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Multimedia Information Representation

Chapter I
Video Representation and Processing for Multimedia Data Mining ...................................................... 1 
 Amr.Ahmed,.University.of.Lincoln,.UK

Video processing and segmentation are important stages for multimedia data mining, especially with 
the advance and diversity of video data available. The aim of this chapter is to introduce researchers, 
especially new ones, to the “video representation, processing, and segmentation techniques”. This in-
cludes an easy and smooth introduction, followed by principles of video structure and representation, 
and then a state-of-the-art of the segmentation techniques focusing on the shot-detection. Performance 
evaluation and common issues are also discussed before concluding the chapter.

Chapter II
Image Features from Morphological Scale-Spaces............................................................................... 32
 Sébastien.Lefèvre,.University.of.Strasbourg.–.CNRS,.France

Multimedia data mining is a critical problem due to the huge amount of data available. Efficient and reli-
able data mining solutions requires both appropriate features to be extracted from the data and relevant 
techniques to cluster and index the data. In this chapter, the authors deal with the first problem which is 
feature extraction for image representation. A wide range of features has been introduced in the literature, 
and some attempts have been made to build standards (e.g. MPEG-7). These features are extracted with 
image processing techniques, and the authors focus here on a particular image processing toolbox, namely 
the mathematical morphology, which stays rather unknown from the multimedia mining community, 
even if it offers some very interesting feature extraction methods. They review here these morphological 
features, from the basic ones (granulometry or pattern spectrum, differential morphological profile) to 
more complex ones which manage to gather complementary information.
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proposed scheme with that of other established techniques, where the results demonstrate the superiority 
of the proposed method.
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Computer-aided foliage image retrieval systems have the potential to dramatically speed up the process 
of plant species identification.  Despite previous research, this problem remains challenging due to the 
large intra-class variability and inter-class similarity of leaves. This is particularly true when a large 
number of species are involved. In this chapter, the authors present a shape-based approach, the inner-
distance shape context, as a robust and reliable solution. They show that this approach naturally captures 
part structures and is appropriate to the shape of leaves. Furthermore, they show that this approach can 
be easily extended to include texture information arising from the veins of leaves. They also describe a 
real electronic field guide system that uses our approach. The effectiveness of the proposed method is 
demonstrated in experiments on two leaf databases involving more than 100 species and 1000 leaves.
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Motion estimation necessitates an appropriate choice of similarity function. Because generic similarity 
functions derived from simple assumptions are insufficient to model complex yet structured appearance 
variations in motion estimation, the authors propose to learn a discriminative similarity function to match 



images under varying appearances by casting image matching into a binary classification problem. They 
use the LogitBoost algorithm to learn the classifier based on an annotated database that exemplifies the 
structured appearance variations: An image pair in correspondence is positive and an image pair out of 
correspondence is negative. To leverage the additional distance structure of negatives, they present a 
location-sensitive cascade training procedure that bootstraps negatives for later stages of the cascade 
from the regions closer to the positives, which enables viewing a large number of negatives and steer-
ing the training process to yield lower training and test errors. They also apply the learned similarity 
function to estimating the motion for the endocardial wall of left ventricle in echocardiography and to 
performing visual tracking. They obtain improved performances when comparing the learned similarity 
function with conventional ones.
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Relevance feedback is an effective approach to boost the performance of image retrieval. Labeling data 
is indispensable for relevance feedback, but it is also very tedious and time-consuming. How to allevi-
ate users’ burden of labeling has been a crucial problem in relevance feedback. In recent years, active 
learning approaches have attracted more and more attention, such as query learning, selective sampling, 
multi-view learning, etc. The well-known examples include Co-training, Co-testing, SVMactive, etc. 
In this literature, the authors will introduce some representative active learning methods in relevance 
feedback. Especially they will present a new active learning algorithm based on multi-view learning, 
named Co-SVM. In Co-SVM algorithm, color and texture are naturally considered as sufficient and 
uncorrelated views of an image. SVM classifier is learned in color and texture feature subspaces, re-
spectively. Then the two classifiers are used to classify the unlabeled data. These unlabeled samples 
that disagree in the two classifiers are chose to label. The extensive experiments show that the proposed 
algorithm is beneficial to image retrieval.   

Chapter VII
Visual Data Mining Based on Partial Similarity Concepts.................................................................. 166
 Juliusz.L..Kulikowski,.Polish.Academy.of.Sciences,.Poland

Visual data mining is a procedure aimed at a selection from a document’s repository subsets of docu-
ments presenting certain classes of objects; the last may be characterized as classes of objects’ similarity 
or, more generally, as classes of objects satisfying certain relationships. In this chapter attention will be 
focused on selection of visual documents representing objects belonging to similarity classes.
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as well as their applications in the area of image annotation, video annotation, and image retrieval. It is 
well known that the pair-wise similarity is an essential factor in graph propagation based semi-supervised 
learning methods. A novel graph-based semi-supervised learning method, named Structure-Sensitive 
Anisotropic Manifold Ranking (SSAniMR), is derived from a PDE based anisotropic diffusion frame-
work. Instead of using Euclidean distance only, SSAniMR further takes local structural difference into 
account to more accurately measure pair-wise similarity. Finally some future directions of using semi-
supervised learning to analyze the multimedia content are discussed.
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With the explosive growth in the amount of video data and rapid advance in computing power, extensive 
research efforts have been devoted to content-based video analysis. In this chapter, they authors will give 
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video representation and indexing models are also presented.
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Semantic mining is an essential part in knowledgebase and decision support systems where it enables 
the extraction of useful knowledge form available databases with the ultimate goal of supporting the 
decision making process. In process systems engineering, decisions are made throughout plant / process / 
product life cycles. The provision of smart semantic mining techniques will improve the decision making 



process for all life cycle activities. In particular, safety and environmental related decisions are highly 
dependent on process internal and external conditions and dynamics with respect to equipment geometry 
and plant layout. This chapter discusses practical methods for semantic mining using systematic knowl-
edge representation as integrated with process modeling and domain knowledge. POOM or plant/process 
object oriented modeling methodology is explained and used as a basis to implement semantic mining as 
applied on process systems engineering. Case studies are illustrated for biological process engineering, 
in particular MoFlo systems focusing on process safety and operation design support.
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on the complementary properties of these models, we design new hybrid approaches, called frequency-
based annotation and learning-based annotation, to improve the efficiency of manual image annotation 
as well as retrieval. Both our simulation and experimental results show that the proposed algorithms can 
achieve up to a 50% reduction in annotation time over baseline methods for manual image annotation, 
and produce significantly better annotation and retrieval results in the same amount of time.
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This chapter introduces the application of active learning in video annotation.  The insufficiency of training 
data is a major obstacle in learning-based video annotation.  Active learning is a promising approach to 
dealing with this difficulty.  It iteratively annotates a selected set of most informative samples, such that 
the obtained training set is more effective than that gathered randomly.  We present a brief review of the 
typical active learning approaches.  We categorize the sample selection strategies in these methods into 
five criteria, i.e., risk.reduction, uncertainty, positivity, density, and diversity.  In particular, we intro-
duce the Support Vector Machine (SVM)-based active learning scheme which has been widely applied.  
Afterwards, we analyze the deficiency of the existing active learning methods for video annotation, i.e., 
in most of these methods the to-be-annotated concepts are treated equally without preference and only 
one modality is applied.  To address these two issues, we introduce a multi-concept multi-modality ac-
tive learning scheme.  This scheme is able to better explore human labeling effort by considering both 
the learnabilities of different concepts and the potential of different modalities.

Chapter XIV
Annotating Images by Mining Image Search...................................................................................... 323
 Xin-Jing.Wang,.Microsoft.Research.Asia,.China
. Lei.Zhang,.Microsoft.Research.Asia,.China
. Xirong.Li,.Microsoft.Research.Asia,.China
. Wei-Ying.Ma,.Microsoft.Research.Asia,.China
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annotation is still far from practical. In this paper, we propose a novel attempt of modeless image an-
notation, which investigates how effective a data-driven approach can be, and suggest annotating an 
uncaptioned image by mining its search results. We collected 2.4 million images with their surrounding 
texts from a few photo forum websites as our database to support this data-driven approach. The entire 
process contains three steps: 1) the search process to discover visually and semantically similar search 
results; 2) the mining process to discover salient terms from textual descriptions of the search results; 
and 3) the annotation rejection process to filter noisy terms yielded by step 2). To ensure real time an-
notation, two key techniques are leveraged – one is to map the high dimensional image visual features 
into hash codes, the other is to implement it as a distributed system, of which the search and mining 
processes are provided as Web services. As a typical result, the entire process finishes in less than 1 
second. Since no training dataset is required, our proposed approach enables annotating with unlimited 
vocabulary, and is highly scalable and robust to outliers. Experimental results on real web images show 
the effectiveness and efficiency of the proposed algorithm.
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With the rapid growth of image collections, content-based image retrieval (CBIR) has been an active area 
of research with notable recent progress. However, automatic image retrieval by semantics still remains 
a challenging problem. In this chapter, we will describe two promising techniques towards semantic 



image retrieval  semantic image classification and automatic image annotation. For each technique, 
four aspects are presented: task definition, image representation, computational models, and evaluation. 
Finally, we will give a brief discussion of their application in image retrieval.
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With advances in computer technology and the World Wide Web there has been an explosion in the 
amount and complexity of multimedia data that are generated, stored, transmitted, analyzed, and ac-
cessed.  In order to extract useful information from this huge amount of data, many content-based im-
age retrieval (CBIR) systems have been developed in the last decade.  A Typical CBIR system captures 
image features that represent image properties such as color, texture, or shape of objects in the query 
image and try to retrieve images from the database with similar features.  Recent advances in CBIR 
systems include relevance feedback based interactive systems.  The main advantage of CBIR systems 
with relevance feedback is that these systems take into account the gap between the high-level concepts 
and low-level features and subjectivity of human perception of visual content.  CBIR systems with rel-
evance feedback are more efficient than conventional CBIR systems; however, these systems depend on 
human interaction.  In this chapter, we describe a new approach for image storage and retrieval called 
association-based image retrieval (ABIR).  We try to mimic human memory.  The human brain stores 
and retrieves images by association.  We use a generalized bi-directional associative memory (GBAM) 
to store associations between feature vectors that represent images stored in the database.  Section I 
introduces the reader to the CBIR system.  In Section II, we present architecture for the ABIR system, 
Section III deals with preprocessing and feature extraction techniques, and Section IV presents various 
models of GBAM.  In Section V, we present case studies.
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Image retrieval and image compression have been typically pursued separately. Only little research 
has been done on a synthesis of the two by allowing image retrieval to be performed directly in the 
compressed domain of images without the need to uncompress them first. In this chapter we show that 
such compressed domain image retrieval can indeed be done and lead to effective and efficient re-
trieval performance. We introduce a novel compression algorithm – colour visual pattern image coding 
(CVPIC) – and present several retrieval algorithms that operate directly on compressed CVPIC data. 
Our experiments demonstrate that it is not only possible to realise such midstream content access, but 
also that the presented techniques outperform standard retrieval techniques such as colour histograms 
and colour correlograms.
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Preface

With the explosive growth of multimedia databases in terms of both size and variety, effective and ef-
ficient indexing and searching techniques for large-scale multimedia databases have become an urgent 
research topic in recent years.

For data organization, the conventional approach is based on keywords or text description of a 
multimedia datum. However, it is tedious to give all data text annotation and it is almost impossible 
for people to capture as well. Moreover, the text description is also not enough to precisely describe 
a multimedia datum. For example, it is unrealistic to utilize words to describe a music clip; an image 
says more than a thousand words; and keywords-based video shot description cannot characterize the 
contents for a specific user. Therefore, it is important to utilize the content based approaches (CbA) to 
mine the semantic information of a multimedia datum. 

In the last ten years, we have witnessed very significant contributions of CbA in semantics targeting 
for multimedia data organization. CbA means that the data organization, including retrieval and index-
ing, utilizes the contents of the data themselves, rather than keywords provided by human. Therefore, 
the contents of a datum could be obtained from techniques in statistics, computer vision, and signal 
processing. For example, Markov random fields could be applied for image modeling; spatial-temporal 
analysis is important for video representation; and the Mel frequency cepstral coefficient has been shown 
to be the most effective method for audio signal classification.

Apart from the conventional approaches mentioned above, machine learning also plays an indispens-
able role in current semantic mining tasks, for example, random sampling techniques and support vector 
machine for human computer interaction, manifold learning and subspace methods for data visualization, 
discriminant analysis for feature selection, and classification trees for data indexing.

The goal of this IGI Global book is to provide an introduction about the most recent research and 
techniques in multimedia semantic mining for new researchers, so that they can go step by step into this 
field. As a result, they can follow the right way according to their specific applications. The book is also 
an important reference for researchers in multimedia, a handbook for research students, and a repository 
for multimedia technologists.

The major contributions of this book are in three aspects: (1) collecting and seeking the recent and 
most important research results in semantic mining for multimedia data organization, (2) guiding new 
researchers a comprehensive review on the state-of-the-art techniques for different tasks for multime-
dia database management, and (3) providing technologists and programmers important algorithms for 
multimedia system construction.

This edited book attracted submissions from eight countries including Canada, China, France, Japan, 
Poland, Singapore, United Kingdom, and United States. Among these submissions, 19 have been ac-
cepted. We strongly believe that it is now an ideal time to publish this edited book with the 19 selected 



xvi  

chapters. The contents of this edited book will provide readers with cutting-edge and topical information 
for their related research.

Accepted chapters are solicited to address a wide range of topics in semantic mining from multimedia 
databases and an overview of the included chapters is given below.

This book starts from new multimedia information representations (Video Representation and 
Processing for Multimedia Data Mining) (Image Features from Morphological Scale-spaces) (Face 
Recognition and Semantic Features), after which learning in multimedia information organization, an 
important topic in semantic mining, is studied by four chapters (Shape Matching for Foliage Database 
Retrieval) (Similarity Learning For Motion Estimation) (Active Learning for Relevance Feedback in 
Image Retrieval) (Visual Data Mining Based on Partial Similarity Concepts). Thereafter, four schemes 
are presented for semantic analysis in four chapters (Image/Video Semantic Analysis by Semi-Supervised 
Learning) (Content-Based Video Semantic Analysis) (Semantic Mining for Green Production Systems) 
(Intuitive Image Database Navigation by Hue-sphere Browsing). The multimedia resource annotation 
is also essential for a retrieval system and four chapters provide interesting ideas (Hybrid Tagging and 
Browsing Approaches for Efficient Manual Image Annotation) (Active Video Annotation: To Minimize 
Human Effort) (Image Auto-Annotation by Search) (Semantic Classification and Annotation of Images). 
The last part of this book presents other related topics for semantic mining (Association-Based Image 
Retrieval) (Compressed-domain Image Retrieval based on Colour Visual Patterns) (Multimedia Resource 
Discovery using Mobile Agent) (Multimedia Data Indexing).
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ABSTRACT

Video.processing.and.segmentation.are.important.stages.for.multimedia.data.mining,.especially.with.
the.advance.and.diversity.of.video.data.available..The.aim.of.this.chapter.is.to.introduce.researchers,.
especially.new.ones,.to.the.“video.representation,.processing,.and.segmentation.techniques”..This.in-
cludes.an.easy.and.smooth.introduction,.followed.by.principles.of.video.structure.and.representation,.
and.then.a.state-of-the-art.of.the.segmentation.techniques.focusing.on.the.shot-detection..Performance.
evaluation.and.common.issues.are.also.discussed.before.concluding.the.chapter. 

I. INTRODUCTION

With the advances, which are progressing very fast, in the digital video technologies and the wide 
availability of more efficient computing resources, we seem to be living in an era of explosion in digital 
video. Video data are now widely available, and being easily generated, in large volumes. This is not 
only on the professional level. It can be found everywhere, on the internet, especially with the video 
uploading and sharing sites, with the personal digital cameras and camcorders, and with the camera 
mobile phones that became almost the norm. 

People use the existing easy facilities to generate video data. But at some point, sooner or later, they 
realize that managing these data can be a bottleneck. This is because the available techniques and tools 
for accessing, searching, and retrieving video data are not on the same level as for other traditional 
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data, such as text. The advances in the video access, search, and retrieval techniques have not been 
progressing with the same pace as the digital video technologies and its generated data volume. This 
could be attributed, at least partly, to the nature of the video data and its richness, compared to text data. 
But it can also be attributed to the increase of our demands. In text, we are no longer just satisfied by 
searching for exact match of sequence of characters or strings, but need to find similar meanings and 
other higher level matches. We are also looking forward to do the same on video data. But the nature 
of the video data is different. 

Video data is more complex and naturally larger in volume than the traditional text data. They 
usually combine visual and audio data, as well as textual data. These data need to be appropriately an-
notated and indexed in an accessible form for search and retrieval techniques to deal with it. This can 
be achieved based on either textual information, visual and/or audio features, and more importantly on 
semantic information. The textual-based approach is theoretically the simplest. Video data need to be 
annotated by textual descriptions, such as keywords or short sentences describing the contents.  This 
converts the search task into the known area of searching in the text data, where the existing relatively 
advanced tools and techniques can be utilized. The main bottleneck here is the huge time and effort 
that are needed to accomplish this annotation task, let alone any accuracy issues. The feature-based 
approach, whether visual and/or audio, depends on annotating the video data by combinations of their 
extracted low-level features such as intensity, color, texture, shape, motion, and other audio features. 
This is very useful in doing a query-by-example task. But still not very useful in searching for specific 
event or more semantic attributes. The semantic-based approach is, in one sense, similar to the text-
based approach. Video data need to be annotated, but in this case, with high-level information that 
represents the semantic meaning of the contents, rather than just describing the contents. The difficulty 
of this annotation is the high variability of the semantic meaning, of the same video data, among dif-
ferent people, cultures, and ages, to name just a few. It will depend on so many factors, including the 
purpose of the annotation, the domain and application, cultural and personal views, and could even be 
subject to the mood and personality of the annotator. Hence, generally automating this task is highly 
challenging. For specific domains, carefully selected combinations of the visual and/or audio features 
correlate to useful semantic information. Hence, the efficient extraction of those features is crucial to 
the high-level analysis and mining of the video data. 

In this chapter, we focus on the core techniques that facilitate the high-level analysis and mining 
of the video data. One of the important initial steps in segmentation and analysis of video data is the 
shot-boundary detection. This is the first step in decomposing the video sequence to its logical structure 
and components, in preparation for analysis of each component. It is worth mentioning that the subject 
is enormous and this chapter is meant to be more of an introduction, especially for new researchers. 
Also, in this chapter, we only focus on the visual modality of the video. Hence, the audio and textual 
modalities are not covered. 

After this introductory section, section II provides the principles of video data, so that we know the 
data that we are dealing with and what does it represent. This includes video structure and representa-
tion, both for compressed and uncompressed data. The various types of shot transitions are defined in 
section III, as well as the various approaches of classifying them. Then, in section IV, the key categories 
of the shot-boundary detection techniques are discussed. First, the various approaches of categorizing 
the shot-detection techniques are discussed, along with the various factors contributing to that. Then, 
a selected hierarchical approach is used to represent the most common techniques. This is followed by 
discussion of the performance evaluation measures and some common issues. Finally the chapter is 
summarized and concluded in section V.
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II. VIDEO STRUCTURE AND REPRESENTATION

In this section, it is aimed to introduce, mainly new, researchers to the principles of video data struc-
ture and representation. This is an important introduction to understand the data that will be dealt with 
and what does it represent. This introduction is essential to be able to follow the subsequent sections, 
especially the shot-transition detection.

This section starts by an explanation of the common structure of a video sequence, and a discus-
sion of the various levels in that structure. The logical structure of the video sequence is particularly  
important for segmentation and data mining. 

A. Video Structure

The video consists of a number of frames. These frames are usually, and preferably, adjacent to each 
other on the storage media, but should definitely be played back in the correct order and speed to con-
vey the recorded sequences of actions and/or motion. In fact, each single frame is a still image that 
consists of pixels, which are the smallest units from the physical point of view. These pixels are dealt 
with when analyzing the individual frames, and the processing usually utilizes a lot of image process-
ing techniques. However, the aim of most applications of analyzing the video is to identify the basic 
elements and contents of the video. Hence, logical structure and elements are of more importance than 
the individual pixels. 

Video is usually played back with frequencies of 25 or 30 frames per second, as described in more 
details in section ‘B’ below. These speeds are chosen so that the human eye do not detect the separation 
between the frames and to make sure that motion will be smooth and seems to be continuous. Hence, 
as far as we, the human beings, are concerned, we usually perceive and process the video on a higher 
level structure. We can easily detect and identify objects, people, and locations within the video. Some 
objects may change position on the screen from one frame to another, and recording locations could be 
changing between frames as well. These changes allow us to perceive the motion of objects and people. 
But more importantly, it allows us to detect higher level aspects such as behaviors and sequences, which 
we can put together to detect and understand a story or an event that is recorded in the video.

According to the above, the video sequence can be logically represented as a hierarchical structure, 
as depicted in fig. 1 and illustrated in fig. 2. It is worth mentioning that as we go up in the hierarchy, 
more detailed sub-levels may be added or slightly variations of interpretations may exist. This is mainly 
depend on the domain in hand. But at least the shot level, as in the definition below, seems to be com-
monly understood and agreed upon. 

The definition of each level in the hierarchy is given below, in the reverse order, i.e. bottom-up:

•	 Frame: The frame is simply a single still image. It is considered as the smallest logical unit in this 
hierarchy. It is important in the analysis of the other logical levels.

• Shot: The shot is a sequence of consecutive frames, temporally adjacent, that has been recorded 
continuously, within the same session and location, by the same single camera, and without sub-
stantial change in the contents of the picture. So, a shot is highly expected to contain a continuous 
action in both space and time. A shot could be a result of what you continuously record, may be 
with a camcorder or even a mobile video camera, since you press the record button, until you stop 
the recording. But off course, if you drop the camera or the mobile, or someone has quickly passed 
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in front of your camera, this would probably cause a sudden change in the picture contents. If such 
change is significant, it may results in breaking the continuity and may then not be considered as 
a single shot. 

• Scene: The scene is a collection of related shots. Normally, those shots are recorded within the 
same session, at the same location, but can be recorded from different cameras. An example could 
be a conversation scene between few people. One camera may be recording the wide location and 
have all people in the picture, while another camera focuses on the person who is currently talking, 
and may be another camera is focusing on the audience. Each camera is continuously recording its 
designated view, but the final output to the viewer is what the director selects from those differ-
ent views. So, the director can switch between cameras at various times within the conversation 
based on the flow of the conversation, change of the talking person, reaction from the audience, 
and so on. Although the finally generated views are usually substantially different, for the viewer, 
the scene still seems to be logically related, in terms of the location, timing, people and/or objects 
involved. In fact, we are cleverer than that. In some cases, the conversation can elaborate from one 
point to another, and the director may inject some images or sub-videos related to the discussion. 
This introduces huge changes in the pictures shown to the viewer, but still the viewer can follow it 
up, identify that they are related. This leads to the next level in the logical structure of the video. 

• Segment: The video segment is a group of scenes related to a specific context.  It does not have 
to have been recorded in the same location or in the same time. And off course, it can be recorded 
with various cameras. However, they are logically related to each other within a specific semantic 

Figure.1..Hierarchy.of.the.video.logical.structure
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context. The various scenes of the same event, or related events, within the news broadcast are an 
example of a video segment. 

• Sequence: A video sequence consists of a number of video segments. They are usually expected 
to be related or share some context or semantic aspects. But in reality it may not always be the 
case. 

Depending on the application and its domain, the analysis of the video to extract its logical com-
ponents can fall into any of the above levels. However, it is worth mentioning that the definitions may 
slightly differ with the domain, as they tend to be based on the semantic, especially towards the top 
levels (i.e. Scenes and segments in particular). However, a more common and highly potential starting 
point is the video shot. Although classified as a part of the logical structure, it also has a tight link with 
the physical recording action. As it is a result of a continuous recording from a single camera within 
the same location and time, the shot usually has the same definition in almost all applications and do-
mains. Hence, the shot is a high candidate starting point for extracting the structure and components 
of the video data.

In order to correctly extract shots, we will need to detect their boundaries, lengths, and types. To do 
so, we need to be aware of how shots are usually joined together in the first place. This is discussed in 
details in section III and the various techniques of shot detection are reviewed in section IV.

b. Video Representation

In this sub-section we discuss the video representation for both compressed and uncompressed data. We 
first explore the additional dimensionality of video data and frame-rates with their associated redun-
dancy in uncompressed data. Then, we discuss the compressed data representation and the techniques 
of reducing the various types of redundancies, and how that can be utilized for shot-detection.
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�) Uncompressed Video Data
 
The video sequence contains groups of successive frames. They are designed so that when they are 
played back, the human eye perceives continuous motion of objects within the video and no flickers 
are recognized due to the change from one frame to another. The film industry uses a frame-rate of 24 
frames/sec for films. But the most two common TV standard formats are PAL and NTSC. The frame-
rate in those two standards is either 25 frames/sec, for PAL TV standard, or 30 frames/sec for the NTSC 
TV standard. In case of the videos that are converted from films, some care need to be taken, especially 
due to the different frame-rates involved in the different standards. A machine, called telecine, is usu-
ally used in that conversion that involves the 2:2 pulldown or 3:2 pulldown process for PAL or NTSC 
respectively.  

Like the still image, each pixel within the frame has a value or more, such as intensity or colors. But 
video data has an extra dimension, in addition to the spatial dimensions of the still images, which is the 
temporal dimension. The changes between various frames in the video can be exhibited in any of the 
above attributes, pixel values, spatial and/or temporal. And the segmentation of video, as discussed in 
later sections, is based on detecting the changes in one or more of the above attributes, or their statisti-
cal properties and/or evolution.

The video data also carry motion information. Motion information are among the useful information 
that can be used for segmenting video, as it give an indication of the level of activities and its dynamics 
within the video. Activity levels can change between the different parts of the video and in fact can 
characterize its parts. Unlike the individual image properties and pixel values, the motion information 
are embedded within the video data. Techniques that are based on motion information, as discussed in 
section V, have to extract them first. This is usually a computationally expensive task.

From the discussion above, it can be noticed that in many cases, the video data will usually contain 
redundancy. For example, some scenes can be almost stationary where there are almost no movements 
or changes happening. In such cases, the 25 frames produced every second, assuming using the PAL 
standard, will be very similar, which is a redundancy. This example represents a redundancy in the 
temporal information, which is between the frames. Similarly, if large regions of the image have the 
same attributes, this represents a redundancy in the spatial information, which is within the same im-
age. Both types of redundancy can be dealt with or reduced as described in the next subsections, with 
the compressed video data.  

�) Compressed Video Data
 
Video compression aims to reduce the redundancy exist in video data, with minimum visual effect on 
the video. This is useful in multimedia storage and transmission, among others.  The compression can 
be applied on one or more of the video dimensions; spatial and/or temporal. Each of them is described, 
with focus on the MPEG standards, as follows:

Spatial-Coding (Intra-Coding)
The compression in the spatial dimension deals with reducing the redundancy within the same image 
or frame. There is no need to refer to any other frame.  Hence, it is also called intra-coding, and the 
term “intra” here means “within the same image or frame”.  The Discrete Cosine Transform (DCT) 
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is widely used for intra-coding in the most common standards such as JPEG, MPEG-1, MPEG-2, and 
MPEG-4, although the wavelet transform is also incorporated in MPEG-4.  

One benefit of the intra-coding is that, as each individual frame is compressed independently, any 
editing of individual frames or re-ordering of the frames on the time axis can be done without affecting 
any other frames in the compressed video sequence.

Temporal-Coding (Inter-Coding) 
The compression in the temporal dimension aims at reducing the redundancy between successive frames. 
This type of compression is also known as the inter-coding, and the term “inter” here means “across or 
between frames”. Hence, the coding of each frame is related to its neighboring ones, on the time axis. 
In fact, it is mainly based on the differences from neighboring frames. This makes editing, inserting, 
or deleting individual frames not a straight-forward task, as the neighboring frames will be affected, if 
not also affecting the process. 

As it deals with changes between frames, motion plays a dominant factor. A simple translation of an 
object between two frames, without any other changes such as deformation, would result in unnecessar-
ily large differences. This is because of the noticeable differences in pixel values in the corresponding 
positions. These differences will require more bits to be coded, which increases the bit-rate. To achieve 
better compression rates, one of the factors is to reduce the bit-rate. This is done through motion.com-
pensation techniques. The motion compensation estimates the motion of an object, between successive 
frames, and takes that into account when calculating the differences. So, the differences are mainly 
representing the changes in the objects properties such as shape, color, and deformation, but not usually 
the motion. This reduces the differences and hence the bit-rate.

The motion compensation process results in important parts of the motion information. That are the 
motion.vectors, which indicate the motion of various parts of the image between the successive frames, 
and the residual, which are the errors resulting from the motion compensation process. In fact, one big 
advantage of the temporal-coding is the extraction of the motion information that are highly important 
in video segmentation, and shot detection, as discussed in section IV. 

As the MPEG standards became one of the most commonly used in industry, a brief explanation 
of the MPEG structure and information, mainly those that are related to the techniques discussed in 
section IV, is below. 

MPEG 
MPEG stands for Moving.Pictures.Experts.Group. In the MPEG standards, the frame is usually divided 
into blocks, 8x8 pixels each. The spatial-coding, or intra-coding, is achieved by using the Discrete 
Cosine Transform (DCT) on each block. The DCT is also used in encoding the differences between 
frames and the residual errors from the motion compensation. On the other hand, the temporal-coding, 
or inter-coding, is achieved by block-based motion compensation techniques. In MPEG, the unit area 
that is used for motion compensation is usually a block of 16x16 pixels, called macro-blocks (MB). 
However, in MPEG-4, moving objects can be coded through arbitrary shapes rather than the fixed-size 
macro-blocks. 

There are various types of frames in the MPEG standards. The I-frames, which are the intra-coded 
frames, the P-frames and B-frames, which are the frames that are predicted through motion compensation 
and the calculated differences between original frames. Each two successive I-frames will usually have 
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a number of P-frames and B-frames in between them, as depicted in fig. 3. The sequence of one I-frame 
followed by a number of P- and B-frames, till the next I-frame, is called a group of pictures (GOP) 

The MPEG provides various useful information about the changes between frames, including mo-
tion vectors, residual errors, macro-blocks types, and group of pictures. These information are usually 
utilized by shot-detection techniques that works on the MPEG compressed video data, as discussed in 
section IV. 

III. VIDEO SHOT TRANSITIONS 

In order to be able to extract the shots, it is important that we understand how they were joined together 
when scenes were created in the first place. Shots can be joined together using various types of transition 
effects. The simplest of these transition effects is the straight-forward cut and paste of individual shots 
adjacent to each other, without any kind of overlapping. However, with digital video and the advance 
in editing tools and software, more complex transition types are commonly used nowadays. 

Shot transitions can be classified in many ways, based on their behavior, the properties or features 
that they modify, the length and amount of overlapping, to name just a few. In this section, the most 
common shot transition types are introduced and defined. We start by presenting various classification 
approaches and their criteria. Then, a classification approach is chosen and its commonly used transi-
tion types are identified and explained. The chosen classification and its identified transition types will 
be referred to in the rest of the chapter.

The first classification approach is based on the applied spatial and/or color modifications to achieve 
the transition. In this approach, shot transitions can be classified to one of the following four types: 

•. Identity transition: In an analogy with the identity matrix, this transition type does not involve 
any modification, neither in the color nor in the spatial information. That is none of the two shots 
that are involved in this transition will be subject to any modification. They will just be joined 
together as they are. 

Figure.3..The.sequence.of.the.MPEG’s.I-,.P-,.and.B-frames 
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•. Spatial transition: As the name suggests, the main modification in this type is in the spatial details. 
The involved shots are subject to spatial transformations only.  

•. Chromatic transition: Again, as the name implies, the chromatic details will be the main target 
for modification. So, the involved shots are subject to modifications in their chromatic details, such 
as color and/or intensity. 

•. Spatio-Chromatic transition: This is the most general type of transition. This is because it can 
involve combinations of  both chromatic  and spatial modifications.

The second classification approach is based on the length of the transition period and the amount of 
overlapping between the two involved shots. This seems to be more common and its terminology can 
be identified in most video editing tools and software. In this approach, shot transitions can be classified 
to one of the following two main types: 

•. Hard-Cut transition: This type of transition happens suddenly between two consecutive frames. 
The last frame of the first shot is directly followed by the first frame of the second shot, with no 
gaps or modifications in between. Hence, there is no overlapping at all. This is illustrated in fig. 
4.a.

•. Gradual transition: In the gradual transitions, the switch from the first shot to the second shot 
happens over a period of time, not suddenly as in the hard-cut. The transition occupies multiple 
frames, where the two involved shots are usually overlapping. The length of the transition period 
varies widely, and in most cases it is one of the parameters that can be set within the editing tool, 
by the ordinary user. There are almost unlimited combinations of the length of transition period 
and the modifications that can be done on the overlapping frames from both shots. This results in 
enormous forms of the gradual transitions. However, the most commonly known ones are:
°. Fade-out:	This is a transition from the last frame of the first shot, to a monochrome frame, 

gradually over a period of time, as illustrated in the left half of fig. 4.c. 
°. Fade-in: This is almost the opposite of the fade-out. The fade-in is a transition from a 

monochrome frame to the first frame of the following shot, gradually over a period of time, 
as illustrated in the right half of fig. 4.c. 

Figures.4..Illustrations.of.the.various.types.of.shot-transition..a).hard-cut..b).gradual.transition..c).
fade-in.and.fade-out
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°. Dissolve: The dissolve involves the end and start frames of the first and second shots, re-
spectively. The pixels’ values of the transitional frames, between the original two shots, are 
determined by the linear combination of the spatially corresponding pixel values from those 
end and start frames. This is illustrated in fig. 4.b. 

°. Wipe: The wipe transition is achieved by gradually replacing the final frames of the first 
shot, by the initial frames of the second shot, on spatial basis. This could be horizontally, 
vertically, or diagonally. 

With the above overview of the most common shot-transition types, and their definitions, we are al-
most ready to explore the shot-boundary detection techniques, which is the focus of the next section.

IV. SHOT-BOUNDARY DETECTION TECHNIQUES

After the above introduction to the most common shot-transitions, in this section we introduce the key 
approaches for the shot-transition detection. As you may imagine, the work in this area became numer-
ous, and is still growing, and an exhaustive survey of the field is beyond the scope of just one chapter, 
if not beyond a full book. However, the aim in this chapter is to introduce the researchers to the main 
categories and key work in this field. 

Shot-boundary detection techniques can be categorized in a number of ways, depending on various 
factors, such as the type of the input video data, change measures, processing complexity and domain, 
as well as the type of shots tackled. The following is a brief overview of the various possible categoriza-
tions, based on each of those factors:

1. The type of the input video data: Some techniques work directly on the compressed	data and 
others work on the original uncompressed	data. As we will see, most compression formats are 
designed in a way that provide some useful information and allow the detection techniques to work 
directly without need for decompression. This may improve the detection performance.

2. The change measures are another important factor. As discussed before, segmenting the video 
into shots is based on detecting the changes between the different shots, which are significantly 
higher than changes within the same shot. The question is “what changes are we looking for?, 
and equally important, how to measure them?”  There are various elements of the image that can 
exhibit changes and various techniques may consider various elements and/or combination of 
elements to look for changes in order to detect the shot boundaries. The image, and subsequently 
its features, is affected by the changes of its contents. Hence, measuring the changes in the image 
features will help in detecting the changes and deciding on the shot-boundary. 

 Changes can be within the local	features of each frame, such as the intensity or color values of each 
pixel and existing edges within the image. Changes can also be detected in a more gross fashion 
by comparing the global	features, such as the histogram of intensity levels or color values. As 
we will see, the latter (i.e. global features) does not account for the spatial details, as it is usually 
calculated over the entire image, although some special cases of local histograms were developed. 
More complex	features could be also be utilized, such as corners,	moments, and	phase	correla-
tion (Gao, Li, & Shi, 2006), (Camara-Chavez et al., 2007).
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 Other sources of changes within the video include motion of the objects and/or camera movements 
and operations, such as pan, tilt, and zoom. However, for the purpose of shot detection, the changes 
due to camera movements and operations need to be ignored, or more precisely compensated for, 
as long as the recording is still continuous with the same camera as in the definition of the shot in 
section II. This is another issue, referred to as the camera.ego.motion, where the camera movements 
and operations need to be detected from the given video and those motions are compensated for, 
to reduce false detections. 

 Also, on a higher level, the objects included within the images as well as the simulation of the 
human attention models (Ma, Lu, Zhang, & Li, 2002) can be utilized to detect the changes and 
identify the various shots.  

3. Processing time and complexity: Various applications have different requirements in terms of the 
processing time and computational complexity. The majority, so far, can accommodate the off-line	
processing of the video data. So, video can be captured and recorded, then later be processed and 
analyzed, for example for indexing and summarization. Other applications can not afford for that 
and need immediate and real-time fast and efficient processing of the video stream. An example 
of that is the processing of the incoming TV/video broadcast. In such a case, fast processing is 
needed to adjust the playback frame rate to match the modern advanced displaying devices that 
have high refresh frame rates. This is to provide smoother motions and better viewing options.

4. Processing domain: This is a classical classification in image processing. Some techniques ap-
ply the time-domain analysis, while others apply the frequency-domain analysis. Also, various 
transforms can be utilized, such as Discrete Cosine Transform (DCT) and wavelets transforms. 
This is especially when compressed data are involved. 

5. Type of shot-transition: As we discussed in section II, there are various types of shot-transitions, 
each has its own properties. Although the ultimate aim is to have techniques that can detect almost 
all transitions, this is always have a drawback somehow, such as the complexity and/or accuracy. 
Hence, for more accurate and computationally efficient performance, some techniques are more 
specialized in one or more related type of transitions, with the main overview categorizations is 
between the Hard-cut and Gradual transitions. Even the gradual transitions are usually broken 
down to various sub-types, due to the high variations and possibilities provided by the current 
digital video editing and effects software. In fact, some efforts are trying to model specific effects 
and use these models in detecting those transitions, whether from scratch or from the result of a 
more general shot-boundary detection techniques  (Nam & Tewfik, 2005).

It can be noticed that many shot-boundary detection techniques can fall into more than one category 
of the above classifications. And depending on the specific domain and application, or even the interest 
of the reader, one or more classification could be more useful than others. But, if we try to present the 
detection techniques following each and every classification of the above, we will end up repeating a 
large portion of the discussion. For this reason, we prefer to pick the most common classifications that 
serve the wide majority of the domains and applications.

We prefer to present the key detection techniques in a hierarchical approach. If you are thinking of 
dealing with video data for whatever application, and need to do shot-boundary detection, you would 
usually try to select techniques that are suitable to the type of your input data with the application 
constraints in mind. Hence, the type of the input video data would be one of the initial factors in such 
a selection. This will help you to focus on those techniques that are applicable to either compressed or 
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uncompressed data, depending on the type of your input data. Then, the focus is on detecting changes, 
quantitatively measuring those changes, and making the decision of detecting a boundary or not. To 
that extent, the classification that is based on the change measures would be useful. We can also dis-
tinguish between the main two types of transitions; hard-cut and gradual transitions. The summary of 
this hierarchical classification approach is depicted in fig. 5. 

In the following sub-sections, we present the key shot-boundary detection techniques according 
to the classification depicted in fig. 5.  They are organized into three main sub-sections; (a) shot-cut 
detection from uncompressed data, (b) gradual-transitions from uncompressed data, (c) shot-boundary 
detection from compressed data. In addition, the performance evaluation is also discussed in sub-section 
“D” and some common issues are discussed in sub-section “E”. But first, let us agree on the following 
notations that will be used later:

Fi: represents the ith  frame in the video sequence.

( , )
Fi

I x y : represents the intensity I of a pixel that is located at the (x,y) coordinates, in the ith frame.

( , )k
Fi

C x y : represents the kth color component of a pixel that is located at the (x,y) coordinates, in the ith 
frame. 

( )
Fi

H v : represents the intensity histogram value for the vth bin of the ith frame.

( )
kC

Fi
H v : represents the color histogram value for the vth bin within the histogram of the kth color com-

ponent, of the ith frame.

Figure 5. Hierarchical classi.cation of shot-boundary.detection.techniques
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A. Shot-Cut Detection from “Uncompressed Data” 

The uncompressed video data is the original video data, which are mainly the frames that are represented 
by their pixel contents. So, detection techniques need to utilize features from the original data contents, 
rather than from coding cues as in the compressed data. In the rest of this sub-section, the key shot-cut 
detection techniques that deal with the uncompressed data, are presented. They are grouped according 
to the main change measures as follows:

�) Local Features
 
The local feature is calculated for specific location, or a region, within the image. It takes the spatial 
information into account. Examples of local features include the individual pixel’s intensity and color 
as well as edges, to name just a few. The following are the key shot-cut detection techniques that rely 
on the most common local features:

a) Pixel-Based Differences
This category is considered as the very basic approach for detecting changes between frames. It is based 
simply on comparing the spatially corresponding pixel values, intensity or color. For each consecutive 
pair of frames, the difference is calculated between each pair of pixels that are in the same spatial loca-
tion within their corresponding frames. The sum of those differences is calculated and a shot is detected 
if the sum is greater than a pre-defined threshold (Nagasaka & Tanaka, 1991) as follows:

1 1 1
( , ) ( , )X Y

x y
TF Fi i

I x y I x y
= =

 
- >  - 

∑∑         (1)
 

And for the color images, this is extended as follows:
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The above technique is known as the pair-wise pixel comparison, as it based on comparing the spa-
tially corresponding pair of pixels in consecutive frames.   

A slight variation of this technique is introduced in (H. J. Zhang, Kankanhalli, & Smoliar, 1993). 
Instead of calculating and accumulating the differences in the pixel values, it only counts the number of 
pixels that are considered to be changed between consecutive frames and compare that with a threshold, 
as follows:
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Then the detection decision is based on comparing the number of changed pixels against a pre-de-
fined threshold. In its strict form, when TD =0 in (3), it could be more computationally efficient, which 
is an important factor for the real-time applications. But it is clear that it will be very sensitive to any 
variations in the pixel values between frames. 

A common drawback in this category of techniques is that they are very sensitive to object and 
camera motions and operations. With even the simplest object movement, its position in the image will 
change, and hence its associated pixels. Hence, the spatially corresponding pixel-pairs, from consecu-
tive frames, may not be corresponding to the same object anymore. This will simply indicate a change, 
according to the above formulas, that can exceed the defined threshold. Once the change is above the 
defined threshold, a decision will be made that a shot boundary has been detected, which is a false 
detection in such a case. 

As the measure is usually calculated between pairs of consecutive frames, this category is usually 
more suitable for detecting hard-cut transitions, as it happens abruptly.  However, it is worth mention-
ing that some research has introduced the use of evolution of pixels’ values, over multiple frames, to 
detect gradual transitions (Taniguchi, Akutsu, & Tonomura, 1997), (Lawrence, Ziou, Auclair-Fortier, 
& Wang, 2001).

b) Edge-Based Differences
Edges are important image feature that are commonly used, especially in image segmentation. Edges 
are detected from the discontinuity in the pixel intensity and/or color. This is with the assumption that 
pixels belonging to the same object are expected to exhibit continuity in their intensity or color values. 
So, edges could indicate a silhouette of a person or object, or separation between different objects as 
well as the background. This gives an idea of the contents of the image, which is considered a relatively 
higher level cue than the individual pixels. Hence, the change in those edges is expected to indicate the 
changes in the image contents, and when significant enough, indicates a shot change.

The straight forward test, especially for detecting hard-cut shot transitions, is to compare the number 
of edge pixels between consecutive frames. If the difference is above a certain threshold, then there have 
been enough changes to consider a shot change. However, as discussed in the following sub-section 
(global features), this simple approach does not take the spatial information into account. As a result, 
we may have more missed shot boundaries. This happens when frames from different shots contain 
similar number of edge pixels, but in significantly different spatial locations. 

For the above reason, motion compensation techniques are utilized to compensate for motion between 
consecutive frames first (Zabih, Miller, & Mai, 1999). Then, the edges are compared, with indication 
of their spatial information. The number of edge pixels from the previous frame, which are within a 
certain distance from edges in the current frame, is called the exiting edge pixels, Pex. Similarly, the 
number of edge pixels from the current frame, which are within a certain distance from edges in the 
previous frame, is called the entering edge pixels Pen. Those are usually normalized by the total number 
of pixels in the frame. The two quantities are calculated for every pair of consecutive frames and the 
maximum value among them is selected to represent the difference measure. The decision of detecting 
a shot-boundary is based on locating the maxima points of the curve representing the above difference 
measure.  Sharp peaks, on the curve of the difference measure, are usually an indication of hard-cut 
transitions. But low and wide peaks, which occupy longer time periods than the hard-cuts, are usually 
an indication of gradual transitions. 

In fact, for detecting the gradual transitions, the process needs to be extended to cover multiple frames 
(Smeaton et al., 1999), instead of only two consecutive frames. More details may be identified for detect-
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ing specific types of gradual transitions. For example, for detecting dissolve transitions, edges can be 
classified into weak and strong edges, using extra two thresholds, as introduced in (Lienhart, 1999).

As we can see, the edge-based differences approach can be used for both hard-cut and gradual 
transitions detection. However, its main limitation is its relatively high computational costs that makes 
it slow. 

�) Global Features 

Unlike the local features, the global feature is calculated over the entire image. It is expected to give 
an indication of an aspect of the image contents or its statistics. For example, the mean and/or vari-
ance of pixel intensities or colors, over the entire image, can be used as a global representation of the 
frame’s contents. This measure can be compared between frames and a boundary can be detected if 
the difference is above a pre-determined threshold. Other statistical measures, such as the likelihood-
ratio, can also be utilized. However, the histogram is the most popular and widely used global feature 
as discussed below. 

a) Histogram-Based Differences
For the intensity level histogram, the intensity range is divided into quantized levels, called bins, and 
each pixel is classified into the nearest bin. Then the histogram represents the number of pixels associ-
ated with each bin. The same applies for the color histograms. The histogram of the intensity levels is 
usually used for grey-level images, and the color histograms are utilized for color images. 

Once the histogram is constructed for each frame, the change measure is calculated by comparing 
the histograms of the pair of consecutive frames. The change measure can be as simple as the differ-
ences between the histograms. Then the sum of those differences is again compared with a pre-defined 
threshold to decide about the detection. For intensity histogram, this can be as follows:
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But for the color histogram, the following is an extended form that takes the various color compo-
nents into account:
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The color components could be the RGB components, with K=3 in (5), or any other components of 
other color spaces.  Although normally only two components are used, i.e. K=2. In fact, one of the is-
sues related with the color histogram is the selection of the appropriate color space (Gargi, Kasturi, & 
Strayer, 2000), as in the discussion sub-section below. 

As can be seen above, the histogram is relatively easy to calculate. More importantly, it is less sensitive 
to object and camera motion than the pixel comparison techniques. This is because it is a global feature 
that does not involve spatial details within the frame. But, for the same reason, the technique may miss 
shot-cuts when different shots have similar range of total intensity or color values. A simple example is 
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two frames, one contains a checker board, and the other contains a rectangle with half black and half 
white. Using the histogram, with the same number of bins, the histogram values will be the same. On 
the other hand, false detections can also be encountered, due to intensity and/or color changes within 
the frames contents, although within the same shot. An improved color histogram-based technique was 
introduced in (Ionescu, Lambert, Coquin, & Buzuloiu, 2007), for animated movies, where the frame is 
divided into quadrants to localize the measures.

�) Intermediate Level 

As we saw in the above sub-sections, local and global features based techniques, each has its own 
advantages and limitations. The ultimate aim is to achieve more accurate shot-boundary detection, but 
also with less computation complexities. The block-based techniques are trying to address this balance 
between the advantages and limitations of using the local- and global feature-based techniques, to 
achieve those aims.

a) Block-Based Differences
In this approach, each frame is divided into equal-size areas, called blocks (Katsuri & Fain, 1991). These 
blocks are not spatially overlapping. The more blocks, the more the spatial details will be involved, 
with the extreme is having number of blocks equal to the number of pixels. Once the frame is divided 
into blocks, the rest of the work deals with the block as the smallest unit within the frame, instead of 
pixels. 

Although each block consists of a number of pixels, an individual block can be dealt with either 
as a single value, as we dealt with pixels, or as a sub-image. In the case of dealing with the block as a 
sub-image, histogram-based techniques can be applied (AhmedM, 1999), (Bertini, Del Bimbo, & Pala, 
2001). In such a case, a histogram is calculated for each individual block. Then, the histograms of the 
spatially corresponding blocks, from consecutive frames, are compared and the difference measure is 
tested against a pre-defined threshold. The same difference measures of histogram-based techniques can 
be utilized here, as discussed in the above sub-section (Histogram-based differences).  This approach 
is also known as the local histograms, as it involves spatial details to some extent.

The block can also be dealt with as a single value, in an analogy to pixels. This can be seen as a 
reduced dimension of the original image, as every group of pixels will be replaced by the single value 
of the individual block that contains them. But first, we need to select the criteria for determining the 
block value that appropriately represents its contained pixels. 

Variety of measures can be used to determine the block value. For example, the mean and/or variance 
of pixel intensities or colors can be used (M. S. Lee, Yang, & Lee, 2001). Other statistical measures, 
such as the likelihood-ratio, can also be utilized (Ren, Sharma, & Singh, 2001). 

The above two ways of dealing with the block, as a single value or as a sub-image, can also be com-
bined together (Dugad, Ratakonda, & Ahuja, 1998). Given the relatively cheaper computations of the 
histogram, it is used as a initial pass to detect hard-cut transitions and indicate potential gradual transi-
tions. Then, the candidates are further checked using mean, variance, or likelihood-ratio tests between 
spatially corresponding blocks as usual.

Involving multiple frames, and especially for off-line processing, the evolution over time of the 
above difference measures can also be tracked, processed, and compared with a threshold to detect 
shot-boundaries (Demarty & Beucher, 1999), (Lefevre, Holler, & Vincent, 2000). In (Lefevre et al., 
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2000), the evolution of the difference values were used to indicate the potential start of gradual transi-
tions, while the derivative of the difference measures, over time, has been utilized to detect the hard-cut 
transitions.

As we mentioned above, the block-based techniques are considered as intermediate between local 
and global feature-based techniques. Hence, they are relatively less sensitive to the object and camera 
motions, than the pixel-based techniques, as the spatial resolution is reduced by using blocks instead 
of individual pixels. On the other hand, it can be relatively more computationally expensive than the 
global histogram-based techniques.

�) Motion-Based 

In the previously discussed techniques, the main principle was finding the changes in some features 
of the contents of consecutive frames. This is, at least implicitly, based on the concept that the video 
can abstractly be considered as a sequence of individual frames or still images. However, the video 
sequence has more than just playing back a group of still images, otherwise, it can be considered as a 
uniform slide-presentation. 

The video sequence carries other extra information, than a slide-show of still images. One of the 
extra important information in the video data is the motion information. The motion is conveyed by 
the temporal changes of object and/or camera positions and orientations over consecutive frames. We 
should recall that the video frame rates, especially the playback frame rates, are designed to convey 
smooth motion to the human eye. That is the rate of change of the displayed images is more than what 
the human eye can recognize, hence, no flickers can be noticed.

Given the above, and recalling the shot definition from section II, it is expected that the motion en-
countered among the frames of the same shot will have continuity. However, the motion among frames 
from different shots will exhibit discontinuity. So, this continuity criterion can be utilized in detection 
of the shot-boundary.   

We should also differentiate between the motion originated from the movements of the contained 
objects and the motion originated from the camera movements and operations, such as pan, tilt, or zoom. 
The camera movements will usually result in a similar motion of the contents, assuming no moving 
objects. That is all the frame’s pixels or blocks will shift, translate, or rotate consistently, almost in the 
same direction. This is except for zooming, although it can be seen in a similar fashion as motion will 
be radially consistent from/to the centre of the image. The motion originated from the camera move-
ments or operations is known as the global.motion, as it is usually exhibited over the entire image. The 
objects motion can be a bit more complicated. First of all, we would usually have more than one object 
in the video, each may be moving in different direction. With occlusion, things become even more 
complicated. This is all with the assumption that objects are simply rigid. In fact, deformable objects, 
like our skin, could also add to this complexity. Within the normal video sequence, many combinations 
of the above motions can be found. These are all challenges faced by motion estimation and compensa-
tion techniques.

Based on the above discussion, various techniques were developed that utilize one or more of the 
above motion properties. When utilizing the global motion, it is assumed that it will be coherent within 
the same shot. If the coherence of the global motion is broken, a shot-boundary is flagged (Cherfaoui 
& Bertin, 1995). A template could also be designed where each pixel is represented by a coefficient 
that indicates how coherent it is with the estimated dominant motion. The evolution of the number of 
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pixels that are coherent with the dominant motion, with a pre-determined threshold, are used to decide 
on shot-boundary detection (Bouthemy, Gelgon, Ganansia, & IRISA, 1999).  

In utilizing the objects motion, techniques from the motion estimation are utilized to calculate motion 
vectors and correlation coefficients, of corresponding blocks, between frames. The similarity measure 
is calculated from those correlation coefficients, and critical points on its evolution curve correspond to 
shot-boundaries (Akutsu, Tonomura, Hashimoto, & Ohba, 1992), (Shahraray, 1995). Other techniques 
were developed that are based on the optical flow (Fatemi, Zhang, & Panchanathan, 1996) or correlation 
in the frequency domain (Porter, Mirmehdi, & Thomas, 2000).

The computational cost of the motion estimation techniques are relatively high (Lefèvre, Holler, & 
Vincent, 2003), which can affect the performance of the techniques discussed above, in terms of the 
processing time. However, motion estimation are already incorporated in the current compression stan-
dards such as MPEG (see “video compression” in section II). Hence, more work has been done in this 
category but for the compressed data, as discussed in their corresponding section later in this chapter.

�) Object-Based

Instead of applying the difference measures on individual pixels or fixed size blocks changes, in this 
category, efforts are made to obtain differences based on object-level changes. Based on color, size, 
and position of recognized objects, differences between frames can be computed (Vadivel, Mohan, 
Sural, & Majumdar, 2005). Objects are constructed by pixel grouping, through k-means clustering, 
followed by post-processing that includes connected.component.analysis to merge tiny size regions. 
Although it was presented on I-frames, an MPEG frame type, the techniques seems to be applicable 
for uncompressed data. 

Also, a semantic objects tracking approach was introduced in (Cheng & Wu, 2006) for the detec-
tion of both shot-cut and gradual transitions. Foreground objects are recognized and tracked based on 
a combined color and motion segmentation process. The numbers of entering and exiting objects or 
regions help in detecting shot changes, while the motion vectors help in detecting the camera motion. 

Although it is easy for humans to recognize and identify objects from images and videos, achieving 
this automatically is still an ongoing research challenge. Hence, the object-based approaches will always 
benefit from the advances in the image analysis and understanding field. 

b. Gradual-Transition Detection from “Uncompressed Data” 

As explained in section III, the gradual transitions exhibit much less changes between consecutive 
frames, than in the case of hard-cut transitions. Consequently, the pre-determined threshold that is used 
to detect hard-cuts will always miss the gradual transitions. On the other hand, using a lower threshold 
will increase the false detection, due to motion and camera operations that introduce changes in a rela-
tive order to the changes from the gradual transitions. 

As the gradual transition occurs over longer period of time, the difference measure between two 
consecutive frames, which is used in most of the techniques described earlier, is not always useful to 
accurately detect such transitions. We need to track the changes over longer periods, i.e. multiple frames. 
One way, especially for off-line detection, is to track the evolution of the difference measure over the 
time of the given sequence. In a pixel-based approach introduced in (Taniguchi et al., 1997), the varia-
tion of pixel intensities is tracked and pixels are labeled according to the behavior of their variation 
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over time; sudden, gradual, random, or constant. The gradual transition can be detected by analyzing 
the percentage of the gradually changing pixels.

In the rest of this sub-section, the most common techniques, for detecting gradual transitions, are 
discussed.

�) Twin-Threshold Approach

This approach, introduced in (H. J. Zhang et al., 1993), is based on two observations. Firstly, although 
the differences between consecutive frames are not high, during the gradual transition, the difference 
between the two frames, just before and after the transition, is significant. It is usually in the order of 
the changes that occur in hard-cut, as those two frames are from different shots. Secondly, the changes 
during the gradual transition are slightly higher than the usual changes within the same shot. They also 
occupy longer period of time, as depicted in fig. 6.   

The twin-threshold algorithm, as the name suggests, has two thresholds, instead of one. The first 
threshold, TH, is similar to thresholds discussed before, and is usually high enough to identify the hard-cut 
transitions. The second threshold, TL, is the new introduced threshold. This threshold is adjusted so that 
the start of a potential gradual transition period can be detected. In other words, this threshold is set to 
identify the changes due to the gradual transition, from changes between frames within the same shot. 
Once the difference between two consecutive frames exceeds the TL, but still less than TH, this will mark 
the start of a potential gradual transition.  From this frame onwards, an extra accumulated difference 
will be calculated, in addition to the difference between consecutive frames. This will continue until the 
difference between consecutive frames fall again below the threshold TL. This is potentially the end of 
gradual transition, if any. To confirm, whether a gradual transition was detected or not, the accumulated 
difference is compared to the threshold TH. If the accumulated difference exceeds the threshold TH, a 
gradual transition is considered. Otherwise, the marked potential start, of gradual transition, will be 
ignored and the procedure starts again. The procedure, from one of our experiments, is illustrated in fig. 
7, with the addition that the value of TL is computed adaptively based on the average of the difference 

Figure.6..Example.of.the.difference.measure.for.hard-cut.and.gradual.transition



�0  

Video Representation and Processing for Multimedia Data Mining

measure from previous frames, to adapt to the video contents. Choosing the threshold value is one of 
the important issues and discussed in a later sub-section with other common issues.

One limitation of this algorithm is that it could produce false detection if significant object and/or 
camera motion and operations occurred.  This is because those significant motions are expected to 
produce frame differences of almost the same order as the differences exhibited during the gradual 
transition. One suggested solution to reduce this false detection is to analyze detected transitions to 
distinguish real gradual transitions from global motion of camera and camera operations (H. J. Zhang 
et al., 1993).

�) Edge-Based Detection of Gradual Transitions

The edge-based comparison has already been discussed earlier. In this subsection, we emphasize on its 
use for detecting gradual transitions. As edges are related to the objects within the images, its changes 
and strength can also help identifying the various types of gradual transitions. 

Based on the properties of each type of the gradual transition, as discussed in section III, the number 
and ratios of the entering and exiting edge pixels can indicate a potential shot change. In fade-out, the 
transition is usually end up with a constant color frame, which means that it has almost no entering edges. 
Hence, the exiting edges will be expected to be much higher. In the fade-in, the opposite will happen. 
In fade-in, the transition usually starts from a constant color frame that has almost no edges. Hence, the 
entering edges, from the new shot, will be expected to be much higher. So, by analyzing the ratios of the 
entering and exiting edges, fade-in and fade-out can potentially be detected. Dissolve transitions can 
also be detected as they are usually a combination of the fade-in and fade-out. Wipe transition needs a 
bit more attention due to the special changes in the spatial distribution. Based on the hypothesis that the 
gradual curve can mostly be characterized by the variance distribution of edge information, a localized 
edge blocks techniques was presented in (Yoo, Ryoo, & Jang, 2006). However, as mentioned earlier, the 
edge-based comparison is computationally expensive and relatively slower than others.

�) Motion-Based Detection of Gradual Transitions

As discussed earlier, for the uncompressed data, most of the motion-based techniques use the evolution 
of the motion measure, whether global motion, motion vectors, correlation, or others, to decide on the 
shot-boundaries.

A histogram-based approach is utilized in (H. J. Zhang et al., 1993) for detecting two directions of 
wipe transitions, specifically horizontal and vertical wipes. As in (Bouthemy et al., 1999), pixels that 
are not coherent with the estimated motion are flagged first. Then, vertical and horizontal histograms, 
of those flagged non-coherent pixels, are constructed for each frame. The histogram differences, of 
corresponding histograms of consecutive frame, are calculated and thresholds are used to detect a 
horizontal or a vertical wipe transition.

In (Hu, Han, Wang, & Lin, 2007), motion vectors were filtered first to obtain the reliable.motion.
vectors. Then, those reliable motion vectors are used to support a color-based technique and enhance 
the detection accuracy, for soccer video analysis. Also, the analysis of discontinuity in the optical flow 
between frames can be utilized in shot detection (Bruno & Pellerin, 2002).  
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Other Combined Techniques for Detection of Gradual Transitions

Some other techniques, that may not fit exactly within the above categories, are discussed here. The 
Hidden Markov Models (HMM) were employed in (W. Zhang, Lin, Chen, Huang, & Liu, 2006) for 
detection of various types of shot transitions. An HHM is constructed and trained for each type of the 
shot transitions, which model its temporal characteristics. One of the advantages is that the issue of 
selecting threshold values is avoided.

More advanced features can be employed such as corners, moments, and phase correlation. In (Gao 
et al., 2006), corners are extracted at the initial frame and then tracked, using Kalman filter, through the 
rest of the sequence. The detection is based on the characteristics of the changing measure. In another 
system, a two-pass hierarchical supervised approach was introduced (Camara-Chavez et al., 2007) that 
is based on a kernel-based Support Vector Machine (SVM) classifier. A feature vector, combining color 
histograms and few moment measures as well as the phase correlation, is extracted for each frame. In 
the first pass, shot-cuts are detected and used as guides for the second pass, where the gradual transi-
tions are to be detected in-between shot-cuts.

Figure.7..The.difference.measure.(top).and.the.accumulated.difference.measure.(bottom).of.the.twin-
threshold.technique,.for.detection.gradual.transitions
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Finally, some efforts are made to model the various editing effects and detect the transitions by fitting 
the corresponding edit model as in (Nam & Tewfik, 2005). While it could achieve promising results, 
the main concern is the almost unlimited, and ever increasing, number and variations of editing effects 
that are even customizable by video editing software users. 

c . Shot-Boundary Detection from “Compressed Data” 

Compressed video data result from processing the original video data by coding the data, inter- or 
intra-coding as explained in section II, in such a way to reduce redundancy. This coding also provides 
useful information that helps the detection techniques. Examples include the motion vectors, and various 
types of frames and macro-blocks in the MPEG compression. The coding usually facilitates the shot-
boundary detection without decompression. Hence, it could also improve the detection performance, 
in terms of the computational costs. 

In MPEG compression, the frame is divided into 8x8 blocks. Blocks within the I-frames are intra-
coded using the Discrete Cosine Transform (DCT).  For P-frames and B-frames, motion vectors, cor-
relations and residual errors are calculated. Hence, different types of frames contain some different 
types of information.

The rest of this subsection presents the detection techniques that deal with the compressed data. 
They are based on the most common features that can be extracted, usually directly without need for 
decompression, from the compressed data.  

�) DCT-Based 

The I-frames of the MPEG compressed data, see section II, which are intra-coded frames, contains all the 
DCT coefficients. On the other hand, the P-frames and B-frames do not usually include the DCT coef-
ficients as most of their blocks are inter-coded rather than intra-coded. Most blocks within those P- and 
B-frames include the DCT coefficients of the residual error resulting from the motion compensation. 

The DCT coefficients are representatives of the frame contents. In fact, the DC coefficients alone 
represent a low-resolution, or iconic, version of the image and are considered as an iconic version of the 
image. Hence, most of the pixel-based and histogram-based techniques could be applied for shot-boundary 
detection. Also, the difference in feature vectors, extracted from the DC components, is used to detect 
shot-cuts (Taskiran et al., 2004). The feature vector contains standard deviation and color histogram 
intersection of the YUV color space components, as well as other information about the various types 
of macro-blocks and the type of the frame.  

For gradual transitions, and for off-line processing, both the absolute difference and the variance 
of the DC coefficients are utilized to detect gradual transitions (Yeo & Liu, 1995), (Meng, Juan, & 
Chang, 1995). Gradual transition is represented by a plateau in the curve depicting the absolute differ-
ence between two frames separated by n frames, where n is longer than the known length of gradual 
transitions (Yeo & Liu, 1995). On the other hand, a dissolve will produce a downward parabolic curve 
when the variance of the DC coefficients is plotted (Meng et al., 1995). 

As mentioned above, the DCT coefficients, of frame contents, are mainly available within the I-
frames. However, I-frames are only a percentage of the total frames in MPEG, as there are several 
P-frames and B-frames in-between I-frames. This introduces some temporal gaps, if only I-frames are 
used with DCT-based techniques, which increases the false detection. The straight forward solution is 
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to use the P-frames and B-frames as well, by obtaining the best possible estimation of their DCT coef-
ficients. Alternatively, the technique can be combined with other techniques as discussed in the hybrid 
techniques section below.

�) Motion-Based 

As discussed in the motion-based detection techniques, from uncompressed data, the motion is an im-
portant property in video. And based on the shot definition, it is expected that the motion measure will 
have continuity over time, within the same shot. But will exhibit discontinuity across different shots. 

The computational cost of obtaining the motion vectors are relatively high (Lefèvre et al., 2003). But 
fortunately, motion information can be extracted from compressed data that have been coded through 
the currently available compression standards such as MPEG (see “video compression” in section II). 
This dramatically reduces the computational cost of the motion-based shot-boundary detection. 

From the MPEG coding, the blocks contained in the I-frames are all intra-coded. But the blocks in 
the P-frames and B-frames are of various types. P-frames contain both intra-coded as well as forward-
predicted blocks. B-frames are more complicated as they can contain any combination of forward-pre-
dicted, backward-predicted, bi-directional predicted, intra-coded, and/or skipped blocks. The number 
and the ratios between the various types of blocks can give some indication of changes and motion 
continuity (Yi, Rajan, & Chia, 2006), hence, helps in detecting shot-boundaries. For example, the more 
continuous and coherent the motion is, the less intra-coded blocks to be found. In other words, blocks 
that have high residual errors as a result of motion compensation, indicates a discontinuity of motion. 
Those blocks are intra-coded by the MPEG encoder. So, when the ratio of the intra-coded blocks is 
higher than a pre-defined threshold, a potential shot-boundary is flagged (Meng et al., 1995).

 The bit-rate for encoding the blocks, in MPEG compression, also exhibit variations, especially with 
the changes associated with shot-cuts. By monitoring and analysing the variations in the number of bits 
required to encode each block, shot-cuts can be detected when the differences in bit-rate exceed certain 
threshold (FENG, Kwok-Tung, & MEHRPOUR, 1996). 

Exhaustive survey of the compressed video data, and more features that can be utilized in shot detec-
tion, can be found in (Wang, Divakaran, Vetro, Chang, & Sun, 2003), (Vadivel et al., 2005).

�) Hybrid Techniques

One or more techniques can be combined together to achieve better detection performance, whether 
the accuracy and/or the processing speed. A hierarchical multi-pass approach was introduced in (H. 
Zhang, Low, & Smoliar, 1995). This combines the DCT coefficients technique and the motion-based 
techniques.  The DCT coefficients, which are already available in the I-frames, are utilized to locate 
potential shot-transitions. Then, motion information, from the in-between P-frames and B-frames, are 
utilized to confirm and refine the identified shot-boundary. As we can see, the motion information is 
only utilized from the frames lying in-between the two I-frames around the identified potential transi-
tion. This improves the computational costs. Also, by using the appropriate thresholds, it was reported 
that both shot-cuts and gradual-transitions can be detected.

A similar two-pass hybrid approach was presented in (Koprinska & Carrato, 2002), although only use 
motion vectors and macro-blocks information. Potential shot-boundaries are identified by a rule-based 
module, then a refined pass using a neural structure detect and classify the various types, especially 
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gradual transitions. In (Zhao & Cai, 2006), a technique utilizing Adaboost and fuzzy theory was intro-
duced. It utilizes various features and information, such as DCT coefficients, macro-block types, and 
color histograms. The important reported advantage is the robustness of the technique’s performance 
against camera motion and large objects fast movements. 

The bit-rate variation technique from (FENG, Kwok-Tung, & MEHRPOUR, 1996) can also be 
combined with other techniques, such as those that use the DCT coefficients, to improve the detection 
(Divakaran, Ito, Sun, & Poon, 2003),  (Boccignone, De Santo, & Percannella, 2000).

D. Performance Evaluation

There are two main performance aspects that need to be assessed when evaluating or comparing shot-
detection techniques, as well as many other techniques. These two aspects are the accuracy and the 
computational.complexity. As we can expect, these aspects could be seen as being on opposite sides of 
a coin, or as two ends of one string. Usually improving one aspect would be on the cost of the other one. 
So, usually to improve the accuracy, more complicated techniques are developed, which will usually 
require more computational requirements. On the other hand, if we are after a real-time system, we 
might have to compromise and accept some less accuracy. Also, for the evaluation to be truly representa-
tive and trustable for comparing various techniques, it needs to be done in similar conditions and with 
very similar, if not the same, datasets. Hence, there is a need for benchmarks to be used. TRECVID 
(Over, Ianeva, Kraaij, & Smeaton, 2005) is one of the initiatives within the video retrieval task. Other 
efforts also facilitate reproducing the research results so that people can test it themselves. Some even 
allow the user to upload their own data and apply the techniques on it (Vadivel et al., 2005) , which 
provide a fair comparison. Otherwise, researchers will have to re-implement previous techniques to 
compare with, which waste time and effort, and can still be not accurate due to various interpretations 
and implementation decisions.

In this section, we discuss the above two aspects of performance evaluation, the accuracy and the 
computational complexity, and the common metrics of measuring them for the shot-boundary detec-
tion.   

�) Accuracy

Ideally, we would hope that the detection technique can detect all the correct shot-boundaries, without 
missing any of them. However, the reality is that for some reasons, some shots can be missed, and also 
some non-existing boundaries may seem to be detected, which is called the false.detection or false.
positive. 

One way of quantitatively evaluating the accuracy is by calculating the detection-rate and the er-
ror-rate (Tian & Zhang, 1999).  The detection-rate is the percentage of the correctly detected shots, 
relative to the total number of shots. The total number of shots should be identified, somehow but usu-
ally manually, as a ground-truth. Similarly, the error-rate is the percentage of the falsely detected shots, 
relative to the total number of shots.

The most commonly measures that are used to evaluate the accuracy of the detection techniques 
are the recall and the precision. The recall measure is similar to the detection rate, described above. 
The precision measure gives an indication on how precise the detection is, correct or false. We can 
denote the number of correctly detected shots by Nc, the number of falsely detected shots by Nf, and the 
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missed shots by Nm. Hence, the Nc+Nm represents the total number of shots, while the Nc+Nf represents 
the total number of detections by the detection technique. And the recall and precision can be obtained 
as follows:
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=
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          (6)
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N N
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          (7)

From the above definitions, the good detection techniques are expected to have high recall and high 
precision at the same time.

It can be noticed that the above measures are mainly evaluating the performance in terms of the 
number of shots, whether correct, missed, or false. However, the accuracy in determining the length of 
the transition periods also needs to be evaluated. Additional measures, brought from the field of image 
segmentation, have been employed, namely over-segmentation and under-segmentation  (Y. J. Zhang 
& Beijing, 2006). The lengths of the detected shots are compared with the lengths of the corresponding 
shots in the ground-truth. It is preferred to have low over- and under-segmentation values.

So, overall, the good detection technique is expected to have high recall, high precision, low over-
segmentation, and low under-segmentation values.

�) Computational Complexity

Most of the evaluation is usually focused on the accuracy aspect of the performance. That could be ac-
ceptable for off-line applications. But once the processing time becomes a factor in the application, such as 
real-time applications, the computation costs have to be incorporated in the performance evaluation.

In fact, most research of the literature provides quantitative figures of the accuracy of the presented 
detection techniques. But it is rare to find quantitative figures for the computational complexity. However, 
an exhaustive survey, where the evaluation is focused on the computational complexity, was presented 
in (Lefèvre et al., 2003). This was crucial as the survey was reviewing the real-time shot detection 
techniques, from uncompressed data. 

Their computational complexity measure considers the arithmetic and logical operations only. It 
represents the number of operations per frame where each arithmetic or logical operation, including the 
absolute operation, increments the computational complexity measure by one. Other operations, such 
as loops and conditional branching were not considered in that complexity measure. 

For the pixel-based techniques,   the complexity measure will be a function of the number of pixels 
in each frame, which is denoted by P. So, for the intensity-based computations, the complexity is O(3P), 
while for the color version, the complexity is  O(9P). Another estimated complexity, for edge-based 
techniques, is O(26P). However, for the block-based techniques, the number of blocks per frame is also 
incorporated, which is denoted by B. The complexity measure is estimated to be between O(2P+10B) 
and O(3P+15B), depending on the specific technique used.

Similarly, for the histogram-based techniques, the measure will be a function of the number of bins, 
denoted by L. It was reported that, for intensity histogram difference, the complexity is O(3L). The 
complexity of the color version is O(6L), based on using only two color components, for the reasons 
mentioned in the discussion section next. 
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e. Common Issues

From the above review, and the preceded discussion about the various classifications, it is clear that the 
topic is large and interrelated in various ways. There are also some issues that are considered to be com-
mon to various groups of techniques. To avoid repeating them in various places, which is a redundancy 
that we tried to avoid, we preferred to discuss them in this sub-section.

It can be noticed from the above review, that in almost all the techniques, the detection decision 
involves a pre-defined thresholds. Determining the values of those thresholds is one of the common is-
sues. It is expected and understood that the value of many of those thresholds will depend on the domain 
and application as well as the particular video data. Fixed threshold values are usually chosen based 
on heuristics or through statistics of the existing data.  Fixed pre-defined values would be acceptable 
for specific domains, given that they have been carefully chosen.  However, adaptive and automatically 
chosen threshold values (Volkmer, Tahaghoghi, & Williams, 2004),  (Bescos, Cisneros, Martinez, 
Menendez, & Cabrera, 2005), (Ionescu et al., 2007) would be much desirable to reduce the need for 
human intervention and to adapt to the varying data ranges. In fact, avoiding the thresholds would be 
even better as in (Yu, Tian, & Tang, 2007), where the Self-Organizing Map (SOM) network was used, 
which avoided the need for thresholds.

Another issue, especially with the color histogram techniques, is selecting the appropriate color 
space. Usually, the images are converted from the RGB color space to other color spaces such as YUV, 
HSV, or YCbCr (Gargi et al., 2000). This is because those color spaces are closer to the color perception 
model of humans. Also, the intensity value component is usually not included in the color histogram to 
reduce false detections. The YCbCr color space is used in the MPEG video.  

For the gradual transitions in particular, large and sudden object motion and fast camera operations 
in dynamic scenes increases the false detection. This is because they produce relatively large differences 
that are in the order of the changes of the gradual transitions.

From the detected and classified shots, higher logical components in the logical video structure can 
be constructed, such as video scenes and segments. Those higher level components are usually more 
dependent on the application domain and more semantic information. However, it is worth mention-
ing that some recent efforts of scene detection have been reported in(M. H. Lee, Yoo, & Jang, 2006), 
(Rasheed & Shah, 2005), (Adjeroh & Lee, 2004).  

V. SUMMARY AND CONCLUSION

Video data are now available, and being easily generated, in large volumes. This puts a high demand 
for efficient access, search, and retrieval of these data, which have not been progressed in the same rate. 
To facilitate that, the data need to be annotated and indexed, by text, features, or semantic descriptions. 
This can be done manually, but given the huge volumes of data, it became impractical to do so. Hence, 
automatic or even semi-automatic video content analysis techniques need to be able to efficiently extract 
the video structure and components. Most of these techniques require processing and segmentation of 
the given video data.

In this chapter, we presented the principles of the video representation and processing in preparation 
for video data mining, with focus on the shot-boundary detection as an important initial step. Firstly, 
the video structure and representation were explained, followed by definition and classification of the 
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common shot transitions. Then, the stat-of-the-art, of the key techniques for the shot-boundary detec-
tion, was presented. We have only focused on the visual modality of the video. Hence, audio and text 
modalities were not covered. Research in multi-modal detection can be found in the literature, but it 
was beyond the scope of this chapter.

 As can be seen from the review, a lot of research has been going on for the shot boundary detection, 
both on the compressed and uncompressed data. In uncompressed data, most techniques trying to detect 
changes based on comparing differences in pixel.values, histograms, edges, and motion.information. In 
compressed data, techniques are relying on the representation of the compressed data and the information 
provided in it. Compressed-domain techniques are based on DCT coefficients, motion information, or a 
hybrid. Other higher-level techniques, such as object-based techniques have also been presented. It was 
reported, through comparisons between various methods, that the histogram-based techniques are usu-
ally more reliable and efficient. But it has its limitations, in terms of sensitivity to changing illumination 
conditions within the shot and missing shot boundaries especially in the global histograms. Localized 
histograms address these problems to some extent. The edge-based techniques, although useful in de-
tecting both shot-cut and gradual transitions, are computationally expensive. Motion-based techniques 
are useful in utilizing the temporal information, but expensive to compute on the uncompressed data. 
On the other hand, compressed-based techniques utilize the spatial and temporal coded information, 
mainly the motion and block types, to detect changes. As these information are already available within 
the compression coding, motion-based techniques are more efficient on the compressed data. However, 
may not be on the same level of accuracy. It is obvious that there is no individual technique that solves 
the problem completely. Hence, hybrid methods that combine two or more techniques were employed 
to improve the performance.                 

The performance evaluation of the shot detection techniques includes both the accuracy and compu-
tational complexity. Accuracy evaluation is always the dominant and has been the focus of most papers 
in the literature. However, the computational complexity is also important, especially with real-time 
applications, and the rapid increase of the data volumes. Accuracy is evaluated through the precision 
and recall measures. They are calculated based on the number of correctly and falsely detected shots, as 
well as the missed one. Another important issue with the evaluation is that it needs to be done using a 
common data sets, and standards to be truly representative. Some initiatives have been made and more 
improvements are still needed.

Common issues in almost all the detection algorithms include the selection of the threshold values 
and the appropriate color space to work with. Adaptive threshold were suggested, based on some statisti-
cal properties of the video data. For the color space, most techniques convert the images from the RGB 
color space to other color spaces such as YUV, HSV, or YCbCr, as they are closer to the color percep-
tion model of humans. It has also been noticed that, especially with the gradual transitions, large and 
sudden object motion and fast camera operations in dynamic scenes increases the false detection. This 
is because they produce relatively large differences that are in the order of the changes of the gradual 
transitions. Some specific models are designed to fit specific gradual transitions, which improves the 
accuracy and reduce the false detection. However, the increasing number, variability, and options of the 
possible digital effects these days makes it difficult to include models for all possible effects. 

Finally, the detected shots are expected to be classified and grouped to construct the higher com-
ponents in the logical video structure; that are the scenes and segments. This can be done based on 
temporal, contents similarity, and/or semantic inputs. But they are usually more dependent on the 
specific application domain among other factors. Hence, most probably they involve some level of user 
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interaction, especially for the semantics. We also mentioned some efforts in scene detection that have 
been reported in the last couple of years. 
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ABSTRACT

Multimedia data mining is a critical problem due to the huge amount of data available. Efficient and reli-
able.data.mining.solutions.require.both.appropriate.features.to.be.extracted.from.the.data.and.relevant.
techniques to cluster and index the data. In this chapter, we deal with the first problem which is feature 
extraction.for.image.representation..A.wide.range.of.features.have.been.introduced.in.the.literature,.
and.some.attempts.have.been.made.to.build.standards.(e.g..MPEG-7)..These.features.are.extracted.us-
ing.image.processing.techniques,.and.we.focus.here.on.a.particular.image.processing.toolbox,.namely.
the.mathematical.morphology,.which.stays.rather.unknown.from.the.multimedia.mining.community,.
even.if.it.offers.some.very.interesting.feature.extraction.methods..We.review.here.these.morphological.
features;.from.the.basic.ones.(granulometry or pattern spectrum, differential morphological profile) to 
more.complex.ones.which.manage.to.gather.complementary.information.

INTRODUCTION

With the growth of multimedia data available on personal storage or on the Internet, the need for robust 
and reliable data mining techniques becomes more necessary than ever. In order these techniques to 
be really useful with multimedia data, the features used for data representation should be chosen at-
tentively and accurately depending on the data considered: images, video sequences, audio files, 3-D 
models, web pages, etc.

As features are of primary importance in the process of multimedia mining, a wide range of features 
have been introduced in particular since the last decade. Some attempts have been made to gather the 
most relevant and robust features into commonly adopted standards, such as MPEG-7 (Manjunath, 
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Salembier, & Sikora, 2002). For the description of still images, MPEG-7 contains an heterogeneous 
but complementary set of descriptors which are related to various properties (e.g. colour, texture, 2-D 
shape, etc).

In addition to well-known standards such as MPEG-7, local or global descriptions of digital images 
can be achieved through the use of various toolboxes from the image analysis and processing field. 
Among these toolboxes, Mathematical Morphology offers a robust theoretical framework and a set of 
efficient tools to describe and analyse images. We believe it can be a very relevant solution for image 
representation in the context of multimedia mining. Indeed, its nonlinear behaviour comes with several 
attractive properties, such as translation invariance (both in spatial and intensity domains) and other 
properties (e.g. idempotence, extensivity or anti-extensivity, increasingness, connectedness, duality 
and complementariness, etc), depending on the morphological operator under consideration. Moreover, 
it allows very easily the construction of image scale-spaces from which can be extracted some robust 
features.

The goal of this chapter is not to present once again a well-known standard such as MPEG-7 but rather 
to focus on a specific theory, namely the Mathematical Morphology, and to review how the tools it offers 
can be used to generate global or local features for image representation. This chapter is organized as 
follows. First we recall the foundations of Mathematical Morphology and give the necessary definitions 
and notations. Then we present the morphological one-dimensional features which can be computed 
from the images either at a local or a global scale but always from a scale-space analysis of the images. 
In a third section we review several extensions which have been proposed to gather more information 
than these standard features through multidimensional morphological features. Next we focus on the 
implementation aspects, and give indications on the available methods for efficient processing, which 
is needed as soon as these features are used with multimedia indexing. We underline the potential of 
these features in a following section by giving a brief survey of their use in various application fields. 
Finally we give some concluding remarks and suggest further readings related to the topic addressed 
in this chapter.

BASICS OF MATHEMATICAL MORPHOLOGY

Mathematical Morphology is a theory introduced about 50 years ago by Georges Matheron and Jean 
Serra. Since then, it has been a growing and very active field of research, with its regular International 
Symposium on Mathematical Morphology (ISMM) taking place every two years and a half, and several 
recent special issues of journals (Ronse, 2005; Ronse, Najman, & Decencière, 2007).

Theoretical Foundations

Basically, Mathematical Morphology relies on the spatial analysis of images through a pattern called 
structuring element (SE) and consists in a set of nonlinear operators which are applied on the images 
considering this SE. Thus it can be seen as a relevant alternative to other image processing techniques 
such as purely statistical approaches or linear approaches. First works in Mathematical Morphology were 
related to binary image processing. The theoretical framework involved initially was very logically the 
set theory. Within this framework, the morphological operators were defined by means of set operators 
such as inclusion, union, intersection, difference, etc. However, despite initial efforts leading to stack 
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approaches, this theory has been shown insufficient as soon as more complex images such as greyscale 
images were considered. So another theoretical framework, namely the (complete) lattice theory, is now 
widely considered as appropriate to define morphological operators (Ronse, 1990).

In order to define the main morphological operators from the lattice theory viewpoint, let us note 
f.: E → T a digital image, where E is the discrete coordinate grid (usually 2 for a 2-D image, or 3 
for a 3-D image or a 2-D+t image sequence) and T is the set of possible image values. In the case of a 
binary image, T = {0, 1} where the objects and the background are respectively represented by values 
equal to 1 and 0. In the case of a greyscale image, T can be defined on , but it is often defined rather 
on a subset of  Z, most commonly [0, 255]. In case of multidimensional images such as colour images, 
multispectral or multimodal images, T is defined on n or Zn, with n the number of image channels.

A complete lattice is defined from three elements: 

• a partially ordered set (T, ≥), which could be the set inclusion order for binary images, the natural 
order of scalars for greyscale images, etc, 

• an infimum or greatest lower bound ∧, which is most often computed as the minimum operator 
(this choice will also be made here for the sake of simplicity), 

• a supremum or least upper bound ∨, which is similarly most often computed as the maximum 
operator. 

Once a complete lattice structure has been imposed on the image data, it is possible to apply mor-
phological operators using a structuring pattern. It is called structuring function (SF) or functional 
structuring element and noted g when defined as a function on a subset of T, and called structuring 
element (SE) and noted b when defined as a set on E. In this chapter and for the sake of simplicity, we 
will assume the latter case unless otherwise mentioned, and use the so-called flat structuring elements. 
Let us notice however that the features reviewed in this chapter can be easily computed with structuring 
functions without important modification (if any).

Erosion and Dilation

From these theoretical requirements, one can define the two basic morphological operators. The first 
one called erosion is defined as: 

b q b∈∧ ∈

where p is the pixel coordinates, e.g. p = (x, y) in 2-D images or p = (x, y,.z) in 3-D images. The coor-
dinates within the SE  are denoted by q and most commonly defined in the same space as p. In binary 
images, erosion will reduce white areas (or enlarge black areas). In greyscale or more complex images, 
it will spread the lowest pixel values (i.e. the darkest pixels in case of greyscale images) while removing 
the highest ones (i.e. the brightest pixels in case of greyscale images). In other words, the erosion results 
in an image where each pixel p is associated with the local minimum of f computed in the neighbour-
hood defined by the SE b.

The main other morphological operator is called dilation and is defined in a dual way as:

b q b∈∨ ∈  
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Here the result is an image where each pixel p is associated to the local maximum of f in the neigh-
bourhood defined by the SE b. Thus it will enlarge areas with highest values (i.e. brightest pixels) 
while reducing areas with lowest values (i.e. darkest pixels). Another main difference is related to the 
SE: contrary to the erosion where b is considered, here the dilation is applied using the reflected SE 
 { }= q bb | q- ∈


. In other words, the dilation can be defined as: 
 

bb q∈∨ - ∈  

Mathematical morphology is of particular interest due to the numerous properties verified by its 
operators. Indeed, morphological operators such as erosion and dilation (but also the more complex 
ones) are invariant to (spatial and greyscale) translations, and are commutative, associative, increasing, 
distributive, dual with respect to the complementation, and can most often be broken down into simple 
operators. 

Erosion and dilation, as many other morphological operators, require the definition of a structuring 
element b. This parameter has a strong impact on the results returned by an operator. Main SE shapes 
are diamond ♦, square  , cross +, disc •, and line — or |. A pixel and its 4- or 8-neighbourhood cor-
respond respectively to a 3×3 pixel diamond- or square-shaped SE, also called elementary isotropic (or 
symmetric) SE. The shape of the SE can also be defined from a basic shape and an homothetic parameter 
(or SE size), so we will use the notation bλ = λb to represent a SE of shape b and size λ. For most of the 
SE shapes, bλ can be generated from λ – 1 successive dilations, i.e. bλ = δ(λ – 1)(b). This is obviously not 

true with disc-shaped SE, where • { : ( , ) }p d p oλ λ= ≤  with o the origin or centre of the disc, and d the 
exact or approximated Euclidean distance. Moreover, we can also consider a growing factor κ between 
successive λ sizes, i.e. bλ = κλb. For the sake of simplicity, the b parameter may be omitted in formulas, 

e.g. ελ = εbλ
 and δλ = δbλ

. For elementary structuring elements (e.g. 1
1
 or 1♦ ), we may also omit the λ = 

1 parameter, i.e. ε = ε1 and δ = δ1, thus resulting in elementary erosion and dilation. We also state that 
ε0( f ) = δ0( f ) = f. Figure 1 illustrates the basic structuring elements used in mathematical morphology.

Since morphological operators are often applied several times successively, we will use the notation 
ε(n)( f.) and δ(n)( f.) to denote respectively the n successive applications of ε and δ on f. In other words, ε(n) 
( f.) = ε(1) (ε(n–1) ( f.)) and δ(n) ( f.) = δ(1) (δ(n–1) ( f.)), with ε(1) = ε and δ(1) = δ.

Figure 1. Illustrative examples of basic SE with increasing size λ
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Figure.2..Binary.erosion.and.dilation.with.square-shaped.SE. .of increasing size λ

Figure.3..Greyscale.erosion.and.dilation.with.square-shaped.SE. .of increasing size λ

Even if most of the features presented in this chapter will be defined with flat SE b (i.e. sets), they 
can be easily defined also with structuring functions (SF) g. In this case, the basic operations are de-
fined as: 

supp( )  
( )( ) ( ) ( ),g

q g
f p f p q g q p E

∈

= + - ∈∧

and 

supp( )  
( )( ) ( ) ( ),g

q g
f p f p q g q p E

∈

= - + ∈∨

with supp(g) representing the support of g, i.e. the points for which the SF is defined.
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Figure 2 and 3 illustrate the effects of morphological erosions and dilations applied respectively on 
binary and greyscale images with 8-connected elementary SE   of increasing size λ.

Opening and Closing

Erosion and dilation are used to build most of the other morphological operators. Among these opera-
tors, we can mention the well-known opening and closing filters where erosion and dilation are applied 
successively to filter the input image, starting with erosion for the opening and with dilation for the 
closing. Opening is defined by 

( ) ( ( ))b bbf f=    

while closing is defined by 

( ) ( ( ))b bbf f= 

These two operators respectively result in a removal of local maxima or minima and return filtered 
images which are respectively lower and higher than the input image. This is called the anti-extensiv-
ity property of the opening with γ( f.) ≤ f and the extensivity property of the closing with f ≤ φ( f.) (with 
the ≤ relation being replaced by the ⊆ relation if set theory is considered). Moreover, both opening and 
closing share some very nice properties (in addition to those of erosion and dilation). First they have 
the idempotence property since γb(γb( f.)) = γb( f.) and φb(φb( f.)) = φb( f.). Second they also ensure the 
increasingness property, i.e. if f ≤ g, γb( f ) ≤ γb(g) and φb( f ) ≤ φb(g). Since they verify these two proper-
ties, they are called morphological filters.

Figure 4 and 5 illustrate the effects of morphological openings and closings applied respectively on 
binary and greyscale images with 8-connected elementary SE   of increasing size λ.

The main concern with these two morphological filters is their very strong sensitivity to the SE shape, 
which will have a straight influence on the shapes visible in the filtered image. In order to avoid this 
problem, it is possible to involve the so-called algebraic filters which are a generalization of the mor-
phological opening and closing defined above. For the sake of conciseness, we will use in this chapter 
the operator ψ to represent any morphological filter (e.g. γ or φ).

Algebraic f ilters

The term algebraic opening (respectively closing) is related to any transformation which is increasing, 
anti-extensive (respectively extensive) and idempotent. Thus morphological (also called structural) 
opening and closing are a particular case of algebraic filters. The two main ways of creating algebraic 
opening and closing are recalled here.

The first option relies on opening and closing by reconstruction, which are useful to preserve origi-
nal object edges. More precisely, let us note εg

(1)( f.) the geodesic erosion of size 1 of the marker image f 
with respect to the mask image g: 
 
εg

(1)( f.)(p) = ε(1)( f.)(p) ∨ g(p) 

where the elementary erosion is limited (through a lower bound) within the mask, i.e. εg ≥ ε.
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Figure.5..Greyscale.opening.and.closing.with.square-shaped.SE.  of increasing size λ

Figure.4..Binary.opening.and.closing.with.square-shaped.SE. .of increasing size λ

Similarly, the geodesic dilation of size 1 is defined by: 
 
δg

(1)( f.)(p) = δ(1)( f.)(p) ∧ g(p) 

where the elementary dilation is limited (through an upper bound) within the mask, i.e. δg ≤ δ.
These two operators are usually applied several times iteratively, thus we will use the following 

notations: 
 
εg

(n)( f.) = εg
(1)(εg

(n–1) (f.)) 

and 

δg
(n)( f.) = δg

(1)(δg
(n–1) (f.)) 
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From these two geodesic operators, it is possible to build reconstruction filters ρ which consist in 
successive applications of these operators until convergence. More precisely, the morphological recon-
struction by erosion and by dilation are respectively defined by: 
 
ρg

ε( f.) = εg
(j) (f.) with j such as εg

(j)( f.) = εg
(j–1) (f.)

and 

ρg
δ( f.) = δg

(j) (f.) with j such as δg
(j)( f.) = δg

(j–1) (f.) 

Based on these reconstruction filters, new morphological filters which preserve object edges can be 
defined. Indeed, the opening by reconstruction γb

ρ( f.) of the image f using the SE b is defined as: 
 
γb

ρ( f.) = ρf
δ(εb( f.)) 

while the closing by reconstruction φb
ρ( f.) is defined by: 

φb
ρ( f.) = ρf

ε(δb( f.)) 

In other words, for the opening (resp. closing) by reconstruction, the image f is used both as input 
for the first erosion (resp. dilation) and as mask for the following iterative geodesic dilations (resp. ero-
sions). Contrary to their standard counterparts, these morphological filters by reconstruction remove 
details without modifying the structure of remaining objects. 

The second option consists in computing various openings (respectively closings) and select their 
supremum (respectively infimum). Here each opening is related to a different condition or SE. Let us 
consider a set B = (b)i of SE, we can then define respectively the algebraic openings and closings by: 

( ) ( )B b
b B

f f
∈

= ∨  

and 
( ) ( )B b

b B
f f

∈

= ∧  

and we will use the shortcuts B=  and B=  with λB = (λb)i.
Among the main algebraic filters, we can mention the area-based operators, which have the very 

interesting property to be invariant to the shape of the SE b under consideration. To do so, they consider 
the whole set of all SE of a given size λ, thus resulting in the following operators: 

( ) { ( ) |  is connected and a ( ) }c rda
b

b
f f b b= =∨

and 
( ) { ( ) is connected and ( ) }| carda

b
b

f f b b= =∧
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 Area filters ψa are a special case of more general attribute filters ψχ, with the attribute or criterion χ 
to be satisfied being related to the area, i.e. the Boolean function χ(b, λ) = {card(b) = λ}. Other attribute 
filters can be elaborated, in particular shape-related ones, involving for instance the perimeter χ(b, λ) = 
{card(b – ε(b)) = λ} or the moment of inertia 

( , ) { ( , ) }
q b

b d q o
∈

= =∑

(with d the Euclidean distance and o the origin of the SE b). More generally, attribute filters can be 
defined as: 

Figure 6. Comparison between binary standard (structural) filters, filters by reconstruction, and area 
filters with increasing λ parameter



  ��

Image Features from Morphological Scale-Spaces

Figure 7. Comparison between greyscale standard (structural) filters, filters by reconstruction, and area 
filters with increasing λ parameter

( ) { ( ) |  is connected and ( , )}b
b

f f b b= ∨  
and 

( ) { ( ) |  is connected and ( , )}b
b

f f b b= ∧  

In Figure 6 and 7 are given some visual comparisons between structural filters, filters by reconstruc-
tion, and area filters, respectively on binary and greyscale images. We can observe the interest of filters 
by reconstruction and area filters to limit the sensitivity to the SE shape.



��  

Image Features from Morphological Scale-Spaces

Apart from these basic operators, mathematical morphology offers a wide range of operators or 
methods to process images. We can cite the morphological gradient, the hit-or-miss transform to perform 
template matching or object skeletonisation, the watershed or levelling approaches for segmentation, 
the alternating sequential filters (ASF) for image simplification, etc. In this chapter, we will focus on 
morphological features extracted from the previously presented operators and we will not deal with 
some other morphological operators. The interested reader will find in the book from Soille (2003) a 
good overview of the morphological toolbox for image processing and analysis.

STANDARD MORPHOLOGICAL IMAGE FEATURES

Image features are most often dedicated to a single type of information (e.g. colour, texture, spatial 
distribution, shape, etc). The most famous example is undoubtedly the image histogram which measures 
the probability density function of the intensity values in the image and which can be analysed through 
various measures (e.g. moments, entropy, uniformity, etc). However it is limited to intensity distribution 
and does not take into account the spatial relationships between pixels. 

On the opposite, approaches known under the terms of pattern spectra, granulometries, or morpho-
logical profiles are built from series of morphological filtering operations and thus involve a spatial in-
formation. We review here these different (either global or local) features in an unified presentation.

Multiscale Representation Using Morphological Filters

We have introduced in section 1 the main morphological filters (i.e. opening and closing filters) which 
aim at removing details in the image, either bright details (with the opening) or dark details (with the 
closing), by preserving or not object edges. Thus they can be used to build multiscale representations 
of digital images by means of mathematical morphology. 

Most of these multiscale representations can be seen as nonlinear scale-spaces, if some of the original 
constraints are relaxed. The concept of scale space introduced by Witkin (1983) is defined as a fam-
ily of filtered images 0{ ( )}t tf ≥ϒ , with 0 ( )f fϒ = and various axioms (Duits, Florack, Graaf, & Haar 
Romeny, 2004), the multiscale representation being computed most often by means of a convolution 
by a Gaussian kernel: 

2 2

2
( ) ( )

2
2

1( )( , ) ( , )* ( , , ) ( , )
2

x u y v
t

t f x y f x y g x y t f u v e du dv
t

- + -
-+∞

-∞
ϒ = = ∫  

The main properties of a scale-space are relatively compatible with some of the morphological op-
erators as pointed out by the work of Jackway (1992): 

• causality, i.e. no additional structures are created in the image when t increases (indeed both height 
and position of extrema are preserved); 

• recursivity 
 ( ( )) ( ( )) ( ), , 0t s s t t sf f f t s+ϒ ϒ = ϒ ϒ = ϒ ∀ ≥
• increasingness 
 , ( ) ( ), 0t tf g f g t≤ ϒ < ϒ ∀ >  
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• either extensivity 
 ( ) , 0t f f tϒ ≥ ∀ ≥  
 or anti-extensivity 
 ( ) , 0t f f tϒ ≤ ∀ ≥  
 which leads respectively to 
  t1 ≤ t2, ¡t1

( f ) ≤ ¡t2
( f ), ∀t >0 

 t1 ≤ t2, ¡t1
( f ) ≥ ¡t2

( f ), ∀t >0  

Thus some scale-spaces can be built straightforward from successive applications of morphological 
operators (such as erosion and dilations (Jackway & Deriche, 1996), or ASF (Matsopoulos & Marshall, 
1992; K. Park & Lee, 1996; Bangham, Ling, & Harvey, 1996)), or using advanced morphological 
representations such as max-tree (Salembier, Oliveras, & Garrido, 1998). Here we will use the term 
(morphological) scale-space even for scale-spaces where the recursivity property is replaced by the 
absorption law defined by Matheron (1975) which is relevant for morphological filters: 

max( , ), 0, ( ( )) ( ( )) ( )t s s t t st s f f f∀ ≥ ϒ ϒ = ϒ ϒ = ϒ  

In addition to this property, the idempotence property also holds: 

( ( )) ( )t t tf fϒ ϒ = ϒ

A wide range of morphological operators can lead to scale spaces, such as openings and closings (Chen 
& Yan, 1989). 

Figure 8 illustrates the difference between a scale-space built with Gaussian  and morphological 
(bottom) closing filters. One can clearly see the interest of morphological scale-spaces to retain object 
edges even with basic (i.e. structural) morphological filters.

So morphological scale-spaces can be built by applying some morphological operators tϒ on the input 
image f, with increasing parameter t. In the morphological framework, t is directly related to the size λ 
of the structuring element b, and we will use the notation  bλλϒ = ϒ . Indeed, for a given morphological 
filter ψλ, λ denotes the size of the SE, i.e. the size of neighbourhood used to compute minima or maxima 
(or the filter window). Then when λ increases, the morphological filter ψλ will remove more and more 
details from the input image (as shown by Figure 9), thus respecting the main property of scale-spaces 
(i.e. causality). Moreover, to satisfy the absorption property, the SE b under consideration has to be a 
compact convex set (Matheron, 1975).

Let us note 0( ) { ( )}f f ≥Π = Π  the morphological scale-space, i.e. the series of successive filtered 
images using ψ with growing SE size λ: 

{ }
0

( ) ( ) (  )| ) (
n

f f f f
≤ ≤

Π = Π Π =

where ψ0( f ) = f and n + 1 is the length of the series (including the original image). This Π series is a 
nonlinear scale-space, with less and less details as λ is increasing from 0 to n. Instead of using a single 
SE, a SE set or generator B = (b)i can be used (Matheron, 1975), thus resulting in series made from 
algebraic filters:
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{ }
0

 ( ) ( ) ( ) ( )| 
n

f f f f
≤ ≤

Π = Π Π =  

with B= . The initial definition leading to Euclidean granulometries was considering the same 
growing factor κ for all SE bi in B, i.e. (bi)λ = λκibi. It is also possible to make the κ factor depends on b, 
thus either B = (b, κ)i (where (bi)λ = λκibi) for homogeneous multivariate series (Batman & Dougherty, 
1997) or B = (b, t, k)i (with ti being a strictly increasing function of κi, thus (bi)λ = λti(κi)bi for heteroge-
neous multivariate series (Batman, Dougherty, & Sand, 2000).

Moreover, these series Πψ can be made using any ψ filter (see (Soille, 2003) for a deeper review of 
morphological filters). Thus, Π is also anti-extensive for any opening filter and extensive for any clos-
ing filter, resulting respectively in lower and lower images or higher and higher images as λ increases. 
Indeed, if we have λ1 ≤ λ2, then 

2 1
( ) ( )f fΠ ≤ Π  and 

2 1
( ) ( )f fΠ ≥ Π .

In order to avoid their highly asymmetric behaviour (Πψ is either anti-extensive or extensive), it is 
possible to gather opening and closing series to generate a single Π series of length 2n + 1: 

Figure.8..Comparison.between.Gaussian.(top).and.morphological.(bottom).scale-spaces
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( ), 0
( ) ( ) ( ) ( ), 0

, 0
|

n n

f
f f f f

f

-

- ≤ ≤

 Π <
 Π = Π Π = Π >  
  = 

We can also build these symmetric series using any of the pair of opening/closing filters, and we 
will denote by Πρ, Πα, Πa, Πχ the series created respectively with ψρ, ψα, ψa, ψχ. An illustration of this 
kind of dual series is given in Figure 10.

Let us note that the merging of openings and closings can also be made by means of alternate se-
quential filters (ASF), which consists in successive openings and closing with SE of increasing size λ. 
Using ASF to compute the Π series results in the following definition: 

Figure.9..Details.removal.by.means.of.successive.openings.(top).and.closings.(bottom).by.reconstruction
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ASF
1/2

ASF ASF ASF ASF
1( 1)/2

0

( ( )) if is odd

( ) ( ) | ( ) ( ( )) if is even

, if 0
n

f

f f f f

f

-  

--  

≤ ≤

  Π
   Π = Π Π = Π  
  

=  

Of course the morphological filters γ and φ can again be replaced by any of their variants, e.g. their 
reconstruction-based counterparts γρ and φρ, thus resulting in the ΠASFρ series. ASF have been proven to 
be a specific case of more general concepts, M- and N- sieves (Bangham et al., 1996). Another related 
feature is the lomo filter (Bosworth & Acton, 2003), which consists in the mean of two ASF applied 
until convergence, one starting with an opening (i.e. being defined as φnγn...φ1γ1) and the other starting 
with a closing operation (i.e. being defined as γnφn...γ1φ1). It is also possible to associate to each scale 
λ the difference between the union and the intersection of the ASF with successive λ size (Xiaoqi & 
Baozong, 1995), i.e. ASF ASF ASF ASF

1 1( ) ( )- -Π ∨ Π - Π ∧ Π .
Features can be extracted directly from the series Πψ (or from their symmetrical version Π), but most 

often it is more relevant to compute the differential version Δψ of this series where removed details are 
emphasized for each λ size. For anti-extensive filters such as openings, we have: 

{ }1 0
( ) ( ) ( ) ( ) ( )| 

n
f f f f f- ≤ ≤

D = D D = Π - Π  

while for extensive filters such as closings, we have: 

{ }1 0
( ) ( ) ( ) ( ) ( )| 

n
f f f f f- ≤ ≤

D = D D = Π - Π  

Figure 10. From top left to bottom right, Π series of length 2n + 1 with n = 7 using structural filters γ 
and φ and 4-connected elementary SE ♦
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thus resulting in a single definition 

{ }1 0
( ) ( ) ( ) ( ) ( )| 

n
f f f f f-

≤ ≤
D = D D = Π - Π  

with the assumption Δψ
0 = 0. In this series, a pixel p will appear (i.e. have a non null value) in Δψ

λ ( f.) if 
it is removed by ψλ, the morphological filter ψ of size λ (or in other words, if it was present in ψλ–1( f.) 
but not anymore in ψλ( f.)). 

Similarly for the Πψ series, it is possible to compute a symmetric version of Δψ by taking into account 
both opening and closing filters: 

( ), 0
( ) ( ) | ( ) ( ), 0

0, 0
n n

f
f f f f

-

- ≤ ≤

 D <
 D = D D = D >  
  = 

As an illustration, Figure 11 is the Δ counterpart of the Π series presented in Figure 10 using structural 
filters with diamond shaped-SE, while Figure 12 is the differential series built from the one presented 
in Figure 9 using filters by reconstruction.

We also have to notice that even basic operators (not necessarily filters) can be used to build mor-
phological series. Indeed, one can apply successive erosions ε or dilations δ to build a Π or Δ series: 

{ }
0

( ) ( ) | ( ) ( )
n

f f f f
≤ ≤

Π = Π Π =  

Figure 11. From top left to bottom right, Δ series of length 2n + 1 with n = 7 using structural filters γ 
and φ and 4-connected elementary SE Grey levels have been inverted and normalised for the sake of 
readability.
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where ν denotes the basic morphological operator under consideration (e.g. ε or δ). The properties of 
these series will be however weaker than the previous series built from morphological filters. Depend-
ing on the desired properties of the series, one can even relax the constraint on the shape (compactness 
and convexity) of the SE in use. 

Among these operators which do not belong to morphological filters, we can even use difference 
operators. For instance, by considering the morphological gradient Gλ( f.) = δλ( f.) – ελ( f.) with increasing 
scale λ, we can build some morphological fractal measures (Soille, 2003). Another example is related to 
top-hats and the so called hat scale-spaces (Jalba, Wilkinson, & Roerdink, 2004). More precisely, the 
top-hat by opening is defined by τγ( f.) = f – γ( f.) while the top-hat by closing (or bottom-hat) is defined 
by τφ( f.) = φ( f.).– f. From these hat scale-spaces can be extracted the so called fingerprints introduced 
by Jackway and Deriche (1996) as local maxima or minima in the images filtered at different scales. 
Fingerprints can also be obtained by the filters by reconstruction (Rivas-Araiza, Mendiola-Santibanez, 
& Herrera-Ruiz, 2008). Various robust features can also be extracted from the analysis of scale-spaces 
made with top- and bottom-hat by reconstruction (W. Li, Haese-Coat, & Ronsin, 1997). Of course we 

Figure.12..Details.emphasized.by.means.of.differences.between.successive.openings.and.closing.by.
reconstruction..Grey.levels.have.been.inverted.and.normalised.for.the.sake.of.readability.
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can also build other versions of these operators, e.g. using filters by reconstruction γρ and φρ. Any of the 
resulting series Πτψ can then be analyzed in a similar manner as the standard Π series. 

These different series are the basis of the standard morphological features widely used in image 
analysis and visual pattern recognition. These features are computed either at a local scale or a global 
scale.

Local Morphological Features

The simplest way to extract morphological features from a digital image f using one of the Πψ or Δψ 
series consists in associating to each pixel p the vector 0( )( ) ( ( )( )) nf p f p ≤ ≤Π = Π  of size n + 1. 

In the remote sensing field, this principle led to the so called differential morphological profile (DMP) 
proposed by Pesaresi and Benediktsson in (Pesaresi & Benediktsson, 2001; Benediktsson, Pesaresi, & 
Arnason, 2003) which is computed using the reconstruction-based differential series: 
 
DMP( f.)(p) = Δρ( f.)(p) 

Figure 13 illustrates the behaviour of the DMP feature for pixels belonging to different areas of an 
image.

This feature is a kind of structural feature, and an interesting alternative to spectral or textural 
features. Its size (initially equal to 2n + 1) can be strongly reduced by considering only the few most 
important maxima. It has been shown in (Benediktsson et al., 2003) that using only the first and second 
maximum values of ∆ρ( f.)(p) for each pixel p ensures satisfactory recognition rates in supervised clas-
sification of remotely sensed images.

Moreover, an attempt has been made in (Chanussot, Benediktsson,&Pesaresi, 2003) to use recon-
struction-based alternate sequential filters through the ΔASFρ series as an alternative to the original DMP, 
thus defining DMPASF( f.)(p) = ΔASFρ( f.)(p). Alternatively, ASF-based scale-space representations can 
also be computed from the area-filters (Acton & Mukherjee, 2000b).

Figure.13..Input.image.with.4.sample.points.(left).and.corresponding.DMP..values.(right).using.20.
openings.(negative.indices).and.20.closings.(positive.indices).
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In case of binary images, pixelwise feature extraction from morphological scale-space may consist 
in assigning to each pixel p of f the scale, or size λ, for which the filter (e.g. opening) manages to remove 
the pixel, thus resulting in the so called opening transform when considering successive applications of 
the opening filter (similarly, the closing transform is related to the scale-space obtained from successive 
closings). The definition is given by: 

Ξψ( f.)(p) = max{λ ≥ 0 | ψλ( f.)(p) > 0} 

with the convention Ξψ( f.)(p) = 0 if f.(p) = 0. 

Figure 14. Illustration of various opening and closing transforms obtained with different filters and SE 
shapes
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In other words, it can be easily computed by analysing the series Π and looking at each pixel p for 
the first image (with filter size λ + 1) such as 1( )( ) 0f p+Π = . 

Figure 14 illustrates the opening and closing transforms considering various morphological fil-
ters and SE. The extension of this principle to greyscale images can lead to the definition of opening 
trees (Vincent, 2000). However, if one wants to keep a single value for each pixel, it is recommended 
to select the λ value resulting in the biggest drop in greyscale intensity when applying ψλ( f.)(p), thus 
following the recommendation of Pesaresi and Benediktsson with DMP.

Global Morphological Features

Besides the use of morphological series directly on a per-pixel basis, it is possible to involve them in 
global image features. In this case, pattern spectra and granulometries are certainly the most famous 
morphological features in the image analysis community (Soille, 2003).

