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Introduction

Mohamed Medhat Gaber

“It is not my aim to surprise or shock you – but the simplest way I can summarise is to say
that there are now in the world machines that think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until – in a visible future – the
range of problems they can handle will be coextensive with the range to which the human
mind has been applied” by Herbert A. Simon (1916-2001)

1 Overview

This book suits both graduate students and researchers with a focus on discovering
knowledge from scientific data. The use of computational power for data analysis
and knowledge discovery in scientific disciplines has found its roots with the revo-
lution of high-performance computing systems. Computational science in physics,
chemistry, and biology represents the first step towards automation of data analysis
tasks. The rational behind the development of computational science in different ar-
eas was automating mathematical operations performed in those areas. There was
no attention paid to the scientific discovery process. Automated Scientific Discov-
ery (ASD) [1–3] represents the second natural step. ASD attempted to automate
the process of theory discovery supported by studies in philosophy of science and
cognitive sciences. Although early research articles have shown great successes, the
area has not evolved due to many reasons. The most important reason was the lack
of interaction between scientists and the automating systems.

With the evolution in data storage, large databases have stimulated researchers
from many areas especially machine learning and statistics to adopt and develop
new techniques for data analysis. This has led to a new area of data mining and
knowledge discovery. Applications of data mining in scientific applications have

M.M. Gaber (�)
Centre for Distributed Systems and Software Engineering,
Monash University, 900 Dandenong Rd, Caulfield East,
VIC 3145, Australia
e-mail: Mohamed.Gaber@infotech.monash.edu.au
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2 M.M. Gaber

been studied in many areas. The focus of data mining in this area was to analyze
data to help understanding the nature of scientific datasets. Automation of the whole
scientific discovery process has not been the focus of data mining research.

Statistical, computational, and machine learning tools have been used in the area
of scientific data analysis. With the advances in Ontology and knowledge represen-
tation, ASD has great prospects in the future. In this book, we provide the reader
with a complete view of the different tools used in analysis of data for scientific dis-
covery. The book serves as a starting point for students and researchers interested in
this area. We hope that the book represents an important step towards evolution of
scientific data mining and automated scientific discovery.

2 Book Organization

The book is organized into four parts. Part I provides the reader with background
of the disciplines that contributed to the scientific discovery. Hoffmann and Mahi-
dadia provided a detailed introduction to the area of machine learning in Chapter
Machine Learning. Chapter Statistical Inference by Khan gives the reader a clear
start-up overview of the field of statistical inference. The relationship between sci-
entific discovery and philosophy of science is provided by Williamson in Chapter
The Philosophy of Science and its Relation to Machine Learning. Cognitive science
and its relationship to the area of scientific discovery is detailed by Peng and Gero
in Chapter Concept Formation in Scientific Knowledge Discovery from a Construc-
tivist View. Finally, Part I is concluded with an overview of the area of Ontology
and knowledge representation by Grimm in Chapter Knowledge Representation and
Ontologies. This part is highly recommended for graduate students and researchers
starting in the area of using data mining for discovering knowledge in scientific
disciplines. It could also serve as excellent introductory materials for instructors
teaching data mining and machine learning courses. The chapters are written by
experts in their respective fields.

After providing the introductory materials in Part I, Part II provides the reader
with computational methods used in the discovery of knowledge in three different
fields. In Chapter Spatial Techniques, Jabeur and Sahli provide us with a chapter of
the different computational techniques in the Geospatial area. Safouhi and Boufer-
guene in Chapter Computational Chemistry provide the reader with details on the
area of computational chemistry. Finally, Part II is concluded by discussing the well-
established area of bioinformatics outlining the different computational tools used
in this area by Aboelhoda and Ghanem in chapter String Mining in Bioinformatics.

The use of data mining techniques to discover scientific knowledge is detailed in
three chapters in Part III. Chapter Knowledge Discovery and Reasoning in Geospa-
tial Applications by Sahli and Jabeur provides the reader with techniques used in
reasoning and knowledge discovery for Geospatial applications. The second chapter
in this part, Chapter Data Mining and Discovery of Chemical Knowledge, is writ-
ten by Wencong providing the reader with different projects, detailing the results,
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of using data mining techniques to discover chemical knowledge. Finally, the last
chapter of this part, Chapter Data Mining and Discovery of Astronomical Knowl-
edge, by Al-Naymat provides us with a showcase of using data mining techniques
to discover astronomical knowledge.

The book is concluded with a couple of chapters by eminent researchers in
Part IV. This part represents future directions of using data mining techniques in
the ares of scientific discovery. Chapter On-Board Data Mining by Tanner et al.
provides us with different projects using the new area of onboard mining in space-
crafts. Aggarwal in Chapter Data Streams: An Overview and Scientific Applications
provides an overview of the areas of data streams and pointers to applications in the
area of scientific discovery.

The organization of this book follows a historical view starting by the well-
established foundations and principles in Part I. This is followed by the traditional
computational techniques in different scientific disciplines in Part II. This is fol-
lowed by the core of this book of using data mining techniques in the process of
discovering scientific knowledge in Part III. Finally, new trends and directions in
automated scientific discovery are discussed in Part IV. This organization is depicted
in Fig. 1

3 Final Remarks

The area of automated scientific discovery has a long history dated back to the 1980s
when Langley et al. [3] have their book “Scientific Discovery: Computational Ex-
plorations of the Creative Processes” outlining early success stories in the area.
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Although the research in this area has not been progressing as such in the 1990s
and the new century, we believe that with the rise of areas of data mining and ma-
chine learning, the area of automated scientific discovery will witness an accelerated
development.

The use of data mining techniques to discover scientific knowledge has recently
witnessed notable successes in the area of biology [4] and with less impact in
the area of chemistry [5], physics and astronomy [6]. The next decade will witness
more success stories with discovering scientific knowledge automatically due to the
large amounts of data available and the faster than ever production of scientific data.
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Machine Learning

Achim Hoffmann and Ashesh Mahidadia

The purpose of this chapter is to present fundamental ideas and techniques of
machine learning suitable for the field of this book, i.e., for automated scientific
discovery. The chapter focuses on those symbolic machine learning methods, which
produce results that are suitable to be interpreted and understood by humans. This
is particularly important in the context of automated scientific discovery as the sci-
entific theories to be produced by machines are usually meant to be interpreted by
humans.

This chapter contains some of the most influential ideas and concepts in machine
learning research to give the reader a basic insight into the field. After the intro-
duction in Sect. 1, general ideas of how learning problems can be framed are given
in Sect. 2. The section provides useful perspectives to better understand what learn-
ing algorithms actually do. Section 3 presents the Version space model which is an
early learning algorithm as well as a conceptual framework, that provides important
insight into the general mechanisms behind most learning algorithms. In section 4,
a family of learning algorithms, the AQ family for learning classification rules is
presented. The AQ family belongs to the early approaches in machine learning. The
next, Sect. 5 presents the basic principles of decision tree learners. Decision tree
learners belong to the most influential class of inductive learning algorithms today.
Finally, a more recent group of learning systems are presented in Sect. 6, which
learn relational concepts within the framework of logic programming. This is a par-
ticularly interesting group of learning systems since the framework allows also to
incorporate background knowledge which may assist in generalisation. Section 7
discusses Association Rules – a technique that comes from the related field of Data
mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While
this is a very popular learning technique, the learning result is not well suited for
human comprehension as it is essentially a large collection of probability values. In
Sect. 9, we present a generic method for improving accuracy of a given learner by
generating multiple classifiers using variations of the training data. While this works
well in most cases, the resulting classifiers have significantly increased complexity

A. Hoffmann (�)
University of New South Wales, Sydney 2052, NSW, Australia

M.M. Gaber (ed.), Scientific Data Mining and Knowledge Discovery: Principles
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8 A. Hoffmann and A. Mahidadia

and, hence, tend to destroy the human readability of the learning result that a single
learner may produce. Section 10 contains a summary, mentions briefly other tech-
niques not discussed in this chapter and presents outlook on the potential of machine
learning in the future.

1 Introduction

Numerous approaches to learning have been developed for a large variety of possible
applications. While learning for classification is prevailing, other learning tasks have
been addressed as well which include tasks such as learning to control dynamic
systems, general function approximation, prediction as well as learning to search
more efficiently for a solution of combinatorial problems.

For different types of applications specialised algorithms have been developed.
Although, in principle, most of the learning tasks can be reduced to each other. For
example, a prediction problem can be reduced to a classification problem by defining
classes for each of the possible predictions.1 Equally, a classification problem can
be reduced to a prediction problem, etc.

The Learner’s Way of Interaction

Another aspect in learning is the way how a learning system interacts with its en-
vironment. A common setting is to provide the learning system with a number of
classified training examples. Based on that information, the learner attempts to find a
general classification rule which allows to classify correctly both, the given training
examples as well as unseen objects of the population. Another setting, unsuper-
vised learning, provides the learner only with unclassified objects. The task is to
determine which objects belong to the same class. This is a much harder task for a
learning algorithm than if classified objects are presented. Interactive learning sys-
tems have been developed, which allow interaction with the user while learning.
This allows the learner to request further information in situations, where it seems
to be needed. Further information can range from merely providing an extra classi-
fied or unclassified example randomly chosen to answering specific questions which
have been generated by the learning system. The latter way allows the learner to ac-
quire information in a very focused way. Some of the ILP systems in Sect. 6 are
interactive learning systems.

1 In prediction problems there is a sequence of values given, on which basis the next value of
the sequence is to be predicted. The given sequence, however, may usually be of varying length.
Opposed to that are many classification problems based on a standard representation of a fixed
length. However, exceptions exist here as well.
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Another more technical aspect concerns how the gathered information is inter-
nally processed and finally organised. According to that aspect the following types
of representations are among the most frequently used for supervised learning of
classifiers:

• Decision trees
• Classification rules (production rules) and decision lists
• PROLOG programs
• The structure and parameters of a neural network
• Instance-based learning (nearest neighbour classifiers etc.)2

In the following, the focus of the considerations will be on learning classifi-
cation functions. A major part of the considerations, however, is applicable to a
larger class of tasks, since many tasks can essentially be reduced to classifica-
tion tasks. Although, the focus will be on concept learning which is a special
case of classification learning, concept learning attempts to find representations
which resemble in some way concepts humans may acquire. While it is fairly un-
clear, how humans actually do that, in the following we understand under concept
learning the attempt to find a “comprehensible”3 representation of a classification
function.

2 General Preliminaries for Learning Concepts from Examples

In this section, a unified framework will be provided in which almost all learning
systems fit in, including neural networks, that learn concepts, i.e. classifiers, from
examples. The following components can be distinguished to characterise concept
learning systems:

• A set of examples
• A learning algorithm
• A set of possible learning results, i.e. a set of concepts

Concerning the set of examples, it is an important issue to find a suitable repre-
sentation for the examples. In fact, it has been recognised that the representation of
examples may have a major impact on success or failure of learning.

2 That means gathering a set of examples and a similarity function to determine the most similar
example for a given new object. The most similar example is being used for determining the class
of the presented object. Case-based reasoning is also a related technique of significant popularity,
see e.g. [1, 2].
3 Unfortunately, this term is also quite unclear. However, some types of representations are cer-
tainly more difficult to grasp for an average human than others. Foe example, cascaded linear
threshold functions, as present in multi-layer perceptions, seem fairly difficult to comprehend, as
opposed to, e.g., boolean formulas.
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2.1 Representing Training Data

The representation of training data, i.e. of examples for learning concepts, has to
serve two ends: On one hand, the representation has to suit the user of the learning
system, in that it is easy to reflect the given data in the chosen representation form.
On the other hand, the representation has to suit the learning algorithm. Suiting the
learning algorithm again has at least two facets: Firstly, the learning algorithm has
to be able to digest the representations of the data. Secondly, the learning algorithm
has to be able to find a suitable concept, i.e. a useful and appropriate generalisation
from the presented examples.

The most frequently used representation of data is some kind of attribute or fea-
ture vectors. That is, objects are described by a number of attributes.

The most commonly used kinds of attributes are one of the following:

• Unstructured attributes:

– Boolean attributes i.e. either the object does have an attribute or it does not.
Usually specified by the values ff; tg, or f0; 1g, or sometimes in the context
of neural networks by f�1; 1g.

– Discrete attributes, i.e. the attribute has a number of possible values (more
then two), such as a number of colours fred; blue; green; browng, shapes
fcircle; triangle; rectangleg, or even numbers where the values do not carry
any meaning, or any other set of scalar values.

• Structured attributes, where the possible values have a presumably meaningful
relation to each other:

– Linear attributes. Usually the possible values of a linear attribute are a set of
numbers, e.g. f0; 1; :::; 15g, where the ordering of the values is assumed to
be relevant for generalisations. However, of course also non-numerical val-
ues could be used, where such an ordering is assumed to be meaningful. For
example, colours may be ordered according to their brightness.

– Continuous attributes. The values of these attributes are normally reals (with
a certain precision) within a specified interval. Similarly as with linear at-
tributes, the ordering of the values is assumed to be relevant for generalisa-
tions.

– Tree-structured attributes. The values of these attributes are organised in a
subsumption hierarchy. That is, for each value it is specified what other values
it subsumes. This specification amounts to a tree-structured arrangement of
the values. See 5 for an example.

Using attribute vectors of various types, it is fairly easy to represent objects of
manifold nature. For example, cars can be described by features as colour, weight,
height, length, width, maximal speed, etc.
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2.2 Learning Algorithms

Details of various learning algorithms are given later in this chapter. However, gen-
erally speaking, we can say, that every learning algorithm searches implicitly or
explicitly in a space of possible concepts for a concept that sufficiently fits the
presented examples. By considering the set of concepts and their representations
through which a learning algorithm is actually searching, the algorithm can be char-
acterised and its suitability for a particular application can be assessed. Section 2.3
discusses how concepts can be represented.

2.3 Objects, Concepts and Concept Classes

Before discussing the representation of concepts, some remarks on their intended
meaning should be made. In concept learning, concepts are generally understood
to subsume a certain set of objects. Consequently, concepts can formally be de-
scribed with respect to a given set of possible objects to be classified. The set of
possible objects is defined by the kind of representation chosen for representing the
examples. Considering for instance attribute vectors for describing objects, there is
usually a much larger number of possible objects than the number of objects which
may actually occur. This is due to the fact, that in the case of attribute vectors,
the set of possible objects is simply given by the Cartesian product of the sets of
allowed values for each of the attributes. That is, every combination of attribute val-
ues is allowed although, there may be no “pink elephants”, “green mice”, or “blue
rabbits”.

However, formally speaking, for a given set of objects X , a concept c is defined
by its extension in X , i.e. we can say c is simply a subset of X . That implies that
for a set of n objects, i.e. for jX j D n there are 2n different concepts. However,
most actual learning systems will not be able to learn all possible concepts. They
will rather only be able to learn a certain subset. Those concepts which can poten-
tially be learnt, are usually called the concept class or concept space of a learning
system. In many contexts, concepts which can be learnt are also called hypotheses
and hypothesis space respectively. Later, more formal definitions will be introduced.
Also, in the rather practical considerations to machine learning a slightly different
terminology is used than in the more mathematically oriented considerations.

However, in general it can be said that an actual learning system L, given n
possible objects, works only on a particular subset of all the 2n different possible
concepts which is called the concept space C of L. For C , both of the following
conditions hold:

1. For every concept c 2 C there exists training data, such that L will learn c.
2. For all possible training data,L will learn some concept c, such that c 2 C . That

is, L will never learn a concept c 62 C .
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Considering a set of concepts there is the huge number of 22n
different sets

of concepts on a set of n objects. To give a numerical impression: Looking at 30
boolean features describing the objects in X under consideration, would amount
to n D 230 � 1000000000 D 109 different possible objects. Thus, there exist
� 21000000000 different possible concepts and � 221000000000 � 1010300000000

dif-
ferent concept spaces, an astronomically large number.

Another characteristic of learning algorithms besides their concept space, is the
particular order in which concepts are considered. That is, if two concepts are
equally or almost equally confirmed by the training data, which of these two con-
cepts will be learnt?

In Sect. 2.4, the two issues are treated in more detail to provide a view of learning
which makes the similarities and dissimilarities among different algorithms more
visible.

2.4 Consistent and Complete Concepts

In machine learning some of the technical terms describing the relation between
a hypothesis of how to classify objects and a set of classified objects (usually the
training sample) are used differently in different contexts. In most mathematical/the-
oretical considerations a hypothesis h is called consistent with the training set of
classified objects, if and only if the hypothesis h classifies all the given objects in
the same way as given in the training set. A hypothesis h0 is called inconsistent with
a given training set if there is an object which is differently classified in the training
set than by the hypothesis h0.

Opposed to that, the terminology following Michalski [3] considering concept
learning assumes that there are only two classes of objects. One is the class of pos-
itive examples of a concept to be learned and the remaining objects are negative
examples. A hypothesis h for a concept description is said to cover those objects
which it classifies as positive examples. Following this perspective, it is said that a
hypothesis h is complete if h covers all positive examples in a given training set.
Further, a hypothesis h is said to be consistent if it does not cover any of the given
negative examples. The possible relationships between a hypothesis and a given set
of training data are shown in Fig. 1.

3 Generalisation as Search

In 1982, Mitchell introduced [4] the idea of the version space, which puts the pro-
cess of generalisation into the framework of searching through a space of possible
“versions” or concepts to find a suitable learning result.

The version space can be considered as the space of all concepts which are
consistent with all learning examples presented so far. In other words, a learning
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Fig. 1 The four possible relationships between a hypothesis and a set of classified examples. The
correct concept c is shown as dashed line. The hypothesis h as solid line. A consistent hypothesis
covers all positive examples. A complete hypothesis covers no negative example

algorithm considers initially, before any training data has been presented, the com-
plete concept space as possible outcomes of the learning process. After examples are
presented, this space of still possible outcomes of the learning process is gradually
reduced.

Mitchell provided data structures which allow an elegant and efficient mainte-
nance of the version space, i.e. of concepts that are consistent with the examples
presented so far.

Example. To illustrate the idea, let us consider the following set of six geometri-
cal objects big square, big triangle, big circle, small square, small triangle, and
small circle, and abbreviated by b:s, b:t , ... , s:t , s:c, respectively. That is, let
X D fb:s; b:t; b:c; s:s; s:t; s:cg.

And let the set of concepts C that are potentially output by a learning system L

be given by

C D ffg; fb:sg; fb:tg; fb:cg; fs:sg; fs:tg; fs:cg; fb:s; b:t; b:sg; fs:s; s:t; s:sg;
fb:s; s:sg; fb:t; s:tg; fb:c; s:cg; Xg.
That is, C contains the empty set, the set X , all singletons and the abstraction of

the single objects by relaxing one of the requirements of having a specific size or
having a specific shape.
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Fig. 2 The partial order of concepts with respect to their coverage of objects

In Fig. 2, the concept space C is shown and the partial order between the con-
cepts is indicated by the dashed lines. This partial order is the key to Mitchell’s
approach. The idea is to always maintain a set of most general concepts and a set of
most specific concepts that are consistent and complete with respect to the presented
training examples.

If a most specific concept cs does contain some object x which is given as a
positive example, then all concepts which are supersets of s contain the positive
example, i.e. are consistent with the positive example as well as cs itself. Simi-
larly, if a most general concept cg does not contain some object x which is given
as a negative example, then all concepts which are subsets of sg do not contain
the negative example, i.e. are consistent with the negative example as well as cg

itself.
In other words, the set of consistent and complete concepts which exclude all

presented negative examples and include all presented positive examples is defined
by the sets of concepts S and G being the most specific and most general concepts
consistent and complete with respect to the data. That is, all concepts of C which
lie between S and G are complete and consistent as well. A concept c lies between
S and G, if and only if there are two concepts cg 2 G and cs 2 S such that cs �
c � cg . An algorithm that maintains the set of consistent and complete concepts
is sketched in Fig. 3. Consider the following example to illustrate the use of the
algorithm in Fig. 3:

Example. Let us denote the various sets S and G by Sn and Gn, respectively after
the nth example has been processed. Before the first example is presented, we have
G0 D fXg and S0 D ffgg.

Suppose a big triangle is presented as positive example. Then, G remains the
same, but the concept in S has to be generalised. That is, we obtain G1 D G0fXg
and S1 D ffb:tgg.

Suppose the second example being a small circle as negative example: Then S
remains the same, but the concept in G has to be specialised. That is, we obtain
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Given: A concept space C from which the algorithm has to choose one concept as
the target concept ct . A stream of examples of the concept to learn. (The examples are
either positive or negative examples of the target concept ct .)

begin
Let S be the set of most specific concepts in C ; usually the empty concept.
Let G be the set of most general concepts in C ; usually the single set X .
while there is a new example e do

if e is a positive example
then Remove in G all concepts that do not contain e.

Replace every concept co 2 S by the set of
most specific generalisations with respect to e and S .

endif
if e is a negative example
then Remove in S all concepts that contain e.

Replace every concept co 2 G by the set of
most general specialisations with respect to e and G.

endif
endwhile

end.

Note: The set of of most specific generalisations of a concept c with respect to an example e
and a set of concepts G are those concepts cg 2 C where c[feg � cg and there is a concept
cG 2 G such that cg � cG and there is no concept cg0 2 C such that c [ feg � cg0 � cg .
The set of of most general specialisations of a concept c with respect to an example e and a
set of concepts S are those concepts cs 2 C where cs � c nfeg and there is a concept cS 2 S
such that cS � cs and there is no concept cs0 2 C such that cs � cs0 � c n feg.

Fig. 3 An algorithm for maintaining the version space

G2 D ffb:s; b:t; b:cg; fb:t; s:tgg and S2 D S1 D ffb:tgg. Note thatG2 contains two
different concepts which neither contain the negative example but which are both
supersets of the concept in S2.

Let the third example be a big square as a positive example. Then, in G we
remove the second concept since it does not contain the new positive example and
the concept in S has to be generalised. That is, we obtainG3 D ffb:s; b:t; b:cgg and
S3 D ffb:s; b:t; b:cgg.

That is, S3 D G3 which means, that there is only a single concept left which
is consistent and complete with respect to all presented examples. That is, the only
possible result of any learning algorithm that learns only concepts in C that are
consistent and complete is given by fb:s; b:t; b:cg.

In general, the learning process can be stopped if S equals G meaning that S
contains the concept to be learned. However, it may happen that S 6D G and an ex-
ample is presented which forces either S being generalised or G being specialised,
but there is no generalisation (specialisation) possible according to the definition
in Fig. 3.

This fact would indicate, that there is no concept in C which is consistent with
the presented learning examples. Reason for that is either that the concept space did
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not contain the target concept, i.e. C was inappropriately chosen for the application
domain, Or that the examples contained noise, i.e. that some of the presented data
was incorrect. This may either be a positive example presented as a negative or vice
versa, or an example inaccurately described due to measurement errors or other
causes. For example, the positive example big triangle may be misrepresented as
the positive example big square.

If the concept space C does not contain all possible concepts on the setX of cho-
sen representations, the choice of the concept space presumes that the concept to be
learned is in fact in C , although this is not necessarily the case. Utgoff and Mitchell
[5] introduced in this context the term inductive bias. They distinguished language
bias and search bias. The language bias determines the concept space which is
searched for the concept to be learned (the target concept). The search bias deter-
mines the order of search within a given concept space. The proper specification of
inductive bias is crucial for the success of a learning system in a given application
domain.

In the following sections, the basic ideas of the most influential approaches in
(symbolic) machine learning are presented.

4 Learning of Classification Rules

There are different ways of learning classification rules. Probably the best known
ones are the successive generation of disjunctive normal forms, which is done by the
AQ family of learning algorithms, which belongs to one of the very early approaches
in machine learning. Another well-known alternative is to simply transform decision
trees into rules. The C4.5 [6] program package, for example, contains also a trans-
formation program, which converts learned decision trees into rules.

4.1 Model-Based Learning Approaches: The AQ Family

The AQ algorithm was originally developed by Michalski [7], and has been subse-
quently re-implemented and refined by several authors (e.g. [8]). Opposed to ID34

the AQ algorithm outputs a set of ‘if...then...’ classification rules rather than a deci-
sion tree. This is useful for expert system applications based on the production rule
paradigm. Often it is a more comprehensible representation than a decision tree. A
sketch of the algorithm is shown in Table 1. The basic AQ algorithm assumes no
noise in the domain. It searches for a concept description that classifies the training
examples perfectly.

4 C4.5, the successor of ID3 actually contains facilities to convert decision trees into if ... then ...
rules.
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Table 1 The AQ algorithm: Generating a cover for class C

Procedure AQ.POS;NEG/ returning COVER:
Input: A set of positive examples POS
and a set of negative examples NEG.
Output: A set of rules (stored in cover) which recognises all positive
examples and none of the negative examples.

let COVER be the empty cover;
while COVER does not cover all positive examples in POS

select a SEED, i.e. a positive example not covered by COVER;
call procedure STAR.SEED;NEG/ to generate the STAR, i.e. a set of

complexes that cover SEED but no examples in NEG;
select the best complex BEST from the star by user-defined criteria;
add BEST as an extra disjunct to COVER;

return COVER.

Procedure STAR.SEED;NEG/ returning STAR:

let STAR be the set containing the empty complex;
while there is a complex in STAR that covers some

negative exampleEneg 2NEG,
Specialise complexes in STAR to exclude Eneg by:

let EXTENSION be all selectors that cover SEED but not Eneg;
% selectors are attribute-value specifications
% which apply to seed but not to Eneg.

let STAR be the set fx ^ yjx 2 STAR;y 2 EXTENSIONg;
remove all complexes in STAR that are subsumed by other

complexes in STAR;
Remove the worst complexes from STAR

until size of STAR � user-defined maximum (maxstar).
return STAR.

The AQ algorithm

The operation of the AQ algorithm is sketched in Table 1. Basically, the algorithm
generates a so-called complex (i.e. a conjunction of attribute-value specifications).
A complex covers a subset of the positive training examples of a class. The complex
forms the condition part of a production rule of the following form:

‘if condition then predict class’.

The search proceeds by repeatedly specialising candidate complexes until a complex
is found which covers a large number of examples of a single class and none of other
classes. As indicated, AQ learns one class at a time. In the following, the process for
learning a single concept is outlined.
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Learning a Single Class

To learn a single class c, AQ generates a set of rules. Each rule recognises a subset
of the positive examples of c. A single rule is generated as follows: First a “seed”
example E from the set of positive examples for c is selected. Then, it is tried
to generalise the description of that example as much as possible. Generalisation
means here to abstract as many attributes as possible from the description of E.

AQ begins with the extreme case that all attributes are abstracted. That is, AQs
first rule has the form ‘if true then predict class c.’ Usually, this rule is too gen-
eral. However, beginning with this rule, stepwise specialisations are made to exclude
more and more negative examples. For a given negative example, neg covered by the
current rule AQ searches for a specialisation which will exclude neg. A specialisa-
tion is obtained by adding another condition to the condition part of the rule. The
condition to be added is a so-called selector for the seed example. A selector is an at-
tribute value combination which applies to the seed example but not to the negative
example neg currently being considered.

This process of searching for a suitable rule is continued until the generated rule
covers only examples of class c and no negative examples, i.e. no examples of other
classes.

Since there is generally more than one choice of including an attribute-value
specification, a set of “best specialisations-so-far” are retained and explored in par-
allel. In that sense, AQ conducts a kind of beam search on the hypothesis space.
This set of solutions which is steadily improved is called a star. After all negative
examples are excluded by the rules in the star, the best rule is chosen according
to a user-defined evaluation criterion. By that process, AQ guarantees to produce
rules which are complete and consistent with respect to the training data, if such
rules exist. AQ’s only hard constraint for the generalisation process is not to cover
any negative example by a generated rule. Soft constraints determine the order of
adding conditions (i.e. attribute value specifications).

Example. Consider the training examples given in Fig. 2. Learning rules for the
class of pleasant weather would work as follows:

A positive exampleE is selected as a seed, say Example 4 having the description
E D Œ.a D true/ ^ .b D false/ ^ .c D true/ ^ .d D false/�.

From this seed, initially all attributes are abstracted, i.e. the first rule is if true
then pleasant.

Since this rule clearly covers also weather situations which are known as unpleas-
ant, the rule has to be specialised. This is done, by re-introducing attribute-value
specifications which are given in the seed example. Thus, each of the four attributes
is considered. For every attribute it is figured out whether its re-introduction ex-
cludes any of the negative examples.

Considering attribute a:
The condition .a D false/ is inconsistent with Examples 1 and 2, which are both

negative examples. Condition .b D false/ excludes the Examples 1 and 2, which
are negative and it excludes the positive Example 3 as well. Condition .c D true/
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excludes the positive Example 5 and the negative Example 6. Finally, condition
.d D false/ excludes three negative Examples 2, 6, and 7, while it does not exclude
any positive example.

Intuitively, specialising the rule by adding condition .d D false/ appears to be
the best.

However, the rule
if .d D false/ then pleasant
still covers the negative Example 1. Therefore, a further condition has to be

added. Examining the three possible options leads to the following:
The condition .a D false/ is inconsistent with Examples 1 and 2, which are

both negative examples, i.e. adding this condition would result in a consistent and
complete classification rule.

Condition .b D false/ excludes the Examples 1 and 2, which are negative and it
excludes the positive Example 3 as well. After adding this condition the resulting
rule would no longer cover the positive Example 3, while all negative examples are
excluded as well.

Condition .c D true/ excludes the positive Example 5 and the negative Example
6 and is thus of no use.

Again, it appears natural to add the condition .a D false/ to obtain a satisfying
classification rule for pleasant weather:

if .a D false/ ^ .d D false/ then pleasant

4.2 Non-Boolean Attributes

In many practical applications of machine learning, objects are not represented by a
set of boolean attributes.

The example given earlier considered the simplest case where the objects were
described by boolean attributes only. Considering further types of attributes, as men-
tioned in Sect. 5.3, some extensions to the demonstrated approach are necessary.
Basically, more attribute-value specifiers as in the boolean case have to be consid-
ered. In the boolean case the possible specifications were .a D false/ or .a D true/.

• For discrete attributes without any particular relation among its different values,
the attribute specifications can easily be extended from only boolean values to the
full range of attribute values. That is, the possible specifications are .A D v1/,
.A D v2/, ..., .A D vn/. Also, subsets of values can be used for constructing se-
lectors, i.e. for including the seed example and excluding the negative examples.
These are called internal disjunctions.

• Internal disjunctions: Disjunctions which allow more than one value or interval
for a single attribute. Since the disjuncts concern the same attribute, the disjunc-
tion is called internal. Examples are (colourD red or green or blue).

• For linear attributes, see Fig. 4 for a linear attribute. A linear attribute is an at-
tribute, where an example has a particular value within a range of linearly ordered
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values. Concepts are defined by defining an admissible interval within the lin-
early ordered attribute values, as e.g. .A < v1/, .A � v1/, ..., .A < vn/,
.A � vn/. Also ‘two-sided’ intervals of attribute values like .v1 < A � v2/

can be handled by AQ[3].
• For continuous attributes, the specifications are similar to the case of linear at-

tributes, except that instead of considering the value range of the attribute, the
values that actually occur in the given positive and negative examples are con-
sidered and ordered to be v1; v2; :::; vk . Subsequently as thresholds, the values of
viCviC1

2
are calculated and used as in the case of linear attributes.

• Tree-structured attributes: See Fig. 5. Tree-structured attributes replace the linear
ordering of the attribute value range by a tree-structure. The value of a node n
in the tree structure is considered to cover all values which are either assigned
directly to one of n’s successor nodes or are covered by one of n’s successor
nodes.
The defined partial ordering is used to specify attribute values: Every possible
attribute value is considered. Some attribute values do not subsume other values;
these are treated as in the case of the discrete attributes. Those values which
subsume other values are used to group meaningful attribute values together. For
example, (a D polygon) would subsume all values down the tree, i.e. triangle,
square, etc.

1 2 3 4 5 6

Fig. 4 Linear Attributes

concaveconvex

polygon

any shape

Fig. 5 An example of a tree-structured attribute “shape”
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The advanced versions of the AQ family (see, e.g. [3]) of learning algorithms deal
with all these different attribute types by determining selectors as minimal dom-
inating atoms. A minimal dominating atom is a single attribute with a specified
admissible value range. This is that value range, which excludes the given negative
example and covers as many positive examples as possible. That is, in the case of
value ranges for linear or continuous attributes, an interval is determined, by exclud-
ing the values of as many negative examples as possible and by including the values
of the positive examples.

4.3 Problems and Further Possibilities of the AQ Framework

Searching for Extensions of a Rule

The search for specialising a too general classification rule is heuristic in AQ due to
its computational complexity.5 A kind of greedy approach is conducted by adding
one constraint at a time to a rule. Since there is usually more than one choice to add
a further constraint to a rule, all such ways of adding a constraint are tried, by adding
all new rules to the so-called star. The star contains only a pre-specified maximum
number of rule candidates.

If after new rules are added to the star, the number of rules in the star exceeds
the specified maximum number, rules are removed according to a user-specified
preference or quality criterion. As quality function, typically heuristics are used by
the AQ system like

‘Number of correctly classified examples divided by total number of examples covered.’

Learning Multiple Classes

In the case of learning multiple classes, AQ generates decision rules for each class
in turn. Learning a class c is done by considering all examples with classification
c as positive examples and considering all others as negative examples of the con-
cept to learn. Learning a single class occurs in stages. Each stage generates a single
production rule, which recognises a part of the positive examples of c. After cre-
ating a new rule, the examples that are recognised by a rule are removed from the
training set. This step is repeated until all examples of the chosen class are cov-
ered. Learning the classification of a single class as above is then repeated for all
classes.

5 Note that the set cover problem is known to be NP-complete [10], which is very related to various
quality criteria one may have in mind for a rule discriminating between negative and positive
examples. That is, for many quality measures, the task to find the best rule will be NP-hard.



22 A. Hoffmann and A. Mahidadia

Learning Relational Concepts Using the AQ Approach

The presented approach has also been extended to learn relational concepts, con-
taining predicates and quantifiers instead of just fixed attributes. For more details,
see, e.g. [3].

Extending AQ

Various extensions to the basic AQ algorithm presented earlier have been developed.
One important class of extensions addresses the problem of noisy data, e.g. the
CN2 algorithm [9]. For the application of systems based on the AQ algorithm to
real-world domains, methods for handling noisy data are required. In particular,
mechanisms for avoiding the over-fitting of the learned concept description to the
data are needed. Thus, the constraint that the induced description must classify the
training data perfectly has to be relaxed.

AQ has problems to deal with noisy data because it tries to fit the data completely.
For dealing with noisy data, only the major fraction of the training examples should
be covered by the learning rules. Simultaneously, a relative simplicity of the learned
classification rule should be maintained as a heuristic for obtaining plausible gener-
alizations.

More recent developments include AQ21 [11] which, among other features such
as better handling of noisy situations, is also capable of generating rules with ex-
ceptions.

5 Learning Decision Trees

Decision trees represent one of the most important class of learning algorithms to-
day. Recent years have seen a large number of papers devoted to the theoretical
as well as empirical studies of constructing decision trees from data. This section
presents the basic ideas and research issues in this field of study.

5.1 Representing Functions in Decision Trees

There are many ways for representing functions, i.e. mappings from a set of input
variables to a set of possible output values. One such way is to use decision trees.
Decision trees gained significant importance in machine learning. One of the major
reasons is that there exist simple yet efficient techniques to generate decision trees
from training data.

Abstractly speaking, a decision tree is a representation of a function from a pos-
sibly infinite domain into a finite domain of values. That is,
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(a) A simple decision tree for a function
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(b) A function f .x; y/ of the form f W
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Fig. 6 Two decision trees on different domains

D W X ! C;

where X is the possibly infinite set of objects and C the set of classes assigned to
the objects by the functionD realized by a decision tree.

The representation of such a function by a decision tree is at the same time also
a guide for how to efficiently compute a value of the represented function. Fig. 6(a)
shows a decision tree of a simple boolean function. The decision tree is a tree in
which all leaf nodes represent a certain function value. To use a decision tree for
determining the function value for a given argument, one starts in the root node and
chooses a path down to one leaf node. Each non-leaf node in the tree represents a
decision on how to proceed the path, i.e. which successor node is to be chosen next.
The decision criterion is represented by associating conditions6 with each of the
edges leading to the successor nodes. Usually, for any non-terminal node n a single
attribute is used to decide on a successor node. Consequently, that successor node is
chosen for which the corresponding condition is satisfied. In Fig. 6(a), the decision
in the root node depends solely on the value of the variable a. In the case of a D F ,
the evaluation of the tree proceeds at the left successor node, while being a D t

would result in considering the right successor node. In the latter case the evaluation
had already reached a leaf node which indicates that f .t; t/ D f .t; f / D T . In the
case of a D f , the value of b determines whether the left or the right successor
node of node 2 has to be chosen, etc.

5.2 The Learning Process

The learning of decision trees is one of the early approaches to machine learning.
In fact, Hunt [12] developed his Concept Learning System CLS in the 1960s, which
was already a decision tree learner. A decision tree representation of a classification
function is generated from a set of classified examples.

Consider the examples in Table 2: Assume, we want to generate a decision tree
for the function f which determines the value P only for the examples 3 � 5 such
as the tree in Fig. 7.

6 normally mutually exclusive conditions...
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Table 2 A set of examples for the concept of pleasant weather. “P” indicates pleasant
weather, while “U” indicates unpleasant weather

Number aD sunny bD hot cD humid dDwindy classD f .a; b; c; d/
1 true true true false U
2 true true true true U
3 false true true false P
4 false false true false P
5 false false false false P
6 false false false true U
7 false false true true U

tf

f

f

t

t

d

a

b

UP

P

U

Fig. 7 A decision tree representing the boolean function partially defined in the table above (The
italic P (and U ) represents the inclusion of actually undefined function values which are set to P
(or to U respectively) by default)

The learning algorithm can be described at an abstract level as a function from
sets of feature vectors to decision trees. Generalisation occurs indirectly: The input
example set does not specify a function value for the entire domain. Opposed to that
a decision tree determines a function value for the entire domain, i.e. for all possible
feature vectors.

The basic idea of Quinlan’s ID3 algorithm [13], which evolved later to program
package C4.5 [6], is sketched in Fig. 8. The general idea is to split the given set
of training examples into subsets such that the subsets eventually obtained contain
only examples of a single class. Splitting a set of examples S into subsets is done by
choosing an attributeA and generating the subsets of S such that all examples in one
subset have the same value in the attribute A. In principle, if an attribute has more
than two values, two or more groups of values may be chosen such that all examples
which have a value in the attribute A that belongs to the same group are gathered in
the same subset. In order to cope with noise, it is necessary, to stop splitting sets of
examples into smaller and smaller subsets before all examples in one subset belong
to the same class.

Therefore, a decision tree learning algorithm has the two following functions that
determine its performance:
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Input: A set of examples E , each consisting of a set of m attribute values correspond-
ing to the attributes A1; :::; Am and class label c. Further, a termination condition T .S/
is given, where S is a set of examples and an evaluation function ev.A; S/ where A is
an attribute and S a set of examples. The termination condition is usually that all the
examples in S have the same class value.
Output: A decision tree.

1. Let S WD E .
2. If T .S/ is true, then stop.
3. For each attribute Ai determine the value of the function ev.Ai ; S/. Let Aj D

maxi2f1;:::;mg ev.Ai ; S/. Divide the set S into subsets by the attribute values of Aj . For
each such subset of examples Ek call the decision-tree learner recursively at step (1) with
E set to Ek . Choose Aj as the tested attribute for the node n and create for each subset
Ek a corresponding successor node nk .

Fig. 8 A sketch of the ID3 algorithm

• A termination condition which determines when to refrain from further splitting
of a set of examples.

• An evaluation function which chooses the “best” attribute on which the current
set of examples should be split.

The Termination Condition: T.S /

As indicated in Fig. 8, the termination condition T .S/ plays an important role in
inducing decision trees. The simplest form of a termination condition says ‘stop’
when all examples in S have the same class.

More sophisticated versions of the termination condition stop even when not all
examples in S have the same class. This is motivated by the assumption that either
the examples in the sample contain noise and/or that only a statistical classification
function can be expected to be learned.

The Evaluation Function: ev.a; S /

The ID3 algorithm as shown in Fig. 8 performs only a one-level look ahead to se-
lect the attribute for the next decision node. In that sense, it is a greedy algorithm.
Quinlan introduced in his original paper [13], an information theoretic measure,
which performs fairly well. Other heuristic proposals for a selection criterion in-
clude pure frequency measures as in CLS [12], or the Gini index as used in CART[14]
or a statistical test as in [15]. See also Bratko [16] for a discussion of these measures
and a simple implementation of a decision tree learner in PROLOG. An exhaustive
search for finding a minimal size tree is not feasible in general, since the size of the
search space is too large (exponential growth).
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Quinlan’s entropy measure7 estimates how many further splits will be necessary
after the current set of examples is split (by using the splitting criterion being eval-
uated): Consider a set of examples E, a set of classes C D fci j1 � i � ng, and
an attribute A with values in the set fvj j 1 � j � mg. The information in this
distribution needed to determine the class of a randomly chosen object is given by:

info.C / D �
X

i2f1;:::;ng
pi log2 pi (1)

where pi is the probability of an example falling into class ci . The probability Pi

will be estimated by the relative frequency of an example in E falling into class i .
That is, pi will be estimated as jEi jjE j . After splitting on an attribute, still some further
information may be needed, depending on the subset of examples associated to each
of the branches. That is, after a split, the information needed on average can be
computed by computing the information needed for each of the subsets according
to formula 1 and by weighting the result by the probability, for taking the respective
branch of the decision tree. Then, the following gives the information needed on
average to determine the class of an object after the split on attribute Aj :

info.C jA/ D �
X

j2f1;:::;mg

X

i2f1;:::;ng
pij log2 pij ; (2)

where pij denotes the probability for an object to have attribute value vj and falling
into class i . This is the measure proposed by Quinlan [13]. Again pij will be esti-
mated by the relative frequency of an example in E of having attribute value vj and
falling into class i . Intuitively, the amount of information needed on average after a
split on a particular attribute should be as small as possible. The choice of a splitting
attribute minimises on this measure.

Quinlan defines the inverse, the information gain achieved by a split as follows:

Gain.E;A/ D info.E/� info.EjA/ (3)

As a consequence, the objective is then to maximise the information gain by
choosing a splitting criterion.

Example. Considering the examples given in Table 2 and assuming the relative
frequency of examples in the given sample equals their probability, the following
values would be computed:

Initially the required information needed to determine the class of an example is
given by:

7 The entropy measure has been first formulated in C. Shannon and Weaver [17] as a measure of
information. The intuition behind it is that it gives the average number of bits necessary for trans-
mitting a message using an optimal encoding. In the context of decision trees, the number of bits
required for transmitting a message corresponds to the number of splits required for determining
the class of an object.
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info.E/ D �
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Considering the complete set of seven objects and splitting on a:
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and splitting on b:
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and splitting on c:
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and splitting on d :
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4
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4
C 3

4
log2
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Hence, splitting on attribute d requires on average the smallest amount of further
information for deciding the class of an object. In fact, in three out of seven cases
the class is known to be unpleasant weather after the split. The remaining four
examples are considered for determining the next split in the respective tree branch.
That is, for the following step only the subset of examples shown in Table 3 has to
be considered.

Then, we get the following values for the required information after splitting on
attribute a:

info.Eja/ D �
�
1

4
.1 log2 1/C

3

4
.1 log2 1/

�
D 0

and splitting on attribute b:

info.Ejb/ D �
�
1

2
.1 log2 1/C

1

2

�
1

2
log2

1

2
C 1

2
log2

1

2

��
D 0:5

Table 3 The reduced set of examples after splitting on attribute d and considering
only those examples with the attribute value d=false

Number AD sunny BD hot CD humid DDwindy ClassD f .a; b; c; d/
1 true true true false U
3 false true true false P
4 false false true false P
5 false false false false P
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Fig. 9 The decision tree obtained using Quinlan’s information-theoretic measure. In fact, the
above decision tree is the shortest possible for the given example set

and splitting on attribute c:

info.Ejc/ D �
�
1

4
.1 log2 1/C

3

4

�
2

3
log2

2

3
C 1

3
log2

1

3

��
� 0:688

Consequently, the next attribute chosen to split on is attribute a, which results in
the decision tree shown in Fig. 9.

Practical experience has shown that this information measure has the drawback
of favouring attributes with many values. Motivated by that problem, Quinlan in-
troduced in C4.5 [6] a normalised Entropy measure, the gain ratio, which takes the
number of generated branches into account. The gain ratio measure [6], considers
the potential information that may be gained by a split of E into E1; :::; Ek , de-
noted by Split.E;A/. The potential information is that each branch has a unique
class assigned to it, i.e. it can be defined as follows:

Split.E;A/ D �
kX

iD1

jEi j
jEj log2

jEi j
jEj (4)

where A splits the set of examples E into the disjoint subsets E1; :::; Ek .
The gain ratio measure, then, is defined as follows:

Gainratio.E;A/ D Gain.E;A/

Split.E;A/

In the release 8 of C4.5 [18], the gain ratio computed for binary splits on continuous
attributes is further modified to improve predictive accuracy.

Good and Card [19] provide a Bayesian analysis of the diagnostic process with
reference to errors. They assume a utility measure u.i; j / for accepting class cj

when the correct class is actually ci . Based on that they developed a selection crite-
rion which takes the optimisation of utility into account.
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5.3 Representational Aspects in Decision Tree Learning

Continuous Attributes

Quinlan’s original ID3 algorithm handles attributes with discrete values only. Unfor-
tunately, many problem domains contain continuous descriptors, such as height or
weight, which are difficult to handle discretely. The ID3 algorithm does not utilise
the implicit information contained in the fact that the values of an attribute are
(meaningfully) ordered. As a consequence, the original ID3 algorithm has been ex-
tended in C4.5 [6] to handle continuous attributes as well. Quinlan’s model trees
[20] can also generate continuous output functions. The basic idea is to find a bi-
nary split on the value range. For that purpose all values v1; :::; vm that occur in the
actually given examples are considered and ordered according to their values. Sub-
sequently, every possible split by choosing a threshold between vi and viC1 for all
i 2 f1; :::; m � 1g are considered and the best split is chosen.

Unknown Attribute Values

In a number of applications it may happen that an example is not completely de-
scribed, i.e. that some of its attribute values are missing. This may be due to missing
measurements of certain attributes, errors in or incompleteness of reports, etc. For
example, when dealing with large historical databases, often some values for at-
tributes are unknown. In medical cases, not for every patient a specific test has been
taken – hence it is rather normal that some values are missing. However, one stan-
dard approach to cope with the problem of unknown values is to estimate the value
using the given examples which have a specified value. This approach is taken in,
e.g. ASSISTANT [21] as well as C4.5 [6].

However, one can actually distinguish at least the following reasons for the miss-
ing values which suggest different treatments: Missing because not important (don’t
care), not measured, and not applicable (e.g. a question like “Are you pregnant” is
not applicable to male patients). These reasons could be very valuable to exploit in
growing a tree or in concept learning in general.

Splitting Strategies

It is interesting to note, that if an attribute has more than two values it may still
be useful to partition the value set only into two subsets. This guarantees that the
decision tree will contain only binary splits. The problem with a naive implemen-
tation of this idea is that it may require 2n�1 evaluations, where n is the number of
attribute values. It has been proved by Breiman et al. [14] that for the special case
of only two class values of the examples, there exists an optimal split with no more
than n � 1 comparisons. In the general case, however, heuristic methods must be
used.
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One simple idea to deal with that problem is as follows: Examples are ordered
by the values of the attribute in question and then the best split which partitions the
examples into two sets is chosen. This idea has been implemented, e.g. in CART[14]
and in C4.5 [6].

5.4 Over-Fitting and Tree Pruning

From a statistical point of view, the decision tree learning algorithm of Fig. 8 has
the drawback that it tends to over-fit the data. That is, the learned tree is too large
and – as a consequence – classifies less accurate than a smaller tree would do. This
is basically due to noise in the training data. Two main methods have been studied
to overcome this problem:

1. Modify the evaluation function to terminate search when no attribute is consid-
ered to provide significant information about the class. See e.g. [22].

2. Prune the obtained decision tree to reduce its complexity while keeping its clas-
sification accuracy at a reasonable level. See. e.g. [6, 14, 76, 77].

It is widely assumed, that pruning after generating the full decision tree is the most
effective method [14]. A number of pruning techniques have been proposed. Pruning
may occur in different ways:

• The tree may be pruned beginning with its leaf nodes. See e.g. [23].
• Pruning may take place by merging intermediate nodes of the tree together. For

example, weakest link pruning [14].

Pruning beginning with its leaf nodes can be done as follows, see, e.g. [23] As-
cending in the tree beginning in its leaf nodes and testing at every nonleaf node
whether replacing the subtree of node n by one of its leaf nodes would improve the
classification accuracy, For determining the classification accuracy statistical tests
have to be used on a separate set of test examples. These test examples must be
statistically independent from the training examples used for learning the decision
tree to be pruned. If a sufficient number of test examples are not easily available,
this may cause a problem. One approach to deal with that problem is using cross
validation [14].

For more recent developments, such as the commercially available variant of
C4.5, known as See5 or C5.0, see, e.g. [24].

6 Inductive Logic Programming

Inductive Logic Programming (in short ILP) is a method to construct logic programs
describing a target concept based on examples of this target concept. Although,
ILP has limited practical applications so far, its potential seems very promising.
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The ILP framework allows to incorporate flexibly domain knowledge into the
learning process. Furthermore, ILP can learn relational concepts which can, for ex-
ample, compare different attributes with each other in a concept definition. This
is opposed to, e.g. decision tree learners like C4.5, which tests one attribute at
a time and compares the attribute rather with a constant value than with another
attribute.

The term Inductive Logic Programming is motivated by the idea of considering
the hypothesis space being the set of logic programs. Then, the result of learning
will be a particular logic program. If the learning process is an inductive process,
i.e. generating a more general logic program from a given set of examples, then the
generation of a logic program takes place in an inductive way. The field of inductive
logic programming comprises a number of techniques and implemented systems
which can be subsumed under this idea. One particularly appealing idea in this field
is that background knowledge can easily be incorporated into the framework. That
is, the hypothesis space can be shaped by describing certain knowledge known to
the user a priori, by giving a partial logic program. Then, the input to the learning
system is both, training examples as well as a partial logic program. The output
is a completed logic program. Since the hypothesis space is the set of logic pro-
grams, or at least a subset of these, the descriptional power of what can be learned is
substantially larger than that of propositional learners like the decision tree learner
discussed earlier. In the following, the central ideas of inductive logic programming
will be presented.

One of the very early systems which incorporated relational background knowl-
edge into the generalisation process was Michalski’s INDUCE [25]. Inspiring for
many of the current approaches was the work on model inference by Shapiro [26],
Plotkin’s work on least general generalisation [27], the work by Sammut and Banerji
[28] on the interactive learning system MARVIN, etc.

Before we formally describe the ILP setting, let us first briefly consider one
simple example (from [16] and [29]). Let us assume we already have the following
three predicates (relations) defining some family relations:

parent.pam; bob/; parent.tom; bob/; parent.tom; liz/
parent.bob; ann/; parent.bob; pat/; parent.pat; jim/

female.pam/; female.liz/; female.pat/; female.ann/

male.tom/; male.bob/; male.jim/

We can consider the above predicates as our background knowledge B
about the problem. Now we want to learn a definition of the new predicate
has daughter.X/, given the following set P of positive examples (meaning
tom and bob each has a daughter),

has daughter.tom/; has daughter.bob/
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and the following set N of negative examples (meaning pam and jim each do
not have a daughter),

has daughter.pam/; has daughter.jim/

The task now is to learn a new definition of the predicate has daughter.X/, using
the above background knowledge (three predicates parent , male and female),
such that a new definition of has daughter is true for all the positive examples
and not true for any negative examples. One possible hypothesis (call it H ) an ILP
program might output is the following:

has daughter.X/ parent.X;Y/; female.Y/:

The above hypothesis satisfies our constraints by explaining both the positive
examples, and not explaining any negative examples. Note that here the new defi-
nition of has daughter uses two existing relations from the available background
knowledge.

Now, let us define one of the most popular ILP settings [29]. Let B represents
background knowledge (normally a set of Horn-clauses), P represents positive ex-
amples (normally ground literals) and N represents negative examples (normally
ground literals). The task is to find a hypothesisH such that

• 8p 2 P W H [ B ˆ p (completeness of the hypothesisH )
• 8n 2 N W H [ B 6ˆ n (consistency of the hypothesisH )

In practice, the above definition involves the problem that it may be difficult
or even algorithmically impossible8 to determine whether a particular example is
entailed by the given background knowledge and a chosen hypothesis.

Most often, the SLD-resolution proof procedure9 with bounded or unbounded
depth is used for testing whether an example is entailed by a hypothesis h and the
given background knowledgeB .

Usually there are two types of background knowledge distinguished: Extensional
background knowledge and intensional background knowledge. The extensional
background knowledge is restricted to be a set of ground facts; i.e. background
knowledge is extensional if it contains single literals with constants as arguments
only. This is obviously a fairly strong constraint on the expressive power of back-
ground knowledge.

Opposed to that is intensional background knowledge allowed to contain non-
ground clauses as well. That is, it may contain Horn clauses of more than a single
literal and a clause may contain variables as well. Most of the empirical ILP systems
are using the extensional notion of coverage. Interactive ILP systems, on the other
hand, are mostly adopting the idea of intensional coverage.

8 It may be algorithmically impossible, if the used language is not decidable.
9 See e.g. [30] for details.
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In the following, ways of generalisation in the ILP framework will be discussed.
For that purpose, a few more technical terms are defined.

Definition 1. Given a language L, a generalisation operator � maps a clause c to
a set of (more general) clauses �.c/ which are generalizations of c. That is,

�.c/ D fc0jc0 2 L; c0 � cg;

where � is the ‘more general than’ relation.

There are basically two possible ways to generalise a given clause:

• Substitute the involved terms by more general terms. For example, replace a con-
stant by a variable.

• Remove a literal from the body of a clause.

Relative Least General Generalisation

Plotkin [27] developed his notion of least general generalisation. The least general
generalisation considers two clauses c1; c2 and produces a third clause c3 which as
little more general as possible than both of the clauses c1 and c2 together.

For defining exactly what this means, we define a least general generalisation
(lgg) for the parts of a clause first. That is, we define (lgg) for terms, atoms, and
literals.

Definition 2. The least general generalisation lgg.e1; e2/ of two syntactical ex-
pressions e1; e2 is defined as follows. For e1 and e2 being

Terms: lgg.t1; t2/ is given by

1. lgg.t; t/ D t ,
2. lgg.f .s1; :::; sn/; f .t1; ::; tn// D f .lgg.s1; t1/; :::; lgg.sn; tn//,
3. lgg.f .s1; :::; sm/; g.t1; :::; tn//DV , where f 6D g, and Vf .s1;:::;sm/;g.t1;:::;tn// is

a variable,
4. lgg.s; t/ D Vs;t , where s 6D t and at least one of s and t is a variable.

Atoms:

1. lgg.p.s1; :::; sn/; p.t1; :::; tn// D p.lgg.s1; t1/; :::; lgg.sn; tn//, if atoms have the
same predicate symbol p,

2. lgg.p.s1; :::; sm/; q.t1; :::; tn// is undefined if p 6D q.

Literals:

1. if L1 and L2 are atoms, then lgg.L1; L2/ is computed as defined above,
2. if both L1 and L2 are negative literals, L1 D A1 and L2 D A2, then

lgg.L1; L2/ D lgg.A1; A2/ D lgg.A1; A2/,
3. if L1 is a positive and L2 a negative literal, or vice versa, lgg.L1; L2/ is unde-

fined.
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Clauses: Let c1 D fL1; :::; Lmg and c2DfK1; :::; Kng. Then lgg.c1; c2/ D fLij D
lgg.Li ; Kj /jLi 2 c1; Kj 2 c2and lgg.Li ; Kj / is definedg.

Example. Examples for each of the given types of syntactical expressions are given
below:

terms: lgg.a; a/ D a: lgg.a; b/ D Va;b . It is important to note that if a variable
is introduced for a pair of terms, then for every occurrence of this pair, the same
variable is introduced. E.g. lgg.f .a; a/; f .b; b// D f .lgg.a; b/; lgg.a; b// D
f .Va;b; Va;b/:

atoms: lgg.p.a/; p.b// D p.lgg.a; b// D p.Va;b/: lgg.q.f .a; b/; c/; q.a; c// D
q.lgg.f .a; b/; a/; lgg.c; c// D q.Vf .a;b/;a; c/: lgg.p.a/; q.a; a// is undefined.

literals: lgg.q.a; b/; q.a; a// is undefined.
clauses: lgg..p.a; b/  q.a; c/; r.c; b//; .p.d; e/  q.d; f /; r.f; e/// D
p.Va;d ; Vb;e/ q.Va;d ; Vc;f /; r.Vc;f ; Vb;e/:

Now, we are also ready for the definition of relative least general generalisation
(rlgg) as follows:

Definition 3. The relative least general generalisation of two clauses c1 and c2 is
their least general generalisation lgg.c1; c2/ relative to background knowledge B.

