be written in the transitive closure
of s, denoted by C(s) = {(zi,z;)|1 < i < j < l}. Please note that, in the
transitive closure, we omit the trivial pairs (z;, ;). For example, for string
s = abed, len(s) = 4. The transitive closure is C(s) = {(a,b), (a,c), (a,d),
(b,c), (b,d), (c,d)}. Here, we omit the trivial pairs (a,a), (b,b), (c,c), and
(d,d).

The order containment relation is defined as, for two partial orders R; and
R, if Ry C Rs, then R; is said to be weaker than Ry and Ry is stronger than
R;. By intuition, a partially ordered set (or poset for short) satisfying Ry will
also satisfy R;. For example, in Figure[5.3] R4 C R3 C Ry C R;. Please note
that R4 covers fewer items than the other three partial orders. Trivially, we
can add the missing items into the DAG as isolated vertices so that every
DAG covers the same set of items. To keep the DAG simple and easy to read,
we omit such isolated items.

Frequent Closed Partial Orders (FCPO)

A string database SDB is a multiset of strings. For a partial order R, a string s
is said to support R if R C C(s). The support of R in SDB, denoted by sup(R),
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is the number of strings in SDB that support R. Given a minimum support
threshold min_sup, a partial order R is called frequent if sup(R) > min_sup.

Following the related definitions and the order containment relation, we
have the following result.

Property 5.2 (Anti-monotonicity of frequent partial orders). For a string
database SDB and partial orders R and R’ such that R’ C R, it is the case
that sup(R') > sup(R). Therefore, if R is frequent, then R’ is also frequent.

n

To avoid the triviality, instead of reporting all frequent partial orders, we
can mine the representative ones only.

Ezample 5.3 (Frequent closed partial orders). Let us consider string database
DB in Table 5.2l again. The four sequential patterns discussed in Example [5.1]
can be regarded as frequent partial orders which are supported by strings 1,
2 and 4. As discussed before, given that the partial order R in Figure [5.1]is
also supported by strings 1, 2 and 4, the four sequential patterns as frequent
partial orders are redundant.

There does not exist another partial order R’ such that R’ is stronger than
R in Figure[5.Iland is also supported by strings 1, 2 and 4. In other words, R
is the strongest one among all frequent partial orders supported by strings 1,
2 and 4. Thus, the partial order R is not redundant and can be used as the
representative of the frequent partial orders supported by strings 1, 2 and 4.
Technically, R is a frequent closed partial order. [

A partial order R is closed in a string database SDB if there exists no
partial order R’ O R such that sup(R) = sup(R'). A partial order R is a
frequent closed partial order if it is both frequent and closed.

Problem Definition. The problem of mining frequent closed partial orders
from strings is to find the complete set of frequent closed partial orders in
a given string database SDB with respect to a minimum support threshold
Min_sup. [ ]

Various Types of Frequent Patterns from Strings

For a string database SDB and a minimum support threshold min_sup, in
addition to frequent closed partial orders, we can mine some other types of
frequent patterns as follows.

Frequent itemsets [2] and frequent closed itemsets [8])] . If the ordering
information in a string is ignored, a string can be treated as a set of items.
For a set of items X C I, sup(X) is the number of strings in SDB in which
X appears. X is a frequent itemset if sup(X) > min_sup. A frequent itemset
X is a frequent closed itemset if there exists no X’ D X such that sup(X) =
sup(X").
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Sequential patterns [3] and closed sequential patterns [125)]. For string s,
sup(s) is the number of strings in SDB which contain s as a substring. s is a
sequential pattern if sup(s) = min_sup. In other words, a sequential pattern is
a frequent total order on a subset of items. A sequential pattern s is a closed
sequential pattern if there exists no proper super-sequence s’ of s such that
sup(s’) = sup(s).

Graph patterns [53] and closed graph patterns [12])]. Since a string defines
a total order, its transitive closure can be viewed as a DAG. For a DAG G,
sup(G) is the number of graphs in which G is an embedded subgraph. G
is a frequent graph pattern if sup(G) > min_sup. A frequent graph pattern
G is a frequent closed graph pattern if there exists no graph G’ such that
sup(G) = sup(G’) and G is an embedded subgraph of G’.

Then, what are the relationships among the above types of frequent pat-
terns? We have the following results based on the related definitions.

Corollary 5.4 (FPO, frequent itemsets and sequential patterns). The
set of items in a frequent partial order is a frequent itemset. Moreover, if R
is a frequent partial order, then, every path s in R is a sequential pattern. m

In a directed acyclic graph (DAG), a vertex v is a sink if no edge leaves v.
A vertex v is a source if no edge enters v. The relationships among frequent
closed partial orders, closed sequential patterns and transitive closure graph
patterns are described in the following theorems. We leave the proof to the
interested readers as an exercise.

Theorem 5.5 (FCPO and closed sequential patterns). Let R be a fre-
quent closed partial order, and si,...,S, be all the paths in R’s transitive
closure graph such that each path is from a source to a sink. Then, a string s
supports R if and only if it simultaneously supports s1, ..., Sk. [

Theorem 5.6 (CPO and transitive closure graph patterns). A partial
order R is a frequent (closed) partial order in a string database if and only if it
is a frequent (closed) graph pattern in the corresponding database of transitive
closures of strings. [

5.1.2 How Is Frequent Closed Partial Order Mining Different from
Other Data Mining Tasks?

Sequential Pattern Mining

As sequence data is available in many applications, mining sequence data has
been investigated extensively. There are intensive studies on mining sequential
patterns, as described in Chapter[2l Several efficient algorithms were proposed,
such as GSP [I01], PrefixSpan [88], SPADE [132], SPAM [5], and DISC [I9].
There can be many sequential patterns. To improve the effectiveness and
remove the redundant sequential patterns, closed sequential patterns can be
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mined [125], [114] 109]. Another approach to improve the effectiveness is to
specify constraints. In [34] [89], various constraints on sequential patterns were
investigated.

In [76], Mannila et al. considered mining frequent episodes from event
sequences (basically, strings). In principle, an episode can be any partial order.
However, due to the computational complexity consideration, algorithms on
only series and parallel episodes were given. An episode is parallel if the partial
order is trivial (i.e., z £ y for all © # y). An episode is series if the partial
order is a total order (i.e., for any = and y, either z < y or y < ). It coincides
with sequential pattern mining in general.

As illustrated in Example 0.1l mining frequent partial orders is a general-
ization of mining sequential patterns.

Mining Partial Orders

Recently, two interesting studies investigated the problem of mining a small set
of partial orders globally fitting data best [74, B7]. Particularly, [74] addressed
sequence data. However, very different from the problem studied here, [74]
tried to find one or a (small) set of partial orders that fit the whole data set
as well as possible, which is an optimization problem. An implicit assumption
is that the whole data set somehow follows a global order. We will discuss the
global order mining problem in Section

Moreover, [T, T12] studied the problem of reconstructing a workflow model
from a set of executions of the model, such as records in a log file. In process
model mining, it is also assumed that a global workflow template exists and
the mining wants to reconstruct the template as much as possible from the
executions of the template. The assumption of a global template is feasible
and useful in some applications, such as scheduling jobs and students taking
courses.

For some other applications, such as the DNA microarray data analysis
and network packet routing, there is usually no non-trivial order that can be
expected globally. This chapter addresses such situations. That is, we want
to find the partial orders that are frequent in a database, but not necessarily
dominate the database. Some partial orders found may even conflict with each
other.

There is another important difference between the work [74] and the prob-
lem discussed in this chapter. In [74], due to the complexity consideration,
only series-parallel orders [110] are considered, whose definition is recalled as
follows.

The minimal series parallel (MSP) DAG is defined as follows.

1. The DAG having a single vertex and no edges is MSP;

2. If G = (W1, Eq) and Gy = (Va, Es) are two MSP DAGs, so is either of
the DAGs constructed by the following operations.
a) Parallel composition: G, = (V1 U Va, By U Ey);
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b) Series composition: Gs = (V1 U Vs, E1 U Es U (N7 X R3)), where Ny is
the set of sinks of GG; and Rs is the set of sources of Gs.

A partial order can be represented as a DAG. A partial order is a series
parallel order if the transitive reduction of its DAG is an MSP DAG.

Intuitively, a series parallel order is formed by assembling objects using
parallelism and serialism. An important property is that a series parallel order
can be represented in a binary decomposition tree [I10]. Then, many search
problems can be solved efficiently by dynamic programming.

In [74], Mannila and Meek tried to find series parallel orders that globally
fit a data set as well as possible. However, for mining frequent partial orders,
series parallel orders may not be sufficient, since they cannot always capture
all the partial orders shared by sequences.

Ezample 5.7 (Dimension 2 non-series parallel order). Consider two strings
abde and dacb. A partial order R shared by them is shown in Figure B4l
Since R is exactly the forbidden subgraph of MSP DAG [I10], R is not series
parallel. In other words, only using the series parallel orders cannot cover all
frequent partial orders. [

b c
Fig. 5.4. The frequent partial order R shared by abdc and dacb.

For an order R, the dimensionality is defined as the minimum number of
total orders whose intersection is R. It is shown [II0] that any series parallel
order is the intersection of two total orders, that is, the dimensionality of
any series parallel order is 2. For partial orders that are frequent in multiple
sequences (i.e., they are the intersection of the corresponding total or partial
orders), the dimensionality is likely more than two. In such cases, the frequent
partial orders may not be series parallel.

We can find non-series parallel orders that are frequent in real data sets.
Figure B8 presents some examples (except for Figure [.5(b)). Such non-series
parallel orders cannot be identified by any previous methods.

There are several interesting studies on applications of ordering informa-
tion. For example, to discover local structures in gene expression data, Ben-
Dor et al. [§] looked for local patterns that manifest themselves simultane-
ously on a subset G of genes and a subset T' of experiments. Specifically, they
searched for order-preserving submatrices (OPSMs), in which the expression
levels of all genes induce the same linear ordering (i.e., total order on a subset)
of the experiments. They showed that the OPSM search problem is NP-hard.
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S1  S3 S4 S19 566 570
S20 M
2 S14  Si5 \ S12 577 573 591
s7 Sl4 \s 587 594
S8 S4
(a) A pattern in data set (b) A pattern in data set ©) A pattern m data set
Yeast (support=80) BreastCancer (support=224) Gazelle (support=10)
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G NP S Y _ «
(d) A pattern in data set Snake A D G N P S \" Y
(support=107) (e) Another pattern in data set Snake (support=80).

Fig. 5.5. Some frequent closed partial orders found in real data sets.

They defined a probabilistic model in which an OPSM is hidden within an
otherwise random matrix. Guided by this model, they developed an efficient
algorithm to find hidden OPSMs in a random matrix. Please note that their
method cannot find the complete set of linear orders. Instead, our methods
here find the complete set. In [68], Liu and Wang proposed a sequential pat-
tern mining method to find the complete set of linear orders, i.e., substrings.
However, their approach is not concerned with partial orders in general.

5.1.3 TranClose: A Rudimentary Method

The relationship between frequent closed partial orders and other types of fre-
quent patterns from string databases (Section [B.IT]) suggests some rudimen-
tary methods to mine frequent closed partial orders by reducing the problem
to mining other types of frequent patterns. For example, a naive 3-step method
is as follows.

First, we mine the complete set of closed sequential patterns. Then, we
enumerate the combinations of closed sequential patterns. For a set of closed
sequential patterns sq, ..., sy, let R be a partial order generated as follows.
(z,y) € R if and only if (1) x # y; (2) there exists a sequential pattern s;
(1 <4 < n) such that o appears before y in s;; and (3) y never appears before
x in any sequential pattern s; (1 < j < n). If R # () then a closed partial order
is identified. Last, we check the support of the closed partial orders identified
in the previous step, and remove all redundant frequent closed partial orders.
That is, a frequent closed partial order should be output only once.