Granulometries and antigranulometries (also called size and anti-size distributions) are built by 
gathering the values of the series over all pixels p of the filtered image ψ( f.) through a Lebesgue mea-
sure, for instance a volume or sum operation. In the particular case of binary images, the image volume 
can either be computed as the sum of pixel values or as the amount of white pixels (or 1-pixels).The 
granulometry uses openings: 

0

( ) ( ) | ( ) ( )( )
p E n

f f f f p
∈ ≤ ≤

 
Ω = Ω Ω = Π 

 
∑

while the antigranulometry relies on closings: 

0

 | ( ) ( ) ( ) ( )( )
p E n

f f f f p
∈ ≤ ≤

 
Ω = Ω Ω = Π 

 
∑

 

From the properties of morphological filters, we can observe that Ωγ is monotonically decreasing 
while Ωφ is monotonically increasing. In order these measures to be invariant to image size and to rep-
resent cumulative distribution functions, they are worth being normalized, thus resulting in the new 
definition: 

0 0

( )( ) ( ) ( ) 1
(

 | 
)

n

ff f f
f

≤ ≤

 Ω
Γ = Γ Γ = - Ω 

with ψ denoting either γ or ψ. In Figure 15 are given the granulometric curves Γ for both opening and 
closing filters, considering the main standard SE.

Another very interesting morphological global feature is the pattern spectrum Φ introduced by 
Maragos (1989), also called pecstrum (Anastassopoulos & Venetsanopoulos, 1991). It can be seen as the 
morphological counterpart of the well-known image histogram. Instead of measuring the distribution 
of intensities within an image, it aims at measuring the distribution of sizes (and to a lesser extent, of 
shapes). To do so, it gathers values of the differential series ∆ over all pixels: 

( ) ( ) ( ) ( )( ) | 
p E n n

f f f f p
∈ - ≤ ≤

 
Φ = Φ Φ = D 

 
∑  
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and the normalization ensures measures independent of the image size: 

0

 | ( )( ) ( ) ( )
( )

n n

ff f f
f

- ≤ ≤

 Φ
Λ = Λ Λ = Ω   

Moreover, let us notice that the pattern spectrum can be easily computed as the histogram of the 
opening (or/and closing) transform.

In Figure 16 are given the pattern spectra Λ for both opening and closing filters, using respectively 
structural filters, filters by reconstruction and area filters. Moreover, Figure 17 illustrates the relevance 
of the pattern spectrum in case of image with similar greylevel distribution.

Figure 15. Input image (left) and corresponding granulometric curve Γ (right) using 20 openings (nega-
tive.indices).and.20.closings.(positive.indices).

Figure 16.  Input image (left) and corresponding pattern spectrum Δ (right) using structural filters, filters 
by reconstruction and area filters
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When dealing with greyscale images, it is also possible to involve greyscale (or volume) SE, thus 
dealing with spatial but also to a lesser extent with intensity information.

Moreover, some scalar attributes can be extracted from the previous 1-D morphological series. 
As representative examples, we can cite the average size and roughness (Maragos, 1989) computed 
respectively as the mean and the entropy of the signal, or the statistical moments computed on the 
granulometric 1-D curve and called granulometric moments (Dougherty, Newell, & Pelz, 1992; Sand 
& Dougherty, 1999).

Besides the use of morphological filters to build global morphological filters, it is also possible to 
involve any operator ν and to exploit the morphological series (e.g. Πν) of images processed with this 
operator. In this case, the obtained series Ων are called pseudo-granulometries since they do not respect 
the fundamental requirements of granulometries (Soille, 2003). As another representative example of 
using Πν series, we can cite the covariance feature K, a morphological counterpart of the autocorrelation 
operator. To compute this feature, the SE b under consideration consists in a set of two points p1 and p2 

and is defined by both a size 1 22 p pλ =


‖ ‖  and an orientation: 1 2 1 2/v p p p p=
 



‖ ‖

,
0

 | ( ) ( ) ( ) ( )( )v v v
v

p E n

K f K f K f f p
∈ ≤ ≤

 
= = Π 

 
∑

  



 

Figure 17. Two input images (left) with similar histograms (top right) but different pattern spectra Λ 
(bottom.right)
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where 

, ( )( ) ( ) ( )v f p f p v f p v= - ∧ +

 

 
This feature is illustrated by Figure 18. 
Another definition of the covariance has been given by Serra (1982) where the autocorrelation func-

tion is used, thus resulting in the operator ε' defined by 

, ( )( ) ( )· ( )v f p f p v f p v′ = - +

 

 
where the intersection ∧ is replaced by a product ˙ operation.

We have not dealt yet with the case of semi-local features, i.e. features computed on an intermedi-
ate scale. The processing units at this scale are neither the single pixels nor the whole image, but rather 
parts of it, e.g. blocks or image regions. In this case, the global features can be computed similarly but 
within a limited area of the image, thus resulting in one morphological feature per block or region. An 
illustrative example of this approach is the work from Dougherty where each pixel is characterized 
by the granulometry computed from its neighbouring window (Dougherty, Pelz, Sand, & Lent, 1992).

Even if these features (either local or global) appear as particularly relevant alternatives to usual im-
age features such as image histograms, wavelets, or other textural features (just to mention a few), they 
still are limited to a single evolution curve and so cannot consider simultaneously several dimensions. 
More precisely, they deal only with the structural information extracted from morphological filters ap-
plied with growing SE sizes.

MULTIDIMENSIONAL EXTENS IONS OF MORPHOLOGICAL FEATURES

Despite their broad interest in image representation, the well-known morphological features reviewed 
so far are limited by their one-dimensional nature (i.e. they are computed as single evolution curves 
and thus cannot consider simultaneously several dimensions).

Figure.18..Input.image.(left).and.corresponding.covariance.curves. vK


 (right) using 25 vector sizes λ 
and.4.different.orientations.q.for. v .
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We review here some recent multidimensional extensions which allow to build n-D (mostly 2-D) 
series of morphological measures. These extensions help to gather complementary information (e.g. 
spatial, intensity, spectral, shape, etc) in a single local or global morphological representation.

Size-Shape

In the morphological series defined in the previous section, a unique parameter λ was considered for 
measuring the size evolution, through the SE bλ. We have indicated various ways to build the series of 
SE bλ based on the increasing λ parameter. Here we consider the SE κ as a growing factor of the initial 
shape b, i.e. ( 1) ( )b b-=   with various shapes for κ (e.g. one of the basic shapes introduced in sec-
tion 1.2). Let us notice that the size of κ has to be rather small to build measurements at a precise scale 
(or conversely large for coarse measurements) since it represents the growing factor of the SE series. 
Moreover, one has also to set the initial condition b, i.e. the initial SE, which can be of arbitrary shape, 
even equal to κ (thus resulting in the definition given in section 1.2).

This definition assuming a single size varying parameter λ prevents us from performing accurate 
measurements. Indeed, it is not adequate to elliptical or rectangular shapes for instance, where the two 
independent axes should be taken into account. So several attempts have been made to build bivariate 
morphological series, thus allowing to obtain size-shape measurements. 

Figure 19. Three input images (top) and their respective 2-D Δ feature (middle). As a comparison, 
standard.pattern.spectra.using.square.SE.(bottom.left),.horizontal.line.SE.(bottom.centre).and.vertical.
line.SE.(bottom.right).are.also.given.
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Lefèvre, Weber, & Sheeren (2007) consider structuring elements with two different size parameters 
α and β that vary independently. More precisely, a way to define the 2-D series of SE bα,β is given by 

1 2 2 1

( 1) ( 1) ( 1) ( 1)
, ( ( )) ( ( ))b b b- - - -= =     with κ1 and κ2 denoting the structuring elements used as 

growing factors in the two dimensions, and b the initial SE. In the case of rectangular SE series, a rel-
evant choice for κ1 and κ2 consists in 1-D SE such as horizontal and vertical lines respectively (with a 
length proportional to the degree of coarseness desired) and an initial rectangular SE b.

The new Π series built using the 2-D set of SE bα,β is then computed as: 

{ }0, , ,
0

( ) ( ) | ( ) ( ) m
n

f f f f ≤ ≤
≤ ≤

Π = Π Π =  

where the application of ψ on f with a SE bα,β is noted ψα,β( f.) and with the convention ψ0,0( f.) = f. Simi-
larly, the Δ series measures the differential in both size dimensions: 

, , 1, 1 1, , 1
0
0

1( ) ( ) ( ) 2 )| ( ) (
2 m

n

f f f f f- - - -
≤ ≤
≤ ≤

 D = D D = Π - Π - Π 
 

 
where ,0D = D  0,D = D  0,0 0D = .

Figure 19 illustrates the potential interest of such 2-D features for sample images where standard 
granulometries are irrelevant.

A similar approach has been proposed by Ghosh and Chanda (1998) who introduce conditional 
parametric morphological operators, and who build a 2D set of SE with increasing size, both on the 
horizontal and vertical dimensions. From this set of SE they finally compute the bivariate pattern 
spectrum for binary images. Bagdanov and Worring (2002) introduce the same feature under the term 
rectangular granulometry, while a slightly different definition has been given by Barnich, Jodogne, & 
Droogenbroeck (2006) to limit the SE to the largest non-redundant rectangles within the analysed object 
(in binary images). Moreover, a more general expression of m-parametric SE has been used in (Gadre 
& Patney, 1992) to define multiparametric granulometries.

Batman et al. in (Batman & Dougherty, 1997; Batman et al., 2000) propose an alternative definition of 
this series using Euclidean series Πψα( f.) with the set of SE B = {–1,|1} where – and | denote respectively 
elementary horizontal and vertical SE. Moreover, they also introduce a univariate series by combining 
through the sum operations two series of SE bα and cβ built from initial SE b and c: 

{ }, , 0
0

( ) ( ) | ( ) ( ) ( )b c m
n

f f f f f ≤ ≤
≤ ≤

Π = Π Π = +  

Urbach, Roerdink, & Wilkinson (2007) also propose to combine size and shape information in a 
single 2-D granulometry. They rely on attribute filters (Breen & Jones, 1996) ψχ and use a max-tree 
representation (Salembier et al., 1998) of the image for computational reasons. Their 2-D series can be 
defined as: 

{ },1 2
1 2

0, ,
0

( ) ( ) | ( ) ( ) ( ) m
n

f f f f f ≤ ≤
≤ ≤

Π = Π Π = ∧  

where the two criteria χ1 and χ2 are respectively related to the area (i.e. defining size) and the ratio of the 
moment of inertia to the square of the area (i.e. defining shape). While the first dimension (indexed by 
α and related to the criterion χ1) is related to size and respect the axioms of morphological scale-spaces, 
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the second dimension (indexed by β and related to the criterion χ2) is related to shape and should 
be scale-invariant, thus the increasingness property is replaced by the scale-invariance property, 
i.e. Sλ(Yt( f.)) = Yt(Sλ( f.)), ∀t.> 0 with the transform Sλ( f.) being the scaling of the image f by a scalar 
factor λ.

Size-Orientation

Besides the size of the SE, one can also vary its orientation (Werman & Peleg, 1985). Naturally this is 
relevant only with anistropic structuring elements and not for disc-shaped SE, nor with area-based filters. 
Let us note bλ,θ a SE of size λ and orientation θ. This SE is built from a rotation of the initial SE bλ with 
an angle θ, i.e. ∠(bλ, bλ,θ) = θ with ∠(b1, b2) the measured angle between orientations of b1 and b2.

Based on this principle, the morphological series is then defined as: 

{ }
0

0, , ,( ) ( ) | ( ) ( )
m

nf f f f ≤ ≤
≤ ≤

Π = Π Π =

where {θ0,...,θm} represents the set (of cardinality |θ|) of orientations considered, and ψλ,θ is a shortcut for 
ψbλ,θ

. Figure 20 illustrates the interest of such size-orientation features when the standard granulometry 
is useless.

Apart from the most simple angles (i.e. θ = kp/4), one has to tackle very carefully the problem of 
discretisation for rotated SE. Accurate approximations can be obtained by periodic lines (see the work 
from Jones and Soille (1996)) and require the use of several SE to get an accurate discrete representation 
of a continuous segment (Soille & Talbot, 2001). It is also possible to retain for each pixel at a given size, 
only the maximum or minimum value from the results returned by the morphological filter with the vari-
ous orientations (Maragos, 1989). In this case however, the result is a 1-D series similar to the one which 
could be obtained by means of radial filters (Soille, 2003). Finally, from these size-orientation measures, 
other features can be extracted such as orientation maps proposed by Soille & Talbot (2001).

Size-Spectral or Size-Colour

Since digital images contain very often spectral or colour information, it is worth involving the spectral 
signature or colour of each pixel in the computation of the morphological representation. 

To do so, it is possible to first compute a morphological signature for each of the k spectral compo-
nents (or bands) and then to combine these k signatures into a single one. With this two-step approach, 
the morphological series Π can be expressed as: 

{ }1, ,
0

(f ) (f ) | (f ) ( ) k
n

f ≤ ≤
≤ ≤

Π = Π Π =  

where fΩ is a greyscale image representing the Ωth spectral component of the multispectral or colour im-
age f = { fw}1≤Ω≤k. In this definition, morphological filters are applied independently on each image band, 
thus the marginal strategy is used and the correlation among the different spectral channels is completely 
ignored. Moreover it can result in new spectral signatures or colours in the filtered images. 

To avoid these limitations, it is possible to rather consider a vectorial ordering when applying the 
morphological operators on the multispectral input image f (Aptoula & Lefèvre, 2007a). The purpose of 
a vectorial ordering is to give a way to order vectors and thus to compute vectorial extrema by means 
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of the two operators supv and infv. Assuming a given vectorial ordering, the fundamental dilation and 
erosion operators are written: 

(f )( ) inf f ( ),v v
b q b

p p q p E
∈

= + ∈

(f )( ) sup f ( ),v v
b

q b
p p q p E

∈
= - ∈

and from these operators it is possible to write all vectorial versions of the morphological operators 
described previously in this chapter.

The new size-spectral morphological series is finally computed as: 

( ){ }, , 1
0

(f ) (f ) | (f ) (f )v
k
n

≤ ≤
≤ ≤

Π = Π Π =  

where ( )(f ) ( )v f=  in the specific case of a marginal ordering. A comparison of marginal and 
vectorial strategies is given in Figure 21, considering a similar size distribution but a different spatial 
distribution in each colour band.

For a comprehensive review of vectorial orderings and multivariate mathematical morphology, the 
reader can refer to the survey from Aptoula & Lefèvre (2007a). An example of colour pattern spectrum 
can be found in (Ledda & Philips, 2005) while a comparison between several vectorial orderings has 
also been proposed recently by Gimenez and Evans(2008) using the series ΠASFa( f ). Nes and d’Ornellas 
(1999) consider colour pattern spectra with linear SE of variable directions (at each scale λ, the maximum 
pattern spectrum among the various orientations is selected). Rivest (2006) deals with radar signals 
and propose adequate granulometry and power spectrum by introducing a vector ordering dedicated 
to complex data.

Size-Intensity

In greyscale images, the pixel intensity values are used either directly (at local scale) or gathered with 
the sum operator (at global scale). So the distribution of intensity values in the image is not taken into 
account with standard morphological features, which can be a real issue since intensity distribution 
(usually measured by an histogram) is a key feature to represent image content.

Computing the histogram on morphological scale-spaces has been proposed by Lefèvre (2007) to take 
into account both size and intensity distributions. To do so, let us use the Kronecker delta function:

,

1 if 
0 if i j

i j
i j

=
=  ≠

and the histogram function :fh T → : 

, ( )( )f f p
p E

h
∈

= ∑

which measures the number of occurrences of each greylevel η in the image f. Alternatively, we can 
also use the normalised histogram function : [0,1]fh T′ →  where 

( )
( )

| ( )u |s pp
f

f

h
h

f
′ =
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with |supp( f.)| the cardinality of the support of f, i.e. the number of pixels in f.
The formulation of the 2-D size-intensity morphological feature is then given by the following Π 

series: 

{ }0, , ( )
0

( ) ( ) | ( ) ( )
mf

n
f f f h ≤ ≤

≤ ≤
Π = Π Π =

 
where 0{ , , }m…  represents the different greylevels or bins in the histogram.

Figure 22 shows the relevance of size-intensity morphological features when both granulometry 
and histogram are irrelevant. For the sake of clarity, greylevel 0 (i.e. black pixels) has been omitted in 
the plots.

Its derivative counterpart can be given by the following Δ series: 

{ }1 0, , ( ) ( )
0

( ) ( ) | ( ) ( )
mf f

n
f f f h

-- ≤ ≤
≤ ≤

D = D D =

This feature can be seen as a morphological alternative to the very effective multiresolution histo-
grams computed from Gaussian linear scale-spaces (Hadjidemetriou, Grossberg, & Nayar, 2004).

Spatial and intensity information can also be gathered by the use of structuring functions (SF) as 
proposed by Lotufo and Trettel (1996). More precisely, let us define the SF gλ, η as a non-planar cylinder 
of radius λ and amplitude η. A size-intensity feature is then built using various λ and η values: 

{ } 0, , ,
0

( ) ( ) | ( ) ( )
m

n
f f f f ≤ ≤

≤ ≤
Π = Π Π =

where ψλ, η is here a shortcut for ψgλ,η
. It has been noticed in (Lotufo & Trettel, 1996) that both the classic 

histogram and the pattern spectrum can be derived from this measure by considering respectively λ = 
0 (i.e. a single pixel) and η = 0 (i.e. a flat disc-shaped SE).

A similar feature called granold has been proposed by D. Jones and Jackway (2000) by first decom-
posing the greyscale image into a stack of binary images and then computing the granulometry for each 
binary image (i.e. at each greyscale threshold), thus resulting in the following series: 

{ }0, ,
0

( ) ( ) | ( ) ( ( ))
m

n
f f f T f ≤ ≤

≤ ≤
Π = Π Π =

where Tη denotes the thresholding function: 

1 if ( )
( )( )

0 if ( )
f p

T f p
f p

≥
=  <

Despite their different definitions, both (Lotufo & Trettel, 1996) and (D. Jones & Jackway, 2000) 
lead to similar measures.

Size-Spatial

All the previous features were considering the spatial information through the successive applications of 
morphological operators which rely on a spatial neighbourhood. But they did not retain any information 
about the spatial distribution of the pixels at a given scale λ. A first attempt to deal with this problem 
was made by Wilkinson (2002) who proposed to compute spatial moments on the filtered binary images, 
thus resulting in spatial pattern spectra: 
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Figure.20..Two.input.images.(left),.their.respective.(similar).granulometric.curve.with.vertical.SE.(centre).
and.their.2-D.size-orientation.granulometric.curve.(right).considering.four.angles.

 0

 0
.�

 0
.�

 0
.�

 0
.� �

 0
 �

 �
 �

 �
 �

0
 �

�
S

E
 s

iz
e

G
ra

nu
lo

m
et

ry
 w

ith
 v

er
tic

al
 li

ne
 S

E
S

iz
e-

or
ie

nt
at

io
n 

gr
an

ul
om

et
ry

 0
 �

 �
 �

 �
 �

0

S
E

 le
ng

th

 0
 �

 �
 �

S
E

 o
rie

nt
at

io
n

 0

 0
.�

 0
.�

 0
.�

 0
.� �

 0

 0
.�

 0
.�

 0
.�

 0
.� �

 0
 �

 �
 �

 �
 �

0
 �

�
S

E
 s

iz
e

G
ra

nu
lo

m
et

ry
 w

ith
 v

er
tic

al
 li

ne
 S

E
S

iz
e-

or
ie

nt
at

io
n 

gr
an

ul
om

et
ry

 0
 �

 �
 �

 �
 �

0

S
E

 le
ng

th

 0
 �

 �
 �

S
E

 o
rie

nt
at

io
n

 0

 0
.�

 0
.�

 0
.�

 0
.� �



  ��

Image Features from Morphological Scale-Spaces

( ){ }( ) ( ) | ( ) ( )
ijmij
n n

f f f m f
- ≤ ≤

Φ = Φ Φ = D

where mij denotes the moment of order (i, j), computed on an image f as: 
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This idea was later followed by Aptoula and Lefèvre (2006) where a normalised spatial covariance 
involving normalised unscaled central moments µij is proposed to ensure scale and translation invari-
ance: 
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Alternatively, Ayala and Domingo (2001) proposed spatial size distributions where filtered images of 

the morphological series are replaced by their intersection with filtered translated images, intersection 
being computed on a linear way with a product rather than on a nonlinear way with a minimum. Thus 
their feature can be obtained by comparing the linear covariances applied on both initial and filtered 
images, for all possible vectors in a set defined by κb, with increasing κ values: 
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where q


 is a shortcut for the vector oq


 with o the centre or origin of the SE b, and q any neighbour 
belonging to the SE. Here we have used the notation K' to denote the autocorrelation function (cf. sec-
tion 2.3). The spatial-size distribution can finally be computed as a 2-D differential measure, in a way 
similar to the computation of the Δ measure from the associated Π one. Zingman, Meir, & El-Yaniv 
(2007) propose the pattern density spectrum with a rather similar definition but relying on some concepts 
of fuzzy sets (actually their density opening operator is similar to a rank-max opening (Soille, 2003)). 
Combined with the standard pattern spectrum, they obtain the 2D size-density spectrum.

Finally, Aptoula and Lefèvre (2007b) consider a composite SE built from two different SE, and 
introduce two parameters λ and κ to deal with both the size of the two SE and the shift between them. 
Their new operator combines the filtering properties of the granulometry and the covariance, thus 
resulting in a series: 
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Figure.21..Two.input.images.(left),.their.respective.granulometric.curves.computed.with.a.marginal.
strategy.(center).and.with.a.vectorial.strategy.(right).
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of SE b of size λ separated by a vector v. The following normalized measure can then be computed 
from the previous series:
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Figure 23 illustrates the interest of size-spatial features, considering the spatial covariance defined 
in Eq. (3.20) with vertical information taken into account.

We have presented various features which can be extracted from morphological scale-spaces. We 
will now discuss the issues related to their practical implementation.

PRACTICAL IMPLEMENTATION ISSUES

In support to the theoretical presentation introduced above, we discuss here the issues related to the 
practical implementation of morphological features. Naturally, straight coding of the features described 
previously will lead to prohibitive computation time, thus making morphological features irrelevant for 
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most of the real-life problems. However a lot of work has been done on efficient algorithms and operators 
in the field of mathematical morphology. So all the features presented in the previous sections can be 
computed very efficiently and thus be involved actually in any real (even real-time) system. Moreover, 
other issues have often to be taken into account, for instance noise robustness, definition of optimal 
parameters, etc.

Efficient Algorithms

Features presented previously need the application of a given morphological filter many times to build 
the scale-space from which they can be extracted.

In case of features based on standard filters (e.g. structural openings and closings), the reader will 
find in the paper of Vincent (2000) a comprehensive set of fast algorithms. We recall here the main ideas 
of this paper. When dealing with binary images, two different cases have to be considered. The most 
simple case is related to linear SE for which a run-length technique can be involved. The principle for 
horizontal SE is to scan each line of the image from left to right, and add the length  of each discovered 
run (i.e. series of successive white pixels) to the associated Φλ bin of the pattern spectrum Φ. With more 
complex SE, creating an opening transform is most of the time a prerequisite for fast algorithms, and 
can be performed using a distance transform. Once the opening transform has been computed, extract-
ing the granulometry or pattern spectrum is very straightforward. In (Vincent, 2000) are given very 
efficient algorithms compatible with SE which can be decomposed into most simple ones (horizontal, 
vertical or diagonal SE). The distance transform computed with city-block distance metric may also be 
an appropriate basis for disc-shaped SE (P. Ghosh, Chanda, & Mali, 2000). In his paper, Vincent has 
extended the opening transform for binary images to the opening tree for greyscale images. Linear SE 

Figure.22..Two.input.images.(left).with.similar.histogram.(top.center).and.granulometry.(bottom.center),.
but.with.different.size-intensity.morphological.features.(right).
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are tackled with a run-length technique rather similar to the binary case, with an additional step which 
consists in opening the segments found in the input image iteratively to fill all the related bins in the 
pattern spectrum. For the other kinds of SE (from which a decomposition into simple SE is possible), it 
is necessary to compute an opening tree. In such a structure, each node represents a plateau in the image 
(i.e. a series of successive pixels having a value higher or equal to a level l). The tree root is related to 
the lowest level l = 0 while the leaves correspond to local maxima. The pattern spectrum can then be 
obtained by analysing the successive nodes of the opening tree for each pixel. Vincent also introduces 
some techniques to deal with semi-local computation of granulometries. 

As far as attribute-based operators are concerned, several efficient algorithms have also been pro-
posed. Vincent (1993) introduces an algorithm for area-based filters which starts from all image maxima 
and iteratively analyse their neighbourhoods by increasing the greyscale range until the area parameter 
is reached. His work was extended to general attribute-based filters by Breen and Jones (1996), while 
Salembier et al. (1998) introduced another solution for attribute-based filters using new data structures, 
the max and min tree. More recently, Meijster and Wilkinson (2002) give an alternative solution to the 
use of queues based on the very efficient union-find structure and compare their approach with previ-
ously cited works.

Figure.23..Three.input.images.(left),.their.respective.covariance.curve.with.vertical.SE.(centre).and.2-D.
size-spatial.granulometric.curve.(right).considering.vertical.spatial.moments.
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In order to reduce the computation time, it is necessary to limit the number of comparisons needed 
when applying a morphological operator. This can be achieved either by decomposing a 2-D SE into 
smaller 1-D or 2-D SE, or by optimising a given morphological operator through analysis of its behaviour 
(in particular with linear SE), and a recent review has been made by Van Droogenbroeck and Buckley 
(2005) (the case of filters using a rectangular SE is considered in a previous paper from Van Droog-
enbroeck (2002)). To illustrate the first case, let us assume a SE b can be written as a combination of 
smaller SE b1 and b2 such as  

1 2bb bδ=  . Then the morphological filtering simplifies, e.g. eb( f )= eb1
eb2

( f ). 
Similarly, the SE b with size λ can be defined as  ( 1) ( )bb b bλ

λ λ δ -= =  . Thus various solutions have been 
introduced in the literature for SE decomposition, mainly dealing with convex flat SE. Among the ear-
liest works, Zhuang and Haralick (1986) proposed an efficient tree search technique and later on Park 
and Chin(1995) consider the decomposition of a SE into its prime factors. More recently, Hashimoto 
and Barrera (2003) introduced a greedy algorithm which minimizes the number of SE used in the de-
composition. But all the deterministic approaches are related to convex SE, some are even dedicated to 
a particular shape (e.g. a disc in (Vanrell & Vitria, 1997)). When dealing with nonconvex SE, solutions 
can be obtained through the use of genetic algorithms (Shih & Wu, 2005) or linear programming (H. 
Yang & Lee, 2005) for instance. In case of structuring functions, one can refer for instance to the work 
of Engbers, Boomgaard, & Smeulders (2001). Moreover, it is also possible to perform a 1.5-D scan of 
the 2-D SE as proposed by Fredembach and Finlayson (2008). To the best knowledge of the author, 
the most up-to-date technique is from Urbach and Wilkinson (2008) who do not decompose a SE into 
smaller SE but into chords, and for which the C source code is freely available from the authors.

Besides efficient algorithms to ensure low computation time, one can also rely on hardware imple-
mentation of the morphological operators (Mertzios & Tsirikolias, 1998; Sivakumar, Patel, Kehtarnavaz, 
Balagurunathan, & Dougherty, 2000). In case of hyperspectral data, Plaza, Plaza, & Valencia (2007) 
consider a parallel architecture built from a cluster of workstations.

Robustness and Adaptation

In addition to computational efficiency, several other issues have to be considered when using features 
from morphological scale-spaces in real-life applications.

Robustness to various artefacts, and mainly noise, should be achieved. Asano and Yokozeki (1996) 
propose the multiresolution pattern spectrum (MPS) to measure size distributions accurately even in 
the presence of noise in binary images. They suggest to precede each opening by a closing of the same 
size, so their MPS is nothing more than the ФASF feature. Dougherty and Cheng (1995) introduce exterior 
granulometries to perform recognition of noisy shapes. If the size of the feature set is large (which could 
be easily observed with 2-D or n-D features), it is necessary to proceed to data or dimension reduction 
to ensure robustness of the method to the size of the feature set. Naturally statistical approaches such 
as PCA or MNF may be involved, but one can also rely on genetic algorithms (Ramos & Pina, 2005). 
Moreover, data discretisation may also bring some problems, and robustness against it has to be solved 
if features with low λ values are analysed. To do so, it is possible to build a new larger and oversampled 
image from f and to compute morphological features on this image, thus avoiding the problems related 
to data discretisation (Hendriks, Kempen, & Vliet, 2007).

Morphological scale-spaces may require the definition of the underlying SE shape, or the window 
size and shape when used at a semi-local scale, thus allowing the adaptation of the morphological feature 
to the data under consideration. Since these parameters have a very strong influence on the resulting 
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features, this is a critical issue. Jan and Hsueh propose to define the window size used with semi-local 
granulometries using analysis of the global covariance measure (Jan & Hsueh, 1998). Asano, Miyagawa, 
& Fujio (2000) propose to define the structuring function which best models a given texture through 
the use of a pattern spectrum, by first defining the optimal size of the SE and then determining the ap-
propriate SE values. Balagurunathan and Dougherty (2003) deal with the same problem and propose a 
solution based on a Bayesian framework and dedicated to the binary case.

Applications

The different features reviewed in this chapter have been used in the literature to solve various prob-
lems. We present here the main areas where they have been applied, as illustrative examples to help 
the reader to understand the benefit of morphological features over conventional features when dealing 
with real-life problems.

Texture Segmentation and Classification

Since granulometries and pattern spectrum were first proposed to determine the distribution of grains 
in binary images, the main usage of such morphological features is related to texture analysis, i.e. im-
age segmentation and classification based on textural properties. Indeed, morphological features can 
achieve to describe the shape, size, orientation, and periodicity of ordered textures, and are also relevant 
to extract some properties of disordered textures (Soille, 2002).

When computed at a local or semi-local scale, morphological features have been used to perform 
segmentation of textured images. Early work in this field is due to Dougherty, Pelz, et al. (1992) who 
proposed to consider several features (mean and variance of the pattern spectrum, or more generally 
the granulometric moments) leading to various studies since then. Among them we can cite (Fletcher & 
Evans, 2005) where area-based filters are considered. A supervised segmentation scheme is proposed in 
(Racky & Pandit, 1999) which requires to learn the different textures before applying the segmentation 
algorithm. For each image in the morphological scale-space, mean and standard deviation are computed 
with 3 different SE (square, horizontal and vertical line segments) and lead to the identification of the 
scales which are relevant for texture recognition.

When applied at a global scale, morphological features can allow texture classification. The Brodatz 
dataset has been extensively used to deal with this problem, e.g. considering hat scale-spaces (Jalba et 
al., 2004) or comparing between various dimensionality reduction techniques (Velloso, Carneiro, & 
Souza, 2007).

Micrographs were studied in (D. Ghosh & Wei, 2006) where a k nearest neighbours (k-NN) classi-
fier is involved to distinguish between various texture classes. The morphological feature here is a 3-D 
pattern spectrum with various height, width, and greylevel of the structuring function. Similarly, size-
intensity morphological measures have been used to qualify granite textures (Ramos & Pina, 2005), 
involving also a k-NN classifier and a genetic algorithm to reduce the feature space.

Comparison of different morphological features for texture analysis has also been investigated, 
for instance in the context of nondestructive and quantitative assessment of stone decay (Mauricio & 
Figueirdo, 2000), for Brodatz (Ayala, Diaz, Demingo, & Epifanio, 2003) and for Outex (Southam & 
Harvey, 2005) texture databases. This last database has also been used in the comparative evaluations 
made by Aptoula and Lefèvre (2006,2007a,2007b).
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Biomedical Imaging

In the field of biomedical imaging, features built from morphological scale-spaces have been successfully 
involved in the resolution of various problems due to the high importance of the shape information within 
visible structures. We give here some examples related to medical imaging and biological imaging.

In the field of Ophthalmology, binary images obtained from specular microscopy are analysed by 
means of granulometric moments either at a global scale (Ayala, Diaz, & Martinez-Costa, 2001) or at 
a semi-local scale (Zapater, Martinez-Costa, Ayala, & Domingo, 2002) to determine the corneal endo-
thelium status. Segmentation of X-ray mammographies is performed in (Baeg et al., 1999) by relying 
on a clustering algorithm. Each pixel is characterised by some features which consist of the 3 first 
moments computed on several semi-local granulometric curves obtained using 10 different SE (both 
flat and nonflat). In (Korn, Sidiropoulos, Faloutsos, Siegel, & Protopapas, 1998), shape matching in the 
context of tumour recognition in medical images is considered. The difference between two shapes is 
computed at every scale between aligned shapes (i.e. after a spatial registration of the two shapes) and 
is finally integrated over all scales to give a global difference measure. The problem of atherosclerotic 
carotid plaque classification from ultrasound images is tackled in (Kyriacou et al., 2008). The greyscale 
input image is thresholded to generate three binary images isolating the different tissues. The pattern 
spectrum is then computed both on these binary images and on the initial greylevel image and used as 
an image feature for a subsequent SVM classifier. Skin lesion images acquired with diffuse reflectance 
spectroscopic imaging are analysed in (Mehrubeoglu, Kehtarnavaz, Marquez, & Wang, 2000) through 
several pattern spectra computed with various SE and SF. Granulometric features are used in (Summers 
et al., 2001) to quantify the size of renal lesions from binarised CT scans.

As biology is concerned, Diatom shells are classified using some features computed on scale-spaces 
built using top-hat operators by reconstruction (i.e. Πτ ρ series) (Jalba et al., 2004) and using size-shape 
features (Urbach et al., 2007). In (Ruberto, Dempster, Khan, & Jarra, 2002), granulometry is used to 
define accurate parameters in a global image analysis procedure of infected blood cell images. Based on 
this work, a technique was proposed more recently (Ross, Pritchard, Rubin, & Duse, 2006) to segment 
and classify malaria parasites. Malaria-infected blood slide images are also analysed in (Mohana-Rao 
& Dempster, 2001) with area-based granulometries. In the field of quantitative cytology, scale-spaces 
computed with openings by reconstruction are used to perform shape description (Metzler, Lehmann, 
Bienert, Mottahy, & Spitzer, 2000). Histological images of breast tissue are classified using an SVM 
with size-density features in (Zingman et al., 2007). In (Wada, Yoshizaki, Kondoh, & Furutani-Seiki, 
2003), classification of medaka embryo is performed using a neural network fed with pattern spectrum 
values computed on binary images. Granulometric moments help to count and classify white blood 
cells in (Theera-Umpon & Dhompongsa, 2007). Granulometry is involved in (You & Yu, 2004) to 
determine accurate parameters to separate overlapping cells. Greyscale granulometries and Fourier 
boundary descriptors are combined in (Tang, 1998) to perform classification of underwater plankton 
images with a neural network.

Remote Sensing

Morphological features have also been applied to remote sensing, or satellite image analysis.
Interpretation of multispectral images has been elaborated by Aptoula and Lefèvre (2007a) with the 

comparison of various vector ordering schemes for computing the DMP used in a subsequent supervised 
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pixelwise classification. Lefèvre et al. (2007) consider a size-shape pattern spectrum with rectangular 
SE to determine automatically the optimal parameters for a noise removal step based on an opening, in 
the context of a morphological approach to building detection in panchromatic remotely-sensed images. 
The analysis of DEM (Digital Elevation Map) images was performed by Jackway & Deriche (1996) 
using scale-space fingerprints computed in a semi-local way considering circular regions in order to 
recognise these areas using a predefined set of fingerprint models. Remotely-sensed textures have also 
been analysed by means of pattern spectrum in (Velloso et al., 2007). Finally, some works have been done 
in pixelwise classification of hyperspectral images, e.g. Benediktsson, Pesaresi, & Arnason (2005) and 
Plaza, Martinez, Perez, & Plaza (2004). The problem of dimensionality reduction has also been tackled 
(Plaza et al., 2007). Post-conflict reconstruction assessment has been addressed in (Pesaresi & Pagot, 
2007), and building detection studied in (Shackelford, Davis, & Wang, 2004). In (Bellens, Martinez-
Fonte, Gautama, Chan, & Canters, 2007), operators by partial reconstruction are used as intermediate 
filters between standard filters and filters by reconstruction.

Document Analysis

Document images also exhibit strong shape properties, that make them a good support for applying 
morphological features.

A block-based analysis of binary images is performed in (Sabourin, Genest, & Prêteux, 1997) where 
the authors use the 3 first granulometric moments computed with SE of various orientations to build an 
off-line signature recognition system. A 2-D granulometry with rectangular SE as features (reduced 
by means of a PCA transform) for classifying several types of documents (images of PDF files) is pro-
posed in (Bagdanov & Worring, 2002). In (Hiary & Ng, 2007), a pattern spectrum helps to determine 
an optimal opening filter for background subtraction in a problem related to watermark analysis in 
document images.

Content-Based Image Retrieval and Categorization

With new morphological scale-spaces being defined for greyscale and colour images, CBIR starts to be 
a possible application field of morphological features.

In (Nes & d’Ornellas, 1999), each colour image is associated to its colour pattern spectrum. Several 
SE with various orientations are combined by keeping at each scale the maximum value of the pattern 
spectra. The resulting feature is included in the Monet CBIR system. The COIL-20 dataset has been 
used for object recognition with several morphological features, such as shape features extracted from 
hat scale-spaces (Jalba, Wilkinson, & Roerdink, 2006), quantised size-shape 2-D pattern spectra using 
attribute scale-spaces (Urbach et al., 2007), or the morphological size-intensity feature (Lefèvre, 2007). 
In (Tushabe & Wilkinson, 2007), the size-shape pattern spectra (Urbach et al., 2007) is computed on 
each colour band independently to solve the problem of colour image retrieval.

As far as the image categorisation problem is concerned, we can mention (Ianeva, Vries, & Rohrig, 
2003) where the problem of automatic video-genre classification (cartoons vs. photographs) is tackled. 
Several features are involved, among which a pattern spectrum computed with isotropic structuring 
functions with a 2-D parabolic profile. In (Bangham, Gibson, & Harvey, 2003), the problem of non-pho-
torealistic rendering of colour images is considered and the proposed solution relies on ASF scale-space 
filters to extract edge maps similar to sketch-like pictures. With new morphological scale-spaces being 
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defined for greyscale and colour images, CBIR starts to be a possible application field of morphological 
features.

Biometrics and Shape Recognition

Biometrics is a very topical issue, and mathematical morphology is a possible tool to compute reliable 
features as long as image data are available.

In (Barnich et al., 2006), some measures are computed from rectangular size distributions to perform 
silhouette classification in real-time. Silhouettes are also classified with hat scale-spaces in (Jalba et al., 
2006). 2D shape smoothing is performed in (Jang & Chin, 1998) based on the scale-space proposed by 
Chen & Yan (1989), by keeping at each scale λ only pixels which appear in both differential series of 
openings and closing, i.e. Δγ and Δφ. Binary shapes are also compared at several scales to perform silhou-
ette matching in (Y. Li, Ma, & Lu, 1998). The gender of walking people can be determined by analysing 
the binary silhouette with entropy of the pattern spectrum (Sudo, Yamato, & Tomono, 1996).

Xiaoqi & Baozong (1995) propose the high-order pattern spectrum (computed from difference 
between union and intersection of successive ASF) as a measure for shape recognition. In (Anastas-
sopoulos & Venetsanopoulos, 1991), the authors explore how the pattern spectrum can be effectively 
used to perform shape recognition, and they consider binary images representing planes. 

In (Omata, Hamamoto, & Hangai, 2001), pattern spectrum is used as an appropriate feature to distin-
guish between lips. For each individual, several colour images are acquired considering the pronunciation 
of different vowels, and then binarised to highlight the lip which will be further analysed by means of 
pattern spectrum with square, horizontal and vertical SE. The fingerprints computed from scale-spaces 
by reconstruction are evaluated as appropriate features for face description in (Rivas-Araiza et al., 2008). 
Soille and Talbot (2001) introduce orientation fields by analysing the {Πψ

λ,θ( f.)(p)} series in each pixel 
p and scale λ. More precisely, they compute for each pair (p, λ) the main orientation and its strength by 
looking for maximal and minimal values of the series with various θ angles. These features are finally 
used to extract fingerprints. An effective smoothing method for footprint images is proposed in (S. Yang, 
Wang, & Wang, 2007), which relies on the analysis of the morphological scale-space by reconstruction. 
Su, Crookes, & Bouridane (2007) introduce the topologic spectrum to deal with shoeprint recognition 
in binary images. They replace the sum of pixels (or object area) by the Euler number as the Lebesgue 
measure, thus measuring at each scale the number of components versus holes, and similarly to the 
pattern spectrum consider the differential series instead of the original one.

Other Applications

Beyond the main applications presented above, morphological features have also been used in other 
domains.

Acton and Mukherjee explore area scale-space to solve various problems in image processing. In 
(Acton & Mukherjee, 2000b) they introduce a new fuzzy clustering algorithm based on area scale-space 
which performs better than standard ones for pixel classification considering various object identification 
tasks (coins, cells, connecting rod). In (Acton & Mukherjee, 2000a) they propose a new edge detector 
relying on the area scale-space and which does not require any threshold. Gimenez & Evans (2008) 
consider the problems of noise reduction and segmentation of colour images using area-based scale-
spaces. Noise reduction has been already addressed by Haralick, Katz, & Dougherty (1995) with the 
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opening spectrum, a morphological alternative to the Wiener filter. Warning traffic signs are recognised 
by means of oriented pattern spectrum in (Yi, Gangyi, & Yong, 1996). Soilsection images have been 
analysed in (Doulamis, Doulamis, & Maragos, 2001; Tzafestas & Maragos, 2002) by means of pattern 
spectra computed either with area-based or more complex connected filters. The process of preparation 
of electronic ink is considered in (Wang, Li, & Shang, 2006) where the size distribution of microcapsules 
is of primary importance to evaluate the ink quality. Thus the proposed method relies on the analysis 
of granulometric curve obtained with openings by reconstruction. Pattern recognition based on pattern 
spectrum and neural network is applied to partial discharges in order to evaluate insulation condition 
of high voltage apparatuses (Yunpeng, Fangcheng, & Yanqing, 2005).

CONCLUSION

Mathematical morphology is a very powerful framework for nonlinear image processing. When dealing 
with image description, it has been shown that scale-space representations are of major importance. So in 
this chapter, we have presented a review of image features computed from morphological scale-spaces, 
i.e. scale-spaces generated with operators from Mathematical Morphology. In our study, we consider 
both local (or semi-local) and global features, from the earliest and probably most famous 1-D features 
such as granulometries, pattern spectra and morphological profiles, to some recent multidimensional 
features which gather many complementary information in a single feature.

Due to space constraints, we have limited our study to morphological features which are extracted 
from scale-spaces built using mainly structural morphological operators (i.e. operators relying on a 
structuring element or function). To be complete, we have to mention several other works which could 
have been included in this chapter. Wilkinson (2007) focuses on attribute filters to build attribute-spaces, 
which offer several advantages over structural operators (e.g. no need to define a SE, more invariant, 
more efficient). Ghadiali, Poon, & Siu (1996) brings the fuzzy logic framework to the morphological 
features by introducing a fuzzy pattern spectrum. Soille (2003) proposes the self-dual filters which are 
particularly effective when dealing with objects which are neither the brightest nor the darkest in the 
image.

Among the works related to morphological scale-spaces which have not been detailed here, we can 
mention the use of PDE (Boomgaard & Smeulders, 1994; Maragos, 2003), the multiscale connectivities 
(Braga-Neto & Goutsias, 2005; Tzafestas & Maragos, 2002), the generalisations with pseudolinear scale 
spaces (Florack, 2001; Welk, 2003), adjunction pyramids (Goutsias & Heijmans, 2000) or an algebraic 
framework (Heijmans & Boomgaard, 2002), and finally the use of morphological levellings (Meyer & 
Maragos, 2000).

To conclude, morphological scale-spaces are a particularly relevant option to build robust image 
features, due to the numerous desired properties of mathematical morphology. Despite their theoretical 
interest and the very active community in mathematical morphology, their practical use stays however 
limited, in particular for more recent multidimensional features. With the comprehensive review pre-
sented here and the various usage examples which have been given, we hope the readers will understand 
their benefits in mining of multimedia data.
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ABSTRACT

The.authors.present.a.face.recognition.scheme.based.on.semantic.features’.extraction.from.faces.and.
tensor.subspace.analysis..These.semantic.features.consist.of.eyes.and.mouth,.plus.the.region.outlined.by.
three.weight.centres.of.the.edges.of.these.features..The.extracted.features.are.compared.over.images.in.
tensor.subspace.domain..Singular.value.decomposition.is.used.to.solve.the.eigenvalue.problem.and.to.
project.the.geometrical.properties.to.the.face.manifold..They.compare.the.performance.of.the.proposed.
scheme.with.that.of.other.established.techniques,.where.the.results.demonstrate.the.superiority.of.the.
proposed.method.

INTRODUCTION

Face recognition and modeling is a vital problem of prime interest in computer vision. Its applications 
have been commonly discovered in surveillance, information retrieval and human-computer interface. 
For decades studies on face recognition have addressed the problem of interpreting faces by machine, 
their efforts over time leading to a considerable understanding of this research area and rich practical 
applications. However, in spite of their impressive performance, the established face recognition systems 
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to some extent exhibit deficiency in the cases of partial occlusion, illumination changes, etc. This is 
due to the fact that these systems mainly rely on the low-level attributes (e.g. color, texture, shape, and 
motion), which may change significantly and then lose effectiveness in the presence of image occlusion 
or illumination variations.

Classical image-based face recognition algorithms can be categorised into appearance- and model-
based. The former normally consists of linear (using basis vectors) and non-linear analysis. These ap-
proaches represent an object using raw intensity images, being considered as high-dimensional vectors. 
For example, Beymer (Beymer, 1993) described a pose estimation algoithm to align the probe images to 
candidate poses of the gallery subjects. Pentland et.al..(Pentland et al, 1994) compared the performance 
of a parametric eigenspace with view-based eigenspaces. The latter includes 2-D or 3-D model based 
schemes, where the facial variations with prior knowledge are encoded in a model to be constructed. 
Examples can be found in (Cootes et al, 2002; Lanitis, et al, 1997; Romdhani et al, 1999).

As one of the linear appearance algorithms, the well-known Eigenface algorithm (Turk & Pentland, 
1991) uses the principal component analysis (PCA) for dimensionality reduction in order to find the 
best vectorised components that represent the faces in the entire image space. The face vectors are 
projected to the basis vectors so that the projection coefficients are used as the feature representation 
of each face image (Turk & Pentland, 1991). Another example of the linear appearance approaches is 
the application of Independent component analysis (ICA). ICA is very similar to PCA except that the 
distribution of the components is assumed to be non-Gaussian. One of these ICA based algorithms is 
the FastICA scheme that utilised the InfoMax algorithm (Draper et al, 2003). The Fisherface algorithm 
(Belhumeur et al, 1996), derived from the Fisher Linear Discriminant (FLD), defines different classes 
with different statistics. Faces with similar statistics will be grouped together by FLD rules. Tensorface 
(Vasilescu & Terzopoulos, 2003) recruits a higher-order tensor to describe the set of face images and 
extend singular value decomposition (SVD) to the higher-order tensor data. Non-linear appearance 
algorithms, such as principal component analysis (KPCA) (Yang, 2002), ISOMAP (Tenebaum et al, 
2000) and Local Linear Embedding (LLE) (Roweis & Saul, 2000), have much more complicated process 
than the linear ones. Unlike the classical PCA, KPCA uses more eigenvector projections than the input 
dimensionality. Meanwhile, ISOMAP and LLE have been well established with stable topologically 
rendering capability. 

Model-based face recognition normally contains three steps: model construction, model fitting to the 
face images, and similarity check by evaluation of the model parameters. An Active Appearance Model 
(AAM) is a statistical model that integrates shape variations with the appearance in a shape-normalized 
frame (Edwards et al, 1998). Model parameters are rendered so that the difference between the synthe-
sized model and the face image can be minimized. Face matches will be found after this minimisation 
has been reached. 3-D facial information can be used to better describe the faces in the existence of 
illumination and pose changes, where 2-D descriptors sometimes turn out to be less effective. One 
example is reported in (Blanz et al, 2002). In this work, a 3-D morphable face model fusing shape and 
texture was proposed, and an algorithm for extracting the model parameters was established as well.

Traditional approaches as shown above do not directly extract or use the semantic descriptors of the 
faces, e.g. positions and length of eyes, eyebrows, mouth or nose. These semantic features inherently 
encode facial geometric properties (e.g. scaling, rotation, translation, and shearing) (Hsu & Jain, 2002). 
If these semantic components were applied, then the similarity check between a face image and its coun-
terpart in the database might become much easier. These semantic facial features can be detected using 
spectral or temporal analysis (Hsu & Jain, 2002)]. Although the concept of semantic face recognition 
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has been raised for years, a little work has been done so far. For example, Hsu and Jain (Hsu & Jain, 
2003) introduced a semantic face graph for describing the properties of facial components. This is an 
extension work of (Hsu and Jain, 2002), and used interactive snakes to extract those facial features, e.g. 
eyes, mouth, etc. Martinez (Martinez, 2000) reported a new approach that considered facial expressions 
for the improvement of classification. 

In this paper, we take advantage of the contribution of the semantic descriptors in the domain of 
tensor analysis for face recognition. The proposed algorithm deploys the established tensor subspace 
analysis (TSA) (Martinez, 2000), where an image of size n1×n2 is treated as a second order tensor in the 
tensor space of Rn1 ⊕ Rn2. TSA is used so as to find an optimal projection, representing the geometrical 
structure, that linearly approximates the face manifold in the domain of local isometry. E

Eigenface Based Face Recognition

Eigenface is a set of eigenvectors used for human face recognition. This approach was originally 
developed by Turk and Pentland (Turk & Pentland, 1991). The eigenvectors can be derived from the 
covariance matrix of the probability distribution of the high-dimensional vector space of possible faces 
of people. Let a face image I(x,y) be a two dimensional N by N array of intensity values. An image can 
also be treated as a vector of dimension N2. An image is then mapped to this huge vector space. Princi-
pal component analysis is then used to find the vectors that most fits the distribution of the face image 
within this space. Examples of face images are illustrated in Fig. 1.

Let the training set of the face images be T1, T2, T3,….TM
. 
The mean of this training data set is required 

in order to calculate the covariance matrix or eigenvectors. The average face is calculated as

1
(1 / ) M

iM T= ∑ . 

Each image in the data set has dissimilarity to the average face expressed by the vector Ф = Ti – Ψ. 
The covariance matrix is  

1
(1 / ) M T T

i iC M AA= =∑ (1)

where A = 1 2[ , ,..., ]M . The matrix C is a N2 by N2 matrix and will generate N2 eigenvectors and 
eigenvalues. It is very difficult to achieve calculation on an image of sizes 256 by 256 or even less due 
to the computational efforts.

Figure.1..Examples.of.face.images.in.ORL.database
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A computationally feasible method is to compute the eigenvectors instead. If the number of images 
in the training set is less than the number of pixels in an image (i.e. M < N2), then we can solve an M 
by M matrix instead of solving a N2 by N2 matrix. Consider the covariance matrix as ATA instead of 
AAT. Now the eigenvector vi can be calculated as follows, 

AATvi = µivi,           (2)

where µi is the eigenvalue. Here the size of covariance matrix is M by M. We then have m eigenvectors 
instead of N2.  Multiplying Equation 2 by A, we have 

T
i i iAA Av Av= .           (3)     

The right hand side of the above equation brings us M eigenfaces of N2 by 1. Such a process leads 
to an image space of dimensionality M.

Since an approximate reconstruction of the face is intended, we can reduce the dimensionality to 
M’ instead of M. This is performed by selecting M’ eigenfaces, which have the largest associated ei-
genvalues. These eigenfaces now span a M’-dimensional subspace instead of N2. 

A new image T is transformed into its eigenface components (projected into ‘face space’) by the 
following operation, 

( )T
k kw u T= - ,              (4) 

                                                                                                      
where k = 1,2,….M’. The weights obtained as above constitute a vector ΩT.=.[w1, w2, w3 ,..., wM] that de-
scribes the contribution of each eigenface in representing the input face image. This vector can be used 
in a standard classification algorithm to explore the best shot in the database that describes the income 
face image. The face class in the database is formulated by averaging the weight vectors for the images of 
one individual. the face classes will depend on the overall images where subjects wear spectacles. With 
this face class, classification can be made if the subject has spectacles or not. The Euclidean distance of 
the weight vector of the new image from the face class weight vector can be calculated as follows,

|| ||k k= Ω - Ω ,             (5) 
  
where Ωk is a vector representing the kth face class. Euclidean distance formula can be found in (Turk 
& Pentland, 1991). The face is classified as belonging to class k when the distance εk is below some 

Figure.2..Eigenfaces.of.the.examples.shown.in.Figure.1



��  

Face Recognition and Semantic Features

threshold value θε. Otherwise the face is classified as unknown. Also it can be found whether an image 
is a face image or not by simply finding the squared distance between the mean adjusted input image 
and its projection onto the face space.

2 || ||f= - ,              (6)

where ff is the face space and Ф = Ti – Ψ is the mean adjusted input. Using this criterion, we can clas-
sify the image as known face image, unknown face image and not a face image. Fig. 2 denotes the 
eigenfaces of Fig. 1.

Recently, research attention is focused on dimensionality reduction. One of the examples is the work 
established by Gunturk et al. (Gunturk et al, 2003), where they proposed to transfer the super-resolution 
reconstruction from pixel domain to a lower dimensional face space. This dimensional reduction was 
based on the Karhunnen-Loeve Transformation (KLT).  In the meantime, Yang et.al. (Yang et al, 2004) 
proposed a new technique coined two-dimensional PCA. As opposed to traditional PCA techniques, 
this new approach was based on 2D image matrices rather than 1D vector so the image matrix does 
not have to be transformed into a vector prior to feature extraction. Alternatively, an image covariance 
matrix is constructed using the original image matrices and the eigenvectors were derived for image 
feature extraction. Zhao and Yang (Zhao & Yang, 1999) proposed a new method to compute the scat-
ter matrix using three images each taken with different lighting conditions to account for arbitrary 
illumination effects. Pentland et al. (Pentland et al, 1994) extended their early work on eigenfaces to 
modular eigenfeatures corresponding to face components, such as the eyes, nose, and mouth (referred 
to as eigeneyes, eigennose, and eigenmouth).

Fisherface Based Face Recognition

Fisherface works in a combinatorial scheme, where one performs dimensionality reduction using 
linear projection and then applies Fisher’s Linear Discriminant (FLD) (Fisher, 1936) for classification 
in the reduced feature space. This approach intends to find an optimal projection where the ration of 
the between-class scatter and the within-class scatter is maximized (Belhumeur et al, 1996). Let the 
between-class scatter matrix be 

T
ii

C

i
iB NS ))((

1
−−= ∑

=
 
,             (7)

and the within-class scatter matrix is defined as 

T
ikik

C

i XX
W XXS

iK

))((
1

−−= ∑ ∑
= ∈

,            (8)

where μi is the mean image of class Xi, and Ni is the sample number in class Xi..If SW is non-singular, the 
optimal projection Wo.will be the one with orthonormal columns that satisfy the following equation,
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],...,,[
||
||

maxarg 21 m
W

T
B

T

W
o WWW

WSW
WSWW ==  ,            (9)

where Wi (i = 1,2,…,m) is a set of generalised eigenvectors of SB and SW corresponding to the m largest 
eigenvalues  λi., equivalently,

SBWi = liSWWi, i = 1, 2,…, m........          (10)

In real cases of face recognition, the within-class matrix SW is normally singular. This is due to the 
fact that rank of SW is at most N.- c, and the number of images in the learning set N is smaller than that 
of image pixels. To tackle this problem, Fisherfaces uses PCA to reduce the dimension of the feature 
space to N.– c, and then employs a standard FLD scheme to reduce the dimension to c – 1. Therefore, 
the optimal projection matrix is

0
T T T

FLD PCAW W W= ,                      (11)

Where

||
||

maxarg

||maxarg

WWSWW
WWSWW

W

WSWW

PCAW
T

PCA
T

PCAB
T

PCA
T

W
FLD

T
T

W
PCA

=

=

 
.               (12)

WPCA is optimised over [n, (N.– c)] matrices with orthonormal columns while WFLD is optimised 
over [(N.–.c), m] matrices with orthonormal columns. Such a procedure can be illustrated in Fig. 3. Fig. 
4 illustrates the exemplar outcomes of Fisherface. 

Tensor Subspace Analysis

Let us start with the problem of linear dimensionality reduction. One of the common approaches is the 
use of Laplacian eigenmap with the objective function as follows: 

2

,
min ( ( ) ( ))i j ijf i j

f x f x S-∑ ,                 (13)

where  S denotes the similarity matrix, and x is the functional variables, e.g. image vectors.
Let the face data set be X1, …, Xm in the space Rn1 ⊕ Rn2. If a face image X matches its template Y 

in the database, then we can decompose Y	into the multiplication of U, V and X, where U and V have 
size n1×l1 and n2×l2, respectively. In fact, we shall have Yi = UT	Xi	V.

Given m data points from the face sub-manifold M ∈ Rn1 ⊕ Rn2, we intend to find a nearest graph G 
to simulate the geometry of M. The similarity matrix S	can be 
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2|| ||

exp ,
i jx x

e
ijS

o
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-= 



  || || ,

.
i jif x x

otherwise
- ≤                    (14)

where c.is a constant and ||.|| is the Frobenius form. Eq. (1) is equivalent to the following form:

ijVU
S2

j
T

ji,
i

T

,
||V X U- V X U||min∑ ,                (15)

Let D be a diagonal matrix with Dii = ΣjSi,j. Then we can have the following representation:

),)((

)(2/)||V X U- V X U||(
,

2
j

T

ji,
i

T

USDUtr

YYSYYDtrS

VV
T

T
jii

ji
ij

T
ii

i
iiij

−≅

−= ∑∑∑
           (16)

Figure.3..Illustration.of.PCA.and.FLD.in.between-class.and.inter-class.discrimination.with.orthonormal.
columns.

Figure.4..Fisherface.examples.of.Figure.1
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where 

T T T
V u i ii

D D X VV X= ∑           (17)

and 

T T T
V ii i ji

S S X VV X= ∑

Similarly, we have 

),)((2/)||V X U- V X U||( 2
j

T

ji,
i

T VSDVtrS UU
T

ij −≅∑       (18)

where 

T T T
U ii i ii

D D X UU X= ∑           (19)

and 

T T T
U ii i ji

S S X UU X= ∑           (20)

To find an optimal face match, we have to minimise ( ( ) )T
V Vtr V D S V-  together with ( ( ) )T

U Utr V D S V- .
Large global variance on the manifold may help the discrimination of different data sets. As a result, 

during the face recognition we amplify the similarity distance in the feature space. This leads to the 
following relationship: 

)(||||)var( 2 VDVtrDYY U
T

ii i == ∑  , 			 	 	 	 	 	 	 (21)

assuming a zero mean distribution. We also have another similar form as follows:

)()()var( UDUtrDYYtrY V
T

iii
T

ii == ∑  .															       (22)

Through the analysis above, a matched face in the database is subject to the following constraint

,
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           (23)

Eq. 23 cannot be easily dealt with due to the computational cost. A simpler solution to this optimisa-
tion problem has been found as follows. Firstly, U is fixed; V can be computed by solving a generalized 
eigenvector problem: 

^ ^
( )U U UD S V D V- = .		 	 	 	 	 	 	 	 	 	 (24)
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Once V is available, we then update U by this eigenvector process: d, V can be computed by solving 
a generalized eigenvector problem, 

^ ^
( )V V VD S U D U- = .			 	 	 	 	 	 	 	 	 	 (25)

Repeating this procedure, we eventually have an appropriate solution. Note that initially U is set to 
be identity matrix. Figs. 5-6 show exemplar Laplacianfaces and Tensorfaces of Fig. 1.

Semantic Face Graph

A semantic face graph consists of necessary components that denote a high-level description of a face 
and its bound contents. A semantic face graph is illustrated in Fig. 7. In this chapter, we only focus on 
the use of left and right eyes and mouth in 2-D, although generic semantic components contain eyes, 
eyebrow, mouth, nose, hair and face boundary/outline. The reason to extract these three aspects is that 
their extraction or detection has now become well developed so these components can play a reliable 
and stable role in the recognition stage.

Suppose that we have a semantic face graph G0. Let H be the entire set of semantic facial compo-
nents, and HP is a subset of H including three components in the current work (i.e. left and right eyes 
and mouth). G is the 2-D projection of HP. The detected edge/boundary coordinates of G are denoted 
by (xi(n), yi(n)), where n = 0,1,..., Ni-1 (vertices of the components) and i = 1,2,3. 

To proceed the discussion, we assume that edges/boundaries of these three semantic components have 
been obtained. The absolute and relative positions of the three semantic components are so important 

Figure.5..Laplacianface.examples.of.Figure.1.

Figure.6..Tensorface.examples.of.Figure.1
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that they will be calculated and stored for later applications, e.g. (Huang & Chen, 1992). In addition, 
in order to enhance the face recognition, the region outlined by the weight centres of these three edges 
needs to be evaluated in terms of its intensity and colour histogram, e.g. (Tjahyadi et al, 2007). This 
histogram especially helps reduce mis-classification rates in the case of facial rotation. 

First of all, a Canny edge detector (Canny, 1986) was applied to extract edges/contours from a face 
image. This is followed by the dilation and erosion operation for connected curves (Gonzlez & Woods, 
1992). An eye/mouth detection algorithm, similar to the method reported in (Huang & Chen, 1992), will 
be used to extract these three features. Physiological evidence can be used in this eye/mouth extraction 
stage for the purpose of simplicity. For instance, the position of the left eyebrow is about one-fourth 
of the facial width. Localising the positions of two eyes will make the extraction of the mouth much 
easier. For example, the lip is of higher intensity than the surrounding areas. Finally, weight centre of 
individual curves are computed. 

As an example, Fig. 8 demonstrates the working flow as described above. Corresponding to Fig. 8, 
Fig. 9 shows the intensity histogram of the triangle area outlined by the three semantic components. 
This histogram can be used as a feature for similarity check of face images. Similarly, Fig. 10 shows 
the intensity histograms of 1-4 images shown in Fig. 1.

Fig. 8 Illustration of determination of semantic features: (a) original face image, (b) face detection, 
(c) morphological results, and (d) weight centres of three semantic components.

Figure.7..Illustration.of.a.semantic.face.graph:.(a).generic.semantic.descriptors.depicted.by.edges,.and.
(b).eyes.and.mouth.detection.(red.ellipses)..

. . . . (a). . . . (b)

. ....(a). . . .......(b). . . ........(c). . ..................(d)
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INTEGRATION OF SEMANTIC WITH TSA

Let us denote appearance and semantic components of a face image by X = [Xa, Xs]. We also assume 
location and scale independence are available, given a relation model q to match X and Y. Then we can 
have the joint probability of the image similarity

),|()|()|(),|()|()|,(
^^

kkk
s

kk
a

k

k

k
YXpXpYpYXpYpYXp ∏∏ ==  .	 	 (26)

Gaussianity assumptions will lead to the following forms:
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        (27)

where N denotes the Gaussian density with mean µ and covariance matrix q. Finding a match between 
the two face images is equivalent to seeking the maximisation as follows:

max(log ( | , ))kp X Y .           (28)

The similarity matrix S, shown before, can possess the following form:

)/||||exp( 2 cXXwS ji
i

i −−= ∑  .         (29)

That is to say, similarity distance now will be computed by weighting the most dominant features 
in the feature space. If the semantic features can better describe the relationship between two images, 

Figure.9..Intensity.histogram.of.the.triangle.area.outlined.in.Figure.8(d)
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then these features will be kept for the similarity check. Otherwise, the appearance model parameters 
in the TSA model will be used instead. 

In terms of the selection of weights, we here employ the Euclidean distance between two groups of 
image points/structures,

2|| ||

exp
0

i j
s sx x

c
iw

-
-= 


   || || ,

.

i j
s sif x x d

othrwise
- ≤         (30)

 

Before starting, we tend to more trust the appearance components with larger weights. This assign-
ment will be automatically updated once the dimensionality reduction is iterated. 

Experimental Work

In this section, we evaluate the proposed semantic based TSA scheme for face recognition. This proposed 
algorithm is compared with the Eigenface, Fisherface, Laplacianface and classical TSA algorithms. Two 
face databases were used, following the experimental configuration in (He et al, 2005; Zhou et al, 2008). 
The first database is the PIE from CMU, and the second one is the ORL database. In the experiments, 
pre-processing for obtaining good faces was performed. Faces were extracted by our method and these 
images were cropped in order to create a 32x32 size. The image is represented as a 1024-dimensional 
vector, and the classical TSA and semantic based algorithms used 32x32-dimensional matrix. The pur-
pose of this evaluation is to (1) train the face recognition systems; (2) a new face image is projected to 
d-dimensional subspace (e.g. PCA, ICA, and LPP) or (d× d -dimensional tensor subspace; and (3) the 
nearest neighbour classifier was applied for face identification. The overall experiments were conducted 
on a PC with a 1.5 GHz Intel(R) Pentium(R) CPU and Matlab implementation.

Fig. 10 denotes some image frames of the ORL database. Figs. 12-15 show the outcomes using the 
Eigenface, Fisherface, Laplacianface and Tensorface approaches, respectively. 

PIE Experiments

The CMU PIE database consists of 68 subjects with about 41,000 face images. In spite of its rich image 
background, we choose the five front poses (C05, C07, C09, C27, C29) with different illuminations and 
facial expressions. For individual persons, 5, 10, 20, 30 images are randomly selected for the training 
stage. The training process engaged is very similar to that reported in (He et al, 2005).

Fig. 7 illustrates the plots of error rate versus dimensionality reduction for the Eigenface, Fisherface, 
Laplacianface, TSA and semantic methods. It shows that as the number of dimensions varies, the per-
formance of all the algorithms is changed. We also observe that the proposed semantic based approach 
performs better than any of the others with different numbers of training samples (5,10,20,30) per face. 
Table 1 tabulates the running time in seconds of each algorithm. It shows that the semantic and TSA 
based methods have more efficient computational capability.
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Figure.10..Intensity.histogram.of.1-4.images.shown.in.Fig..1,.given.the.triangulation.areas.outlined.by.
eyes.and.noses

.. . . .(1).................................................. . ................(2)

.. . . .(3).................................................. . ................(4)

Table.1..Performance.comparison.of.different.algorithms.on.PIE.database
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Figure.11..Examples.of.ORL.database

   

   

   

ORL Experiments

The ORL database contains 400 face images with 40 people (10 different views per person). The im-
ages were collected at different times and some people possess different expressions and facial details. 
For example, glasses were worn in some cases. The experimental setup is the same as shown in the 
last subsection. Fig. 8 plots the error rate versus dimensionality reduction for the individual methods. 
Again, the proposed semantic algorithm outperforms other methods due to faster convergence and less 
error rates.

The computational speeds have been tabulated in Table 2, where clearly the proposed algorithm 
becomes more efficient as more trains were applied, compared to other methods. Note that in this table 
the computational time is in millisecond.

  
CONCLUSIONS AND FUTURE WORK

We have presented a method for face recognition, based on the extraction of semantic features and a 
TSA method. This approach considers three semantic features, i.e. left and right eyes and mouth, which 
encode the geometrical properties of the faces inherently. A probabilistic strategy is recruited to fuse 
the extracted semantic features into the TSA scheme. In fact, TSA is applied to iterate the optimisation 
process so as to seek the best matches in the database. Furthermore, TSA solves the eigenvector problem 
via SVD so the entire system works very fast. In recognition tasks, our method compares favourably 
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Figure.12..Eigenface.of.the.exemplar.images.shown.in.Figure.10

Table.2..Performance.comparison.of.different.algorithms.on.ORL.database

with several established dimensionality reduction methods. In efficiency task its performance has been 
verified to be competitive.

While our recognition results are optimistic, we recognise that the recognition performance of the 
proposed approach relies on better feature extraction and representation. Therefore, in some cases such 
as significantly large illumination changes the proposed method may not be so favourable due to unstable 
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Figure.13..Fisherface.of.the.exemplar.images.shown.in.Figure.10.

    

    

    

Figure.14..Laplacianface.of.the.exemplar.images.shown.in.Figure.10
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Figure.15..Tensorface.of.the.exemplar.images.shown.in.Figure.10.

    

    

    

Figure.16..Error.rates.against.dimensionality.reduction.on.PIE.database

.... . ...(a).5.train............................................... ...........................(b).20.train

and inaccurate eye/mouth localisation. In these circumstances, 3-D model based face recognition may be 
of better performance due to its less sensitivity to the light changes or occlusions. However, 3-D model-
ling demands expensive computational efforts. Our future work shall be focused on the compromise 
between the efficiency and accuracy improvement using a 3-D model based scheme. Although this type 
of work has been started by other researchers, up to date a complete success has not been achieved yet. 
We intend to continue our research along this direction.
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Figure.17..Error.rates.against.dimensionality.reduction.on.ORL.database

.. . .(a).2.train............................................. . ........................(b).5.train
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ABSTRACT

Computer-aided.foliage.image.retrieval.systems.have.the.potential.to.dramatically.speed.up.the.pro-
cess of plant species identification.  Despite previous research, this problem remains challenging due 
to.the.large.intra-class.variability.and.inter-class.similarity.of.leaves..This.is.particularly.true.when.a.
large.number.of.species.are.involved..In.this.chapter,.the.authors.present.a.shape-based.approach,.the.
inner-distance.shape.context,.as.a.robust.and.reliable.solution..The.authors.show.that.this.approach.
naturally.captures.part.structures.and.is.appropriate.to.the.shape.of.leaves..Furthermore,.they.show.
that.this.approach.can.be.easily.extended.to.include.texture.information.arising.from.the.veins.of.leaves..
They also describe a real electronic field guide system that uses our approach. The effectiveness of the 
proposed.method.is.demonstrated.in.experiments.on.two.leaf.databases.involving.more.than.100.spe-
cies.and.1,000.leaves.

INTRODUCTION

Plant species identification is critical to the discovery of new plant species, as well as in monitoring 
changing patterns of species distribution due to development and climate change. However, biologists 
are currently hampered by the shortage of expert taxonomists, and the time consuming nature of spe-
cies identification even for trained botanists.  Computer-aided foliage identification has the potential to 
speed up expert identification and improve the accuracy with which non-experts can identify plants. 
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While recent advances in user interface hardware and software make such a system potentially afford-
able and available for use in the field, a reliable and efficient computer vision recognition algorithm is 
needed to allow users to access such a system with a simple, general interface. In this chapter we will 
describe our recent work using computer vision techniques for this task.

Due to the reasons we have mentioned, foliage image retrieval has recently started attracting research 
efforts in computer vision and related areas (Agarwal, et al. (2006), Mokhtarian & Abbasi 2004, Weiss 
& Ray 2005, Im, Hishida, & Kunii 1998, Saitoh & Kaneko 2000, Soderkvist 2001, Yahiaoui, Herve, 
& Boujemaa 2005). Leaf images are very challenging for retrieval tasks due to their high inter-class 
similarity and large intra-class deformations. In addition, occlusion and self-folding often damage leaf 
shape. Furthermore, some species have very similar shape but different texture, which therefore makes 
the combination of shape and texture desirable. In summary, the challenges mainly come from several 
reasons:

• The between class similarity is great (see the first row in Fig. 1).
• Self occlusion happens for some species, especially for composite leaves (see the second row in 

Fig. 1).
• Some species have large intra class deformations. For example, composite leaves often have large 

articulations (see the second row in Fig. 1).

Figure.1..Example.of.challenging.leaves..First.row:.Three. leaves. from.three.different.species.(from.
the Swedish leaf database). Second row: Self occlusions due to overlapping leaflets and deformation 
of.composite.leaves..The.left.two.leaves.come.from.the.same.species;.so.do.the.right.two.leaves..Third.
row:.damaged.leaves.
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• In practice, leaves are often damaged due to folding, erosion, etc. (see the third row in Fig. 1).
• Usually the hundreds, if not thousands of species are present in a region. So that we can begin 

to address problems of this scale, one of the databases in our test contains leaves from about 100 
species.

The shapes of leaves are one of the key features used in their identification, and are also relatively easy 
to determine automatically from images.  This makes them especially useful in species identification. 
Variation in leaf shape also provides an interesting test domain for general work on shape comparison 
(Felzenszwalb 2005, Mokhtarian & Abbasi 2004, Sclaroff & Liu 2001).

Part structure plays a very important role in classifying complex shapes in both human vision and 
computer vision (Biederman 1987, Hoffman & Richards 1985, Kimia, Tannenbaum, & Zucker 1995, 
etc). However, capturing part structure is not a trivial task, especially considering articulations, which 
are nonlinear transformations between shapes. To make things worse, sometimes shapes can have 
ambiguous parts (e.g. [4]). Unlike many previous methods that deal with part structure explicitly, we 
propose an implicit approach to this task.

For this purpose we introduce the inner-distance, defined as the length of the shortest path within 
the shape boundary, to build shape descriptors. It is easy to see that the inner-distance is insensitive 
to shape articulations. For example, in Fig. 2, although the points on shape (a) and (c) have similar 
spatial distributions, they are quite different in their part structures. On the other hand, shapes (b) and 
(c) appear to be from the same category with different articulations. The inner-distance between the 
two marked points is quite different in (a) and (b), while almost the same in (b) and (c). Intuitively, this 
example shows that the inner-distance is insensitive to articulation and sensitive to part structures, a 
desirable property for complex shape comparison.  Note that the Euclidean distance does not have these 
properties in this example. This is because, defined as the length of the line segment between landmark 
points, the Euclidean distance does not consider whether the line segment crosses shape boundaries.  In 
this example, it is clear that the inner-distance reflects part structure and articulation without explicitly 
decomposing shapes into parts. We will study this problem in detail and give more examples in the 
following sections.

It is natural to use the inner-distance as a replacement for other distance measures to build new shape 
descriptors that are invariant or insensitive to articulation. Two approaches have been proposed and 
tested with this idea. In the first approach, by replacing the geodesic distance with the inner-distance, 

Figure.2...Three.objects..The.dashed.lines.denote.shortest.paths.within.the.shape.boundary.that.connect.
landmark points. Reprinted with permission from “Shape Classification Using the Inner-Distance”, H. 
Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..
©.2007.IEEE.
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we extend the bending invariant signature for 3D surfaces (Elad & Kimmel 2003) to the articulation 
invariant signature for 2D articulated shapes. In the second method, the inner-distance replaces the Eu-
clidean distance to extend the shape context (Belongie, Malik, & Puzicha 2002). We design a dynamic 
programming method for silhouette matching that is fast and accurate since it utilizes the ordering 
information between contour points.  Both approaches are tested on a variety of shape databases and 
excellent performance is observed. 

It is worth noting that articulation happens a lot for leaves. This is particularly true for leaves with 
petioles and compound leaves (see Fig. 1 and Fig. 5). Therefore, the inner-distance is a natural choice 
for leaf recognition tasks. In this chapter we will apply our methods to two leaf database. The first one 
is the Swedish leaf database containing 15 species. The second one is the Smithsonian leaf database 
containing 93 species. We will also describe the application of the proposed approach in a foliage re-
trieval system.

For some foliage retrieval tasks, it is often desirable to combine shape and texture information for 
object recognition. For example, leaves from different species often share similar shapes but have dif-
ferent vein structures (see Fig. 13 for examples). Using the gradient information along the shortest path, 
we propose a new shape descriptor, shortest path texture context, which naturally takes into account 
the texture information inside a given shape. The new descriptor is applied to a foliage image task and 
excellent performance is observed.

The rest of this chapter is organized as follows. Sec. II discusses related works. Sec. III describes 
the proposed inner-distance and shows how it can be used for shape matching tasks, including building 
articulation invariant signatures using multi-dimensional scaling (MDS) and the inner-distance shape 
context. Then Sec. IV extends the inner-distance based descriptor to include the texture information 
along shortest paths. After that, Sec. V gives a brief overview of an electronic field guide system that 
applies the proposed approaches in a foliage retrieval prototype system. Finally, Sec. VI presents and 
analyzes experiments on shape matching on an articulated shape database and two leaf shape databases.  
Much of the material described in this chapter has appeared previously in (Ling & Jacobs 2005, Hoff-
man & Richards 1985).

RELATED WORK

In this section, we first introduce some related work on foliage image retrieval. Then we discuss previ-
ous work on representing and matching shapes with part structures. After that, we discuss two works 
that we will extend using the inner-distance.

Foliage Image Retrieval

Biological shapes have been attracting scientists’ attention for a long time. One of the earliest discussions, 
first published almost a hundred years ago, appeared in D’Arcy Thompson’s famous book “On Growth 
and Form” (Thompson 1992). As a fundamental problem in computer vision and pattern recognition, 
biological shape analysis has motivated a lot of work in recent decades (Blum 1973). Among them, one 
of the most recent and comprehensive works is by Grenander, Srivastava, & Saini (2007). 

Most of current foliage retrieval systems are based on shape analysis (Agarwal, et al. (2006), 
Mokhtarian & Abbasi 2004, Weiss & Ray 2005, Gandhi 2002, Im, Hishida, & Kunii 1998, Saitoh & 
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Kaneko 2000, Soderkvist 2001, Yahiaoui, Herve, & Boujemaa 2005). For example, in (Mokhtarian & 
Abbasi 2004) curvature scale space is proposed for shape analysis and applied to the classification of 
Chrysanthemum images. Soderkvist (2001) used a combination of several shape cues for retrieval with 
the Swedish leaf database involving 15 species. Gandhi (2002) applied dynamic warping on leaf shapes 
from six species.

In addition to the systems specific to foliage retrieval, leaf shapes are often used for the study of 
shape analysis due to the challenges they present. For example, it is used in (Felzenszwalb 2005, Fel-
zenszwalb & Schwartz 2007, Ling & Jacobs 2005) to study shape deformation. It is also used in (Keogh 
et al. 2006) for demonstrating dynamic warping. Another interesting related work is [38], which uses 
a bag-of-words approach for a flower identification task.

Representation and Comparison of Shapes with Parts and Articulation

Biederman (1987) presented the recognition-by-components (RBC) model of human image understand-
ing. He proposed that RBC is done with a set of geons, which are generalized-cone components. The 
geons are derived from edge properties in a two-dimensional image including curvature, co-linearity, 
symmetry, parallelism, and co-termination. In an overall introduction to human vision, Hoffman and 
Richards (1985) described the important role of part structure in human vision and showed how humans 
recognize objects through dividing and assembling parts. The important concept is part saliency, which 
is used by our visual system to identify parts.  Concavity or negative curvature is used to determine 
saliency. 

For general shape matching, a recent review is given in (Veltkamp & Hagedoorn 1999). Roughly 
speaking, works handling parts can be classified into three categories. The first category (Agarwal, 
Awan, & Roth 2004, Grimson 1990, Felzenszwalb & Hunttenlocher 2005, Schneiderman & Kanade 
2004, Fergus, Perona, & Zisserman 2003, Weiss & Ray 2005) builds part models from a set of sample 
images, and usually with some prior knowledge such as the number of parts.  After that, the models are 
used for retrieval tasks such as object recognition and detection.  These works usually use statistical 
methods to describe the articulation between parts and often require a learning process to find the model 
parameters. For example, Grimson (1985) proposed some early work performing matching with precise 
models of articulation. Agarwal et al. (2004) proposed a framework for object detection via learning 
sparse, part-based representations. The method is targeted to objects that consist of distinguishable parts 
with relatively fixed spatial configurations. Felzenszwalb and Huttenlocher (2005) described a general 
method to statistically model objects with parts for recognition and detection. The method models ap-
pearance and articulation separately through parameter estimation. After that, the matching algorithm is 
treated as an energy minimization problem that can be solved efficiently by assuming that the pictorial 
representation has a tree structure. Schneiderman and Kanade (2004) used a general definition of parts 
that corresponds to a transform from a subset of wavelet coefficients to a discrete set of values, then 
built classifiers based on their statistics.  Fergus et al. (2003) treated objects as flexible constellations 
of parts and probabilistically represented objects using their shape and appearance information. These 
methods have been successfully used in areas such as face and human motion analysis. However, for 
tasks where the learning process is prohibited, either due to the lack of training samples or due to the 
complexity of the shapes, they are hard to apply.

In contrast, the other two categories (Kimia et al. 1995, Basri et al. 1998, Sebastian, Klein, & Kimia 
2004, Siddiqi et al. 1999, Gorelick et al. 2004, Liu & Geiger 1997) capture part structures from only 
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one image. The second category (Basri et al. 1998, Liu & Geiger 1997) measures the similarity between 
shapes via a part-to-part (or segment-to-segment) matching and junction parameter distribution. These 
methods usually use only the boundary information such as the convex portions of silhouettes and 
curvatures of boundary points.

The third category, which our method belongs to, captures the part structure by considering the 
interior of shape boundaries. The most popular examples are the skeleton based approaches, particu-
larly the shock.graph-based techniques (Kimia et al. 1995, Sebastian et al. 2004, Siddiqi et al. 1999). 
Given a shape and its boundary, shocks are defined as the singularities of a curve evolution process 
that usually extracts the skeleton simultaneously. The shocks are then organized into a shock graph, 
which is a directed, acyclic tree. The shock graph forms a hierarchical representation of the shape and 
naturally captures its part structure. The shape matching problem is then reduced to a tree matching 
problem.  Shock graphs are closely related to shape skeletons or the medial axis (Blum 1973, Kimia et 
al. 1995). Therefore, they benefit from the skeleton’s ability to describe shape, including robustness to 
articulation and occlusion.  However, they also suffer from the same difficulties as the skeleton, espe-
cially in dealing with boundary noise. Another related unsupervised approach is proposed by Gorelick 
et al. (2004). They used the average length of random walks of points inside a shape silhouette to build 
shape descriptors. The average length is computed as a solution to the Poisson equation.  The solution 
can be used for shape analysis tasks such as skeleton and part extraction, local orientation detection, 
shape classification, etc.

The inner-distance is closely related to the skeleton based approaches in that it also considers the 
interior of the shape. Given two landmark points, the inner-distance can be “approximated” by first 
finding their closest points on the shape skeleton, then measuring the distance along the skeleton. In fact, 
the inner-distance can also be computed via the evolution equations starting from boundary points. The 
main difference between the inner-distance and the skeleton based approaches is that the inner-distance 
discards the structure of the path once their lengths are computed. By doing this, the inner-distance is 
more robust to disturbances along boundaries and becomes very flexible for building shape descriptors. 
For example, it can be easily used to extend existing descriptors by replacing Euclidean distances. In 
addition, the inner-distance based descriptors can be used for landmark point matching. This is very 
important for some applications such as motion analysis. The disadvantage is the loss of the ability to 
perform part analysis. It is an interesting topic for future work to see how to combine the inner-distance 
and skeleton based techniques.

Geodesic Distances for 3D Surfaces

The inner-distance is very similar to the geodesic distance on surfaces. The geodesic distances between 
any pair of points on a surface is defined as the length of the shortest path on the surface between them. 
Our work is partially motivated by Elad and Kimmel (2003) using geodesic distances for 3D surface 
comparison through multidimensional scaling (MDS). Given a surface and sample points on it, the 
surface is distorted using MDS, so that the Euclidean distances between the stretched sample points 
are as similar as possible to their corresponding geodesic distances on the original surface. Since the 
geodesic distance is invariant to bending, the stretched surface forms a bending invariant signature of 
the original surface. 

Articulation invariance can be viewed as a special case of bending invariance. While bending invari-
ance works well for surfaces by remapping the texture pattern (or intensity pattern) along the surface, 
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articulation invariance cares about the shape itself. This sometimes makes the bending invariance a bit 
over-general, especially for 2D shape contours. In other words, the direct counterpart of the geodesic 
distance in 2D does not work for our purpose. Strictly speaking, the geodesic distance between two 
points on the `̀ surface’’ of a 2D shape is the distance between them along the contour. If a simple (i.e. 
non self-intersecting), closed contour has length M, then for any point, p, and any d<M/2, there will be 
exactly two points that are a distance d away from p, along the contour. Therefore, a histogram of the 
geodesic distance to all points on the contour degenerates into something trivial, which does not capture 
shape. Unlike the geodesic distance, the inner-distance measures the length of the shortest path within 
the shape boundary instead of along the shape contour (surface). We will show that the inner distance 
is very informative and insensitive to articulation.

There are other works using geodesic distances in shape descriptions. For example, Hamza and 
Krim (2003) applied geodesic distance using shape.distributions (Osada et al. 2002) for 3D shape clas-
sification. Zhao and Davis (2005) used the color information along the shortest path within a human 
silhouette. The articulation invariance of shortest paths is also utilized by them, but in the context of 
background subtraction. Ling and Jacobs (2005) proposed using the geodesic distance to achieve de-
formation invariance in intensity images.

Shape Contexts for 2D Shapes

The shape.context was first introduced by Belongie et al. (2002). It uses the relative spatial distribution 
(distance and orientation) of landmark points to build shape descriptors. Given n.sample points x1, x2, 
…, xn, on an object, its shape context at point xi is defined as a histogram hi of the relative coordinates 
of the remaining n-1 points

( ) #{ : , ( )}i j j ih k x j i x x bin k= ≠ - ∈         (1)

where the bins uniformly divide the log-polar space. The distance between two shape context histograms 
is defined using the χ2 statistic.

For shape comparison, Belongie et al. used a framework combining shape context and thin-plate 
splines (Bookstein 1989) (SC+TPS). Given the points on two shapes A and B, first the point correspon-
dences are found through a weighted bipartite matching. Then, TPS is used iteratively to estimate the 
transformation between them. After that, the similarity D between A and B is measured as a weighted 
combination of three parts

ac sc bcD aD D bD= + +           (2)

where Dac measures the appearance difference, and Dbe measures the bending energy. The Dsc term, 
named the shape.context.distance, measures the average distance between a point on A and its most 
similar counterpart on B (in the sense of χ2 distance). a.and b.are weights (a=1.6, b=0.3 in [6]).

The shape context uses the Euclidean distance to measure the spatial relation between landmark 
points. This means that the distance is the length of the straight line segment which connects the landmark 
points, regardless of whether the line crosses the shape boundary or not. This causes less discriminabil-
ity for complex shapes with articulations (e.g., Figures 7 and 8). The inner-distance is a natural way to 
solve this problem since it captures the shape structure better than the Euclidean distance. We use the 
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inner-distance to extend the shape context for shape matching. The advantages of the new descriptor 
are strongly supported by experiments.

The SC+TPS framework is shown to be very effective for shape matching tasks (Belongie et al. 2002). 
Due to its simplicity and discriminability, the shape context has become quite popular recently. Some 
examples can be found in (Mori & Malik 2003, Thayananthan et al. 2003, Tu & Yuille 2004, Leibe & 
Schiele 2003). Among these works, Thayananthan et al. (2003) is most related to our approach. Thay-
ananthan et al. (2003) suggested including a figural continuity constraint for shape context matching 
via an efficient dynamic programming scheme. In our approach, we also include a similar constraint by 
assuming that contour points are ordered and use dynamic programming for matching the shape context 
at contour points along contours. Notice that usually dynamic programming encounters problems with 
shapes with multiple boundaries (e.g., scissors with holes). The inner-distance has no such problem since 
it only requires landmark points on the outermost silhouette, and the shortest path can be computed 
taking account of holes. This will be discussed in the following sections.

SHAPE MATCHING USING THE INNER-DISTANCE

The Inner-Distance

In this section, we will first give the definition of the inner-distance and discuss how to compute it. 
Then, the inner-distance’s insensitivity to part articulations is proven. After that, we will discuss its 
ability to capture part structures.

The Inner-Distance and Its Computation

First, we define a shape O as a connected and closed subset of R2. Given a shape O.and two points 
,x y O∈  the inner-distance between x, y, denoted as d(x, y; O), is defined as the length of the shortest 

path connecting x and y within O. One example is shown in Fig. 3.
Note: (1) There may exist multiple shortest paths between given points. However, in most cases, the 

path is unique. In rare cases where there are multiple shortest paths, we arbitrarily choose one. (2) We 
are interested in shapes defined by their boundaries, hence only boundary points are used as landmark 
points. In addition, we approximate a shape with a polygon formed by their landmark points.

A natural way to compute the inner-distance is using shortest path algorithms. This consists of two 
steps:

1. Build.a.graph.with.the.sample.points. First, each sample point is treated as a node in the graph.  
Then, for each pair of sample points p1 and p2, if the line segment connecting p1 and p2 falls entirely 
within the object, an edge between p1 and p2 is added to the graph with its weight equal to the 
Euclidean distance |p1-p2|.  An example is shown in Fig. 4. Note (1) Neighboring boundary points 
are always connected; (2) The inner-distance reflects the existence of holes without using sample 
points from hole boundaries, which allows dynamic programming algorithms to be applied to 
shapes with holes. Note that the points along hole boundaries may still be needed for computing 
the inner-distance, but not for building descriptors. 
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2. Apply.an.all.pair’s.shortest.path.algorithm.to.the.graph. Many standard algorithms (Cormen et 
al. 2001) can be applied here, among them Johnson or Floyd-Warshall’s algorithms have O(n3) 
complexity (n.is the number of sample points).

In this chapter we are interested in the inner-distance between all pairs of points. Now we will show 
that this can be computed with O(n3) time complexity for n sample points. First, it takes time O(n) to 
check whether a line segment between two points is inside the given shape (by checking the intersec-
tions between line p1p2 and all other boundary line segments, with several extra tests).  As a result, the 
complexity of graph construction is of O(n3).  After the graph is ready, the all-pair shortest path algorithm 
has complexity of.O(n3). Therefore, the whole computation takes.O(n3).

Note that when O is convex, the inner-distance reduces to the Euclidean distance. However, this is 
not always true for non-convex shapes (e.g., Fig. 2). This suggests that the inner-distance is influenced 
by part structure to which the concavity of contours is closely related (Hoffman & Richards 1985, Feld-
man & Singh 2005). In the following subsections, we discuss this in detail.

Articulation Insensitivity of the Inner-Distance

As shown in Fig. 2, the inner-distance is insensitive to articulation. Intuitively, this is true because an 
articulated shape can be decomposed into rigid parts connected by junctions. Accordingly, the shortest 
path between landmark points can be divided into segments within each part. We will first give a very 
general model for part articulation and then formally prove articulation insensitivity of the inner-dis-
tance.

A Model of Articulated Objects
Before discussing the articulation insensitivity of the inner-distance, we need to provide a model of 
articulated objects. Note that our method does not involve any part models, the model here is only for 
the analysis of the properties of the inner-distance. Intuitively, when a shape O is said to have articulated 
parts, it means

•. O can be decomposed into several parts, say, O1, O2, ... , On, where n is the number of parts. These 
parts are connected by junctions.

Figure 3. Definition of the inner-distance. The dashed polyline shows the shortest path between point x 
and y. Reprinted with permission from “Shape Classification Using the Inner-Distance”, H. Ling and 
D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.
IEEE.
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•. The junctions between parts are very small compared to the parts they connect. 
•. The articulation of O as a transformation is rigid when limited to any part Oi, but can be non-rigid 

on the junctions.
•. The new shape O’ achieved from articulation of O is again an articulated object and can articulate 

back to O.

Based on these intuition, we define an articulated object 2O R⊂ of n parts together with an articula-
tion f as:

1

n

i ij
i i j

O O J
= ≠

    =    
    



 

where

• ,1i i n∀ ≤ ≤ , part 2
iO R⊂ is connected and closed and i jO O null= , i j∀ ≠ , , 1,...,i j n= .

Figure.4...Computation.of.the.inner-distance..Left,.the.shape.with.the.sampled.silhouette.landmark.points..
Middle, the graph built using the landmark points (it is easier to see the edges in the top part of the figure). 
Right,.a.detail.of.the.right.top.of.the.graph..Note.how.the.inner-distance.captures.the.holes..Reprinted.
with permission from “Shape Classification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE 
Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.

. . .......(a). . . . (b). . . .....(c)

Figure.5...Examples.of.articulated.objects..(a).An.articulated.shape.with.three.parts,.O1,.O2,.O3.and.two.
junctions.J12,.J23..(b).A.compound.leaf.with.three.parts..(c).Ideal.articulation..(a).and.(c).are.reprinted.
with permission from “Shape Classification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE 
Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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• ,1 ,i j i j n∀ ≠ ≤ ≤ , 2
ijJ R⊂ , connected and closed, is the junction between Oi.and Oj. If there is no 

junction between Oi and Oj, then Jij=null. Otherwise, ij iJ O null≠ , ij jJ O null≠ .
•  ( )ijdiam J ≤ , where 

,
( ) max ( , ; )

x y P
diam P d x y P

∈
≡ is the diameter of a point set 2P R⊂ in the sense of 

the inner-distance. ε≥0 is constant and very small compared to the size of the articulated parts. 
A special case is when ε=0, which means that all junctions degenerate to single points and O is 
called an ideal.articulated.object.

Fig. 5 (a) shows an example articulated shape with three parts and two junctions.
The articulation from an articulated object O to another articulated object O’ is a one-to-one con-

tinuous mapping f, such that:

•. O’ has the decomposition 
1

' ' '
n

i ij
i i j

O O J
= ≠

    =    
    



 

. Furthermore, ' ( )i iO f O= , ,1i i n∀ ≤ ≤ are 'O   

parts of and ' ( )ij ijJ f J= , ,1 ,i j i j n∀ ≠ ≤ ≤ are junctions in 'O . This preserves the topology between 
the articulated parts. In particular, the deformed junctions still have a diameter less than or equal 
to ε.

•. f is rigid (rotation and translation only) when restricted to Oi, ,1i i n∀ ≤ ≤ . This means inner-dis-
tances within each part will not change.

Notes: (1) In the above and following, we use the notation ( ) { ( ) : }f P f x x P≡ ∈ for short. (2) It is 
obvious from the above definitions that 1f - is an articulation that maps 'O to O.

The above model of articulation is very general and flexible. For example, there is no restriction on 
the shape of the junctions. Junctions are even allowed to overlap each other. Furthermore, the articu-
lation f on the junctions are not required to be smooth. Fig. 5 (b) and (c) gives two more examples of 
articulated shapes.

Articulation Insensitivity
We are interested in how the inner-distance varies under articulation. From previous paragraphs we know 
that changes of the inner-distance are due to junction deformations. Intuitively, this means the change is 
very small compared to the size of parts. Since most pairs of points have inner-distances comparable to 
the sizes of parts, the relative change of the inner-distances during articulation are small. This roughly 
explains why the inner-distances are articulation insensitive.

We will use the following notations: (1) 1 2( , ; )x x PΓ denotes a shortest path 1x p∈  from to 2x p∈ for a 
closed and connected point set 2P R⊂ (so 1 2( , ; )d x x P is the length of 1 2( , ; )x x PΓ ). (2) We use prime “’”to 
indicate the image f of a point or a point set under an articulation e.g., ' ( )P f P≡  Pfor point set; ' ( )p f p≡
for a point P. 3) “[‘’ and ”]’’ denote the concatenation of paths.

Let us first point out two facts about the inner-distance within a part or crossing a junction. Both 
facts are direct results from our definitions of parts and junctions.

Fact 1:
( , ; ) ( ', '; ' ) , ,1i i id x y O d x y O x y O i n= ∀ ∈ ≤ ≤

Fact 1 says that, for two points within the same part, the inner-distance between them is invariant 
to articulation. This is obvious because the transformation of a part is restricted to be rigid during 
articulation.
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Fact 2:

, ,| ( , ; ) ( ', '; ') | , , ,1 , ,i j i jd x y O d x y O x y J i j i j n J O- ≤ ∀ ∈ ≠ ≤ ≤ ≠

Fact 2 says that, for two points within the same junction, the change of the inner-distance between 
them is bounded by ε. This is because the size of a junction is limited by ε. Note that Fact 2 does not 
require the shortest path between x, yto lie within the junctionJij. 

The two facts describe the change of the inner-distances of restricted point pairs. For the general 
case, i.e. x, y ∈ O, we have the following theorem:

Theorem 1: Let O be an articulated object and f be an articulation of O as defined above. ,x y O∀ ∈ ,.
suppose.the.shortest.path. ( , ; )x y OΓ goes.through.m.different.junctions.in.O.and. ( ', '; ')x y OΓ goes.through.

'm different.junctions.in. 'O ,.then

| ( , ; ) ( ', '; ') | max{ , '}d x y O d x y O m m- ≤   

Proof:.The.proof.uses.the.intuition.mentioned.above..First.we.decompose. ( , ; )x y OΓ into.segments..Each.
segment.is.either.within.a.part.or.across.a.junction..Then,.applying.Fact.1.and.Fact.2.to.each.segment.
leads.to.the.theorem.

First, ( , ; )x y OΓ  is decomposed into l segments:

0 1 1 1 2 2 1( , ; ) [ ( , ; ), ( , ; ),..., ( , ; )]l l lx y O p p R p p R p p R-Γ = Γ Γ Γ

using point sequence 0 1, ,..., lp p p  and regions 1,..., lR R  via the steps using Algorithm 1.

Algorithm 1: Decompose );,( OyxΓ   
    0p  x , i0 

    while ypi ≠        
/*find 1+ip */ 

i 1+I  
iR  the region (a part or a junction) );,( OyxΓ enters after 1-ip  

if ki OR = for some k      
/*enter a part ( iR is a part)*/ 
Set ip as a point in kO such that 

  1 ) );,();,( 1 OyxOpp kii Γ⊂Γ -  
  2) );,( OyxΓ enters a new region (a part or a junction) after ip or ypi =  

else  
/* rsi JR = for some sr,  ( iR is a junction), enter a junction*/] 

  S et ip as the point in );,( OyxJ rs Γ such that );,( OyxΓ never re-enters rsJ after ip  
 iR  the union of all the parts and junctions );,( 1 Opp ii-Γ passes through (note irs RJ ⊂ ) 
endif 

    endwhile 
    l i  
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An example of this decomposition is shown in Fig. 6 (a). With this decomposition, ( , ; )d x y O  can be 
written as:

1
1

( , ; ) ( , ; )
l

i i i
i

d x y O d p p R-
=

= ∑
Suppose m1of the segments cross junctions (i.e., segments not contained in any single part), then 

obviously 1m m≤  ( 1m m< when there are cross junction segments that are not contained within any single 
junction).

In 'O , we construct a path from 'x to 'y corresponding to ( , ; )x y OΓ  as follows (e.g. Fig. 6 (b)):

0 1 1 1 2 2 1( ', '; ') [ ( ' , ' ; ' ), ( ' , ' ; ' ),..., ( ' , ' ; ' )]l l lC x y O p p R p p R p p R-= Γ Γ Γ

Note that ( ', '; ')C x y O  is not necessarily the shortest path in 'O . Denote ( ', '; ')d x y O

 as the length of 
( ', '; ')C x y O , it has the following property due to Fact 1 and Fact 2:

1| ( , ; ) ( ', '; ') |d x y O d x y O m m- ≤ ≤         (3)

Figure.7..With. the.same.sample.points,. the.distributions.of.Euclidean.distances.between.all.pair.of.
points.are.indistinguishable.for.the.four.shapes,.while.the.distributions.of.the.inner-distances.are.quite.
different. Reprinted with permission from “Shape Classification Using the Inner-Distance”, H. Ling 
and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.
2007.IEEE.

Figure.6..(a).Decomposition.of. );,( OyxΓ .(the.dashed.line).with. yppx == 30 , ..Note.that.a.segment.
can.go.through.a.junction.more.than.once.(e.g.. 21 pp )..(b).Construction.of. )';','(~ OyxC in. 'o .(the.dashed.
line)..Note.that )';','(~ OyxC is not the shortest path. Reprinted with permission from “Shape Classification 
Using.the.Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..
(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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On the other hand, since O.can be articulated from 'O through f-1, we can construct ( , ; )C x y O  from 
( ', '; ')x y OΓ  in the same way that we construct ( ', '; ')C x y O  from ( , ; )x y OΓ . Then, similar to (3), we 

have

| ( ', '; ') ( , ; ) | 'd x y O d x y O m- ≤          (4)

Combining (3) and (4),

( , ; ) ' ( , ; ) ' ( ', '; ') ( ', '; ') ( , ; )d x y O m d x y O m d x y O d x y O d x y O m- ≤ - ≤ ≤ ≤ + 

This implies Theorem 1.          # 
Regarding changes of inner-distances under articulation, two remarks can be made from Theorem 

1:

• The inner-distance is strictly invariant for ideal articulated objects. This is obvious since ε=0 for 
ideal articulations.

• Since ε is very small by definition, for most pairs of x, y, the relative change of inner-distance is 
very small. This means the inner-distance is insensitive to articulations.

We further clarify several issues. First, the proof depends on the size limitation of junctions. The 
intuition is that a junction should have a relatively smaller size compared to parts, otherwise it is more 
like a part itself.  A more precise part-junction definition may provide a tighter upper bound but sac-
rifice some generality. The definition also captures our intuition about what distinguishes articulation 
from deformation. Second, the part-junction model is not actually used at all when applying the inner-
distance. In fact, one advantage of using the inner-distance is that it implicitly captures part structure, 
whose definition is still not clear in general.

Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that the inner-distance captures part structures bet-
ter than the Euclidean distance. This is hard to prove because the definition of part structure remains 
unclear. For example, Basri et al. (1998) gave a shape of shoe that has no clear part decomposition, 
although it feels like it has more than one part.

Instead of giving a rigorous proof, we show how the inner-distance captures part structure with 
examples and experiments. Figures 2, 7 and 12 show examples where the inner-distance distinguishes 
shapes with parts while the Euclidean distance runs into trouble because the sample points on the shape 
have the same spatial distributions. For example, the original shape context [6] may fail on these shapes. 
One may argue that the Euclidean distance will also work on these examples with an increased number 
of landmark points. This argument has several practical problems. First, the computational cost will be 
increased, usually in a quadratic order or higher. Second, no matter how many points are used, there 
can always be finer structures. Third, as shown in Fig. 8, for some shapes this strategy will not work.

During retrieval experiments using several shape databases, the inner-distance based descriptors all 
achieve excellent performance. Through observation we have found that some databases (e.g., MPEG7) 
are difficult for retrieval mainly due to the complex part structures in their shapes, though they have 
little articulation. These experiments show that the inner-distance is effective at capturing part structures 
(see Fig. 12 and (Ling & Jacobs 2007) for details).



���  

Shape Matching for Foliage Database Retrieval

Aside from part structures, examples in Fig. 8 show cases where the inner-distance can better cap-
ture some shapes without parts. We expect further studies on the relationship between inner-distances 
and shape in the future.

Articulation Invariant Signatures

To build shape descriptors with the inner-distance is straightforward. Theoretically, it can be used to 
replace other distance measures (e.g. the Euclidean distance) in any existing shape descriptors. In this 
section, the inner-distance is used to build articulation invariant signatures for 2D shapes using multi-
dimensional scaling (MDS) similar to (Elad & Kimmel 2003). In the next section, we will show how 
to use the inner-distance to extend the shape context for shape matching.

Given sample points 1{ }n
i iP p =≡  on a shape O and the inner-distances , 1{ }n

ij i jd =  between them, MDS 
finds the transformed points 1{ }n

i iQ q =≡  such that the Euclidean distances , 1{ ( ) || ||}n
ij i j i je Q q q == -  minimize 

the stress.S(Q)defined as:

2

2

( )
( )

ij ij ij
i j

ij
i j

w d e
S Q

d
<

<

-
=

∑
∑           (5)

where wij are weights. In our experiment, we use the least squares MDS with wij.=1.  The stress can be 
minimized using the SAMCOF (Scaling by Maximizing a Convex Function) algorithm (Borg & Groenen 
1997). SAMCOF is an iterative algorithm that keeps decreasing the objective function, i.e., the stress 
(5). The details can be found in (Elad & Kimmel 2003).

Fig. 9 shows two examples of the articulation invariant signatures computed by the above approach. It 
can be seen that although the global shape of the two original objects are quite different due to articula-
tion, their signatures are very similar to each other. More examples of articulation invariant signatures 
can be seen in Fig. 16.

It is attractive to use the articulation invariant signature for classifying articulated shapes.  In our 
experiments we combine it with the shape context.  The method contains three steps: (1) use the inner-
distance and MDS to get the articulation invariant signatures; (2) build the shape context on the signa-

Figure.8..With.about.the.same.number.of.sample.points,.the.four.shapes.are.virtually.indistinguishable.
using.distribution.of.Euclidean.distances,.as.in.Fig..7..However,.their.distributions.of.the.inner-distances.
are quite different except for the first two shapes. Note: (1) None of the shapes has (explicit) parts. (2) 
More.sample.points.will.not.affect.the.above.statement..Reprinted.with.permission.from.“Shape.Clas-
sification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE Trans on Pattern Anal. and Mach. 
Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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Figure.9.. (b). shows. the.articulation. invariant. signature.of. (a).. (d). shows. the.articulation. invariant.
signature of (c). Reprinted with permission from “Shape Classification Using the Inner-Distance”, H. 
Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..
©.2007.IEEE.

tures; (3) use dynamic programming for shape context matching. The third step is described in detail 
in the next section.  We call this approach MDS+SC+DP. The experimental results show significant 
improvement compared to the shape context on the original shapes.

Inner-Distance Shape Context: Matching and Retrieval

Inner-Distance Shape Context (IDSC)

To extend the shape context defined in (1), we redefine the bins with the inner-distance. The Euclidean 
distance is directly replaced by the inner-distance. The relative orientation between two points can be 
defined as the tangential direction at the starting point of the shortest path connecting them. However, this 
tangential direction is sensitive to articulation. Fortunately, for a boundary point p and its shortest path 

( , ; )p q OΓ  to another point q, the angle between the contour tangent at p and the direction of ( , ; )p q OΓ  
at p is insensitive to articulation (invariant to ideal articulation). We call this angle the inner-angle (e.g., 
see Fig. 11) and denote it as ( , ; )p q O .  The inner-angle is used for the orientation bins. A similar idea 
is used in [6], which uses the local coordinate system to achieve rotation invariance. In practice, the 
shape boundary may be distorted by noise that reduces the stability of the inner-angle. To deal with this 
problem, we smooth the contour using a small neighborhood before computing the inner-angle.

Note that the inner-angle may not be unique. However, the ambiguity only happens in very few situa-
tions so it does not significantly affect the shape descriptor we are going to build. The inner-angle is just 
a byproduct of the shortest path algorithms and does not affect the complexity. Once the inner-distances 
and orientations between all pair of points are ready, it takes O(n2) time to compute the histogram (1).

This extension can also be viewed as of first relocating the sample points according to the inner-dis-
tance, then counting to get the histogram. This is illustrated in Fig. 10 (d-f). Compared to (b), six points 
in (d) are moved to different bins, causing a change in of the numbers of points in some bins.

Fig. 12 shows examples of the shape context computed by the two different methods. It is clear that 
SC is similar for all three shapes, while IDSC is only similar for the beetles. From this figure we can 
see that the inner-distance is better at capturing parts than SC.

Shape Matching Through Dynamic Programming

The contour matching problem is formulated as follows: Given two shapes A and B, describe them by 
point sequences on their contour, say, p1,p2...pnfor A.with n points, and q1q2...qmfor B.with m points. 
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Without loss of generality, assume n.≥ m. The matching ρ from A.to B is a mapping from 1, 2, ... , n 
to 0, 1, 2, ... , m, where pi is matched to )Iiq

 if 
( ) 0i ≠  and otherwise left unmatched. The matching ρ 

should minimize the match cost H(ρ) defined as

1
( ) ( , ( ))

n

i
H c i i

=

= ∑           (6)

where ( ,0)c i =  is the penalty for leaving pi unmatched, and for 1 j m≤ ≤ , ( , )c i j  is the cost of matching 
Pi to qj. This is measured using the χ2

 statistic as in [6]

2
, ,

1 , ,

( ( ) ( ))1( , )
2 ( ) ( )

K
A i B j

k A i B j

h k h k
c i j

h k h k=

-
=

+∑          (7)

where jA,iand hB,jare the shape context histograms of pi and qjrespectively, and K.is the number of his-
togram bins.

(a) (b) (c)

(d) (e) (f)

Figure.10..Construction.of.the.shape.context.(SC).and.the.inner-distance.shape.context.(IDSC)..(a).
Sampled.points.along.a.shape..The.SC.and.IDSC.at.point.p.will.be.built..Four.log-distance.bins.and.
four.orientation.bins.are.used..(b).The.bins.and.the.number.of.points.inside.each.bins..(c).SC.at.p..(d).
When.building.IDSC,.the.inner-distance.is.used..It.works.as.if.moving.some.points.to.different.bins.ac-
cording.to.the.inner-distance.and.the.inner-angle.(q.in.the.graph)..q.is.moved.to.q’..(e).The.number.of.
points.inside.each.bin.according.to.the.inner-distance..(f).IDSC.at.p.
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Since the contours provide orderings for the point sequences p1p2...pn and q1q2...qm, it is natural to 
restrict the matching ρ with this order. To this end, we use dynamic programming (DP) to solve the 
matching problem. DP is widely used for contour matching. Detailed examples can be found in (Thay-
ananthan et al. 2003, Petrakis et al. 2002, Basri et al. 1998). We use the standard DP method (Cormen 
et al. 2001) with the cost functions defined by (6) and (7).

In other words, we want to minimize (6) subject to the sequence ordering and starting points p1, q1. 
The key formula for the matching is 

( 1, 1) ( , )
( , ) min ( 1, )

( , 1)

H i j c i j
H i j c i j

c i j

- - +
= - +
 - +

where H(i, j) is the minimum matching cost of matching subsequence p1p2...pi and q1q2...qj. And the cost 
of the whole matching is H(ρ) = H(n, m).

Figure.11...The.inner-angle.q(p,.q;.O).between.two.boundary.points..Reprinted.with.permission.from.
“Shape Classification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE Trans on Pattern 
Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.