That means for B being a collection K of ground literals and c1; c2 being two
atoms A1; A2 respectively:

rlgg.A1; A2/ D lgg..A1  K/; .A2  K//:

Inverse Resolution

Muggleton and Buntine introduced inverse resolution as a general technique to ILP
in [31]. The basic idea is to invert the normal resolution step of the resolution proof
procedure.10

Resolution of predicate logical clauses involves the substitution of general terms
by less general terms. Usually, variables are turned into constants of functions of
variables. For inverse resolution, this process needs to be inverted. For example,
constants are replaced by variables. The inverse process, however, involves a slight
complication compared to the usual substitution process. It requires that the substi-
tutions of constants by variables keeps a record of which occurrence of a constant
is replaced by which variable. See the following example:

Example. Let A1 D p.f .V1/; V2/ be an atom being substituted by �fV1=a; V2=ag:
That is, A1� D p.f .a/; a/. Clearly, there should be an inverse substitution ��1

which applied to A1� results in A1.

10 See e.g. [30] or [32] for details on the resolution proof procedure.
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Therefore, ��1 D f.a; h1i/=V1; .a; h2; 1i=V2/ where the index after the term to
be replaced indicates which occurrence of the term is to be replaced by the following
term.

In the following, inverse resolution is less formally treated and rather examples
are given than the lengthy formal definitions.

Example. Assume the following background knowledge:
B D fb1 D father.paul; peter/; b2 D youngster.peter/g:

Assume the current hypothesis h D ; and the following positive example: e1 D
childof .peter; paul/ is presented.

Inverse resolution attempts to generalise from the given knowledge by assuming
the given example had been derived from the background knowledge. That is, by
assuming the example e1 is the result of a resolution step. If e1 is the result of
a resolution step, there must be a clause c as follows: c D .e1  b1/ or c D
.e1  b2/. This, however, would not yet constitute a generalisation. The mentioned
clauses can rather be deductively derived from B and e1. In order to introduce a
generalisation process, inverse substitution is used.

That is, as shown in Fig. 10, in the positive example e1 a constant is turned into
a variable by choosing an inverse substitution like ��1 D fpaul=xg. This results in
the clause c1 D .e1��1  b1�

�1/ D .childof .peter; x/ father.x; peter/.
This first generalisation step resulting in clause c1 may be followed by a sec-

ond one – again taking the available background knowledge B into account: To
derive c1 by a resolution step involving the second part of the background knowl-
edge, a clause like c D fe1�

�1  .b1�
�1; b2/ or a more general one is needed. A

more general clause than c2 can be obtained by applying another inverse substitu-
tion ��1

1 to c. Thus, for ��1
1 D fpeter=ygwe obtain: c2 D c��1

1 D childof .y; x/ 
.father.x; y/; youngster.y//: c2 is a fairly strong generalisation of the initially given
facts in B and e1. This demonstrates the generalisation power of inverse resolu-
tion. However, is should also be noted, that the same generalisation power poses the

e1 = child of(peter, paul) 

b1 = father(paul, peter) c1 = child of(peter, x) ← father(x, peter).

{θ−1= paul / x} 

b2 = youngster(peter) 

c2 = child of (y, x) ←
       father(x, y), youngster(y). 

{θ1
−1= peter / y}

Fig. 10 V operators
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practical problem to contain the actually taken generalisation steps to those which
are desired. That is, by using these syntactical operations, many clauses can be gen-
erated which do not make any sense.

From the given example it can be seen, that in the process of inverse resolution,
there were two operations involved which are inherently non-deterministic.

• The choice of the emerging clause, i.e. which part of the background knowl-
edge is used to derive the example or an intermediately generated clause, such
as c1 in the example above. In general, there are always many options to
choose from.

• The other choice is which particular inverse substitution ��1 is used. The most
conservative choice for ��1

con in the earlier example had been the empty substitu-
tion. This, however, had led to no generalisation but rather to a mere deductive
derivation of the clauses
childof .peter; paul/ father.paul; peter/ and
childof .peter; paul/ .father.paul; peter/; youngster.peter//.
On the other hand, the most general inverse substitution for obtaining the first
clause had been ��1

g D fpeter=x; paul=yg, which replaces both involved con-
stants by variables.

The above used generalisation operator for generating a new clause is called the
absorption operator (the V operator). It was already used in the early ILP systems
MARVIN [28] and CIGOL [31]. CIGOL uses also several other operators. One
important operator among them is intra-construction, which is an instance of the
W operator. A W operator combines two V operators and introduces thereby a new
predicate. The process of introducing new predicates which are not available in the
background knowledge or in the examples is called predicate invention.

A unified framework, introduced in Muggleton [33], for relative least general
generalisation and inverse resolution proposes to use the most specific inverse reso-
lution for each step in the generalisation process.

Example. Considering the example for the inverse resolution the most specific in-
verse resolution would choose the empty set for every inverse substitution step. That
is, ��1

1 D ; and ��1
2 D ; which results in the clauses

.childof .peter; paul/ father.paul; peter// and

.childof .peter; paul/ father.paul; peter/; youngster.peter//
respectively.

The relative least general generalisation can be considered as bottom-up gen-
eralisation, i.e. starting from the ground facts and becoming more general step by
step. Opposed to that also a top-down approach can be taken. That is, starting with
general hypotheses and becoming more specific step by step [34]. For that pur-
pose, we have to consider ways of systematically specialising hypotheses in the ILP
framework.
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Specialisation Techniques

For specialisation, we are interested in operators which can be applied step by step
to a given hypothesis. Usually, the operators for specialisation are called refinement
operators.

Definition 4. Given a language bias L, a refinement operator � maps a clause c
to a set of clauses �.c/ which are specialisations (or refinements) of c:

�.c/ D fc0jc0 2 L; c � c0g:
where � is the ’more general than’ relation.

A refinement operator determines normally only the set of minimal specialisa-
tions (the most general specialisations) of a clause. For doing that, a specialisation
operator can make use of the following two types of syntactical operations:

• Apply a substitution to a clause. This makes the terms occurring in the clause
less general, hence the corresponding predicates apply to less objects or tuples of
objects respectively.

• Add a literal to the body of a clause. This introduces an additional condition to
the body of the clause and hence makes it less general.

After considering the processes of both, the generalisation as well as the special-
isation of a given clause, the general structure of most of the ILP systems can be
sketched by giving a simplified view of the MIS (Model inference system) [26]; see
Fig. 11.

In principle, in the specialisation loop as well as in the generalisation loop, dif-
ferent stopping criteria are possible. This may be of interest for the following two
reasons:

Initialize hypothesis h to a (possibly empty) set of clauses in L.
repeat

Read the next example e
/* specialisation loop */
if e is a negative example and e is covered by some clause in h
then delete all incorrect clauses in h
endif
/* generalisation loop */
if e is a positive example and e is not covered by h
then generate a clause c which covers e,

but none of the negative examples presented so far
endif

until h is complete and consistent.
output hypothesis h as result.

forever

Fig. 11 A simplified skeleton of the model inference system (MIS)
.
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Initialize hypothesis h WD ; to the empty set.
Let E be the set of all (positive and negative) examples.
Initialise c WD T .x1; :::; xn/ .
while there is a positive example epos 2 E which is not covered by h do

while there is a negative example eneg 2 E
which is covered by a clause c 2 h do

remove c from h: h WD h n fcg.
repeat

determine (heuristically) the best refinement cbest 2 �.c/.
c WD cbest .

until c does not cover eneg .
Add c to h: h WD h[ fcg.
endwhile
Remove all positive examples from E which are covered by h.

endwhile

Fig. 12 The general structure of an ILP learning algorithm which learns by stepwise specialisation
(a top-down ILP algorithm)

• For handling noisy data; i.e. not all positive examples have necessarily to be
covered and there may be negative examples which could possibly be covered by
the hypothesis.

• To control the hypothesis generation process beyond the requirement of being
complete and consistent with the given examples. This can be considered to rep-
resent a search bias.

Figure 12 outlines the general structure often used during the hypothesis genera-
tion process in ILP (a top-down ILP algorithm).

As discussed earlier, the problem of inducing H from B, P and N is under-
constrained (see Sect. 6). In the worst case, it is possible to find an infinite number
of hypotheses all of which can satisfy the required relationships. One of the ways to
resolve this problem is by restricting the choice ofH to be the most general hypoth-
esis relative to B (as in [26]) or the least general relative to B (as in [27]) or such that
maximum information compression of examples relative to B can be obtained (as
in [35]) or apply some other criteria. The selection of a constraint will influence the
types of new theories we can learn. Hence, the choice of which constraint to apply
is related to the types of theories we want to learn.

Section 6.1 discusses some of the techniques used by ILP systems that can reduce
the search space while inducing new hypotheses.

6.1 Biases in ILP Systems

The hypothesis language used in ILP is normally Horn-clauses. The expressive
power of Horn-clauses is far more than other representations used in Machine
Learning (like decision trees, propositional learners, case based reasoning, etc.) In
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a Horn-clause representation, we can more easily express the domain knowledge
and new possible hypotheses can also succinctly capture the required relationships
in the domain. However, this comes at the cost of a large search space. In general,
a number of possible hypotheses we can generate can be extremely large and in the
worst case infinite. Under this circumstance, it becomes extremely important to re-
strict the search space so that we can use ILP systems for real world problems. All
the ILP systems impose some kind of restrictions on the possible new hypotheses
that they can learn. The aim is to generate all possible hypotheses that might be
of interest and at the same time avoid generating hypotheses that might not prove
useful. This is achieved by using different kinds of biases. A bias is a criteria used
by a learner at the time of inducing new hypotheses. It may include some of the
following (from [36]):

• The language used to describe hypotheses
• The space of hypotheses that the learner should consider
• The order in which hypotheses should be considered
• The acceptance criteria that define whether a search procedure may stop with a

given hypothesis or should continue searching for a better choice

In general, we can categorise biases used in ILP systems as follows (from [37]).

Language Bias

Language bias specifies the syntax of the candidate hypotheses. The aim is to induce
only those new hypotheses that match a given syntax. For example, we may want to
induce hypotheses that are Horn-clauses and do not contain any function symbols.
Alternatively, we may want to induce Horn-clauses where a number of literals in the
body (negative literals) should not be greater than some fixed value n. We can also
specify the types of literals that are allowed in the body and so on. For example,
in MOBAL [38], we may specify the following syntax (called rule model or rule
schema) for possible new hypotheses:

C.X1/ P.X2/;R.X1;X2/,

where C , P and R can be replaced by any predicate symbols from the current
theory. That means, we want to induce definite clauses such that there are two literals
in the body. The above syntax also restricts the possible number of arguments we can
have in each literal, and also imposes inter-dependency amongst these arguments.

GRENDEL [39] uses a special attribute description grammar to specify the types
of clauses that should be considered by the learner. PROGOL [40] uses mode dec-
larations that specify input/output behaviours of arguments in a predicate. It also
specifies the predicate and function symbols that should be considered while in-
ducing hypotheses. That means the learner would only generate hypotheses for a
given set of predicate and function symbols. For example, in PROGOL, the follow-
ing mode declaration indicates that we want to induce a predicate named “reverse,”
where the first argument is instantiated when it is called, and on return the second
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argument will be instantiated (hopefully representing the reverse list for the first
argument).

modeh.�; reverse.Clist;�list//

Other examples include the clause models in [41], schemata in [42], ij-determinacy
in GOLEM [43], etc.

Search Bias

Search bias specifies how to traverse the search space while inducing new hy-
potheses. For example, many algorithms in ILP use a partial-order relation that can
organise hypotheses in a general to specific framework. The aim then can be to in-
duce hypotheses that are general with respect to the current hypothesis. This will
avoid considering hypotheses that are specific with respect to the current hypothe-
ses. In a way, every algorithm provides a specific way in which the learner would
search the hypotheses space.

Another approach is to induce a new theory that minimises the size of the theory
along with observations. The basic idea here is that, assuming that the theory and
data are optimally encoded, the best theory is the one that minimises the total cost
of transmitting the combined message (theory and data) to a receiver. The receiver
then can reconstruct all the original observations from this message. This approach
is known as Minimum Message Length (MML) [44]. A related principle called Min-
imum Description Length (MDL) [35] tries to induce a theory based on its ability to
compress the observations alone. Here, the size of the theory is not considered, but
the measure indicates how well the theory can compress the observations.

6.2 Discussion on Inductive Logic Programming

Inductive Logic Programming (ILP) has been covered in relative length compared
to other learning techniques. Reason being, that the flexible integration of domain
knowledge appears very promising. It has been argued, e.g. in [45], that effec-
tive learning approaches need to utilise available domain knowledge to improve
their performance: That is to allow learning from fewer examples and to improve
the reliability of the learning result. Often traditional propositional approaches are
not enough to handle complex data types and domain knowledge required to ad-
dress many interesting real world problems. ILP provides much reacher framework
to address such problems. However, currently one of the major criticisms of ILP
methods is their inability to scale up to address large problems. One of the main
reasons for this is a typically large search space they need to explore to learn
new models. To address this problem, special techniques like language bias, search
bias, etc. need to be used based on the available domain knowledge and problem
requirements.
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Reference [46] provides a good overview of the early ILP systems, and [47] dis-
cusses how ILP methods could be used for many relational data mining tasks. Some
examples of the ILP systems for scientific knowledge discovery include, [48–53].

7 Association Rules

The process of discovering association rules involves finding possible recurrent pat-
terns, like interesting association or correlation relationships, among a large set of
data items. Here, a data item is an attribute-value pair, typically with a boolean
value true indicating that a data item is present and false indicating otherwise. A set
of data items represents many such items. The most common and popular example
of association rules mining is market basket analysis. The aim here is to discover
which items sell together. For example, how many times say milk and bread appear
in a same “basket”.

Let us consider the set of transactions in Fig. 13. Here, A, B , C and D are items
and each transaction contains 1 or more of these four items.

The first task now is to find all combinations of items that occur frequently to-
gether. Let us say, we consider that items that appear together more than three times
should be considered as frequent items. In other words, we say that we want the min-
imum support count to be 3 for our analysis. In the example above, the items B and
C appear together four times and therefore we would consider them as a frequent
itemset. However, the items A and D appear together only once, and therefore we
would not consider that combination as a frequent itemset. Generally, combinations
that are not frequent are not explored further in the process of discovering asso-
ciation rules. Normally, a user defines the value of minimum support count based
on the domain knowledge and the problem at hand. For any reasonably large data
set, finding all combinations of items that occur frequently together could prove
computationally very expensive, and therefore special techniques need to be used to
improve the efficiency of this step.

Fig. 13 A small set of
transactions

Transactions
A, B, C
B
A, B
B, C, D
C, D
A
B, C, D
A, B
B, C
A, D
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Once we have all such frequently appearing items, we need to derive possible
association rules from them. Let S be a frequent itemset. The set provides f.S n
X/) X j X 2 Sg all association rules where we have one item as the consequence
and the complement to S as the condition part. We can derive more rules by having
more than one item in the consequence part.

Next step is to consider only those rules that are interesting. Normally, two
measures are used for this task: support which indicates usefulness of a rule and
confidence which indicates certainty of a rule.

In the above example, let us say we discover the rule C ) B . Considering, the
items B and C appear four times together out of the total of 10 transactions, we say
that the support for the rule is 40%, using the following calculations:

support D number of transactions with both B and C

number of the total transactions
D 4

10
D 0:4:

Now, there are five transactions with the item C , and four transactions with both the
items C and B , so we say that the rule has the confidence value of 80%, using the
following calculations:

confidenceD number of transactions with both C and B

number of transactions with C
D 4

5
D 0:8:

In other words, we say that 80% of the customers who buy the item C also buy
the item B. Similarly, we can calculate the confidence value of the rule B ) C ,
which is 57.14% (that is, (number of transactions with both B and C )/(number of
transactions with B)D 4/7D 0.5714).

Normally, we consider association rules interesting if their support and confi-
dence values are above specific thresholds. The actual values of these thresholds
depend on the domain and the problem requirements.

Below we define the earlier concepts more formally from [54].
Let I represents a set of items, that is I D fi1; i2; :::; img. Let D represents a set

of transactions where each transaction T is a set of items such that T � I . Let A
be a set of items. A transaction T is said to contain A if and only if A � T . An
association rule is an implication of the form A ) B , where A 	 I; B 	 T and
A \ B D �.

The rule A ) B holds in the transaction set D with support s, where s is the
percentage of transactions in D that contain both A and B . Here s represents the
probability, P.A[ B/.

The ruleA) B has confidence c in the transaction setD if c is the percentage of
transactions inD containingA that also containB Here, c represents the conditional
probability, P.BjA/.
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7.1 The Apriori Algorithm

In this section, we briefly outline one of the most popular algorithms, called the
Apriori algorithm [55], for generating frequent itemsets for mining association rules.
A simplified view of the algorithm is provided in the Fig. 14. The table in the lower
part of Fig. 14 illustrates how the algorithm derives different itemsets for a simple
example (from [54]). The algorithm first finds frequent itemsets with only one item,
called L1. Later L2 (that is, itemsets with two items) is derived from L1, and L3 is
derived from L2, and so on until say Lk when a new derived itemset is empty.

The algorithm uses one crucial property called the Apriori property that indicates
that all nonempty subsets of a frequent itemset must also be frequent. This means,
while deriving Li from Li�1, we only need to consider generating candidates in
Li where their possible subsets of size i � 1 already exist in Li�1. This property
allows the algorithm to discard many combinations of itemsets while deriving new
Li . For example, in Fig. 15, only fB;C;Eg is the possible canditate for L3 because
its subsets of size 2 are all frequent (and present in L2). For the other possible
combinations of size 3, this is not true.

Input: A set of transactions D
L1 = find frequent itemsets with one item from D

for(k D 2ILk�1 ¤ �I k++)
Ck = find candidates for frequent itemsets with k items, using Lk�1

Lk = take frequent itemsets from Ck with required minimum support
endfor
Output: L1 [ L2 [ :::[Lk

Transactions
A, C, D 
B, C, E 

A, B, C, E 
B, E 

L1

{A} supp 2 
{B} supp 3 
{C} supp 3 
{E} supp 3 

C2

{A, B} supp 1
{A, C} supp 2 
{A, E} supp 1
{B, C} supp 2 
{B, E} supp 3 
{C, E} supp 2 

L2

{A, C} supp 2 
{B, C} supp 2 
{B, E} supp 3 
{C, E} supp 2 

C1

{A} supp 2 
{B} supp 3 
{C} supp 3 
{D} supp 1
{E} supp 3 

C3 and  L3

{B, C, E} supp 2

Min support = 2 transactions 

Fig. 14 A simplified skeleton of the apriori algorithm and a simple example for it
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for .i D 0I i < T I i++/
1. Re-sample from the existing training set of N examples

by bootstrapping: i.e. generate a new training sample Si by drawing
N examples randomly from the existing training set according to the
uniform probability distribution among the N training examples;

2. Generate a classifier Ci from the generated sample Si ;
endfor
Classify new examples by majority vote among the T generated classifiers;

Fig. 15 Pseudocode of bagging (boosting by resampling)

The Apriori algorithm uses generate-and-test approach and often this dose not
prove very efficient. Some recent association rules mining algorithms avoid using
generate-and-test approach to improve the efficiency. See [54] for more discussions
on this topic.

7.2 Discussion on Association Rules

Often a process of discovering association rules results in a large amount of asso-
ciation rules, many of which are useless or uninteresting to the user. A user can set
say confidence and support thresholds, however these values do not always capture
interestingness of associations properly. One of the alternatives is to allow a user
to provide additional constraints that could be used while discovering association
rules. For example, a user might be interested in discovering associations between
certain items only, or generating rules for certain items only, or may not want to ex-
plore itemsets that are larger than say three items, or may not want to include some
items in the analysis, etc.

It should be noted that not all strong association rules with high confidence val-
ues are always interesting. For example, let us assume that the item X exists in
every transaction of the setD. Now, say we discover the following association rule,
A) X with confidence value of 100%. If we only consider the confidence value
here (that is 100%), the rule seems impressive. However, considering that the item
X exists in every transaction, this rule and many other similar rules are uninter-
esting to the user because he or she perhaps already knows that every one buys X
anyway. We can address this problem by calculating the lift value of a rule. The lift
value tries to measure the strength of the implication, and can be calculated by di-
viding the confidence by the support. In the above example, the lift value would be
1, indicating the implication has no effect. A lift value of greater than one indicates
positive influence, and a value of less than one indicates negative influence on the
consequence of the rule.

The above example illustrates that often we also need to use other measures like
lift, correlation analysis, etc. to search for interesting association rules. See [24, 54,
56, 57] for more recent developments.
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8 Naive Bayesian Classifiers

The Naive Bayesian classifier is a simple but very effective learning technique for
many practical problems. As the name suggests it is based on Bayes Theorem:

P.hjD/ D P.Djh/ � P.h/
P.D/

This Theorem allows to calculate the conditional probability for the hypothesis
h given the data D on the basis of a priori probabilities for both and the inverse
conditional probability P.Djh/. In many practical situations, it is easier to obtain
estimates for the three probabilities on the right-hand side than estimating the proba-
bility on the left-hand side directly. For the problem of classification, a probabilistic
perspective is taken. That is, there are certain probabilities to be determined accord-
ing to which a given object belongs to a given class.

That is, we generally want to estimate the probability P.Class.X/ D ci jX/,
whereX is the object to be classified and Class.X/ is its class. So, we would choose
the class ci for which the estimated conditional probability is maximum among all
possible classes.

For the Naive Bayesian Classifier the Theorem of Bayes is used to estimate
P.Class.X/ D cjX/ and a Naive assumption is being made to estimate the reverse
conditional probability needed on the right-hand side of the Theorem’s equation.

So, a Bayesian Classifier would classify an object X into the class ci , where

ci D argmax
c
P.Class.X/ D cjX/

D argmax
c

P.X jClass.X/ D c/ � P.Class.X/ D c/
P.X/

Since we are only interested to know for which class the fraction above becomes
maximum, we don’t need to know P.X/. So, we need to estimate the a priori
probability for an object belonging to a given class and the conditional probabil-
ity P.Class.X/ D cjX/. The a priori probability is estimated by simple frequency
counting of the various classes in the given sample of training data.

So, what is left to estimate is P.Class.X/ D cjX/. This is usually impractical
to estimate since for each object in the universe there are usually very few, if any,
examples in the training sample resulting in useless estimates for the conditional
probabilities.

Hence, the Naive Bayesian Classifier uses the following Naive assumption:
The object X has a number of attributes. For each class c the attributes have a

certain probability to take certain values. This probability is assumed to be condi-
tionally independent of all other attribute values, given the class c. This allows us to
use the following formula to estimate P.X jClass.X/ D c/:

P.X jClass.X/ D c/ D
Y

i

P.At ti .X/ D ai jClass.X/ D c/;
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where i ranges over all attributes of X and the function Atti .X/ produces the value
of the i th attribute of X .

The multiplication of the conditional probabilities

Y

i

P.At ti .X/ D ai jClass.X/ D c/

for all attributes is only valid, if indeed the probability of an attribute having the
value ai given the object belongs to class c is conditionally independent (given the
object belongs to c) of all other attributes.

This leads us to the following formula to determine the most likely class ci for
an object X :

ci D argmax
c
P.Class.X/ D c/ �

Y

i

P.At ti .X/ D ai jClass.X/ D c/:

All probabilities on the left-hand side are simply estimated by the respective relative
frequency in the training data set. While the mentioned conditional independence
assumption above will almost always be incorrect, the results of the Naive Bayesian
Classifier are usually quite useful. This can mainly be explained by the fact that the
Naive Bayesian Classifier does not need to get the probability estimates right but
merely to rank the various possible classes correctly. That is, even if the numbers
are incorrect, the obtained ranking may still deliver the correct class as the one with
the highest estimated probability for the given object.

While the Naive Bayesian Classifier is a popular and practical learning technique
it has been less stressed in the context of this book as the resulting classifier is more
difficult to interpret for humans. The interpretability of symbolic learning results
rather than numerical ones is often higher and hence more applicable to many prob-
lems in scientific discovery.

9 Improving Classifiers by Using Committee Machines

It has been found that combining multiple classifiers which were obtained by
learning from multiple different but related training data sets often leads to better
accuracy than training only a single classifier. Those multiple data sets are obtained
by resampling techniques, i.e. constructing from the given training data new training
data, e.g. by choosing different subsets of the original training data set. The combi-
nation of multiple such classifiers has been demonstrated to substantially improve
the accuracy of the combined classifier in many domains, see e.g. [58, 59].

These findings are intriguing as well as useful. It appears that, roughly speaking,
a single classifier tends to have weaknesses in its classification accuracy in some
area of the input space. Different classifies, even if trained on the same training data
seem to exhibit weaknesses in other areas of the input space. This appears to allow
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a combination of multiple classifiers to patch the weaknesses of individual ones and
resulting in a reduced overall error.

A number of techniques have been devised to generate different classifiers from
a given set of training data. Also a number of different ways of combining generated
classifiers have been proposed and are used in today’s practice.

In Sect. 9.1, we sketch two approaches, bagging and boosting to provide concrete
and practical techniques in this area.

9.1 Bagging

Bagging [59] generates a number of classifiers and simply lets them all vote on the
classification of a new instance by weighing all classifiers equally. The generation
of the different classifiers, usually 30–50 classifiers are generated, is done using
bootstrap resampling (or bootstrapping) by drawing randomly n objects from the
original training set containing n objects itself. That is, the resulting new sample
would contain some objects multiple times while other objects from the original
training data may not occur in the newly drawn sample. In fact, this is also known as
a 0.632 bootstrap sample, as it usually contains only around 63.2% of the objects in
the original training data set. The following pseudo-code shows the entire procedure
using a 0.632 bootstrap sample.

9.2 AdaBoost

The AdaBoost [24,60] algorithm differs from bagging in two ways. On the one hand
it weighs the different classifiers differently, the higher the fraction of the training
data they classify correctly the higher their weight in voting on the classification of
a new instance. The generation of multiple classifiers also differs from Bagging by
giving different weights to the training instances. In order to draw the “attention”
of the next classifier to be generated on the weaknesses of the already generated
classifiers, it gives higher weight to those training instances that are incorrectly clas-
sified by the classifiers already generated. Thus, making it more likely that the new
classifier being generated will classify those instances correctly that are incorrectly
classified so far. In Fig. 16, we provide more details of the procedure by way of
pseudo-code.

10 Discussion on Learning

Implementations of the techniques presented in this chapter as well as others, includ-
ing the ones mentioned later, can be found in the Open Source Software WEKA [61]
and in the system ALEPH for an ILP system. Both can be easily found for download
on the WWW.
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Input: Training sample .xi ; di /
N
iD1, Distribution D over the sample,

number of iterations T
Initialisation: Set D1.i/ D 1

N
for all i ;

Main Loop: for .n D 1I n < T I n++/
Generate hypothesis Fn based on Dn and calculate error:
�n DP

i2fijFn.xig/6Ddi
Dn.i/;

Setˇn D �n
1��n

;

Set DnC1.i/ D Dn.i/

Zn
� a, where a D ˇn if Fn.xi / D di ;

a D 1 otherwise;
(Zn being normalisation constant).

endfor
Output: Fn.x/ D argmaxd

P
nWFn.x/Dd log 1

ˇn
;

Fig. 16 Pseudocode of AdaBoost

Some learning techniques discover equations that fit available data, see e.g. [62]
for an example where ILP is also used. Those techniques are discussed in other
chapters of this book in detail. Besides that, a number of other popular learning
techniques exist. These include broad classes of techniques such as Neural Networks
[63], Support Vector Machines [64, 65], k-means [24, 66], EM [24, 67], and others.

Those techniques usually determine a large number of numerical parameters of
some more or less involved function. This makes it normally rather difficult for a
human to understand and interpret the results. For these reasons we do not provide
details on these techniques but rather refer the interested reader to other literature
such as the above cited ones.

As we have seen in this chapter, a large number of approaches have been de-
veloped to construct concept descriptions or classification rules or, more generally
speaking, functions and relations from a number of instances of the learning target.
A number of these approaches have been usefully employed, while many others are
still in the realm of research and will hopefully lead to useful applications at a later
stage.

One can generally say that the success and failure of using a learning technique
for a given problem depends crucially on choosing a suitable representation of the
training data and choosing a suitable learning technique that searches in a reasonably
restricted set of potential learning targets (or hypothesis space). On the other hand,
the representation of the training data as well as the choice of the learning technique
may actually prevent the learner from being able to express a suitable concept or
function as the learning result. Similarly, if the space of potential target concepts is
too large, the available data may not suffice to rule out all those candidate concepts
which do not represent acceptable solutions to the learning task. Another issue that
may hamper the practical success of employing machine learning techniques is the
computational cost it may take to process large amounts of training data.

There are a number of other research directions not discussed in this section.
Those include model selection, i.e. the idea of splitting the hypothesis space into
multiple sub-hypothesis spaces and then to apply certain techniques to pick a good
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sub-hypothesis space for searching for a most consistent hypothesis, see e.g. [68,69]
or [70]. Other approaches to learning include lazy learners, i.e. learners which
merely store the data they receive without processing. Only when a demand of clas-
sifying or reacting in other ways occurs, lazy learners start processing their stored
data to find an answer. Nearest neighbour classifiers are probably the best-known
class of algorithms of this kind. See e.g. [71] for a somewhat dated but still useful
survey.

Other research is devoted to problems of sequential decision making where feed-
back from the environment may be received only in a delayed fashion, i.e. only after
a possibly large number of decisions has been made the overall sequence is eval-
uated. A robot on the search for a new power supply may be a scenario for that.
Reinforcement learning techniques, such as Temporal difference learning [72] or
Q-learning [73] and further refinements of those have been developed to deal with
such problems [74, 75].

Progress on the integration of learning techniques with already available data
and knowledge in a system is needed. Another related area of significant interest
is knowledge discovery and datamining (KDD), also often called datamining. The
objective here is to integrate techniques from the fields of database systems, machine
learning, and statistics to be applied to large amounts of data.

Using machine learning techniques in automatic scientific discovery is still in
its infancy. However, given the enormous amount of data already available today,
machine learning techniques will play an increasingly important role as human sci-
entists are already overwhelmed by the available data as well as by the amount of
published research.
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Statistical Inference

Shahjahan Khan

1 Introduction

Often scientific information on various data generating processes are presented in
the from of numerical and categorical data. Except for some very rare occasions,
generally such data represent a small part of the population, or selected outcomes of
any data generating process. Although, valuable and useful information is lurking
in the array of scientific data, generally, they are unavailable to the users. Appro-
priate statistical methods are essential to reveal the hidden “jewels” in the mess of
the row data. Exploratory data analysis methods are used to uncover such valuable
characteristics of the observed data.

Statistical inference provides techniques to make valid conclusions about the
unknown characteristics or parameters of the population from which scientifically
drawn sample data are selected. Usually, statistical inference includes estimation of
population parameters as well as performing test of hypotheses on the parameters.
However, prediction of future responses and determining the prediction distributions
are also part of statistical inference. Both Classical or Frequentists and Bayesian ap-
proaches are used in statistical inference. The commonly used Classical approach
is based on the sample data alone. In contrast, increasingly popular Beyesian ap-
proach uses prior distribution on the parameters along with the sample data to make
inferences. The non-parametric and robust methods are also being used in situations
where commonly used model assumptions are unsupported.

In this chapter, we cover the philosophical and methodological aspects of both the
Classical and Bayesian approaches. Moreover, some aspects of predictive inference
are also included. In the absence of any evidence to support assumptions regarding
the distribution of the underlying population, or if the variable is measured only
in ordinal scale, non-parametric methods are used. Robust methods are employed
to avoid any significant changes in the results due to deviations from the model
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assumptions. The aim is to provide an overview of the scientific domain of statistical
inference without going in to minute details of any particular statistical method.
This is done by considering several commonly used multivariate models, following
both normal and non-normal, including elliptically contoured, distributions for the
responses.

2 Approaches to Statistical Inference

A specific statistical method is not appropriate for every data set and under ev-
ery situation. Statisticians have developed different methods to cater for various
needs. Depending on the type of information and the nature of the data appropriate
method may be chosen from available alternatives. For example, if assumptions of
parametric methods are not satisfied by the data the user would pursue an appro-
priate non-parametric method. If the data has too many extreme values or outliers
influencing the results significantly a robust method is essential. If the population
distribution is symmetric with heavy or flat tails than normal distribution then a
Student-t model is more appropriate to represent the data from any such models.

2.1 Parametric Inference

Classical statistical models are usually based on the assumption of some spe-
cific distribution of the underlying variable. Such distributions are characterized by
parameter(s) that completely specify the distribution. Often these parameters are un-
known quantities and need to be estimated from available sample. In the Frequentist
approach, the parameters are considered as constants, usually unknown. So, the in-
ference on the parameters solely depends on the sample data. On the other hand, in
Bayesian approach the parameters are treated as random variables, and hence fol-
low some distribution of their own. Inferences under this approach are obtained by
mixing the sample information with the prior distribution on the parameters. So,
philosophically the two approached are quite different. However, as the sample size
increases the impact of the prior believe on the ultimate results decreases, and hence
for large samples the results produced by both approaches are very close, if not
identical.

Both classical and Bayesian methods use various statistical models. Many of
these models are linear in parameters and are known as linear models. Often non-
linear models can be transformed to linear models, and apply the methods applicable
for linear models. A generalised linear model encompassing different commonly
used linear models is given below.
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Generalized Linear Model

The multivariate multiple regression model is introduced here. Let yj be a p-
dimensional column vector of the values of the j th realization associated with a
set of values of the explanatory variables x1; x2; : : : ; xk from a multivariate multi-
ple regression model. Then, yj can be represented by the set of linear equations

yj D ˇ0 C ˇ1x1j C ˇ2x2j C 
 
 
 C ˇkxkj C � ej for j D 1; 2; : : : ; n; (1)

where ˇ0;ˇ1; : : : ;ˇk are the p-dimensional regression parameters, � is a p � p
scale parameter matrix assuming values in the positive half of the real line RC, and
ej is the vector of error variables associated with the responses yj . Assume that
each component of the error vector, ej , is identically and independently distributed
(i.i.d.) as a normal variable with location 0 and scale 1, that is, ej � N.0; Ip/ in
which Ip is an identity matrix of order p. The equation in (2.1) can be written in a
more convenient form as

yj D ˇzj C � ej ; (2)

where ˇ D Œˇ0;ˇ1; : : :ˇk�, a p � m dimensional matrix of regression parameters
with m D k C 1; and zj D Œ1; x1j ; x2j ; : : : ; xkj �

0, an m � 1 dimensional design
matrix of known values of the regressor for j D 1; 2; : : : ; n. Therefore, the joint
density function of the error vector ej is

f .ej / D Œ2���p
2 e
� 1

2
e0

j
ej ; (3)

and that of the response vector yj is

f .yj jˇ; � / D Œ2���
p
2 j˙ j�1e�

1
2

.yj�ˇzj /0˙�1.yj�ˇzj / (4)

where ˙ D � � 0, the covariance matrix of the response vector yj . Now, a set of
n > p responses, Y D Œy1;y2; : : : ;yn�, from the earlier multivariate multiple
regression model can be expressed as

Y D ˇZ C �E ; (5)

where Y is the response matrix of order p � n; Z D Œz1; z2; : : : ; zn� is an m � n
dimensional design matrix of known values of the regressors; and E is a p � n
dimensional matrix of the random error components associated with the response
matrix Y . It may be noted here that the non-conventional representation of responses
as row vectors, rather than column vectors, is adopted in line with [1,2] to facilitate
straightforward comparison of results.

If each of the p-dimensional response column vector follows a multivariate nor-
mal distribution, the joint density function of the p � n order response matrix Y is
given by

f .Y jˇ; ˙/ D Œ2���pn
2 j˙ j� n

2 e
� 1

2 t r
n
˙�1.Y �ˇZ /.Y �ˇZ /

0
o

; (6)
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where t r.˝/ is the trace of the matrix ˝ . This is the p-dimensional matric normal
distribution. It may be noted that if p D 1 the response matrix becomes an n-
dimensional vector, y , and its distribution turns out to be a multivariate normal
distribution.

Special Cases

1. If k D 1 the model in (2.1) becomes a multivariate simple regression model with
p responses associated with a single regressor. That is, we get

yj D ˇ0 C ˇ1x1j C � ej for j D 1; 2; : : : ; n: (7)

2. When p D 1 the model in (2.1) becomes a multiple regression model, represent-
ing a single response corresponding to k regressors, as follows:

yj D ˇ0 C ˇ1x1j C ˇ2x2j C 
 
 
 C ˇkxkj C 	ej for j D 1; 2; : : : ; n0; (8)

where 	 is a non-zero positive scale factor.
3. Finally, if p D 1 and k D 1 the model (2.1) reduces to a simple regression model

with one response and one explanatory variable. Thus, we get

yj D ˇ0 C ˇ1x1j C 	ej for j D 1; 2; : : : ; n: (9)

Thus, the model in (2.5) is a generalization of different linear models commonly
used in analysing many data sets arising from varieties of real-life problems.

Generalizing Symmetric Distribution

The density function of the response matrix Y in (2.5) for non-normal, but symmet-
ric, distributions can also be specified when errors are not normally distributed. For
example, if each of the p-dimensional response column vector follows a multivari-
ate elliptical distribution, the joint distribution of the p�n order response matrix Y

is a matrix variate elliptically symmetric distribution with density function

f .Y jˇ;˙ / / j˙ j�n
2 g
˚
t r
�
˙�1 .Y � ˇZ / .Y � ˇZ /0

��
; (10)

where g.
/ is such that f .
/ is a proper density function. For details on spherically
and elliptically symmetric distributions, see [3–6] for instance. Some of the well-
known members of the spherically/elliptically symmetric family of distributions
are the normal, Kotz Type, Pearson Type VII, Student-t, Cauchy, Pearson Type II,
Logistic, Bassel, Scale mixture, and Stable laws. Note that elliptically symmetric
family of distributions can be defined for both multivariate and matrix-variate cases.
Specific choice of the form of g.
/ would lead to particular member of the family of
elliptically symmetric distribution. For instances, if g.
/ D expŒ
�, the distribution
becomes matrix normal, and if g.
/ D fI C Œ
�g the distribution becomes matrix T.
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2.2 Nonparametric Inference

In general, Classical and Bayesian methods are based on assumptions which are
not always met in practice. Unfortunately, the errors or responses are not always
known to follow any specific distribution. Also, the validity of the central limit the-
orem is not always guaranteed. So, if there are outliers in the data, classical methods
are unreliable. Moreover, if the data is in the rank order the conventional paramet-
ric methods are inappropriate. Although robust methods are classical methods, the
results are not unduly affected by outliers or other small departures from model
assumptions. References on robust statistics include [7–9]. A modern treatment is
given by [10].

The main technique of robust method aims at reducing the weights (and hence
impact) of extreme values and outliers to reduce or eliminate their undue influence
on the results.

Robust parametric statistics tends to rely on replacing the normal distribution in
classical methods with the Student-t distribution with low degrees of freedom (high
kurtosis; degrees of freedom between four and six have often been found to be useful
in practice) or with a mixture of two or more distributions.

2.3 Prediction Analysis

The prediction methods deal with inference for the future responses, rather than
the model parameters, using the data on the realized responses. The prediction
distribution forms the basis of all predictive inference. Prediction distribution is a
conditional distribution of the unobserved future responses, conditional on the re-
alized responses. Such a distribution is free from any distributional parameter of
the model, and depends only on the sample information. This was the oldest statis-
tical method used by scientists before the estimation and test on parameters were
introduced [11].

Predictive inference uses the realized responses from the performed experiment
to make inference about the behavior of the unobserved future responses of the
future experiment (cf. [12]). The outcomes of the two experiments are connected
through the same structure of the model and indexed by the common set of parame-
ters. For details on the predictive inference methods and wide range of applications
of prediction distribution interested readers may refer to [11, 13]. Predictive infer-
ence for a set of future responses of a model, conditional on the realized responses
from the same model, has been derived by many authors including [1, 12, 14–16].
The prediction distribution of a set of future responses from the model has been
used by [17] to derive ˇ-expectation tolerance region. References [12, 18] obtained
different tolerance regions from the prediction distribution.

There are various approaches to predictive inference. In the Bayesian approach,
the likelihood of the unobserved future responses are mixed with the posterior
distribution from the realized responses to derive the prediction distribution.
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The structural distribution replaces the posterior distribution under the structural
approach (cf. [1,2]). [19] used the structural relation approach to find the prediction
distribution for linear models without going through the structural distribution.
Various types of tolerance regions are derived based on the prediction distribution.
Although traditional methods cover prediction for future responses, [20, 21] pro-
posed prediction distribution for the future regression parameter and future residual
sum-of-squares for linear model.

3 Classical Inference

In the Classical or Frequentist approach, inferences on the parameters are made
from the sample data alone. Here, the parameters of the models are assumed to be
fixed unknown quantities. Estimation of these unknown quantities or testing regard-
ing any specific value of the parameters depend on the sample data. The likelihood
principle and method are often applied to derive appropriate estimator and tests in
this approach. These are popularly known as maximum likelihood estimators and
likelihood ratio tests, respectively. However, other principles and methods, such as
least squares, minimum distance, etc., are also available. The classical inference,
often, is exclusively about parameters and solely depends on the sample data. How-
ever, non-parametric methods of estimation and tests are also available. But these
are also based on the sample data only. Uncertain non-sample prior information
(NSPI) on the value of the parameters along with the sample data are also used in
improved estimation, particularly for preliminary test and Stein-type shrinkage esti-
mations. Reference [22] explores varieties of techniques and studies the properties
of different estimators for a wide range of models.

3.1 Inference for Multiple Regression Model

For the parametric inference most commonly used model assumes normal distribu-
tion for the errors or responses. Under this model, often it is assumed that the errors
are independent and identically distributed. These assumptions make the mathemat-
ical derivation of estimators and tests easier and simpler. However, other models
are also used when the normal model is inappropriate. For modeling variables that
follow symmetric distributions but have heavier tails than a normal distributions,
Student-t model is appropriate. A more general class of symmetric distributions is
represented by the class of elliptically symmetric models. The normal and Student-t
models are special cases of the class of elliptically symmetric model.

For explicit analysis, consider a multiple regression model

yj D ˇ0 C ˇ1x1j C ˇ2x2j C 
 
 
 C ˇkxkj C 
ej for j D 1; 2; : : : ; nI (11)
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or equivalently,
y D Xˇ C 
e; (12)

where y is the n-dimensional vector of responses, and X is the design matrix of
order n � p in which k D .p � 1/ is the number of regressors or predictors in the
model.

The least-square (LS) principle requires that the estimator of the parameter vector
to be Q̌ such that .y � Q̌X/0.y � Q̌X/ is minimum. The calculus method yields
Q̌ D .X 0X/�1X 0y . Similarly, the LS estimator of the covariance matrix is Q
2In in
which Q
2 D 1

n�p
.y � Q̌X/0.y � Q̌X/. These estimators are robust as the results are

not dependent on the assumption of normality of the errors or responses. Often these
estimators are called unrestricted estimator (UE) as no restrictions on the parameters
is imposed in the estimation of the parameters. By the central limit theorem (CLT),
Q̌ � N �

ˇ; ŒX 0X��1
2
�
, if n is large.

Assuming that the errors are identical and independently distributed as normal
variables with mean 0 and standard deviation 1, the joint density function of the
response vector y is

f .y jˇ; 
/ D Œ2�
2��
n
2 e
� 1

2�2
.y�ˇX/0.y�ˇX/

: (13)

In conventional notations, the error vector e � N.0; In/, and the response vector
y � N.ˇX; 
2In/, where In is a an identity matrix of order n. The likelihood
method would lead to the maximum likelihood (ML) estimator of the regression
vector Q̌ D .X 0X/�1X 0y and that of the covariance matrix is Q
2

nIn in which Q
2
n D

1
n
.y� Q̌X/0.y� Q̌X/. Note that the ML estimator of covariance matrix is biased but

the LS is unbiased. Under the normal model, without using the CLT and regardless
of the sample size, Q̌ � N �

ˇ; ŒX 0X��1
2
�
.

In regression analysis, often the interest centres at testing the general linear hy-
pothesis that encompasses many hypotheses as special cases. The general linear
hypothesis can be expressed as

H0 W Hˇ D d againstHa W Hˇ ¤ d ; (14)

where H is a r � p matrix of constants with rank r � p, and d is a r vector of
constants. Different choices of elements of H would lead to different hypotheses.
As a special case, if H is an identity matrix and d D 0 the test becomes a test of
significance of the regression parameters. The alternative hypothesis Ha could be
specified as one sided, if needed. The following test statistic is appropriate to test
the general linear hypothesis:

L D MS Regression

MS Error
; (15)

where the mean sum-of-squares regression,

MS Regression D SS Regression

dfR

D ŒH Q̌ � d �0ŒH.X 0X/�1H 0��1ŒH Q̌ � d �=r

(16)
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and the mean sum-of-squares error,

MS Error D SS Error

dfE

D Œy �X Q̌ �0Œy � X Q̌ �=.n � p/: (17)

Note that

s2 D Œy � X Q̌ �0Œy � X Q̌ �=.n � p/ D
nX

jD1

.yj � Qyj /
2=.n� p/ (18)

is an unbiased estimator of 
2. The above test statistic follows an F distribution with
r and .n�p/ degrees of freedom (df). Under the null hypothesisL follows a central
F distribution and under the alternative hypothesis it follows a non-central F dis-
tribution with non-centrality parameter � D ŒHˇ0 � d �0ŒH.X 0X/�1H��1ŒHˇ0 �
d �=Œ2
2�.

Improved Estimators

Improved estimators have been suggested for the regression parameters when un-
certain non-sample prior information (NSPI) on the value of the parameters in
available. Ever since the publication of seminal papers of [23, 24] there has been
growing interest in the search for “improved” estimator of the mean vector, � for
the multivariate normal population. Earlier, [25] and later [26] developed the prelim-
inary test estimator that uses uncertain prior information, in addition to the sample
information. In a series of papers, Saleh and Sen [27, 28] explored the preliminary
test approach to James–Stein type estimation. Many authors have contributed to this
area, notably [29–31]. All the earlier developments are based on the normal model.
Investigations on improved estimation for Student-t model have been rather a re-
cent development. References [32–37] studied the preliminary test and Stein-type
estimation for linear models with multivariate Student-t errors. However, [38] inves-
tigated the problem from the sampling theory approach. Reference [39] deals with
the improved estimation of the parallelism problem.

The value of the parameters under the null hypothesis is often called the restricted
estimator (RE). For the multiple regression model if we suspect H0 W Hˇ D d

but not sure, we test the earlier general liner hypothesis to remove the uncertainty.
Then, the RE becomes Ǒ D d . The method uses both the sample information as
well as the NSPI to define preliminary test (PT) estimator. It combines the both in
the following way:

Ǒ P T D Q̌ � Œ Q̌ � Ǒ �I .L < Fr;m.˛// ; (19)

where I.
/ is an indicator function assuming value 1 or 0 depending on if the in-
equality in the argument holds or not, and Fr;m.˛/ is the upper .1 � ˛/th quantile
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of an F distribution with .r;m/ df in which m D .n � p/, the error d.f. The PT
estimator combines the sample information, NSPI and the test statistic appropriate
in removing the uncertainty in the NSPI.

The PT estimator is a convex combination of the UE and RE. In fact, it is an
extreme choice between the two, and does not allow any smooth transition. It also
depends on a preselected level of significance (˛). The Stein-type (see [24, 31])
shrinkage estimator (SE) also uses the sample information and the test statistic.
For the regression parameter vector of the multiple regression model, the SE is de-
fined as

Ǒ S D Q̌ � dŒ Q̌ � Ǒ �L�1; (20)

where d D m.r�2/
.mC2/r

is the shrinkage constant that minimises the quadratic risk of

Ǒ S . The SE is obtained by replacing I .L < Fr;m.˛// in (10) by dL�1 to make
the estimator independent of ˛. Under the quadratic loss function the SE uniformly
dominates the UE if r > 2.

The SE can be negative, even if the variable under investigation is non-negative,
and it is unstable if the value of L in near zero. Of course, as L ! 1 the SE
approached to the UE. To overcome the these problems, the positive-rule shrinkage
(PRS) estimator is defined as

Ǒ SC D Ǒ C Œ Q̌ � Ǒ �f1 � dL�1gI.L > d/

D Ǒ S C Œ Q̌ � Ǒ �f1 � dL�1gI.L < d/ (21)

which has the same format as the PT estimator, but based on Ǒ S and Ǒ with the crit-
ical value d . It is well known that the PRS estimator is admissible under quadratic
risk over all other estimators when r > 2. For details see [22].

3.2 Estimation for Multivariate Non-Normal Models

Reference [40] discarded the normal distribution as a sole model for the distribu-
tion of errors. Reference [2] showed that the results based on the Student-t models
for linear models are applicable to those of normal models, but not the vice-versa.
Reference [41] critically analyzed the problems of the normal distribution and rec-
ommended the Student-t distribution as a better alternative for many problems. The
failure of the normal distribution to model the fat-tailed distributions has led to
the use of the Student-t model in such a situation. In addition to being robust, the
Student-t distribution is a ‘more typical’ member of the elliptical class of distribu-
tions. Moreover, the normal distribution is a special (limiting) case of the Student-t
distribution. It also covers the Cauchy distribution on the other extreme. Extensive
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work on this area of non-normal models has been done in recent years. A brief sum-
mary of such literature has been given by [42], and other notable references include
[4, 33, 43–48].

Let X be a p-dimensional random vector having a normal distribution with mean
vector � and covariance matrix, �2Ip . Assume � follows an inverted gamma distri-
bution with the shape parameter 
 and density function

p.� I 
; 
2/ D
�

2

� .
=2/

��


2

2

��=2

��.�C1/e
� ��2

2�2 : (22)

Then, the distribution of X , conditional on � , is denoted by X j� � Np.�; �
2Ip/,

and that of � by � � IG.
; 
/. In the literature, it is well known that the mixture
distribution of X and � is a multivariate Student-t, and is obtained by completing
the following integral:

p.xI�; ˙; 
/ D
Z 1

�D0

Np.�; �
2Ip/IG.
; 
/d�; (23)

where˙ D 
2Ip and 
 is the number of degrees of freedom. The integration yields
the unconditional density of X as

p.xI�; ˙; 
/ D k1.
; p/j˙ j�1=2
�

 C .x � �/0˙�1.x � �/

�� �Cp
2 ; (24)

where k1.
; p/ D
	
�

�

 C p
2

�

�=2


 n
�p=2�

�

2

�o�1

is the normalizing con-

stant. The above density is the p-dimensional multivariate Student-t density with an
arbitrary unknown shape parameter 
. In notation, we write X � tp .�; ˙; 
/. So,
EŒX � D � and CovŒX � D �

��2
˙ . A method of moment estimator for 
 is given by

[35]. But here we are interested in the estimation of the mean vector.
Now, consider a random sample of size n from the earlier multivariate Student-t

population. The likelihood function of the parameters for the given sample is

L.�; ˙; 
Ix1; : : : ;xn/

D kn.
; p/j˙ j� n
2

2

4
 C
nX

jD1

.xj � �/0˙�1.xj � �/

3

5
� �Cnp

2

; (25)

where kn.
; p/ D
	
�

�

 C np
2

�

�=2


 n
�np=2�

�

2

�o�1

. Refer to [36] for de-

tails on sampling from multivariate Student-t population by using the mixture of
multivariate normal and inverted gamma distributions.
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Here, we wish to estimate the mean vector � based on the random sample
X1; : : : ;X n when an uncertain non-sample prior information on � is available
which can be presented by the null hypothesis, H0 W � D �0. The estimator of
� and 
2 are

Q� D 1

n

nX

jD1

Xj D X and (26)

Q
2 D 1

np

nX

jD1

.xj � Q�/0.xj � Q�/ respectively: (27)

The above are termed as unrestricted estimators (UE) of � and 
2 respectively. The
restricted estimator (RE) of the mean vector becomes O� D �0.

To test H0 W � D �0 against Ha W � ¤ �0, the likelihood ratio statistic is
given by

� D � O
2= Q
2
��np=2 D

2

4
nX

jD1

.xj ��0/
0.xj � �0/=s

2

3

5
�np=2

; (28)

where s2 D Œ.n � 1/p��1
Pn

jD1.xj � Nx/0.xj � Nx/. Then, it can be easily shown
that underH0 the statistic

T 2 D ��2=np D
nX

jD1

.xj � �0/
0.xj � �0/=s

2 (29)

follows a scaled F -distribution with p and m D .n � p/ degrees of freedom (cf.
[37]), and can be used to test theH0. As discussed by [32], the F -statistic stated ear-
lier is robust, and it is valid for all the members of the elliptical class of distributions,
not just for the normal or Student-t distributions. Thus, to test theH0 W � D �0, we
perform the F -test based on the following monoton function of the T 2-statistic:

F D p

m
T 2 D �2

n. /

�2
m

; (30)

where  D .� ��0/
0.� ��0/=2


2 is the non-centrality parameter when the H0

is not true.
Following [25], we define the preliminary test estimator (PTE) of � as follows:

O�P D O�I.T 2 � T 2
˛ /C Q�I.T 2 > T 2

˛ /; (31)

where O� D �0 is the restricted estimator (RE) of � under the H0; T 2
˛ is a value of

the T 2-statistic such that PrfT 2 � T 2
˛ g D ˛ when the H0 is true, for 0 � ˛ � 1I

and I.A/ is an indicator function of the set A.
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The SE of � is defined as

O�S D O�C .1 � k�T �2/. Q� � O�/; (32)

where k� is the shrinkage constant. An optimal value of k� that minimizes the value

of the quadratic risk function is found to be k D p � 2
mC 2 . The positive-rule shrinkage

estimator (PRSE) is defined as follows:

O�SC D O�C .1 � kT �2/. Q� � O�/I.T 2 > k/: (33)

The SE uniformly dominates the UE, and the PRSE uniformly dominates the SE
when p > 2. For details on the improved estimation for Student-t models see
[45, 46].

3.3 Prediction Distribution for Elliptic Models

The multivariate multiple regression model for nf unrealized future responses from
the future experiment can be expressed as

Y f D ˇZ f C �E f; (34)

where Z f is anm�nf dimensional matrix of the values of regressors that generate
the p � nf dimensional future response matrix Y f, and E f is the matrix of future
error components. The joint pdf of the combined errors, .E ;Ef /, is expressed as

f .E ; E f / / g
n
t rŒEE 0 CEf E 0f �

o
; (35)

where g.
/ is such that f .
/ is a proper density function. The joint pdf of the error
regression matrix BE D EZ 0.ZZ 0/�1, the associated sum of squares of error
matrix S E D ŒE �BE Z �ŒE �BE Z �0, and future error matrix Ef becomes

p
�
BE ;S E ;Ef

�
/ jS E j

n�p�m
2 g

n
t r
h
h1.E ;Z /C S E CEf E 0f

io
; (36)

where h1.E ;Z / D BE ZZ 0B 0E . Using the transformations

U D BE ; V D S E ; and W D S
� 1

2

E ŒE f �BE Z f � (37)

it can be easily shown that

W D S
� 1

2

E ŒE f �BE Z f � D S
� 1

2

Y ŒY f �BY Zf �: (38)
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Thus, the prediction distribution of Y f can be derived from the density of W . Writ-
ing the joint density of U , V and W , and completing the matrix integrations the pdf
of W becomes

p.W / /
ˇ̌
ˇIp CW .Inf

� Z 0f A
�1Z f /W

0
ˇ̌
ˇ
�nCnf �m

2

; (39)

where A D ŒZZ 0 C Z f Z 0f �. Then, the conditional density of the future response
Y f is found to be

p.Y f jY / D �.Y ;Z f /
ˇ̌
ˇS Y C

˚
Y f �BY Z f

�
H
˚
Y f �BY Zf

�0ˇ̌ˇ
�nCnf �m

2

;

(40)

where �.Y ;Z f / is the normalizing constant and H D
�
Inf
�Z 0fA�1Zf

�
. The

normalizing constant for the prediction density of Y f is

�.Y ;Z f / D
�p.

n�m
2
/jH j�p

2

Œ��
pnf

2 �p.
nCnf �m

2
/jS Y j n�m

2

; (41)

where �p.a/ is the generalized gamma function defined as

�p.a/ D Œ��a.a�1/
4

aY

iD1

�

�
a � 1

2
Œi � 1�

�
: (42)

The density of future responses, conditional on realized responses, is a p �
nf -dimensional matrix T density with .n � p � m C 1/ degrees of freedom,
location matrix BY Z f and scale matrices H and S Y . So, the prediction distri-
bution, in conventional notation (cf. [49], p.117), can be written as ŒY f jY � �
Tpnf

�
BY Zf ;H;S Y ; n � p �mC 1

�
. See [21] for more on prediction distribu-

tion of multivariate model with matrix-T errors.
As a special case, if the interest is to make inference on a single future response of

a multivariate multiple regression model, set nf D 1, and hence yf D ˇzf C� ef ,
where yf and ef are p � 1 column vectors, and zf is m � 1 column vector. Then,
the prediction distribution of a p-variate single response is

Œyf jY � � tp
�
BY zf ;H1 � S Y ; n � p �mC 1

�
; (43)

where H1 D Œ1 � z0
f
A�1zf �.