However, such a naive algorithm is far from efficient. First, mining the com-
plete set of closed sequential patterns is non-trivial. Second, there often exist
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a large number of closed sequential patterns from large string databases. Last,
enumerating the combinations of closed sequential patterns and removing re-
dundant frequent closed partial orders in the last step can be very expensive.

Here, we describe TranClose, a rudimentary method that is more efficient
than the naive method.

As shown in Section .11} the problem of mining frequent closed partial
orders can be reduced to mining frequent closed graph patterns from the
transitive closure DAGs of the strings. However, mining graph patterns can
be very costly, since the bottleneck, many isomorphism tests to determine
whether a graph is a subgraph in another graph, can be very expensive [124].

To tackle the problem, we can further reduce the problem to mining fre-
quent closed itemsets. That is, every transitive closure DAG can be uniquely
represented as the set of edges in the DAG. Then, mining frequent closed
graph patterns in the DAG database can be accomplished by mining frequent
closed edge-sets in the transformed transaction database, as illustrated in the
following example.

Ezample 5.8 (TranClose). Consider a string database SDB as shown in the
first two columns of Table 5.3l Suppose the minimum support threshold is 2.

[Sid] String | Transitive closure C(s) |
1 |abedef|ab, ac, ad,ae, af, be, bd, be,bf, cd, ce,cf,de,df, ef
2 | acbde ac, ab, ad, ae, cb, cd, ce, bd, be, de
3 | dabce da,db,dc, de, ab, ac, ae, bc, be, ce
4 | decabe de, da, db, de, ca, cb, ce, ab, ae, be

Table 5.3. String database SDB as the running example.

TranClose mines the complete set of frequent closed partial orders in three
steps.

In the first step, we expand the strings to their transitive closures. A tran-
sitive closure is denoted by the set of edges. The third column of Table
shows the transformation. The set of edges in the transitive closure of each
string becomes a transaction so a transaction database T'D B is created. Please
note that the edges are directed. For example, edges bc and cb are different.

In the second step, we mine frequent closed edge-sets from the transformed
transaction database TDB (i.e., the third column in Table [2.3) with support
threshold min_sup = 2. Each frequent closed edge-set corresponds to the tran-
sitive closure of a frequent closed partial order.

In the last step, for each frequent closed edge-set, we compute its transitive
reduction. In this example, there are six patterns found. They are shown in
Figure together with their transitive reduction DAGs for examination. m

Algorithm TranClose is summarized in Figure[5.71 We can use any frequent
closed itemset mining algorithm such as CHARM [133] and CLOSET+ [115]
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R1={ab, ae, be, ce, de} R2={ab, ae, be, ac, ce, de} R3={ab, ac, ad, ae, bd, be, cd, ce, de}
sup(R1)=4 sup(R2)=3 sup(R3)=2 /a\
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R4={ab, ac, ae, bc, be, ce, de} R5={ab, ae, be, cb, ce, de} R6={da, dc, db, de, ab, ae, be, ce}

sup(R4)=2 sup(R5)=2 c d sup(R6)=2 C\
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Fig. 5.6. The frequent closed itemsets and the transitive reductions of the corre-
sponding frequent CPOs.

to mine frequent closed edge-sets from the transformed transaction database,
and derive the frequent closed partial orders from the frequent closed edge-
sets.

Input: a string database SDB and a minimum support threshold min_sup;

Output: the complete set of frequent closed partial orders;

Method:

1: create a transaction database T'DB by transforming each string in SDB into
its transitive closure and make the set of edges in the transitive closure
a transaction;

2:  mine frequent closed edge-sets from T'DB with support threshold min_sup;

3:  for each frequent closed edge-set, compute its transitive reduction as a frequent
closed partial order;

Fig. 5.7. The TranClose algorithm.

The bottleneck of TranClose is that it has to handle a very much enlarged
transitive closure database: for a string of length [, its transitive closure has
@ edges.

In our small running example, there are totally 41 edges in all the frequent
closed edge-sets, while only 27 edges in their transitive reduction DAGs. In
other words, more than one-third of the edges in the transitive closures are
redundant and will be removed in the transitive reductions. For large string
databases where there are long strings, the redundancy may be even bigger. As
a well accepted fact, mining long patterns is often very costly. To improve the
efficiency, we have to avoid computing transitive closure in mining frequent
closed partial orders.
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5.1.4 Algorithm Frecpo

In this section, we present algorithm Frecpo which mines frequent closed par-
tial orders in the form of transitive reductions directly from string databases
and avoids computing transitive closures.

General Idea and Framework

In order to efficiently mine the complete set of frequent closed partial orders,
we have to address the following two issues.

e The correctness and completeness issue. We have to find a systematic way
to enumerate all the frequent closed partial orders without duplicate. This
will guarantee that the mining result is correct and complete.

o The efficiency and scalability issue. We must have an efficient method to
extract frequent closed partial orders and prune futile search branches.

To address the correctness and completeness issue, Frecpo searches a set
enumeration tree of transitive reductions of partial orders in a depth-first
manner.

In principle, a partial order can be uniquely represented as the set of
edges in its transitive reduction. Moreover, all edges in a set can be sorted in
the dictionary ordel] and thus it can be written as a list. Therefore, we can
enumerate all partial orders in the dictionary order. A set enumeration tree
of partial orders can be formed: for orders R; and Rs, R; is an ancestor of
Ry and R, is a descendant of R; in the tree if and only if the list of edges in
R; is a prefix of the list of edges in Ro.

For example, consider a set of items {a,b, c}. The transitive reductions
of all possible partial orders on the three items can be enumerated in a set
enumeration tree shown in Figure 5.8

{ab} {ac} {ba} {bc} {ca} {cb}

{ab,ac} {ab,bc} f{ab,ca} {ab,cb} {ac,ba} {ac,bc} {ac,cb} {ba,bc} {ba,ca} {ba,cb} {bc,ca} {ca,cb}

Fig. 5.8. The set enumeration tree of the transitive reductions of all possible partial
orders on items a, b and c.

By a depth-first search of the set enumeration tree of transitive reductions
of partial orders, Frecpo will not miss any frequent partial order. Frecpo em-
ploys depth-first search instead of breadth-first search because there are many

! In fact, any global order on the edges works. For the sake of convenience, we
choose dictionary order as an example here.
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previous studies (e.g., [19, 68 [88] [TT5] 124] 125] [133] 132]) strongly suggesting

that a depth-first search with appropriate pseudo-projection techniques often
achieves a better performance than a breadth-first search when mining large
databases.

To address the efficiency and scalability issue, Frecpo prunes the futile

branches and narrows the search space as much as possible. Basically, three
types of techniques are used.

Pruning infrequent items, edges and partial orders. According to Prop-
erty 0.2 if a partial order R in the set enumeration tree is infrequent,
then the partial orders in the subtree rooted at R, which are stronger than
R, cannot be frequent. The subtree can be pruned. Hence, Frecpo often
does not have to search the complete set enumeration tree. Instead, only
the upper part of the tree which contains all the frequent partial orders is
searched. Moreover, only frequent closed partial orders will be output.

Pruning forbidden edges. Not every edge can appear in the transitive re-
duction of a partial order. For example, if every string containing ac also
contains ab and bc, then edge ac should not appear in the transitive re-
duction of any frequent closed partial order. Edge ac is called a forbidden
edge. Removing the forbidden edges can also reduce the search space.

Extracting transitive reductions of frequent partial orders directly. In
Frecpo, we develop an efficient method to identify frequent closed partial
orders and also extract their transitive reductions from various subsets of
strings. Thus, Frecpo does not need to compute the transitive reductions.

Input: a string database SDB and a minimum support threshold min_sup;
Output: the complete set of frequent CPOs;

Method:

1:  scan database once, find frequent items; // Lemma

2: scan database again, find global feasible edges; // Lemmas and B.10]
// if the number of items in SDB is not large, the first two scans can
// be combined.

3: let R be the set of global feasible edges with support |SDBJ;

4: if R # 0 then output R as a frequent CPO; // Lemma 513

5. let L =e1,...,e, be the list of global feasible edges with support less
than |[SDBJ;

6: for each edge e; in L do

7 if RU {e;} does not contain any redundant edge and there exists no FCPO

R’ found before such that R’ D (RU {e;}) and sup(R’) = sup(e;) then
8: form R U {e;}-projected database SDB|guie,};
9: recursively mine SDB|rue,};

Fig. 5.9. The Frecpo algorithm.
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Algorithm Frecpo is shown in Figure In the following subsections, we
will explain the technical details.

Pruning in Frecpo
The first rule of pruning is a corollary of Property 5.2l

Lemma 5.9 (Pruning by support). An infrequent item or an infrequent
edge cannot appear in any frequent partial order. [

The lemma is used in Frecpo in two ways. First, at the beginning of the
algorithm, the database is scanned so that frequent items and frequent edges
are identified. Infrequent items and infrequent edges are pruned. Second, in the
recursive depth-first search, for any frequent closed partial order R, only the
edges that frequently appear together with R in the string database should be
used to expand R to form R’s children. Technically, all the strings supporting
R form the R-projected database SDB|r = {s € SDB|R C C(s)}. Only the
frequent edges in the R-projected database and satisfying the requirement
of enumeration tree should be used to expand R to R’s children in the set
enumeration tree. The items and edges infrequent in the projected database
will be removed.

The second rule of pruning is based on the observation that not every
frequent edge can appear in the transitive reduction of a frequent closed partial
order. An edge xy is called a forbidden edge in a string database SD B if there
exists an item z such that for every string s in S DB which contains xy, s also
contains zzy. In such a case, for any frequent closed partial order R which
contains (z,y), R also contains (z, z) and (z,y), which disqualify (z,y) in R’s
transitive reduction.

Lemma 5.10 (Pruning forbidden edges). A forbidden edge cannot appear
in the transitive reduction of any frequent closed partial order. [

Frecpo uses a detection matriz to identify both frequent edges and forbid-
den edges, as illustrated in the following example.

Ezample 5.11 (Frecpo — Part 1). Let us consider again mining frequent closed
partial orders from the string database SDB in Table with respect to
minimum support threshold min_sup = 2.

By scanning the database only once, Frecpo computes the supports of the
items. Following Lemma [£.9] infrequent items are pruned, such as f in our
running example (sup(f) = 1).

To prune the infrequent edges and the forbidden edges, Frecpo scans the
database again and fills in a matrix {ent[z,y]}, where x and y are both fre-
quent items, and cnt[x,y| registers both sup(xy) and the list of items that
appear between x and y in all strings having been scanned so far that contain
zy. The list is called the anchor list. The matrix is called the detection matrix
and is shown in Figure
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a 4,0 3,02, {bc}4,1{b}
b(0,0 2,0 2,0 4,0
1,0 2,0 2,0 4,0
2,02, {a} 2,0 4,0
el0,0 0,0 0,0 0,0

Fig. 5.10. The matrix detecting infrequent edges and edges not in transitive re-
duction.

From the detection matrix, we can immediately prune the infrequent edges
(those with support less than 2, such as ca). An edge is a forbidden edge if its
anchor list is not empty. Following Lemma [E.10] forbidden edges ad, ae and
db can be pruned as well.

In this example, SDB contains 6 different items. There are 6 x 5 = 30
possible different edges. 20 different edges appear in the database. Only 11
edges survive from the pruning. [

Clearly, the length of an anchor list monotonically decreases as the scan
goes on. If the strings are scanned in an arbitrary order, the initial length of
any anchor list for any edge is bounded by the maximum number of frequent
items in any string. More often than not, the length of a string is much shorter
than the total number of items in the whole database. Moreover, as a heuristic,
we can scan the short strings before the long ones. Then, the initial length of
any anchor list for any edge zy is bounded by the number of frequent items
in the shortest string which contains xy.

If the number of items is not very large and a detection matrix for all
items can be held in main memory, Frecpo can scan the database only once
to prune infrequent items, infrequent edges and forbidden edges by using a
detection matrix holding all items instead of only the frequent ones.