Figure.12..Shape.context.(SC).and.inner-distance.shape.context.(IDSC)..The.top.row.shows.three.objects.
from.the.MPEG7.shape.database,.with.two.marked.points.p,.q.on.each.shape..The.next.rows.show.(from.
top.to.bottom),.the.SC.at.p,.the.IDSC.at.p,.the.SC.at.q,.the.IDSC.at.q..Both.the.SC.and.the.IDSC.use.
local.relative.frames.(i.e..aligned.to.the.tangent)..In.the.histograms,.the.x.axis.denotes.the.orientation.
bins and the y axis denotes log distance bins. Reprinted with permission from “Shape Classification 
Using.the.Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..
(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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By default, the above method assumes the two contours are already aligned at their start and end 
points. Without this assumption, one simple solution is to try different alignments at all points on the 
first contour and choose the best one. The problem with this solution is that it raises the matching com-
plexity from O(n2) to O(n3). Fortunately, for the comparison problem, it is often sufficient to try aligning 
a fixed number of points, say, k points. Usually k is much smaller than m and n, this is because shapes 
can be first rotated according to their moments. According to our experience, for n, m=100, k=4 or 8 
is good enough and larger k does not demonstrate significant improvement. Therefore, the complexity 
remains O(kn2)= O(n2).

Bipartite graph matching is used in (Belongie et al. 2002) to find the point correspondence ρ. Bipartite 
matching is more general since it minimizes the matching cost (6) without additional constraints. For 
example, it works when there is no ordering constraint on the sample points (while DP is not applicable). 
For sequenced points along silhouettes, however, DP is more efficient and accurate since it uses the 
ordering information provided by shape contours. 

Shape Distances 

Once the matching is found, we use the matching cost H(ρ) as in (6) to measure the similarity between 
shapes. One thing to mention is that dynamic programming is also suitable for shape context. In the 
following, we use IDSC+DP to denote the method of using dynamic programming matching with the 
IDSC, and use SC+DP for the similar method with the SC.

In addition to the excellent performance demonstrated in the experiments, the IDSC+DP framework 
is simpler than the SC+TPS framework (2) (Belongie et al. 2002). First, besides the size of shape context 
bins, IDSC+DP has only two parameters to tune: (1) The penalty t for a point with no matching, usu-
ally set to 0.3, and (2) The number of start points k for different alignments during the DP matching, 
usually set to 4 or 8. Second, IDSC+DP is easy to implement, since it does not require the appearance 
and transformation model as well as the iteration and outlier control. Furthermore, the DP matching is 
faster than bipartite matching, which is important for retrieval in large shape databases.

Figure.13..Shapes.of.three.leaves.((a),.(b).and.(c)).are.not.enough.to.distinguish.them..Their.texture.
((d), (e) and (f) respectively) apparently helps. Reprinted with permission from “Shape Classification 
Using.the.Inner-Distance”,.H..Ling.and.D.W..Jacobs.,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..
(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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The time complexity of the IDSC+DP consists of three parts. First, the computation of inner-dis-
tances can be achieved in O(n3) with Johnson or Floyd-Warshall’s shortest path algorithms, where n is 
the number of sample points. Second, the construction of the IDSC histogram takes.O(n2). Third, the DP 
matching costs O(n2), and only this part is required for all pairs of shapes, which is very important for 
retrieval tasks with large image databases. In our experiment using partly optimized Matlab code on a 
regular Pentium IV 2.8G PC, a single comparison of two shapes with n=100 takes about 0.31 second.

HANDLING TEXTURE

Shortest Path Texture Context 

In real applications, shape information is often not enough for object recognition tasks.  On the one hand, 
shapes from different classes sometimes are more similar than those from the same class (e.g., Fig. 13).  
On the other hand, shapes are often damaged due to occlusion and self-overlapping (some examples 
can be found in Fig. 1).  A combination of texture and shape information is desirable for this problem.  
In (Belongie et al. 2002) appearance information is included in the SC+TPS framework by considering 
appearance around landmark points.  In this section, we will introduce a new descriptor that considers 
the texture information inside the whole shape.

In previous sections, the inner-distance is shown to be articulation insensitive due to the fact that 
the shortest paths within shape boundaries are robust to articulation. Therefore, the texture information 
along these paths provides a natural articulation insensitive texture description. Note that this is true 
only when the paths are robust. In this section, we use local intensity gradient orientations to capture 
texture information because of their robustness and efficiency. To gain articulation invariance, the angles 
between intensity gradient directions and shortest path directions are used. In the following we call 
these angles relative.orientations. Given shape O and two points p, v on it, we use ( , ; )p v O  to denote 
the relative orientation with respect to the shortest path ( , ; )p v OΓ . An example is shown in Fig. 14.

Figure 14. (a) Relative orientation α(p, v; O).at.point.v..The.arrow.points.to.local.intensity.gradient.
direction..(b).The.SPTC.at.a.landmark.point.is.a.three-dimensional.histogram..(a).is.reprinted.with.per-
mission from “Shape Classification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE Trans 
on.Pattern.Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.

. . . (a). . . . . .......(b)
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Based on the above idea, we propose the shortest.path.texture.context (SPTC) as a combined shape and 
texture descriptor. SPTC is an extension of the IDSC in that it measures the distributions of (weighted) 
relative orientations along shortest paths instead of the joint distributions of inner-distance and inner-
angle distributions of landmark points. In our application, the relative orientations are weighted by 
gradient magnitudes when building into SPTC. For texture undergoing large non-uniform illumination 
change, it might be better to use non-weighted relative orientations. 

Given n landmark points x1, x2, …, xn sampled from the boundary of shape O, the SPTC for each xi 
is a three-dimensional histogram hi (we abuse notation to use hi again for the histograms).  Similar to 
IDSC, SPTC uses the inner-distance and the inner-angle as the first two dimensions. The third dimen-
sion of SPTC is the (weighted) relative orientation that takes into account the texture information along 
shortest paths. To build hi, for each.xj, j i≠ , a normalized histogram of relative orientation along the 
shortest path ( , ; )i jx x OΓ  is added into the relative orientation bin located at the inner-distance and in-
ner-angle bin determined by xj. The algorithm is described in Algorithm 2. Note that when the number 
of relative orientation bins nr=1, SPTC reduces to IDSC.

A similar idea of using `̀ relative orientation’’ is used by Lazebnik et al. (2005) for rotation invariant 
texture description. Shape context had also been extended for texture description by including inten-
sity gradient orientation (Mikolajczyk & Schmid 2005). SPTC is different from these methods in three 
ways. First, SPTC combines texture information and global shape information while the above methods 
work for local image patches.  Second, the above methods sample the orientations at a large number of 
pixels inside a patch, which is too expensive for our task without utilizing shortest paths. Third, none 
of the previous methods is articulation invariant. Another related work by Zhao and Davis (2005) used 
the color information along the shortest path for background subtraction. Instead of color information, 
we use gradient orientation, which is more robust to lighting change (Chen et al. 2000), which is very 
important for classification tasks. In the next section, SPTC is tested with two leaf image databases and 
excellent performance is observed.

FOLIAGE IMAGE RETRIEVAL IN AN  ELECTRONIC FIELD GUIDE SYSTEM

In this section we briefly describe a prototype electronic field guide system. The prototype is the product 
of a collaboration between researchers from Columbia University, the Smithsonian Institution, and the 
University of Maryland [3]. The image retrieval system allows for online visual searching. In the field, 
a botanist can photograph an unknown leaf to the system and get the most visually similar leaves in the 
database. Another important target of an EFG system is to provide an easy-to-use browsing interface that 
helps not only botanists, but all users. For example, it would be very helpful to embed an EFG system 
in a web server, which further provides online access and browsing services.

Techniques from several research areas are necessary to fulfill this task: 

1. An.image.retrieval.algorithm.enables.image-based.browsing.as.well.as.query. This is the main 
topic of this chapter. The inner-distance based approaches give a reliable solution to the problem. 
The shape matching algorithms not only play a key role in the visual search task, they also form 
the basis of visual clustering that has been shown to be very helpful in image browsing tasks 
(Agarwal 2005).
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2. Computing.hardware. A portable computing device is a must. This is much less of a problem 
nowadays than before, thanks to numerous popular mobile devices such as laptops, but more us-
able portable devices are still needed. 

3. A flexible interface. The interface should provide an easy browsing environment as well as an easy 
interface to database systems that contain textual and image information.

4. Interface.hardware..A traditional retrieval system is usually based on textual input. While this is 
easy and requires only a keyboard (or similar input device), it sacrifices convenience. In addition, 
it is often not easy to summarize an unknown species in a way that is appropriate for a text-based 
retrieval system. A natural extension is use image based searching. For this reason, an input de-
vice (usually a camera) is needed to provide a query image to the image-based retrieval system.  
Communication between a camera and a computing device can be easily and automatically done 
through wireless communication systems, such as Bluetooth, while systems with built in cameras 
will be even more convenient.

Figure 15 is a summary of the software part of our prototype system. On the top there are the two 
interfaces to users, image browsing and retrieval. In the middle are four modules that support the two 
interfaces, which are built on top of three modules, including Photomesa (Bederson 2001), which is a 
zoomable and reusable user interface toolkit, the inner-distance based shape matching (IDSC) techniques 
and an image processing module. Details of the system can be found in (Agarwal et al. 2006).

The system is tested in several real field test trips on the Plummers Island on the Potomac River near 
Washington DC. During these tests, the botanists picked leaves and took pictures of them. The pictures 
were then be automatically uploaded to our system and the searching results were provided by our system 
in real time. Both the reliability and usability of our system are confirmed in these real tests. 

EXPERIMENTS AND REAL APPLICATIONS

Articulated Database

To show the articulation insensitivity of the inner-distance, we apply the proposed articulation invariant 
signature and the IDSC+DP approach to an articulated shape data set we collected. The dataset contains 

Figure.15..Modules.of.the electronic field guide prototype 
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40 images from 8 different objects. Each object has 5 images articulated to different degrees (see Fig. 
16). The dataset is very challenging because of the similarity between different objects (especially the 
scissors). The holes of the scissors make the problem even more difficult.

The parameters in the experiment are: n=200, nd=5, nq=12. Since all the objects are at the same 
orientation, we align the contours by forcing them to start from the bottom-left points and then set k=1 
for DP matching.  The articulation invariant signatures of the shapes are computed and shown in Fig. 
16 (b).

To evaluate the recognition result, for each image, the four most similar matches are chosen from other 
images in the dataset. The retrieval result is summarized as the number of 1st, 2nd, 3rd and 4th most 
similar matches that come from the correct object. Table I shows the retrieval results. It demonstrates 
that both the articulation invariant signature and the IDSC help to improve recognition a lot. This veri-
fies our claim that the inner-distance is very effective for objects with articulated parts. The experiment 
also shows that IDSC works better than MDS for the articulated shapes. One reason is that the MDS 
may cause loss of information since it uses the Euclidean distance to approximate the inner-distance.  

Aside from the articulated dataset, the inner-distance based approaches have been applied to several 
other public datasets, including the MPEG7 shape dataset, Kimia datasets, ETH-80 datasets. Excellent 
performance is observed in all the experiments. Details of these experiments can be found in (Ling & 
Jacobs 2007).

Swedish Leaf Database 

The Swedish leaf dataset comes from a leaf classification project at Linkoping University and the Swed-
ish Museum of Natural History (Soderkvist 2001). The dataset contains isolated leaves from 15 different 
Swedish tree species, with 75 leaves per species. Fig. 17 shows some representative silhouette examples. 
Some preliminary classification work has been done in (Soderkvist 2001) by combining simple fea-
tures like moments, area and curvature etc. We tested with Fourier descriptors, SC+DP, MDS+SC+DP, 

Algorithm 2: Shortest path texture context ih at landmark point ix  
   hi  3-D matrix with zero entries everywhere 

for j=1 to n, ij ≠  
);,( Oxx jiΓ   shortest path from ix to jx  

ĥ 1-D weighted histogram of the relative orientations along );,( Oxx jiΓ  

ĥ |ˆ|/ˆ hh      / * Normalize ĥ */ 

idd  the inner-distance bin index computed from );,( Oxxd ji  

id   the inner-angle bin index computed from );,( Oxx ji  

for  id =1 to rn        / * rn is the number of relative orientation bins */ 

),,( idididi dh  ),,( idididi dh  + )(ˆ idh  
       endfor 
   endfor 
   ih  ||/ ii hh      / * Normalize ih */    
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Figure.16.. (a).Articulated.shape.database..This.dataset.contains.40. images. from.8.objects.with.ar-
ticulation. Each column contains five images from the same object. (b) MDS of the articulated shape 
database using the inner-distances. Reprinted with permission from “Shape Classification Using the 
Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.
29(2):286-299,.(2007)..©.2007.IEEE.

. . . (a). . . . . . ....(b)

Distance Type Top 1 Top 2 Top 3 Top 4
L2 25/40 15/40 12/40 10/40

SC+DP 20/40 10/40 11/40 5/40
Art. Inv. Signature 36/40 26/40 17/40 15/40

IDSC+DP 40/40 34/40 35/40 27/40

Table.1..Retrieval.result.on.the.articulate.dataset

Figure.17..Typical.images.from.Swedish.leaf.data.base,.one.image.per.species..Note.that.some.species.
are quite similar, e.g. the 1st, 3rd and 9th species. Reprinted with permission from “Shape Classification 
Using.the.Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..
(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.
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IDSC+DP and SPTC+DP with parameters n=128, nd=8, nq=12, nr=8 and k=1. Each species contains 25 
training samples and 50 testing samples per species. The recognition results with 1-nearest-neighbor are 
summarized in Tab. II. Notice that unlike other experiments, the articulation invariant signature works 
a little better than IDSC on the leaf images. One possible explanation is that, as a real image dataset, 
the inner-angle for leaves are less robust due to boundary noise. Also notice that SPTC improves IDSC 
as we had expected.

Smithsonian Isolated Leaf Database 

This data set comes from the Smithsonian project (Electronic Field Guide, 2008). We designed an 
Electronic Field Guide image retrieval system that allows online visual searching. The task is very chal-
lenging because it requires querying a database containing more than one hundred species and real time 
performance requires an efficient algorithm. In addition, the pictures taken in the field are vulnerable 
to lighting changes and the leaves may not be flattened well.

We evaluated the proposed approaches on a representative subset of the leaf image database in the 
system (http://www.ist.temple.edu/~hbling/data/SI-93.zip). The subset contains 343 leaves from 93 
species (the number of leaves from different species varies). In the experiment, 187 of them are used as 
the training set and 156 as the testing set. Note that there are only two instances per class in the train-

Table 2. Recognition rates on the Swedish leaf dataset. Note that MDS+SC+DP and SPTC achieved 
the.same.rates

Method [SoderkviSt 
2001] Fourier SC+DP MDS+SC+DP IDSC+DP SPTC+DP

Recognition Rate 82% 89.6% 8812.% 95.33% 94.13% 95.33%

Note that MDS+SC+DP and SPTC got same rates.

Figure.18..The.Smithsonian.dataset..This.dataset.contains.343.leaf.images.from.93.species..Typical.
images from each species are shown. Reprinted with permission from “Shape Classification Using the 
Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.
29(2):286-299,.(2007)..©.2007.IEEE.
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Figure.19..Recognition.result.on.the.Smithsonian.leaf.dataset..The.ROC.curves.shows.the.recognition.
rate among the top N matched leaves. Reprinted with permission from “Shape Classification Using the 
Inner-Distance”,.H..Ling.and.D.W..Jacobs,.IEEE.Trans.on.Pattern.Anal..and.Mach..Intell..(PAMI),.
29(2):286-299,.(2007)..©.2007.IEEE.

Figure.20..Three.retrieval.examples.for.IDSC.and.SPTC..The.left.column.shows.the.query.images..For.
each.query.image,.the.top.four.retrieving.results.are.shown.to.its.right,.using.IDSC.and.SPTC.respec-
tively..The.circled.images.come.from.the.same.species.as.the.query.image..Reprinted.with.permission.
from “Shape Classification Using the Inner-Distance”, H. Ling and D.W. Jacobs, IEEE Trans on Pattern 
Anal..and.Mach..Intell..(PAMI),.29(2):286-299,.(2007)..©.2007.IEEE.

ing set on average. The retrieval performance is evaluated using performance curves which show the 
recognition rate among the top N leaves, where N varies from 1 to 16.

For the efficiency reasons mentioned above, only 64 contour points are used (i.e. n=64). The similar-
ity between leaves is measured by the shape context distance Dsc (see Sec. II or (Belongie et al. 2002). 
This distance is based on a greedy matching and should not be confused with the bipartite matching 
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based approach. Therefore it is faster than DP-based matching. Other parameters used in the experiment 
are nd=5, nq=12, and nr=8. Note that k is not needed because DP is not used here. The performance is 
plotted in Fig. 19. It shows that SPTC works significantly better than other methods. Fig. 20 gives some 
detailed query results of SPTC and IDSC, from which we can see how SPTC improves retrieval result 
by also considering texture information.

CONCLUSION

In this chapter, we present an inner-distance based shape matching algorithm for the application of foli-
age image retrieval. With experiments on two leaf databases involving thousands of images, our method 
demonstrates excellent performance in comparison to several state-of-the-art approaches. The approach 
is adopted in an electronic field guide system that has been tested in several real field test trips. 

There are two main issues that are worth future study. First, the algorithm requires segmentation 
for preprocessing. In our current system images are taken by putting leaves against a white paper back-
ground. This is apparently not an ideal solution especially for use in the field. Second, more efficient 
schemes are needed for fast retrieval and browsing, especially for a large database or an online system. 
One possibility is through smart indexing techniques instead of the currently used nearest neighbor 
algorithm. We look forward to future development in these directions.
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ABSTRACT

Motion.estimation.necessitates.an.appropriate.choice.of.similarity.function..Because.generic.similarity.
functions derived from simple assumptions are insufficient to model complex yet structured appearance 
variations.in.motion.estimation,.the.authors.propose.to.learn.a.discriminative.similarity.function.to.match.
images under varying appearances by casting image matching into a binary classification problem. They 
use the LogitBoost algorithm to learn the classifier based on an annotated database that exemplifies the 
structured.appearance.variations:.An.image.pair.in.correspondence.is.positive.and.an.image.pair.out.
of.correspondence.is.negative..To.leverage.the.additional.distance.structure.of.negatives,.they.present.a.
location-sensitive.cascade.training.procedure.that.bootstraps.negatives.for.later.stages.of.the.cascade.
from.the.regions.closer.to.the.positives,.which.enables.viewing.a.large.number.of.negatives.and.steer-
ing.the.training.process.to.yield.lower.training.and.test.errors..The.authors.apply.the.learned.similarity.
function.to.estimating.the.motion.for.the.endocardial.wall.of.left.ventricle.in.echocardiography.and.to.
performing.visual.tracking..They.obtain.improved.performances.when.comparing.the.learned.similarity.
function.with.conventional.ones.
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INTRODUCTION

Image matching and Similarity Function

Image matching is fundamental to various computer vision tasks. In motion estimation, image matching 
happens along the temporal dimension, e.g., comparing consecutive frames to establish correspondences 
over time or tracking points of interest. In image registration, image matching happens along the spatial 
dimension, e.g., comparing two heterogeneous images for establishing spatial correspondences. Image 
matching is also vital to content-based retrieval, face recognition, and application of the same kind, 
where comparing testing and training image is needed.

Underlying an image matching process lays an indispensable component of similarity function. A 
similarity function is a two-input function s(I,.I’) that measures how closely the test patch I’ is visually 
similar to the template patch I. A typical use of similarity function in, say, motion estimation and im-
age registration algorithms is as follows: given two images I and I’ and a target point (u,v) whose mo-
tion vector or spatial correspondence to be estimated, one finds the shift that has the (local) maximum 
similarity. If the minimum is sought, one can simply negate the similarity function. 

( , )
ˆ ˆ( , ) arg max ( ( , ), '( , ))

u v W
u v s I u v I u u v v

∈
= + + ,       (1)

where I(u,v) is a local patch extracted from the image I, centered at (u,v), and W is the searching win-
dow. In motion estimation, the two images I and I’ are successive frames, e.g., I=It-1 and I’=It; in image 
registration, the two images I and I’ are the image pair to be registered. In retrieval and recognition 
applications, the use of similarity function is as follows:

1,..,
ˆ arg max ( , ')nn N
n s I I

=
= ,          (2)

where {In;.n=1,2,…,N} are gallery images stored in the database, and I’ is a query image that is used 
to sort the database. The principal difference between (1) and (2) lies in the search space where the 
maximum is found: The search space for the first type of application (e.g., motion estimation and image 
registration) is a spatial window, and that for the second type of applications (e.g., retrieval and recogni-
tion) is on the index of the images in the gallery database.

In this chapter, we concentrate on the specific application of motion estimation. It is obvious that 
applications like image registration, retrieval and recognition, etc. can be also tackled with a minor 
modification.

Similarity Function Under Complex Appearance Variations

Matching two images under complex appearance variations is challenging due to lacking an appropriate 
similarity function. Similarity functions proposed in the literature are mostly generic and inadequate 
for handling complex appearance variations. A motivating example is illustrated in Fig. 1.

Consider a stress echocardiographic video (stress echo) (Otto, 2004), a series of 2D ultrasound im-
ages of the human heart captured after the patient undergoes exercise or takes special medicine. We 
focus on wall motion analysis to characterize the functionality of the heart. To be specific, we measure 
the motion of the endocardium (or the inner border) of the left ventricle (LV). As shown in Fig. 1 the 
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LV endocardium presents severe appearance changes over a cardiac cycle due to nonrigid deformation, 
imaging artifacts like speckle noise and signal dropout, movement of papillary muscle (which is at-
tached to the LV endocardium but not a part of the wall), respiratory interferences, unnecessary probe 
movement, insufficient sampling for stress echo, etc.

For the above example of motion estimation, we will illustrate in later sections that the performances 
achieved by generic similarity functions are not satisfactory. To bridge the performance gap, we propose 
to learn a discriminative.similarity.function using the boosting framework (Freund & Schapire, 1997) 
(Friedman, Hastie, & Tibshirani, 2000). Our proposal is grounded on the following arguments:

• Albeit complex, the appearance variations manifest certain structures in an application-dependent 
fashion. In the stress echo example, the deformation of the LV endocardium is governed by the 
mechanical movement of the heart muscle, which, for example, is cyclic in nature. Therefore, it is 
possible to collect enough data to cover the structured appearance variations, thereby leading us 
to use machine.learning tools to learn a similarity function.

• A good similarity function for image matching should possess the following two properties: its 
response map is both smooth and unimodal (ideally peaked at the correct location). In the chapter, 
we explore the second property. In the extreme, the similarity function operates like a discriminative 
function: positive if the centers of two paired image patches are in correspondence and negative 
if out of correspondence.

 
1,      if ( ) is a corresponding pair;

( , ')
0,     otherwise.                                   

I,I'
s I I 

= 


      (3)

Figure.1..A.stress.echo.sequence.with.six.consecutive.frames.and.according.annotations.of.the.LV.en-
docardium. Due to the rapid heart rate (177 beats per second), the LV appearance varies significantly 
within.a.short.period.of.six.consecutive.frames..(From.(Zhou.et.al..2006).at.IEEE.2006)
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 This fits the concept of discriminative learning. If we treat the image pairs in correspondence as 
positives and the rest as negatives (as shown in Fig. 2(a,d,e)), the similarity function becomes a 
discriminative function that separates two classes. Given an annotated video database, we can 
learn such a discriminative function using examples extracted from the database.

• In general, generic similarity functions, which will be briefly reviewed in Section II, work for cer-
tain imaging scenarios but break down for others, depending on the way in which the appearance 
changes. For example, the sum of squared distance (SSD) works best for isotropic Gaussian noise, 
the sum of absolute distance (SAD) for the Laplacian noise, and the CD2 (Cohen & Dinstein, 2002) 
for fully developed speckle noise. On one hand, there is no such a global and generic similarity 
function universally good for all scenarios; on the other hand, it is very likely that different local 
regions of the image are best suited for different similarity functions. This strongly motivates us 
to take a boosting approach (Freund & Schapire, 1997) (Friedman, Hastie, & Tibshirani, 2000) 
that combines locally good similarity function (still weak though) into a globally strong similarity 
function that works best for the scenario exemplified by an annotated database.

Section III presents the issues related to learning such a discriminative similarity function. Among 
a variety of binary classification methods, we invoke the LogitBoost algorithm (Friedman, Hastie, & 
Tibshirani, 2000) to selectively combine weak learners into one strong similarity function. We associate 
a weak learner with a Haar-like local rectangle feature (Papageorgiou, Oren, & Poggio, 1998) (Viola & 
Jones, 2001) to accommodate fast computation. The weak learner takes an image pair as input and uses 
the two feature responses collected from both images. We construct the weak learner as a nonparametric 
2D piecewise constant function of the two feature responses in order to strengthen its modeling power, 
thereby bringing savings in both training speed and storage requirement.

Selecting negatives is crucial to the training accuracy and consequently influences the final perfor-
mance. The negatives implicitly possess a location parameter measuring their closeness to the positives. 
To leverage the additional distance structure of the negatives, we present a location-sensitive cascade 
training procedure that bootstraps negatives for later stage of the classifier cascade from the regions 
closer to the positives. This allows not only viewing a large number of negatives as in the regular cas-
cade training (Viola & Jones, 2001) but also steering the training process with respect to the desired 
final accuracy. Further, we empirically show that the location-sensitive cascade yields lower training 
and test errors than the regular one.

In Section IV, we present the so-called BoostMotion approach that experiments the boosted similarity 
function for motion estimation. We compare the discriminative similarity function with conventional 
similarity functions using the stress echo sequences and obtain improved performance when estimating 
the motion of the LV endocardium. We also contrast the BoostMotion approach, which takes a pair of 
images as input, with a learning-based detection algorithm, which takes a single image patch as input, 
and demonstrate the importance of temporal information in motion estimation. Then we insert the 
BoostMotion module into a naive tracker that estimates the motion vector frame by frame and hence is 
prone to drift. In the experiment of tracking regular echo sequences, we show that using the discrimina-
tive similarity function reduces drifting. We finally test the discriminative similarity function in general 
visual tracking. Section V summarizes the chapter.
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GENERIC SIMILARITY FUNCTION

In this section, we briefly review similarity functions proposed in the literature. Because we focus on 
the applications like motion estimation, we refer the readers to (Santini & Jain, 1999) for a review of 
similarity functions used elsewhere. We first present a rough categorization of generic similarity func-
tion and then address the difficulty in applying them into real applications of motion estimation and 
image registration.

Categorization of Generic Similarity Function

The similarity functions for motion estimation proposed in the literature are generic in nature and mostly 
arise from the following two assumptions:

• The assumption of constant.brightness. In a simplistic form, it assumes a probabilistic model as 
follows.

 1( , ) ( , ) ( , ),t t tI u u v v I u v e u v-+ + = +        (4)

 where et(u,v) is the observation noise.
• The assumption of parametric.noise.model, that is, the noise variable et(u,v) in (4) is of certain 

parametric form. Often, the parametric noise model yields a parametric similarity function.

Depending on the noise model, similarity function can be roughly categorized as intensity-based, 
histogram-based, and modality-specific. Other similarity functions for motion estimation as well as 
image registration are available too.

Intensity-Based Similarity Function

Examples of intensity-based similarity function include sum of square distance (SSD) (Brox, Bruhn, 
Papenberg, & Wiecker, 2004) (Lucas & Kanade, 1981) (Shi & Tomasi, 1994), sum of absolute distance 
(SAD), etc.

The SSD similarity function takes the following form:

2
SSD:    ( , ') 's I I I I= - ,         (5)

where the L2 norm is used. The SSD is also equivalent to assuming an isotropic Gaussian noise model. 
The minimum value of the SSD is reached only when I=I’.

The SSD can be generalized in two ways. First, it can be based on images derived from the original 
ones. For example, if the gradient image (denoted by ˆ / , { , }I I x y= ∂ ∂ ∈ ) is used, this corresponds 
to the “gradient constancy” assumption (Brox, Bruhn, Papenberg, & Wiecker, 2004).

2
ˆ ˆ( , ') 's I I I I= -           (6)
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Learning an affinity function using gradient information is also proposed in (Fowlkes, Martin, & 
Malik, 2003) (Lunqvist, Bengtsson, & Thurfjell, 2003). Second, the L2 norm can be replaced by an Lp 
norm. If p=1, the similarity function becomes the SAD function, which is equivalent to assuming a 
Laplacian noise model. 

1
SAD:    ( , ') 's I I I I= -           (7)

Histogram-Based Similarity Function

Assuming that the histogram of I is given by h(I), the Bhattacharyya distance (Comaniciu, Ramesh, & 
Meer, 2000) is defined as

BHA:    ( , ') ( ) ( ')s I I h I h I d= ∫ .        (8)

The Bhattacharyya distance s(I,.I’) is always less than one because

1( ) ( ') ( ( ) ( ')) 1
2

h I h I d h I h I d≤ + =∫ ∫ ,        (9)

and achieves one only when h(I)=h(I’). The condition I=I’ is sufficient for h(I)=h(I’).
Other histogram-based similarity functions include the chi-square distance, earth moving distance, 

KL divergence, Jensen-Shannon distance, etc.

Modality-Speci.c Similarity Function

In the chapter, we focus on ultrasound images in the motion estimation experiment. The ultrasound-
specific CD2 similarity function proposed by Cohen and Dinstein (Cohen & Dinstein, 2002) is specially 
designed for handling a fully-developed speckle noise in an ultrasound image and shown to be effective 
by Boukerroui, Alison, & Brady (2003) for tracking ultrasound sequences.

The CD2 function is defined as

2
'CD :    ( , ') log( )

'
i is I I
i i

= - +∑ ,         (10)

where the pixels i and i’ belong to I and I’, respectively. The maximum of CD2 is obtained only when 
i=i’ for all i (or equivalently, I=I’) because ' 2.

'
i i
i i

+ ≥

Other Similarity Function

We here also mention two similarity functions widely used in the literature: normalized cross correla-
tion (NCC) and mutual information (MI).

The NCC is used to compensate an affine photometric variation and is defined as

( ( )) ( ' ( ')) /NCC:    ( , ')
( ) ( ')

I I I I Ns I I
I I

- • -
= - ,      (11)

where • denotes the dot product, N is the number of pixel in the image I, and µ(.) and σ(.) take the sample 
mean and standard deviation, respectively. The maximum is achieved only when I=aI’+b. Further to 
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compensate the non-uniformity in the above linear model, the NCC is generalized to local normalized 
correlation coefficient (LNC). To calculate LNC, the image patch is first divided into several sub-regions 
whose NCC is computed. The mean of all NCC’s is defined as LNC.

One popular similarity function used for medical image registration is the so-called mutual informa-
tion (MI) (Viola & Welles, 1997) defined as:

( , ')MI:    ( , ') ( , ')
( ) ( ')
h I Is I I h I I d

h I h I
= ∫ ,        (12)

where h(I,I’) is the joint histogram. It is easy to prove that MI≥0; only when I and I’ are independent, 
i.e., h(I,I’)=h(I)h(I’), the MI reaches the minimum 0. Image registration is to find the maximum value 
of MI by deforming I’. Note that mutual information is not modality-specific, which makes it common 
for cross-modality registration.

Difficulty from Generic Similarity Function

One reason why the generic similarity functions are not working for real applications because the two 
assumptions are largely violated, that is, the brightness is not constant and/or the noise model is not 
parametric. For example, Fig. 2(a) shows a pair of consecutive frames in a stress echo sequence and Fig. 
2(b) the cropped LV images from the two frames. When we take the difference of the LV images as in 
Fig. 2(b), we observe a lot of structures (mainly due to nonrigid deformation, disappearing papillary 
muscle) and speckles in Fig. 2(c). By learning the similarity function, we avoid any possibly unrealistic 
assumption.

DISCRIMINATIVE SIMILARITY FUNCTION

In this section, we address how to learn the discriminative similarity function (Zhou, Shao, Georgescu, 
& Comaniciu, 2006). We first review the LogitBoost algorithm and then proceed to the practical choice 
of weak functions used in boosting. Finally, we discuss how to deal with the numerous negative examples 
by leveraging their additional distance structure in terms of the closeness to the positives.

Boosting

We invoke the framework of boosting to learn the similarity function. Boosting iteratively selects weak 
learners to form a strong learner using an additive form:

( )
( ) ( )

m

m
f x

F x f x
∈Ω

= ∑ ,          (13)

where F(x) is the strong learner, fm(x)’s are the weak learners, and Ω is the structural.space where the 
weak learners reside.

There exist many classifiers in the literature, such as multi-layer perceptron, support vector machine, 
Gaussian process, boosting, etc. Among them, support vector machine and boosting are probably the 
most influential ones due to their known large margin property or good generalization capability. We 
choose boosting over support vector machine mainly due to computational reasons. Using support vec-



  ���

Similarity Learning for Motion Estimation

Figure.2..(a).A.pair.of.consecutive.frames.in.a.stress.echo.sequence..(b).The.cropped.LV.images.from.
the.two.frames..(c).The.difference.of.the.two.LV.images..(d).The.positive.pair.for.the.left.annulus.point..
(e).Four.negative.pairs.for.the.left.annulus.point,.i.e.,.the.left.end.point.on.the.contour..

 
(a)

    

(e)

. . .........(b).. . . . ..........................(c)... .............................(d)

tor machine needs to store a lot of support vectors, which means a huge memory space, and to compare 
the query example with support vectors using some kernel function, which means a slow evaluation. 
In contrast, boosting combines weak learners that are based on local rectangle features into a strong 
learner and thus operates as a feature selector. As these features are calculated online, there is no need 
to store the training dataset in the memory and it is rapid to evaluate the boosted classifier.

Boosting has three key components: (1) structural space; (2) target/cost function; and (3) selection 
algorithm. Different variants of boosting are proposed in the literature depending on different choices of 
the key components. We decide to use the LogitBoost algorithm  (Friedman, Hastie, & Tibshirani, 2000) 
summarized in Fig. 3. The LogitBoost algorithm differs from the commonly used AdaBoost algorithm 
approach (Freund & Schapire, 1997) in the following two aspects. First, they optimize different cost 
functions. The AdaBoost algorithm minimizes an upper bound of the target misclassification error; the 
LogitBoost algorithm directly minimizes a negative binomial log-likelihood, which is a natural choice 
for a binary classification problem. Second, the weak learner in the AdaBoost is a hard classifier while 
that in the LogitBoost is not: experimental evidence seems to favor the latter.
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In our context, a data point x is an image pair x=(I,I’). One obvious choice for the boosted similarity 
function s(I,I’) is the probability of the class label y(I,I’) being 1, that is s(I,I’)=p(I,I’).

exp( ( , '))( , ') ( , ')
exp( ( , ')) exp( ( , '))

F I Is I I p I I
F I I F I I

= =
+ -

,      (18)

Using boosting to learn a similarity function has recently attracted attention. In (Jones & Viola, 
2003), Jones and Viola learned a similarity function for face recognition. Even though the similarity 
function takes two image patches as input, it is the difference of the two images that are actually used, 
which is in the same spirit of constructing intrapersonal and interpersonal spaces (Moghaddam, Jebara, 
& Pentland, 2001), because the boosted local features are computed on top of the difference image. In 
(In, 2006 Yu, Amores, Sebe, & Tian independently proposed to boost a strong function by combining 
various generic similarity functions. The similarity function learned in such a way frees the assumption 
of parametric noise model, but is still affected by the constant brightness assumption.

Structural Space, Weak Learner, and Feature Selection

The structural space is the key to the performance of the learned classifier. In general, the space should 
be rich enough such that a simple additive function in (13) can characterize a complex decision bound-
ary. In addition, the weak learners in the structural space should be robust to appearance variation and 
fast to evaluate.

As mentioned earlier, combining the generic similarity functions such as those listed in Section II 
into a strong committee (Yu, et al., 2006) is still limited. Since different similarity functions might 
be effective for different local regions, we construct the weak learners f(I,I’) based on Haar-like local 

Figure.3..The.two-class.LogitBoost.algorithm.(Friedman,.Hastie,.&.Tibshirani,.2000)..(From.(Zhou.et.
al..2006).at.IEEE.2006)

Two-class Logit Boost Algorithm (positive y=1 and negative y=0) 
1. Input: (i) Training data {xi;.i=1,2,…,N} and their corresponding class labels {yi;.i=1,2,…,N}. (ii) The structural space Ω. 
2. Start with weights wi=1/N, i=1,2,…,N, F(x)=0, and probability estimates p(xi)=1/2. 
3. Repeat for m=1,2,...,M: 

a. Compute working responses and weights: 
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b. Fit the function fm(x) by a weighted least-squares (LS) regression of zi to xi with weights wi. 
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c. Update F(x) and p(x) via  
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 Output the classifier sign[F(x)]. 
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rectangle features (Papageorgiou, Oren, & Poggio, 1998) (Viola & Jones, 2001), whose rapid evaluation 
is enabled via the use of integral image. As shown in (Viola & Jones, 2001), (1) it is easy to construct 
numerous local rectangle features, which renders a rich structural space, and (2) the local rectangle 
feature, whose response is normalized by the standard deviation of the image patch, is relatively robust 
to appearance variation.

A weak similarity function, based on a local rectangle feature, compares two local rectangle regions 
belonging to the two images I and I’, respectively. As illustrated in Fig. 4(a), we parameterize the rect-
angle feature g by (r,c,dr,dc,t) where (r,c) is the starting point of the rectangle, (dr,.dc) is the height and 
width, and t is the feature type. There are six feature types as shown in Fig. 4(a); other feature types 
can be used too. Given a rectangle feature g with a configuration (r,c,dr,dc,t) and an image pair (I,I’), 
we compute two feature responses g(I|r,c,dr,dc,t) and g(I’|r,c,dr,dc,t) from the two integral images as-
sociated with I and I’, respectively. In principle, we can allow that two local rectangles have different 
parameters; however we refrain from doing this because empirically this shows no clear advantage but 
significantly increases training complexity.

We focus on the 2D feature space of the two feature responses g(I) and g(I’) and model the weak 
learner f(I,I’) as a 2D piecewise constant function of g(I) and g(I’), which has the following form:

1 1
( , ' | , , , , ,{ },{ },{ '}) [ ( ) ] [ ( ') ']

J K

jk j k jk j k
j k

f I I r c dr rc t T T g I T g I T
= =

= ∈ ∧ ∈∑∑ ,    (19)

where [p] is an indicator function of the predicate p and αjk is the constant associated with the region 
Rjk. In the above, we use a tessellation of the 2D feature space into non-overlapping regions {.Rjk=.Tj.
^.Tk’;.j=1,2,…,J,.k=1,2,…,K}, where {Tj,.j=1,2,…,J} and {Tk’,.k=1,2,…,K} are J and K non-overlapping 
intervals for the feature response g(I) and g(I’), respectively.

The crucial step in the LogitBoost algorithm in Fig. 3 is step 3(b): fitting a weighted least square 
regression of zi to xi with weights wi. It operates as a feature selection oracle: picking up from the struc-
tural space Ω the weak learner f(I,I’|r,c,dr,dc,t,{αjk},{Tj},{Tk’}) that minimizes the weighted least square 
cost e(f) defined in (15). Mathematically, we have the following optimization task:

2
, , , , ,{ },{ },{ '}

1 1 1
( , ') arg min ( [ ( ) ] [ ( ') '])

jk j k

N J K

m r c dr rc t T T i i jk i j i k
i j k

f I I w z g I T g I T
= = =

= - ∈ ∧ ∈∑ ∑∑ ,  (20)

where (Ii,Ii’) is the ith training image pair.
This is a huge parameter space to search. The following three steps are used for efficiency.

1. First we empirically fix the Tj , Tk’ for a given configuration (r,c,dr,dc,t) as follows: Calculate the 
feature responses from all training data points, determine the minimum and maximum response 
values, and uniformly divide them into the J (or K) intervals for image I (or image I’).

2. We then find the optimal weights αjk, given a weak learner f associated with a feature (r,c,dr,dc,t), 
by minimizing the weighted least square cost e(f) in (15).  It is easy to show that the optimal weight 
αjk is the weighted response z of all data points falling into the region Rjk.

 1

1

[ ( ) ] [ ( ') ']

[ ( ) ] [ ( ') ']

N
i i i j i ki

jk N
i i j i ki

w z g I T g I T

w g I T g I T
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∑

.       (21)
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3. Finally, we exhaust all possible configurations of (r,c,dr,dc,t) to find the smallest weighted least 
square cost e(f) for the step 3(b) in Fig. 3, which implements the feature selection. In other words, 
the weak function f based on the feature (r,c,dr,dc,t) with its optimal weights that yields the small-
est weighted least square cost e(f) is selected.

Fig. 4 illustrates the process of finding the optimal weights in the piecewise constant function for 
a given feature. Fig. 4(b) visualizes the field of wi*zi=yi-p(xi)=1-p(xi) for all positives used in the first 
experiment of motion estimation in Section IV, where the color intensity corresponds to the value of 
w*z: the redder the plus sign is, the less likely the data point x is positive. The diagonal structure in Fig. 
4(b) shows that the two feature responses of the positives are roughly same, which matches the intuition 
of motion estimation. Fig. 4(c) visualizes the field of -wi*zi=p(xi) for all negatives: the greener the circle 
sign is, the less likely the data point x is negative. As shown in Fig. 4(c), the negatives are characterized 
by a widely-dispersed nature. Fig. 4(d) shows the fitted 2D piecewise constant function: the constant 
coefficients αjk along the diagonal lines are high, while off-diagonal ones are low.

Using nonparametric 2D piecewise constant functions as weak learners brings two extra benefits 
in terms of computation.

•. Saving.in.training.time. Take the 1D case for example; 1D simple regression stumps (Viola & Jones, 
2001) that ̀ binarize’ the feature response are often used as weak learners in the literature. It is easy 

Figure.4..(a).A.weak.similarity.function.compares.two.local.rectangle.regions.belonging.to.images.I.and.
I’, respectively. Panels from (b) to (d) illustrate the process of fitting a 2D piecewise constant function: 
(b) the field of w*z for all positives; (c) the field of -w*z for all negatives; and (d) the fitted 2D piecewise 
constant.function..(From.(Zhou.et.al..2006).at.IEEE.2006)

. . . .(a)... . . . ............(b)

...................................................(c). . . . .............(d)



  ���

Similarity Learning for Motion Estimation

to verify that any 1D piecewise constant function can be constructed by combining multiple 1D 
simple regression stumps. The similar holds for the 2D case. Such a combination strengthens the 
modeling power of weak learners and consequently accelerates the training process. Our empirical 
evidence shows that the learning time is almost inversely proportional to the number of thresholds 
used in the weak learner. One may argue that it brings the risk of overfitting. But boosting has 
the capability of combating the overfitting (in terms of classification though) even when the weak 
learner overfits; refer to the discussion part of (Friedman, Hastir, & Tibshirani, 2000). Further, in 
practice we smoothed the fields of w*z and w before taking the division in (20) to ameliorate the 
overfitting of the weak learner itself.

•. Saving.in.memory.requirement. Boosting training requires calculating a matrix, whose row cor-
responds to the local rectangle feature and whose column to the training image pair. It is desired to 
store such a matrix in the memory in order to speedup the training process. Typically, the number 
of rectangle features is huge, e.g., more than 150K for a 24*24 image by an exhaustive construc-
tion (Viola & Jones, 2001). In one of our experiments, we kept about 40K rectangle features and 
about 10K training image pairs. To store the above matrix in a float precision, it consumes about 
40K*10K*4* 2=3.2GB memory space, which exceeds the 2GB limit, the maximum contiguous 
block of memory of a 32-bit operating system. However, to learn the piecewise constant functions 
in our setting, we only need to store the interval index in the memory; refer to (20). In practice, we 
used 16 intervals, implying that an unsigned.char precision is enough to store two indices, leading 
to a moderate memory requirement of about 400MB.

Location-Sensitive Cascade Training

Generating positives and negatives, which are pairs of images, from annotated videos is illustrated in 
Fig. 2(d,e) and Fig. 5(a). Given a pair of two successive frames (the left and right images in Fig. 5(a)), it 
contributes one positive by cropping two image patches centered at the target pixel (denoted by the red 
color) from the left and right frames, respectively. To generate negatives, we maintain the same image 
patch cropped from the left frame, i.e., centered at the target pixel, but force the center of the image 
patch cropped from the right frame away from the target pixel.

The negatives possess an additional location parameter that measures their distances to the target. 
Theoretically, the number of negatives is infinite if a non-integer pixel grid is used. To cover as many 
negatives as possible, we follow (Viola & Jones, 2001) to train a cascade of strong classifiers, which is 
a degenerate decision tree. After learning the strong classifier for the current stage using AdaBoost, 
the strong classifier threshold is tuned to pass all positives (or the majority of positives depending on 
the pre-specified detection probability). To train the strong classifier at a later stage, we maintain the 
same set of positives but bootstrap a new set of negatives that pass all previous strong classifiers (i.e., 
false positives). During scanning all test subwindows, the cascade structure is able to eliminate the 
negatives quickly.

The motion estimation or image registration accuracy is directly related to the selection of the nega-
tives. On one hand, if the negatives are far away from the positives, it is easy to learn a perfect classifier 
but the accuracy is not guaranteed. On the other hand, if the negatives are too close to the positives, the 
accuracy is improved but it is hard to train a flawless classifier and might step into the zone of overfitting 
because the training positives and negatives are too confusing. Often in medical applications, different 
experts disagree with each other about the ground truth; thus, the performance only needs to be addressed 
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in a pre-specified precision, say the inter-user variability. To this end, we design a location-sensitive 
cascade training procedure that takes into account the location factor of the negatives.

As illustrated in Fig. 5(a), we divide all pixels into several negative regions according to their dis-
tances to the target pixel, where the target pixel is denoted by the red color and the negative regions are 
color-banded and with different strips. While preserving the features of the regular cascade training, 
we impose an additional constraint for the location-sensitive cascade training procedure: the negatives 
for several consecutive stages of the cascade are restricted to be from the same negative region. Further, 
the later stages use negatives closer to the positives; however, bootstrapping is still applied even across 
the boundary of the stages that are attached to different negatives regions. This procedure is graphically 
illustrated in Fig. 5(b). Refer to section IV (the first experiment of motion estimation) for a comparison 
between the location-sensitive cascade training and regular one, where we show that the location-sensi-
tive cascade empirically yields lower training and test errors (also see Fig. 5(c)). Apart from the above 
performance improvement, location-sensitive cascade training enables steering the performance: If we 
find that the desired of accuracy is only 8 pixels instead of 5 pixels, the target achieved by the initial 
location-sensitive training, then we simply skip, during testing, the later stages of the cascade that is 
trained using the negatives less than 8 pixels away. But, the regular cascade training procedure does 
not enjoy such flexibility: The best guarantee is to retrain. Fig. 6 summarizes the proposed location-
sensitive cascade training algorithm.

In practice, we need to convert the cascade output into a similarity function that measures the confi-
dence of being positive. Suppose that the cascade consists of L stages and stage l has a strong classifier 
Fl(I,I’) that can be converted to posterior probability sl(I,I’) using (18). Given the degenerate nature of 
the cascade, we approximate the final similarity function as: 

1 1
exp(2 ( , '))( , ') ( , ')

exp(2 ( , ')) 1
L L l
l l l

l

F I Is I I s I I
F I I= =≈ ∏ = ∏

+
.       (22)

For the negatives rejected at an early stage L’<L, we stop evaluating them at later stages and simply 
set a dummy probability

sl(I,I’)=e.if l>L’, where e<0.5 is a small amount (we set e=0.1 in our experiments).

Figure.5..(a).Two.successive.frames.and.their.corresponding.positives.and.negatives..(b).Location-sensi-
tive.cascade.training..(c).Performance.comparison.among.location-sensitive.cascade,.regular.cascade,.
and.detection..(From.(Zhou.et.al..2006).at.IEEE.2006)

. ..........(a)... . . .............(b).. . . . (c)
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BOOST MOTION

In this section, we investigate the use of the boosted discriminate similarity function in motion estima-
tion (which is referred to BoostMotion). We first review the related literature on learning-based visual 
tracking and highlight our contribution. We then present our extensive experiments using echocardio-
graphic and general tracking sequences.

Review of Learning-Based Visual Tracking

It should be emphasized that visual tracking is different from motion estimation. The latter concerns 
only two successive frames; while the former concerns the motion estimation of a whole video sequence. 
While a naive tracker estimates motion recursively frame by frame, tracking is more than motion 
estimation as the above naive tracker is prone to drift away. To overcome drifting, the tracking algo-
rithm does the following: (1) updates the appearance model strategically and/or (2) performs temporal 
smoothing/fusion.

Underlying learning-based tracking algorithms lays a data-driven procedure. In most cases except 
(Lepetit, Pilet, & Fua, 2004), a binary classifier that discriminates the object of interest from the back-
ground is learned either offline or online. If the classifier is learned offline, this solves tracking as a 
detection problem. In (Mikolajczyk, Choudhury, & Schmid, 2001), temporal smoothing is enforced 
by casting the detector output as the observation likelihood in a particle filter setting. Avidan (2001) 
proposed a support vector tracking algorithm that learns a support vector machine (SVM) from the 
training data using the polynomial kernel. The SVM score, after the Taylor expansion, is analytically 
maximized for every frame. In 2003 Williams, Blake, & Cipolla built on the relevance vector machine 
to perform tracking, where temporal fusion is applied. In 2004 Lepetit, Pilet, & Fua artificially gener-
ated exemplars (using affine transform or 3D model) for each feature point that is treated as a class and 
used the 1-NN neighbor searching to determine the class label.

If the classifier is learned online, the appearance model updating is embedded into the classifier. 
In the work of Collins and Liu (2003) the appearance model is represented by a set of features that are 
selected online based on the variance ratio of the log likelihood function, which is empirically esti-
mated. Ensemble tracking developed by Avidan (2005) invokes the AdaBoost to learn the classifier. 

The location-sensitive cascade training algorithm 
1. Input: an annotated dataset of pairs of frames, K = the number of cascade stages, Nk.= the number of weak classifiers for 

the kth.stage, PDk = the detection probability for the kth.stage, NREGk = the negative region for the kth.stage. 
2. For k.=.1:K  /*loop over the number of stages*/ 

• Data preparation:  
Always keep the same set of positives.  
If (k==1) then random sample the negatives inside the    NREG1, otherwise bootstrap the negatives (e.g., the 
false positives from the previous stages up to k-1) from the range NREGk. When sampling or bootstrapping, 
the number of negatives is kept almost the same to that of positives. 

• Invoke the LogitBoost algorithm (e.g., Fig. 3) to learn a strong classifier. Stop training when the     number of 
weak learners reaches.Nk. 

• Tune the strong classifier threshold to match the desired PDk. 
 Output: a cascade of strong classifiers. 

Figure.6..The.location-sensitive.cascade.training.algorithm
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After tracking, the classifier is updated by adding the recently tracked results. Since the AdaBoost is a 
feature selection process, the ensemble tracker also represents the appearance model by features that 
are updated over time.

The approaches reviewed above commonly learn a classifier to differentiate the foreground object 
from the background. However, such a classifier gives no account of temporal information essential to 
motion estimation: No pairwise comparison along the temporal dimension is performed. In other words, 
the input to the classifier is always a single image patch not a pair of images. The proposed BoostMo-
tion approach explores the possibility of using image pairs as inputs and embeds the temporal statistics 
into a learned similarity function. In (Viola, Jones, & Snow, 2003) the temporal difference images are 
used in boosting a pedestrian detector (again not a similarity function). Learning the spatial statistics 
of optical flow is addressed in (Roth & Black, 2005).

Experiments on Echocardiogram

The echocardiographic sequences are characterized by severe imaging artifacts and rapid appearance 
changes, which render traditional tracking algorithms that use conventional similarity functions ineffec-
tive. Here we address tracking the LV endocardial wall, which is parameterized by 17 landmark points 
along the contour as shown in Fig. 7(a) and then interpolated using a cubic spline.

Figure.7..(a).Two.successive.original.frames.and.their.ground.truth.landmarks.and.contours..(b).From.
left.to.right:.the.response.maps.of.the.similarity.functions.of.NCC,.CD2.and.BoostMotion..(From.(Zhou.
et.al..2006).at.IEEE.2006)

(a)

(b)
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Motion Estimation

In the first experiment, we used the apical four chambers (A4C) view of stress echo sequences. Since an 
echocardiographic image is a 2D slice of 3D heart, different orientations of the ultrasound probe give 
different views of the heart. In clinical practices, standard cardiac views are captured, among which 
the A4C view is one such view that images all four heart chambers, namely left and right ventricles and 
left and right atria. We had 339 A4C sequences, providing 3162 frame pairs. The ground truth contour 
annotations for all 339 sequences were provided by one experienced sonographer. We randomly divided 
339 sequences into two sets: the training set contains 270 sequences with 2543 pairs of frames and the 
test set 69 sequences with 619 pairs of frames. To reduce appearance variation, we aligned each video 
frame with respect to a mean shape using a rigid similarity transform and conducted experiments on 
the aligned domain.

We reported the results of estimating the motion vector of the left annulus point, i.e., the left end point 
of the LV endocardium, which is characterized by drastic appearance changes mainly due to the valve 
movement. Given the correct left image patch, we exhaustively searched within a searching neighbor-
hood the best right image patch that maximizes the similarity function. We estimated the motion vector 
for all test image pairs and measured the estimation error in terms of absolute displacement. For a pair 
of image patches, we set the patch size as 35 x 35 and the searching window W as [-21, 21] x [-21, 21].

We used the location-sensitive cascade training to learn a cascade of eight stages. We divided the 
whole search neighborhood into eight negative regions depending on their closeness to the center: spe-
cifically, they are R1={21,20,19}, R2={18,17,16}, R3={15,14,13}, R4={12,11}, R5={10,9}, R6={8,7}, R7={6,5}, 
R8={4,3} pixels away from the center. To train the lth stage of the cascade, we bootstrapped negatives from 
the region Rl. For comparison, we also trained a regular cascade by randomly selecting out negatives at 
least three pixels away from the ground truth. Fig. 5(c) plots the curves of the training and test errors 
against the number of cascade stages. The location-sensitive cascade training consistently reduces the 
test error till overfitting is reached; while the regular cascade training saturates the performance even 
at the second stage.

We contrasted the BoostMotion approach, which uses pairs of images as inputs, with a detection 
algorithm, which uses single image patches as inputs. For the detection algorithm, we also trained a 
cascade of eight stages. From Fig. 5(c), even the training error of the detector is higher than that of the 
BoostMotion, which implies that the positives and negatives, which are single image patches, are very 
confusing even when they are far apart. Using the paired inputs significantly reduces the training and 
test errors. This is expected because motion estimation compares two images and thus temporal infor-
mation is essential: Motion estimation based on one image is insufficient.

We compared the learned similarity function with the four conventional similarity functions re-
viewed in Section II. Table 1(a) reports the median and standard deviation of the estimation error. For 
the BoostMotion and detection approaches, we reported the minimum test error by varying the number 
of cascade stages. The BoostMotion approach yields the lowest training and test errors. In terms of 
test error, on average, it is only 3.47 pixels away from the ground truth, while the best among the oth-
ers is the CD2 similarity function whose estimation error is 4.38 pixels. The poor performance of the 
Bhattacharyya similarity function is probably due to the highly noisy nature of the ultrasound image 
and that only gray image is used. Fig. 7(b) displays the response maps of different similarity functions 
for the sample pair of frames in Fig. 7(a). The response map of the BoostMotion is peaked around the 
ground truth with a compact support region. Most of the off-center pixels are black because they are 
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rejected by early stages of the cascade. In terms of computational time, the BoostMotion is slower than 
the generic similarity functions, because we used 654 weak learners.

Echocardiography Tracking

In the second experiment, we invoked the naive tracking algorithm that estimates motion vector frame 
by frame to perform echocardiography tracking (Cohen & Dinstein, 2002) (Boukerroui, Alison, & 
Brady, 2003) (Jacob, Noble, & Blake, 1998) (Mikic, Krucinski, & Thomas, 1998) (Zhou, Comaniciu, & 
Gupta, 2005). We used 445 regular echocardiographic sequences of apical two chambers (A2C) view 
where appearance changes are less pronounced than the stress echo. The A2C view is another canonical 
echo view used in clinical practices, where only left ventricle and left atrium are present. The ground 
truth annotations were provided by three experts, each annotating a non-overlapping subset of the whole 
dataset. We randomly divided the 445 sequences into a training set of 356 sequences and a test set of 
89 sequences. The alignment is conducted in a recursive fashion.

To calibrate the contour tracking accuracy, we need to measure the proximity between two con-
tours. We used two measures. The first is a simple point-to-point measure: the average distance of the 
landmark displacement defined as 

17 2
1
| | /17i ii

p g
=

-∑ , 

where pi and gi are the ith landmark point on the probe and ground truth contours, respectively. The 
second is the so-called segmental.Hausdorff.distance (segHD) that allows certain degree of non-rigidity 
deformation during contour matching. The segHD between two corresponding landmark points x and 
x’ on the two curves C and C’, respectively, is defined as the Hausdorff distance between two segments 
ω(x) and ω(x’), where ω(x) defines a segment around x on the curve C. We then take the mean of the 
segHD of all landmarks as the distance between C and C’, denoted by dsegHD(C,.C’).

( , ') ( ( ), ( '));     ( , ') ( , ') /segHD x x
shd x x HD x x d C C shd x x dC dC= = ∫ ∫ .  (23)

The tracking performances in terms of the above distances are listed in Table 1(b). Since each test 
sequence yields a contour distance, Table 1(b) documents its median and standard deviation. The seg-
mental Hausdorff distance is about half smaller than the point-to-point distance as the former tolerates 

Table.1..(a).Motion.estimation.training.and.test.errors.and.(b).tracking.performance.based.on.the.contour.
distances.obtained.using.different.similarity.functions.and.a.detector.approach.

Approach (a) Motion estimation 
training error

(a) Motion estimation test 
error

(b) Tracking error 
point-to-point

(b) Tracking error 
segmental Hausdorff

SSD 4.62 ± 2.48 4.54 ± 2.57 10.56 ± 2.37 5.63 ± 1.25
NCC 4.59 ± 2.38 4.49 ± 2.45 11.14 ± 2.45 5.84 ± 1.32
BHA 11.15 ± 6.66 11.40 ± 6.75 14.31 ± 3.19 7.22 ± 1.62
CD2 4.39 ± 2.28 4.38 ± 2.17 7.32 ± 2.45 3.70 ± 1.30
Detection 8.34 ± 4.99 8.68 ± 5.07 NA NA
BoostMotion 2.32 ± 1.72 3.47 ± 2.14 4.28 ± 1.24 2.16 ± 0.74
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Figure.8..Sample.frames.of.two.echocardiographic.sequences.with.the.ground.truth.(green).and.tracking.
result (yellow) overlaid. (a,b) Frames 0, 5, 10, and 15 of the first sequence with results by (a) BoostMo-
tion.and.(b).CD2..(c,d).Frames.0,.5,.10,.and.15.of.the.second.sequence.with.results.by.(c).BoostMotion.
and.(d).CD2..

(a)

(b)

(c)

(d)
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non-rigid deformation during contour matching and seems more compatible to our perception of contour 
difference. Using the discriminative similarity function substantially reduces the tracking error, with 
its corresponding point-to-point distance and segmental Hausdorff distance being 4.28 and 2.16 pixels, 
respectively; while the second best similarity function (CD2) yields a tracking errors of 7.32 and 3.70 
pixels, respectively. Therefore, utilizing the boosted similarity function greatly reduces drifting and 
produces a temporally smooth contour. Some tracking examples are presented in Fig. 8, which compares 
BoostMotion with CD2, the second best similarity function.

Visual Tracking with Temporal Adaptation

In the previous two experiments, we assumed the existence of a large database that covers the appear-
ance variances typically observed in the application of interest. While the above medical application 
provides such a database and hence is suitable for demonstrating the effectiveness of BoostMotion, it is 
not difficult to adapt the discriminative similarity function on the fly, making it appropriate for a general 
visual tracking problem. Here we present our experimental results along this line.

We experimented with our previous appearance-adaptive tracking approach reported in (Zhou, Chel-
lappa, & Moghaddam, 2004), which is based on a state space model for an affine parameterization and a 
particle filter method. In the observation process of the state space model, the online appearance model, 
which is a generative mixture of a stable component and a wondering component (Jepson, Fleet, and 
El-Maraghi, 2003), is updated to absorb changing appearance; in the state transition process of the state 
space model, an adaptive velocity is predicted based on the incoming appearance and hence guides a 
better particle generation; the number of particles is made adaptive to the prediction error too. Because 
the main contribution of the chapter is on the similarity function itself, we simply replaced the generative 
online appearance model in the observation likelihood with the discriminative similarity function.

To initiate learning the similarity function, we manually annotated two starting frames with a bound-
ing box. To generate positives, we perturbed the ground truth boxes in both frames by a small amount 
and cropped 20 images pairs. To generate negatives, we kept the image patches in the first frame within 
the positive perturbation region while cropping image patches in the second frames outside the positive 
perturbation region but within the particle sampling region. In total, we cropped 200 negative image 
pairs. We then learned a classifier of 25 weak learners.

To adapt the similarity function to incoming appearance, we proceeded as follows. Once the tracking 
is done on the current frame t, we augmented the training dataset by cropping positives and negatives 
based on tracking results of the current and previous frames and removed the training data generated 
from t0=5 frames ago. Therefore, we maintained a training dataset of 100 positives and 1000 negatives 
except for the first 5 frames. During training, we controlled the number of local rectangle features to 
be around 1000. Overall, the tracker can handle a few frames per second on a PC with a 3GHz CPU 
and 3GB memory.

Fig. 9 displays the tracking results. Even though we displayed color image, we used the gray values 
(the average of RGB channels) as input. In the first example, we tracked a moving head in a surveillance 
video of 150 frames captured by PETS2001, which is available from http://www.cvg.rdg.ac.uk/PETS2001/. 
In the second example, we tracked a car driving in fog captured by researchers in Karlsruhe University. 
The sequence is from http://i21www.ira.uka.de/image/_sequences. In both examples, the challenges lie 
in small target size, dynamic foreground appearance, cluttered and changing background, etc. Despite 
all these challenges, our algorithm successfully tracks the target. We observe that the detector-based 
approach, which leverages no temporal information, yields more jittery results.
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Figure.9..The.top.two.rows.are.about.tracking.a.moving.head:.frames.1,.30,.60,.90,.120,.and.150..The.
bottom.two.rows.are.about.tracking.a.driving.car.in.fog:.frames.1,.30,.60,.90,.120,.and.150..

SUMMARY

We presented an approach to learning a similarity function for matching image under complex appear-
ance changes, which are exemplified by an annotated video database. This type of similarity function 
is applicable to motion estimation. We used the LogitBoost algorithm to selectively combine weak 
learners into a strong similarity function. The weak learners were constructed as nonparametric 2D 
piecewise constant functions of the feature responses, which enhanced modeling power and brought 
savings in training time and storage requirement. Because the motion estimation accuracy is tied with 
the selection of negatives, which have an additional location parameter measuring their distances to 
the positives, we proposed to train a cascade structure in a steerable manner using a location-sensitive 
negative bootstrapping. Compared with the regular cascade, the location-sensitive cascade achieved 
lower training and test error. Finally, we tested the learned similarity function on motion estimation for 
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echocardiographic sequences and general visual tracking: the learned similarity function outperformed 
conventional similarity functions.
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ABSTRACT

Relevance. feedback. is.an.effective.approach. to.boost. the.performance.of. image. retrieval..Labeling.
data.is.indispensable.for.relevance.feedback,.but.it.is.also.very.tedious.and.time-consuming..How.to.
alleviate.users’.burden.of.labeling.has.been.a.crucial.problem.in.relevance.feedback..In.recent.years,.
active.learning.approaches.have.attracted.more.and.more.attention,.such.as.query.learning,.selective.
sampling,.multi-view.learning,.and.so.forth..The.well-known.examples.include.Co-training,.Co-testing,.
SVMactive,.etc..In.this.literature,.the.authors.will.introduce.some.representative.active.learning.methods.
in.relevance.feedback..Especially,.they.will.present.a.new.active.learning.algorithm.based.on.multi-view.
learning,.named.Co-SVM..In.Co-SVM algorithm, color and texture are naturally considered as sufficient 
and.uncorrelated.views.of.an.image..SVM classifier is learned in color and texture feature subspaces, 
respectively. Then the two classifiers are used to classify the unlabeled data. These unlabeled samples 
that disagree in the two classifiers are chose to label. The extensive experiments show that the proposed 
algorithm is beneficial to image retrieval.    
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INTRODUCTION

Content-Based Image Retrieval (CBIR) has been one of the most active research topics in computer vision 
and pattern recognition fields since 1990’s (Rui, Huang, & Chang, 1999; Smeulders, Worring, Santini, & 
Gupta, 2000; Datta, Li, & Wang, 2005). Most of existing CBIR systems adopted low-level features (color, 
texture, shape, etc) to represent images. However, it is inadequate to describe the semantic concepts with 
the low-level features of images, which is named semantic	gap. The concept of semantic gap has been 
extensively used in the CBIR research community to express the discrepancy between the description 
of the low-level features extracted from the images and the semantic understanding of human. 

To narrow the semantic gap, a straightforward way is to take human in the loop. As one of important 
ways of human-in-the-loop, Relevance Feedback (RF) is a query modification technique, which was 
initially developed in document retrieval and then introduced into CBIR during mid 1990’s (Picard, 
Minka, & Szummer, 1996; Rui, Huang, Ortega, & Mehrotra, 1998). Relevance feedback attempts to 
capture the user’s preference through iterative feedback and query refinement. In each round, the user 
is requested to provide feedbacks regarding the relevance or irrelevance of the current retrieval results. 
Then the classifier will be refined based on the feedback results. The pool of unlabeled images is classified 
as relevance or irrelevance by the learned classifier, and the relevant images are ranked and returned to 
user for next round labeling. With the interactive labeling and learning procedures, systems can learn 
user’s preferences and improve the performance of image retrieval.

Many relevance feedback algorithms have been proposed for image retrieval in past years (Huang, 
& Zhou, 2001; Zhou, & Huang, 2003). The early work was mainly inspired by term-weighting and 
relevance feedback in document retrieval (Rocchio, 1971). Rui and Huang (1998) introduced the query 
refinement algorithm based on term-frequency and inverse-document-frequency in text retrieval into 
CBIR. Picard, et al. (1996) grouped the images or regions into hierarchical trees whose nodes were 
constructed through single-link clustering, and then weighted on grouping. These methods fall into 
heuristic-based formulation with empirical parameter adjustment. Later, there are more works focusing 
on learning-based strategy and many classic machine learning techniques are applied. Tieu and Viola 
(2000) assumed that an image was generated by a sparse set of visual cause and that images which 
were visually similar share causes. They proposed a mechanism for computing a very large number of 
highly selective features which captured some aspects of this causal structure, then used Boosting to 
learn a classification function which only relied on 20 features.  In (Vasconcelos, & Lippman, 2000), 
Gaussian mixture model on DCT coefficient was used as image representation, then Bayesian inference 
was applied for image region matching and learning. Hong, et al. (2000) treated relevance feedback as a 
binary classification problem and incorporated Support Vector Machines (SVM) into the classification 
process. However, an inevitable issue in performing relevance feedback is the small sample size. The 
fact makes many learning methods inefficient, such as Bayesian, boosting, even SVM. 

In general, more labeled data will result in higher accuracy. While the labeled data is limited, the 
unlabeled data is often abundant and easy to obtain. Therefore, the key issue addressing the small sample 
size is how to efficiently utilize the unlabeled data. Recently, the idea of semi-supervised learning (SSL), 
i.e. learning from both labeled and unlabeled data, has attracted much attention in information retrieval 
(Zhu, 2006). One recent approach is to apply Transductive SVM (TSVM) to exploit the unlabeled data 
(Joachims, 1999; Wang, Chan, & Zhang, 2003). However, some study challenged that TSVM might not 
be so helpful from unlabeled data in theory and in practice (Zhang, & Oles, 2000). 
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On the other hand, labeling is tedious and time-consuming and users do not have patience to provide 
enough feedbacks. So it is extremely necessary to significantly alleviate users’ burden of labeling while 
achieve comparable performance. To address this issue, active learning, in contrast to passive learning, 
is introduced to image retrieval. The main difference between active learning methods and the regular 
passive methods lies in how to choose the unlabeled samples from a pool of unlabeled data. Active 
learning is to actively select samples in order to achieve the maximal information gain, or the minimized 
uncertainty in decision making. The earlier approaches of active learning take a constructive approach 
to query generation in the sense that each query is constructed by setting the values of the attributes so 
that the query is as informative as possible (Angluin, 1988).  

Selective sampling is an alternative important approach of active learning (Freund, Seung, Shamir, 
& Tishby, 1997; Tong, & Koller, 2000). Selective sampling is typically applied to classification tasks in 
which the learner has access to a large number of unlabeled examples. There are two main schemes for 
sampling algorithms: stream-based and pool-based. The stream-based scheme assumes that unlabeled 
data are a stream and are presented in sequence to learner, while learner can go through the entire pool 
and select sample to label in pool-based condition. One of the most famous works in image retrieval is 
SVMActive proposed by Tong and Chang (2001). SVMActive is a pool-based algorithm. It employs SVM 
as learner and think that the samples lying beside the boundary can reduce the version space as fast as 
possible, i.e. eliminating the hypotheses. Therefore, in each round of relevance feedback, the images 
that are closest to the support vector boundary are returned to users for labeling. 

A much recent approach of active learning is multi-view based learning. In multi-view method, the 
feature set is partitioned to several subsets (views) which are sufficient and compatible for learning the 
target concept. The seminal work was presented by Blum and Mitchell (1998), Co-training algorithm. 
After that, many multi-view algorithms appeared. The representative works are Co-EM (Nigam, & 
Ghani, 2000), Co-Boost (Collins, & Singer, 1999), Co-Testing (Muslea, Minton, & Knoblock, 2000). 
These multi-view learning algorithms exploit unlabeled examples to boost the performance of classi-
fiers learned in each view by bootstrapping the views from each other, so they are semi-supervised 
algorithms in nature.         

In this chapter, we will introduce some representative active learning methods in relevance feedback. 
Especially we will present a new active learning algorithm based on multi-view, named Co-SVM. In 
Co-SVM algorithm, color and texture are naturally considered as sufficient and uncorrelated views of 
an image. Two SVM classifiers are trained in color feature space and texture feature space, respectively. 
Then, the contention samples of two SVM classifiers in different feature representations are considered 
as the most informative samples and taken out to ask users to label. The extensive experiments show 
that the proposed algorithm can improve both efficiency and effectiveness of relevance feedback in 
content-based image retrieval.      

ACTIVE LEARNING FOR RELEVANCE FEEDBACK

In relevance feedback, labeling is a troublesome task for users. Many learning methods fail due to most 
of users without patience to label sufficient sample. Active learning is a learning strategy designed to 
efficiently exploit the unlabeled data and reduce the labor cost of labeling. The basic idea of active learn-
ing is to select the most informative samples for labeling in each round feedback. Among the various 
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active learning techniques, SVM based method and Multi-view based method are the most promising 
method. In the section, we will give a brief introduction to the two techniques. 

Support Vector Machines Based Active Learning

Support Vector Machines (SVM) is built on structural risk minimization theory (Vapnik, 1998). With the 
labeled samples, SVM learns a hyper-plane (i.e., classification boundary) separating one class samples 
from the other class samples with maximum margin. Being an efficient binary classifier, SVM is par-
ticularly suitable for the classification task in relevance feedback of image retrieval (Joachims, 1999; 
Hong, Tian, & Huang, 2000). The task of learning user’s preference can be regarded as one of learning a 
SVM binary classifier. An SVM captures the query concept by separating the relevant images from the 
irrelevant images with a hyper-plane in feature space. The samples on a side of hyper-plane are looked 
as relevance, and on the other side are looked as irrelevance. When the data set is not linear separable, 
the data usually need to be mapped into a high-dimensional feature space using an implicit function. 

Given a set of labeled samples (x1, y1),...,(xn, yn), xi is the feature representation of sample in input 
space xi ∈ RN, yi ∈ {–1, +1} is the class label (-1 denotes negative and +1 denotes positive). The basic 
goal of SVM is to find a separating hyper-plane that separates the training data with a maximal margin. 
The primal form of SVM in linear separable case can be expressed as:

1min
2

( ) 1

T

T
i i

....... .w w
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Training SVM classifier leads to the following quadratic optimization problem:
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Where C is a constant, k is kernel function which is an identical function in case of linear separable. 
The hyper-plane (classification boundary) is 

(w.·.x) + b = 0. 

Where 
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here xr and xs are any support vectors satisfied αr, αs ≥ 0, yr = 1, ys = –1. The classification function can 
be written as:
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The earlier work generally applied SVM in relevance feedback using a randomly selected training 
set. Schohn and Cohn (2000) observed that they could achieve better performance from a small subset of 
the data than that achieved using all available data. They noticed that only unlabeled samples within the 
margin would have effect on classifier if the data was linearly separable, and stopped labeling data once 
the margin had been exhausted. Based on the assumption, they thought that the margin would exhaust 
when the sample closest to hyper-plane was support vector. At the same time, Tong and Koller (2000) 
also found this phenomenon in text classification. Taking advantage of the duality between parameter 
space and feature space, they arrived at three algorithms that attempted to reduce version space as much 
as possible at each query. These algorithms provide a guide to select better unlabeled samples, and lead 
to the same results as that Schohn and Cohn (2000) obtained. Tong and Chang further applied the idea 
to relevance feedback of image retrieval, i.e. SVMactive algorithm (Tong, & Chang, 2001). 

Before introducing the SVMactive algorithm, the concept of version space must be addressed, as it 
is critical to SVM based active learning. If there exist a set of hyper-planes that can linearly separate 
the training data in the input space, this set of hyper-planes or hypotheses is called the version space 
(Mitchell, 1982).  This can be defined as 

{ | ( ) 0, 1, , }i if H y f x i n= ∈ > = 

or 

{ | 1, ( ( )) 0, 1, , }i iw W w y w x i n= ∈ = ⋅ > = 

where H is the set of possible hypothesis and W is the parameter space for the unit vectors w. Note that 
the space H and W are dual, that is to say, points in the feature space correspond to hyper-plane in the 
parameter space and vice versa. The basic motivation of SVMactive is that the query sample should split 
the current version space into two equal parts as much as possible. According to the duality, the query 
sample should be close to hyper-plane. The relevance feedback process using SVMactive is comprised 
of the two steps:

1. SVMactive learns the classifier quickly via active learning. The active part of SVMactive selects the 
most informative samples, i.e. the samples closest to hyper-plane, to train the SVM classier. 
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2. Once the classifier is trained, SVMactive returns the top-k most relevant samples. These are the k 
samples farthest from the hyper-plane on the query concept side.  

Multi-View Based Active Learning

The traditional machine learning algorithms usually access to the entire set of domain features, which 
is called single-view learner.  By contrast, in the multi-view setting one can partition the domain’s fea-
tures into subsets (views) that are sufficient for learning the target concept. Existing multi-view learning 
algorithms belong to semi-supervised algorithms. These algorithms exploit unlabeled data to boost the 
accuracy of the classifiers learned in each view by bootstrapping the views from each other. Blum and 
Mitchell (1998) presented the seminal work of multi-view based active learning. They provided the first 
formalization of learning in the multi-view framework, Co-training algorithm (Blum, & Mitchell, 1998). 
Co-training algorithm trains two classifiers separately on two sufficient and redundant views (feature 
subsets), and uses the predictions of each classifier on unlabeled samples to augment the training set of 
the other. Blum and Mitchell proved that two independent, compatible views could be used to PAC-learn 
a concept based on few labeled and many unlabeled samples.

After Co-training algorithm appeared, many types of extensions were proposed. Collins and Singer 
(1999) presented a boosting-like framework based on Co-training that was biased towards learning 
hypotheses that predicted the same label on most of the unlabeled samples. Collins and Singer’s work 
give an explicit objective function that measures the compatibility of the learned hypotheses and use a 
boosting algorithm to optimize it. Dasgupta, et al. (2001) reported the theoretical justification for some 
aspects of Co-training algorithm, and gave a new PAC-style bound on generalization error. Intuitively, 
they showed that the ratio of contention points to unlabeled samples was an upper-bound on the error 
rate of the classifiers learned in the two views. The idea of Blum and Mitchell (1998) also has been 
extensively incorporated into other machine learning algorithms. Nigam and Ghani (2000) applied 
multi-view learning for EM algorithm, named Co-EM algorithm (Nigam, & Ghani, 2000). In Co-EM 
algorithm, two classifiers are trained in two views respectively, and then recommend prediction to each 
other by turns during the training process of EM. Zhou and Li (2005) extended the co-training to semi-
supervised regression algorithm, i.e. COREG algorithm (Zhou, & Li, 2005). This algorithm employs two 
k-nearest neighbor regressors using different distance metrics. Like Co-training style, each regressor 
labels the unlabeled sample which can be most confidently labeled for the other regressor.   

The above mentioned Co-training algorithm and its extensions are based on the idea of bootstrapping 
the views from each other, which utilize the compatibility of learned classifiers with different views. 
In contrast, as another important multi-view based active learning algorithms, Co-testing algorithm 
uses the multiple views to detect the contention points (Muslea, Minton, & Knoblock, 2000). Co-test-
ing algorithm relies on the following observation: if the hypotheses learned in each view predict a 
different label for an unlabeled sample, at least one of predictions is wrong. By asking the user to label 
such contention points, Co-testing algorithm is guaranteed to provide useful information for the view 
that made mistake. Co-testing is an iterative algorithm that requires a few labeled and many unlabeled 
samples. First, Co-testing uses the few labeled samples to learn a hypothesis in each view. Then it ap-
plies the learned hypotheses to all unlabeled samples and detects the content points that are predicted 
different label by hypotheses. Finally, it ask user to label these content points and add the newly labeled 
samples to the training set. The original Co-testing algorithm also has been extended to a family of Co-
testing algorithms (Muslea, Minton, & Knoblock, 2006). The major difference is the query selection 
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strategies. There are three typical selection strategies: naïve, aggressive, and conservative. The naïve 
strategy chooses the contention points at random way; the aggressive strategy chooses the contention 
points that are the least confident of hypotheses makes the most confident prediction; the conservative 
strategy chooses the contention points on which the confidence of the predictions made by hypotheses 
is as close as possible.  

CO-SVM ALGORITHM

For large-scale image database retrieval problem, labeled images are always rare compared with unla-
beled images. It has become a hot topic how to utilize the large amounts of unlabeled images to improve 
the performance of the learning algorithms when only a small set of labeled images is available. Tong 
and Chang (2001) proposed an active learning paradigm for image retrieval, named SVMActive algorithm 
(Tong, & Chang, 2001). SVMActive considers the representation of an image as a single mixture view 
so that the least confident points are those which are the closest to the boundary. Usually, the feature 
representation of an image is a combination of diverse features, such as color, texture, shape, etc. For 
a specific image, the contribution of different features is significantly different. On the other hand, the 
importance of the same feature is also different for different images. For example, color is often more 
prominent than shape for a landscape image. However, the retrieval results are the averaging effort of 
all features, which ignores the distinct properties of individual feature. 

The works mentioned above have suggested that multi-view learning could do much better than the 
single-view learning in eliminating the hypotheses consistent with the training set (Blum, & Mitchell, 

Figure 1. The flowchart of Co-SVM algorithm
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1998; Muslea, Minton, & Knoblock, 2000). In this chapter, from multi-view viewpoint, we propose a 
novel active learning algorithm by integrating the spirit of SVMActive and Co-testing, which named Co-
SVM algorithm (Cheng, & Wang, 2007).

Two-View Scheme

It is natural and reasonable to assume that color features and texture features are two sufficient and 
uncorrelated views of an image. In each round, the contention samples which disagree in the two views 
are returned to user to label.

Assume that x = {c1,...,ci, t1,...,tj} is the feature representation of an image, where {c1,...,ci} and {c1,...,cj} 
are color attributes and texture attributes, respectively. For simplicity, we define the feature representa-
tion V = VC × VT, and {c1,...,ci} ∈ VC, {t1,...,tj} ∈ VT. 

In order to find relevant images as much as possible, like the general relevance feedback methods, 
SVM is used to learn a classifier h on these labeled samples with the combined view V at the first stage. 
The unlabeled set is classified into positive and negative. Then m positive images are returned to user to 
label. At the second stage, SVM is used to learn two classifiers hC.and hT on labeled samples with color 
view VC and texture view VT, respectively. A set of contention samples that disagree in the two views 
is recommended to user to label. That is, the contention samples are classified as positive by hC (CP) 
while are classified as negative by hT (TN), or are classified as negative by hC (CN) while are classified 
as positive by hT (TP). In each classifier, the distance between sample and the hype plane (support vector 
boundary) can be looked as the confidence degree. The larger the distance, the higher the confidence 
degree is. In order to makes sure that user can label the most informative samples, these samples which 
are close to hype plane in both views are recommended to user to label. In summary, the flowchart of 
Co-SVM algorithm is described in figure1. 

In Co-SVM algorithm, the relevance feedback procedure is divided into two stages. The aim is to 
improve not only the efficiency but also effectiveness of feedback. At the first stage, in order to insure 
users finding relevant images as much as possible, we rank the images by their similarity to the query 
on the combined view V like most of common relevance feedback algorithms. That is for effectiveness. 
The second stage let users to get the most informative images to label so that maximally reduce user’s 
burden. This is for efficiency. The Figure 2 depicts the simple steps of Co-SVM algorithm applied to 
relevance feedback. 

Multi-View Scheme

The proposed algorithm in two-view case is easily extended to multi-view scheme. Assume the feature 
representation of a color image is defined as V = V1 × V2 × ... × Vk, each Vi, i = 1,...,k correspond to dif-
ferent view of the color image. Then k SVM classifiers hi can be individually learned on each view. All 
unlabelled data are classified as positive (+1) or negative (-1) by k SVM classifiers, respectively. Define 
the confident score: 

1
( ) ( ( ))

k

i
i

S x sign h x
=
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The confident score can reflect the consistency of all classifiers on a specified example. Higher the 
confident score, more consistent the classification is. Inversely, the lower score indicates that the clas-
sification is uncertain. The labeling on these uncertain samples will results in maximum improvement 
of performance. So the unlabelled samples whose confident scores are the lowest are considered as the 
contention samples. 

Experiments

To validate the effectiveness of the proposed algorithm on improvement of performance, we compare 
it with Tong&Chang’s SVMActive and the traditional relevance feedback algorithm using SVM (Hong, 
Tian, & Huang, 2000). Experiments are performed on a subset selected from the Corel image CDs. There 
are 50 categories in our subset. Each category contains 100 images, 5000 images in all. The categories 
have different semantic meanings, such as animal, building, landscape, etc.    

In our experiments, the main purpose is to verify if the learning mechanisms of Co-SVM are useful, 
so we only employed simple color and texture features to represent images. The color features include 

Active learning with Co-SVM:

Input: a query image.

Step 1. Ranking the database in descending order of similarity to the query.

   If user is unsatisfied; repeat the follows 

Step 2. Training a SVM classifier h with the entire view V and classifying Set{unlabeled}. Labeling the top m 
images as Set*

{relevant} or Set*
{irrelevant}

               Set {relevant} = Set {relevant} ∪ Set*
{relevant}

               Set {irrelevant} = Set {irrelevant} ∪ Set*
{irrelevant}

               Set {unlabeled} = Set {unlabeled} – {Set*
{relevant} ∪Set*

{irrelevant}}
               

Step 3. Training a SVM classifier hC with color view VC and classifying Set {unlabeled}
                     Set {unlabeled} = {CP ∪ CN}
                Training a SVM classifier hT with texture view VT and classifying Set {unlabeled}
                     Set {unlabeled} = {TP ∪ TN}    

Step 4. Finding contention samples
                     Set {contention} = {CP ∩ TN} ∪ {CN ∩ TP} 

Step 5. Ranking Set {contention} by their similarity to the query calculated in step 1, and labeling the least 
confident n.samples as Set*

{relevant} or Set*
{irrelevant}.

               Set {relevant} = Set {relevant} ∪ Set*
{relevant}

               Set {irrelevant} = Set {irrelevant} ∪ Set*
{irrelevant}

               Set {unlabeled} = Set {unlabeled} - {Set*
{relevant} ∪Set*

{irrelevant}}
                

  End of repeat
             

Output: the relevant images.

Figure.2..The.pseudo-code.of.Co-SVM.algorithm
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125-dimensional color histogram vector and 6-dimensional color moment vector in RGB. The color 
mean and color variance in Red, Green and Blue are calculated to form the 6-dimensional color moment 
vector. The texture features are extracted using Discrete Wavelet Transformation (DWT). Each wavelet 
decomposition results in 4 subimages: down-sampled image and wavelets in three orientations. In total, 
we perform 3-level wavelet decomposition and obtain 10 wavelet subbands. The mean and variance 
averaging on each of 10 subbands are arranged to a 20-dimensional texture feature vector. RBF kernel 
is adopted in SVM classifiers. The kernel width is learnt by cross-validation approach. 

The first 10 images of each category, 500 images in total, are selected as query images to probe the 
retrieval performance. In each round, only the top 10 images are labeled and 10 most confident images 
selected from contention set are labeled. All accuracy in the following text is the averaging accuracy of 
all test images. Figure 3 is the accuracy vs. scope curve of the three algorithms after the third and fifth 
rounds of relevance feedback, respectively. From the comparison results we can see that the proposed 
algorithm (Co-SVM) is better than SVMActive (Active SVM) and the traditional relevance feedback 
method (SVM). Furthermore, we investigate the accuracy of the three algorithms within top 10 to top 
100, and with 5 rounds feedback. The results of top-30 and top-50 are depicted in figure 4. The detailed 
results are summarized in table 1. The results reported in table 1 show that Co-SVM achieves higher 
performance than that of SVMActive and the traditional relevance feedback algorithm.

Figure.3..The.accuracy.of.image.retrieval.with.3.feedbacks.(left).and.5.feedbacks.(right)

Figure.4..The.accuracy.of.image.retrieval.averaging.on.top-30.(left).and.top-50.(right)
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Table.1..Comparison.among. the.proposed.algorithm. (Co-SVM),. the. traditional. feedback.algorithm.
(SVM).and.Tong.and.Chang’s.SVMActive(Active.SVM).
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DISCUSSIONS

Active learning has been well-studied in data mining. The representative algorithms include Co-train-
ing and Co-Testing both created from multi-view viewpoint. Co-training algorithm adopts cooperative 
learning strategy. Two classifiers are separately learned on two different views of the labeled data. 
Then the training set is enlarged for each classifier by taking in the most confident unlabelled samples 
from another classifier. Co-training algorithm requires that the multiple views of data are compatible 
and redundant. In fact, we have attempted to augment the performance of both color and texture clas-
sifiers by adding the most confident unlabelled samples to complement the labeled set, but the results 
were worse. Considering the condition of co-training, it is not surprise to find that color attribute and 
texture attribute are not compatible but uncorrelated for a color image. In contrast, co-testing requires 
that the views should be sufficient and uncorrelated which makes the classifiers more independent for 
classification. The deficiency of co-testing is that it does not increase in itself any information except 
what given by users through labeling.    

Like the previous works, Co-SVM algorithm selects the unlabeled samples in batch way. Intuitively, 
the uncertainty should be propagated to neighbors once an unlabeled sample is labeled. Therefore, uncer-
tainty of each unlabeled sample should be dynamically updated during the feedback process. However, 
the update will brings mass increase in computational cost. How to balance the uncertainty update and 
computational cost is what we must consider. The further investigations are conducting and partial of 
recent results have been reported in (Zhang, Cheng, Lu, & Ma, 2007, 2008). 

CONCLUSION

In this chapter, we proposed a novel active learning algorithm for selective sampling in relevance feed-
back, Co-SVM algorithm. In order to obtain the maximal improvement of performance, the relevance 
feedback is divided into two stages. At the first stage, we rank the unlabeled images according to their 
similarity to the query and let user to label the top images like the common relevance feedback algo-
rithms. In order to reduce the labeling requirement, a set of additional informative samples are selected 
by Co-SVM to label at the second stage. The experimental results show that the Co-SVM achieves 
obvious improvement compared with SVMActive and the traditional relevance feedback algorithm without 
active learning.
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ABSTRACT

Visual.data.mining.is.a.procedure.aimed.at.a.selection.from.a.document’s.repository.subsets.of.documents.
presenting.certain.classes.of.objects;.the.last.may.be.characterized.as.classes.of.objects’.similarity.or,.
more.generally,.as.classes.of.objects.satisfying.certain.relationships..In.this.chapter.attention.will.be.
focused.on.selection.of.visual.documents.representing.objects.belonging.to.similarity.classes.

INTRODUCTION

In numerous scientific research, medical examination, technological applications, education, artistic 
activity, and other areas visual data play a substantial, sometimes irreplaceable role. Intensive prog-
ress in image acquisition, recording, enhancement and storage technology in the last decades caused 
a dramatic  increase in total volume of visual documents stored in archives and repositories of various 
types over the world. However, because of legal or organizational difficulties and low effectiveness 
of available remote data access and visual information retrieval methods only a small part of useful 
information from visual documents can be mined and effectively used in new investigations, decision 
making and/or in application tasks solution. This is why the interest to new methods of data mining 
from visual documents is still actual.

A visual document is here considered as an electronic digital file consisting of a textual and a graphi-
cal part, the last being, in fact, a digital representation of a graph or an image. The textual part of the 
document may contain some formal characteristics of the document as a whole (numerical identifier, 
emission date, source, accessibility conditions, etc.) as well as of its graphical part: image contents char-
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acteristics (string of key words, a semantic classification code, etc.), code of image modality, technical 
parameters, quality characteristics, and so forth. The graphical part of a visual document is assumed 
to present graphs or images in one of admissible standard forms that makes it possible to be displayed 
and visualized in order to be manually or automatically processed. 

Image processing means here image selection, enhancement, compression/decompression, transmis-
sion, visualization as well as any type of image analysis: functional transformation, parameters extrac-
tion, recognition, contents’ interpretation, application value assessment, and so forth. 

Visual data mining is a procedure aimed at a selection from a documents’ repository subsets of docu-
ments presenting certain classes of objects; the last may be characterized as classes of objects’ similarity 
or, more generally, as classes of objects satisfying certain relationships. In this chapter attention will be 
focused on selection of visual documents representing objects belonging to similarity classes.

GENERAL CONCEPT OF SIMILARITY

Observing the surrounding world as an extremely sophisticated  variety of  objects, relationships be-
tween them and processes we try to put order on it for making it more comprehensible. One of ways to 
reach this is establishment of similarities between objects or processes which make it possible to apply 
some statements about individual objets or processes to the members of their similarity classes. This 
way of action is not only a human discovery.  A wild animal first-time testing an apple and finding it 
good fixes in its mind a pattern of similar size, form, color and scent objects. In its later experiences 
the pattern may be corrected by exclusion  the small size and dark-green color objects which finally 
leads to a fixation in the mind a pattern (a concept) of  “good for being eaten” objects.  Establishment 
of similarity concepts and detection of similarities in individual cases in  many living beings is thus 
a capability of fundamental importance. Non less  important seems explaining what, in general, does 
the similarity.mean. 

Strong similarity. In the forthcoming, the notion object.will be assigned to any formal representative 
(geometrical point, vector, string of symbols, etc.) of a real or abstract being, characterizing its features 
and identifying it among other beings. Similarity is a property of a class C.of objects that in the simplest 
case can be described by a formal similarity.relation  [Rasiowa H., Sikorski R. ,1968]:

 10 reciprocal (each object a is similar to itself),
 20 symmetrical  (if object a is similar to object b then b.is similar to a), and
 30 transitive (if  a is similar to b.and b.is similar to c then a is similar to c). 

For the reasons that will be explained below, the above-defined similarity can be called a strong.
similarity concept. Similarity of triangles is a well known example of similarity in the above-given 
sense: two triangles on an Euclidean plane are similar if angular measures of the pairs of respective 
angles are equal. This property can easily be extended on any set of triangles. Similarity of polygons 
on a plane can also be based on the concept of pair-wise equality of angular measures of the pairs of 
respective angles. 

Strong similarity can be based on various similarity criteria assigning  different sense of similarity 
to the objects under consideration. For example, it is possible to assume that in the set C of triangles 
“similar”.are the triangles of the same surface measure, of the same sum of lengths of edges, etc.
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Figure.1..Similarity.classes.of.a.set.of.printed.characters

Figure.2..Example.of..non-transitiveness.of.similarity

It can be shown that if the above-given similarity relation is described in a class C of objects then  
C.can be divided into a family FC  of mutually disjoint subclasses C(1), C(2),…, etc., called similarity.
classes, such that any two objects belonging to the same similarity class are similar in the sense of the 
relation and no two objects belonging to different similarity classes do so. In the above-mentioned case 
of similarity of triangles each similarity class consists of the triangles described by the same triple of 
fixed angular measures (admitting their permutations). 

Example 1.

Let us consider a set of printed characters shown in Fig. 1.
The characters form three subsets constituting similarity classes  established by assigned to them 

phonetic values, independent of  their typeface.
Weak similarity. The above-presented concept of similarity, as it has been shown above,  suits well 

to establishment of similarity between well defined, standardized objects. However, in the case of visual 
objects analysis such situation occurs rather exceptionally. A difficulty lies in the similarity transitive-
ness condition which in practice is not always satisfied.  For example, if D.(a daughter) is in a certain 
sense similar to F (her father) then also, in the same sense, F is similar to D.  Moreover, D may be also 
similar to M (her mother). However, it does not imply that F.is similar to M. 

Example 2.

A sequence of characters shown in Fig. 2 has been ordered so that each character is approximately 
similar to its closest neighbors in the row. However, it is evident that similarity does not hold between 
the extreme characters, A	and B.  As a consequence, the  notion of similarity classes has lost an exact 
sense in this case.

For image processing and pattern recognition purposes one should thus distinguish between  the 
above-defined, strong-sense.similarity, and a weak.sense.similarity being a sort of a neighborhood, 
reciprocal and symmetrical but not transitive  relation. More exactly speaking, in the weak similarity 
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case transitiveness holds in a limited degree that can be characterized  by a notion of  similarity.measure 
[Kulikowski J.L., 2002].

Similarity measure. Let C.be a class of objects and let  a,.b,.c.be some of  its members. Then it can 
be defined a function:
                                  
σ:  C.× C.→ [0,…,1]                                                                        (1)

assigning to any pair of objects belonging to C a number from the (continuous or discrete) closed interval 
[0,…,1] so that the conditions: 

I.     σ(a,a) ≡ 1,.
II.  σ(a,b) ≡ σ(b,a

III.  σ(a,b) ⋅ σ(b,c) ≤ σ(a,c)..
         (2) 

are satisfied. 
The I and II conditions correspond, respectively, to the reciprocity and symmetry of similarity. The 

III condition reminds the well known “triangle inequality” of a distance measure.  If  C is a metric space 
(a space in which a notion of distance.measure.d(a,b) between its elements has been introduced) then a 
distance-type.similarity.measure.σ(a,b) between the objects on the basis of  d(a,b) can be defined as:

σ(a,b) = exp[ - h⋅.d(a,b)]                                                                     (3)

where h is a  real positive scaling  coefficient. Then, taking into account that according to the “triangle 
inequality”:  d(a,c) ≤ d(a,b) +.d(b,c) for any a,.b,.c.∈ C,  the property III from  (2)  follows directly. It 
thus establishes lower bounds for similarity measures of objects linked by chains of other objects whose 
similarity measures pair-wise have been assessed. Therefore, the III condition plays a role of a weak-
ened transitivity condition. It can easily be proven that in the above-given case σ(a,a) ≡ 1 and  σ(a,b) 
= 0 when d(a,b) = ∞. The distance-type similarity measure is widely used in the k-nearest-neighbors.
(kNN) pattern recognition algorithms [Kulikowski J.L., 2002]. 

The conditions I, II and III hold also in other types of similarity measures, two of them being of 
particular interest in image processing.  Let a,	b,.… be the elements of  a multi-dimensional linear vec-
tor space. An angular measure of the angle between the vectors a.and b will be denoted by ang(a,b). 
Then, an angular-type.similarity.measure σ(a,b) can be  defined as

σ(a,b)  = 1 -  sin[ang(a,b)].                                                                     (4)

Let us remark that in certain applications (pattern recognition, signal detection, etc.) the function 
cos[ang(a,b)] is often used as a correlation measure between a and	b., However, this function, satisfying 
the (2).I and II, does not satisfy the (2).III condition.

The right-hand side of (4) can be calculated if an inner.product	(a,b) of the vectors is known. If the 
vectors have the form: a = [a1, a2,…, ai,…], b = [b1, b2,…, bi,…], a1,…,.ai,…,b1,…,.bi… being some their 
real components,. then their inner product is given by the formula [3]:
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(a,b) =Σ	.ai⋅bi                                                                   (5)
          (i)                 

.(the sum being taken  over all components of the vectors).  In particular, the norm |a| of the given vector 
being used as its length’s  measure is given by the formula:

| | ( , )a a a=            (6)
                                                                                   
The angular  similarity.measure.can be thus calculated as:

2

2 2

[( , )]( , ) 1  1
| | | |

a ba b
a b

= - -
⋅          (7)

                                
The formula is based on the assumption that vectors a,	b have finite non-zero norms. It can be proven 

that for the angular similarity concept σ(a,b) = 1 when a = γ⋅b, where γ is a real coefficient, while σ(a,b) 
= 0 if a	is perpendicular to	b.  Independence of the length of vectors is another property of the angular 
similarity measure,  the property being important in certain types of applications.  

Example 3

Let us denote by C a 3-dimensional vector space of colors coded in RGB system. Using an angular-type 
similarity measure means in this case that σ(a,b) = 1 corresponds to a pair of spots coded, respectively, 
by a and b,	 being of the same color despite a difference between their brightness levels.

Let us suppose that three spots, whose colors can be roughly described as  light.green,.vivid.green.
and sea-green.have been coded, respectively, in the RGB system by the vectors:

a = [145, 247, 172],   b = [14, 120, 63],   c = [40, 120, 118].

We shall  calculate the angular-type similarity measure of the pairs of colors. For this purpose it is 
necessary to calculate the norms and inner products of the vectors, using the formulae (6) and (5). For 
example:

|a|2 = 1452 + 2472 + 1722 = 111 618,   |a| = 334.0928,
|b|2 = 142 + 1202 + 632 = 18 565,   |b| = 136.2534,
(a,b) = 145⋅14 + 247⋅120 + 172⋅63 = 42 506.

In similar way we obtain:

|c|2 = 29 924,   |c| = 172.9855,
(a,c) = 55 736,   (b,c) = 22 394.

Finally, using formula (7) we obtain:
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242506( , ) 1 1 0.6421
111618 18565

a b = - - =
⋅

In similar way it can be obtained:

σ(a,c) = 0.7345,   σ(b,c) = 0.6881.

Let us remark that the similarity measures will be different if another color coding system is used.
Similarity measure based on qualitative features of objects (called below a logical-type.similarity) 

is another case of the weak similarity concept. Let  for the given set C of objects it has been defined a 
set of K.logical..tests given in a functional form:

tk: C.×.C → [0,.1]  for k = 1, 2,…, K,.                                                           (8)

i.e. such that to any pair of objects a symbolic value 0 ( false) or 1(true) is assigned. Assigning 1 means 
that the given pair of objects satisfies  a condition of coincidence of a qualitative property represented 
by the corresponding tests. For example, tk (a,.b) = 1 may mean that two mammograms, a.and b, have 
been acquired by the same type of  X-ray devices, two fingerprints  belong to the same person, two 
aerial photos have been taken in the same season, etc.

For a given set of K logical tests to each pair of objects  a,.b,. it can be thus assigned a binary vec-
tor  v(a,b) consisting of components representing  the coincidence of selected qualitative properties of 
the objects. So defined vectors can be taken as a basis of a logical.similarity.measure.. Formally, the 
measure will be given by the formula: 

ψ.: [0,.1]K →[0,…,1]             (9)

where ψ is a function assigning to any vector v a real number from the interval [0,…,1], and such 
that:

1.. ψ(0) = 0,  ψ(1) = 1, 0	and 1	denoting, correspondingly, a K-component vector consisting of 0s.or 
1s only;

2.. ψ  is a monotonically non-decreasing function,  i.e...for any K-component binary vectors p,	q,	such 
that q		≠ 0, it is ψ(p	⊕ q) ≥ ψ(p).

The operation ⊕ is interpreted above as maximum,.i.e. 0.⊕ 0.= 0, 1⊕1.= 1⊕ 0 = 0 ⊕ 1.= 1. Condition 
1 seems evident; condition 2 means that the logical similarity measure value should not be decreased 
by any additional positive results of logical tests. A function ψ satisfying the above-given conditions 
can be chosen in many ways.  Two particular situations  arise when:  a/ ψ(v) = 1 if v = 1 and  ψ(v) = 
0 otherwise, and b/ ψ(v) = 0 if v = 0	and  ψ(v) = 1 otherwise. Situation a/ means that two objects  are 
determined similar when all logical tests are satisfied by their features. On the contrary, situation b/ 
means that one positive value of tests is sufficient the objects to be recognized similar. Among the above-
mentioned extremities a variety of other solutions is possible. One of them can be based on the concept 
of weighed  sum of tests.  Let for the given set of tests it will be arbitrarily chosen a K-component vector  
w	of normalized non-negative weight coefficients:
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1
1,

K

w
=

=∑
           (10)

where wκ  denotes  a relative weight assigned to the importance of the  tests tκ., κ = 1,2,…,K, in total 
similarity assessment. Then one can put:

1

1[ ( , )] ( , )
K

a b w a b
K +

= ⋅∑
         (11)

The following example should illustrate  the above-described concept of logical-type similarity 
measure.

Example 4.

Let us assume that  it is given a set Ω of microscopic images representing liver biopsy histologic specimens. 
To each image  additional  description is attached containing the following  data: 1/ image identifying 
code, 2/ donor’s personal identifying code, 3/ donor’s  age, 4/ date of  image acquisition, 5/ laboratory’s 
identifying code, 6/ type of microscope, 7/ type of specimen staining. For certain investigations it is 
necessary to select a subset of images satisfying the following conditions: a/ donors  of the correspond-
ing specimens  are of an age kept within a fixed time-interval, b/ date of image acquisition is limited 
to several fixed years, c/ images have been acquired in a given group of laboratories and using several 
types of microscopes, d/ specimens have been prepared using a fixed type of staining. In addition, it 
is desired that conditions a/ and b/ are strongly satisfied, while c/ and d/ should be taken into account 
with fixed weights corresponding to their relative importance level.

For this purpose logical test-functions  for the features 3/ - 8/ should be established, feature 1/ being 
not important for comparing the images and feature 2/ - not substantial for image selection. The tests 
may be then chosen as follows:

             1 if  both donors’ age belong to the given time-interval, 
t1 =                                                                                          
             0, otherwise; 

             1.if the dates of acquisition of both images belong to the given time-interval, 
t2 =  
             0,.otherwise; 

             1.if images have been examined in the laboratories of a given group, 
t3=  
             0,.otherwise; 

             1.if image examinations have been performed using microscopes of a given group, 
t4 =  
             0,.otherwise; 

             1.if images have been examined after the given type of specimen staining, 
t5 =  
             0,.otherwise; 

;
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Finally, the logical similarity measure will be defined as follows:
 

5

1 2
3

1( , ) ( , ) ( , ) ( , )
3

a b a b a b a b
=

= ⋅ ⋅ ∑
     
So-defined similarity measure means that images a.,b.are recognized similar only if  age of specimens’ 

donors and image acquisition time are kept in strongly fixed intervals while type of laboratory, type of 
microscope and type of specimen staining  are taken into consideration with weights equal 1/3.

Multi-aspect similarity measures. In the above-given example the following important property 
of similarity measures has been used:

Property 1.

If σ1, σ2, …, σn are similarity measures described on a given set C.of objects, then their product:

σ = σ1 ⋅ σ2 ⋅ …⋅ σn                                                                     (12)

also satisfies the general  similarity measure conditions.
The proof of this property is very simple and  will be omitted. The Property 1  makes it possible to 

construct a large variety of multi-aspect similarity measures as products of the single-aspect ones. In 
particular, combinations of  distance-, angular-, and logical-based similarity measures are possible.  This 
possibility can be useful  in visual data mining, where logical similarity measures suit well to formal 
characterization of visual documents  while other similarity aspects, directly concerning  the graphical 
documents’ part, can be evaluated and compared  using any types of similarity measures. The next 
property extends this possibility.

Property 2.

If σ is a similarity measure satisfying the conditions (2).I, II, III, then σγ, where γ, γ > 0, is also a simi-
larity measure such that for any pair of objects a,.b.it is σγ(a,b) ≤ σ (a,b) if γ ≥ 1 and σγ(a,b) < σ (a,b) 
if  0 < γ < 1.

This property  follows from the fact that: 1/ xγ is a non-negative function such that for any γ > 0 it is 
0γ = 0, 1γ = 1, 2/ for 0 ≤ x.≤ 1 it is  xγ ≤ x.if  γ  ≥ 1 and  xγ ≥ x.if  γ ≤ 1 and  3/ from (2).III it follows that  
for any objects a,.b it is  log.σ(a,b) + log σ(b,c) ≤ log.σ(a,c); therefore: γ⋅log.σ(a,b) + γ⋅log σ(b,c) ≤ γ⋅log.
σ(a,c) what leads to the conclusion  σγ (a,b)⋅σγ (b,c) ≤ σγ (a,c). 

Property 2  makes it possible to relatively support some terms in the expression  (12) by using them 
in power γ < 1 or to suppress them  by using in power γ > 1. Therefore, a more general expression for 
multi-aspect similarity measure is:

σ = (σ1)
 γ1⋅ (σ2) 

γ2⋅ …⋅ (σn) 
γn                                                                 (13)

where γ1, γ2,..,γn are some strengthening  coefficients.
Weak similarity classes.  Similarity measure makes possible to extend the concept of objects’ 

similarity classes. However, unlike the strong similarity, in the weak similarity case similarity classes, 



���  

Visual Data Mining Based on Partial Similarity Concepts

as it will be shown below, cannot be determined in an unique way. Let us assume that C.is a countable 
set of objects on which a similarity measure σ has been defined. Let us take into consideration  the set 
C×C.(a Cartesian product) of all possible pairs (a,b) of objects of C.and a set.S of the values of simi-
larity measures σ(a,b) of the pairs. Let σ1, σ1 ≤ 1, be the maximum value in S. One can select the pairs 
of objects whose similarity measure is σ1 . Let us denote by.C(1), where C(1)

 ⊆ C, a subclass of objects 
belonging to such pairs; C(1) will be called the 1st.similarity.level of the objects. There may exist in C(1) 
subsets of objects similar each to each other one with the maximum similarity measure σ1. The largest 
(i.e. not extendable) subsets  having this property will be called  1st-level.similarity.classes. So, the 1st 
similarity level will be decomposed into a certain number of 1st-level similarity classes; however, it 
should be remarked that some of the 1st-level similarity classes may consist of single objects.  Then, for 
the rest of  objects forming a subset C.\ C(1) the above-described procedure can be repeated: if σ2 is the 
maximum similarity measure among its members then a 2nd similarity level C(2) ⊆ C.\.C(1) can be selected 
and 2nd-level.similarity.classes  can be defined in the above-described manner. The procedure should 
be continued up to the moment when all objects of C.are included into some similarity classes.  Each 
so-defined similarity class consists of objects whose similarity to other members of the same similarity 
class is strongly fixed, but not obviously equal 1. Therefore, similarity measure can also be interpreted 
as.inner similarity.compactness measure of the classes of various levels. 

The above-described procedure of selection of similarity levels was based on the assumption that a 
maximum number in the set.S of values of similarity measures can be found. However, this assumption 
can be not true if the class C is countable and the similarity measure is continuous. In such case the 
scale of similarity measure values should be discretized (divided into a finite number of sub-intervals) 
and then the corresponding number of similarity levels can be delimited.

The partition of the similarity levels C(1), C(2),.etc. into weak similarity classes is not unique, as it 
will be shown by the following example.

Example 5.

Let us assume that at i-th level of the above-described procedure of partition of the objects into similarity 
classes a subclass C(i), C(i) ⊆ C,  of objects corresponding to the similarity measure σi has been selected.  
In order to find similarity classes on this level C(i) will be represented by a graph whose nodes have been 
assigned to the objects and edges connect pairs of nodes corresponding to the pairs of objects whose 
similarity measure is exactly equal to σi. .An example of a graph of this type is shown  in Fig. 3

Then we are looking for maximum subsets of nodes in the graph such that each pair of nodes is 
connected within the subset by an edge. This problem is well known in the graph theory as a problem 
of finding cliques in the graph; several algorithms of solution of the problem have been described in the 
literature [5,6]. Fig. 3 A, B, C show that  in general there may be several different partitions of a graph 
into cliques (the cliques are bordered by plotted lines); however, the number of cliques and their size 
(number of nodes) are strongly fixed. In our case each clique represents a similarity class of objects, 
the inner similarity compactness level in all similarity classes generated by the given graph being the 
same.

It thus can be concluded that there are many possibilities to define a similarity measure satisfying the 
general conditions and adjust it  to a given application problem. Weak similarity can be considered as a 
reciprocal and symmetrical fuzzy relation imposed on a set of objects, the fuzziness being determined 
by a similarity measure satisfying the conditions (2). I, II and III. It leads to a partition (in general, in 
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Figure.3..Different..partitions.of.a.subclass.of.objects.into.weak.similarity.subclasses

Figure.4..Partition.of.a.class.of.objects.into.weak.similarity.subclasses

several possible ways) of the given class C of objects  into weak similarity subclasses which can be 
arranged in a hierarchical structure as shown in Fig. 4.  Subclasses belonging to a fixed level of the 
hierarchy are characterized  by a fixed inner similarity compactness. The higher is the level index (the 
lower is the level position on the scheme), the lower is the inner similarity compactness of the subclasses 
on this level. Similarity of any two objects belonging to similarity subclasses on two consecutive levels 
is lower than the inner similarity compactness on the higher level.  Such partition of the class of objects 
into subclasses according to their descending similarity to other objects plays an important role in im-
age retrieval and selection, as it will be shown next. 
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Detection of Partial Similarity of Images

It is well known that a natural language has a composite, multi-level structure. On the lowest level of a 
speech language organization phonemes can be distinguished. Morphemes, words, phrase structures, 
sentences, statements, etc. are the elements of higher levels of the speech language structure. Similar, 
multi-level composition holds also in images, including those stored in  the form  of visual documents 
in archives, data bases, etc. On the lowest level separate pixels or  their simple combinations can be 
distinguished; basic geometrical details (primitives)  or morphological forms on the higher level can 
be detected; more sophisticated structures as  combinations of some simpler ones on the next levels 
can be observed, etc.  On the top level a total scene as a composition of lower-level objects  can be 
recognized. Hierarchical structure of visual data makes the problem of visual data management a very 
difficult one. The above-described concepts of strong or weak similarity suit well to image analysis if 
they are related to image features on a strongly defined composition level. This can be illustrated by 
the graphical structures shown in Fig. 5.