In another special case, when p D 1, the multivariate multiple regression model
becomes the multiple regression model, y D ˇ1Z C 	e, where y and e are a
n-dimensional row vectors, 	 is a positive scale factor, and ˇ1 is an m dimen-
sional row vector. Then, the associated model for the nf future responses becomes
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yf D ˇ1Z f C 	ef . So, the prediction distribution is obtained as a multivariate
Student-t distribution, that is,

Œyf jy� � tnf

�
byZf ;H � s2

y ; n �m
�
; (44)

where s2
y D Œy � byZ �0Œy � byZ � in which by D yZ 0ŒZZ 0��1.

3.4 Tolerance Region for Elliptic Models

The prediction distribution can be used to construct ˇ-expectation tolerance region
for a set of future responses from the model. In the literature, a tolerance region
R.Y / is defined on a probability space .X ;A;P� / where X is the sample space of
the responses in the random sample .Y 1;Y 2; 
 
 
 ;Y n/; A is a 
-field defined on
the sample space; and P` is the probability measure such that � D ŒˇX;˙� is an
element of the joint parameter space ˝ . Thus a tolerance region R.Y / is a statistic
defined on the sample space X and takes values in the 
-field A. The probability
content of the region R.Y / is called the coverage of the tolerance region and is de-
noted by C.R/ D P�

Y
ŒR.Y /�. Note that C.R/ being a function of R.Y /; a random

variable, is itself a random variable whose probability measure is induced by the
measure P� .

Of different kinds of tolerance regions available in the literature, here we consider
a particular kind of tolerance region that has an expected probability of 0 < ˇ < 1.
A tolerance regionR.Y / is called a ˇ-expectation tolerance region if the expectation
of its coverage probability is equal to a preassigned value ˇ. Thus for a given set of
observed Y , a ˇ-expectation tolerance region R.Y / must satisfy EŒC.R/jY � D ˇ:

If p.Y f j Y / denote the prediction distribution of the set of future response Y f for
the given set of observed responses Y then we can write,

Z

R

p.Y f j Y /dY f D
Z

R

Z

˝

p.Y f ;� j Y /d�dY f (45)

wherep.Y f ;� j Y / is the joint density function of Y f and� for any given Y . Thus
any region R.Y / that satisfies

R
R p.Y f j Y /dY f D ˇ is called a ˇ-expectation

tolerance region. So, prediction distribution of future responses are used to construct
ˇ-expectation tolerance region. There may could be infinitely many regions that
satisfy the earlier condition. So, an optimal tolerance region is the one that has the
minimal enclosure among all such regions. Reference [50] proved that tolerance
regions based on the prediction distributions are optimal.

To obtain the tolerance region for the multivariate multiple regression model, we
need to derive the sampling distribution of an appropriate statistic involved in the
prediction distribution of the future responses. Here, we use the following result
(see [51], p. 115–116) to construct an optimal ˇ-expectation tolerance region for
the multivariate elliptic regression model.
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Theorem. If the distribution of a random matrix X.p�n0/ is given by the probability
element

h.X / dX D
8
<

:
jH jp2 �p

�
nCn0

2

�

�
n0p

2 �p

�
n
2

� jS jn2

9
=

;

� ˇ̌S C fX �MV �gH fX �MV �g0ˇ̌�
nCn0

2 dX ; (46)

where S and H are symmetric non-singular matrices, then the distribution of

U D .I C U1/
�1U1; (47)

where U1 D ZZ0 with Z D T fX �MV �gK in which T is such that T T 0 D S�1
.X/

andK is such that KK 0 D H; is given by the probability element

f .U / dU D B�1
p

�
n0

2
;
n

2

�
jU j n

0
�p�1

2 jI � U j n�p�1
2 dU: (48)

That is, U in (47) follows a generalized beta distribution with n0 and n degrees of
freedom.

Comparing (46) with the prediction density in (40), we have that W D .I C
W1/

�1W1 has a generalized beta distribution with nf and n �m degrees of free-
dom, where W1 D ZZ0 withZ D T fY f �BY Zf gK , T is such that T T 0 D S�1

Y ,
and K is such that KK 0 D H . It may be noted here that both SY D fY �
BY /Zf gfY �BY Zf g0 andH D ŒInf

�Z0
f
A�1Zf � are symmetric non-singular

matrices. [46] provides an extension of the earlier generalized beta distribution.
From the definition of a ˇ-expectation tolerance region, R�.Y / D fW W W <

W �g is a ˇ-expectation tolerance region for the central 100ˇ% of the multivariate
elliptically contoured distribution being sampled, if W � is the ˇth quantile of the
generalized beta distribution with nf and n �m degrees of freedom. That is,R�.Y /
is a ˇ-expectation tolerance region for the model under study if W � is such that

B�1
p

�nf

2
;
n �m
2

� Z W �

WD0

jW j
nf �p�1

2

ˇ̌
Inf
�W

ˇ̌n�p�m�1
2 dW D ˇ: (49)

So, the tolerance region for the future responses depends on the regression parameter
of the prediction distribution BY Zf and the scaled scale matrix SY : So, it de-
pends on the sample data only through the regression matrix, BY Zf and the scale

matrix S
1
2

Y
:

In the special case, when the interest is the tolerance region for a single response
of the multivariate multiple regression model, we set nf D 1, so that the model
reduces to yf D ˇzf C � ef , where yf and ef are p � 1 column vectors, and zf
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is anm�1 column vector. Since Œyf jY � � tp
�
BY zf ;H1 � S Y ; n � p �mC 1

�
,

to define the ˇ-expectation tolerance region for yf , we can use the distribution of
the quadratic form

�
yf �BY zf

�
H1S

�1

Y

�
yf �BY zf

�0
: (50)

It can be easily shown that

f.n� p C 1/=pg �yf �BY zf

�
H1S

�1

Y

�
yf �BY zf

�0 � Fp; n�pC1: (51)

Then, a ˇ-expectation tolerance region that will enclose 100ˇ% of the future
responses from the earlier special model is given by the ellipsoidal region:

R.y/ D
	

y W Œ.n� p C 1/=p� � ��yf �BY Z f

�

�
Inf
� Z 0f A

�1Zf

�
S�1

Y

�
yf �BY Z f

�0i � Fnf ;n�pC1;ˇ



; (52)

where Fnf ; n�pC1;ˇ is the ˇ � 100% point of a central F distribution with nf and
n � p C 1 degrees of freedom such that P.Fnf ; n�pC1 < Fnf ; n�pC1;ˇ / D ˇ:

4 Bayesian Inference

In the recent years, Bayesian methods are gaining increasing popularity, arguably,
due the advent of high-power computers. The evaluation of marginal posterior
density function involving complicated integration is now performed by routine
computer program. Many statistical packages are available to perform the computa-
tions using various popular algorithms.

4.1 Bayesian Philosophy

Central to the Bayesian philosophy is the Bayes’ Theorem. Unlike the Classical
methods, the Bayesian methods treat the parameters of statistical models as random
variables that follow some probability distribution. Such prior distributions are com-
bined with the likelihood function of the parameters based on available sample data.
The posterior distribution of the parameters is obtained from the product of the prior
distribution and the likelihood function.

Consider a random sample y D .y1; y2; : : : ; yn/
0 from the multiple regression

model with regression vector ˇ and scale parameter 
 . Let � D Œˇ; 
�1�. Then, the
Bayes’ posterior density of � is given by

p.�jy/ D p.�/p.y j�/
p.y/

; (53)
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where p.y/ D R
� p.�/p.y j�/d� in which p.yj�/ is the likelihood function, and

P.�/ is the prior distribution of � . All inferences on � is then based on the posterior
distribution of the parameters. The process essentially updates the prior belief via
the likelihood function. As the sample size grows larger the impact of the prior
belief on the posterior distribution reduces. However, for small samples the prior
information has a greater role in the determination of the posterior distribution, and
hence on the estimator of � . For recent references on multivariate Bayesian methods
see [52–54] to name a few.

4.2 Estimation

Consider the multiple regression model

y D Xˇ C �; (54)

where y is an n-dimensional vector of responses, and X is the design matrix of
order n�p in which k D .p � 1/ is the number of regressors or predictors, e is the
scaled error vector and � is the error vector of order n. Assume that � � N.0; 
2In/.
Then, the inference on ˇ depends on whether the variance of �, that is, 
2 is known
or unknown.

When 
2 is known the posterior distribution of ˇ is given by

p.ˇjy/ / p.ˇ/ � p. Q̌ jˇ; 
2/; (55)

where Q̌ is the maximum likelihood estimator of ˇ andp.ˇ/ is the prior distribution.
Under the non-informative prior, that is, p.ˇ/ / constant, for the regression vector,
the posterior distribution is given by

p.ˇjy/ D jX
0X j1=2

Œ2�
2�
k=2

exp



� 1

2
2
.ˇ � Q̌ /X 0X.ˇ � Q̌ /

�
: (56)

The Bayes’ estimator of ˇ is the posterior mean, that is, Q̌ . All other inferences on
the regression vector can be made from the fact that ˇjy � N. Q̌ ; 
2ŒX 0X��1/. It
may be noted that the marginal posterior distribution of any subset of the regres-
sion vector is a multivariate normal distribution with appropriate mean vector and
covariance matrix.

If 
2 is unknown, and information on 
2 is available from the sample data, the
posterior distribution of ˇ and 
2 is defined as

p.ˇ; 
2jy/ / p.ˇ; 
2/ � p. Q̌ jˇ; 
2/: (57)
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Assume that ˇ and 
2 are independent and locally uniform, so that the joint prior
distribution is

p.ˇ; 
2/ D p.ˇ/ � p.
2/ / 
�2: (58)

Then, the marginal posterior distribution of ˇ becomes

p.ˇjy/ D � .Œ
 C k�=2/ jX 0X j1=2

Œ�
�k=2 � .
=2/

"
1C ˇ � Q̌ /X 0X.ˇ � Q̌ /


s2

#� �Ck
2

; (59)

where s2 D .y � X Ǒ /0.y � X Ǒ /=
 and 
 D n � k. So, conditional on the ob-
served responses, the regression vector follows a multivariate Student-t distribution,

that is, ˇjy � tp
� Q̌ ; s2ŒX 0X��1; 


�
. The location vector of the earlier multivariate

Student-t distribution is Q̌ and the covariance matrix is Cov.ˇjy/ D �
��2

s2ŒX 0X��1.
It may be noted that the marginal posterior distribution of any subset of the regres-
sion vector is a Student-t distribution with appropriate location vector and scale
matrix.

Clearly, the posterior distribution depends on the knowledge of 
2 as well as the
prior distribution of the parameters, along with the sample data. In a particular case,
when the posterior distribution is in the same family as the prior distribution, the
prior distribution is called the conjugate prior. For the above model, let the errors be
i.i.d. normal so that y � Nn.Xˇ; 
2In/. Let the prior distribution of the regression
vector ˇ also be normal, that is, ˇ � Np.�; �

2V /, where � a is p-dimensional
vector, V is a p�p non-singular matrix, and �2 is a scalar. The hyperparameters �2

and � are either known or estimated from the sample data. Then, for a given set of
responses, y, the posterior distribution of ˇ is normal. In the conventional notation,
the posterior distribution of the regression vector becomes

ˇjy � Np

�
� C �C C 
2��2V �1

��1
X 0.y � X�/; 
2

�
C C 
2��2V �1

��1
�
;

(60)

where C D X 0X is of full rank, and V D C�1. Since both the prior and posterior
distributions are of the same (normal) family, the prior distribution here is a conju-
gate distribution. The mean of the posterior distribution is the Bayes’ estimator of
the regression parameter vector. Thus

Ǒ B D EŒˇjy� D � C .1 � B/. Q̌ � �/; (61)

where B D �2

�2C�2 , and the posterior distribution is

Np

�
�Œ1 � B�. Q̌ � �/; 
2Œ1 � B�C�1

�
: (62)
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4.3 Prediction Distribution

Consider the following non-informative prior distribution of the regression and scale
matrices of the multivariate multiple regression model defined in (5)

p
�
ˇ; ˙�1

� / j˙�1jpC1
2 : (63)

Assuming that the errors follow matrix variate elliptically symmetric distribution,
the joint density of Y from the performed experiment and the future responses Y f

from the future experiment of the multivariate multiple regression model can be
expressed as

f .Y ;Y f jˇ;˙�1/ / j˙�1j
nCnf

2 g
˚
t r
˚
˙�1

�
R1 .Y ;Z /CR2

�
Y f ;Z f

����
;

(64)

where

R1.Y ;Z / D .Y � ˇZ / .Y � ˇZ /0 and

R2.Y f ;Z f / D
�
Y f � ˇZf

� �
Y f � ˇZf

�0
: (65)

Let p.ˇ;˙�1jY ;Y f / be the posterior density of ˇ and ˙�1. Then, the predic-
tion distribution of the future responses matrix is obtained by solving the following
integral

p.Y f jY / /
Z

ˇ

Z

˙ �1

p.Y ;Y f jˇ;˙ /p.ˇ;˙�1/d˙�1dˇ: (66)

To evaluate the matrix integral, let ˙�1 D ˝ . So, d˙ D j˝ j�.pC1/d˝ . Then,
the prediction distribution of Y f can be expressed as

p.Y f jY / /
Z

ˇ

Z

˝

j˝ j
nf Cn�m

2 g
˚
t r˝

�
R.ˇ; Y f /

��
d˝dˇ: (67)

Now, let D be a non-singular symmetric matrix of order p such that

D0D D S Y CM1.Y f ;Zf /CM2.ˇ; Ǒ /; (68)

where

M1.Y f ;Zf / D .Y f � ǑZ f /H.Y f � ǑZ f /
0 and

M2.ˇ; Ǒ / D .ˇ � Ǒ /A.ˇ � Ǒ /0 (69)
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in which Ǒ is the ordinary least-squares estimator (OLS) of ˇ, H D ŒInf
�

Z 0f A�1Z f � and A D ŒZZ 0 C Z f Z 0f �. Then, the Jacobian of the transformation

� D D˝D0 (cf. [55]) is jD0Dj�pC1
2 . Completion of integration yields

p.Y f jY / D  .Y ;H/
ˇ̌
ˇS Y C .Y f � ǑZ f /H.Y f � ǑZ f /

0
ˇ̌
ˇ
�nf Cn�m

2

; (70)

where the normalizing constant is given by

 .Y ;H/ D �p

�
n�m

2

� jH j�p
2

.�/
pnf

2 �p

�
nCnf �m

2

�
jS Y j n�m

2

: (71)

The above density is the probability density of a pnf -dimensional matrix T distri-
bution with location matrix ǑZf , scale matrices S Y andH and degrees of freedom
.n � p � m C 1/. Note that the covariance matrix of the prediction distribution is
given by Cov.Y f jY / D .n�p�mC1/

.n�p�m�1/
ŒS Y

N
H� where

N
is the Kronecker prod-

uct of two matrices. Thus, the above prediction density of the future responses is
the same as that obtained using invariant differentials and structural relations of the
model.

5 Nonparametric Methods

Often statistical data are available without any information on the distribution that
may fit the data. Parametric methods can’t be applied in any such data sets. Non-
parametric or distribution free methods are essential for analyzing data that do not
follow any known distribution. Also, if the variable is measured in the ordinal scale
then the commonly used parametric methods are inappropriate to analyse any such
ordinal data. However, if the data represent an independent random sample then
non-parametric methods can be used to estimate the location or spread of the data as
well as to perform statistical tests. Inferences based on non-parametric methods are
robust as the results of any such method are not sensitive to any distributional as-
sumption. However, statistical results from non-parametric methods, in general, are
not superior to those obtained by parametric methods with respect to popular statis-
tical properties.

5.1 Estimation

Different non-parametric methods are available in the literature. Maximum likeli-
hood type method of estimation involves maximizing some function of the sample,
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and is known as the M-Estimation. Estimators based on the rank statistics are known
as the R-estimators. Linear rank statistics based estimators are called L-estimators.
The commonly used estimators, such as mean or median, are often special cases of
the earlier non-parametric estimators.

Here, we consider the R-estimation for the multiple regression model,

y D Xˇ C �; (72)

where the regression vector can be written as ˇ D .ˇ0; ˇ1; : : : ; ˇk/
0 in which 1 �

p D k C 1 � n, and each component of � D .�1; �2; : : : ; �n/
0 is independent

and identically distributed having continuous distribution function fF.�i / W i D
1; 2; : : : ; ng with associated absolutely continuous density f .
/.

For any real-valued vector b D .b1; b2; : : : ; bp/, let Ri .b/ be the rank of Yi �
.xi � Nxn/b for i D 1; 2; : : : ; n, where xi is the i th row of the design matrix X D
.x1;x2; : : : ;xn/

0 and Nxn D n�1
Pn

iD1 xi . Then, consider the linear rank statistic

Ln.b/ D ŒL1n.b1/; : : : ; Lpn.bp/�
0 D

nX

iD1

.xi � Nxi /an .Ri .b// ; (73)

where score function an.
/ is generated by a function �.u/ that is non-constant,
non-decreasing and square integrable, so that,

an.l/ D EŒ�.Ul;n/� or �

�
l

nC 1
�
; l D 1; 2; : : : ; n; (74)

in which Ul;n is the order statistic with rank l in a random sample of size n from
uniform distribution in the interval .0; 1/.

Define the sum of square and product matrix,

Cn D
nX

iD1

.xi � Nxn/.xi � Nx/0n; (75)

and assume that

1. limn!1 n�1Cn D C
2. max1�i�n

�
.xi � Nxn/

0C�1
n .xi � Nx/0n

� D o.n/
3. The “Fisher information” is finite, that is,

I.f / D
Z 1

�1
�
f 0.z/=f .z/

�2
f .z/dz <1 (76)

4. A2
� D

R 1

0
�2.u/du�

hR 1

0
�.u/du

i2

5. 	. ; �/ D R 1

0
 .u/�.u/du, and

6.
R 1

0
�2.u/du D I.f /
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where  .u/ D �f
0.F�1.u//

f .F �1.u//
; 0 < u < 1: (77)

Now, setting kak D Pp

lD1
a.l/, where k 
 k is the p-dimensional Euclidean norm,

and a D Œa.1/; : : : ; a.p/�, the unrestricted R-estimator, Q̌ n, of the regression vector
is defined by any central point of the set

S D fb W kLn.b/k D minimumg : (78)

From [56], we have

limP

8
<

:
X

k!k<k

kLn

�
ˇ C !p

n

�
�Ln.ˇ/C 	C!k > �

9
=

; D 0 (79)

for any k > 0 and � > 0, where ! is a p-dimensional column vector. Therefore, as
n!1, the sampling distribution of the R-estimator of the regression vector, Q̌ , is
given by

p
n
� Q̌ � ˇ

�
� Np

�
0; 
2C�1

�
with 
2 D A2

�=	
2. ; �/: (80)

5.2 Test of Hypothesis

To test the general linear hypothesis H0 W Hˇ D d against Ha W Hˇ ¤ d , where
H is a r � p matrix of non-zero constants, the rank-test is based on the test statistic

Ln D A�1
n

h
Ln. Ǒ /

i0
C�1

n

h
Ln. Ǒ /

i
; (81)

where

Ǒ D Q̌ n � C�1
n H.HC�1

n H 0/.H Q̌ n � d/ and (82)

A2
n D .n � 1/�1

nX

lD1

.an.l/ � Nan/
2 in which Nan D n�1

nX

lD1

an.l/: (83)

From the sampling distribution of the R-estimator of the regression vector, it can be
shown that under the null hypothesis, as n ! 1, the above test statistic follows
a chi-square distribution with r degrees of freedom (d.f.). So, a level ˛ test for the
general linear hypothesis is to reject H0 if the observed value of Ln is greater than
or equal to the critical value �2

r;˛, where �2
r;˛ is the upper .1 � ˛/th quantile of a

central chi-square distribution with r d.f.
Nonparametric M-estimation method along with the M-test can be found in [57–

60, 63]. Also, see [56, 61] for robust estimation and tests.
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The Philosophy of Science and its relation
to Machine Learning

Jon Williamson

In this chapter I discuss connections between machine learning and the philosophy
of science. First I consider the relationship between the two disciplines. There is a
clear analogy between hypothesis choice in science and model selection in machine
learning. While this analogy has been invoked to argue that the two disciplines are
essentially doing the same thing and should merge, I maintain that the disciplines
are distinct but related and that there is a dynamic interaction operating between
the two: a series of mutually beneficial interactions that changes over time. I will
introduce some particularly fruitful interactions, in particular the consequences of
automated scientific discovery for the debate on inductivism versus falsificationism
in the philosophy of science, and the importance of philosophical work on Bayesian
epistemology and causality for contemporary machine learning. I will close by sug-
gesting the locus of a possible future interaction: evidence integration.

1 Introduction

Since its genesis in the mid 1990s, data mining has been thought of as encompass-
ing two tasks: using data to test some pre-determined hypothesis, or using data to
determine the hypothesis in the first place. The full automation of both these tasks –
hypothesising and then testing – leads to what is known as automated discovery
or machine learning. When such methods are applied to science, we have what is
called automated scientific discovery or scientific machine learning. In this chapter,
we shall consider the relationship between the philosophy of science and machine
learning, keeping automated scientific discovery particularly in mind.

Section 2 offers a brief introduction to the philosophy of science. In Sect. 3 it is
suggested that the philosophy of science and machine learning admit mutually fruit-
ful interactions because of an analogy between hypothesis choice in the philosophy
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of science and model selection in machine learning. An example of the benefit of
machine learning for the philosophy of science is provided by the importance of
work on automated scientific discovery for the debate between inductivism and fal-
sificationism in the philosophy of science (Sect. 4). On the other hand, the influence
of philosophical work on Bayesianism and causality provides an example of the
benefits of the philosophy of science for machine learning (Sect. 5). Section 6 hy-
pothesises that evidence integration may become the locus of the further fruitful
interaction between the two fields.

2 What is the Philosophy of Science?

In the quest to improve our understanding of science, three fields of enquiry stand
out: history of science, sociology of science, and philosophy of science. Histo-
rians of science study the development of science, key scientists and key ideas.
Sociologists of science study social constraints on scientific activity–e.g., how
power struggles impact on the progress of science. Philosophers of science study
the concepts of science and normative constraints on scientific activity. Questions
of interest to philosophers of science include:

Demarcation: What demarcates science from non-science? One view is that empir-
ical testability is a necessary condition for a theory to count as scientific.

Unity: To what extent is science a unified or unifiable field of enquiry? Some take
physics to be fundamental and the elements of other sciences to be reducible to
those of physics. Others argue that science is a hotch-potch of rather unrelated the-
ories, or that high-level complexity is not reducible to low-level entities and their
arrangement.

Realism: Are the claims of science true? To what extent are we justified in believ-
ing contemporary scientific theories? Realists hold that scientific theories aim to
describe an independent reality and that science gradually gets better at describing
that reality. On the other hand, instrumentalists hold that science is an instrument
for making predictions and technological advances and that there is no reason to
take its claims literally, or – if they are taken at face value – there are no grounds for
believing them.

Explanation: What is it to give a scientific explanation of some phenomena? One
view is that explaining is the act of pointing to the physical mechanism that is
responsible for the phenomena. Another is that explanation is subsumption under
some kind of regularity or law.

Confirmation: How does evidence confirm a scientific theory? Some hold that ev-
idence confirms a hypothesis just when it raises the probability of the hypothesis.
Others take confirmation to be a more complicated relation, or not a binary relation
at all but rather to do with coherence with other beliefs.
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Scientific Method: How are the goals of science achieved? What is the best way of
discovering causal relationships? Can one justify induction? While many maintain
that in principle one can automate science, others hold that scientific discovery is an
essentially human, intuitive activity.

Concepts of the Sciences: How should one interpret the probabilities of quantum
mechanics? Does natural selection operate at the level of the individual, the pop-
ulation or the gene? Each science has its particular conceptual questions; even the
interpretation of many general concepts – such as probability and causality – re-
mains unresolved.

3 Hypothesis Choice and Model Selection

There is a clear link between the philosophy of science on the one hand and the area
of machine learning and data mining on the other. This link is based around an anal-
ogy between hypothesis choice in science and model selection in machine learning.
The task of determining a scientific hypothesis on the basis of current evidence is
much like the task of determining a model on the basis of given data. Moreover,
the task of evaluating the resulting scientific hypothesis is much like the task of
evaluating the chosen model. Finally, the task of deciding which evidence to collect
next (which experiments and observations to perform) seems to be similar across
science and machine learning. Apparently, then, scientific theorising and computa-
tional modeling are but two applications of a more general form of reasoning.

How is this general form of reasoning best characterised? It is sometimes called
abductive inference or abduction, a notion introduced by C.S. Peirce. But this
nomenclature is a mistake: the form of reasoning alluded to here is more general
than abduction. Abduction is the particular logic of moving from observed phe-
nomena to an explanation of those phenomena. Science and machine learning are
interested in the broader, iterative process of moving from evidence to theory to
new evidence to new theory and so on. (This broader process was sometimes called
“induction” by Peirce, though “induction” is normally used instead to refer to the
process of moving from the observation of a feature holding in each member of a
sample to the conclusion that the feature holds of unobserved members of the pop-
ulation from which the sample is drawn.) Moreover, explanation is just one use of
hypotheses in science and models in machine learning; hypotheses and models are
also used for other forms of inference such as prediction. In fact, while explanation
is often the principal target in science, machine learning tends to be more interested
in prediction. When explanation is the focus, one is theorising; when prediction
is the focus, the process is better described as modeling. Clearly, then, the general
form of reasoning encompasses both theorising and modeling. This general form of
reasoning is sometimes called discovery. But that is not right either: the form of rea-
soning under consideration here is narrower than discovery. “Discovery” applies to
finding out new particular facts as well as to new generalities, but we are interested
purely in generalities here. In want of a better name, we shall call this general form
of reasoning systematising, and take it to encompass theorising and modeling.
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Granting, then, that hypothesis choice in science and model selection in machine
learning are two kinds of systematising, there are a variety of possible views as to
the relationship between the philosophy of science and machine learning.

One might think that since the philosophy of science and machine learning are
both concerned with systematising, they are essentially the same discipline, and
hence some kind of merger seems sensible [1]. This position is problematic, though.
As we saw in Sect. 2, the philosophy of science is not only concerned with the study
of systematising, but also with a variety of other topics. Hence the philosophy of
science can at best be said to intersect with machine learning. Moreover, even where
they intersect the aims of the two fields are rather different: e.g., the philosophy of
science is primarily interested in explanation and hence theorising, while the area
of machine learning and data mining is primarily interested in prediction and hence
modeling. Perhaps automated scientific discovery is one area where the aims of
machine learning and the philosophy of science coincide. In which case automated
scientific discovery is the locus of intersection between the philosophy of science
and machine learning. But this rather narrow intersection falls far short of the claim
that the two disciplines are the same.

More plausibly, then, the philosophy of science and machine learning are not
essentially one, but nevertheless they do admit interesting connections [2, 189; 3, 4].
In [4], I argue that the two fields admit a dynamic interaction. There is a dynamic
interaction between two fields if there is a connection between them which leads to a
mutually beneficial exchange of ideas, the direction of transfer of ideas between the
two fields changes over time, and the fields remain autonomous [5]. Here, we shall
take a look at two beneficial points of interaction: the lessons of automated scientific
discovery for the study of scientific method (Sect. 4) and the influence of work on
Bayesian epistemology and probabilistic causality on machine learning (Sect. 5).

4 Inductivism Versus Falsificationism

Scientific method is an important topic in the philosophy of science. How do scien-
tists make discoveries? How should they make discoveries?

One view, commonly called inductivism and advocated by Bacon [6], is that
science should proceed by first making a large number of observations and then
extracting laws via a procedure that is in principle open to automation. An oppos-
ing position, called falsificationism and held by popper [7], is that the scientist first
conjectures in a way that cannot be automated and then tests this conjecture by ob-
serving and experimenting to see whether or not the predictions of the conjecture
are borne out, rejecting the conjecture if not.

While examples from the history of science have tended to support falsification-
ism over inductivism, the successes of automated scientific discovery suggest that
inductivism remains a plausible position [8]. The approach of machine learning is
to collect large numbers of observations in a dataset and then to automatically ex-
tract a predictive model from this dataset. In automated scientific discovery this
model is usually also meant to be explanatory; hence, the model plays the same role
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as scientific laws. To the extent that such procedures are successful, inductivism
is successful. Gillies [8], Sect. 2.6 cites the GOLEM inductive logic programming
system as an example of a machine learning procedure that successfully induced
scientific laws concerning protein folding; this success was achieved with the help
of humans who encoded background knowledge [8, Sect. 3.4]. Journals such as Data
Mining and Knowledge Discovery and the Journal of Computer-Aided Molecular
Design show that the inductive approach continues to produce advances. Moreover,
the investment of drug and agrochemical companies suggests that this line of re-
search promises to pay dividends. While the hope is that one day such companies
might “close the inductive loop” – i.e., automate the whole cyclic procedure of data
collection, hypothesis generation, further data collection, hypothesis reformulation
: : : – the present reality is that machine successes are achieved in combination
with human expertise. The use by Dow AgroSciences of neural networks in the
development of the insecticide spinetoram offers a recent example of successful
human–machine collaboration [9]; spinetoram won the US Environmental Protec-
tion Agency 2008 Designing Greener Chemicals Award.

Perhaps human scientists proceed by applying falsificationism while machine
science is inductivist. Or perhaps falsificationism and inductivism are but differ-
ent approximations to a third view which better explicates scientific method. What
could this third view be? It is clear that human scientists base their conjectures on
a wide variety of different kinds of evidence, not just on a large number of homo-
geneous observations. (This – together with the fact that it can be hard for scientists
to pin-point all the sources of evidence for their claims and hard for them to say
exactly how their evidence informs their hypotheses – makes it hard to see how
hypothesis generation can be automated. It is natural to infer, with falsificationists,
that hypothesis generation can’t be automated, but such an inference may be too
quick.) On the other hand, most machine learning algorithms do take as input a
large number of homogenous observations; this supports inductivism, but with the
proviso that the successes of automated scientific discovery tend to be achieved in
concert with human scientists or knowledge engineers. Human input appears to be
important to fully utilise the range of evidence that is available. The third view of
scientific method, then, is that a theory is formulated on the basis of extensive ev-
idence (including background knowledge), but evidence which is often qualitative
and hard to elucidate. The theory is revised as new evidence is accrued, and this
new evidence tends to be accrued in a targeted way, by testing the current theory.
Can this third way be automated? Contemporary machine learning methods require
well-articulated quantitative evidence in the form of a dataset, but, as I suggest in
Sect. 6, there is scope for relaxing this requirement and taking a fuller spectrum of
evidence into account.

In sum, while not everyone is convinced by the renaissance of inductivism [see,
e.g., 10], it is clear that automated scientific discovery has yielded some successes
and that these have sparked new life into the debate between inductivism and falsi-
ficationism in the philosophy of science.
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5 Bayesian Epistemology and Causality

Having looked at one way in which machine learning has had a beneficial impact
on the philosophy of science, we now turn to the other direction: the impact of the
philosophy of science on machine learning.

Epistemologists are interested in a variety of questions concerning our attitudes
towards the truth of propositions. Some of these questions concern propositions that
we already grant or endorse: e.g., do we know that 2 C 2 D 4? if so, why? how
should a committee aggregate the judgements of its individuals? Other questions
concern propositions that are somewhat speculative: should I accept that all politi-
cians are liars? to what extent should you believe that it will rain tomorrow?

Philosophers of science have been particularly interested in the latter question:
to what extent should one believe a proposition that is open to speculation? This
question is clearly relevant to scientific theorising, where we are interested in the
extent to which we should believe current scientific theories. In the twentieth century
philosophers of science developed and applied Bayesian epistemology to scientific
theorising. The ideas behind Bayesian epistemology are present in the writings of
some of the pioneers of probability theory – e.g., Jacob Bernoulli, Thomas Bayes –
but only in recent years has it widely caught on in philosophy and the sciences.

One can characterise contemporary Bayesian epistemology around the norms
that it posits:

Probability: The strengths of an agent’s beliefs should be representable by proba-
bilities. For example, the strength to which you believe it will rain tomorrow should
be measurable by a number P.r/ between 0 and 1 inclusive, and P.r/ should equal
1 � P.:r/, where :r is the proposition that it will not rain tomorrow.

Calibration: These degrees of belief should be calibrated with the agent’s evidence.
For example, if the agent knows just that between 60% and 70% of days like today
have been followed by rain, she should believe it will rain tomorrow to degree within
the interval Œ0:6; 0:7�.

Equivocation: Degrees of belief should otherwise be as equivocal as possible. In
the above example, the agent should equivocate as far as possible between r and
:r , setting P.r/ D 0:6, the value in the interval [0.6, 0.7] that is closest to total
equivocation, PD.r/ D 0:5.

So-called subjective Bayesianism adopts the Probability norm and usually the
Calibration norm too. This yields a relatively weak prescription, where the extent
to which one should believe a proposition is largely left up to subjective choice. To
limit the scope for arbitrary shifts in degrees of belief, subjectivists often invoke a
further norm governing the updating of degrees of belief: the most common such
norm is Bayesian conditionalisation, which says that the agent’s new degree of be-
lief P 0.a/ in proposition a should be set to her old degree of belief in a conditional
on the new evidence e, P 0.a/ D P.aje/.

In contrast to subjective Bayesianism, Objective Bayesianism adopts all three of
the earlier norms – Probability, Calibration and Equivocation. If there are finitely
many basic propositions under consideration (propositions that are not composed
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out of simpler propositions), these three norms are usually cashed out using the
maximum entropy principle: an agent’s degrees of belief should be representable by
a probability function, from all those calibrated with evidence, that has maximum
entropy H.P/ D �P!2˝ P.!/ logP.!/. (The maximum entropy probability
function is the function that is closest to the maximally equivocal probability func-
tion PD which gives the same probability PD.!/ D 1=2n to each conjunction
! 2 ˝ D f˙a1 ^ 
 
 
 ^˙ang of the basic propositions a1; : : : ; an or their negations,
where distance from one probability function to another is understood in terms of
cross entropy d.P;Q/ D P

!2˝ P.!/ logP.!/=Q.!/.) Since these three norms
impose rather strong constraints on degrees of belief, no further norm for updating
need be invoked [11]. The justification of these norms and the relative merits of sub-
jective and objective Bayesian epistemology are topics of some debate in philosophy
[see, e.g., 12].

The development of Bayesian epistemology has had a profound impact on
machine learning [13]. The field of machine learning arose out of research on
expert systems. It was quickly realised that when developing an expert system it
is important to model the various uncertainties that arise on account of incomplete
or inconclusive data. Thus the system MYCIN, which was developed in the 1970s
to diagnose bacterial infections, incorporated numerical values called “certainty
factors.” Certainty factors were used to measure the extent to which one ought to
believe certain propositions. Hence, one might think that Bayesian epistemology
should be applied here. In fact, the MYCIN procedure for handling certainty factors
was non-Bayesian, and MYCIN was criticised on account of its failing to follow
the norms of Bayesian epistemology. From the late 1970s, it was common to handle
uncertainty in expert systems using Bayesian methods. And, when the knowledge
bases of expert systems began to be learned automatically from data rather than
elicited from experts, Bayesian methods were adopted in the machine learning
community.

But Bayesian methods were rather computationally intractable in the late 1970s
and early 1980s, and consequently systems such as Prospector, which was de-
veloped in the second half of the 1970s for mineral prospecting, had to make
certain simplifying assumptions that were themselves questionable. Indeed con-
siderations of computational complexity were probably the single biggest limiting
factor for the application of Bayesian epistemology to expert systems and machine
learning.

It took a rather different stream of research to unleash the potential of Bayesian
epistemology in machine learning. This was research on causality and causal rea-
soning. In the early twentieth century, largely under the sceptical influence of Mach,
Pearson and Russell, causal talk rather fell out of favour in the sciences. But it was
clear that while scientists were reluctant to talk the talk, they were still very much
walking the walk: associations between variables were being interpreted causally to
predict the effects of interventions and to inform policy. Consequently, philosophers
of science remained interested in questions about the nature of causality and how
one might best reason causally.
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Fig. 1 Smoking (S) causes
lung cancer (L) and
bronchitis (B) which in turn
cause chest pains (C )

�L ������S �����

�����

�C

�B �����

Under the probabilistic view of causality, causal relationships are analysable
in terms of probabilistic relationships – more specifically in terms of patterns of
probabilistic dependence and independence [14]. Reichenbach, Good, Suppes and
Pearl, pioneers of the probabilistic approach, developed the concept of a causal net.
A causal net is a diagrammatic representation of causes and effects – such as that
depicted in Fig. 1 – which has probabilistic consequences via what is now known
as the Causal Markov Condition. This condition says that each variable in the net
is probabilistically independent of its non-effects, conditional on its direct causes.
If we complete a causal net by adding the probability distribution of each variable
conditional on its direct causes, the net suffices to determine the joint probability
distribution over all the variables in the net. Since the probabilities in the net tend
to be interpreted as rational degrees of belief, and since the probabilities are of-
ten updated by Bayesian conditionalisation, a causal net is often called a causal
Bayesian net. If we drop the causal interpretation of the arrows in the graph, we
have what is known as a Bayesian net. The advantage of the causal interpretation is
that under this interpretation the Markov Condition appears quite plausible, at least
as a default constraint on degrees of belief [15].

Now, a causal Bayesian net – and more generally a Bayesian net – can permit
tractable handling of Bayesian probabilities. Depending on the sparsity of the graph,
it can be computationally feasible to represent and reason with Bayesian proba-
bilities even where there are very many variables under consideration. This fact
completed the Bayesian breakthrough in expert systems and machine learning. By
building an expert system around a causal net, efficient representation and calcu-
lation of degrees of belief were typically achievable. From the machine learning
perspective, if the space of models under consideration is the space of Bayesian nets
of sufficiently sparse structure, then learning a model will permit efficient inference
of appropriate degrees of belief. If the net is interpreted causally, we have what
might be considered the holy grail of science: a method for the machine learning of
causal relationships directly from data.

In sum, Bayesian epistemology offered a principled way of handling uncertainty
in expert systems and machine learning, and Bayesian net methods overcame many
of the ensuing computational hurdles. These lines of work had a huge impact: the
dominance of Bayesian methods – and Bayesian net methods in particular – in the
annual conferences on Uncertainty in Artificial Intelligence (UAI) from the 1980s
is testament to the pervasive influence of Bayesian epistemology and work on prob-
abilistic causality.
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6 Evidence Integration

We now have some grounds for the claim that there is a dynamic interaction between
machine learning and the philosophy of science: the achievements of automated
scientific discovery have reinvigorated the debate between inductivists and falsi-
ficationists in the philosophy of science; on the other hand, work on Bayesian
epistemology and causality has given impetus to the handling of uncertainty in ma-
chine learning. No doubt the mutually supportive relationships between philosophy
of science and machine learning will continue. Here, we will briefly consider one
potential point of interaction, namely the task of evidence integration.

The dominant paradigm in machine learning and data mining views the ma-
chine learning problem thus: given a dataset learn a (predictively accurate) model
that fits (but does not overfit) the data. Clearly, this is an important problem and
progress made on this problem has led to enormous practical advances. However,
this problem formulation is rather over-simplistic in the increasingly evidence-rich
environment of our information age. Typically, our evidence is not made up of a
single dataset. Typically, we have a variety of datasets – of varying size and qual-
ity and with perhaps few variables in common – as well as a range of qualitative
evidence concerning measured and unmeasured variables of interest – evidence of
causal, logical, hierarchical and mereological relationships for instance. The ear-
lier problem formulation just doesn’t apply when our evidence is so multifarious.
The Principle of Total Evidence, which holds that one should base one’s beliefs and
judgements on all one’s available evidence, is a sound epistemological precept, and
one that is breached by the dominant paradigm.

The limitations of the earlier problem formulation are increasingly becoming
recognised in the machine-learning community. This recognition has led to a spate
of research on what might be called forecast aggregation: a variety of models, each
derived from a different dataset, are used to make predictions, and these separate
predictions are somehow aggregated to yield an overall prediction. The aggregation
operation may involve simple averaging or more sophisticated statistical meta-
analysis methods.

But forecast aggregation itself has several limitations. First, it still falls foul of the
Principle of Total Evidence: each model is based on a single dataset but qualitative
evidence tends to be ignored. (Not always: qualitative evidence about relationships
between the variables is sometimes invoked in the preprocessing of the datasets –
if the knowledge engineer sees that a variable in one dataset is a subcategory of a
variable in another dataset, these two variables might be unified in some way. But
this data grooming is typically done by hand. As datasets involve more and more
variables it is increasingly important that qualitative evidence be respected as a part
of the automation process.) Second, it is unclear how far one should trust aggregated
forecasts when they are often generated by models that not only disagree but are
based on mutually inconsistent assumptions. Obviously in such cases at most one of
the mutually inconsistent models is true; surely it would be better to find and use the
true model (if any) than to dilute its predictions with the forecasts of false models.
But this requires collecting new evidence rather than forecast aggregation. Third,
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the general problem of judgement aggregation – of which forecast aggregation is
but a special case – is fraught with conceptual problems; indeed the literature on
judgement aggregation is replete with impossibility results, not with solutions [16].

In view of these problems, a better approach might be to construct a single model
which is based on the entirety of the available evidence – quantitative and qualitative
– and to use that model for predictions. Combining evidence is often called knowl-
edge integration. However, available evidence may not strictly qualify as knowledge
because it may, for reasons that are not evident, not all be true; hence evidence inte-
gration is better terminology.

Bayesian epistemology provides a very good way of creating a single model on
the basis of a wide variety of evidence. As discussed in Sect. 5, the model in this
case is (a representation of) the probability function that captures degrees of be-
lief that are appropriate for an agent with the evidence in question. The evidence
is integrated via the Calibration norm: each item of evidence imposes constraints
that this probability function must satisfy. (Some kind of consistency maintenance
procedure must of course be invoked if the evidence itself is inconsistent.) A dataset
imposes the following kind of constraint: the agent’s probability function, when
restricted to the variables of that dataset, should match (fit but not overfit) the distri-
bution of the dataset, as far as other evidence permits. Qualitative evidence imposes
another kind of equality constraint, as follows. A relation R is an influence rela-
tion if learning of a new variable that does not stand in relation R to (i.e., does
not influence) the current variables does not provide grounds for changing one’s
degrees of belief concerning the current variables. Arguably causal, logical, hier-
archical and mereological relationships are influence relations. Hence, evidence of
such relationships imposes equality constraints of the form: the agent’s probabil-
ity function, when restricted to variables that are closed under influence, should
match the probability function that the agent would have adopted were she only
to have had evidence concerning that subset of variables, as far as other evidence
permits. Hence, both quantitative and qualitative evidence impose certain equality
constraints on degrees of belief. See [15] and [17] for the details and motivation
behind this kind of approach.

In sum, evidence integration has greater potential than forecast aggregation to
circumvent the limited applicability of the current machine learning paradigm.
Bayesian epistemology is strikingly well-suited to the problem of evidence inte-
gration. Hence, there is scope for another fruitful interaction between philosophy of
science and machine learning.

Example: Cancer Prognosis

As an illustration of the kind of approach to evidence integration that Bayesian
epistemology offers, we shall consider an application of objective Bayesian epis-
temology to integrating evidence for breast cancer prognosis. This application is
described in detail in [18].
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When a patient has breast cancer and has had surgery to remove the cancer it
is incumbent on the relevant medical practitioners to make an appropriate onward
treatment decision. Broadly speaking, more effective treatments are more aggressive
in the sense that they have harsher side effects. Such treatments are only warranted
to the extent that the cancer is likely to recur without them. The more strongly the
medical practitioner believes the cancer will recur, the more aggressive the treat-
ment that will be instigated. It is important, then, that the agent’s degree of belief in
recurrence is appropriate given the available evidence.

Evidence here – as in many realistic applications – is multifarious. There are
clinical datasets detailing the clinical symptoms of past patients, genomic datasets
listing the presence of various molecular markers in past patients, scientific pa-
pers supporting particular causal claims or associations, medical experts’ causal
knowledge, and information in medical informatics systems, including medical on-
tologies, and previous decision support systems such as argumentation systems.

In [18] we had the following sources of evidence available. First, we had a clini-
cal dataset, namely the SEER study, which involves three million patients in the US
from 1975–2003, including 4,731 breast cancer patients. We also had two molecular
datasets, one with 502 cases and another with 119 cases; the latter dataset also mea-
sured some clinical variables. Finally, we had a published study which established
a causal relationship between two variables of interest.

These evidence sources impose constraints on an agent’s degrees of belief, as
outlined earlier. The agent’s degrees of belief should match the dataset distributions
on their respective domains. Moreover, degrees of belief should respect the equality
constraints imposed by knowledge of causal influence. While the Probability norm
holds that the strengths of the agent’s beliefs should be representable by a probabil-
ity function, the Calibration norm holds that this probability function should satisfy
the constraints imposed by evidence.

These two norms narrow down the choice of belief function to a set of prob-
ability functions. But objective Bayesian epistemology imposes a further norm,
Equivocation. Accordingly, the agent’s degrees of belief should be representable
by a probability function from within this set that is maximally equivocal. On a fi-
nite domain, this turns out to be the (unique) probability function in this set that has
maximum entropy. So, objective Bayesian epistemology recommends that treatment
decisions be based on this maximum entropy probability function.

As discussed in Sect. 5, from a computational point of view it is natural to rep-
resent a probability function by a Bayesian net. A Bayesian net that represents a
probability function that is deemed appropriate by objective Bayesian epistemol-
ogy is called an objective Bayesian net [19]. This Bayesian net can be used for
inference – in our case to calculate degree to which one ought to believe that the
patient’s cancer will recur. Figure 2 depicts the graph of the objective Bayesian net
in our cancer application. At the top is the recurrence node, beneath which are clin-
ical variables. These are connected to five molecular variables at the bottom of the
graph. Hence, one can use both molecular markers and clinical symptoms to predict
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Fig. 2 Graph of an objective Bayesian net for breast cancer prognosis

the patient’s survival, even though no dataset contains information about all these
variables together. The objective Bayesian net model succeeds in integrating rather
disparate evidence sources.

7 Conclusion

Machine learning in general and automated scientific discovery in particular have
a close relationship with the philosophy of science. On the one hand, advances in
automated scientific discovery have lent plausibility to inductivist philosophy of
science. On the other hand, advances in probabilistic epistemology and work on
causality have improved the ability of machine learning methods to handle uncer-
tainty.

I have suggested that inductivism and falsificationism can be reconciled by view-
ing these positions as approximations to a third view of scientific method, one which
considers the full range of evidence for a scientific hypothesis. This third way would
be an intriguing avenue of research for philosophy of science. I have also suggested
that the current single-dataset paradigm in machine learning is becoming increas-
ingly inapplicable, and that research in machine learning would benefit from serious
consideration of the problem of formulating a model on the basis of a broad range
of evidence. Bayesian epistemology may be a fruitful avenue of research for tack-
ling evidence integration in machine learning as well as evidence integration in the
philosophy of science.
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Concept Formation in Scientific Knowledge
Discovery from a Constructivist View

Wei Peng and John S. Gero

1 Introduction

The central goal of scientific knowledge discovery is to learn cause–effect
relationships among natural phenomena presented as variables and the conse-
quences their interactions. Scientific knowledge is normally expressed as scientific
taxonomies and qualitative and quantitative laws [1]. This type of knowledge rep-
resents intrinsic regularities of the observed phenomena that can be used to explain
and predict behaviors of the phenomena. It is a generalization that is abstracted and
externalized from a set of contexts and applicable to a broader scope. Scientific
knowledge is a type of third-person knowledge, i.e., knowledge that independent
of a specific enquirer. Artificial intelligence approaches, particularly data mining
algorithms that are used to identify meaningful patterns from large data sets, are
approaches that aim to facilitate the knowledge discovery process [2]. A broad
spectrum of algorithms has been developed in addressing classification, associative
learning, and clustering problems. However, their linkages to people who use them
have not been adequately explored. Issues in relation to supporting the interpreta-
tion of the patterns, the application of prior knowledge to the data mining process
and addressing user interactions remain challenges for building knowledge discov-
ery tools [3]. As a consequence, scientists rely on their experience to formulate
problems, evaluate hypotheses, reason about untraceable factors and derive new
problems. This type of knowledge which they have developed during their career
is called “first-person” knowledge. The formation of scientific knowledge (third-
person knowledge) is highly influenced by the enquirer’s first-person knowledge
construct, which is a result of his or her interactions with the environment. There
have been attempts to craft automatic knowledge discovery tools but these systems
are limited in their capabilities to handle the dynamics of personal experience. There
are now trends in developing approaches to assist scientists applying their expertise
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to model formation, simulation, and prediction in various domains [4], [5]. On the
other hand, first-person knowledge becomes third-person theory only if it proves
general by evidence and is acknowledged by a scientific community. Researchers
start to focus on building interactive cooperation platforms [1] to accommodate
different views into the knowledge discovery process.

There are some fundamental questions in relation to scientific knowledge devel-
opment. What are major components for knowledge construction and how do people
construct their knowledge? How is this personal construct assimilated and accom-
modated into a scientific paradigm? How can one design a computational system to
facilitate these processes? This chapter does not attempt to answer all these ques-
tions but serves as a basis to foster thinking along this line. A brief literature review
about how people develop their knowledge is carried out through a constructivist
view. A hydrological modeling scenario is presented to elucidate the approach.

2 Concept Formation from a Constructivist View

Cognitive science is a multi-disciplinary study with the aim to deliver a theory of
intelligence. The basic assumption held by many cognitive science researchers is
that there is a common set of principles underlying all instances of intelligence
[6]. Aristotle attributed to perception and observation essential roles in acquiring
scientific knowledge and proposed an empirical method of gathering observations
followed by taxonomic classification, interpretation and inference [6].

2.1 Knowledge as Generalization

One aspect of human cognition is to develop experience and use experience to con-
struct a judgment, in which a certain object is distinguished from other objects and
is characterized by some concepts. Concepts are bearers of meanings. The enquiry
for the notion of concept has long been the focus of research in philosophy. Both the
notion of “concept” and our understandings of the way in which concepts are formed
have evolved. John Locke [7] described that a general idea corresponds to a descrip-
tion of concept, which is created by abstracting and drawing commonalities from the
particulars. The assumption of a concept as a consequence of induction is that the
unobserved events conform to regularities in the already known facts. The assump-
tion is not general enough to address possible exceptions in a dynamic complex
world. David Hume [8] argued that discovering the “necessary connexion” between
objects leads to a better understanding of a priori causation relationships around
these objects. He also mentioned that relationships between ideas of causation can
be derived from our experience [9]. David Hume’s theories inspired Immanuel Kant,
who later developed the notion of “a posteriori” concept. According to Kant, a con-
cept can be further defined as an a posteriori concept or an a priori concept [10].
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A posteriori or empirical concepts are abstracted/induced from specific perceived
events and are applicable to them. A priori concepts are categories that are not
abstractions from perception but are applicable to it. Although there is no unified
definition of a concept, a concept is often taken to mean a mental representation of
a class or a category [11]. The classical view of concept formation as abstraction
or “abstract thinking,” as outlined by Van Oers [12], emphasizes creating types, a
process of generalizing by removing circumstantial aspects of time and place [13].
This view has been manifested in the recent research on concept formation systems
in the field of artificial intelligence. Many researchers consider categorization as the
essence of a concept and its formation. Concept formation has been regarded as a
process of incremental unsupervised acquisition of categories and their intentional
descriptions [14]. Based on this view, a broad spectrum of computational models has
been developed, including inductive learning methods, explanation-based learning
approaches and connectionist algorithms. However, theories of concept formation
that merely focus on categorization are not able to address the complexity of the
world [15]. A concept lacking an understanding of why and how the object, entity
or event has its particular properties is called a protoconcept [15], [16]. The pro-
cess by which people form any category knowledge biases the knowledge contents
formed. Theories and models are people’s approximations to the uncertain (and un-
known) a priori concepts that describe the universe. They are by nature a posteriori.
For example, the concept of gravitation in modern physics is cognized differently to
what was taken for granted in Newton’s time.

2.2 Knowledge as Construction

Knowledge is an empirical term therefore inseparable from a subject and the world
external to that subject. In describing the relationship between human experience
and nature, John Dewey [17] pointed out that there is a union of experience and na-
ture in natural science. Human experience is considered as “a means of continually
penetrating the hearts of the reality of nature.” The enquirer must resort to his or her
experience and use empirical methods if his or her findings are to be treated as gen-
uinely scientific [17]. Referring to the genesis of knowledge, Dewey [17] mentioned
that knowledge is a refined experience:

“The intrinsic nature of events is revealed in experience as the immediately felt qualities of
things. The intimate coordination and even fusion of these qualities with regularities that
form the objects of knowledge, in the proper sense of the word ‘knowledge’, characterizes
intelligently directed experience, as distinct from mere casual and uncritical experience”.

Dewey’s vision can also be found in other constructivists’ works. In review-
ing Piaget’s conception of knowledge and reality, Von Glasersfeld [18] conceived
that the cognitive organism is first and foremost an organizer who interprets ex-
perience and shapes it into a structured world. Piaget used the term “schema” to
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denote the basic mental structure, which depicts how perceptual categories are or-
ganized. After examining the development of intelligence in children, Piaget [19]
concluded that two intertwined processes (“assimilation” and “accommodation”)
and their coordination enable a child to construct knowledge from his or her experi-
ence. Assimilation tends to subordinate the environment to the organism’s a priori
or acquired schemata, whereas accommodation adapts the organism to the succes-
sive constraints of the environment by updating (or incorporating) new schemata
[19]. Piaget mentioned [18], [20]:

“All knowledge is tied to action and knowing an object or an event is to use it by assimilating
it to an action scheme ...... this is true on the most elementary sensory-motor level and all
the way up to the highest logical-mathematical operations ......”

Piaget’s theory of assimilation can be interpreted as the mapping between the ex-
ternal world to the existing knowledge structures in the internal world of a cognitive
organism. The development of new knowledge structures in the internal world of a
cognitive agent is through the accommodation mechanism (Fig. 1).

Vygotsky [21] introduced the role of “activity” in knowledge construction, stat-
ing that the activities of the mind cannot be separated from overt behavior, or from
the social context in which they occur. Social and mental structures interpenetrate
each other [21], [22].

Fig. 1 An interpretation of Piaget’s cognition processes of assimilation and accommodation
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2.3 Experiential Learning

These theories provide insights about ingredients for knowledge construction based
on the external events or context, the internal knowledge structures and the interac-
tions between the assimilation and accommodation processes. Kolb [23] developed
an experiential learning theory by drawing ideas from Dewey [24], Lewin [25], and
Piaget [19]. The major components for learning knowledge consist of concrete ex-
perience, observation and reflection, the formation of abstract concepts and testing
of implications of concepts in new situations. He represented this idea in the expe-
riential learning circle, which is illustrated in Fig. 2.