Extracting Frequent Closed Partial Orders

Ezample 5.12 (Frecpo — Part 2). As shown in Example[5.11] only the edges ab,
ac, be, bd, be, ¢cb, cd, ce, da, dc and de can be used to construct the transitive
reduction of a frequent closed partial order. They are called the global feasible
edges. Among them, ab, be, ce and de have support 4, i.e., they appear in
every string in SDB. The four edges form a frequent closed partial order, i.e.,
order R; in Figure In other words, the set of global feasible edges that
appear in every string forms a frequent CPO. Interestingly, the set is in fact
the transitive reduction, since any redundant edge in the set is identified as a
forbidden edge by the detection matrix.

The observation in Example [5.12] leads to the following.
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Lemma 5.13. (EXTRACTING TRANSITIVE REDUCTION OF FCPO). In a
string database SDB, the set of global feasible edges that have support |SDB|
is the transitive reduction of the frequent closed partial order R of support
|SDB.

Proof. There exists only one FCPO whose support is |SDB|. Otherwise, if
there are two FCPOs R; and R whose support are [SDB|, both R; and Ry
(Ry # R») are supported by every string in the database. That means R; U Ry
is supported by every string in the database and thus is also a frequent partial
order with support |SDB|. That leads to a contradiction to the assumption
that R; and Ry are closed.

We denote the FCPO with support |[SDB| by R. The set specified in the
lemma is a superset of the transitive reduction of R. On the other hand, if
there exists a redundant edge, the edge will be identified by the detection
matrix. Hence, the set is exactly the transitive reduction of R. ]

Lemma [5.13] enables Frecpo to identify the transitive reduction of frequent
partial orders directly. In other words, Frecpo prunes redundant edges using
detection matrix. It never has to explicitly compute transitive reduction for
any frequent closed partial order.

Recursively Depth-first Searching

Once a frequent closed partial order R is found, Frecpo expands R to its
children. Following the similar reasoning in Lemmas [5.9] and 5131 only
frequent, non-forbidden edges in the R-projected database should be used to
expand R to its children in the enumeration tree.

Ezample 5.1/ (Frecpo — Part 3). Let us continue the mining process in Ex-
ample Frequent closed partial order R; is the order shared by all strings.
Thus, any other frequent closed partial order will be stronger than R;.

The other frequent closed partial orders in transitive reduction can be
partitioned into the following subsets according to the dictionary order of the
remaining global feasible edges (i.e., ac, be, bd, ¢b, cd, da, and dc): (1) the
ones having edge ac in their transitive reduction; (2) the ones having edge be
but no ac in their transitive reduction; .. .; and (7) the one having de but no
other edges in its transitive reduction (if it is a frequent closed partial order).
These subsets can be mined one by one in a depth-first search manner.

We first consider the subset of frequent closed partial orders having edge
ac in their transitive reductions. They also contain R;. The strings in SDB
that are super-strings of ac, namely strings 1, 2 and 3, are collected as the
(Ry U {ac})-projected database.

We prune the local infrequent items, infrequent edges and forbidden edges
by scanning the (R; U {ac})-projected database once and filling in the local
detection matrix. The feasible edges in this projected database are bc, bd and
cd. Since each feasible edge has support 2, which is less than the number of
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strings in the projected database, we extract Ro = Ry U {ac} as the transi-
tive reduction of a frequent closed partial order as shown in Figure Any
frequent partial order having ac must be stronger than Rs.

Since we have three local feasible edges in the (R; U {ac})-projected
database, the remaining frequent closed partial orders having ac in their tran-
sitive reduction can be further partitioned into three sub-subsets: the ones
having ac and bc, the ones having ac and bd but no bc, and the ones having
ac and cd but no be nor bd.

R has an edge ab, and any frequent partial order having ac is a superset of
R5. Clearly, edges ab, ac and bc cannot stay together in a transitive reduction,
since ac is redundant in such a case. Thus, we immediately determine that
the first sub-subset is empty without checking the database at all.

The remaining frequent closed partial orders can be found recursively. m

Summary

In implementation, the pseudo-projection technique can be used, which was
firstly proposed in [88] and later has become popular in depth-first search
frequent pattern mining. That is, if a database or a projected database can
fit into main memory, instead of deriving a copy of strings for every projected
database, we use hyperlinks (implemented as pointers) to link the strings
in the projected database together. The recursively projected databases can
share the same physical database storage. Scanning and deriving projected
databases are efficient with the help of hyperlinks. As discussed in [88] [I14],
if a database is large and cannot fit into main memory, the physical projec-
tions should be generated. Once a projected database can be held into main
memory, the recursion is switched to pseudo-projection.

The correctness of algorithm Frecpo can be justified based on our pre-
vious discussion. Comparing to algorithm TranClose and other rudimentary
methods, Frecpo has three distinct advantages.

Advantage 1: Mining in transitive reduction to avoid substan-
tial space and I/O overhead. Frecpo never explicitly unfolds strings into
transitive closures. As discussed before, the transitive closures of strings can
be much larger than the strings themselves. Thus, mining the strings directly
avoids the substantial space overhead and also the I/O cost. Frecpo does exam-
ine combinations of items for each string. However, such tests are conducted
on the fly in main memory. It does not involve any space or I/O overhead,
which is the bottleneck of mining large databases.

Advantage 2: Directly extracting frequent closed partial orders
in transitive reduction. Frecpo computes detection matrices and extracts
frequent closed partial orders in transitive reduction directly (Lemmal5.TI3]). It
avoids the post-processing of computing transitive reductions. Transitive re-
duction is the minimum representation of a partial order. Using this minimum
representation makes the mining more effective and efficient.
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Advantage 3: Aggressively and progressively pruning futile
branches in recursive depth-first search. Frecpo aggressively prunes in-
frequent items and edges and forbidden edges that are impossible to appear in
transitive reductions of frequent closed partial orders. Thus, the search space
shrinks dramatically in the recursive depth-first search. Moreover, only fre-
quent items and local feasible edges in the current projected database will be
used to expand the current frequent closed partial order into stronger ones.
This pattern-growth approach makes the search more focused.

5.1.5 Applications

The knowledge about ordering, especially the frequent partial orders in string
databases, has many applications. Here, we list four of them.

Application 1: Bioinformatics. Ordering information is often impor-
tant in analysis of biological experiment data. For example, to discover pat-
terns in gene expression matrices, one promising approach [§] is to look for
order-preserving submatrices (OPSMs). That is, in an n by m gene expression
matrix for n genes and m experiments, each element v; ; gives the expression
level of a gene g; in an experiment e;. A submatrix is order-preserving if the
expression levels of all genes in the submatrix induce the same (linear or par-
tial) ordering of the experiments. As indicated in [8], such a pattern may arise
if the experiments in the order-preserving submatrix represent distinct stages
in the progress of a disease or in a cellular process, and the expression levels
of all genes in the submatrix vary across the stages in the same way. More-
over, [68] also shows that a partial order of conditions shared by a group of
genes may indicate that the genes form a co-expressed group and they respond
to a sequence of environment stimuli.

Application 2: Process model mining, web mining and market
basket analysis. The workflow paradigm has been extensively used to specify
how business processes should be conducted. It is often desirable to construct
process models from logs of past, unstructured executions of a given process [1]
[112].

In web mining and market basket analysis, a critical task is to identify
groups of customers in which all customers’ sequences of purchases induce the
same ordering of a series of products. In previous studies, sequential patterns
are often used for this purpose. However, as shown in Example[5.1] sequential
patterns may not be able to concisely capture the general ordering informa-
tion. Instead, a partial order can model the customers’ purchase behavior
better. Thus, it can be more informative and more effective to use frequent
partial orders in place of sequential patterns in many cases. Moreover, se-
lected frequent partial orders can be used as signatures of customer behavior
in classification and clustering analysis.

Application 3: Network management and intrusion detection. In
network management, it is important to characterize network traffic. Frequent



5.2 Mining Global Partial Orders 107

partial orders obtained from network packet scheduling data may disclose
frequent routing paths and identify possible bottlenecks of networks.

Moreover, it is important to discover the signatures (i.e., distinct features)
of normal network access and intrusions. Consider misuse detection, where a
training data set containing both labeled normal activities and intrusions is
available. We can mine from the training data set partial orders which are
frequent in the subset of intrusions and are rare in the subset of normal activ-
ities. Such frequent partial orders can be used to identify malicious activities
in the future. On the other hand, in anomaly detection, frequent partial or-
ders can be used to characterize the major patterns of network accesses. If an
activity does not follow any frequent partial orders observed so far, then it
can be a candidate of anomaly.

Application 4: Preference-based service. Preferences can be modeled
as partial orders. It is interesting to study common preferences from a large
collection of data, such as marketing survey and product evaluation. For ex-
ample, a customer may be asked to rank a set of products in a marketing
survey. The preference of a customer can be derived from her/his ranking.
Then, it is interesting to mine the common preferences as frequent partial or-
ders from the ranking data. Moreover, customer segmentation and marketing
campaigns may be developed based on such ordering information.

5.2 Mining Global Partial Orders

In Section Bl we discussed how to find partial orders that are frequent in
a sequence database. Generally, we may find many frequent (closed) partial
orders in a sequence database. In some applications, we may want to find one
partial order that fits all the sequences as well as possible. This problem is
called the global partial order mining problem, and was first systematically
treated in [74].

5.2.1 Motivation and Preliminaries

Let us consider the sequences in Table [0.2] again. If we want to find a partial
order to summarize all sequences in the database, which order should be
returned?

As discussed in Example 5.1 the partial order in Figure 5.1l fits sequences
1, 2, and 4 nicely. The order does not fit some segments of sequence 3. That
is, Data Structure is taken before Programming, and Software Engineering is
taken after Data Mining and Information Retrieval in sequence 3.

Overall, the order in Figure E1]is the best to summarize the whole set of
4 sequences.

How can we determine whether a partial order fits a sequence?

Let V be the alphabet set of our sequence database. For a partial order R
and a sequence s, s is compatible with R if for any events u,v € V', (u,v) € R
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then uv € s. s is an extension of R if s is compatible with R and s is a total
order—that is, s is a string. Moreover, s is a complete extension of R if s is
an extension of R and s contains all events of R.

Given a partial order R, how many complete extensions are there for R?
If R is a total order, then R has only one complete extension. However, if R
is a trivial order, that is, for any u # v, neither (u,v) nor (v,u) are in R, then
R has |V|! complete extensions.

When we try to find a partial order R to fit a set of sequences, we want,
on the one hand, as many sequences as possible are compatible with R; on the
other hand, R is as strong as possible (that is, more ordering information is
retained). For example, in the sequence database in Table 5.2 a trivial order
fits every sequence, but does not contain any ordering information. It is too
general. On the other hand, any total order may fit at most one sequence
completely, and thus cannot represent other sequences well. That is, a total
order is too specific. The order in Figure [(.1is a nice tradeoff between the
generality and the specificity.

Mathematically, let a(R) be the number of complete extensions of R. For a
sequence s that is compatible with R, the probability of s given R is P(s|R) =
ﬁ. If s is not compatible with R then P(s|R) = 0.

Let us assume that the sequences in a sequence database S are indepen-
dently and identically distributed. Then, the probability of the set of sequences
S given the partial order R is

P(SIR) = [ P(sIR)

ses

Problem definition. Given a sequence database S, the problem of mining a
global partial order is to find partial order R, such that R, maximizes P(S|R).

That is, Ry = arg MaXpartial orders r1P(S|R)}.

5.2.2 Mining Algorithms

A critical issue in mining a global partial order is to compute «a(s|R) for a
sequence s and a partial order R. Unfortunately, this problem has been shown
NP-hard D]]E In [74], an efficient method was developed to mine global partial
orders in the form or series-parallel partial orders (definition in Section [.T2]).