There are no differences between the structures on the 1st  (pixel) and 2nd  (geometrical primitives 
in the form of short line segments) composition levels. On the 3rd level two types of geometrical details 
in the form of upright standing and reversed small triangles can be recognized. Similarly, on the 4th 
level there are two upright standing and one reversed  triangle. The  patterns a/ and b/ are similar on 
the 3rd composition level and dissimilar on the 4th level. On the other hand, the patterns a/ and c/ are 
similar on the 4th level and dissimilar on the 3rd  one. Patterns b/ and c/ represent an interesting case of 
a cross-similarity.

Figure.5..Examples.of.similarity.on.various.image.composition.levels

. . . ......(a). . . . ...........(b)

Figure.6..Example.of..partial.similarity.of.two.images’:.the.centers.of.similarity.in.image.a/.and.b/.are.
marked..by..rectangles
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Another example is shown in Fig. 6a,b representing two landscape photos. On the top image com-
position level no similarity between the images exists. However, on the lower level a certain sort of 
similarity between some architectural and natural objects can be observed. On the basic levels a lot of 
similar local details also can be detected.

The examples show that it may happen, in general, that  two or more images totally dissimilar on 
a higher composition level still contain similar details on some lower levels.  Similarity on the basic 
(1st or 2nd) levels is  rather frequently observed; however, usually it is of no practical interest. Different 
situation may arise on the middle image composition levels where detection of some details may be of 
great practical importance for the user. This, for example, may concern detection of similarity of specific 
details hidden in large collections of astronomic, biological, medical, criminological  etc. images. For 
this purpose a concept of partial similarity of  images may be useful.

Two (or more) images will be called partially.similar if on a given composition level  in both (or 
more) images there can be detected  objects satisfying a given criterion of similarity. Such objects will 
be called centers.of.similarity.  Two examples of such centers have been marked in Fig. 6 a/ and b/ by 
rectangles.

A subset  Ξ(j) ⊆  Ξ consisting of all partially similar images taken from a  set  Ξ and such that their 
partial similarity is based on a fixed set of centers of similarity,  will be called a class.of.partial.similar-
ity of the images. It is evident that the class of partial similarity is also strongly connected with a given 
criterion  of similarity. Finding the classes of partial similarity in a given set Ξ will be called, generally, 
a partial similarity-based retrieval problem. Two kinds of such problems can be distinguished:

1. When one or several strongly fixed reference.objects are indicated and the problem consists in 
finding the classes of partial similarity based on the given set of centers of similarity;

2. When, instead of several reference objects, only a strong similarity class of objects is indicated 
as the one whose members should be taken into consideration as possible reference objects; the 
task consists in  finding in the set of images all classes of partial similarity based on the centers 
of similarity belonging to the given similarity class.

The first case corresponds, e.g., to a situation when in a set of fingerprints the ones containing a strongly 
fixed configuration of fingerprint minutes are searched. For this purpose the set is looked through in 
order to select the regions of interest (ROI) where the fingerprint minutes can be found, then the minutes 
are recognized, their similarity to those of the reference fingerprints is assessed and their configuration 
is compared  with this of the reference fingerprint.  The class of partial similarity of images in this case 
is assumed to correspond, on a certain probability level, to the same fingerprint donor.

The second case arises when, e.g.,  in a set of photos presenting groups of persons  the subsets of 
photos on which  the same (however, individually not indicated) person(s) can be recognized. The class 
of partial similarity of images consists in this case of photos on which at least one, primarily not indi-
cated, person is visible on at least two photos. Detection of images in the second case is more difficult 
than in the first one. First photo for the analysis can be randomly taken from the given set. Then, the 
ROIs corresponding to the persons in the photo should be selected. Each well visible person in the ROIs 
is taken into consideration as a reference object  for finding similar to it objects in the ROIs selected 
in other photos. When finding the members of the classes of similarity based on the reference objects 
taken from the first photo is finished, additional reference objects from the second, third, etc. photos 
can be taken in order to continue the above-described procedure. It is evident that a solution of the 
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second-type of partial similarity-based retrieval problem is much more time-consuming than the first 
type one. However, effective solution  of the first type retrieval problems  can be taken as a basis of a 
solution of the second-type ones. 

For a given set of visual documents  a partial similarity measure.s(Vi, Vj) of any  pair Vi, Vj of images 
belonging to some documents can be defined. For this purpose, first, a class C of objects  (e.g. fingerprint 
minutes, human faces, architectural details, tumors in radiological images, etc.), which should be taken 
into consideration as a basis of partial similarity of images assessment, should be specified. Let Gi.= 
[g1

i,…,gm
i],  Gj= [g1

j,…,gn
j] be local visual objects of the given class C primarily.selected for analysis 

in Vi.and Vj, respectively. Then all pairs of the type [gµ
i, g

ν
j] for µ. = 1,2,…,m, .ν = 1,2,…,n, should be 

taken into account. Each pair contributes to the partial similarity measure of s(Vi,Vj).if the similarity 
σ(gµ

i, g
ν
j) of the objects satisfies the following logical condition  (objects’ concordance test):

                         1 if  0 ≤ .0  ≤ .(g i, g j), 
t(g i, g j)  = 

0 otherwise, 

where σ.0 is a fixed threshold level, 0 ≤ σ.0  ≤ 1. A partial similarity function then can be defined as:

1 1
( , )

( , )
m n

i j
i j

t g g
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mn
= ==

∑ ∑

Using this function it is possible, for example, to evaluate partial similarity of mammograms accord-
ing to the number of pairs of calcifications of similar size and form detected in the analyzed images. 
However,   assessment of partial similarity of images is a time-consuming operation depending on the 
number of different pairs of the analyzed objects. This dependence becomes linear in the individual refer-
ence objects based similarity task  solution case,  when the set of reference objects is strongly limited.

The  time consumption of partial similarity of images assessment can be reduced if a significant part 
of non-perspective objects within a procedure based on simplified selection criteria is rejected. For this 
purpose it  can be established a sequence of objects’ multi-aspect similarity measures:

σ(1)(a,.b), σ(2)(a,.b), … , σ(k)(a,.b).

Let Σ(κ), κ = 1,2,…,k, denote the subset of single-aspect similarity measures on which σ(κ)(a,.b) has 
been based. If the Σ(κ) s are chosen so that   the inclusions Σ(1) ⊂ Σ(2) ⊂  … ⊂  Σ(k)  hold then the above-
given sequence represents step-by step strengthened similarity criteria.  Each next similarity formula 
is given there as a product of the preceding formula and some additional partial similarity measures. 
For a given reference object a.=.g* and a threshold  level σ0

(1)
  using  σ(1)(g*,b).and based on them con-

cordance test  a subset  C(1),  C(1) ⊆ C, of objects can be selected. The elements of C(1) are the first-step 
candidates for a class of objets similar to.g*.  Then, taking into account the similarity measure σ(2)(g*,.
b) and a threshold  level σ0

(2)
  and applying them to the elements of  C(1) a subset C(2), C(2) ⊆ C(1), can be  

selected, etc.  Repetition of  such procedure leads to a descending sequence of subsets C ⊇ C(1) ⊇ C(2) ⊇ 
… ⊇ C(k). Finally, C(k) consists of the most similar to g* objects. Images containing the elements of C(k)  

are the searched ones, forming a class of partial similarity defined by g*. The calculation-time reduc-
tion is achieved due to the fact that the initial selection steps are based on simplified  concordance test, 
while the next selections are applied to reduced subsets of visual objects.
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Relative Partial Similarity  

In the most general partial similarity detection cases non-numerical objects’ similarity assessment is 
admissible. Instead of the above-described concordance tests  t(gµ

i, g
ν
j) whose logical values  are ex-

pressed in a binary scale (0 = “false”, 1 = “true”)  the following statements:

h(a,.b; σ ): “a.is similar to b.in the sense of σ.”,

for any a.,b.,….∈ C. then can be taken into consideration and their logical values in a more general sense 
can be evaluated. This leads to the concept of partial similarity assessment based on relative (topological) 
logic [Hempel C.G. 1937, Kulikowski J.L. 1986, Vessel Ch.A. 1970]. In such case, instead of using any a 
priori fixed logical scale it is assumed that for any two statements, e.g. h(a,b) and h(c,e),  (the argument 
σ being here neglected for the sake of simplicity) the following logical relationships  are admitted:

1.. h(a,b)   h(c,e), i.e. “h(a,b) is.not.more.logically.valuable.than h(c,e)”;
2.. h(a,b)    h(c,e), i.e. “h(a,b) is.not.less.logically.valuable.than.h(c,e)”;
3.. h(a,b)  h(c,e) AND h(a,b)  h(c,e), i.e. “h(a,b) AND.h(c,e) are.equally.logically.valuable”, which 

also can be denoted as h(a,b) ≈ h(c,e);
4.. NEITHER..h(a,b)  h(c,e), NOR .h(a,b)  h(c,e), i.e. “h(a,b) AND h(c,e) are.logically.incomparable”, 

which also can be denoted by h(a,b) ? h(c,e).

In particular, it can be assumed that: 1st  h(a.,b; σ)   h(c.,e; σ) if  for a given similarity measure σ(a,.
b) it is σ(a.,b)  ≤ σ(c,.e), 2nd h(a.,b; σ’)   h(a.,b; σ”) if σ’(a,.b) = σ”(a.,b) and σ’ and  σ” are such that Σ.’ 
⊂ Σ.”. If a.=.g*..is a reference object  for which similar objects in a set of images are searched then  for 
any other objects  gµ, gν  a situation h(g*,.gµ) ≈ h(g*,.gν.) means that  the statements about  the similarity 
of gµ  to g* as well as of gν  to g*  are logically equivalent; therefore, gµ and.gν belong to the same class 
of similarity to g*. However, the above-mentioned relationships   ,  , ≈ , ? among the statements can 
be established, as well,   in any less-formalized  way  (e.g. suggested by human experts). 

For a given reference object g* and a set C.of visual objects a relative.similarity.class.(RSC) .H’ can 
be defined as a subset H’⊆ C of all objects b,.c,.d.,….for which the relationships h(g*, b) ≈.h(g*, c) ≈.
h(g*, d) ≈ … etc. hold and no such relationship occurs between two statements, say, h(g*, e) , h(g*, f )  
if e and .f. belong to different RSCs.  The last condition implies that if  H’.and H” are any two disjoint 
subsets of visual objects selected, at the first step of analysis, as candidates to form two different RSCs, 
then for any a,.b.∈ H’ and any c,.d.∈ H”. simultaneous relationships h(g*, a)  .h(g*, c) and.h(g*, b)  .
h(g*, d) for the sake of logical consistency should be detected and excluded.  Let H’.and H” be, at the 

Figure.7..Example.of.a.Hasse.diagram
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first step, two different subsets of visual objects that by the experts  have been indicated as similar to a 
reference object g* from the point of view of two different similarity criteria.  Then they can be taken 
as the first approximation  of  the candidates to form two RSCs. For this purpose all pairs of statements 
[h(g*, am), h(g*, cn)] such that  h(g*, am) ∈ H’, and h(g*, cn) ∈ H” should be taken into consideration 
and one of the relationships  ,  or ≈ to each of them by the experts should be assigned. However, if  
for certain pairs it is impossible to be done, the relationship ? to them should be assigned.  Then, a pos-
sible logical inconsistency between H’.and H” can be corrected according to the following rules: 1st if 
between the elements of H’.and those of.H” any of the relationships  ,  or ?  prevails then it should 
be extended on all remaining pairs of the elements of H’.and those of.H” ; 2nd  if between the elements 
of  H’.and those of.H” the relationship ≈ prevails then it should be extended on all remaining pairs of 
the elements of H’.and of.H”;  in such situation H’ and H” should be merged in a common RSC.  Ac-
cording to the established dominating type of  logical relationship between the statements in different 
RSCs  H’ and H” a similar relationship:  ,  , ≈ or ? between H’ and H” can be established. In similar 
way logical consistency between all initially selected candidates for RSCs can be established. The cor-
rection procedure leads thus to semi-ordering of the family .F.of RSCs: between any two RSCs  H’ and 
H” one of the relationships (i.e. H”  H’) or .H’ ? H” may occur.  This  semi-ordering relation can be 
represented by a directed contourless graph, called a Hasse diagram G.  The nodes of  G are assigned 
to the RSCs and an arc (ordered edge) between  any ordered  pair [H’, H”] of them  exists if H’  H” 
and no other RSC. H satisfies both H’  H and.H  H”. Example of a Hasse diagram illustrating a semi-
ordering of  a family of RSCs is shown below.

Two RSCs:  are separated by a dotted line from the rest of the graph. They satisfy Hl.? Hη., however, 
they are such that  no other  RSC..H.exists such that even Hl..H.or Hη..H;  such RSCs form a subset 
of maximally logically valuable statements.  As a result, the corresponding subset of visual objects Cl..

∪ Cη. should be taken into consideration as this of relatively the most similar ones to g*. Visual data 
mining based on relative partial similarity concepts may be, in general, less effective than  this, based on  
strongly defined  similarity criteria.  .However, in certain application areas partial similarity measures 
cannot be precisely evaluated. In such case relative similarity is the only possible way to use informa-
tion given in a suggestion like: “From.the.facial.expression.point.of.view B.seems.to.be..more.similar.
to.A..than.C” into a computer-aided decision process.

CONCLUSION

Visual data mining is a tool of extraction useful visual data dispersed in large repositories of visual 
documents and hidden  among other visual data of lower value for the users. This goal can be reached 
in two ways:  by direct indication of  a reference pattern (visual object) that should be found in a set of 
visual documents or by rough indication of a class of objects expected  to occur (maybe, not in identical 
form) in two or more documents. In both cases a general  notion of similarity and/or similarity measure 
and based on them partial similarity can be used to solve the problem. These notions admit, in  particu-
lar, using various image features to define multi-aspect similarity criteria. An extension  of the visual 
data mining methods on the case of  non-numerical similarity criteria is also possible. In particular, 
when  similarity of selected visual objects to the reference objects without clearly defined formal back-
grounds are suggested by the experts,  selection of the subsets of the visual objects (and, consequently, 
of containing them partially similar visual documents), satisfying the requirement of  similarity  to the 
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given reference object, can be reached due to the relative similarity concepts.  The last approach puts 
a bridge between formalized and traditional (manual) visual data similarity assessment and based on 
them visual documents retrieval methods.  
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ABSTRACT

The insufficiency of labeled training samples is a major obstacle in automatic semantic analysis of large 
scale.image/video.database..Semi-supervised.learning,.which.attempts.to.learn.from.both.labeled.and.
unlabeled.data,.is.a.promising.approach.to.tackle.this.problem..As.a.major.family.of.semi-supervised.
learning,.graph-based.methods.have.attracted.more.and.more.recent.research..In.this.chapter,.a.brief.
introduction.is.given.on.popular.semi-supervised.learning.methods,.especially.the.graph-based.methods,.
as.well.as.their.applications.in.the.area.of.image.annotation,.video.annotation,.and.image.retrieval..
It.is.well.known.that.the.pair-wise.similarity.is.an.essential.factor.in.graph.propagation.based.semi-
supervised.learning.methods..A.novel.graph-based.semi-supervised.learning.method,.named.Structure-
Sensitive.Anisotropic.Manifold.Ranking.(SSAniMR),.is.derived.from.a.PDE.based.anisotropic.diffusion.
framework..Instead.of.using.Euclidean.distance.only,.SSAniMR.further.takes.local.structural.difference.
into.account.to.more.accurately.measure.pair-wise.similarity..Finally.some.future.directions.of.using.
semi-supervised.learning.to.analyze.the.multimedia.content.are.discussed.
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INTRODUCTION

Digital image and video collections are growing rapidly in recent years, accompanied with the decreased 
cost of storage devices, high transmission rates and improved compression techniques. The demand for 
solutions to manage image/video database is increasing tremendously. It is a common theme to develop 
automatic analysis techniques for deriving metadata to describe the visual content at semantic level 
(Smith & Schirling, 2006). Thus, automatically annotating image and video at the semantic concept level 
has emerged as an important topic in the multimedia research community as it is an elementary step 
for obtaining these metadata. The concepts of interest include a wide range of categories such as scenes 
(e.g., urban, sky, mountain.), objects (e.g., airplane, car, face, etc.), events (e.g., explosion-fire, people-
marching, etc.) and certain named entities (e.g. person, place, etc.) (Naphade, et al., 2006; Snoek, et al., 
2006). As manually annotating large image or video archive is labor-intensive and time-consuming, 
efficient automatic annotation methods are highly desired. To this end, generally statistical models are 
built from manually pre-labeled samples, and then the labels are automatically assigned to the unlabeled 
samples using these models. However, this process has a major obstacle: frequently the labeled data is 
limited so that the distribution of the labeled data typically cannot well represent the distribution of the 
entire data set (including labeled and unlabeled), which usually leads to inaccurate annotation results.

Semi-supervised learning, which attempts to learn from both labeled and unlabeled data, is a promis-
ing approach to deal with the above issue. As a major family of semi-supervised learning, graph based 
method is becoming one of the most active research area in semi-supervised learning community in 
recent years. Many works on this topic are reported in the literature of machine learning community 
(Carreira-Perpinan & Zemel, 2005; Seeger, 2001) and some of them have been applied to multimedia 
semantic analysis. 

In Section II, we briefly introduce several semi-supervised learning techniques, including self-train-
ing, co-training and transductive SVM, and then we focus on graph-based methods (Zhu, 2005a).  The 
graph-based methods define a graph with each vertex corresponding to each sample in the dataset, and 
the weighted edges reflect the similarity between neighboring samples. The objective of most graph-based 
methods is estimating a prediction function on the graph. Zhu, Ghahramani, & Lafferty (2003) have 
made two assumptions for this function: (1) the predicted scores on the unlabeled data should be close 
to the given labels of the unlabeled data; (2) the function should be smooth on the whole graph. These 
two assumptions directly lead to the Gaussian random field method, in which the graph.combinatorial.
Laplacian is used as a regularizer. Besides these two assumptions, Zhou, Bousquet, Lal, Weston, & 
Scholkopf (2003) further made the structural.assumption: points on the same structure (typically re-
ferred to as a cluster or a manifold) are likely to have the same label. This leads to the local and global 
consistency method, which uses the normalized.Laplacian as the regularizer. Some more sophisticated 
regularization frameworks are also briefly introduced in this section, e.g., local learning regularization 
(Wu & Scholkopf, 2007), Tikhonov regularization (Belkin, Matveeva, & Niyogi, 2004) and manifold 
regularization (Belkin, Niyogi, & Sindhwani, 2006). In Section III, we present some applications of 
semi-supervised learning in video/image semantic analysis. 

Obviously a key-point in graph based semi-supervised learning is the pair-wise similarity as it is 
the basis of the label propagation. However, one basic assumption, structural.assumption, which is an 
essential of graph-based methods, is not embedded into the pair-wise similarity measure. Meanwhile, it 
is shown that the same results of normal graph-based methods can be deduced from the partial differen-
tial equation (PDE) based isotropic diffusion (Sapiro, 2001). Accordingly, a novel graph-based method, 
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named Structure-Sensitive Anisotropic Manifold Ranking (SSAniMR) (Tang, Hua, Qi, Wang, Mei, & 
Wu, 2007), is derived from a PDE based anisotropic diffusion framework (Perona & Malik, 1990), by 
embedding the structural assumption into the similarity measure. 

Finally, we will discuss some future directions for graph-based semi-supervised learning in the mul-
timedia applications, including multi-label semi-supervised learning (Wu & Jing, 2006), multi-instance 
semi-supervised learning (Rahmani & Goldman, 2006) and multi-graph learning (Tong, et al., 2005).

Some Semi-Supervised Learning Methods

In this section, we briefly introduce semi-supervised learning methods, including self-training (Yarowsky, 
1995), co-training (Blum & Mitchell 1998), transductive SVM (Joachims, 1999) and graph-based meth-
ods (Zhu, 2005a).

Self-Training and Co-Training

Self-training is a basic semi-supervised learning method.  In self-training, a classifier is initially trained 
with a small number of labeled samples, and this classifier is used to predict the labels of unlabeled 
samples.  Then, the most confident unlabeled samples (include both positive and negative ones) are 
added into the training set to retrain the classifier.  The procedure repeats until some conditions are 
satisfied, and this is the so-called self-training method (as the classifier tries to teach itself with its own 
predictions, this method is also called self-teaching or bootstrapping).

In co-training, features are split into two sets which are conditionally independent given the class. 
Each sub-feature set is assumed to be sufficient to train a good classifier. Co-training uses the predicted 
samples to retrain the classifiers. This is analogous to self-training, and the difference is that the clas-
sifier in self-training teaches itself while co-training uses the predictions of one classier to teach the 
other classifier. Two classifiers are trained initially with the labeled samples on the two sub-feature sets 
respectively. Then each classifier predicts the labels of unlabeled samples.  The most confident unlabeled 
samples from each classifier are added into the training set for the other classifier. Afterwards, the two 
classifiers are retrained and the procedure repeats. 

There are several noteworthy issues in co-training (Zhu, 2005a). The sub-features must be good 
enough so that the labels predicted by each learner on the unlabeled samples can help improve the per-
formance of the other classifier. And the sub-features sets should be conditionally independent so that 
one classifier’s high confident predicted samples are iid samples for the other classifier.

Transductive Support Vector Machines (TSVM)

Transductive support vector machine (TSVM) is an extension of standard support vector machine (SVM).  
Regular SVM tries to induce a general decision function for a learning task. It only uses labeled data 
to find a maximum margin linear boundary in the Reproducing Kernel Hilbert Space (RKHS). TSVM 
takes into account a particular test set and tries to minimize misclassifications of just those particular 
examples (Joachims, 1999).  So, it tries to find a linear boundary which has the maximum margin on 
both the labeled samples and the unlabeled samples. The decision boundary has the smallest gener-
alization error bound on unlabeled data (Vapnik, 1998). In many practical tasks, TSVM can achieve 
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a better performance than normal SVM, especially when only a small training set is available. SVM 
works on p(y|x) directly. This brings up the danger of leaving p(x) outside of the parameter estimation 
loop, if p(x) and p(y|x) do not share parameters (Zhu, 2005a). It is worth noticing that since we can only 
get.information about p(x) from unlabeled data, semi-supervised learning cannot help if p(x) and p(y|x) 
do not share parameters (Seeger, 2001). To build the connection between p(x) and the discriminative 
decision boundary, TSVMs do not allow putting the boundary in high density regions. The differ-
ences between SVM and TSVM are shown in Fig. 1.  The maximum margin boundary for SVM is 
shown in the left figure (plotted with dashed lines) while the maximum margin boundary is shown in 
the right figure (plotted with solid lines). In the cases like the one shown in the figure, TSVM will get 
better results than SVM. However, finding the optimal TSVM solution is NP-hard. Several algorithms 
(Joachims, 1999; Bennett & Demiriz, 1999; Chapelle & Zien 2005; Fung & Mangasarian 1999) have 
been proposed for approximation.

Graph-Based Methods

As a major family of semi-supervised learning, graph-based methods have attracted more and more 
recent research. Many works on this topic are reported in the literature of machine learning community 
(Chapelle, Zien, & Scholkopf, 2006; Zhu, 2005a).  Graph-based methods define a graph with the nodes 
representing the samples (including labeled and unlabeled ones) in the dataset while the edges reflect-
ing the pair-wise similarity between samples. Graph based methods are nonparametric, discriminative, 
and transductive in nature.

Some basic notations for the graph-based semi-supervised learning are defined as follows: let X={x1; 
… ; xl; xl+1;  … ; xn} be a set of n samples (i.e., video shots for our application) in Rm.(feature space 
with m dimensions). The first l points are labeled as yL= [y1; y2; … ; yl]

T with yi.∈{0, 1} (1 ≤ i ≤ l) and 
the remained points xu (l + 1 ≤ u ≤ n) are unlabeled. The vector of the predicted labels of all samples is 
represented as f, which can be split into two blocks after the l-th row:

L

U

 
=  

 

f
f

f             (1)

Figure.1..The.difference.between.SVM.and.TSVM

SVM TSVM
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Consider a connected undirected graph G.= (V, E) with the vertex set V corresponding to the n data 
points. Here V = L∪U, where the vertex set L = {x1; …; xl} contains labeled points and the vertices in set U 
= {xl+1; …; xl+u} are unlabeled ones. The edges E are weighted by the n×n pair-wise similarity matrix.

Most graph-based methods can be viewed as an estimation of a decision function f on the graph. The 
function f is required to satisfy two conditions: (1) it should be close to the given labels yL on the labeled 
nodes, and (2) it should be smooth on the whole graph. This can be expressed in a regularization frame-
work where the first term is a loss.function (also called fit term), and the second term is a regularizer.

Min-Cut

Blum & Chawla (2001) formulate semi-supervised learning as a graph min-cut problem. Let G be the 
undirected edge-weighted graph with nonnegative weights. A cut C of G is any nontrivial subset of V, 
and the weight of the cut is the sum of weights of edges crossing the cut. A mincut is then defined as 
a cut of G of minimum weight. The problem is polynomial time solvable as a series of network flow 
problems or using the algorithm of Stoer & Wagner (1994). It is a binary case, that is to say, fi ∈ {0,1}. 
Equivalently mincut is the mode of a Markov random field with binary labels (Boltzmann machine). 
The loss function can be viewed as a quadratic loss with infinity weight, i.e.,

2( )i i Li L
f y ∈∈

∞ -∑ , 

and the regularizer is 
2

,

1 ( )
2 ij i ji j

w f f-∑ . 

From the fit term, we can see that the labels of the training samples will not change in the entire process. 
Putting the fit term and regularizer terms together, mincut can be seen as an optimization problem by 
minimizing:
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subject to the constraint fi∈V∈{0, 1}.

Gaussian Random Fields and Harmonic Functions Method

Zhu, Ghahramani, & Lafferty (2003) propose a Gaussian random fields and harmonic function method 
with a regularizer of graph.combinatorial.Laplacian. It will be abbreviated to GRF method in this chap-
ter. It is a continuous relaxation to the discrete Markov random fields. The optimal prediction function 
f is estimated by minimizing the energy:
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where ∆ = D – W is the combinatorial.Laplacian, W.is the n.×.n similarity matrix and.D is a diagonal 
matrix with ii ijj

D w= ∑ .  

The main difference between GRF method and min-cut is that fi∈R in GRF method and fi∈V∈{0, 1} in 
min-cut.

Local and Global Consistency Method

The local and global consistency method proposed by Zhou, Bousquet, Lal, Weston, & Scholkopf (2003) 
is another widely-applied method. It adopts a regularizer of the normalized.graph.Laplacian.D–1/2DD–1/2 
= I – D–1/2WD–1/2. We abbreviated this method to consistency method in this chapter. The optimal pre-
diction function f.* is defined to minimize a cost function Q( f ):

2
2*

, 1 1

1 1 1arg min ( ) arg min ( )
2

n n
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f f i j ii j

f Q f w f f f f
d d= =
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The first term of Q( f ) is a smoothness constraint, which indicates that a good predicting function 
should not change too much between neighboring points. The second term is a fit constraint, which 
means that a good classifying function should not change too much from the initial label assignment.  
The trade-off between these two competing constraints is captured by a positive parameter µ. Note that 
the regularization term contains both the labeled and unlabeled data.

Linear Neighborhood Propagation (LNP)

Instead of considering pair-wise similarity relationships in traditional graph-based methods, LNP (Wang 
& Zhang, 2006) attempts to use the neighborhood information of each point to construct the graph G. 
The reconstruction matrix W is constructed by minimizing
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subject to 

Σjwij = 1 and wij ≥ 0.
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Once the W is constructed, the optimal prediction function f is obtained by minimizing

2 2

1 : ( ) 1

1( ) ( ) ( )
2

j i

n n

ij i j i i
i j x N x i

Q f w f f f y
= ∈ =

= - + -∑ ∑ ∑ .       (6)

Local Learning Regularization (LL-Reg)

In (Wu & Scholkopf, 2007), the authors formulate the above graph based methods as a quadratic opti-
mization problem,

( ) ( )min
n∈

+ - -
f

f Rf f y C f y


TT ,         (7)

where R ∈ n×n is the regularization matrix, f = [ f1,...,fn]
 ∈ n.is the vector of real valued solution, 

y = [y1,...,yj, 0, ...,0] ∈ n and C ∈ n×n. is a diagonal matrix with the entry Cii = Cl > 0 for 1 ≤ i ≤ l, and 
Cii = Cu ≥ 0 for l + 1 ≤ i ≤ n, where Cl and Cu are two parameters. We can see that R = D in GRF method 
and R = D–1/2DD–1/2 in consistency method.

 LL-Reg (Wu & Scholkopf, 2007) replaces the regularizer fRf with 

2
1
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=
-∑ , 

where oi(⋅) denotes the output function of a model, trained locally with some supervised learning algo-
rithms using the labeled data. Then the optimization problem becomes
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n∈
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where 
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.

A solution for oi.(xi) is given as:

oi.(xi) = αfi,           (9)

where fi.∈ in
  is the vector[ fi]

 for xj.∈ Ni (Ni denotes the set of neighboring points of xi, not including 
xi, and ni denotes |Ni.|), and 
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where 1 is the vector of all 1’s, id n
i

×∈X   denotes the matrix [xj-xi] for xj.∈ Ni. Here Ni is independent 
of fi and it is different for different xi. Note that fi is a sub-vector of f, so equation (13) can be written 
in a matrix form as:
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o = Af            (11)

where o is the same as in (8), while the matrix [ ] n n
ija ×= ∈A   is constructed as follows: ix∀  and xj 1 ≤ 

i, j.≤.n, if xj.∈ Ni, then aij equals the corresponding element of αi in (10), otherwise aij.equals 0. Similar 
as αi, the matrix A is also independent of f.  Substituting (11) into (8), we can see that the regularizer 
in LL-Reg is 

R = (I - A) (I - A)                     (12)

LNP can also be represented in this local learning regularization framework with ( )
j

i i ij jx
o x w f

∈
= ∑

iN
.

Other Regularizations

Belkin, Matveeva, & Niyogi (2004) propose a Tikhonov regularization algorithm by minimizing 

2
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where S = D or Dp with some certain integer p. The manifold regularization framework (Belkin, Niyogi, 
& Sindhwani, 2006) minimizes the cost function:
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wherein two regularization terms are employed. Here V is an arbitrary loss function; K is a ‘base kernel’, 
e.g. a linear or RBF kernel, and I is a regularization term induced by the labeled and unlabeled data.

Graph Construction

The construction of the graphs is “at the heart” of graph based semi-supervised learning methods 
(Zhu, 2005a). However, this issue has not been studied extensively.  Balcan et.al. (2005) build graphs 
for video surveillance using strong domain knowledge. The graph consists of time edges, color edges 
and face edges. Robust graphs are built in (Carreira-Perpinan & Zemel, 2005) from multiple minimum 
spanning trees by perturbation and edge removal.  The graph construction may be domain specific as 
it needs prior knowledge embedded. Detailed discussions on this problem can be found in Chapter 3 
and Chapter 7 of Zhu’s PhD thesis (Zhu, 2005b).

Learning with Directed Graphs

Most of the graph-based semi-supervised learning methods are based on undirected graphs. There are 
few methods based on directed graphs. Zhou, Scholkopf, & Hofmann (2005) investigate how to exploit 
the link structure of the graph and proposed a regularization framework for classifications on the di-
rected graphs. The fundamental assumption of this method is the category similarity of co-linked nodes 
in a directed graph. It assumes that nodes with highly overlapping parent sets are likely to have same 
category.  This assumption is shown to be effective for Web classification. Zhou, Huang, & Scholkopf 
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(2005) further generalize their work to a general framework semi-supervised learning on directed graphs. 
It takes a transition matrix as input and gives a closed form solution on unlabeled data.

We have briefly introduced some common semi-supervised learning methods. All these methods 
can be categorized as manifold learning, which have a close relation to spectral graph theory (Chung, 
1997).  There are still many other related methods. A more comprehensive survey can be found in (Zhu, 
2005a).

Image/Video Semantic Analysis Based on Semi-Supervised 
Learning

Generally the labeled samples in multimedia semantic analysis come from the users during an interac-
tive session. Manual annotating is labor-intensive and time-consuming.  To reduce the labor of users, 
lots of efforts have been made to obtain good results using a very small amount of labeled data. As 
unlabeled multimedia data are much easier to be obtained, many semi-supervised learning approaches 
have been applied for image/video annotation and content based image/video retrieval, by leveraging 
a large amount of unlabeled samples with certain assumptions. This section provides a brief introduc-
tion of these works. As there are lots of works on the applications of semi-supervised learning in the 
multimedia area, we do not give a complete survey here, only part of these works are introduced. 

Co-training is often applied in the multimedia analysis. Song, Hua, Dai, & Wang (2005) adopt the 
co-training method to video annotation, and in (Song, et al., 2006) they further apply a semi-supervised 
ensemble method for video annotation. Yan & Naphade (2005) analyze the drawbacks of co-training in 
video annotation, and propose an improved co-training style algorithm named semi-supervised cross-
feature learning. In (He, Zhang, Zhao, & Tong, 2005), a co-ranking framework is proposed to re-rank 
the retrieved images to move the irrelevant ones to the tail of the ranked list returned by a web image 
search engine.  As web-based images possess both intrinsic visual contents and text annotations, Feng, 
Shi, & Chua (2004) propose to bootstrap the learning process for web image annotation by adopting 
a co-training approach involving classifiers based on two orthogonal set of features – visual and text. 
In (Wang, Hua, Song, Lai, Dai, & Wang, 2007), co-training is applied to annotate the video shot size. 
Zhou, Chen, & Dai (2006) enhance the relevance feedback for image retrieval by integrating the merits 
of co-training and active learning into the relevance feedback process. 

Graph-based methods are the most popularly used semi-supervised learning techniques in mul-
timedia area recently. He et.al. (2004; 2006) propose manifold-ranking approaches to propagate the 
label information of image samples from positively-labeled ones to unlabeled samples. In (Yuan, et al., 
2006), a manifold ranking method based on feature selection is proposed for video annotation. Wang, 
Jing, Zhang, & Zhang (2006) propose a method based on random walk with restarts to refine the results 
of image annotation. A method based on kernel density estimation is proposed in (Wang, Hua, Song, 
Yuan, Li, & Zhang, 2006) for video semantic detection, in which the authors show that this method 
has close relationship with the graph-based semi-supervised learning. In (Tang, Hua, Qi, Song, & Wu, 
2008), the authors analyze the limitation of linear neighborhood propagation (Wang & Zhang, 2006) 
for video annotation and propose a kernel-mapped linear neighborhood propagation method. In (Tong, 
et al., 2005), Tong et.al. propose an image retrieval method to deal with two modalities in graph-based 
semi-supervised learning scheme. Motivated by this, Wang, Hua, Yuan, Song, & Dai (2007) propose 
a method OMG-SSL to integrate multiple graphs into a regularization and optimization framework to 
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sufficiently explore their complementary nature for video annotation. A PageRank-like multi-graph 
fusion method is proposed in (Liu, Lai, Hua, Huang, & Li, 2007) to simultaneously leverage textual 
relevancy, semantic concept relevancy, and low-level-feature-based visual similarity for video search 
re-ranking. In (Rui, Yuan, & Yu, 2006), a model based on semi-supervised clustering with semantic 
soft constraints is proposed for image annotation, in which both visual features and semantic meanings 
are utilized.

Some graph-based methods try to analyze the image/video data with existed domain specific knowl-
edge or context information. Tang, Hua, Mei, Qi, & Wu (2007) embed the temporal consistency of 
video data into the graph-based semi-supervised learning and propose a temporally consistent Gaussian 
random field method for video annotation. Liu, Li, Ma, Liu, & Lu (2006) propose a novel automatic 
image annotation method based on manifold ranking, in which the visual and textual information are 
well integrated, and the word-to-word correlations obtained from WordNet and the pair-wise co-oc-
currence are taken into consideration to expand the annotations and prune irrelevant annotations for 
each image. A context reranking approach (Hsu, Kennedy, & Chang, 2007) is proposed to leverage the 
recurrent patterns to improve the initial text search results for content based video search. This approach 
is formulated as a random walk problem along the context graph, where video stories are nodes and the 
edges between them are weighted by multimodal contextual similarities. 

Graph-based methods are also combined with other learning method to handle the image/video 
analysis problem. A semi-supervised framework for image retrieval is proposed in (Hoi & Lyu, 2005) 
through a fusion of graph-based semi-supervised learning and support vector machines.  In (Tang, Hua, 
Qi, & Wu, 2007), a two-stage semi-supervised multiple-instance learning based typicality ranking 
scheme is proposed for natural scene annotation. 

Besides co-training and graph-based methods, there are few other semi-supervised learning techniques 
applied to multimedia area. In (Li & Sun, 2006), a semi-supervised conditional random field method 
is proposed to image annotation. This method can effectively capture the spatial dependency between 
the neighboring labels while exploit the unlabeled data to improve the joint classification performance.  
Although TSVM has shown superior performance in many applications, it is hardly used in multimedia 
analysis due to the large computational cost.

Table 1 gives a summarization of these works. From this table, we can see the popularity of graph-
based semi-supervised learning, which is the topic this chapter focuses on. 

Structure-Sensitive Anisotropic Manifold Ranking

We have introduced several semi-supervised learning methods and their applications in multimedia 
semantic analysis. As an example, in this section we will detail a novel graph-based method SSAniMR 
(Tang, Hua, Qi, Wang, Mei, & Wu, 2007), which is applied to annotate the video semantics.

Motivation

The basic assumption used in graph-based semi-supervised learning is: nearby points are likely to 
have the same label. It is referred to as neighborhood.assumption in this chapter. Meanwhile, pair-wise 
similarity measure is a key point for graph-based methods, as it is the basis of label propagation, which 
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Table.1...A.summarization.of.several.works.on.the.applications.of.semi-supervised.learning.in.multi-
media.area

Approach Learning method Application
“Semi-supervised cross feature learning for semantic concept detection in 
videos”  (Yan & Naphade, 2005)

Co-training Video annotation

“Semi-automatic video annotation based on active learning with multiple 
complementary predictors”  (Song, Hua, Dai, & Wang, 2005)

Co-training Video annotation

“Ef.cient semantic annotation method for indexing large personal video 
database”  (Song, et al., 2006)

Co-training Video annotation

“Boosting web image search by co-ranking”  (He, Zhang, Zhao, & Tong, 
2005)

Co-training Image retrieval

“A bootstrapping framework for annotating and retrieving WWW images”  
(Feng, Shi, & Chua, 2004)

Co-training Image annotation

“An efficient automatic video shot size annotation scheme”  (Wang, Hua, 
Song, Lai, Dai, & Wang, 2007)

Co-training Video annotation

“Enhancing relevance feedback in image retrieval using unlabeled data”  
(Zhou, Chen, & Dai, 2006)

Co-training Image retrieval

“Semi-supervised learning for image annotation based on conditional random 
fields”  (Li & Sun, 2006)

Semi-supervised CRF Image annotation

“Manifold-ranking based image retrieval”  (He, et al., 2004) Graph-based Image retrieval
“Generalized manifold-ranking based image retrieval”  (He, et al., 2006) Graph-based Image retrieval
“Manifold-ranking based video concept detection on large database and 
feature pool”  (Yuan, et al., 2006)

Graph-based Video annotation

“Image annotation refinement using random walk with restarts”  (Wang, 
Jing, Zhang, & Zhang, 2006)

Graph-based Image annotation

“Video annotation based on temporally consistent Gaussian random field”  
(Tang, Hua, Mei, Qi, & Wu, 2007)

Graph-based Video annotation

“Automatic video annotation by semi-supervised learning with kernel density 
estimation”  (Wang, Hua, Song, Yuan, Li, & Zhang, 2006)

Graph-based Video annotation

“Video Annotation Based on Kernel Linear Neighborhood Propagation”  
(Tang, Hua, Qi, Song, & Wu, 2008)

Graph-based Video annotation

“Typicality ranking via semi-supervised multiple-instance learning”  (Tang, 
Hua, Qi, & Wu, 2007)

Graph-based Image annotation

“A semi-supervised active learning framework for image retrieval”  (Hoi 
& Lyu, 2005)

Graph-based Image retrieval

“An adaptive graph model for automatic image annotation”  (Liu, Li, Ma, 
Liu, & Lu, 2006)

Graph-based Image annotation

“Image annotations based on semi-supervised clustering with semantic soft 
constraints”  (Rui, Yuan, & Yu, 2006)

Graph-based Image annotation

“Video search reranking through random walk over document-Level context 
graph”  (Hsu, Kennedy, & Chang, 2007)

Graph-based Video search

“Graph-based multi-modality learning”  (Tong, et al., 2005) Graph-based Image retrieval
“Optimizing multi-graph learning: towards a unified video annotation scheme”  
(Wang, Hua, Yuan, Song, & Dai, 2007)

Graph-based Video annotation

“Video search reranking via multi-graph propagation” (Liu, Lai, Hua, 
Huang, & Li, 2007)

Graph-based Video search

is an essential technique in most of the graph-based methods. Neighborhood assumption can be easily 
enforced into the pair-wise similarity as 
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Figure 2.  Example for the influence of structure.assumption
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where xi is the low-level feature vector of sample i. This assumption is very useful and widely applicable. 
However, it sometimes  is too weak, since most real-world dataset (especially the image or video dataset) 
has more complex structures than this assumption can capture (Bousquet, Chapelle, & Hein, 2003), 
such as the samples clustered in a certain region may have the same labels. This can be formulated as 
structural.assumption or global.consistency.assumption (Zhou, Bousquet, Lal, Weston, & Scholkopf, 
2003): points on the same structure (typically referred to as a cluster or a manifold) are likely to have 
the same label. Unfortunately, like the one defined in (14), typical similarity definitions do not take the 
structural.assumption into account. Instead, this assumption is generally combined into most methods 
through an iterative label propagation process. Though weighted by distance, the label propagation is 
still isotropic, which will be shown later. This means the direct labeling contribution (i.e. the propaga-
tion coefficient which will be discussed later) from one sample to another, which is proportional to the 
pair-wise similarity, neglects the influence of the structural difference.

It is believed that embedding the structural.assumption into the pair-wise similarity will furthermore 
improve the performance of the general graph-based methods (Tang, Hua, Qi, Mei, & Wu, 2007). An 
exemplary case is shown in Fig. 2, in which each point represents a sample in the feature space. The 
distance between A and C is equal to the distance between A and B, that is, wAC equals to wAB according 
to the normal similarity measure. However, it is more reasonable if the similarity wAB is larger than wAC, 
as A and B are on the same structure while A and C.are on different structures. So we need to enhance 
the propagation between the samples in the same structure while weakening the counterpart between 
the samples in the different structures, according to the structural.assumption.

Accordingly, Structure-Sensitive.Anisotropic.Manifold.Ranking (SSAniMR) (Tang, Hua, Qi, Wang, 
Mei, & Wu, 2007) is derived from a Partial Differential Equation (PDE) based anisotropic diffusion 
framework (Perona & Malik, 1990; Sapiro, 2001), by embedding the structural.assumption into the 
similarity measure. From the view of PDE-based diffusion, we can see that the label propagation in 
SSAniMR is anisotropic, which is intrinsically different from the isotropic label propagation process 
in general graph-based methods. That is why this method is named using “anisotropic”.

Structure-Sensitive Anisotropic Manifold Ranking

In this section, we first introduce related graph-based methods, then analyze the influences of the point 
probability density on general graph-based approaches, and finally detail the SSAniMR.



  ���

Image/Video Semantic Analysis by Semi-Supervised Learning

Related Graph-Based Semi-Supervised Learning Methods

As aforementioned, graph-based semi-supervised learning methods have attracted lots of interests 
in machine learning community recently. Many methods have been proposed, such as the well-used 
Gaussian random fields and harmonic function based method (GRF method) (Zhu, Ghahramani, & 
Lafferty, 2003), and the local and global consistency method (consistency method) (Zhou, Bousquet, 
Lal, Weston, & Scholkopf, 2003). 

Most graph-based semi-supervised learning methods have a label propagation procedure; a key point 
in which is the propagation coefficients (also can be seen as transition probability or pseudo-transition 
probability). Pair-wise similarity measure is the basis of propagation coefficient. In (Zhu, Ghahramani, 
& Lafferty, 2003), the similarity between samples i and j is defined as:

2

21

( )
exp( )m id jd

ij d
d

x x
w

=

-
= -∑          (15)

if i ≠ j, and wii = 0. Here xik is the k-th component of sample i (represented as a vector xi ∈ Rm), and σ1, 
..., σm are scale hyper-parameters for each dimension. This definition has a large number of parameters, 
which are not optimally learned in terms of difficulty. Therefore, the pair-wise similarity in (14), which 
is defined on the normalized features, is commonly applied in practice.

Based on the similarity measure (14), the propagation coefficient from vertex j to vertex i is defined 
in GRF method (Zhu, Ghahramani, & Lafferty, 2003) and consistency method (Zhou, Bousquet, Lal, 
Weston, & Scholkopf, 2003) respectively as:

sij = wij / di           (16)

and

ˆ /ij ij i js w d d=            (17)

where 

i ijj
d w= ∑ .

It is obvious that 
1

0, 1n
ij ijj

s s
=

≥ =∑  and ˆ 0ijs ≥ , 
1
ˆ 1n
ijj

s
=

≠∑ .

Influences of Probability Density

The knowledge of the joint probability density p(x; y) is enough to achieve the optimal classification in 
supervised learning (taking argmaxyp(x;.y) as decision function), while in semi-supervised learning, 
even if one knows the density distribution p(x) of the samples, there is no unique or optimal way of 
using p(x) (Bousquet, Chapelle, & Hein, 2003). Here the influences of point probability density on the 
normal graph-based semi-supervised learning methods are discussed.

A most popular density estimation method is the Parzen window density estimation (Duda, Stork, 
& Hart, 2000), by which the probability density of a sample i is estimated by
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~

1 ( )i i j
j ii

p k x x
N

= -∑            (18)

where Ni is the number of samples connect to sample i, and k(x) is a kernel function that satisfies k(x) 
> 0 and ( ) 1k x dx =∫ . 

If we use Gaussian kernel, that is,
2

2

|| ||1( ) exp( )
22

i j
i j

x x
k x x

-
- = -

        (19)

we can see that 

1
2i ip d

N
= ,            (20)

since 
1

2 N  

is a constant, so di can be seen as a measure of density for sample i. This demonstrates that both sij and 
îjs  have intrinsically taken the influence of density into account.

The propagation coefficient in (16) can be seen as the transition probability from j to i. However, this 
coefficient just considers the influence of the individual density but neglects the influence of density 
difference between samples. Rewrite the propagation coefficient in (17) as:

1/2 1/2ˆ / ( ) ( )ij j j
ij ij i j ij

i i i

w d d
s w d d s

d d d
- -= = =         (21)

The term dj/di.can be regarded as a measure of density difference between samples j and i. We can 
extend (17) to a general case:

ˆ ( )j
ij ij

i

d
s s g

d
= ⋅

           (22)

where g(x) is a strictly decreasing function of x. That is to say, for a fixed vertex i, the propagation coef-
ficient from its nearby vertex j to itself strictly decreases accompanied with the increment of the density 
difference dj/di. Therefore, the propagation coefficient in (17) takes the influence of density difference 
into account. However, there are two drawbacks of this coefficient definition. First, we can see that 

ˆ 1ijj
s ≠∑ , 

which means it cannot be seen as a transition probability. We call this propagation coefficient pseudo-
transition probability. Second, a fixed g(x), that is, g(x) = (x)-1/2, may not be the optimal degradation 
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function, since frequently the optimization objectives vary with different real-world applications. Recall 
the example in Fig. 2, the density dC is smaller than the density dB. According to (17), the propagation 
coefficient from B to A will be smaller than the counterpart from C to A, which obviously violates the 
structural.assumption.

From PDE-Based Diffusion to Structure-Sensitive Anisotropic Manifold Ranking

In this subsection, we first discuss the connection between normal graph-based semi-supervised learn-
ing and isotropic heat diffusion. And then the SSAniMR is deduced from an anisotropic diffusion 
framework. 

The discrete version of the heat diffusion equation (Sapiro, 2001), 

f f
t

∂
= D

∂
, 

where ∆  is the combinatorial.Laplacian, can be written as:

( ) ( 1) ( 1) ( 1)1 ( )t t t t
i i ij j i

j iijj i

f f w f f
w

- - -

≠≠

- = -∑∑
.       (23)

Notice that 

( 1) ( 1)( ) 0t t
ii i iw f f- -- ≡ , 

that is to say, the value of wii does not affect the result, so we can set wii.= 0. Let 

1

n
i ijj

d w
=

= ∑ , 

equation (23) can be rewritten as:
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∑
        (24)

Represent it with matrix form, we have

( 1) ( ) 1 ( )( )t t t+ -- = -f f D W I f ,         (25)

and therefore

( 1) 1 ( ) ( )t t t+ -= =f D Wf Sf ,           (26)

where f(t) is the label vector at iteration point t. [ ]ij n nw ×=W   is the similarity matrix with wii = 0, S is 
the normalization of W with the entries 
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and D = diag(di) is the diagonal matrix with entries 
1

n
i ijj

d w
=

= ∑ .
 

Split the matrix S after the l-th.row and l-th column, we have

LULL

UL UU

 
=  

 

SS
S

S S
,           (27)

and split the vector f(t) like in (1), then (26) can be rewritten as:

( ) ( ) ( )

( ) ( ) ( )

t t t
L LL L LU U

t t t
U UL L UU U

 = +


= +

f S f S f
f S f S f           (28)

Enforce the constraint that the labels of the labeled samples will not change in the diffusion proce-
dure, that is ( )t

L L≡f y , into the second equation in (28), we get:
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S f S S f S f

S S y S f
        (29)

It is obvious that sij ≥ 0, sii = 0 and 

1
1n

ijj
s

=
=∑ , 

S and SUU are both non-negative matrices. When we connect each vertex to all other vertices (the case 
with a sparse representation of the matrix will be discussed in the section of experiments), every vertex 
j.∈.L will satisfy sij > 0 when j ≠ i, which results in that 0ijj L

s
∈

>∑ . 

Therefore 

1
1 1n

ij ij ij ijj U j j L j L
s s s s

∈ = ∈ ∈
= - ≤ - <∑ ∑ ∑ ∑ .       (30)

According to the spectral diameter bound for the non-negative matrix in the matrix theory (Chung, 
1997):

1 1
( ) max

n

iji n j
a

≤ ≤
=

≤ ∑A .          (31)
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We have:

1
( ) max 1UU ijl i n j U

s
+ ≤ ≤

∈

≤ <∑S .           (32)

Therefore

1 1 1
0
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and 

lim t
UUt→∞

=S 0, 

where 0 is a (n - l)×(n - l) matrix with each entry equals to 0. Through iterations until convergence, 
the optimal result will be obtained:
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This result is the same as the result of a normal graph-based method: Gaussian Random Field (GRF) 
(Zhu, Ghahramani, & Lafferty, 2003). Since the heat diffusion is isotropic, the label propagation proce-
dure in this method is isotropic though weighted by distance, which does not accord with the structural.
assumption of graph-based methods.

As aforementioned, we need to enhance the label propagation within a cluster while weakening 
the counterpart through different clusters according to structural.assumption. In general, the density 
variation within a cluster will be smaller than the density variation between different clusters. From 
this, structural.assumption encourages propagating label information within a region with uniform or 
close density in preference to propagating across the density boundaries. In the example shown in Fig. 
3, we want to enhance the direct propagating strength from B to A while suppressing the counterpart 
from C to A. Accordingly we consider an anisotropic diffusion equation:

( (| |) )f div g p f
t

∂
= ∇ ∇

∂
          (34)

This is a higher dimensional generalization of the anisotropic diffusion equation in (Perona & Malik, 
1990), in which g(x) is a nonnegative decreasing function and p is the density distribution. Discretize the 
equation like the Perona-Malik Discrete Formulation (Sapiro, 2001; Perona & Malik, 1990), we have

( ) ( 1) ( 1) ( 1)( )t t t ti
i i ij ij j i

j iijj i

f f w g f f
w

- - -

≠≠

- = -∑∑        (35)

where wij is the distance weighted similarity and gij is the density similarity.
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Notice that wii = 0 and set 1 1
/n n

i ij ij ijj j
w w g

= =
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we have:
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Let 
1

n
i ij ijj

d w g
=

= ∑  and represent (36) using matrix form:

( ) ( 1) 1 ( 1)( ( ) )t t t- - -- = ⋅ -f f D W G I f         (37)

therefore

( ) 1 ( 1) ( 1)( )t t t- - -= ⋅ =f D W G f Sf          (38)

where S represents the matrix whose entry in i-th row and j-th column is 1
( ) / ( )n

ij ij ij ijj
g w g w

=∑  and iis  
= 0, 

which takes both the pair-wise distance and density difference into account.  Then the predicted label 
vector of unlabeled data will be obtained: 

( ) ( 1) ( 1)t t t
U UL L UU U

- -= +f S f S f  .          (39)

It is worth noticing that, although (39) has similar form with (29), they have different intrinsic 
meanings: the label propagation in (29) is distance weighted isotropic while the propagation in (39) is 
structure-sensitive anisotropic.

Enforce the constraint ( ) = t
L Lf y , similar to the iterative process above we can obtain the result:

Figure 3.  Left figure shows the direct propagating strength from B to A equals to the counterpart from 
C to A. In the right figure we enhance the direct propagating strength from B to A while suppressing the 
counterpart.from.C.to.A.
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= = -f f S S y  .         (40)

 
This iterative method deduced from anisotropic diffusion is named as Structure-Sensitive.Anisotropic.

Manifold.Ranking (SSAniMR) (Tang, Hua, Qi, Wang, Mei, & Wu, 2007).

The Semi-Supervised Learning View of SSAniMR

In this subsection, we can see that SSAniMR is actually a graph-based semi-supervised learning method 
based on a structure- sensitive similarity measure.

As aforementioned, the similarity measure will be more accurate if the structural.assumption is 
embedded into it and the density variation within a cluster generally will be smaller than the density 
variation between different clusters. We assume that the similarity between two samples not only de-
creases with respect to the increment of their distance in the feature space, but also decreases with the 
increment of their density difference. This pair-wise similarity is more consistent with the structural.
assumption.

Define a density similarity between xi and xj as:
2

2

( )
exp( )

2
i j

ij
p

p p
g

-
= -            (41)

where pi is the probability density of sample xi. The new structure-related pair-wise similarity is defined 
as:

2 2

2 2

|| || ( )
exp( ) exp( )

2 2
i j i j

ij ij ij
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x x p p
w w g

- -
= ⋅ = - ⋅ -       (42)

while i ≠ j and iiw  = 0. The first term in the right side of (42) shows that the similarity between two 
samples decreases with respect to the increment of their distance in the feature space. The second one 
demonstrates that the similarity decreases with the increment of the density difference. That is to say, 
this similarity definition not only considers the neighborhood assumption, but also takes the structural.
assumption into account.

Motivated by the two basic assumptions, we can infer the real-valued labels for the unlabeled samples 
by minimizing the energy function

2 2

, 1

1( ) ( ) ( )
2

n

ij ij i j i i
i j i L

Q f w g f f f y
= ∈

= - + ∞ -∑ ∑        (43)

Then the prediction function is f.* = argminf.Q( f ). Intuitively, the first term of Q( f.) describes the 
total variation of the data labels with respect to the local structures, also called smoothness term. This 
term means that a good prediction function should not change too much between nearby density-similar 
points. The second term enforces the invariant constraint for the labels of labeled data fi.

* = yi (i.∈.L), 
also called fit term.

Differentiate Q( f ) with respect to f and represent it with matrix form:

*

* * *( ) 0L L
Q
f =

∂
= - + ∞ - =

∂ f f

f Sf f y

        (44)
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which can be transformed into

* *

*. . L Ls t
=

=

f Sf
f y



            (45)

where 1( )-= ⋅S D W G   and · represents the component-wise Hadamard.product (Duda, Stork, & Hart, 
2000). W is the normal similarity matrix with entries wij defined in (1) and G is the density similarity 
matrix with entries gij defined in (12). ( )idiag d=D 

  is the diagonal matrix with entries 

1

n
i ij ijj

d w g
=

= ∑ . 

That is to say, the propagation coefficient in SSAniMR is
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          (46)

It is obvious that sij ≥ 0, iis  = 0 and 
1

1n
ijj

s
=

=∑ 
. 

So it can be seen as a transition probability. And the gij incorporate the influence of density difference 
while the parameter σp controls the significance of the influence.

Split the matrix S after the l-th.row and l-th column, like in (28), then (45) can be rewritten as:

* * *

*. .
U UL L UU U

L Ls t
= +

=

f S f S f
f y

 

          (47)

Solve this linear equation, consequently the optimal solution for fU is obtained:

* 1( )U UU UL LI -= -f S S y  .          (48)

Consequently, the same results of SSAniMR are deduced from two different viewpoints. The deep 
research in PDE-based diffusion (Sapiro, 2001) will give us new insights for graph-based semi-super-
vised learning.

Experiments

SSAniMR is evaluated on a widely used benchmark video dataset by comparing it with the Colum-
bia374 SVM detectors (Yanagawa, Chang, Kennedy & Hsu, 2007) and two popularly used graph-based 
methods.

Experimental Settings

Experiments are conducted on the benchmark video corpus of the TRECVID 2005, which is consisted 
of about 170 hours of TV news videos from 13 different programs in English, Arabic and Mandarin 
(TRECVID, http://www-nlpir.nist.gov/projects/trecvid). The development (DEV) set of TRECVID05 is 
used in our experiments. After automatic shot boundary detection, the DEV set contains 137 broadcast 
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news videos with 43,907 shots. Some shots are further segmented into sub-shots, and there are 61,901 
sub-shots for the DEV set. For each sub-shot, 39 semantic concepts are labeled according to LSCOM-
Lite annotations (Naphade, et al., 2006). These annotated concepts consist of a wide range of genres, 
including program category, setting/scene/site, people, object, activity, event, and graphics. The DEV 
set is separated into four partitions with 90 videos as training subset, 16 videos as validation subset, 
16 videos as fusion subset, and 15 videos as test subset. Here training subset is used to train models, 
validation subset is used to validate the optimal parameters, fusion subset is used to choose the linear 
fusion coefficients and test subset is used for testing. More details about the dataset separation can be 
found in (Yanagawa, Chang, Kennedy & Hsu, 2007).

For each concept, systems are required to return ranked-lists of up to 2000 sub-shots, and system 
performance is measured by the official performance metric Average Precision (AP) (Trec-10 proceed-
ings appendix on common evaluation measures. http://trec.nist.gov/pubs/trec10/appendices/measures.
pdf  ) in the TRECVID tasks. The AP corresponds to the area under a non-interpolated recall/precision 
curve and it favors highly ranked relevant sub-shots. The APs over all the 39 concepts are averaged to 
create the Mean Average Precision (MAP), which is the overall evaluation result. 

Two low-level feature sets are used in the experiments: the first one is 225-D block-wise color mo-
ments in LAB color space, which are extracted over 5×5 fixed grid partitions, each block is described 
by a 9-D feature; and the second one is 75-D edge distribution layout. Experiments are conducted on 
the two feature sets respectively and then the two results are combined through linear fusion.

Implementation Issues

When implementing the SSAniMR algorithm, we need to calculate the inversion or the multiplication of 
the large-scale matrices in (40) or in the iterations of (39), which are difficult to be implemented subject 
to the limitation of both the computing ability and the memory quantity. For example, the video data set 
typically is very large (e.g., the DEV set in TRECVID05 has 61,901 sub-shots); it is difficult to storage 
the similarity matrix and compute its inversion. To deal with this issue, the graph is simplified by only 

Figure.4..Comparisons.of.results.using.color.moments
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connecting neighboring points, and thus matrices W  and S are sparse. Moreover, we can also calculate 
it offline. In this way, the quantity of memory and the processing time requested are greatly reduced.

There are two methods to find appropriate set of neighboring points for calculating the sparse rep-
resentation of the matrices W  and S (Duda, Stork, & Hart, 2000): (a) k-NN: find the k nearest neighbors 
for each point; and (b) ε-NN: find nearest neighbors in the super-sphere centered at current point with 
radius of ε. 

Another issue is to guarantee the convergence of the iterations. As mentioned before, for each sample 
xi, 

1ijj U
s

∈
<∑   

is a necessary condition to ensure the convergence of the iteration process (39). But when using k-NN 
or ε-NN to choose the connecting neighbors, this requirement may not be satisfied since the chosen 
neighbors may all belong to the unlabeled set U, thus 

ijj U
s

∈∑ 

will equal to 1. That is to say, the convergence of the iterative process cannot be ensured in this case.
To tackle this difficulty, a degradation factor λ (λ = 1 – δ, where δ is a small arithmetic number) is 

introduced into (38) as

( 1) ( )t t+ =f Sf .           (49)

Subject the invariant constraint ( )t
L L≡f y , we obtain

Figure.5..Comparisons.of.results.using.edge.distribution.layout
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It has been shown that 1ijj U
s

∈
≤∑   and 0 < l < 1, which easily result in ( ) 1UU <S . This leads to  
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Therefore:
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= = -f f S S f  .          (51)

In applications with large-scale data, we can use (50) to replace (39) to implement SSAniMR.

Experimental Results

In (Tang, Hua, Qi, Wang, Mei, & Wu, 2007), k-NN is adopted to find the neighboring points (k is set 
to 30 empirically). This process is relatively time-consuming. It needs about 15 hours (with Intel P4 
3.0G and 2G memory). However, this process is also required in other graph-based methods and can be 
calculated offline. The density is estimated by the distance-weighted Parzen window (Duda, Stork, & 
Hart, 2000). Once the nearest neighbors are obtained, the density estimation is very fast. The param-
eters in these methods are all tuned to be nearly optimal through validations while l is empirically set 
to 0.99. Time costs of GRF method and consistency method are both about one minute, and SSAniMR 
costs about two minutes, all after the nearest neighbors are obtained. Although SSAniMR is a little 
slower than the other two methods, it is computationally effective as the processing time is always a 
challenging problem in TRECVID tasks.

Figure.6..Comparisons.of.results.after.linear.fusion
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For performance evaluation, SSAniMR is compared with the Columbia374 SVM detectors (Yana-
gawa, Chang, Kennedy & Hsu, 2007) and two popularly used graph-based methods: GRF method (Zhu, 
Ghahramani, & Lafferty, 2003) and consistency method (Zhou, Bousquet, Lal, Weston, & Scholkopf, 
2003). The experimental results are shown in Fig. 4 (using color moments), Fig. 5 (using edge distribution 
layout), and Fig. 6 (for fused results) respectively. Comparing these results, we can see that SSAniMR 
performs the best on 21 of the all 39 concepts using color moments and performs the best on 25 of the 
all 39 concepts using edge distribution layout. After linear fusion, SSAniMR performs the best on 22 of 
the all 39 concepts. So SSAniMR is better than other methods for detecting most of these concepts. 

At the same time, we can see that SSAniMR’s performance on some of these concepts is worse than 
the other three algorithms. This may be caused by the following reasons: (1) the structural assumption 
(i.e. manifold assumption) may not be well satisfied for these concepts in the low-level feature space 
SSAniMR adopted; (2) the regularization framework of SSAniMR (which is similar to GRF) is not as 
good as that of consistency method for detecting some concepts; (3) the parameter validation process 
of SSAniMR in this paper is not as subtle as other three algorithms.

The MAP of SSAniMR is 0.427801 using color moments, which has an improvement of 6.26%, 2.01% 
and 25.57% over SVM, GRF method and consistency method, respectively. It has a MAP of 0.377531 
using edge distribution layout, which respectively has an improvement of 17.09%, 2.08% and 46.72% 
over SVM, GRF method and consistency method. Through linear fusion, SSAniMR obtains a MAP of 
0.450665, which has an improvement of 6.80% over SVM, 2.36% over GRF method and 22.25% over 
consistency method. All these comparisons demonstrate that SSAniMR is more appropriate than other 
semi-supervised learning methods and is effective for video semantic annotation.

DISCUSSION AND EXTENSIONS

In this chapter we have introduced the popular semi-supervised learning methods and their applications 
in image/video content analysis. Besides, we have shown that the normal graph-based semi-supervised 
learning method can be deduced from PDE based diffusion. Accordingly, a novel semi-supervised 
learning algorithm named Structure-Sensitive Anisotropic Manifold Ranking is derived from PDE 
based anisotropic diffusion. Experiments conducted on the TRECVID dataset have demonstrated its 
effectiveness.

It is worth noting that although many semi-supervised methods have been applied to image/video 
semantic analysis and have shown encouraging performance, their effectiveness on larger-scale dataset 
still need further validation. For example, in TRECVID high-level feature extraction, the best results are 
still obtained by purely supervised methods (TRECVID, http://www-nlpir.nist.gov/projects/trecvid). This 
may be attributed to several reasons, such as the high complexity of visual data and semantic concepts. 
Thus, semi-supervised learning based semantic analysis is still a challenging issue. There is also huge 
room for improvement of the existing methods. Here we briefly highlight several possible future works 
on similarity metric and graph-based learning: 

1. Region-level features can be incorporated into the pair-wise similarity metric, instead of only 
using frame-level features. Most of existing approaches are using frame-level features to model 
concepts. However, it is observed that actually concepts often more closely related to regions. 
Semi-Supervised Multiple Instance Learning (SSMIL) is a promising solution to this issue, where 
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a pioneer work has been reported in (Rahmani & Goldman, 2006). However, how to make it work 
for large-scale high-diverse video concepts is still not studied. 

2. Pair-wise similarity metrics are the same for all concepts in existing approaches. However, low-
level features and local structures may have different influences for different concepts. To learn a 
specific similarity measure optimized for each concept, for example, parameterized by the choice 
of features, distance metrics, and structure differences, is promising to improve the performance. 
In other words, we may construct a concept-sensitive similarity measure, which take concepts into 
consideration in the similarity measure. 

3. Concepts are correlated rather than isolated. Leveraging label correlations in graph-based semi-
supervised learning to simultaneously model multiple concepts may have better performance than 
modeling them separately.
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ABSTRACT

With.the.explosive.growth.in.the.amount.of.video.data.and.rapid.advance.in.computing.power,.extensive.
research.efforts.have.been.devoted.to.content-based.video.analysis..In.this.chapter,.the.authors.will.give.
a.broad.discussion.on.this.research.area.by.covering.different.topics.such.as.video.structure.analysis,.
object.detection.and.tracking,.event.detection,.visual.attention.analysis,.and.so.forth..In.the.meantime,.
different.video.representation.and.indexing.models.are.also.presented.

INTRODUCTION

In recent years, digital equipments such as digital camera and digital video camera have become very 
popular, which makes the digital video data growing in an exponential speed. Information in the Internet 
has also changed from one-fold text information to multimedia information such as graphs, image, music 
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and particularly video. Broadly speaking, the Internet can be regarded as a database which contains a 
big size of video data. Digital video is playing more and more important role in human’s life in terms 
of working, education, entertainment, and so on.

The increasing amount of digital video brings up a lot of problems which are never met before. For 
example, it is time-consuming and labor-intensive to manually manage the large scale, rapidly increas-
ing digital video collection. As a result, it is more difficult for users to find the desired video contents 
from the large scale video database. Therefore it is crucial in nowadays to automatically understand 
digital video data and make them convenient for people to access. During the recent two decades, video 
content analysis and understanding has been an active research area, and a whole range of models and 
methods have been proposed. One of the most famous achievements is the Content Based Video Retrieval 
(CBVR). CBVR firstly extracts the low-level visual and/or acoustical features of videos, and then finds 
videos that have low-level features similar to those of the query example. As this technology needs little 
human intervention and does not take human’s perception into consideration, it is not satisfactory in 
most real applications. In fact, human often judge the similarity of videos according to the objects they 
describe, the events they contain, and the feeling they express, rather than the video features such as 
color, shot, motion intensity. This difference between the low-level features and high level understanding 
is referred to as.semantic.gap, which in fact has become an important barrier of natural communication 
between computer and human. In order to bridge the semantic gap, lots of methods have been proposed, 
including relevance feedback, object recognition, event detection, and so on. 

In this chapter, we will outline the structure for content-based video semantic analysis and discuss 
some related technologies from low-level content analysis such as feature extraction, structure analysis, 
object detection and tracking, to high-level semantic analysis such as event detection, attention analysis 
and video mining.

Low Level Video Feature Extraction and Representation

Generally speaking, low-level feature representation includes visual feature extraction, description, 
dimension reduction and indexing. After the video is segmented and key frames are chosen, low-level 
image features can be extracted from these key frames. Low-level visual features such as color, texture, 
edge and shapes can be extracted from the key frame set in video and represented as feature descrip-
tors. After post-processing on the feature descriptors such as dimension reduction, they can be stored 
in the database using indexing models for future queries. There are two categories of visual features: 
global features that are extracted from a whole image, and local or regional features that describe the 
chosen patches of a given image. 

Global Features

In the sense of human perception, an image can be characterized from various aspects, consequently 
leading to different image feature extraction methods. Typically, three categories of these methods are 
commonly used: color-based, texture-based and shape-based (especially edge-based) methods.

Color: Color is the most widely used feature for its close relationship with the objects and the scene 
in the image and its little dependence with the image scale, view direction and view point. Due to these 
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properties, color-based methods are often able to generate robust representations of an image. In general, 
three main problems should be taken carefully into account in color-based methods: (a) Which is the 
proper color space according to the application; (b) how to quantitatively quantize the color feature into 
a vector for future indexing and similarity comparison; (c) how to properly measure the vector distance 
in the color feature vector space. Typical color feature representations include color histogram, color 
moments (Stricker & Orengo, 1995), color set (Smith & Chang, 1995), color correlogram (Vetterli, 
1995), and color coherence vector (Pass & Zabih, 1996). Among them, color histogram is the oft-used 
one which describes the relative quantity of each color in the image while overlooking the spatial rela-
tionships between different colors. 

Texture:	Texture is common vision phenomenon, which is, as stated by David A. Forsyth, “easy to 
recognize and hard to define” (Forsyth & Ponce, 2003). Smith and Chang (2003) defined texture as a 
color and illumination independent visual feature which reflects the homogeneity of an image. Some 
others say that texture is a densely and evenly arranged pattern of visible elements and a texture element 
is a repeated uniform intensity region of simple shape. Clearly, texture is an important part of an image 
and many methods are developed to extract texture features (Smith & Chang, 2003).

Shape: Shape is another important visual feature in images. However, since shape features are extracted 
by using image segmentation which is still a hard problem with little progress in achieving accurate 
and robust results, shaped-based methods are usually applied to salient objects in images (Aslandogan 
&Yu, 1999). There are many shape feature representations, such as Fourier shape descriptors, moment 
invariants, finite element method, and turning function and wavelet descriptor.

Local Features

The local feature extraction process can be roughly divided in two phases: region detection and region 
description. The feature detector is firstly used to detect a stable and characteristic region, and then the 
feature descriptor is used to describe the detected region in a precise, concise and robust way. In the two 
phases, one primary tackling issue is how to carry out the corresponding mission in a scale, rotation, 
illumination and noise invariant way.

Detectors: In order to obtain a robust detection result, the feature detectors should take into consid-
eration the factors such as the affine transformation, photometric transformation and scale differences. 
Harris proposed a corner detector which is well known as Harris Detector (Harris &Stephens, 1988). 
Harris corner is not scale and affine invariant, but it contributes as the bases for many detectors. For 
example, Mikolajczyk and Schmid (2004) extended Harris detector to a scale and affine invariant detec-
tor. Lowe (2004) proposed a SIFT (Scale Invariant Feature Transform) detector which detects extremum 
in the DoG (Difference of Gaussian) space. 

Descriptors: The raw pixel information of the detected region is sensitive to the illumination change, 
rotation and noise, thus is not a robust feature description. SIFT (Lowe, 2004) descriptor rotates the 
region according to the main intensity direction of the region, divides the region into several equal 
area sub-regions and uses the orientation histograms of all the sub-regions as the feature description. 
Ke and Sukthankar (2004) applied principal component analysis (PCA) on the intensity gradient map 
of a 41*41 patch on the detected region to get a lower dimensional descriptor. Other techniques such 
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as Gabor filters and wavelets, steerable filters and generalized moment invariants are also used in the 
regional feature description.

VIDEO STRUCTURE ANALYSIS

To efficient access of video data, parsing video structures at different granularities is the first step. Gen-
erally speaking, videos can be hierarchically represented by five levels: key frame, shot, scene, story 
unit and video, as illustrated in Fig.1. The following are some of the definitions, and detailed discuss 
them thereafter: 

•  Video frame: The basic components of video stream. Video data is made up of continuous frames. 
Every frame is an independent image. Different video standard may have different frame rate. In 
PAL standard, the frame rate is 25 per second, while in NTSC standard, it is 30 per second. 

•  Key frame:.The most representative frames in the video stream.
•  Video shot: An unbroken sequence of frames recorded from a single camera, which is the minimal 

physical unit of video structure analysis. A video shot normally represents a continuous action in 
both space and time.

•  Video scene: A collection of shots whose content are similar. It is a median representation of video 
content and contains some semantic information. With the help of video scene, we can analyze 
higher-level video content better. 

•  Story units:.Story unit generally represents a whole event at a higher level. It is made up of several 
continuous shots which may belong to different scenes.

Key Frame Extraction

In order to understand the content of a video, there need to first decompose the video into a set of scenes, 
and then extract some key frames that most represent the content of each scene. Compared with the 

Figure.1..A.hierarchical.video.representation
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original video data, key frames can represent the scene more concise and are more adequate for video 
indexing, browsing and retrieval.

There are many works on the area of key frame extraction. We can briefly categorize the related work 
into 4 classes: sampling-based, shot-based, segment-based, and others (Li, Zhang, & Tretter, 2001). The 
following are detailed introductions.

Since shot is a video segment with a continuous period on certain scenario, shot based key frame 
extraction methods are natural. And it is the dominating way among the current solutions. A very simple 
method is to extract the first frame of every shot as the key frame. However, more sophisticated and 
powerful methods have been developed. In work (Zhang, Wu, Zhong, &Smoliar, 1997), the first frame 
is always chosen as the key frame. Then the color histogram distance between the subsequent frames 
and the latest key frame is computed. If the distance exceeds a threshold, a new key frame will be 
chosen. In (Wolf, 1996), the frames at the local minima of motion features are selected as key frames. 
Mosaic based approach can be employed to generate a synthesized panoramic image that can represent 
the entire content in an intuitive manner. This method is especially useful for the camera tilting/pan-
ning sequences.

A video segment is a higher-level video unit, which can be a scene, an event, or even the entire se-
quence. In (Uchihashi, Foote, Girgensohn, & Boreczky, 1999), a video is segmented into some segments. 
The segments may be clusters clustered using some distance metrics. Then the centers of clusters are 
extracted as key frames.

Other works (Campisi, Longari, & Neri, 1999), (Kim & Hwang, 2000) used techniques, such as 
wavelet transformation, face detection, etc. to fulfill the task. The first work (Campisi, Longari, & Neri, 
1999) proposed a progressive multi-resolution method based on wavelet transformation to extract key 
frames. The draw back of this method is that the computation complexity is too high. In the second 
work, Kim & Hwang (2000) made the frames containing people and faces with a high likeliness to be 
key frames

In conclusion, key frame extraction is an important step to structure the whole video. Many people 
take great effort to find effective method for key frame extraction. There are many different approaches. 
But a general metric to evaluate the approaches is not proposed yet, because key frame extraction is a 
relatively subjective action. Different persons may regard different frames as key frames, and different 
applications tasks may require different kinds of key frames.

Shot Boundary Detection

To better facilitate the user’s access requirement such as browsing and retrieval, video content must be 
structuralized by some schemes. Video shot is the fundamental element above the frame level. Video shot 
is defined as an unbroken sequence of frames recorded from a single camera (Rui, Huang, & Mehrotra, 
1999). It is a physical entity and is delimited by shot boundaries. Therefore, to build up the semantic 
table-of-content structure for the video, the first step is to locate every shot by finding its beginning and 
end, what we call the task shot boundary detection (SBD for short) (TRECVID website, 2008).

The video creators may use a variety of editing types to transfer from one shot to another. 99% of 
them will fall into one of the following three types: (1) hard cut, (2) fade, and (3) dissolve. Related works 
on this topic will mainly focus on these three categories.

The simplest way to find the hard cut is measuring the pair-wise difference of consecutive frames 
is to compute the mean absolute change of intensity. A modification of this technique is only counting 
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the pixels that change considerably from one frame to another (Otsuji, Tonomura, & Ohba, 1991). The 
problem of this kind of approaches is the sensitivity to the camera motion. To reduce this influence, 
a 3 × 3 low pass filter is applied to each pixel before the computing of pair-wise difference (Zhang, 
Kankanhalli, & Smoliar, 1993). Block matching based approach further alleviates the influence of mo-
tion. The algorithm in (Shahraray, 1995) computes the discontinuity between one block on frame i with 
the block in frame i+Δ that matches most with the former within a certain adjacent area, where Δ is the 
step size. Then the difference between frames can be computed.

A popular alternative to the pixel-wise and block-wise approaches is the color histogram difference 
(Boreczky & Rowe, 1996). Experimental results show that the color histogram difference is very robust 
in detecting the hard cut, where the only problem lies in the manual setting of the threshold. Zhang, 
Kankanhalli and Smoliar (1993) proposed a twin threshold color histogram method to detect fades and 
dissolves. Since histograms ignore spatial changes within a frame, this feature is considerably more 
insensitive to object motion than pixel-wise comparisons. However, a histogram difference remains 
sensitive to camera motion, such as panning, tilting, or zooming (Zhang, Kankanhalli, & Smoliar, 1993), 
which bring false alarms in shot detection for certain video files.

To detect more types of shot boundary, the edge change ratio (ECR) is used as a feature in (Zabih, 
Miller, & Mai, 1995). This is because when shot boundary occurs, there will be new edge appearing at 
the position far away from the former position, and the former will disappear gradually. According to 
the method in (Zabih, Miller, & Mai, 1995), hard cuts, fades, dissolves and wipes exhibit a characteristic 
pattern in the ECR time series.

The standard deviation of pixel intensity proposed by (Lienhart, Kuhmünch, & Effelsberg, 1997) 
detects fade-in and fade-out respectively. The fades are modeled as a linearly increasing or decreasing 
pattern along the time axis. The algorithms check the slope of pixel intensities by computing a line 
of regression repeatedly, when the absolute slope is larger than the predefined threshold, a fade-in or 
fade-out is detected.

Arman, Hsu and Chiu (1993) extracted the feature of compressed domain to detect the shot bound-
ary. The differences of DCT coefficients of two frames are computed as the distance measure. Camera 
zoom/pan is likely effect the detection performance. To reduce the influence, Ueda, Miyatake and 
Yoshizawa (1991) computed the feature of motion vector by block matching, and detect the camera 
pan/zoom to precisely find the shot boundary. 

In this part, we describe the problem of shot boundary detection; discuss some difficulties that may 
influence the detection performance. The best detection rate of hard cut could reach 90% or so, and the 
detection rate of gradual transition is not satisfactory, and the false alarm is high compared with hard 
cut solutions. After all, the SBD problem still need to be investigated since the gradual transition of 
shot remains a hard problem that has not been solved well until recently.

Scene Analysis and Story Unit Segmentation

Scene analysis and story unit segmentation play an important role in video analysis. Usually scene and 
story unit contains intact events that happen in the video. Users are mostly interest in the important 
event in the video and are more intend to see a complete story than uncompleted one. And scene and 
story unit have more exact event boundaries and complete event descriptions than shot. So the scene 
analysis and story unit are the important for semantic analysis of video content.

Many researchers have worked in this area. Lin, et al. (2001) and Huang, et al. (1998) try to develop a 
method for all types of videos. A technique for shot content representation and similarity measure using 
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sub-shot extraction and representation is presented in (Lin & Zhang, 2001), that paper employs dominant 
color histograms and spatial structure histograms to measure content variation and to represent sub shots. 
Huang, Liu and Wang (1998) worked on joint audio-visual segmentation, and employs decision curve 
formulation mechanism to detect the story boundary.  In fact, developing a general method for scene 
analysis and story unit segment is a very difficult task. In many times, it cannot become true due to the 
differences in different domains. The more we know about the domain knowledge of the video data, the 
better techniques we can develop about it. So researchers are mainly focused on specific domain, such 
as movies (Hanjalic, Lagendijk, & Biemond, 1999) (Sundaram & Chang, 2000), news (Zhu, et al., 2001) 
(Iurgel, et al., 2001) (Hsu & Chang, 2003), and sports (Kijak, Gravier, & Gros, 2003) (Kijak, Oisel, & 
Gros, 2003) (Nitta, Babaguchi, & Kitahash, 2002) (Wang, Liu, & Yang, 2005).

Hanjalic, et al. (1999) used the visual features to analyze the movie video; it divides the image into 
blocks and subsequently uses block-matching to compute the similarity between shots. Then it uses 
the overlapping links method to extracting candidate boundaries. Sundaram, et al. (2000) combined 
the features of visual and audio, including color histogram, spectral flux, and multi-channel cochlear 
decomposition and spectral vectors. It uses temporal distance and shot duration measures to compute 
the similarity between shots. Then memory model (Sundaram & Chang, 2000) is employed to segment 
scenes. 

In news video analysis, Zhu, et al. (2001) employed visual and text features for scene analysis. Then 
it uses rules regarding anchorperson shots and captions as the main mechanism for identifying news 
topics. Iurgel, et al. (2001) used audio and semantic features to segment the story units; the semantic 
feature used here is the anchorperson shot. When segmenting the story unit, it employs not only the rules 
similar to (Zhu, et al., 2001), but also HMM model for boundary detection. The video, text, audio and 
semantic features is employed in (Hsu & Chang, 2003); the text feature here is the key-phrases in the 
introduction and conclusion of a news topic. These features are combined together for better segmenting 
story units. It uses the maximum entropy model (ME) to systematically fuse separate candidate story 
boundary sets, which are produced by mid-level features of various types. 

Many researchers have devoted to sports video structure analysis. Statistical models such as the 
Hidden Markov Models have been used to analysis the structure of the video (Kijak, Gravier, & Gros, 
2003) (Kijak, Oisel, & Gros, 2003). Especially in (Kijak, Gravier, & Gros, 2003), E. Kijak, et al. used 
both the visual and audio features. Nitta, et al. (2002) focused on grasping the story from the speech 
transcript by using a probabilistic framework based on Bayesian networks. Recently, Wang, et al. (2005) 
used templates based method to detect repetitive patterns in sport video.

In summary, story unit detection is an important and meaningful work in video analysis. However 
because this task is a high level concept, compared with shot boundary detection, it is a more challeng-
ing work. But specific domain knowledge of the video content can be used to develop some specific 
method on extracting story units.

Object Based Video Understanding and Representation

Object Detection

Objects detection is the first step in many video analysis and understanding applications, including object 
tracking, event detection, semantic annotation and retrieval of videos. Recently, video objects detection 
have received an increasingly attention in the literature. However, this is not an easy task. 
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The main problem in object detection is the amount of variation in visual appearance such as shape, 
pose, size, color and surrounding environment. An object detector must accommodate all these variations 
and distinguish the objects from other patterns that may occur in the visual world. Computing efficiency 
is also an important problem. Fast algorithm should be developed in order for detection in real-time. 

Related Works 

Many approaches have been proposed for object detection in video streams. Generally speaking, these 
algorithms can be classified as two categories: global appearance-based approaches and component-
based approaches.

Global appearance-based approaches take an object as a unit and perform classification on features 
generated from the entire object. Many statistical learning mechanisms are explored to identify object 
patterns. For example, Neural networks are used to detect general objects (Garcia & Delakis, 2004); 
Support Vector Machines (SVM) (Osuna,  Freund & Girosi, 1997) and Naive Bayes classifiers (Sch-
neiderman & Kanade, 2000) are used to locate human faces and cars; boosting algorithms (Viola & 
Jones, 2001) are widely applied to detect objects, such as faces and text.

Component-based methods treat an object as a collection of parts. These methods first extract some 
object components,  and then detect objects by using geometric information among object parts. Mohan, 
et al. (2001) proposed an object detection approach by components. In their approach, a person is rep-
resented by components such as head, arms, and legs, and then SVM classifiers are used to detect these 
components and to decide whether a person is present or not. Naquest and Ullman (2003) used fragments 
as features and perform object recognition with informative features and linear classification. Agarwal, 
et al. (2004) extracted a part vocabulary of side-view cars using an interest operator and learned a Sparse 
Network of Winnows classifier to detect side-view cars. Fergus, et al. (2003) and Leibe, et al. (2004) also 
used interest operators to extract objects’ parts and perform detection by probabilistic representation 
and recognition on many object classes, such as motorbikes, human faces, airplanes, and cars.

In another point of view, object detection problem is typically solved by two stages: candidate 
generation and candidate verification (Ye, et al., 2005). Candidate generation generates regions of an 
image that may contain an object, and candidate verification further determines whether the candidate 
region is an object or not. To generate candidate, “Exhaustive search” and “Selective search” are two 
commonly used methods. The first one considers all the windows in an image as candidates while “se-
lective” methods consider only the specific regions with specific features. In the verification procedure, 
supervised learning are normally used method to detect objects, classifiers may include Support Vector 
Machines (SVMs), Bayesian networks, Neural Networks (NNs), and boosting models. This method may 
require a large training data set to achieve a reasonably good performance.

A Technical Solution

We will introduce a  solution of text detection for example. Text detection is a classical problem in the 
field of object detection. Text in images and video frames carries important information which is a very 
compact and accurate clue for video summarization and retrieval. 

Based on the features selected, text detection algorithm can be classified into three kinds: (1) color 
and connected component based algorithm, (2) video temporal information based algorithm, and (3) 
edge/texture based algorithm. The first class is based on the analysis of homogeneous color and grayscale 
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components that belong to characters (Jain &Yu, 1998). The second class is used to detect video captions 
by considering that the appearance of a caption will bring difference in successive frames (Tang, et 
al., 2002). Precise shot boundary detection is required before identifying the appearance of a text line. 
Furthermore, if a text line appears on a shot boundary, temporal information will fail to detect it. Edge 
and texture features (Wu, et al., 1999) (Kim, et al. 2003) are the most popular features and work well in 
many cases. It is based on the idea that text region may contain a lot of edges and textures. 

Most text detection algorithms follow a coarse-to-fine framework. In the coarse-detection section, 
candidate text regions are detected. In order to locate candidate regions, candidate pixels are first 
detected. In this step, some filters are usually used, such as Sobel edge filter, Canny edge filter, Harr 
wavelet filter, etc. Then candidate pixels are selected according to these highlighted pixels. Candidate 
regions can be located using moving window algorithm. A fixed size window is defined (for example: 
10*5) and moves all over the image. Some statistical information is calculated in the box and is used to 
identify if it is a candidate region. Candidate pixels density information and local dynamic threshold 
are the most simple and popular way. The size of the window is very important. Different sizes will 
generate different results. Another way called density-based region growing algorithm, is also useful 
to locate candidate text regions. This algorithm calculates the density information of every pixel and 
achieves better result. But it is time consuming. Once the text region is located, it is separated into text 
lines according to projection information; thus the position of the space can be found.

In the fine-detection section, candidate regions are identified by classifiers. In this procedure, two 
things are the most important: features and classifiers. Based on the review of previous methods, we 
know that edge and texture features are most frequently used. Text can be regarded as a kind of texture 
pattern, but the texture properties such as regularity and directionality are weak. It just contains some 
character strokes that form a text line in a special orientation. Then, only one kind of texture feature 
is insufficient to model text’s texture pattern., A lot of texture feature are usually extracted, includ-
ing: moments features, histogram features (energy histogram and direction histogram), co-occurrence 
features, scan line features, etc. Sometime some approaches (such as PCA, forward search algorithm) 
are used to decrease the feature dimensions. Compared with other classifiers such as neural network 
and decision tree, SVM is easier to train, needs fewer training samples and has better generalization 
ability. So it is the most popular classifier in text detection. Adaboost has also been used and be proved 
to be effective. Training data is also important. The number of the samples is depended on the dimen-
sions of the feature. Whatever, false samples should be more than true samples to get a better interface 
in the feature space.

Short Summary

Object detection is a difficult problem. Although a lot of work has been done, we still have a long way 
to go. Maybe better features and better machine learning tools can achieve better results in the future. 
We are also looking forward to new framework which can make a revolutionary progress.

Object Tracking

Moving object tracking is a major issue in many video analysis systems. Tracking means to locate the 
object from frame to frame, in other words, to find out the trajectory of the moving object. It enables 
several important applications such as: (1) security and surveillance to recognize people, to provide 
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better sense of security using visual information; (2) medical therapy – to improve the quality of life 
for physical therapy patients and disabled people; (3) retail space instrumentation – to analyze shopping 
behavior of customers, to enhance building and environment design; (4) video abstraction – to obtain 
automatic annotation of videos, to generate object-based summaries; (5) traffic management – to ana-
lyze flow, to detect accidents; (6) sports strategy analysis- to analyze the trajectory of the players; (7) 
human-computer interaction – to recognize gesture, track eye gaze for data input to computers.

In its simplest form, tracking can be defined as the problem of estimating the trajectory of an object 
in the image plane as it moves around a scene. In other words, a tracker assigns consistent labels to the 
tracked objects in different frames of a video.  Additionally, depending on the tracking domain, a tracker 
can also provide object-centric information, such as orientation, area, or shape of an object.

Related Works

Object tracking methods can be divided into three categories: kernel tracking, silhouette tracking and 
point tracking (Yilmaz, et al., 2006). Next, a concise introduction and some representative work for 
each method will be provided.

Kernel.tracking.	Kernel can be regarded as the shape and appearance of the object. So kernel can be 
a template of a geometry shape or an ellipse with feature histograms. Apparently, for object’s feature, 
every pixel’s contribution is not equal. So we assign different weights to pixels according a function, 
which is named as “kernel”. For example, an isotropic kernel 
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Next, in the current frame, we want to find the region that most similar to the object model or evaluate 
the object’s motion. The popular methods are mean-shift, KLT and eigentracking. 

Point.Tracking..Objects can be represented by a number of points. In this case, tracking can be per-
formed by finding the correspondence points. So point detection algorithms are needed. Then we should 
match these detected points with points that used to represent the object in the previous frame. Point 
correspondence methods can be divided into two classes: deterministic (e.g. Hungarian algorithm, Greedy 
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algorithm) and statistical methods (e.g. Kalman filter, Particle filter (Isard &Blake, 1998)). The statistical 
methods explicitly take the object measurement and consider uncertainties in correspondence while 
deterministic methods use qualitative motion heuristics to constrain the correspondence problem. 

Silhouette.tracking. Some objects such as hand, body and shoulder have complex shapes and silhouette 
representations provide an explicit shape descriptor for those objects. Silhouettes have many different 
representations and the most popular representation is binary (0/1) mask, which mask the object region 
with 1 and non-object region with 0. Silhouette tracker is designed to find the object region in current 
frame according to the model generated in the previous frame. It uses the information (e.g. appearance 
density, shape model) of the object region and is performed through either shape matching or contour 
evolution. The goal of shape matching is to find out the object silhouette in the current frame. On the 
other hand, contour tracking want to get object’s new position by evolving an initial contour. The main 
evolving methods are state space (e.g. HMM) and direct minimization of some energy function (e.g. 
gradient descent). Apparently, silhouette tracking can deal with various complex shapes.

A Technical Solution

In this part, we will introduce a well know tracking method: Particle filtering (Isard &Blake, 1998).
Given an object, we want to use some points to represent it. Then how to select points or samples? 
Usually, different sub-region of the object region plays different roles. That is, some sub-regions are 
very important while some are not. For those important sub-regions, more samples (particle) should be 
selected. Those particles are not equal. Some are more important while some are less. How to get their 
weights or posterior probabilities?

In order to develop the details of the algorithm, let  i

t
x  represents the state (e.g. position) of the.i’th 

particle at time t, and let  i

t
w   denotes the weight of the particle at time t. So  
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After a few iterations, it is possible that few particles have too large weights and others have negligible 
weights. This is the degeneracy phenomenon which is an undesirable effect in particle. One method is 
selecting a very large number of particles, but this is impractical. Good choice of importance density 
and resampling are two effective solutions. Particle filtering approximates the density directly as a finite 
number of samples. A number of different types of particle filter exist, and some have been shown to 
outperform others when used for particular applications. However, when designing a particle filter for 
a particular application, it is the choice of importance density that is critical.

Short Summary

In this part, we first give a simple introduction to object tracking. Then we briefly introduce some main 
tracking methods. Last, a popular tracking method, particle filter, is introduced as a technical solution. 
There are many other solutions such as mean shift, condensation, eigentracking and so on.

Object Representation and Indexing

Object representation and indexing is the way to describe objects, by which objects can be easily re-
trieved, classified and detected in image or video dataset. So this method should be distinctive and ef-
ficiently computed. Imagine that you are standing beside a car (Fig.2) and you want to describe it to an 
auto-navigation robot, so that it can recognize cars in real-time. Thus, how to describe or represent cars? 
Should we only use color, shape or other features? Generally, objects can be represented by their shapes 
and appearances. The object shape representations mainly include points, primitive geometric shapes, 
silhouette and contour, articulated shape and skeletal models. Common appearance representations in 
the context of object can be divided into: (1) probability densities of object appearance, (2) templates, 
(3) active appearance models, (3) multi-view appearance models, and (4) integral image, etc.
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Indexing is something that serves to guide, point out, or otherwise facilitate reference, especially 
in video dataset. According to the type of data being stored, video indexes can be classified into the 
following categories that have been discussed before: key frame, video shots, video story and video 
summary.

Object representations are the basis for high level stage process, such as detection, classification and 
tracking. So the right representation plays a critical role in multi-media computing. Some representative 
method will be described in the following according to examples illustrated in Fig.3:

•  Points-based method: The object is represented by the centroid (Fig.3 (a), in tracking) or by a 
set of points-based patch, such as SIFT (Lowe, 2004), MSEA (Matas, et al. 2002) (Fig. 3(b), in 
classification context). In general, the point representation is suitable for representing and tracking 
objects that occupy small regions.

• Primitive geometric shapes: Object shape is represented by a rectangle, ellipse (Fig.3 (c), (d)), 
etc. Object motion for such representations is usually modeled by translation, affine, or projective 
transformation. Though primitive geometric shapes are more suitable for representing simple rigid 
objects, they are also used for non-rigid ones.

Figure.2..Different.cars.in.different.view.points

Figure.3..Object.representations..(a)point.or.centroid,.(b).multi.points,.(c).rectangular.patch,.(d).ellipti-
cal.patch,.(e).part-based.multiple.patches,.(f).object.skeleton,.(g).complete.object.contour,.(h).control.
points.on.object.contour,.(i).object.silhouette.
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•  Object silhouette and contour: Contour representation defines the boundary of an object (Fig. 3 
(g), (h)). The region inside the contour is called the silhouette of the object (Fig.3 (i)). Silhouette 
and contour representations are suitable for indexing complex non-rigid shapes, such as human 
motion and hand motion analysis. The silhouette or contour can be described as shape context 
(Thayananthan, et al., 2003), or histogram of gradient (Xu & Li, 2002).

•  Articulated shape and models: Articulated objects are composed of body parts that are held 
together with joints. For example, the human body is an articulated object with torso, legs, hands, 
head, and feet connected by joints. The relationship between the parts is governed by kinematics 
motion model, ex. joint angle, etc. In order to represent an articulated object, one can model the 
constituent parts using cylinders or ellipse as show in Fig.3 (e).

•  Skeletal models: Object skeleton can be extracted by applying medial axis transformation to the 
object silhouette. This model is commonly used as a shape representation for objects recognition. 
Skeleton representation can be used to model both articulated and rigid objects (Fig.3 (f)). Chamfer 
matching (Thayananthan, et al., 2003) is also used for comparing the skeletal model.

.•  Probability densities of object appearance: The probability density estimates of the object ap-
pearance can either be parametric, such as Gaussian and mixture of Gaussians, or nonparametric, 
such as Parzen windows and histograms. The probability densities of object appearance features 
(color, texture) can be computed from the image region.

• Templates: Templates are formed using simple geometric shapes or silhouettes. An advantage 
of a template is that it carries both spatial and appearance information. Templates, however, only 
encode the object appearance generated from a single view. Thus, they are only suitable for view 
invariant objects whose poses do not vary considerably during the course (Comaniciu & Meer, 
2002). 

• Integral image: An integral image I is an intermediate representation for the image and contains 
the sum of gray scale pixel values of image N with height y and width x, i.e., 
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The integral image is computed recursively, by the formulas: 
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therefore it requires only one scan over the input data. This intermediate representation I(x,y) allows the 
computation of a rectangle feature value at (x,y) with height and width (h,w) using four references

( , , , ) ( , ) ( , ) ( , ) ( , )F x y h w I x y I x w y h I x y h I x w y= + + + - + - + . 

This representation is widely used in object detection for fast computing object statistic features in 
(Viola & Jones, 2000).
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Generally speaking, there is strong relationship between the object representations and the application 
algorithms, such as detection, tracking et.al, and object representations are usually chosen according 
to the application domain. Video indexing is a category representation for fast retrieval of the video 
information.

HIGH LEVEL VIDEO SEMANTIC ANAlYSIS AND UNDERSTANDING

In order to understand and analysis the visual data, some high level semantic information should be 
extracted such event information, perceptual attention information and mining information. In the fol-
lowing, we will have a detailed introduction on these areas.

Event Detection

Video events are normally defined as the interesting or important events which capture user attentions. 
For example, a soccer goal event is defined as the ball passing over the goal line without touching the 
goal posts and the crossbar. With the advances of storage capabilities, computing power and multimedia 
technology, the research on semantic event detection become more and more active in recent years, such 
as video surveillance, sports highlight detection, TV/Movie abstraction and home video retrieval etc. 
Through event detection, consumers can retrieve specific video segments quickly from the long videos 
and save much time in browsing. Moreover, event detection makes it possible to deliver the video clips 
into mobile devices or webs. However, semantic event detection is still a challenging problem due to 
the large semantic gap and the difficulty of modeling temporal and multimodality characteristics of 
video streams.

In visual surveillance for example, after successfully tracking the moving objects from one frame 
to another in an image sequence, the problem of understanding object behaviors from image sequences 
appears naturally. Behavior understanding involves the analysis and recognition of motion patterns, and 
the production of high-level description of actions and interactions. In fact, event detection is based on 
the correct recognition of human behavior and object movement. Events scratched from the scene under 
surveillance could be divided into two large categories: normal events and abnormal events. Naturally, 
abnormal behavior or event detection after behavior understanding and description of behaviors would 
be more important, for it’s wildly utilization.

Related Works  

In the past few years, significant research has been devoted to the video event detection. Haering, et 
al. (2000) proposed a three-level video event detection method and apply it to animal-hunt detection in 
wildlife documentaries. Three levels are feature level; neural network based classifier level; and shot 
descriptor level respectively. A three-level video event detection method is also applied in (Wang, et 
al. 2006). The authors employed Conditional Random Fields (CRFs) to fuse temporal multi-modality 
cues for event detection. Ekin, et al. (2003) combined object-based features and cinematic features to 
develop an event detection algorithm and a summarization system for soccer videos. Shot are classified 
into four view (shot) types according to the dominant color features. Then high-level events such as 
goal, referee and penalty box are detected based on object-based features from the specific views. Bai, 
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Figure.4..The.framework.of.exciting.event.detection.in.soccer.video
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et al. (2007) also presented an event detection model for sports video; this model is based on percep-
tion concepts and finite state machines (PC-FSMs). PC-FSMs are described formally in terms of state 
graphs, then a graph matching method is used to discover semantic event automatically. Xie, Shyu, 
and Chen (2007) proposed a video event detection method which utilizes both the distance-based and 
rule-based data mining techniques; they try to provide a domain independent solution for rare event 
detection in video streams. 

An important application in event detection is visual surveillance, where abnormal detection and 
behavior prediction are significant in practice. In applications of visual surveillance, not only should 
visual surveillance systems detect abnomalies such as traffic accidents and car theft etc, according to 
requirements of different functions, but also predicts what will happen according to the current situa-
tion and raise an alarm for a predicted abnormal behavior. Implementations are usually based on one 
or other of the following two methods.

1. Probability.reasoning.and.prior.rules.combined.methods. A behavior with small probability or 
against the prior rules would be regarded as an anomaly (Owens & Hunter, 2000) (Lou, Liu, Tan, 
& Hu, 2002). 

2. Behavior-pattern-based.methods. We can predict an object behavior by matching the observed 
sub-behavior of the object with the learned patterns (Johnson &Hogg, 1996) (Sumpter & Bulpitt, 
2000). Generally, patterns of behaviors in a scene can be constructed by supervised or unsupervised 
learning of each object’s velocities and trajectories, etc. 

A Technical Solution

In this part, we introduce a method of exciting event detections in broadcast soccer video as an example 
(Ye, et al., 2005). Framework of the proposed method is described in Fig.4. 

First, for each of the video frame, the playfield area is classified based on low-level features, and frames 
are hierarchically classified into defined views. Finally, view label, camera motion and shot boundary 
descriptions together with temporal relationship are fed into an SVM classifier to identify events. In our 
implementation, “shoot on goal”, “placed kick”, “break by offence” are selected for experiments.

To segment playfield, training models are automatically built by Gaussian Mixture Models (GMMs) 
(Jiang, et al., 2004). The model is updated online by an incremental procedure. Then three kinds of mid-
level descriptions are extracted to represent the soccer video content. For each of the soccer frame, we 
can semantically assign a view label to them by a hierarchical classification procedure. The views are: 
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“goal mouth view”, “corner view”, “middle field view”, “player close-up view” and “out-field view”. For 
each of the level we extract low-level features of playfield ratio, projection profile of non playfield, and 
shape for classification. SVM classifiers are employed to perform the classification task on extracted 
features. An incremental scheme is adopted to improve the extensibility.

Short Summary

We have reviewed the state-of-the-art of event detection in video content analysis and visual surveil-
lance. Although a large amount of work has been done in this scope, many issues are still open and 
deserve further research.

Visual Attention in Video Analysis

Visual attention is one of the most important features of Human Visual System (HVS). It can filter the 
signals received by the HVS and select the important ones to be processed. Visual attention has two 
mechanisms, bottom-up and top-down, correspond to stimulus-driven and object-driven respectively. 
The bottom-up mechanism is closely related to human sensory system, which is sensible to the contrast 
including both global effect and contextual difference. The top-down mechanism is closely related to 
human brain, which is a much complex mechanism.

Computational attention model enables computers to understand images and videos in the manner of 
HVS. It has been a hot research point for years and has been successfully applied in many fields including 
image compression, video summarization, image and video browsing on small displays and so on.

Limited by the capacity of human information processing system, only a small part of the informa-
tion received by sensory system should have the chance to be processed by brain. The ability of human 
visual system to concentrate mental effort on sensory or mental events is referred as attention. Before 
being processed by brain the information should be filtered twice. The first one happens before pattern 
recognition, which is a stimulus driven process, referred as bottom-up attention. The second one happens 
after pattern recognition, which is a task driven process, referred as top-down mechanism. Computational 
visual attention can also be classified into the above two types similarly. The task of attention analysis 
is to detect the Region of Interest of images and the frames of interest of videos (Solso, et al. 2003).

Bottom-up.attention.analysis:.Saliency map based attention model is the earliest and the most popular 
approach for bottom-up attention analysis. Till now all the proposed methods are saliency map based. 
The method is different in the following four aspects: the choice of the perceptive unit, the mechanism 
to compute saliency, the feature combination method, and extraction of the region of interest through 
saliency map.

Saliency map is the representation of the saliency of each perceptive unit. Here perceptive unit is 
defined as a set of pixels perceived as a union in attention analysis. A perceptive unit can be a pixel, a 
block, or a region. A region can be of any size, any scale, and contain much more perceptive informa-
tion compared with a pixel or a block (Liu, et al., 2007).

For the center-surround structure of receptive field of human eye, a perceptive unit with large contrast 
will attract more attention. So contrast is widely used in attention analysis. Itti, et al. (1998) proposed 
a “center-surround” method, in which the “center” is the blocks at low level of Gaussian pyramid, and 
“surround” is the corresponding ones at high levels. The distance between different scales is used to 
generate saliency maps. Ma and Zhang (2003) used the contrast between an image block and its neigh-
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borhood to represent its saliency. Global contrast and statistical information (Zhai & Shah, 2006) are 
also used to obtain the saliency map.

In attention analysis, all of the features of the image can be used, including color, texture, intensity, 
orientation and so on. Each of the features will generate a saliency map and the fusion mechanism may 
affect the result heavily. Feature fusion can be both linear and nonlinear. Linear fusion is much easier 
by calculating the weighted average of the saliency maps. The weights of each feature can be predefined 
empirically or by machine learning (Itti & Koch, 1999). While nonlinear fusion is more complex but is 
more suitable from the point of view of perception (Hua & Zhang, 2004).

The final work in attention analysis is to extract the region of interest from the saliency map. Itti, 
et al. (1998) used a winner-take-all mechanism; Ma and Zhang (2003) used fuzzy growing method to 
extract the attentive region.

All the above is about attention analysis of images. For videos, another important feature should be 
considered: motion. This is because people always draw attention to the objects with distinct motion. In 
addition, there is an important property of human perception that it is affected strongly by knowledge 
context. According to this property, some object may catch more attention such as human face, text and 
so on. So face detection and text detection are often used in visual attention analysis (Ma, et al., 2005). 
Another kind of region which would draw people’s great attention in an image is human face. So if an 
attention unit belongs to a part of human face, most work will give a high saliency value to it. Some 
work proposed a model based on camera motion. It considers the motion of camera will lead the audi-
ence to pay attention to the certain area. For example, if the camera pans left, people will always pay 
attention to the left part of the video frame; if the camera zooms in, people will always pay attention to 
the center part of the video frame.

Top-down.attention.analysis:.The bottom-up method uses only low level features and does not need 
any prior knowledge. So it is simple and could satisfy most general applications. But the perception of 
human is always based on some certain prior knowledge. For example people always pay some atten-
tion to the objects and events which are meaningful. Top-down model is adequate for evaluating the 
attention caused by people’s prior knowledge. Some work learns to pair the low-level signatures from 
a series of video clips with the corresponding eye positions (Peters & Itti, 2007). Machine learning 
methods are also used in top-down attention model to detect specific objects and events   (Peters & Itti, 
2007) (Navalpakkam & Itti, 2006).

In summary, visual attention model is an effective way to extract the essential content from the 
redundant video data. Now people are developing many new methods to extract the attentive parts in 
pictures and videos.

Video Mining

Data mining is the process of finding useful patterns or extracting previously unknown knowledge 
from a massive set of data (Oh, Lee, & Hwang, 2005). Different from textual information which has 
been studied for a long time, video contents have special characteristics: they are continuous sequences 
with temporal relations among them, and each video segment normally contains abundant information 
itself. Mining useful statistical information from the whole video content to help users have a better 
understanding of it is a relatively difficult task and has not been fully explored yet. Compared with 
object-, structure- or event-based video semantic information as discussed before, statistical mining 
information is hard to be acquired by human labeling. 



  ���

Content-Based Video Semantic Analysis

Due to the semantic gap between human perception and computer-centered low-level features, many 
video understanding techniques such as shot boundary detection and event extraction remain open 
problems. Thus investigation on video mining is at its early stage as mining solutions normally need the 
extracted semantic information. In fact, the current status of video mining is still at the pre-processing 
stage, such as video clustering (Tavanapong & Zhou, 2004). The main motivation of video mining is 
to find undiscovered knowledge from the stream based on visual and audio cues. The knowledge may 
typically include structure information within a video clip or association information among various 
clips, as well as trend information based on the analysis for a massive size of video set. Xie, et al. (2003) 
provided a solution to find temporal structures of sports video by an unsupervised multi-scale statistical 
Hidden Markov method without employing domain knowledge. To find topic associations among news 
videos, Pan and Faloutsos (2002) proposed a tool called “GeoPlot” to provide the information of corre-
lation of news events occurrence. Mining undiscovered video information is usually based on apparent 
semantic concept extraction techniques in video clips, such as object concept, scene concept and event 
concept. In the authors’ mind, video mining need a long way to go to explore the full potential of this 
topic as most of the video understanding problems are still unsolved yet.

SUMMARY

Psychological and biological experiments show that more than 80% percent of the information we receive 
is chaptered by the visual system. As an important information carrier, Visual media which contains 
both images and videos, has lots of attractive features such as visualization, data carrying capacity for 
large amount of data, easier for understanding, and so on. It is common to us that video can easily and 
naturally express complicated information, which can be hardly matched by the traditional text based 
media. From the view point of the psychological study, the main reason why the video is more infor-
mative is because the content we get from the video can be easily mapped as semantic concepts. In the 
multimedia analysis field, we are trying to let computers imitate human’s mapping from low level data 
to high level video content understanding, which can be seen as bridging the “Semantic Gap”. Criteri-
ons of human’s judgments for video media are different from the ones of computer vision system. For 
example, the objects in the real world are 3-dimensional, while the objects captured by the cameras 
are mapped into 2-dimensional space, and the real object contains many concepts for human while the 
digital images are just gathering of pixels for computers. This difference is always referred as “Sensory 
Gap”. Consequently, one of the most urgent tasks of video analysis is conquering “Semantic Gap” and 
extracting high level information from the video. Video content analysis and understanding is proposed 
aiming at solving this problem. Although more and more researchers have engaged in this research and 
more and more methods have been proposed, the work on video semantic analysis and understanding 
is still not good enough and lots of problems need to be further investigated.
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ABSTRACT

Semantic.mining.is.an.essential.part.in.knowledgebase.and.decision.support.systems.where.it.enables.the.
extraction.of.useful.knowledge.form.available.databases.with.the.ultimate.goal.of.supporting.the.decision.
making.process..In.process.systems.engineering,.decisions.are.made.throughout.plant./.process./.product.
life.cycles..The.provision.of.smart.semantic.mining.techniques.will.improve.the.decision.making.process.
for.all.life.cycle.activities..In.particular,.safety.and.environmental.related.decisions.are.highly.depen-
dent.on.process.internal.and.external.conditions.and.dynamics.with.respect.to.equipment.geometry.and.
plant.layout..This.chapter.discusses.practical.methods.for.semantic.mining.using.systematic.knowledge.
representation.as.integrated.with.process.modeling.and.domain.knowledge..POOM.or.plant/process.
object.oriented.modeling.methodology.is.explained.and.used.as.a.basis.to.implement.semantic.mining.as.
applied.on.process.systems.engineering..Case.studies.are.illustrated.for.biological.process.engineering,.
in.particular.MoFlo.systems.focusing.on.process.safety.and.operation.design.support.