Kolb and Fry [26] postulated that learning can commence from any component
and operates in a continuous cycle. The observations are assimilated into a “theory”
based on the immediate concrete experience. The theory is a generalization that
can be used to deduce new implications for action. The implications then serve as
guides for creating new experience. This model provides operational features for
Piaget’s notion of “mutual interaction” between assimilation and accommodation.
Jarvis [27] enriched the internal process for knowledge construction by introducing
flexible behaviors of an intelligent system. He put experience and memory in the
loop. As illustrated in Fig. 3, these behaviors1 include:

Fig. 2 Experiential learning cycle (Adapted from Fig. 2.1 of [23])

1 The Rejection behavior where the individual refuses to learn from the situation is not list here
due to its irrelevance to knowledge construction.
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Fig. 3 Experiential learning path from Jarvis [27], [28]. Boxes represent components that consist
of the processes of learning. These components are general notions that can be either entities or
processes. Numbers refer to individual processes described in the text

• Non-learning presumption (or non-consideration) (boxes 1! 2! 3! 4) where
people react through experience (or choose not to respond to environmental
events)

• Non-reflective pre-conscious (boxes 1 ! 2 ! 3 ! 6! 4 or 9) where people
have experience about environmental events but do not attend to it

• Non-reflective practice (boxes 1! 2! 3! 5! 8! 6! 4 or 9) where people
obtain basic skills

• Non-reflective memorization (boxes 1 ! 2 ! 3 ! 6 ! 8 ! 4 or 9) where
people memorize new things

• Reflective contemplation (boxes 1! 2! 3! 7! 8! 6! 9) where people
reflect upon a situation and make decisions

• Reflective practice (boxes 1! 2! 3! 5! 7! 5! 8! 6! 9) where the
individuals reflect and then act upon a situation

• Reflective experimental learning (1! 2! 3! 7! 5! 7! 8! 6! 9) in
which people reason about the situation and evaluate their experience.

Jarvis’ experiential learning model2 emphasizes the role of experience and cog-
nition in developing new knowledge. Another component of Jarvis’ learning model

2 Jarvis’ recent learning model ([28], [29]) extends the experiential learning to lifelong learning
theory and has an emotive component.
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is the pragmatic unit which includes experiment and evaluation processes. A key
notion which is implicit in Jarvis’ theory but put forward by Kolb is “prediction”
(termed as “implication for a concept” or “hypothesis” in [23]). Anticipation plays
a key role in human cognition. Human activity of knowing (scientific thoughts and
their epistemological interpretations) are the highest form of adaptation, which in-
volves reflecting on past experience, abstracting specific regularities from them, and
projecting these as predictions into the future [30]. This behavior of knowing is also
described in the “memory prediction framework” [31] and is conjectured as the
basic function of our memory system. Our memory serves as a “metaphysical link-
age of times past and future” [32]. This means that our memory system constantly
uses experience to form invariant representations3 about the spatial-temporal (and
feature) based events, predicts potential occurrences in the environment and biases
behaviors of our sensory-motor system accordingly. Based on this understanding,
this chapter will present the predominant theory of memory in constructivism and
elaborate a concept formation process.

2.4 Concept Formation in Constructive Memory

Memory in cognitive science does not mean a place or device storing descriptions
of actions. Neither does it refer to the information that is encoded, stored and re-
trieved. The view of memory as an encoding-storage-retrieval device cannot account
for phenomena such as “false recognition,” “intrusion” and “confabulation” [33].
Memory is predominantly conceived as a mental capability for us to make sense,
to learn new skills and to compose something new [13]. The constructive view of
memory can be traced back to Dewey in the The Reflex Arc Concept in Psychology
(quoted by [34]):

“Sequences of acts are composed such that subsequent experiences categorize and hence
give meaning to what experienced before.”

The theory of constructive memory is supported by many cognitive studies [35]–
[37]. The basic functions of a constructive entity are described by Riegler [33] as:

1. The cognitive apparatus creates a structure
2. It interacts with other structures (such as the surrounding environment or the

older structure of its apparatus)
3. It compares the newly created structures with those encountered in step 2
4. It adapts the structures when needed before returning to step 1.

The cognitive apparatus tends to maintain the fitness of a knowledge structure
in relation to the changing environment. For example, if you have never been to

3 Invariant representations are knowledge structures that can be used to classify an object or infer
potential acts. For example, the knowledge structures you rely on to recognize a friend’s face
should always work even if the distance and the orientation of your friend’s face vary.
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Australia, your representation of “swan” is induced from your Northern Hemisphere
exposure to a type of elegant white birds from the Anatidae family. Suppose some-
one tells you that there are black swans in the Southern Hemisphere, you then
carry out a literature search. You find that there indeed exist black swans and
then realize the concept of swan needs to be adapted to accommodate this new
information. Such characteristics of our memory system are in concordance with
the reflection and evaluation processes of experiential learning. The essence of
the constructive memory is the means of adapting knowledge structures to a dy-
namic environment. Reigler’s constructive memory functions emphasize changes
of knowledge structures during a construction process. However, the lack of de-
scriptions of macroscopic behaviors of the involved person leads to speculations
about how the structures will change. It is suggested that describing the constructive
memory in the context of human experiential learning behavior leads to operational
features of a memory system.

The constructive memory process may be viewed as the process of transform-
ing information during interactions. An important notion introduced to illustrate
the concept formation process in a constructive memory system is “grounding.”
Symbolic grounding explores the means by which the semantic interpretation of a
formal symbol system can be made intrinsic to that system, rather than relying on the
meanings in the head of a third-person interpreter or observer [38]. The grounding
problem generally refers to representation grounding [39] or grounding of a concept,
in which the concept can be developed through interactive behavior in an environ-
ment [40]. A grounding process here is referred to as the evaluation of whether
constructed knowledge structures correctly predict environmental changes. The ba-
sic information units are “stimuli”, “anticipation”, “proto-concept”, “hypothesis”,
“concept” and “invariants”. Stimuli denote environmental data prior to a construc-
tive memory process. Anticipation is the term for responsive information based on
the agent’s4 experience, predicting potential environmental changes. A concept is a
result of an interaction process in which meanings are attached to environmental ob-
servations. We use the term “proto-concept” to describe the intermediate state of a
concept. A proto-concept is a knowledge structure that depicts the agent’s interpre-
tations and anticipations about its external and internal environments at a particular
time. The term “invariant” has been defined in the previous section as the knowl-
edge structures that an agent uses to identify categories and predict potential acts
in the environment. In the scientific knowledge discovery context, this conceptual
knowledge structure is composed of sets of categorized abstractions and causal rela-
tionships between various observations in various spatial-temporal scales. The term
“hypothesis” is associated with the agent’s explanations for discrepancies between
its prediction and environmental changes. The grounding of proto-concepts and de-
rived anticipations (or hypotheses) produces a concept. We define concepts as the
grounded invariants over the agent’s experience. They are abstractions of experience
that confer a predictive ability for new situations [41], [42]. On the other hand, a

4 We use the term agent to represent cognitive apparatus.
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Fig. 4 A view of concept formation in constructive memory

concept contains context-dependent specifications for an abstraction, which are en-
capsulated in anticipations. The concept formation mechanism (described in Fig. 4)
consists of the following processes:

1. Process 1 is where the agent assimilates the encountered stimuli to activate a
response from its experience.

2. In Process 2, the agent generates a proto-concept which contains the categorical
information and the related prediction.

3. Process 3 is where the agent assimilates the stimuli to create hypotheses for in-
valid predictions. This process is called reflection.

4. In Process 4, the agent produces a hypothesis based on the deduced explanations
and the re-activated experience.

5. In Process 5, the agent accommodates the concept (validated proto-concept) into
experience.

6. The “push” process is a data-driven process where changes in the environment
(or autogenous variables of the agent) trigger the transformation of these changes
into changes in the experience [43].

7. The “pull” process is an anticipation-driven process where if the process for val-
idating a proto-concept (or a hypothesis) requires the agent to obtain a particular
pattern of information from the environment, then the process is biased in the
way that external variables (or autogenous variables of the agent) are filtered out
or emphasized [43].

8. The validation process compares the prediction with the pulled data to determine
the validity of a proto-concept.
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The “push” and “pull” processes are two major components in charge of knowl-
edge structure transformations. The push process uses Processes 1–4 to achieve its
goal, which is to transform changes from the environment to the agent’s experience
to acquire a response. The pull process performs anticipation-driven data acquisition
and data construction, which underpins the validation process.

As illustrated in Fig. 4, the agent processes the environmental data in the push
process, in which data (stimuli) are transformed into categorical information and
predictions based on invariants held in its experience (Processes 1 and 2). The agent
subsequently tests the validity of its proto-concepts in a pull process. An ill-formed
proto-concept triggers hypothesis-testing processes (Processes 3 and 4) in which the
agent reasons and creates explanations for discrepancies between the proto-concepts
and observations. The explanations can be used to deduce hypotheses and the as-
sociated observation requirements. A well-grounded proto-concept (obtained after
processes push and pull) is called a concept and accommodated into the agent’s
knowledge structures as experience (in Process 5).

2.5 From First Person Construct to Third Person Knowledge

An individual’s knowledge can be treated as first-person constructs, which are bi-
ased by a person’s past experience in his or her interactions with the social context.
Scientists build models and theories that represent their individual interpretations of
natural phenomena. This type of knowledge is then transformed into a type of gener-
alized knowledge that can apply to nonspecific events and is independent of their en-
quirers. This generalized knowledge once supported by scientific evidence becomes
instances of a scientific paradigm that is a form of third-person knowledge. Thomas
Kuhn described the notion of paradigm from his philosophical viewpoint of science
in The Structure of Scientific Revolutions [44]. A scientific paradigm refers to sci-
entific achievements that attract an enduring stream of a scientific community to
follow the same rules and standards for their practices. A scientific paradigm cen-
ters a space for people to redefine and resolve problems. The development route of
“normal science,” which is built upon past paradigms, is a nonaccumulative multiple
trajectories of fact-gathering, paradigm formation and paradigm revolution [44].

According to Kuhn [44], the reconstruction of prior theory and the re-evaluation
of prior facts enable a new theory to be assimilated. A normal scientific paradigm
tends to reject radically new theories. Normal science is to fit nature into the rigid,
incomplete explanatory framework that a paradigm defined. A scientific community
is likely to accept and encourage esoteric research works [44]. An individual’s ef-
fort is limited and therefore a scientific revolutionary process is seldom achieved by
a single person and never overnight [44].

Supporting both individuals and a scientific community to accommodate new
and emergent knowledge holds the key for scientific discovery. This requires any
computer-based discovery support tool to adopt constructive and interactive ap-
proaches. In Sect. 3 scientific concept formation based on a hydrological modeling
scenario is presented to exemplify this idea.
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3 Concept Formation in a Hydrologic Modeling Scenario

The movement of water through a permeable medium (i.e., soils) has been widely
accepted as a complex phenomenon. The soil water behaviors are dynamic in the
sense that precipitation, soil texture and profile, the presence of plants, land use
and a variety of meteorological variables influence the spatial distribution and tem-
poral evolution of soil moisture [45]. At the same time, water penetration into the
soil changes the physical properties of the soil, which can further impact on the
soil water behaviors over time. Precise soil moisture measurement to obtain ground
truth in this dynamic environment is logically and economically infeasible. There-
fore, approximation and simulation become dominant approaches for hydrologists.
Hydrological models are simplified representation of the water system within the
environment, which can assist hydrologists to understand, explain, and predict the
behavior of water. Three paradigms of hydrology modeling are empirical, physical
and conceptual models [46]. The aim of an empirical modeling approach is to unveil
relationships between hydrologic variables that have been observed from the envi-
ronment without considering the complex hydrologic processes. It is a black box
approach based on data. Many data mining and analytic approaches can be used to
obtain empirical models. For example, various artificial neural networks have been
used in soil classification and rainfall runoff mapping. Physical hydrologic models
are based on the knowledge of physical laws for water behavior in different me-
dia. They are presented in parameterized equations, which state the understanding
of relationships of hydrologic variables. Conceptual models are developed based on
hydrologists’ endeavors to leverage the data-driven models and their physical inter-
pretations. Hydrologists harness their knowledge of physical laws and apply data
mining/analytic tools on observations to learn concepts, which are further formal-
ized as new or validated models.

In this section, a hydrologic modeling scenario based on the slope discharge
model (developed by Michel [47] and cited by Baird [48]) is described as an ex-
ample of scientific knowledge discovery. It is reasonable to consider hill-slope as
a single quadratic reservoir rather than attempt to model dynamic flows within the
slope. This is because hydrologic flows at a small scale are strongly heterogeneous
and currently not possible to model (and validate). However, small-scale complexity
can lead to simplicity at a larger scale if certain principal properties exist [48]. As a
result, hydrologists always resort to empirical relations obtained from empirical ap-
proaches. A simple empirical relation between total volume of water and discharge
from the soil-filled trough can be formulated as a quadratic function [47]:

Q D V 2

� � V0

(1)

where Q is the total discharge from the slope (with physics dimensions L3T �1),
V is the volume of drainable water remaining in the hill-slope, V0 is the total vol-
ume of water that can drain from the slope (L3), and � is the system parameter
(T ). Empirical lumped reservoir models like (1) can be effective if coupled with
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real-time observations and calibrations. However, empirical models are criticized
as not physically meaningful [49]. In another camp, hydrologists use their under-
standing of physical constraints to formulate soil water behavior observed in the
laboratory settings. For example, Darcy’s Law (cited by Baird [48]) introduces phys-
ical relationship between water flux and the hydraulic energy that drives the water
movement, describing the flow in saturated soils:

Qf D �K dh

dx
(2)

where Qf
5 is the discharge per unit area (with physics dimensions L3T �1L�2), K

is the hydraulic conductivity (with physics dimensions LT �1), denoting intrinsic
permeability of the soil, h is hydraulic pressure head, and x is the distance in the
direction of flow (L). The unsaturated version of Darcy’s law is Richards’ equation
[50]. Representative models obtained from the laboratory environment (like (1)–
(2)) are of limited usefulness for real heterogeneous slopes [51]. The applicability
of a laboratory-induced model to real-time situations depends on how well one can
address uncertainties in initial conditions, time-varying inputs and time-invariant
parameters. Applying these laboratory-based models to real-time environment is
extremely expertise demanding. The deterministic approach is to use observations
to inversely calibrate the parameters of a model (like the Darcy–Richards equation)
[52], [53]. However, it is argued that deterministic models are not accurate repre-
sentations of the real world. There is a growing interest in the inductive paradigm
in the hydrologic literatures [54], focusing on learning regularities from large vol-
umes of near realtime data obtained from observations. In the mean time, scientific
expertise in terms of domain knowledge remains a critical factor in providing phys-
ically meaningful interpretations (i.e., causalities) to empirical relationships learned
from data.

A hydrologist learns a relationship between the target variable and other vari-
ables by investigating their dependencies, Fig. 5. The State Dependent Parameter
[55] analytic approach may be used to this end. An assumption for this scenario is
that water discharge (Q) appears to be more strongly dependent on reservoir water
(V ) than any other variables. The hydrologist uses statistical approaches to identify
the structure and order of the model. For example, the Akaike Information Criterion
[55] (cited by Young, et al. [54]) tends to identify over-parameterized models. The
model structure is identified as quadratic in this scenario.

The parameters that characterize the model are estimated by optimization tech-
niques such as Maximum Likelihood (cited by Young et al. [54]). In this way,
the hydrologist applies his or her experience and domain theories to construct a
proto-concept that is formulated into (1) by assimilating the environmental vari-
ables (Process 1). A slope discharge prediction is generated afterward (Process 2).
The model is subsequently evaluated using the data captured by various sensors in a

5 We useQf to depict the finite element of the discharge therefore the sum-up ofQf at the bottom
of the slope makes Q in (1) that is the total discharge from the slope during a specific time.
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Qf = –K
dh
dx

Qf = –K
dh
dx

Q = 
V 2

τV0

Q = 
V 2

τV0

Roles of the Water
Tables in the Model

Push Pull

Push Pull

Rainfall, Discharge
Temperature,

Soil Profiles, etc.

Information Space

Experience

Assimilate

Assimilate

Anticipate

Accommodate

Concept

Hypothesize

1

32

5

4

Soil Profile
References

Relations between
K and Water Table

Models
and Operation

Conditions

Fig. 5 A scenario of hydrologic concept formation

pull process.6 Since an empirical model represents a coarse approximation of the re-
lated natural phenomenon, contextual information including operational conditions
should be attached to the model.

When complexity cannot be ignored, the modeler relies on domain knowledge to
extend this model by introducing more variables in the model. For example, he or
she may add new data like soil moisture index and soil profile distribution to com-
pensate for nonlinear errors. After he or she submitted the result to a community for
reviewing, he or she was criticized for not using alternative models to validate the
result. So, the modeler resorted to alternative physical-based models like the Darcy–
Richards Equation (Equation 2) in a hypothesizing process (Processes 3 and 4) to
provide cross-validation and physically meaningful explanations. If there is no rea-
sonable model suited to the observations, scientists need to give explanations and
re-define model application conditions. For example, as mentioned by Baird [48],
the misfit between the Darcy-Richards model and observations can be explained
by the heterogeneous water behavior in different media. The initial high rate of
discharge from the slope is due to the rapid flow of water in macropores in the
unsaturated zone, when these empty, Darcian flow processes in the saturated zone

6 The data used for model validation should be different to those used for model estimation.
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become dominant. However, the phenomenon can also be explained by the roles of
the water table. The water table rises after a rainstorm. This causes a general in-
crease in hydraulic conductivity of the soil and as a consequence, outflow from the
base of the slope increases rapidly [48]. Scientists need to observe the environment
and evaluate the validity of these explanations.

In this way, a grounded model is developed from the convergence of data and
domain theory.

4 Challenges for Designing Scientific Knowledge
Discovery Tools

A number of specific research challenges are discussed here to foster awareness for
data mining approach designers:

• There is an emerging interest in model construction in the scientific knowl-
edge discovery and Knowledge Discovery in Databases (KDD) area [56], [57].
Identifying patterns from data, selecting appropriate models, calibrating and
optimizing models have consumed considerable research effort. Scientists use
various data analysis and optimization tools and rely on their experience to pro-
duce solutions. There are tools which address some aspects of these activities, for
example tools for principal component analysis and algorithms for optimizations.
Scientists do not yet have available comprehensive platforms aiming at address-
ing the knowledge discovery process from a holistic point of view. Developments
in scientific work-flow processes can be used to model the scientific discovery
process. These approaches apply business work-flow techniques (such as control
flow modeling and large-scale collaboration) to the science domain to allow sci-
entists to share, analyze, and synthesize data [58], [59]. These approaches have
not yet attempted to address the sophistication of scientific model construction.
Lack of adaptivity becomes a bottleneck for these tools to overcome. Many mod-
els may provide alternative results under different conditions. Without a model
of what models (and algorithms) should be applied to what problems and how
they should be used, an individual’s effort is constrained by their expertise. The
suitability of various models and their conditional performances should be cap-
tured and should be reusable later. How to learn and use this type of knowledge
both effectively and efficiently remains a research question for model construc-
tion. Investigating approaches for inclusion of personal discovery experience and
the related impacts on science outcome may lead to experience-based scientific
discovery-support tools that learn [60];

• Another research issue associated with model construction is that many mod-
els may generate quite heterogenous results, how to assist scientists to identify
an appropriate model and improve its performance is still a research question.
Scientists’ causal reasoning processes play important roles in this issue. Founda-
tions for explanatory hypothesis generation have been laid by some researchers,
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for example Simon [61], Langley et al. [62], [63] and Thagard [64]–[67]. Data
mining researchers may draw upon these ideas to develop computer-aided scien-
tific discovery tools.

• Observation provides the means for scientists to understand previous unexplain-
able phenomena. People learn cause–effect relationships based on their ability in
coordinating data-driven inductive and knowledge-driven deductive processes.
Data-driven induction has been the major approach for KDD in recent years.
Machine learning research has not gained much from human learning theo-
ries although there exists an expected synergical effect between them [68]. The
functionalities of many KDD programs have not targeted assisting scientists in
sophisticated reasoning and other intuitive tasks like analogy, mental imagery,
hypothesis building, and explanation. As we discussed in previous sections, KDD
research works have been clustered around quantitative methods. Research ideas
drawn from cognitive processes involved in human knowledge construction are
not well known in the KDD community. To assist scientists’ interpretation and
evaluation, one needs to understand cognitive processes involved in scientific
knowledge discovery. He or she also needs to determine how to build computa-
tional models to facilitate these processes?

• Large volumes of domain knowledge are available but they are not structured in
a standardized and interoperable way. For example, there has been much effort in
building domain-specific ontologies. Comparably fewer resources have been al-
located to tackle the interoperability of multi-disciplinary (and inter-disciplinary)
knowledge. How to capture and represent this domain knowledge in a cohesive
way provides a research topic for knowledge engineers and KDD researchers.
How to evolve knowledge structures over time and enhance their effectiveness is
another challenge.

• A scientific community provides the means to judge new theories. As mentioned
in earlier sections, a science paradigm tends to subordinate a discovery. Creativity
becomes a concern when a genuine innovation is suppressed in this environment.
Developing frameworks and methodologies to improve scientific cooperation and
communication and to ensure unbiased scientific judgments may be a viable route
to a scientific revolution.

In summary, scientific knowledge discovery is an interactive process in which
scientists construct their first-person and then third-person knowledge. To support
this dynamic process, a computer-based scientific knowledge discovery support sys-
tem not only should facilitate the first-person knowledge construction but also needs
to address the transition from first-person knowledge to third-person knowledge.
A system could be built on a constructivist view that accommodates both a pri-
ori (existing domain knowledge) and a posteriori (learning) approaches. A system
should:

• Have a model of an individual’s experience that contains personalized domain
knowledge, applications and operational knowledge of how to apply the knowl-
edge to various problems
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• Provide approaches for data-driven induction that can learn Patterns and predic-
tions from data

• Provide approaches for model-driven deductive reasoning that can assist scien-
tists’ interpretation and explanation of data patterns

• Have mechanisms to coordinate data-driven induction and expectation-driven de-
duction to evaluate hypotheses

• Have mechanisms to learn from each discovery activity
• Consider multiple interpretations and their impacts on the adoption of the new

theory and
• Facilitate the formation of a common ground in the community.

5 Conclusion

In this chapter, scientific knowledge discovery was discussed from a constructivist
view. We reviewed cognitive theories about human knowledge construction and re-
lated them to the scientific knowledge discovery process. A hydrologic modeling
scenario has been presented to exemplify our view. We argue that there is a need to
build scientific discovery support tools based on constructive principles. Challenges
for designing such a tool have been identified as:

• Including discovery experience and providing adaptive scientific work-flow plat-
forms that enable scientists to construct and optimize models

• Providing means for assisting scientific explorative activities such as hypothesis
building and testing

• Understanding cognitive processes involved in scientific model construction and
building computational models to facilitate these processes

• Producing interoperable multi-disciplinary and inter-disciplinary domain ontolo-
gies and addressing the evolution of these knowledge structures; and

• Facilitating communication and cooperation in scientific communities to enhance
creativity.
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Knowledge Representation and Ontologies

Stephan Grimm

1 Knowledge Representation

Knowledge representation and reasoning aims at designing computer systems that
reason about a machine-interpretable representation of the world. Knowledge-based
systems have a computational model of some domain of interest in which symbols
serve as surrogates for real world domain artefacts, such as physical objects, events,
relationships, etc. [1]. The domain of interest can cover any part of the real world or
any hypothetical system about which one desires to represent knowledge for com-
putational purposes.

A knowledge-based system maintains a knowledge base, which stores the sym-
bols of the computational model in the form of statements about the domain,
and it performs reasoning by manipulating these symbols. Applications can base
their decisions on answers to domain-relevant questions posed to a knowledge
base.

1.1 Principles of Representing Knowledge

Various forms of knowledge representation have been proposed, which affect the
flavor of interaction of a knowledge-based system with its knowledge base for rea-
soning about domain knowledge.

Forms of Representing Knowledge

The most prevalent forms of knowledge representation appearing in computer sys-
tems are those of semantic networks, rules and logic. While semantic networks use
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the metaphor of a graph to visualize conceptual structures, rules exhibit some if-
then-reading to express statements about a domain. Logic is used to implement a
precise formal semantics for both semantic networks and rules.

Semantic Networks

Originally, semantic networks stem from the “existential graphs” introduced by
Charles Peirce in 1896 to express logical sentences as graphical node-and-link di-
agrams [2]. Later on, similar notations have been introduced, such as conceptual
graphs [1], all differing slightly in syntax and semantics.

Figure 1 shows an example of a semantic network that captures some knowledge
about the domain of academia. The nodes in the network represent either classes
of things, such as Professor, or individual entities, such as John, which are referred
to as concepts and individuals, respectively. The arcs between the nodes interrelate
concepts and individuals, and are referred to as relations. The network states, for
example, that “professors lecture courses attended by students, ” or that “John is
a professor who lectures the course CalculusI attended by the undergraduate stu-
dent Ben ”.

Semantic networks are especially suitable for capturing the taxonomic structure
of concept hierarchies and for expressing general statements about the domain of
interest. Inheritance (kindOf ) and other relations between such categories can be
represented in and derived from subsumption hierarchies. On the other hand, the
representation of large amounts of concrete individuals or even data values, like
numbers or strings, does not fit well the idea of semantic networks. Modern de-
scendants of semantic networks are description logics, which give a rigour formal
semantics to the network constructs.
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Fig. 1 A semantic network for academia
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Rules

Another natural form of expressing knowledge in some domain of interest are rules
that reflect the notion of consequence. Rules come in the form of if-then-constructs
and allow to express complex derivation statements. Rules can be found in logic
programming systems, like the language Prolog [3], in deductive databases [4] or in
business rules systems.

An example for a set of rules with an if-then-reading, also capturing knowledge
about academia, is the following:

1. IF somebody is a graduate student THEN he is also a student

2. IF some professor lectures a course attended by a particular student

THEN the professor teaches this student

3. FACT John is a professor who lectures a course that the graduate student Ben attends

The basic principle behind rules is that of derivation: knowledge is expressed in
terms of what is derived from a particular situation of facts. For example, starting
from the fact that “John, the professor, lectures a course attended by Ben, the grad-
uate student ” (3), it can be derived by the rules (1) and (2) that “John teaches Ben ”.
Such derived information can then, in turn, trigger other rules, further stimulating
the derivation process.

The rule-based form of knowledge representation is particularly suitable for rea-
soning about concrete instance data, i.e., simple ground facts of the form “John is
a Professor ”. Complex sets of rules can efficiently derive implicit facts from ex-
plicitly given ones. They are problematic, however, if more complex and general
statements about the domain shall be derived which do not fit a rule’s shape. Rule-
based approaches are implemented in deductive databases and rule engines, and are
given a precise formal semantics by means of logic programming formalisms.

Logic

Both forms, semantic networks as well as rules, have been formalised using logic to
give them a precise semantics. Without such a precise formalisation they are vague
and ambiguous, and thus problematic for computational purposes. From just the
graphical representation of the fragment Professor lectures�������! Course in the seman-
tic network shown in Figure 1, for example, it is not clear whether every professor
lectures a course or only some do. Also for rules, despite their much more formal ap-
pearance, the exact meaning remains unclear, for example, when forms of negation
are introduced that allow for potential conflicts between rules. Depending on the
choice of procedural evaluation or flavour of formal semantics, different derivation
results are being produced.

The most prominent and fundamental logical formalism classically used for
knowledge representation is the “first-order predicate calculus,” or first-order logic
for short, and we choose this formalism to present logic as a form of knowledge
representation here. First-order logic allows one to describe the domain of interest
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as consisting of objects, i.e., things that have individual identity, and to construct
logical formulas around these objects formed by predicates, functions, variables and
logical connectives [2].

Similar to semantic networks, many natural language statements can be ex-
pressed in terms of logical sentences about objects of the domain of interest with
an appropriate choice of predicate and function symbols. Concepts are mapped to
unary, relations to binary predicates. We illustrate the use of logic for knowledge
representation by axiomatising the above fragment of our example semantic net-
work more precisely, as follows.

Professor lectures�������! Course 8x; y W .lectures.x; y/! Professor.x/ ^ Course.y//

8x W 9y W .Professor.x/! Course.y/ ^ lectures.x; y//

The first formula states that “the lectures-relation holds between professors and
courses ”, while the second formula assures that “every professor does actually lec-
ture some course ”.

Rules can also be formalised with logic. An IF–THEN–rule can be represented
as a logical implication with universally quantified variables. The typical formalisa-
tion of a rule is illustrated in the following example.

IF some professor lectures a course attended by a particular student

THEN the professor teaches this student

8x; y; z W .Professor.x/ ^ Course.y/ ^ Student.z/ ^ lectures.x; y/ ^ attends.z; y/
! teaches.x; z//:

The body of the rule is represented by the premises of a logical implication and
captures a situation of “a course lectured by a professor and attended by a student ”,
while the head of the rule is represented by the consequence of the implication
and derives that “the professor teaches the student ”. By universal quantification of
all variables involved, the rule expresses general knowledge and is applied to any
individual situation that matches the body.

Reasoning about Knowledge

The way in which we, as humans, process knowledge is by reasoning, i.e., the pro-
cess of reaching conclusions. Analogously, a computer processes the knowledge
stored in a knowledge base by drawing conclusions from it, i.e., by deriving new
statements that follow from the given ones.

The basic operations a knowledge-based system can perform on its knowledge
base are typically denoted by tell and ask [2]. The tell-operation adds a
new statement to the knowledge base, whereas the ask-operation is used to query
what is known. The statements that have been added to a knowledge base via
the tell-operation constitute the explicit knowledge a system has about the do-
main of interest. The ability to process explicit knowledge computationally allows a
knowledge-based system to reason over the domain by deriving implicit knowledge
that follows from what has been told explicitly.
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This leads to the notion of logical consequence or entailment. A knowledge base
KB is said to entail a statement ˛ if ˛ “follows” from the knowledge stored in KB,
which is written as KB ˆ ˛. A knowledge base entails all the statements that have
been added via the tell-operation plus those that are their logical consequences.
As an example, consider the following knowledge base with sentences in first-order
logic.

KBDf Professor.John/;8x W lectures.John; x/! MathCourse.x/;

Undergraduate.Ben/;8x W MathCourse.x/! attends.Ben; x/;

8x9y W Professor.x/! Course.y/ ^ lectures.x; y/;

8x; y W lectures.x; y/! Person.x/ ^ Course.y/ ^ holds(x,MasterDegree);

8x; y; z W Professor.x/ ^ lectures.x; y/ ^ attends.z; y/ ^ Student.z/

! teaches.x; z/;

8x W Undergraduate.x/! :holds.x;MasterDegree/ g

The knowledge base KB explicitly states that “John is a professor who lectures only
math courses ”, that “Ben is a graduate student who attends all math courses, ” that
“each professor lectures some course, ” that “lecturing requires at least a master de-
gree ”, that “professors teach those students who attend the courses they lecture ”
and that “undergraduate students do not have master degrees. ” If we ask the ques-
tion “Does John teach Ben? ” by saying

ask.KB; teaches.John; Ben//

the answer will be yes. The knowledge base KB entails the fact that “John teaches
Ben, ” i.e., KB ˆ teaches.John; Ben/, although it was not “told” so explicitly. Since
Ben attends all math courses, some of which is clearly lectured by John, Ben attends
a course that John lectures, and thus, John teaches Ben. A more general consequence
of KB is that “no undergraduate student lectures a course, ” i.e., KB ˆ :9x; y W
Undergraduate.x/^Course.y/^ lectures.x; y/, which is reflected by a positive answer
to the question

ask.KB;:9x; y W Undergraduate.x/ ^ Course.y/ ^ lectures.x; y//:

This follows since “lecturing requires a master degree ” but “undergraduate students
do not have one. ”

Another important notion related to entailment is that of consistency or satisfia-
bility. Intuitively, a knowledge base is consistent or satisfiable if it does not contain
contradictory facts. If we would add the information that “Ben teaches some tutorial
course ” to KB by saying

tell.KB;Course.Tutorial/ ^ lectures.Ben; Tutorial//;
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it would become unsatisfiable because this would conflict with the formerly derived
consequence about undergraduate students not lecturing courses. In general, an un-
satisfiable knowledge base is not very useful, since in logical formalisms it would
entail any arbitrary statement. The ask-operation would always return a positive re-
sult independent from its input, which is clearly not desirable for a knowledge-based
system.

The inference procedures implemented in computational reasoners aim at real-
ising the entailment relation between logical statements [2]. They derive implicit
statements from a given knowledge base or check whether a knowledge base is sat-
isfiable.

An inference procedure that only derives entailed statements is called sound.
Soundness is a desirable feature of an inference procedure, since an unsound
inference procedure would potentially draw wrong conclusions. If an inference pro-
cedure is able to derive every statement that is entailed by a knowledge base then it
is called complete. Completeness is also a desirable property, since a complex chain
of conclusions might break down if only a single statement in it is missing. Hence,
for reasoning in knowledge-based systems we desire sound and complete inference
procedures.

1.2 Logical Knowledge Representation Formalisms

Logical formalisms are the theoretical underpinning of symbolic knowledge rep-
resentation as laid out above. Besides first-order logic with its classical model-
theoretic semantics, other formalisms like description logics or logic programming
have evolved in Artificial Intelligence research.

Classical Model-Theoretic Semantics

First-order logic is the prevalent and single most important knowledge representa-
tion formalism. Its importance stems from the fact that basically all current symbolic
knowledge representation formalisms can be understood in their relation to first-
order logic. First-order logic captures some of the essence of human reasoning
by providing a notion of logical consequence that is realised in terms of a model-
theoretic semantics.

A knowledge base KB is viewed as a set of first-order formulas that consti-
tute a logical theory T . In model theory, the semantics of T is defined in terms
of interpretations. Formally, an interpretation I is a mapping from the elements
in the formulas in T into a set �I , called the interpretation domain. Constant
symbols, for example, directly map to objects in the interpretation domain, while
predicate symbols are interpreted as subsets of or relations over �I , which are
called their extensions. Intuitively, an interpretation specifies a particular arrange-
ment of objects in the interpretation domain in terms of membership in predicate
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extensions. For example, in one interpretation a constant symbol like John can be
in the extension of the predicate Professor, in another interpretation it can be in
the extension of the concept Student, and in yet another one it can be in the exten-
sions of both. If the arrangement of objects in an interpretation I is in accordance
with the formulas in T , then I is called a model of T . For example, if we state
that John is a professor and that professors are disjoint from students in a theory
T D fProfessor.John/;8x W Professor.x/ ! :Student.x/g, then interpretations in
which John is in the extension of the predicate Student cannot be models of T as they
do not satisfy its formulas.

Even after filtering out those interpretations that do not satisfy the formulas in
a logical theory T , it has in general a multitude of models in which things are in-
terpreted differently. For example, if we do not say whether John lectures a math
course or not then there are models in which he does and such in which he does
not. In this case, we say that we have incomplete knowledge about John’s lecturing,
which is captured by the situation of multiple models. Contrarily, if we explicitly
list all professors together with the courses they lecture and also state that there are
no other lecturing relations then we say that we have complete knowledge about
lecturing, which is reflected by T having only models in which the courses lectured
by professors are exactly those from our explicit list.

Reasoning about a theory T is now defined based on its models. The reasoning
task of validation, concerned with the theory’s consistency, is to check whether T
has a model. The reasoning task of deduction, concerned with entailment of logical
consequences, tests whether statements to be derived are true in all models of T .

Description Logics

Description Logics (DLs) [5] are a family of class (concept)-based knowledge
representation formalisms with well-studied representational and computational
properties. They are the modern descendants of early knowledge representation
systems such as KL-One [6] or CLASSIC [7] and were developed to give a pre-
cise formalisation to semantic networks. As such, they typically form decidable
fragments of the first-order logic predicate calculus restricted to unary and binary
predicates to capture the nodes and arcs in a network graph.

The basic elements used to represent knowledge in the description logic for-
malism are concepts, individuals, and roles. Intuitively, concepts denote classes
of things, such as Student or Course. Individuals denote instances, such as Ben or
CalculusI. Roles denote relationships between things, such as attends. Moreover, DLs
are often augmented by so called concrete domains [8] to also capture datatypes
such as integer or string.

DLs are characterized by an intensional description of concepts using concept
constructors to build complex concepts out of simple ones. Starting from a set of
concept names, a set of role names, and a set of individual names, complex concept
expressions can be formed using such constructors in a nested way. The choice
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of constructors determines the particular description logic named according to a
scheme of letters indicating specific language constructs, which is shown in Table 1.

The basic DL AL, which stands for Attributive Language, is often referred to as a
minimal language of practical interest [5], forming the basis to build more complex
DLs on top. AL provides the top (>) and bottom (?) concepts, concept conjunc-
tion (C u D), negation of atomic concepts (:A), universal restriction (8 r:C ) and
limited existential restriction (9 r:>). Another important description logic is ALC,
which augments AL by general concept negation (:C ) and unlimited existential
restriction (9 r:C ), and is thus the most basic DL closed under Boolean operators.
The upper part of Table 2 shows some examples of DL concept expressions with
their intuitive meaning.

Table 1 Various constructors to form different description logics

Name Symbol Syntax Description

Top concept AL > Class of all objects
Bottom concept ? Empty class
Atomic concept negation :A Complement of named class
Concept conjunction C uD Intersection of classes
Universal restriction 8 r:C Objects whose values for r all are in C
Limited existential restr. 9r Objects with some value for r
Concept disjunction U C tD Union of classes
Existential restriction E 9 r:C Objects with some value for r in C
Concept negation C :C Complement of complex class
Min cardinality restriction N � n r Objects with at least n values for r
Max cardinality restriction � n r Objects with at most n values for r
Qualified min card. restr. Q � n r:C Objects w. at least n values for r in C
Qualified max card. restr. � n r:C Objects w. at most n values for r in C
Nominal O fog Singleton class with individual o
Inverse role I r� Relation with inverse direction

S ALC with transitive roles
Role inclusion H r v s Role hierarchies
Concrete domains .D/ Datatype properties and predicates

Table 2 Examples of DL language constructs

DL concept descriptions
Student u 9 attends:MathCourse Students who attend some math course
Course u 8 lectures�:fJohng Courses that are only lectured by John
Professor u� 5 lectures:Course Professors who lecture five or more courses

DL axioms
BusyProfessor 	 Professor u� 5 lectures:Course Busy professors are just those who lecture five

or more courses
Undergraduate v :9 holds:fMasterDegreeg Undergraduates do not hold a master degree
8 lectures:MathCourse.John/ John lectures only math courses
teaches.John;Ben/ John teaches Ben
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A DL knowledge base contains statements about the domain of interest in form
of DL axioms and is composed of a T-Box and an A-Box. The T-Box captures so
called terminological knowledge, which comprises general statements within a do-
main, and T-Box axioms are concept inclusions of the form C v D or concept
equivalences of the form C 
 D. The A-Box, on the other hand, captures so called
assertional knowledge, which comprises statements about particular individuals and
situations. A-Box axioms comprise concept assertions of the form C.a/ or role as-
sertions of the form r.a; b/. Examples of DL axioms are given in the lower part of
Table 2.

The semantics of description logics is defined in the classical model-theoretic
way and directly builds on the semantics of first-order logic. A DL knowledge base
is interpreted as the first-order logical theory that results from a respective transfor-
mation of its axioms. We refer to [5] for a thorough treatment of description logics.

Besides entailment of subsumption and assertion axioms, which underly T-Box
classification and instance retrieval, typical DL reasoning tasks are knowledge base
satisfiability to check the consistency of a knowledge base, and concept satisfiability
to test if a concept can potentially have instances. For example, if in Table 2 profes-
sors were also restricted to lecture at most four courses then the concept BusyProfessor

would be unsatisfiable.

Logic Programming

Logic programming (LP) was originally conceived as a way to use first-order logic
as a programming language, e.g., in case of the language Prolog [3]. To ensure
computability of the language, statements are syntactically restricted to so-called
Horn clauses and only certain kinds of logical consequences are being considered.

Syntactically, Horn clauses can be understood as rules. For example, the expres-
sion Student.x/_:Undergrad.x/ is a Horn clause, which is semantically equivalent to
8x W Student.x/ Undergrad.x/. This can also be interpreted as the rule (1) from page
113 written in the typical Prolog-style notation Student.‹x/ W� Undergrad.‹x/.
However, the semantics of the Horn clause is given by means of first-order logic
semantics, whereas logic programming rules are usually understood in a differ-
ent, non-classical sense. One of the differences stems from the fact that in a
logic programming system only certain types of logical consequences are be-
ing considered, namely ground instances of predicates.1 Applying the above rule
to a fact Undergrad.Ben/ would allow to conclude Student.Ben/ both in first-
order logic and in logic programming. A conclusion such as Graduate.Ben/ _
Undergrad.Ben/, however, would only be possible in first-order logic, and not
derivable in a LP system.

Moreover, negative information is handled differently within the LP paradigm
than it is in classical logic. In the example above we could be interested in whether

1 A ground (instance of a) predicate is an atomic formula which does not contain any variable
symbols.
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the statement Student.Susan/ holds. In classical logics, neither truth nor falsity of
this statement is derivable. In logic programming, however, the statement would be
considered false, as LP systems typically treat the lack of information as a form of
default negation called negation-as-failure. Since no information on Susan is avail-
able, she is considered to be not a student. The semantics of LP formalisms is based
on minimal models, i.e., those models of a knowledge base that have the least ex-
tensions of predicates, while other models are not considered for reasoning. Due to
the lack of evidence for Susan being a student no model in which Student.Susan/

holds is minimal.
In the LP paradigm, a knowledge base is understood as a logic program, which

is a set of rules H W � B where H is called the head and B is called the body of
the rule. Facts are rules with an empty body, i.e., what is stated in their head holds
regardless of any conditions. The various logic programming dialects allow different
forms for the heads and the bodies of rules. The most basic LP variants restrict the
head to atomic predicates, while they allow for conjunction (^) and negation-as-
failure in the body. Examples for such systems are Prolog [3] and Datalog [9], a
language that has its origin in deductive databases. More advanced systems, such as
disjunctive Datalog [10] or Answer Set Programming [11], allow for disjunctions
of predicates in the head and provide a more sophisticated treatment of negation.
Another feature common to most LP-systems are built-ins for the handling of strings
and numbers within a logic program, similar to concrete domains in DLs. The basic
reasoning task for logic programs is retrieval of instances that match a particular
query pattern. For example, the query Student.‹x/^:holds.‹x; MasterDegree/
asks for all students that do not have a master degree.

We refer to [12] for a formal treatment of LP formalisms and for an overview on
various styles of minimal model semantics, such as stable model or well-founded
semantics.

1.3 Knowledge Representation Paradigms

Besides the various logical formalisms, different modeling paradigms have evolved
that characterise the representation of knowledge.

Open-World vs. Closed-World View

An essential choice that has to be made when selecting a formalism for representing
knowledge is how situations of incomplete information are handled. One option
is to take an open-world view, assuming that at any time new knowledge can be
learned that resolves previous ambiguity. Another option is to take a closed-world
view, assuming to have full knowledge about a particular situation by what has been
observed so far.
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Open-World View

Knowledge representation based on logics with classical semantics operates under
the open-world assumption, which allows for a distinction between negative knowl-
edge and the lack of knowledge. An example of negative knowledge is an entry in
the complete course enrolment plan for the student Ben and a particular course, hav-
ing the form of a negated assertion :enrolled.Ben;CalculusI/. From this, the professor
teaching the respective course can safely conclude that Ben is not enrolled. In an
open-world view, this is different from the lack of an assertion about Ben’s enrol-
ment, from which a knowledge-based system would not draw any conclusion. The
question as to whether Ben is enrolled would be answered with “unknown,” since
neither :enrolled.Ben;CalculusI/ nor enrolled.Ben;CalculusI/ could be derived.

Depending on the particular use case, an open-world view can either be ben-
eficial or hindering. While in some situations it is preferable for the professor to
quickly take the action of contacting all enrolled students concerning assignments,
Ben might just not have completed his enrolment process yet, such that the indica-
tion of his enrollment being “unknown” can be a valuable information, worth to be
distinguished from certain absence.

The open-world view in classical logics is technically realised by the connection
of logical consequence to the underlying mechanism of the model-theoretic seman-
tics. In a situation of incomplete information, unspecified issues can be resolved in
different ways, each represented by a different model of the respective knowledge
base. If there is no information about Ben’s enrolment in a particular course, there
are models in which he is enrolled and such in which he is not. Neither conclusion
can be drawn, since conclusions need to hold in all models. The open-world view
has been argued to be particularly suitable for knowledge-based applications used
in the web due to its open and volatile nature.

Closed-World View

When making the closed-world assumption, negative knowledge coincides with the
lack of knowledge, and what cannot be proven true is assumed to be false. Thus, a
knowledge-based system that takes a closed-world view assumes to have complete
information when reasoning about a particular situation. In consequence, such a
system never produces “unknown” as an answer but always takes a decision as to
whether a particular statement holds or does not hold. The lack of information about
the enrolment of Ben in a particular course, for example, is simply interpreted as
non-attendance, taking the form of :enrolled.Ben;CalculusI/.

Similar to the open-world view, it is sometimes beneficial and pragmatical and
sometimes inadequate to take the closed-world view, depending on the actual use
case. A closed-world perspective is particularly natural from a database point of
view. A student is assumed to be not enrolled in a course unless an enrolment record
can be found in the database.
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The closed-world assumption is intrinsically made in logic programming and
deductive database systems, where it is realised by the underlying minimal model
semantics that takes only models with minimal predicate extensions into account for
reasoning. In absence of the fact enrolled.Ben;CalculusI/, only models in which Ben
is not enrolled in the course CalculusI are minimal, such that him not being enrolled
becomes a logical consequence due to negation-as-failure.

Clear-Cut Predication vs. Metamodeling

In knowledge representation based on first-order logic, there is an intrinsic dis-
tinction between an intensional part of a knowledge base, which captures general
statements about classes of objects and their properties, and an extensional part,
which captures statements about particular situations of individual objects in the
interpretation domain. This distinction is due to the “first-order” nature of the for-
malism, which induces a clear separation between domain objects and the predicates
used to express their properties.2

One particular paradigm for knowledge representation is to impose a clear-cut
separation between the intensional and the extensional part of a knowledge base,
such that no symbol serves as a property in the intensional part and as an individual
object in the extensional part at the same time. Although this separation is intuitive,
it is sometimes inadequate for certain domains. For example, if we want to state that
John is a professor and that professor is one particular profession among others by
Professor.John/ and Profession.Professor/ then we break the separation between inten-
sional and extensional statements, since Professor is used both as a concrete object in
the domain and as a property for another object John in form of a unary predicate.

This alternative paradigm of not imposing a clear-cut separation between inten-
sional and extensional knowledge is also referred to as metamodeling [13]. In terms
of semantic networks, metamodeling amounts to using concepts also in place of
individuals.

Conceptual Modeling vs. Rules

The description logic and logic programming formalisms form the two major
strands for research on knowledge representation in symbolic Artificial Intelligence,
standing for antithetic paradigms. As we have seen in the previous sections, both
represent different forms of knowledge representation that give the modeling of do-
main knowledge a specific flavour. While description logics build on conceptual
modeling by means of intensional descriptions of concepts and their interrelation,
logic programming provides the basic construct of a rule for the derivation of facts.
Both formalisms can be seen as deviations from the first-order predicate calculus in

2 In higher-order logics this separation is abrogated and variables can range over predicates.
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two different directions: while description logics limit the arity and use of predicates
to fit semantic network graphs under classical semantics, logic programming for-
malisms restrict the shape of statements that can be derived to ground facts under
certain forms of minimal model semantics to yield efficient derivation rule systems.
Hence, the features they exhibit as forms of knowledge representation are those of
conceptual modeling versus rules.

The modeling of knowledge for knowledge-based systems in these two
paradigms has different applications. Description logics are rather used in ap-
plications that require schema-intensive reasoning and classification of concepts
according to their intensional descriptions, whereas logic programming systems
are more used for data-intensive reasoning tasks and for the retrieval of instance
data from large extensional knowledge bases. Related to this, the two types of for-
malisms also differ in their computational properties concerning efficiency. While
schema-intensive reasoning is rather intricate and DL reasoning problems typically
have exponential runtime complexity, the reduction of LP consequences to ground
facts makes reasoning with logic programs more tractable.

Both these paradigms have different expressivity and allow for complementary
features, and thus, it is desirable to combine the formalisms of DL and LP to yield
a more powerful tool for knowledge representation. Despite their inherent seman-
tic incompatibility, there have recently been attempts to a seamless integration of
description logics and rules at a semantic level on formal grounds, as reported in
[14, 15].

2 Ontologies

Ontologies are conceptual models that make the knowledge of a particular domain
of interest available to computer systems. As such, they build on the notions of
knowledge representation we have presented before.

2.1 Notion of an Ontology

Ontology

In its original meaning in philosophy, ontology is a branch of metaphysics and
denotes the philosophical investigation of existence. It is concerned with the fun-
damental questions of “what is being?” and “what kinds of things are there?” [16].
Dating back to Aristotle, the question of “what exists?” lead to studying general
categories for all things that exist. Ontological categories provide a means to clas-
sify all existing things, and the systematic organisation of such categories allows to
analyse the world that is made up by these things in a structured way. In ontology,
categories are also referred to as universals, and the concrete things that they serve
to classify are referred to as particulars.
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Philosophers have mostly been concerned with general top-level hierarchies of
universals that cover the entire physical world. Examples of universals occurring in
such top-level hierarchies are most general and abstract concepts like “substance,”
“physical object,” “intangible object,” “endurant” or “perdurant.” Transferred to
knowledge representation and computer science, information systems can benefit
from the idea of ontological categorisation. When applied to a limited domain of
interest in the scope of a concrete application scenario, ontology can be restricted
to cover a special subset of the world. Examples of ontological categories in the
academic domain are “University,” “Professor,” “Student” or “Course,” whereas ex-
amples for particular individuals that are classified by these categories are concrete
universities, professors, students and courses.

In general, the choice of ontological categories and particular objects in some
domain of interest determines the things about which knowledge can be represented
in a computer system [1]. In this sense, ontology provides the labels for nodes and
arcs in a semantic network or the names for predicates and constants in rules or log-
ical formulas, that constitute an ontological vocabulary. By defining “what exists”
it determines the things that can be predicated about.

Ontologies

While “ontology” studies what exists in a domain of interest, “an ontology” as
a computational artefact encodes knowledge about this domain in a machine-
processable form to make it available to information systems. In various application
contexts, and within different communities, ontologies have been explored from
different points of view, and there exist several definitions of what an ontology is.
Within the Semantic Web community the dominating definition of an ontology is
the following, based on [17].

Definition 1 (ontology). An ontology is a formal explicit specification of a shared
conceptualisation of a domain of interest.

This definition captures several characteristics of an ontology as a specification
of domain knowledge, namely the aspects of formality, explicitness, being shared,
conceptuality and domain-specificity, which require some explanation.

• Formality
An Ontology is expressed in a knowledge representation language that provides a
formal semantics. This ensures that the specification of domain knowledge in an
ontology is machine-processable and is being interpreted in a well-defined way.
The techniques of knowledge representation help to realize this aspect.

• Explicitness
An ontology states knowledge explicitly to make it accessible for machines.
Notions that are not explicitly included in the ontology are not part of the
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machine-interpretable conceptualisation it captures, although humans might take
them for granted by common sense.3

• Being shared
An ontology reflects an agreement on a domain conceptualisation among people
in a community. The larger the community, the more difficult it is to come to an
agreement on sharing the same conceptualisation. Thus, an ontology is always
limited to a particular group of people in a community, and its construction is
associated with a social process of reaching consensus.

• Conceptuality
An ontology specifies knowledge in a conceptual way in terms of symbols that
represent concepts and their relations. The concepts and relations in an ontology
can be intuitively grasped by humans, as they correspond to the elements in our
mental model. (In contrast to this, the weights in a neural network or the probabil-
ity measures in a Bayesian network would not fit such a conceptual and symbolic
approach.) Moreover, an ontology describes a conceptualisation in general terms
and does not only capture a particular state of affairs. Instead of making state-
ments about a specific situation involving particular individuals, an ontology tries
to cover as many situations as possible that can potentially occur [18].

• Domain specificity
The specifications in an ontology are limited to knowledge about a particular
domain of interest. The narrower the scope of the domain for the ontology, the
more an ontology engineer can focus on axiomatizing the details in this domain
rather than covering a broad range of related topics. In this way, the explicit spec-
ification of domain knowledge can be modularised and expressed using several
different ontologies with separate domains of interest.

Technically, the principal constituents of an ontology are concepts, relations and
instances. Concepts map to the generic nodes in semantic networks, or to unary
predicates in logic, or to concepts as in description logics. They represent the onto-
logical categories that are relevant in the domain of interest. Relations map to arcs in
semantic networks, or to binary predicates in logic, or to roles in description logics.
They semantically connect concepts, as well as instances, specifying their interre-
lations. Instances map to individual nodes in semantic networks, or to constants in
logic. They represent the named and identifiable concrete objects in the domain of
interest, i.e., the particular individuals which are classified by concepts. Altogether,
these elements constitute an ontological vocabulary for the respective domain of in-
terest. An ontology can be viewed as a set of statements expressed in terms of this
vocabulary, which are also referred to as axioms.

3 Notice that this notion of explicitness is different from the distinction between explicit and im-
plicit knowledge, introduced earlier. Implicit knowledge that can be derived by means of automated
deduction does not need to be included in an ontology for a computer system to access it. How-
ever, knowledge that is neither explicitly stated nor logically follows from what is stated, can by no
means be processed within the machine, although it might be obvious to a human. Such knowledge
remains implicit in the modeler’s mind and is not represented in the computer.
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Conceptual modeling with ontologies seems to be very similar to modeling in
object-oriented software development or to designing entity-relationship diagrams
for database schemas. However, there is a subtle twofold difference. First, ontol-
ogy languages usually provide a richer formal semantics than object-oriented or
database-related formalisms. They support encoding of complex axiomatic informa-
tion due to their logic-based notations. Hence, an ontology specifies a semantically
rich axiomatization of domain knowledge rather than a mere data or object model.
Second, ontologies are usually developed for a different purpose than object-
oriented models or entity-relationship diagrams. While the latter mostly describe
components of an information system to be executed on a machine or a schema
for data storage, respectively, an ontology captures domain knowledge as such and
allows to reason about it at runtime.

In summary, an ontology used in an information system is a conceptual yet exe-
cutable model of an application domain. It is made machine-interpretable by means
of knowledge representation techniques and can therefore be used by applications
to base decisions on reasoning about domain knowledge.

2.2 Ontologies in Information Systems

In information systems, ontologies are used with different forms of appearance and
in different contexts of usage, while also different types of ontologies have been
coined.

Appearance of Ontologies

When engineered for or processed by information systems, ontologies appear in dif-
ferent forms related to the forms of knowledge representation that we have discussed
previously. A knowledge engineer views an ontology by means of some graphical
or formal visualization, while for storage or transfer it is encoded in an ontology
language with some machine-processable serialisation format. A reasoner, in turn,
interprets an ontology as a set of axioms that constitute a logical theory. We illustrate
these different forms of appearance in ontology engineering, machine-processing
and reasoning by an example.

For our illustration we use the Semantic Web Research Community (SWRC)
ontology4 [19], which was proposed to represent knowledge about researchers, re-
search communities, their publications and association to research institutes and
universities. It was an early attempt to utilise semantic technology in academia,
and it was used in semantic community web portals mainly for the handling of
bibliographic meta data of scientific publications in various research projects. The

4 http://ontoware.org/projects/swrc/
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SWRC ontology covers the typical notions of research communities and speaks
about universities, faculty staff, PhD students, publications and conferences, etc.

Graphical Appearance

To a knowledge engineer an ontology is often visualized as some form of semantic
network. Figure 2 shows the graphical visualization of a part of the SWRC ontology.

As common to most ontology development environments, the visualization in
Fig. 2 presents to the knowledge engineer a taxonomic hierarchy of the concepts
in the ontology, indicated by isa-links.5 Taxonomic information is modeled for dif-
ferent kinds of students, namely graduates, undergraduates and PhD students, as
well as for academic staff, such as professors, both being special kinds of persons.
The visualization also shows conceptual relations, such as for the cooperation of
academic staff or for expressing the relationship between students and their univer-
sities. Moreover, the graph shows some concrete research projects and conferences,
modeled as instances of their respective concepts.

Technical Appearance

Not all the information in an ontology can easily be visualized in a graph as the
one shown in Fig. 2. For some more detailed information, such as complex ax-
ioms and restrictions on concepts, there does not seem to exist any appropriate
visualization paradigm other than exposing such fragments of the ontology in a

Fig. 2 A graphical visualization for parts of the SWRC ontology

5 The ontology graph in Fig. 2 has been produced with the OntoViz-plugin for the Protégé envi-
ronment (http://protege.stanford.edu/plugins/owl/).
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formal language. Therefore, ontology engineering environments usually provide ex-
tra means for displaying and editing such complex axiomatic information, using a
special-purpose ontology language or logical formal notation. When the environ-
ment exports the ontology for storage on a disk or for transfer over the wire, all of its
information is expressed in the ontology language supported by the tool. Hence, the
way an ontology appears to a developer of an ontology editor, storage facility or rea-
soning tool is in form of some serialization format suitable for machine processing.