2 In fact, it is #P-complete. #P-Complete problems [I11], [96] are the enumeration
problems which might be intractable even if P=NP. A typical example of #P-
Complete problem is counting the number of Hamiltonian circuits in a graph.
Even if P=NP (i.e., we could tell in polynomial time whether an arbitrary graph
contains a Hamiltonian circuit), it is unclear that this would enable us to count
the number of Hamiltonian circuits in an arbitrary graph in polynomial time.
However, not every, enumeration problem is #P-Complete. For example, there are
polynomial time algorithms for the problems of counting the number of Eulerian
paths and counting the number of distinct spanning trees in an arbitrary graph.
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Using Construction Trees of Series-Parallel Partial Orders

A series-parallel partial order R can be represented as a binary construction
tree Tr. Each leaf node in the tree is an event in R, and each internal node in
the tree is either a series combination (an S-node) or a parallel construction
(a P-node). For an S-node, let u be a leaf node in the left subtree, and v be a
leaf node in the right subtree. (u,v) € R. For a P-node, let u be a leaf node in
the left subtree and v be a leaf node in the right subtree. Neither (u,v) € R
nor (v,u) € R hold.

Ezample 5.15 (Construction tree). Consider the partial order R in Figure[5.111
The construction tree is also shown in the figure.

S1
a ' \Sz
\ a
O
N
d 5\
b c
Partial order R
Construction tree T(R)

Fig. 5.11. A partial order R and its construction tree Tr.

Each subtree represents a partial order on an exclusive set of events. The
P-node P1 indicates that neither (b, ¢) nor (¢, b) are in the order. The S-node
S2 indicates that both (b,d) and (c¢,d) hold in R. Similarly, we can explain
the meaning of S-node S1 in the construction tree. [

For a partial order R, let n(R) be the number of events in R. It is easy to
see that if R is a series-parallel partial order, then the construction tree of R
can be constructed by scanning the transitive reduction of R once. Moreover,
given a sequence s and a series-parallel partial order R, we can test whether
s is compatible with R by scanning s and T (or the transitive reduction of
R) once in a synchronized way. We leave the details of the two algorithms as
an exercise for the interested readers.

Using the construction tree of a series-parallel partial order R, we can
calculate the number of complete extensions of R as follows.

a(u) =1;
a(S(R, R2)) = a(R1) - a(Ra);

a(P(Ry, Ry)) = a(Ry) - o Ry) - "dalbntie)),

where S(R1, R2) is an S-node in the tree with Ry and Rs as the left and the
right subtrees, respectively, P(R1, Rs) is a P-node in the tree with R; and Ry
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as the left and the right subtrees, respectively. The computation cost is linear
in n(R).

A Greedy Search Method

We can find a global partial order by greedily searching the series-parallel
partial orders on the set of possible events. We start with a trivial partial
order. Then, we maintain the best order we have got so far, and try to modify
the best order to obtain further improvement. The greedy search terminates
when the gain in probability is smaller than a threshold in the last iteration.
The algorithm is presented in Figure

Input: a string database SDB and a quality improvement threshold ¢;
Output: a series-parallel partial order;

Method:

1: R = the trivial partial order on V', where V is the set of events in R;

2: p= P(SDB|R);

3: DO

4: po=p, Ro = R;

5: let Ri1,...,R; be the partial orders obtained from R by a modification;
6: let p = max!_, {P(SDBJ|R;)} and R = argmax._,{P(SDB|R;)};

7:  UNTIL (p — po) < €

8 IF p > po THEN Ry = R;

9:  RETURN Ry

Fig. 5.12. The greedy search algorithm for mining the global partial order.

Now, the only problem left is how we can modify the currently best order to
generate better orders. This can be done by modifying the binary construction
tree of the currently best partial order.

Apparently, in the binary construction tree of a trivial partial order R, all
internal nodes are P-nodes. This is the starting point of the greedy search in
the algorithm.

Let Tk be the binary construction tree of the currently best partial order
R. We generate all possible modifications of R in two steps. In the first step,
a leaf node and its parent in Tk are extracted as a small tree. In the second
step, the parent-leaf pair is inserted into T’r to generate new modifications by
attaching at a new insertion point, choosing a possibly new side (left or right)
for the leaf relative to the parent, or changing the type (S-node or P-node)
for the parent.

Ezample 5.16 (Generating modifications). Suppose our greedy search starts
with the trivial partial order R as shown in Figure 5.13l Let us consider how
to re-arrange c to generate a new order.
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Fig. 5.13. Modifying the currently best partial order.

First, we extract leaf node ¢ and its parent. The tree is split as shown in
the figure. In the second step, if the new insertion point is a, we can insert the
orphaned tree into a. In the figure, we show one order obtained by inserting
¢ into a as a right subtree of the parent and the parent node type is P-node.
By applying the insertion into every possible internal node, and by trying all
possible internal node type and both the possible side (left and right), we
can generate all possible series-parallel partial orders that can be modified
from R.

Suppose R has n events. There are O(n) internal nodes in the construction
tree. There are at most O(n?) possible series-parallel partial orders that can
be generated by the modifications. Two modifications may lead to the same
series-parallel partial order. Thus, those duplicate orders should be removed.

5.2.3 Mixture Models

We discussed how to mine a series-parallel partial order to globally summa-
rize a set of sequences. However, when there are many conflicting sequences,
it is impossible to use one non-trivial series-parallel partial order to fit all
sequences. For example, if a database contains three sequences abed, acbd and
dbca, then the only partial order that could summarize the data set is the
trivial partial order.

To tackle the cases of conflicting sequences, we can mine a small number
of partial orders as the summarization. A mixture model of partial orders
consists of k partial orders Ry, ..., Ri, where k is a parameter. Each order
R; (1 < i < k) carries a weight w,;. The probability of a sequence s given a
mixture model M is

P(s|M) = 3 L

R;
R; s.t. s is compatible with R; o(Rs)

Moreover, the probability of a set of sequences SDB given a mixture model
M is
P(SDBIM) =[] P(sIM)

seSDB
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Generally, we can extend the techniques discussed above to mine a mixture
model M that maximizes P(SDB|M). Interested readers please refer to [74]
for details.

5.3 Summary

A major type of useful information that can be discovered from sequence data
comes from finding the ordering information hidden in the data. In this chap-
ter, we discussed the techniques to mine ordering information from sequence
data. In the first scenario, we want to find frequent closed partial orders in
sequences. In the second scenario, we want to find one or a small number of
partial orders that fit all the sequences globally.

In practice, the requirements of mining ordering information may vary
from one application to another. The techniques described in this chapter
provide some typical examples and can be adapted to many situations.
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Distinguishing Sequence Patterns

A distinguishing sequence pattern is a sequence pattern that (i) characterizes
a family of sequences and distinguishes the family from other sequences, (ii)
characterizes a special site of sequences and distinguishes the site from other
parts of sequences, or (iii) signals something unusual about certain sequences.
This chapter first discusses four types of distinguishing sequence patterns, and
then gives some methods/algorithms for the mining of two of those types.
(The other two types were discussed in Chapter [l) Distinguishing sequence
patterns are also useful as candidates for sequence features.

Three of the types of distinguishing sequence patterns are similar to
classification models in the sense that they all discriminate one family of
things/sites against some others. There are also differences, since distinguish-
ing sequence patterns are frequently local models (which can match and dis-
tinguish some sequences of a class/site) whereas classification models are often
total models (which can match and distinguish most sequences of a class/site).

6.1 Categories of Distinguishing Sequence Patterns

There are four types of distinguishing sequence patterns, which are summarized
in Table They are defined based on two factors: whether a special site is
considered, and whether one or two datasets are considered. (Recall that a
site is a short window of special interest, in the sequences, e.g. transcription
binding site, gene start site, or site where certain special events occur. A
dataset is usually a family of sequences with certain properties.) When two
datasets are considered, we will say one of them is the target dataset and the
other is the opposing dataset.
We now describe each of the four types.

e The first type is the site-characteristic distinguishing sequence patterns,
defined as sequence patterns which are relatively more frequent at/near a
given site of sequences of a given dataset than elsewhere in these sequences.
Only one dataset is considered in this case.
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e The second type is the site-class-characteristic distinguishing sequence pat-
terns, defined as sequence patterns which are relatively more frequent
at/near a given site of sequences of a target dataset than at/near the
same site in sequences of an opposing dataset. In this case, two datasets
are considered, together with a given site. For example, one may wish to
find sequence patterns to distinguish the sequences around the transcrip-
tion start site of one species against the sequences around the transcription
start site of another species.

e The third type is the class-characteristic distinguishing sequence pattern,
defined as sequence patterns which are relatively more frequent in se-
quences of a target dataset than in sequences in an opposing dataset.
In this case, two datasets are considered, without a fixed site.

e The fourth type is the surprising sequence patterns, defined as sequence
patterns whose occurrence in sequences of a given dataset is unexpected.
In this case, there is just one dataset without a fixed site. This type of
patterns are related to, but different from, the site-characteristic distin-
guishing sequence patterns in that (1) some sequences may not contain
surprising sequence patterns, and (2) some sequences may contain multi-
ple surprising sequence patterns. Surprising sequence patterns can indicate
a rare mutation in DNA sequences of a species, or a surprising purchase
behavior. A surprising sequence pattern can be considered significant if
its occurrence frequency exceeds the prior expected frequency by a large
margin.

Table 6.1. Four Distinguishing Sequence Pattern (DSP) Types

||Pattern Type |Number of Datasets|Has—Site||
site-characteristic DSPs One Yes
site-class-characteristic DSPs|Two Yes
class-characteristic DSPs Two No
surprising sequence patterns |One No

Thresholds are needed to formalize the meaning of “relatively more fre-
quent”. For example, for the site-characteristic distinguishing sequence pat-
terns, one may require that a pattern be at least 10 times as frequent at the
site as elsewhere. For the class-characteristic distinguishing sequence patterns,
one may require that the patterns occur in some sequence in the target dataset
but never occur in sequences in the opposing dataset. Some minimality con-
dition may be imposed to reduce the number of patterns and to eliminate
patterns which are too similar to others.

Sometimes the domain experts would first identify the sites and the
datasets before data mining is performed. At other times, the sites and the
datasets may need to be identified, together with the distinguishing patterns,
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from a universal set of sequences. Sometimes one is given the target dataset
only, and may use the “background dataset” as the opposing dataset.

Some studies in the literature consider rare event patterns around some
given site. Such rare event patterns can be classified as site-characteristic
distinguishing sequence patterns.

Examples of distinguishing pattern types include protein domain motifs,
transcription binding site motif, transcription binding site HMM, transcrip-
tion binding site profile; these pattern types apply to one or two datasets
with a given site. The mining of these pattern types was considered already
in Chapter @ Examples of class-distinguishing sequence patterns include dis-
tinguishing sequence patterns with gaps. Example applications of rare event
patterns include the detection of fraud and alarms. Below we discuss some
algorithms for the mining of these patterns.

6.2 Class-Characteristics Distinguishing Sequence
Patterns

The discussion in this section is restricted to sequences where each element is
a single item. Such sequences are able to capture some of the most important
and popular sequences, such as DNA, proteins, documents and weblogs. This
section is based on [55] 56].

6.2.1 Definitions and Terminology

Definition 6.2.1 (Subsequence Occurrence) Given a sequence S = $1...8,
and a subsequence S" = s!...s,, of S, a set of positions {i1,i2,...,1m} is called
an occurrence of S’ in S if 1 < i1 < ... < iy < n oand s), = s;, for each

1<k<m. ]

Example 6.2.1 For the sequence S = ACACBCB and subsequence S’ =
AB, there are 4 occurrences of S" in S: {1,5}, {1,7}, {3,5} and {3,7}. =

Gap constraints are now defined to restrict the allowed distance between
items of subsequences in sequences.