INTRODUCTION

The recent challenges of industrial, medical, and social systems are focused on how to provide intelligent 
learning systems that can deal with increasing complexity and multidimensional knowledge structures. 
The problem became worse when dealing with different scales of domain knowledge in multimedia 
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formats. Researchers and professionals from industry are seeking practical approaches to extract useful 
knowledge to support decisions throughout process / system life cycle. Recent advances in semantic 
mining motivated researchers and industry in different system disciplines to adopt and apply semantic 
mining techniques for traditional and multimedia databases and knowledgebase systems. This chapter 
will discuss problems and solutions related to application of advanced semantic mining using formal 
representation of domain knowledge for process systems. The proposed approach can be divided into 
the following major stages:

• Model construction of process systems
• Knowledge structuring and representation of process models
• Construction of formal meta-language and language to represent domain knowledge and activities 

of process models
• Knowledge acquisition and validation (qualitative and quantitative)
• Semantic mining for decision support of process life cycle activities

The management of these stages requires robust modeling methodology, which facilitated the inte-
gration between nano, micro, and macro process levels. Each process level is abstracted using building 
blocks in three basic views: static, dynamic, and operation (Gabbar et al., 2001; 2003; 2004). In view 
of the proposed modeling and simulation methodology, control layer is used to support the design and 
operation of the underlying system as integrated with simulation environment. The proposed system 
engineering approach supports change management, HSE (health, safety, and environment), recycling, 
energy, and sustainability. Planning and scheduling are analyzed and managed for the different hierar-
chical levels i.e. nano, micro, and macro. For example, process of reconstruction of human cell functions 
includes MoFlo cell sorter systems.

Figure.1..Process.engineering.framework
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OVERVIEW OF SEMANTIC MINING FOR PROCESS ENGINEERING

Almost all efforts made in semantic mining was directed towards discovering new knowledge or search 
for important knowledge within large number of data elements, databases, or knowledgebases in any 
form, e.g. html pages, multimedia, text, etc. Semantic mining is always associated with process where 
primitive data is collected, updated, and manipulated. Such process involves organizational and behavioral 
changes. For example, semantic mining for biological processes is associated with basic biological data, 
e.g., samples, and phenomena linked with such biological data such as cell separation, transformation, or 
demolishing. In order to effectively apply and benefit from knowledge obtained from semantic mining, 
it is essential to define clearly how the knowledge is created, maintained, and managed with respect to 
process model in terms of structure, behavior, and operation. The concept of process based semantic 
mining is the ultimate approach for successful semantic mining. In other words, the construction of 
database / knowledgebase is considered as part of the semantic mining where meta-data are constructed 
about domain knowledge that supports semantic mining process. There are several approaches that have 
been done in the area of semantic mining for process engineering. Among these approaches are those 
that have been directed towards operating procedures representation, synthesis, and verification.

Semantic Mining for Process Operation Design

To meet the ever-increasing market requirements, production and manufacturing plants are becoming 
more complex. The design of efficient operating procedures for complex production plants faces differ-
ent challenges and tends to be impractical without providing clear, structured, and complete operating 
procedures for normal and abnormal operation. Providing structured and modular way to describe 
operating procedures will facilitate the operation design and management, will reduce operator errors, 
and will make it easier for operator to understand and follow operating procedures with less time and 
efforts.

Different attempts are made to structure operating procedures and provide automated solutions to 
design and synthesize operating procedures. ANSI/ISA-S88 is one the developed standards by ANSI, 
which proposed a structured way to define operating procedures for batch plants in hierarchical way 
(ANSI/ISA). It proposed mapping between plant structure hierarchy and operating procedures of batch 
plants. Many researchers have based their automated solutions of operating procedures synthesis on the 
framework described by ANSI/ISA-S88. However, the way operating procedures are represented varies 
from one approach to another. Viswanathan (1998), Johnsson (1998), and Arzen (1994) used Graphchart 
to represent operating procedures in graphical way. Such approach provides operator with friendly user 
interface to visualize operating procedures hierarchically. However it requires quite long preparation 
stage to define the different classes, objects, and definitions of operating procedures, so that they can 
be mapped to graph symbols. To overcome the limitations expressed by the graphical representations 
methods, formal methods are introduced. Gabbar (2003) proposed recipe formal definition language, or 
RFDL, to represent operating procedures in formal way as mapped to domain knowledge. In his solution, 
editor and parser are used to validate the syntax of operating procedures using set of predefined RFDL 
statements. The proposed method is used to design automated solution, called AOPS to synthesize master 
and control recipe of batch plants. However, there was major limitation in dealing with the semantics of 
the underlying plant operation due to the lack of robust integration with domain knowledge. In addition, 
the proposed approach requires further methods to validate the generated operating procedures.
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To overcome these limitations and in order to provide general purpose operating procedure synthesis 
solutions for batch, continuous, as well as discrete production plants, this research work proposes an 
engineering formal language (called EFL), which is used to synthesize standard operating procedures 
(or SOP) in accurate and effective manner. To simplify complex operations, the concept of generic or 
meta-operation is introduced where operation libraries are defined as building blocks to define and 
represent SOP for complex plants, with less errors and time.

Operation engineering approach is proposed based on robust modeling methodology of the underly-
ing plant process. Operation is structured and mapped to plant structure and generic definition of plant 
operation is proposed along with intelligent topology analysis methodology. Engineering formal language 
is proposed and used to represent standard operating procedures of different case studies from batch 
and oil & gas plants. Integrated automated solution for operation engineering is described to automate 
the synthesis of SOP and meta-operation, and to manage operation execution.

Plant operation is sets of instructions that are executed by operator and/or system to produce tar-
get products. Standard operating procedures are commonly used to describe plant operation with the 
required details to ensure quality, safety, steady, optimum and other life cycle factors while operating 
the plant.

Operation engineering is the process to manage SOP throughout its life cycle, which typically in-
cludes SOP design, validation, execution, and control. SOP design is a complex process that is usually 
done starting from the process design stage. In order to overcome such complexity, it is essential to 
structure operation according to the associated structure area. This requires hierarchical partitioning 
of the underlying plant structure (i.e. topology) and the definition of operation for each structure area 
in different hierarchical levels.

Operation: Structure Hierarchy

ANSI/ISA-S88 is one useful standard for chemical batch plants that proposed hierarchical definitions 
of plant structure and the associated operation hierarchy, as shown in figure 2.

Figure.2..ANSI/ISA-S88 structure (Modified by Gabbar 2004)
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In figure 2, structure hierarchy is defined as cell, unit, OIA (or operation isolation area), and EIA (or 
equipment isolation area). OIA is defined as the topological area that is surrounded by flow control devices 
such as valves. EIA is defined as the topological area that includes the underlying process equipment (i.e. 
reactor), which is surrounded by flow control devices. Previously, the terms OIA and EIA were used in 
case of batch plants (Gabbar et al., 2004). However, in order to provide general solution that suits batch, 
continuous, and discrete manufacturing processes, the concepts of OIA and EIA are proposed.

MoFlo Biological Process Engineering

The recent advancement in biological and medical research mobilized biotechnology and biomedical 
manufacturers to provide advanced systems to automate different critical and functions in the biology and 
biomedical fields. One critical process is the separation of cells or biological elements, which is essential 
for many research experiments and biotechnology production. There are a variety of cell separation 
technologies, which are used by biological, clinical, pharmaceutical, and medical research labs. Among 
the latest of the cell sorting technologies is MoFlo, which is high-performance cell sorter used for preci-
sion analysis and sorting of cells, bacteria, chromosomes, macromolecular particles, and other similar 
sized particles. Most of the recent research is based primarily on the separation process, which provides 
the required biological elements to analyze, measure, reconstruct human body elements i.e. pancreas, 
liver, etc. The separation process is developed primarily using cell sorter technology. Currently, and 
for the coming few years, MoFlo machine, which is one type of Fluorescence Activated Cell Sorter, or 
FACS, is one of the latest and reliable cell sorter and biological particles separation system that is used 
widely in biological, medical, pharmaceutical research labs as well as in biotechnology industry. The 
operation of such system is relatively complex and costly, where it requires doing many experiments till 
achieving the required accurate cell sorting results. Each experiment is quite expensive where it might 
cost around US$100 for one experiment (i.e. one day). It takes quite long time, up to 6 months, till it can 
produce the required cell colony, which is the maximum grouping of the desired cells. In addition, the 
operation of MoFlo is associated with high risk where it contains some dangerous / hazardous operation 
scenarios. MoFlo manufacturers and makers are investigating system and bioengineering approaches 

Figure.3..Modeling.of.typical.MoFlo-based.biological.process
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to improve the operation of such critical equipment and to assure cost and risk reduction of R&D and 
production systems of the underlying bio-process.

To support MoFlo makers as well as users, this research proposes knowledge-based system engineer-
ing approach, which is used to analyze MoFlo operation, and propose systematic way to design efficient 
operation with reduced operational cost and risks.

In the following section, proposed system engineering approach will be presented. In section three, 
MoFlo system model will be presented. In section four, the proposed operation model and engineer-
ing environment will be presented along with some hazardous operation scenarios and its analytical 
view.

Biological Research Process Hierarchy

MoFlo as part of the integrated biological research system includes different levels of interests: (a) nano 
level, which includes marker materials used to mark and separate cells; (b) micro level, which includes 
cells (around 50 micro meter); and (c) macro level, which includes components of the MoFlo system. 
The link between MoFlo machine and other machines and devices within the lab / production process 
is shown in the higher level of interest, which requires process engineering as well. Figure 3 shows the 
different levels of processing and control for MoFlo systems.

MoFlo Process Model Formalization

Lifecycle engineering is based on robust modeling methodology, which enables the construction of pro-
cess design model in different hierarchical levels and link them together while designing the operation of 
MoFlo system with the considerations of lifecycle assessment of different factors such as health, safety, 
energy, cost, maintenance, etc. Model building blocks are used to construct model of complex processes 
/ systems, where object-oriented modeling concepts i.e. inheritance, polymorphism, encapsulation are 
used to systematically construct process models. The proposed modeling methodology (called POOM 
or plant/process object-oriented modeling) enabled the design of the MoFlo operation and the whole 
process where operation model elements are defined in each building block, while operation knowledge 
are associated and accumulated during the design stage. Control layer includes control elements that 
ensure safe, steady, and optimized operation. This can be modeled as control rules and logic associated 
with the different building blocks of process model of the underlying MoFlo process.

Figure 4 shows the proposed iterative modeling mechanism, which is used to construct the underly-
ing MoFlo process model. It starts with design of model elements: static, i.e. structure; dynamic, i.e. 
behavior; and operation, i.e. methods / recipe. Using these design model elements, and in view of the 
target functions, operation is designed in terms of methods and recipe (i.e. operation steps) for the dif-
ferent operation scenarios. Each operation scenario is simulated and evaluated in view of the required 
performance indicators such as cost, accuracy, time, etc. In view of the simulated results, tuning can 
be made to design model elements, operation model elements, and/or operation scenarios.

Figure 5 shows the links between the three different views of equipment (i.e. MoFlo), product (i.e. 
sorted cells), and process (i.e. human reconstruction) models. The integration among these models with 
business and system models is essential for lifecycle assessment and high performance MoFlo opera-
tion.
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Figure.4..Based.process.modeling

Figure.5..System.engineering.approach

MoFlo Cytomation System

MoFlo is high precision, high performance, and modular Fluorescence Activated Cell Sorter, FACS, 
system used for research and clinical purposes to sort or separate cells, bacteria, and/or other macro-
molecular particles. Using MoFlo Cell Sorter, multiple parameters can be analyzed for heterogeneous 
samples, which can be sorted in four separate collecting tubes at speed approaching 70,000 events per 
second. It can analyze up to 16 parameters for each particle, while with the newest technology of MoFlo 
DSP it can analyze up to 32 parameters. 

MoFlo System Components

Figure 6 shows the system components of MoFlo system, which has around 27 components.
The MoFlo system is composed of three major components: Summit Workstation, Electronic Con-

sole, and Optical Bench. Figure 6 shows the basic elements of each component in hierarchical manner, 
reflecting the function decomposition.
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Figure.6..MoFlo.system.architecture

Figure.7..MoFlo.function.modeling
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MoFlo System Modeling

The proposed modeling methodology is used to model MoFlo in three views: static, dynamic, and op-
eration. SU or structure unit is used to model each structural element such as component, subassembly, 
or subsystem. The connection among the different SU’s is defined as a port. Ports are information port, 
control port, sensor port, material port, or energy port. Each port could be input, output, or input/output. 
The different behaviors are defined for each SU so that control layer can select the most advantageous 
behavior to achieve the target operation. This can be determined in view of state variables, which in-
clude goal variables, control variables, disturbance variables, and other state variables that represent the 
behavior of each component. Operation recipe and instructions are synthesized / defined within each 
SU where they are defined with the use of simulation to ensure the limits of the values of each process 
variable. Details about the proposed POOM modeling methodology are explained by Gabbar (2001; 
2002; 2004). Computer-aided modeling environment (called CAPE-ModE) on the basis of POOM has 
been proposed and developed by Gabbar (2004).

Figure 8 shows example structure model of MoFlo where three SU’s are defined for one main SU 
“Optical Bench”. Ports are defined as a connection between these SU’s. Ports transfer energy such as 
electricity, process variable information such as sensor port, etc.

Each of the three SU components, defined in figure 8, has set of state variables i.e. process variables 
and set of behaviors as well as operating procedures. In addition, control rules / constraints and logic 
are defined within each SU and its detailed structural elements so that they can execute the defined op-
erating procedures. The proposed control layer will be enable the resolution of conflicts among control 
rules and logic in the same hierarchical level and coordinate with upper and lower hierarchies.

KNOWLEDGMENT-BASED PROCESS MODELING APPROACH

One of the major difficulties that face lifecycle engineering is the definition of flexible structure to sup-
port the acquisition and management of lifecycle data and knowledge. This problem is more difficult 
when addressing engineering systems where business and engineering data are required to be linked 
and maintained in systematic way to support lifecycle activities. It is widely known that the key success 
factor to engineering enterprises is the robust data and knowledge modeling and management, which 
satisfy life cycle activities requirements. Standards, such as STEP, provided unified structure to man-
age engineering data, however, the realization of such approach requires more efforts to be unified and 
practically implemented. ANSI/ISA S95 provided better model and practice which can effectively be 

Figure.8..POOM-based.hierarchical.structure.unit.model
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used to manage life cycle data with respect to product / process design. The proposed data and knowl-
edge modeling approach is based on defining knowledge structure hierarchy based on domain ontology, 
which is used to define data elements within each building block class. This enabled linking domain 
knowledge with the different model elements in all hierarchical levels. For example, cell class will be 
associated with attributes such as type, category, status, etc. While marker class will be associated with 
attributes such as function, maker, limitation, working condition, etc. These classes will be linked to 
domain knowledge where cell types and sorting criteria will be defined.

In higher levels, MoFlo system can be linked to functions related to human cell reconstruction process 
where separated cells are linked to the requirements initiated from regenerative medicine or reconstruc-
tion of human cells. This requires integrated computer-aided modeling environment that facilitates the 
integration between domain knowledge and model elements in different hierarchies.

Based on the proposed modeling framework for MoFlo system, operation engineering approach is 
presented on the basis of formal methods. In the following section, formal methods are explained.

ENGINEERING FORMAL LANGUAGE (EFL)

Formal Methods Overview

The proposed system approach is based on proposed formal method to represent process design model 
and define operation in systematic and formal manner that enable the automatic design and synthesis 
of the operation of such complex and critical equipment.

Formal Methods

What is formal method? Fischer (1998) stated that formal methods are used to specify processes and 
systems, such as formal description techniques (FDT’s) such as Estelle and SDL. Astesiano (2002) stated 
that formal method could be used to support activities in the development process, such as: support & 
validate engineering requirements and process design specifications; validate intermediate specifica-
tions against initial and final specification; provide smooth code generation with the validation against 
design/intermediate specifications; check the quality of some specification/code; reuse (replay) a part of 
the development process (single activity) by changing something in the inputs (scenario evaluation); and 
produce a new version of the already developed end-product (maintenance). In addition, formal meth-
ods can be used to design and validate the operation of the underlying system, especially for complex 
systems. This has been shown in different applications such as the use of formal methods to synthesis 
operating procedures of chemical plants (Gabbar, 2004).

Wide and narrow definitions of formal methods can be found in the literature. For example, Nancy 
Leveson states: A broad view of formal methods includes all applications of (primarily) discrete math-
ematics to software engineering problems. This application usually involves modeling and analysis 
where the models and analysis procedures are derived from or defined by an underlying mathemati-
cally- precise foundation. 

The gaps between users’ intentions and formal specifications and between physical implementations 
and abstract proofs create inherent limitations to formal methods, no matter how much they may be 
developed in the future.

. 
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Benefits of Using Formal Methods to Engineering Design & Operation

These are some reported benefits of using formal methods in engineering design & operation:

• Formal methods are directly applicable during the requirements, design, construction, and opera-
tion of engineering systems.

• Formal methods provide means for validation, verification, and the application of design ratio-
nales.

• Formal methods enable the management of change throughout the different stages of engineering 
and system lifecycle.

• Formal methods can be used as the base to develop robust software engineering solutions for 
engineering applications.

• Formal methods are entwined with lifecycle models that may provide an alternative to the Waterfall 
model, namely rapid prototyping, the Cleanroom variant on the spiral model, and “transforma-
tional” paradigms.

• Formal methods support precise and rigorous specifications of those aspects of a computer system 
capable of being expressed in the language. Since defining what a system should do, and understand-
ing the implications of these decisions, are the most troublesome problems in software engineering, 
this use of formal methods has major benefits. In fact, practitioners of formal methods frequently 
use formal methods solely for recording precise specifications, not for formal verifications (Hall, 
2001).

Formal Methods Examples

Some of the most well known formal methods consist of or include specification languages for recording 
a system’s functionality. These methods include:

• Z (pronounced “Zed”) 
• Communicating Sequential Processes (CSP) 
• Vienna Development Method (VDM) 
• Larch 
• Formal Development Methodology (FDM)

Formal methods can include graphical languages. Data Flow Diagrams (DFD’s) are the most well 
known graphical technique for specifying the function of a system. DFD’s can be considered a semi-
formal method, and researchers have explored techniques for treating DFD’s in a completely formal 
manner. Petri nets provide another well-known graphical technique, often used in distributed systems 
(Peterson, 1977). Petri nets are a fully formal technique. Finally, finite state machines are often pre-
sented in tabular form. This does not decrease the formalism in the use of finite state machines. So the 
definition of formal methods provided earlier is quite encompassing.

 
Limitations of Formal Methods

Given the applicability of formal methods throughout the lifecycle, and their pervasive possibilities for 
almost all areas of software and systems engineering, why are they not more widely visible? Part of the 
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problem is educational. Revolutions are not made by conversion, but by the old guard passing away. 
More recent university graduates tend to be more willing to experiment with formal methods.

On the other hand, the only barrier to the widespread transition of this technology is not lack of 
knowledge on the part of practitioners. Formal methods do suffer from certain limitations. Some of these 
limitations are inherent and will never be overcome. Other restrictions, with research and practice, will 
be removed as formal methods are transitioned into wider use.

Empirical evidence does suggest, however, that formal methods can make a contribution to the 
problem of adequately capturing requirements. The discipline of producing a formal specification 
can result in fewer specification errors. Furthermore, implementers without an exceptional designer’s 
knowledge of the application area commit fewer errors when implementing a formal specification than 
when relying on hazy knowledge of the application (Goel, 1991). These benefits may exist even when 
the final specification is expressed in English, not a formal language (Meyer, 1985). A specification acts 
as a “contract” between a user and a developer. The specification describes the system to be delivered. 
Using specifications written in a formal language to complement natural language descriptions can 
make this contract more precise. Finally, developers of automated programming environments, which 
use formal methods, have developed tools to interactively capture a user’s informal understanding and 
thereby develop a formal specification (Zeroual, 1991).

Still, formal methods can never replace deep application knowledge on the part of the requirements 
engineer, whether at the system or the software level. The application knowledge of the exceptional de-
signer is not limited to one discipline. For example, an avionics application might require knowledge of 
flight control, navigation, signal processing, and electronic countermeasures. Whether those drawing on 
interdisciplinary knowledge in developing specifications come to regard formal methods as just another 
discipline making their life more complicated, or an approach that allows them to simply, concisely, and 
accurately record their findings, will only be known with experience and experimentation.

From the above detailed explanations about formal methods, it has been proved that formal methods-
based approach is the best choice to design and represent operation of complex systems such as MoFlo. 
The following section will highlight the proposed human-centered operation engineering approach and 
how formal methods can be used effectively to design the operation of MoFlo.

Engineering Formal Language

Formal representation provides a systematic framework to construct and validate the syntax of the 
underling system towards building standard representation approaches. Formal languages are used in 
most of the engineering applications to reduce the time and efforts required to communicate and manage 
the underling system or process. Formal language implies absolutely accurate and precise definitions 
of the underling system, which can be used to validate the system / process and can be used as a base 
for computer-aided solutions. One can say that the use of formal languages will help overcoming major 
engineering problems.

Operating procedures, as one element in engineering applications, is used to describe plant opera-
tion, e.g. operation of chemical batch plants. For efficient operating procedures synthesis, a structured 
way is required to represent the syntax and semantics of operating procedures as mapped to domain 
knowledge. 

The construction of domain knowledge can be systemized if a robust model formalization methodology 
is used. Many researchers have investigated the construction of process and plant models, and proposed 
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modeling methodologies to build the corresponding domain knowledge. Most of these modeling meth-
odologies showed that plant model includes three views: structure, behavior, and operation (Gabbar et 
al., 2000; Lu et al., 1995, 1997). Utilization of formal representation of operating procedures facilitates 
the integration between operation, structure and behavior views, which will have a positive impact on 
the synthesis process of operating procedures. From the other side, formal representation will provide 
means to build and organize domain knowledge more efficiently.

Many researchers are motivated to use computer languages such as HTML, XML, or even build 
their own languages on the basis of these computer languages to describe their systems or processes. 
For example, world batch forum proposed the use of XML to represent batch recipe (WBF). However, 
it is essential to define engineering language in a higher layer, which can deal with the syntax and se-
mantics of operating procedures as linked to plant model (structure and behavior), before addressing the 
implementation issues using computer languages such as XML, HTML, etc. It will be practical if two 
separate layers are defined to represent operating procedures. The higher layer will enable designers 
and engineers to define operating procedures in standard and formal way as mapped to the underling 
system, regardless of the implementation way. This will enable them to think freely without the limita-
tions of any computer language. Based on the higher layer, the lower layer can be designed or selected 
for implementation. In general, the process of designing operating procedures requires flexible way to 
define and maintain the syntax and semantics of operating procedures as it involves different participants 
with different views. It is relatively easy to maintain the syntax of the defined higher layer language, 
as it doesn’t involve modifications to any computer program. This can be transferred (i.e. translated) 
into computer language, which is relatively easy and can be implemented for any destination (i.e. host) 
computer language in the lower layer (e.g. HTML, XML, etc.).

As described by Carre (1989) and reported by Toyn (1998), formal language should be logically sound 
and unambiguous and the semantics must not be too complex, otherwise formal reasoning will become 
impractical. The proposed recipe formal language is based on the definition of simple and clear English-
like statements, which are composed of keywords that are mapped to domain knowledge. The structure 
of the statements defines the syntax while the mapping to domain knowledge defines the semantics. The 
proposed recipe formal language fulfills the basic requirements of any formal language where hierarchi-
cal definitions are used to simplify the representation of complex procedures. For example, one can say: 
“material-movement is move material from area to area”. This can be further explained as: “material is 
gas or liquid or solid fluid”, while area could be “area is equipment or cell or unit”

As a conclusion, the use of formal representation will facilitate the definition of complex operation 
in structured way as mapped to domain knowledge. In addition, using formal language to represent 
operating procedures will facilitate the development of automated solutions to synthesis operating 
procedures.

Operation Engineering of MoFlo

As mentioned earlier, the operation of MoFlo system is quite complex and requires few months before 
being able to produce reliable results. This is due to complex operation and limited understanding of 
operators/users of MoFlo who are mainly biological or medical researchers / technicians, or industrial 
workers. In addition, the written operating procedures are relatively abstract and not well organized. 
Moreover, it requires many steps to be done manually, and many parameters to be defined and tuned, 
which requires good and enough training for MoFlo operators. In addition, it requires providing auto-
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mation for the different manual operation tasks. This section describes the proposed human-centered 
operation design framework, which is used to cover the above mentioned limitation in current MoFlo 
operation.

MoFlo Operation Synthesis

Operation synthesis has mainly two sides, designer side, which goes from operation designer till it 
reaches computer format operating procedures, and the operation side, which links operation instruc-
tions from MoFlo to the user. Operation can be viewed as set of microinstructions that are stored within 
MoFlo, which will be triggered by button or condition. These microinstructions are stored within each 
subsystem individually as they can work independently. Operation design is usually made during the 
design stage where the condition of the MoFlo is simulated and the different state variables are calculated 
at each time step in view of the selected operation. The resulted sets of microinstructions are stored 
within each subsystem. This process is usually done through computer where microinstructions are 
synthesized and stored within computer, till final test, then transferred into machine either on chips or 
any sort of memory devices. During operation, these operation instructions are executed and resulted 
data are displayed to operator / user as a visual language, i.e. voice, light, number, test, image, etc.

Figure 9 shows proposed operation synthesis cycle, starting from operation designer, where opera-
tion is converted from natural language into formal language. Such formal language is translated into 
computer language, which is used to represent microinstructions. XML is proposed as a neutral language 
to represent operation instructions. The proposed operation synthesis framework provides an answer 
to the following major issues:

• Easy and understandable configuration of microinstructions with intelligent human interface
• User friendly design of visual language for easy human interactions
• Synthesis of microinstructions so that it can be mapped easily to understandable visual lan-

guage

Figure.9..Operation.design.framework
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• Smooth mapping between operating procedures with microinstructions
• Considerations of malfunction and recovery operations and their conversion into microinstructions 

and visual language for safe operation

Proposed Approach Summary

The following are summary of the proposed operation synthesis approach:

• Synthesize microinstructions and map to visual language for intelligent human interface.
• Construct domain knowledge of biomedical equipment design & operation
• Design formal language (meta-language) to be used to synthesize microinstructions
• Develop editor and parser to capture the meta-language and to synthesize (generate) microinstruc-

tions for define operation as per the design spec of the medical equipment and functions (opera-
tion)

• Map microinstructions to visual language and propose intelligent human interface
• Define set of possible malfunctions and define recovery procedure, and synthesize the correspond-

ing microinstructions and visualization.

Figure 10 shows the process flow for operation design and execution where designer creates and 
maintains design knowledge, which will be reflected into formal language in the computer system, then 
embedded instructions within MoFlo system. Operator will be maintaining operation knowledge, which 
is accumulated from the design stage.

 Gabbar (2003) proposed useful formal representation called RFDL or recipe formal definition lan-
guage, which was used for batch plants. Such solution enabled the systematic definition of batch recipe 

Figure.10..Operation.design.execution.system.architecture
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using keywords and predefined statements. However, RFDL was limited to batch plants and did not cover 
issues such as concurrent operation and logic handling for behavior generation and operation control 
decisions. In this research, and in order to overcome these limitations, engineering formal language, 
or EFL, is proposed to express engineering knowledge including vocabulary from domain knowledge 
and associated rules for control and process constraints. The proposed formal language is in the form 
of English-like statements. Each EFL statement is composed of keywords called tokens. The standard 
form of EFL statement is:

LHS-token.::.token_1.token_2.…...token_n. 	 					 	 	 	 	 [S1]

Where LHS-token is the left hand side token that will be assigned to the sequence of tokens in the right 
hand side of “IS”. Tokens are classified as shown in table 1. Among these token classifications is the 
“input” token: which is used to inform operation management system to acquire input from user, such 
as operating parameters. Another token type is “variable” token: which means that such token will be 
further defined using another EFL statement (i.e. in the left hand side). Another token type called “opera-
tor” is used to represent all operators for EFL statements such as “and”. These operators are used by the 
EFL editor to understand and check the syntax of EFL statements, such as nested statements. Another 
token type called “lookup” is used to retrieve list of corresponding values from lookup table (i.e. in the 
database). Another token class is “constant”, which is used as it is within EFL statements.

EFL statements are defined hierarchically. In other words, EFL statements are used as a meta-lan-
guage to define SOP. The complete set of EFL statements should have at least one EFL statement for 
each variable token (i.e. variable token to appear in the left hand side of EFL statement). For example, 
operation actions are classified as: Operator-Action, System-Action, Procedure_Action, Material_Ac-
tion, Topology_Action, External_Action, Control_Action, and Time_Action. Such operation action can 
be expressed as the following EFL statement [S2]:

Operation-Action.::.Operator-Action.|.System-Action.|.Procedure_Action.|.Material_Action.|.Topol-
ogy_Action.|.External_Action.|.Control_Action.|.Time_Action.                [S2]

Figure.11..Operation.ontology.structure
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The above SOPFL statement can be further explored using other SOPFL statements. For example, 
procedure action can be expressed as per EFL statement S3 where “START”, “TERMINATE”, and 
“RESUME” constant tokens are used to express the primitive procedure action statement, while “pro-
cedure_id” is a lookup token, which is used to display all possible values of procedures defined within 
the system.

Procedure_Action.::.(.START.|.TERMINATE.|.SUSPEND.|.RESUME.).procedure_id. ............[S3]

EFL statements (meta-language) and SOP statements are composed of vocabulary and rules. The 
vocabulary is described using ontology where concepts of the domain knowledge are classified. Figure 
11 shows sample of the concepts classified using ontology. The developed ontology model is used as 
a base to construct EFL statements and to validate the semantics of operating procedures. Currently, 
base ontology model has been developed using ontology editor and converted into database reposi-
tory, which is used by the proposed automated solution to design plant operation. Domain operation 
ontology can be used to construct EFL statements. For example, S2 can be constructed using parts of 
the ontology described in figure 3, where operation action can be classified as transportation action, 
control action, etc.

Similarly, master and control recipe statements can be defined on the basis of EFL where keywords 
are linked to domain knowledge such as plant design model, material, functions, products, recipe for-
mula, etc. For example, master recipe statement (MOVE material1 FROM t1 TO t2) is derived from 
EFL statements S4 & S5.

Transportation_Action.::.MOVE.material.FROM.Topology_Area.TO.Topology_Area. ............[S4]

Topology_Area.::.cell_id.|.unit_id.|.oid_id.|.([class_function].[class_material].equip_class).|.equip-
ment_id... . . . . . . . . . ..........  [S5]

Where material1 is selected from a lookup list of all materials defined within the domain knowledge 
of the used plant model. “FROM” and “TO” are constant keywords, while t1 and t2 are equipment id’s, 
which are selected from lookup list of all equipments defined in the plant model.

The proposed EFL statements can be used within EFL-based editor to synthesize operating proce-
dures with complete syntax and semantic validations. However, during the definition of SOP of com-
plex plant, there are varieties of repeated operations that are used in different topological areas and for 
different functions. These repeated operations are defined independently, although they are almost the 
same. In addition, complex operation is usually composed of set of simpler operations, which are also 
repeated in different operations. The following section describes the concept of meta-operation, which 
is proposed to overcome such situation.

Mapping Operation Structure to MoFlo Structure Model

In order to design and synthesize MoFlo system operation, it is essential to define hierarchical structure 
model and to identify corresponding control levels, as shown in figure 2. Similar to ANSI/S88, which 
defined mapping between control levels (i.e. cell, unit, equipment) and operation levels (procedure, unit 
procedure, operation, and phase). In MoFlo, structure levels are defined as subsystem, unit, equipment, 
and component. The proposed operation hierarchy can be shown in figure 12.
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EFL for MoFlo

Keywords are extracted from domain knowledge and classified as per the meta-classes of the design 
knowledge. For example, set of keywords is extracted from the sample subsystem i.e. “Tilt Block”, “Agi-
tation”, etc. Editor and parser are used to define the operation of the underlying MoFlo as follows:

Startup and Alignment

The following is the Ignite Laser startup operation:

1. Open cooling water valves (if applicable)
2. Turn key on laser power supply
3. Switch ON remote console to ignite laser
4. Allow laser to warm up and stabilize
5. Set laser to appropriate power and aperture
6. Record information in MoFlo System Log

The above operating procedures can be defined using formal language statement ML1.

OPEN.<control-device>. . . . . . . . ........[ML1]

In this example, <control-device> is a list of all possible control devices in the MoFlo system such 
as valves of (cooling-water, PMT Controller, Pulse Monitor Oscilloscope, etc.)

Similarly, control setting can be defined using ML2.

Set.<device>.to.<setting-value>. . . . . . . ........[ML2] 

Figure.12..Operation.–.Structure.hierarchical.mapping
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In this statement, <device> is lookup token that is linked to a list of devices such as Laser.

Example Laser Alignment Operation

Single Laser Alignment operation can be viewed as:

1. Check switch setting on ADC and Dot Plot boards
2. Ensure stream is vertical using pinhole image and camera
3. Check laser beam for max diffraction & just below nozzle tip
4. Using appropriate calibration particles, establish an appropriate event rate. Coarsely align the 

instrument by placing the bead-flash over the image of the top pinhole
5. Visualize acquired data by selecting channels 1 vs 2 and 3 vs 4 on the dot plot oscilloscopes
6. Optimize fluorescence intensity, then optimize %CV
7. Optimize forward light scatter intensity, then %CV
8. Toggle the drop drive on and off while turning to verify the absence of any optical noise while 

drop drive is on
9. Repeat steps: 3 through 6, if necessary
10. If necessary, align dichroic mirrors in front of PMTs

Set of meta-language of SOPFL can be defined for all operating procedures, which will be reflected 
into the computer-aided engineering environment to synthesize and validate the operating procedures 
of the underlying MoFlo.

Figure.13..MoFlo.Operation..(a).Fluorochrome-tagged.cells.or.particles.leave.the.CytoNozzle.traveling.
single file in a charged stream. (b) A laser beam excites the fluorochromes, which fluoresce and emit 
photons at specific wavelengths. (c) Charged droplets, each containing one cell or particle, break away 
from the stream and pass between two charged plates. (d) The electric field created by the charged plate 
directs each cell or particle to a designated receptacle, e.g. – or +. The receptacle at center is waste 
i.e..unrecognized.
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Operation Reliability

Algorithm is proposed to measure the operation reliability in terms of purity, recovery, and yield. This 
will be the base to evaluate different operation scenarios to select the operation scenario with highest 
reliability factor. Sorting definitions are shown in Appendix 1.

Hazardous Operation Scenarios of MoFlo Cell Sorter

To avoid the scattering of the biological particles, which might be dangerous to operators and humans, 
a very high voltage of 3000 Volts, is used in the cylinder around the sample probe. This high voltage 
is controlled by switch and lamp. If, for any reason, the operator forgot the lamp and tries to touch the 
sample, it might cause death cases. This requires some design changes in the current system, to either 
switch off the high voltage once human hands or body is close, or by providing surrounding isolator to 
protect operator or humans.

Another hazardous situation might occur when the laser beam, which is used to excite the fluoro-
chromes, hits the body or eyes of human. It causes harmful effect on human body. To avoid such cases, 
design changes might be recommended and/or operation regulations must be specified to restrict opera-
tors to avoid the direction of the laser beams while operation, as shown in Figure 13.

Operation engineering environment is proposed to design and ensure failsafe operation using the 
concept of formal methods, which links system design with microinstructions of the underlying MoFlo 
system.

Another example of safety requirements is in the illumination chamber. Illumination table houses 
the illumination chamber, which contains risk on operator and environment. System design and opera-
tion design are required.

Figure.14..Modeling.framework.of.multimedia.objects
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MULTIMEDIA MODELING AND VISUALIZATION

Figure 14 shows the mappings between activities within the operational systems and the associated data 
elements. Data elements include operational data, maintenance data, etc. Operational data elements in-
clude SOP (or standard operating procedures), sensor, alarm, simulation data, etc. These data elements 
can be visualized in different formats based on predefined preferences such as textual format, 2D, 3D, 
etc. For example, SIS or safety instrumented system is linked with data elements such as sensor data 
which can be visualized in 2D or 3D.

Proposed System Design

Computer-Aided Operation Engineering Environment

Computer-aided operation engineering environment CAPE-ModE (Gabbar et al., 2002) is proposed to 
capture MoFlo system model and associate data and knowledge elements related to: structure, function, 
behavior, and operation model elements.

Figure 15 shows the system topology and function modeling editor within the proposed computer-
aided engineering environment. User menus are developed to enable the designer, engineer, and operator 
to analyze the different lifecycle views for the underlying MoFlo.

Figure.15..MoFlo.process.design.within.computer-aided.process.engineering.environment
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Operator Interface System

Operator interface can be first modeled using task-activity-data-system relationship, as shown in figure 
16. In such approach, different operator activities are defined and modeled using basic activity model 
symbols. For each activity, set of tasks are defined in more details along with the associated data ele-
ments and linked systems. There are several systems that usually used by operator. For example, ERP or 
enterprise resource planning is used for resource planning and management such as human resources, 
tools, etc. CAD is computer-aided design which is usually used by engineers. MOC or management of 
changes is a system used to trace and manage the required authorization for different changes during 
plant operation. CAPE-SAFE is an integrated enterprise safety management system (Gabbar, 2001), 
which is proposed to manage safety activities throughout plant life cycle. 

The proposed modeling approach will enable understanding different activities and map to the dif-
ferent automated systems that appear within operator interface. For example, operator activities can be 
defined for cases where fault or abnormal situation is detected. In such cases, operator validates sensor 
data, simulation data, operation history, and use incident / accident data to confirm possible root causes 
and consequences. FDS or fault diagnostic system was proposed by Gabbar (2006) to do such task and 
provide list of possible fault propagation scenarios. For each activity, list of tasks are identified and 
related information elements are listed along with the reference systems that owns / maintains such 
information elements. For example, sensor data can be detected from DCS system. Providing such list 
will enable the reengineering of operator interface systems. Also it will enable the engineering of virtual 
plant environment with suitable visualization and interaction mechanisms, such as 2D / 3D diagrams, 
voice, animation, textual, video, images, etc.

Figure.16..Proposed.interface.system.modeling
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Modeling Human Factors

One critical factor to the design of virtual plant is the analysis of human factors that are related to the 
different activities of plant operation (Dyke, 1988; Nachreiner, 2006). The proper analysis of human 
factors will ensure practical design of virtual plant environment. The proposed approach is based on 
considering list of human factors that affect each operation activity, as shown in the activity-task-infor-
mation model in figure 3. Such approach will enable building complete repository of all related human 
factors that affect the different activities of plant operation. For example, operation tasks that require 
visualization and interaction mechanisms should be supported with suitable virtual plant elements that 
reduce human errors related to failure to recognize, failure to percept, or failure to interact. List of hu-
man factors are gathered from literature, industrial reports, and previous research work and classified 
and linked with operation tasks and activities, as shown in table 1 (Nishiyama, 2006; Naval Safety 
Center, n.d.; Sasou, n.d.). Such classification can be evaluated qualitatively and quantitatively, which 
will support the selection of different design features of the target virtual plant. Detailed quantitative 
human performance analysis is described in several references (Khan, 2006).

Based on human factor analysis, essential design features of the target virtual plant are identified so 
that it can reduce risks and ensure process safety. The different human errors are mapped to operator 
activities, data elements, and visualization format, as shown in figure 17. Human factors are used to define 
and select data visualization, which is essential to design any user interface (Hall, 2001). In addition to 

Table.1..Human factor classifications
Human Errors with Alarms / Equipment / Simulator / Interface Systems:

 A: Failure to read / cognize data / messages / measures
 B: Failure to take right decision / link information from different windows
 C: Wrong response to emergency
 D: Improper procedure executed
 E: Physical stress of using mouse / keyboard / eye movement, i.e. switch among different windows
 F: Loss of situation awareness
 G: Failure to backup data
 H: Failure to conduct an adequate brief
 I: Inadequate supervision errors, inappropriate or absent supervision
 J: Failure to track performance measures
 K: Inadequate documentation from different systems / windows

Figure.17..Knowledge.structure.of.human-based.interface.systems
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the visualization of operator activities, operator awareness and intention can also be considered (Feibush, 
2000; Overbye, 1997). For example, to overcome the human error of “failure to read” during recovery 
operation a suitable visualization format can be selected such as sound/image. Similarly, when failure 
to read is associated with upper pressure limit, sound or bell should be used to ensure safe operation.

Based on the described virtual plant modeling approach, the following section describes the proposed 
integrated operator interface, which includes human factors and process requirements, with the ultimate 
goal of enabling operator to comprehend plant and process conditions in real time basis.

CONCLUSION

Semantic mining is the current and future approach to achieve intelligent systems. During the last era 
several techniques are proposed to structure domain knowledge using ontological engineering meth-
ods and practices. The logical next step is to seek advanced techniques to learn from such constructed 
knowledge via data mining. One more advanced step is to extract meta-knowledge via semantic mining 
where it is essential to construct intermediate level of meta-knowledge that is used to facilitate the learn-
ing practices. On the other hand, process engineering has been tightly linked with semantic mining in 
two aspects: (1) the analysis, design, and implementation of semantic mining support systems are best 
designed by considering the analysis of semantic mining process and constructing corresponding process 
models; (2) semantic mining is used to support process engineering for different applications, such as 
chemical, petrochemical, biological, social, and service processes. This chapter explained techniques 
and methods to deal with both tracks with examples from biological process using MoFlo cell sorter 
advanced equipment. The selection of cell sorter as a case study is critical which was motivated by the 
fact that biological data are in large numbers and lack of adequate meanings to basic data elements. 
This requires construction of meta-data and meta-rules about basic data elements which facilitate the 
semantic mining process. The proposed POOM or process object-oriented modeling methodology 
offers comprehensive yet simple way to construct detailed process models while structuring domain 
knowledge in systematic way that facilitates decision making related to life cycle activities. In order 
to realize practical computer-aided process engineering environment it is essential to formally define 
meta-language and language (called engineering formal language or EFL) that adequately describe 
process models and activities. In addition, meta-rules and rules are constructed to completely describe 
the underlying process models. Parser and editors are developed in view of EFL and rules / meta-rules 
to facilitate the semantic mining of the underlying process. The proposed semantic mining framework 
can be applied to processes from different disciplines to manage and support life cycle activities.
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APPENDIX (1)

These are the detailed equations of calculating performance parameters of MoFlo systems.

Purity (%) = 
samplesortedinparticlesofnumberTotal

samplesortedinerestofparticlesofNumber
------

------- int

Recovery (%) = 

countersortonindicatedassortederestofparticlesofNumber
samplesortedinerestofparticlesofNumber

----------
-------

int
int

Yield (%) = 
sampleoriginalinerestofparticlesofNumber

samplesortedinerestofparticlesofNumber
-------

-------
int
int
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ABSTRACT

Efficient and effective techniques for managing and browsing large image databases are increasingly 
sought after. This chapter presents a simple yet efficient and effective approach to navigating image 
datasets..Based.on. the. concept.of.a.globe.as. visualisation.and.navigation.medium,. thumbnails.are.
projected.onto.the.surface.of.a.sphere.based.on.their.colour..Navigation.is.performed.by.rotating.and.
tilting.the.globe.as.well.as.zooming.into.an.area.of.interest..Experiments.based.on.a.medium.size.image.
database.demonstrate.the.usefulness.of.the.presented.approach.

INTRODUCTION

Efficient and effective ways for managing and browsing large image databases are increasingly sought 
after. This is due to the sheer explosion of availability of digital images in the last few years. Nowadays, 
the sizes of home user’s image collections are already typically in the 1,000s while professional image 
providers overlook databases in excess of 1,000,000 images. Common tools display images in a 1-di-
mensional linear format where only a limited number of thumbnail images are visible on screen at any 
one time, thus requiring the user to search back and forth through thumbnail pages to view all images 
and locate the relevant ones. Obviously, this constitutes a time consuming, impractical and exhaustive 
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way of searching for images, especially in larger catalogues. Furthermore, the order in which the pic-
tures are displayed is based on attributes like file names and does not reflect the actual image contents 
and hence cannot be used to speed up the search.

Recently, several approaches have been introduced which provide a more intuitive interface to 
browsing and navigating through image collections (Ruszala & Schaefer, 2004). The basic idea behind 
most of these is to place images which are visually similar, as established through the calculation of 
image similarity metrics based on features derived from image content, also close to each other on the 
visualisation screen, a principle that has been shown to decrease the time it takes to localise images 
of interest (Rodden et al., 1999). One of the first approaches was the application of multidimensional 
scaling (MDS) (Kruskal & Wish, 1978) used to project images being represented by high dimensional 
feature vectors to a 2-dimensional visualisation plane (Rubner, Guibas, & Tomasi, 1997). In the PicSOM 
system (Laaksonen et al., 2000) tree-structured self organising maps are employed to provide both im-
age browsing and retrieval capabilities. In (Krishnamachari & Abdel-Mottaleb, 1999) a hierarchical 
tree is employed to cluster images of similar concepts while the application of virtual reality ideas and 
equipment to provide the user with an interactive browsing experience was introduced in (Nakazato 
& Huang, 2001).

In this chapter we present a simple and fast approach to image database navigation. All images are 
projected onto a spherical globe; navigation through the image collection is performed by rotation of 
the sphere and zooming in and out (Schaefer & Ruszala, 2005). The use of a spherical object is not a 
coincidence, rather it stems directly from the type of features that are used for navigation. We utilise 
the median hue and median brightness (in HSV colour space) to calculate a pair of co-ordinates for 
each image in the database. As hue describes a circular quantity (0°=360°) whereas brightness is not, a 
sphere is a natural choice of geometrical body to encapsulate the combination of these two. The proposed 
method hence provides an effective, intuitive and efficient interface for image database navigation as 
is demonstrated on a medium sized image collection (Schaefer & Stich, 2004).

RELATED WORK

Several approaches which provide a more intuitive interface for image database navigation, compared 
to the traditional linear display of thumbnails, have been recently introduced in the literature. Rubner 
et.al. were among the first (Rubner, Guibas, & Tomasi, 1997) and suggested the application of multidi-
mensional scaling (MDS) (Kruskal & Wish, 1978) to calculate the locations of images and displaying 
them in a global 2-dimensional view on a single screen. Using this method, all images in a database 
are (initially) shown simultaneously; their locations are dependent on their visual similarity (based 
on features such as colour, texture or shape descriptors) compared to all other images features in the 
database. If two images are very similar in content they will also be located close to each other on the 
screen and vice versa. The user can browse the database easily from a top-down hierarchical point of 
view in an intuitive way.

The main disadvantage of the MDS approach is its computational complexity. First a full distance 
matrix for the complete database, i.e. all pairwise distances between any two images in the collection, 
needs to be calculated. MDS itself is then an iterative process which successively re-arranges the loca-
tions of each image minimising the distances between images on screen and their actual (feature-based) 
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database distances. Interactive visualisation of a large number of images is hence difficult if not impos-
sible to achieve. Furthermore, adding images to the database requires re-computation of (part of) the 
distance matrix and re-running MDS.

A computationally more attractive approach was presented by Krishnamachari and Abdel-Mottaleb 
(1999). They employed a hierarchical structure derived through a clustering process to access the images 
in a database. The user can navigate the images by traversing the tree structure. Unfortunately the user 
experience is limited by the fact that it is not possible to gain an overview of the whole database as for 
example MDS provides. In addition, at any particular level of the tree the child nodes are just displayed 
in a linear fashion without taking into account their relative similarities.

In (Laaksonen et al., 2000) the authors employ self organising maps (SOMs) for establishing image 
similarity. A hierarchical version of SOM, namely a tree structured self organising map is used both 
for retrieval and for visualisation purposes where the map itself can be navigated.

3D MARS (Nakazato & Huang, 2001) represents a virtual reality approach to image database navi-
gation. Images are displayed on four walls in an immersive CAVE environment where browsing the 
database is done using a special wand to select images and make queries. While being an interesting novel 
idea it requires specialist equipment not available to the average user wanting to explore their personal 
collections. Although there exists also a desktop version called ImageGrouper which can be used with 
ordinary CRT displays, using this program is fairly difficult as there is no option for global browsing; 
only searching for an image first and then browsing from that location in the database is possible.

IMAGE DATABASE VISUALISATION ON A HUE-SPHERE

Our aim is to provide a simple yet effective interface for image database visualisation and navigation. 
It should allow fast and intuitive browsing of large image collections and not rely on any specialised 
equipment not available to the average user.

We separate our approach into two tasks: selection of suitable features and visualisation of the im-
age collection. Among typical features used for image retrieval those describing the colour content are 
certainly the most popular ones (Smeulders et al., 2000). We follow this and describe each image by its 
median colour. However, rather than employing the standard RGB colour space we use the HSV space 
(Sangwine & Horne, 1998). Of this we take only the hue and value attributes as the saturation descrip-
tor is deemed less important for describing image content. Value, which describes the brightness of a 
colour is defined in HSV as (Sangwine & Horne, 1998)

 

3
BGRV ++

=            (1)

where R, G, and B are red, green and blue pixel values. V ranges between 0 and 1 where 0 corresponds 
to pure black and 1 to pure white. Hue “is.the.attribute.of.a.visual.sensation.according.to.which.an.
area.appears.to.be.similar.to.one.of.the.perceived.colours,.red,.yellow,.green.and.blue,.or.a.combina-
tion.of.two.of.them” (CIE, 1989) and is the attribute that is usually associated as ‘colour’. Hue in HSV 
is defined as (Sangwine & Horne, 1998)
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It is apparent that hue constitutes an angular attribute; H goes from red to yellow to green to blue 
back to red and is also often referred to as hue circle.

We now want to find a geometrical body that can be used to derive a co-ordinate system for placing 
thumbnails of the images contained in a database as well as to serve as the actual surface onto which 
those thumbnails are projected. Looking at the two attributes we have selected, H and V, we almost 
naturally end up with the body of a sphere, or a spherical globe. The hue circle describes one dimension 
of the sphere. As all colours with high V values are similar i.e. close to white and the same holds true for 
those colours with low V which become similarly close to black, and as black and white by definition 
don’t have a hue quality, the two points V=0 and V=1 describe the poles of the globe.

The use of a globe not only comes naturally with the choice of features, it also has other clear ad-
vantages. The concept of a globe will almost certainly be familiar to the average user as it is a direct 
analogy of the earth globe. It therefore provides a very intuitive interface to the user who will have 
experience on how to navigate and find something on its surface. Furthermore it allows us to employ 
a familiar co-ordinate system based on latitude and longitude. Longitude describes the circumference 
of the globe (i.e. the east-west co-ordinate) and lies in the interval [0°;360°]. Latitude describes the 
north-south direction from pole to pole and ranges from -90° at the south pole to +90° at the north pole. 
Clearly each point on the surface of the globe can be uniquely described by a pair of longitude/latitude 
co-ordinates.

Our approach to visualising image databases is simple and straightforward. It also provides a very 
fast method for accessing the image collection. Images are transformed to an HSV representation and 
the median hue and value attributes are calculated. We make use of the median rather than the mean 
in order to provide some robustness with regards to the image background. Also, we actually calculate 
the median R, G, and B values and transform those to HSV which is computationally more efficient 
and results only in a slight deviation in terms of accuracy. From these the co-ordinates on the globe are 
then determined (see also Figure 1), where H directly translates to longitude and V is rescaled to match 
the latitude range (V=0.5 corresponds to 0° latitude, i.e. a position on the equator). A thumbnail of the 

Figure.1..Hue-value.co-ordinate.system.used
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image is then projected onto the surface of sphere at the calculated co-ordinates (since those thumb-
nails are distorted more towards the poles we actually remap all images to be located between the great 
circles with ±80° latitude).  Once the locations for all images have been calculated and their thumbnails 
projected, the system shows an initial view of the globe and is ready for navigation. Figure 2 shows the 
initial view of our image database globe based on the UCID (Schaefer & Stich, 2004) image database 
which contains some 1300 images.

Since the co-ordinates are extracted directly from the images, our approach is very fast and hence 
much more efficient than methods such as MDS which rely on a comparably slow and computationally 
expensive iterative convergence procedure. Also does the addition of images to the database require 
only the computation of its median hue and brightness with no further calculations necessary as is the 
case for MDS and similar approaches. In addition the features that we employ are intrinsically suitable 
for query-based image retrieval (Stricker & Orengo, 1995). Furthermore, the axes of the co-ordinate 
system are well defined and meaningful which is in contrast to those obtained by MDS or other similar 
techniques (such as principal components analysis) where axes are not associated with attributes. Finally, 
as the database globe is displayed on an ordinary CRT monitor no specialist equipment is necessary.

 

IMAGE DATABASE NAVIGATION

As mentioned above the interface starts with an initial view such as the one shown in Figure 2 (which 
has a central point of 30° longitude, i.e. an average reddish/yellowish hue, and 0° latitude, i.e. medium 
brightness). From Figure 2 we can also see the controls the user has at his/her disposal for navigation 
purposes. As these are kept fairly simple and again due to the average user’s familiarity of localising 
places on an earth globe, navigation is straightforward and intuitive.

Figure.2..Initial.globe.view.of.the.UCID.dataset
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The controls allow rotation of the globe around both the vertical and the horizontal axis and zoom-
ing in and out of a region of interest. The user can perform these operations using the keyboard where 
the cursor keys are translated to rotation of the sphere and the + and - keys are available for zooming. 
Similarly the mouse can be used for navigation: moving the mouse prompts a rotation whereas the scroll 
wheel (or the left and right mouse buttons) are responsible for zoom operations. Especially attractive is the 
application of a trackball: here the ball itself corresponds directly to the image globe, hence rotating the 
track ball rotates the sphere on screen whereas the two buttons are again used for zooming in and out.

From the previous section it becomes clear that a rotation around the vertical axis will focus on a 
different average hue of the displayed images. In Figure 3 we show the resulting view after a clock-wise 
rotation by 90° which causes the average hue of the shown images to shift from red/yellow to green-
ish.

Further rotation reveals images of the remaining hues as shown in Figure 4 which displays the results 
of two further 90° rotations exhibiting images of bluish and magenta hues respectively. Rotation around 
the horizontal axis will either shift the display to images that are darker (rotation towards south pole) 
or brighter pictures (rotation towards north pole).

While the global view of the sphere allows for easy selection of a general hue/brightness area, it is 
clear that in this view single images are hard to make out. Therefore a zoom function is provides which 
allows to user to restrict their attention to a smaller, more localised area of interest. In Figure 5 we show 
an example of a zoomed-in area where the user was interested in images with a beach/ocean view. It is 
clear that further zoom operation(s) can be applied to localise single images of interest.

We note, that for none of the operations used for browsing the images, i.e. neither for rotation nor for 
changing the zoom factor, any additional calculations need to be performed (in contrast to e.g. MDS 
which will re-calculate all co-ordinates for a zoomed-in area (Rubner, Guibas, & Tomasi, 1997)) as the 
co-ordinates at which the pictures are placed do not change. We are therefore able to provide an image 
browsing environment that can operate in real time. Furthermore, while we provide a dedicated appli-

Figure.3..Database.view.after.a.rotation.around.the.hue.axis.by.90°



  ���

Intuitive Image Database Navigation by Hue-Sphere Browsing

Figure.4..Globe.view.with.central.hue.of.210°.(left),.and.300°.(right)

Figure.5..Zoomed-in.area.displaying.beach/ocean.images

cation for image database navigation we can also export our image globe to a VRML model (VRML 
Consortium, 1997) which can then be used and browsed with a suitable viewer.

CON CLUSION

We have introduced an efficient and effective approach to visualise and browse large image collections. 
Thumbnails of images are projected onto a spherical globe which acts as the medium the user interacts 
with. Navigation is simple, intuitive, and fast as has been demonstrated on a medium sized image da-
taset. While we have used colour features to determine the position of the thumbnails on the sphere’s 
surface, the method is generic and other types of features can be equally employed.
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ABSTRACT

Although.important.in.practice,.manual.image.annotation.and.retrieval.has.rarely.been.studied.by.means.
of.formal.modeling.methods..In.this.chapter,.the.authors.propose.a.set.of.formal.models.to.character-
ize.the.annotation.times.for.two.commonly-used.manual.annotation.approaches,.that.is,.tagging.and.
browsing..Based.on.the.complementary.properties.of.these.models,.the.authors.design.new.hybrid.ap-
proaches, called frequency-based annotation and learning-based annotation, to improve the efficiency 
of.manual.image.annotation.as.well.as.retrieval..Both.our.simulation.and.experimental.results.show.that.
the.proposed.algorithms.can.achieve.up.to.a.50%.reduction.in.annotation.time.over.baseline.methods.
for manual image annotation, and produce significantly better annotation and retrieval results in the 
same.amount.of.time.

INTRODUCTION

Recent increases in the adoption of devices for capturing digital media along with the ever-greater ca-
pacity of mass storage systems have led to an explosive amount of images and videos stored in personal 
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collections or shared online. To effectively manage, access and retrieve these data, a widely adopted 
solution is to associate the image content with semantically meaningful labels, a.k.a. image annotation 
(Kustanowitz & Shneiderman, 2004). Two types of image annotation approaches are available: automatic 
and manual. Automatic image annotation, which aims to automatically detect the visual keywords from 
image content, have attracted a lot of attention from researchers in the last decade (Barnard et al., 2002; 
Jeon et al., 2003; Li & Wang, 2006; Griffin et al., 2006; Kennedy et al., 2006). For instance, Barnard 
et al. (2002) treated image annotation as a machine translation problem. Jeon et al. (2003) proposed an 
annotation model called cross-media relevance model (CMRM), which directly computed the prob-
ability of annotations given an image. The ALIPR system (Li & Wang, 2006) used advanced statistical 
learning techniques to provide fully automatic and real-time annotation for digital pictures. Kennedy 
et al. (2006) considered using image search results to improve the annotation quality. These automatic 
annotation approaches have achieved notable success, especially when the keywords have frequent 
occurrence and strong visual similarity. However, it remains a challenge to accurately annotate other 
more specific and less visually similar keywords. For example, the best algorithm for the CalTech-256 
benchmark (Griffin et al., 2006) reported a mean accuracy of 0.35 for 256 categories with 30 examples 
per category. Similarly, the best automatic annotation systems in TRECVID 2006 (Over et al., 2006) 
produced a mean average precision of only 0.17 on 39 concepts.    

Along another direction, recent years have seen a proliferation of manual image annotation systems 
for managing online/personal multimedia content. Examples include PhotoStuff (Halaschek-Wiener 
et al., 2005) and Aria (Lieberman et al., 2001) for personal archives, Flickr.com and ESP Game (von 
Ahn & Dabbish, 2004) for online content. This rise of manual annotation partially stems from its high 
annotation quality for self-organization/retrieval purpose, and its social bookmarking functionality in 
online communities. Manual image annotation approaches can be categorized into two types as shown 
in Figure 1 (details in Section III). The most common approach is tagging, which allows users to an-
notate images with a chosen set of keywords (“tags”) from a vocabulary. Another approach is browsing, 
which requires users to sequentially browse a group of images and judge their relevance to a pre-defined 
keyword. Both approaches have strengths and weaknesses, and in many ways they are complementary 
to each other. But their successes in various scenarios have demonstrated the possibility to annotate a 
massive number of images by leveraging human power.

However, manual image annotation can be tedious and labor-intensive. Therefore, it is of great im-
portance to consider using automatic techniques to speed up manual image annotation. In this work, 
we assume users will drive the annotation process and manually examine each image label in order to 
guarantee the annotation accuracy, but in addition we use automatic learning algorithms to improve the 
annotation efficiency by suggesting the right images, keywords and annotation interfaces to users. This 
is different from automatic image annotation, which aims to construct accurate visual models based on 
low-level visual features. But from another perspective, efficient manual annotation can bring benefits 
to automatic annotation algorithms, because they are typically built on manually annotated examples.

To quantitatively analyze and optimize manual annotation, it is necessary to start with some anno-
tation time/efficiency models that formulate the annotation process. In the absence of existing studies, 
we propose two annotation time models to describe the process for two popular manual annotation ap-
proaches, i.e., tagging and browsing. To the best of our knowledge, this is the first attempt to quantify 
the manual image annotation process, and it serves as a theoretical foundation to analyze large-scale 
manual annotation without time-consuming user studies. Based on the time models, we further propose 
two hybrid annotation algorithms – frequency-based annotation and learning-based annotation – by 
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merging tagging and browsing into a unified framework. They can automatically learn from low-level 
features and adaptively chooses browsing/tagging interfaces for the right set of keywords/images. Both 
our simulation and empirical results on the TRECVID’05 (Over et al., 2006) and Corel (Barnard et 
al., 2002) collections confirm the validity of the time models, as well as demonstrate that the proposed 
algorithms can achieve an up to 50% reduction in annotation times and can consistently outperform the 
baseline methods in the entire annotation process. By extending similar mechanism to the interactive 
retrieval task on TRECVID’07 collection, we also observed a considerable improvement on the retrieval 
effectiveness under the same amount of retrieval time.

RELATED WORK

Applying automatic processing methods to assist manual image annotation is related to a large body 
of previous work. For example, existing systems have leveraged speech recognition, external semantic 
networks or time/location information to facilitate the manual annotation process (Kustanowitz & 
Shneiderman, 2004). However, since these systems require support from additional sources, their appli-
cability is more restricted than the automatic methods that only use information from image content.

From the learning perspective, relevance feedback also explores the idea of using learning algorithms 
to refine the ranking results. MARS (Rui et al., 1997) is one of the first image retrieval systems using 
relevance feedback. Recent relevance feedback approaches have applied more advanced machine learning 
tools such as SVMs and kernel biased discriminant analysis (Zhou & Huang, 2001). MiAlbum (Wenyin 
et al., 2001) uses such a feedback mechanism to iteratively improve annotation quality for personal im-

Figure.1..Examples.of.manual.image.annotation.systems..Left:.tagging.(Flickr.and.ESP.Game),.Right:.
browsing.(EVA.and.XVR).
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ages. But in contrast to relevance feedback, which needs to work on one query at a time, learning-based 
annotation should be able to simultaneously operate across multiple keywords and dynamically switch 
to any keywords or interfaces in the learning process.

The idea of active image/keyword/interface selection is also related to the methods of active learning 
(Tong & Chang, 2001), which iteratively asks a user to review and provide the correct labels for some 
selected unlabeled data. Typically, the unlabeled examples can be selected by means of either minimi-
zation of the learner’s expected error or maximization of information gain (Tong & Chang, 2001). The 
effectiveness of active learning for reducing annotation cost in automatic image annotation has been 
demonstrated by previous work (Yan & Hauptmann, 2004). Despite the connections on active image 
selection, learning-based annotation has some fundamental differences with active learning, because it 
mainly aims to collect a maximal number of annotations based on the time models, instead of attempting 
to build accurate visual models on low-level features. This leads to several implementation differences, 
such as image selection strategies, base learning models and so on. Moreover, learning-based annotation 
needs to investigate how the learning algorithm can be applied in a hybrid annotation environment, but 
this is rarely discussed in active learning.

MANUAL IMAGE ANNOTATION METHODS AND TIME MODELS

In this section, we introduce and discuss two types of manual image annotation approaches, i.e., tag-
ging and browsing. We also propose two models to measure their annotation efficiency, which offers 
the foundation for the rest of our discussions. Formally, let us suppose we have to annotate a set of 
images I={Il}l=1..L with a set of keywords W={Wk}k=1..K.1  Without loss of generality, we sort {Wk} in a 
descending order of their frequency. So W1 is the most frequent word and WK is the least frequent one. 
Lk is the number of relevant images for Wk, and Kl is the number of keywords associated with Il. The 
goal of manual annotation is to identify the relevance between each pair of image Il and keyword Wk, 
or equivalently, annotate image Il with keyword Wk. Once the relevance between.Il and all the keywords 
have been identified, we say Il.is annotated, otherwise Il is unannotated.

Tagging

Tagging allows the users to annotate images with a chosen set of keywords(“tags”) from a controlled or 
uncontrolled vocabulary. This type of approaches is the basis for most of the current image annotation/
tagging systems, although it can be implemented in a variety of ways with respect to interface designs 
and user incentives. For example, Flickr encourages users to create free-text tags for each uploaded 
image. It views tags as the central component for sharing, retrieval and discovery of the user-generated 
content. ESP Game (von Ahn & Dabbish, 2004) motivates users to annotate photos with freely chosen 
keywords in a gaming environment. PhotoStuff (Halaschek-Wiener et al., 2005) provides a domain-
independent tool that facilitates creating and publishing annotations for image content. One advantage 
for tagging is that annotators can use any keywords in the vocabulary or freely choose arbitrary words 
to annotate the target images. However, this flexibility might result in a “vocabulary problem” (Furnas 
et al., 1987), which means multiple users or a single user in a long period can come up with different 
words to describe the same concept. Moreover, it can be more time-consuming for users to type new 
keywords, as compared with simply browsing and judging the relevance between images and pre-de-
fined keywords.
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In order to quantitatively analyze the efficiency of tagging approaches, we must design a formal 
model to represent its expected annotation time for each image. To begin, we can assume that the more 
keywords users annotate, the larger the annotation time is. Our user study described in Section VII-A 
confirmed that this assumption is reasonable, but it also shows that the annotation time is not exactly 
proportional to the number of keywords. This is because, for each image, users always need additional 
time up-front to understand the image content in order to make their decisions. The above observa-
tions suggest modeling the tagging time Tl for the lth image as a function of four major factors, i.e., 
the number of image keywords Kl, the average time for designing/typing one word.tf, the initial setup 
time for annotation.ts and a noise term e, which follows a zero-mean probability distribution. Based on 
our user study, we find it is sufficient to adopt a linear time model to represent the annotation time for 
each image, i.e., Tl=Kltf+ts+e. Its mean can be derived as tl=Kltf+ts. For a total of L images, the overall 
expected annotation time is 

1 1

L K
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= + = +∑ ∑        (1)

These two formulations are equivalent because

∑
l=1

L
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k=1

K
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but they compute the total number of keywords from two orthogonal dimensions. We mainly consider 
the second formulation in the following analysis. Note that we assume users can find all relevant key-
words – or equivalently, annotate every keyword – in one tagging step. It might be more reasonable 
to consider the possibility of missing keywords in the tagging process. This issue could be mitigated, 
however, by using keyword auto-completion interfaces and specific-to-general label propagation tech-
niques. Moreover, due to a lack of statistics to support the modeling of missing keywords, we will pursue 
this direction in the future. Another point worth mentioning is that this time model does not require 
the parameters te and tf to be constant in all the annotation scenarios. Instead, they can be affected by a 
number of factors, such as interface design, input device, personal preference and so on. For example, 
annotation on cell phones (Wilhelm et al., 2004) can have a much larger tf. than annotation on desktop 
computers. Therefore, rather than attempting to estimate fully accurate parameters for any specific set-
tings, this paper mainly focus on examining the correctness of the proposed time models, and use them 
as a foundation to develop better manual annotation algorithms. We expect the proposed time models 
and the following analysis will generalize over a wide range of settings. Our experiments also evaluate 
the sensitivities of annotation performance over these parameters. Meanwhile, it is useful to re-estimate 
these coefficients for either a new user or a new environment. 

Browsing

Another type of annotation approach, browsing, requires users to browse a group of images, so as to 
judge the relevance of each image to a given keyword. The number of images per group can vary from 
1 to a large number such as 20. Because browsing annotation needs to start with a controlled vocabulary 
defined by domain experts or a seeded keyword manually initialized by users, it is not as flexible and 
as widely applied as tagging. However, browsing has advantages on several aspects. For instance, it 
allows users to provide more complete annotation outputs than tagging (Volkmer et al., 2005), because 
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users only focus on one specific keyword at a time and they do not need to remember all possible key-
words over a long period. Moreover, the time to annotate one keyword by browsing is usually much 
shorter than that in tagging, since users have a relatively simple binary judgment interface and a stable 
annotation context in the entire process. Therefore, recent years have seen more and more browsing 
annotation systems being developed. One such example is the Efficient Video Annotation (EVA) system 
(Volkmer et al., 2005), which allows multiple users to collaboratively annotate the same image collection 
by browsing and identifying keywords from a controlled vocabulary. Extreme video retrieval (XVR) 
(Hauptmann et al., 2006), although motivated by video search, follows a similar idea by asking users 
to quickly browse the automatic search results to judge their relevance.

Similar to tagging, we design a formal model to quantify the efficiency of browsing. First, the overall 
annotation time should be related to the number of images and the number of unique keywords. Accord-
ing to Section VII-A, we also find that the time for annotating a relevant image is significantly larger 
than the time for skipping an irrelevant image, because users tend to spend more time in examining 
the correctness on relevant images. Thus we model the browsing annotation time Tk for the.kth keyword 
using four major factors, i.e., the number of relevant images Lk, the average time to annotate a relevant 
image tp, the average time to annotate an irrelevant image tn and a zero-mean noise term ε. The num-
ber of irrelevant images is simply L–

k=L.–.Lk and hence a reasonable linear time model is Tk=Lktp+(L.
–.Lk)tn+ε. For a total of K keywords, the overall expected annotation time is 

1
( ) .

K

k p k n
k

t L t L L t
=

 = + - ∑          (2)

To summarize, these two annotation approaches are essentially complementary from many perspec-
tives. For example, tagging has fewer limitations on the choice of words and users only need to consider 
relevant keywords for each image. But the annotated words must be re-calibrated due to the vocabulary 
problem. It also requires more time to determine and input the given keyword. On the contrary, brows-
ing must work with one pre-defined keyword at a time and requires users to judge all possible pairs of 
images/keywords. But the effort to determine image relevance by browsing is usually much less than 
that by tagging, i.e., tp, tn is typically much smaller than tf,.ts. Therefore, tagging is more suitable for 
infrequent keywords such as specific person/location names, and browsing works better for frequent 
keywords such as “person”/“face”.

Frequency-Based Annotation

The complementary properties of tagging and browsing provide an opportunity to develop more effi-
cient algorithms for manual image annotation by merging their strengths. Because our analysis suggests 
that tagging/browsing is suitable for infrequent/frequent keywords respectively, we develop a hybrid 
annotation algorithm called frequency-based annotation, which first partitions the keyword space into 
two sets based on word frequency and then applies the best annotation strategy to label each set of 
words. To illustrate the basic idea, we can view the image annotation task as a problem of filling binary 
relevance information in an empty matrix of size K×L. In this case, tagging is equivalent to annotating 
the matrix row by row, as shown in Figure 2(a), and browsing is equivalent to annotating column by 
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column, as shown in Figure 2(b). However, since neither of these approaches are always ideal for the 
entire keyword space, it is useful to split the keywords into two disjoint sets shown in Figure 2(c). In 
order to reduce the annotation time, we can apply browsing for the frequent (or general) keywords in 
the left set, and apply tagging for the infrequent (or specific) keywords on the right set. By doing so, 
users can quickly browse through the frequent words in a short time and leave the rest of keywords to 
be picked up by tagging.

To estimate the best boundary to split the keyword space, we can minimize the total expected an-
notation time as a function of the boundary B. The annotation time consists of two parts including 
the browsing annotation cost for the words more frequent than wB, and the tagging annotation cost for 
the words less frequent. Based on the time models presented in Eqn(1) and Eqn(2), we have the total 
expected time as follows, 

1 1 1 1
( ) ( ) ( ) .    

B K B K

k p k n k f s n s k p n k f
k k B k k B

t B L t L L t L t Lt LBt Lt L t t L t
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Figure.2..Illustration.of.four.image.annotation.approaches.based.on.a.matrix.representation,.where.
each.row.stands.for.one.image,.and.each.column.stands.for.one.unique.keyword.

(a).Tagging (b).Browsing

(c).Frequency-based (d).Learning-based
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To obtain the boundary that achieves the minimal annotation time, we can compute the largest B.
that satisfy t(B)≤t(B–1), or equivalently, the largest B satisfying 

.nB

f n p

tL
L t t t

>
+ -

          (4)

Algorithm 1 summarizes the frequency-based annotation algorithm, where all the frequency in-
formation Lk is assumed to be known and the keywords Wk are sorted in the descending order of word 
frequency. The first step of this algorithm is to estimate the optimal boundary B based on either Eqn(4). 
The choice of the equations depends on whether the detailed frequency information is available, because 
Eqn(4) can provide a more accurate estimate, but it needs the exact frequency Lk as inputs. After B is 
determined, the algorithm requires users to annotate all the images via browsing for the top-B frequent 
keywords, followed by tagging all the images with the rest of the keywords. Finally, it outputs the an-
notations for all the images.

 
Learning-Based Annotation

The frequency-based annotation provides a simple hybrid framework to merge the advantages of tagging 
and browsing, but it requires all the frequency statistics to be available in order to determine the most 
frequent keywords. Unfortunately, accurate frequency statistics are not always available. Moreover, 
frequency-based annotation limits itself to use browsing annotation only for frequent keywords, which 
ignores the potential chance for improving efficiency on the other infrequent keywords. Therefore, we 
propose another approach called learning-based annotation which can automatically learn from visual 
features and adaptively choose annotation interface for the right set of keywords/images.

Figure 2(d) illustrates the basic idea of the learning-based annotation using the same annotation 
matrix as before. The algorithm starts by tagging some initial selected images. With more annotations 
collected, it attempts to dynamically find a batch of unannotated images for potential keywords and 
ask users to annotate them in a browsing interface. The algorithm will iterate until all the images are 
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shown in the tagging interface so as to guarantee none of the keywords is missing. This is in contrast 
to frequency-based annotation, which determines a fixed set of keywords for browsing before the an-
notation process. The advantages for the learning-based methods are two-fold: 1) it does not need to 
re-order the keyword space by frequency; 2) even for infrequent keywords, it can potentially discover a 
subset of images that are mostly relevant for them, and improve the annotation efficiency by switching 
to a browsing interface.

Analysis

To design the learning-based annotation algorithm, it is instructive to study when it can have a smaller 
annotation time than simple tagging/browsing. Let us first break down its total annotation time by key-
words, or equivalently, column by column in the annotation matrix. Suppose the proposed algorithm 
has obtained Lk relevant labels for keyword Wk. Then we can assume βkLk relevant labels come from 
browsing and the other (1–βk)Lk labels come from tagging, where βk is called browsing recall. However, 
βk is not enough to describe the total annotation time, because, based on the proposed time models, 
browsing irrelevant images will also introduce additional cost. Therefore we need to introduce browsing 
precision γk to represent the proportion of relevant images in all the browsed images. In this case, the 
number of irrelevant browsed images is βkLk(1–γk)/γk and the total annotation time is, 

1
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Our analysis in the Appendix shows that if an annotation algorithm is more efficient than tagging/
browsing, its browsing recall and precision must satisfy 
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where a=tn/(tf+tn–tp), bk=L/Lk. These inequalities offer us more insights to develop efficient annota-
tion algorithms. Eqn(7) suggests that for keyword Wk, we should use browsing to annotate at least 
(1–abk)Lk/(1–a) relevant images. Otherwise, simple browsing/tagging annotation can be a better choice 
in this case. Furthermore, it also indicates that the browsing precision should be larger than a lower 
bound related to a, bk and βk. To summarize, for a given keyword, an efficient annotation algorithm 
should be able to select a sufficient number of images for users to browse, and a sufficient proportion 
of these browsed images should be relevant to the predicted keyword.

Based on above analysis, we should switch to browsing interface if we expect the browsing preci-
sion can at least be higher than the lower bound (1–abk) /(1–a). Therefore, the problem boils down to 
adaptively finding a set of unannotated images that are likely to be relevant for a given keyword based 
on the existing annotation. To this end, we translate manual annotation into an online learning problem, 
i.e., for keyword Wk, learn the visual model from available relevant images I'k={I'j}j=1..m', and use it to 
predict additional relevant images from the unannotated image pool U'k={Il|Il.I'k}. To enable this learn-
ing process, we assume each image I is associated with a number of low-level features x. Based on the 
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annotation provided by users, we can learn their visual patterns by using kernel logistic regression, 
which aims to optimize the following empirical risk function for keyword Wk,
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‖ ‖        (7)

 
 
where xj is the feature for I'j, yk∈{–1,1} is binary relevance label, and H denotes a reproducing kernel 
Hilbert space(RKHS) generated by an arbitrary positive definite kernel K. According to the representer 
theorem, the relevance of unannotated images can be estimated from the minimizer f(x) with weights 
αi for each training example, 
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When users annotate an additional label (ym,xm),m=m’+1, the optimization function must be updated 
accordingly. To reduce the computational demand, only the weight for the new example is updated based 
on the Newton-Raphson method. Since the optimization function is convex, the Newton method can 
guarantee to find the global optimum. To be more specific, the gradient and Hessian of the risk function 
with respect to αm    can be written as, 
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where K is the kernel Gram matrix, Km is the vector of {K(xm,.)}, Kmm is the element of K(xm,xm), p denote 
the logistic model 1/(1+exp(–Kα)), and W denote the matrix diag(pi(1–pi)). The Newton updates can be 
straightforwardly derived from the gradient and Hessian function. These updates are iterated until the 
risk function converges or the iteration number is larger than a threshold.

In our implementation, we select the RBF kernel to model non-linear decision boundary between 
positive/negative examples. The kernel matrix is pre-computed before the annotation process in order 
to reduce online computational resources. Finally, after the optimal weight αm is found, we can simply 
update the prediction function by f(•)←f(•)+αmK(xm,•).

Algorithm Details

The learning-based hybrid annotation is summarized in Algorithm 2. This algorithm starts with a number 
of unannotated images and a vocabulary of keywords. It first selects an image from the unannotated 
pool for tagging. After this image is completely tagged by the user, all the related variables are updated 
for its corresponding keywords Wk, i.e., the set of relevant images I'k, the kernel weight α as well as the 
prediction function fk(•) based on Eqn(8). By thresholding the prediction function, we generate the set 
of estimated relevant images Rk that represent the most potentially relevant images identified by the 
system. If the number of these images is larger than a pre-defined batch size S, the browsing interface 
is activated to annotate all the images in Rk. To avoid switching interfaces too frequently and disturbing 
the user experience, we typically set the batch size to be a large number and only invoke the browsing 
interface when there are a large number of relevant images available.
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Since the set of estimated images are not guaranteed to be relevant, we use the new image annota-
tions to predict the browsing precision and update the learning parameters accordingly. As shown in 
Eqn(7), browsing precision needs to be sufficiently large for the proposed algorithm to improve effi-
ciency. Therefore, in the next step, if we find the browsing precision is larger than a lower bound, we 
will reduce the adaptive threshold θk and thus the browsing interface can be used to annotate as many 
images as possible until the browsing precision is too low. The bound, i.e., max(a,m'k/mk), is derived 
from Eqn(7) with βk=1 and m'k/mk to approximate the true frequency ratio Lk/L, where m'k is the number 
of relevant images and mk is the total annotated images for Wk so far. Above steps will be iterated until 
all the images are tagged.

Application to Interactive Retrieval

Although the aforementioned approaches are discussed in the context of manual image annotation, its 
idea and analysis can be simply extended to the interactive retrieval systems  (Hauptmann & Witbrock, 
1996; Snoek et al., 2004; Foley et al., 2004), which provide a means to help users to look up image/video 
using associated text and visual content in an interactive manner. Interactive retrieval can be categorized 
into three categories, 

• A general class of users aims at browsing over a large number of videos from diversified sources, 
where users have no specific target except for finding interesting things. 

• Another class of users wants to do arbitrary search by retrieving an arbitrary video satisfying his 
information need that can be presented by text keywords or visual examples. 
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• The third class of users, complete search/annotation, aims to discover every relevant video that 
belong to a specific information need. To support these users, the retrieval systems must possess 
more automatic processing power to reduce the huge manual annotation efforts. 

Since the last paradigm is often time consuming and labor extensive, there are a number of interactive 
retrieval approaches that have been developed to reduce the overall retrieval effort in this case, such as 
Informedia (Hauptmann & Witbrock, 1996), MediaMill (Snoek et al., 2004), Fischlar (Foley et al., 2004) 
and so on. However, all of these interactive retrieval systems consider dealing with one query topic at 
a time. But it is not uncommon that users want to search for multiple related query topics simultane-
ously. For example, a security officer might want to search the surveillance video collection for a list 
of suspicious persons or a list of abnormal activities. Since multiple queries does not exist in isolation, 
it is possible to exploit the redundancy between queries so as to reduce the total retrieval time, or in 
other words, improve the retrieval performance within the same amount of time. In this sense, we can 
view multi-query retrieval as a manual image/video annotation task, which aims to annotate the entire 
collection with the given keywords/queries. Therefore, by treating the query topics as keywords, studies 
on manual image annotation approaches can bring us deeper insights on improving the performance 
of multi-topic interactive retrieval.

In the following discussions, we describe the interface design of the proposed multi-topic image/video 
retrieval system using hybrid learning-based annotation. The main components of the retrieval system 
consist of a single-image tagging interface and a single-query browsing interface. Figure 3 shows a 
screenshot of the tagging interface that aims to label one image simultaneously with 25 queries provided 
by TRECVID’07. The image browser in the middle displays the target image for users to label, where 
the target images are automatically selected based on the learning-based annotation algorithm in Algo-
rithm 2. Users can use the mouse or the arrow keys on the keyboard to navigate the choice of images 
from the collection. On the right side, the query list shows all the query topics to retrieve. In this list, 
all the queries are denoted by a small number of keywords manually extracted from the query topic. 
For instance, “Dog_person_walk” means the query of “finding the video shots of person walking with 

Figure.3..The.tagging.interface.of.the.multi-topic.retrieval.system
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Figure.4..The.browsing.interface.of.the.multi-topic.retrieval.system

Figure.5..The.shot.information.dialog.of.the.multi-topic.retrieval.system

dogs”. Also, all queries are categorized into multiple query groups, such as the group related to “people”, 
“street” and “vehicle”. Such a grouping is able to facilitate the manual judgment effort for the general 
users, and thus reduce the time for redundant decision on the same image. For example, if users are 
examining an image with no persons available, they can skip all the person-related queries at the same 
time. To classify the displayed image as relevant to one of the queries, user can input the related query 
keywords using the editor control on top of the query list, or double click the corresponding keyword 
to indicate its relatedness to the displayed image.

On the left side, the action panel automatically generates the interface switching actions suggested 
by the learning-based retrieval algorithm. Rather than fully controlling the interface selection by the 
system, we leaves the option of switching interface to users, who can choose to either keep using the 
current interface, or take the next action in the panel to switch to a new interface on the suggested 
queries or images. If the interface is switched, the system will then load the corresponding queries and 
images to the image browser.

Figure 4 shows a screenshot of the browsing interface that aims to retrieve a grid of images for a 
TRECVID’07 query “finding video shots of three or more people sitting on a table”. This interface has 
a similar layout with the tagging interface, but with several key differences. For example, the selected 
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images are organized in a 3x3 image grid in the image browser which allows users to quickly browse 
through. The selected queries suggested by the learning-based annotation algorithm is highlighted in 
the query list. Users can click a mouse button or press the space key on a specified image to toggle 
the relevance of the query to the image. The images that are judged relevant to the given queries are 
overlaid with a red border and the irrelevant images are overlaid with a yellow border. Similar to the 
tagging interface, the action panel lists all the interface switching actions automatically generated by 
the learning-based annotation algorithm. Users can decided to stay with the current query, change to a 
new query or switch back to the tagging interface.

In the case of video retrieval, users can invoke a separate shot information browser (Figure 5 so as 
to examine all the I-Frames in the selected video shot. The ability to browse individual video frames is 
important especially when the query topics are related to any temporal events/activities such as “people 
walking” or “people going up stairs”.

Experiments

Our experiments are carried out on three large-scale image/video collections. The first and the second 
collection is generally referred to as the TRECVID collection (Over et al., 2006), which is the largest video 
collection with manual annotations available to the research community. In the first collection, We use 
the TRECVID 2005 development set (TRECVID in short) which includes a total of 74,523 keyframes. 
This collection consists of broadcast news videos captured from 11 different broadcasting organizations 
across several countries. Each image is officially annotated with 449 semantic labels (Naphade et al., 
2006). For each image, we generate a 150-dimensional color histogram as the visual features.

The second collection, i.e., the TRECVID 2007 collection (TRECVID’07 in short), includes a total 
of 22,084 keyframes from Netherlands Institute for Sound and Vision. They are fully labeled on 25 
official queries. For each image, we generate a 166-dimensional color histogram and 108-dimensional 
co-occurrence texture as the visual features. In the following, we use both collections to simulate and 
examine the performance of the learning-based hybrid retrieval algorithm. We also report its real-world 
retrieval performance for searching both image collections.

Figure.6..Left:.tagging.interface..Right:.tagging time statistics. The dash line is fitted based on the tag-
ging.model
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The third collection is compiled from the Corel image dataset (Corel in short) on 155 keywords and 
currently shared online by Barnard et al. (2002). The collection is organized into 10 different samples 
of roughly 16,000 images, where each image is associated with a vocabulary of 155 keywords such as 
“aircraft”, “sky”, “water” and so on. We use the first sample of the images which contains a total of 
15,766 images. The low-level visual features are generated on image segments provided by N-Cuts. 
Each segment is associated with 46 features including size, position, color, oriented energy (12 filters), 
and a few simple shape features.

In the following discussions, we first present two user studies to confirm the validity of the tagging 
and browsing time models proposed in Section III-B. We use them to simulate and examine the effi-
ciency of the learning-based hybrid annotation algorithm. Finally, we report the real-world annotation 
performance of hybrid annotation by asking a user to annotate the image collection in one hour.

Annotation Time Models
 

To examine whether the proposed tagging/browsing time models are reasonable in practice, we con-
ducted user studies on two different types of annotation systems. To validate the tagging time model, 
we developed a keyword-based annotation system. Figure 6 shows the screenshot of the tagging sys-
tem, together with the distribution of the average tagging time against the number of keywords. The 
TRECVID collection with its controlled vocabulary is used in this experiment. A total of 100 randomly 
selected images have been annotated by a user. The number of annotated keywords per image ranges 
from 1 to 7. We also generate a dashed line by fitting the time statistics with the tagging model. It can 
be observed that the average annotation time for an image has a clear linear correlation to the number 
of keywords. Another interesting observation is that the dashed line does not go across the origin after 
an extrapolation to zero keywords. This means it takes additional time for a user to start annotating 
a new image due to a switch of the annotated images. Based on the linear fitting, we can estimate the 
tagging model parameters for this user to be tf=6.8 seconds and ts=5.6 seconds. 

To validate the browsing time model, we asked three different users to browse 25 keywords (ex-
tracted from 25 TRECVID’05 queries) in the TRECVID collection. The system screenshot is shown in 
Figure 7. In this study, we slightly rewrite the browsing model to be, tp+tnLk/Lk=t/Lk, where Lk/Lk is the 

Figure.7..Left:.browsing.interface..Right:.browsing time statistics. Dash lines are fitted based on the 
browsing.model.
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ratio between the number of irrelevant images and relevant images, or called negative-positive ratio, 
t/Lk.is the average time for collecting one positive image. If the proposed browsing model is satisfied, 
we should be able to identify a linear relation between Lk/Lk and t/Lk. Figure 7 plots the distributions of 
these two factors for the three users. As we can see, the dashed lines estimated by linear regression fit 
the true distribution quite well, which confirmed the browsing time model is reasonable for the practi-
cal annotation environment. We estimate the model parameters by averaging all three users, i.e., tp=1.4 
seconds, and tn=0.2 seconds.

 
Simulated Annotation Results

In this section, we evaluate the performance of the annotation algorithms in large-scale image collec-
tions. Similar to the typical experimental settings for active learning, we use the ground-truth image 
labels to simulate real user annotations in order to avoid spending prohibitive human resources for 
evaluation. The annotation time is obtained based on the time model parameters tf,ts,tp and tn estimated 
in the previous section. Note that these parameters only serve as a reasonable estimation for the anno-
tation parameters in a desktop environment. It is possible for these parameters to change considerably 
for other interfaces, devices and annotators. But given the flexibilities of the proposed time models, we 
expect our analysis is generally applicable without being limited to specific settings. We also carry out 
additional experiments to study the sensitivities on the choice of time model parameters.

To illustrate how the learning-based annotation algorithm can automatically switch the annotation 
methods and select a batch of images to annotate by browsing, Figure 8 shows the initial 14 images 
which learning-based annotation asks for tagging in the TRECVID collection, and then the first batch 
of 30 images selected for browsing. The top of this figure lists all the initial tagged images and their 
associated keywords. After all the initial images are tagged, the algorithm found 5 of these images are 
annotated as “politicians” and predicted a large number of images can be potentially related to the key-

Figure.8..The.images.selected.by.learning-based.annotation.for.the.TRECVID.collection..Top:.the.initial.14.
images for tagging (with their keywords shown). Bottom: the first group of 30 images for browsing. 
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word “politicians” based on low-level visual features. Thus afterwards, it switched to present a batch of 
30 images and ask the user to annotate keyword “politicians” by browsing. Because a significant faction 
of the browsed images are related to the keyword “politician”, the user can save a lot of time without 
re-typing the same keyword again. This learning-based algorithm also helps to calibrate the annotated 
keywords, provide more complete annotations on each concept and make browsing annotation applicable 
even for an uncontrolled vocabulary.

 Next, we present the annotation performance of frequency-based annotation (FBA) and learning-based 
annotation (LBA) together with two baseline algorithms, i.e., tagging (Tag) and browsing (Browse). All 
the algorithms are evaluated on the TRECVID collection and the Corel collection. For frequency-based 
annotation, we select the optimal boundary B using Eqn(4) by assuming the frequency of each keyword 
is known. For learning-based annotation, we set the RBF kernel parameter ρ to 1 and the batch size S 
in Algorithm 2 to 50 unless stated otherwise. Because we assume all the user annotations are correct, 
the widely-used accuracy-based performance measure is no longer applicable in the scenario of manual 
image annotation. Therefore, we propose three new measures – macro-recall, micro-recall and hybrid-
recall – to evaluate the annotation quality. In this work, recall is defined as the ratio of the number of 
relevant images collected at a certain point of the labeling process, to the total number of relevant images. 
Similar to their counterpart in text classification (Yang & Pedersen, 1997), macro-recall ra is the average 
of the recalls for each keyword, and micro-recall ri is the recall on the entire image-keyword space. In 
some sense, macro-recall measures the annotation diversity and micro-recall measures the annotation 
completeness, where both of them are important to describe the annotation quality. Hybrid-recall is the 
harmonic mean of the macro-recall and micro-recall, rh=2rari/(ra+ri), designed using the same principle 
as the F1 measure (Yang & Pedersen, 1997). In addition, we also report the total annotation time when 
the annotation process is completed, or equivalently, when all three recalls become 1.

Figure 9 provides a detailed comparison between four annotation algorithms on the TRECVID 
collection and the Corel collection. All three recall measures are reported with a growing annotation 
time until the annotation process ends. It is obvious to see that both frequency-based annotation and 
learning-based annotation are superior to the baseline tagging/browsing methods in terms of the total 
annotation time. For example, in the TRECVID dataset, the time for frequency-based annotation to 
complete the labeling process is only 60% of the tagging annotation time and 36% of the browsing 
annotation time. Learning-based annotation further reduces the annotation time to be 50% of tagging 
time and 30% of browsing time. This is achieved without using any frequency information in contrast 
to frequency-based annotation. Their improvement in the Corel collection is also considerable, although 
it is relatively smaller than that in the TRECVID collection because of a lower number of keywords per 
image on average. A comparison between the curves on micro-recall and macro-recall shows that tag-
ging is good at improving the macro-recall, while browsing does well in improving micro-recall. This 
is because tagging random images can bring a wide coverage of various keywords at the beginning, but 
browsing methods only focus on annotating the most frequent keywords at the early stage. This shows 
an important trade-off between micro-recall and macro-recall. Thus it is more impressive to observe 
that learning-based annotation is able to outperform tagging/browsing in terms of both macro-recall 
and micro-recall, as well as hybrid-recall. Our last observation is that learning-based annotation has 
a significantly higher hybrid-recall at the end of its labeling process. This indicates within the same 
amount of time, learning-based annotation allows us to collect much more image keywords with higher 
annotation diversity.

In order to gain deeper insight into the improvement of learning-based annotation, we plot the true 
browsing recall and browsing precision in Figure 10 in the TRECVID collection. The results on the 100 
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Figure.9..Annotation.performance.as.a.function.of.annotation.time.on.the.TRECVID.and.Corel.collec-
tions
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Figure.10..The.distribution.of.browsing.recall.and.browsing.precision.for.the.100.most.frequent.keywords..
Dashed.lines.show.the.minimum.recall/precision.to.outperform.tagging.and.browsing..

most frequent keywords are shown. For the purpose of comparison, we also show the minimal brows-
ing recall required for learning-based annotation to outperform tagging/browsing, and the minimal 
precision given its true recall βk. In the browsing recall curve, we can find that βk for most keywords is 
higher than the lower bound except for the first 9 keywords. It is generally decreasing with the keyword 
frequency going down, which means, if the keyword is less frequent, a smaller proportion of the images 
will be covered by browsing. In the precision curve, the number of keywords that violate the minimal 
requirement increases to 20. It suggests that if the system knows the 20 most frequent keywords, it is 
better to use browsing alone to annotate them. For the other keywords, a large number of them pro-
duce a significantly higher precision over the minimal requirement, which finally leads to the overall 
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improvement for learning-based annotation. Some considerably improved keywords are 28-“Anchor”, 
29-“Interview”, 30-“Overlayed Text”, 86-“Soccer”, 87-“George Bush”, which clearly benefits from the 
common visual appearance in their relevant images.

To evaluate the sensitivity of learning-based annotation with respect to its parameters, we designed a 
series of experiments and report the learning curves in terms of total annotation time for the TRECVID 
collection.2 Figure 11 compare the annotation time of three algorithms, i.e., Browse, Tag and LBA, with 
the model parameters ta, tb, te and tf multiplied by a scaling factor from 0.5 to 1.5. It degrades to our 
previous results when the scaling factor is 1. As can be seen, the proposed algorithm can still obtain 
significant improvement over browsing/tagging with various time model parameters, especially when 
ta, tb is lower or tf is higher than the default values. This confirms the insensitivity of our analysis. Fig-
ure 12(a) compares the annotation time with the browsing batch size S in Algorithm 2 varied from 10 
to 200. With a larger batch size, the total annotation time always becomes higher. But since a smaller 
batch size might increase the cost for users by switching the annotation contexts more frequently, a user 
study is needed to determine the best batch size. Finally, because the observation in Figure 10 suggests 
using only browsing to annotate the most frequent concepts, we carry out the following experiments: 
before applying the learning-based annotation, we used browsing approaches to annotate a number of 

(a) Scaling both a, b (b) Scaling e (c) Scaling f

Figure.11..Annotation.time.of.LBA.with.scaled.time.model.parameters.on.TRECVID.collection

Figure.12..Annotation.time.of.LBA.with.scaled.learning.parameters.on.TRECVID.collection



  ���

Formal Models and Hybrid Approaches for Efficient Manual Image Annotation and Retrieval

the most frequent keywords (assuming they are known) for all images. Figure 12(b) shows the learning 
curves with different number of browsed keywords. As we can see, if we can identify the 15 - 20 most 
frequent keywords, the total annotation time can be reduced by 10%. But identifying these keywords 
is still a challenge.

Empirical Annotation Results on TRECVID’05 
 
To verify the simulation results, we implemented a hybrid annotation system and asked a user to 
manually annotate a subset of the TRECVID collection, which includes the keyframes of 10 randomly 
selected videos. We recorded the statistics for three annotation approaches, i.e., tagging, browsing and 
learning-based annotation, around every five seconds. Each annotation process lasted for one hour. The 
annotation parameters are re-estimated using linear regression on all 2142 annotation statistics. For this 
user, these parameters are set to tp=1.16s,tn=0.17s,tf=4.01s,ts=2.02s, which are slightly less than the value 
used in the simulation. Table I shows the number of tagged/browsed images at the end of the annotation 
process, and compares the estimated annotation time (based on time models) with the true annotation 
time recorded. It can be found that the estimated time closely approximates the true annotation time 
and the error is less than 4% in all three cases. This again confirms the correctness of the proposed time 
models in a large-scale annotation environment. Figure 13 shows the curve of hybrid recall as a function 
of annotation time.3  The hybrid recall curves of tagging and browsing are similar to each other because 

Figure.13..Comparing.hybrid.recall.of.three.manual.annotation.approaches.against.the.annotation.time.
on.the.TRECVID.collection

Method Ni Nt Np Nn Test. Ttrue

Tag 405 706 0 0 3649s 3600s
Browse 0 0 1393 11693 3603s 3608s
Hybrid 194 321 1009 3527 3478s 3601s

Table.1..Comparing.estimated.annotation.time.(Test.).with.true.annotation.time.(Ttrue)..The.number.of.
annotated.images.are.also.shown.(Ni:.tagged.images,.Nt:.tagged.words,.Np:.relevant.browsed.images,.
Nn:.irrelevant.browsed.images)
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of their complementary properties on the macro-recall and micro-recall. The learning-based annotation, 
on the other hand, achieves a 50% improvement over tagging and browsing in terms of hybrid recall. 
This observation is in line with the simulation results presented before.

Retrieval Results on TRECVID’07

The last experiment describes the results and statistics of our TRECVID’07 interactive retrieval 
submission on 25 official queries using the proposed multi-topic hybrid retrieval system. The initial 
retrieval results are generated by an automatic retrieval system, of which the overall architecture was 
a combination of speech-based retrieval with automatic query refinement, model-based query retrieval 
and re-ranking based on automatic mapping of textual queries to semantic concept detectors, semantic 

Figure.14..Comparing.the.mean.average.precision.of.the.proposed.method.with.the.other.TRECVID’07.
submissions

Figure 15. The number of relevant shots identified by tagging and browsing on the TRECVID’07 que-
ries
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retrieval based on automatic mapping of visual query examples to concept detectors, and visual retrieval 
based on light-weight learning and smart pseudo-negative sampling. All processing was done at the 
sub-shot level based on the master shot boundary reference, where each sub-shot was represented by a 
single keyframe and a corresponding speech transcript segment. All ranking results were generated at 
the sub-shot level first and then aggregated at the shot level by taking the maximum confidence score 
across all sub-shots for each master shot. More details of the automatic retrieval system can be found 
in (Campbell et al., 2007).

The entire retrieval process lasted for 6 hours for 24 topics, which is translated into 15 minutes per 
query. We first examined the top 200 shots for each queries, iterate within each query until none of 
the unseen images are further suggested by the system. Then we switched back and forth on the tag-
ging/browsing interfaces to retrieve multiple queries simultaneously. Our interactive system achieves 
a mean average precision of 0.36 on TRECVID’07 collection. With a simple temporal expansion at 
the end of the search result list, i.e., add discounted scores to the shots that are sufficiently close to 
the retrieved shots (within 3 shots) (Yan & Hauptmann, 2007), can boost the MAP to 0.43. Figure 14 
compared the performance of the proposed system with other official interactive retrieval submissions 
in the TRECVID’07 evaluation. It can be seen that our system outperforms the other retrieval systems 
by a noticeable margin, which again confirms the effectiveness of the multi-topic retrieval approach. 
It is worthwhile to point out that since the other systems restrict the query time to be no more than 15 
minutes, their performance might not directly comparable to ours. But from another perspective, this 
observation clearly demonstrates the advantages of multi-topic retrieval if we need to search for multiple 
query topics at the same time.

The statistics of our retrieval system shows that around 60% of the image-topic pairs in the entire 
video collection have been either browsed or tagged. Our system strikes a good balance on browsing 
and tagging the retrieved shots, where tagging produced 1726 retrieved shots and browsing produced 
884. In contrast, according to our statistics, simple browsing interface can only label around 10% of the 
collection using the same amount of time. Simple tagging interface can label more image-topic pairs 
than browsing. However, it will miss most of the labeled shots provided by browsing. Figure 15 plots the 
breakdown of the number of browsed and tagged shots for each query. It shows that a larger proportion 
of the shots are retrieved by the tagging approach, but the browsing approach also contributes a com-
parable number of shots for each query. For two queries including “finding a women in the interview 
scene” and “finding market scene”, the browsing approach offers a larger number of truth shots due to 
the visual similarity between the truth shots in these two queries.

CONCLUSION

In this paper we have presented two hybrid approaches for improving the efficiency of manual image an-
notation. This approach was inspired by our quantitative study of two widely used annotation approaches, 
i.e., tagging and browsing. We have proposed models to describe the processing time for tagging and 
browsing, and the validity of these models has been confirmed by our user studies. The quantitative 
analysis makes clear the complementary nature of tagging and browsing, and led us to propose a learn-
ing-based hybrid annotation algorithm which adaptively learns the most efficient annotation interface 
for selected keywords and images. Our simulation and empirical results on the TRECVID and Corel 
collections have shown that both proposed algorithms can achieve an up to 50% annotation time reduction 
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compared with the baseline methods. In particular, learning-based annotation considerably outperforms 
the other approaches in terms of macro-recall, micro-recall and hybrid-recall in the entire annotation 
process. In the interactive retrieval experiments for TRECVID’07, the proposed method also enjoys a 
considerable improvement on the retrieval effectiveness under the same amount of retrieval time.

We expect this work to open up new research directions in modeling manual image annotation. For 
instance, the current annotation time models are by no means perfect. They can be refined to incorporate 
more user factors such as keyword missing rate, context switching cost, or vocabulary size. We can also 
consider other learning algorithms to support fast visual model updates. Finally, the interface design 
and user incentive for hybrid annotation algorithms can be further discussed.
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APPENDIX .DERIVATION FOR EQN(7)

We analyze the annotation time for each keyword separately. For a given keyword Tk, the time of learn-
ing-based annotation should be lower than simply tagging or browsing Tk, otherwise either tagging or 
browsing should be used. When the learning-based annotation time is smaller than the tagging time 
for Tk, we can have
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Similarly, when the learning-based annotation time is smaller than the browsing time for Tk, we can 
have
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By defining a=tn/(tf+tn–tp) and bk=L/Lk, we can simplify this inequality to be,
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The above inequality holds if and only if the following two conditions hold (since γk≤1),
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Eqn(7) can be obtained by merging inequalities (10) and (11).
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ABSTRACT

This.chapter. introduces. the.application.of.active. learning.in.video annotation.  The insufficiency of 
training.data. is.a.major.obstacle. in. learning-based.video.annotation.. .Active. learning. is.a.promis-
ing approach to dealing with this difficulty.  It iteratively annotates a selected set of most informative 
samples,.such.that.the.obtained.training.set.is.more.effective.than.that.gathered.randomly...The.authors.
present.a.brief.review.of.the.typical.active.learning.approaches...They.categorize.the.sample.selection.
strategies in these methods into five criteria, that is, risk reduction, uncertainty, positivity, density, and 
diversity...In.particular,.they.introduce.the.Support.Vector.Machine.(SVM)-based.active.learning.scheme.
which has been widely applied.  Afterwards, they analyze the deficiency of the existing active.learning.
methods.for.video.annotation,.that.is,.in.most.of.these.methods.the.to-be-annotated.concepts.are.treated.
equally.without.preference.and.only.one.modality.is.applied...To.address.these.two.issues,.the.authors.
introduce.a.multi-concept.multi-modality.active.learning.scheme..This.scheme.is.able.to.better.explore.
human.labeling.effort.by.considering.both.the.learnabilities.of.different.concepts.and.the.potential.of.
different.modalities.
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INTRODUCTION

With rapid advances in storage devices, networks and compression techniques, large-scale video data 
is becoming available to more and more average users.  The management of these data becomes a chal-
lenging task.  To deal with this issue, it has been a common theme to develop techniques for deriving 
metadata from videos to describe their content at syntactic and semantic levels.  With the help of these 
metadata, the manipulations of video data can be easily accomplished, such as delivery, summariza-
tion, and retrieval.

Video annotation is an elementary step to obtain these metadata.  Ideally, video annotation is formu-
lated as a classification task and it can be accomplished by machine learning methods.  However, due 
to the large gap between low-level features and to-be-annotated semantic concepts, typically learning 
methods need a large labeled training set to guarantee reasonable annotation accuracy.  But because of 
the high labor costs of manual annotation (experiments prove that typically annotating 1 hour of video 
with 100 concepts can take anywhere between 8 to 15 hours (Lin, Tseng, & Smith, 2003)), this require-
ment is usually difficult to meet. 

Active learning has proved effective in dealing with this issue (Ayache & Quénot, 2007; Chen & 
Hauptmann, 2005; Cohen, Ghahramani, & Jordan, 1996; Panda, Goh, & Chang, 2006).  It works in an 
iterative way.  In each round, the most informative samples are selected and then annotated manually, 
such that the obtained training set is more effective than that gathered randomly.  In this chapter, we 
discuss the application of active learning in video annotation, which mainly consists of two parts.  In the 
first part, we provide a survey of the existing active learning approaches, especially their applications in 
image/video annotation and retrieval.  We analyze the sample selection strategies in these methods and 
categorize them into five criteria: risk.reduction, uncertainty, positivity, density, and diversity.  After-
wards, we detail a widely-applied Support Vector Machine (SVM)-based active learning approach.  In 
the second part, we analyze the deficiency of the existing active learning methods in video annotation, 
including: (1) the to-be-annotated concepts are treated equally without preference and (2) only a single 
modality is applied.  To address these two issues, we introduce a multi-concept multi-modality active 
learning scheme, in which multiple concepts and multiple modalities can be simultaneously taken into 
consideration such that human effort can be more sufficiently exploited 

The organization of the rest of this chapter is as follows.  In Section II, we briefly review the related 
works, including video annotation and active learning.  In Section III, we provide a survey of the sample 
selection strategies for active learning.  In Section IV, we introduce the SVM-based active learning 
scheme.  In Section V, we discuss the deficiency of the existing active learning approaches for video 
annotation, and then we present the multi-concept multi-modality active learning scheme in Section 
VI.  Finally, we conclude the paper in Section VII.

RELATED WORKS

Video Annotation

Video annotation (also referred to as “video concept detection”, “video semantic annotation” (Naphade & 
Smith, 2004a), or “high-level feature extraction” (TRECVID, http://www-nlpir.nist.gov/projects/trecvid)) 
is regarded as a promising approach to facilitating higher level manipulations of video data by bridg-
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ing the semantic gap between low-level features and high-level users’ needs (Hauptmann, 2005).  As 
noted by Hauptmann (2005), this.splits.the.semantic.gap.between.low.level.features.and.user.informa-
tion.needs.into.two,.hopefully.smaller.gaps:.(a).mapping.the.low-level.features.into.the.intermediate.
semantic.concepts.and.(b).mapping.these.concepts.into.user.needs.  Annotation is exactly the step to 
accomplish the first mapping, as illustrated in Fig. 1.  Typically video annotation can be accomplished 
by machine learning methods.  First, videos are segmented into short units (such as shot and sub-shot).  
Then, low-level features are extracted from each unit (e.g., key-frames of each unit) to describe its 
content.  Video annotation is then formalized to learn a set of predefined high-level concepts for each 
unit based on these low-level features.  Figure 2 illustrates a typical learning-based video annotation 
scheme.  Note that the concepts may not be mutually exclusive (such as “outdoor” and “building”), thus 
a general scheme is to conduct a binary classification procedure for each concept.  Given a concept, 

Figure.1..Video.annotation.bridges.the.semantic.gap.by.mapping.users’.needs.to.semantic.concepts

Figure.2...A.typical.learning-based.video.annotation.scheme...Based.on.the.models.built.upon.training.
samples,.a.new.sample.is.easily.annotated.with.the.concepts.(or.high-level.features).of.“lake”,.“moun-
tain”.and.“sky”.
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each unit is then labeled “positive” or “negative” according to whether it is associated with this concept.  
As shown in Fig. 2, a new video clip is annotated with “lake”, “mountain” and “sky” since the corre-
sponding concept classifiers/detectors output the “positive” results.  Naphade and Smith (2004b) have 
given a survey on TRECVID high-level feature extraction benchmark, where a great deal of different 
algorithms applied in this task can be found.

Active Learning

Active learning, usually known as pool-based active learning, is an interactive learning technique 
designed to reduce human annotation effort.  As previously mentioned, manual annotation is a labor-
intensive and time-consuming process.  Active learning aims to tackle this difficult by telling users 
to annotate only the most useful samples.  A typical active learning system is composed of two parts, 
i.e., a learning engine and a selection engine.  It works in an iterative way, as illustrated in Fig. 3.  In 
each round, the learning engine trains a model based on the current training set.  Then the selection 
engine selects a batch of the most informative unlabeled samples for manual annotation, and adds these 
samples to training set.  In this way, the obtained training set is more informative than that gathered 
by random sampling. 

It is obvious that the sample selection strategy plays a crucial role in an active learning scheme.  Co-
hen, Ghahramani, & Jordan (1996) suggest that the optimized active learning approach should select the 
samples that minimize the expected risk.  In (Cohen, et al., 1996; Roy & McCallum, 2001), the reduced 
risk is estimated with respect to each unlabeled sample, and then the most effective samples are selected.  
However, for most learning methods, it is infeasible to estimate the risk.  Thus, practically most active 
learning methods adopt an uncertainty criterion, i.e., to select the samples closest to the classification 
boundary (Tong & Chang, 2001; Tong & Koller, 2000).  Zhang et al. and Wu et al. further proposed to 
incorporate the density distribution of samples into the sample selection process (Zhang & Chen, 2003; 

Figure.3..An.illustration.of.active.learning..It.selects.the.most.informative.samples.for.manual.labeling,.
such.that.the.obtained.training.set.is.more.effective.than.that.gathered.by.random.sampling.