For illustrating a fragment of the SWRC ontology we use the RDF [20] seriali-
sation format of the OWL [21] ontology language in the following listing.

...
<owl:Class rdf:ID="Conference">

<rdfs:subClassOf rdf:resource="#Event"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#participant"/>
<owl:allValuesFrom rdf:resource="#Person"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Workshop"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="cooperateWith">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdfs:range>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Organization"/>
<owl:Class rdf:about="#Person"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
<owl:inverseOf rdf:resource="#cooperateWith"/>

</owl:ObjectProperty>
<Conference rdf:ID="ISWC"/>
...

The listing shows an excerpt of the SWRC ontology as it is processed by soft-
ware systems for serialisation and parsing and for transfer over a network. It
exhibits the specification of OWL classes (concepts), properties (relations) and in-
dividuals (instances), all expressed by tags and attributes of a customised XML
serialisation.

Formal Appearance

As ontology languages like OWL are based on logical formalisms, the formal se-
mantics of the language precisely defines the meaning of an ontology in terms of
logic. To a reasoner, therefore, an ontology appears as a set of logical formulas
that express the axioms of a logical theory. It can verify whether these axioms are



Knowledge Representation and Ontologies 129

consistent or derive logical consequences. This form of appearance of an ontology is
free of syntactical or graphical additions or ambiguities and reflects the pure knowl-
edge representation aspect.

We use description logic notation to exemplify some axioms of the SWRC on-
tology in their logical form.6 The following DL formulas give examples of axioms
for subsumption, property range specification and class disjointness.

: : :

Employee v Person

AcademicStaff v Employee

Student v Person

Graduate v Student

PhDStudent v Graduate

: : :

AcademicStaff v 8 supervises:PhDStudent

AcademicStaff v 8memberOfPC:Event

Publication v 8 contributor:.Person t Organisation/

: : :

AcademicStaff u TechnicalStaff v ?
AcademicStaff u Manager v ?

: : :

In this logical form, an ontology is the set of axioms that constitutes the explicit
knowledge represented about its domain of interest. By means of automated de-
duction, implicit knowledge of the same form can be derived but is not part of the
ontology’s explicit specification.

Utilisation of Ontologies

Often, an ontology is distinguished from a knowledge base in that it is supposed
to describe knowledge on a schema level, i.e., in terms of conceptual taxonomies
and general statements, whereas the more data-intensive knowledge base is thought
of containing instance information on particular situations. We take a different
perspective and perceive the relation between an ontology and a knowledge base
as the connection between an epistemological specification of domain knowledge
and a technical means for working with knowledge. From this point of view, an
ontology is a piece of knowledge that can be used by a knowledge-based appli-
cation among other pieces of knowledge, e.g., other ontologies or meta data. To
properly cover its domain of interest, it can make use of both schema level and in-
stance level information. Whenever the knowledge-based system needs to consult

6 Here we refer to an extended version of the SWRC ontology with a stronger axiomatization.
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the ontology it accesses (parts of) its specification through a knowledge base, most
likely together with other pieces of knowledge, via the tell–ask–interface as shown
in Sect. 1.

Usage of Ontologies

The computational domain model of an ontology can be used for various purposes,
and some typical types of applications have evolved that make use of ontologies in
different ways. We list some of them as examples of how applications can leverage
the formalized conceptual domain models that ontologies provide.

• Information integration
A promising field of application for ontologies is their use for integrating het-
erogeneous information sources on the schema level. Often, different databases
store the same kind of information but adhere to different data models. An on-
tology can be used to mediate between database schemas, allowing to integrate
information from differently organised sources and to interpret data from one
source under the schema of another.

• Information retrieval
Motivated by the success and key role of Google7 in the World Wide Web, seman-
tically enhanced information retrieval on web documents is a widely recognised
field of application, and the use of ontologies is one particular approach to
improving the retrieval process. The idea behind ontology-based information re-
trieval is to increase the precision of retrieval results by taking into account the
semantic information contained in queries and documents, lifting keywords to
ontological concepts and relations.

• Semantically enhanced content management
In many areas of computation the data that is actually computed is annotated
with meta data for various purposes. Ontologies provide the domain-specific
vocabulary for annotating data with meta data. The formality of ontology lan-
guages allows for an automated processing of this meta data and their grounding
in knowledge representation facilitates machine-interpretability.

• Knowledge management and community portals
In companies or other organised associations, or in communities of practice, in-
dividual knowledge can be viewed as a strategic resource that is desirable to be
shared and systematically maintained, which is referred to as knowledge manage-
ment. Ontologies provide a means to unify knowledge management efforts under
a shared conceptual domain model, connecting technical systems for navigating,
storing, searching and exchanging community knowledge.

• Expert systems
In various domains, such as medical diagnosis or legal advice in case-law, it is
desirable to simulate a domain expert who can be asked sophisticated questions.

7 http://www.google.com
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In an expert system, this is achieved by incorporating a thoroughly developed
domain ontology that formalises expert knowledge. Domain-specific questions
can then be answered by reasoning over such highly specialized knowledge.

Types of Ontologies

The term ontology is used for a variety of artefacts employed for diverse purposes,
and a categorisation of ontologies can be made according to their subject of concep-
tualisation. Figure 3 shows a distinction between the following types of ontologies,
according to [22].

• Top-level ontologies
Top-level ontologies attempt to describe very abstract and general concepts that
can be shared across many domains and applications.8 They borrow from philo-
sophical notions, describing top-level concepts for all things that exist, such as
“physical object” or “abstract object”, as well as generic notions of common-
sense knowledge about phenomena like time, space, processes, etc. They are
usually well thought out and extensively axiomatised. Due to their generality,
they are typically not directly used for conceptual modeling in applications but
reused as a basis for building more specific ontologies. Prominent examples for
top-level ontologies are DOLCE [23] and SUMO [24].

• Domain ontologies and task ontologies
These types of ontologies capture the knowledge within a specific domain of dis-
course, such as medicine or geography, or the knowledge about a particular task,
such as diagnosis or configuration. In this sense, they have a much narrower and
more specific scope than top-level ontologies. Prominent ontologies exist in nat-
ural sciences, such as medicine, genetics, geographic and communal efforts such

top-level ontology

application ontology

domain ontology task ontology

Fig. 3 Types of ontologies

8 Top-level ontologies are sometimes also called upper ontologies or foundational ontologies.
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as environment information, tourism, as well as cultural heritage and museum ex-
hibits. Examples are GALEN9 for the medical domain or GO10 for the domain of
bio-informatics. Task ontologies have been devised for scheduling and planning
tasks, intelligent computer-based tutoring, missile tracking, execution of clinical
guidelines, etc.

• Application ontologies
Further narrowing the scope, application ontologies provide the specific vocab-
ulary required to describe a certain task enactment in a particular application
context. They typically make use of both domain and task ontologies, and
describe e.g., the role that some domain entity plays in a specific task (see
e.g., [25]).

Altogether, we can say that Fig. 3 represents an inclusion scheme: the lower on-
tologies inherit and specialise concepts and relations from the upper ones. The lower
ontologies are more specific and have thus a narrower application scope, whereas
the upper ones have a broader potential for reuse.

2.3 Semantic Web and Ontology Languages

One particular application of ontologies is their use for annotation of web content
in the vision of the Semantic Web. To make ontologies available to information sys-
tems for this purpose, various ontology languages have been designed and proposed
for standardisation.

The Semantic Web Vision

The World Wide Web has become a powerful tool for communication, research and
commerce, however, it is limited to manual navigation of human users who interpret
the content of web sites in order to access the information they provide. As stated in
[26], the vision of the Semantic Web is to make the Web machine-understandable,
allowing computers to integrate information from disparate sources to achieve the
goals of end users. To this end, data in the World Wide Web is to be upgraded
to a semantic level, such that it can be used by machines not just for display pur-
poses, but for automation, integration and reuse across various applications in an
automated way.

In the context of the Semantic Web, ontologies play a particularly important key
role. While the content of the current web is primarily produced for human con-
sumption, also information produced mainly for machines, such as the records in

9 http://www.co-ode.org/galen/
10 http://www.geneontology.org



Knowledge Representation and Ontologies 133

a database, should be made available to processing over the web. The idea of the
Semantic Web is to annotate both human-readable and machine-tailored web con-
tent by machine-interpretable meta data, such that computers are able to process
this content on a semantic level. Ontologies provide the domain vocabulary in terms
of which semantic annotation is formulated. Meta statements about web content in
such annotations refer to a commonly used domain model by including the concepts,
relations and instances of a domain ontology. The formality of ontology languages
allows to reason about semantic annotation from different sources, connected to
background knowledge in the domain of interest.

There are characteristics of the web that affect the use of ontologies for seman-
tic annotation. One aspect is the natural distributedness of content in the web. The
knowledge captured in semantic annotations and ontologies is not locally available
at a single node but spread over different sites. This imposes additional constraints
on the use of ontologies in the Semantic Web, taking into account distributedness
of knowledge. Techniques for unique identification of ontological entities or for a
modular and distributed organisation of ontologies and the reasoning process are
required. Another related aspect is that content on the web is created in an evolu-
tionary manner and maintained in a decentralised way. There is no central control
over semantic annotation or ontologies that evolve in the Semantic Web, and infor-
mation in one ontology can conflict with information in another one. To either avoid
or deal with conflicting pieces of knowledge, modeling methodologies or techniques
for treating inconsistencies are required.

Semantic Web Ontology Languages

Standardisation of ontology languages is of high importance to businesses, since
it ensures that data can be exchanged between business partners and that invest-
ments made in a particular technology are safe due to broad vendor support.
Various different aspects are considered for language standardisation, such as issues
of the underlying knowledge representation formalism in terms of expressiveness
and computational properties, web-related features like global unique identifica-
tion and XML serialisation syntax, or usability add-ons like the inclusion of strings
and numbers. The influence of different research and user communities with mani-
fold requirements have resulted in a complex landscape of a multitude of languages
backed by different past and ongoing standardisation efforts. It is still an open topic
stimulating lively discussions in current research which languages are best suited for
what purpose, how they can be efficiently implemented, realised in a user-friendly
way, or technically and semantically made interoperable.

An early ontology language standard emerged as part of metadata standardisation
efforts from the World Wide Web consortium (W3C) in the Semantic Web activity.
This effort resulted in the Resource Description Framework RDF [20] and a simple
ontology language RDFS (RDF Schema) [27], which has now become a well estab-
lished and widely accepted standard for encoding meta data. The RDF(S) language
can be used to express class-membership of resources and subsumption between
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classes but its peculiar semantics does neither fit the classical nor the LP-style;
however, translations to both paradigms exist that loose only few of RDF(S) func-
tionality.

On top of RDF(S), W3C standardisation efforts have produced the OWL [21]
family of languages for describing ontologies in the Web, which comes in sev-
eral variants with increasing expressiveness. Only the most expressive language
variant, namely OWL-Full, has a semantically proper layering on top of RDF(S),
allowing for features of metamodeling and reification. The less expressive vari-
ants OWL-Lite and OWL-DL map to certain description logic dialects and fit
the classical semantics as subsets of first-order logic. Besides the class mem-
bership and subsumption relations inherited from RDF(S), OWL offers the con-
struction of complex classes from simpler ones by means of DL-style concepts
constructors. Among ongoing standardisation efforts, OWL-DL is currently the
most prominent Semantic Web ontology language following the description logic
paradigm.

A current research trend is to integrate DL-style ontologies with LP-style rules
to be interoperable on a semantic level. One attempt to do so is the Semantic Web
Rule Language (SWRL11) that extends the set of OWL axioms to include Horn-like
rules interpreted under first-order semantics. Interoperability with OWL ontologies
is realised by referring to OWL classes and properties within SWRL rules, however,
the combination of OWL-DL and SWRL rules results in an undecidable formalism.
Another approach to amalgamate OWL ontologies and rules are the so-called DL-
safe rules [28], which extend DL knowledge bases in a way similar to SWRL.
However, DL-safe rules preserve decidability of the resulting language by imposing
an additional safety restriction on SWRL rules which ensures that they are only
applied to individuals explicitly known to the knowledge base.

Languages that follow the logic programming paradigm mainly stem from de-
ductive database systems, which apply rules on the facts stored in a database to
derive new facts by means of logical inferencing. A common declarative language
used in deductive databases is Datalog [9], which is syntactically similar to Prolog
[3]. In the Semantic Web context, F-Logic [29] is a more prominent rule language
that combines logical formulas with object-oriented and frame-based description
features. In its logic programming variant F-Logic (LP), it adopts the semantics of
Datalog rules.

Furthermore, Topic Maps12 is another means to describe ontologies in the web
context. In contrast to other languages mentioned here, it is rather based on a graph-
oriented paradigm than on formal semantics and precise meaning.

Finally, the Web Service Modeling Language (WSML) [30] family is the most
recent attempt to standardise ontology languages for the web, with a special focus
on annotating Semantic Web Services.

11 http://www.w3.org/Submission/SWRL/
12 http://www.topicmaps.org
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3 Outlook

In this chapter, we have presented an overview on the topics of knowledge repre-
sentation and ontologies. In particular, we have given an introduction to the basic
principles of representation formalisms originating in symbolic Artificial Intelli-
gence as well as paradigms related to modeling of and reasoning with knowledge.
We have also characterised the notion of an ontology as a conceptual yet computa-
tional model that makes domain knowledge available to computer systems, and we
have addressed the utilisation of ontologies as well as their formalisation through
formal knowledge representation languages that currently evolve in the context of
the Semantic Web.

Despite being a new filed, there can be observed some achievements in ontology
research. As the techniques from knowledge representation in Artificial Intelligence
have been taken up again for studying ontologies, their formal foundations are well
studied. The power and limitations of ontology languages are clearly determined by
their underlying logical formalisms, for most of which the characteristics and com-
plexity of reasoning problems are well known. Due to standardisation of ontology
languages, in particular the W3C standards RDF(S) and OWL, the idea of using on-
tologies is picked up in many research areas. Tools for handling ontologies become
available to researchers within and outside the WWW community, where ontologies
have a major impact on the Semantic Web.

However, there are still challenges to be faced for ontologies to gain larger mo-
mentum. To achieve wide-spread use of ontologies, they have to be established as
usable software artefacts that are interchanged and traded between parties, simi-
lar to computer programs or other forms of electronic content. As such, they can
principally be plugged in systems that make use of knowledge-based technology.
However, the logic-based notions in which ontologies are described are typically
too technical and too onerous to handle to be widely accepted. To overcome this
deficiency, design methodologies and higher-level descriptive languages need to be
introduced that abstract from the surfeit of logical details, presenting the user a
more intuitive view on domain knowledge. An analogous level of abstraction has
been achieved in the field of software engineering, where more and more abstract
higher-level languages have been build on top of machine codes and assembler lan-
guages.

Moreover, ontologies have not been largely taken up on the application side
so far. While the usage of ontologies as computational domain models is clearly
understood in principle, break-through applications with a wide acceptance and sig-
nificant impact have not been identified yet. The recent trend to utilise ontologies for
building intelligent web-based systems in the Semantic Web is still restricted to re-
search prototypes that cover only limited domains of interest. For ontologies gaining
greater momentum in applications, it needs to be investigated at which places web-
based or other applications should rely on knowledge-based decisions and about
which parts of the involved domains knowledge should be represented to find a
good trade-off between modeling effort and automation.
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Spatial Techniques

Nafaa Jabeur and Nabil Sahli

1 Introduction

The environment, including the Earth and the immense space, is recognized to be
the main source of useful information for human beings. During several decades, the
acquisition of data from this environment was constrained by tools and techniques
with limited capabilities. However, thanks to continuous technological advances,
spatial data are available in huge quantities for different applications. The technolog-
ical advances have been achieved in terms of hardware and software as well. They
are allowing for better accuracy and availability, which in turn improves the qual-
ity and quantity of useful knowledge that can be extracted from the environment.
They have been applied to geography, resulting in geospatial techniques. Applied
to both science and technology, geospatial techniques resulted in areas of expertise,
such as land surveying, cartography, navigation, remote sensing, Geographic Infor-
mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved
quickly with advances in computing, satellite technology and a growing demand to
understand our global environment. In this chapter, we will discuss three important
techniques that are widely used in spatial data acquisition and analysis: GPS and
remote sensing techniques that are used to collect spatial data and a GIS that is used
to store, manipulate, analyze, and visualize spatial data. Later in this book, we will
discuss the techniques that are currently available for spatial knowledge discovery.

2 Global Positioning System

2.1 What is GPS?

The GPS is a satellite-based navigation system. It uses a constellation of at least 24
(32 by March 2008) satellites orbiting the Earth and transmitting precise microwave
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Fig. 1 GPS constellation of 24 satellites

signals, that enable GPS receivers to determine their location, speed, direction, and
time (Fig. 1). At its simplest level, a GPS receiver may just tell you your longitude
and latitude co-ordinates. But these days, most GPS devices come with a map
and mark the device’s location on the map as its owner moves. GPS works in any
weather conditions, anywhere in the world, 24 h a day. It was placed into orbit by
the US Department of Defense and originally intended for military applications.
However, in the 1980s the government made the system available for civilians.
Neither subscription fees nor setup charges are required. The official name of
GPS is NAVSTAR-GPS. Similar satellite navigation systems include the Russian
GLONASS (incomplete as of 2008), the upcoming European Galileo positioning
system, the proposed COMPASS navigation system of China, and IRNSS of India
[1]. In addition to military applications, GPS became widely used in worldwide
navigation, map-making, land-surveying, commerce, and scientific research among
others. In the military field, GPS allows soldiers to track potential ground and air tar-
gets before they are flagged as hostile and coordinate their movements and supplies
accordingly. It also allows them to accurately target various military weapons in-
cluding cruise missiles and precision-guided munitions. In these tasks, GPS highly
contribute in map creation and rescue missions. In the civilian field, GPS enables
receivers to calculate local velocity and orientation. This information is useful in
vessels or observations of the Earth. GPS also enables researchers to explore the
Earth environment including the atmosphere, ionosphere, and gravity field. In addi-
tion, it enables large communication and observation systems to synchronize clocks
to exacting standards [1].
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2.2 Method of Operation

From high above the Earth, each satellite continually transmits messages containing
the time the message was sent, a precise orbit for the satellite sending the message
(the ephemeris), and the general system health and rough orbits of all GPS satellites
(the almanac). These messages travel at the speed of light through outer space, and
slightly slower through the atmosphere. By timing them carefully, a GPS receiver is
able to calculate its position. It uses the arrival time of each message to measure the
distance to each satellite. This can be achieved with a technique called trilateration
that determines the relative positions of objects on the basis of geometry of trian-
gles in a similar fashion as triangulation. The resulting coordinates calculated by the
receiver are converted to more user-friendly forms such as latitudes and longitudes,
or location on a map. These coordinates are finally displayed to the user (Fig. 2).
It might seem that three satellites would be enough for the GPS receiver in order
to calculate its position, especially since space has three dimensions. However, a
fourth satellite should always be used to compensate for inaccurate clock in GPS
receivers, and therefore allowing for much better accuracy (Fig. 3). With four satel-
lites, the receiver determines four measurements: altitude, latitude, longitude, and

Fig. 2 GPS operational concept [2]
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Fig. 3 Basic principle of position with GPS [3]

time. These parameters are important, but not all of them are necessary all the time.
For example, knowing its altitude (which is 0), a ship needs only three satellites to
compute its position at sea. Moreover, when fewer than our satellites are visible,
some additional clues can be used. Examples of clues include last known position,
dead reckoning, and inertial navigation [3].

2.3 Technical Description

GPS consists of three major segments (Fig. 4): Space Segment, Control segment,
and User segment.

Space Segment

Space segment consists of orbiting satellites that send radio signals from space [4].
The first of the satellites was brought to its orbit as early as 1978. During the years
the satellites became more and more sophisticated (Fig. 5). Currently, five different
types of these satellites exist (Block I, Block II, Block IIA, Block IIR and Block
IIF). Originally, the space segment comprises 24 GPS satellites orbiting the Earth
every 12 h. There are six orbital plans containing four satellites each. These satel-
lites are equally spaced 60ı apart and are inclined at about 55ı with respect to the
equator. In this configuration at least four satellites are available from any loca-
tion on the Earth’s surface at all times. This configuration has been changed since
September 2007. Indeed, the constellation is henceforth a non-uniform arrangement
after increasing the number of satellites to 31 [1]. The additional satellites allow for
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Fig. 4 The segments of GPS

Fig. 5 GPS Block I, Block IIA, and Block IIF satellites

redundant measurements that improve the precision of GPS receiver calculations.
They also allow for more reliability and availability of the system, particularly when
multiple satellites fail.

Control Segment

The Control segment consists of tracking stations located around the world (Fig. 6).
These stations consist of Master Control Stations (MCS), several Monitor Stations
(MS), and Ground Antennas (GA). The operational control segment consists of
MCS near Colorado Springs (USA), three MS and GA in Kwajaleian Ascension and
Diego Garcia, and two more MS at Colorado Spring and Hawai. The main func-
tions of the Control Segment include: (1) monitoring and controlling the satellite
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Fig. 6 Position of the tracking stations around the Earth

system continuously, (2) determining GPS system time, (3) predicting the satellite
ephemeris and the behavior of each satellite clock, and (4) updating periodically the
navigation message for each particular satellite [1].

User Segment

The User segment consists of GPS receivers that are appropriate for receiving sig-
nals from GPS satellites. These receivers convert this signal into position, velocity,
and time estimates. They are mainly used in navigation (e.g., for aircraft and ships),
precise positioning (e.g., for surveying and plate tectonics), and time and frequency
dissemination (e.g., for astronomical observatories and telecommunications facili-
ties). GPS receivers come in a variety of formats (Fig. 7). These formats range from
devices integrated into cars, phones, and watches, to dedicated devices. The main
components of GPS receivers include: (1) an antenna with pre-amplifier for the cap-
ture of frequencies transmitted by the satellites; (2) a radio-frequency section with
signal identification and signal processing; (3) a micro-processor for receiver con-
trol, data sampling and data processing; (4) a receiver that is often described by its
number of channels (i.e., how many satellites it can monitor simultaneously); (5) a
precision oscillator; (6) a power supply; (7) a user interface, command and display
panel (for providing location and speed information to the user); and (8) a memory
for data storage [4].

2.4 Navigation Signals

Every GPS signal packs three bits of information: the pseudorandom code,
ephemeris data, and almanac data. The pseudorandom code is the identification
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Fig. 7 Examples of GPS receivers: (left) handheld, (middle) automotive, and (right) mobile

code of the individual satellite. The ephemeris data identifies the location of each
GPS satellite at any particular time of the day. Each satellite transmits this data for
the GPS receivers as well as for the other satellites in the network. The almanac
data has information about the status of the satellite as well as current date and time.
The almanac part of the signal is essential for determining the position. The GPS
signals are transmitted at two frequencies of low power radio. These frequencies
are called L1 and L2. The L1 frequency at 1575.42 MHz GPS carrier contains the
C/A-Code, the encrypted P-Code (or Y-Code), and the Navigation Message [1]. It
comes into play for civilian applications. Commercial GPS navigation receivers can
track only the L1 carrier to make pseudo-range measurements. The L2 frequency
at 1227.60 MHz GPS carrier contains only the encrypted P-Code (or Y-Code) and
the Navigation Message. The Y-Code is usually encrypted and reserved for military
applications. Signals at L1 and L2 frequencies can pass through clouds, glass, and
plastic. However, they cannot go through more solid objects like buildings and
mountains [1].

2.5 GPS Error Sources and Jamming

In order to calculate the position, the receiver needs three parameters: the current
time, the position of the satellite, and the measured delay of the received signal.
Due to several parameters, some errors are introduced in the GPS signal (Fig. 8).
Apart from the inaccuracy of the clock in the GPS receiver, the following factors
affect the quality of the GPS signal and cause calculation errors:

• Atmospheric effects (Fig. 9): Ionosphere and troposphere disturbances affect the
speed of the GPS signals as they pass through the Earth’s atmosphere. These
effects are smallest when the satellite is directly overhead and become greater
for satellites nearer the horizon since the path through the atmosphere is longer.
Avoiding these effects and correcting their errors is a significant challenge to
improving GPS position accuracy [5].
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Fig. 8 Sources of GPS signal errors

Fig. 9 Influences on radio waves propagation through the Earth’s atmosphere

• Multipath or Signal reflection (Fig. 10): The GPS signal may be delayed due to
its reflection on objects, like tall buildings and rocks. The reflected signal takes
more time to reach the receiver than the direct signal. The resulting error typically
lies in the range of a few meters [5].

• Ephemeris errors: Ephemeris errors are also known as orbital errors. These are
errors in the satellite’s reported position against its actual position.
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Fig. 10 Interference caused by reflection of the signal

• Clock errors: The satellite’s atomic clocks experience noise and clock drift errors.
These errors tend to be very small, but may add up to a few meters of inaccuracy
[6]. Corrections of these errors and estimation of the accuracy are included in the
navigation message. Moreover, the built in clock of the GPS receiver is not as
accurate as the atomic clocks of the satellites and the slight timing errors leads to
corresponding errors in calculations.

• Visibility of Satellites: The more the number of satellites a GPS receiver can
lock onto, the better its accuracy. This accuracy may be reduced intentionally by
switching off the Selective Availability feature included in the GPS. This fea-
ture can introduce intentional, slowly changing random errors of up to a hundred
meters into the publicly available navigation signals. It is used, in order to con-
found the guidance of long-range missiles to precise targets. When this feature
is enabled, the accuracy is still available in the signal, but in an encrypted form
that is only available to the United States military, its allies and a few others,
mostly government users. Even those who have managed to acquire military
GPS receivers would still need to obtain the daily key, whose dissemination is
tightly controlled [1]. Moreover, everything that comes in the line of sight, such
as buildings, rocks and mountains, dense foliage, and electronic interference,
cause position errors and sometimes make it unable to take any reading at all.
GPS receivers do not work indoors, underwater, and underground.

• Satellite Shading (Fig. 11): For the signals to work properly, the satellites have
to be placed at wide angles from each other. Poor geometry resulting from tight
grouping can result in signal interference [5].

• Intentional degradation: This was used till May 2000 by the US Department
of Defense so that military adversaries could not use the GPS signals. This has
been turned off since May 2000, which has improved the accuracy of readings in
civilian equipment [1].
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Fig. 11 Geometrical alignment of two satellites: (left) good, and (right) bad

In addition to the sources of errors mentioned above, several natural sources (e.g.,
solar flares and geomagnetic storms) may cause interferences and jamming that re-
sult in a difficult acquisition of GPS signals. Interferences and jamming may also
be caused by artificial sources, such as defrosters, car window tinting films, and
stronger signals when they are within radio range. These undesirable effects may be
intentional, particularly for military purposes.

2.6 Improving the Accuracy of GPS Signals

Several techniques continue to be developed aiming to deal with errors, interfer-
ences, and jamming. Among these techniques we can mention [7–9]: Differential
GPS. Differential GPS or DGPS brings the accuracy of readings to within 1–3 me-
ters of the object, as compared to the 4–20 m of normal GPS. DGPS works using
a network of stationary GPS receivers. The difference between their predefined po-
sition and the position as calculated by the signals from satellites gives the error
factor. This error component is then transmitted as a FM signal for the local GPS
receivers, enabling them to apply the necessary correction to their readings. Wide
Area Augmentation System (WAAS). WAAS works with ground reference stations
to calculate the required correction. The correction message is then relayed to GPS
receivers through additional geostationary orbits. WAAS is useful in poor visibil-
ity and precision landing situations. It is also useful in high-precision applications
like GPS-based instrument approaches in aviation. WAAS is currently fully opera-
tional only in the US, however parallel developments are taking place in Europe and
Japan. Local Area Augmentation System (LAAS). LAAS uses similar correction data
as WAAS. However LAAS uses a local source at a predefined location to transmit
the data. The correction data is typically applicable within only a radius of 20–50
km around the transmitter station. WAGE (Wide Area GPS Enhancement). WAGE
works by getting more accurate satellite clock and ephemeris data. However this
requires special receivers. Relative Kinematic Positioning (RKP). RKP is another
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highly precise system with accuracy levels of within 10 cm of the actual position.
RKP uses a combination of DGPS data, signal phase calculations, and ambiguity
resolution techniques, the entire processing work done in real time.

3 Remote Sensing

3.1 What is Remote Rensing?

Since the early use of aerial photography, remote sensing has been recognized as
a valuable tool for viewing, analyzing, characterizing, and making decisions about
our environment. It can be defined as the science, and to some extent the art, of mea-
suring and acquiring information about some features of an object or phenomenon,
by a recording device that is not in physical contact with the object or phenomenon
being observed [1]. For example, from a spacecraft, relevant information about elec-
tromagnetic radiation, Earth’s temperature, or devastating storm can be gathered
by using cameras, lasers, radar systems, or magnetometers. The collected informa-
tion needs a physical carrier to travel from the objects/phenomenon to the sensing
devices through an intervening medium [10]. The electromagnetic radiation is nor-
mally used as an information carrier in remote sensing. The output of a remote
sensing system is usually an image representing the scene being observed. A fur-
ther step of image analysis and interpretation is required in order to extract useful
information from the image. The process of remote sensing is familiar for humans.
Indeed, as humans we rely on visual perception to provide us with much of the in-
formation about our surroundings. However, our eyes, used as sensors, are greatly
limited. Actually, they are sensitive only to the visible range of electromagnetic en-
ergy. They view perspectives according to the location of our bodies. In addition,
they are unable to form a lasting record of what we view. Due to these limitations,
humans continuously develop technological means to increase their ability to see
and record the physical properties of the environment.

3.2 Principal Process of Remote Sensing

The principal process of remote sensing can be described as follows (Fig. 12):

Energy Source

The energy source (A in Fig. 12) illuminates the object of interest. It provides this
object with electromagnetic energy in the form of electromagnetic radiation. Elec-
tromagnetic radiation consists of electrical and magnetic fields traveling at the speed
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Fig. 12 Principal process in remote sensing

Fig. 13 Electrical and
magnetic fields of
electromagnetic radiation

of light (Fig. 13). The electrical field varies in magnitude in a direction perpen-
dicular to the direction in which the radiation is traveling. The magnetic field is
oriented at right angles to the electrical field. The energy source may be natural
or provided by the sensors. Remote sensing systems which measure energy that is
naturally available are called passive sensors. Active sensors, on the other hand,
provide their own energy source for illumination [10]. In remote sensing, wave-
length and frequency are the most important features of electromagnetic radiation.
Measured in meters (or some of its factors, e.g., nanometers), the wavelength is
the length of one wave cycle. Frequency refers to the number of cycles of a wave
passing a fixed point per unit of time. Frequency is normally measured in Hertz
(Hz), equivalent to one cycle per second, and various multiples of Hertz. Electro-
magnetic spectrum is the whole wavelengths which one meets in an electromagnetic
radiation. It ranges from the shorter wavelengths (including gamma and X-rays) to
the longer wavelengths (including microwaves and broadcast radio waves). There
are several regions of the electromagnetic spectrum, which are useful for remote
sensing.
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Fig. 14 (Left) Scattering; (right) absorption

Radiation and Atmosphere

As the energy travels from its source to the target, it will come in contact with and in-
teract with the atmosphere it passes through (B in Fig. 12). This interaction may take
place a second time as the energy travels from the target to the sensor. Before radia-
tion reaches the Earth’s surface it has to travel through some distance of the Earth’s
atmosphere. Particles and gases in the atmosphere can affect the incoming radiation.
These effects are, particularly, caused by the mechanisms of scattering and absorp-
tion [10]. Scattering (Fig. 14) occurs when particles or large gas molecules present
in the atmosphere interact with and cause the electromagnetic radiation to be redi-
rected from its original path. In contrast to scattering, absorption causes molecules
in the atmosphere to absorb energy at various wavelengths. Ozone, carbon dioxide,
and water vapor are the three main atmospheric constituents which absorb radiation.

Interaction with the Target

The energy traveling from the source through the atmosphere interacts with the
target (C in Fig. 12). This interaction depends on the properties of both the target
and the radiation. Radiation that is not absorbed or scattered in the atmosphere can
reach and interact with the Earth’s surface [10]. There are three forms of interaction:
absorption (A); transmission (T); and reflection (R) (Fig. 15).

Image

Sensors are required to collect and record the electromagnetic radiation (D in
Fig. 12) after the energy has been scattered by or emitted from the target. Record-
ing the energy is done as an array of numbers in digital format right from the start.
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Fig. 15 Types of interactions
between the energy and the
target

Fig. 16 Digital image representation

Image may be presented in a digital format by subdividing this array into pixels.
Every pixel corresponds to a digital number, representing the brightness level of
that pixel in the image (Fig. 16).

Analysis and Interpretation

The energy recorded by the sensor has to be transmitted (E in Fig. 12), often in
electronic form, to a receiving and processing station where the data are processed
into an image (hardcopy and/or digital). The processed image is analyzed and inter-
preted (F in Fig. 12), visually and/or digitally or electronically, in order to extract
information about the target which was illuminated. This information will be used
later in the intended applications (G in Fig. 12).
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3.3 Types of Remote Sensing

Optical and Infrared Remote Sensing

In optical remote sensing, optical sensors detect solar radiation reflected or scat-
tered from the arth, forming images resembling photographs taken by a camera
high up in space. The wavelength region usually extends from the visible and near
infrared to the short-wave infrared. Different materials such as water, soil, vegeta-
tion, buildings, and roads reflect visible and infrared light in different ways [11].
They have different colors and brightness when seen under the sun. The interpreta-
tion of optical images require the knowledge of the spectral reflectance signatures of
the various materials (natural or man-made) covering the surface of the Earth. There
are also infrared sensors measuring the thermal infrared radiation emitted from the
Earth, from which the land or sea surface temperature can be derived (Figs. 17
and 18).

Satellite
Sun

Atmosphere

Forest Grass Bare Soil Built-up AreaPaved
RoadWater

Reflected
Solar Radiation

Incident
Solar Radiation

Satellite

Atmosphere

Forest Grass Bare Soil Built-up AreaPaved
RoadWater

Emitted
Thermal Radiation

Fig. 17 Optical and infrared images

Fig. 18 Infrared image



156 N. Jabeur and N. Sahli

Microwave Remote Sensing

There are some remote sensing satellites which carry passive or active microwave
sensors. The active sensors emit pulses of microwave radiation to illuminate the
areas to be imaged. Images of the Earth surface are formed by measuring the mi-
crowave energy scattered by the ground or sea back to the sensors. These satellites
carry their own “flashlight” emitting microwaves to illuminate their targets. The
images can thus be acquired day and night [11]. Microwaves have an additional ad-
vantage as they can penetrate clouds. Images can be acquired even when there are
clouds covering the Earth surface. A microwave imaging system which can produce
high resolution image of the Earth is the synthetic aperture radar (SAR) (Fig. 19).
The intensity in a SAR image depends on the amount of microwave backscattered
by the target and received by the SAR antenna. This amount depends on the rough-
ness of the target [12].

Airborne Remote Sensing

In airborne remote sensing (Fig. 20), downward or sideward looking sensors are
mounted on an aircraft to obtain images of the Earth’s surface. Analog aerial pho-
tography, videography, and digital photography are commonly used in airborne
remote sensing. SAR imaging is also carried out on airborne platforms. Analog
photography is capable of providing high spatial resolution. The interpretation of
analog aerial photographs is usually done visually by experienced analysts. The pho-
tographs may be digitized using a scanning device for computer-assisted analysis.
Digital photography permits real-time transmission of the remotely sensed data to a
ground station for immediate analysis [11]. In contrast to satellite remote sensing,
airborne remote sensing has the capability of offering very high spatial resolution
images (20 cm or less). The disadvantages are low coverage area and high cost per
unit area of ground coverage. Airborne remote sensing missions are often carried
out as one-time operations, whereas Earth observation satellites offer the possibility
of continuous monitoring of the Earth [11].

Fig. 19 (Left) Basic SAR image process; (right) example of images taken by a SAR
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Fig. 20 Airborne remote sensing concept

Spaceborne Remote Sensing

Several remote sensing satellites are currently available, providing imagery suitable
for various types of applications. Each of these satellite-sensor platforms is charac-
terized by the wavelength bands employed in image acquisition, spatial resolution
of the sensor, the coverage area, and the temporal coverage, i.e., how frequent a
given location on the Earth surface can be imaged by the imaging system [11]. In
terms of the spatial resolution, the satellite imaging systems can be classified into:
(1) low resolution systems (approx. 1 km or more), (2) medium resolution systems
(approx. 100 m–1 km), (3) high resolution systems (approx. 5 m–100 m), or (4) very
high resolution systems (approx. 5 m or less). In terms of the spectral regions used
in data acquisition, the satellite imaging systems can be classified into: (1) optical
imaging systems (include visible, near infrared, and shortwave infrared systems),
(2) thermal imaging systems, or (3) synthetic aperture radar (SAR) imaging sys-
tems. Optical/thermal imaging systems can be classified according to the number
of spectral bands used: (1) mono-spectral or panchromatic (single wavelength band,
“black-and-white,” grey-scale image) systems, (2) multi-spectral (several spectral
bands) systems, (3) super-spectral (tens of spectral bands) systems, and (4) hyper-
spectral (hundreds of spectral bands) systems [13].

3.4 Image Processing

Data resulting from remote sensing process can be available in an analog format.
Analog images (Fig. 21), such as aerial photos, are the result of photographic imag-
ing systems (i.e., Camera). Once the film is developed, then no more processing is
required. In this case, the image data is referred to as being in an analog format.
Remote sensed data can also be stored in a digital format. Using specialized tools,
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Fig. 21 Example of an
analog image

Fig. 22 Effects of the resolution on the image visibility (from left to right and from top to bottom):
(a) 160� 160 (pixel size: 10 m), (b) 80� 80 (pixel size: 20 m), (c) 40� 40 (pixel size: 40 m),
(d) 20� 20 (pixel size: 80 m)

the analysis and processing of this data may be carried out automatically in order
to identify targets and extract information. Digital images are referred to as raster
images in which the pixels are arranged in rows and columns. The number of pixels
represents the image resolution. It affects the visual appearance of the area (repre-
sented by the image) and therefore, highly influences the process of analyzing and
extracting information from the image [14]. For example, on the same screen size
(Fig. 22), the visibility of the image is gradually damaged by reducing its resolution
(which in turn affects the size of pixels). The images collected from remote sensing
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Fig. 23 (Left) Striping (or banding) error; (Right) line dropouts error

Fig. 24 Before (left) and after (right) applying the contrast stretching

devices may need some processing before starting the extraction of information. For
example, since most of the recorded images are subject to distortion due to noise,
some errors occur resulting in the degradation of the image quality. In order to avoid
these errors, an image restoration process may be applied. Two of the more com-
mon errors that occur in multi-spectral imagery are striping (or banding) and line
dropouts [15]. These errors occur in the sensor response and/or data recording and
transmission and result in a shift of pixels between rows or loss of a row of pixels in
the image, respectively (Fig. 23). In addition to image restoration, other techniques
can be applied in order to enhance the quality of images. This can be achieved by
manipulating the pixel values such that it is easier for visual interpretation. Exam-
ples of these techniques include contrast stretching and spatial filtering. Since it is
common that the useful data in a digital image populates only a small portion of the
available range of digital values (commonly 8 bits or 256 levels), contrast stretching
involves changing the original values so that more of the available range is used.
As a result, the contrast between features and their backgrounds is increased [15].
Figure 24 illustrates an example of contrast stretching where light toned areas appear
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Fig. 25 (Left) contrast stretching; (Right) low-pass filter

Fig. 26 (Left) contrast stretching, (Right) high-pass filter

lighter and dark areas appear darker. The quality of images can also be improved
with spatial filtering techniques. Spatial filters are designed to highlight or eliminate
features in an image based on their spatial frequency. For example, rapid variations
in brightness levels reflect a high spatial frequency, whereas smooth areas with little
variation in brightness level or tone are characterized by a low spatial frequency.
There are several types of filters. Low-pass filters (Fig. 25) are used to emphasize
large homogenous areas of similar tone and reduce the smaller detail. High-pass
filters (Fig. 26) allow high frequency areas to pass with the resulting image having
greater detail. Directional filters are designed to enhance linear features such as
roads, streams, and faults. The filters can be designed to enhance features which are
oriented in specific directions [14]. Enhancement can also be achieved with a density
slicing technique (Fig. 27). In this technique, the grey tones in an image are divided
into a number of intervals reflecting a range of digital numbers. Thus, the image is
transformed into a limited number of gray or color tones. This is useful in displaying
weather satellite information. Another technique for image enhancement is taking
several images at different times and lighting conditions, then manipulating these
images in order to produce a seamless mosaic [14]. Once the image is enhanced, the
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Fig. 27 Satellite infrared image with six colors: white, gray, purple, brown, red, and dark brown.
Version in color available at springer.com/978-3-642-02787-1

process of extracting data can be achieved in a better way. Several techniques can
be used to achieve this task. These techniques will be discussed later in this book
(Chapter 12).

4 GIS: Geographic Information System

4.1 What is a GIS?

Geographic Information Systems (GISs) are being used for a wide variety of ap-
plications, such as resource management, environmental impact assessment, urban
planning, cartography, criminology, history, marketing, and logistics. These systems
have been described in several ways during their development and emergence as a
technology. In the broadest sense, a GIS simply uses geography and technology al-
lowing people to better understand the world and make decisions accordingly. In
the strictest sense, it is a collection of computer hardware, software, and geographic
data for capturing, storing, updating, manipulating, analyzing, and displaying all
forms of geographically referenced information [16]. Basically, there are five key
components to any functional GIS (Fig. 28): hardware, software, data, methods, and
people. The hardware consists of one or more computers, printers, plotters, and net-
works in which a GIS operates. GIS software provides the user with the required
tools and functions for the capture, storage, manipulation, and analysis of informa-
tion. It includes a database software, operating system software, GIS tool (e.g., ESRI
ArcGIS, ArcView, and ArcInfo), and probably network software. As the most im-
portant component, the availability of data highly influences the effectiveness. Data
can be obtained from a variety of sources, such as surveying, and stored in different
formats. Data is categorized and stored as a collection of thematic layers of any GDS
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Fig. 28 Components of a GIS

according to its locations on the Earth. GIS takes these layers and overlays them for
analysis and visualization. GIS is an extremely valuable tool for data manipulation
(e.g., add, edit, or delete the attribute of data to the specification of a given project).
It allows users to submit queries using the attributes associated to each layer through
a database. The GIS system displays the results of queries on maps from which in-
formation can be obtained and decisions can be made accordingly [17]. An effective
use of data in a given organization depends on the establishment of well-designed
methods (plan and rules). The achievement of this goal remains limited unless the
organization has skilled and knowledgeable people to manage, implement, and op-
erate the system.

4.2 Data Capture and Creation

Any variable of the data source that can be located spatially can be fed into a GIS. In
this case, it is important to know its location (e.g., longitude, latitude, and elevation
coordinates). Data can be obtained from a variety of sources, such a GPS systems,
online websites, digital images, sensors, satellites, and surveying (Fig. 29). Survey-
ing is the technique and science of accurately determining the terrestrial or 3D space
position of points and the distances and angles between them. There is a tradeoff be-
tween the quality and costs of capture and storage of data. Absolute accurate data
allows for an easier interpretation of information. However, it is costly, particularly
in terms of time. Data is commonly stored in a digitized format. Survey data (e.g.,
collected with a GPS) can be directly entered into a GIS from systems integrated
to survey instruments. Once date is stored, some editing may be necessary to add
attributes or remove errors. Errors may result from non-respecting topological con-
straints, such as representing a house at the right side of a river instead of its left
side as in the real world. Errors may also appear unintentionally. For example, dirt
on a scanned map might connect two lines that should not be connected [17]. The
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Fig. 29 Acquisition of data with surveying

data stored in a GIS may come from different sources and concern spatial, social,
or economic issues. The analysis of this data may result in the extraction of rele-
vant knowledge to the application domain. A GIS can help in achieving this task
by relating this data in spite of its heterogeneity. For example, it is able to convert
existing digital information, which is not in map form, into recognizable and us-
able map-like form. Moreover, it allows for the application of some processing to
spatial information on maps when these maps have different scales [17]. Projection
is an example of processing. This fundamental component of map making allows
for generating a 2D representation (on a paper medium or computer screen) from
the 3D curved surface model of the Earth. The interoperability of spatial data can
be better achieved by exploiting their semantics. Tools and technologies emerging
from the W3C’s Semantic Web Activity are useful for data integration problems in
information systems. Ontologies are a key component of this semantic approach.
They allow a GIS to focus on the meaning of data rather than its syntax or structure.

4.3 Types of GIS Data Models

The digital data used by a GIS represents useful real world information for human
beings. This information may be of different types, such as static (e.g., buildings,
lakes, mountains), dynamic (e.g., temperature, human activities in a given city),
and event-based (e.g., storms, Earthquakes). GIS keeps track of this information as
well the locations where they happen or exist. This goal is helped with a consistent
model of the real world [18]. A data model is a set of constructs for describing
and representing selected aspects of the real world in computer. Since the real
world is infinitely complex, its representation requires to make difficult choices con-
cerning what aspects to represent and how to model them. Due to the varieties of
choices, several data models of the real world may exist according to users’ needs
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and the characteristics of the geographic space [19]. CAD data model. The earliest
GISs were based on very simple models derived from works in the fields of image
analysis, CAD, and computer cartography. In a CAD model, entities are symboli-
cally represented as simple points, lines, and polygons. This model has three main
problems: (1) it typically uses local drawing coordinates instead of real-world co-
ordinates to represent objects, (2) the identification of individual objects is difficult
since they do not have unique identifiers, and (3) it focuses on the graphical repre-
sentation of objects and does not store details of any relationships between objects.
Computer cartography. It aimed to automate the production of maps and the cre-
ation of simple thematic maps. The idea was to digitize and store paper maps on
computer for subsequent printing. Like CAD systems, it is difficult with computer
cartography data models to identify objects and work with object relationships. Im-
age model. It is a simple model which is still used by GIS despite its limitations. It
uses scanned pictures of real-world objects. It handles these pictures using rasters
or grids. Object data model. The previous data models focus on the geometry of
objects using a collection of points, lines, and polygons. They do not allow for the
representation of spatial objects having large numbers of proprieties and complex
relations with nearby objects. In addition, with these models, all transformations
are applied to spatial objects in separate procedures making software and database
development tedious and time-consuming [18]. The object data model has been pro-
posed as a solution for these limitations. Each object contains the proprieties of a
specific spatial object and several methods allowing for the handling of this object.
The geometry of the spatial object is considered as an attribute of the object. Using
the object model, designers are able to model relationships between objects, such
as topologic relationships (mathematical relationships used to validate the geometry
of vector entities, to test polygons adjacency, etc.), geographic relationships (based
on geographic operators such as overlap, adjacency, and inside that determine the
interaction between objects), and general relationships (rules to maintain database
integrity and to enforce validation constraints). Raster model. It uses an array of
cells (pixels) to represent the objects of the real world (Fig. 30). This array is made
up of grid values with metadata about the array. This metadata typically includes
the geographic coordinate of the upper-left corner of the grid, the cell size, and the
number of rows and column elements. The raster model is widely used for analyti-
cal applications such as disease dispersion modeling and surface water flow analysis
[19]. Raster data sets record a value for all points in the area covered which may re-
quire more storage space than representing data in a vector format that can store data
only where needed. Raster data also allows easy implementation of overlay opera-
tions, which are more difficult with vector data. Non-spatial data can be represented
in raster format. In this case, the cell value can store attribute information, but it can
also be used as an identifier that can relate to records in another table [19]. Vector
model. In a vector model, all lines of an area are captured as a polygon which is a
series of points or vertices generally connected by straight lines (Fig. 31, left). This
model needs to specify the locations of the different points that form the polygon.
The vector model is widely implemented in GIS. Its popularity is due to the precise
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Fig. 30 Example of raster representation
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Points and their coordinates 
A: (15, 7) 
B: (9, 27) 
C: (19, 21) 

Lines and their coordinates 
L1: (3,16) (10,8) (17,14) (25,3)  
L2: (3, 37) (13, 40) (13,16) (30,16) (33,35) 

The polygon and its coordinates 
P: (10,10) (20,10) (25,3) (30,13) (19, 37) (3,17)  P 

Fig. 31 (left) A polygon approximation of an area; (right) Representation of point, line, and poly-
gon objects using the vector data model [19]

nature of its representation method, its storage efficiency, and the quality of its carto-
graphic output [19]. The vector model represents each spatial object as a point (used
for geographical features that can best be expressed by a single point reference, e.g.,
wells), a line (used for linear features such as rivers and roads), or a polygon (used
for geographical features that cover a particular area of the Earth’s surface, such
as lakes and buildings) (Fig. 31, right). In the database, each of these geometries is
linked to a row that describes the attributes of the related object. For example, the
attributes of a river in a database may be its depth, water quality, and pollution level.
Compared to raster data, vector data provide practitioners with several advantages.
In addition to their easier update and maintenance, they are easy to register, scale,
and re-project. This can simplify combining vector layers from different sources.
Vector data are more compatible with relational database environments. Moreover,
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in addition to their reduced storage space, they allow for extended analysis capabil-
ity, especially for networks. For example, vector data enables practitioners to query
the data for the largest port within 100 miles from a given location and the connect-
ing road that is at least a two-lane highway. Data restructuring can be performed by
a GIS in order to convert data from vector to raster and vice versa. The conversion
from raster to vector can be achieved with software products like R2V, Able Vec-
tor, and AlgoLab. The conversion from vector to raster can be done with software
products like Scan2CAD and TracTrix.

4.4 Spatial Analysis with GIS

Spatial analysis (Fig. 32) is an important way to evaluate, estimate, predict, interpret,
and understand spatial phenomena. Relevant, and commonly hidden, knowledge/in-
formation are discovered with this process that usually involves manipulation or
calculation of coordinate or attribute variables with various operators. Examples
of these operators include selection, reclassification, dissolving, buffering, overlay,
and cartographic modeling. In addition to the use of these operators, the definition
of the relevant objects to the current study, the use of computers for analysis, the
limitations and particularities of the analysis, and the representation of final results

Fig. 32 Spatial analysis of subspace close to the hydrographic network
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are fundamental issues in spatial analysis. These issues include challenges related
to spatial characterization, spatial dependency or autocorrelation, scaling, and sam-
pling. In order to tackle the issues of spatial analysis, many products offer facilities
like software development kits (SDKs), programming languages, or scripting facil-
ities. In addition, many GIS products provide practitioners with built-in or optional
tools for managing spatial data, computing spatial relationships (such as distance,
connectivity, and directional relationships between spatial units), and visualizing
both the raw data and spatial analytic results within a cartographic context. The
use of these tools and facilities depends on the intended spatial analysis type that
can be divided into several categories, such as spatial overlay, contiguity analysis,
surface analysis, network analysis, and raster analysis. A further important aspect
of geospatial analysis is visualization. It consists in the creation and manipulation
of images, maps, diagrams, charts, 3D static and dynamic views and their associ-
ated tabular datasets. GIS packages increasingly encompass a range of such tools
allowing for static or rotating views, animations, dynamic linking and brushing, and
spatio-temporal visualizations.

Spatial Overlay

One basic way to create or identify spatial relationships is through the process of
spatial overlay (Fig. 33). Spatial overlay is accomplished by joining and viewing
together separate data sets that share all or part of the same area. The result of this
combination is a new data set that identifies the spatial relationships. Spatial overlay

Fig. 33 Principle of spatial overlay
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Fig. 34 Spatial overlay applied to vector data

requires that data layers use a common coordinate system [17]. Spatial overlay may
be applied either to raster or vector data. On the one hand, raster overlay is typically
applied to nominal or ordinal data. The process is done cell by cell resulting in
the combination of the two input layers. On the other hand, vector overlay can be
applied in three common ways: clip, intersection, and union (Fig. 34).

Contiguity Analysis

The term spatial relationship can be best explained through an example. Consider
the question “How many lakes are in the province of Quebec?” This query is non-
spatial. The answer does not require knowledge of the physical location of the lakes
nor does it describe where the lakes are in relation to one another. However, a ques-
tion that asks “How many lakes are in the province of Quebec having an area greater
than 10 km2 and 2 km apart?” is of a spatial nature. To answer this question, one
must have the ability to determine the location of each lake, measure the distance
between the lakes, and examine their attributes (e.g., surface). A GIS can easily pro-
vide the user with the right answer. This is possible since the GIS has the ability
to link spatial data with information (facts and figures) about a particular feature
on a map. To achieve this task, the GIS uses neighborhood analysis. This analysis
is sometimes referred to as contiguity analysis. More explicitly, contiguity analy-
sis is an analytical technique to determine whether a set of areas (polygons) are
situated next to each other and to examine their interrelationships. A good GIS cre-
ates internal data structures (“topology”) for finding answers rapidly. This type of
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analysis enables the GIS to answer questions, such as: Which properties are next to
a flooded plain? Which species have habitats in contact with a protected ecological
region?

Surface Analysis

Surface analysis allows for the analysis of the properties of physical surfaces, such
as gradient, aspect, and visibility. It analyzes the distribution of a variable which
can be represented as the third dimension of spatial data. In addition to X and Y-
coordinates of features, a Z-variable (e.g., elevation) is added to represent the vari-
ation in the surface. Surface analysis can achieve several operations such as slope
(identifies slope or maximum rate of change, from each cell to its neighbor), aspect
(identifies the steepest down-slope direction from each cell to its neighbor), hill-
shade (determines the hypothetical illumination of a surface for either analysis or
graphical display), viewshed (identifies which cell locations can be seen from each
observation point), and contour (produces an output polyline dataset) [17].

Raster Analysis

Raster analysis is widely used in environmental sciences and remote sensing. It
typically means a range of actions applied to the grid cells of one or more maps
(or images). It often involves filtering and/or algebraic operations that process one
or more raster layers according to simple rules resulting in a new map layer. For
example, raster analysis may be achieved by replacing each cell value with some
combination of its neighbors’ values, or computing the sum or difference of spe-
cific attribute values for each grid cell in two matching raster datasets. Descriptive
statistics, such as cell counts, means, variances, maxima, minima, cumulative val-
ues, frequencies, and a number of other measures and distance computations are
also often included in this type of analysis [17].

Network Analysis

Network analysis consists of the examination of the properties of natural and man-
made networks. It may be used to address a wide range of practical problems, such
as route selection and facility location. It also helps in understanding the behav-
ior of flows within and around such networks. In addition, a GIS can simulate the
routing of materials along a linear network. In order to represent the flow of the phe-
nomenon more accurately, values such as slope, speed limit, or pipe diameter can
be incorporated into network modeling. Network modeling is commonly employed
in transportation planning, hydrology modeling, and infrastructure modeling [17].
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4.5 Data Output and Cartography

Cartography is the design and production of maps or visual representations of spatial
data. The vast majority of modern cartography is done with the help of computers,
usually using a GIS. Traditional maps are abstractions of the real world, a sampling
of important elements represented on a sheet of paper with symbols assigned to
physical objects. They express a geographical reality, with different data represen-
tations and according to a specific scale and purpose. People who use maps must
interpret these symbols. Powerful analysis techniques can produce high-quality
maps within a short time period by using different data representations. Important
elements in these maps can be emphasized with graphical display techniques such
as shading [17]. Maps can also be produced in a digital form. In this case, web map
servers can be used in order to facilitate their distribution through web browsers us-
ing various implementations of web-based application programming interfaces (e.g.,
AJAX, Java, and Flash). The process of creating (personalized) digital maps is fas-
tidious. GIS is used to help implement this process automatically. The main problem
in automating the map-creation process is the use of a single set of data to produce
multiple products at a variety of scales [18]. This can be achieved with a technique
known as generalization. Cartographic generalization can be defined as the science
and art of exaggerating the important aspects (entities), in accordance with the pur-
pose and scale of a particular map, with the exclusion of irrelevant details that may
overload the map and confuse its user [20]. Cartographic generalization aims to pro-
duce a good map, balancing the requirements of accuracy, information content, and
legibility. During this process, logical and unambiguous relationships between map
objects must be maintained, while aesthetic quality is preserved. Cartographic gen-
eralization is a very complex process. In order to reduce its complexity, the overall
process is often decomposed into individual sub-processes, called operators. Each
operator defines a transformation that can be applied to a single spatial object, or
to a group of spatial objects. Operators include simplification, elimination, aggre-
gation, exaggeration, displacement, size reduction, and typification. For example, if
we intend to generate a 1:20 k map from a 1:5 k map, a scale reduction is necessary.
Due to this process, some objects are no longer visible. Useless objects are sim-
ply eliminated. The improvement of the visibility of some important objects can be
achieved by exaggerating their geometrical representation. Exaggeration may result
in the overlap between neighboring objects. Displacements may be applied to some
objects in order to solve this overlap [18].