Definition 6.2.2 (Gap constraint and satisfaction) A (maximum) gap
constraint is specified by a positive integer g. Given a sequence S = $182...5,
and an occurrence og = {i1,12,...,im } of a subsequence S in S, if ij11 —ip <
g+ 1 for all 1 < k < m, then we say the occurrence os fulfills the g-gap
constraint. Otherwise we say os fails the g-gap constraint. If there is at least
one occurrence of a subsequence S’ fulfilling the g-gap constraint, we say S’
fulfills the g-gap constraint. Otherwise S’ fails the g-gap constraint. [

For Example [6.2.7] only the occurrence {3, 5} fulfills the 1-gap constraint.
Thus, the subsequence S’ fulfills the 1-gap constraint since at least one of its
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occurrences does. No occurrence of S’ fulfills the 0-gap constraint and so S’
fails the O-gap constraint.

Given a set of sequences D, a sequence pattern p and a gap constraint g, the
count of p in D with g-gap constraint, denoted as countp(p, g), is the number
of sequences in D in which p appears as a subsequence fulfilling the g-gap
constraint. The (relative) support of p in D with g-gap constraint is defined

countp (p,

as suppp(p,g) = Tg)' Given a positive threshold ¢, if suppp(p,g) = 0,
we say p is frequent in D with g-gap constraint. Otherwise p is infrequent.

Definition 6.2.3 (g-MDS and the g-MDS mining problem) Given two
classes pos (the positive) and neg (the negative) of sequences, two support
thresholds 6 and «, and a maximum ga g, a pattern p is called a Minimal
Distinguishing Subsequence with g-gap constraint (g-MDS for short), if and
only if the following conditions are true:

Frequency condition: suppyos(p, g) = 9;

Infrequency condition: suppneq(p, 9) < o;

Minimality condition: There is no subsequence of p satisfying both the
frequency condition and the infrequency condition.

Given pos, neg, 0, a and g, the g-MDS mining problem is to find all the
g-MDSs. |

The minimality condition is important, since it both reduces output size
and improves performance, as well as making patterns shorter (more suc-
cinct). This is especially important for datasets with long sequences, where
the number of patterns output may be huge.

Table 6.2. Two sequence data classes

Sequence ID Sequence Class label
1 CBAB pos
AACCB pos
BBAAC pos
BCAB neg
ABACB neg

T Ww N

Example 6.2.2 Given the two sets (classes) of sequences shown in Table[G.2,
suppose § =1/3, a =0, and g =1. The 1-MDSs are {BB,CC, BAA,CBA}.
Notice that BB is a subsequence of all the negative sequences, if no gap con-
straint is used. However all the occurrences of BB in the negative sequences

! We examine incorporation of a minimum gap constraint in Section [£.2.3] Also, in
ConSGapMiner, the gap constraints for pos and neg do not necessarily have to
be the same.
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fail the 1-gap constraint, so BB becomes a distinguishing subsequence when
g = 1. Observe that every super sequence of a 1-MDS fulfilling the 1-gap
constraint and support threshold is also distinguishing. However, these are ex-
cluded from the MDS set, since they are non-minimal and contain redundant
information. [

There are many situations where MDSs are useful, such as the compari-
son of proteins, design of microarrays (concerning the selection of DNA frag-
ments), characterization of text and the building of classification models. The
following two specific examples highlight the idea.

Example 6.2.3 When comparing the two protein families zf-C2H2 and zf-
CCHC, it was discovered that a protein section CLHH appears as a subse-
quence 141 times among a total of 196 protein sequences in zf-C2H2, but it
never appears among the 208 sequences in zf~-CCHC. This subsequence rep-
resents a very strong contrast feature. From a classification perspective, an

unknown protein sequence containing CLHH as a subsequence seems unlikely
to be a member of the zf-CCHC family. [

The potential usefulness of distinguishing sequence patterns for protein
datasets is highlighted by work in [95], where it is observed that biologists are
very interested in identifying the most significant subsequences that discrim-
inate between outer membrane proteins and non outer membrane proteins.
Furthermore, the higher dimensional structure of proteins makes allowing gaps
in a subsequence particularly important. Elements which have a gap between
them in the sequence, may in fact be spatially very close in the 3-dimensional
protein.

Example 6.2.4 Comparing the first and last books from the Bible, it was
found that the subsequences “having horns”, “faces worship”, “stones price”
and “ornaments price” appear multiple times in sentences in the Book of Rev-
elation, but never in the Book of Genesis. (The gap between the two words of
each pair is < 6 non trivial words.) Such pairs might be seen as a finger-
print associated with the Book of Revelation and may be of interest to Biblical
scholars. [

6.2.2 The ConSGapMiner Algorithm

We now consider the ConSGapMiner algorithm, for solving the g-MDS mining
problem. It has the following three main subroutines:

i) tree-based depth-first search framework to find a set of distinguishing
sequences (containing all minimal distinguishing sequences),

ii) bitset based support and gap calculation, and

iii) post processing (minimization).
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The first routine computes some set of distinguishing sequence patterns
which contains all minimal distinguishing sequences. We call such a set of
distinguishing sequence patterns a g-SMDS set, as defined below.

Definition 6.2.4 (g-SMDS set) A Semi-Minimal Distinguishing Sub-
sequence set with g maximum gap constraint, g-SMDS set for short, is a
super set of the g-MDS set, such that elements in the g-SMDS set but not in
the g-MDS set are sequence patterns that satisfy the frequency and infrequency
conditions, but not necessarily the minimality condition. [

A ¢-SMDS set may also contain some non-minimal distinguishing se-
quences, which will be removed in the minimization process in a batch man-
ner. This choice was made since performing minimization whenever a new
distinguishing sequence is generated is more expensive than batch-based min-
imization.

We now discuss each of the three routines in turn.

SMDS set generation

ConSGapMiner performs a depth-first search in a lexicographic sequence tree.
In this tree, each node contains a sequence S, a value for count,.s(S, g) and
a value for countyeq(S, g). Each node is the max-prefid] of each of its chil-
dren. During the depth-first search, we extend the current node by a single
item from the alphabet, according to a certain lexicographic order. For each
newly-generated node v, we calculate the supports of v’s associated sequence
from pos and from neg. Part of the lexicographic tree for mining the data of
Table[62is given in Figure[6.l Observe that the branches of the lexicographic
tree terminate at nodes whose count,,s = 0.

Two basic pruning strategies can be used to reduce the size of the search
space of the tree. These will be applied in the candidate generation process.

Non-Minimal Distinguishing Pruning: This strategy is based on the

fact that any supersequence of a distinguishing sequence cannot be a min-
imal one. Suppose we encounter a node representing sequence S, where ¢
is the last item in S, supppos(S, g) = 6, and supppeq(S, g) < . Then i) we
never need to extend S and ii) we never need to extend any of the sibling
nodes of S by the item c. Such an extension would lead to a supersequence
of S which cannot be an MDS.
For Figure [6.1] since supppos(AACC) > 0 and supppeq(AACC) = 0,
AACC must be distinguishing. Moreover, we know in the subtree of its
sibling AACB, suppneq(AACBC) must be 0, too. So AACBC can’t be
an MDS.

2 The maaz-prefiz of a sequence S = $1...Sy, iS $1...8n_1, formed by removing the
last item in S. For example ABC is the max-prefix of ABC'D but AB isn’t.
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{}
A (3,2) B (3,2) C(3,2)

AA (2,1)

AAA (0,0) AAB (0,1) AAC (2,1)

Pl

AACA (0,0) AACB (1,1) AACC (1,0)

el R

AACBA (0,0) AACBB (0,0) AACBC (0,0)

Fig. 6.1. Part of the lexicographic tree for mining Table

Mazx-Prefiz Infrequency Pruning: Whenever a candidate is not frequent
in pos, none of its descendants in the tree can be frequent. Thus, whenever
we come across a sequence S at a node satisfying supppos(S,g) < 0, we
do not need to extend this node any further. For example, in Figure [6.1]
it is not necessary to extend AAB (which has support zero in pos), since
no frequent sequence can be found in its subtree.

It is worth noting that this technique does not generalize to full a-priori
like pruning — “if a subsequence is infrequent in pos, then no supersequence
of it can be frequent”. Such a statement is not true, because the gap
constraint is not class preserved [I30]. This means that an infrequent
sequence’s supersequence is not necessarily infrequent; this consequently
increases the difficulty of the MDS mining problem. Indeed, extending an
infrequent subsequence by appending will not lead to a frequent sequence,
but extensions by inserting items in the middle of the subsequence may
lead to a frequent subsequence.

An example situation is given next. For Figure [6.1] suppose 6 = 1/3 and
g = 1. Then AAB is not a frequent pattern because countp,s(AAB, 1) = 0.
But looking at AAB’s sibling, the subtree rooted at AAC, we see that
countpos(AACB,1) = 1. So a supersequence AACB is frequent, but its
subsequence AAB is infrequent.

The SMDS set generation algorithm is given in Figure 621 The algorithm
is called at the root of the search tree by Candidate_Gen({}, g, 1,0, a), with
SM initialized to be the emptyset.
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Algorithm: SMDS_Gen(S,g,1,0,a);

Assumption: S is a sequence, g is maximum gap constraint, [ is the alphabet,
0 is the minimal support for pos, « is the maximum support for neg;
CDS is a local variable storing the children distinguishing sequences of S
SM is a global variable containing all computed distinguishing subsequences;

Method:

1:  initialize CDS to {};

2:  for each z € I do

3 let S’ = S.z (appending = to S);

4 if S’ is not a supersequence of any sequence in C DS then

5 supppos=Support_Count(S’,g,pos);

6: suppneg=Support_Count(S’,g,neg);

7 if (supppos = § AND suppneg < o) then

8 CDS =CDSU{S'};

9 elsif (supppos = d) then

10: SMDS_Gen(S’,g,1,5,a);

11: SM =SMUCDS,

Fig. 6.2. The SMDS_Gen routine

Support Calculation and Gap Checking

For each newly-generated candidate S, countpos(S, g) and count,c4 (S, g) must
be computed. The main challenge comes in checking satisfaction of the gap
constraint. A candidate can occur many times within a single sequence. A
straightforward idea for gap checking would be to record the occurrences of
each candidate in a separate list. When extending the candidate, a scan of the
list determines whether or not the extension is legal, by checking whether the
gap between the end position and the item being appended is smaller than
the (maximum) gap constraint value for each occurrence. This idea becomes
ineffective in situations with small alphabet size and small support threshold
and many long sequences needing to be checked, since the occurrence list be-
comes unmanageably large. Instead, a more efficient method for gap checking
can be used, based on a bitset representation of subsequences and the use of
boolean operations. This technique is described next.

Definition 6.2.5 (Bitset) A bitset is a sequence of binary bits. An n-bitset
X contains n binary bits, and X[i] refers to the i-th bit of X. m

A bitset can be used to describe how a sequence occurs within another
sequence. Suppose we have two sequences S = s;...s, and S’ = s)...s] , where
m < n. The occurrence(s) of S’ in S can be represented by an n-bitset. This
n-bitset BS is defined as follows: If there exists a supersequence of S’ of the
form s;...s; such that s; = s, (the last item of S’), then BS}; is set to
1; otherwise it is set to 0. For example, if S = BACACBCCB, the 9-bitset
representing S’ = AB is 000001001. This indicates how the subsequence AB

can occur in BACACBCCB, with a’1’ being turned on in each final position
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where the subsequence AB could be embedded. If S’ is not a subsequence of
S, then the bitset representing the occurrences of S’ consists of all zeros.
For the special case where S” = s is a single item, BS[; is set to 1 if s; = s.
For S = BACACBCCB, the 9-bitset representing S’ = C' is 001010110.
It will be necessary to compare a given subsequence against multiple other
sequences. In this case, the subsequence will be associated with an array of bit-
sets, where the k-th bitset describes the occurrences of S’ in the k-th sequence.