Unlabeled DataTraining Data

Informative samples
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Wu, Kozintsev, Bouguet, & Dulong, 2006).  Brinker et al. (Brinker, 2003) pointed out that the selected 
samples should be diverse.  Several works also demonstrate that positive samples should be enhanced 
when applying active learning to image/video annotation or retrieval (Ayache & Quénot, 2007; Vendrig, 
Hartog, Leeuwen, Patras, Raaijmakers, Rest, Snoek, & Worring, 2002).  In the next section, we will 
provide a more detailed survey of the existing sample selection methods for active learning. 

Active learning techniques have been widely applied in image/video annotation and retrieval.  In 
(Qi, Song, Hua, Zhang, & Dai, 2006), Qi et al. propose a video annotation framework with SVM-based 
active learning.  In (Goh, Chang, & Lai, 2004), Goh et al. propose a concept-dependent active learn-
ing method for image annotation, so that different sample selection strategies are adopted for different 
concepts.  Active learning is also frequently combined with Semi-Supervised Learning (SSL) methods1 
(Chapelle, Zien, & Schölkopf, 2006; Zhu, 2007).  It is analyzed in (Muslea, Minton, & Knoblock, 2002) 
that combining active learning and semi-supervised learning is a stable approach to utilizing unlabeled 
data.  In (Song, Hua, Dai, & Wang, 2005), Song et al. propose a video annotation scheme integrating 
active learning and a multi-view SSL method named co-training.  In (Hoi & Lyu, 2005), Hoi et al. 
integrate active learning and a graph-based SSL method for image retrieval.

Sample Selection Strategies in Active Learning

Obviously the sample selection strategy is crucial for an active learning method.  In this section we 
provide a review of typical sample selection strategies. 

Risk Reduction

Intuitively, the optimal sample selection strategy is consistent with the aim of the learner, i.e., minimiz-
ing the expected risk which can be denoted by

ˆ[ ( ( ), ( )) | ] ( )E L y y p d∫x
x x x x x         (1)

where y(x) is the true label of sample x, ˆ( )y x  is the classifier output, p(x) is the probability density 
function of sample distribution, and L is a loss function that measures the difference between y(x) and 
ˆ( )y x .  If the reduction of the expected risk of labeling each unlabeled sample can be estimated, then the 
optimal sample selection can be achieved.  Cohen et al. (1996) have adopted such an approach for two 
different learners. But unfortunately, estimating the expected risk is not an easy task for most learning 
methods.  Roy and McCallum (2001) have proposed to empirically estimate the reduced expected risk 
based on Monte Carlo sampling.  But this approach is computationally intensive.  Thus, many other 
heuristic sample selection strategies have been proposed.  Here we categorize these strategies into the 
following four criteria, including uncertainty, positivity, diversity and density, as illustrated in Fig. 4.

Uncertainty

Applying Uncertainty criterion means that the most uncertain samples should be selected.  This heu-
ristic stems from the fact that in many learning algorithms the essential classification boundary can be 
preserved based solely on the nearby samples, and the sample that are far from the boundary can be 
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regarded as redundant.  For example, in a SVM model the hyperplane can be mainly constructed based 
on only the support.vectors (i.e., the samples that lie closest to the hyperplane).  Consider a binary clas-
sification problem.  Denote by 0

ˆ( | )P C x  the estimated posterior class probability of class k given x (k = 
0 or 1).  Then the uncertainty measure of a sample x can be simply denoted by 

0
ˆ( ) ( | ) 0.5uncertainty P C= -x x         (2)

Note that there are also several other sample selection strategies that can be categorized into this 
criterion.  For example, when multiple learners exist, the samples that have the maximum disagree-
ment amongst them can be selected.  This is the so-called query-by-committee method (Freund, Seung, 
Shamir, & Tishby, 1997; Seung, Opper, & Sompolinsky, 1992).  Here the disagreement of multiple 
learners also can be regarded as an uncertainty measure, and thus this strategy is categorized into the 
uncertainty criterion as well. 

Positivity

Positivity strategy is usually applied in image/video annotation and retrieval.  In these tasks, samples 
are classified to be positive or negative according to whether they are relevant to the given concept or 
query.  Of course the above uncertainty measure can also be applied in these tasks.  But in many cases 
it is found that the using positivity criterion, i.e., directly selecting the samples that have the highest 
probabilities to be positive, is more effective (Ayache & Quénot, 2007; Gosselin & Cord, 2004; Vendrig, 
et al., 2002).  This is due to the fact that positive samples are usually less than negative ones in these 
tasks, and the distribution of negative samples is usually in very broad domain.  Thus, positive samples 
should contribute more than negative samples2.  The positivity criterion can be simply denoted by

0
ˆ( ) ( | )positivity P C=x x          (3)

Density

Several works indicate that the samples within the regions of high density should be selected.  From Eq. 
(1) we can also see the impact of the prior density distribution p(x). Wu et al. define a “representative-
ness” measure for each sample according to its distance to nearby samples (Wu, et al., 2006).  Zhang 
and Chen (2003) estimate data distribution ˆ ( )p x  by Kernel Density Estimation (KDE) (Parzen, 1962), 
and then utilize it in sample selection.  Besides that, there are also several other clustering-based meth-
ods which first group the samples, and then only select the cluster centers in active learning (Nguyen 
& Smeulders, 2004; Qi, et al., 2006; Song, et al., 2005).  Note that the cluster centers usually lie in the 
regions with high density.  Thus, these works can also be regarded as applying a “density” strategy, i.e., 
trying to select samples in dense regions. 

Here we introduce the approach proposed in (Zhang & Chen, 2003), by which the probability density 
function ˆ ( )p x  is estimated by 

1

1ˆ ( ) ( )
n

j
j

p K
n =

= -∑x x x           (4)
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where n is the number of all samples (including both labeled and unlabeled samples) and K(x) is a kernel 
function that satisfies K(x) > 0 and ∫K(x)dx = 1.  Consequently, the density measure can be defined by 
normalizing ˆ ( )p x to [0, 1] as follows

1

1

( )
( )

max ( )

n

j
j

n

ji j

K
density

K

=

=

-
=

-

∑

∑

x x
x

x x
        (5)

Diversity

Previous studies demonstrate that the selected samples should be diverse (Brinker, 2003; Wu, et al., 
2006).  This strategy can keep the variety of the selected samples, such that the selected samples will 
not be constrained in a more and more restricted area.  Here we consider the method proposed in (Wu, 
et al., 2006).  Given a kernel K, the angle between two samples xi and xj is defined as

( , )
cos( , )

( , ) ( , )
i j

i j
i j i j

K

K K
< > =

x x
x x

x x x x
       (6)

Then the diversity measure can be estimated as
( , )

( ) 1 max
( , ) ( , )j

i j
i

i j i j

K
diversity

K K∈
= -

x

x x
x

x x x x
       (7)

where  is the current labeled training set.  There are also several variations for this criterion.  In (Hoi, 
Jin, Zhu, & Lyu, 2006), Fisher information matrix is adopted for sample selection to keep the diversity 
of the selected samples, and in (Dagli, et al., 2006) an information-theoretic diversity measure is pro-
posed based Shannon’s entropy. 

Up to now, we have discussed five typical sample selection criteria.  But it is worth noting that these 
criteria are also frequently combined for sample selection.  For example, in (Naphade and Smith, 2004b) 
the uncertainty, density and diversity criteria have been combined to form a sample selection strategy.  In 
(Yuan, Zhou, Zhang, Wang, Zhang, Wang, & Shi, 2007), Yuan, et al. adopt the uncertainty criterion, and 
they also propose to shift the boundary such that more positive samples can be selected.  So, this strategy 
also can be viewed as a combination of the uncertainty and the positivity criteria.  Table 1 illustrates 
several works that adopt active learning in image/video annotation or retrieval.  We have illustrated the 
description of the applications, the adopted learning methods and sample selection criteria.

SVM-Based Active Learning

From Table 1 we can see that the SVM-based active learning scheme, in particular associated with the 
uncertainty sample selection criterion, is the most widely-applied approach.  Thus, in this section we 
introduce this scheme in detail.  From this scheme we can also see the main principle of active learn-
ing.
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Figure.4..An.illustration.of.the.four.sample.selection.criteria.for.active.learning

Table.1..Several.existing.works.applying.active.learning.in.image/video.annotation.or.retrieval

Works Application Adopted Learning Methods Adopted Sample Selection 
Criteria

Ayache and Quénot (2007) Video Annotation SVM Uncertainty; Positivity;
Chen, et al. (2005) Video Annotation SVM Uncertainty
Dagli, et al. (2006) Image Retrieval SVM Uncertainty; Diversity
Goh, et al. (2004) Image Retrieval SVM Uncertainty; Positivity;

Gosselin, et al. (2004) Image Retrieval Bayes Classifier; k-NN; SVM Uncertainty; Diversity
He, et al. (2004b) Image Retrieval SVM Uncertainty

Hoi and Lyu (2005) Image Retrieval
Graph-Based SSL

(Zhu, Ghahramani, & Lafferty, 
2003)

Risk Reduction

Naphade and Smith (2004a) Video Annotation SVM Uncertainty
Panda, et al. (2006) Image Retrieval SVM Uncertainty; Diversity

Qi, et al. (2006) Video Annotation SVM Uncertainty; Density

Song, et al. (2005) Video Annotation Gaussian Mixture Model
(Redner & Walker, 1984) Uncertainty; Density

Sychay, Chang, & Goh 
(2002) Image Annotation SVM Uncertainty

Tang, et al. (2007) Video Typicality Ranking Graph-Based SSL (Zhou, et al., 
2004) Uncertainty

Tong and Chang (2001) Image Retrieval SVM Uncertainty; Diversity

Vendrig, et al. (2002) Video Annotation Maximum Entropy Classifier
(Berger, Pietra, & Pietra, 1996) Positivity

Wu, et al. (2006) Personal Photo Retrieval SVM Uncertainty; Density; Diversity

Yuan, et al. (2006) Image Retrieval SVM Uncertainty; Positivity; 
Diversity

Zhang and Chen (2003) Object Categorization Kernel Regression
(Zhang and Chen, 2004) Uncertainty; Density
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Support Vector Machine

SVMs can be simply regarded as hyperplanes that separate the training samples with a maximal mar-
gin (Vapnik, 1995), as illustrated in Fig. 5.  The training samples that lie closest to the hyperplane are 
called support.vectors.  Here we present a sketch introduction to the soft-margin SVM.  For a binary 
classification problem, given a training data set which contains l labeled samples (x1, y1), (x2, y2), …, 
(xl, yl), xi∈Rd, yi∈{0, 1}, the classification hyperplane is defined as

, ( ) 0w x b< Φ > + =           (8)

where Φ(.) is a mapping from Rd to a Hilbert Space , and <., .> denotes the dot product in .  Thus, 
the decision function f(x) is

( ) ( , ( ) )f x sign w x b= < Φ > +          (9)

SVM aims to find the hyperplane with the maximum margin between the two classes, i.e., the optimal 
hyperplane. This can be obtained by solving the following quadratic optimization problem

2

, , 1

1min
2

l

iw b i
w C

=

+ ∑           (10)

subject to ( , ( ) ) 1
0, 1,2,...,

i i i

i

y w x b
i l

< Φ > + ≥ -

≥ ∀ =

In the optimization process, the mapping Φ(.) will only appear in the dot product <Φ(xi), Φ(xj)>.  
Therefore, the mapping can be implicitly accomplished by defining a kernel K(., .), i.e., K(xi, xj) = <Φ(xi), 
Φ(xj)>.  The matrix K with components K(xi, xj) is usually named Gram Matrix. 

Figure.5..A.simple.example.of.SVM...The.training.samples.that.lie.closest.to.the.hyperplane.are.called.
support.vectors.
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Active Learning with SVM

Here we only consider the uncertainty sample selection criterion.  Previously we have mentioned that 
generally the uncertainty criterion is a heuristic strategy for sample selection, but in fact for SVM this 
strategy can also be derived from an optimization scheme, i.e., the minimization of the expected size 
of version.space.  Version space is defined to be the set of consistent hypotheses (Mitchell, 1982).  It 
means that a hypothesis f is in version space if it satisfies f(xi) > 0 if yi = 1 and f(xi) < 0 if yi = -1 for 
every training sample xi.  For simplicity, we only consider an unbiased SVM model, i.e., the separating 
hyperplane that passes through origin.  Then the version space can be denoted by

{ }1, , ( ) 0, 1,2, ,i iy i n= = 〈 Φ 〉 > =w w w x         (11)

In (Tong & Chang, 2001; Tong & Koller, 2000), it has been proved that selecting the samples clos-
est to the current hyperplane in each round is an approximate approach to reducing version space in a 
fastest way.  Detailed analysis and proof can be found in (Tong & Chang, 2001; Tong & Koller, 2000).  
Note that the samples closest to the hyperplane are exactly the ones with highest uncertainty measure.  
Thus, the uncertainty criterion is particularly suitable for SVM-based active learning.  This partially 
explains why this combination has shown encouraging performance in many different learning tasks.  
The detailed implementation of SVM-based active learning scheme is illustrated in Fig. 6. 

A Discussion on Active Learning-Based Video Annotation

According to the previous introduction, we can see that many different active learning methods have 
already been applied in video annotation and encouraging results have also been reported.  However, 
these methods are all studied in a relatively simple context.  More specifically, in these methods the to-

Figure.6..The.pseudo-code.of.SVM-based.active.learning.approach.with.the.uncertainty.sample.selec-
tion.criterion

Input: 
; /* labeled training set for a certain concept */ 
;  /* unlabeled set for a certain concept */ 
AT; /* the iteration time in active learning */ 
h; /* the batch size for sample selection */ 
 
Output: 
f /* annotation results */ 
 
Functions: 
SVMTrain();  /* SVM training algorithm */ 
 
Begin: 
for t.= 1, 2, …, AT.

f.  SVMTrain();  
Select h samples according to arg min

ix if∈  

Manually label these samples, and move them from  to ; 
end 
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be-annotated concepts are usually sequentially annotated with fixed effort and only a single modality is 
applied.  Consequently, these methods can be improved in two directions, i.e., considering the context 
of multi-concept annotation and multi-modality learning. 

Multi-Concept Annotation

First, we consider the manual annotation for multiple concepts.  Intuitively, there are two schemes, i.e., 
sequential annotation and simultaneous annotation.  In the first scheme, each concept is exhaustively 
annotated for all samples before proceeding to the next, whereas in the second scheme each sample is 
simultaneously annotated with all concepts.  In (Naphade & Smith, 2004a), a study once showed that 
simultaneously annotating multiple concepts may be more efficient.  But recently a more detailed em-
pirical evaluation has demonstrated that sequential annotation is superior to simultaneous annotation, 
in terms of both annotation accuracy and efficiency (Volkmer, Smith, & Natsev, 2005).  Thus, here we 
only consider the sequential annotation approach.

When applying active learning to multi-concept annotation, the assignment of users’ annotation ef-
fort becomes a problem.  A most straightforward way is to equally assign the effort to all concepts.  For 
example, suppose annotators may provide an effort of labeling s samples in all, and then s/c samples 
should be labeled for each concept, where c is the number of concepts.  But this strategy may induce 
a waste of the annotation effort.  For example, several concepts may be difficult to learn with existing 
features and some other concepts may already have accurate models, then labeling more samples for 
these concepts can hardly improve their performance.  Thus, it is more rational to dedicate the annota-
tion effort to other concepts.

Multi-Modality Learning

To differentiate or describe a variety of concepts, a large number of low-level features usually have 
to be applied.  But a high-dimensional feature space frequently leads to the “curse of dimensionality” 
problem (Beyer, Goldstein, Goldstein & Shaft, 1999; Wu, Chang, Chang, & Smith) which may induce 
performance degradation.  To deal with this issue, a natural method is to replace the high-dimensional 
learning task by multiple low-dimensional dimensional learning tasks, i.e., separately apply different 
modalities to learning algorithms and then fuse the results (Snoek, Worring & Smeulders, 2005).  Here 
a modality is viewed as a description to video data, such as color, edge, texture, audio, and text.  This 
method is usually called “multi-modality learning” or “multimodal fusion”.  Sometimes it is also named 
“late fusion” (Snoek, et al., 2005), whereas the method of using concatenated high-dimensional global 
feature vector is named “early fusion”, as illustrated in Fig. 7.  As demonstrated by a great deal of experi-
ments, late fusion is able to improve video annotation performance compared with early fusion.  But in 
most of the existing active learning methods only a single modality is applied.  In (Chen & Hauptmann, 
2005; Chen, et al., 2005), Chen et al. proposed a simple multi-modality active learning method with 
SVM, which selects a certain number of samples closest to the hyperplane of each sub-model (i.e., the 
model trained based on each individual modality).  Although this method has shown better performance 
than single-modality-based active learning, it does not take the “discriminative abilities” of different 
modalities into account.  For example, some features may not be discriminative enough for the concept 
to be annotated and some other sub-models may already have accurate models, and consequently the 
active learning process can only achieve very limited improvements for the these sub-models (this is 
analogous to the previously discussed deficiency of sequential multi-concept annotation). 
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Multi-Concept Multi-Modality Active Learning

In the above section, we have discussed the deficiency of the existing active learning-based video an-
notation approaches, i.e., the neglect of the context of multi-concept annotation and multi-modality 
learning.  Now we introduce a multi-concept multi-modality active learning scheme which can simul-
taneously address the above two issues.  The proposed method iteratively selects a concept and a batch 
of samples for manual annotation, as illustrated in Fig. 8.  The concept is chosen to be the one that is 
expected to get the highest performance.gain.  Then a batch of samples is selected for annotation with 

Figure.7..A.comparison.of.the.early.and.late.fusion.schemes

Figure.8..An.illustration.of.multi-concept.multi-modality.active.learning.scheme
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Figure.9..A.comparison.of.the.three.video.annotation.schemes

this concept.  The numbers of the selected samples for different modalities are adapted according to 
the performance gains of their corresponding sub-models.  In this way, the proposed approach can take 
both the learnabilities of multiple concepts and the discriminative abilities of multiple modalities into 
consideration.  For a specific modality, four of the previously introduced criteria, including uncertainty, 
positivity, density and diversity, are combined to select samples.  For the selected concept, a graph-based 
SSL algorithm named manifold-ranking (He, Li, Zhang, Tong, & Zhang, 2004a; Zhou, et al., 2004) is 
conducted on each modality with labeled samples for its effectiveness and efficiency. 

As previously analyzed, the existing sequential multi-concept annotation does not take into account 
the impacts of the effort assigned to different concepts.  To deal with this issue, in the proposed scheme 
an optimal concept is selected according to certain criterion for annotation in each round, such that the 
labeling effort can be most effectively utilized.  The process is illustrated in Fig. 9.  It can be viewed as 
a novel exchangeable.multi-concept.annotation approach, as opposed to the traditional sequential and 
simultaneous multi-concept annotation methods.  We illustrate these three multi-concept annotation 
processes in Fig. 9 for comparison.  In the proposed scheme, a concept and a batch of samples are selected 
for manual annotation in each round, and then manifold-ranking is employed to learn new sub-models 
of multiple modalities for the selected concept (although the manifold-ranking algorithm is adopted, 
we highlight that it can also be replaced by any other learning method, such as SVM and k-NN, when 
applying the multi-concept multi-modality active learning scheme).  After several iterations, for each 
concept the results obtained from multiple sub-models are linearly fused with the weights decided by 
cross-validation based on labeled set.  The detailed implementation is illustrated in Fig. 10. 
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Concept Selection

To establish the concept selection strategy, firstly we have to define the evaluation of the performance 
of multi-concept annotation.  Here a straightforward method is adopted, i.e., using the average of the 
performance of all concepts.  It can be denoted by 

1

1 c

ave i
i

perf perf
c =

= ∑ , 

where perfi is the performance of the i-th concept3.  The Mean Average Precision (MAP) measure, 
which is widely applied in TRECVID (TREC-10 Proceedings appendix on common evaluation mea-
sures. From http://trec.nist.gov/pubs/trec10/appendices/measures.pdf), can be viewed as an example of 
this approach.  Based on this performance measurement, a greedy strategy can be adopted by keeping 
selecting the concept that is expected to get the highest performance.gain.  The expected performance 
gain for each concept is approximated by the performance variation between the latest two learning 
iterations, which can be estimated from the newly labeled sample batches. 

It is noteworthy that more sophisticated performance measurements can also be applied by assigning 
different weights to the concepts, i.e., 

1 1

c c

ave i i i
i i

perf perf
= =

= ∑ ∑ .  

Figure.10..The.pseudo-code.of.the.proposed.multi-concept.multi-modality.active.learning.approach

Input:
i = φ; /* labeled training set for i-th concept, 1≤i≤c*/
i = {x1, x2, …, xn}; /* unlabeled set for i-th concept, 1≤i≤c */
AT; /* the iteration time in active learning */
h; /* the batch size for sample selection */
; /* concept set */

Output:
fi /* annotation results for i-th concept, 1≤i≤c */

Functions:
ConceptSelection(); /* select a concept from , see Section VI .A*/
Manifold-Ranking(, ); /* manifold-ranking, see Section VI. B */
SampleSelection(, , h); /* select a batch of samples for the selected concept, see Section VI. C */

Begin:
for t = 1, 2, …, AT

k = ConceptSelection(); /* select a concept */
 = SampleSelection(k, k, h); /* select a set of samples for this concept */

Manually label samples in S, and move set  from k to k;

fk = Manifold-Ranking(k, k); /* obtain the annotation results for this concept */
end
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This measurement can guarantee the annotation accuracies of those concepts with high weights.  In 
this case, we only have to weight the expected performance gains by λi as well, and then implement the 
concept selection method accordingly.

Obviously the proposed method needs an initial stage such that the performance gains of all concepts 
can be initialized.  In the implementation each concept can be annotated for two iterations in this stage, 
and then the performance gains of all concepts are initialized.  After these iterations, a concept is selected 
in each round and only the performance gain for this selected concept has to be updated.

Manifold-Ranking

Manifold-ranking has already been widely applied in the field of image and video content analysis (He, 
et al., 2004a; Yuan, et al., 2006).  Here it is adopted to learn a sub-model for each modality with the 
selected concept (note that the discussion about manifold-ranking and sample selection in these two 
sub-sections is based on a certain concept, i.e., the concept selected by the proposed concept selection 
method).  This method is chosen due to the following two reasons:

1. It is a graph-based SSL method which can leverage a large amount of unlabeled samples, and it is 
able to achieve promising performance even with very limited training samples. 

2. It has low computational cost as it can be implemented by an efficient iterative process. 

Let .= {x1, x2, …, xl} and  = {xl+1, xl+2, …, xn} be the labeled set and unlabeled set for the given 
concept, respectively. Considering there are M modalities, each sample xi is represented by {xi

1, xi
2, …, 

xi
M} where xi

m is the feature representation for xi in the m-th modality.  Define a vector y+ = {y1
+, y2

+, …, 
yn

+}, where yi
+ = 1 if xi is a labeled positive sample, and yi

+ = 0 otherwise.  Conversely, define y-={y1
-, 

y2
-, …, yn

-}, where yi
- = -1 if xi is a labeled negative sample, and yi

- = 0 otherwise.  Then the manifold-
ranking process can be implemented for the m-th modality as follows:

1. Define a graph over all samples in m-th modality as follows: xi
m and xj

m are connected if xi
m belongs 

to the N-nearest neighborhood of xj
m, and vice versa. 

2. Define an affine matrix Wm by letting Wij
m = exp(-||xi

m.- xj
m||/2σ) if xi and xj are connected and i.

≠ j, and otherwise Wij
m = 0.

3. Construct a matrix Sm = D-1/2WmD-1/2 in which D is a diagonal matrix with its (i, i)-element equals 
to the sum of the i-th row of Wm.

4. Initialize [ fm+, fm-] (the final results are independent of the initial values).  Here fi
m+ and fi

m- can 
be regarded as the positive score and negative score of xi

m, respectively.  Then iterate [ fm+, fm-] = 
αS×[ fm+, fm-]+(1-α) [y+, y-] for T times, where α is a parameter in (0, 1). 

5. Combine fm+ and fm- as fm = βfm++	fm- for output, where β is a positive weight.

The above manifold-ranking process is similar to the method adopted in (He, et al., 2004a).  There 
are several issues that need to be addressed in the above process.  The first one is that a sparse graph 
is adopted.  This strategy is frequently applied in graph-based learning methods as it can significantly 
reduce computational and storage costs while retaining close performance (He, et al., 2004a).  Another 
issue is that the L1 distance metric is used in the construction of the affine matrix W.  This is because 
empirical experiments have demonstrated that L1 distance better approximates the perceptual difference 
for many visual features (He, et al., 2004a; Stricker & Orengo, 1995).  In step 5 the results are generated 
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as fm = βfm++	fm-.  This is due to the fact that positive samples are believed to contribute more in concept 
learning (He, et al., 2004a).  Accordingly, a weight β is used to modulate the effect of positive samples, 
and typically we set β > 1.  The final results are obtained by linearly combining the results from M 
modalities, where the weights are decided by cross-validation on the newly labeled samples. 

Sample Selection

First, a sample selection strategy for individual modality is established by integrating the four criteria 
introduced in Section III, including uncertainty, positivity, density, and diversity.  According to the prin-
ciples introduced in Section III, in this scheme the uncertainty and positivity measures are defined as

( ) 1 i
m m
iuncertanty f= -x           (12)

( ) i
m m
ipositivity f +=x           (13)

Between the uncertainty and positivity criteria, we have analyzed that the uncertainty criterion is 
better when positive and negative samples are balanced, and contrarily the positivity criterion may be 
superior if positive samples are much less than negative ones.  Thus, the uncertainty and positivity 
measures are first integrated to form an informativeness measure as follows

( ) 2 ( ) (1 2 ) ( )m m m
i i iinformativeness frequency uncertanty frequency positivity= × × + - × ×x x x   (14)

where frequency measures the percentage of positive samples in a labeled training set, i.e.,

iy
frequency

l

+

= ∑           (15)

If frequency is near 0, i.e., the positive samples are very scarce, and then they contribute much more 
than negative samples in the learning of the concept.  In this case, fi

m+ has a weight near 1, and the 
samples more likely to be positive are selected.  If frequency is high (say, near 0.5), then the positive 
and negative samples are balanced, and thus 1-|fi

m| has higher weight and the samples closer to clas-
sification boundary are selected.

For computing density and diversity measures, the Exponential kernel is adopted, i.e., K(x)=exp(-
||x||/2σ).  Then, from Eq. (5) and Eq. (7) we can obtain

1

1

( )
max

n
m

ij
jm

i n
m

iji j

W
density

W

=

=

=
∑

∑
x          (16)

( ) 1 max
j

m m
i ijx L

diversity S
∈

= -x          (17)

Now these criteria are combined as

( ) ( ) ( ) (1 ) ( )m m m m
i i i ieffectiveness density informativeness diversity= × × + - ×x x x x    (18)

where γ is a weight in [0, 1].  
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Up to now we have addressed the sample selection strategy for a single modality.  A remained prob-
lem is how to select samples for multiple modalities.  Chen et al. have analyzed that samples should be 
selected for each individual modality to keep the specificity of multiple feature sets (Chen & Haupt-
mann, 2005; Chen, et al., 2005).  Thus they select equal number of samples for each modality.  But this 
method does not take the potentials of different modalities into account.  For several modalities that are 
not discriminative enough for the given concept, it will achieve a “saturation” state after several active 
learning iterations, and then more samples should be selected for other modalities.  Thus, here the sample 
selection strategy is constructed based on the performance gains of these modalities.  Analogous to 
that defined for concepts, the performance gain for a modality is defined as the performance variation 
of the modality between the latest two learning iterations.  Denote by mperf  the performance gain of 
m-th modality.  Then the numbers of selected samples are set to be proportional to the performance 
gains of multiple modalities, i.e., 

1

m
m

M
m

m

perfh h
perf

=

= ×

∑
          (19)

where h is the batch size.  The above strategy is based on an assumption that the performance gain of a 
modality is higher if the modality is further from saturation.  If a modality has a high performance gain, 
then more samples are selected for its sub-model in the next iteration; otherwise, if a modality achieves 
saturation state, then few samples are selected for its sub-model.  Experiments will demonstrate that 
this adaptive approach is better than selecting a fixed number of samples for each modality.

Discussion

In this scheme, there is an assumption that the effort of labeling a sample with a concept is fixed.  But 
in fact the effort may vary across different concepts and samples.  The study in (Volkmer, et al., 2005) 
shows that different concepts may lead to different average annotation times per sample.  Annotating 
different samples also may cost different effort even with the same concept. For example, the time cost 
for annotating a frame may depend upon the typicality (Tang, et al., 2007) and recognizability of the 
objects in it (see (Volkmer, et al., 2005)).  But if the costs for different samples and concepts can be 
obtained, the sample selection and concept selection methods in our proposed scheme can be easily 
adapted as well by taking these costs into consideration.

Experiments

To evaluate the performance of the multi-concept multi-modality scheme, experiments have been 
conducted following the guideline of TRECVID 2005 high-level feature extraction task.  TRECVID 
2005 dataset consists of 273 broadcast news videos and is about 160 hours in duration.  The dataset 
is split into a development set and a test set.  The development videos are segmented into 49532 shots 
and 61901 sub-shots, and the test videos are segmented into 45766 shots and 64256 sub-shots.  A key-
frame is selected for each sub-shot, and from the key-frame we extract the following six feature sets: (1) 
block-wise color moment based on 5-by-5 division of the image (225D); (2) HSV correlogram (144D); 
(3) HSV histogram (64D); (4) wavelet texture (128D); (5) co-occurrence texture (16D); and (6) lay-out 
edge distribution histogram (75D).  Each feature set is regarded as a modality, and thus we obtain six 
modalities. 
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Ten predefined benchmark concepts are annotated, including “Walking_Running”, “Explosion_Fire”, 
“Maps”, “Flag-US”, “Building”, “Waterscape_Waterfront”, “Mountain”, “Prisoner”, “Sports”, and “Car”.  
Other experimental settings, including the values of the parameters in the algorithm and the computa-
tion of MAP, can be found in (Wang, Hua, Tang, Song, & Dai, 2007).

Experiments for Sample Selection

First, experiments are conducted to demonstrate the effectiveness of the proposed sample selection 
strategy.  The following three schemes are compared:

Scheme 1:           
Integrate a global effectiveness measure as effectiveness(xi) = Σ{Δperfm×effectiveness(xi

m)}, and then 
select h samples according to this measure.

Scheme 2: 
Select h/M samples for each modality, i.e., the method proposed in (Chen & Hauptmann, 2005).

Scheme 3: 
Randomly select samples.

Denote by s the number of samples to be annotated in all.  It is equally divided and assigned to all 
concepts.  The batch size h is set to 500.  The results are illustrated in Fig. 11.  From the figure we can 
see that the proposed approach remarkably outperforms the other three schemes.  It can achieve about 
twice MAP compared with random sample selection when s = 1×105.

Experiments for Concept Selection

To evaluate the performance of the proposed concept selection method, it is compared with the follow-
ing three schemes:

Scheme 1:
Sequential annotation, i.e., equally assign the annotation effort to all concepts as described in the above 
sub-section.

Scheme 2:
Assign annotation effort according to the annotation performance of these concepts.  More specifi-
cally, first we estimate the annotation performance of each concept regarding the full development set 
as training set (the detailed results can be found in (Wang, et al., 2007)), and then we let the numbers 
of the annotated samples to be proportional to the performance of these concepts.  It implies that the 
concepts that are easier to learn will be assigned more effort in each round.

Scheme 3:
Random concept selection method, i.e., in each round a concept is randomly selected.
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The experimental results are illustrated in Fig. 12.  From the figure we can see that the performance 
of the proposed concept selection method increases much faster than those of Scheme 2 and Scheme 3 as 
the annotated samples grow.  Now we compare the proposed approach with Scheme 1.  It is worth noting 
that these two methods both have taken the learnabilities of the concepts into consideration.  Scheme 
1 statically assigns annotation effort according to the performance of different concepts, whereas the 
proposed approach dynamically selects the optimal concept in each round.  From Fig. 12 we can clearly 
see the superiority of our proposed method. 

Computational Cost

According to the previous description of the manifold-ranking method, it is easy to derive that the 
computational cost in each active learning iteration scales as O(M×T×N×n), where M is the number of 

Figure.11..Performance.comparison.for.different.sample.selection.methods.(h.=.500)

Figure.12..Performance.comparison.for.different.concept.selection.methods.(h.=.500)
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Table.2..The.practical.values.of.the.notations
notation description practical value

n number of samples 126157
M number of modalities 6
N neighborhood size 25
T iteration time in manifold-ranking 20

modalities, T is the iteration time in the manifold-ranking process, N is the neighborhood size, and n is 
the number of samples.  We illustrate the definitions of all these notations and their detailed values in 
the experiments in Table 2 for clarity.  In practical experiments, the response time for interactive an-
notation is about 15 seconds (Pentium 1.8G Hz, 512M RAM).  Thus, the proposed framework is quite 
efficient, and it is able to deal with large-scale datasets.

CON CLUSION AND DISCUSSION

In this chapter, we have discussed the active learning-based video annotation approach.  We provide 
a brief survey of the existing active learning methods and categorize the sample selection strategies 
in these methods into the following five criteria: risk.reduction, uncertainty, positivity, density, and 
diversity.  We then analyze the deficiency of the existing active learning methods for video annotation, 
i.e., concepts are sequentially annotated without preference and only one modality is applied.  We in-
troduce a novel multi-concept multi-modality active learning scheme which can address these issues.  
By taken the learnabilities of the concepts and the potentials of different modalities into consideration, 
the proposed active learning scheme can better explore human effort. 

There are also several challenging open issues in active learning-based video annotation.  Since active 
learning involves the integration of human and computer, we categorize these issues into two problems: 
(1) the improvement of the efficiency of manual annotation and (2) better learning schemes. 

Making Manual Annotation More Efficient

In active learning-based video annotation approach, users have to annotate the samples returned by 
the sample selection engine.  The efficiency of manual annotation is thus an important issue, though 
it receives relatively less attention in research community.  Obviously, by speeding up the manual an-
notation process, more training samples can be obtained in a fixed time.  Several studies have been 
conducted on this issue (Lin, et al., 2003; Volkmer, et al., 2005; Yan, Natsev, & Campbell, 2007), and 
some conclusions have been obtained, such as the sequential annotation approach is better than the simul-
taneous annotation approach, and the annotation accuracy of a concept is correlated with its frequency 
(Volkmer, et al., 2005).  But many issues are still worth further studying, for example, displaying and 
annotating only a few video clips per page without scrolling vs. scrolling and annotating many clips at 
a time, using mouse vs. using keyboard for navigation and annotation, and laying out the clips randomly 
vs. by grouping visually similar ones into clusters.  A suitable tool will significantly facilitate users and 
improve the efficiency of manual annotation.
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Applying Better Learning Schemes

The learning schemes can also be improved in several directions.  In the existing active learning-based 
video annotation approaches, including the proposed multi-concept multi-modality active learning 
scheme, multiple concepts are learned separately.  But concepts are correlated rather than isolated 
(Naphade, et al., 2006), and existing studies have shown that jointly learning multiple concepts can 
achieve better performance (Qi, Hua, Rui, Tang, Mei, & Zhang, 2007).  Thus, the integration of correla-
tive multi-concept learning and active learning methods is worth studying.  Another interesting issue 
is incorporating active learning into multi-instance setting, since multi-instance learning4 has already 
shown encouraging performance in video annotation, especially for annotating object concepts (Cohen, 
et al., 1996; Gu, Mei, Tang, Wu, & Hua, 2008). 
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ENDNOTES

1 Semi-Supervised Learning (SSL) is another approach to dealing with the difficulty of training 
data insufficiency.  It attempts to leverage a large amount of unlabeled samples based on certain 
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assumptions, such that the obtained models can be more accurate than those that achieved by purely 
supervised methods.  More details about semi-supervised learning can be found in (Chapelle, et 
al., 2006; Zhu, 2007).

2 There may be another important reason, i.e., ranking performance rather than classification accu-
racy is usually adopted for evaluation in these tasks.  For example, in TRECVID benchmark the 
Average Precision (AP) measure is adopted (TREC-10 Proceedings appendix on common evalu-
ation measures. From http://trec.nist.gov/pubs/trec10/appendices/measures.pdf).  This implies that 
finding more positive samples with high confidence is more important than correctly classifying 
the samples.  So, the positivity criterion may outperform the uncertainty criterion since it is able 
to find more positive samples.

3 To make notations consistent, the indices for concept and modality are denoted by subscripts and 
superscripts, respectively.  But the sample indices are denoted by subscripts as well.  We have tried 
to avoid the simultaneous occurrence of these three indices for clarity.  For examples, the notation 
Perfi and Perfm indicate the performance of the i-th concept and the m-th modality respectively, 
and xi

m indicates the feature representation for xi in the m-th modality.
4 Multi-Instance Learning (MIL) aims to handle the problems in which the labels are not available 

for each individual instance but only for bags of instances.  A bag is labeled positive if it contains 
a positive instance, and it is labeled negative if all the instances in it are negative.  It is suitable for 
annotating object concepts in images or video samples, since the samples will be labeled positive 
or negative only according to the existence of the objects.  More details about MIL can be found 
in (Chen & Wang, 2005; Dietterich, Lathrop, Lozano-Pérez, 1997; Zhou, 2004).
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ABSTRACT

Although.it.has.been.studied.for.years.by.computer.vision.and.machine.learning.communities,.image.
annotation.is.still.far.from.practical..In.this.chapter,.the.authors.propose.a.novel.attempt.of.modeless.
image.annotation,.which.investigates.how.effective.a.data-driven.approach.can.be,.and.suggest.anno-
tating.an.uncaptioned.image.by.mining.its.search.results..The.authors.collected.2.4.million.images.with.
their.surrounding.texts.from.a.few.photo.forum.Web.sites.as.our.database.to.support.this.data-driven.
approach..The.entire.process.contains.three.steps:.(1).the.search.process.to.discover.visually.and.seman-
tically.similar.search.results;.(2).the.mining.process.to.discover.salient.terms.from.textual.descriptions.
of the search results; and (3) the annotation rejection process to filter noisy terms yielded by step 2. To 
ensure.real.time.annotation,.two.key.techniques.are.leveraged.–.one.is.to.map.the.high.dimensional.
image.visual.features.into.hash.codes,.the.other.is.to.implement.it.as.a.distributed.system,.of.which.the.
search and mining processes are provided as Web services. As a typical result, the entire process finishes 
in.less.than.1.second..Since.no.training.dataset.is.required,.our.proposed.approach.enables.annotating.
with.unlimited.vocabulary,.and.is.highly.scalable.and.robust.to.outliers..Experimental.results.on.real.
Web images show the effectiveness and efficiency of the proposed algorithm.
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INTRODUCTION

The number of digital images has exploded with the advent of digital cameras which requires effec-
tive image search techniques. Although it is an intuitive way of image search since “a picture worths 
a thousand word”, currently the Query-By-Example (QBE) scheme (i.e. using images as queries) is 
seldom adopted by commercial image search engines. The reasons are at least twofold: 1) the semantic 
gap problem. It is also the fundamental problem in Content-based Image Retrieval (CBIR) field. The 
techniques to extract low-level features, such as color, texture, and shape etc., are far from powerful to 
represent the semantics contained in an image, and hence given an image, its search results may be quite 
different conceptually to the query, although they possess same chromatic or textural appearances. 2) 
Computational expensiveness. It is well known that the inverted indexing technique ensures the practical 
and successful usage of current text search engines. This technique uses keywords as entries to index 
documents containing them, which also aligns seamlessly with the Query-by-Keyword (QBK) scheme 
adopted by text search engines. Thus given a number of query keywords, the search result can just be 
the intersection of documents indexed by these keywords separately (if no ranking functions applied). 
However, in the image search case, since images are 2D media, and the spatial relationship between 
pixels is critical in conveying the semantics of an image, how to define image “keyword” is still an 
open question. This prevents the inverted indexing technique from being directly used in image search, 
which creates a critical efficiency problem of using image visual features to search.

Due to the above reasons, there is a surge of interests on image auto-annotation and object recogni-
tion in recent years. Researchers try to define ways to automatically assign keywords onto images or 
image regions. While all the previous work build learning models to annotation images, in this chapter, 
we attempt to investigate how effective a modeless and data-driven approach, which leverages the huge 
amount of commented image data in the Web, could be.

This is reasonable because (1) to manually label images is a very expensive task (Naphade, Smith, 
Tesic,  Chang, Hsu, Kennedy, Hauptmann, & Curtis, 2006), and in many cases, different people tend to 
have different explanations on a single image. Such inconsistency even makes image labeling a research 
topic that many questions should be addressed: What kind of images can be labeled consistently? What 
is the strategy of labeling images that can ensure the consistency, etc? All these obstacles lead to the 
lack of training data, which discourages researchers from learning a practically effective annotation 
model even if we have such a huge image data set in the Web. (2) Some researchers proposed very 
efficient and effective image encoding approaches (Fan, Xie, Li, Li, & Ma, 2005) which convert an 
image into an N-bit hash code so that image visual distance can be measured simply by the Hamming 
distance between the hash codes. This enables large-scale content-based image search in real-time and 
set a light on combining image visual appearance into the commercial search engines that are purely 
based on text search since both image indexing (e.g. matching the first n bits of two hash codes) and 
retrieval are of O(1) complexity.

Imagine that an image set that is large enough is available, so that for each query image at least one 
duplication can be found in the image set, and then what we need to do is just to annotate the query by 
the comments or surrounding texts of the duplication. As analyzed above, this is applicable in real-time 
since each image is converted into a hash code so that large-scale image indexing is enabled.

This motivated us to leverage Web data and crawl Web images for a data-driven image annotation 
approach since the Web not only deposits huge amount of images but also they generally have human 
assigned comments or descriptions as their surrounding texts. Apparently the ideal case above is still 
far from what our current technique can achieve; however, we can retrieve a group of very similar im-



  ���

Annotating Images by Mining Image Search

ages to the query, or the near-duplicate, instead of the duplications. These search results, intuitively, 
will cover the major semantics inside the query image. On the other hand, the textual descriptions of 
these near duplications are most often noisy and diverse which are far from optimal as annotations, so 
that intuitively, data mining techniques can successively be applied onto the search results to learn the 
common keywords or phrases in a majority voting sense, which can thus be assigned to the query im-
age as the learned annotations. This is the key idea of our proposed modeless and data-driven approach 
in this paper. It not only investigates how much data can help us in recognizing an image as the saying 
“data is the king”, but also demonstrates a way to support practical image annotation which can handle 
large-scale image data in real-time.

The paper is organized as follows. Section II gives a survey on the previous works on image annota-
tion, which provides the reader a general picture on current art. Section III describes our insights of the 
image annotation problem, which motivate us the proposed modeless and data-driven approach as a novel 
and practical solution compared with the previous model-based ones. Section IV presents our modeless 
approach in detail and Section V provides experimental results. Several discussions are inspired in Sec-
tion VI and the paper is concluded in Section VII with a few outlooks of possible improvements.

RELATED WORKS

In the early works on image annotation, many researchers sought to users’ relevance feedback to assign 
labels to a given image. For example, Liu, Dumais, Sun, Zhang, Czerwinski, & Field (2001) asked the 
user to label a given image in the relevance feedback stage and then propagate these labels to all the 
positive images suggested by the retrieval system. Shevade and Sundaram (2006) made a further step. 
They attempted to propagate the image annotations by calculating the propagation likelihood based on 
WordNet (Fellbaum, 1998) synonym sets as well as image low-level features, and present only those 
images that are most ambiguous to the user for relevance feedback.

Due to the explosion of digital images and the semantic gap problem, image auto-annotation has 
become a hot research topic in recent years. And most of the researchers work on two major research 
directions. One attempt is to learn the joint probabilities between images and words. Most of this type 
of research tries to learn a generative model leveraging a training dataset and then infer the labels for 
the new-coming images according to the learnt correlations. For example, Blei et al. extended the Latent 
Dirichlet Allocation (LDA) model to the mix of words and images and proposed a so-called Correlation 
LDA model (Blei and Jordan, 2003). This model assumes that there is a hidden layer of topics, which 
are a set of latent factors and obey the Dirichlet distribution. And words and regions are conditionally 
independent given the topics. This work used 7,000 Corel photos and a vocabulary of 168 words for 
annotation.

Barnard, Duygulu, Freitas, Forsyth, Blei, & Jordan (2003) proposed a generative model and tested 
various statistical models to learn the joint probabilities of image regions and words. They used 16,000 
Corel photos with 155 words and automatically annotated 10,000 test images.

Li and Wang (2003) proposed a two-dimensional multi-resolution hidden Markov model to connect 
images and concepts. They used 60,000 Corel photos with 600 concepts. In one of their recent work, 
they improved this model and propose a real-time annotation approach named Alipr which attracts 
attention from both academic and industry. Lavrenko, Manmatha, & Jeon (2003) proposed a continu-
ous relevance model, a generative model which directly associates continuous features with words and 
achieved significant improvement in performance. Jeon, Lavrenko, & Manmatha (2003) and Jeon and 
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Manmatha (2004) extended this model to learn the joint probabilities between a set of words and im-
age features. The training set they used were about 56,000 Yahoo! news images with noisy annotations 
and a vocabulary of 4,073 words. This is the largest vocabulary used in the previous work, and they 
discussed noisy-annotation filtering and speeding-up schemes.

The generative model proposed by Zhang, Zhang, Li, Ma, & Zhang (2005) added a hidden layer 
of semantic concepts to connect visual features and words. The concepts are discovered to explicitly 
exploit the synergy among the modalities.

All the approaches mentioned above suggest generative models. As a different approach, Pan, Yang, 
Faloutsos, & Duygulu (2004a) formulated this problem as learning a graph structure. They constructed 
a two-layer graph on training images and their associated captions, and used the random-walk-with-
restarts algorithm to estimate the correlations between new images and the existed captions. In another 
work of Pan, et al. (2004b), they further extended the model into a three-layered graph by taking into 
consideration the image regions. Also, Monay and Gatica-Perez (2003, 2004) tested the performance 
of latent space models on this task.

Duygulu, Barnard, Freitas, & Forsyth (2002) and Barnard, Duygulu, Freitas, & Forsyth (2003) rep-
resented images by a group of blobs, and then used a statistical machine translation model to translate 
the blobs into a set of keywords.

Another group of researchers attempted to learn classifiers based on the training data. Chang, King-
shy, Sychay, & Wu (2003) started their process by manually labeling one caption for each image in a 
small training set, then train an ensemble of binary classifiers, each classifier for a specific label. Li, 
Goh, & Chang (2003) proposed a Confidence-based Dynamic Ensemble model which was a two-stage 
classification method. Carneiro and Vasconcelos (2005) attempted to establish a one-to-one mapping 
between semantic classes and the groups of database images that share semantic labels, and the criterion 
is to minimize the probability of errors. Mori, Takahashi, & Oka (1999) uniformly divided each image 
into sub-images with key words, and then used vector quantization of the feature vectors of sub-images 
to estimate which words should be assigned to a new image. 

The work above generally requires a training stage to learn prediction models, thus the generalization 
capability should be a crucial assessment for practical effectiveness of the proposed approaches. 

Recently, some researchers began to leverage Web-scale data for image understanding (Duygulu, et 
al., 2002, Yeh, Tollmar, & Darrell, 2004). An interesting work was proposed by Yeh, Tollmar, & Dar-
rell (2004) which identifies locations by searching the Internet. Given a picture of an unknown place, it 
firstly obtains a small number of visually relevant Web images using content-based search, then extracts 
a few keywords from the descriptions of these images. A text-based search is successively performed 
and the search results are further filtered by visual features.

The disadvantages of (Yeh, et al. 2004) are that due to the efficiency problem, only a small number 
of relevant images can be retrieved as seeds which possibly degrades the performance, and the semantic 
gap problem will inevitably bias the final results. However, ignoring all these vulnerabilities, it is still an 
important work which pioneers a different point of view to investigate the image annotation problem.

Theory Behind – the Motivation

This section provides our insights into the image auto-annotation problem, which directly inspired the 
idea of our modeless and data-driven image annotation approach.
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Fundamentally, the aim of image auto-annotation is to find a group of keywords w* that maximizes 
the conditional distributions p(w | Iq), as shown the first row in Eq.1, where Iq is the uncaptioned query 
image and w are keywords or phrases in the vocabulary. Applying the Bayes rule, we obtain Eq.1(a), 
where Ii denotes the ith image in the database. This corresponds to the generative model shown in Fig. 
1(a), in which annotations are generated directly from the images. If we assume that there is a hidden 
layer of “topics”, so that images are distributed w.r.t. a group of topics, and it is from these topics that 
words are generated, then we obtain a topic model as shown in Fig. 1(b), which corresponds to the func-
tion shown in Eq.1(b), where tj represents the jth topic in the topic space.
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Most of the previous generative approaches can be categorized into these two formulations. Moreover, 
since the model of Eq.1(b) investigates the relationships between images and words in a more exhaustive 
way,  it is generally reported as more effective in many previous works (Barnard, et al., 2003, Blei and 
Jordan, 2003, Monay and Gatica-Perez, 2004, Zhang, eta al. 2005).

However, in this paper we interpret Eq.1 in a different way. More specifically, we view Eq.1 from 
the angle of search and data mining. 

Recall that the goal of a typical search process is to retrieve a set of images I* given a query Iq such 
that for each Ik ∈ I*, we have

*
arg max ( | )

i
q i q

I
I p I I

∈
=

I
          (2)

Moreover, contrary to traditional approaches which learn p(w | Ii) by defining either a generative 
model or discriminative model, we can just mine it out given a set of images, and such a mining process 
attracts interests recently, which is typically called label-based clustering techniques (Toda and Kataoka 
2005, Zeng, He, Chen, & Ma, 2004).

Figure.1..Generative.models.for.image.auto-annotation

topicsimages words

(b) the three-layer model. Words are generated 
from a hidden layer of “topics”

N

MN

wordsimages

(a) the two-layer model . Words are 
directly generated from visual features

M



���  

Annotating Images by Mining Image Search

Different from the traditional document-based clustering approaches, e.g. k-means, which cluster 
documents based on the similarity of features and yield non-overlapped clusters, label-based approaches 
are typically applied to search results, which attempt to generate indicative and detailed descriptions 
to categorize the retrieved documents into clusters as well as to facilitate users’ browsing, and gener-
ally yield overlapped clusters. The art is in learning the informative and classifiable words or phrases 
which summarize and categorize a subset of the documents. For example, Zeng, et al. (2004) defined 
five features to represent each n-gram and then learnt a linear regression model to rank the n-grams; 
the top-ranked n-grams were used as the corresponding clusters’ names to differentiate the documents 
into clusters.

Note that a pre-requisition of label-based clustering approaches is that such techniques should be 
applied to search results. Since all the documents are retrieved given a single query, or say they are 
relevant in some sense, it reduces the noise and diversity. Hence the most important feature of the 
“cluster names”, or the learnt indicative words or phrases, is to provide further details of a cluster of 
documents, and hence such techniques are typically used for improving the display of a search engine 
(Vivisimo, 2007). 

This pre-requisition is automatically satisfied in our case, as stated in Section I. Instead of finding 
duplications for a query image (as is an excessive demand), we find each query image a group of near-
duplications, or relevant images both visually and semantically (i.e. have similar textual descriptions), 
which are just the “search results” required by a label-based clustering technique, and hence we get to 
the solution of p(w | Ii).

Based on the analysis above, we propose a novel solution of image annotation by first retrieving a 
subset of similar images {Ii} to the query (i.e. p(Ii | Iq)), and then mining annotations from this image 
subset {Ii} leveraging a label-based clustering technique (i.e. p(w | Ii)), which solves Eq.1(a).

The Modeless Annotation Approach of Mining Search Results

We have illustrated that the idea of annotating an image by those informative and distinctive phrases 
mined from its search results is reasonable. Here in this section we not only provide the detailed solu-
tion, but also show our ways of ensuring its effectiveness and efficiency simultaneously.

The Reformulation

Before the illustration, let us reformulate Eq.1 in a more “image” way. Let q

iiq I


=Θ  denotes the set of 
images relevant images 1, ,

q

i nI
= 

 to query Iq, so that p(Θq | Iq) simulates the search process, and p(w | Θq) 
simulates the mining process. The label-based clustering approach is then to discover topics such that

( | ) arg max ( | ) ( | )q qp p pΘ = ⋅ Θtw w t t         (3)

where t is approximated by the “cluster names” given by the clustering approach.
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Hence we have

arg max
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From Eq.4, we can see that there are three critical factors that affect the effectiveness of the proposed 
approach, namely the retrieval process p(Θq | Iq.), the mining process p(t | Θq.), and the filtering process 
p(w | t). 

We do not want to propose a label-based clustering technique here in this paper, but adopt an exist-
ing and proved-effective approach instead called Search Result Clustering (SRC) proposed by Zeng, et 
al. (2004) which is a released product by Microsoft Research Asia (SRC, 2006). 

As for the filtering process, we propose a simple but effective relevance.ranking.and.annotation.
rejection approach to select and rank the mined cluster names, and use the top ones as the output an-
notations. Intuitively, the preciseness of the identified annotations depends on the effectiveness of the 
SRC technique. However, since SRC is purely based on textual descriptions rather than taking image 
visual features into consideration as well, the effectiveness of SRC is thus degraded in our scenario. 
We will leave it as a future work and concentrate on the entire solution of a search and mining based 
image auto-annotation approach in this paper.

Figure 2. The flowchart of the modeless image annotation process of mining annotations from image 
search results. It contains three steps: the search stage (labeled by “(1)” in the figure), the mining stage 
(“(2)”) and the filtering stage (“(3)”). The uncaptioned image and an initial keyword “sunset” assigned 
serve.as.the.queries..The.highlighted.yellow.block.shows.the.output.annotations.
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The retrieval process is a bit tricky in our current implementation, but we believe that it helps move a 
step forward in image understanding. It is well known that the semantic gap problem dooms the Content-
based.Image.Retrieval (CBIR) approaches, which is thus called a fundamental problem in CBIR fields. It 
is caused by the gap between human semantics and the low-level visual features insufficiently effective 
given current feature extraction skills (Huang, Kumar, Mitra, Zhu, & Zabih, 1997). On the other hand, 
many researchers have proved that although individually the visual features and textual descriptions of 
images are ambiguous, e.g. both images labeled as “tiger lily” and “white tiger” are relevant to query 
keyword “tiger”, they tend not to be when combined together (Barnard, Duygulu, Freitas, & Forsyth, 
2001, Blei and Jordan, 2003, Li and Wang, 2003, Li and Wang, 2006). 

Hence we suggest to divide-and-conquer the semantic gap problem. Suppose two steps: (1) given 
a query image, find one accurate1 keyword (or phrase); and (2) given the image and the keyword, find 
more complementary keywords or phrases that detail the content of the image. The second step is easy to 
comprehend. By providing an initial keyword, we reduce the ambiguity of the image query and promise 
the search results to be relevant both visually and semantically at least to some extent. On the other 
hand, the requirement in the first step is not as lacking in subtlety as it may first seem. For example, 
for desktop images, users usually name the folders by locations or event names, and for Web images, 
generally there are plenty of textual descriptions from which the initial keyword can be chosen.

We shrink from discussing the first step and leave it as another future work, and start our approach 
from the second step, thus the image annotation approach formulate our current proposal is given in 
Eq.5 below: 
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Sketch of the Proposed Modeless Image Annotation Approach

The flowchart of the modeless image annotation process of mining annotations from image search results 
is shown in Fig. 2. It contains three steps: the search stage (labeled by “(1)” in the figure), the mining 
stage (“(2)”) and the filtering stage (“(3)”). The uncaptioned image and an initial keyword “sunset” serve 
as the queries. The highlighted yellow block shows the output annotations.

As a pre-processing step, a large scale Web image dataset is firstly crawled and reserved as a pre-
requisition of a data-driven approach, which will be illustrated in Section IV.C, and then visual and 
textual indices of the images are built up to support the real-time process, on which we give the details 
in Section IV.D. 

Given the query image, we adopt the traditional Query-By-Example (QBE) method in CBIR to retrieve 
visually similar images. Intuitively, when the image database contains millions or billions of images, 
image retrieval based on pair-wise computation of the Euclidean distance is too time consuming and 
thus impractical, and we solve this problem by two means: Firstly, Query-By-Keyword (QBK) method 
is conducted before QBE retrieval, and thus we can leverage the inverted indexing technique2 to retrieve 
the “semantically” similar images in real time (the time complexity is O(1)). Normally, the number of 
candidate images that are possibly relevant to the query will be greatly reduced in this step, and hence 
improves a great deal of the efficiency of the QBE retrieval step.  Secondly, instead of calculating the 
Euclidean distances of two images based on the original low-level feature extracted, we encode each 
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feature vector into a hash code which is binary bitwise, so that efficient distance measures such as the 
Hamming distance can be leveraged to greatly increase the search efficiency.

We detail this step in Section IV.D. In this way, we obtain a small subset of images that are both 
visually and semantically similar to the query image, which concludes the search stage.

The next step is to mine a number of terms (i.e. words or phrases) from the textual descriptions 
of the search results, which we adopt a previous work by Zeng et al. (Zeng, et al., 2004) named SRC 
(SRC, 2006), as described in Section III for this task. The cluster names output by SRC are assumed 
the topics in Eq.5. 

Then an annotation rejection step which we call “filtering” is applied onto t to approximate p(w | 
t) as annotation selection. The intention of this step is to further improve the precision of the output 
annotations for two reasons: (1) as aforementioned, the SRC technique (Zeng, et al., 2004) is based 
on textual features only and does not take visual features into consideration, hence the cluster names 
learnt may contain unsuitable terms for the query image. (2) Current SRC generates about 20 clusters3, 
which is too large a number to promise high precision in our image annotation scenario. We detail this 
step in Section IV.E.

The user interface of our propose approach is shown in Fig. 3. It supports various query image sug-
gestion schemes – the user can either upload a query image or select one from its QBE search results; 
s/he can type in a query term and select a query from its QBK results, or click the “Random” button 
to randomly select one. 

The gray block highlights the query image and when clicking on the word “annotate,” the annota-
tion process begins. The statistical number of time cost in search and mining are shown in the blue bar 
below the query image. As for the real example in Fig. 3, 500 images are retrieved from the 2.4 million 
Web image database and the time cost in the search and mining process are 15 and 563 milliseconds 
respectively, which is in real time.  The terms in blue are the output annotations, which are cluster names 
yielded by SRC (Zeng, et al., 2004) and separated with the sign “|”. In Fig. 3, three terms survived the 
annotation filtering step. The underneath tab form displays a subset of the 500 relevant images retrieved 
in the search stage whose textual descriptions took part in the SRC mining.

In the following sections, we give the details of both technical and engineering designs which sup-
port effective data-driven annotation in real time.

Dataset selection: One Factor to Ensure an Effective Data-Driven Approach

Since it is not only a very tedious and expensive task to manually label training data, but also very dif-
ficult to produce consistent labeling (Naphade, et al., 2006), the learning approaches always suffer from 
the small training data problem which degrades their power in handling outliers. For example, most 
previous works propose their researches based on Corel images, which contains only about 60 thousands 
high-quality images, and the images of the same category tend to be very similar visually. 

On the other hand, recall that to ensure the effectiveness our modeless and data-driven approach 
of annotating images by mining search results, a basic assumption is that we can find near-duplicate 
images, or images that share semantics with the uncaptioned query image, so collecting a large scale 
image dataset is necessary. Due to these reason, we resort to the Web. 

In fact, recently, some researchers have begun to investigate the usage of Web images and reported 
its effectiveness in many areas (Yeh, Tollmar, & Darrell, 2004, Weijer, Schmid, & Verbeek, 2006, Li, 
Wang, & Fei-Fei, 2007). However, since Web images are generally noisy and their surrounding text may 
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be of very low quality, it is not necessary that any Web images will help and hence post-processing is 
generally applied to ensure the quality of collected Web images (Weijer, et al., 2006, Li, et al., 2007). 

Hence in our approach, we collect 2.4 million images from a few photo forums. The advantages are 
that (1) since these photos are taken by photographers, they generally have high resolution; (2) when 
uploading their works, the photographers will provide comments which more or less describe the photos; 
(3) most of the photos are nature images which have simpler semantics compared to artificial ones or 
portraits like the Corbis dataset; (4) there are plenty of images which are of the same semantic but with 
diverse appearance, which ensures a higher generalization ability of the proposed approach than using 
Corel images as the training data. 

Three examples from the 2.4 million photo forum images are shown in Fig. 4. We can see that 
although the descriptions are noisy, more or less they hit a few contents in the corresponding images 
(e.g. “tiger” in the first example) or suggest keywords (e.g. “forest”) that statistically co-occur with the 
central objects.

Table I provides statistics on the 2.4 million photos. The dictionary contains 362,669 words and each 
photo has 19.6 textual descriptions on average, which to our knowledge, is the largest database used in 
image annotation, without saying real-time annotation systems.

 

The Summer 
Palace

Figure.3..The. interface.of. the.proposed.modeless.and.data-driven. image.annotation.approach..The.
gray.block.highlights.the.query.image...The.blue.bar.below.it.gives.the.statistical.number.of.the.number.
of.images.retrieved.from.the.2.4.million.Web.images.and.the.time.cost.in.search.and.mining.process.
respectively...The.blue.keywords.show.the.learned.annotations..They.are.actually.three.cluster.names.
output.by.SRC.(Zeng,.et.al.,.2004).and.“|”.separates.each.name..The.tab.form.displays.the.relevant.
images.retrieved.in.the.search.stage.which.take.part.in.the.mining.step.
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The Promise of Real-Time

The obstacles to real-time annotation in our case include the content-based retrieval process and the 
handling of the 2.4 million images4. We solve the first problem by mapping image visual feature vectors 
into hash codes and the second one by setting up a distributed system.

Accelerating the Search Process by Mapping Visual Features to Hash Codes

Typically, the similarity of two images is measured in Euclidean space. However, since visual features 
are generally of high dimensional, measuring pair-wise Euclidean distance becomes a bottleneck in 
retrieval efficiency even if the search space is greatly reduced by text-based search given the query 
keyword. To accelerate the content-based search process, an effective way is to compress the images. 
Some previous works proposed vector quantization techniques, for example, Zhu, Zhang, Rao, & Srihari 
(2000) segments an image into regions, and quantizes the regions to obtain a few keyblocks. The widely 
used inverted index technique in text-based search field is thus naturally applied onto such a kind of 
keyblock-based discrete representation, and in this way, the content-based image retrieval problem is 
converted seamlessly into a text-based one which greatly improves the retrieval efficiency. 

In this paper, we adopt another technique of image hash code generation (Fan, et al., 2005, Wang, 
Li, Li, & Ma, 2006) since it is more scalable than vector quantization methods (Zhu, et al., 2000) and 
hence is better fit for large-scale databases. 

Related Works on Hash Encoding. The hash code generation algorithms (Fan, et al., 2005, Wang, 
et al., 2006) were originally proposed to detect duplicate images, i.e. images which are visually identical 
to each other. The basic idea is: suppose that visual features are mapped into bit streams, with higher 
bits representing more important contents of an image, and lower bits representing less important con-
tents, thus duplicate images should have equal hash codes (i.e. the bit streams), and the equality is easily 
measured by the Hamming distance (i.e. the “AND” operation). This technique can also be applied to 
discover near-duplicates, by comparing only the higher bits of two hash codes. Intuitively, since the 
higher bits represent the more important contents, so that two images are more possibly alike if more 
highest bits match. 

The hash code generation algorithm proposed in (Fan, et al., 2005) is shown in Fig. 5. Firstly, it 
transforms an input color image to gray scale and divides it evenly into 8x8 blocks. Each block is 
represented by the average intensity so that the original image is converted into an 8x8 matrix Μ with 
each element Iij in Eq.6.

Table.1..Statistics.on.the.2.4.million.database
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Figure.5..The.hash.code.generation.process.proposed.in.(Fan,.et.al.,.2005),.which.is.originally.used.for.
identical image search. This figure is adapted from (Fan, et al., 2005).

Figure.4..Three.examples.of.the.2.4.million.photos.collected.from.a.few.photo.forum.websites..These.
photos.are.generally.of.high.quality.and.have.comments.from.the.photographer.
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where Int(x, y) is the intensity of the (i, j)-th matrix entry, and w, h denote the block width and height 
respectively.

2-D DCT transformation (Rao and Yip, 1990) is then applied to Μ. The DC coefficient, which is 
the average of M, is omitted to eliminate the effect of luminance. The remaining AC coefficients are 
zigzagged into a sequence, and the first 48 coefficients in lower frequencies are collected as the feature 
vector Xm of the original image, which is further mapped to a n-dimensional vector Yn by a PCA (Joliffe, 
1986) model PT trained on 5,500 Web, as shown in Eq.7:

T

n mY P X=            (7)

The hash code is thus generated from Yn using the encoding function shown in Fig. 6. 
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Wang, et al. (2006) proposed a similar idea but is more efficient, as shown in Fig. 7. Images are 
hierarchically divided into blocks and average luminance is used as features. The projection model is 
still PCA trained from 11 million iFind (Chen, Liu, Hu, Li, & Zhang, 2001) images, and the 24 eigen-
vectors which correspond to the 24 largest eigenvalues are retained.  The intuition behind using PCA 
for dimension reduction is that the PCA space is essentially a rotated version of the original feature 
space. If all the feature dimensions are kept, it draws the same conclusion on data points’ distances as 
measured in the Euclidean space. Moreover, since PCA dimension reduction is achieved by cutting off 
the lower variance dimensions, the information loss is so small that can be ignored, while on the other 
hand, the hash code based matching can be significantly speeded up.

Mapping Visual Features to Hash Codes. Though it is proposed in duplicate finding, the same 
technique can be applied to accelerate search process with low information loss. Recall that since the 
higher bits represent the more important contents in an image, if some hash codes have equal n highest 
bits, they are thus indexed by the same key. Henceforth we can significantly speed up the search process 
in visual space by creating an inverted index based on the hash codes.

In our approach, we use 36-bin color Correlogram (Huang, et al., 1997) instead of intensity and 
luminance (Fan, et al., 2005, Wang, et al., 2006) as the original visual features. The reasons are two-
fold: (1) the goal of (Fan, et al., 2005, Wang, et al., 2006) is to find duplicate images which are identical 
both in layout and contents, hence luminance of gray-scale images is an effective feature which is also 
efficient. However, our goal is to find relevant images — images that may not have the same layout 
and contents but share similar concepts. Hence to keep the color, texture and shape, etc., features is 
important in our case. Obviously Correlogram features keep more information than the gray-image 
based ones; and (2) Correlogram is also a widely used feature in content-based image retrieval (Rui, 
Huang, & Chang, 1999, Carson, Thomas, Belongie, Hellerstein, & Malik, 2002, Cox, Miller, Minka, 
Papathomas, & Yianilos, 2000).

Since 3-channel (e.g. RGB) features are used in our case, rather than the 1-channel one in (Fan, et 
al., 2005), 2-D DCT transformation is inapplicable here, and hence we adopt the hash code generation 
approach proposed by Wang, et al. (2006). However, we extract the 144-dimensional color Correlo-
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Figure.6..The.hash.code.generation.algorithm.proposed.in.(Fan,.et.al.,.2005)

Figure.7..The.hash.code.generation.process.proposed.in.(Wang,.et.al.,.2006)
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grams for each image and learn the 144x32 PCA projection model based on the same 11 million iFind 
images as in (Wang, et al., 2006). Then we use this model to offline map all the 2.4 million photos we 
collected into hash codes.

Hash Code Based Image Retrieval. Each image is now represented by a 32-dimensional bit streams, 
with the higher bits represent the major information while the lower bits describe the less informative 
ones. We design and compared four distance measures in our current implementation to check the ef-
fectiveness and efficiency of hash code based image retrieval, the results are given in Section V. The 
four distance measures are listed below:

•. Hash code filtering plus Euclidean.distance. If the highest n bits of an image exactly match those 
of the query image, then the Euclidean distance of these two images are measured based on their 
Correlograms. This measure is a tradeoff between search effectiveness and efficiency since the 
time consuming Euclidean distance computing is required only for a small set of images. On the 
other hand, mapping Correlograms to hash codes brings information loss, thus calculating image 
similarities based on the original features may ensure a better effectiveness. In our experiments, 
n = 20.

•. Hamming.distance. It measures the number of different bits of two hash codes. Obviously this 
is the most efficient measurement. Its effectiveness depends on that of the hash code generation 
approach.

•. Weighted.Hamming.distance. Hamming distance assume all bits have equal weights. But intuitively, 
since the higher bits are more important, differences in higher bits should be larger-weighted. We 
propose a weighting function as below:

 Firstly, we evenly group a 32-bit hash code into 8 bins. From left to right, each bin contains 4-bits. 
Then we weight the Hamming distance on the ith bin by 2(8–i), 1≤i≤8. Obviously the weighting 
function magnifies the difference on the higher bits. It is simple but effective as proved in our 
experiments. 

•. Euclidean.distance. The Euclidean distance based on original Correlogram features is also given 
as a baseline to assess the performance of the above hash code-based measurements.

We rank the images in the ascending order of the distances respectively and return the top N as 
search results.  

Efficiently Handling the Large-Scale Database with Distributed Computing

In part 1), we demonstrate the method of supporting content-based search in real time and proposed a 
hash code generation approach as well as different distance measures. However this is not enough to 
support real time image annotation when the database contains millions or billions of images. In this 
subsection, we describe our design of a distributed system, which as shown in Fig. 3, finishes the search 
process in 15 milliseconds and the mining process in 563 milliseconds, based on 2.4 million images.

The system architecture is shown in Fig. 8. The key is that the content-base search engine, text search 
engine and SRC clustering engine are provided as Web services using C# Remoting technique. Each 
service register a distinct TCP port and listening to it, when there is a service request, the service accepts 
inputs, does its own work, and sends back outputs. Moreover, by building up this distributed system, 
both visual and textual features can be kept in memories of servers, and no disk I/O is requested, so 
obviously it is quite efficient and easily scalable.
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The Control of SRC (Zeng, et al., 2004) Outputs

As mentioned in Section IV.A, we use the search result clustering technique named SRC (Zeng, et al., 
2004) to learn the topics based on the visually and semantically similar search results. 

A left problem is that SRC requires users to provide the number of clusters |nsrc| wanted, which is 
difficult to select without observing the data. We provide an experiential algorithm as Eq. 8 below to 
select |nsrc|:

* 200 , 4)max(srcn Θ=           (8)

where |Θ*| is the number of retrieved images. 200 is an empirical value of cluster size suggested by SRC 
to ensure the saliency of learned cluster names. On the other hand, if |Θ*| is too small, SRC tends to 
group all images in one or two clusters and hence images in one cluster may be too diverse to produce 
meaningful cluster names. To avoid this, we force the algorithm to output at least 4 clusters, while 4 is 
another empirically selected parameter.

Moreover, because SRC extracts all n-grams Θ*(n ≤ 3) as its candidate key phrases, if Θ* is too large, 
time cost of the SRC service may be very high. Hence, we set max Θ* = 200.

The final problem is annotation rejection. As aforementioned (refer to Section IV.B), it is unsuitable to 
output all cluster names yield by SRC as the annotations, hence to define criteria for annotation rejection 
is necessary to ensure the performance. Two criteria are compared in our current implementations:

•. Maximum.cluster.size.criterion. This is a very simple but effective annotation rejection method, 
which uses the size of each cluster, i.e. the number of images in each cluster, as the score to rank 
each cluster name, and the top ranked ones are assigned onto the query image as the final annota-
tions. This is equivalent to the Maximum a Posteriori estimation (MAP) which assumes that “the 
majority speaks the truth” and is statistically reasonable since the cluster names are learned from 
search results which are assumed visually and semantically relevant to the query image.

•. Average.member.image.score.criterion. The term “member image” of a cluster A indicates an 
image that is assigned to A, and the cluster score is measured as the average similarity of its mem-
ber images to the query image. It is reasonable since the more relevant member images a cluster 
contains, the more probably the concepts learned from this cluster represents the content of the 
query image.

We keep the top ranked clusters, merge their cluster names by removing the duplicate words and 
phrases, and output as the learned annotations, which closes the entire system process.

EVALUATIONS

2.4 million photos from several online photo forums are collected as the database, from which the rel-
evant images are retrieved to annotate the query image. These photos are not only of high quality, but 
also have rich descriptions, as discussed in Section IV.C. 

In order to evaluate the effectiveness and efficiency of our proposed approach, we conducted a se-
ries of experiments based on two datasets. One is an open dataset, of which the images are collected 
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from Google image search engine (Google, 2006). 30 Google images from 15 categories (as shown in 
Table II) were randomly selected. However, to give a more objective evaluation of the effectiveness, we 
deliberately selected a few vague query keywords, e.g. using “Paris” as the query keyword to annotate 
a photo of “Sacre Coeur”. Because no ground truth labels are available, we manually evaluated the 
retrieval performance on this dataset. 

The other testing dataset is a benchmark content-based image retrieval database provided by the 
University of Washington (UW)5. Images in this dataset have about 5 manually labeled ground truth 
annotations on average, and the UW folder names were used as the query keywords (see Table III). A 
problem with this dataset is that for many images, not all objects are annotated. For a fair evaluation, 
we manually revised the results to accept synonyms and correct annotations that do not appear in UW 
labels.

Experiments on Google Images

Evaluation Criterion

The evaluation of image auto-annotation approaches is still an open problem. Typically in many previous 
works (Blei, et al., 2003, Carneiro and Vasconcelos, 2005, Jeon and Manmatha, 2004), image retrieval 
technique is used for evaluation. Generally in these approaches, the entire dataset is separated into two 
parts, one for training and the other for testing such that images in these two datasets share almost the 
same vocabularies and data distributions, and ground truth annotations are available for the testing 

Figure.8..System.architecture.of.the.proposed.modeless.and.data-driven.image.annotation.approach..
The.visual.search.engine,.text.search.engine.and.SRC.engine.are.implemented.as.services,.which.make.
up.of.a.distributed.system.using.C#.Remoting.technique.
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dataset. Thus in their evaluation, a number of keywords can be selected from the vocabulary to query 
the annotated testing dataset and the precision and recall are calculated for the returned images.

Let G be the ground truth relevant images and L be the retrieved images, retrieval precision and 
recall are defined as in Eq.9.

,=
L G L G

Precision Recall
L G

=
 

        (9)

i.e. precision evaluates the proportion of relevant images in the retrieval results, while recall calculates 
that of the relevant images in all the relevant images contained in the database.

However, Eq.9 suggests only the probability of identifying “correct” annotations. But for an annotation 
system, generally the output annotations belong to three categories: “perfect”, “correct”, and “wrong”. 
The “perfect” annotations hit the specific objects inside an image, e.g. “tiger” for the first image in 
Fig. 4. The “correct” annotations are those that are not-wrong but also not perfect, e.g. “France” for an 
image about Eiffel tower. The “wrong” annotations are the incorrect outputs, which have nothing to do 
with the contents of the query image. We believe that a comprehensive evaluation should take all these 
three categories into consideration. Hence we propose Eq.10 to evaluate the performance. It modifies 
the normalized score measure (Barnard, et al., 2003, Li and Wang, 2006), which only categorizes the 
annotations into “right” or  “wrong”.

0.5p r w
E

m

+ × -
=           (10)

where m denotes the number of annotations predicted. p, r, w are the number of “perfect”, “correct”, 
and “wrong” annotations respectively. Note that to emphasize the preference for “perfect” annotations, 
we punish the “correct” ones by a lower weight 0.5. Obviously when all the predictions are “perfect”, 
E = 1, while if all are wrong, E = –1.

Since there are no ground truth annotations available for this dataset, it is impossible for us to evalu-
ate the recall performance.

System Effectiveness

Fig. 9 shows how annotation precision varies as the similarity weight changes. This weight weights the 
average similarity of images retrieved in the content-based search stage, and the product serves as the 
threshold to filter out irrelevant images, i.e. images whose similarity to the query image is lower than 

Australia, Campus, Cannon beach, Cherries, Football, Geneva, Green lake, 
Indonesia, Iran, Italy, Japan, San juan, Spring

flower, Swiss mountain, Yellowstone

Table.3..Queries.from.U.washington

Table.2..Queries.from.google

Apple, Beach, Beijing, Bird, Butterfly, Clouds, Clownfish, Japan, Liberty, 
Lighthouse, Louvre, Paris, Sunset, Tiger, Tree
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(a) Precision w.r.t. maximum cluster size criterion

(b) Precision w.r.t. average member image score criterion
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Figure.9..Annotation.precision.measured.by.Eq.10..It.shows.respectively.the.precision.curve.of.using.
the.four.distance.measures.described.in.Section.IV.D.vs..the.similarity.weight.as.a.threshold.to.control.
the.number.of.image.search.results.yield.at.the.search.stage.

this threshold will not be delivered to the SRC mining stage. This parameter determines Θ* in Eq.8 and 
thus directly affects the learned clusters and the predicted annotations.

The reason of proposing such a threshold strategy is that, since the similarity of images varies greatly; 
it is very difficult to select a hard threshold which can promise high system performance for any queries. 
On the contrary, our soft threshold is query-dependent, it leverages the information provided by content 
features of the image search results.
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The green square curve in Fig. 9 represents the process without the content-based search step, i.e. it 
relies purely on text-based search to yield near duplicates, and SRC clustering is based on the images 
that are “semantically” similar but may not visually similar. It serves as the baseline method here. Also, 
since no visual features are available, annotations predicted by this method uses the maximum cluster 
size criterion (see Section IV.E).

Fig. 9(a) shows annotation precision curves of the four content-based search distance measures (refer 
to Section IV.D) under maximum cluster size criterion. 

From this figure, we can see that the weighted Hamming distance measure performs the best. This 
is reasonable because it emphasizes the feature components that captures the important information in 
an image while at the same time de-emphasize the unimportant ones.

It is interesting that Euclidean distance measure based on the original Correlogram features performs 
comparatively to the Hamming distance measure in effectiveness. This shows that the information-loss 
of mapping original features into hash codes (refer to Section IV.D) can be ignored on this dataset, or 
say, the model for hash code generation is effective.

Another interesting result is that the hash code filtering plus Euclidean distance method performs 
badly. The reason may be that the higher 20 bits of hash codes learned are too coarse to distinguish 
relevant images from irrelevant ones.

All the distance measures perform much better than the baseline method. This shows that requiring 
the visual similarity of clustering images is necessary and important.

Fig. 9 (b) shows the performance with maximum average member image score criterion. It is gener-
ally worse than that with the maximum cluster size criterion. A possible reason is due to the semantic 
gap. Recall that SRC algorithm clusters images purely based on their surrounding texts and ignores 
image visual features. Thus images in one cluster may have very different visual features even if they 
belong to the same category. Obviously this will not affect the maximum cluster size criterion but only 
the average member image score criterion, because the latter one uses visual similarity to score the 
clusters. Another possible reason may be that the images which share similar descriptions vary greatly 
in their visual appearances.

Note that the system’s performance jumps when the threshold is too large such that Θ* is too small 
to ensure satisfying SRC clustering performance.

Fig.10 shows a few examples of the annotation results. The boldfaced keywords indicate the queries. 
It can be seen that our approach is able to find correct and most of the time perfect complementary 
annotations.

 
System Efficiency

We have give the readers a sense of the efficiency in Fig. 3, which shows that our annotation process is 
fulfilled in real time, although the database contains 2.4 million images, which is the largest till now 
to our knowledge.

In the subsection, we conduct one more experiment to evaluate the efficiency statistically. For all the 
queries, we collect their search results, which are about 24,000 images on average, and test the system 
efficiency according to the four distance measures: Hamming Distance, Weighted Hamming Distance, 
Hash code filtering plus Euclidean distance, and the traditional Euclidean distance based on original 
Correlogram features. The hardware environment is a computer with one Dual Intel Pentium 4 Xeon 
hyper-threaded CPU and 2G memory. The time cost for computing the pair-wise distance between each 
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Figure.10..A.few.examples.of.the.annotation.results.yield.by.the.modeless.and.data-driven.image.an-
notation.approach.
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Figure 11. Search efficiency vs. the four distance measures. Pair-wise distances are measured based 
on 24,000 images. It proves the efficiency of the proposed idea. Moreover, the Hamming distance is the 
most efficient, which is also reasonable. 

of the 24,000 images and the query image, as well as ranking the images accordingly, is shown in Fig. 
11, which cost 0.034, 0.072, 0.051 and 0.122 seconds respectively. We can see that computing Euclidean 
distance is nearly 4 times slower of calculating Hamming distance.
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The hash code filtering plus Euclidean distance measure is the second efficient. The reason is that the 
hash codes here serve as the inverted indices to identify the relevant images which is of O(1) computation 
complexity. Time cost for this measure is consumed by the Euclidean distance calculation afterwards.

Note that the above evaluations were conducted with all features loaded into memory. If disk access 
is required, we can imagine that hash code-based measures will be even faster than the original visual 
feature-based ones.

Experiments on UW  Dataset

In this subsection, we evaluate the performance of our proposed approach based on the benchmark 
U.Washington database.

Because ground truth is available and this dataset is comparably small, we use precision and recall 
as the evaluation criteria. Fig. 12 shows the maximum precision and recall of our approach w.r.t. the 
two annotation rejection criteria vs. the four distance measures. All images in the database are used for 
the evaluation. Again the weighted Hamming distance measure performs the best.

An interesting point is that the average member image score criterion now works better. This is be-
cause few images in our 2.4 million photograph database are visually similar to the UW images, while 
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Figure.12..Precision.and.recall.yielded.corresponding.to.the.four.distance.measure.given.the.two.an-
notation.rejection.criteria.based.on.all.the.images.in.UW.dataset..
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the UW images of the same category share similar visual appearance. Moreover, the average image 
score strategy helps to rank higher the clusters whose member images are more visually relevant to the 
query thus is less biased by the irrelevant member image descriptions.

It is worth mentioning that the real performance of our system is actually much better than shown 
in Fig. 12. Since the evaluation shown in Fig.12 did not grant synonyms, e.g. “beach” and “coast”, and 
semantically relevant keywords, e.g. “Geneva” and “Switzerland”, as correct answers. Moreover, UW 
ground truth annotations may ignore some contents of an image, so that our current evaluation assumes 
them to be “wrong” even if the predicted annotations are correct, just because they do not appear in UW 
ground truth. To prove this, we manually examined the predicted annotations of 100 randomly selected 
queries. The corrected precision and recall are 38.14% and 22.95% respectively, nearly 12% precision 
improvement, with weighted Hamming distance measure, the average member image score criterion, 
and the similarity weight 1.2.

Fig. 13 show four examples of our output, which hit no UW ground truth labels and gives zero preci-
sions in the strict evaluation but are indeed correct answers.

Moreover, since our method is a modeless one which has no supervised learning stage, and the UW 
images are “outliers” to our database from which few relevant images can be found, the task is thus 
much tougher for us than for the previous approaches. On the contrary, in most of the previous works, 
training data and testing data are selected from the same dataset and the training dataset is usually 
much larger than the testing dataset, e.g. (Barnard, et al., 2003, Blei and Jordan, 2003) use 4,500 Corel 
images for training and 500 images for testing, and the performance is around 20-30%. This shows that 
our system is more effective in predicting annotations, and is robust in handling outsiders.

DISCUSSIONS

Compared to the previous works, or traditional computer vision and machine learning ones which 
built up generative or discriminative annotation models, in this paper, we propose a novel attempt of 
modeless image annotation, which investigates how effective to a data-driven approach only can be, 
and suggest mining annotations for an uncaptioned image by mining its search results. It has at least 
three advantages: (1) no training dataset and supervised learning are required and hence is free from 
the problem of lack of training data; (2) since no training stage is available, and hence it requires no pre-
defined vocabularies while vocabulary creation is still an open research topic (Naphade, et al., 2006); 
(3) by leveraging the Web data, we can obtain diverse images for the same semantics which ensure a 
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center, tree

Cannon Beach

haystack rock

Iran
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Figure.13..Four.examples.of.output.annotations.produced.by.our.approach.based.on.UW.database,.
which.hit.no.UW.ground.truth.labels.but.are.indeed.correct.answers.
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high generalization capability or say the practical usage of the proposed annotation approach. This is a 
noticeable advantage to using the Corel Stock-style database in which images of the same concept have 
similar visual appearances with clean descriptions. Moreover, our approach is highly scalable and very 
robust to outsider queries.

CON CLUSION

Compared to the previous annotation approaches which build up generative or discriminative annotation 
models, in this paper, we propose a novel attempt of modeless image annotation, which investigates 
how effective a data-driven approach can be, and suggest mining annotations for an uncaptioned image 
by mining its search results. We collected 2.4 million images with their surrounding texts from a few 
photo forum websites.

The entire process contains three steps: (1) the search stage, which yields visually and semantically 
search results given the uncaptioned images as queries; (2) the mining stage, which applies a label-
based clustering technique to mining topic labels from the textual descriptions of the search results as 
candidate annotations; (3) the annotation rejection stage, which filtered the candidate annotations to 
ensure the preciseness of the final outputs.

Compared with the previous works, our method saves labor both in training data collection and 
vocabulary creation, and is highly scalable and robust to outliers. And as to our knowledge, it is a real-
time approach that handles the largest number of images.

To ensure real time annotation, two key techniques are leveraged – one is to map the high dimensional 
image visual features into hash codes, the other is to implement it as a distributed system, of which 
the search and mining processes are provided as Web services. As a typical result, the entire process 
finishes in less than 1 second.

Experiments conducted on both an open database (Google images) and a benchmark database (UW 
CBIR database) proved the effectiveness and efficiency of this proposed approach.

There are much room to improve our proposed approach, e.g. as mentioned in Section IV.B, to propose 
label-based clustering technique which takes also image visual features into consideration is necessary 
and important for further performance improvement. And we would like to investigate how much per-
formance gain we can obtain by embedding learning approaches into our current implementation. 
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ENDNOTES

1 Note that we do not require it to be perfect, at least in our approach, e.g. given an image about the 
Eiffel Tower, the “perfect” keyword is “Eiffel” but an accurate one can be “France”.

2 This is a crucial technique for text search engines. It stores the keyword-document relationship 
into a so-called inverted index file, whose entries are keywords and values are the document ids 
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to represent which document is indexed by a given keyword, or say which document contains this 
keyword.

3 Although SRC accepts user-assigned number to indicate how many categories are preferred, it is 
a suggested number that statistically produces the highest performance.

4 We need to keep in mind that our system should be easily scale up, e.g. to support real-time an-
notation with billions of images.

5 http://www.cs.washington.edu/research/imagedatabase/groundtruth/



��0  

Chapter XV
Semantic Classification and 

Annotation of Images
Yonghong Tian

Peking.University,.China

Shuqiang Jiang
Chinese.Academy.of.Sciences,.China

Tiejun Huang
Peking.University,.China

Wen Gao
Peking.University,.China

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

With.the.rapid.growth.of.image.collections,.content-based.image.retrieval.(CBIR).has.been.an.active.
area.of.research.with.notable.recent.progress..However,.automatic.image.retrieval.by.semantics.still.
remains.a.challenging.problem.. In. this.chapter,. the.authors.will.describe. two.promising. techniques.
towards semantic image retrieval—semantic image classification and automatic image annotation. For 
each technique, four aspects are presented: task definition, image representation, computational models, 
and.evaluation..Finally,.they.will.give.a.brief.discussion.of.their.application.in.image.retrieval.

INTRODUCTION

With the advance of multimedia technology and growth of image collections, content-based image re-
trieval (CBIR) is therefore proposed, which finds images that have low-level visual features (e.g., color, 
texture, shape) similar to those of the query image. However, retrieving images via low-level features 
has proven unsatisfactory since low-level visual features cannot represent the high-level semantic content 
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Figure.1..Examples.of.images.for.semantic.image.categorization.

Figure.2...Examples.of.images.for.automatic.image.annotation.
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of images. To reduce the so-called semantic.gap.(Smeulders, Worring, Santini, Gupta, & Jain, 2000), 
a variety of techniques have been developed. In this chapter, we discuss promising techniques on two 
important aspects of CBIR  (a) semantic image classification, and (b) automatic image annotation. 
Each component plays an important role in the greater semantic understanding of images.

General speaking, the semantics of images can be categorized into four levels from the lowest to the 
highest (Wang, Li, & Wiederhold, 2001): 

•  semantic.types (e.g., landscape photograph, clip art),
•.. object.composition (e.g., a bike and a car parked on a beach, a sunset scene),
•  abstract.semantics (e.g., people fighting, happy person, objectionable photograph), and
•  detailed.semantics (e.g., a detailed description for a given picture).

In (Song, Wang, & Zhang, 2003), the image semantics can be further grouped into local.semantic.
level and thematic.level (or global.semantic.level). Currently, most works in image classification and 
annotation have been done in the first two levels. Good progress has been made at the first level, which 
corresponds closely to image’s physical attributes such as indoor vs. outdoor. The second level of 



���  

Semantic Classification and Annotation of Images

semantics seems more difficult to extract than the first. In this chapter, we pay our primary interest to 
the second level to investigate the problems of image classification and annotation.

Semantic image classification aims to classify images into (semantically) meaningful categories. 
Potentially, the categorization enhances image retrieval by permitting semantically adaptive searching 
methods and by narrowing down the searching range in a database. Fig. 1 shows several representative 
categories of images. Roughly speaking, two basic strategies can be found in the literature. The first 
uses low-level visual features, such as color, texture or shape. Then different classifiers are applied on 
these visual features (e.g., Szummer & Picard, 1998; Vailaya, Figueiredo, Jain, & Zhang, 2001; Wang, 
et al., 2001; Grauman & Darrell, 2005; Zhang, Berg, Maire, & Malik, 2006). The second strategy adds 
an intermediate representation between the low-level features and semantic concepts (e.g., Li & Perona, 
2005; Wang, Zhang, & Li, 2006). In the context of Web images, additional features are also exploited by 
image classification algorithms, such as the text extracted from the page that contains an image (Cai, He, 
Li, Ma, & Wen, 2004) or the link information between images or pages (Tian, Huang, & Gao, 2005).

Automatic image annotation is the process of automatically assigning metadata in the form of cap-
tions or keywords to an image. Different with image categorization, annotated words for each image may 
exhibit a large variability in general (Monay & Gatica-Perez, 2007). That is, several words can describe 
one or more regions or even the whole image (see Fig. 2), which makes automatic image annotation a 
distinct research problem. There have been many works done in automatic image annotation, differ-
entiated by the auto-annotation models such as word co-occurrence model (Mori, Takahashi, & Oka, 
1999), translation model (Duygulu, Barnard, Fretias, & Forsyth, 2002), cross-media relevance model 
(Jeon, Lavrenko, & Manmatha, 2003; Feng, Manmatha, & Lavrenko, 2004), hierarchical aspect model 
(Barnard & Forsyth, 2001; Barnard,  Duygulu, Freitas, Forsyth, Blei, & Jordan, 2003), probabilistic 
latent semantic analysis (pLSA) model (Quelhas, Monay, Odobez, Gatica-Perez, Tuytelaars, & Gool, 
2005; Sivic, Russell, Efros, Zisserman, & Freeman, 2005; Monay & Gatica-Perez, 2007), latent Dirichlet 
allocation (LDA) model  (Barnard, et al., 2003; Blei & Jordan, 2003), 2D multi-resolution hidden Markov 
model (2D-MHMM) (Li & Wang, 2003; Wang & Li, 2002), supervised multi-class labeling (Carneiro, 
Chan, Moreno, & Vasconcelos, 2006), relevant low-level global filters (Oliva & Torralba, 2001), and so 
on. In this chapter we shall only be able to summarize some of the various methods. 

 Up to this point in time, automatic image retrieval by semantics still remains a challenging problem 
due to the difficulty in object recognition and image understanding. However, automatic image catego-
rization and annotation can be used to help generate meaningful retrieval. Thus in Section IV, we will 
give a brief discussion of image retrieval with the help of image annotation and categorization. Finally, 
Section V concludes this chapter.

Semantic Image Classification

In this section, we begin by formulating the problem of semantic image classification, and then describe 
the representation models and classification algorithms. 

Problem Formulation

Semantic image classification is a technique for classifying images based on their semantics from a 
domain of some given predefined concepts, such as building, waterside, landscape, cityscape, and so 
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forth. While semantic image classification is a limited form of image understanding, its goal is not to 
understand images by the way human beings do, but merely to assign images to semantic categories  
(Wang, et al., 2001). Nevertheless, classifying images is still not an easy task owing to their variability, 
ambiguity, and the wide range of illumination and scale conditions that may apply (Bosch, Zisserman, 
& Muyyoz, 2008). 

Conventionally, semantic image classification is posed as a single-label classification problem where 
each image is classified into one mutually-exclusive category, such as indoor vs. outdoor (Szummer & 
Picard, 1998), or textured vs. non-textured (Wang, et al., 2001). 

Single-label image classification. Consider a database D.=.{d1,...,dN}.of.images.di.and.a.set.of.labels.C.=.
{c1,...,cL}..Let.H be the set of classifiers for D → C. Thus the goal is to find a classifier h ∈ H.maximizing.
the.probability.of.h(d).=.c,.where.c.∈ C.is.the.ground.truth.label.of.d,.i.e.,. arg max ( | )ii

c P c d= ..

In practice, different statistical learning approaches, such as Bayesian probability models (Vailaya, 
et al., 2001; Aksoy, Koperski, Tusk, Marchisio, & Tilton, 2005; Li & Perona, 2005), linear discriminant 
analysis (Pappas, Chen, & Depalov, 2007) and support vector machines (SVM) (Serrano, Savakis, & Luo, 
2004; Zhang, et al., 2006), have been successfully employed for single-label image categorization. 

In the image classification domain, however, it is likely that many images may belong to multiple 
semantic classes. Considering examples shown in Fig. 1, the three images of category coast may be also 
viewed as sky scenes, and some images of category inside.city can be classified into category street or 
building. In this case, the base categories are non-mutually-exclusive and may overlap by definition. Cor-
respondingly, semantic image categorization is formulated as a multi-label classification problem where 
each image can be described by multiple class labels (e.g., a coast scene with a sky in the background). 
As before, this problem can be formulated as follows (Boutell, Shen, Luo, & Brown, 2004): 

Multi-label image classification. Let H be the set of classifiers for D → B.where B.is.a.set.of.C-di-
mensional.binary.vectors,.each.of.which.indicates.membership.in.the.categories.in.C (+1=member, 
-1=non-member). Thus the goal is to find the classifier h ∈ H.that.minimized.a.distance.(e.g.,.Hamming).

Figure 3. Overview of semantic image classification approaches
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between.h(d).and.bd for a new image d, or equivalently, to find one or more class labels in C.and.for.a.
threshold δ such that P(c | d) > δ, ∀c.∈.C..

The mathematical formulation and its physical meaning are distinctively different from those used 
in the single-label image classification. Moreover, the multi-label classification models can be directly 
used for automatic image annotation (Goh, Chang, & Li, 2005; Carneiro, et al., 2006).

As noted in (Boutell, Brown, & Luo, 2002), the approaches for semantic image classification are 
divided into two main categories: exemplar-based and model-based. On one hand, most systems use 
an exemplar-based approach that employs statistical pattern recognition techniques on vectors of low-
level features (such as color, texture, or edges) or semantic features (such as sky, faces or grass). On 
the other hand, model-based approaches use the expected configuration of a scene where the scene’s 
configuration is the layout (relative location and sizes) of its objects created from expert knowledge of 
the scene. However, it is only possible to build a scene model for a constrained scene type and such a 
model is usually not generalizable to other scene types. 

From a viewpoint of scene modeling and representation in images, Bosch, Muňoz, & Marti (2007) 
divided the approaches for semantic image classification into two basic strategies. The first uses low-
level features such as global color or texture histograms, the power spectrum, and is normally used to 
classify only a small number of scene categories (indoor vs. outdoor, city vs. landscape etc.) (Szummer 
& Picard, 1998; Vailaya, et al., 2001; Wang, et al., 2001; Grauman & Darrell, 2005; Zhang, et al., 2006). 
The second strategy uses an intermediate representation before classifying scenes (Li & Perona, 2005; 
Wang, et al., 2006), and has been applied to cases where there are a larger number of scene categories. 
The two approaches are referred to as low-level.scene.modeling and intermediate.semantic.modeling 
respectively. The intermediate semantic modeling provides a potentially larger amount of information 
that can be exploited to achieve a higher performance on image classification. 

Fig. 3 summarizes the semantic image classification approaches. Scene modeling and classifier are 
two main components in the procedure, which will be further discussed in the following subsections.

Scene Modeling

Scene modeling is necessary for a number of vision tasks, including classification and segmentation. 
In this subsection, we simply discuss two scene modeling approaches for image classification. More 
details can be found in (Bosch, et al., 2007).

Low-Level Modeling

The problem of low-level scene modeling has been studied in image and video retrieval for several years 
(e.g., Szummer & Picard, 1998; Vailaya, et al., 2001; Wang, et al., 2001; Grauman & Darrell, 2005; Zhang, 
et al., 2006). Color, texture and shape features have been widely used in combination with supervised 
learning methods to classify images into several semantic categories. The underlying assumption is 
that the type of scene can be directly described by the visual properties of the image. For instance, a 
forest scene presents highly textured regions (trees), or a sunset.scene typically has saturated colors 
(mostly yellow and red). According to the way in which low-level features are extracted, it is possible 
to distinguish two trends of low-level modeling and representation approaches (Bosch, et al., 2007): 
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1.  Global approach: Each scene is represented by low-level visual features from the whole image. 
In (Vailaya, et al., 2001), different global features are used at each level in the hierarchical clas-
sification of vacation images: indoor/outdoor (using spatial color moments); city/landscape (using 
edge direction histograms and coherence vectors); sunset/forest/mountain (using spatial moments, 
color histograms and coherence vectors), and so on. In (Zhang, et al., 2006), the image classification 
problem is addressed in the framework of measuring similarities based on global features such 
as shape and texture. Similarly, global features are used in (Chang, Goh, Sychay, & Wu, 2003) 
to produce a set of semantic labels by an ensemble of binary classifiers. Due to the complexity of 
visual content, good classification performance cannot be achieved by considering only a single 
type of features alone (Shen, Shepherd, & Ngu, 2005).

2.  Block-based approach: The image is first partitioned into several blocks and then low-level visual 
features are extracted from each block. These blocks are then classified, and finally the scene is 
categorized from the individual classification of each block. This approach was originally used 
for indoor-outdoor classification problem in (Szummer & Picard, 1998). Similarly, an image is 
represented by a set of regions in the SIMPLIcity system (Wang, et al., 2001), each of which is 
characterized by color, texture, shape, and location. Then the system classifies images into se-
mantic categories, such as textured-nontextured, graph-photograph. There are some other works 
(e.g., Paek & Chang, 2000; Serrano, et al., 2004) that use this approach for image classification, 
differentiated by the classifiers that are employed for blocks and the way how to infer the seman-
tic category of the whole image from block classification results. For example, Paek and Chang 
(2000) developed a framework to combine multiple probabilistic classifiers in a belief network; 
while Serrano et al. (2004) used SVM for a reduction in feature dimensionality so that the block 
beliefs can be combined numerically.

Even good performance obtained by above proposals, the low-level modeling approach suffers several 
limitations (Bosch, et al., 2007). Firstly, this approach is normally used to classify only a small number 
of scene categories (indoor vs. outdoor, textured vs. nontextured, or city vs. landscape, etc). Secondly, 
it is often difficult to generalize theses methods using low-level visual features to additional image data 
beyond the training set. Finally, this approach lacks of an intermediate semantic image description that 
can be extremely valuable in determining the scene type.

Intermediate Semantic Modeling

The modeling of scenes by a semantic intermediate representation was next proposed in order to reduce 
the gap between low-level and high-level image processing, and therefore to match the scene model 
with the perception we humans have. Nevertheless, the semantic meaning of a scene is not unique, and 
different semantic representations of images have been proposed. Bosch et al. (2007) summarized three 
approaches of semantic modeling as follows:

1.  Semantic objects: Objects of an image are detected and labeled by local classifiers as known 
semantic objects, and then the scene is represented by the occurrence of these semantic objects. 
This approach mainly relies on an initial segmentation of the image into meaningful regions that 
coarsely match objects or object parts. This assumption translates into several variations of image 
representation models. In (Aksoy, et al., 2005), scene representation is achieved by decomposing 
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the image into prototype.regions and modeling the interactions between these regions in terms 
of their spatial relationships. Scene is also represented by regions in (Fredembach, Schröder, & 
Süsstrunk, 2004), but with the addition of eigenregions (the principal components of the intensity 
of the region). In (Mojsilovic, Gomes, & Rogowitz, 2002), the image is first segmented using color 
and texture information to find the semantic indicators (e.g. skin, sky, water), and then these objects 
are used to identify the semantic categories (i.e. people, outdoor, landscapes). Concept sensitive 
salient.objects are detected in (Fan, Gao, Luo, & Xu, 2005) as the dominant image components 
for image classification. Moreover, some works (e.g. Luo, Savakis, & Singhal, 2005; Yang, Kim, 
& Ro, 2007) integrated the low-level and semantic features for classification by a general-purpose 
knowledge framework that employs a Bayesian Network (BN), or a two-layer SVM classifier. The 
limitation of this approach is that no automatic segmentation algorithm is currently capable of 
dividing an image into consistently meaningful objects or object parts.

2.  Local semantic concepts: The semantic of an image is represented by intermediate properties 
extracted from local descriptors. In this case, a dictionary of visual words or local semantic con-
cepts is first identified to define the semantics of images from local information (e.g., blue sky, 
mountain with snow). The visual words distribution can be learned for each scene category and 
then used for scene classification. This approach avoids object segmentation and detection by us-
ing a fixed-grid layout. Using this representation, three typical image descriptors can be found in 
the literatures. 

The first type is the so-called concept.occurrence.vector (COV), which measures the frequency of 
different semantic concepts in a particular image. In (Vogel, 2004) and (Vogel & Schiele, 2004, 2007), 
each regular region is classified into semantic concept classes such as water, rocks, or foliage, and an 
image is then represented by a COV to measure the occurrence frequency of these local concepts. The 
average COV over all members of a category defines the category prototype. Scene classification is 
carried out by using the prototypical representation itself or Multi-SVM approaches. 

Inspired by statistical text analysis, the second type of image descriptors is.bag-of-words or bag-of-
visterms (Mori, et al., 1999), formed by using a visual analogue of a word and vector-quantizing local 

Figure.4..Illustration.of.four.steps.to.compute.the.bag-of-words.when.working.with.image.(quoted.from.
Fig..5.in.(Bosch,.et.al.,.2007))
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visual features. Recent works have shown that bags-of-words representation is suitable for scene clas-
sification, demonstrating impressive levels of performance (Li & Perona, 2005; Quelhas, et al., 2005; 
Bosch, Zisserman, & Muňoz, 2006; Perronin, 2007; Bosch, et al., 2008). As shown in Fig. 4, construct-
ing the bag-of-words from images involves the following steps (Bosch, et al., 2007): (1) Automatically 
detect regions/points of interest, (2) compute local descriptors over those regions/points, (3) quantize 
the descriptors into words to form the visual vocabulary, (4) find the occurrences in the image of each 
specific word in the vocabulary in order to build the bag-of-words (histogram of words). Exiting works 
can be differentiated by the way how the features are used. Scale-Invariant Feature Transform (SIFT) 
(Lowe, 1999) features are computed on a regular grid (Li & Perona, 2005; Bosch, et al., 2006) or around 
an interest point (Quelhas, et al., 2005). Different with the above approaches that characterize an image 
with a single histogram, Perronin (2007) represented an image as a set of histograms, one per class 
describing whether an image is more suitably modeled by the universal vocabulary or a class-specific 
visual vocabulary. Using this bag-of-words representation, an image containing instances of several 
objects is modeled as a mixture of topics or object categories. This topics distribution over the images 
can be used to classify an image as belonging to a certain scene. Some probabilistic latent space models, 
such as probabilistic latent semantic analysis (pLSA) model (Quelhas, et al., 2005; Sivic, et al., 2005; 
Bosch, et al., 2006, 2008) and latent Dirichlet allocation (LDA) model (Li & Perona, 2005; Sivic, et al., 
2005), have been adapted to model scene categories. In the next subsection, we will further discuss how 
pLSA and LDA are used for image categorization.

The third type is a variation of bag-of-words descriptor by using contextual knowledge like common 
spatial relationships between neighboring local objects or the absolute position of objects in certain scenes. 
The underlying assumption is that spatial structure could provide valuable information to achieve better 
results for scene classification. In (Lazebnik, Schmid, & Ponce, 2006), the spatial-pyramid is proposed 
as a simple computationally efficient extension of an orderless bag-of-words image representation by 
partitioning the image into increasingly finer sub-regions and computing histograms of local features 
found inside each sub-region. In (Fergus, Li, Perona, & Zisserman, 2005), pLSA is extended to include 
absolute position and spatial information in a translation and scale invariant manner respectively.

3.  Semantic properties: The semantic of an image is described by a set of statistical properties/quali-
ties of the image, including naturalness (vs. man-made), openness (presence of a horizon line), 
roughness (fractal complexity), expansion (perspective in man-made scenes), and ruggedness 
(deviation from the horizon in natural scenes) (Oliva & Torralba, 2001). Each feature corresponds 
to a dimension in the spatial envelope space, and all features together represent the dominant spa-
tial structure of a scene. These properties may be reliably estimated using spectral and coarsely 
localized information. A significant advantage of this modeling approach is that the semantic is 
related to global configurations and scene structure, instead of local objects or regions, and con-
sequently, neither segmentation nor the processing of local regions or objects is required (Bosch, 
et al., 2007).

In conclusion, the intermediate semantic modeling provides a potentially larger amount of information 
that must be exploited to achieve a higher performance on scene classification. However, it also makes 
more difficult the problem we are tackling because it habitually involves a local/region processing like 
(a not necessarily accurate) object recognition (Bosch, et al., 2007).
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Classification Algorithms

Given the image representation, one primary tackling point is learning approach itself so that classifier 
realizes minimal bound of error in real tasks. In existing systems, many popular statistical learning 
approaches have been successfully used. In this subsection, we will describe several representative 
classification algorithms for images.

Hierarchical Image Classification with Low-level Scene Representation

In 2001, Vailaya et al. show that within a constrained domain, low-level features can successfully dis-
criminate between many scene types arranged hierarchically. In the hierarchical classification task, each 
image is represented by a feature vector extracted from the image and different visual features are used 
at each level depending on the classification problem. Then the classification problem is addressed by 
using Bayesian decision theory. Formally, consider N training samples, each belonging to one class in 
C = {c1,...,cL}. A vector quantizer is used to extract q codebook vectors, vj, from the N training samples. 
The class conditional density of a feature vector y = {y(1),..., y(m)} given the class c ∈ C, i.e., f.(y | c), is 
then approximated by a mixture of Gaussians (with identity covariance matrices), each centered at a 
codebook vector, resulting in:
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where p(c) represents the a priori class probability. Their system achieved a good performance at each 
level of the hierarchy over a set of 6931 vacation photographs. 

Many other works also exploit low-level scene modeling for semantic image classification. For ex-
ample, three kinds of classifiers, KNN, SVM and GMM, are used in (Shen, et al., 2005). SVM is also 
used in (Serrano,et al., 2004) for a reduction in feature dimensionality without compromising image 
classification accuracy. Due to the space limitation, the details are not included in this chapter.

Scene Classification Using Semantic Object Detection

The salient.objects are defined as the dominant image components that are semantic to human being 
and are also visually distinguishable (Fan, et al., 2005). For example, the salient object “sky” is defined 
as the connected image regions with large sizes (i.e., dominant image components) that are related to 
the human semantics “sky”. By detecting the concept-sensitive salient objects, an image classification 
technique was developed in (Fan, et al., 2005) to achieve automatic image annotation at the concept 
level. Thus here we use this approach as an example to illustrate how to detect salient objects in images 
and then how to exploit them for semantic image classification.
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To detect the concept-sensitive salient objects, a set of 32 detection functions are learned in one-
against-all manner from the labeled image regions, each for a specific type of these salient objects. 
A detection function consists of three steps: (1) automatic image segmentation by using mean shift 
algorithm, (2) binary region classification by using SVMs with an automatic scheme for searching the 
optimal model parameters and (3) label-based aggregation of the connected similar regions for salient 
object generation. This process is automatic and the human interaction is only involved in the proce-
dure to label the training samples (i.e., homogeneous regions) for learning the detection functions. The 
semantic image classification system takes the following steps: (1) Given a specific test image di (which 
may consist of multiple types of different salient objects), the underlying salient objects di = {o1,...,on} 
are detected automatically. (2) The class distribution of the salient objects di = {o1,...,on} is then modeled 
as a finite mixture model (FMM) ( , | , , )

j jj c cP cy . (3) The test image di is finally classified into the 
best matching semantic image concept cj with the maximum posterior probability.
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where { , , | 1, , }
j jc c= =   is the set of the mixture parameters (i.e., jc  and the mixture compo-

nent number κ) and relative weights (i.e., ωcj
) for the classifiers, y is the n-dimensional visual features 

for representing the relevant concept-sensitive salient objects, and P(cj) is the prior probability of the 
semantic concept cj. An adaptive Expectation-Maximization (EM) algorithm is proposed to determine 
the optimal model structure and parameters simultaneously. 

Similar scene classification algorithms can also be found in (Mojsilovic, et al., 2002; Fredembach, 
et al., 2004; Aksoy, et al., 2005; Luo, et al., 2005). The authors argue that with the more advances of 
automatic image segmentation, better classification could be achieved by using this approach.

Scene Classification with Latent Space Representation

Recently, the bag-of-words model has been widely used in image classification and made great progress. 
However it may suffer from two issues (Quelhas, et al., 2005): polysemy  a single visual word (i.e., 
visterm) may represent different scene content, and synonymy  several visterms may characterize 
the same image content. In order to disambiguate the representation, probabilistic latent space models, 
such as pLSA (Hofmann, 2001) and LDA (Blei, Ng, & Jordan, 2003), have been applied to capture co-
occurrence information between visterms in a collection of images. Here we simply describe how these 
models are used to latent topic discovery in semantic image classification.