4.6 GIS Software

Within industry, several companies such as ESRI, Intergraph, Mapinfo, and Au-
todesk propose GIS tools. Governmental and military departments often use custom
software, specialized products that meet specific needs, or open source products
(e.g., GRASS). Open source products allow users to freely access and handle
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geo-spatial information. Many open-source GIS software products are currently
available. This has been motivated by the broad use of non-proprietary and open
data formats such as the Shape File format for vector data and the Geotiff for-
mat for raster data. It has also been motivated by the adoption of OGC (Open
Geospatial Consortium) standards including Web Map Service (WMS) and Web
Feature Service (WFS). Well-known open source GIS software includes GRASS
GIS, Quantum GIS, MapServer, uDig, OpenJUMP, and gvSIG. In addition to the
open-source GIS software, the free access and handling was made easier with the
increase of web-based providers (e.g., Google Earth, MapQuest, and Yahoo maps).
These providers are taking benefit from the increasing popularity of Internet and
networks that contributed in the gradual change of GIS software from being stand-
alone to distributed. The currently available GIS software targets several topics
related to spatial information capture, handling, and production. For the purpose
of data creation, specialized high-end type of software are required to deal with the
time-consuming task of transforming raw data into a format usable by a GIS. Many
standard database and spreadsheet applications can be used to achieve this purpose.
AutoCAD software can also be used for digitizing. For the purpose of manage-
ment and analysis, many software products are available. Examples of professional
software include ArcGIS, Smallworld, Civil Designer, Xmap, and GRASS. These
products particularly help in data visualization and analysis. They can output a de-
tailed map, image, or movie used to communicate an idea or concept with respect
to a region of interest. For querying purposes, standard DBMS, such as MySQL and
ArcSDE, can be used to extract information from the spatial databases. More and
more databases are currently housed on servers so that they can be queried from web
sites. This was particularly helped with the evolution of scripting languages (e.g.,
JavaScript and VBA) and GIS APIs. It was also helped with applications, such as
MapInfo’s MapXtreme, Intergraph’s Geomedia WebMap (TM), ESRI’s ArcIMS,
ArcGIS Server, AutoDesk’s Mapguide, SeaTrails’ AtlasAlive, and the open source
MapServer.
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Computational Chemistry

Hassan Safouhi and Ahmed Bouferguene

1 Introduction

1.1 Molecular Multi-Center Integrals Over Exponential
Type Functions

It is well known that in any ab initio molecular orbital (MO) calculation, the
major task involves the computation of the so-called molecular multi-center in-
tegrals, namely overlap, two-, three-center nuclear attraction; hybrid, two- three-
and four-center two-electron Coulomb; and exchange integrals. A great number of
these integrals is required for molecular calculations based on the linear combi-
nation of atomic orbitals–molecular orbitals approximation (LCAO-MO) [1]. As
the molecular system gets larger, computation of these integrals becomes one of
the most difficult and time consuming steps in molecular systems calculation.
Improvement of the computational methods for molecular integrals would be in-
dispensable to a further development in computational studies of large molecular
systems.

In ab initio calculations using the LCAO-MO approximation, molecular orbitals
are built from a linear combination of atomic orbitals. Thus, the choice of reliable
basis functions is of prime importance [2]. A good atomic orbital basis should satisfy
the cusp at the origin [3] and the exponential decay at infinity [4, 5].

The most popular functions used in ab initio calculations are the so-called Gaus-
sian type functions (GTFs) [6,7]. With GTFs, the numerous molecular integrals can
be evaluated rather easily. Unfortunately, these GTF basis functions fail to satisfy the
above mathematical conditions for atomic electronic distributions. A large number
of GTFs have to be used in order to achieve acceptable accuracy and this increases
the computational cost.

Exponential type functions (ETFs) show the same behavior as the exact solu-
tions of atomic or molecular Schrödinger equations satisfying Kato’s conditions [8].
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These functions are thus better suited to represent electron wave functions near the
nucleus and at long range. This implies that a smaller number of ETFs than GTFs is
needed for comparable accuracy. Unfortunately, ETF’s molecular multi-center inte-
grals are extremely difficult to evaluate accurately and rapidly. Among ETFs, Slater
type functions (STFs) [9, 10] have a dominating position this is due to the fact that
their analytical expression is very simple. Unfortunately the multi-center integrals
over these functions turned out to be extremely difficult to evaluate. From the early
days of quantum chemistry, scientists have been aware of the unfortunate reality that
ETF’s molecular multi-center integrals are difficult to evaluate. Despite the efforts of
many scientists, including the very pioneers of quantum chemistry, no efficient algo-
rithms were proposed for their numerical evaluation. This hindered the development
of ETF-based programs for routine computations in quantum molecular structure
determination. However, with the recent advances in computer technology, many
researchers hope that the next generation of ab initio programs will be based on
ETF’s [11–14], since the numerical algorithms that were previously unusable are,
nowadays, implemented for the routine usage. Therefore, it does not seem impossi-
ble to envisage that ETFs may compete with GTFs in accurate and rapid molecular
calculations in the near future. Indeed, much effort is being made to develop effi-
cient molecular algorithms for integrals over conventional ETFs (see [8,15,16] and
references therein).

Various studies have focused on the use of B functions [17–19]. TheB functions
are analytically more complicated than STFs but they have much more appealing
properties applicable to multi-center integral problems [18, 20], in particular, the
fact that their Fourier transforms are exceptionally simple [21, 22]. Note that STFs
can be expressed as finite linear combinations of B functions [18] and that the ba-
sis set of B functions is well adapted to the Fourier transform method thoroughly
studied by the Steinborn group [18–30], which led to analytic expressions for all
multi-center molecular integrals over B functions.

Note that the Fourier transform method, which is one of the most successful
approach for the evaluation of multi-center integrals, was first shown by Prosser and
Blanchard [31] and Geller [32].

The analytic expressions obtained for molecular integrals overB functions using
the Fourier transform method, turned out to be extremely difficult to evaluate rapidly
to a high pre-determined accuracy. This is due to the presence of two- or three-
dimensional integral representations. The inner semi-infinite integrals is highly os-
cillatory because of the presence of spherical Bessel functions j�.v x/. When the
values of � and v are large, the accurate and fast numerical evaluation of these semi-
infinite integrals becomes extremely difficult.

In previous works [33–35], we demonstrated that the use of Gauss–Laguerre
quadrature is inefficient in evaluating this kind of oscillatory integral. It is possi-
ble to break up these semi-infinite integrals into infinite series of integrals. These
series are slowly convergent to the accuracy required for chemically significant
molecular calculations and this is why their use has been prevented. By using
the epsilon algorithm of Wynn [36] or Levin’s u transform [37], which are the
most popular convergence accelerator applied to the molecular integrals, we can
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accelerate the convergence of such infinite series, but the calculation times re-
quired to achieve sufficient accuracies are still prohibitively long. New techniques
are required for a rapid and accurate numerical evaluation of molecular integrals
over ETFs.

1.2 Nonlinear Transformations and Extrapolation Methods

In applied mathematics and in the numerical treatment of scientific problems, slowly
convergent or divergent sequences and series and oscillatory integrals occur abun-
dantly. Therefore, convergence accelerators and nonlinear transformation methods
for accelerating the convergence of infinite series and integrals have been invented
and applied to various situations. They are based on the idea of extrapolation. Their
utility for enhancing and even inducing convergence has been amply demonstrated
by Wynn [38] and Shanks [39]. Via sequence transformations slowly convergent
and divergent sequences and series can be transformed into sequences and series
with better numerical properties. Thus, they are useful for accelerating convergence
of slowly convergent series and integrals. In the case of nonlinear transformations,
the improvement of convergence can be remarkable. These methods form the basis
of new methods for solving various problems which were unsolvable otherwise and
have many applications as well [40–47].

In previous works, [33, 34, 48–57], we showed the efficiency of the nonlinear
transformationsD [58] and ND [59,60], in evaluating spherical Bessel integral func-

tions of the following form
Z 1

0

g.x/ j�.v x/ dx, where v is a real number and g.x/

is a nonoscillating function.
To apply these two transformations, the integrand should satisfy a linear differen-

tial equation with coefficients having asymptotic expansions in a sense of Poincaré
series [61]. It is shown that under some conditions on the non-oscillatory part g.x/,
the integrand of the above semi-infinite integral satisfies a second order linear dif-
ferential equation of the form required to apply the D and ND transformations. The
approximations D.2/

n and ND.2/
n of the semi-infinite integral, which converge very

quickly to the exact value of the integral as n becomes large, are obtained by solv-
ing sets of linear equations of order 2 n C 1 and n C 1, respectively, where the
computation of the 2 n C 1 or n C 1 successive positive zeros of the integrand is
necessary. This requires a large amount of CPU time, in particular when dealing
with spherical Bessel integrals.

In [62, 63], we introduced an extremely powerful method which combines the S
transformation [64, 65] with the nonlinear ND transformation. The S transformation
transforms the spherical Bessel integral functions into sine integral functions. The
strong oscillations of the integrands are then considerably reduced and this helps
greatly the extrapolation method. As it is well known, the numerical integration of
oscillatory integrands is difficult, especially when the oscillatory part is a spherical
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Bessel function and not a simple trigonometric function [66, 67]. We demonstrated
that the obtained integrands with the sine function satisfy second order linear differ-
ential equations of the form required to apply ND.

Using properties of the sine function, in particular the fact that its zeros are
equidistant, allowed the use of Cramer’s rule for computing the approximations
S ND.2/

n of semi-infinite integrals. The computation of a method to solve linear sys-
tems as well as the computation of the successive positive zeros of the integrands are
avoided. This result led to the development of a very simple and rapid algorithm for
accurate numerical evaluation of the semi-infinite integrals of interest. Recurrence
relations were developed for a better control of the degree of accuracy and to further
reduce the calculation times.

1.3 Extrapolation Methods and Molecular Integrals over ETFs

In [33, 48, 49], it is demonstrated that molecular integrals over B functions sat-
isfy the conditions required to apply the D and ND transformations for improving
convergence of oscillatory integrals, and it is shown that these transformations are
highly efficient compared with alternatives using classical techniques. The calcu-
lation times were considerably reduced (by factor 4–6 over classical methods). In
[34, 50, 52, 55], new extrapolation techniques specially suited for ETFs molecular
integrals were developed in order to simplify the application of ND, when improv-
ing convergence of complicated ETFs molecular integrals, especially when dealing
with the notorious four-center two-electron Coulomb and exchange integrals. The
numerical results obtained showed a further improvement in accuracy and a sub-
stantial gain in calculation times (factor 5–8 over ND). In [62, 64, 65], it is shown
that the S ND that combines the S and ND transformations can also be applied to
the semi-infinite integrals involved in the analytic expressions of all molecular
integrals over B functions. Highly efficient and rapid algorithms are now devel-
oped for all molecular integrals based on the aforementioned methods. Numerical
analysis was performed and it showed that in certain instances the values of the
integrands tend towards 0 or C1. This causes overflow errors, and the program
returns the message NaN, which means not a number. In such a situation, we have
developed alternate expressions for the approximations of the semi-infinite integrals
that avoids the overflow altogether. The obtained expression can also be computed
recursively.

The numerical results section shows that the combination S and ND methods with
the recurrence relations leads to highly efficient and rapid algorithms for the nu-
merical evaluation of molecular multi-center integrals over B functions and over
STFs. A complete optimized software package for all molecular multi-center inte-
grals based on extrapolation methods will soon be available.
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2 General Definitions and Properties

The spherical Bessel function jl .x/ is defined by [68]:

jl.x/ D .�1/l xl

�
d

xdx

�l � sin.x/

x

�
: (1)

The spherical Bessel function and its first derivative satisfy the following recur-
rence relations [68]:

(
x jl�1.x/ C x jlC1.x/ D .2l C 1/ jl.x/

x jl�1.x/ � .l C 1/ jl.x/ D x j 0l .x/:
(2)

For the following, we write j n

lC 1
2

with n D 1; 2; : : : for the successive positive

zeros of jl .x/. j 0

lC 1
2

are assumed to be 0.

The reduced Bessel function OknC 1
2
.z/ is defined by [17, 19]:

OknC 1
2
.z/ D

r
2

�
.z/nC

1
2KnC 1

2
.z/ (3)

D zn e�z
nX

jD0

.nC j /Š
j Š .n � j /Š

1

.2 z/j
; (4)

where KnC 1
2

stands for the modified Bessel function of the second kind [68].

A useful property satisfied by OknC 1
2
.z/ is given by:

�
d

zdz

�m
2

4
OknC 1

2
.z/

z2nC1

3

5 D .�1/m
OknCmC 1

2
.z/

z2.nCm/C1
: (5)

If we let the function 	 be defined by:

	.�; x/ D
p
� C � x2;

then with the help of the Leibnitz formula and the fact that
d

dx
D dz

dx

d

dz
, one can

show that if n� D 2
, then for j 2 N:

�
d

xdx

�j
" Ok� Œ	.�; x/�

Œ	.�; x/�n�

#
D .�1/j �j

Ok�Cj Œ	.�; x/�

Œ	.�; x/�2.�Cj /
; (6)
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and for n� < 2
, we obtain:

�
d

xdx

�j
" Ok� Œ	.�; x/�

Œ	.�; x/�n�

#
D �j

Œ	.�; x/�n�C2j

jX

iD0

 
j

i

!
.�1/j�i .2
 � n� /ŠŠ

.2
 � n� � 2i/ŠŠ
Ok�Cj�i Œ	.�; x/� : (7)

The reduced Bessel functions satisfy the recurrence relation [17]:

OknC 1
2
.z/ D .2n� 1/ Okn� 1

2
.z/C z2 Okn� 3

2
.z/: (8)

The B functions are defined as follows [18, 19]:

Bm
n;l.�;

#—r / D .�r/l

2nCl.nC l/Š
bkn� 1

2
.�r/ Y m

l .�
#—r ; ' #—r /; (9)

where Y m
l
.�; '/ stands for the surface spherical harmonic and is defined explicitly

using the Condon–Shortley phase convention as follows [81]:

Y m
l .�; '/ D imCjmj



.2l C 1/.l � jmj/Š
4�.l C jmj/Š

� 1
2

P
jmj
l
.cos �/ eim'; (10)

Pm
l
.x/ is the associated Legendre polynomial of l degree and m order:

Pm
l .x/ D

�
1 � x2

�m=2
�

d

dx

�lCm
"�
x2 � 1�l
2l lŠ

#
: (11)

The B function can only be used as a basis functions of atomic orbitals if n 2 N

holds. For �l � n � 0, a B function is singular at the origin, and if n D �l � 

with 
 2 N holds, then a B function is no longer a function in the sense of classical
analysis but a derivation of the three-dimensional Dirac delta function [69].

The Fourier transform NBm
n;l
.�; #—p/ of Bm

n;l
.�; #—r / is given by [22]:

NBm
n;l.�;

#—p/ D
r
2

�
�2nCl�1 .�i jpj/l

.�2 C jpj2/nClC1
Y m

l .�
#—p ; ' #—p /: (12)

The normalized STFs are defined by [10]:

�m
n;l .�;

#—r / D N .�; n/ rn�1 e�	r Y m
l .�

#—r ; ' #—r /; (13)

where N.�; n/ stands for the normalization factor and it is given by:

N .�; n/ D
s
.2�/2nC1

.2n/Š
: (14)



Computational Chemistry 179

The Gaunt coefficients are defined as [70–72]:

< l1m1jl2m2jl3m3 >DZ 


�D0

Z 2


'D0

ŒY
m1

l1
.�; '/�� Y m2

l2
.�; '/ Y

m3

l3
.�; '/ sin .�/ d� d': (15)

These coefficients linearize the product of two spherical harmonics:

ŒY
m1

l1
.�; '/��Y m2

l2
.�; '/ D

l1Cl2X

lDlmin;2

< l2m2jl1m1jlm2 �m1 > Y
m2�m1

l
.�; '/; (16)

where the subscript l D lmin;2 in the summation symbol implies that the summation
index l runs in steps of 2 from lmin to l1 C l2. The constant lmin is given by [72]:

lmin D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

max.jl1 � l2j; jm2 �m1j/;
if l1 C l2 Cmax.jl1 � l2j; jm2 �m1j/ is even

max.jl1 � l2j; jm2 �m1j/C 1;
if l1 C l2 Cmax.jl1 � l2j; jm2 �m1j/ is odd:

(17)

STFs can be expressed as finite linear combinations of B functions [18]:

�m
n;l.�;

#—r / D N .�; n/
�n�1

n�lX

pD Qp

.�1/n�l�p 22pC2l�n .l C p/Š
.2p � nC l/Š .n � l � p/Š Bm

p;l.�;
#—r /; (18)

where:

Qp D

8
<̂

:̂

n � l
2

if n � l is even

n � l C 1
2

if n � l is odd:
(19)

The Fourier integral representation of the Coulomb operator
1

j #—r j is given by [73]:

1

j #—r j D
1

2�2

Z
#—

k

e�i
#—

k : #—r

k2
d

#—

k : (20)

The hypergeometric function is given by [68]:

2F1.˛; ˇI 	 I x/ D
C1X

rD0

.˛/r .ˇ/r x
r

.	/r rŠ
; (21)
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where .˛/n represents the Pochhammer symbol [68]:

.˛/n D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

.˛/n D 1 if n D 0

.˛/n D ˛ .˛ C 1/ .˛ C 2/ : : : .˛ C n � 1/ D � .˛ C n/
� .˛/

if n � �˛
.˛/n D 0 if n � �˛ C 1;

(22)
where � stands for the Gamma function [68]. For n 2 N:

� .nC 1/ D nŠ and �

�
nC 1

2

�
D .2n/Š

22n nŠ

p
�: (23)

The infinite series (21) converge only for jxj < 1, and they converge quite
slowly if jxj is slightly less than one. The corresponding functions, nevertheless, are
defined in a much larger subset of the complex plane, including the case jxj > 1.
Convergence problems of this kind can often be overcome by using nonlinear se-
quence transformations [74].

Note that if ˛ or ˇ in the infinite series (21) is a negative integer, then the hyper-
geometric function will be reduced to a finite sum.

For the following, we define A.�/ for certain 	 , as the set of infinitely differen-
tiable functions p.x/, which have asymptotic expansions in inverse powers of x as
x !C1, of the form:

p.x/ � x�
�
a0 C a1

x
C a2

x2
C : : :

�
: (24)

We denote QA.�/ for some 	 , the set of functions p.x/ such that:

p.x/ 2 A.�/ and lim
x!C1x

�� p.x/ 6D 0: (25)

Thus,p 2 QA.�/ has an asymptotic expansion in inverse powers of x as x ! C1
of the form given by (24) with a0 6D 0.

We define the functional ˛0.p/ by ˛0.p/ D a0 D lim
x!C1x

�� p.x/.

Lemma 1. Let p.x/ be in A.�/ for some 	 . Then,

1. If 	 ¤ 0 then p0.x/ 2 A.��1/, otherwise p0.x/ 2 A.��2/

2. If q.x/ 2 A.ı/ then p.x/ q.x/ 2 A.�Cı/

3. 8 k 2 R, xk p.x/ 2 A.�Ck/

4. If q.x/ 2 A.ı/ and 	 � ı � 0 then the function p.x/C q.x/ 2 A.�/

5. Form > 0 an integer, pm.x/ 2 A.m �/

6. The function 1=p.x/ 2 A.��/

The proof of Lemma 1 follows from properties of asymptotic expansions in inverse
powers of x.
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3 Molecular Integrals and the Fourier Transform

Let A, B , C , and D be four arbitrary points of the euclidian space E3, while O is
the origin of the fixed coordinate system.

3.1 Three-Center Nuclear Attraction Integrals

The three-center nuclear attraction integrals over STFs are given by:

I Qn2;l2;m2

Qn1;l1;m1
D
Z

#—

R

h
�

m1

Qn1;l1

�
�1;

#—
R � #   —

OA
�i� 1

j #—R � #     —
OC j�

m2

Qn2;l2

�
�2;

#—
R � #    —

OB
�

d
#—
R;

(26)

where Qn1 and Qn2 stand for the principal quantum numbers.
By performing a translation of vector

#   —
OA, we can rewrite I Qn2;l2;m2

Qn1;l1;m1
as:

I Qn2;l2;m2

Qn1;l1;m1
D
Z

#—r

h
�

m1

Qn1;l1
.�1;

#—r /
i� 1

j #—r � #—
R1j

�
m2

Qn2;l2

�
�2;

#—r � #—
R2

�
d #—r ; (27)

where #—r D #—
R � #   —

OA,
#—
R1 D #    —

AC , and
#—
R2 D #    —

AB .
By using (18), we can express I Qn2;l2;m2

Qn1;l1;m1
as a finite linear combination of integrals

eIn2;l2;m2

n1;l1;m1
involving B functions:

eIn2;l2;m2

n1;l1;m1
D
Z

#—r

h
B

m1

n1;l1
.�1;

#—r /
i� 1

j #—r � #—
R1j

B
m2

n2;l2

�
�2;

#—r � #—
R2

�
d #—r : (28)

By substituting Fourier integral representation of the Coulomb operator (20) in
(28), we obtain:

eIn2;l2;m2

n1;l1;m1
D 1

2�2

Z

#—x

ei #—x :
#—

R1

x2

D
B

m1

n1;l1
.�1;

#—r /
ˇ̌
ˇe�i #—x : #—r

ˇ̌
ˇBm2

n2;l2

�
�2;

#—r � #—
R2

�E
#—r

d #—x :

(29)

3.2 Hybrid and Three-Center Two-Electron Coulomb Integrals

Three-center two-electron Coulomb integral over STFs is given by:

Kn2l2m2;n4l4m4

n1l1m1;n3l3m3
D
Z

#—

R;
#—

R0

h
�

m1

n1;l1

�
�1;

#—
R� #   —

OA
�i�h

�
m3

n3;l3

�
�3;

#—
R 0� #    —

OB
�i� 1

j #—R � #—
R 0j

��m2

n2;l2

�
�2;

#—
R � #   —

OA
�
�

m4

n4;l4

�
�4;

#—
R 0 � #     —

OC
�

d
#—
R d

#—
R 0: (30)
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The hybrid integral, Hn2l2m2;n4l4m4

n1l1m1;n3l3m3
, corresponds to the case where B D A. By

performing a translation of vector
#   —
OA, we can rewrite Kn2l2m2;n4l4m4

n1l1m1;n3l3m3
as:

Kn2l2m2;n4l4m4

n1l1m1;n3l3m3
D
Z

#—r ; #—r 0

h
�

m1

n1;l1
.�1;

#—r /
i� h

�
m3

n3;l3

�
�3;

#—r 0 �
�

#—
R3 � #—

R4

��i�

� 1

j #—r � #—r 0 � #—
R4j
� �m2

n2;l2
.�2;

#—r / �
m4

n4;l4

�
�4;

#—r 0
�

d #—r d #—r 0;

(31)

where #—r D #—
R � #   —

OA, #—r 0 D #—
R0 � #     —

OC ,
#—
R3 D #    —

AB , and
#—
R4 D #    —

AC and for hybrid
integral,

#—
R3 D #    —

AB D #—
O .

By using (18), we can express Kn2l2m2;n4l4m4

n1l1m1;n3l3m3
and Hn2l2m2;n4l4m4

n1l1m1;n3l3m3
as finite linear

combinations of integrals involving B functions. These integrals over B functions
are given by:

eKn2l2m2;n4l4m4

n1l1m1;n3l3m3
D
Z

#—r ; #—r 0

h
B

m1

n1;l1
.�1;

#—r /
i� h

B
m3

n3;l3

�
�3;

#—r 0 �
�

#—
R3 � #—

R4

��i�

� 1

j #—r � #—r 0 � #—
R4j
� Bm2

n2;l2
.�2;

#—r / B
m4

n4;l4

�
�4;

#—r 0
�

d #—r d #—r 0:

(32)

By substituting the Fourier integral representation of the Coulomb operator in
(32), we obtain:

eKn2l2m2;n4l4m4

n1l1m1;n3l3m3
D 1

2�2

Z

#—x

ei #—x :
# —

R4

x2

D
B

m1

n1;l1
.�1;

#—r /
ˇ̌
ˇe�i #—x : #—r

ˇ̌
ˇBm2

n2;l2
.�2;

#—r /
E

#—r

�
D
B

m4

n4;l4
.�4;

#—r 0/
ˇ̌
ˇe�i #—x : #—r 0

ˇ̌
ˇBm3

n3;l3

�
�3;

#—r 0 � . #  —
R3 � #  —

R4/
�E�

#—r 0

d #—x :

(33)

In the term T1 D
D
B

m1

n1l1
.�1

#—r /
ˇ̌
e�i #—x : #—r

ˇ̌
B

m2

n2l2
.�2

#—r /
E

#—r
involved in the above

expression, the two B functions are centered on the same point and therefore the
radial part of their product has an analytical expression which can easily be obtained
using (9) and (4). Consequently, T1 has an analytic expression, which is given by:

T1 D
h
2n1Cl1Cn2Cl2.n1 C l1/Š.n2 C l2/Š

i�1

�
l1

1 �
l2

2

r
�

2x

�
lmaxX

lDlmin;2

.�i/l < l1m1jlm1 �m2jl2m2 > ŒY
m1�m2

l
.� #—x ; ' #—x /�

�

�
n1Cn2X

kD2

k2X

iDk1

"
.2n1 � i � 1/Š .2n2 � k C i � 1/Š �i�1

1 �k�i�1
2

.i � 1/Š .n1 � i/Š .k � i � 1/Š .n2 � k C i/Š 2n1Cn2�k

#
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�
h

x
2	s

ilC 1
2

� .k C l1 C l2 C l C 1/

�
kCl1Cl2C 1

2
s � .l C 3

2
/



1C x2

�2
s

��k�l1�l2

�2F1

�
l � k � l1 � l2 C 1

2
;
l � k � l1 � l2

2
C 1I l C 3

2
I �x

2

�2
s

�
(34)

where k1 D max.1; k � n2/, k2 D min.n1; k � 1/, and �s D �1 C �2.
One of the arguments of the hypergeometric function �

2
D l�k�l1�l2C1

2
or

l�k�l1�l2

2
C 1 D �C1

2
is a negative integer. By using (22), one can easily show

that the hypergeometric series involved in the above equation is reduced to a finite
expansion:

2F1

�
�

2
;
�C 1
2
I l C 3

2
I �x

2

�2
s

�
D

�0X

rD0

.�1/r .
�
2
/r .

�C1
2
/r x

2r

.l C 3
2
/r rŠ �2r

s

; (35)

where �0 D ��
2

if � is even, otherwise �0 D ��C1
2

.

3.3 Four-Center Two-Electron Coulomb Integrals

Four-center two-electron Coulomb integrals over STFs, which are the most difficult
type of integrals occuring in molecular structure calculations, are given by:

J n2l2m2;n4l4m4

n1l1m1;n3l3m3
D
Z

#—

R;
#—

R 0

h
�

m1

n1;l1

�
�1;

#—
R � #   —

OA
�i� h

�
m3

n3;l3

�
�3;

#—
R0 � #     —

OC
�i�

� 1ˇ̌
ˇ #—
R � #—

R0
ˇ̌
ˇ
� �m2

n2;l2

�
�2;

#—
R � #    —

OB
�
�

m4

n4;l4

�
�
�4;

#—
R0 � #    —

OD
�

d
#—
R d

#—
R0; (36)

By using (18), one can express the four-center two-electron Coulomb integrals
J Qn2l2m2;Qn4l4m4

Qn1l1m1;Qn3l3m3
over STFs (36) as finite linear combinations of integrals over B

functions:

eJ n2l2m2;n4l4m4

n1l1m1;n3l3m3
D
Z

#—

R;
#—

R 0

h
B

m1

n1;l1

�
�1;

#—
R � #   —

OA
�i� h

B
m3

n3;l3

�
�3;

#—
R0 � #     —

OC
�i�

� 1ˇ̌
ˇ #—
R � #—

R0
ˇ̌
ˇ
�Bm2

n2;l2

�
�2;

#—
R � #    —

OB
�
B

m4

n4;l4

�
�
�4;

#—
R0 � #    —

OD
�

d
#—
R d

#—
R0: (37)
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By substituting the integral representation of the Coulomb operator in the above
expression after performing a translation of vector

#   —
OA and

#    —
OD, we obtain:

eJ n2l2m2;n4l4m4

n1l1m1;n3l3m3
D 1

2�2

Z
ei #—x :

#—

R41

x2

D
B

m1

n1;l1
.�1;

#—r /
ˇ̌
ˇe�i #—x : #—r

ˇ̌
ˇBm2

n2;l2

�
�2;

#—r � #—
R21

�E
#—r

�
D
B

m4

n4;l4

�
�4;

#—r 0
� ˇ̌
ˇe�i #—x : #—r 0

ˇ̌
ˇBm3

n3;l3

�
�3;

#—r 0 � #—
R34

�E�
#—r 0

d#—x ; (38)

where
#—
R1 D #   —

OA,
#—
R2 D #    —

OB ,
#—
R3 D #     —

OC ,
#—
R4 D #    —

OD, #—r D #—
R� #—

R1, #—r 0 D #—
R0� #—

R4,
and

#—
Rij D #—

Ri � #—
Rj .

In the case of three-center two-electron exchange integrals,
#—
R1 D #—

R3 and in the
case of two-center two-electron exchange integrals,

#—
R1 D #—

R3 and
#—
R2 D #—

R4.

3.4 Analytic Development

The Fourier transformation method led to an analytic expression for the terms
[23, 24]: D

B
mi

ni ;li
.�i ;

#—r /
ˇ̌
ˇe�i #—x : #—r

ˇ̌
ˇ Bmj

nj ;lj

�
�j ;

#—r � #—
R
�E

#—r
:

This result led to the development of analytic expressions for all molecular multi-
center integrals over B functions and over STFs.

The obtained analytic expressions turned out to be extremely difficult, because of
the presence of highly oscillatory spherical Bessel integral functions. In the case of
the molecular integrals under consideration, the analytic expressions are given by:

eIn2;l2;m2

n1;l1;m1
D 8 .4 �/2 .�1/l1Cl2 .2l1 C 1/ŠŠ

�.2l2 C 1/ŠŠ .n1 C l1 C n2 C l2 C 1/Š�2n1Cl1�1
1 �
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2

.n1 C l1/Š.n2 C l2/Š

�
l1X
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1
D0

l 0

1X
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1
D�l 0

1

.i/l1Cl 0

1
< l1m1jl 01m01jl1 � l 01m1 �m01 >
.2l 01 C 1/ŠŠŒ2.l1 � l 01/C 1�ŠŠ

�
l2X

l 0

2
D0

l 0

2X

m0

2
D�l 0

2

.i/l2Cl 0

2.�1/l 0
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< l2m2jl 02m02jl2 � l 02m2 �m02 >
.2l 02 C 1/ŠŠŒ2.l2 � l 02/C 1�ŠŠ

�
l 0

2
Cl 0

1X

lDl 0

min;2

< l 02m02jl 01m01jlm02 �m01 > Rl
2 Y

m0

2
�m0

1

l
.� #—

R2
; ' #—

R 2
/

�
l2�l 0

2
Cl1�l 0

1X

lDl 00

min;2

.�i/� < l2 � l 02m2 �m02jl1 � l 01m1 �m01j�� >
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�
�lX

jD0

 
�l

j

!
.�1/j

2n1Cn2Cl1Cl2�jC1.n1 C n2 C l1 C l2 � j C 1/Š

�
Z 1

sD0

sn2Cl2Cl1�l 0

1 .1 � s/n1Cl1Cl2�l 0

2 Y



�
.� #—v ; ' #—v /

�
"Z C1

xD0

xnx

Ok� ŒR2	.s; x/�

Œ	.s; x/�n�
j�.vx/ dx

#
ds; (39)

where:
Œ	.s; x/�2 D .1 � s/�2

1 C s�2
2 C s.1 � s/x2

#—v D .1 � s/ #—
R2 � #—

R1

n� D 2.n1 C l1 C n2 C l2/ � .l 01 C l 02/ � l C 1

 D n1 C n2 C l1 C l2 � l � j C 1

2

� D .m2 �m02/ � .m1 �m01/
nx D l1 � l 01 C l2 � l 02
�l D Œ.l 01 C l 02 � l/=2�
v and R2 stand for the modulus of #—v and

#—
R2, respectively.

eKn2l2m2;n4l4m4

n1l1m1;n3l3m3
D

.8�/3
p
��

l1

1 �
l2

2 �
2n3Cl3�1
3 �

2n4Cl4�1
4 .2l3 C 1/ŠŠ.2l4 C 1/ŠŠ.n3 C l3Cn4Cl4C1/Š
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�
n1Cn2X

kD2

k2X

iDk1

"
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4
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4
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3X
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2
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3
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�
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3
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4X

l 0Dl 0

min;2

< l 04m04jl 03m03jl 0m04 �m03 > Rl 0

34 Y
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l 0
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R34
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/

�
l3�l 0
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l34Dl 00
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�
lCl34X

�D�min;2

i� < lm2 �m1jl34.m3 �m03/ � .m4 �m04/j�� >

�
�lX

jD0

 
�l

j

!
.�1/j �nk�l�1

s � .k C l1 C l2 C l C 1/
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.l C 3
2 /r rŠ �
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s
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sD0
sn3Cl3Cl4�l 0
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�
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0

xnx

�
�2
s C x2

�nk

bk� ŒR34	.s; x/�
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j�.v x/ dx

#
ds; (40)

where:
k1 D max.1; k � n2/, k2 D min.n1; k � 1/.
nx D l3 � l 03 C l4 � l 04 C 2r C l , nk D k C l1 C l2
n� D 2.n3 C l3 C n4 C l4/ � .l 03 C l 04/ � l 0 C 1
� D l � k � l1 � l2 C 1, �l D l3 C l4 � l 0

2
#—v D .1 � s/

�
#—
R3 � #—

R4

�
C #  —
R4 D .1 � s/ #—

R34 C #—
R4

� D .m2 �m1/ � .m3 �m03/C .m4 �m04/
Œ	.s; x/�2 D .1 � s/�2

4 C s�2
3 C s.1 � s/x2


 D n3 C n4 C l3 C l4 � l 0 � j C 1
2

m34 D .m3 �m03/� .m4 �m04/
v and R34 stand for the modulus of #—v and

#—
R34, respectively.

The analytic expression of hybrid integrals over B functions can be obtained by
replacing R3 by 0 in the above equation.
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In the following, the semi-infinite integrals in (39), (40), and (41) will be referred
to as I.s/, K.s/ and J .s; t/ respectively and their corresponding integrands will be
referred to as fI.x/, fK.x/ and fJ .x/ respectively.

The integrands fI.x/, fK.x/, and fJ .x/ oscillate strongly especially for large
values of � and v as it can be seen from Figs. 1–3. The non-oscillating part of the in-
tegrands are exponentially decreasing functions. Unfortunately, these exponentially
decreasing functions become constants when s and t are close to 0 or 1. Indeed, if
we make the substitution s D 0 or 1, the function 	.s; x/ or 	ij .s; x/ becomes a con-
stant. Thus, in the regions where s and t are close to 0 or 1, the strong oscillations of
the spherical Bessel function cannot be reduced or damped by the exponentially de-
creasing functions Ok� . In this case, the asymptotic behavior of the integrand cannot

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5

Fig. 1 The integrand fI.x/ of I. s D 2:40, 
 D 9=2, n	 D 3, nx D 2, � D 2, R1 D 45:,
R2 D 2:, �1 D 1:5 and �2 D 1

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

Fig. 2 The integrand fK.x/ of K.s/. s D 0:998, 
 D 13=2, n	 D 5, nk D 2, nx D 4, � D 4,
R34 D 2:0, �s D 2:0 and �3 D �4 D 1:0. (v D 49:996)
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0  1 2 3 4 5
−0.04

−0.03

−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Fig. 3 The integrand fJ .x/ of J .s; t /. s D :999, t D :005, 
12 D 
34 D 5=2, n	12 D n	34 D 1,
nx D � D 1, �1 D �4 D 1:0, �2 D 1:5, �3 D 2:0, R12 D 2:0 and R34 D 1:0

be represented by a function of the form e�˛x g.x/ where g.x/ is not a rapidly os-
cillating function. This is why, in these regions, Gauss-Laguerre quadrature even to
high orders gives inaccurate results and presents severe numerical difficulties.

The semi infinite x integrals can be transformed into an infinite series as follows:

I.s/ D
C1X

nD0

Z j
nC1
�;v

j n
�;v

F.x/ dx; (42)

where j 0
�;v D 0 and j n

�;v D j n

lC 1
2

=v (v 6D 0) for n D 1; 2; : : :, which are the

successive positive zeros of j�.vx/ and whereF stands for fI.x/, fK.x/, or fJ .x/.
The infinite series (42) is convergent and alternating; therefore, the sum of N

first terms, for N sufficiently large, gives a good approximation of the semi-infinite
integrals. Unfortunately, the use of this approach is much time consuming, in partic-
ular for large values of v. We can notice that when the value of v is large and when
s is close to 0 and 1, we need to sum a very large number of terms of the infinite
series in order to obtain values with 10–12 correct digits (see numerical tables).

4 Nonlinear Transformations and Extrapolation Methods

4.1 The Nonlinear ND Transformation

Theorem 1. [58, 59] Let f .x/ be integrable on Œ0;C1Œ and satisfy a linear dif-
ferential equation of order m of the form:

f .x/ D
mX

kD1

pk.x/ f
.k/.x/; (43)
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where pk 2 A.ik/ with ik � k for k D 1; 2; : : : ; m.
Let also:

lim
x!C1 p

.i�1/

k
.x/ f .k�i/.x/ D 0;

for i � k � m and 1 � i � m.
If for every integer l � �1:

mX

kD1

l.l � 1/ : : : .l � k C 1/pk;0 ¤ 1;

where:
pk;0 D lim

x!C1 x
�kpk.x/; 1 � k � m;

then as x ! C1:

Z C1

x

f .t/ dt �
m�1X

kD0

f .k/.x/ xjk

�
ˇ0;k C ˇ1;k

x
C ˇ2;k

x2
C : : :

�
; (44)

where:

jk � max.ikC1; ikC2 � 1; : : : ; im �mC k C 1/; k D 0; 1; : : : ; m � 1:

�

The approximation ND.m/
n of

Z 1

0

f .t/ dt , using the ND transformation is given by

[59]:

ND.m/
n D

Z xl

0

f .t/dt C
m�1X

kD1

f .k/.xl /x
�k

l

n�1X

iD0

Ň
k;i

xi
l

; l D 0; 1; : : : ; n.m � 1/;

(45)

where ND.m/
n and Ňk;i for k D 0; 1; : : : ; m � 1 and i D 0; 1; : : : ; n � 1 are the

unknowns of the linear system. The xl for l D 0; 1; : : : are leading positive zeros of
f .x/. 
k for k D 0; 1; : : : ; m � 1 are the minima of k C 1 and sk where sk is the
largest of the integers s for which lim

x!C1 x
s f .k/.x/ D 0.

4.2 The S Transformation

Theorem 2. Let f .x/ be a function of the form:

f .x/ D g.x/j�.x/; (46)
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with � � 1 and where g.x/ is in C2 .Œ0;C1Œ/, which is the set of twice contin-
uously differentiable functions defined on the half-open interval Œ0;C1Œ. If for all
l D 0; 1; : : : ; � � 1:

lim
x!0

xl��C1

�
d

xdx

�l �
x��1g.x/

�
j��1�l .x/ D 0; (47)

lim
x!C1

�
d

xdx

�l �
x��1g.x/

�
j��1�l .x/ D 0; (48)

then:

Z C1

0

f .x/dx D
Z C1

0

"�
d

xdx

�� �
x��1 g.x/

�#
sin.x/ dx: (49)

D 1

v�C1

C1X

nD0

Z .nC1/ 
=v

n 
=v

"�
d

xdx

�� �
x��1 g.x/

�#
sin.v x/ dx: (50)

�

Proof. Let us consider:

Z C1

0

f .x/ dx D
Z C1

0

g.x/ j�.x/ dx:

By replacing the spherical Bessel function j�.x/ by its analytical expression given
by (1), we obtain:

Z C1

0

f .x/dx D .�1/�
Z C1

0

x� g.x/

�
d

xdx

��

j0.x/ dx: (51)

Integrating by parts the right-hand side of (51), we obtain:

Z C1

0

f .x/dx D .�1/�
"
x��1 g.x/

�
d

xdx

���1
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#C1

0
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�
d

xdx

��
x��1 g.x/

��"� d

xdx

���1

j0.x/

#
x dx: (52)

By integrating by parts until all the derivatives of j0.x/ disappear in the last term
on the right-hand side of (52), one can obtain:

Z
C1

0

f .x/dxD
"
��1X

lD0

.�1/�Cl

 �
d

xdx

�l �
x��1g.x/

�
! �

d

xdx

���1�l
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!#C1

0

C
Z
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0
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d
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�� �
x��1 g.x/

�
#
j0.x/ x dx: (53)
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Using (1) and replacing j0.x/ by
sin.x/

x
, the above equation can be rewritten as:

Z C1

0

f .x/dx D �
"

��1X

lD0

xl��C1

 �
d

xdx

�l �
x��1g.x/

�!
j��1�l .x/

#C1

0

C
Z C1

0

"�
d

xdx

�� �
x��1 g.x/

�#
sin.x/dx: (54)

From conditions (47) and (48) of Theorem 1, it follows that:

"
��1X

lD0

xl��C1

 �
d

xdx

�l �
x��1g.x/

�!
j��1�l .x/

#C1

0

D 0; (55)

and therefore (54) can be rewritten as:

Z C1

0

f .x/dx D
Z C1

0

"�
d

xdx

�� �
x��1 g.x/

�#
sin.x/ dx: (56)

Theorem 3. If f .x/ is a function of the form given by (46) and satisfying all the
conditions of Theorem 2 and if g.x/ belongs to A.�/ (24) such that 	 � � � 1 < 0,

then the approximation of
Z C1

0

f .x/dx using the nonlinear ND transformation, is

given by:

S ND.2;j /
n D

nC1X

iD0

 
nC 1
i

!
.1C i C j /n�1 F.xiCj / =

�
x2

iCjG.xiCj /
�

nC1X

iD0

 
nC 1
i

!
.1C i C j /n�1 =

�
x2

iCjG.xiCj /
�

; (57)

where xl D .l C 1/� for l D 0; 1; : : :, F.x/ D
Z x

0

G.t/ sin.t/ dt and the function

G.x/ is given by:

G.x/ D
�

d

xdx

�� �
x��1g.x/

�
: (58)

�

Proof. Using the fact that the integrand f satisfies the conditions of Theorem 2, one
can obtain according to (56):

Z C1

0

f .x/dx D
Z C1

0

G.x/ sin.x/ dx: (59)



Computational Chemistry 193

To apply the nonlinear ND transformation [59, 60] for improving convergence of
the semi-infinite integral in the RHS of (59), the integrand which will be referred
to as ef .x/, should satisfy a linear differential equation with coefficients having
asymptotic expansions in inverse powers of their argument x as x ! C1, in a
sense of Poincaré series [61]. The coefficients should also satisfy two more condi-
tions [59, 60] that we will list later.

The sine function satisfies a second order linear differential equation given by:

sin.x/ D � sin00.x/: (60)

By replacing the sine function in the above differential equation by
ef .x/
G.x/

, one

can obtain after some algebraic operations, the following differential equation,
which is satisfied by the integrand Qf .x/:

ef .x/ D q1.x/ ef 0.x/C q2.x/ ef 00.x/; (61)

where the coefficients q1.x/ and q2.x/ are defined by:

8
ˆ̂<

ˆ̂:

q1.x/ D 2G.x/G0.x/
G.x/2 �G.x/G00.x/C 2G0.x/2

q2.x/ D �G.x/2
G.x/2 �G.x/G00.x/C 2G0.x/2 :

(62)

Using the fact that g.x/ 2 A.�/ and using the properties of asymptotic expan-
sions given by Lemma 1, one can easily show that the function G.x/ 2 A.����1/.

From (62), it follows by using the properties given by Lemma 1 that:

	
q1.x/ 2 A.�1/

q2.x/ 2 A.0/:
(63)

To apply the nonlinear ND transformation, the coefficients should satisfy two more
conditions given by:

1. For every integer l � �1:

mX

kD1

l.l � 1/ : : : .l � k C 1/qk;0 ¤ 1;

where:
qk;0 D lim

x!C inf
x�k qk.x/; 1 � k � 2:

2. For i � k � 2, 1 � i � 2:

lim
x!C1 q

.i�1/

k
.x/ ef .k�i/.x/ D 0:
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Using the fact that qk 2 A.m/ where m < k, one can easily show that qk;0 D 0
for k D 1; 2. From this it follows that the condition 1 is satisfied.

Using the facts that G.x/ 2 A.����1/, 	 � � � 1 < 0, q1 2 A.�1/ and q2 2
A.0/, one can easily show that the condition 2 is also satisfied.

All the conditions of the applicability of the nonlinear ND transformation are now
shown to be satisfied by the new integrand ef .x/.

The approximation of
Z C1

0

ef .x/dx using ND is given by:

S ND.2;j /
n D

Z xlCj

0

ef .x/dxC.�1/lCjC1G.xlCj /x
2
lCj

n�1X

iD0

Ň
1;i

xi
lCj

; lD0; 1; : : : ; n;

(64)

where j D 0; 1; 2; : : : and xl D .lC 1/ � for l D 0; 1; : : :, which are the successive
positive zeros of the sine function.

Using properties of the sine function, in particular the fact that its zeros are
equidistant allowed the use of Cramer’s rules as demonstrated by Sidi [59] for the
computation of the approximation S ND.2;j /

n of the semi-infinite integral, and this
leads to (57).

�
Now, we shall state a theorem, fully demonstrated in [64], and which concern

the application of the S and ND transformations for improving convergence of semi-
infinite spherical Bessel integrals, whose integrands are of the following form:

f .x/ D g.x/ j�.x/; (65)

where g.x/ is in C2 .Œ0;C1Œ/ and of the form g.x/ D h.x/ e'.x/.
Note that the demonstration of the following theorem differs from the one we

presented in this present manuscript, because of the fact that the conditions on the g
function are not similar.

Theorem 4. [64] Let f .x/ be a function of the form:

f .x/ D g.x/ j�.x/;

where g.x/ is in C2 .Œ0;C1Œ/, which is the set of functions that are twice continu-
ously differentiable on Œ0;C1Œ, and of the form:

g.x/ D h.x/ e'.x/;

and where h.x/ 2 QA.�/ and '.x/ 2 QA.k/ for some 	 and k.
If k > 0, ˛0.'/ < 0 and for all l D 0; : : : ; � � 1:

lim
x!0

xl��C1

�
d

xdx

�l �
x��1g.x/

�
j��1�l .x/ D 0;
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then f .x/ is integrable on Œ0;C1Œ, i.e.,
Z C1

0

f .t/ dt exists, and:

Z C1

0

f .x/dx D
Z C1

0

"�
d

xdx

�� �
x��1 g.x/

�#
sin.x/ dx; (66)

D 1

v�C1

C1X

nD0

Z .nC1/ 
=v

n 
=v

"�
d

xdx

�� �
x��1 g.x/

�#
sin.v x/ dx (67)

and an approximation of
Z C1

0

f .x/dx using the ND transformation can be obtained

using (57). �

4.3 Recurrence Relations for the S Transformation

The computation of the approximation S ND.2;j /
n using (57) is not advantageous, be-

cause of the absence of the control of the degree of accuracy. Note also that (57)
cannot be computed recursively. Recurrence relations were developed by Safouhi
et al. [63,75] satisfied by both numeratorA.2;j /

n and denominatorB.2;j /
n of the term

in the right hand side of (57).
The approximation S ND.2;j /

n , can be rewritten as:

S ND.2;j /
n D 1

v�C1

A
.2;j /
n

B
.2;j /
n

I n; j D 0; 1; 2; : : : : (68)

Let U n
i and V n

i be the i term of the finite sum A
.2;j /
n and B.2;j /

n , respectively. In

[63], we showed that
�
A

.2;j /
n

�

n
and

�
B

.2;j /
n

�

n
satisfy the following relations:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

A
.2;j /
nC1 D

nC1X

iD0

.nC 2/
.nC 2 � i/ .1C i C j / U

n
i C U nC1

nC2

B
.2;j /
nC1 D

nC1X

iD0

.nC 2/
.nC 2 � i/ .1C i C j / V

n
i C V nC1

nC2 :

(69)

From the above equations, it follows that S ND.2;j /
nC1 can be rewritten as [63]:

S ND.2;j /
nC1 D

1

vlC1

nC1X

iD0

.nC 2/
.nC 2 � i/ .1C i C j / U

n
i C U nC1

nC2

nC1X

iD0

.nC 2/
.nC 2 � i/ .1C i C j / V

n
i C V nC1

nC2

: (70)
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The most important advantage of using the above equation is the control of the
degree of accuracy. In fact, we do not calculate the approximation S ND.2;j /

kC1
, unless

the accuracy obtained using S ND.2;j /

k
is not satisfactory. For this we use the follow-

ing test:
ˇ̌
ˇS ND.2;j /

k
� S ND.2;j /

k�1

ˇ̌
ˇ D 1

v�C1

ˇ̌
ˇ̌
ˇ
A

.2;j /

k

B
.2;j /

k

� A
.2;j /

k�1

B
.2;j /

k�1

ˇ̌
ˇ̌
ˇ � �; (71)

where � is defined according to the pre-determined degree of accuracy. In Table 4,
we listed values obtained for the semi-infinite integral eJ .s; t/ with � varying from
10�8 to 10�16, to show the efficiency of the above test.

The storage of the values of U k
i and V k

i , k D 0; 1; 2; : : : and i D 0; 1; : : : ; kC1,
led to a substantial gain in the calculation times. The calculation of all values of
x2

iCj G.xiCj / for each order of the S ND is avoided.
In [63, 76], we discussed the situation where G.xiCj / ! 0 or C1.

We demonstrated that in this situation we can obtain a very good approxi-
mation of the semi-infinite integral under consideration using the following
formulae:

S ND.2;j /
n � 1

v�C1

X

i2E

 
nC 1
i

!
.1C i C j /nF.xiCj /

x2
iCj

X

i2E

 
nC 1
i

!
.1C i C j /n 1

x2
iCj

; (72)

where E is the subset of I D f0; 1; 2; : : : ; nC 1g defined by:

E D ˚
k 2 I such that G.xkCj /! 0 or C1� :

Note that the relations given by (69) are still applicable to the approximation
S ND.2;j /

n given by (72). The following test was included in the algorithm:

R D
ˇ̌
ˇ̌
ˇ
A

.2;j /
n

eAn
.2;j /

� B
.2;j /
n

eB.2;j /
n

ˇ̌
ˇ̌
ˇ � tiny or eR D

ˇ̌
ˇ̌
ˇ
eA.2;j /

n

A
.2;j /
n

�
eB.2;j /

n

B
.2;j /
n

ˇ̌
ˇ̌
ˇ � tiny: (73)

where eAn
.2;j / stands for the numerator and eB.2;j /

n for the denominator of the term
in the right hand side of (72) and where tiny should be set close to but not identical
with the smallest floating point number that is representable on the computer. If the
test is realized then the subroutine returns the approximation S ND.2;j /

n using (72)
with the recurrence relations (69).
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5 Numerical Treatment of ETFs Molecular
Multi-Center Integrals

In previous works [33, 48, 49, 55], we have demonstrated the high efficiency of the
nonlinear ND transformation in improving the convergence of the semi-infinite inte-
grals fI.x/, fK.x/, and fJ .x/. Unfortunately, the approximation ND.m/

n requires a
large number of calculations as it can be seen from (45). The computation of the
successive positive zeros of the integrands is required as well as the computation of
a method to solve the linear system, which can be large when the values of n andm
are large. We note that these systems cannot be computed recursively and does not
use the practical properties of the functions involved in the calculations.

In the case of the integrals under consideration, it is shown that the order of the
differential equations of fI.x/, fK.x/ and fJ .x/ can be reduced to two using prop-
erties of Bessel functions. From this it follows that the order of the linear systems to
solve is nC 1.

In [77], we developed a highly efficient algorithm based on the ND transforma-
tion and the W algorithm developed for a special case of generalization of the
Richardson extrapolation process (GREP) [60, 78]. This algorithm, which can be
computed recursively, allows the control of the degree of accuracy by carrying out
a comparison between two successive terms and then stops the calculations when
the predetermined accuracy is reached. In general, the test of accuracy works very
well. However, in certain instances, when the behavior of the integrand is very un-
stable, the error (absolute or relative) will only grow larger. In such a situation, we
developed an efficient test that stops the calculations and returns the most accurate
approximation for the semi-infinite integral.

The disadvantages of the approaches described above arise mainly from the
spherical Bessel functions.

The integrandsfI.x/, fK.x/, and fJ .x/ satisfy all the conditions of Theorems 4.
The S transformation can be applied to the semi-infinite integrals I.s/, K.s/, and
J .s; t/. The corresponding integrals involving the simple sine function are given by:

1

v�C1

Z C1

0

G.x/ sin.v x/ dx D 1

v�C1

C1X

nD0

Z .nC1/ �
v

n �
v

G.x/ sin.v x/ dx; (74)

where the functionG.x/ is given by:

• Three-center nuclear attraction integrals:

G.x/ D
� x

x dx

��
 
xnxC��1

Ok� ŒR2	.s; x/�

Œ	.s; x/�n�

!
: (75)

• Hybrid and three-center two-electron Coulomb integrals:

G.x/ D
�

d

xdx

��
 

xnxC��1

�
�2

s C x2
�nk

Ok� ŒR34	34.s; x/�

Œ	.s; x/�n�

!
: (76)



198 H. Safouhi and A. Bouferguene

• Four-center two-electron Coulomb integrals:

G.x/ D
�

d

xdx

��
 
xnxC��1

Ok�1
ŒR21	12.s; x/�

Œ	12.s; x/�
n�12

Ok�2
ŒR34	34.t; x/�

Œ	34.t; x/�
n�34

!
: (77)

For the following, the obtained integrands with the sine functions will be referred
to as QfI.x/, QfK.x/, and QfJ .x/, respectively.

With the help of the S transformation, the spherical Bessel integrals are trans-
formed into semi-infinite integrals with the simple sine function. From this, it
follows that the strong oscillations of the integrals are considerably reduced as it
can be seen from Figs. 4–6, and this helps the extrapolation methods for improving
convergence of the semi-infinite integrals under consideration.
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Fig. 4 The integrand QfI.x/ of I.s/. s, 
, n	 , nx , �, R1, R2, �1 and �2 are given in Fig. 1
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Fig. 5 The integrand QfK.x/ of K.s/. s, 
, n	 , nk , nx , �, R34, �s , �3 , and �4 are given in Fig. 2
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Fig. 6 The integrand QfJ .x/
of J .s; t /. s, t , 
12, 
34, n	12 ,
n	34 , nx , �, �1, �2, �3, �4 , R12,
and R34 are given in Fig. 3
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6 Conclusion and Numerical Tables

This work presents the S ND method for improving convergence of semi-infinite
spherical Bessel integrals, which are known to be extremely difficult to evaluate ac-
curately and rapidly. This S ND approach is based on the S transformation of Safouhi
and on the nonlinear ND transformation of Sidi. The S transformation helped solving
the difficulties related to the presence of spherical Bessel functions by transforming
the semi-infinite integrals into semi-infinite integrals involving the simple sine func-
tion. This reduces considerably the strong oscillations of the integrands (as it can be
seen from the figures presented in this paper).

The new integrands with the sine function are shown to satisfy all the conditions
required to apply the ND transformation, which is among the most powerful tools
for improving convergence of semi-infinite integrals whose integrands satisfy lin-
ear differential equations with coefficients having asymptotic expansions in inverse
powers of their argument x as x !1.

It is now shown that the S ND method led to a highly efficient algorithm for the nu-
merical evaluation of spherical Bessel integrals. This algorithm has been applied for
the numerical evaluation of the so-called molecular multi-center integrals over ex-
ponentially decreasing functions and the results obtained are in complete agreement
with those obtained using existing codes.

The algorithm obtained from the S ND approach is faster than the ones obtained
from alternatives using the epsilon algorithm of Wynn, Levin’s u transform, and
the nonlinear ND transformation when it is applied without the application of the S
transformation.