Initial Bitset Construction: Before mining begins, it is necessary to
construct the bitsets that describe how each item of the alphabet occurs in
each sequence from the pos and neg datasets. So, each item x has associated
with it an array of |pos| + |neg| bitsets; the number of bitsets in z’s array
which contain one or more 1’s, is equal to count(z, g).

For the data in Table B2 the bitset array for A contains 5 bitsets,
namely [0010, 11000, 00110, 0010,10100]. Moreover, count,,s(A,g) = 3 and
countypeq(A4, g) = 2.

Bitset Checking: Each candidate sequence S in the lexicographic tree has
a bitset array associated with it, which describes how S can occur in each of
the |pos| + |neg| sequences. This bitset array can be directly used to compute
countpos(S, g) and countyeq(S,g) (ie. countpos(S,g) is just the number of
bitsets in the array not equal to zero, that describe positive sequences). During
mining, we extend a sequence S (at a node) to get a new candidate S’, by
appending some item z. Before computing countps(S’, g) and countpeq(S’, g),
we first need to compute the bitset array for S’. The bitset array for S’ is
calculated using the bitset array for S and the bitset array for item x, and is
done in two stages.

Stage 1: Using the bitset array for S, we generate another array of corre-
sponding mask bitsets. Each mask bitset captures all the valid extensions of
S, with respect to the gap constraint, for a particular sequence in pos U neg.
Suppose the maximum gap is g. For a given bitset b in the bitset array of S,
we perform g+ 1 times of right shift by distance 1, with Os filling the leftmost
bits. This results in g + 1 intermediate bitsets, one for each stage of the shift.
By ORing together all the intermediate bitsets, we obtain the final mask bit-
set m derived from b. The mask bitset array for S consists of all such mask
bitsets.

Example 6.2.5 Taking the last bitset 10100 in the previous example and set-
ting g = 1, the process is:
10100 >> 01010
01010 >> 00101
OR 01111
01111 4s the mask bitset derived from bitset 10100. [

Intuitively, a mask bitset m generated from a bitset b, closes all 1s in b (by
setting them to 0) and opens the following g + 1 bits (by setting them to 1).
In this way, m can accept only 1s within a g + 1 distance from the 1s in b.
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Stage 2: We use the mask bitset array for S and the bitset array for item
z, to calculate the bitset array for S’ which is the result of appending z to S.
Consider a sequence X in pos U neg and suppose the mask bitset describing
it is m and the bitset for item x is t. The bitset describing the occurrence of
S"in X, is equal to m AND ¢. If the bitset of the new candidate S’ does not
contain any 1, we can conclude that this candidate is not a subsequence of X
with g-gap constraint.

Example 6.2.6 ANDing 01111 (the mask bitset for sequence A) from the last
example with C’s bitset 00010, gives us AC’s bitset 00010.
Taking the last sequence in Table[6.3, ABACB, B’s 5-bitset is 01001 and

its mask H-bitset is:
01001 >> 00100

00100 >> 00010

OR 00110
So BB’s bitset is: 00110 AND 01001 = 00000. This means BB is not a
subsequence of ABACB with 1-gap constraint. [

Example 6.2.7 Figure shows the process of getting the bitset array for
BB from that for B. The two tables on the two sides of the arrow = show how
the masks for B are obtained from the bitset array for B. The & operation
is taken on bitset array and the Masks set, yielding the bitset array for BB.
From the figure we can see count,os(BB,1) =2 and county,q(BB,1) =0. m

|Bitsets of B| |Masks of B| |Bitsets of B| |Bitsets of BB|

0101 0011 0101 0001
00001 00000 00001 00000
11000 01110 11000 01000
1001 0110 1001 0000
01001 00110 01001 00000

Fig. 6.3. The generation of BB’s bitset array.

The task of computing bitset arrays can be done very efficiently. Modern
computer architectures have very fast implementations of shift operations and
logical operations. Since the maximum gaps are usually small (e.g. less than
20), the total number of right shifts and logical operations needed is not too
large. Consequently, calculating supppos(S, g) and supppeq(S,g) can be done
extremely quickly. The algorithm for support counting is given in Figure

Minimization

We have already seen how non-minimal distinguishing pruning eliminates non-
minimal candidates during tree expansion. However, the pattern set returned
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Algorithm: Support_Count(S’, g, D);

Assumption: g is the maximum gap, S is the max-prefix of S/, the bitset array
BARRAY g for S is available, the bitset array BARRAY , for the final
element x of S’ is available, D is the dataset;

Output: suppp(S’,g) and BARRAY g/ (the bitset array for S’);

Method:

1: generate the mask bitsets MaskS from BARRAY s for g (stage 1 above);

2:  do bitwise AND of MaskS and BARRAY , to get BARRAY 5/ (stage 2 above);

3:  let count be the number of bitsets in BARRAY g which contain 1;

4:  return suppp(S’,g) = count/|D| and BARRAY g;

Fig. 6.4. Support_Count(S’,g,D): calculate suppp(S’, g)

by Algorithm is only semi-minimal, i.e. an SMDS set. For example, in
Figure [6.1] we will get ACC, which is a supersequence of the distinguishing
sequence C'C'. Thus, in order to get the g-MDS set, a post-processing mini-
mization step is needed.

A naive idea for removing non-minimal sequences, is to check each against
all the others, removing it if it is a supersequence of at least one other. For n
sequences, this leads to an O(n?) algorithm, which is expensive if n is large.

Two ideas can be used to make it more efficient. Firstly, observe that it is
not necessary to check if a sequence is a supersequence of any longer sequence.
To take advantage of this, we cluster the sequence patterns according to their
length, when they are output during mining.

Secondly, we use a prefix tree for carrying out minimization. Sequences
are inserted into the tree in ascending order of length. Each sequence S to be
inserted into the tree is compared against the sequences already there. This
is easily done by stepping through each prefix of S, at each stage identifying
the nodes of the tree which are subsequences of the prefix so far. The process
terminates when a leaf node or the end of S is reached. If a subsequence of S
in the tree is found, then S is discarded. Otherwise, S must be minimal and
it is inserted.

Compared to the naive O(n?) method, using a prefix tree can help avoid
some duplicate comparisons, particularly for situations where there is sub-
stantial similarity between the sequential patterns, since each sequential pat-
tern prefix is only stored once. For example, consider two shorter patterns
P, = ABCC, P, = ABCF and a longer pattern P3 = ABCDE. To check
whether P5 is minimal by using the naive way, we compare Ps with P; item-
wise for 5 comparisons and with P, itemwise for 5 comparisons to conclude
that Ps is minimal. By using the prefix tree, ABC' is built once and compared
once, which takes itemwise 3 comparisons and then another 2 comparisons
to check the other two items D and E. Finally we know that Ps is minimal,
because no leaf is found. This takes itemwise 5 comparisons total, rather than
10 comparisons using the naive way.

The complete algorithm of ConSGapMiner is provided in Figure
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Algorithm: ConSGapMiner(pos,neg,q,,a)

Assumption: [ is the alphabet list, g is the maximum gap constraint,
0 is the minimal support in pos, « is the maximal support in neg,
a global set SMDS is used to contain the patterns generated by SMDS_Gen,;

Output: g-MDS set M DS;

Method:

1: SMDS «— {};

2:  set S to the empty sequence;

3:  SMDS_Gen(S,q,1,,x);

4: let M DS be the result of minimizing SM DS as described above;

5:  return M DS,

Fig. 6.5. The ConSGapMiner algorithm

6.2.3 Extending ConSGapMiner: Minimum Gap Constraints

This subsection and the next discuss several extensions to the ConSGapMiner
algorithm. These involve handling minimum gaps (this subsection) and per-
forming more complex types of minimization (the next subsection).

The definition of minimum gap constraint is essentially the dual of the
maximum gap constraint, obtained by replacing < with >.

Definition 6.2.6 (Minimum Gap Constraint) A minimum gap con-
straint is specified by a positive integer q. Given a sequence S = $1...8, and
an occurrence os = {i1,42,...,im} of a subsequence S’, if ix+1 —ix = q+1 for
each k € {1,...,m — 1}, then the occurrence oy is said to fulfill the g-minimum
gap constraint. Otherwise we say os fails the constraint. If there is at least one
occurrence of a subsequence S’ fulfilling the q-minimum gap constraint, we say
S’ fulfills the g-minimum gap constraint. Otherwise S’ fails the constraint. m

Example 6.2.8 Consider a sequence S = ACEBE. If a mazimum gap g = 3
is given, then AFE has 2 subsequence occurrences in S fulfilling the constraint,
namely {1,3} and {1,5}. If a minimum gap q = 2 is given, then AE has one
occurrence {1,5} in S fulfilling the constraint. So AE is a subsequence of S
fulfilling both the maximum and the minimum constraints. Considering only
the above maximum gap constraint, AC is a subsequence of S fulfilling the
constraint; but in conjunction with the above minimum gap constraint, AC is
not a subsequence of S fulfilling the constraints. [

Minimum gaps can be useful for applications where items of a sequence
pattern need to be at least certain distance apart from one another in se-
quences. For example, in scenarios where the items in the sequence represent
values being sampled over time, such as a waveform, items that are too close
to each other may represent information that is overly similar. Minimum gaps
may then be specified to help remove potential redundancy in the discovered
patterns. An interesting special case is when the value of the minimum gap is
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specified to equal the value for the maximum gap. This will result in patterns
whose items are distributed in equal distance in the original dataset.

Suppose we have a set of sequences D, a sequential pattern p and two
gap constraints ¢ and g. The count of p in D with ¢ as the maximum gap
constraint and ¢ as the minimum gap constraint, denoted as countp(p, g, q),
is the number of sequences in D in which p appears as a subsequence fulfilling
both the g-gap constraint and the g-minimum gap constraint. The (relative)
support of p in D with g-gap constraint and g-minimum gap constraint is
defined as suppp(p, g,q) = %W.

We now redefine the mining problem to include both the minimum and
maximum gap constraints:

Definition 6.2.7 (Extended MDS mining problem) Given two classes
of sequences pos (the positive) and neg (the negative), two support thresholds
0 and «, a maximum gap g and a minimum gap q, a pattern p is called
a Minimal Distinguishing Subsequence with (g, q)-gap constraint ((g,q)-MDS
for short), if and only if the following conditions are true:

Frequency condition: suppyos(p,g,q) = 9;

Infrequency condition: supppeq(p,g,q) < o

Minimality condition: There is no subsequence of p satisfying both the
frequency condition and the infrequency condition.

Given pos, neg, 0, a, g and q, the (g,q)-MDS mining problem is to find all
the (g,q)-MDSs. m

It is easy to extend the bit operations used in ConSGapMiner to handle
this minimum gap constraint. The only part requiring modification is the
construction of the mask bitset. Recall that for a maximum gap constraint g,
to construct the mask bitset, we perform g+ 1 times of right shift by distance
1 and OR the g + 1 intermediate bitsets together. The resulting bitset is
the mask of the given bitset. When a minimum gap constraint ¢ is added,
we initially right shift the given bitset ¢ times and discard the intermediate
bitsets. Then, we perform another g+ 1 — ¢ right shift operations and OR the
g + 1 — q intermediate bitsets to obtain the mask bitset.