Suppose that we have an image set D = {d1,...,dN} with words from a visual vocabulary W = {w1,...,wV}. 
The data is a V.× N co-occurrence table of counts Nij = n(wi, dj), where n(wi, dj) denotes how often the 
visterm wi occurred in an image dj. pLSA (Hofmann, 2001) assumes the existence of a latent variable z.∈ 
Z in the generative process of each word w.∈ W in an image d.∈ D. As shown in Fig. 5(a), the observed 
variables w and d are conditionally independent given the latent variable z, thus a joint probability P(w, 
z) over V.× N is defined by the mixture:

( | ) ( | ) ( | )
z

P w d P w z P z d
∈

= ∑ Z          (4)
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where P(w.|.z) are the topic-specific distributions, and each image is modeled as a mixture of topics, 
P(z.|.d). The equation expresses each image as a convex combination of |Z| topic vectors. This amounts 
to a matrix decomposition as shown in Fig. 5(b) with the constraint that both P(w.|.z) and P(z.|.d) are 
normalized to make them probability distributions. Given that both w and z are discrete variables, the 
conditional probability distributions P(z. |.d) and P(w.|.z) are multinomial. The parameters of these 
distributions are estimated by the EM algorithm (Hofmann, 2001). Given a new image dnew, P(z.|.dnew) 
can be inferred by using the folding-in method, which maximizes the likelihood of the image dnew with 
a partial version of the EM algorithm while keeping the learned P(w.|.z) fixed. More details about pLSA 
can be found in (Hofmann, 2001).

pLSA is appropriate to disambiguate the bag-of-words representation because it provides a correct 
statistical model for clustering in the case of multiple object categories per image (Quelhas, et al., 2005). 
Consequently, pLSA can be used to generate a robust, low-dimensional scene representation. Given a 
new image dnew, the model determines the mixture coefficients P(z.|.dnew) for each image dnew where z ∈ 
Z. The image dnew is then classified as the semantic category z according to the maximum of P(z.|.dnew) 
over z ∈ Z. In (Quelhas, et al., 2005) and (Sivic, et al., 2005), pLSA is applied on sparse SIFT features 
for recognizing compact scene categories, where SIFT features are computed around an interest point. 
While in (Bosch, et al., 2006, 2008), pLSA is applied on dense SIFT features to obtain a better scene 
categorization, where SIFT features are computed on a regular grid and using concentric patches around 
each point to allow scale variance. Moreover, spatial information can also be exploited in the framework 
of pLSA to improve scene classification performance. In 2005, Fergus et.al. develop two new models, 
ABS-pLSA and FSI-pLSA, by extending pLSA to include absolute position and spatial information in 
a translation and scale invariant manner respectively. For example, the ABS-pLSA model quantizes 
the location within the image into one of X bins. The joint density on the appearance and location of 
each region is then represented. Thus P(w.|.z) in pLSA becomes P(w,x.|.z), a discrete density of size 
(V × X) × N. Inspired by ABS-pLSA and spatial-pyramid matching (SPM) algorithm (Lazebnik, et al., 
2006), Bosch, et al. (2008) proposed the SP-pLSA model by using the X bins at each resolution level 
l, weighting the bins for each level as in SPM. Thus P(w.|.z) in pLSA becomes P(w,.x,.l.|.z). The same 
pLSA update equations can be applied to these models in learning and recognition.

In contrast to pLSA, LDA treats the multinomial weights P(z. |. d) over topics as latent random 
variables. The LDA model is extended by sampling those weights from a Dirichlet distribution, the 
conjugate prior to the multinomial distribution. This extension allows the LDA model to assign prob-
abilities to data outside the training corpus and uses fewer parameters, thus reducing overfitting (Sivic, 
et al., 2005). Graphically, LDA is a three-level hierarchical Bayesian model, in which each item of a 

Figure.5..(a) pSLA graphical model. Filled circles indicate observed random variables; unfilled are 
unobserved..(b).Graphical.representation.of.the.matrix.decomposition.form.of.pLSA..(c).LDA.graphical.
model.

. .........(a). . . . ..............(b). . . . ..........(c)
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collection is modeled as a finite mixture over a set of latent aspects (Blei, et al., 2003). Each aspect is, in 
turn, modeled as an infinite mixture over an set of laten aspect probabilities. The LDA model is shown 
in Fig. 5(c). The goal is to maximize the following likelihood:

( | , ) ( | ) ( | ) ( | , )
z

P w P P z P w z d
∈

 =  
 
∑∫

Z
       (5)

where θ is the multinomial parameter over the topics, and P(θ | α) is Dirichlet distribution parameterized 
by the hyper-parameter α. As the figure makes clear, there are three levels to the LDA representation. 
The parameters α and β are collection-level parameters, assumed to be sampled once in the process of 
generating a collection. The variables θd are image-level variables, sampled once per image. Finally, the 
variables zdn

 and xdn
 are element-level variables and are sampled once for each element in each image. 

More details about LDA can be found in (Blei, et al., 2003).
In the LDA case, the unseen mixed-category images can be classified based on the topic mixture 

weights θ, which can be computed using the samples drawn by the Gibbs sampler (Sivic, et al., 2005). 
Li and Perona (2005) proposed two variations of LDA to represent and learn image categorization 
models, in which local regions are first clustered into different intermediate themes (local concepts) and 
then into categories. Probability distributions of the local regions as well as the intermediate themes 
are both learnt automatically, bypassing any human annotation apart from labeling a single category 
to the training images. 

Web Image Classification

With the rapid growth of digital images on the Internet, Web image classification has become an im-
portant research topic. Web images have a lot of properties which are quite different from those images 
in small database such as Corel and family album (Cai, et al., 2004). For example, Web images are as-
sociated with text and link information. Many works (e.g., Hu & Bagga, 2004; Kalva, Enembreck, & 
Koerich, 2007) use the text content from the document that contains an image as the semantic features 
for classifying that image. In (Lempel & Soffer, 2002; Cai, et al., 2004; Wang, Ma, Xue, & Li, 2004), 
link information is also exploited to improve Web image retrieval. Here we will describe how to exploit 
visual, textual and link information for Web image classification by using our work (Tian, et al., 2005) 
as an illustrating example.

Fig. 6(a) illustrates the relational representation of images in the context of Web. Given a collection 
D = {d1,...,dN} of Web images, each image di ∈ D can be represented by a vector of global or local visual 
features, (V)

if . By extracting the surrounding text (and other related text such as the filename and URL 
of the image), each image can also be represented by a textual term vector (T)

if , in which each term can 
be weighted by its term frequency (TF) or term frequency inverse document frequency (TFIDF). Then 
in the joint visual-textual feature space, each image can be represented as (C) (V) (T)

i i i =  f f f, . Moreover, 
with the assumption that images which are co-contained in pages are likely to be related to the same 
topic, and images which are contained in pages that are co-cited by a certain page are likely related 
to the same topic (Lempel & Soffer, 2002), we can derive the image.adjacency.matrix AI~I among the 
images in D. The matrix AI~I naturally defines an image graph GI, and can be used to derive semanti-
cally richer representation of linked images. The first representation is derived directly from the matrix 
AI~I, referred to as linkage.relationship.vector.(LRV). Namely, the link features of each image di can be 
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represented by the i-th column fi
(L) of AI~I. Alternatively, each image di can be represented by a class-

based weighted vector

(L)
,1 ,2 ,5, , ,i i i i Lw w w =  f  ,         (6)

where wi,2(1 ≤ k ≤ 5L) are the weighted frequencies of the five important link relations (i.e., co-contained-
ness, in-link, out-link, co-citation and co-reference) between image di and its neighboring images of 
different classes, L is the number of the class labels C = {c1,...,cL}. This representation is referred to as 
class-based.LRV.(CLRV).

By extending SVM to the relational domain, a relational support vector classifier (RSVC) is proposed. 
If the vector ά and the scalar b are the parameters of the hyperplane learned from the training images, 
then the RSVC decision rule is defined as: 
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where yi is its class label indicator, (C) (C)( , )i jf fK  and (L) (L)( , )i jf fK  are the content kernels and linkage 
kernels respectively, β is the combination weight, and 

(C) (C)

1
(1 ) ( , )

l

i j j i j
j

y b
=

= - +∑ f fK

is the decision function of a conventional SVM, and l denotes the number of support vectors (SVs). Given 
a new image dnew, the link feature of dnew is computed by adding dnew to the collection of the training 
and labeled test images D, and then RSVC is used to classified the image dnew. On a sports Web image 
collection crawled from Yahoo!, RSVC yields significant improvement in accuracy over SVM using 
visual and/or textual features.

Figure.6..(a).The.representation.of.Web.images..(b).An.example.link.graph.of.Web.images
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Discussion

This section is meant to capture the landscape of semantic image classification by clearly formulating 
the problem, and simply discussing recent representative works from the viewpoints of scene modeling 
and classification algorithms. We now discuss some research issues connected to the ideas discussed 
here. First, latest trends are using the bag-of-words representations jointly with different latent topic 
discovery techniques (Bosch, et al., 2007). However, bag-of-words representation should be further 
improved by using contextual knowledge. It’s only a good start point that the spatial information is 
taken into account in this representation. Second, as mentioned in (Boutell, et al., 2004), seldom works 
address multi-label image classification. Such a problem poses challenges to the classic pattern recogni-
tion paradigm and demands a different treatment. Finally, in spite of progress, no semantic classification 
algorithm is currently capable of classifying images with complex scene into a very large number of 
classes with relatively high accuracy. Indeed, classifying images with complex scene is still a challeng-
ing task owing to their variability, ambiguity, and the wide range of illumination and scale conditions 
that may apply. Such image classification methods are extended for image annotation with the goal of 
approaching greater semantic understanding of images.

Automatic Image Annotation

In this section, we begin by presenting two typical tasks of image annotation. Then, we shall discuss 
two important aspects for automatic image annotation  image representation and auto-annotation 
models. Finally, we shall discuss how to evaluate the image annotation systems.

Task Definition

Typically, automatic image annotation systems take advantage of annotated images to link the visual 
and textual modalities by using machine learning techniques. Accordingly, they can be posed as a task 
of either supervised or unsupervised learning (Carneiro, et al., 2006). 

Supervised Annotation

In the supervised annotation systems (Chang, et al., 2003; Li & Wang, 2003; Smith, Lin, Naphade, 
Natsev, & Tseng, 2003; Carneiro, et al., 2006), multi-label image classification algorithms are extended 
for image annotation: All training images are labeled different concepts, where each concept contains 
a group of semantically related keywords that describe different aspects of that concept. For example, 
the concept “wild.animal” can be described as “animal,.wild.life,.grass,.snow,.rock” (Li & Wang, 2003). 
Given these categorized images, one generative or discriminative classifier is trained for each concept 
and then applied to all test images which are annotated with respect to the presence or absence of the 
concept. 

One important problem is how to statistically model images for each concept. In (Carneiro, et al., 
2006), images are represented as bags of localized feature vectors, and the mixtures associated with all 
images annotated with a common concept pooled into a density estimate for the corresponding class. 
Annotation is then performed with a minimum probability of error rule, based on these class densi-
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ties. In (Li & Wang, 2003), a 2D multi-resolution hidden Markov model (2D-MHMM) is learned on a 
fixed-grid segmentation of all category examples. The likelihood of a new image given each category’s 
2D-MHMM allows assigning words for this image. Similarly, one SVM is trained for each concept in 
the model vector indexing approach (Smith, et al., 2003) while a binary classifier (Bayes Point Machine 
and SVM) is trained for each word (totally 116 words) in Content-Based Soft Annotation (CBSA) system 
(Chang, et al., 2003).

The major advantage of supervised annotation is that models for different concepts can be indepen-
dently trained and retrained. If images representing new concepts or new images in existing concepts 
are added into the training database, only the models for the involved concepts need to be trained or 
retrained. However, if the vocabulary size is very large, there are a relatively large number of models 
that need to be elaborately trained. Moreover, since a concept contains a group of keywords that have a 
related meaning, labeling an image by all keywords of the concept may produce incorrect annotations. 
For example, not all images of the concept “wild.animal” have the visual content that corresponds to 
snow or rock. Automatic image annotation systems therefore tend to unsupervised learning approach 
in recent years.

Unsupervised Annotation

Most automatic image annotation systems (e.g., Mori, et al., 1999; Barnard & Forsyth, 2001; Duygulu, 
et al., 2002; Barnard, et al., 2003; Blei & Jordan, 2003; Jeon, et al., 2003;  Feng, et al., 2004; Monay 
& Gatica-Perez, 2007) tend to solve the problem in greater generality by resorting to unsupervised 
learning. The basic idea is to introduce one auto-annotation model to characterize the relation between 
words and visual features. During training, a set of words is assigned to each image, and unsupervised 
learning techniques are run over the entire database to train one auto-annotation model for the whole 
vocabulary. Given a new image, visual features are extracted, and inference on the learned model is 
then used to assign annotations to the image. 

A whole range of statistical assumptions about visual features and image annotations can lead to dif-
ferent auto-annotation models, from the simple empirical distribution estimation to complex generative 
or discriminative models. Typical unsupervised auto-annotation models include word co-occurrence 
model (Mori, et al., 1999), translation model (Duygulu, et al., 2002), cross-media relevance model 
(Jeon, et al., 2003; Feng, et al., 2004), multi-modal hierarchical aspect model (Barnard & Forsyth, 2001; 
Barnard, et al., 2003), pLSA model (Monay & Gatica-Perez, 2007), LDA model (Barnard, et al., 2003; 
Blei & Jordan, 2003), etc. 

The main advantage of unsupervised annotation is that only one model is learned for all words in 
the vocabulary. Consequently, this approach is better suited for large vocabularies than the supervised 
learning approach. As mentioned in (Barnard & Forsyth, 2001), however, one major limitation is that 
this approach relies on semantically meaningful segmentation while automatic segmentation is still an 
open problem in computer vision (Shi & Malik, 2000).

Image Representation

All.image annotation approaches use either a fixed-grid layout or an image segmentation algorithm 
to divide images into a number of irregularly-shaped regions. This entails that the features should be 
extracted from local image regions for annotation. To extract such local features and build the auto-
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annotation models, there are three kinds of image representations: blob-based, grid-based and keypoint-
based. The first relies on large-scale image regions; while the two others are based on a larger number 
of smaller scale regions, uniformly extracted from a fixed grid or identified by a point detector. The 
three representations encode different image properties and are therefore expected to produce different 
effects on image annotation. Fig. 7 shows several examples of the three image representations. 

Blob-Based Representation

Blobs were proposed by Duygulu et al. (2002) to capture the content of an image with a set of homo-
geneous regions. As shown in Fig. 7(b), each image can be represented as a certain number of blobs. 
These blobs may coarsely match objects or object parts. This naturally brings up an assumption that 
there is some implicit correspondence between regions and words in the annotated images. To build 
blobs, images are first segmented into regions using the normalized cut segmentation algorithm (Shi 
& Malik, 2000) which requires a maximum count of regions to avoid too small regions. Each region 
is represented by 36 features including color (18), texture (12), and shape/location (6). The K-means 
clustering algorithm is then applied to the region descriptors, quantizing them into a multi-dimensional 
blob representation. Let m denote the blob number in image d, then the image d can be represented by 
the corresponding histogram b(d) of size m.(Monay & Gatica-Perez, 2007)

{ }1( ) ( ), , ( ), , ( )i mb d n b n b n b=            (8)

where n(bi) denotes the number of regions in image d that are quantized into the blob bi. Similar to the 
word-by-document matrix in text mining, the.blob-by-image matrix representation is also proposed in 
(Pan, Yang, Duygulu, & Faloutsos, 2004) by weighting with the TFIDF scheme. 

Blob-based image representation has been widely used in automatic image annotation and retrieval, 
such as (Barnard & Forsyth, 2001; Duygulu, et al., 2002; Barnard, et al., 2003; Jeon, et al., 2003; Pan, 
et al., 2004). However, the effect of blobs depends on the automatic segmentation algorithms which 
haven’t achieved human-like results. Moreover, as mentioned in (Feng, et al., 2004), the match between 
the segmented regions and objects in images is relatively poor in general. 

Grid-Based Representation

Instead of the use of a segmentation algorithm, some works (e.g. Mori, et al., 1999; Wang & Li, 2002; 
Li & Wang, 2003; Feng, et al., 2004) use the grid-based representation for image annotation with the 
help of a fixed-grid layout (as shown in Fig. 7(c)). Compared with blob-based representation, grid-based 
representation provides a number of advantages (Feng, et al., 2004), including significant reduction in 
the computational time, simplified parameter estimation, and the easier ability to incorporate context 
(e.g., relative position) into the auto-annotation model. One major limitation of this representation is 
that grid regions lack of significant semantic correspondence with objects or object parts. 

Using grid-based representation, local visual features can be extracted and quantized for every grid 
region. In (Wang & Li, 2002) and (Li & Wang, 2003), every image is characterized by a set of wavelet 
feature vectors extracted at multiple resolutions and spatially arranged on a pyramid grid. In (Mori, et 
al., 1999), the color and texture representations of all training image blocks are quantized into a finite 
set of visual terms (visterms). As mentioned in the previous section, this quantization form is called 
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bag-of-visterms or directly. bag-of-words. Bag-of-visterms ignores the spatial relationship between 
regions in an image. However, recent research results show that regions are spatially relevant and not 
independent of the global meanings of images. For example, the neighboring regions may have a strong 
recommendation of visual content (Ghoshal, Ircing, & Khudanpur, 2005). By incorporating spatial 
relationship, the auto-annotation models can obtain comparable annotation performance.

Keypoint-Based Representation

Keypoints (also as salient points) refer to a set of local features detected in images such Harris corner 
points. Numerical feature vectors can be extracted from these keypoints such as Scale-Invariant Fea-
ture Transform (SIFT) (Lowe, 1999). SIFT transforms an image into a large collection of local feature 
vectors, each of which is invariant to image translation, scaling, and rotation, and partially invariant to 
illumination changes and affine or 3D projection. Recently, this representation has been successfully 
combined with probabilistic latent space models and has shown good performance in scene modeling 
(Li & Perona, 2005; Quelhas, et al., 2005) and image annotation (Monay & Gatica-Perez, 2007).

The construction of the SIFT feature vector from an image involves the steps illustrated in Fig. 8. 
In this process, the image is first sampled with the difference-of-Gaussians (DoG) point detector at 
different scales and locations. SIFT descriptor is then computed on affine covariant region around the 
interest point. Each SIFT descriptor consists of a histogram of edge directions at different locations. 
All SIFT descriptors are then quantized by the K-means clustering algorithm to obtain a discrete set 
of local image-patch indexes. As a result, an image is represented by the histogram of its constituting 
local patches. The details of SIFT descriptor computation can be found in (Lowe, 1999).

Figure.7..Examples.of.image.representations.for.annotation

(a) Original images (b) Images with blobs (c) Images with fixed-grids (d) Images with keypoints
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Auto-Annotation Models

Independent of what features are chosen, the question is how to model the relation between textual and 
visual features to achieve the best textual indexing. As the pioneering work, the co-occurrence model 
(Mori, et al., 1999) uses a fixed-grid image segmentation and a vector quantization step to transfer a 
set of words assigned to the whole image to each image part (i.e., visterm) and then model the co-oc-
currence of words with visterms. As pointed out by Feng, et al. (2004), however, the approach tends to 
annotate unknown images with high frequency words and requires large number of training samples 
to estimate the correct probabilities. Thereafter, a whole range of models and methods have been pro-
posed in the literature, offering a large variety of approaches. In this subsection, we will describe four 
main models  translation model, cross-media relevance model, probabilistic latent space model and 
2D-MHMM model. 

Translation Model

In 2002, Duygulu et al. proposed the translation.model by treating image annotation as the task of trans-
lating from a vocabulary of blobs to a vocabulary of words. In this model, the word and blob modalities 
are considered as two languages. Given a set of training images, a classical machine translation model 
is used to annotate a test set of images: 
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where N is the number of images, Mn and Ln are the numbers of words and blobs in the n-th image 
respectively, an denotes the assignment 1{ , , }

nn n nMa a a=   such that anj = i if blob bni translates to word 
wnj, p(anj = i) is the assignment probability, and t(w | b) is the probability of obtaining instance of word 
w given instance of blob b. An EM procedure is then proposed to estimate the probability distributions 
linking words and blobs. Once the model parameters are learned, words can be attached to a new image 
region. This region.naming process is analogous with learning a lexicon from an aligned vocabulary.

The translation model is a substantial improvement over the co-occurrence model. However, this 
model can capture the correlation between blobs and words but the dependencies between them are not 
captured. Moreover, the training stage with the EM algorithm requires a high computational effort and 
is very time-consuming when dealing with large datasets. 

Cross-Media Relevance Model

Also relied on a quantized blob image representation, the cross-media.relevance.model was proposed 
by Jeon, et al. (2003) to capture the complex dependency between blobs and words in images (not a 

Figure.8..SIFT.feature.extraction.and.quantization.framework.



���  

Semantic Classification and Annotation of Images

simple one-to-one correspondence). Consider an example. In the image context, “tigers” are more 
often associated with “grass,.water,.tree.or.sky” and less often with man-made objects such as “car” 
or “computer”. Therefore, it is assumed that for each image di = {wi1,, wiMi

, bi1,,biLi
} there exists some 

underlying probability distribution P(• | di) (called the relevance model of di). The relevance model can 
be thought of as an urn that contains all possible blobs that could appear in image di, as well as all words 
that could appear in the caption of di. To annotate a test image di, we need estimate the probability P(w 
| di) for every word w in the vocabulary,
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Then the joint distribution can be computed as an expectation over the training image set T,
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Here the conditional probability of a word w (or blob bi) given a training image dk, i.e., P(w | dk) 
(respectively, P(bi | dk)), is estimated by the count of word w (respectively, blob bi) in image dk smoothed 
by the average count of word w (respectively, blob bi) in the training set T. An extended version of 
this model uses the multiple Bernoulli distribution for modeling image annotation (Feng, et al., 2004). 
Compared to the translation model, the cross-media relevance model performs much better on the same 
dataset (with the same training and test images and the same features). 

Probabilistic Latent Space Models

More recently, probabilistic.latent.space.models.have attracted much attention in image annotation. A 
hidden variable (latent aspect) is assumed in the data generative process, which links the textual and 
visual modalities through conditional relationships. Under this assumption, an image is modeled as a 
mixture of latent aspects that generates the image regions (or features). A subset of these latent aspects 
is then selected to generate the text caption, which intuitively corresponds to the natural process of im-
age annotation. In practice, this assumption translates into several model variations, including pLSA 
(Monay & Gatica-Perez, 2007) and LDA (Barnard, et al., 2003; Blei & Jordan, 2003).

pLSA. Under the framework of PLSA, an image is modeled as a mixture of latent aspects that generates 
both image features and text words. To learn a pLSA model for the co-occurrence of visual and textual 
features in annotated images, the simplest method is a direct application of pLSA to the early integra-
tion of visual and textual modalities (Monay & Gatica-Perez, 2003). An asymmetric PLSA learning 
algorithm is proposed in (Monay & Gatica-Perez, 2007) to allows choosing between the textual and 
visual modalities to estimate the conditional distributions of latent aspects given the training images. 
Their experiments show that the best performance is achieved when the mixture of latent aspects is 
learned from the text words.

LDA. Several variations of LDA have been proposed for image annotation, including correspondence 
LDA (Corr-LDA) (Blei & Jordan, 2003), Multi-modal LDA (MoM-LDA) (Barnard, et al., 2003). Corr-LDA 
is depicted in Fig. 9(a). This model can be viewed in terms of a generative process that first generates L 
region descriptions bi and subsequently generates the caption words. That is, for each of the M words, 
one of the regions is selected from the image and a corresponding word wj is drawn, conditioned on the 
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factor that generated the selected region. The distribution over words conditioned on a region an image 
is approximated by (Blei & Jordan, 2003)

1
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,        (12)

where q(zi | fi) is the approximate posterior distribution over the latent variables given a particular im-
age/caption, fi are L K-dimensional multinomial parameters. Experimental results show that the addi-
tional constraint on word generation improves the overall annotation performance over less constrained 
LDA-based models.

As shown in Fig. 9(b), MoM-LDA is another multi-modal extension to LDA. Given an image and 
a MOM-LDA, we can compute both an approximate posterior over mixture components and, for each 
mixture component, an approximate posterior Dirichlet over latent aspects. Using these parameters, we 
can perform image-based word-prediction by finding the corresponding distribution over words. Let j 
denote the approximate posterior over mixture components, and γα denote the corresponding approximate 
posterior Dirichlet. The distribution over words given an image (that is, a collection of blobs) is:
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One of the advantages of LDA-based mixture models is that they provide well-defined inference 
procedures for previously unseen images (Blei, et al., 2003). Thus they are expected to have more ap-
plications in the area of image annotation in the future. 

�D Multi-Resolution Hidden Markov Model

By adopting a supervised learning strategy, Li and Wang (2002; 2003) introduced a statistical modeling 
approach to the problem of automatic linguistic indexing of pictures. To model the stochastic process of 
associating an image with the textual description of a concept, a 2D-MHMM is learned on a fixed-grid 
segmentation of all category examples. In this model, every image is characterized by a set of wavelet 
feature vectors extracted at multiple resolutions and spatially arranged on a pyramid grid. Given each 
category’s 2D-MHMM, the likelihood of a new image allows selecting words for this image. As mentioned 
before, the major advantages of this model are (1) models for different concepts can be independently 
trained, stored and retrained, and (2) spatial relation among image pixels within and across resolutions 
is taken into consideration. 

Figure. 9.. Graphical. representation. of. different. variations. of. LDA. models. for. automatic. image.
annotation.

. . (a).CORR-LDA.model. . . . (b).MoM-LDA.model
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Evaluation

Data Sets

Corel image dataset is the de.facto benchmark dataset used in the evaluation of image annotation. This 
set of 60,000 images consists of 600 CD-ROMs, each of which corresponds to a semantic concept or 
topic (e.g., beach, buildings, buses, dinosaurs) and typically contains about 100 images. Each image 
is described by several keywords from a controlled vocabulary. The Corel dataset was originally used 
in (Duygulu, et al., 2002) with a subset with 5,000 annotated images (denoted by Corel5K). Corel5K 
has been widely used as an evaluation standard by a number of research groups (e.g., Jeon, et al., 2003; 
Feng, et al., 2004; Carneiro, et al., 2006; Zhang, et al., 2006). Another oft-used Corel subset, denoted 
by Corel16K, consists of 16,000 annotated images (Barnard, et al., 2003; Monay & Gatica-Perez, 2007) 
and is an extension of Corel5K. By the adoption of such de.facto standard datasets, significant progress 
has been accomplished in the recent past.

However, the Corel image collection has been criticized because the annotations are nouns selected 
from a relatively small vocabulary and is relatively simple from an image retrieval point of view (Bar-
nard, et al., 2003; Zhang, et al., 2006). Caltech101 is another widely used dataset for image annotation. 
Recently, the authors of Caltech101 have released a new version of their dataset, called Caltech256, 
including 256 picture categories. Some new image sets are also introduced in recent years for the 
evaluation of image annotation, by downloading real-world images from Internet (Chang, et al., 2003; 
Zhang, et al., 2006). 

Performance Measures

A whole range of performance measures for automatic image annotation systems has been discussed 
in the literature. Roughly speaking, they can be grouped into two categories. 

Intuitively, the annotation performance can be measured by comparing the words predicted by 
various models with words actually present for held-out data. The first measure is annotation accuracy 
(Barnard, et al., 2003; Pan, et al., 2004), defined as the ratio of the correctly predicted words per im-
age (i.e., mcorrect) divided by the number m of words in the ground-truth annotation, i.e., E = mcorrect/m. 
Alternatively, another measure for annotation is the Normalized Score (Barnard, et al., 2003)

( )
correct incorrect

NS
voc

m mE
m M m

= -
-

,         (14)

where Mvoc is the vocabulary size. This measure depends on the number of predicted words and allows 
estimating the optimal number of words to predict.

All image annotation approaches provide a confidence value for each word, which can be used for 
ranking all images in a collection and enabling the construction of an image index for text-based image 
retrieval (Monay & Gatica-Perez, 2007). Therefore, evaluating annotation performance by retrieval be-
came consensual for image annotation (e.g., Jeon, et al., 2003; Smith, et al., 2003; Feng, et al., 2004; Pan, 
et al., 2004; Monay & Gatica-Perez, 2007). In this way, the precision and recall values of the retrieved 
image sets for a number of given queries are widely used. In (Monay & Gatica-Perez, 2007), a mean 
average precision (mAP) for a set of queries is used to measure the retrieval performance, as follows
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Here precision(q) denote the precision of the correctly retrieved images at rank i, and rel(q) denote 
the total number of relevant images for query q. The AP measure of a query is thus sensitive to the 
entire ranking of images. The mean of the APs of Nq queries summarizes the performance of a retrieval 
system in one mAP value.

Discussion

Automatic image annotation given a large image dataset and a large vocabulary is widely recognized as 
an extremely difficult task. The difficulty of image segmentation and general object recognition presents 
a significant challenge to the development of an automatic image annotation system. Consequently, the 
annotation performance of the state-of-the-art models still remains a relatively low level (Monay & 
Gatica-Perez, 2007). 

Without considering the difficulty of image segmentation, how to model the cross-modal correla-
tion between textual and visual features is the most crucial issue to achieve the best textual indexing. 
Obviously, words and image features are of different nature and carry quite distinct levels of semantics. 
Moreover, there may not be simple correlations between the visual features and text captions. Never-
theless, their difference and correlation have not yet been fully investigated and exploited. Although 
how exactly our brain does this correlation is unclear, researchers in automatic image annotation could 
take a pragmatic stand to design models and build systems of practical significance (Datta, Ge, Li, & 
Wang, 2007). 

One may also investigate refinement algorithms or exploit various context constraints to refine the 
automated annotations. Some pioneering refinement algorithms (e.g., Jin, Khan, Wang, & Awad, 2005; 
Wang, Jing, Zhang, & Zhang, 2006, 2007) were proposed to refine the initial candidate annotations by 
re-ranking the candidate annotations and reserving the top ones. Li, Chen, Zhang, Lin, & Ma (2006) 
also proposed an image annotation approach by searching for similar images from a large-scale image 
database and mining key phrases from the descriptions of the resultant images. Notwithstanding, there 
is still much room for improvement in annotation performance.

Finally, modest performance guarantees and limited adaptability often restrict the applicability of 
current automatic image annotation systems to real-world settings. Traditionally, these systems have been 
trained on fixed image collections tagged using fixed vocabularies. Therefore, a realistic application of 
such a system in an online setting must tackle three main issues (Datta, Joshi, Li, & Wang, 2007): (a) 
Current state-of-the-art in annotation is far to being reliable on real-world data. (b) Image collections 
in online systems are dynamic in nature, which poses a challenge for the training of current annota-
tion models. (c) While a solution may be to re-train the annotation engine with newly acquired images, 
most proposed methods are too computationally intensive to re-train frequently. How to answer these 
questions clearly requires for a lot more research efforts.
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Applications

Up to this point in time, automatic image retrieval by semantics still remains a challenging problem due 
to the difficulty in object recognition and image understanding (Song, et al., 2003). However, automatic 
image categorization and annotation can be used to help generate meaningful retrieval. We denote this 
section to simply discussing their application in image retrieval.

Potentially, semantic image categorization enhances retrieval by permitting semantically adaptive 
searching methods and by narrowing down the searching range in a database. Often, image categoriza-
tion can be treated as a pre-processing step for speeding up image retrieval and improving accuracy in 
large databases. Domain-specific collections such as medical image databases, remotely sensed imagery, 
and art and cultural image databases are examples where categorization can be beneficial. For example, 
semantic classification methods are used in the SIMPLIcity system to categorize images into semantic 
classes including “graph,” “photograph,” “textured,” “nontextured,” “benign,” “objectionable,” “indoor,” 
“outdoor,” “city,” “landscape,” “with.people,” and “without.people,” so that semantically-adaptive search-
ing methods applicable to each category can be used  (Wang, et al., 2001). 

On the other hand, automatic image annotation can be directly used as a means to generate seman-
tic retrieval. If the resultant automated mapping between images and annotated words can be trusted, 
text-based image searching can be semantically more meaningful than search in the absence of any 
text. When images are sought using these annotations, such retrieval is known as annotation-driven 
image retrieval (ADIR) (Datta, et al., 2007). Ultimately, the desire of ADIR is to be able to use keyword 
queries for all images regardless of any manual annotations that they may have. To this end, a recent 
attempt at bridging the retrieval-annotation gap has been made (Datta, et al., 2007). More recently, 
some annotation engines have also been made public for people to try online and have their pictures 
annotated, including ALIPR.com  an real-time image annotation and visual search engine (http://
www.ALIPR.com), Behold (http://photo.beholdsearch.com)  an image search engine that indexes over 
1 million Flickr images using automatically generated tags, and Illustrator (http://www.ulib.org.cn/) 
  an illustration search engine over more than 8.7 million illustrations using automatically extracted 
descriptions from electronic books. As part of ALIPR search engine, an effort to automatically validate 
computer generated tags with human collaborative annotation is being made to build a very large col-
lection of searchable images. 

SUMMARY

In this chapter, we have described two promising techniques related to semantic image retrieval  
semantic image categorization and automatic image annotation. For each technique, four aspects were 
presented: task definition, image representation, computational models, and evaluation. We also simply 
discussed their application in image retrieval. 

This chapter is only meant to capture the landscape of a field that is still young and still evolving. 
Many of the works discussed in this chapter are deemed by the authors as good representatives of existing 
semantic image classification and annotation techniques. For a long-term perspective, semantic annotation 
and retrieval of images is an interesting issue that currently requires for a lot more research efforts.
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ABSTRACT

With.advances.in.computer.technology.and.the.World.Wide.Web.there.has.been.an.explosion.in.the.amount.
and.complexity.of.multimedia.data.that.are.generated,.stored,.transmitted,.analyzed,.and.accessed...In.
order.to.extract.useful.information.from.this.huge.amount.of.data,.many.content-based.image.retrieval.
(CBIR).systems.have.been.developed.in.the.last.decade..A.Typical.CBIR.system.captures.image.features.
that.represent.image.properties.such.as.color,.texture,.or.shape.of.objects.in.the.query.image.and.try.
to.retrieve.images.from.the.database.with.similar.features...Recent.advances.in.CBIR.systems.include.
relevance.feedback.based.interactive.systems...The.main.advantage.of.CBIR.systems.with.relevance.
feedback.is.that.these.systems.take.into.account.the.gap.between.the.high-level.concepts.and.low-level.
features.and.subjectivity.of.human.perception.of.visual.content...CBIR.systems.with.relevance.feedback.
are more efficient than conventional CBIR systems; however, these systems depend on human interaction.  
In.this.chapter,.we.describe.a.new.approach.for.image.storage.and.retrieval.called.association-based.
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INTRODUCTION

The rapid growth in the number of large-scale image repositories in many domains such as medical 
image management, multimedia libraries, document archives, art collection, geographical information 
the systems, law enforcement management, environmental monitoring, biometrics, and journalism has 
brought the need for efficient mechanisms for managing the storage and retrieval of images.  Effective 
retrieval of image data is an important building block for general multimedia information management.  
DataBase Management Systems (DBMSs) typically have a wide variety of features and tools support-
ing various aspects of data management.  Two such features, however, are essential.  A DBMS must 
be able to store information about data objects efficiently, and it must facilitate user-driven searching 
and retrieval of that information.  It follows, then, that a MultiMedia DataBase Management System 
(MMDBMS) must provide similar capabilities while handling images and other types of multimedia 
data, such as audio and video.  Unlike traditional simple textual data elements, images are considered 
to have content when they are displayed to users.  Consequently, one of the goals of an MMDBMS is 
to allow users to search the database utilizing that visual content.  This goal is commonly referred to 
as Content-Based Image Retrieval (CBIR).  The key idea from the above goal, called Content-Based 
Image Retrieval (CBIR), is that searches are performed on the visual content of the database images 
rather than the actual images themselves.  So, for an image to be searchable, it has to be indexed by 
its content.  This goal is nontrivial for an MMDBMS to achieve because of the difficulties associated 
with representing the visual content of an image in a searchable form.  Consequently, one of the most 
critical issues for any MMDBMS supporting CBIR user queries is deciding how to best represent and 
extract that content.  Many ideas from fields including computer vision, database management, image 
processing, and information retrieval are used to address this issue.  

Many systems connect text-based keywords with each image in the database so that users can search 
the database by submitting simple text queries (Yoshitaka & Ichikawa, 1999).  However, text-based 
keywords have to be attached manually, which is not only time-consuming but often leads to having 
incorrect, inconsistent, and incomplete descriptions associated with the images in the system.  Text-based 
image retrieval using keyword annotation can be traced back to the 1970s.  The keyword annotation 
method involves a large amount of manual effort.  Furthermore, the keyword annotation depends upon 
human interpretation of image content, and it may not be consistent. In the early 1990s, because of the 
emergence of large-scale image collections, the difficulties faced by the manual annotation approach 
became more and more acute, and to overcome these difficulties, content-based image retrieval (CBIR) 
was proposed. In CBIR instead of being manually annotated by keyword, images are indexed by their 
own visual content. 

Because it is often difficult to describe the visual content of an image with only textual keywords 
and phrases, a user may not be able to accurately describe his or her desired content solely using a text-
based query.  As an alternative, the system should provide facilities for a user to indicate the desired 
content visually.  One method of achieving this is to support a Query-By-Example (QBE) interface 
where a user presents an image or a sketch to the system as a query object representing an example of 
his or her desired content.  The system should search for images within its underlying database that have 
matching content.  Unfortunately, it is not realistic for the user to expect to find database images that 
have identical content to the query object.  So, the typical environment is for a user to present a query 
object, Q, to the MMDBMS requesting the system to search for and retrieve all images in the database 
that are similar to Q.  Queries of this type are called similarity-based searches or similarity searches, 
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for short.  Note that after executing one of these queries, some of the retrieved images can be used as 
the bases for subsequent queries allowing the user to refine his or her search.

Typically, an MMDBMS will process each image in the database and generate a signature for it 
which will then be used for searching.  The signature is typically a collection of features of the image 
that represents its content.  Several systems extract low-level features such as color, texture, and shape 
because they can be extracted automatically, and they can be used to support searching images from 
a broad, heterogeneous application domain (Aslandogan & Yu, 1999; Yoshitaka & Ichikawa, 1999).  
However, low-level features by themselves are usually not adequate for representing higher-level content, 
leading to a “semantic gap” between the extracted features of an image and the visual content humans 
perceive in it (Smeulders et al., 2000).  As a result, the system may fail to satisfactorily retrieve images 
when responding to user queries.  For example, given a query image of a landscape photo, a system that 
represents content using color features may retrieve images that are primarily blue and green.  Conse-
quently, the retrieved set would contain any image that has several blue and green objects, which was 
not what the user wanted.  In addition, the retrieved set would miss landscape photos that contained 
large amounts of other colors, such as a photo of a landscape taken at sunset.  When an MMDBMS 
supports an application operating on a specific image domain, the system can use knowledge about 
that domain to extract higher-level features.  For example, consider applications that perform facial 
recognition.  Since these types of applications are only expected to manage photos of faces, a system 
supporting one of them can represent the content of each image using high-concept features relevant 
only to faces such as nose length or eye color (Zhao et al., 2003).  The use of high-level or low-level 
features does not prevent an MMDBMS from also using free-form textual descriptions to represent 
the content of images.  The descriptions allow the systems greater flexibility in representing high-level 
content.  They also allow the systems to represent information that may be impossible to extract from 
an image without human intervention, such as identifying the name of a geographic region displayed 
in a landscape photo.  In order to combat the problem of having humans review each database image 
manually, some systems attempt to automatically generate text descriptions of database images from 
previously known descriptions of images with similar content (Datta, Li, & Wang, 2005).

Many CBIR systems with low-level features such as color, texture, and shape have been developed 
(Flickner et al., 1995; Smeulders et al., 2000; Wan & Kuo, 1998; Wang et al., 2003).  Krishnapuram et 
al. (2004) proposed a fuzzy approach for CBIR. It may be noted that CBIR does not rely on describing 
the content of the image in its entirety. It may be sufficient that a retrieval system presents similar im-
ages in some user-defined sense.  Smeulders et al. (2000) considered the description of image content 
in two steps. The first step deals with image processing operations that transpose the image data array 
into another spatial data array that can include methods over local color, local texture, or local geom-
etry.  The second step is to extract invariant features.   The aim of invariant description is to identify 
objects no matter how and where they are observed. The strategy for earlier CBIR systems is to find 
the “best” representation for visual features, and based on the selected features to find images that are 
similar to the query image.  While this approach establishes the basis for CBIR, the performance is 
not satisfactory due to two reasons a) the gap between the high-level concepts and b) the subjectivity 
of human perception.  In order to overcome these drawbacks, Rui et al. (1998) proposed a relevance 
feedback based interactive retrieval approach.  In their approach during the retrieval process, the user’s 
high-level query and subjectivity are captured by dynamically updated weights based on the user’s 
feedback.  Given that each image in an MMDBMS is associated with a feature signature, they can be 
used to respond to a user’s QBE similarity search.  The first step, typically, is for the system to identify 
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and extract a feature signature from the query image using the same extraction process applied to the 
database images when they were initially inserted.  The query image’s signature can then be compared 
to the signatures of the database images.  If a database image’s signature is similar to the query image’s 
signature, then the MMDBMS considers the two images to be similar to each other.  All such database 
images are returned as by the MMDBMS as the result of the user’s query.

Stages of a CBIR system include preprocessing, feature extraction, annotation, and indexing.  A 
dataflow diagram for a typical CBIR system is shown in Figure 1. There are two data paths in the system.  
One deals with storing a set of images in the database, while other path deals with a query image.  All 
images stored in the database are passed through the preprocessing and feature extraction stages.  The 
preprocessing stage deals with geometric and radiometric corrections.  The preprocessing stage may 
also include edge detection and transforms such as the Fourier transform.  Extracted features represent 
color, texture, and shape characteristics of object in the image.  The indexing stage deals with creating 
index table that contains feature vectors and pointers to the corresponding image locations.  For faster 
retrieval, images in the database can be grouped in predefined categories. In order to store an image it 
is first annotated.  In the feature extraction stage, features based on characteristics such as the color, 
texture, or shapes are extracted.  Most CBIR systems use color histograms to compare the query image 
with images in the database.  Often color histograms alone are not sufficient to retrieve desired images 
from the database, because a single color histogram may represent multiple images in the database.  
Many CBIR systems use texture or shape features in conjunction with color features. In order to retrieve 
similar images from the database the feature vector obtained from the query image is compared with 
feature vectors in the database.  The query image goes through the same processing as the stored image 
in the database.  The database contains stored images along with their feature vectors.  Each row in the 
index table represents an image in the database, and it contains information such as the feature vector, 
pointer to the location of the image, and annotation for the image.

Just as there is a wide variety of features that can be used to represent images, there is a wide variety 
of methods to measure the similarity between two feature vectors (Santini & Jain, 1999).  These methods 
rely on the image retrieval system to contain a distance function that accepts two feature vectors as 

Figure.1..Schematic.diagram.of.a.CBIR.system
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input and returns a scalar value as output.  The scalar value represents the similarity between the two 
feature vectors.  It is often restricted to the range [0, 1] where the value of 1 indicates the vectors have 
maximum dissimilarity, and the value of 0 indicates that the vectors are identical.  Note that this latter 
case implies that the system would also consider their corresponding images to be identical.  In many of 
these distance functions, each feature vector is treated as a point in a multidimensional data space.  Thus, 
a vector with k values is typically treated as a multidimensional data value <x1, …, xk>

T.  The distance 
between two such vectors corresponds to the distance between them as points in that multidimensional 
space.  For example, if we represent the vectors of images X and Y as x = (x1,...,xk)

T and y = (y1,...,yk)
T, 

respectively, common methods of computing the distance, d, between them utilize the Lp-distances
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∑x y          (1)

When p is 1, this formula represents the city-block distance, and when p is 2, this formula repre-
sents the Euclidean distance.  Note that these formulae consider each dimension of a feature vector to 
be equally different from each of the other dimensions, which is not always desirable.  For example, 
consider a system that generates feature vectors from images so that each vector’s dimension represents 
the percentage of the image’s pixels that are of a different color.  Such a system may want to define 
that the two dimensions of the feature vector corresponding to the colors red and blue, respectively, are 
more different than the two dimensions corresponding to the colors red and orange, respectively.  To 
allow this flexibility in comparing features when computing the distance formula, a common method 
is computing the distance between X and Y as 

( ), Td =x y x Ay           (2)

where A is a k×k matrix such that each aij represents the similarity, if any, between dimension i and 
dimension j.  If A is the identify matrix, then all dimensions are considered to be equally different from 
all other dimensions.

Having a representation of each image’s content as a set of feature values, and a distance function 
that measures the similarity between two such vectors allows an MMDBMS supporting CBIR to process 
several different types of queries based on an example query image, Q.  One such type includes range 
queries which request all database images, X, so that the distance between Q and X is less than some 
input threshold.  Another type includes nearest-neighbor queries which request the k database images 
that are the most similar to Q for some integer k.  This type is related to the third query type which 
requests the k database images that are the least similar to Q for some integer k.

While it is feasible to retrieve a desired image from a small collection by exhaustive search, tech-
niques that are more effective are needed with a large database.  Many indexing techniques have been 
proposed for efficient retrieval.  Just as databases and information retrieval systems utilize indexes or 
other types of access methods to speed up processing of retrieval queries for traditional alphanumeric 
and text data, an MMDBMS supporting CBIR should utilize indexes to speed up retrieval of image 
data.  Traditional indexes, such as the B-tree and its many variants (Comer, 1979), typically operate on 
a single value.  Consequently, when creating an index in a traditional database management system, 
users typically specify the collection of data they are indexing as well as the search key on which 
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people are likely use when searching for information.  In contrast, queries submitted to an MMDBMS 
are processed using the feature vectors of the database images, so, the index or access method must 
operate using those vectors.  Each feature vector, as described earlier, will have some number of dimen-
sions, k.  It is insufficient to simply concatenate each of the k values of a feature vector into a single 
value for a traditional index since the dimensions at the end would be virtually unusable for searching.  
Consequently, an MMDBMS supporting CBIR should utilize multidimensional indexes for searching.  
There are a wide variety of multidimensional indexes that have been proposed in the literature (Gaede 
& Günther, 1998).  One common type includes tree-based indexes (Brown & Gruenwald, 1998), which 
contain nodes in a hierarchical structure where the root contains a collection of <region, pointer> pairs.  
Each region in the pair logically corresponds to a section of the multidimensional feature vector space.  
Each pointer associated with a region references a child of the node that contains its own collection 
of <region, pointer> pairs.  The tree is structured so that a region logically associated with a node is a 
subregion of the region associated with the node’s parent.  Examples of these trees include the R-tree 
(Guttman, 1984) and the numerous variants proposed after it.  Query processing in these trees typically 
start at the root where the each region of multidimensional space contained in the node is compared to 
the space representing the user’s query.  The system then follows the pointers associated with regions 
that overlap the space of the user’s query.  Thus, the system traverses down the tree starting from the 
root to its leaves which ultimately point to the actual data images contained within the database.  Sev-
eral algorithms for processing nearest-neighbor searches on these types of indexes have been proposed 
(Cheung & Fu, 1998; Hjaltason & Samat, 1999; Roussopoulos, Kelley, & Vincent, 1995).  Other features 
of a CBIR system include defining the query feature space and displaying query results.  The first com-
ponent of the query space is the selection of a subset of images from the large image archive.  In order 
to reduce the query space, images in the database can be clustered into a small number of categories.  
Some illustrative examples of retrieval with a CBIR system are presented in Section V.

The use of the above techniques to process CBIR queries is limited by the ability of visual features 
to represent high-level information.  Often, people attach information to objects in an image that 
cannot be extracted through visual features alone.   For example, a person may remember that a vase 
captured in a photo was purchased in Italy on a recent trip.  Thus, all of the memories of Italy and the 
trip as well are associated to the simple photo of the vase.  Building an MMDBMS that has the ability 
to associate, and therefore retrieve, this type of information from an image represents the next step 
in processing image retrieval queries.  In this chapter, we propose a new approach for image retrieval 
called association-based image retrieval (ABIR). We try to mimic the human brain.  Association is one 
of the fundamental characteristics of the human brain. The human memory operates in an associative 
manner; that is, a portion of recollection can produce an associated stream of data from the memory.  
The human memory can retrieve a full image from a partial or noisy version of the image as the query 
image.  Furthermore, given a query image as the input, the human brain can recall associated images 
that have been stored in the past. The human memory can respond to abstract queries.  For example, if 
we see an image of a person, we can recall images of his house, spouse, and car. The associative storage 
and retrieval mechanism is not explored in the present CBIR systems.  The main disadvantage of the 
current CBIR systems is their inability to respond to abstract queries.  This ability, Associative-Based 
Image Retrieval (ABIR), is described in more detail in the following sections beginning with the next 
section which describes the architecture for the proposed ABIR system.
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Architecture for an ABIR System

The architecture for the ABIR system is shown in Figure 2.  As in Figure 1, there are two data paths in 
the system. One deals with storing a set of images in the database, while the other path deals with a query 
image. The stages of the proposed ABIR system include preprocessing, feature extraction, indexing, 
database that stores images and feature vectors, and the GBAM.   The preprocessing and feature extrac-
tion stages are similar to that of a CBIR system.  All images stored in the database are passed through 
the image-processing block that deals with preprocessing and feature extraction.  The preprocessing 
stage deals with geometric and radiometric corrections, mapping the image from the red, blue, green 
(RGB) color space to hue, saturation, and intensity (HSI) color space. The preprocessing stage may also 
include edge detection and transforms such as the Fourier transform.  Extracted features represent color, 
texture, and shape characteristics of object in the image.  The indexing stage deals with creating an 
index table that contains feature vectors and pointers to the corresponding image locations.  For faster 
retrieval, images in the database can be grouped in predefined categories.  The user can select a query 
image via the user interface. The query image undergoes the same processing as the stored images. 
The feature vector obtained from the query image is used as the input to the GBAM, which produces 
the feature vectors of the associated images as the output. The corresponding images are then retrieved 
from the databases and presented to the user via the user interface. The most important feature of the 
ABIR system is that we use associative memory for storage and retrieval of images.  The GBAM is used 
to store associations between feature vectors of associated images. The basic functions of the GBAM 
are to store associative pairs through a self-organizing process and to produce an appropriate response 
pattern on receipt of the associated stimulus input pattern.  The stimulus and response patterns represent 
feature vectors that correspond to the query image and output images.

Figure.2..Architecture.for.an.ABIR.system
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Preprocessing and Feature Extraction

An ABIR system can be viewed as the step beyond a CBIR system in that it can utilize associations 
between images during query processing that cannot be established through the sole use of visual prop-
erties.  Since it builds upon a CBIR system, however, the architecture of an ABIR system has some of 
the same components as a CBIR system.  Specifically, an ABIR system will have the same preprocess-
ing and feature extraction modules of a CBIR system.  This section describes the extraction process 
employed by these modules for the commonly used features of color, texture, and shape, while the next 
section describes the modules that are unique to an ABIR system.

Color Features

The color feature is one of the most widely used visual features in CBIR.  As with the other low-level 
features of shape and texture, color-based features are commonly used in CBIR systems because they 
are easy to extract from most images.  Examples of application types in which color-based features 
are closely connected to the content of an image include road sign recognition applications, where the 
color of the sign yields information about its content, and consumer catalogs, where consumers are 
often looking for a specific color of automobile or piece of clothing.  Alternatively, applications such 
as fingerprint matching systems would not be expected to extract color-based features since the color 
of a fingerprint is usually immaterial in identifying the person who made it.  When using color-based 
features, a global color histogram can be extracted from a database or query image by simply counting 
the number of pixels in the image that are of each different color recognized by the system.  To normalize 
the histogram, each total should be divided by the total number of pixels in the image so that each value 
in the histogram represents the percentage of pixels that are of a particular color.  A simplified example 
of global color histograms is displayed in Figure 3 which displays possible histograms extracted from 
several images of flags when a system identifies pixels that are black, blue, red, yellow, and white.  These 
and other colors will be represented as values in the color space of some model such as RGB.  Note 
that, as demonstrated in this figure, the locations of pixels are not taken into account when extracting 
a global color histogram from an image.  In order to consider locations, a system may divide an image 
into multiple regions and then identify a localized histogram for each region.

Swain and Ballard (1991) used color histograms for indexing images.  Huang et al. used color cor-
relograms instead of color histograms (Huang et al., 1997). The interest in color is due to the discrimi-
nation potentiality of a three dimensional domain compared to the single dimensional domain of gray 
level images. The commonly used color space is the red, blue, green (RGB) color space.  The RGB-color 
space is not a perceptually uniform color space.  A significant improvement over the RGB-color space 
(at least for image retrieval applications comes from the use of an opponent color representation, which 
uses opponent color axes ( )R-G, 2B-R-G, R+G+B .  Other color spaces such as hue, saturation, intensity (HSI) 
have also been used.  The HSI-color space is perceptually uniform color space, and its design reflects 
the way human see colors.  The RGB-color space to HSI-color space transformation is given by the 
following equations (Gonzalez & Woods, 2002).

The intensity.component.I is given by 
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The saturation component S.is given by 
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Another issue associated with color histograms identifying the different colors that a system will use 
when it extracts them.  This involves selecting both a color model such as RGB or HSI, and selecting 
the method for grouping similar colors in the model.  To illustrate the importance of the latter selec-
tion, consider that the typical approach of representing a RGB color as a collection of three values each 
in the range [0, 255] means that there are (28)3 = 16M different colors in the model.  Without grouping 
similar colors, each histogram extracted from an image would have 16M different bins.  Typically, 
the groups are obtained by uniformly quantizing the color model using a prespecified number of divi-
sions along each of the model’s dimensions.  For example, a system may divide each RGB axis in half 
yielding 8 separate groups of colors that loosely correspond to the general colors of black, blue, green, 
cyan, red, magenta, yellow, and white, respectively.  Unfortunately, there is no universal standard for 
selecting a color model of the number of divisions, so the choices vary from system to system.  When 
evaluating the similarity between pairs of color histograms, commonly distance functions include the 
city-block or Euclidean distances as described earlier.  Another function was proposed specifically for 

Figure.3..Examples.of.global.color.histograms.associated.with.images

Black Blue  Yellow  Red   White

0.0      0.33     0.0     0.33  0.33

0.0       0.0     0.0    0.25    0.75

0.0      0.30     0.0     0.33  0.34

0.33     0.0     0.33    0.33  0.0



���  

Association-Based Image Retrieval

color histograms called the Histogram Intersection (Swain & Ballard, 1991).  The intersection between 
two n-dimensional histograms X and Y is presented in the following equation.

x ∩ y = ∑
=

n

i
ii yx

1
),min(            (6)

In image retrieval, the color histogram is the most commonly used color feature representation. 
Statistically, it denotes the joint probability of the intensities of the three color channels.  Several alter-
natives or variants to color histograms have been proposed and used in CBIR systems over the years.  
These include color coherence vectors which distinguish pixels based on whether or not they are part 
of a larger connected group of pixels of the same color (Pass, Zabih, & Miller, 1996).  The idea is that a 
large group of connected pixels with the same color represents an object in the image, so for each color, 
the system should differentiate between the number of pixels that are part of objects, and the number 
of pixels that are not.  The result is that instead of having a single value for each color recognized by 
a system as in a histogram, a color coherence vector would have two.  Another alternative includes 
recording only the largest values that appear in a histogram bin (Gong, Y. et al., 1994).  Several other 
color representations have been applied for image retrieval including color moments and color sets 
(Rui, Huang, & Chang, 1999).  With color sets, the system only records the colors that appear most 
frequently in an image instead of extracting and saving its entire histogram.  Smith and Chang (1997) 
first transformed the RGB-color space into a perceptually uniform color space and then quantized the 
transformed color space into some number, M, of bits.  Finally, color correlograms are another alterna-
tive which focus on identifying how often different pairs of colors appear within various distances from 
one another (Huang et al., 1997).

Texture Features

Texture is generally recognized as being fundamental to perception.  Chang and Kuo (1993) proposed 
the use of texture features via the wavelet transform.  The taxonomy of problems encountered within 
the context of texture analysis could be that of classification, description, and segmentation.  There is 
no precise definition or characterization of texture available in practice.  Texture has been described in 
a variety of ways.  Intuitively, texture descriptors provide measures of properties such as smoothness, 
coarseness, and regularity. One way to describe texture is to consider it as being composed of elements 
of texture primitives.  Texture can also be defined as mutual relationship among intensity values of 
neighboring pixels repeated over an area larger than the size of the relationship.  The task of extracting 
texture features from the input image is critical. If one could model and quantify the process by which the 
human recognizes texture, one could construct a highly successful recognition system.  Unfortunately, 
the process by which we recognize texture is not really understood, and researchers left to consider some 
ad hoc techniques such as statistical, structural, and spectral methods as well as neural network models.  
Human observers are capable of performing some image segmentation and discrimination tasks under 
conditions (such as brief exposure of a test image) that prevent detailed scrutiny of the image.  This ability 
is referred to as “effortless” or “preattentive” visual discrimination.  In a sense two images (which do 
not portray particular objects or forms) are said to have the same “texture” if they are not effortlessly 
discriminable to a human observer.  Many texture feature extraction and recognition algorithms are 
available in practice (Ballard & Brown, 1982; Coggins & Jain, 1985; Daugman, 1988; Haralick et al., 
1973; O’Toole & Stark, 1980; Rosenfeld & Kak, 1982).  Conventional approaches for extracting texture 
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features can be grouped into three classes: structural, statistical, and spectral. Statistical approaches 
yield characterizations of textures as smooth, coarse, grainy, and so on. Statistical algorithms are based 
on the relationship between intensity values of pixels; measures include the entropy, contrast, and cor-
relation based on the gray level co-occurrence matrix.  Structural algorithms are based on the image 
primitives; they regard the primitive as a forming element to generate repeating patterns and describe 
rules for generating them.   The notion of a primitive is central to texture analysis.  A texel is (loosely) 
a visual primitive with certain invariant properties. Texels occur repeatedly in different positions, 
deformations, or orientations inside a given area.  Texture primitives may be pixels or aggregates of 
pixels.  One way of describing rules that govern texture is through a grammar.  Structural approaches 
deal with the grammar rules to generate patterns by applying these rules to a small number of symbols.  
Spectral techniques are based on properties of the Fourier spectrum and are used primarily to detect 
global periodicity in the image by identifying high-energy narrow peaks in the spectrum. 

In statistical methods, we describe features using a spatial gray level dependency (SGLD) matrix.  For 
a two-dimensional image f(x,y) with N discrete gray values, we define the spatial gray level dependency 
matrix P(d, f) for each d and f. The element pij is defined as the relative number of times a gray level 
pair (i,.j) occurs when pixels separated by the distance d along the angle ø are compared.  Each element 
is finally normalized by the total number of occurrences giving the co-occurrence matrix P.  A spatial 
gray level dependency matrix is also called a co-occurrence matrix, and it is given by
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where pij is given by
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Where Nij represents the number of pairs with gray values.i.and.j, and NT is the total number of pairs.

Commonly used features that are obtained from the co-occurrence matrix are the energy, entropy, 
correlation, inertia, and  local homogeneity (Haralick et al., 1973).  These are given by the following 
expressions.

1. Angular second moment (a measure of picture homogeneity)
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p
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2. Contrast (measure of amount of intensity variation)
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3. Correlation (a measure of gray level dependencies)
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4.  Entropy ( another homogeneity measure)
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 where ε is a small positive constant to avoid overflow when pij equals zero.   The basic idea here 

is to characterize the “content” of the cooccurrence matrix via these descriptors.  Haralick et al. 
suggested a set of twenty-eight texture features based on the cooccurrence matrix (Haralick et al., 
1973).  These features characterize texture patterns. The angular moment feature (f1) is a measure 
of the homogeneity of the image.  The contrast feature (f2) is a difference moment and is a measure 
of the amount of local gray tone variation present in the image.  The correlation feature (f3) is a 
measure of gray tone linear dependencies in the image. These features have been used successfully 
in many image-processing applications. 

Shape Features

Shape features based on Fourier descriptors, moment invariants also have been used in conjunction 
with color, and texture features in CBIR systems (Jain & Vailaya, 1998).  Mehrotra and Gary have 
suggested a shape management system for retrieving similar shapes.  One of the well-known methods 
for invariant feature extraction is the moment invariants (Mehrotra & Gary, 1995).  Hu defined a set of 
seven moment-invariant functions that are invariant to translational, scale, and rotational differences in 
input patterns (Hu, 1962).  The main disadvantage of the moment- invariant technique is that there is no 
guarantee that the invariant moments, which number exactly seven, form a complete set of descriptors.  
However, for most practical applications the set of seven invariants is adequate to distinguish between 
input patterns.  The Fourier descriptors form a complete set of features; however extracted features are 
usually large in number and are unwieldy to use in  classification unless they are grouped together by 
some grouping criterion.  The seven moment invariants are described below.

Let g(x, y) be an input image. The (p + q)th
 geometric moment for an image of the size (2n + 1) × 

(2n + 1) is given by
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( ),
n n

p q
pq

x n y n
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=- =-

= ∑ ∑            (12)

for  p,.q = 0, 1, 2, 3,...
To make these moments invariant to translation, one can define the central moment as
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where
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The central moments in Equation (13) can be normalized for scale invariance as shown below:
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2
p q+

= + .

Hu developed the following seven functions of central moments that are invariant to rotational and 
scale differences (Hu, 1962).

( )
( )
( ) ( )
( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )
( )( )

1 20 02

2 2
2 20 02 11

2 2

3 30 12 21 03

2 2

4 30 12 21 03

2 2

5 30 12 30 12 30 12 21 03

2 2

21 03 21 03 30 12 21 03

2 2

6 20 02 30 12 21 03

11 30 12 21 03

7

4

3 3

3 3

3 3

4

= +

= + +

= − + −

= + + +

= − + + − +

+ + + + − +

= − + − +

+ + +

=

  
  

  

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2

21 03 30 12 30 12 21 03

2 2

30 12 21 03 30 12 21 03

3 3

3 3

− + + − +

+ − + + − +

  
        (15)

Hu showed analytically that moment invariants described by Equation (15) are insensitive to transla-
tional, rotational, and scale differences in input images (Hu, 1962). However, the values of these invariants 
are small, and they are very sensitive to round-off errors and noise, which makes recognition difficult.  
One of the solutions to the sensitivity problem is to consider the log values of the moment invariants. 
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Fourier Transform Domain Features

The Fourier transform (FT) is a well-known transform technique used in data compression.  In order 
to process digital images we need to consider the discrete Fourier transform (DFT).  If {x(n)} denotes 
a sequence x(n), n = 0, 1,...,N – 1.of N finite valued real or complex numbers, then its discrete Fourier 
transform is defined as (Rosenfeld & Kak, 1982).

( ) ( )
21
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1 junN
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c u x n e
N

- -

=

= ∑                    (16)

for 0,1, 2, ... 1 and 1u N j= - = - . The exponential functions in Equation (16) are orthogonal.  The inverse 
discrete Fourier transform (IDFT) is defined as 
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Equation (16) and (17) represent the DFT and IDFT for a one-dimensional data sequence.  Images are 
inherently two-dimensional in nature, and we need to consider the two- dimensional Fourier transform.  
The two-dimensional discrete Fourier transform is given by
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 = ∑∑         (18)

for 0,1, 2, ... 1 and 0,1, 2, ... 1.u M v N= - = -   The inverse discrete Fourier transform is given by
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for 0,1, 2, ... 1 and 0,1, 2, ..., 1m M n N= - = - .
The double summation in Equation (18) can be written in a matrix form as

=tF PFQ           (20)

where Q and P are nonsingular ortho-normal matrices of the size M × M and N × N respectively; F 
represents the input image matrix, and the elements of matrices P and Q are given by Equations (21) 
and (22), respectively.

21 jnv
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=            (21)

where 0,1, 2, ..., 1 and 0,1, 2, ..., 1v N n N= - = - . 
21 jmu

M
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-
=            (22)

where 0,1, 2, ..., 1 and 0,1, 2, ... , 1.u M m M= - = -  The inverse Fourier transform is given by

- -= 1 1
tF P F Q            (23)
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Some of the properties of the FT (that magnitudes of FT coefficients are shift invariant, high frequen-
cies in input images correspond to large values further from the origin, and with a rotation of the input 
image the FT distribution also rotates) are used for invariant feature extraction.  It can be seen that as 
input image rotates, its Fourier transform also rotates. It can be seen that smaller objects produce high 
values of FT coefficients that correspond to high spatial frequencies. In order to obtain invariant fea-
tures, the FT plane is sampled with angular and radial bins.  Feature extraction also results in significant 
data reduction.  By sampling the FT plane with wedge-shaped elements, information on rotation can 
be captured in the extracted features.  Similarly, by sampling the FT plane with angular or ring-shaped 
elements, information on scale can be captured in the extracted features.  Since the FT coefficients are 
symmetrical in the FT plane, it is possible to use half of the FT plane for angular bins and half of the 
plane for radial bins.  The radial bins are given by

( )2
1 2 ,r rV F u v dudv= ∫∫           (24)

where the limits of integration are defined by

( )2 2 2 2
1 2 , 0 , 1r u v r u v n≤ + ≤ ≤ ≤ -

Radial features are insensitive to rotational differences of input images, and they can be used for ex-
tracting rotation-invariant image recognition. The angular bins are given by

( )2
1 2 ,V F u v dudv= ∫∫                       (25)

where the limits of integration are defined by 

1
1 2tan

u
v

-≤ ≤ 
 
 

and 0 , 1u v n≤ ≤ - . Angular features are insensitive to coarseness of input images, and they can be used 
for extracting scale invariant components.

Associative Storage and Retrieval

The basic functions of the GBAM are to store associative pairs through a self-organizing process and 
to produce an appropriate response pattern on receipt of the associated stimulus input pattern.  The 
stimulus and response patterns represent feature vectors that correspond to the query image and output 
images. Many associative memory models have been proposed to simulate human memory. However, 
the potential of these models has not been explored for CBIR. Linear associative memories have been 
studied extensively by Kohonen (1988).  Bidirectional associative memories (BAMs) have been studied 
by Kosko (1988).  A two-layer network with feedback that simulates a BAM is shown Figure 4.  The 
network is designed to map stimulus vectors {x1, x2,...xn} to response vectors {y1, y2,...yn}. In an auto-
associative network, the response vector yi and the corresponding stimulus vector xi are the same.  In a 
hetero-associative memory, the stimulus and the response vector are not identical.  Associative memo-
ries are often able to produce correct response patterns even though stimulus patterns are distorted or 
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incomplete.  Conventional BAMs are used to store are retrieve pairs of stimulus and response patterns. 
However, if the number of associated inputs and/or outputs is more than two; that is, instead of pairs of 
vectors, if we want to store triplets or quadruplets of vectors, then we need to use generalized BAMs. 
Pairs of vectors (xi, yi) can be stored with the BAM by summing bipolar correlation matrices. In a m × 
n BAM, n neurons in layer L

1
 represent field Fx = {x1, x2,..xn}, and m neurons in layer L

2
 by Fy = {y1, y2,..

yn}. The two fields are interconnected by a m × n synoptic weight matrix W.  The neuron states in field 
Fx and field Fy are the units of the short-term memory (STM).  The connection matrix W is the unit of 
the long-term memory (LTM).

If the input vectors are orthonormal then the recall is perfect.

1 for

0 fori j

i j

i j

=
=

≠





x x                       (26)

If the input vectors are not orthonormal, then the output vector may contain cross talk.  In a dual 
BAM, feedback is achieved with WT and is given by

( )
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= =∑ ∑
TT T T

i i i iW y x x y                      (27)

If we assume a nonlinear transfer function for neurons in the BAM, then the recalled output is a 
nonlinear function of a transformed input vector and is given by

( )i iF=y Wx            (28)

With the feedback the input vector xi can be estimated as

( )T
i iF=x W y            (29)

The simplest transfer function for the BAM is a step function.   The stable reverberation corresponds 
to the system energy local minimum.  The stable reverberation corresponds to the system energy lo-
cal minimum.  When the BAM neurons are activated, the network quickly evolves to a stable state of 
two-pattern reverberation or a non-adaptive resonance.  In order to improve recall accuracy, the output 
vector yi can be synchronously fed back. The back-and-forth flow of distributed information quickly 
resonates on a fixed data pair. The sequence can be represented by
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Linear associative matrices are in general not bidirectionally stable.  Kosko (1988) showed that with 
a sigmoid transfer function all the matrices are bidirectionally stable.  If the dimensions of the stimulus 
vector x and the response vector y are n and m, respectively, then an estimate of the BAM storage capacity 
for reliable recall is given by p ≤ min(n, m), where p represents the number of data pairs to be stored.

Let us consider a simple example of a BAM construction and synchronous operation.  Let the num-
ber of units in layer L1 be eight (n = 8), the number of units in layer L2 be five (m = 5), and the number 
of pairs of vectors to be encoded be four (N = 4).  The stimulus and response vector pairs are given by 
Equation (31)
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The weights between the two layers are given by the correlation matrix W. 
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The BAM convergence is quick and robust when W is constant.  The neural network architecture 
for the BAM is shown in Figure 4. Here, the stimulus vector xi is used as the input to layer L1. Vector yi 
represents the output or the response vector. The weights between layers L1 and L2 are represented by 
the elements of matrix W.   The weights between layers L2 and L3 are given by the elements of matrix 
WT.  The output of layer L2 is used, iteratively, as the input to layer L1.  When the BAM neurons are 
activated, the network quickly evolves to a stable state of two-pattern reverberation or a non-adaptive 
resonance.  In order to improve recall accuracy, the output vector yi can be synchronously fed back. 
The back-and-forth flow of distributed information quickly resonates on a fixed data pair. Humpert has 
suggested generalization of the BAM that can store associated multiple input/output patterns (Hump-
ert, 1990).  We suggest three models of the GBAM with topologies such as the bus, ring, and tree. The 
GBAM with tree topology is shown in Figure 5, and GBAMs with ring and bus topologies are shown 
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Figure.4..Bi-directional.associative.memory

Figure.5..Generalized.BAM-.tree.structure

in Figures 6 and 7, respectively.  The bus and tree topologies are suitable for retrieving temporal im-
ages or image sequences. The generalization of the BAM to several vector fields raises the questions 
regarding the updating process.  In a BAM, all units in a field are synchronously updated.  By contrast, 
the sequence of updating weights in a generalized BAM is not obvious.  The generalization of a BAM 
to several fields also raises question of interconnections.  The generalized BAMs are extremely useful 
in content-based image storage and retrieval for multimedia applications.  In addition, one needs to 
consider the storage capacity of the GBAM.

Case Studies

As part of our research in developing algorithms for CBIR components of multimedia database man-
agement systems, we have implemented a prototype system used to test the retrieval accuracy of CBIR 
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Figure.6..Generalized.BAM-.bus.structure

Figure.7..Generalized.BAM-ring.structure

queries that focus on color-based retrieval using global color histograms (Brown & Gruenwald, 2001).  
The prototype was originally developed using the Perl language on a SUNSparc workstation on a Unix 
operating system.  It is currently being rewritten in Java for a Windows-based environment.  It does 
not use any commercial software for managing databases, but it does use utilities from the pbmplus 
package to convert jpg and gif images to and from ASCII text files (Pbmplus, 2003).  The prototype was 
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written to allow users to test a variety of color models and uniform quantization schemes when using 
global color histograms to represent image content.  The implemented models include RGB, HSI, and 
Luv.  The quantization schemes are indicated by specifying the desired number of dimensions along 
each axis of the selected model.  The prototype supports QBE queries of the form “Retrieve.all.images.
whose.distance.to.query.image.q.is.less.than.threshold.t”, where q is a query image and t is a distance 
threshold; it supports nearest-neighbor queries of the form “Retrieve.the.k.images.that.are.most.similar.
to.image.q”, where q again is a query image and k is a positive integer; and it supports queries on specific 
feature values of the form “Retrieve.all.images.with.between.m%.and.n%.pixels.of.color.b”, where m 
is the minimum desired percentage, n is the maximum desired percentage, and b is the histogram bin 
representing a color produced by the system’s quantization scheme.

The first example from this prototype demonstrates the retrieval of images of international road signs.  
The images were obtained from the Web (Signs, 2005).  This data set was selected for two reasons.  First, 
it was selected because color-based features are important to this application domain since the color of 
a sign reflects its purpose.  Second, it was selected because the Web site presented classifications for the 
signs which provided a method of judging whether or not a database image was relevant to a given QBE 
query without relying on human observers.  Specifically, all images that have the same classification 
as a query image are considered to be relevant to the query and are therefore expected to be retrieved.  
This allows the system to compute the classical information retrieval metrics precision and recall for 
determining the accuracy of the CBIR system.  An example query image and set of images retrieved 
as a result of querying this data set are displayed in Figure 8.

The second example from this prototype demonstrates the retrieval of images of international flags 
from various countries, states, and provinces.  As before, this data collection was obtained from the 
Web, and it was selected because color-based features are important when recognizing and identifying 
flags (Flags, 2003).  An example query image and set of images retrieved as a result of querying this 
data set is displayed in Figure 9.  The interface from the original Web-enabled version of the prototype 
for posing a query for specific feature values and the interface displaying the set of images retrieved as 
a result of the query are displayed in Figure 10a and Figure 10b, respectively.

The third example from this prototype demonstrates retrieving images of flags from U. S. states.  
Unlike the previous collections, this collection was obtained using the image retrieval component of 
Google.  The collection contains 100 images for each U. S. state yielding a total of 5000 images.  They 
were obtained using the following approach.  For each state S, the top 100 results generated from the 
text-based query “State Flag of S” were added to the data collection.  If this query did not produce 100 
total images for the state, the query “S State Flag” was executed, and the top images were added to the 
data collection until the total of 100 was reached.  This method of obtaining images served to classify 
the images in the data set so that the precision and recall could be computed for a given QBE query.  
An example query image and set of images retrieved as a result of querying this data set are displayed 
in Figure 11.

The final example from this prototype demonstrates retrieving images of helmets from U.S. collegiate 
football teams.  Again, this collection was obtained from the Web because the color of helmets and 
uniforms are important when recognizing and identifying sports teams (Helmets, 2003).  An example 
query image and set of images retrieved as a result of querying this data set is displayed in Figure 12.  
The interface from the original Web-enabled version of the prototype for selecting a query image by 
browsing the database and posing a nearest-neighbor query are displayed in Figures 13a and 13b.
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Figure.8...Example.query.image.submitted.to.prototype.and.results.(road.sign.data.set)

Figure 9.  Example query image submitted to prototype and results (world flag data set)

Query Image Retrieved Images

Query Image Retrieved Images

We have developed software to implement the ABIR system.  In the first example we have considered 
three sets of images (Kulkarni, 2001).  The first set contained images of numbers {1, 2, 3}, the second 
set contained images of characters {A, B, C}, and the third set contained images of Greek characters 
{α, b, γ}.  Each character was represented by a 12x12 matrix.  Each image was represented by a feature 
vector of 144 elements.  These feature vectors are stored in the GBAM.  During retrieval, any one image 
(partial or noisy) from any set was used as the query image, and the corresponding images from the 
other sets were retrieved.   The retrieved images are shown in Figures 14 and 15.  The first row shows the 
query images and subsequent rows show corresponding retrieved images. The GBAM stores and recalls 
feature vectors.  We can use feature vectors that may represent color, texture and/or shape of objects in 
the image.  In the present simulation, we used a tree topology for storing three sets of images.  

In the second example, we use the system to store and retrieve multiple views of military vehicles.  
The system can be used for automatic target recognition.  In this example, we have considered images 
of vehicles such as jeeps, tanks, and HUMVEES as shown in Figure 16.  We have used the system to 
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Figure 11.  Example query image submitted to prototype and results (state flag data set)

Query Image Retrieved Images

Figure.10a...User.interface.for.submitting.queries.
for specific feature values

Figure.10b.. .User. interface.displaying.results.
of.Figure.10a

store images four views of each vehicle such as side, rear, front, and at an angle. The system retrieves 
images similar to the human brain.  For example, if we see a front view of a vehicle, our mind can re-
trieve side and rear views of the same vehicle. We have used the GBAM with a tree structure to store 
and retrieve these associations.  The units in the root node represent the reference vectors, and the 
units in leaf nodes F1, F2, and F3 represent front, side and rear views, respectively.  Figure 17 shows the 
stimulus and output images.
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In the third example, there are three sets of images that represent flags, food items, and monuments 
of fifteen countries.  These sets are shown in Figures 18 through 21. Three images that correspond to a 
flag, food dish, and monument of a country form a set of associative images.  The association between 
these images is captured in the GBAM via their feature vectors.  We have used the GBAM with a tree 
structure to store these associations. The common theme that links images of a flag, food dish, and 
monument is the country that they represent. We represent each country by a reference vector that is 
binary and generated with Walsh functions as basis functions.  The units in the root node represent ref-
erence vectors, and units in leaf nodes F1, F2, and F3 represent feature vectors corresponding to images 

Query Image Retrieved Images

Figure.12...Example.query.image.submitted.to.prototype.and.results.(helmet.data.set)

Figure.13b..User.interface.for.submitting.a.near-
est-neighbor.query

Figure.13a..User.interface.for.selecting.a.query.
image
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Figure.14..Partial.input.and.recalled.images Figure.15..Noisy.input.and.recalled.images

Figure.16..Sample.image.data.sets

Figure.17..Query.and.output.images.(Example.2)
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Figure.20..Images.of.monuments

Figure 18. Images of flags Figure.19..Images.of.food.items

Figure.21..Output.images-.Example1
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of flags, food dishes, and monuments, respectively.  If we present an image of a flag as a query image, 
the system generates the corresponding feature vector that is used as the stimulus vector at field F1.  The 
stimulus vector at F1 produces the corresponding reference vector at the root node as the output vector, 
which in turn produces the associated feature vectors at fields F2 and F3.  The feature vectors are used 
to generate output images via the index table.  Figure 19 shows the output images obtained with of a 
sample query.  The image of a US flag was used as the query image and the corresponding retrieved 
images are displayed on the screen.

DISCUSSIONS AND CONCLUSION

We have proposed a new image storage and retrieval system called an ABIR system.  We try to mimic 
human memory in that the human brain stores and retrieves images by association. We used a general-
ized bi-directional associative memory (GBAM) to retrieve images from a database.  The method has 
been used successfully to retrieve associated images from the database. The generalization of a BAM 
to several fields also raises the question of interconnections.  The GBAM is extremely useful for image 
storage and retrieval for multimedia applications.  Our approach provides a new direction for CBIR.  
The main difference between the CBIR and ABIR systems is that in CBIR similar images are retrieved, 
whereas in ABIR the images are retrieved based on their associations.
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ABSTRACT

Image.retrieval.and.image.compression.have.been.typically.pursued.separately..Only.little.research.
has.been.done.on.a.synthesis.of.the.two.by.allowing.image.retrieval.to.be.performed.directly.in.the.
compressed domain of images without the need to uncompress them first. In this chapter the authors 
show that such compressed domain image retrieval can indeed be done and lead to effective and efficient 
retrieval.performance..They.introduce.a.novel.compression.algorithm.–.colour.visual.pattern.image.
coding.(CVPIC).–.and.present.several.retrieval.algorithms.that.operate.directly.on.compressed.CVPIC.
data..Their.experiments.demonstrate.that.it.is.not.only.possible.to.realise.such.midstream.content.ac-
cess,.but.also.that.the.presented.techniques.outperform.standard.retrieval.techniques.such.as.colour.
histograms.and.colour.correlograms.

INTRODUCTION

With the recent enormous increase in digital image collections there is no doubt that effective image 
retrieval techniques are desperately needed. Fortunately, this problem has been subject of extensive 
research for over a decade. In 1991 Swain and Ballard (1991) published results of their work on colour 
indexing. Their method of finding similar images - while being very simple - performed extremely 
well. They quantised colour space into bins, creating a 3-dimensional colour histogram. All pixels are 
scanned, allocated to the bins that they correspond to and then the number (or percentage) of pixels in 
each bin is extracted. Comparing two images is done by finding the L1 norm between their respective 
histograms.
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Although colour information is very important in object recognition, it is often not sufficient, especially 
if colour descriptors are extracted globally for a whole image. This was soon realised and techniques 
which also address texture and shape properties investigated (Smeulders et al., 2000). Although these 
methods are usually not as efficient as colour-based algorithms, incorporating several feature types 
provides improved performance.

All these methods have one common factor that can be regarded as their weakness. Storage space is 
very limited when compared to the enormous amount of images that we keep on producing. Moreover, 
the ability to transfer these pieces of information is still limited by bandwidths of networks (especially 
the Internet). Many different compression algorithms have been developed to enable us to store more 
data using less storage space. In fact, these highly effective techniques are now being used extensively 
and virtually all image data now exists in compressed form. Many of the original uncompressed images 
are not kept or indeed never existed as compression is typically performed on-the-fly inside digital cam-
eras. Many others never even existed in their uncompressed form, because virtually all digital cameras 
compress images to increase their capacity. Despite the fact that almost all images are compressed, 
image retrieval techniques are based on the uncompressed pixel bitmap domain, meaning that two 
pictures have to be first uncompressed to enable comparing them on-line which clearly is a limitation. 
While features can be extracted off-line and stored separately, this conflicts with the original intention 
of compression as the features may require a significant amount of storage space. Despite these limita-
tions, only relatively little research has been done in the area of retrieval in the compressed domain of 
images (Mandal, Idris, & Panchanathan, 1999).

In this chapter we show that so-called midstream content access (Picard, 1994) can indeed be achieved 
to provide effective and efficient image retrieval. Colour visual pattern image coding (CVPIC) is one of 
the first so-called 4th criterion image compression algorithms (Schaefer, Qiu, & Luo, 1999; Schaefer & 
Qiu, 2000). A 4th criterion algorithm allows - in addition to the classic three image coding criteria of im-
age quality, efficiency, and bitrate - the image data to be queried and processed directly in its compressed 
form; in other words the image data are directly meaningful without the requirement of a decoding step 
(Picard, 1994). The data that are readily available in CVPIC compressed images is the colour information 
of each of the 4x4 blocks the image has been divided into, and information on the spatial characteristics 
of each block, including whether a given block is identified as a uniform block (a block with no or little 
variation) or a pattern block (a block where an edge or gradient has been detected).

We make direct use of this information and present several image retrieval algorithms that allow for 
retrieval directly in the compressed domain of CVPIC. Since both colour and shape (edge) information 
is pre-calculated and readily available in the CVPIC domain, a simple combined histogram of these 
can be obtained very efficiently. Exploiting these histograms allows for image retrieval based on both 
colour and shape contents (Schaefer & Lieutaud, 2004a). Similarly, the division into uniform and edge 
blocks permits us to calculate two distinct histograms similar to the colour coherence vector approach 
(Schaefer & Lieutaud, 2004b). Finally, a colour block co-occurrence matrix can be derived (Schaefer, 
Lieutaud, & Qiu, 2004). Experimental results obtained from querying the UCID (Schaefer & Stich, 
2004) dataset show that these techniques not only allow efficient retrieval directly in the compressed 
domain but also clearly outperform popular techniques such as colour histograms, colour coherence 
vectors, and colour correlograms.
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COLOUR VISUAL PATTERN IMAGE CODING  (CVPIC)

The Colour Visual Pattern Image Coding (CVPIC) image compression algorithm introduced by Schaefer, 
Qiu, and Luo (1999) is an extension of the work by Chen and Bovic (Chen & Bovik, 1990). The underly-
ing idea is that within a 4x4 image block only one discontinuity is visually perceptible.

CVPIC first performs a conversion to the CIEL*a*b* colour space (CIE, 1986) as a more appropri-
ate image representation. As many other colour spaces, CIEL*a*b* comprises one luminance and two 
chrominance channels. CIEL*a*b* however, was designed to be a uniform representation, meaning 
that equal differences in the colour space correspond to equal perceptual differences. A quantitative 
measurement of these colour differences was defined using the Euclidean distance in the L*a*b* space 
and is given in DE units.

A set of 14 patterns of 4x4 pixels has been defined in (Chen & Bovik, 1990). All these patterns con-
tain one edge at various orientations (vertical, horizontal, plus and minus 45°) as can be seen in Figure 
1 where + and - represent different intensities. In addition a uniform pattern where all intensities are 
equal is being used.

The image is divided into 4x4 pixel blocks. Determining which visual pattern represents each block 
most accurately then follows. For each of the visual patterns the average L*a*b* values µ+ and µ- for 
the regions marked by + and - respectively (i.e. the mean values for the regions on each side of the 
pattern) are calculated according to
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where pi and pj represent the pixel vectors in L*a*b* colour space.
The colour difference of each actual pixel and the corresponding mean value is obtained and aver-

aged over the block
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The visual pattern that leads to the lowest ε value (given in CIEL*a*b* DE units) is then chosen. In 
order to allow for the encoding of uniform blocks the average colour difference to the mean colour of 
the block is also determined according to
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Figure.1..The.14.edge.patterns.used.in.CVPIC
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A block is coded as uniform if either its variance in colour is very low, or if the resulting image 
quality will not suffer severely when coded as a uniform rather than as an edge block. To meet this 
requirement two thresholds are defined. The first threshold describes the upper bound for variations 
within a block, i.e. the average colour difference to the mean colour of the block. Every block with a 
variance below this value will be encoded as uniform. The second threshold is related to the difference 
between the average colour variation within a block and the average colour difference that would result 
if the block were coded as a pattern block (i.e., the lowest variance possible for an edge block) which 
is calculated by

 ( )
patterns 
min

∀
-=           (4)

If this difference is very low (or if the variance for a uniform pattern is below those of all edge pat-
terns in which case σ is negative) coding the block as uniform will not introduce distortions much more 
perceptible than if the block is coded as a pattern block. Hence, a block is coded as a uniform block if 
at least one of the following criteria is met (Schaefer, Qiu, & Luo, 1999):

(i) σ < 1.75

(ii) δ < 1.25

For each block, one bit is stored which states whether the block is uniform or a pattern block. In 
addition, for edge blocks an index identifying the visual pattern needs to be stored. Following this pro-
cedure results in a representation of each block as 5 bits (1 + 4 as we use 14 patterns) for an edge block 
and 1 bit for a uniform block describing the spatial component, and the full colour information for one 
or two colours (for uniform and pattern blocks respectively).

In contrast to (Schaefer, Qiu, & Luo, 1999) where each image is colour quantised individually, the 
colour components are quantised to 64 universally pre-defined colours (we adopted those of (Qiu, 2003)). 
Each colour can hence be encoded using 6 bits. Therefore, in total a uniform block takes 7 (=1+6) bits, 
whereas a pattern block is stored in 17 (=5+2*6) bits. We found that this yielded an average compression 
ratio of about 1:30. We note, that the information could be further encoded to achieve lower bitrates. 
Both the pattern and the colour information could be entropy coded. In here however, we refrain from 
this step as we are primarily interested in a synthesis of coding and retrieval.

CVPIC RETRIEVAL BY COLOUR AND SHAPE

We can see from above that for each image block in CVPIC, both colour and edge information is read-
ily available in the compressed form: each block contains either one or two colours and belongs to one 
of 15 edge classes. We can make direct use of this information for the purpose of image retrieval. In a 
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sense our approach is similar to the work by Jain and Vailaya (1996) where image retrieval is performed 
based on colour and shape (edge) information. However, our method differs in two important aspects. 
In stark contrast to their work, our method runs directly in the compressed domain without any further 
need for calculating these descriptors. Furthermore due to the low dimensionality of our features we 
are able to build a combined colour and shape histogram rather than two separate descriptors that need 
to be re-integrated in the retrieval process.

It is well known that colour is an important cue for image retrieval. In fact, simple descriptors such 
as histograms of the colour contents of images (Swain & Ballard, 1991) have been shown to work well 
and have hence been used in many CBIR systems such as QBIC (Niblack et al., 1993) or Virage (Bach et 
al., 1996). A colour histogram is built by (uniformly) quantising the colour space into a number of bins 
(often 8x8x8) and counting how many pixels of the image fall into each bin. From the description of the 
CVPIC algorithm it can be easily deduced how a colour histogram can be efficiently calculated there. 
First, CVPIC colour histograms need only 64 entries since there are only 64 colours in the palette used 
during the encoding. This in turn means that the dimensionality is lower compared to traditional colour 
histograms which again implies that the comparison of these histograms requires fewer computations. 
Since each block contains one or two colour indices and an edge index an exact colour histogram can 
be calculated by weighing the respective two colours by the number of pixels they occupy. While this 
method requires fewer computations than are needed for obtaining histograms in the pixel domain we 
propose a yet more efficient approach. Instead of applying weights according to the layout of each pat-
tern we simply increment the relevant histogram bins for each block (we note that by doing so we put 
more emphasis on the colour content of edge blocks compared to uniform blocks).

While image retrieval based on colour usually produces useful results, integration of this information 
with another paradigm such as texture or shape will result in an improved retrieval performance. Shape 
descriptors are often calculated as statistical summaries of local edge information such as in (Jain & 
Vailaya, 1996) where the edge orientation and magnitude is determined at each pixel location and an 
edge histogram calculated. Exploiting the CVPIC image structure an effective shape descriptor can be 
determined very efficiently. Since each (pattern) block contains exactly one (pre-calculated) edge and 
there are 15 different patterns, a simple histogram of the edge indices could be built. However, since 
both colour and shape features are of low dimensionality we propose to integrate them into a combined 
colour/shape histogram rather than building two separate descriptors as in (Jain & Vailaya, 1996). We 
further reduce the dimensionality by considering only 5 edge classes: horizontal and vertical edges, 
edges at plus and minus 45°, and no edge (uniform blocks). Thus, we end up with a 64x5 colour/shape 
histogram HCS(I) for an image I:

HCS(I)(i,1) = Pr((c1 = i ∨ c2 = i) ∧ p ∈ {1,2,3})    horizontal
HCS(I)(i,2) = Pr((c1 = i ∨ c2 = i) ∧ p ∈ {4,5,6})    vertical
HCS(I)(i,3) = Pr((c1 = i ∨ c2 = i) ∧ p ∈ {7,8,9,10})    -45°
HCS(I)(i,4) = Pr((c1 = i ∨ c2 = i) ∧ p ∈ {11,12,13,14})   +45°
HCS(I)(i,5) = Pr(c1 = i ∧ p = 15)      uniform  (5)

where c1, c2, and p are the colour and pattern indices (the patterns are numbered according to Figure 1, 
going from left to right, top to bottom) of a block.

It should be pointed out that these CVPIC colour/shape histograms HCS(I)  can be created extremely 
efficiently. In essence, per 4x4 image block only 1 addition is needed (to increment the relevant histo-
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gram bin). This makes it unnecessary to store any information alongside the image as the indices can be 
created online with hardly any overhead to reading the image file. As thus it automatically lends itself 
to online retrieval e.g. of the web which - due to the dynamic structure of the Internet - is impossible 
to achieve with traditional index-based approaches.

Two CVPIC colour/shape histograms HCS(I1) and HCS(I2) obtained from images I1 and I2 are compared 
using the histogram intersection measure introduced in (Swain & Ballard, 1991)
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which provides a similarity score between 0 and 1 (for normalised histograms).

CVPIC Retrieval with Uniform/Non-Uniform Colour Histograms

Pass and Zabih (1996) introduced colour coherence vectors (CCV) as a method of introducing spatial 
information into the retrieval process. Colour coherence vectors consist of two histograms: one histo-
gram of coherent and one of non-coherent pixels. Pixels are considered to be coherent if they are part 
of a continuous uniformly coloured area and the size of this area exceeds some threshold (usually de-
fined as 1% of the overall area of an image). The L1 norm is used as the distance metric between colour 
coherence vectors.

Stehling, Nascimento, and Falcao (2002) took a similar approach to that of coherence vectors with 
their border interior pixel (BIP) algorithm. Pixels are classified as either interior or border pixels. A pixel 
is an interior pixel if (after a quantisation step) it has the same colour as its 4-neighbourhood, otherwise 
it is a border pixel. We see that in contrast to colour coherence vectors here the classification process is 
much simplified. Two histograms for border and interior pixels are created and again histogram inter-
section is used as a similarity measure.

Based on CVPIC it is possible to follow an approach similar to CCV and BIP by exploiting the 
information that is readily available in the CVPIC compressed format. CVPIC information is directly 
visually meaningful. While on the one hand, the colour information is readily available, on the other 
hand information on the spatial content, i.e. shape-based information is also pre-calculated in the form 
of uniform and edge blocks.

The division into uniform and pattern blocks creates an automatic classification of image pixels. Pixels 
that are part of a uniform area (i.e. ‘coherent’ or ‘interior’ pixels) will more likely be contained within 
a uniform block. On the other hand pixels that form part of an edge (i.e. ‘border’ pixels) will fall into 
pattern blocks. We can therefore immediately distinguish between these two types of pixels without any 
further calculation (as would need to be done for CCV or BIP calculations). We hence create two colour 
histograms: a uniform histogram Hu by considering only uniform blocks and a non-uniform histogram 
Hn calculated solely from edge blocks. While exact histograms could be calculated by simply adding the 
appropriate number of pixels to the relevant colour bins while scanning through the image we suggest 
a simpler, less computationally intensive, method. Instead of weighing the histogram increments by the 
relative pixel proportions we simply increment the affected colour bins (two for an edge block, one for 
a uniform block) by 1 (we note that this puts more weight on the non-uniform histogram than on the 
uniform one). We also wish to point out that the resulting histograms are not normalised as is often the 
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case with histogram based descriptors. The reason for this is that by not normalising we preserve the 
original ratio between uniform and pattern blocks - an image feature that should prove important for 
distinguishing between images with similar colour content.

Having calculated Hu and Hn which can be done efficiently enough on-line, two images can then be 
compared by calculating the L1 norm between their histograms
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CVPIC Retrieval with Block Colour Co-Occurrence Matrix

In our third approach we also make use of the fact that for each image block in CVPIC both colour and 
edge information is readily available in the compressed form as each block contains either one or two 
colours and belongs to one of 15 edge classes (14 for edge blocks, and one for uniform blocks).

Our approach to exploit the colour information that is readily available in CVPIC - block colour co-
occurrence matrix - is similar to that of colour correlograms (Huang et al., 1997) which are histograms 
that record the probabilities that a pixel with a certain colour is a certain distance away from another 
pixel with another colour. However, in contrast to those it is very efficient to compute. We define the 
block colour co-occurrence matrix BCCM as

BCCM(ci,cj) = Pr(p1 = ci ∧ p2 = cj)        (8)

In other words for each CVPIC 4x4 sub-block we increment the histogram bin that is defined by the 
two colours on each side of the edge in the block. We note, that for uniform blocks the bins along the 
‘diagonal’ of the (64x64) histogram get incremented, i.e. those bins that essentially correspond to the 
auto correlogram (Huang et al., 1997).

Two BCCMs are compared by
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As pointed out above, exploiting the CVPIC image structure an effective shape descriptor can be 
determined very efficiently. Since each (pattern) block contains exactly one (pre-calculated) edge and 
there are 14 different patterns we simply build a 1x14 histogram of the edge indices. We decided not 
to include a bin for uniform blocks, since these give little indication of shape (rather they describe the 
absence of it). Block edge histograms BEH1 and BEH2 are compared analogous to BCCMs by
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Having calculated the distances dBCCM(I1,I2) and dBEH(I1,I2) between two images I1 and I2 these two can 
be combined in order to allow for image retrieval based on both colour and shape features. Obviously, 
the simplest method of doing that would be to just add the two measures which is indeed what we did 
for the experiments presented in the next section. However, dependent on the database or task at hand, 
it is also possible to weigh them, i.e. to put more emphasis on one of the two measures.

Experimental Results

We evaluated the presented algorithms using the UCID dataset (Schaefer & Stich, 2004). UCID (avail-
able from http://vision.cs.aston.ac.uk), an Uncompressed Colour Image Database, consists of 1338 colour 
images all preserved in their uncompressed form which makes it ideal for the testing of compressed 
domain techniques. UCID also provides a ground truth of 262 assigned query images each with a number 
of predefined corresponding matches that an ideal image retrieval system would return.

We compressed the database using the CVPIC coding technique and performed image retrieval 
using the 3 techniques detailed above, based on the queries defined in the UCID set. As performance 
measure we used the modified average match percentile (AMP) from (Schaefer & Stich, 2004) and the 
retrieval effectiveness from (Faloutsos et al, 1994). The modified AMP is defined as
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where Ri is the rank the ith match to query image Q was returned, SQ is the number of corresponding 
matches for Q, and N is the total number of images in the database. A perfect retrieval system would 
achieve an AMP of 100 whereas an AMP of 50 would mean the system performs as well as one that 
returns the images in a random order.

The retrieval effectiveness is given by
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where Ri is again the rank of the ith matching image and Ii is the ideal rank of the ith match (i.e., I = {1,2, 
...,SQ}). The average retrieval effectiveness ARE is then taken as the mean of RE over all query images. 
An ideal CBIR algorithm would return an ARE of 1, the closer the ARE to that value (i.e. the lower the 
ARE) the better the algorithm.
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In order to relate the results obtained, we also implemented colour histogram based image retrieval 
(uniformly quantised 8x8x8 RGB histograms with histogram intersection) according to (Swain & Bal-
lard, 1991), colour coherence vectors (Pass & Zabih, 1996), border/interior pixel histograms (Stehling, 
Nascimento, & Falcao, 2002) and colour (auto-)correlograms (Huang et al., 1997). Results for all methods 
are given in Table 1. From there we see that our compressed domain approaches are not only capable of 
achieving good retrieval performance, but that they also clearly outperforms all other methods. 

While the border/interior pixel approach achieves an AMP of 91.27 and all other methods perform 
worse, CVPIC colour/shape histograms provide an average match percentile of 93.70, that is more 
than 2.50 higher than the best of the other methods. This is indeed a significant difference as a drop 
in match percentile of 2.5 will mean that 2.5% more of the whole image database need to be returned 
in order to find the images that are relevant; as typical image database nowadays can contain tens of 
thousands to hundreds of thousands images this would literally mean additional thousands of images. 
CVPIC uniform/non-uniform colour histograms perform similarly, with an AMP of 93.28. The overall 
best retrieval performance is achieved by the combined BCCM and shape histogram approach which 
reaches an AMP of 94.23 and an ARE of 53.43.

The superiority of the CVPIC based techniques is especially remarkable so as it is based on im-
ages compressed to a medium compression ratio, i.e. images with a significantly lower image quality 
compared to uncompressed images whereas for all other methods the original uncompressed versions 
of the images were used. Compressing these images to a size similar to the CVPIC images using a 
standard coding technique such as JPEG would result in a further performance drop as has been shown 
in (Schaefer, 2008), hence the results for the pixel domain algorithms here are based on a best case 
scenario. Furthermore, methods such as colour histograms, colour coherence vectors and colour cor-
relograms are known to work fairly well for image retrieval and are hence among those techniques that 
are widely used in this field.

An example of the difference in retrieval performance is illustrated in Figure 2 which shows one of 
the query images of the UCID database together with the five top ranked images returned by all methods. 
Colour histograms, colour coherence vectors, and border/interior pixel histograms manage to retrieve 
only two of the targets in the top five while retrieval based on colour correlograms returns three. The 
two CVPIC techniques based on colour & shape histograms, and based on uniform/non-uniform colour 
histograms both do better and retrieve four. The best result is again achieved by the combined BCCM 
and shape algorithm where all of the top five retrievals are relevant images (as indeed is the 6th ranked 
image not shown in Figure 2).

Table.1..Retrieval.results.based.on.the.UCID.database
 AMP ARE
Colour histograms 90.47 90.83
Colour coherence vectors 91.03 85.88
Border/interior pixel histograms 91.27 82.49
Colour correlograms 89.96 95.61
CVPIC colour & shape histograms 93.70 57.82
CVPIC uniform/non-uniform histograms 93.28 62.40
CVPIC BCCM & shape histograms 94.23 53.43
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Query image

Colour histograms

Colour coherence 
vectors

Border/interior 
pixel histograms

Colour 
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CVPIC colour & 
shape

CVPIC uniform/
non-uniform 
histograms

CVPIC BCCM & 
shape histograms

Figure.2..Sample.retrieval.from.the.UCID.database

CONCLUSION

In this chapter we have shown that it is possible to perform effective and efficient image retrieval in 
the compressed domain. Based on a 4th criterion image compression algorithm, CVPIC, three differ-
ent retrieval techniques were developed that utilise the visually meaningful information of CVPIC 
compressed images. Extensive experimental results have demonstrated that these techniques are not 
only capable of performing compressed domain image retrieval, but also that the retrieval performance 
achieved is significantly better than those of popular pixel domain based retrieval algorithms such as 
colour histograms and colour correlograms.
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ABSTRACT

Discovery.of.the.multimedia.resources.on.network.is.the.focus.of.the.many.researches.in.post.semantic.
web..The.task.of.resources.discovery.can.be.automated.by.using.agent..This.chapter.reviews.the.current.
most.used.technologies.that.facilitate.the.resource.discovery.process..The.chapter.also.the.presents.the.
case.study.to.present.a.fully.functioning.resource.discovery.system.using.mobile.agents..

INTRODUCTION

Resource discovery is one of the main issues in the today’s networks.  The main target for any resource 
sharing system is to make available it resources to all other users. This can only be achieved if there is a 
service that allows discovering or matching of the attributes or the multi-attributes across heterogeneous 
domains. Such service is defined as resource discovery service (Paolo Trunfio, June 2007) (Miguel 
Castro, 2004). Typically, such system after matching the attributes will return a list of possible resource 
location where the resource is available. Peer-to-Peer (P2P) systems have been used for sharing resources 
(Miguel Castro, 2004). As nodes share resource a diverse set of techniques have been developed for 
discovering of the resource provider, assuming initial heuristics are available. The P2P systems are 
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distinguished from other systems based on the fact of decentralization. There is not central authority 
that maintains the networks. Nodes can join the network and leave the network without destroying the 
resource network. The communication between two peers is a direct connection (Clip2, 2002). There 
has been multiple ways that have been devised to enhance the scalability of such networks.

Semantic Web addresses the navigation as compared to World Wide Web by creating a new approach 
in knowledge representation and different way of representing information on the Internet (McGuin-
ness, March 2001).  The Semantic Web is a network of information that could be easily processed by 
machines, on a global scale. It empowers the human user to employ agent software for searching as well 
as it enables the agent to act as the user’s representative and that can enter transaction on behalf of the 
human user (McGuinness, March 2001) (Siderean Software, 2003).

A mobile agent is an autonomous and intelligent entity executing in computer environments. In addi-
tion to the characteristics inherited from the fixed agent, mobility is the most important attribute, which 
greatly improves the flexibility in multi-agent systems. As a fundamental building block of the mobile 
computing paradigm, the mobile agent has many potential applications in e-commerce and e-business 
(Yang, April, 2006). As a replacement of the traditional Remote Process Call (RPC) mode in which 
clients communicate with a non-local server with a static client-server interface, mobile agent enables 
the execution of the server side services within the server by travel to the local server host and interacts 
with it. After the completion of tasks, mobile agent will travel back to the client (service requester) 
with the service results. This reduces the need for bandwidth, as mobile agent can be very small in size 
(but can grow dynamically as needed to accommodate more data) (Dunne, 2001). In addition, there is 
no need for the centralized and real-time control of mobile agents. After a mobile agent is sent to the 
server (or other hosts), the creator of the mobile agent does not need to keep an eye on it until it travels 
back. The tasks are performed asynchronously. Also, users can create more than one agent for a specific 
task, and thereby enables the parallel processing of tasks. (Mobile agents are assigned to different sites 
to perform subtasks in parallel, and return the results of the sub tasks to the user. The user then would 
be able to make final decisions according to the returned results.)

The purpose of this chapter is provide a review of various technologies that have been applied in the 
field of resource discovery, so that a qualitative comparison of existing approaches can be performed 
and the conclusions can drawn to design an algorithm that can be applied to resource discovery using 
mobile agents. We will also depict what mobile agents are, and why they are in particular suitable for 
resource discovery.  

A sample mobile agent system, demonstrating how resource discovery is achieved in a mobile agent 
system will be illustrated as well.

Technologies Used in Existing Resource Discovery Systems

There are diverse set of solutions that are available for resource discovery. The solutions have been 
characterized through the routing strategies that have been applied by them. The main categories are 
algorithms that are used by unstructured networks and algorithms that are used by the overlay network 
between peers (Mordacchini, 2007).

In the unstructured networks the first technology that was applied was that of central servers. The 
technology was refined to get decentralized system for example GNUtella like systems, where the search 
message were routed using flooding techniques throughout the network  that lead to saturation in the 
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networks (Clip2, 2002) (Napster). The techniques were improvised to introduce data indexing that was 
further improvised with introduction of distributed hashing table (M. Castro, 2003). In this technique the 
node is associated with the keys and their values.  When the query is presented it is changed in changed 
into the search for the key. The hash table passes the query forward to other node that is numerically 
closer to requested key (Miguel Castro, 2004) (I. Stoica, 2001) (Sylvia Ratnasamy, 2001). The examples 
of structured systems are Chord (I. Stoica, 2001) and CAN (Sylvia Ratnasamy, 2001). In hybrid systems 
like Pastry (Druschel, 2001) and Peer Discovery System the routing structure is comparatively more 
fluid as compared to Chord as the routing table can suggest the routing of the query to any node that is 
part of the defined subspace (Paolo Trunfio, June 2007).

Unstructured

The unstructured networks organize the nodes into a random graph and use floods to discover resource 
on the nodes. The nodes that are visited during the floods are checked against the query (Paolo Trunfio, 
June 2007) (Miguel Castro, 2004). This approach does not impose any constraints on the node graph. 
Any node can join any other node in the network and will only be discovered during flooding process. 
The centralized resource discovery queries the central server for node address that can provide cer-
tain resource, and will then connect to it directly as opposed to the decentralized approach where the 
nodes are peers and will query for resource through decentralized means of flooding the network (Y. 
Chawthe, 2003). 

Centralized System

The famous example that describes the centralised systems is that of Napster. The Napster is not pure 
P2P system, since it requires the centralised servers and hence the category of the centralised systems. 
The central servers are used to keep the index of the resource that is owned by the certain peer on the 
network.  The resource is located by querying the central server that after finding the matching resource 
will provides the IP address of the resource owner to the resource requestor. The IP address makes 
provision of direct connect between the two peers for the download of the resource (Mordacchini, 2007) 
(Napster).  See Figure 1 for details of working.

The downloads take place in the P2P fashion; however the resource discovery is centralised. The 
fact that the resource discovery is centralised introduces the issue of the single point of failure. In case 
of central index failure the resources will not be available to any peers. Hence, the scalability of the 
centralised systems for resource discovery is very low (Y. Chawthe, 2003). 

Decentralized System

In decentralized unstructured P2P systems, every peer maintains the connection with minimal set of the 
other peers. This leads to an overlay structure of the network. The famous example is that of GNUtella 
and Bearshare where there is no centralized index for the resources. The process of resource discovery 
is started by the peer’s query that is broadcasted through this overlay network of peers, through the 
process called flooding (Clip2, 2002) (Mordacchini, 2007). When the query is received by the peer, it 
broadcasts it further to the peers that are connected to it, other than the peer from where the query was 
received. All the matching responses of the query are sent to the originating peer. This broadcasting of 
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the query from one peer to all the other peers clearly results in unnecessary traffic on the network. To 
reduce the flooding, TTL (time to live) is associated with every query. Every time the query is received 
by a certain peer, in addition to providing the results for the query, it also reduces the TTL by one and 
then broadcasts it to all the downstream peers until the TTL drops to zero. This results in scalable 
flooding where the query will only reach certain depth and hence reduces the network coverage (Paolo 
Trunfio, June 2007). See Figure 2 and Figure 3 for workings.

The implication of the small TTL is that the resource may not be located by covering only little 
percentage of the network, when the resource may actually exist on the perimeters of the P2P network 
(Clip2, 2002) (Y. Chawthe, 2003).

There are number of ways have been devised to reduce the flooding. One of the controlled flooding 
mechanisms is called Dynamic Querying (Y. Chawthe, 2003). In order to reduce the flooding using 
dynamic query, the peer broadcasts the query to the other peers with very small TTL. If the matching 
results are found in the responses, then the connection between that node and the originating node are 
established. This reduces the cost of flooding dramatically. However, if the response for the query is not 
found then the TTL is dynamically increased in relation to the results obtained. This process continues 

Figure.1..A.typical.scenario.of.the.centralised.system..The.peer.A1,.peer.B1.and.peer.C1.are.sharing.
resources.8,.9;.1,8,10.and.1,.2,.3.respectively..The.central.server,.“Napster.com”.that.keeps.the.index.
of.all.resources.shared.by.the.peers..The.central.server.is.queried.by.the.peer.A1.and.peer.B1.for.the.
resource.10.and.resource.3.respectively..The.central.server.replies.by.providing.the.IP.address.of.the.
resource.providers. to.each.of. the.peers..The.direct.connection. is.established.between.two.peers. for.
downloading.of.the.resource.
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II. TECHNOLOGIES USED IN EXISTING RESOURCE DISCOVERY SYSTEMS

There are diverse set of solutions that are available for resource discovery. The solutions have been characterized through the
routing strategies that have been applied by them. The main categories are algorithms that are used by unstructured networks and
algorithms that are used by the overlay network between peers (Mordacchini, 2007). 

In the unstructured networks the first technology that was applied was that of central servers. The technology was refined to 
get decentralized system for example GNUtella like systems, where the search message were routed using flooding techniques 
throughout the network  that lead to saturation in the networks (Clip2, 2002) (Napster). The techniques were improvised to 
introduce data indexing that was further improvised with introduction of distributed hashing table (M. Castro, 2003). In this 
technique the node is associated with the keys and their values.  When the query is presented it is changed in changed into the
search for the key. The hash table passes the query forward to other node that is numerically closer to requested key (Miguel 
Castro, 2004) (I. Stoica, 2001) (Sylvia Ratnasamy, 2001). The examples of structured systems are Chord (I. Stoica, 2001) and 
CAN (Sylvia Ratnasamy, 2001). In hybrid systems like Pastry (Druschel, 2001) and Peer Discovery System the routing structure 
is comparatively more fluid as compared to Chord as the routing table can suggest the routing of the query to any node that is 
part of the defined subspace (Paolo Trunfio, June 2007). 