The S ND method is also able to reach precision of 10�15 and certainly some
applications of this extremely high accuracy will be developed in future work.

Table 1 contains values of the semi-infinite integrals involved in the analytic
expression of the three-center nuclear attraction integrals (39).

Table 2 contains values of the semi-infinite integrals involved in the analytic
expression of the three-center two-electron Coulomb integrals (40).

Table 3 contains values of the semi-infinite integrals involved in the analytic
expression of the four-center two-electron Coulomb integrals (41).
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Table 1 Values with 15 correct decimals of I.s/ involved in (39) obtained using the infinite series with the sine function (74), the infinite series with spherical
Bessel function (42) and using S ND.2;0/

n with recurrence relations

s 
 n	 nx � R1 v N sin QI.s/ (74) Time Nj� Errora Time n Errorb Time

0.240(�2) 5/2 5 1 0 3:5 0:4916 29 0.13737257871458( 0) 1:42 29 0.55(�16) 1:48 9 0.84(�12) 0.21
0.998( 0) 5/2 5 1 0 3:5 2:9930 179 0.23341051164167(�3) 2:70 173 0.28(�15) 3:11 3 0.48(�11) 0.04
0.240(�2) 7/2 3 1 0 4:5 1:4892 84 0.10869578291379( 0) 1:20 83 0.44(�15) 1:46 11 0.13(�11) 0.14
0.998( 0) 7/2 7 1 0 4:5 2:9910 141 0.14809891443169(�3) 2:25 136 0.54(�15) 2:47 3 0.51(�11) 0.04
0.240(�2) 5/2 1 1 1 3:5 0:4916 35 0.10484272846079( 1) 2:17 37 0.66(�15) 2:06 12 0.17(�12) 0.42
0.998( 0) 5/2 5 1 1 3:5 2:9930 169 0.36642816695953(�3) 3:62 173 0.44(�15) 3:37 6 0.12(�10) 0.12
0.240(�2) 7/2 5 3 2 5:5 2:4868 124 0.79429921536274(�2) 2:90 128 0.27(�14) 3:13 43 0.28(�10) 0.79
0.998( 0) 7/2 5 3 2 5:5 2:9890 159 0.11798135901654(�3) 3:76 166 0.56(�15) 4:16 29 0.12(�10) 0.53
0.240(�2) 11/2 9 4 3 5:5 2:4868 133 0.69742306814572( 0) 3:79 141 0.24(�11) 3:91 53 0.10(�10) 1.10

0.240(�2) 5/2 1 1 0 34:0 32:0048 3;748 0.681713239241357(�3) 53:76 3;376 0.43(�15) 55:44 3 0.48(�16) 0.04
0.998( 0) 5/2 1 1 0 34:0 33:9960 4;361 0.151864762852243(�2) 62:57 3;922 0.77(�15) 64:45 3 0.35(�16) 0.04
0.240(�2) 5/2 1 1 1 35:0 33:0048 3;598 0.100692333205546(�2) 77:00 3;474 0.89(�15) 64:50 6 0.19(�13) 0.10
0.998( 0) 9/2 3 2 1 30:0 29:9960 4;433 0.590113822812245(�2) 97:51 4;330 0.76(�13) 92:27 3 0.37(�14) 0.07
0.240(�2) 9/2 3 2 2 45:0 43:0048 5;383 0.103067574467870(�2) 136:01 5;539 0.45(�13) 141:97 6 0.19(�13) 0.14
0.240(�2) 15/2 6 4 3 50:0 48:0048 8;022 0.160307326565246(�2) 229:18 8;599 0.50(�08) 248:17 3 0.11(-15) 0.09
0.998( 0) 15/2 6 4 3 50:0 49:9960 9;152 0.177013372443209(�1) 261:87 9;853 0.45(�07) 283:86 3 0.68(�14) 0.09
0.240(�2) 17/2 9 5 4 55:0 53:0048 8;515 0.685144224550293(�3) 277:81 9;555 0.18(�06) 309:80 3 0.26(�15) 0.09
0.998( 0) 17/2 9 5 4 55:0 54:9960 9;681 0.243705341101324(�1) 315:56 10;927 0.28(�05) 354:25 3 0.42(�13) 0.10

R2 D 3:0, �1 D 1:5 and �2 D 2:0. R2, �1, �2, s, 
, n	 , nx , �, R1 and v are given in Table 3
The values QI.s/ (74) are obtained using the infinite series with the sine function, which we sun until N sin order
The value I.s/a were obtained using the infinite series with spherical Bessel function (42), which we sun until Nj� order
The value I.s/b were obtained using S ND.2;0/

n
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Table 2 Values with 15 correct decimals of K.s/ involved in (40), obtained using the infinite series with the sine function (74), the infinite series with spherical
Bessel function (42) and using S ND.2;0/

n with recurrence relations. s D 0:240.�2/a and s D 0:998


 n	 nk nx � �s �3 �4 R34 N sin K.s/ Time Nj� Errorb Time n Errorc Time

5/2 1 2 0 0 4:0 1:5 0:5 2.5 1;245 0.549128278838(�3) 11:85 1;245 0.22(�18) 12:20 6 0.13(�13) 0:09

5/2 1 2 1 0 2:0 2:0 1:5 2.0 1;260 0.424640684563(�4) 10:96 1;260 0.18(�18) 12:14 3 0.18(�10) 0:04

9/2 4 3 3 3 2:0 1:5 0:5 2.5 482 0.700836644746(�4) 10:89 1;773 0.37(�16) 22:82 18 0.22(�10) 0:45

13/2 5 2 4 4 2:0 1:0 1:0 2.0 642 0.351661145091(�3) 15:29 4;568 0.14(�13) 58:12 20 0.21(�10) 0:53

13/2 11 2 4 4 2:0 1:0 1:0 2.0 714 0.351661145092(�3) 17:14 2;632 0.19(�13) 33:84 20 0.71(�11) 0:54

13/2 13 2 6 6 2:0 1:0 1:0 2.0 361 0.151074181930(�4) 9:15 3;323 0.11(�12) 44:17 15 0.12(�10) 0:42

15/2 6 2 4 4 2:0 2:0 1:5 2.0 835 0.207548974232(�3) 20:23 5;152 0.38(�13) 65:76 21 0.17(�10) 0:53

21/2 9 2 5 5 2:0 2:0 1:5 2.0 1;045 0.559070180641(�1) 28:05 6;629 0.39(�09) 89:96 23 0.65(�11) 0:65

17/2 10 3 3 3 3:0 1:5 1:0 2.5 570 0.470570654794(�1) 13:03 1;256 0.32(�13) 16:89 22 0.41(�11) 0:51

5/2 1 2 0 0 4:0 1:5 0:5 2.5 1;301 0.496748720573(�4) 12:26 1;301 0.47(�19) 12:56 5 0.28(�11) 0:06

5/2 1 2 1 0 2:0 2:0 1:5 2.0 1;393 0.153899211686(�4) 12:23 1;393 0.11(�18) 13:60 3 0.46(�11) 0:06

9/2 4 3 3 3 2:0 1:5 0:5 2.5 307 0.348864079545(�6) 6:79 1;922 0.41(�17) 24:59 4 0.55(�12) 0:12

13/2 5 2 4 4 2:0 1:0 1:0 2.0 724 0.286993071501(�3) 17:28 5;180 0.21(�13) 65:90 20 0.91(�11) 0:53

13/2 11 2 4 4 2:0 1:0 1:0 2.0 772 0.286993071502(�3) 18:50 2;981 0.19(�13) 38:32 20 0.94(�11) 0:53

13/2 13 2 6 6 2:0 1:0 1:0 2.0 405 0.113667442373(�4) 10:28 3;792 0.17(�12) 50:40 14 0.42(�10) 0:40

15/2 6 2 4 4 2:0 2:0 1:5 2.0 471 0.241572463234(�4) 11:64 5;801 0.70(�14) 74:40 4 0.29(�10) 0:14

21/2 9 2 5 5 2:0 2:0 1:5 2.0 754 0.285406859358(�2) 20:90 7;501 0.13(�10) 102:23 21 0.20(�10) 0:65

17/2 10 3 3 3 3:0 1:5 1:0 2.5 576 0.484271561421(�3) 13:09 1;425 0.15(�14) 19:10 20 0.12(�10) 0:46
aNumbers in parentheses represent powers of 10
The values QK.s/ (74) are obtained using the infinite series with the sine function, which we sun until N sin order
The value K.s/a were obtained using the infinite series with spherical Bessel function (42), which we sun until Nj� order
The value eK.s/b were obtained using S ND.2;0/

n
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Table 3 Evaluation of the semi-infinite integral J .s; t / involved in (41), using the infinite series with the sine function (74), the infinite series with spherical
Bessel function (42) and using S ND.2;0/

n with recurrence relations. � D nx , 
34 D 
12 and n	34 D n	12


12 n	12 nx �1 �2 �3 �4 R12 R34 N j� N sin J .s; t / ValuesS ND
.2;0/
6

s D 0:999 t D 0:005

5/2 1 1 1.0 1.7 2.0 1.0 2.0 1.0 2;172 1;818 0.288 524 041 734(�2) 0.288 524 041 8(�2)
5/2 3 1 1.0 1.2 1.2 1.0 2.0 1.0 1;252 1;035 0.845 400 154 683(�2) 0.845 400 154 8(�2)
5/2 5 1 1.0 1.3 1.3 1.0 2.0 1.0 912 744 0.352 713 843 625(�2) 0.352 713 843 7(�2)
11/2 10 3 8.0 1.7 3.5 1.5 0.5 1.0 1;796 946 0.201 074 719 471(�2) 0.201 074 719 5(�2)
11/2 11 3 8.0 1.4 8.0 1.6 0.5 1.0 1;439 794 0.242 745 163 858(�2) 0.242 745 163 9(�2)

s D 0:999 t D 0:999

5/2 5 0 1.5 1.0 1.0 1.5 0.5 1.5 1;424 1;424 0.444 524 869 234( 0) 0.444 524 869 3( 0)
9/2 9 2 2.0 1.5 1.5 2.0 2.0 1.0 1;543 1;047 0.128 293 378 253(�2) 0.128 293 378 3(�2)
9/2 7 3 6.0 1.4 1.4 5.0 2.0 1.0 2;395 1;359 0.358 146 135 268(�2) 0.358 146 135 3(�2)
9/2 9 3 2.0 1.4 1.4 5.0 2.0 1.0 1;845 1;043 0.981 745 642 221(�3) 0.981 745 642 2(�3)

s D 0:005 t D 0:005

7/2 5 1 1.5 1.5 1.5 1.5 0.2 0.4 2;168 1;484 0.923 138 841 518(�2) 0.923 138 841 7(�2)
7/2 7 1 1.4 5.0 5.0 1.4 0.2 0.2 1;084 764 0.433 358 108 553(�2) 0.433 358 108 6(�2)
13/2 11 4 2.0 5.0 2.5 1.7 1.0 2.0 942 533 0.186 622 960 871(�2) 0.186 622 960 8(�2)
13/2 13 4 1.6 2.5 2.5 1.6 0.7 1.0 1;145 571 0.339 934 570 445(�2) 0.339 934 570 4(�2)
17/2 11 4 2.7 2.0 9.0 2.7 1.0 2.0 1;630 935 0.250 394 254 557(�2) 0.250 394 254 6(�2)
17/2 17 4 2.0 6.0 3.0 2.0 1.0 1.0 840 489 .172 215 398 336(�2) 0.172 215 398 4(�2)

The average of the calculation time for a single integral is 0:25ms
The value J .s; t / were obtained using the infinite series with spherical Bessel function (42), which we sun until N sin order

The value ValuesS ND
.2;0/
6 were obtained using the using S ND.2;0/

n with recurrence relations
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Table 4 contains values of the semi-infinite integrals involved in the analytic
expression of the three-center nuclear attraction integrals (39). In this table, the test
of accuracy (71) was used.

Table 5 contains values of the three-center nuclear attraction integrals over B
functions (39) and Table 6 contains values of the three-center nuclear attraction in-
tegrals over STFs (26). The calculations were performed with the NCCH molecule.

Table 4 Values of the semi-infinite integral I.s/ involved in (39) obtained using S ND.2;0/
n . The

test of accuracy (71) is used for different value of �. �1 D 0:25, �2 D 0:3, and v D 60:0

� s 
 n	 nx � R1 v n Error

10�08 0.240D�02 9/2 3 2 2 45.00 43.0048 4 0.118D�08
10�12 0.240D�02 9/2 3 2 2 45.00 43.0048 7 0.179D�12
10�16 0.240D�02 9/2 3 2 2 45.00 43.0048 10 0.299D�16

10�08 0.240D�02 5/2 1 1 1 35.00 33.0048 4 0.115D�08
10�12 0.240D�02 5/2 1 1 1 35.00 33.0048 7 0.175D�12
10�16 0.240D�02 5/2 1 1 1 35.00 33.0048 10 0.291D�16

10�08 0.240D�02 9/2 3 2 2 30.00 28.0048 5 0.215D�09
10�12 0.240D�02 9/2 3 2 2 30.00 28.0048 7 0.645D�12
10�16 0.240D�02 9/2 3 2 2 30.00 28.0048 10 0.100D�16

Table 5 Values obtained foreIn2;l2;m2n1;l1;m1
(39). R1 D .R1; 90

ı; 0ı/ and R2 D .R2; 90
ı; 0ı/

n1 l1 m1 �1 n2 l2 m2 �2 R1 R2 Values S ND Values [24]

1 0 0 1.0 1 0 0 1.0 2:0 1:5 0.292219986(�1) 0.292220008(�1)
1 0 0 1.0 1 0 0 1.0 2:0 10:0 0.419890811(�4) 0.419894695(�4)
5 0 0 1.0 1 0 0 1.0 1:5 2:0 0.824711574(�2) 0.824711555(�2)
5 0 0 1.0 1 0 0 1.0 10:0 2:0 0.158775768(�2) 0.158690139(�2)
1 0 0 1.0 1 0 0 1.0 0:5 2:0 0.281222107(�1) 0.281222151(�1)
1 0 0 1.0 1 0 0 5.0 0:5 2:0 0.400999465(�3) 0.400999369(�3)
3 3 2 1.0 3 3 2 5.0 0:5 2:0 0.261739704(�8) 0.261739704(�8)
1 0 0 1.0 5 4 4 5.0 0:5 2:0 0.621915968(�5) 0.621916063(�5)
1 1 0 1.0 1 0 0 1.0 0:5 2:0 0.156906773(�2) 0.156906740(�2)

Table 6 Three-center nuclear attraction integrals over STFs (26). Values obtained with the
linear molecule NCCH, using the following geometry: N.0:; 0:; 0:/, C1.2:1864 au; 0:; 0:/,
C2.4:7980 au; 0:; 0:/, and H.9:0689 au; 0:; 0:/

I Qn2;l2;m2
Qn1;l1 ;m1

�1 �2 Values S ND Values [15] Values [79]

h1 sN j.rNC1 /�1j1 sC2 i 8.93 5.23 0. 550116114(�10) 0. 550082293(�10) 0. 550082316(�10)

h1 sN j.rNC1 /�1j2pC2z i 8.93 1.25 �0. 296504029(�02) �0. 296504016(�02) �0. 296503961(�02)

h1 sC1 j.rC13 /�1j1 sH i 5.23 0.98 0. 169488048(�03) 0. 169488048(�03) 0. 169488044(�03)

h2 sC1 j.rC12 /�1j2 sC3 i 1.16 1.16 0. 118891644( 00) 0. 118891647( 00) 0. 118891649( 00)

h2pC1z j.rC12 /�1j2pC3z i 1.25 1.25 �0. 188675485( 00) �0. 188675450( 00) �0. 188675497( 00)

h2pN
C1j.rNC1 /�1j2pC3C1i 1.50 2.72 0. 855582583(�04) 0. 855582585(�04) 0. 855582577(�04)

h1 sN j.rNC1 /�1j3 dHz i 8.93 1.50 0. 289180618(�04) 0. 289180603(�04) 0. 289180543(�04)

h1 sN j.rNC3 /�1j3 dHz i 8.93 1.50 0. 875086040(�05) 0. 875085991(�05) 0. 875085991(�05)

The abbreviation 2pC1 and 3 dz refer to the Slater functions defined by the quantum numbers:
.n D 2; l D 1; m D 1/ and .n D 3; l D 2; m D 0/. The symbol .rab/�1 and .raij /�1 refer to
the Coulomb operator 1=jR�OCj (27)
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Table 7 contains values of the three-center two-electron Coulomb integrals over
STFs (30). The calculations were performed with the H2O molecule.

Tables 8 and 9 contain values of the four-center two-electron Coulomb integrals
over STFs (36). These calculations were performed using the C2H2 (Table 8) and
C2H4 (Table 9) molecules.

Table 7 Three-center two-electron Coulomb and hybrid integrals over STFs. Values ob-
tained with the H2O. The following geometry was used in spherical coordinates: O.0; 0ı; 0ı/,
H1.1:810; 52:5

ı; 0ı/, and H2.1:810; 52:5
ı ; 180ı/. �O1s D 7:670, �O2s D 2:09, �O2pz

D �O2p
˙1
D 1:5,

and �H1s D 1:21

Integral a Values S ND STOP [13] ADGGSTNGINT [80]

h1sO1sO j1sH1 1sH2i 0.166 733 423( 0) 0.166 733 529( 0) 0.166 733 320( 0)
h1sO2sO j1sH1 1sH2i 0.336 797 277(�1) 0.336 797 499(�1) 0.336 797 078(�1)
h1sO2pOz j1sH11sH2 i 0.153 901 824(�2) 0.153 901 948(�2) 0.153 901 856(�2)
h2sO2sO j1sH1 1sH2i 0.145 439 173( 0) 0.145 439 265( 0) 0.145 439 113( 0)
h2pOz 2pOz j1sH1 1sH2i 0.134 763 478( 0) 0.134 763 562( 0) 0.134 763 449( 0)
h2pO

�12p
O
�1j1sH1 1sH2i 0.128 387 519( 0) 0.128 387 598( 0) 0.128 387 564( 0)

h1sH11sH1 j1sH22pOz i 0.157 272 684( 0) 0.157 272 410( 0) 0.157 272 721( 0)
h1sH11sH1 j1sH22pO

C1i �0.846 278 918(�1) �0.846 277 865(�1) �0.846 278 181( 0)
� the abbreviations 2pC1 and 2p�1 refer to the Slater functions defined by the quantum numbers:
(n D 2, l D 1, m D 1) and (n D 2, l D 1, m D �1)

Table 8 Four-center two-electron Coulomb integrals over STFs J n2l2m2;n4l4m4
n1l1m1;n3l3m3

(36). Val-
ues obtained with C2H2. The calculation are obtained with the following geometry
in Cartesian coordinates: C1.0I 0I 1:1405/, C2.0I 0I �1:1405/, H1.0I 0I 3:1425/, and
H2.0I 0I �3:1425/ �C1s D 5:700 and �C2pz

D �C2pC1
D 1:625. �H1s D 1:200 and �H2pz

D
�H2pC1

D 2:220

J n2l2m2;n4l4m4
n1l1m1;n3l3m3

Values S ND ADGGSTNGINT [80]

h1sC11sH1 j1sC2 1sH2i 0.195 966 315 243(�2) 0.195 966 312 886(�2)
h1sC11sH1 j1sC2 2pH2z i 0.283 669 225 792(�2) 0.283 669 224 706(�2)
h1sC12pH1z j1sC22pH2z i �0.410 711 928 328(�2) �0.410 711 931 655(�2)
h2pC1z 1s

H1 j2pC2z 1s
H2 i �0.384 782 080 613(�1) �0.384 782 080 602(�1)

h2pC1z 2p
H1
z j2pC2z 2p

H2
z i 0.178 337 206 024(�1) 0.178 337 206 021(�1)

h2pC1
C11s

H1 j2pC2
C11s

H2i 0.279 688 126 236(�2) 0.279 688 126 236(�2)

Table 9 Four-center two-electron Coulomb integrals over STFs J n2l2m2;n4l4m4
n1l1m1;n3l3m3

(36).
Values obtained with C2H4. The calculation are obtained with the following geometry
in Cartesian coordinates: C1.0I 0I 1:2755/, C2.0I 0I �1:2755/, H1.1:7528I 0I 2:2875/,
H2.1:7528I 0I �2:2875/, H3.�1:7528I 0I 2:2875/, and H4.�1:7528I 0I �2:2875/.
�C1s D 5:700, �C2pz

D 1:625, and �C3dz
D 1:250. �H1s D 1:200 and �H2pz

D 2:220

J n2l2m2;n4l4m4
n1l1m1;n3l3m3

Values S ND ADGGSTNGINT [80]

h1sH11sH2 j1sH3 1sH4i 0.121 073 251 2(�2) 0.121 073 251 2(�2)
h1sC11sC2 j1sH1 1sH2i 0.126 220 327 3(�5) 0.126 220 001 6(�5)
h1sC11sH2 j1sC2 1sH3i 0.210 918 868 0(�4) 0.210 876 132 2(�4)
h1sC12pC2z j1sH1 1sH2 i 0.230 206 462 0(�2) 0.230 206 400 5(�2)
h2pC1z 2p

C2
z j1sH11sH2 i �0.102 656 885 6(�1) �0.102 656 885 6(�1)

h2pC1z 1s
H2 j2pC2z 1s

H3 i �0.749 068 354 6(�2) �0.749 068 354 4(�2)
h3dC1z 2pH2z j3dC2z 1sH3i 0.555 282 977 6(�2) 0.555 282 977 1(�2)
h3dC1z 2pH2z j3dC2z 2pH3z i �0.248 064 450 1(�2) �0.248 064 449 9(�2)
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String Mining in Bioinformatics

Mohamed Abouelhoda and Moustafa Ghanem

1 Introduction

Sequence analysis is a major area in bioinformatics encompassing the methods and
techniques for studying the biological sequences, DNA, RNA, and proteins, on the
linear structure level. The focus of this area is generally on the identification of
intra- and inter-molecular similarities. Identifying intra-molecular similarities boils
down to detecting repeated segments within a given sequence, while identifying
inter-molecular similarities amounts to spotting common segments among two or
multiple sequences.

From a data mining point of view, sequence analysis is nothing but string- or
pattern mining specific to biological strings. For a long time, this point of view,
however, has not been explicitly embraced neither in the data mining nor in the
sequence analysis text books, which may be attributed to the co-evolution of the
two apparently independent fields. In other words, although the word “data-mining”
is almost missing in the sequence analysis literature, its basic concepts have been
implicitly applied. Interestingly, recent research in biological sequence analysis in-
troduced efficient solutions to many problems in data mining, such as querying and
analyzing time series [49,53], extracting information from web pages [20], fighting
spam mails [50], detecting plagiarism [22], and spotting duplications in software
systems [14].

In this chapter, we review the basic problems in the area of biological sequence
analysis. We present a taxonomy of the main problems in this area and introduce
basic solutions to them. Moreover, we show some interesting applications of the
string data structures to some traditional problems in data mining, such as finding
frequent itemsets, computing string kernels, and mining semi- and unstructured text
documents.
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2 Background

The three key types of biological sequences of interest to bioinformatics are
DNA sequences, protein sequences and RNA sequences. A DNA sequence, e.g.,
GTAAACTGGTAC..., is a string formed from an alphabet of four letters (A, C, G,
and T), each representing one of four different nucleotides. Using the genetic code,
a DNA sequence can be translated into a corresponding protein sequence, whereby
each triplet of nucleotides (letters) codes for one amino acid, e.g., the triplet GTA
translates into the amino acid Valine represented by V, and the triplet AAC trans-
lates into the amino acid Asparagine represented by N, etc. A protein sequence,
e.g., VNWYHLDKLMNEFF..., is thus also a string formed from an alphabet of
twenty characters each representing an amino acid, these are (A, R, N, D, C, Q, E,
G, H, I, L, K, M, F, P, S, T, W, Y, and V). Similarly, RNA sequences are formed
from a four-letter alphabet of nucleotides (A, C, G, and U).

Knowing the sequence of letters of a DNA, an RNA or a protein is not an ultimate
goal in itself. Rather, the major task is to understand the sequence, in terms of its
structure and biological function. This is typically achieved first by identifying indi-
vidual regions or structural units within each sequence and then assigning a function
to each structural unit. Overall, two broad strategies are used when identifying and
understanding the features of a biological sequence; intrinsic strategy in which just
a single sequence is studied and comparative strategy in which the sequence is com-
pared to other sequences, in an attempt to infer how it relates to similar structural
and functional units in them.

Intrinsic Strategy

Various methods within the intrinsic strategy can be used for the analysis of genomic
(DNA) sequences to identify the roles that different segments (substrings) of the se-
quence play. Such analysis includes identifying sequence features, such as the GCC
content of the different regions, and segmenting the genome into its key structural
units, such as genes, repeats, and regulatory elements. In simple cases, identifying
the different segments can be achieved by searching for known patterns of substrings
that mark these segments. An example is searching for the patterns signifying the
promoter regions that are essential in the biological transcription process.

In more complex cases, the use of probabilistic predictive methods is needed.
These predictive methods take into account different types of evidence that are
associated with the region to be identified (e.g., a gene), and are typically based
on statistical properties. These predictive methods are typically known as ab-initio
methods, (see for example [19] for an evaluation of gene prediction methods).

Similarly, various intrinsic analysis methods can be used for the analysis of pro-
tein sequences. In simple cases, the analyses include identifying the basic structural
and functional subsequences of the protein, referred to as domains and motifs, re-
spectively. The analyses can also include the use of statistical methods to predict the
3-D structure and/or the function of the protein (see for example [35] for the use of
Hidden Markov Models for the prediction of protein structure).



String Mining in Bioinformatics 209

Comparative Strategy

Comparative analysis methods are used over both DNA and protein sequences to
study the relationship of genome structure and function across different biological
species or strains. This is important not only to study phylogeny, or how different or-
ganisms may have evolved, but also as a means to understand the roles and functions
of newly discovered genes and proteins. Given either a DNA or protein sequence, a
typical recurring task in bioinformatics is to search known genomic and proteomics
databanks for similar sequences. Many of the sequences stored in such databanks
have been manually curated and annotated by experts over the years, and their prop-
erties and functions were experimentally verified. The identification and study of
such similar sequences can provide many valuable clues relating to the sequence
under examination.

A number of issues arise when conducting similarity searches over large biolog-
ical sequence databases. The first relates to quantifying the measure of similarity,
or conversely distance, between two sequences. The simplest approach is based
on using a Hamming distance measure that counts the number of mismatches be-
tween two strings. As an example the Hamming distance between the two sequences
SSHLDKLMNEFF and HSHLKLLMKEFF is four, as shown below where an * is
used to signify the positions of the mismatches.

SSHLDKLMNEFF
* ** *
HSHLKLLMKEFF

However, since typically two sequences being compared are unlikely to be of
the same length, a simple sequence similarity algorithm needs to introduce gaps
corresponding to insertions/deletions within the sequences. Comparing sequences
with gaps can be shown in the example below:

MHHNALQRRTVWVNAY
MHH-ALQRRTVWVNAY

A second issue that arises when comparing the similarity of biological sequences
is that the simple Hamming distance metric does not take into account the likeli-
hood of one amino acid (or nucleotide in case of DNA) changing to another one
due to mutations. Although some amino acid substitutions are disastrous and do
not survive evolution, others have almost no effect because the two amino acids
are chemically quite similar in terms of their properties. Such issues are typically
addressed using a scoring scheme, such as Percent Accepted Mutation (PAM) and
Block Substitution Matrices (BLOSUM) used in the widely used BLAST sequence
comparison algorithm [10].

Taking into consideration the possibilities for indels (Insertions or Deletions)
as well as the likelihood of amino acid (nucleotide) substitutions leads to a wide
spectrum of string mining problems that the bioinformatics community has been
addressing over the past two decades.
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Data Structures and Algorithms for String Mining

In this chapter, we focus on string mining problems used in both intrinsic and com-
parative sequence analysis strategies.

In Sect. 3, we start by introducing some basic formal definitions and data struc-
tures that are typically used. These basic data structures include Look-up tables,
Automata and Tries, and the Suffix Tree data structure. These data structures are
key to the efficient execution of many algorithms over large collections of long se-
quences.

In Sect. 4, we present a taxonomy of the major repeat-related problems in bioin-
formatics, and describe the basic exact and approximate string mining algorithms
algorithms used to address these problems. The problems considered include find-
ing dispersed fixed length and maximal length repeats, finding tandem repeats, and
finding unique subsequences and missing (un-spelled) subsequences.

In Sect. 5, we provide a taxonomy of the key algorithms for sequence compar-
ison, including global, semi-global and local sequence alignment and biological
database search methods. We also describe the basic algorithms used in each case
covering exact and approximate algorithms for both fixed- and variable-length se-
quences, thus covering most popular sequence comparison algorithms in a unified
framework.

In Sect. 6, we describe how the basic algorithms presented in this chapter can be
easily applied to string mining applications beyond bioinformatics. These include
applications in frequent itemset mining, string kernels as well as information ex-
traction applications for free text and semi-structured data sources.

We note that the prediction of biological sequence features based on statistical
inference or machine learning (as in the case of ab-initio gene identification), are
not addressed directly in this chapter. However, the key data structures presented in
this chapter provide the basis for calculating, in an efficient manner, the statistics
required by such algorithms.

3 Basic Definitions and Data Structures

3.1 Basic Notions

Let ˙ denote an ordered alphabet and let j˙ j denote the size of this alphabet. Let
S be a string over ˙ of length jS j D n. We write SŒi � to denote the character
at position i in S , for 0 � i < n. For i � j , SŒi::j � denotes the substring S
starting with the character at position i and ending with the character at position j .
The substring SŒi::j � is also denoted by the pair .i; j / of positions. The substring
SŒ0::i � is a prefix of S . The substring SŒi::n � 1� is the i -th suffix of S , and it is
denoted by S.i/.
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As introduced in Sect. 2, the three types of biological sequences: DNAs, RNAs,
and proteins differ in their alphabets. For example, for DNA sequences, the DNA
sequence is a string over an alphabet of four characters, namely A, C, G, and T. We
also note that in Computer Science terminology, the notion “sequence” is not the
same as “string.” However, “sequence” in Biology corresponds actually to “string”
in Computer Science. So, unless otherwise stated, we will use “sequence” and
“string” interchangeably in this chapter.

The complement string of a DNA string is obtained, from biological knowledge,
by replacing every C with G, G with C, T with A, and A with T; i.e., this re-
placement follows the base pairing rule. The reverse string of SŒ1::n� is the string
SŒn�SŒn � 1�::SŒ1�. The reverse complement of S is the complement string of
SŒn�SŒn � 1�::SŒ1�. Neither the reverse nor the complement string is of interest in
molecular biology. The reverse complement, however, is as important as the DNA
string S because it represents the complementary strand of this molecule, where
biological information is also encoded. Using the genetic code, any DNA or RNA
sequence that encodes for a protein can be transformed to the corresponding se-
quence of amino acids.

3.2 Look-Up Table

For a given parameter d , the look-up table is a table of length j˙ jd such that each
string of length d maps to just one entry in the table. Note that the table size cor-
responds to the j˙ jd possible strings. We call any of these strings key. Each entry
of the table points to a linked list storing the positions where the associated string
occurs in S . Note that some entries may be empty, as the respective substring does
not occur in S . The mapping function, for a string P Œ0::d � 1�, is

x D f .P Œ0::d � 1�/ D
d�1X

iD0

j˙ jd�i�1T .P Œi �/

where x is an integer value representing an index of the look-up table, ˙ is the
alphabet size, and T .SŒi �/ is a function that maps each character in the alphabet to a
number in the range Œ0 : : : j˙ j�. Figure 1 shows an example of a look-up table with
the mapping a! 0, c ! 1, g! 2, and t ! 3.

The look-up table can be naively constructed by sliding a window of length d
over S and computing the mapping function f .w/ for each substring w 2 S . This
takesO.d jS j/ time. This time complexity, however, can be reduced toO.jS j/ using
the following recurrence, which can be implemented by scanning the string S from
left to right.

f .SŒiC1::iCd�/ D .f .SŒi::iCd �1�/�T .SŒi �/j˙ jd�1/�j˙ jCT .SŒiCd �1�/
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The string

S= a c a a a c a t a t
0 1  2   3 4  5 6  7 8 9

0 1 2 3 4 5 6 87

2 0 6

5843

aa at
ca

cc
ct

ta
tc

tt
ac

71

Fig. 1 The look-up table for S D acaaacatat

Fig. 2 A trie of the string
acctca. The keys are the
substrings of length 4

c

a

c

c c t c

t

t
c a

3.3 Automata and Tries

Aho and Corasick [9] showed how to construct a deterministic finite automata for
a set of keys (words). The target was to improve online string matching for bibli-
ographic search. For a genomic sequence, the keys can be taken as the set of its
subsequences (more precisely, its substrings). To reduce the space, one can take
subsequences up to certain length k. The locations where these substrings occur in
the sequence can be attached to the leaves (the nodes of success) of the automaton.
Figure 2 shows an example of an automaton for the string acctca, where k D 4. The
string has the three keys acct, cctc, and ctca.

It is interesting to see that this automaton is nothing but a pruned non-compact
suffix tree. (Suffix tree is presented in the next subsection.) A non-compact suffix
tree, known as trie, has the edge labels explicitly stored with the tree, and for each
label there is an edge. (As a consequence not all the nodes of the tree are branch-
ing.) Because the space consumption of a trie grows quadratically with the sequence
length, it is necessary to prune it at an appropriate depth.

For maximum depth k, the automata can be constructed inO.nk/ time by adding
the n keys successively to the automata as the original method of Aho and Corasick
[9]. But this time complexity can be improved by constructing the suffix tree inO.n/
time, and pruning it such that the maximum depth is k characters from the root.
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3.4 The Suffix Tree

The suffix tree is a focal data structure in string processing and the linear time
algorithm for constructing it is a milestone in this area. The suffix tree is defined
as follows: Let S be a string of n characters and let the character $ be appended to
S . A suffix tree for the string S$ is a rooted directed tree with exactly nC 1 leaves
numbered from 0 to n. Each internal node, other than the root, has at least two chil-
dren and each edge is labeled with a nonempty substring of S$. No two edges out of
a node can have edge-labels beginning with the same character. The key feature of
the suffix tree is that for any leaf i , the concatenation of the edge-labels on the path
from the root to leaf i exactly spells out the substring SŒi::n � 1�$ that denotes the
i -th nonempty suffix of the string S$, 0 � i � n. Moreover, the concatenation of
the edge-labels on the path from the root to a non-leaf node spells out a substring of
S that occurs z times in S , where z is the number of all the leaves under the subtree
of this non-leaf node. Figure 3 shows the suffix tree for the string S D acaaacatat$.
The character $ is known as the sentinel character and it is appended to obtain a
tree in which every suffix corresponds to a leaf. More precisely, without the sentinel
character some suffixes would be proper prefixes of other suffixes. For example, as-
sume S to be aa, then without the sentinel character the second suffix is a prefix of
the first and it will not be straightforward to have a leaf for the second suffix and to
distinguish (lexicographically sort) the two suffixes of S . Throughout this chapter,
we use the notion suffix tree of S but this implicitly means that the suffix tree is
constructed for S$; i.e., the sentinel character $ is already appended to S .

To store the suffix tree in linear space, the edge-labels are not explicitly stored
with the edges. Rather, for each edge a pair of positions .i; j / is attached to represent
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Fig. 3 The suffix tree for S D acaaacatat$. The sentinel character is appended to S . A pair
.i; j / represents a substring SŒi::j � corresponding to the respective edge-labels. The gray arrows
indicates to the edges traversed while searching for the pattern ac
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a substring SŒi::j � corresponding to the respective edge-labels. This suffix tree
representation is commonly referred to as compact suffix tree. (If the labels are ex-
plicitly attached to the edges, the structure is called non-compact suffix tree or suffix
trie. In this case, the space complexity becomes O.n2/; consider, e.g., a string like
abcde.)

The suffix tree can be constructed in O.n/ time and space [45, 60]; see also [28]
for a simplified exposition. Once constructed, it can be used to efficiently solve the
problems specified in Fig. 5, but it can also be used to solve other string processing
applications; see [12, 28].

It is worth mentioning that the space consumption and the poor cache perfor-
mance of the suffix tree is a bottleneck for large scale applications [25, 33, 42]. The
enhanced suffix array [1] represents an alternative data structure to the suffix tree
that requires less space and achieves better cache performance. In [1] it was shown
that any algorithm using the suffix tree can be systematically replaced with an equiv-
alent one using the enhanced suffix array. Nevertheless, for clarity of presentation,
we will describe the algorithms in this chapter over the suffix tree. For mapping the
algorithms to the enhanced suffix array, we refer the reader to [1, 7].

4 Repeat-Related Problems

A pair of substrings R D ..i1; j1/; .i2; j2// is a repeated pair if and only if
.i1; j1/ ¤ .i2; j2/ and SŒi1::j1� D SŒi2::j2�. The length of R is j1 � i1 C 1.
A repeated pair ..i1; j1/; .i2; j2// is called left maximal if SŒi1 � 1� ¤ SŒi2 � 1�
and right maximal if SŒj1 C 1� ¤ SŒj2 C 1�. A repeated pair is called maximal if
it is both left and right maximal. A substring ! of S is a (maximal) repeat if there
is a (maximal) repeated pair ..i1; j1/; .i2; j2// such that ! D SŒi1::j1�. A super-
maximal repeat is a maximal repeat that never occurs as a substring of any other
maximal repeat. Figure 4 shows maximal repeated pairs and supermaximal repeats
of the string S D gagctagagcg.

g  a  g  c  t  a  g  a  g  c  gS:

g  a  g  c  t  a  g  a  g  c  g S:

g  a  g  c  t  a  g  a  g  c  g 

S: g  a  g  c  t  a  g  a  g  c  g 

S:

0   1    2    3    4    5    6    7    8    9    10

0    1    2    3   4    5    6    7    8    9    10

Fig. 4 Repeats of the string S D gagctagagcg. Left: three maximal repeated pairs of minimum
length two. The pairs are ..0; 3/; .6; 9//, ..1; 2/; .5; 6//, and ..5; 6/; .7; 8//. Right: one supermaxi-
mal repeat of the substrings .0; 3/ and .6; 9/. The repeat ag is not supermaximal because it is not
maximal and contained in gagc
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Unspelled words

ApproximateExact

Tandem Repeats
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length
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Repeat−related
problems

ApproximateExact

Dispersed Repeats

Fig. 5 Taxonomy of the major repeat-related problems in bioinformatics

If the repeated segments are occurring adjacent to each other, then we speak of
tandem repeats. Formally, a substring of S is a tandem repeat if it can be written
as !! for some nonempty string !. For example, the subtring agag of the string
S D gagctagagcg is a tandem repeat, where ! D ag.

Figure 5 is an overview of the basic string processing problems associated with
repeat analysis. For biological sequences, approximate repeats (tandem or inter-
spersed) are the ones occurring in reality. However, identification of exact repeats
is also important because many algorithms that find approximate repeats are usu-
ally based on exact repeats. In this section, we will show how to solve the problems
given in the figure.

4.1 Identifying Dispersed Repeats

Identifying Exact Fixed Length Repeats

The focus of this subsection is on the identification of repeats or repeated pairs of
fixed length k, i.e., we find all repeats ! D SŒi1::j1� such that j1 � i1 C 1 D k.
Fixed length repeats of length k can be efficiently found using either the look-up
table or the suffix tree. But to show the benefits of these data structures, we first
briefly address a brute force method.

A brute force method to enumerate all repeats is to take each substring of S of
length k and search whether it occurs somewhere else in S by scanning S from left
to right. Because we haveO.n/ substrings and each scan takesO.nk/ time (includ-
ing character comparison), the brute-force method takes O.kn2/ time. Note that
by using a more advanced exact pattern matching algorithm (as will be discussed
in Sect. 5.1), the running time of the scanning phase can be reduced to O.k C n/,
which reduces the running time to .n2 C kn/. But this is still quadratic and it is not
so helpful.

The look-up table provides a better solution to this problem. If it is built for
all substrings of length d D k of S , then it becomes straightforward to extract
all the repeats, as follows. The look-up table is sequentially scanned. If the linked
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list attached to a cell of the table contains more than one element, then the po-
sitions where it starts in the string are reported. Repeated pairs can be computed
by applying a Cartesian product operation over the linked list elements (excluding
identical pairs). For example, if a k-length substring is repeated three time in S at
positions 3, 7, and 20, then the repeated pairs are ..3; 3C k � 1/; .7; 7C k � 1//,
..3; 3Ck�1/; .20; 20Ck�1//, and ..7; 7Ck�1/; .20; 20Ck�1//. We do not need
to report the pairs ..7; 7C k� 1/; .3; 3C k� 1//, ..20; 20C k� 1/; .3; 3C k� 1//,
and ..20; 20C k � 1/; .7; 7C k � 1//, as well, because they are redundant.

Constructing the look-up table takes O.j˙ jd C n/ time and O.j˙ jd / space.
Finding the repeats takesO.j˙ jd C z/ time, where z is the number of repeats. (This
algorithm is said to be output sensitive, because the complexity is expressed in terms
of the output size). Finding the repeated pairs takes O.j˙ jd C z0/ time, where z0 is
their number. It is not difficult to see that the space consumption of the look-up table
becomes prohibitive for large d and ˙ .

The automaton of Sect. 3.3 can also be used to report repeats of fixed length k.
The idea is that the keys of the automaton are all the substrings of length k. If one
leaf contains more than one position, these positions, which are the occurrences of
a repeat, are reported. To find repeated pairs under this leaf, a Cartesian product
operation is applied over the occurrences of the repeat (excluding identical pairs).

The suffix tree presents a more efficient solution to this problem. Recall from
Sect. 3.4 that the concatenation of the edge-labels on the path from the root to a
non-leaf node spells out a substring of S that occurs z times in S , where z is the
number of all the leaves under the subtree of this non-leaf node. If each internal
node is annotated with the length ` of the substring made up of the edge labels from
the root to this node, then for each node with ` � k we report all the positions
stored in the leaves of its subtree, as the starting positions of a repeated substring
associated with this node. For example, if we use the suffix tree of Fig. 3 to find
repeats of length two, then the nodes v2, v4, v5, and v6 are the ones with ` � 2.
For v6, e.g., we report the positions 6 and 8 as the starting positions of the repeated
string at , and compose the repeated pair ..6; 7/; .8; 9//.

Finding Variable Length Repeats

Maximal Repeated Pairs

The problem of reporting exact repeats of any length are referred to here as the
problem of computing exact variable length repeats. The class of maximal repeats
belongs to the set of variable length repeats. Recall from the introductory part of
this section that a repeated pair ..i1; j1/; .i2; j2// is called maximal if SŒi1 � 1� ¤
SŒi2 � 1� and SŒj1 C 1� ¤ SŒj2 C 1�. That is, the repeated pair cannot extend to
the left and to the right simultaneously in S . Recall also that a substring ! of S
is a (maximal) repeat if there is a (maximal) repeated pair ..i1; j1/; .i2; j2// such
that ! D SŒi1::j1�. Fig. 4 (left) shows maximal repeated pairs of the string S D
gagctagagcg.
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To compute maximal repeated pairs, we use the algorithm of Gusfield based on
the suffix tree [28, page 147]. This algorithm computes maximal repeated pairs of
a sequence S of length n in O.j˙ jnC z/ time, where z is the number of maximal
repeated pairs. To the best of our knowledge, Gusfield’s algorithm was first used in
the bioinformatics practice in the program REPuter [42], where maximal repeated
pairs are used as seeds for finding approximate repeats, as we will discuss later when
handling approximate dispersed repeats.

The algorithm for computing maximal repeated pairs is based on a bottom-up
traversal of the suffix tree, in which all the child intervals are processed before the
parent interval.

To explain the algorithm, we first introduce some notations: Let ? denote an
undefined character, corresponding to a non-existing character before SŒ0�. We as-
sume that this character is different from all characters in ˙ . Let v be a node in
the suffix tree and let `v be the length of the substring produced by concatenating
the edge labels from the root to node v. Let u denote this substring. Define Pv to be
the set of positions p such that u is a prefix of S.p/, i.e., Pv contains the positions
attached to the leaves (suffixes) of the subtree at node v. We divide Pv into disjoint
and possibly empty sets according to the characters to the left of each position: For
any a 2 ˙ [ f?g define

Pv.a/ D
( f0 j 0 2 Pvg if a D ?
fp j p 2 Pv; p > 0; and SŒp � 1� D ag otherwise

Figure 6 shows an example of position sets associated to a suffix tree.
The set Pv is constructed during the bottom-up traversal as follows. If v is a leaf

node of the suffix tree of S referring to the suffix p D S.i/. Then Pv D fpg and
Pv.a/ D p if a D SŒp � 1�. If v is not a leaf, then for each a 2 ˙ [ f?g, Pv.a/

is computed step by step while processing the children of v. Let v1; ::; vt denote the
children of v. We start with v2 and perform two operations:

4 0

a c g t
68

a c g t
1
5v4

v1

v5 v6

v2
v3

3
a c g t

2

03
4

8
a g tc

a c g t

2
6

2

56 8

3
0 4

10

7 9

1

Fig. 6 The position sets of a sub-tree of the suffix tree of Fig. 3. We show these sets together just
for illustration, but during the bottom up traversal the sets at v4, v5 and v6, for example, coalesce
together into the set at v1
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1. A Cartesian product between the sets Pv1
and Pv2

. More precisely, maximal
repeated pairs are output by combining the position sets Pv1

.a/ with Pv2
.b/, for

each a ¤ b. More precisely, a maximal repeated pair ..p; pC `v � 1/; .p0; p0C
`v � 1//, p < p0, is output for all p 2 Pv1

.a/ and p0 2 Pv2
.b/.

2. A union operation between Pv1
and Pv2

is performed to construct the position
set Pv1::v2 , where Pv1::v2.a/ D Pv1

.a/ [ Pv1
.a/, for all a 2 ? [˙ .

Then we take v3 and process it with Pv1::v2.a/ to report MEMs and produce
Pv1::v3.a/, and so on until we process all the child intervals. The final set Pv1::vt is
Pv; see Fig. 6.

There are two operations performed when processing a node v: First, output of
maximal repeated pairs by combining position sets. Second, union of position sets.
The first step takesO.z/ time, where z is the number of repeats. The union operation
for the position sets can be implemented in constant time, if we use linked lists.
Altogether, the algorithm runs in O.n C z/ time. This algorithm requires linear
space. This is because a position set Pv.a/ is the union of position sets of the child
intervals of v, and it is not required to copy position sets; rather they are linked
together.

In practice, it is usually required to report maximal repeated pairs of length larger
than a certain user-defined threshold. This reduces the output size while maintaining
meaningful results. This length constraint can be incorporated in the above algo-
rithm by examining for each internal node v the value `v. If `v falls below the given
threshold, then the attached position set is discarded and one starts from the next
non-visited leaf.

Identifying Supermaximal Repeats

A sub-class of the maximal repeats is the supermaximal repeats. A supermaximal
repeat is a maximal repeat that never occurs as a substring of any other maximal
repeat. Fig. 4 (right) shows supermaximal repeats of the string S D gagctagagcg.

We use the algorithm of [1] to compute supermaximal repeats. This algorithm
was originally introduced over the enhanced suffix array but we will explain it here
over the suffix tree. Let uv denote the substring obtained by concatenating the char-
acters on the path from the root to a node v. We call a node v terminal node, if
all its children are leaves. To each leaf S.p/, we attach the character a such that
SŒp � 1� D a. We call this character the burrows-wheeler character, analogous to
the burrows-wheeler transformation used in text compression.

Because any supermaximal repeat ! is right maximal, there should be a node
v in the suffix tree such that uv D !. Moreover, because ! does not occur as a
substring of any other supermaximal repeat, the node v must be a terminal node and
the burrows-wheeler characters of the leaves under v are pairwise distinct. The idea
is that if these characters are not pairwise distinct, then there must be another repeat
containing uv as a substring. This suggests the following simple algorithm: Traverse
each terminal node v of the suffix tree, and report the substring uv if the respective
burrows-wheeler characters are pairwise distinct. In Fig. 3, the terminal nodes are



String Mining in Bioinformatics 219

v2, v3, v4, v5, and v6. The condition on the burrows-wheeler character is satisfied for
the nodes v4, v5, and v6. Hence, the corresponding substrings aa, aca, and at are
supermaximal repeats, respectively. The condition on the burrows-wheeler character
is not satisfied for v2 and v3, because the suffixes 7 and 9 under v2 are preceeded by
the character a, and the suffixes 1 and 5 are preceeded by the character a. Because
the number of terminal nodes and leaves is O.n/, this algorithm takes O.n/ time.

4.2 Identifying Tandem Repeats

A substring of S is a tandem repeat, if it can be written as !! for some nonempty
string !. An occurrence of a tandem repeat !! D SŒp::pC 2j!j � 1� is branching,
if SŒp C j!j� ¤ SŒp C 2j!j�.

Stoye and Gusfield [56] described how all tandem repeats can be derived from
branching tandem repeats by successively shifting a window to the left; see Fig. 7.
They also showed that for each branching tandem repeat !!, there is one node
in the suffix tree such that the substring obtained by concatenating the edge labels
from the root to v is !. For this reason, we focus on the problem of computing all
branching tandem repeats using the suffix tree.

Let v denote a node in the suffix tree and let ! denote the substring obtained by
concatenating the edge labels from the root to v. From each node v, one traverses the
tree downwards and performs pattern matching, as will be explained in Sect. 5.1, to
check if !! occurs in S . Specifically, we search in the subtree at v to see if there is
a path starting from v such that the concatenation of its edge labels spells out !˛,
where ˛ is any substring of S (˛ could be the empty string). For example, ! D at

at the node v6 in the suffix tree of Fig. 3. If we make a search in the subtree of
this node, we find at on the path from this node to the leaf 6. Then we have an
occurrence of a branching tandem repeat starting at position 6 in S and composed
of the string atat .

The worst case running time of this algorithm is O.n2/ (take, e.g., S D an).
However, the expected length of the longest repeat of a string S is O.logn/, where
n D jS j. That is, j!j D O.logn/ in average. Hence, the expected running time of
the algorithm is O.n logn/.

It is worth mentioning that there are algorithms that can compute tandem repeats
in O.n/ time in the worst case; see [29, 40]. However, these algorithms are compli-
cated and less efficient in practice than the algorithm described above, see [1].

x ......y...... xac c cb b b aa

Fig. 7 Chain of non-branching tandem repeats axcb, baxc, and cbax, derived by successively
shifting a window one character to the left, starting from the branching tandem repeat xcba
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4.3 Identifying Unique Subsequences

The problem of finding all unique substrings is relevant for designing oligonu-
cleotides. Oligonucleotides are short single-stranded DNA sequences. They are
used either as primers in a PCR (Polymerase Chain Reaction) process to start the
synthesis of a stretch of DNA having the complementary sequence of these oligonu-
cleotides, or as probes to detect (and quantify) the existence of its complementary
sequence in a pool of DNA sequences. These oligonucleotides should be unique to
the DNA stretch they detect or synthesize. For example, if a certain oligonucleotide
is used for the detection or isolation of a certain gene in a genome, then the comple-
mentary sequence should occur only in this gene, and nowhere else in the studied
genome. Furthermore, the length of oligonucleotides should be within certain lim-
its due to chemical and physical considerations (the length of a primer is between
18–30 and that of probes is between 4–10 base pairs). This leads to the definition of
unique substrings.

Definition 1. A substring of S is unique if it occurs only once in S .

Definition 2. Given a string S of length n and two integers 0 < `1 < `2 � n, the
unique substrings problem is to find all unique substrings of S such that the length
of each is between `1 and `2. The string S is a unique substring of length n.

For example, the strings ca, cac, aca, and acac are unique substrings in acac.
It is not difficult to verify that a unique substring in S is associated with a leaf in the
suffix tree. In particular, if ! is a unique substring of S of length `C 1, then there is
a leaf corresponding to the suffix S.p/ such that ! is a prefix of S.p/, and uŒ`� ¤ $.

To report each unique substring whose length ranges between `1 and `2, we per-
form a breadth-first traversal of the suffix tree. During the traversal, if the currently
visited node v has l.v/ > `2, where l.v/ is the length of the substring obtained by
concatenating the edge labels on the path from the root to v, then we visit no de-
scendant nodes of v. If `1 � l.v/ � `2 and v is a parent of a leaf corresponding
to the suffix S.p/, then we report all unique matches starting at S.p/ in S and of
length l.v/ < ` � `2 only if pC` < n; i.e., we report the substrings SŒp::pC l.v/�,
SŒp::pC l.v/C 1�; : : : ; SŒp::pC `2 � 1�. For example, if it is required to report all
unique matches of length 2 � l � 3 of the string acaaacatat , whose suffix tree is
given in Fig. 3, then the nodes v2, v3, v4, and v6 are considered. At v2, for example,
we report the substrings caa and cat .

It is not difficult to see that the time complexity of this algorithm is O.n C z/,
where z is the number of unique matches.

4.4 Finding Absent Words

Absent words are strings not in S . It is clear that there is a prohibitively huge number
of absent words. Therefore, we restrict ourselves to the shortest absent words. For
short fixed-length absent words, say length d < n, we can use the look-up table
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method in a straightforward way. We report the substrings corresponding to empty
entries in the look-up table. For larger d , we can extend the algorithm for computing
unique substrings using the suffix tree as follows. Let v be a node in the suffix tree,
let uv be the substring obtained by concatenating the edge labels on the path from
the root to v. If juvj < d , then we produce all the substrings uvw such that juvwj D d
and uvw … S , by computing all possible strings w 2 ˙ jwj and appending them to uv.

4.5 Approximate Repeats

Computing approximate repeats can be achieved by using a local alignment al-
gorithm in which the sequence is aligned to itself. The algorithm of Smith and
Waterman that will be introduced in the next section for computing local align-
ments can be used in a straightforward manner to find approximate repeats. This
algorithm takes O.n2/ time, which is not feasible for long sequences. To overcome
this, heuristic algorithms, addressed in the next section, were introduced to compute
approximate repeats in a faster way.

4.6 Constraints on the Repeats

We address two types of constraints: (1) Constraints on the number of repeat occur-
rences and (2) proximity constraints.

Constraints on the number of occurrences

Posing constraints on the number of repeats or repeated pairs to be reported is ben-
eficial for many applications in bioinformatics. As mentioned in the introduction,
mammalian and plant genomes are full of repetitive elements of different kinds.
Dispersed repeats are more abundant; they compose, for example, about 1.4 Gbp
from the 3 Gbp human genome. From the different types of the dispersed repeats,
three families are prevailing: LINE, SINE, and LTR. If a biologist is interested in
locating these three families, then she/he searches for repeats appearing very often
in the genome. Otherwise, she/he looks for non-abundant repeats.

In the following, we focus on posing an upper bound constraint on the num-
ber of repeats to be reported; posing a lower bound is complementary to what will
be addressed here. We start with introducing the definitions of rare and infrequent
maximal repeated pairs.

Definition 3. Let .l; p1; p2/ denote a repeated pair ..p1; p1Cl�1/.p2; p2Cl�1//,
and let a threshold t 2 N be given. A maximal repeated pair .l; p1; p2/ is called rare
in S if the string w D SŒp1::p1Cl�1� D SŒp2::p2Cl�1� occurs at mostRw � T
times in S .
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Definition 4. Let .l; p1
1; p

1
2/; : : : ; .l; p

r
1; p

r
2/ be maximal repeated pairs with w D

SŒp1
1 ::p

1
1Cl�1� D 
 
 
 D SŒpr

1::p
r
1Cl�1� and let a threshold t 2N be given. Any

of these repeated pairs is called infrequent if jf.l1; p1
1 ; p

1
2/; : : : ; .l

r ; pr
1; p

r
2/gj D

rw � t .
Definition 3 adds constraints on the number of repeated substrings that are iden-

tical to the substrings from which the maximal repeated pair stems, and Definition
4 adds constraints on the number of the maximal repeated pairs themselves. That is,
Definition 4 complements Definition 3 by further controlling the number of repeats.

It is our next goal to calculate the values rw and Rw. This can be achieved by
modifying the algorithm introduced in Sect. 4.1 for computing maximal repeated
pairs based on the suffix tree. We use the following notations. For a position set Pv,
let CPv.S; a/ D jPv.S; a/j be the number of suffixes under the subtree at the node v
and preceeded by character a 2 ˙ . Let CPv.S/ D

P
a2˙[f?g CPv.S; a/ be the total

number of suffixes under the subtree of the node v. Clearly, CPv.S/ is the number
of occurrences of the substring w D SŒi : : : i C `� in S , where S.i/ is one of these
suffixes and ` is the length of the substring produced by concatenating the edge
labels from the root to v. Hence, it is easy to see that the value CPv.S/ D Rw.