Example 6.2.9 Consider the last sequence in Table[62 as an example. We
know that B’s bitset is 00111 w.r.t. g = 2. So BC’s bitset should be: 00111
AND 00010=00010. For q = 2, we discard the first 2 intermediate bitsets which
are 00100 and 00010. Then we right shift g+ 1 —q = 1 times and the mask
bitset is 00001. From this bitset we can see that the adjacent two positions,
which are 3 and 4, are closed and the third position 5 is open. This mask
bitset expresses the minimum gap constraint. By ANDing this mask bitset
with the single item C'’s bitset 00010, we get 00000; so BC isn’t a subsequence
of ABACB, because it fails the minimum gap constraint q = 2. [
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6.2.4 Extending ConSGapMiner: Coverage and Prefix-Based
Pattern Minimization

In order to discover patterns which satisfy the minimality condition from Def-
initions and [6.2.7 we have described strategies for pattern minimization
which aim to determine whether a pattern (or candidate) is a supersequence
of some other pattern (or candidate). For some situations, pursuing this kind
strategy may be too aggressive and useful patterns may be eliminated, since
the gap constraint is not class preserved. Consider the following example:

Example 6.2.10 Suppose pos={ACCBD, ACDBD, ABD} and two distin-
guishing patterns ACBD and ABD have been found using § = 1/2, g = 1,
q = 0. We observe that countpes(ACBD, 1,0) = 2 and countp,s(ABD,1,0) =
1. If we remove ACBD because it is a super-sequence of ABD, we will lose a
pattern which has higher frequency than its subpattern and thus is arguably a
more important feature. ]

To address this problem, two alternate minimization techniques can be
used. The first is based on comparisons using coverage in pos, the second
is based on prefix comparisons. Both are less aggressive and remove fewer
patterns than the minimization described above (which will be called basic
minimization from now on).

In essence, we need to use stricter conditions for minimality than that used
in Definitions and Given two MDSs, p; and ps and a reference
dataset D, we wish to remove ps due to pi, if p; occurs in every sequence
from D that ps does (p2 =p p1). If p1 occurs in every sequence from pos
that po does, then it is guaranteed that (pa =p p1) only if D = pos. This is
coverage based minimization. If py is prefix of po, then it is guaranteed that
P2 =p p1, with respect to any D. This is prefiz based minimization.

Handling Coverage Based Minimization

To describe the implementation of coverage based minimization, we first begin
by formally defining the notion of coverage.

Definition 6.2.8 (Coverage Set) Given a sequence p, gap parameters g
and q and the datasets pos and neg, the coverage set of p is equal to the set of
sequences from pos in which p appears as a subsequence fulfilling both the g-
maximum gap constraint and the g-minimum gap constraint. The coverage set
can be represented by a bitset, containing as many bits as there are sequences
in pos. Bit i is turned on if p appears as a subsequence in sequence i from
pos. Otherwise it is set to zero. [

When performing coverage based minimization, a sequence p; can be elim-
inated by a sequence ps iff:

1. po is a subsequence of p; and
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2. the coverage set of p; is a subset of the coverage set of ps.

To adjust the basic ConSGapMiner algorithm from Section [6.2.2] we have
to change two techniques: the first is the non-minimal distinguishing pruning
step and the other is the post-processing minimization.

For each candidate in the lexicographic tree shown in Figure [6.1], a cover-
age bitset is attached. This coverage bitset contains as many bits as the total
of sequences in pos. A newly-generated candidate’s coverage bitset can be set
by its bitset array. If the i-th bitset in the array contains at least one 1, this
candidate’s count,,s is increased and the ¢-th bit in the coverage bitset is set
to 1. The rule for the pruning is then changed to:

Non-Minimal Distinguishing Pruning (adjusted): Suppose we en-
counter a node representing sequence S, where c is the last item in S and
SUPPpos (S, 9) = 6 and supprey(S,g) < a. Then i) we never need to extend S
and ii) for any of the sibling nodes S’, we AND the coverage bitset for S’ with
the coverage bitset for S and then XOR the resulting bitset with the coverage
bitset for S’. If the resulting bitset does not contain any 1, then we never need
to extend S’ by the item c. If the resulting bitset contains at least one 1, we
must extend S’ by the item c.

Boolean operations can be used to test whether S’s coverage is a superset
of §”s. If this is the case, then no candidate in the subtree of S’ has a coverage
which is not a subset of S’s. In this situation, any extension of the nodes in
the subtree of S’, with item ¢ can give a super-sequence of S with a subset of
S’s coverage, which means it is not minimal. If S’ has a non-subset coverage
of S, then there may be an extension with item ¢, which gives a distinguishing
subsequence with a non-subset coverage of S’s and this may be minimal, so
we need to generate and keep it.

For the post-processing minimization, we still order the patterns in de-
scending order of their lengths. For each pattern we still keep a coverage
bitset with the same meaning as described above. For each pattern p, we find
all the patterns which have shorter lengths and with a coverage that is a su-
perset of that of p. If such a pattern is found, the standard way of checking
whether this pattern is a subsequence of p or not is performed. If it is a subset,
p is eliminated. If no pattern can be found to eliminate p, then we retain it in
the MDS set.

Handling Prefix Based Minimization

Performing prefix based minimization is substantially simpler than perform-
ing coverage based minimization. Two modifications are needed to the basic
ConsSGapMiner algorithm. First of all, the non-minimal distinguishing prun-
ing step is adjusted to the following;:

Non-Minimal Distinguishing Pruning (adjusted): Suppose we en-
counter a node representing sequence .S, where c is the last item in S and
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SUPPpos (S, g) = 0 and supppey(S, g) < a. Then we do not need to extend S.

Secondly, no post processing minimization step is needed, since all distin-
guishing sequences produced are guaranteed to be prefix minimal.

6.3 Surprising Sequence Patterns

Roughly speaking, a surprising sequence pattern is one whose (frequency of)
occurrence deviates greatly from the prior expectation of such occurrence.

Definition 6.3.1 Given a dataset D of sequences, a surprisingness measure
0 on sequence patterns, and a surprisingness threshold minSurp, a sequence
pattern S is called a surprising sequence pattern if 8(S) > minSurp holds. =

Essentially, the surprisingness 6(S5) of a sequence pattern S can be defined
as the difference of the actual frequency and the expected frequency of S.
A pattern S’s actual frequency of occurrence can be surprising if the actual
frequency is much higher or much lower than the expected frequency. A pat-
tern can be considered surprising with respect to a dataset, or with respect
to a sequence, or with respect to a window of a sequence, depending on how
the actual frequency is calculated. In the first case, the actual frequency is
calculated from the entire dataset. In the second case, the actual frequency
is calculated from the given sequence. In the third case, the actual frequency
is calculated from a window of the given sequence. The first case can be use-
ful for identifying some unexpected behavior of a class of sequences (e.g. the
sequences of a species). The second and third cases are useful for predicting
surprisingness of (windows of) sequences.

Several issues need to be addressed for surprisingness analysis:

e One issue is how to define the frequency (actual or expected) of sequence
patterns. Possibilities include (1) per-sequence based definition where all
occurrences of a pattern in an entire sequence are considered, and (2) per-
window based definition where all occurrences of a pattern in a window of
a given sequence are considered. Per sequence/window based frequencies
can be used to determine frequencies in a whole dataset if desired.

e Another issue is how to estimate the expected frequency (or probability)
of a sequence pattern.

e A third issue is how to choose the minSurp threshold. This issue is im-
portant for avoiding having too many false positive “surprising sequence
patterns”, especially for alarm/fraud detection applications.

Below we discuss how to estimate the expected frequency for the window
based definition of frequency. This essentially follows the approach of [41].
(Reference [129] deals with the same issue for periodic sequence patterns.) A
window size is a positive integer w.
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Definition 6.3.2 Let S = s1...8:m be a sequence pattern and let T = t1...t,
be a sequence. Then the w-window frequency of S in T is defined as the total
number, denoted as C(n,w,m), of occurrences (matches) {i1,...,im} of S in
T such that iy < ... <ipm, 85 = Uy, foralll <j<m, and i, —i1 < w (i.e. the
distance between the first matching position and the last matching position of
the pattern in the sequence is at most w). [

To estimate the expected window based frequency of S in D, it is con-
venient to think of D as having just one sequence. This can be done by
concatenating all sequences of D into one sequence. Moreover, it is conve-
nient to assume that the concatenated sequence is generated by a memoryless
(Bernoulli) source. It is worth remembering that the expected frequency is
just an estimation, although one wants to get accurate estimates.

For each item a, let prob(a) be the estimated probability of ¢ in the dataset
D. For example, prob(a) can be estimated as

number of occurrences of a in D
Yxepl|X]

prob(a) =

Let p(w,m) denote the probability that a window of size w contains at
least one occurrence of the sequence pattern S of size m as a subsequence.
Then the expected value of C(n,w,m) can be estimated as

E(C(n,w,m)) =n x p(w, m).

Reference [41] shows that, for sufficiently large w, p(w, m) can be approx-
imated by an expression in terms of prob(a) of all items a in the alpha-
bet. Hence E(C(n,w,m)) can be approximated by an expression in terms
of prob(a) of all items a in the alphabet as well.

Reference [41] also computes the variance of C'(n,w,m), and then shows
that C(n,w,m) is normally distributed. This allows us to set either an up-
per threshold 7,(w,m) (for over-represented surprising patterns) or a lower
threshold 7,(w, m) (for under-represented surprising patterns). More precisely,
for a given level 3, the choice of 7, (w,m) and 7¢(w, m) ensures that either
P(M > 7y (w,m)) < B or P(M < 1o(w,m)) < (. That is, if one
observes more than nr,(w,m) occurrences (upper threshold) or fewer than
nte(w, m) occurrences (lower threshold) of windows with sequence pattern S,
it is highly unlikely that such a number is generated by the memoryless source,
which implies that S is surprising. The interested readers should consult [41]
for details.

In addition to the memoryless model for approximating the data source,
one can also use other models such as Markov models or HMM etc.

We end this section by discussing the related topic of “rare case mining”
[120]. This applies to all types of data. Informally, a case corresponds to a
region in the instance space that is meaningful with respect to the domain
under study and a rare case is a case that covers a small region of the instance
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space and covers relatively few training examples. As a concrete example,
with respect to the class bird, non-flying bird is a rare case since very few
birds (e.g., ostriches) do not fly. Rare cases can also be rare associations. For
example, mop and broom will be a rare association (i.e., case) in the context
of supermarket sales [66]. For classification tasks the rare cases may manifest
themselves as small disjuncts (namely rules that cover few training examples,
where a rule is the set of conditions in a path from the root of a decision tree
to a leaf of the tree). In the study of rarity, one needs to decide whether the
rarity of a case should be determined with respect to some absolute threshold
number of training examples (absolute rarity) or with respect to the relative
frequency of occurrence in the underlying distribution of data (relative rarity).



7

Related Topics

In this chapter we discuss some other topics on or related to sequence data
mining, including structured-data mining, partial periodic patterns, and bioin-
formatics. We also briefly discuss sequence alignment, which is needed for
understanding certain materials in several previous chapters. Finally, we give
some pointers to biological sequence databases and resources.

More general information on data mining can be found in [44] [105] [46].
Reference [40] covers general algorithms on sequences and trees, and reference
[25] covers biological sequence analysis.

7.1 Structured-Data Mining

Sequence data mining can be viewed as a special subfield of data mining of
structured data. By structured data we mean data where each data object
is an explicitly structured composition of a set of data items. In addition to
sequence data, other types of structured data include tree data, graph data,
time series data, and text data. The explicit structures for the underlying data
items in such structured data objects include (partial) orderings, temporal
orderings, hierarchical structures, and network structures. It should be noted
that our concept of structured is different from the concept of structured
in databases: we mean that the lower level items in a high level object are
somehow organized, whereas the concept of structured in databases means
that the high-level objects are “typed” using the tuple and set constructs.
Graph data mining is useful for applications where general interactions
among data items (objects) are of interest. For example, graph data min-
ing has applications in the analysis of massive biological networks, chemical
compounds and biological molecules, social networks, software and program
structures (e.g. for debugging), and web structures, etc. Reference [119 is a
survey on this field, although substantial progress has happened since the time
of the survey. References [21] [124] are two representative papers in this area.
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Tree data mining is useful for applications where hierarchical interactions
among data items (objects) are of interest. For example, tree data mining has
applications in XML data analysis, text data parsing and analysis. References
[1311 [18] are representative papers in this area.