A. Unstructured.
The unstructured networks organize the nodes into a random graph and use floods to discover resource on the nodes. The 

nodes that are visited during the floods are checked against the query (Paolo Trunfio, June 2007) (Miguel Castro, 2004). This 
approach does not impose any constraints on the node graph. Any node can join any other node in the network and will only be 
discovered during flooding process. The centralized resource discovery queries the central server for node address that can 
provide certain resource, and will then connect to it directly as opposed to the decentralized approach where the nodes are peers 
and will query for resource through decentralized means of flooding the network (Y. Chawthe, 2003).  
1) Centralized.System.

Fig.1. A typical scenario of the centralised system. The peer A1, peer B1 and peer C1 are sharing resources 8, 9; 1,8,10 and 1, 2, 3
respectively. The central server, “Napster.com” that keeps the index of all resources shared by the peers. The central server is queried by
the peer A1 and peer B2 for the resource 10 and resource 3 respectively. The central server replies by providing the IP address of the
resource providers to each of the peers. The direct connection is established between two peers for downloading of the resource.
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Figure 2. The diagram illustrates the flooding process. When the search begins from id=1, it is broad-
casted.to.all.the.peers.that.are.connected.to.the.node.with.TTL=3..The.TTL.is.decreased.by.1.after.every.
hop.until.TTL.drops.to.zero..If.the.matching.resource.is.found.it.is.responding.through.the.reverse.path.
until.it.reaches.to.the.originating.node.id=1..(Duncan.Aitken,.2002)

Figure 3. To download a file the client creates a direct connection to the client with the file it wants and 
sends a HTTP packet requesting the file. The client with the file interprets this and sends a standard 
HTTP.response..(Duncan.Aitken,.2002)
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The famous example that describes the centralised systems is that of Napster. The Napster is not pure P2P system, since it 
requires the centralised servers and hence the category of the centralised systems. The central servers are used to keep the index 
of the resource that is owned by the certain peer on the network.  The resource is located by querying the central server that after 
finding the matching resource will provides the IP address of the resource owner to the resource requestor. The IP address makes
provision of direct connect between the two peers for the download of the resource (Mordacchini, 2007) (Napster).  See Fig.1. 
for details of working. 

The downloads take place in the P2P fashion; however the resource discovery is centralised. The fact that the resource 
discovery is centralised introduces the issue of the single point of failure. In case of central index failure the resources will not be 
available to any peers. Hence, the scalability of the centralised systems for resource discovery is very low (Y. Chawthe, 2003).

2) Decentralized.System.
In decentralized unstructured P2P systems, every peer maintains the connection with minimal set of the other peers. This leads 

to an overlay structure of the network. The famous example is that of GNUtella and Bearshare where there is no centralized 
index for the resources. The process of resource discovery is started by the peer’s query that is broadcasted through this overlay 
network of peers, through the process called flooding (Clip2, 2002) (Mordacchini, 2007). When the query is received by the 
peer, it broadcasts it further to the peers that are connected to it, other than the peer from where the query was received. All the 
matching responses of the query are sent to the originating peer. This broadcasting of the query from one peer to all the other
peers clearly results in unnecessary traffic on the network. To reduce the flooding, TTL (time to live) is associated with every
query. Every time the query is received by a certain peer, in addition to providing the results for the query, it also reduces the
TTL by one and then broadcasts it to all the downstream peers until the TTL drops to zero. This results in scalable flooding 
where the query will only reach certain depth and hence reduces the network coverage (Paolo Trunfio, June 2007). See Fig.2. 
and Fig.3. for workings. 

Fig.2. The diagram illustrates the flooding process. When the search begins from id=1, it is broadcasted to all the peers that are connected
to the node with TTL=3. The TTL is decreased by 1 after every hop until TTL drops to zero. If the matching resource is found it is responding
through the reverse path until it reaches to the originating node id=1. (Duncan Aitken, 2002)

The implication of the small TTL is that the resource may not be located by covering only little percentage of the network, 
when the resource may actually exist on the perimeters of the P2P network (Clip2, 2002) (Y. Chawthe, 2003). 

Fig. 3. To download a file the client creates a direct connection to the client with the file it wants and sends a HTTP packet requesting the
file. The client with the file interprets this and sends a standard HTTP response. (Duncan Aitken, 2002)
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The famous example that describes the centralised systems is that of Napster. The Napster is not pure P2P system, since it 
requires the centralised servers and hence the category of the centralised systems. The central servers are used to keep the index 
of the resource that is owned by the certain peer on the network.  The resource is located by querying the central server that after 
finding the matching resource will provides the IP address of the resource owner to the resource requestor. The IP address makes
provision of direct connect between the two peers for the download of the resource (Mordacchini, 2007) (Napster).  See Fig.1. 
for details of working. 

The downloads take place in the P2P fashion; however the resource discovery is centralised. The fact that the resource 
discovery is centralised introduces the issue of the single point of failure. In case of central index failure the resources will not be 
available to any peers. Hence, the scalability of the centralised systems for resource discovery is very low (Y. Chawthe, 2003).

2) Decentralized.System.
In decentralized unstructured P2P systems, every peer maintains the connection with minimal set of the other peers. This leads 

to an overlay structure of the network. The famous example is that of GNUtella and Bearshare where there is no centralized 
index for the resources. The process of resource discovery is started by the peer’s query that is broadcasted through this overlay 
network of peers, through the process called flooding (Clip2, 2002) (Mordacchini, 2007). When the query is received by the 
peer, it broadcasts it further to the peers that are connected to it, other than the peer from where the query was received. All the 
matching responses of the query are sent to the originating peer. This broadcasting of the query from one peer to all the other
peers clearly results in unnecessary traffic on the network. To reduce the flooding, TTL (time to live) is associated with every
query. Every time the query is received by a certain peer, in addition to providing the results for the query, it also reduces the
TTL by one and then broadcasts it to all the downstream peers until the TTL drops to zero. This results in scalable flooding 
where the query will only reach certain depth and hence reduces the network coverage (Paolo Trunfio, June 2007). See Fig.2. 
and Fig.3. for workings. 

Fig.2. The diagram illustrates the flooding process. When the search begins from id=1, it is broadcasted to all the peers that are connected
to the node with TTL=3. The TTL is decreased by 1 after every hop until TTL drops to zero. If the matching resource is found it is responding
through the reverse path until it reaches to the originating node id=1. (Duncan Aitken, 2002)

The implication of the small TTL is that the resource may not be located by covering only little percentage of the network, 
when the resource may actually exist on the perimeters of the P2P network (Clip2, 2002) (Y. Chawthe, 2003). 

Fig. 3. To download a file the client creates a direct connection to the client with the file it wants and sends a HTTP packet requesting the
file. The client with the file interprets this and sends a standard HTTP response. (Duncan Aitken, 2002)

until the satisfactory results are obtained or until all the peers have been queried (Y. Chawthe, 2003).
Experiments further demonstrate that the peers that are connected to the network with low bandwidth 

saturate very quickly under flooding circumstances (Paolo Trunfio, June 2007) (Miguel Castro, 2004) 
(Mordacchini, 2007). This results in poor performance for the resource discovery. The solution to that 
is by isolating such peers with low bandwidth while routing. The peers with low bandwidth connect to 
the super peers which are have high bandwidth and will also keep the index of resources that are being 
shared by the low bandwidth. When the query is received by the super peer, it checks it against its and 
low bandwidth peers file index, if the result is found the connection between the originating peer and 
the peer with resource is established else the broadcast continues until TTL=0 (Y. Chawthe, 2003).
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Figure.4..Simple.key.location..One.dimensional.circle.where.the.nodes.are.evenly.distributed.on.the.
circle. When the lookup is made for key id – 54 on node 8, it iterates through all active nodes to find 
the.key.id-54..

Structured

The structured system imposes constraints on node in network and data placement to enable efficient 
resource discovery (Paolo Trunfio, June 2007) (Mordacchini, 2007) (M. Castro, 2003). Each resource 
becomes a key and nodes are organized into structured graph that maps key to the node. The resource’s 
address is stored at the node responsible for the key (Miguel Castro, 2004).

Chord

Chord (I. Stoica, 2001)  is the structured P2P system that uses the distributed indexing based on hash-
ing - distributed hash tables. In Chord, the peers are ordered in a virtual one-dimensional circle. The 
ordering is based on the IDs that are assigned to every peer based on their resources through a hash 
function (I. Stoica, 2001). Hence, peers and resources are mapped to a key. Each peer on the circle has 
knowledge of its successor in circle and it also maintains a routing table also called as finger table (Paolo 
Trunfio, June 2007) (I. Stoica, 2001). 

In simple key location, every peer has knowledge of only one successor. When the peer n is presented 
with the key id, it checks the key against the finger table. If the key is found it returns the successor that 
is publishing the key id else it forwards the request to its successor to find the key id. This process will 
iterate until the key id is found or the all the nodes are exhausted (I. Stoica, 2001). See Figure 4.

In the scalable key location, a peer with a key z is connected to the peers with keys (z+2i )mod N, 
where i is the entry in the finger table and the value of i ranges between 0<= I <log(N), N is the size of 
the key space. Therefore the finger table will have a maximum of log N entries in it (I. Stoica, 2001). 
See Figure 5 for details.
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Figure 5. The finger table for node N8 that has knowledge about peers with keys (N8+2i ) mod N for 0 
≤ i < log N.
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To speed the lookup process, when a peer Z is queried about the resource with key R, it uses the 
finger table to route the request to the node Z’ whose ID is numerically closet to the ID of key R. This 
process of routing will iterate until the node ZR that publishes the resource R is reached. Lastly the node 
ZR contacts the node Z (Miguel Castro, 2004) (I. Stoica, 2001). See Figure 6 for details.

Using scalable lookup for key location the lookup latency is reduced as the routing is one for the 
nodes that are numerically close in underlying network (I. Stoica, 2001).

When a new peer N wants to join the Chord network, first of all the hash function is used to calculate 
the hash value for the peer and its resources. Following to this calculation, it contacts the peer N’ that is 
already part of the Chord network, that will use its finger table to find the immediate successor N’’ for 
the node N. N’ will then return the ID of the successor N’’ for the new node N. Clearly, the predeces-
sor of the node N is old predecessor of N’’ and the predecessor for N’’ is the new node N. The finger 
table has to be up to date for the routing process to continue successfully and also to find the resource 
published by certain node. This process is schedules periodically through stabilization, where the nodes 
make checks about the entries in the table and their predecessors and successors. All new nodes are 
added in this process too. In case of removal of node N on the Chord network, it passes the keys that it 
has in its finger table to the successor N’ and informs the predecessor N’’ about the new successor N’ 
(Mordacchini, 2007) (I. Stoica, 2001).

Content Addressable Network – CAN

CAN (Sylvia Ratnasamy, 2001) uses the basic principle from Chord by mapping the peer’s key and the 
resources to a key space. The key space for the peers is seen as d-dimensional Cartesian space. This 
d-dimensional space is divided into all the available peers and each peer is responsible for all resources 
keys corresponding to points in its own Cartesian space. When a query is passed to the peer P, the query 



���  

Resource Discovery Using Mobile Agents

is translated into a d-dimensional space coordinate using the hash function that is used to place the keys 
in this space. If the peer P does not have any information about the requested coordinate, it passes the 
query to another node that is among its known nodes, and is geometrically close to the coordinate that 
is being searched. The process continues until the node that controls the zone to which searched item 
belong is reached (Paolo Trunfio, June 2007) (Sylvia Ratnasamy, 2001). See Figure 7 for details.

When the new node F wants to join the CAN network, it request randomly to a node E. The zone is 
then splitted into half assigned to the new node F. The routing table for the E and all the nodes in the 
routing table update their routing tables for this change. In case the node leaves the CAN network, it 
passes its region to the neighbour that splitted its space into half for this node. The update messages are 
also sent like Chord, to each of the neighbours reporting the zone coordinates, list of neighbours and 
their zone coordinates (Sylvia Ratnasamy, 2001).

Semantic Vector Space

Semantic vector space model is based on the Content Addressable Network – CAN that is based on 
distributed hashing table (S. Kang, 2007). CAN is used because of its support for d-dimensional space 
(Sylvia Ratnasamy, 2001). The resources are organised on their semantic vectors, that is, the more 
similar two resource’s semantics, the closer the location of resolver registered in space. Each resolver is 
assigned a distinct zone. Zones are split as new resolvers join the Cartesian space. The semantic vector 
for resources is based on the ontology tree, which means the coordinates that are closer in this Cartesian 
space are similar to each other (S. Kang, 2007). 

Figure 6. Scalable key location. When the node N8 is queried for the key id - 54, it uses the finger table 
in.the.Figure.5.to.locate.the.successor.that.is.numerically.closest.or.whose.ID.immediately.precedes.the.
key id - 54; i.e. the node N40. The node N40 uses its finger table route to N56 which has key K54. 

 

N56 

N47 

N40 
N36 

N34 

N23 

N19 

N8 

N1 



  ���

Resource Discovery Using Mobile Agents

The registration message for resource R1 is routed to resolver N8, that manages the zone including 
R1’s corresponding point PR1. When a query message for resource R2 with semantic distance dR2 is 
routed to N8 that is responsible for the zone containing R2’s corresponding coordinate PR2. In case N8 
leaves the network the query is routed through the neighbour (for example N7 or N9), as long as their 
zones intersect search region, the circle whose radius is dR2 from PR2 (S. Kang, 2007). See Figure 8. for 
details.

Hybrid Systems

The hybrid systems impose the resource placement and the nodes in the graph like structured networks 
(Mordacchini, 2007). However as opposed to structured networks, the routing table can suggest the 
routing of the query to any node that is part of the defined subspace (Miguel Castro, 2004) (Mordac-
chini, 2007) (M. Castro, 2003).

Pastry

Pastry (Druschel, 2001) also shares its working principles with Chord. Each peer is mapped to a 128 bit 
random ID also called as Node Identifier, NodeID. All the nodes are placed in order on the one dimen-
sional circle. Pastry node M maintains three tables for network and routing purposes; leaf set, routing 
table and neighbourhood set. The leaf set has L set of nodes, out of which mod(L)/2 number of nodes 
have nodeIDs less than and mod(L)/2, higher than that of nodeID of M. The routing table for nodeID of 
M contains one entry for each address assigned to it. These address blocks are calculated by recursively 
dividing the nodeID by b bits of length. Number of rows and columns for the routing table are given by 
log2bN and (2b-1) respectively. Each entry in row x and column y shares a prefix of length x with the 
present node. The x+1 digit of the node in row x is equal to the digit of the corresponding column y. The 
nodes in the neighbourhood set table are chosen based on the network proximity metric for example 

Figure.7..CAN.–.2.dimensional.space.partitioned.between.5.CAN.nodes.and.coordinate.space.after.F.
joined..If.dimension.d.=2,.then.the.available.keys.N.are.between.(0,0).and.(N1/2,.N1/2)..Hence.the.resource.
can.be.located.in.2*.N1/2.hops.
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Figure.9..Pastry.node.with.nodeID.10323201.and.b=2..The.shaded.cells.in.each.row.of.routing.table.
shows.the.corresponding.digit.of.the.present.node’s.nodeID..The.nodeIDs.in.each.entry.splits.recursively.
to show the common prefix with 10323201-next-digit-rest of the nodeID.
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Figure.8..CAN.based.semantic.vector.space.model.(S..Kang,.2007)
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finger table has to be up to date for the routing process to continue successfully and also to find the resource published by certain
node. This process is schedules periodically through stabilization, where the nodes make checks about the entries in the table and
their predecessors and successors. All new nodes are added in this process too. In case of removal of node N on the Chord 
network, it passes the keys that it has in its finger table to the successor N’ and informs the predecessor N’’ about the new 
successor N’ (Mordacchini, 2007) (I. Stoica, 2001). 
2) Content.Addressable.Network.–.CAN.

CAN (Sylvia Ratnasamy, 2001) uses the basic principle from Chord by mapping the peer’s key and the resources to a key 
space. The key space for the peers is seen as d-dimensional Cartesian space. This d-dimensional space is divided into all the 
available peers and each peer is responsible for all resources keys corresponding to points in its own Cartesian space. When a 
query is passed to the peer P, the query is translated into a d-dimensional space coordinate using the hash function that is used to 
place the keys in this space. If the peer P does not have any information about the requested coordinate, it passes the query to
another node that is among its known nodes, and is geometrically close to the coordinate that is being searched. The process 
continues until the node that controls the zone to which searched item belong is reached (Paolo Trunfio, June 2007) (Sylvia 
Ratnasamy, 2001). See Fig.7. for details. 

Fig. 7. CAN – 2 dimensional space partitioned between 5 CAN nodes and coordinate space after F joined. If dimension d =2, then the
available keys N are between (0,0) and (N1/2,N1/2). Hence the resource can be located in 2* N1/2 hops.

When the new node F wants to join the CAN network, it request randomly to a node P. The zone is then splitted into half 
assigned to the new node F. The routing table for the P and all the nodes in the routing table update their routing tables for this 
change. In case the node leaves the CAN network, it passes its region to the neighbour that splitted its space into half for this
node. The update messages are also sent like Chord, to each of the neighbours reporting the zone coordinates, list of neighbours
and their zone coordinates (Sylvia Ratnasamy, 2001). 

3) Semantic.Vector.Space.
Semantic vector space model is based on the Content Addressable Network – CAN that is based on distributed hashing table 

(S. Kang, 2007). CAN is used because of its support for d-dimensional space (Sylvia Ratnasamy, 2001).  The resources are 
organised on their semantic vectors, that is, the more similar two resource’s semantics, the closer the location of resolver 
registered in space. Each resolver is assigned a distinct zone. Zones are split as new resolvers join the Cartesian space. The 
semantic vector for resources is based on the ontology tree, which means the coordinates that are closer in this Cartesian space
are similar to each other (S. Kang, 2007).  

Fig.8. CAN based Semantic Vector Space Model. (S. Kang, 2007)
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the number of IP routing hops. If no node is known with suitable nodeID, then the routing table entry 
is left empty (Paolo Trunfio, June 2007) (Druschel, 2001). See Figure 9. for details.

Given a message, the node N first checks to see of the key K is within the range of keys in the leaf 
set. The node in the leaf set that is numerically closet to the key receives the message.  Else if the key 
is not within the range of leaf set then it passed on the routing table. The node than shares a common 
prefix with the key and at least one more digit is selected as destination node and the message is passed 
to this nodeID. In case the entry of such node is missing in routing table, the message is passed to the 
node that shares the common node that has prefix equal to N and is closer to Key K (Druschel, 2001).  
See Figure 10 for details.

In case node A wants to join the Pastry network, it connects to the node N that is already a part of 
this network. Node A receives a unique nodeID and asks N to route it to the correct zone of the one-
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Fig.10. The route taken based on the routing table in Figure 9 for finding nodeID-31323110 from nodeID-
10323201. The pseudo code shows the algorithm applied for finding the key D. Line 1-3 checks if the 
key.D.is.covered.by.the.leaf.set.±|L|/2,.if.so.the.message.is.forwarded.to.that.node.numerically.closest.
to key D. Line 4-9 checks the routing table for node that shares the prefix with key D and one more extra 
digit,.if.so.message.is.forwarded.to.that.nodeID..Line.10-15.informs.in.case.that.no.such.node.is.found.
in routing table the prefix of D is matched against current node and also numerically closer to key D.  
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dimensional circle. Node A initializes the table, when it reaches the node Z that is numerically closest 
to A, with nodes that it routed during this phase. Node A also initializes its leaf set with that of Z. The 
routing table for A is filled with first row that contains nodes that do not share prefix with A. The second 
row of the node A routing table contains the second node that it encountered when joining the network, 
and so on. Finally the updated state information about the table is sent to set of known nodes (Druschel, 
2001). See Figure 11 for details.

Mobile Agent System

The term agent has been widely used in different areas such as philosophy, linguistics, law, science, 
economics, and finance, with a distinct meaning in each of the areas. According to (YunYong Zhong, 
2003), in computer science, agent can be classified into Human agent, Hardware agent, and Software 
agent. Software agent is a piece of code or software which is supposed to know how to make decisions 
and cope with difficulties independently (Wooldridge, 2002). Agents are intelligent individuals that 
have the characteristics of autonomy, reactivity, communication, pro-activity / goal oriented learn-
ing/adaptation, cooperation, coordination etc. In key areas of computer science such as web services, 
semantic grid and network security, agent technology has either been proved or is expected to improve 
the system performance and intelligence.

Software agent can be further classified according to the functions, attributes, and special types, as 
Figure 12 shows.
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Figure 12. Software agent classification (YunYong Zhong, 2003)  
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Figure.11..The.route.taken.for.inserting.the.new.node.d46a1c..The.new.node.contacts.a.known.node.of.
Pastry.network;.65a1fc.that.routes.the.request.to.the.node.that.is.closest.numerically.to.the.request.node.
with one prefix matching d. This nodes routes in to the node d4213f with two matching prefixes and so 
on.until.the.requested.node.is.ordered.in.one.dimensional.circle.

 

 

The following merits make mobile agents in particular suitable for resource discovery (Dunne, 
2001): 

• Asynchronous: After a mobile agent is dispatched, there is no need for the source peer to keep an 
eye on the mobile agent. The thread can be completely released. The original peer does not even 
need to remain connected to the network. The mobile agent will perform the given tasks completely 
in parallel with the original peer as a separate thread. After all of the tasks have been fulfilled, the 
mobile agent will return to the original peer (when it is connected to the network).

• Autonomous: The mobile agents decide the travel route as it progresses through the network. When 
a mobile agent is in a network peer, it is able to choose the next stop according to the network 
conditions it is learnt about, and the history of the visited peers and the current peer. Mobile agents 
may also visit peers that were unknown when it was originally dispatched, which in particular 
suits network based resource discovery. 



  ���

Resource Discovery Using Mobile Agents

• Information is being disseminated: Both the peer that a mobile agent visits and the mobile agent 
itself will benefit from accepting the mobile agent as they may receive either new or more recent 
information about resources. Although this accepting and hosting mobile agents results in the 
consumption of physical resources such as the computing resources and memory, it is manageable 
by the peer as the peer can easily refuse further requests to accept mobile agents when the physical 
resources become critical. 

• Tasks are being performed in parallel: Tasks can be easily divided into sub-tasks and be performed 
by multi-mobile agents. Mobile agents may easily be cloned and dispatched in different directions, 
which allows them to function in parallel and thereby result in the earlier completion of work.

• Fault tolerant: Even if one mobile agent is destroyed by mistake or in purpose, all surviving ones 
will still have a positive impact. And the destroyed ones will have benefited every peer up to the 
point where they were destroyed. 

• Compatibility: Agent based systems can be combined with successful features from other resource 
discovery systems.

The followings are the available architecture standard for mobile agent systems (Schoeman, 2003):
Foundation for Intelligent Physical Agent (FIPA) standard FIPA is the standards organization for 

agents and multi-agent systems who promotes agent-based technology and the interoperability of its 
standards with other technologies (Vieira, 2001). A collection of specifications have been provided, which 
are intended to promote the interoperation of heterogeneous agents and the services they represents. 
However these specifications are focussed on agent communication languages, agent management, 
message transport and the support for the use of ontologies in general. Many features that are specific 
to mobile agents are excluded from FIPA (Vieira, 2001).

Mobile Agent System Interoperability Facility (MASIF) standard OMG organization defined a stan-
dard named as MAF (later on changed to MASIF), which is aimed at promoting the interoperability 
of JAVA based mobile agent systems developed by different vendors (YunYong Zhong, 2003). MASIF 
presents a set of definitions and interoperable interfaces for mobile agent systems. The MAFAgentSys-
tem interface and the MAFFinder interface are the two primary ones which are designed towards the 
following interoperability concerns (Schoeman, 2003): (1) management of agent, including creation, 
suspension, resumption and termination; (2) commonly accepted mobility infrastructure that enabling 
the communications between different mobile agent systems and the transport of mobile agents; (3) a 
standardised syntax and semantics for naming services; and (4) a standardised location syntax for finding 
agents. MASIF also excludes the following important architectural components in its standardisation 
attempts (Schoeman, 2003): (1) it only addresses interoperability between agent systems written in Java, 
thus brings the obstacle of the interoperability between non-java based systems and MASIF compliant 
systems; (2) it does not address local agent operations such as agent interpretation and execution; (3) some 
conventional issues of inter-agent communication are excluded (Dejan Milojicic, August 25, 2006). 

The followings are the most popular mobile agent platforms (Schoeman, 2003): 
Voyager (Voyager) is a commercial mobile agent platform supporting dynamic aggregation feature. 

The basic idea behind Voyager and dynamic aggregation feature is to reuse existing java classes and 
make objects of such classes mobile by means of incorporating those objects as its attachments (known 
as facets) and move from one site to another hence moving those objects with itself. The objects will 
retain their internal state upon moving from one host to another (Johnny Wong, 2001).
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Figure.13..The.SMART.architecture.(Johnny.Wong,.2001)
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Voyager and dynamic aggregation feature is to reuse existing java classes and make objects of such classes mobile by means of 
incorporating those objects as its attachments (known as facets) and move from one site to another hence moving those objects 
with itself. The objects will retain their internal state upon moving from one host to another (Johnny Wong, 2001). 

Scalable Mobile and Reliable Technology (SMART) SMART (Johnny Wong, 2001) is a MASIF specification compliant 
client-server based mobile agent platform. As Fig.1.3 shows, there are four main components in smart architecture (Johnny 
Wong, 2001): Region administrator, which uses a finder model to provide naming services to the region administrator and also to
the agent system; Agent system, enables mobile agents to create, migrate and destroy themselves; Place, forms the execution 
environment; and Agent proxy, provides the mobile agent API for applications written in SMART. 

D’Agents (Robert S. Gray) is a general purpose mobile agent system which was developed to support distributed information 
retrieval and to support for strong mobility and multi-agent languages. Using D’Agent, several information-retrieval 
applications, ranging from searching three-dimensional drawings of mechanical parts for a needed part to supporting the 
operational needs of a platoon of soldiers have been implemented. The architecture of D’Agent is shown in Fig.14. TCP/IP is 
used to provide transport mechanism. Server layer is a multi-threaded process and runs multiple mobile agents as threads inside a 
single process. The Generic C/C++ core layer holds shared C++ libraries used by agent threads. The upper layer provides the 
execution environment for Java, Tcl, or Scheme. The agents themselves are defined on the top layer (Schoeman, 2003).  

Fig.14, The D’Agent Architecture

Grasshopper is an OMG MASIF and FIPA-conformant agent platform, which consists of a Distributed Agent Environment 
(DAE) and a Distributed Processing Environment, as Fig.15. shows.  

Fig.13. The SMART Architecture (Johnny Wong, 2001)
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Scalable Mobile and Reliable Technology (SMART) SMART (Johnny Wong, 2001) is a MASIF 
specification compliant client-server based mobile agent platform. As Figure 13 shows, there are four 
main components in smart architecture (Johnny Wong, 2001): Region administrator, which uses a finder 
model to provide naming services to the region administrator and also to the agent system; Agent system, 
enables mobile agents to create, migrate and destroy themselves; Place, forms the execution environ-
ment; and Agent proxy, provides the mobile agent API for applications written in SMART.

D’Agents (Robert S. Gray) is a general purpose mobile agent system which was developed to support 
distributed information retrieval and to support for strong mobility and multi-agent languages. Using 
D’Agent, several information-retrieval applications, ranging from searching three-dimensional draw-
ings of mechanical parts for a needed part to supporting the operational needs of a platoon of soldiers 
have been implemented. The architecture of D’Agent is shown in Figure 14 TCP/IP is used to provide 
transport mechanism. Server layer is a multi-threaded process and runs multiple mobile agents as threads 
inside a single process. The Generic C/C++ core layer holds shared C++ libraries used by agent threads. 
The upper layer provides the execution environment for Java, Tcl, or Scheme. The agents themselves 
are defined on the top layer (Schoeman, 2003). 

Grasshopper is an OMG MASIF and FIPA-conformant agent platform, which consists of a Distributed 
Agent Environment (DAE) and a Distributed Processing Environment, as Figure 15 shows. 

A host in the distributed agent environment include an agency that has access to the services includ-
ing execution, transport, management, communication, security, naming mechanism, adapter interfaces 
for external hardware/software, task control functions, and application-specific GUIs (Schoeman, 2003). 
The distributed processing environment is composed of following components: Regions, facilitates the 
management of the distributed components (agencies, places, and agents) in the Grasshopper environ-
ment; Places, provides a logical grouping of functionality inside an agency; Agencies, as well as their 
places can be associated with a specific region by registering them within the accompanying region 
registry; and Different types of agents – mobile agents and stationary agents.  Mobile agents move from 
one platform to another, whereas stationary agents reside on one platform permanently (Grasshopper 
Mobile Agent Platform). 



  ���

Resource Discovery Using Mobile Agents

Aglets (Aglet) is a well known java based mobile agent platform, which contains libraries for devel-
oping mobile agent based applications. As Figure 16 shows, Aglets’ architecture consists of two layers: 
Runtime layer, consists of a core framework and sub-components to provide services such as serializa-
tion/de-serialization, class loading and transfer, reference management and garbage collection, persis-
tence management, maintenance of byte code, and protecting hosts and agents from malicious entities; 
and Communication layer, defines the methods for creating and transferring agents, and tracking and 
managing agents in an agent-system-and-protocol-independent way (Schoeman, 2003).

The detailed features of existing mobile agent platforms are shown in Table 1. 

Peer Discovery Algorithm using Mobile Agent

This algorithm is hybrid algorithm that uses some of the techniques from unstructured and other from 
structured resource discovery. The set of nodes N are connected to each other using graph. The heu-
ristics for node are defined as graph G =(V,E), where V is set of nodes in G and E is the set of edges 
that are available for the mobile agent.  Each node is identified using its nodeID based in the 128 bit IP 
address assigned to it. Each node publishes its resource as semantic information formally as ontology 
(S. Ding, 2005).  

Figure.14..The.D’Agent.architecture.
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Voyager and dynamic aggregation feature is to reuse existing java classes and make objects of such classes mobile by means of 
incorporating those objects as its attachments (known as facets) and move from one site to another hence moving those objects 
with itself. The objects will retain their internal state upon moving from one host to another (Johnny Wong, 2001). 

Scalable Mobile and Reliable Technology (SMART) SMART (Johnny Wong, 2001) is a MASIF specification compliant 
client-server based mobile agent platform. As Fig.1.3 shows, there are four main components in smart architecture (Johnny 
Wong, 2001): Region administrator, which uses a finder model to provide naming services to the region administrator and also to
the agent system; Agent system, enables mobile agents to create, migrate and destroy themselves; Place, forms the execution 
environment; and Agent proxy, provides the mobile agent API for applications written in SMART. 

D’Agents (Robert S. Gray) is a general purpose mobile agent system which was developed to support distributed information 
retrieval and to support for strong mobility and multi-agent languages. Using D’Agent, several information-retrieval 
applications, ranging from searching three-dimensional drawings of mechanical parts for a needed part to supporting the 
operational needs of a platoon of soldiers have been implemented. The architecture of D’Agent is shown in Fig.14. TCP/IP is 
used to provide transport mechanism. Server layer is a multi-threaded process and runs multiple mobile agents as threads inside a 
single process. The Generic C/C++ core layer holds shared C++ libraries used by agent threads. The upper layer provides the 
execution environment for Java, Tcl, or Scheme. The agents themselves are defined on the top layer (Schoeman, 2003).  

Fig.14, The D’Agent Architecture

Grasshopper is an OMG MASIF and FIPA-conformant agent platform, which consists of a Distributed Agent Environment 
(DAE) and a Distributed Processing Environment, as Fig.15. shows.  

Fig.13. The SMART Architecture (Johnny Wong, 2001)
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Fig.15, The simplified version of Grasshopper Architecture. The basic services include MASIF and Core Services. MASIF includes agent
creation, destruction, suspend, activate and location services and Core services include agent execution, transport, management,
communication, security and naming. The enhanced services include APIs, GUIs and task control features.

A host in the distributed agent environment include an agency that has access to the services including execution, transport, 
management, communication, security, naming mechanism, adapter interfaces for external hardware/software, task control 
functions, and application-specific GUIs (Schoeman, 2003). The distributed processing environment is composed of following 
components: Regions, facilitates the management of the distributed components (agencies, places, and agents) in the 
Grasshopper environment; Places, provides a logical grouping of functionality inside an agency; Agencies, as well as their places 
can be associated with a specific region by registering them within the accompanying region registry; and Different types of 
agents – mobile agents and stationary agents.  Mobile agents move from one platform to another, whereas stationary agents 
reside on one platform permanently (Grasshopper Mobile Agent Platform).  

Aglets (Aglet) is a well known java based mobile agent platform, which contains libraries for developing mobile agent based 
applications. As Fig.16. shows, Aglets’ architecture consists of two layers: Runtime layer, consists of a core framework and sub-
components to provide services such as serialization/de-serialization, class loading and transfer, reference management and 
garbage collection, persistence management, maintenance of byte code, and protecting hosts and agents from malicious entities; 
and Communication layer, defines the methods for creating and transferring agents, and tracking and managing agents in an 
agent-system-and-protocol-independent way (Schoeman, 2003). 

The detailed features of existing mobile agent platforms are shown in Table 1.  
1) Peer.Discovery.Algorithm.using.Mobile.Agent.

This algorithm is hybrid algorithm that uses some of the techniques from unstructured and other from structured resource 
discovery. The set of nodes N are connected to each other using graph. The heuristics for node are defined as graph G =(V,E), 
where V is set of nodes in G and E is the set of edges that are available for the mobile agent.  Each node is identified using its
nodeID based in the 128 bit IP address assigned to it. Each node publishes its resource as semantic information formally as 
ontology (S. Ding, 2005).   

Each node X is provided the hypothetical set of ±5 IP addresses (I), which are numerically close to the IP address of the node 
X. When the query Q is presented to the node X, an attempt is made to contact the nodes I. The two nodes that reply in earliest
possible time are chosen for querying by the mobile agent A1 and A2, about the semantic information they publish and the 
matchmaking algorithm is applied. Each agent is assigned a TTL, when the node is captured by agents, TTL is reduced by one. 
This process iterates until the TTL is reduced to zero. The replies from other prospective nodes that have delayed reply are 
nullified. The neighbourhood table is updated with the state of captured nodes. The next hop for the agent is done based on the
set nodes I on node X that are free. The central repository on node X ensures that latency is minimal and network saturation is
kept to minimal. This process iterates until the TTL has dropped to zero or all the set of nodes available have been exhausted (M. 
Singh, 2006). The most important decisions that are outcome of this resource discovery algorithm are as follows: 

• Those nodes that are online and have server host and fall in the category of search query. 

Fig.16. The Aglets Architecture (Schoeman, 2003)
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Each node X is provided the hypothetical set of ±5 IP addresses (I), which are numerically close 
to the IP address of the node X. When the query Q is presented to the node X, an attempt is made to 
contact the nodes I. The two nodes that reply in earliest possible time are chosen for querying by the 
mobile agent A1 and A2, about the semantic information they publish and the matchmaking algorithm 
is applied. Each agent is assigned a TTL, when the node is captured by agents, TTL is reduced by one. 
This process iterates until the TTL is reduced to zero. The replies from other prospective nodes that 
have delayed reply are nullified. The neighbourhood table is updated with the state of captured nodes. 
The next hop for the agent is done based on the set nodes I on node X that are free. The central reposi-
tory on node X ensures that latency is minimal and network saturation is kept to minimal. This process 
iterates until the TTL has dropped to zero or all the set of nodes available have been exhausted (M. 
Singh, 2006). The most important decisions that are outcome of this resource discovery algorithm are 
as follows:

• Those nodes that are online and have server host and fall in the category of search query.
• Those nodes that are online and have server host, but not fall in the category of search query.
• Those  nodes that are online and have  no ontology server
• Those  nodes that  not online

Figure.16..The.Aglets.architecture.(Schoeman,.2003)
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Fig.15, The simplified version of Grasshopper Architecture. The basic services include MASIF and Core Services. MASIF includes agent
creation, destruction, suspend, activate and location services and Core services include agent execution, transport, management,
communication, security and naming. The enhanced services include APIs, GUIs and task control features.

A host in the distributed agent environment include an agency that has access to the services including execution, transport, 
management, communication, security, naming mechanism, adapter interfaces for external hardware/software, task control 
functions, and application-specific GUIs (Schoeman, 2003). The distributed processing environment is composed of following 
components: Regions, facilitates the management of the distributed components (agencies, places, and agents) in the 
Grasshopper environment; Places, provides a logical grouping of functionality inside an agency; Agencies, as well as their places 
can be associated with a specific region by registering them within the accompanying region registry; and Different types of 
agents – mobile agents and stationary agents.  Mobile agents move from one platform to another, whereas stationary agents 
reside on one platform permanently (Grasshopper Mobile Agent Platform).  

Aglets (Aglet) is a well known java based mobile agent platform, which contains libraries for developing mobile agent based 
applications. As Fig.16. shows, Aglets’ architecture consists of two layers: Runtime layer, consists of a core framework and sub-
components to provide services such as serialization/de-serialization, class loading and transfer, reference management and 
garbage collection, persistence management, maintenance of byte code, and protecting hosts and agents from malicious entities; 
and Communication layer, defines the methods for creating and transferring agents, and tracking and managing agents in an 
agent-system-and-protocol-independent way (Schoeman, 2003). 

The detailed features of existing mobile agent platforms are shown in Table 1.  
1) Peer.Discovery.Algorithm.using.Mobile.Agent.

This algorithm is hybrid algorithm that uses some of the techniques from unstructured and other from structured resource 
discovery. The set of nodes N are connected to each other using graph. The heuristics for node are defined as graph G =(V,E), 
where V is set of nodes in G and E is the set of edges that are available for the mobile agent.  Each node is identified using its
nodeID based in the 128 bit IP address assigned to it. Each node publishes its resource as semantic information formally as 
ontology (S. Ding, 2005).   

Each node X is provided the hypothetical set of ±5 IP addresses (I), which are numerically close to the IP address of the node 
X. When the query Q is presented to the node X, an attempt is made to contact the nodes I. The two nodes that reply in earliest
possible time are chosen for querying by the mobile agent A1 and A2, about the semantic information they publish and the 
matchmaking algorithm is applied. Each agent is assigned a TTL, when the node is captured by agents, TTL is reduced by one. 
This process iterates until the TTL is reduced to zero. The replies from other prospective nodes that have delayed reply are 
nullified. The neighbourhood table is updated with the state of captured nodes. The next hop for the agent is done based on the
set nodes I on node X that are free. The central repository on node X ensures that latency is minimal and network saturation is
kept to minimal. This process iterates until the TTL has dropped to zero or all the set of nodes available have been exhausted (M. 
Singh, 2006). The most important decisions that are outcome of this resource discovery algorithm are as follows: 

• Those nodes that are online and have server host and fall in the category of search query. 

Fig.16. The Aglets Architecture (Schoeman, 2003)

Agency 
Basic Services 

Enhanced Services 

Communication Channel 

Distributed Agent Environment 

Distributed Processing Environment 

Table.1..Comparative.table.for.P2P.based.systems.and.the.mobile.agent.system.

Number of Rounds Pointer Communication Connection
Communication

Payload

Structured and 
Unstructured Systems

Initial hypothetical 
number 

Every pointer is sent over 
edge during algorithm

There are at least initial 
rounds during which each 
node opens up connection 
with all hypothetical 
neighbors

Message based payload 
increased due to initial 
rounds

Mobile agent based Initial hypothetical
number

Pointer sent to only two 
nodes

There are at least two nodes 
that open connection

Minimal as the mobile 
agent is sent as package.
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For query 
Initialize set nodes I
 If I are in state “available”
  Issue to agent for querying
 Else
  Initializes I

Agent requesting for more nodes 
Find Sender S
 If repository contains an item I that has sender S
  Set item I as invaded
 Else
  Issue the set of items I’ from repository that have state available

The algorithm for the resource discovery using mobile agent suggested can be model as a non-au-
tonomous differential equation. The rate of depletion of nodes that are unknown is directly proportional 
to the mobile agent size which know the nodes and also to the size of unknown nodes and inversely 
proportional to the change in size of nodes (B. Kegan, 2005). If the factor β is used as constant then it 
can be expressed as

 (B. Kegan, 2005)       (1)

The rate of depletion of unknown nodes in equation 1 is inspired for logistic differential equation 
(B. Kegan, 2005).

The function can be plotted to shows that after time z a node becomes aware of almost all nodes 
in the network at that moment in time. However, the asymptotic behavior of this curve informs the 
unknown nodes may never know about the all known nodes as number of nodes is changing randomly. 
The actual time z and depletion factor – β can be found through simulations.

Findings from Various Algorithms

The structured systems perform better than unstructured systems with respect to scalability, as DHT 
has many advantages, such as scalability, load balancing, logarithmic hop routing, fault tolerance, and 
a self organizing nature. Although self-organizing works as the advantage but as each peer must peri-
odically update all its neighbours and hence result in increased traffic (C. Mastroianni, 2005).  When 
the nodes leave or join the network the updated index need to be redistributed and hence the tables 
need to restructure. Although, the nodes involves is this restructuring may be very few, however the 
periodic updates can sum up to significant traffic on network (Mordacchini, 2007). This is not the case 
in unstructured systems as node can leave or join the network without sending stabilization message. 
Unstructured systems have provided many strategies for reducing traffic like dynamic querying, rout-
ing indices, and super-peers architectures (Y. Chawthe, 2003). The structured systems have advantage 
over unstructured systems as these systems provide the ability to route the queries in very small number 
of hops. Both Chord and Pastry resolve the queries in O(log N), while CAN requires O(N1/d) steps, 



���  

Resource Discovery Using Mobile Agents

Table.2..Comparative.table.for.various.algorithms.

System Architecture Routing Load Balancing Periodic Updates

Centralized 
Systems

Not Pure P2P Query to Central Server No No

Decentralized 
Systems

P2P Flooding Super peers will 
index resources 
for peers with low 
bandwidth. And 
TTL

No

Chord Distributed Hash Table Finger  table Exchange of 
load between 
neighbours

Stabilization process

Content 
addressable 
network - CAN

Distributed Hash Table Calculation of coordinates 
in d-dimensional space for 
results that are intersecting 
with query.

Neighbour load 
exchange

Routing of updates 
periodically

Pastry Distributed Hash Table Leaf set, Routing table and 
Neighbourhood set

Leave and join 
protocol.

Stabilization Process

Matchmaking Semantic Based NA NA NA

Semantic Vector 
Space

Distributed Hash Table for 
Semantic Vectors

CAN Neighbuor 
informed about 
joining and leaving

Routing of updates 
periodically

Resource 
Discovery using 
MA

Centralized Repository for 
Mobile Agent  on parent 
node based Hash table

Mobile Agent, state of the 
hash table

No two agent will 
create traffic by 
visiting same node 
and in case of 
leaving the hash 
table is updated.

Hash table issues only the 
nodes that are free.

where N is number of nodes and d is number of dimensions in CAN.  As the peers and the resources 
are based on the hash function – key generated by the hash function is very specific (I. Stoica, 2001) 
(Sylvia Ratnasamy, 2001). As the queries may not be exact, some times it may be difficult to find the 
resource in the structured network (C. Mastroianni, 2005).

Both systems heavily rely on stationary agent. Stationary agents keep track of all resource discoveries. 
This will use the host computer resources and can potentially drain the local resources and may cause 
failure of host computer. The back bone of both approaches is P2P communication. P2P communication 
blurs the distinction between client and server computers. This can potentially saturate the network.  
Unstructured resource discovery - is a linear connection between computers where each computer 
(agent) knows the ping computer. Failure of any computer in the chain results to loss of all down stream 
resources. Furthermore, the issue of recoverability from failure in both architectures is very vulnerable 
against failure (Miguel Castro, 2004). 

Semantic information based resource discovery is more precise (Siderean Software, 2003) (S. Kang, 
2007). The SVS and Peer Resource Discovery are few agent based techniques using semantic infor-
mation in service description that should be applied to P2P networks. The mobile agents for resource 
discovery require lesser bandwidth (Schoeman, 2003). As opposed to the multiple interactions between 
peers, mobile agent tends to pack these interactions and send them as discrete piece of traffic. Also 
mobile agents are much smaller in size and grow dynamically as they accommodate more data (Schoe-
man, 2003). In structured or unstructured systems, the communication is synchronous which is not the 
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case with mobile agent which can encapsulate its state and carry on the execution on the different node 
asynchronously (Oshima, 1998). 

Table 3 summarizes the structured, unstructured and semantic based systems described above in 
terms of architecture, routing, load balancing, and periodic updates.

Sample Mobile Agent Based Resource Discovery System

The following system is illustrated to explain in a more intuitive way that how a resource discovery 
system functions using mobile agents. The system is fully implemented in Java.

Scenario 

The query word “academic” is search item that needs to found in the university network. This means the 
mobile agent must find the node in the network that provides “academic” ontology. For the experimental 
reasons 31 node in the research room are used. The client computer plays the role of the host computer 
or node 1. The 30 nodes are potential ontology providers. The 30 nodes are queried by the mobile agent 
to make them fall into one of the following categories: nodes with platform service installed and “aca-
demic” resource published, Nodes with platform installed and “philosophy” resource published, Nodes 
with platforms but no ontology resource, and Nodes with no platform at all.

System Architecture

The system level architecture diagram (Figure 17) illustrates the node 1 where the client requests for 
information about the certain query and passes it to the platform. To perform the search; the platform 
initializes the agent to perform the task of searching. The task of searching is done by the mobile agent 
by migrating from one node to the other. These nodes are proximity metric closer to node 1. Since two 
agents performing same task created from same mother node (node 1) can visit the same node, the 
knowledge base is kept centrally, hence making the redundancy of agent equal to zero. The centrally 
available repository also keeps the state of every node that has been visited the agents. Every time the 
agents migrate, the request for new set of nodes is passed to node 1, which ensures collection of resource 
heuristics and stopping agents to visit nodes that have been already visited by other agents for same 
query or take the reverse path.

Platform Level Architecture

The platform level architecture (Figure 18) shows the system components that provide platform support 
to the mobile agents. Each node that is part of the resource discovery network must have the platform 
service so that the agents can execute and perform the various tasks that are assigned to them by clients. 
In order to publish the resource the node will use the components of ontology support. Furthermore, for 
migration to other nodes the agent will use the migration support and the knowledge base pack. These 
components put together act as mobility pack, as they will provide essential knowledge to the agent for 
the next migration and will also serialize and de-serialize the state of the agent for migration. Another 
important component is that of persistence that is used in conjunction with migration support this will 
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Table.3..Comparative.table.for.various.algorithms.Table.3..The.features.of.mobile.agent.systems.(Robert.
S..Gray)

continued.on.following.page
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Table.3..continued.

enable collection of sensory information about physical movement and hence enabling the agent after 
migration is completed.

Class Diagram

Class diagram (Figure 19) provides the static view of the system. We feel that the figure is not very 
expressive because it does not show the agent communication faithfully. The location of the agent is 
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Figure.17..The.system.level.architecture

 

described in its relation to the host computer that is not shown in this diagram.  Although class diagram 
is informing the abstract view of the system, still we believe that this diagram is too generic because of 
its inadequacy to inform the relation between the service and itself from remote and local perspective. 
However, the class diagram shows the general relationship of two main components; Platform and the 
MA of MAS regardless of location of host or agent. There two component in the MAS. One is the plat-
form that provides host with functionality and the other is the Agent that offers the resource discovery 
functionality. In the following; first the classes that make platform will be discussed and then followed 
by the classes that make an agent.

Platform Classes

Ontology Interface 
An interface is a pure virtual class that defines the methods and the arguments to the methods that will 
be available in a class that implements it. These methods will however be implemented by separate class. 
The design has been chosen in such a way because the object needs to be available to remotely. Rather 
than making a copy of the implementation object in the receiving Java virtual machine, RMI passes 
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Figure.18..The.platform.level.architecture
.

 
Figure.19..The.class.diagram.
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a remote stub for a remote object. The stub acts as the local representative, or proxy, for the remote 
object and to the client as the remote reference. The client invokes a method on the local stub, which is 
responsible for carrying out the method invocation on the remote object (M. Singh, 2006).

OntologyImpl Class
This class is the implementation of the OntologyInterface. This class provide functionality such as mov-
ing the agent providing central repository for agents, communication facility for agent to registering, 
retrieving agent after migration and creating the mobile agent. This class acts as the control class for 
the platform as it is responsible for all the binding the platform with an IPAddress, publish the resource 
and also creation of hypothetical list of nodes (M. Singh, 2006).

Tree Class
This class is a utility class that can only be accessed OntologyInterface. The instance of this class acts 
as a repository that hold a list of neighbourhood nodes in form of their IP addresses. This class holds the 
IP addresses as a binary tree. Tree class at the beginning of the search contains a hypothetical list of the 
nodes and by the end of the search it holds an actual map of heuristics of where the resource may exist. 
The process of resource discovery is done by the mobile agent that undergoes the migration based on 
the hypothesis provided by this repository. The repository also acts as knowledge base that accumulates 
the knowledge gathered by the mobile agent. This class provide an essential knowledge to mobile agent 
and helps mobile agents to synchronise their behaviour to avoid duplication and redundancy. As the 
mobile agents progress into the unknown environment, they always consult the Tree class and update 
it with their finding (M. Singh, 2006).

IPGen Class
IPGen is another utility class that take an IP address as base and generates hypothetical nodes based on 
the current node’s IP. This class populates the Tree repository class (M. Singh, 2006).

CargoElement Class
This class is used for communication burst between agent and the platform (OntologyImpl). The infor-
mation is loaded to this object as single object or as an array and send back and forth between agent 
and OntologyImpl (M. Singh, 2006).

OntologyServer Class
This class is responsible to create an instance for implementation of the OntologyInterface and registers 
it to RMI registry (M. Singh, 2006).

FrontClient Class
This class is used to pass the query search to Agent. In other word this class will initiate the search (M. 
Singh, 2006).

OntologyMole
This class provides the semantic web category. When an agent arrived in particular host, it will read 
the ontology category from this class (M. Singh, 2006).
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Agent Classes

Agent Class
This threaded class is a main body of the agent component. It initializes other classes that belong to 
mobile agent components. It is responsible for communication with local and potential hosts. Agent is 
the owner of the segment of knowledge base and responsible for examining and updating it. Agent class 
is responsible for updating the central knowledge base (M. Singh, 2006).

AgentPassport Class
This class acts as identity provider for the Agent class. The persistence for agent’s state after the migra-
tion will be provided through this class. It helps agent to know who it is; what is its goal; where is it at 
any given time and where is the home node (M. Singh, 2006).

Sensor Class
It is synchronised thread class that act as a sensor to agent. It helps the agent to react to the host change 
and reinitiate the Agent. It reads the local node from the Agent passport and updates it with current 
location. If it senses the current location is changed it calls the agent and causes the agent to renew its 
database for search based on new location (current host IP) (M. Singh, 2006).

Mythread Class
This class asynchronously contacts the other nodes by searching for platform in the destination nodes. 
This class contacts the destination node and waits for the reply. Based on the reply and the waiting 
time this thread will inform the agent. The analogy of this class can done to the another sensory device 
that looks to a location and try to find the whether the location under investigation fall into the search 
category or not (M. Singh, 2006).

Sequence Diagram

The sequence diagram (Figure 20) illustrates the movement of the agent with respect to the internal 
functions. The query is passed by the user through the implemented method passquery of the ontolo-
gyimpl class. This initialises the agent that in turn creates the agent passport and changes the state 
of the sensor thread. The agent then requests for the set of trial IPs through getTrialIP() method. The 
ontologyimpl further request the tree repository for the IPs through getip() and initiate cargoelement 
object for storing the IPs. The agent then uses the IPs and pass them to mythread object that initiate the 
method bounce() on the remote object of the remote nodes (possibly resources). If the nodes exists, it 
returns a reply through the call() method to the mother node passed during bounce(). The agent then 
compares the results for time proximity metric and requests the ontology interface for transferring it 
to the remote node through transferme() method. The ontologyimpl object calls the remote method 
remotedownloadFile() on the remote object that is chosen based on the time proximity metric. Before 
migration the state of agent is written into the agent passport and the agent passport object is serialized. 
On the next node, sensor detects the change in IP address through localIP() method and reinitiates the 
agent with its state from the deserialized agent passport. Agent the informs the mother node about the 
state of the resource and requests for more trialIPs through getTrialIP() method. This whole process is 
iterated until the TTL for the migration reduces to zero.
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Figure.20..The.sequence.diagram.(M..Singh,.2006)>A book chapter template < 20

Fig.20. The Sequence Diagram (M. Singh, 2006)
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Figure.21..The.activity.diagram.(M..Singh,.2006)
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F. Activity.Diagram.

Fig.21. The Activity Diagram (M. Singh, 2006)
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Activity Diagram

The activity diagram (Figure 21) for the MAS system depicts a typical scenario where the ontology 
server is initialized as a service which provides the platform where the agent can perform its task. This 
service is available on the all the potential host. The agent is created at this stage, however it is not 
initialized. The list for the potential destination hosts is created after initialization of the service and 
this list is saved in the tree data structure. When the query is passed by the front end client, it is passed 
to the agent by the ontology server, which makes agent active. Agent passport that acts as the memory 
for the agent is created with this initialization. The sensor for the stimuli of movement is also created 
at this stage. Agent requests the ontology server for list of hosts that it needs to visit. The server loads 
this information as cargo (payload) object and passes it to the agent. Following to these initial steps, the 
agent starts its task of contacting potential host provided to it by the cargo object. Agent waits for reply 
from the potential remote host (for instance Host 1 in above figure). If the agent does not receive any 
reply in finite period of time, it stops listening to that host. However, if the reply is received, it requests 
the ontology server to transfer it to the remote host. When the agent is at the remote host, the sensor 
informs the agent about movement after comparing its information against the passport. This mobility 
is strong mobility as agent can suspend its activity at any time, has its memory and can reinitialize it 
self on the new host and continue from the state where it suspended its control on the last host.

System Evaluation

The scenario has been implemented and works in an efficient manner. The results for the resource 
discovery are good as there is reduction in the redundancy of visited nodes.  The authors are also ex-
perimenting with other resource discovery algorithms so as to have distributed knowledge base and 
having stabilisation process for periodic updates. This scenario describes how the mobile agent can be 
used for semantic data mining and resource discovery.

CONCLUSION

Using the mobile agent for resource discovery has advantage over the traditional approach. Mobile 
agents engage in gradual discovery process and respond to changing set of requirements. The mobile 
agents can change behaviour based upon the results of the inference process. When the agent needs 
detailed information about the system, the repository is used to dynamically provide based on the state 
of remote resources.
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ABSTRACT

The.rapid.advances.in.multimedia.capture,.storage.and.communication.technologies.and.capabilities.
have.ushered.an.era.of.unprecedented.growth.of.digital.media.content,.in.audio,.visual,.and.synthetic.
forms,.and.both.individually.and.commercially.produced...How.to.manage.these.data.to.make.them.
more.accessible.and.searchable.to.users.is.a.key.challenge.in.current.multimedia.computing.research..
In.this.chapter,.the.authors.discuss.the.problems.and.challenges.in.multimedia.data.management,.and.
review.the.state.of.the.art.in.data.structures.and.algorithms.for.multimedia.indexing,.media.feature.space.
management.and.organization,.and.applications.of.these.techniques.in.multimedia.data.management..

INTRODUCTION

The 21st century is unique in human history in the sense that the amount of information produced and 
consumed by human being is unprecedented, especial those in the digital media forms, e.g., audio, im-
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age, video, email, web pages. This trend of rapid growth of digital content is unrelenting, as indicated 
by the amount of pictures and video clips hosted by the popular online image and video repository 
websites, e.g., Flickr (http://flickr.com), Snapfish (http://snapfish.com) and Youtube (http://youtube.com), 
as well as the amount of image/video clips generated every day by thousands of TV stations, millions of 
surveillance cameras, and billions of digital cameras. Without an efficient data management system to 
give all these data structure, and therefore make them searchable, they will become much less useful. 
Fortunately, with the advances in electronics and computing technology, the hardware has made sig-
nificant advances in the past decade. Storage is getting larger and cheaper, roughly 1GB/$ for hard disk 
at this time, and the computing power available to both business and personal usage is unprecedented. 
Furthermore, the advances in networking technology makes distributed solution based on the sharing 
of storage and computing power available. 

Data management research has a long history and has produced effective solutions like relational 
database engine for tabular data management, inverted file for information retrieval. The multimedia 
data management shares a lot of common philosophy and solutions with the traditional data management. 
However, due to the nature of media data, there also exist unique challenges. In this chapter, we review 
the problem of multimedia data representation, and the data structure and algorithms for multimedia 
data indexing in Section II, we discuss the problem of “curse of dimensionality” and feature space 
modeling and processing in section III. In Section IV, we discuss randomized solutions in indexing and 
searching, and in Section V, we present an example solution for video retrieval. 

Multimedia Data Indexing and Management

Media data like images, video clips, audio clips are often represented by their.d-dimensional features, 
and each media object becomes a point in some feature space Rd. How to find a proper feature represen-
tation that captures necessary information for effective search and retrieval tasks is the active research 
topic in the multimedia analysis community. Industrial standard like MPEG-7 also captures the state of 
the art of image/video features and metrics for search and retrieval, including color, shape and texture 
features for images, as well as motion and camera features for video. 

The purpose of  multimedia data base system is to have structured storage and indexing such that  
the amount of I/O operations that load data into memory, and also the amount computation involved for 
a query request can be reduced and therefore achieving fast response time to end users. This is also a 
well studied field dates back to early days of computer science and with a rich set of tools and solutions. 
The multimedia data base present unique challenges in the sense that the typical feature data space 
dimensionality is high, and if this issue is not dealt with effectively, the retrieval performance of the 
traditional indexing and storage solutions degenerates quickly.

In this section, we discuss the multimedia data indexing and storage solutions, and the typical queries 
supported. The effect of dimensionality on retrieval performance is discussed in detail.

Multimedia Data Storage and Indexing Solutions 

A set of multimedia objects can be viewed as a collection of data points in some d-dimensional feature 
space Rd. The most naive solution of storage and indexing would be just store the data in sequential or-
der, e.g., timestamp of images, and allow sequential retrieval of data at query time. In fact, most people 



  ���

Multimedia Data Indexing

store their personal digital camera images this way. To locate a certain picture of interests, an exhaus-
tive image loading and examination have to be performed. This involves amount of I/O operation and 
computing (examination) in order of O(N), whereas N is the repository size.  More sophisticated users 
will create file folders according to, for example, year and month to give it a better structure to support 
search of images by date. This intuitive approach precisely reflects the essence of data storage and in-
dexing – to give the multimedia repository a hierarchical structure according to some key information 
(in this case, time stamp), such that the I/O and computation in searching can be reduced – instead of 
exhaustive search, people can look at folder timestamp and narrow the I/O to certain month, and then 
examine only images in certain folder. 

The basic structure of multimedia data base is a tree that represents the hierarchical partition of data 
set. Each tree node contains a subset of data points in repository, and each node has a key that defines 
the region of feature space that data points in this node reside. There are two types of nodes, leaf node, 
or data.node, which stores the actual data points and key values, while the non-leaf node, or directory.
node, stores key values and pointers to its child nodes.  At the top of structure is the root node, which 
is the entry point of the whole structure. In practice, each node is a basic I/O unit that resides in perma-
nent disk storage and need to be loaded into the memory for processing. The distance from root node 
to data node is called the height of the index, which roughly corresponds to the number of I/O opera-
tions needed to access the data page. The size of data node, i.e., number of data points M, will affect 
the computational complexity in feature matching for query processing.  An example is illustrated in 
Figure 1. Node 1 is the root node, nodes 2~7 are directory nodes, while nodes 8 ~ 15 are leaf or data 
nodes. To access data points in node 10, for example, the number of node I/O operation is 4, which 
is also the height of node 10. The design of index tree and the size of data and directory node need to 
consider the computer system hardware and OS limitations, as well as balance the time complexity in 
I/O and feature space computing. 

There are basically two approaches to create this tree structure, data partition based, which orga-
nize around data, and also feature  space partition based, which organize data based on the region it 
resides. Examples of data partition approaches include R-tree (Guttman, 1984) and variations, R*-tree 

Figure.1..Example.of.index.tree.structure
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(Beckmann, Kriegel &  Schneider, 1990), X-tree (Berchtold, Keim & Kriegel, 1996), while space par-
tition approaches include kd-tree (Robinson 1981) and variations. We will have a discussion of both 
approaches, and present a video index solution that combines elements of both approaches to achieve 
high performance in retrieval. 

Data Partition Based Approach

The basic idea of R-tree family of indexing solution is quite straightforward. Data points are represented 
by the axis parallel Minimum Bounding Rectangles (MBR), each MBR is the tightest rectangle ap-
proximation of data points, and therefore each surface of MBR must contain at least one data point. If 
not, this surface is not tight enough. Several MBRs can be combined to have a parent node with MBR 
encompassing all data points in child MBRs, and a hierarchical tree structure can be built as more data 
points are inserted into the repository. The key is to maintain a well behaving R-tree structure through 
a series of splits and merges of tree nodes to maintain the right balance of leaf node size and height. 

As the directory node MBRs of R-tree can be overlapping, this complicates the insertion and query 
processing process. Consider the example below, at the time of point insertion, the MBRs of a direc-
tory node with 2 child nodes are shown in Figure 2a. If the new data point belongs to either child node, 
it is inserted into that child node, as demonstrated in Figure 2c. If the new data point residing in the 
overlapped region, as shown in Figure 2b, it is then inserted into the node with the smallest volume. 
If the new data point does not belong to any child node, it is added to the child node such that the new 
child node has the smallest volume increment, as shown in Figure 2d. Notice that in cases (b) and (c), 
the MBR of child node with new insertion does not change, while in case (d), the MBR is enlarged. 

The insertion starts at root node, and progress until it reaches the leaf node. As leaf node data size 
grows with insertions, split need to be performed to prevent overflow. The heuristic of split is to create 
new child nodes with smallest volume possible, and there exist a number of algorithms with different 
complexity as discussed in (Gaede & Gunther, 1998) and (Beckmann et al, 1990). In summary R-tree 

Figure.2..R-Tree.insertion.example

(a) (b)

(c) (d)
 



  ���

Multimedia Data Indexing

approaches organizes around data and create hierarchical structures with overlapping MBRs that does 
not necessary complete in feature space, i.e., the union of leaf node MBRs may have holes in feature 
space. The process of insertion and split has an objective to create MBRs that are tight with data points 
and have small volumes. This will have implications in query processing that is discussed later. 

To minimizes the overlap of MBRs in R-tree, R*-tree is developed in (Beckmann et al, 1990). For the 
insertion operation criterion, in addition to minimum volume increase consideration, the increases in 
overlaps to the neighboring sibling MBRs are also minimized. The split of a node can also be avoided 
in some case by re-inserting certain portion of data points that reside far from the centroid of the MBR. 
This incurs a penalty in computation though. 

To completely avoid overlaps in MBRs, non-overlapping variations of R-tree solutions also exists. 
Examples include R+-tree (Stonebraker, Sellis & Hanson, 1986), whereas when an non-overlapping split 
is not possible, the child nodes are further cut up to avoid overlapping. X-tree  (Berchtold et al, 1996) 
also achieves non-overlap MBRs by creating super node for those that cannot have overlap free splits. 

Another interesting extension of R-tree approaches is to use sphere, instead, or in addition to the 
rectangles in representing data points in the index structure. This results in the SS-tree (White & Jain, 
1996) solution, which is sphere based, and SR-tree (Katayama & Satoh, 1997), which is a combination 
of sphere and rectangles. 

Space Partition Based Approach

Instead of organizing the index structure around data, the kd-tree family approaches build the indexing 
tree via a recursive partition of data space. In the simplest form, the d-dimensional feature space is first 
split along a chosen axis x1.at value v1, which is the medium value of projection of all data points onto 
axis x1.  This gives us a left-right child partition of the root node. The key value of (x1,.v1) is stored. This 
is a concise form of MBR description, which uses only a d-dimensional vector and an integer indicat-
ing which axis to split. Now the process is repeated for the feature spaces of the left and the right child, 
until desired leaf node height and data point size are achieved. The process is illustrated in Figure 3. 
After 3 splits, a height = 2 index tree is created. 

Notice that the MBRs of leaf nodes are non-overlapping and complete, as compared with the R-tree 
solution. This eliminates the ambiguity at insertion time as indicated in Figure 2. The re-split of leaf 
nodes to avoid overflow is also straightforward. The MBRs for kd-tree does not necessarily have a data 
point on each surface, though. This may become a penalty in nearest neighbor search, in which the 
minimum and maximum distance of an MBR to a query point need to be estimated. 

Multimedia Query Processing and the Curse of Dimensionality 

Traditional database systems typically support two types of queries, 1) point query, for a given key 
value, e.g., a date, find all images that were taken on that day, or, 2), range queries, find all pictures 
taken in August last year. Given the index structure discussed in Section A, processing of these types 
of queries is quite straight. For the given query key value, the data nodes are quickly located typically 
in time complexity of O(N). 
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However for multimedia data base applications, key values of image features are typically without any 
interpretable meaning, e.g., a color histogram vector, or energies in the wavelet filter bank decomposi-
tion of texture images. A more useful query type is the k-Nearest Neighbor (NN) queries that supports 
Query-by-Examples (QbE), and related ranking queries, where for a given query object, for example an 
image, a list of similar images are returned in order of relevance to the query image. 

For the given query point, q in Rd, and the database X with data points {x1, x2, …, xN}, the k-NN 
search problem is defined as,

(1) (2) ( ) (1) (2) ( ) ( )( , , ) { , , , | ( , ) ( , ) ( , ) ( , )}k k NkNN q X k x x x X d q x d q x d q x d q x= ∈ ≤ ≤ ≤ ≤ ≤     (1)

The distance metric function d(q, xj) is defined from the multimedia feature space.  Without an index structure, 
the complexity of k-NN search algorithm comprises of distance vector computing which has complexity O(N) 
and then a quick sort on the distances, which has complexity O(NlogN). Obviously with index structure, we 
have much richer information on the data distribution and organization, better time complexity can be 
achieved. 

The core idea of k-NN search with index structure is to limit the actual distance computation between 
query point and candidate data points. The MBR at each node gives an approximation of maximum 
and minimum distances w.r.t. the query point, and this can be exploited to prune the search and speed 
up the response. 

Let us consider the Nearest Neighbor (NN) search (1-NN search). In the case of kd-Tree index 
structure, with non-overlapping hierarchical partition of feature space, this can be achieved with the 
following algorithm. First, the leaf node where the query point resides is located by traversing down the 
kd-tree. This is a very fast process since it involves only scalar computing at each node and generally 
have a complexity of O(logN). Then the nearest point within the leaf node is computed, and the distance 
is stored. Is this the NN we are looking for? Not necessarily. Consider the example in Figure 4 below, 
which has the same kd-tree as in Figure 3.  The query point is located in leaf node R3, and the NN point 
and the distance is computed as dmin. Apparently, the true NN point is actually in leaf node R4. How to 
find the true NN without being exhaustive in search?  

The solution lies in computing the minimum distance possible from query point to other nodes’ 
MBRs. For a MBR defined by its lower and upper vector coordinates, v0 and v1, the minimum distance 
vector Dmin to a query point q is computed as, 

Figure.3..kd-Tree.example
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If query point resides inside a MBR, the Dmin is zero. The Dmin to MBRs R1, R2 and R4 are illustrated 
in Figure 4 as d1, d2, d4. Obviously, if the Dmin of a MBR is greater than the current dmin, which is the 
smallest distance achievable for all points inside, then this MBR can be pruned from the search. As 
shown in Figure 4, the algorithm will back track from leaf node up and examine the Dmin for all sibling 
nodes MBR along the way.  When examining sibling node R4, we notice that d4<dmin, therefore R4 can 
potentially have a better NN point. This is indeed the case, and the dmin is updated. When moving up to 
root node, the Dmin to R1 and R2 are all greater than dmin. The search is therefore over and the true NN 
is found. 

Generally the NN search with kd-tree stops after a few nodes are examined. The complexity is 
O(logN) for a kd-tree with N nodes. But there could be also cases where all nodes need to be examined, 
depending on the data point distribution. Theoretical analysis and empirical results of NN search per-
formance with kd-tree can be found in (Moore 1991). 

For the R-tree family indexing structure, the NN search algorithm is very similar in spirit. The RKV 
algorithm reported in (Roussopoulos, Kelley & Vincent, 1995) and improvements in (Cheung & Fu, 
1998) all operate in a similar fashion as the NN search with kd-tree outlined. When searching a node, 
all child node MBRs are sorted according to the potential of having a better NN candidates. This can 
be computed as sorting by the Dmin, or a combination of Dmin with other metrics. For real applications, 
heuristics like a good guess of initial dmin can also be used to cut down the amount of search. 

For multimedia database applications, the feature space dimensionalities are typically high. The 
high-dimensional geometry is different from the lower dimensional intuitions we have and this may 
have unexpected consequences for indexing and NN searches (Bohm, Berchtold, & Keim, 2001). First 
consider the volume distribution in high dimensional space. The volume of a sphere or cube grows 
exponentially with dimension d, this also means that more and more volume of a given size sphere or 
cube will concentrate on the surface. This is illustrated for the cube case. The portion of cubic volume 
as the function of surface crust depth.z is plotted in Figure 5a. Note that as the dimension d grows, 

Figure.4..NN.search.with.kd-tree
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larger portion of cubic volume will concentrate in a thinner crust on the surface. This effect has coun-
ter-intuitive impact on the indexing schemes and NN searches. For example, if we have a fixed height 
kd-tree, then the number of splits from the root to the leaf node is h. Assume that data has uniformly 
marginal distributions, and every axis is likely to be split equally, then as the dimension d goes up, the 
average number of splits per dimension goes down as h/d. This gives us a very coarse partition of the 
data along each axis. 

The effect of high dimension on queries is also significant. Considering the range query, to cover 
the same portion of volume of the whole data space, the range radius has to grow exponentially and 
eventually reach the surface of data space. This is because of the concentration of volume to the surface. 
For an unit d-dimensional cube data space [0 1]d, a cube of side 0.5 anchored at the origin can cover 1/4 
of volume when d=2. But to cover the same volume in d=16, 64 and 128 dimensional spaces, the cubic 
side has to grow to 0.918, 0.979 and 0.990, respectively.  

The effect of high dimension on NN search is even more interesting. It is established in (Beyer, 
Goldstein, Ramakrishnan & Shaft, 1999) that in the high dimensional space, the distance between query 
point and the NN point, dmin, converges with the distance between the query point and the fartherest 
point, dmax, under certain conditions. This means that a small change in query point will leads to totally 

Figure.5..High.dimensional.space.volume.distributionChpt 4: Multimedia Data Indexing 6
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distance between the query point and the fartherest point, dmax, under certain conditions. This means that a small change in query 
point will leads to totally different NN point returns. This is proved in (Beyer et al, 1999) by arguing that a small increase of
hyper-sphere radius to (1+ ε )dmin, will actually encompass all data points including the one with distance dmax to query point, for 
any given ε , if dimension d is high enough, 

1})1(Pr{lim minmax =+≤
∞→

dd
d

ε (2.3) 

An intuitive understanding of this result can actually derive from the volume concentration along the surface as indicated in 
Figure 5a. As dimensionality is high, the ε –thin sphere surface actually has a very large volume that can eventually encompass 
all data points. Detailed proof and discussions can be found in (Beyer et al, 1999). 
 From the discussion we know that the aforementioned indexing and query processing techniques suffer performance 
degradation as feature space dimensionality grows large. The solution to deal with this “curse of dimensionality” is either though 
better feature space modeling, which will be discussed in Section III, or through approximate solutions as will be discussed in
Section IV.  

III. SUBSPACE MODELING AND DIMENSIONALITY REDUCTION 

In computer vision and pattern recognition fields, the sensory inputs, such as images and videos, are often viewed as high-
dimensional data with large percent of dimensionality redundancy. In practice, feature extraction is in great demand owing to the 
fact that the effective information often lies in a lower-dimensional feature space. To process those data for the purpose of 
management, feature extraction and dimensionality reduction is becoming fairly important (Yan et al, 2007),  (Fu, Yan & Huang, 
2008b), (Fu, Li, Huang & Katsaggelos, 2008).  

Reflected in the theoretical domain, feature extraction and dimensionality reduction are often intertwined and realized by 
machine learning tools. A significant obstacle for the implementation of such approaches is the curse of dimensionality. The 
expression “curse of dimensionality” in statistics is to describe the problem caused by the exponential increase in volume 
associated with adding extra dimensions to a sample space (Bellman, 1961). This phenomenon directly complicates many real-
world problems, which means limited number of training samples can not be sufficiently used to estimate the infinite distribution
in a high-dimensional feature space. Moreover, the performance of a parametric model can be negatively affected in the small-
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any given ε , if dimension d is high enough, 

1})1(Pr{lim minmax =+≤
∞→

dd
d

ε (2.3) 

An intuitive understanding of this result can actually derive from the volume concentration along the surface as indicated in 
Figure 5a. As dimensionality is high, the ε –thin sphere surface actually has a very large volume that can eventually encompass 
all data points. Detailed proof and discussions can be found in (Beyer et al, 1999). 
 From the discussion we know that the aforementioned indexing and query processing techniques suffer performance 
degradation as feature space dimensionality grows large. The solution to deal with this “curse of dimensionality” is either though 
better feature space modeling, which will be discussed in Section III, or through approximate solutions as will be discussed in
Section IV.  

III. SUBSPACE MODELING AND DIMENSIONALITY REDUCTION 

In computer vision and pattern recognition fields, the sensory inputs, such as images and videos, are often viewed as high-
dimensional data with large percent of dimensionality redundancy. In practice, feature extraction is in great demand owing to the 
fact that the effective information often lies in a lower-dimensional feature space. To process those data for the purpose of 
management, feature extraction and dimensionality reduction is becoming fairly important (Yan et al, 2007),  (Fu, Yan & Huang, 
2008b), (Fu, Li, Huang & Katsaggelos, 2008).  

Reflected in the theoretical domain, feature extraction and dimensionality reduction are often intertwined and realized by 
machine learning tools. A significant obstacle for the implementation of such approaches is the curse of dimensionality. The 
expression “curse of dimensionality” in statistics is to describe the problem caused by the exponential increase in volume 
associated with adding extra dimensions to a sample space (Bellman, 1961). This phenomenon directly complicates many real-
world problems, which means limited number of training samples can not be sufficiently used to estimate the infinite distribution
in a high-dimensional feature space. Moreover, the performance of a parametric model can be negatively affected in the small-
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different NN point returns. This is proved in (Beyer et al, 1999) by arguing that a small increase of 
hyper-sphere radius to (1+ε)dmin, will actually encompass all data points including the one with distance 
dmax to query point, for any given ε, if dimension d is large enough,

max minlim Pr{ (1 ) } 1
d

d d
→∞

≤ + = .         (3)

An intuitive understanding of this result can actually derive from the volume concentration along 
the surface as indicated in Figure 5a. As dimensionality is high, the ε–thin sphere surface actually has 
a very large volume that can eventually encompass all data points. Detailed proof and discussions can 
be found in (Beyer et al, 1999).

From the discussion we know that the aforementioned indexing and query processing techniques 
suffer performance degradation as feature space dimensionality grows large. The solution to deal with 
this “curse of dimensionality” is either through better feature space modeling, which will be discussed 
in Section III, or through approximate solutions as will be discussed in Section IV. 

Subspace Modeling and Dimensionality Reduction

In computer vision and pattern recognition fields, the sensory inputs, such as images and videos, are 
often viewed as high-dimensional data with large percent of dimensionality redundancy. In practice, 
feature extraction is in great demand owing to the fact that the effective information often lies in a lower-
dimensional feature space. To process those data for the purpose of management, feature extraction and 
dimensionality reduction is becoming fairly important (Yan et al, 2007),  (Fu, Yan & Huang, 2008b), 
(Fu, Li, Huang & Katsaggelos, 2008). 

Reflected in the theoretical domain, feature extraction and dimensionality reduction are often 
intertwined and realized by machine learning tools. A significant obstacle for the implementation of 
such approaches is the curse of dimensionality. The expression “curse of dimensionality” in statistics 
is to describe the problem caused by the exponential increase in volume associated with adding extra 
dimensions to a sample space (Bellman, 1961). This phenomenon directly complicates many real-world 
problems, which means limited number of training samples can not be sufficiently used to estimate the 
infinite distribution in a high-dimensional feature space. Moreover, the performance of a parametric 
model can be negatively affected in the small-sample case when the sample dimension is high (Fu, Yan  
& Huang, 2008a),  (Fu, Yan & Huang, 2008b).

Subspace learning is a prevalent tool for feature extraction (Fu, Li, Yuan, Wu & Huang, 2008), 
especially for high-dimensional data feature extraction. A large family of subspace learning methods 
has been proposed in the last several decades motivated by different learning strategy: parametric or 
nonparametric.

Motivation: Parametric vs. Nonparametric Learning

Subspace learning can be performed by starting from either parametric or nonparametric model. 
The basic idea of parametric model is using a parameterized family of probability distributions to 

describe the nature of a set of data (Moghaddam & Pentland, 1997). In this case, the data distribu-
tion is empirically assumed or estimated. The subspace learning is conducted by measuring a set of 
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fixed parameters, such as mean and variance. This method is effective for the large-sample case when 
the training data is statistically sufficient. The basic theory can be self-contained with a probabilistic 
explanation. However, for the small-sample and high-dimensionality case which is more often in real-
world, such kind of methods can degrade the performance due to the statistical insufficient. Moreover, 
for complicated data distribution, those methods may suffer from the high computational cost or model 
complexity since the parameter space has uncontrollable high dimensionality. Model selection is a dif-
ficult task since over-fitting and under-fitting may happen quite often. The representative methods can be 
Principal Component Analysis (PCA) (Turk & Pentland, 1991) and Linear Discriminant Analysis (LDA) 
(Belhumeur, Hepanha & Kriegman, 1997) which assume the Gaussian distribution for the data space.

The nonparametric model is distribution free as it does not rely on assumptions that the data are drawn 
from a given probability distribution (Li, Liu, Lin & Tang, 2005). In this case, the subspace learning is 
conducted by measuring the pair-wise data relationship in both global and local manners. This method 
is effective and robust due to the reliance on fewer assumptions and parameters. It especially works 
for small-sample and high-dimensionality case. For the complicated data distribution, this method can 
effectively capture the intrinsic manifold structure and model the nature of data. However, it may also 
suffer from the high computational cost for the large-sample case since the computational complexity 
is proportional to the second power of the number of training data. This method may also introduce 
parameters, such as the neighborhood size and distance metric for the measurement of local pair-wise 
data relationship. The representative methods can be Locally Linear Embedding (LLE) (Roweis & 
Saul, 2000) and ISOMAP (Tenenbaum, Silva & Langford, 2000), which assume the existence of low-
dimensional manifold embedded in the data space. 

Graph-Based Model

As summarized in Graph Embedding (Yan et al, 2007), most dimensionality reduction algorithms, in 
either parametric or nonparametric learning, can be unified into a general framework. Assume that 
the training set is represented as matrix form X = [x1, x2, …, xn], where xi.∈ ℜD and n is the number of 
training data. The corresponding class label of xi is denoted as li ∈ {1, …, nc}, where nc is the number of 
classes. The corresponding low-dimensional representation set is represented as matrix form Y = [y1, 
y2, …, yn], where yi.∈ ℜd (d.< D).

Let G = {X, S} be an undirected weighted graph with vertex set X and similarity matrix S ∈ ℜn×n. 
Each element of the real symmetric matrix S measures the similarity between a pair of vertices. For a 

Figure.6..Graph-based.model.(originally.shown.in.(Fu,.2008))..LLE.and.its.linear.form.LEA.
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specific dimensionality reduction algorithm, such as discriminant analysis, there may exist two graphs, 
the intrinsic graph Gi = {X, Si} and the penalty graph Gp = {X, Sp}. The intrinsic graph characterizes 
data properties that the algorithm favors and the penalty graph describes properties that the algorithm 
tries to avoid. The graphs are typically used to estimate the data distribution or manifold structure for 
subspace learning (Fu, Yan & Huang, 2008a),  (Fu, 2008).

Nonlinear Methods

Most existing nonlinear methods are nonparametric learning. It is worthwhile to look into the family of 
those methods since they are the basis of many existing subspace learning methods. The representative 
nonlinear methods such as LLE, ISOMAP, Laplacian Eigenmaps (Belkin & Niyogi, 2003), and Semi-
definite Embedding (SDE) (Weinberger& Saul, 2004), focus on preserving the topological structure 
which reflects the latent geometry of the low-dimensional manifold. For example, LLE formulates the 
manifold learning problem as a neighborhood-preserving embedding, which learns the global structure 
by exploiting the local symmetries of linear reconstructions. Isomap extends the classical Multidimen-
sional Scaling (MDS) (Cox & Cox, 2001) by computing the pairwise distances in the geodesic space 
of the manifold. Based on the spectral decomposition of graph Laplacians, Laplacian Eigenmaps finds 
an approximation to the Laplace-Beltrami operator defined on the manifold. SDE uses semidefinite 
programming as a tool and suggests estimating angles and local distances to support the existence of 
rotation, reflection or translation for the local mapping between data points and their neighbors. The 
general objective of those methods is to directly learn Y from given X. A graph preserving criterion 
for the nonlinear method is defined as

2
argmin

T
i j ij

b i j

∗

= ≠

= -∑
y C y

y y y W ,         (4)

where similarity matrix W is a function of X. b is a constant and C is a constraint matrix. Most 
nonlinear methods share the similar objective function but using different W and C. Typically, W can 
be the intrinsic graph similarity matrix Si and C can be the scale normalization matrix or the penalty 
graph Laplacian matrix, C=Dp - Sp, where each diagonal element of diagonal matrix Dp is the sum of 
corresponding row of Sp. In this case, Eq. (4) can be rewritten as

argmin
T

T

b

∗

=
=

y C y
y y Ly,          (5)

where L=D - C is the Laplacian matrix of C. Eq. (5) can be easily solved in closed-form solution by 
SVD (Fu, Yan & Huang, 2008a), (Fu, 2008). A standard example is shown in Figure 6 for LLE where 
dimensionality reduction is performed by first learning W given X and finally learning Y given W 
(Roweis et al 2000).

Another work suggests looking into the most nonparametric methods with a kernel view (Ham, Lee, 
Mika & Schölkopf, 2004). It shows LLE, ISOMAP, and Laplacian Eigenmaps can all be considered as 
kernel PCA on particular Gram matrices.

Many of the existing nonlinear methods perform well for manifold visualization, but they still have 
some limitations. The nonlinear projection is defined only on the training data. There is no straightforward 
“bridge” connecting X and Y. If we do not take an out-of-sample extension (Saul & Roweis, 2003), 
(Bengio, Paiement, Vincent & Delalleau, 2004) for new datum, the entire manifold embedding procedure 
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has to be repeated. Moreover, even if out-of-sample extension is available, there is still a storage problem 
in real-world applications. The system needs to store all the training data for the testing usage, which 
costs more storage resource. An alternative way is to formulate the particular linearization forms for 
the nonlinear methods, in which case a “bridge” connecting X and Y is built by subspace learning.

Linear Methods

Linear methods can be either parametric or nonparametric. They bridge X and Y by a projection matrix 
P = [p1, p2, …, pd] learned from subspaces, where pi ∈ ℜD. Conventional subspace learning methods, 
such as PCA and LDA, assume the data are in Gaussian distribution. So, the subspaces are learned 
by measuring the sample mean, variance and scatter. PCA finds the embedding that maximizes the 
projected variance, while LDA works by maximizing the between-class scatter and at the same time 
minimizing the within-class scatter. These methods, widely adopted in many existing work, have the 
properties of simplicity and effectiveness. However, it is often the case that the data distribution is non-
Gaussian and there often do not capture sufficient training samples. So, the conventional parametric 
methods may fail to discover the intrinsic structure of the training samples, if they are lying on or close 
to a submanifold of the ambient space. 

Motivated by the objective of existing nonlinear methods, most popular manifold based linear dimen-
sionality reduction methods, such as Locality Preserving Projections (LPP) (He & Niyogi, 2003) and 
Locally Embedded Analysis (LEA) (Fu & Huang, 2005), are derived from a nonparametric neighborhood 
graph modeling (Fu, 2008). The problem is constrained by noting that the data points should be closely 
related to the nearest neighbors and using a graph matrix to encode the manifold, thereby obtaining a 
linear mapping from the original data to the manifold by solving an eigen value decomposition problem. 
The general objective of those methods is to learn projection P from given X. Then Y is calculated by 
Y=PTX or y=XTp. A graph preserving criterion for the linear method is defined as

2
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where similarity matrix W and constraint matrix C are defined in the same way as nonlinear methods. 
If we define the Laplacian matrix as same as the nonlinear methods, Eq. (6) can be rewritten as

or
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Figure.7..Discriminant.simplex.analysis.(originally.shown.in.(Fu.2008))..Note.for.subspace.learning,.
here.we.have.y=XTp
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Eq. (7) can still be easily solved in closed-form solution by SVD. A standard example is shown in 
Figure 6 for LEA where dimensionality reduction is performed by first learning W given X and finally 
learning P given W, (Fu, 2008).

Despite the success of those algorithms in many applications, the general discriminating power cannot 
be guaranteed sufficiently high, since the real data distributions are often too complicated to faithfully 
measure and at the same time the classes of the data patterns may highly overlapped. In addition, these 
methods focus more on the manifold criterion which is not for the discriminating purpose. To boost the 
discriminating power, some recent discriminant learning methods, such as Marginal Fisher Analysis 
(MFA) (Yan et al 2007), Discriminant Simplex Analysis (DSA) (Fu, Yan & Huang, 2008a), Correlation 
Embedding Analysis (CEA) (Fu, Yan & Huang, 2008), Local Discriminant Embedding (Chen, Chang 
& Liu, 2005) and Locality Sensitive Discriminant Analysis (Cai, He, Zhou, Han, & Bao, 2007), com-
bine the Fisher criterion with manifold criterion and explicitly aim at the classification capacity and 
discriminating efficiency of the embedding. They outperform the linear subspace learning methods 
conforming to either Fisher criterion or manifold criterion by taking both advantages. They still share 
the objective function in Eq. (7), but they model the intra-class compactness and inter-class separability 
of data distributions with intrinsic and penalty graphs. Figure 7 shows the example of DSA which builds 
between-locality graph and within-locality graph and uses Fisher criterion for subspace learning.

Extensions

As suggested by many existing work, the graph embedding based linear methods can all be extended to 
kernel form and tensor form (Yan et al 2007), (Fu & Huang, 2008), (Tao, Li, Wu & Maybank, 2007). The 
basic idea of kernel form is to map the data 1

n
i i={x }  from the original input space, ℜD, to a higher or even 

infinite dimensional feature space, ℜF, by a nonlinear mapping function: Φ: ℜD→ℜF, F>D. Denote the 
n×n kernel matrix K in the feature space ℜF by K[i,j]= Φ(xi)·Φ(xj). The objective functions are changed 
by substituting K for X in the previous equations. For the tensor form, we assume there are high-order 
data structures appearing in the feature space. Assume the given high-dimensional data are denoted as 
a set of n mth-order tensors 1 2

1
mD D D n

i i i
× × ×

=∈ℜ{X X } . Let 1 1 2i i m m= × × ×Y X U U , where j jD d
j

×∈ℜU  for j=1, 
2, …, m. So, our goal is to calculate all the optimal Uj.

Generalized Feature Extraction for Dimensionality Reduction

Formulation

In general case as we discussed in (Fu, Yan & Huang, 2008), (Fu, 2008), the purpose of feature extrac-
tion is to seek a mapping function, denoted as f(x, P) where P represents the parameters, to map the 
datum x to the desired low-dimensional representation y ∈ ℜd, namely, y = f(x, P). Again, let’s build 
the intrinsic graph Gi = {X, Si} and the penalty graph Gp = {X, Sp}. A generalized graph preserving 
criterion is imposed for these two objectives as

 2 i

2 p

min ( (

max ( (

( )

P

( )

P

x x W

x x W

i j ij
i j

i j ij
i j

f f

f f

≠

≠

 -


 -


∑

∑

, ) , )

, ) , )

P P

P P .         (8)



���  

Multimedia Data Indexing

There exist several different formulations for this purpose (Yan et al, 2007), (Tao et al, 2007), Here, 
we consider the difference-form formulation in (Tao et al 2007), namely,

2 p iargmax ( ( ( ( )( ) ( )

P
x x W Wi j ij ij
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In the foregoing discussion, we discussed four types of mapping functions for f(x, P), which cor-
respond to four types of graph embeddings (Yan et al, 2007), (Fu, Yan & Huang, 2008): 

a.  Direct graph embedding with implicit mapping functions;
b.  Linearization with linear mapping functions;
c.  Kernelization with kernel-based nonlinear mapping functions;
d.  Tensorization with multilinear mapping functions. 

These four types of graph embeddings are widely used owing to their straightforward formulation 
and computational efficiency. But note that the possible mapping functions for.f(x, P) here are defined 
far beyond these four types. This is useful since real applications often demand more general solutions 
for the graph embedding.

Generalized Solution

We introduce the general solution (Fu, Yan & Huang, 2008b), (Fu, 2008) for the generalized graph 
embedding formulation. The solution is based on the assumption that the mapping function.f(x, P) is 
differentiable almost everywhere with respect to P. In this case, a direct method is to utilize the gradient 
descent approach to search for the solution based on the derivative,
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This formulation and solution for generalized graph embedding offer great flexibility for feature 
extraction. There is no constraint on the parameter P, which means that for linear feature extraction, 
we can use general transformation matrix for feature extraction instead of the conventional column 
normalized matrix. Moreover, it is possible to constrain the value of y, e.g., on a unit sphere, by prop-
erly designing the mapping function, f(x, P). Some representative algorithm designs based on this 
generalized framework are Correlation Embedding Analysis (CEA) (Fu, Yan & Huang, 2008b), (Fu, 
2008), Correlation Tensor Analysis (CTA) (Fu & Huang, 2008), Correlation Principal Component 
Analysis (CPCA) (Fu, Yan & Huang, 2008b), and Correlation Discriminant Analysis (CDA) (Ma, Lao, 
Takikawa &  Kawade, 2007).

Discussion

Supervised and Unsupervised Learning

In the case of parametric modeling, conventional PCA is unsupervised since it focuses on data 
representation and dimensionality reduction. LDA is supervised since labels for the training data are 
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used to learn a subspace that can differentiate different classes. Supervision is easily performed by 
labeling different classes in the training data to calculate the class means. In the case of nonparametric 
modeling, unsupervised learning is conducted to search nearest neighbors in the entire training data. 
There are two ways of supervised learning. If only manifold criterion is considered, the intrinsic graph 
is the only graph to build. Taking one training data, its nearest neighbors are searched within the same 
class of it. If Fisher criterion is also considered, the penalty graph is also considered. Taking one training 
data, its nearest neighbors are searched within the different class of it.

Parameters

The graph based subspace learning methods have several parameters that need to tune. When the 
nearest neighbor search is used to build the graphs, the numbers of nearest neighbors for both intrinsic 
graph and penalty graph are parameters. When the similarity matrices are defined, some methods may 
introduce parameters to scale the similarity weights. Sometimes a regularization term needs to be 
used for singular problem for SVD. Then a parameter may be introduced to balance the regularization 
term. If the generalized solution is used for generalized feature extraction, the number of iterations is 
an important parameter. 

SUMMARY

Based on the “no free lunch theorem” (Duda, Peter, & David, 2000), there is no method that can work 
for all the real application cases in reality. Different methods may be tailored to deal with particular 
cases. Either parametric method or nonparametric method for subspace learning can be adopted for 
feature extraction in real-world applications when data distribution is simple or complicated. But, in 
general they can be unified in the general way of graph based formulation. From this point of view, we 
can design new subspace learning algorithms by carefully tuning the graph modeling details and trying 
efficient similarity metric adapting to specific databases and scenario. 

Approximate Solution for  Indexing and Querying 
High-Dimensional Space

As Discussed in section II, tree-based index provides efficient solution for searching huge data collection 
by taking advantages of the tree structure (Robinson 1981). Given a query point, without comparing 
with all of the data samples in the data base, the closest point can be retrieved by efficiently browsing 
the tree. In the case of low-dimensional space, the search process is largely speeded up compared with 
the exhaustive search. However, tree-based index cannot be easily scaled to high-dimensional space, 
because the number of tree nodes can grow exponentially fast regarding to the number of dimensions of 
the feature space. For instance, when indexing a high-dimensional space based on a tree structure, it is 
possible that during the search process, the number of tree nodes required to be checked is as many as 
the total number of data points in the data base. As a result, tree-based index methods cannot perform 
significantly better than exhaustive search), both in theory and in practice (Bohm, et al, 2001), (Shakhn-
arovich, Darrell & Indyk, 2007), when the dimensionality is higher than 30 to 50 dimensions. 
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To overcome the curse-of-dimensionality problem and to make the index and search methods scalable 
to high dimensions, approximate index and search solutions are proposed. We will discuss these methods 
in this section. Compared with tree-based index, these approximate solutions provide approximate 
answers instead of exact ones to the query, with the gain in efficiency. In the following, we will first 
review the concept of approximate nearest-neighbor (NN) search and explain how it can speed up the 
search process by sacrificing the accuracy. Besides indexing individual data point, we will also discuss 
the approximate and randomized solutions to index and search a collection of points (point-set).

Locality Sensitive Hashing (LSH) for Approximate Nearest Neighbor Search

Instead of performing exact NN query, locality sensitive hash (LSH) performs approximate NN query, 
where it retrieves approximate NNs which can be of high probability to be the exact NNs. By sacrific-
ing the retrieval accuracy to some extent, LSH gains the speed significantly. Unlike tree-based index 
methods, it is scalable to high-dimensional space. The problem of approximate NN search is defined 
as follows:

De.nition 1: .Approximate.Nearest-Neighbor.Search.(Gionis,.A.,.Indyk,.P..&.Motwani,.1999)
For.a.data.set.DB={.Wp.}swhich.is.composed.of.data.points.Wp, preprocessing DB to efficiently search for 
the approximate NNs of any given query Q. That is, to find Wp.∈.DB,.such.that.d(Wp, Q) <(1 + ε)d(Wqnn.
Q).where.d(Wqnn.Q).denotes.the.distance.of.Q.to.its.nearest.neighbor.Wqnn.in.DB..

By modifying the task of exact NN search, it is possible to provide efficient NN search through LSH. 
Suppose h is a function that maps Rd to some universe U, h is called locality sensitive hash function if 
it satisfies the following condition. Locality sensitive hash provides randomized index for approximate 
NN search.

Definition 2:.(p1,.p2,.r,.cr)-sensitive.hash.functions
According.to.(Indyk.&Motwani,.1998),.a.family.H.of.functions:..h:.Rd..U.is.called.(p1,p2,r,cr)-sensi-
tive,.if.for.any.W.and.Q.in.Rd:
. --.if.||W-Q||.<.r,.then..Pr[h(W)=h(Q)].>.p1;
. --.if.||W-Q||.>cr,.then..Pr[h(W)=h(Q)].<.p2;
where.h(.).denotes.the.hashing.function.and.||.W-.Q||.denotes.the.distance.measure.between.W.and.Q.
in.Rd,.for.example,.L1.or.L2.norm..For.the.parameters,.we.have.1>p1>p2>0.and.c>1.

Based on the (p1, p2, r, cr)-sensitive property of LSH functions, we can see the probability of colli-
sion is much higher for points that are close to each other than for those far apart. For example, if two 
points W and Q are close to each other (i.e., ||W-Q||<r), it is of high probability to have hash collision 
(i.e., Pr[h(W)=h(Q)] > p1). On the other hand, if two points W and Q are further away (i.e., ||W-Q|| > 
cr), it is of low probability that hash collision happens (i.e., Pr[h(W)=h(Q)] < p2). As a result, the closer 
the two points W and Q, the more likely their hash values are identical. When many independent hash 
functions are provided, the distance between W and Q can be inferred from the number of times their 
hash functions collide. 

Given the distance measure, it is important to find appropriate (p1, p2, r, cr)-sensitive hashing func-
tions. For different distance measures, for example hamming or Euclidean distance, we need to propose 
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different hash functions that satisfy the (p1, p2, r, cr)-sensitive conditions under the distance measure. 
A good survey of various hash functions under different distance measure can be found in (Andoni & 
Indyk, 2006). Here, we only discuss the most popular LSH under hamming and Euclidean distance, 
respectively.

LSH for Hamming Space

LSH is firstly proposed for approximate NN query with hamming distance (Gionis et al, 1999). Sup-
pose W is a binary vector, the (p1, p2, r, cr)-sensitive hashing functions under hamming distance can 
be: h(W) = W(i), where W(i) is the ith element of W. Given two binary vectors W and Q, the probability 
of collision is Pr[h(W)=h(Q)] = 1 – DH(W,Q)/d, where DH(W,Q) denotes hamming distance between W 
and Q, and d is the dimensionality of the hamming space. This hash function is (p1,p2,r,cr)-sensitive 
under hamming distance.

LSH for Euclidean Space

The LSH scheme that directly works for Euclidean distance is proposed in (Datar, Immorlica, Indyk, 
& Mirrokni, 2004). It embeds the high-dimensional points into real line (1-dimension) through random 
projection. Then by quantizing the real-line, it can index high-dimensional points by their quantized 
values. Each hash function h(·) is a random mapping from vector Wp to an integer  h: Rd  N,
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where a is a random vector of d-dimension with each element a(i) independently generated through 
standard Gaussian distribution; b is a random variable chosen uniformly from [0, r]. With r fixed as a 
predefined parameter, each pair of a and b defines a unique hash function, which projects an original 
high-dimensional vector onto the real line, which is then quantized. The random variable a ×Wp has the 
same distribution as ||Wp||. 

In order to find the nearest neighbors of the query point Q, it requires a collection of hash functions 
gi=(h1, h2, …, hk), i=1,2…, L. Each hash function has its own projection parameters a and b. All the 
points Wp are then hashed many times through random projections gi, each time Wp corresponding to 
a hash bucket gi(Wp). 

During the query phase, we search the nearest neighbors of Q based on the hash values, instead of 
in the original high-dimensional space. Based on the property of (p1, p2, r, cr)-sensitive hash function, 
the closer the two points Wp and Q, the more likely they will have the same hash value under the random 
projection h, because if Wp is the neighbor of Q, then Wp will be the neighbor of  Q in the real line as 
well. This search process can be very efficient: under a specific hash function, two points Wp and Q are 
possible neighbors in the original space if their hash values are identical. Thus we can first retrieve the 
candidate points that have same hash values with the query point, from buckets g1(Q), g2(Q), …, gL(Q). 
Then we can refine the search by only comparing the selected candidates, which is a much smaller 
subset of the whole data collection.. By pre-building a set of hashing functions for the database, each 
new query vector q can efficiently retrieve most of its neighbors in the features space by only comparing 
the hash values (i.e., whether they are located in the same interval) instead of calculating the distance 
in high-dimensional space.
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Besides random projection from high-dimensional space to real-line (1-dimension), the recent work 
of LSH (Andoni & Indyk, 2006) applies different types of hash functions which embed high-dimen-
sional points into a lower k-dimensional space. Such a scheme is even more efficient compared with 
(Datar et al, 2004).

Indexing and Querying Point-Set 

Although a lot of progresses have been achieved in indexing and searching individual data points in 
high dimensions, depending on the representation of multimedia objects such as images and videos, it 
is also of great interests to index and retrieve point-sets. For example, instead of using a single color 
histogram to represent an image, it can be characterized by a collection of interest points (feature vectors) 
(Grauman & Darrell, 2006), (Yuan, Wu & Yang, 2007a), (Xu, Cham, Yan & Chang, 2008). Similarly, 
instead of characterizing a video segment as an individual feature vector (Ferman, Tekalp &  Mehrotra, 
2002), (Kashino,  Kurozumi, & Murase, 2003), (Yuan, Duan, Tian &  Xu, 2004), a video query can be 
represented by many shots or key-frames (Xu & Chang, 2007), which is a collection of features when 
each key-frame contributes an individual feature vector. In these cases, the objects we need to index 
and query are point-sets instead of individual points. The target database contains a collection of such 
point-sets and task is to search for similar matches of the query point-set from all candidates.

Before we can address the point-set query problem, it is essential to define the distance or similarity 
between two point sets. It is a challenging problem as two point-set being compared can contain differ-
ent number of points. In many applications, the matching is formulated as a partial matching problem 
(Grauman & Darrell, 2005), (Yuan et al, 2007a), where the exact solution involves high computational 
cost. For example, given two sets both containing m points, the solution of the partial matching is of 
complexity O(m3logm) (Rubner, Tomasi, & Guibas,  2000). Similar to indexing and searching individual 
point, to speed up the search, one possibility is to provide approximate solution. In the following, we 
will discuss three different approximate solutions in indexing and matching the point-sets.

Bag of Words Method 

The “bag of words” method is popularly applied in visual object categorization (Dance, Willamowski, 
Fan, Bray, & Csurka, 2004), image retrieval (Sivic & Zisserman 2008) and image pattern discovery 
(Yuan et al, 2007a), (Yuan, Wu & Yang, 2007b). First of all, an image is described by a collection of 
local features, where each one corresponds to a small image patch. After collecting many such local 
features from images, a visual vocabulary can be built through clustering local features into a few 
clusters. Each cluster contains local features of similar characteristics and corresponds to one “visual 
word” in the vocabulary. Through such a visual vocabulary, an image can be translated into a collec-
tion of visual words and can be represented as a “document.” As each document can be characterized 
by a word histogram, the similarity between two images can be determined by the similarity between 
two word histograms. Compared with the original partial matching formulation between two point 
sets, such a histogram matching provides an efficient yet approximate solution. Although matching 
two histograms is easier than matching two point sets, it cannot provide the accurate matching result. 
For instance, although two local features are close to each other in the feature space, they could be two 
different “words” if they happen to belong to two different clusters. As a result, the quantization error 
introduced in the “bag of words” process inevitably affects the accuracy of the matching. 
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Pyramid Matching

The pyramid matching method proposed in (Grauman & Darrell, 2005) is an approximate solution for 
matching two point-sets in high-dimensional space. It applies a multi-resolution histogram pyramid 
in the feature space to perform feature matching implicitly. Such a novel approximate solution is very 
efficient. Give two sets of size m, the complexity of pyramid matching is of linear time complexity 
O(m), which is a significant improvement compared with the exact solution which can is of complexity 
O(m3logm). Moreover, the matching is insensitive to outlier feature points, thus is suitable for matching 
two images, where noisy feature points can be introduced due to variations of image patterns. Pyramid 
matching requires the quantization of each feature point into several buckets, under various quantization 
resolutions. As a result, the approximate is introduced when it performs matching based on the quantiza-
tion value instead of performing distance measure in the original high-dimensional space.  In pyramid 
matching, by gaining the efficiency, the matching accuracy is sacrificed due to quantization. 

Approximated Matching 

In (Yuan, Li, Fu, Wu & Huang, 2007), another approximate solution for matching two point-sets is 
provided, with upper bounded estimation of the exact matching score. Instead of quantizing local fea-
tures into words (bag of words method) or buckets (pyramid matching), it firstly performs NN query 
for each local feature. Each local feature finds its own best matches. As a result, quantization error is 
not introduced in matching local features. Instead, the approximation happens during matching two 
point-sets, where an upper bounded estimation of the similarity matching is given. 

In terms of indexing an image collection, a randomized index method called spatial random parti-
tion is proposed in (Yuan & Wu, 2007), with application of mining common patterns from images. The 
proposed index scheme partitioned each image randomly many times to form a pool of sub-images. 
Each sub-image contains a collection of local features and is treated as a point set. All sub-images are 
queried and matched against the pool, and then common patterns can be localized by aggregating the 
set of matched sub-images. According to the asymptotic property of the proposed algorithm, it can au-
tomatically discover multiple common patters without knowing the total number a.priori, and is robust 
to pattern variations like rotations, scale changes and partial occlusion.  

Applications and Summaries

Effective lower dimensional feature representation of multimedia object combined with an efficient 
indexing structure can achieve very high performance in multimedia retrieval accuracy and speed. In 
this section we present a LUminance Field Trajectory (LUFT) representation (Li, Katsaggelos & Gandhi, 
2005) of video sequences and its Query by Example (QbE) search solution based on kd-Tree indexing 
(Li, Gao & Katsaggelos, 2006).

Video sequences Fk with frame size w x h pixels can be viewed as some temporal trajectory in Rwxh.  
The dimensionality of this feature space is very high, take for example QCIF sized sequences, the di-
mension would be 176x144=25344. This will serious degrade the nearest neighbor search performance. 
Instead, we compute the lower dimensional approximation of Fk via a scaling and PCA projection process, 
as illustrated in Figure 8.  
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Figure.8..LUFT.computation

By careful selection of the scaling factor s, which produces an icon image vector of dimension 2s
wxhd
s

= , 
and training of PCA projection matrix, A of d x ds, we obtain a d-dimensional trajectory representation 
of video, xk. Examples of 3-dimensional LUFT trajectory of various video sequences are illustrated 
in Figure 9 below. The trajectory in red is the “foreman” sequence, while others are randomly chosen 
clips from TRECVID (http://www-nlpir.nist.gov/projects/trecvid) clips.  Notice that different video 
sequences have different trajectories in this LUFT space, and this can be used as a robust feature for 
the Query-by-Example problems (Yuan et al, 2004).

Consider an m-frame query clip Q with trajectory {.q1, q2, … ,qm}, and an n-frame video repository 
T with trajectory {.t1, t2, … ,tn }, the QbE problem is to answer if query clip exists in the repository, 
and if exists, return the location. The problem has wide applications in video content management ap-
plications. In fact TRECVID 2008 has a competition on this specific problem. In the context of LUFT 
features, the problem can be formulated as finding the minimum projection distance problem. Let the 
minimum average projection distance between.Q and.T be, 

1 2, , , 1

1( , ) min || ||
j

m

m

j kk k k j
d Q T q t

m =

= -∑


         (12)

which is a function of projection locations k1, k2, … km. Since video repository is different from image 
repository by having this temporal coherence constraint, that is, the matching clip should have the same 
order of frames, the variables on projection location actually have only one degree of freedom, since 
kt+1=kt + 1. Therefore, the problem can be re-written as, 

1
1

1( , ) ( ; , ) min || ||
m
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=

= = -∑        (13)

In solving the QbE problem, a projection distance threshold dmin is used to determine if query clip 
Q.exists, 

minarg min ( ; , ), min{ ( , }
*

,
kk k

d k Q T if d Q T d
k

not found else

≤  =  
  

      (14)

Notice that the choice of dmin controls the precision-recall performance tradeoff of the QbE system, 
as will be illustrated later. 

The LUFT feature is a robust feature for video clip QbE applications as indicated in (Li, Katsag-
gelos & Gandhi, 2005). However, when the video repository size grows, an exhaustive search is not 
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Figure.9..LUFT.examples

Figure.10..LUFT.space.kd-tree.partition.with.height.12

practical. Instead, we apply the kd-tree space partition with split axis decision based on the variance of 
data projection, i.e., at each split, the variances of projection of data onto each axis are sorted, and the 
split axis is chosen to be the one with largest variance. To further improve retrieval efficiency, we also 
compute MBR for each node. An example of kd-tree partition of 2-d LUFT space with 5 hours of video 
from TRECVID and resulting leaf node level MBRs are shown in Figure 10.

The kd-tree height is L=12, this results in 2048 leaf level MBRs. This gives a non-overlapping but 
can be disjoint partition of LUFT feature space. To process the QbE query, the temporal coherence fea-
ture of video repository is utilized. Instead of performing NN search for each query clip frame, we first 
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Table 1. Indexing efficiency and retrieval speed 

dindx m tsearch	(ms)	 tmatch(ms)
2 15 0.93 27.45

2 30 1.61 48.53
2 60 2.78 91.11
4 15 0.65 12.38
4 30 1.23 21.65
4 60 2.08 41.91
8 15 0.62 11.32
8 30 1.20 20.82
8 60 1.87 41.15  

Figure.11..Precision-recall.performance

(a).dindx=8,.m=15

(b).dindx=2,.m=30
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identify search localities by locating leaf nodes traversed by query clip. Then all clips in this locality 
are matched with the query clip by computing the minimum average projection distance as discussed. 
This approach significantly reduces the computational complexity by limiting the search to one degree 
of freedom and results in very good performance in both speed and accuracy. 

For a video data base size of 5 hours, we set up simulations to test the speed and precision-recall 
performances. One hundred Query clips each of lengths 15, 30, 60 frames are randomly chosen from 
both the 5-hour repository (for positive tests) and other sources (for negative tests). The average response 
times for different clip lengths as well as LUFT feature space dimension, d, are tabulated in Table 1. 
The algorithms are implemented with Matlab and the computer is a desktop PC with 2.0 GHz Pentium 
processor and 1G Bytes of memory. tsearch is the time needed to identify the matching repository local-
ity, while tmatch is the computation time for computing the average projection distance between query 
clips and repository locality. 

Notice that the best performance in speed is achieved when choosing a feature dimension of dindx=8, 
and query clip length of m=15, where the average response time for QbE against a 5-hour repository is 
only 0.012 seconds. The precision-recall performance for this set up is also quite good. For a range of 
additive noise in the query clips, as measured as PSNR (dB) in range of 25dB to 38dB, the precision-recall 
performance is outstanding. It achieves roughly 100% precision with a high recall in the range of 90%, 
as in Figure 11a. For a comparison, when dindx=2, m=30, the loss of information in LUFT representation 
becomes severe, with corresponding degradation of performance in Figure 11b.

In summary, multimedia database applications typically require a high-dimensional feature space to 
have robust and effective representation of multimedia object for effective matching in search applica-
tions. However, the high dimensionality of the feature space presents this “curse-of-dimensionality” 
issue to the indexing and query processing, and good retrieval accuracy and speed can be achieved by 
striking a good balance between robust and effective feature representation and low dimensionality for 
effective indexing solution, as indicated in the aforementioned video clip QbE solution. Alternatively, 
approximate solution can be a viable solution as well, which make compromise in the accuracy of search 
to gain the speed. 
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