Time series data mining has applications for situations where a huge num-
ber of time series (or data streams) are present. Here one would like to un-
derstand how different time series relate to each other, or how different parts
of a time series relate to each other. When the time series consist of just nu-
merical values over time, the main goal is to understand the trends. When
the time series consist of sequences of events or composite objects over time,
it is of interest to understand the interaction among the events and objects in
addition to trends. Many diverse problems and approaches have been studied.
References [9, [61) [52] [I7] are representatives of papers in this area.

From the viewpoint of structured data, text data can be viewed as having
a mixture of two structures, namely the sequencing structure at the sentence
level and a hierarchical structure at the paragraph/section levels. Text data
mining has a rich history and continues to be a fertile area for data mining
research. Interested readers can use [48] as a start point to get more details.

Transactional data and relational data should not be viewed as structured.
It is of little, if any, interest to mine structural relationship among the lower
level items in such data.

7.2 Partial Periodic Pattern Mining

Finding periodic patterns from time series databases is an important data
mining task with many applications, including the potential for predicting
future events. Many methods have been developed for searching periodicity
patterns in large data sets [70]. Periodicity can be full periodicity or partial
periodicity. In full periodicity, every time point contributes (precisely or ap-
proximately) to the cyclic behavior of a time series. In contrast, in partial
periodicity, some (not necessarily all) time points contribute (precisely or ap-
proximately) to the cyclic behavior of the time series. An example partial
periodic pattern may state that Jim reads the New York Times from 7:00
to 7:30 every weekday morning but his activities at other times do not have
much regularity. Thus, partial periodicity is a looser kind of periodicity than
full periodicity, and it exists ubiquitously in the real world. The concept of
partial periodic pattern was first introduced in [43] 42], and many results have
been published since then.

Typically, the study of partial periodicity considers a single long event se-
quence associated with some real-world object. Often, each sequence position
is associated with a time point. However, it should be noted that partial peri-
odicity can also be applied to biological sequences, where one aims to discover
partial periodicity over the sequence positions.
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Many types of event sequences can be studied, leading to partial periodicity
patterns with varying degree of structural complexity:

e The elements of sequences can be single items. A given sequence for par-
tial periodicity study has the form s;...s, where each s; is a single item.
Examples of such sequences include DNA sequences, and action histories
for individual persons.

e The elements of sequences can be sets of items (or equivalently transac-
tions). A given sequence for partial periodicity study has the form s;...s,
where each s; is a set of items. Examples of such sequences include a cus-
tomer shopping history, where each sequence position is associated with a
set of items bought on one shopping trip, at a supermarket.

e The elements of sequences can be sets of transactions. A given sequence
for partial periodicity study has the form s;...s,, where each s; is a set of
transactions. Examples of such sequences include the transaction history
of a supermarket, where each sequence position is associated with the set
of all customer transactions for some given day.

Of course, partial periodicity can also be studied for even more complex types
of event histories (e.g. each sequence position is associated with a relation).

For simplicity, we now provide the formal definitions for the case where
the elements of event sequences are sets of items, as given in [42]. For ease of
discussion, we may refer to each sequence position as a time point.

Assume that a sequence of the form S = sj...s, is given, where each s;
is a set of items. Let X be the underlying set of items that can occur in
S. For example, S can be a{b,c,d}cb{b,c,e}da{d,c, f}e, for which X' can be
{a,b,c,d,e, f}.

We will also use the wildcard character *, which can match any single set
of features at any given sequence position. We define a pattern T' = #;...t,,
as a non-empty sequence over (2* — {}) U {*}; we say p is the period of 7.
For example, a{b, c}* is a pattern with period 3. For simplicity, we omit the
parenthesis for singleton sets; for example, we write {a} as a.

The frequency count of pattern 7" in sequence S is defined by

freg_count(T,S) = |{i| 0 < i <m, and t; C S;upj for each 1 < j < p},
and the confidence of T" in S is defined by

conf (T, S) = freq-co:lnt(T, S)’

where m is the maximum number of disjoint intervals of length p contained
in S. (In formula, m is the positive integer such that m*p < n < (m+1)*p.)

The goal of partial periodic pattern mining is to mine the partial periodic
patterns from S meeting a given minimum confidence threshold. When the
period p is not given, one also needs to determine the periods for which there
are partial periodic patterns from S meeting the given minimum confidence
threshold.
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Reference [43] introduced the partial periodicity mining problem for se-
quences over simple items, and gave a data cube based algorithm. Reference
[42] provided the definition used above for generalized sequences. It also gave
a mining algorithm, based on a so-called max-subpattern hit set property,
which performs shared mining for a range of desired periods.

After these two papers, a number of papers have been published.

e Several papers focused on efficiency issues. Reference [27] considered the
incremental mining of partial periodic patterns when a given sequence is
extended, together with a “merge mining” partial periodic pattern mining
algorithm. Reference [28] proposed a “convolution” based algorithm to
mine partial periodic patterns with unknown periods in one pass. In this
way, the periods for partial periodic patterns do not have to be user-
specified, and the detection of the periods and the associated patterns
can be done in one pass. Reference [29] gave another algorithm solving
the same problems. Reference [14] also studied efficiency issues for partial
periodic pattern mining.

e Several papers considered various extensions to partial periodicity. Refer-
ence [128] studied how to mine high-level partial periodic patterns, where
a higher level pattern may consist of repetitions of lower level patterns.
The paper overcame difficulties caused by the presence of noise for the
discovery of high-level patterns. The paper used meta-patterns to capture
these high level patterns. Reference [129] studied the mining of surprising
periodic patterns. The paper used “information gain” to measure the de-
gree of surprise. References [73], [127] studied the detection of asynchronous
partial periodic patterns. Such patterns are useful for situations where the
occurrences of a periodic pattern may be shifted due to disturbance (and
so may not exactly match the period). Reference [I06] studied the relaxed
concept of periodicity, where a period may be stretched or shortened in a
sequence.

Partial periodic pattern mining is related to the mining of cyclic association
rules [82], the discovery of calendar-based temporal association rules [65], etc.
It is also related to the analysis of time series (many text books, including
[10] are available on this topic) and temporal knowledge discovery (see [93]
for a survey on this topic).

7.3 Bioinformatics

Sequence data mining is closely related to bioinformatics and computational
biology. Bioinformatics and computational biology are concerned with the
development of computational tools for the management, analysis and under-
standing of biological data. Research in these directions are motivated to solve
problems inspired from biological, genomic and medical practices.
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In addition to sequence data, several other types of data have been col-
lected from biological, genomic, and medical studies. Examples include the
following: (a) Microarray gene chips can simultaneously profile the expres-
sion levels of thousands of genes in a single tissue sample. Such chips are a
useful tool for understanding the interaction among genes, and the difference
of such interactions under different disease and treatment conditions. (b)
Tandem mass spectrometry is a process in which proteins are broken up and
the numerous pieces (the peptides) are separated by mass. The result is a
collection of tandem mass spectra, each of which is produced by a peptide
and can act as a fingerprint for identifying the peptide. The data produced by
tandem mass spectrometry can be used to understand the interaction among
proteins in cells. (¢) For many proteins, the three dimensional structure data
are also available. We can study such data together with the protein sequence
(linear structure).

In the previous chapters we touched on several types of bioinformatics
problems such as gene start site identification problem, alternative splicing
site identification problem, the motif finding and scoring problems, protein
sequence family identification and characterization problems. There are many
other bioinformatics problems. Some example&ﬂ are the following:

e Protein structure prediction problem: Given a protein amino acid sequence
(a linear structure), determine its three-dimensional folded shape (a ter-
tiary structure).

e Protein folding pathway prediction problem: Given a protein amino acid
sequence and its three-dimensional folded structure, determine time-
ordered sequence of folding events, called the folding pathway, that leads
from the linear structure to the three-dimensional structure.

e Similar sequence search: Given a sequence S and a set of sequences S,
retrieve the most similar sequences of S in S.

Other examples include (multiple) sequence alignment, primer design, litera-
ture search, phylogenetic analysis, etc.

7.4 Sequence Alignment

Alignment is frequently used to identify regions of similarity between se-
quences. In biology, significant similarity can be a consequence of functional,
structural, or evolutionary relationships between the sequences. Alignment
can be considered for two sequences or more sequences.

An alignment between two sequences X = $1...8,, and Y = t1...t, is a
mappinﬁg between positions in the two sequences. In addition to the normal

! Some of these problems were discussed in [I17} 103].
2 The mapping must satisfy certain properties to ensure that the aligned sequences
can be displayed in the manner illustrated in Figure [T}
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positions in the sequences, gaps (represented by -) are allowed. A gap indicates
an insertion in one sequence or a deletion in the other sequence. In the aligned
sequences, if a column contains -, then the column is an indel; if a column
does not contain - and it contains the same element in both rows, then the
column is a match; otherwise the column is a mismatch.

ACTCCTC-A
AG-CC-CCA

Fig. 7.1. An alignment between two sequences

Figure [[1] shows an alignment between X = ACTCCTCA and Y =
AGCCCCA. In the figure, column 1 is a match, column 2 is a mismatch, and
column 3 is an indel; there are a total of 5 matches, 1 mismatch, and 3 indels.

The quality of an alignment is measured by three numbers: the number
of matches, the number of mismatches, and the number of indels. The three
numbers can be combined into a formula to define the quality of the alignment,
depending on the application.

In some applications, different mismatches are viewed differently. An ele-
ment x can be more similar to an element y than to an element z. Similarity
between elements can be given by a matrix. The objective is then to find
alignments which optimize the aggregated similarity of the elements in the
matching columns.

Alignment of three or more sequences is similar, and is called multiple
alignment. Figure gives an example.

VLRQAAQ--QVLQRQIIQGPQQ
VLRQVVQ--QALQRQIIQGPQQ
VLRQAAHLAQQLYQGQ----RQ
VLRQAAH--QQLYQGQ----RQ

Fig. 7.2. A multiple alignment of sequences

Given a set of sequences there can be many possible alignments. Among
these, there is an optimal alignment, for a given quality measure. The optimal
alignment can be computed using dynamic programming. Sometimes speed
of computation is important. In such cases, heuristic methods can be used.
For example, one can first find possible perfect short matches, and then ex-
tend or join these perfect short matches to find good long matches. Sequence
alignment is a thoroughly studied problem. Interested readers can find more
details in, for example, [40] 25].
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7.5 Biological Sequence Databases and Biological Data
Analysis Resources

Many biological databases and resources are available at the National Cen-
ter for Biotechnology Information (NCBI), which was established in 1988 as
a national resource for molecular biology information. The list of data and
analysis resources provided by NCBI is long, including analysis and retrieval
resources for the data in GenBank. More information can be found at the
website www.ncbi.nlm.nih.gov as well as from [121].

Protein sequences are an especially interesting category of biological se-
quences since protein is functionally essential in life and its alphabet is large
(20 amino acids). There are several well-known protein databases: Pfam [7]
is a collection of protein families and domains. NCBI also provides retrieval
of protein sequence data. Swiss-Prot [] is a protein sequence database which
strives to provide a high level of annotation, a minimal level of redundancy
and high level of integration with other databases.

Alternative splicing is widespread in mammalian gene expression, and vari-
ant splice patterns are often specific to different stages of development, par-
ticular tissues or a disease state. ASD [107] is a database of computationally
delineated alternative splice events as seen in alignments of EST/cDNA se-
quences with genome sequences, and a database of alternatively spliced exons
collected from literature. ASD is available at http://www.ebi.ac.uk/asd.

The International HapMap Project is a multi-country effort to identify and
catalog genetic similarities and differences in human beings. The data collected
by this project are certain subsequences of the human DNA sequences, for se-
quence positions where the DNA can be different among different individuals.
The data can help researchers to find genes that affect health, disease, and
individual responses to medications and environmental factors. More infor-
mation about the project as well as the data collected from this project can
be found at http://www.hapmap.org/ and from [36].
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