For any node v containing k child intervals, v1; ::; vk , the value rw can be calcu-
lated according to the following formula, where q; q0 2 Œ1::k�:

rw D 1

2

X

a2˙[f?g

X

q¤q0

CPvq
.S; a/ 
 .CPvq0

.S/� CPvq0
.S; a//

In the example of Fig. 6, the calculation of the value rw for the subtree at node v1

yields rw D .1 � 1C 1 � 2/C .1 � 1C 1 � 1/C .1 � 1C 1 � 2/ D 8.
The valuesCPv.S/ andCPv.S; a/ can be attached to the position set of each node

and can be inherited from the child nodes to their parent node. Therefore, adding
these constraints to the algorithm for computing maximal repeated pairs mentioned
before entails no increase in the time complexity. Note that the values Rw and rw

are considered before performing the Cartesian product operation. That is, if they
are under the certain threshold then a Cartesian product is performed, otherwise we
discard the whole position sets, and start from the next non-visited leaf.

Proximity constraint

Consider a repeated pair R.l; i; j /, where the two substrings composing it are
SŒi::i C l � 1� and SŒj::j C l � 1�, i < j . We call the former substring the first
instance and the latter the second instance. We define the span1 of R as the number
of characters .j�i�l/ between these two substrings.

1 In [17] the word “gap” was used instead of span. But because the word gap has a specific meaning
in sequence alignment, which will be addressed later in this chapter, we will use the word span in
this section.
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Adding a proximity constraint on the reported repeated pairs can be formulated
as “find each repeated pair in S such that its span is between two constants c1

and c2” [17]. It is not difficult to see that the tandem repeats are a special case of
such constrained repeated pairs where the span is zero. To avoid redundant output,
we focus on finding maximal repeated pairs with constraints on the span. In the
following, we show how to incorporate this constraint into the algorithm presented
before for computing maximal repeated pairs using the suffix tree.

Recall from the algorithm presented in Sect. 4.1 for computing maximal repeated
pairs that the Cartesian product operation reports the z maximal repeated pairs in
time O.z/. The straightforward idea is to filter out those pairs not satisfying the
proximity constraint. This immediately yields O.nC z/ algorithm. But the number
of the constrained maximal repeated pairs is much less than z. Therefore, Brodal
et al. [17] introduced an algorithm that takes O.n logn C z0/ time, where z0 is the
number of the reported maximal pairs satisfying the constraint. The idea of their
algorithm is to represent the position sets as AVL-trees. The advantage is that the
pairs satisfying the constraints can be directly reported in time proportional to their
number. The union operation between two position sets will no longer be performed
in constant time, but it will take O.logn/ time. Hence, we have the logn factor in
the time complexity given above. Because the details are to a great extent involved,
we refer the reader to the original paper of Brodal et. al. [17].

5 Sequence Comparison

Due to its numerous applications, the area of string comparison is of great im-
portance to bioinformatics in particular and to computational science in general.
Figure 8 is an overview and taxonomy of the basic string comparison problems. In
exact string comparison, the goal is to examine if the strings or substrings in com-
parison are either identical or not, while in approximate string comparison we can
tolerate some differences. For applications in molecular biology, approximate com-
parison is the one of interest due to sequencing errors and mutations. Nevertheless,
exact comparison is also important because many algorithms that find approximate
similarities are usually based on exact common substrings. Note that some of the
problems in the figure are addressed also in other computer science areas such as
information retrieval and text mining. It is worth mentioning that the field of string
comparison is also referred to as pattern matching, in which one string to be com-
pared is considered as a text and the other as a pattern. Hence, we might use the
terms “pattern matching” and “string comparison” synonymously.

5.1 Global and Semi-Global Exact Pattern Matching

The global exact pattern matching is the task we usually encounter in many applica-
tions, where one is given two strings S1 and S2 and it is required to report whether
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Fig. 8 A taxonomy of string comparison problems. We also show a real world application or
problem for each type of string comparison

the two strings are identical or not. The algorithm is to compare the characters from
left to right. If there is a mismatch, we report that S1 ¤ S2 and terminate the com-
parison. If we reach the end of the strings, then we report that S1 D S2. The function
strcmp in the programming languageC , for example, is an implementation of this
easy algorithm.

The semi-global exact pattern matching (known for short as exact pattern match-
ing) problem is defined as follows. Given a string S of length n (usually called the
text) and a pattern P of lengthm � n, the exact pattern matching problem is to find
all the occurrences of P , if any, in S .

The brute force method takes O.mn/ time by sliding the pattern over S and
comparing characters. This time complexity can be reduced to O.n C m/ if the
pattern is pre-processed; the pre-processing time is O.m/ and the query time is
O.n/. The algorithm of Knuth-Morris-Pratt, e.g., is one of these algorithms; see [28]
for a simplified exposition and a survey of methods. Algorithms that pre-process
the text itself, by constructing an indexing data structure for the text, achieve also
O.nC m/ time; the pre-processing time is O.n/ and the query time is O.m/. But
the advantage here is that the index is constructed once and millions of queries can
be answered in time proportional to their length, independent of the length of S .

If it is required to search for patterns up to d characters, then one can use the look-
up table presented in Sect. 3.2. The idea is to construct the look-up table over the
text alphabet plus an additional dummy character, say “#.” The reason for having this
dummy character is to represent all the substrings of S of length up to d characters.
If the dummy character were involved in the look-up table in Fig. 1, then we would
have the extra entries corresponding to the substring a#, c#, t#, ##. The last entry
could be clearly not included in the table. The linked list for a# (c# or t#) stores the
positions where a (c or t) occurs in S .
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If the pattern length is m D d , we directly compute the hashing function of
the pattern, which maps us to a position in the look-up table. We then report the
occurrences from the attached linked list. This takes O.nC z/ time, where z is the
number of pattern occurrences in S . If the pattern length is m < d , then we append
dummy characters so that the final pattern length becomes d . Thus, we can compute
the hashing function and report the pattern occurrences. This takes also O.d C z/
time, which is not as optimal as the time complexity one can achieve using the
suffix tree.

The exact pattern matching algorithm using the suffix tree works as follows. The
suffix tree is traversed in a top-down fashion. We start from the root node and com-
pare the edge labels of the outgoing edges to characters of the pattern. If there is a
substring u labeling the edge from the root to a node v such that P Œ0::ju � 1j� D u,
then we move to node v and compare the sub-pattern P Œu::m � 1� to the outgoing
edge labels. This continues until there is a mismatch or all the characters of the
pattern are compared successfully to the edge labels. In the former case the pattern
does not occur in the text, while in the latter case the pattern exists and the positions
where it occurs are the starting positions of the suffixes (leaves) in the subtree at
the node on which the last edge traversed is incident. This procedure is illustrated
in Fig. 3, where the gray arrows refer to the edges visited while searching for the
pattern ac in S . This pattern starts at positions 0 and 4 in S .

5.2 Local Exact Matches

A similar region occurring in two strings S1 and S2 can be specified by the sub-
strings S1Œl1 : : : h1�, S2Œl2 : : : h2�, where 1 � li < hi � jSi j and i 2 f1; 2g. If
S1Œl1 : : : h1� D S2Œl2 : : : h2�, i.e., the substrings are identical, then we have an ex-
act match. This exact match can also be specified by the triple .`; l1; l2/, where
` D h1 � l1 D h2 � l2. If the equality S1Œl1 � 1� D S2Œl2 � 1� does not hold,
then the exact match is called left maximal, i.e., it cannot extend to the left in the
given strings. Similarly, if the equality S1Œh1C 1� D S2Œh2C 1� does not hold, then
the multiple exact match is called right maximal. The exact match is called max-
imal, abbreviated by MEM, if it is both left and right maximal. Fig. 9 (left) shows
examples of maximal exact matches.

All the match types mentioned above can be computed using the exhaustive enu-
meration technique, which is one of the oldest techniques used to compute matches.
It was first used in the software tool DIALIGN [46, 47] to compare protein and
relatively short DNA sequences. The basic idea is that matches are the result of
Cartesian products between all substrings of the sequences involved. In a sequence
of average size n, we have O.n2/ substrings. Thus, for two sequences, there are
O.n4/ possible matches. If the Cartesian products are limited to substrings of the
same length, then the number of possible matches reduces to O.n3/. To further
reduce this number, only substrings of maximum length ` can be taken into ac-
count. This makes the numberO.n2l/. Even with theO.n2`/ possible matches, this
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S1#S2 g  a  g  c  t  # a  g  a  g  c  g 

a  g  a  g  c  g 

g  a  g  c  tS1

S2

Fig. 9 Matches of the strings S1 D gagct and S2 D agagcg. Left: two maximal exact matches
of minimal length two. The first is .4; 0; 1/ composed of the substring “gagc,” and the second is
.2; 1; 0/ composed of the substring “ag.” Right: these MEMs are maximal repeated pairs in S1#S2

technique is still infeasible for comparing large sequences. In the following, better
solutions will be presented. First, we will address efficient techniques for finding
fixed length exact matches, where we report matches of fixed length ` D k. Then
we move to the computation of variable length matches, such as MEMs.

Finding Exact k-mers

Substring of S of fixed length k are called k-mers (also known as q-grams). If
the matches reported are of certain fixed length, then they are called matches over
k-mers. In this chapter, we call these matches, for short, k-mers.

The look-up table can be directly used to compute exact k-mers. We construct
the table such that its entries contain the positions of all substrings of length k of
one sequence, say S1. Then the second sequence (say S2) is streamed against this
table to locate the k-mers. More precisely, each substring S2Œi::i C k � 1� of length
k of the second sequence is matched against this table, by computing the mapping
function in Sect. 3.2. To save computation, we can use the recurrence in the same
section to compute the mapping function of S2Œi C 1::i C k� from S2Œi::i C k � 1�.

Constructing the look-up table for constant k takes linear time, specifically
O.n1/, where n1 is the length of the first sequence. Deciding whether a query sub-
string exists in the table takesO.k/ time and enumerating the matches, if any, takes
time proportional to their number. Because there areO.n2/ substrings in the second
sequence, which is of length n2, reporting all the z k-mers takes O.n2 C z/ time.
Therefore, the total time complexity isO.n1Cn2Cz/. The value k is usually chosen
to be between 7 and 20, for genome size sequences, because the space consumption
of the look-up table increases exponentially with it. Due to its simplicity, the look-
up technique is widely used in software tools such as WABA [38], BLASTZ [51]
(PipMaker [52]), BLAT [37], ASSIRC [58], GLASS [15], and LSH-ALL-PAIRS
[18].

Automata can also be used to compute exact k-mers instead of constructing a
look-up table. An automaton is constructed for one of the sequences, where its keys
are are the set of the sequence substrings. The locations where these substrings occur
in the sequence are attached to the leaves (nodes of success) of the automaton. For
computing k-mers, each substring of length k of the other sequence is matched
against this automaton.
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We can also use the suffix tree for computing k-mers. But the suffix tree is too
powerful to be used in this simple task, unless k is too large. We will explain in
the next section how to use the suffix tree to compute variable length local matches,
which is a more sophisticated task.

Maximal Exact Matches

Recall from the definitions given above that an exact match defined by the triple
.l; p1; p2/ is maximal, if SŒp1� 1� ¤ SŒp2 � 1� and if SŒp1C l� ¤ SŒp2C l�. It is
not difficult to see that computing maximal exact matches between two strings S1

and S2 boils down to computing maximal repeated pairs of the string S D S1#S2,
where # is a unique separator symbol occurring neither in the strings S1 nor S2. The
triple .l; p1; p2/ specifies a MEM if and only if ..p1; p1C l � 1/; .p2; p2C l � 1//
is a maximal repeated pair of the string S such that p1 C l � 1 < p < p2, where
p D jS1j is the position of # in S .

Therefore, one can use the algorithm of Subsection 4.1 for computing maximal
repeated pairs to compute maximal exact matches, but with the following modifica-
tion. Each position set is further divided into two disjoint and possibly empty sets:
One that contains all positions of the suffixes belonging to S1 (these are smaller
than jS1j) and another one that contains all positions of the suffixes belonging to
S2 (these are greater than jS1j). More precisely, we construct the set Pv.S1; a/

to contain all positions p 2 Pv such that p corresponds to a position in S1 and
SŒp � 1� D a 2 ˙ [ f?g. Pv.S2; a/ is constructed analogously. (Figure 10
shows an example of position sets for computing MEMs.) To compute maximal
exact matches, the Cartesian product is built from each position set Pv.S1; a/,
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Fig. 10 The position sets of a part of the suffix tree. pi denotes the suffix S.pi / starting at position
pi in S . We show these sets together just for illustration, but during the bottom up traversal the sets
at v1, v2 and v3 coalesce together into the set at v
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a 2 ˙ [ f?g and the position sets Pv.S2; b/, where a ¤ b 2 ˙ [ f?g. It is not
difficult to see that this modification does not affect the time and space complexity
of the algorithm.

Constraints on the match occurrences

As we did before for maximal repeated pairs, we can add constraints on the number
of matches and the substrings composing them. An important constraint is called
rare-MEMs. A MEM is called rare if the constituent substrings Si Œli : : : hi � appear
at most T times in Si , for any i 2 f1; 2g and T is a natural number specified by the
user. A MEM is called unique if T D 1. In this case, we speak of a maximal unique
match. In the example of Fig. 9 the MEM .2; 1; 0/ composed of the substring ag
is not unique, because ag occurs more than one time in S1 or S2, while the MEM
.4; 0; 1/ is unique.

The previous definitions given for maximal repeated pairs can be readily modi-
fied as follows. For a position set P, let CP.S1; a/ D jP.S1; a/j and CP.S1/ DP

a2˙[f?g CP.S1; a/ (the values CP.S2; a/ and CP.S2/ are defined similarly).
These values refer to the number of the constituent substrings of a maximal exact
match at a node in the suffix tree. These values are considered before performing
the Cartesian product operation. That is, if they fall under the given threshold, i.e.,
CP.S1; a/ � T and CP.S2; a/ � T , then a Cartesian product is performed. Other-
wise we discard the whole position sets, and start from the next non-visited leaf.

We can also have a constraint on the number of MEMs in addition to the number
of the constituent substrings. For any node v, which contains k children, the number
of MEMs associated with it (denoted by the value rw) can be calculated according
to the following formula, where q; q0 are two child nodes:

rw D 1

2

X

a2˙[f?g

X

q¤q0

CPq
v
.S1; a/ 
 .CPq0

v
.S2/� CPq0

v
.S2; a//

The Cartesian product operation is performed only if rw � t , where t is a user
defined threshold. Otherwise we discard the whole position sets, and start from the
next non-visited leaf.

5.3 Approximate String Comparison and Sequence Alignment

Biological sequence comparison became a known practice since the emergence of
biological sequence databases. There were technical as well as biological need that
necessitated sequence comparison. The technical need was to avoid redundancy in
the database, and the biological need was to infer the structure and function of
new sequences by comparing them to those that already existed in the database.
For example, two genes might have the same ancestor and function if they have
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sufficiently similar sequences. Furthermore, the degree of similarity can indicate
how long ago the two genes, and the organisms including them, diverged.

At that time, two or multiple such short sequences were compared on the char-
acter level (nucleotides in case of DNA/RNA and amino acids in case of proteins),
and the result was delivered in terms of

1. Replacements, where characters in one sequence are replaced by other characters
in the other sequence. If two characters replacing each other are identical, then
they are called a match. Otherwise, they are called a mismatch.

2. Indels, where characters are inserted/deleted in either sequence. (A deletion in
one sequence is an insertion in the other.)

In computer science terminology, character matches, mismatches, deletions, in-
sertions are referred to as edit operations, and in biology they represent the mutation
events.

The Global Alignment Algorithm

Computer scientists introduced sequence alignment algorithms to efficiently com-
pare biological sequences in terms of these edit operations. If two sequences are
pre-known to be similar, then global sequence alignment is the procedure to be
used. Global alignment of two sequences is a series of successive edit operations
progressing from the start of the sequences until their ends. This alignment can
be represented by writing the sequences on two lines on the page, with replaced
characters (matches/mismatches) placed in the same column and inserted/deleted
characters placed next to a gap, represented by the symbol “ .” In Fig. 11 (left), we
show an example of aligning the two sequences ACTTAGTG and ACACCTG. From
left to right, the series of edit operations is two matches of AC, one insertion (dele-
tion) of T, three mismatches, and two matches of TG.

S1: ACTTAGTG
xxx

S2: AC ACCTG

S A C T T A G T G
0 -1 -2 -3 -4 -5 -6 -7 -8

A -1 1 0 -1 -2 -3 -4 -5 -6

C -2 0 2 1 0 -1 -2 -3 -4

A -3 -1 1 2 1 1 -1 -2 -3

C -4 -2 0 1 2 1 1 0 -2

C -5 -3 -1 -1 1 2 1 1 0

T -6 -4 -2 -2 0 1 2 2 1

G -7 -5 -3 -3 -1 0 2 2 3

Fig. 11 Left: Global alignment, where gaps correspond to indels. The positions where mismatches
exist are marked by the symbol x. Right: The alignment table (known also as the dynamic pro-
gramming matrix). The colored cells correspond to the traceback path that recovers the optimal
alignment. For this alignment, the score of a match 
 D 1, the cost of a mismatch ˛ D 0, and the
gap cost 	 D �1
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If each of the edit operations has a certain score, then the alignment can be scored
as the summation of the edit operation scores. In the example of Fig. 11 (left), if a
match scores 1, a mismatch scores 0, and an indel has penalty of �1, then the score
of the alignment is 4. In the literature, the indels penalties are also referred to as gap
costs.

Because the number of possible alignments is very large, one is interested only
in an alignment of highest score, which is referred to as optimal global alignment.
In an optimal alignment, the amount of characters replacing each other (identical
or similar characters) are maximized and the amount of gaps (insertions and dele-
tions) is minimized. In 1970, Needleman and Wunsch [48] introduced a dynamic
programming algorithm to find an optimal global sequence alignment.

Let two strings S1 and S2 be given, and let A.i; j / denote the optimal score of
aligning S1Œ0::i � to S2Œ0::j �. We define A.�1;�1/ D 0, A.0;�1/ D 	.S1Œi �/, and
A.�1; 0/ D 	.S2Œj �/, where 	.a/ is the cost of deleting character a (gap cost). The
following recurrence computes the optimal alignment.

A.i; j / D max

(
A.i � 1; j � 1/C ı.S1Œi �; S2Œj �/

A.i; j � 1/C 	.S1Œi �/

A.i � 1; j /C 	.S2Œj �/

where ı is the score of replacing one character with another. This score can be based
on a substitution matrix such as PAM or BLOSUM in case of comparing protein
sequences. In other cases, and also here, we assume a fixed model, which is defined
as follows

ı.S1Œi �; S2Œj �/ D
n

 if S1Œi � D S2Œj �
˛ otherwise

This recurrence simply determines that the optimal alignment up to .i; j / in S1

and S2 can be computed based on the optimal alignmentsA.i�1; j�1/,A.i; j�1/,
andA.i�1; j /. The first clause of the recurrence refers to the case where we replace
S1Œi � with S2Œj �. Hence, the optimal alignment assuming this replacement would
be A.i � 1; j � 1/ C ı.S1Œi �; S2Œj �/. The second clause of the recurrence refers
to the case where character S1Œi � is deleted/inserted. Hence, the optimal alignment
assuming this indel would be A.i; j � 1/ C 	.S1Œi �/. Finally, the third clause of
the recurrence refers to the case where character S2Œj � is deleted/inserted. Hence,
the optimal alignment assuming this indel would be A.i � 1; j / C 	.S2Œj �/. That
is, we have three scores: 1) optimal alignment assuming replacement, 2) optimal
alignment assuming indel in S1, and 3) optimal alignment assuming indel in S2.
The ultimate optimal alignment at .i; j / is the one of the highest score among these
three possible alignments. Fig. 11 (right) shows an example of the alignment table,
in which 
 D 1, ˛ D 0, and 	 D �1.

The easiest way to compute this recurrence is to use a 2D table (known also
as the dynamic programming matrix) and filling the cell .i; j / based on the cells
.i � 1; j � 1/, .i �1; j /, and .i; j �1/. The optimal score is at the cell on the lower
right corner. The alignment itself in terms of matches, mismatches, indels can be
spelled out by tracing back the cells from A.n;m/ to A.�1;�1/. A backward diag-
onal move from A.i; j / to A.i � 1; j � 1/ corresponds to match/mismatch between
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S1Œi � and S2Œj �, i.e., S1Œi �matches/mismatches S2Œj �. A backward horizontal move
fromA.i; j / to A.i �1; j / corresponds to a gap in S2, and an upward vertical move
from A.i; j / to A.i; j � 1/ corresponds to a gap in S1. The move direction itself is
determined such that the scoreA.i; j / equals eitherA.i�1; j�1/Cı.S1Œi �; S2Œj �/,
A.i; j �1/C	.S1Œi �/, orA.i �1; j /C	.S2Œj �/. The colored cells in the alignment
table of Fig. 11 corresponds to the traced back cells, which recover the alignment
on the left part of the figure. Multiple move possibilities imply that more than one
optimal alignment exist.

The Needleman and Wunsch [48] algorithm takes O.n2/ time and space. This
complexity scales up to O.nk/ in case of comparing k sequences of average
length n.

Interestingly, it is possible to use only O.n/ space to compute the optimal score
and to spell out the edit operations of an optimal alignment. This is based on the
observation that computing the score at cell .i; j / depends only on the score at the
three cells .i � 1; j � 1/, .i; j � 1/, .i � 1; j /. Hence, if we fill the array row-
wise (column-wise), we need just to store the previous row (column) to compute
the optimal score. Recovering the alignment itself by back tracing requires one ad-
ditional trick, because the rows except for the last two ones of the matrix are no
longer stored. This trick for a linear space dynamic programming algorithm is given
in [32] and explained in [28].

The Local Alignment Algorithm

In 1981, Smith and Waterman [54] introduced an essential modification to the
Needleman and Wunch algorithm. Instead of computing an optimal global align-
ment, they computed local alignments of subsequences of the given sequences; their
algorithm is, therefore, known as local sequence alignment. In Fig. 11 on the left, we
show two sequences that are locally aligned. Note that the locally aligned regions
are not in the same order in the two sequences.

Local alignments are important for three reasons: First, many biologically sig-
nificant regions are subregions that are similar enough and the remaining regions
are made up of unrelated sequences; the similar regions are known in proteins, for
example, as domains. Second, insertions and deletions of any sizes are likely to be
found as evolutionary changes; this is known as domain insertions/deletions. Third,
the alignable subregions do not necessarily occur in the same order in the compared
sequences; this corresponds to domain shuffling.

The algorithm of Smith and Waterman [54] is a very simple modification to the
recurrences of the global alignment, but proofing the correctness of the recurrences
is worth reading [54]. The modification is to use negative mismatch and gap costs
and not allow any cell to have a negative score, which leads to the recurrence

A.i; j / D max

8
<̂

:̂

A.i � 1; j � 1/C ı.S1Œi �; S2Œj �/

A.i; j � 1/C 	.S1Œi �/

A.i � 1; j /C 	.S2Œj �/
0
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S1: TG T TAGAC

S2: ACC TG C

Alignment of the substrings
(S1Œ3::7�; S2Œ3::5�)

T A G A C
T G C

S T G T T A G A C
0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 2 1 2 1

C 0 0 0 0 0 1 1 1 4

C 0 0 0 0 0 0 0 0 3

T 0 2 1 2 2 1 0 0 2

G 0 1 4 3 2 1 3 2 1

C 0 0 3 3 2 1 2 2 4

Fig. 12 Upper left: Local alignment, where the underlined region in S1 aligns to the underlined
region in S2, and the region in the rectangle in S1 aligns to the one in rectangle in S2. Bottom:
The alignment table storing scores for local alignment. There are three possible highest scoring
local alignments. The first is between the substrings (S1Œ0::1�; S2Œ3::4�), marked by boxes, see the
bottom part of the figure. The second is between the substrings (S1Œ3::7�; S2Œ3::5�), marked by
colored boxes, whose detailed alignment is in the top right part of the figure. The third is between
the substrings (S1Œ6::7�; S2Œ0::1�), which are underlined. For this alignment, the match score 
 D 2,
the mismatch cost ˛ D �1, and the gap cost 	 D �1

Regarding the complexity, the Smith–Waterman algorithm still takes O.n2/ time;
this complexity scales up to O.nk/ in case of comparing k sequences of average
length n. In Fig. 12 on the right, we show the alignment table for computing the lo-
cal alignment of the two strings TGTTAGAC and ACCTGC. In this example, 
 D 2,
˛ D �1, and 	 D �1. A best local alignment ends at a cell of maximum score. The
edit operations themselves can be recovered by back tracing, as we did before for
global alignment. But in this case, we start from this highest scoring cell until reach-
ing a cell of value zero. Note that there might be more than one cell of maximum
score, implying that more than one local alignment over different subsequences ex-
ist. In the example of Fig. 12, we have three highest scoring alignments, two of them
are overlapping. Recovering the best set of non-overlapping local alignments is an
interesting problem addressed in the paper of Bafna et al. [13].

Semi-Global Sequence Alignment

Semi-global sequence alignment (usually known as approximate pattern matching)
produces alignment that is global with respect to one sequence but local with respect
to the other. For example, if we search for a short biological sequence S1 in a much
larger biological sequence S2 then S1 should be globally aligned to a subsequence
of S2. The following is a definition given by Gusfield [28] that specifies the semi-
global sequence alignment problem.
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Definition 5 ([28]). Given a parameter ı, a substring S2Œl::h� of S2 is said to be an
approximate match of S1Œ0::n � 1� if and only if the optimal alignment of S1 to
S2Œl::h� has value at least ı.

To solve the semi-global alignment problem, we use the same recurrence for
global sequence alignment, but we initialize the cells of the initialization row (row
�1) with zeros (assuming that the horizontal axis of the table is arrayed with S2).
There is an occurrence of S1 in S2 ending at position j of S if and only if A.n �
1; j / � ı. In other words, each cell in the last row and in column j of the alignment
matrix with score at least ı corresponds to an occurrence of S1 ending at position
j of S2. To find the start position of an occurrence ending at position j of S2 and
to spell out the alignment, we trace back from the cell .n � 1; j / until we reach a
cell in row �1. Assume the column number of the last traversed cell is l , then the
occurrence starts at position l C 1 in S2. Fig. 13 shows an example, in which the
score of a match 
 D 2, the cost of a mismatch ˛ D �1, and the gap cost 	 D �1.

Variations of Approximate Matching

Fixed-length local approximate matches

The notion of exact k-mers of Sect. 5.2 can be extended to allow some errors
within the fixed-length match. There are two kinds of non-exact k-mers: The first
restricts the allowed mismatches to fixed positions of the k-mer, but the second does
not. The former kind of k-mers can be specified by a certain pattern or mask of ones
and zeros. For example, it can be required to report all 8-mers such that the third
and sixth characters are not necessary identical (do not care) in both sequences.

# #
The text or A G C C T C T G
database):
The pattern): C C G

Alignment of the two
occurrences

C C
C C G

C T C T G
C C G

S A G C C T C T G
0 0 0 0 0 0 0 0 0

C -1 -1 -1 2 2 1 2 1 0

C -2 -2 -2 1 4 3 3 2 1

G -3 -3 -3 0 3 2 2 2 4

Fig. 13 Upper left: The given database (text) and the pattern. The arrows above the text indicates
to where the matching pattern ends. Top right: Alignment of the two occurrences, recovered from
the dynamic programming matrix given on the right. We report all occurrences with score larger
than or equal to 3. The traceback starts from the cells with score larger than 3 and ends at the row
�1. Bottom: The alignment matrix in which the cells of row �1 are initialized with zeros. The
dark grey back tracing path corresponds to one occurrence of the pattern starting at position 3 in
the text and the light grey path corresponds to another occurrence starting at position 2. For this
alignment, the match scores 
 D 2, a mismatch costs ˛ D �1, and a gap costs 	 D �1
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The respective mask is 11011011, where the ones correspond to the locations of the
identical characters, and the zeros correspond to the locations where mismatches are
allowed.

The look-up table can be used to compute k-mers according to a pre-determined
mask, as follows. The look-up table is constructed such that its entries contain po-
sitions of substrings of the first sequence S1, but the indices encode subsequences
of these substrings. For a substring of length k, the respective subsequence is made
up of the d 0 < k characters that match the 1s of the mask. Let us take one exam-
ple, suppose that S1 contains the substring w D aabc at position l1. Assuming that
k D 4 and the mask is 1101, then the index corresponding to w is computed accord-
ing to the subsequence aac, and the entry next to it stores l1. After constructing the
look-up table, the second sequence is streamed against it as follows. For each sub-
string of length k of the second sequence, one constructs the substring ˇ, jˇj D d 0,
containing the subsequence of characters that fit the 1s of the mask. For example,
for a substring aagc at position l2, ˇ D aac. If ˇ is used as a query against the
above look-up table, which has an entry for w, then the match .l1; l2; k/ is obtained.

The look-up table was used first in PatternHunter [44] to locate non-exact k-mers
according to a certain mask, and it was employed later in a recent version of
BLASTZ [51].

The look-up table can also be used to find non-exact k-mers so that mismatches
are allowed at any positions. Assume that it is required to generate non-exact k-mers
such that at most one mismatch is allowed at any position of the k-mer. The look-up
table is constructed as usual for the first sequence. For each substring of the second
genome, the streaming phase has to be modified: Every character is replaced by
every other character in the alphabet one at a time. Then the resulting substring is
queried against the look-up table. In total, there are k.j˙ j�1/C1 queries launched
for each substring: one for the original substring and k.j˙ � 1j/ for the replaced
characters. If more than one mismatch is allowed in the same k-mer, then the queries
are composed by considering all combinations of all replaced characters at every two
positions of each substring.

Non-exact k-mers have been shown useful for comparing distantly related se-
quences. For example, a recent version of BLASTZ used them to investigate more
diverged regions between human and mouse genomes.

Note that the look-up table based technique can be used for small and moderate k.
For larger k, the suffix tree is to be used. We leave the details as an exercise for the
reader.

Finding approximate tandem repeats

Recall from Sect. 4.2 that an exact tandem repeat is a substring of S that can be
written as !! for some nonempty string !. An approximate tandem repeat can also
be written as !1!2 such that !1 and !2 are not exact but are similar.

For each position i in the given sequence S , 0 � i < n, we run a variation of
the global alignment algorithm on the substrings SŒ0::i � and SŒi C 1::n� to find the
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best alignment between a suffix of SŒ0::i � and a prefix of SŒi C 1::n�, a variation
known as suffix-prefix alignment. As we shall see in the next section, computing an
optimal suffix-prefix alignment takesO.n2/, the same as the global alignment prob-
lem. Therefore, the complexity of finding all approximate tandem repeats is O.n3/

time andO.n/ space. It is worth mentioning that more sophisticated algorithms with
better complexity already exist, see for example [36, 43].

Now we discuss how to compute an optimal suffix–prefix alignment. Let
Ssuf Œ0::i � D SŒ0::i � and let Sprf Œ0::n � i � 2� D SŒi C 1::n � 1�. We use
the same recurrence for global sequence alignment, but we initialize the cells of
the initialization column (column �1) with zeros (assuming that the vertical axis
of the table is arrayed with Ssuf ). An optimal suffix-prefix alignment ends at the
highest scoring cell in the last row. To spell out the alignment, we trace back from
this cell until we reach column�1. Assume that the highest scoring cell is at column
l and we end the traceback procedure at row k, then the optimal prefix alignment is
between Ssuf Œk C 1::i � and Sprf Œ0::l�. Fig. 14 shows an example of a suffix–prefix
alignment.

It is worth mentioning that the suffix-prefix alignment plays an important role
in genome assembly, where a whole genome is given as a set of substrings (called
reads) and it is required to reconstruct it. The first step towards genome assembly
is to solve the suffix-prefix alignment problem for each pair of reads. The pair of
reads with high suffix–prefix alignment score are likely following each other in the
genome. Assuming enough overlapping reads, the genome can be assembled by
compiling the reads based on their suffix–prefix overlapping.

Heuristics for sequence alignment

Undoubtedly, alignment algorithms based on dynamic programming are invalu-
able tools for the analysis of short sequences. However, the running time of these

Sprf : TTTGACC

Ssuf : AGCCTCTG

Alignment of Sprf and Ssuf

A G C C T C T G
T T T G A C C

S A G C C T C T G
0 -1 -2 -3 -4 -5 -6 -7 -8

T 0 -1 -2 -3 -4 -2 -3 -4 -5
T 0 -1 -2 -3 -4 -2 -3 -1 -2
T 0 -1 -2 0 -1 -2 -3 -1 -2
G 0 -1 1 0 -1 -2 -3 -2 1

A 0 2 1 0 -1 -2 -3 -3 0

C 0 -1 1 3 2 1 0 -1 -1

C 0 -1 0 3 5 4 3 2 1

Fig. 14 Upper left: The two strings Ssuf and Sprf . Top right: The best suffix-prefix alignment
of Ssuf and Sprf , recovered from the alignment matrix on the right. Bottom: The alignment table
storing scores for the suffix-prefix alignment, in which the cells of column �1 are initialized with
zeros. The highest score at the last row is 5. From the cell containing the highest score we trace
back until reaching column �1. For this alignment, a match scores 
 D 2, a mismatch costs
˛ D �1, and a gap costs 	 D �1
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algorithms renders them unsuitable for large scale and high-throughput compar-
isons. In the following, we will classify and address the basic heuristics for fast
sequence alignment.

All the heuristics that speed-up the alignment process are based on what is called
the filtering technique, see [5] for a survey. The idea of this technique is to first gen-
erate matches, usually exact ones. Then the regions containing no matches are not
processed (filtered out), and the regions containing matches are further processed to
produce detailed alignment. There are two basic techniques to process the matches:
seed-and-extend and chaining.

Seed-and-extend techniques

The seed and extend strategy determines regions of local similarity by extending
each match (seed) to the left and to the right by applying a standard sequence align-
ment algorithm (based on dynamic programming) starting from the terminals of
the seed. This extension continues until the score falls under a certain user defined
threshold. An extended seed whose score is less than a certain threshold is dis-
carded. Seed extension is carried out to filter out seeds that appeared by chance and
are not part of a shared and inherited (homologous) region. Fig. 15 (left) illustrates
the strategy of single seed extension. To avoid redundancy, a seed is extended only
if it belongs to no region that is a result of an extension of another seed.

Some tools start the extension only if there are two matches occurring near each
other; this is referred to as double seed extension, see Fig. 15 (right). The reason for
this is to reduce the number of false positive extensions and speed up the alignment
process. The idea of double seed extension was suggested first in Gapped-BLAST
[11] for searching sequence databases, and was later used in BLAT [37] for search-
ing EST databases.

The seed and extend strategy is suitable for finding short local similarities with
higher sensitivity. However, to start from a single seed and to extend it to a large
region of a genome is very time consuming. In other words, this would be nothing
but a standard dynamic programming algorithm on the character level except that
it starts from the seed positions in the sequences. Therefore, this strategy is recom-
mended for finding relatively short similarities of the genomes in comparison.

A C _ A . . .

A C G A . . .

G C A _ C

G G A GA C G A . . .

A C _ A . . .. . . C C T C

. . . C C A C

. . . C C T C

. . . C C A C

Fig. 15 Seed-and-extend technique. Left: single seed extension. Right: double seed extension. The
bold solid lines are the seeds. The arrows show the direction of extension
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Chaining techniques

Chaining techniques became the strategy of choice for comparing large genomes.
This is because of their flexibility for various tasks, and their ability to accommodate
large gaps. A chaining algorithm does not handle one match (or two) at a time.
Rather, it tries to find a set of colinear non-overlapping matches according to certain
criteria. This can be viewed as a generalization of the seed and extend strategy.
Two matches are said to be colinear and non-overlapping, if the end positions of
one match is strictly before the start positions of the second in all genomes. For
example, in Fig. 16 (left) the two matches 2 and 3 are colinear and non-overlapping,
while the matches 1 and 3 are not colinear, and the matches 1 and 2 are overlapping.
(In the literature of chaining algorithms, the matches are referred to as fragments or
blocks.)

Geometrically, a match f composed of the substrings .S1Œl1::h1�; S2Œl2::h2�/ can
be represented by a rectangle in N

2�0 with the two extreme corner points beg.f/D
.l1; l2/ and end.f/D .h1; h2/. In Fig. 17, we show the matches of Fig. 16 (left)
represented as two dimensional rectangles in a 2D plot.

For constructing a global alignment, a global chain of colinear non-overlapping
matches is constructed. This global chain starts from the beginning of the sequences
until their ends. The matches of the resulting global chain comprise what is called
the anchors. These anchors are fixed in the alignment and the regions between the
anchors are aligned using standard dynamic programming. The rationale is that if
the two sequences share high similarity, then the anchors usually cover most of the
sequences and the remaining parts to be aligned on the character level become very
short. In Fig. 16 (left), we show an example of a global chain.

For constructing local alignments, sets of local chains of colinear non-
overlapping matches are computed according to certain criteria. The score of each
chain is the summation of the lengths of the involved matches minus the distances
between the successive matches in the chain. (The distance between a match f
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5 72 3
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2
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6
7 8

9

3

1 4 6 7 8

1g1 g1

g2 g2

2 3 6

Fig. 16 Left: global chaining. The global chain is composed of the matches 2, 3, 5, and 7. Right:
local chaining. There are two local chains. The first is composed of the three matches 1, 4, and 6,
and the second is composed of the two matches 7, and 8
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Fig. 17 Computation of a
highest-scoring global chain
of colinear non-overlapping
matches. The search area (for
finding the highest scoreing
chain) at match 4 is bounded
by the gray rectangle. The
chain h2; 3; 5; 7i is an optimal
global chain, whose matches
are plotted in a different color
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followed by another match f 0 in a chain is the geometric distance between end.f /
and beg.f 0/ either in the L1 or L1 metric.) Each local chain of a significant score
(defined by the user) corresponds to a region of local similarity, and the matches
of each local chain are the anchors for each local alignment. The regions between
the anchors in each local chain are aligned on the character level to produce the
final local alignment. In Fig. 16 (right), we show examples of local chains. Note
that we might have more than one significant local chain, in an analogous way to
the traditional local alignment on the character level.

The exact chaining algorithms (local and global) can be sub-divided into two
groups according to the underlying computational paradigm/model: graph based and
geometric based. In this chapter, we will briefly handle the global chaining problem.
For the local chaining problem and other variations for comparative genomics, we
refer the reader to [2, 3].

In the graph-based paradigm, the global chaining problem is solved as follows.
A directed acyclic graph is constructed so that the matches are the nodes and the
edges are added according to the colinearity and non-overlapping constraint. The
edges are weighted, for example, by the length or statistical significance of the
matches. The optimal solution is then reduced to finding an optimal path in this
graph. In Fig. 17, we show an example of a graph constructed over the set of matches
of Fig. 16 (left) (not all edges are drawn), and an optimal path in this graph.

The graph based solution takesO.m2/ time to find an optimal solution, wherem
is the number of matches. This can be a severe drawback for large m. Fortunately,
the complexity of the chaining algorithm can be improved by considering the
geometric nature of the problem. A sweep line based algorithm can be used and
it works as follows: The matches are first sorted in ascending order w.r.t. one se-
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quence, and processed in this order to simulate a line scanning the points. During
the line sweep procedure, if an end point of a match is scanned, then it is activated.
If a start point of a match is scanned, then we connect it to an activated match of
highest score occurring in the rectangular region bounded by the start point of the
match and the origin, see Fig. 17. Details of this algorithm, which is subquadratic in
time can be found in [4].

The repeat finding heuristics

It is worth mentioning that the seed-and-extend strategy and the chaining techniques
can also be used to find local approximate repeats, in which the sequence is com-
pared to itself. To take two examples, the program REPuter [42] first computes
maximal repeated pairs then uses the seed-and-extend strategy to obtain approx-
imate repeated pairs. The program CoCoNUT [2] uses a variation of the chaining
technique over (rare) maximal repeated pairs to find the large segmental duplications
in a genomic sequence. For a survey about methods and tools for repeat analysis,
we refer the reader to [30].

6 Applications of String Mining in Other Areas

The string mining data structures and algorithms presented in this chapter are
generic and provide efficient solutions to many problems in both exploratory and
predictive data mining tasks both in bioinformatics and beyond. In this section, we
review some of these applications. In particular, we show how the trie data structure
is used in a popular algorithm for frequent itemset mining, a problem that is typ-
ically associated with business applications. We also describe how efficient string
comparison methods can be used in computing string kernels required by data min-
ing techniques in different applications. We also describe how sequence alignment
algorithms have been used for pattern mining in unstructured (free text) and semi-
structured (e.g., web-based) documents.

6.1 Applying the Trie to Finding Frequent Itemsets

The association rule mining problem is concerned with finding relations between
database items. For example, given a set of purchased items in a supermarket, it
would be useful to derive an assumption (rule) in the form “customers, who buy
milk, also buy bread.” Finding frequent itemsets is a basic step in association rule
mining, in which the items bought frequently and together seem to be associated by
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an implication rule. A related sequence rule mining problem is concerned with find-
ing similar rules where the order of the transactions is important, e.g., “customers,
who buy milk, also buy bread at a later date.”

In this section we focus on the problem of finding frequent itemsets in a database
of transactions, and we follow the definitions and notations introduced in [8]. Let
I D fI1; I2; : : : ; Img be a set of items. Let T D fT1; T2; : : : ; Tng be a set of trans-
actions, where each transaction Ti is made up of a set of items, i.e., Ti 	 I. An
itemset IS � I is a set of items. The frequency of an itemset IS, denoted by F.IS/,
is the number of transactions containing IS as a subset. An itemset IS is called fre-
quent, if F.IS/ > � , where � is a given threshold called minimum support count.
A frequent itemset is called maximal if it is not a subset of another frequent itemset.

Figure 18 shows an example of transactions. For � D 2, the frequent itemsets with
more than one element are fI1; I2g, fI2; I5g, fI1; I5g, fI1; I3g, fI2; I3g, fI2; I4g,

Trans-
action

Items Sorted items

T1 I1, I2, I5 I2, I1, I5
T2 I2, I4 I2, I4
T3 I2, I3 I2, I3
T4 I1, I2, I4 I2, I1, I4
T5 I1, I3 I1, I3
T6 I2, I3 I2, I3
T7 I1, I3 I1, I3
T8 I1, I2, I3, I5 I2, I1, I3, I5
T9 I1, I2, I3 I2, I1, I3

Item Freq.
I2 7
I1 6
I3 6
I4 2
I5 2

I5
I3

I4

I1

I1
I3

I3

v
1

I4

I2
v
27

v
3 1

v
44

I5

v
5 2

(1)
(1)

(1)(2) (2)

_

(1) (1)

Item FIS

I5 .fI2; I5g; 2/,
.fI1; I5g; 2/,
.fI2; I1; I5g; 2/

I4 .fI2; I4g; 2/
I3 .fI2; I3g; 4/,

.fI1; I3g; 2/,

.fI2; I1; I3g; 2/
I1 .fI2; I1g; 2/

Fig. 18 A number of transactions over the set fI1; I2; I3; I4; I5g of items. The second column
contains the items of each transaction sorted with respect to their count in the given dataset, which
is shown in the table on its right. The FP-tree is shown on the right, where the numbers between
the brackets are the frequency of each key (transaction). The circled numbers are the internal node
counts. The table below shows the frequent itemsets (FIS) with minimum support 2. The maximal
frequent itemsets are underlined
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fI1; I2; I3g, and fI1; I2; I5g. The maximal frequent itemsets are fI1; I2; I3g,
fI1; I2; I5g, and fI2; I4g. It is easy to see that reporting the maximal frequent
itemsets only limits the redundancy without sacrificing meaningful results.

Naive solutions for finding frequent itemsets that are based on enumerating all
possible combinations of candidate itemsets and then evaluating their support and
confidence values are combinatorially expensive. Efficient solutions to the problem
based on the a priori principal were developed in the mid nineties by Agarwal
et al. [8] to prune candidate sets that have an infrequent sub-pattern.

An alternative solution to the problem that avoids candidate generation was de-
veloped by Han et al. [31]. This is known as the FP-growth algorithm and is one of
the most efficient algorithms for finding the frequent itemsets [31]. The algorithm is
based on constructing a data structure called FP-tree which is nothing but a slight
variation of the trie data structure presented before in Sect. 3.2.

The FP-growth algorithm starts with counting how many times each item occurs
in the transaction list, i.e., we compute F.i/, for each i 2 T . The second table in the
example of Fig. 18 shows the frequency of each item. The items in each transaction
are then sorted in decreasing order w.r.t. to their frequency, see the second column in
the leftmost table of Fig. 18. Then a trie is constructed for all the transactions, where
each transaction is considered as a key. If one key is a prefix of another key, then we
add a dummy branching edge labeled with an empty character 00 00. For computing
the frequent itemsets, we attach with each leaf the number of occurrences of the
associated key, and for each node we attach the summation of the numbers attached
to all the leaves in its subtree. In the sequel, we call this attached number the node-
count, see Fig. 18. It is not difficult to see that the FP-tree can be constructed in
O.mn/.

The FP-growth algorithm computes the frequent itemsets by processing the edges
associated with the less frequent items before those associated with the more fre-
quent items. Suppose that the edges associated with the items Ir1

::Irx�1
are already

processed, where F.Ir1
/ < 
 
 
 < F.Irx

/. Assume that the edges associated with
the item Irx

are being currently processed, where F.Irx�1
/ < F.Irx

/. Then we run
the following three steps.

1. We locate the internal nodes or the leaves such that the edges annotated with Ix

are incident to them. Let the set V D fv1; v2; ::vt g denote such nodes.
2. For each node vi 2 V , 1 � i � t , with node count greater than the minimum

support count, we report the set H [ Ix as a frequent itemset, where the set H
is made up of the edge labels of the nodes on the path from the root to the node
vi . Moreover, we report the sets H 0 [ Ix , for each H 0 	 H . Note that the set
H [ Ix is the maximal frequent itemset and the sets H 0 [ Ix are non-maximal.

3. For each subset V 0 	 V such that jV 0 > 1j, we locate the node z in the tree such
that z is the farthest node from the root and all the nodes of V 0 are descendant
of z (z is called least common ancestor node of the nodes of V 0). If the total
node count of the nodes of V 0 in the subtree of z is greater than the minimum
support count, then we report the set H 0 [ Ix as a frequent itemset, where the
set H 0 is made up of the edge labels of the nodes on the path from the root to
the node z. Moreover, we report the non-maximal frequent itemsetsH 00[ Ix , for
each H 00 	 H 0.
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We take the edges associated with the next less frequent item after Ix and repeat
the three steps mentioned above. Iteratively, we repeat this procedure until no more
edges are left unprocessed. In the example of Fig. 18, where the minimum support is
two, we start with the edges associated with item I5, which is the least frequent item.
There are two edges labeled with I5 and incident to two leaves. Each leaf has node
count less than the minimum support. Hence, we ignore them. The least common
ancestor node of these two leaves is the node v4, and the total node count of the
two leaves associated with I5 is 2, which satisfies the minimum support. Hence, we
report the set fI2; I1; I5g as a maximal frequent itemset and the sets fI1; I5g and
fI2; I5g as frequent itemsets.

6.2 Application of String Comparison to a Data Mining
Technique: Computing String Kernels

The classifiers used in many problems in machine learning may have to work on dis-
crete examples (like strings, trees, and graphs) [59]. Because the discrete examples,
if not strings, can be readily reduced to strings, string kernels are used to mea-
sure the similarity between two strings, and accordingly between the two structures.
Roughly speaking, the measure of similarity in string kernels is the total number
of all common substrings between two input strings. This is made precise in the
following.

Let numu.v/ denote the number of occurrences of substring v in string u and let
˙? denote the set of all possible non-empty strings over the alphabet˙ . The kernel
k.S;R/ on the two strings S and R is defined as follows:

k.u; v/ D
X

v2˙?

.numS .v/ � numR.v//!.v/

where !.v/ 2 R weighs the number of occurrences of each string v in both S andR.
A crucial observation that makes the kernel computation straightforward is that

maximal exact matches form a compact representation of all the substrings in both
S and R. That is, any substring occurring in S and R should be a substring of a
maximal exact match of S andR. This suggests the following two phases algorithm:

1. Count the number of all maximal exact matches of length `. For this purpose, we
can use the procedure used for handling constraints on the number of maximal
exact matches MEMs. Specifically, we accumulate the rw values associated with
a MEM of length `, Let T` denote occurrences of the ` length MEMs.

2. For each `, the number of matches included in it with length 1 � h � l equals
`.`C 1/T`=2.

3. Summating over all the lengths of maximal exact matches, we obtain k.u; v/.

By using the suffix tree data structure, it is not difficult to see that computing the
string kernel takes O.jS j C jRj/ time and space.
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6.3 String Mining in Unstructured and Semi-Structured
Text Documents

Many of the string mining algorithms presented in this chapter form the basis for
techniques used in pattern mining over both free text documents and semi-structured
documents. For example Rigoustos and Huynh [50] describe a system that learns
patterns and keywords that typically appear in spam emails. However, rather than
simply looking for the exact string patterns in new emails, their approach applies a
sequence similarity search similar to the one used in comparing protein sequences.
Such an approach can discover variations of the strings including deletions and in-
sertions of characters as well as substitutions of individual characters. With such
an approach, having identified the string “Viagra” as a spam string, strings such as
“Viagra,” “Vjagra,” “Vigra” and “v I a G r A” would all be automatically scored as
similar with a high score. Similar concepts form the basis for identifying plagiarism
in both free text documents as well semi-structured documents such as program
code; see for example [14, 22]. Another typical application of string mining al-
gorithms is in the automatic extraction of information from web pages. In such
applications particular textual information of interest to the user, e.g., specifica-
tions of a particular product or its price, is embedded within the HTML tags of
the document. These tags provide the overall structure of the document as well as
its formatting. Manual extraction of the required information is typically easy for
humans based on both the semantic clues (e.g., the meaning of keywords such as
price) as well as formatting cues (titles, tables, itemized lists, images, etc.). Identi-
fying and extracting the same information using automatic methods is, however,
more challenging. One reason is that the web page layout is typically designed
for human users rather than information extraction robots; the proximity of vi-
sual clues and cues on the 2-dimensional page layout does not directly translate
to proximity at the string level or even at the HTML structure level. A second rea-
son is that different products could be described differently on each web page; e.g.,
some information might be missing or described in slightly different ways on each
web page.

A family of approaches typically known as wrapper induction methods [55]
are used to address the problem. For systems based on these approaches, a user
provides a set of different example web pages and annotates the target informa-
tion he would like to extract from them. The system then uses machine learning
methods to learn patterns that best describe the target information to be extracted
and then generates rules that can be used by specialized extractors to extract such
information. The patterns learned from each example patterns are typically strings
of tokens that represent both HTML tags as well regular text. The string mining
algorithms presented in this chapter form the basic components for addressing some
of the key challenge for such applications. For example, these wrapper induction
tools typically need to generalize multiple identification patterns into a single pat-
terns. This can be achieved by using the basic alignment algorithms, or variations
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that align multiple sequences (e.g., CLUSTALW [57]). For example, given the two
patterns listed below:

String 1 : <div> <b> <br> <span> <br> a </br> <br>
target <br><br>
String 2 : <div> <b> <br> <span> <br> target> <br><br>

the system would first align both patterns indicating the missing tokens

String 1 : <div> <b> <br> <span> <br> a <br> target
<br><br>
String 2 : <div> <b> <br> <span> <br> - -
target <br><br>

and then generate a generalized pattern. where * can match any number of tokens.

String 2 : <div> <b> <br> <span> <br> * target
<br><br>

Examples of using such alignment methods, and also methods for identifying and
dealing with repeated patterns within the context of information extraction from web
sources, are described in Chang et al. [20]. Examples of using other string mining
techniques for context-specific searching in XML documents are described in [23].

7 Conclusions

In this chapter we addressed the basic data structures and algorithms used in ana-
lyzing biological sequences. We also explored the application of these techniques in
other areas of data mining.

The look-up table is an easy to manipulate data structure. But its space consump-
tion increases exponentially with the key size. A recent method that is suitable for
our data, which is static in nature, is the perfect hashing technique [16, 24]. In this
technique, the keys can be stored in linear space and the constant access time is still
guaranteed. Applying this technique to biological sequences is addressed in [6].

For string comparison based on the suffix tree, the strategy was to concatenate
the sequences to be compared and reduce the problem to a variation of the problem
of finding repeats. This strategy requires to construct the suffix tree for the two
sequences, which might be infeasible for large sequences. The method of Chang
and Lawler [21], which was introduced for computing matching statistics, can be
used to overcome this problem. The idea of their method is to construct the index
of only one sequence (usually the shorter one) and matches the second against it.
To achieve linear time processing, they augmented the suffix tree with extra internal
links called suffix links.
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The suffix tree is an essential data structure for sequence analysis, but its space
consumption and cash performance is a bottleneck for handling large genomic se-
quences. The enhanced suffix array is a recent alternative that overcomes these
problems, see the original paper of the enhanced suffix array [1] and the recent
paper with theoretical fine tuning of it [6].

There are a number of packages implementing the algorithms in this chapter. The
strmat [39] package implements many of the algorithms in this chapter based on the
suffix tree. The Vmatch [41] and GenomeTools [27] implement many of the repeat
analysis and sequence comparison algorithms based on the enhanced suffix array.
Other packages in this regard include SeqAn [26] and mkESA [34].
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26. A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn an efficient, generic c++ library for
sequence analysis. BMC Bioinformatics, 9:9, 2008.

27. G. Gremme, S. Kurtz, and et. al. GenomeTools. http://genometools.org.
28. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New

York, 1997.
29. D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all the tandem

repeats in a string. Report CSE-98-4, Computer Science Division, University of California,
Davis, 1998.

30. B.J. Haas and S.L. Salzberg. Finding repeats in genome sequences. In T. Lengauer, editor,
Bioinformatics - From Genomes to Therapies. Wiley-VCH, 2007.

31. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proceed-
ings of ACM-SIGMOD, pages 1–12, 2000.

32. D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM , 18:341–343, 1975.
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Knowledge Discovery and Reasoning
in Geospatial Applications

Nabil Sahli and Nafaa Jabeur

1 Introduction

In the last decade and following the big advent in remote sensing, terabytes of geo-
graphic data have been collected on a daily basis. However, the wealth of geographic
data cannot be fully realized when information implicit in data is difficult to discern.
This confronts researchers with an urgent need for new methods and tools for auto-
matically transform geographic data into information and, furthermore, synthesize
geographic knowledge. New approaches in geographic representation, query pro-
cessing, spatial analysis, and data visualization [1, 2] are thus necessary.

Geo-referenced data sets include geographical objects, locations or administra-
tive sub-divisions of a region. The geographical location and extension of these
objects define implicit relationships of spatial neighborhood. Knowledge Discovery
(KD) in databases is a process that aims at the discovery of relationships within data
sets. Data Mining, the focus of this chapter, is the central step of this process. It cor-
responds to the application of algorithms for identifying patterns within data. The
Data Mining algorithms have to take this spatial neighborhood into account when
looking for associations among data. They must evaluate if the geographic compo-
nent has any influence in the patterns that can be identified or if it is responsible
for a pattern. Most of the geographical attributes normally found in organizational
databases (e.g., addresses) correspond to a type of spatial information, namely qual-
itative, which can be described using indirect positioning systems. In systems of
spatial referencing using geographic identifiers, a position is referenced with re-
spect to a real world location defined by a real world object. This object represents
a location that is identified by a geographic identifier (more details can be found
in Chapter Spatial Techniques). These geographic identifiers are very common in
organizational databases, and they allow the integration of the spatial component
associated with them in the process of knowledge discovery.

Unfortunately, classical data mining algorithms often make assumptions (e.g.,
independent, identical distributions) which violate Tobler’s first law of Geography:
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everything is related to everything else but nearby things are more related than dis-
tant things [3]. Applying traditional data mining techniques to geospatial data can
result in patterns that are biased or that do not fit the data well. Chawla et al. [4]
highlight three reasons that geospatial data pose new challenges to data mining
tasks: “First, classical data miningdeals with numbers and categories. In contrast,
spatial data is more complex and includes extended objects such as points, lines, and
polygons. Second, classical data mining works with explicit inputs, whereas spatial
predicates (e.g., overlap) are often implicit. Third, classical data mining treats each
input to be independent of other inputs whereas spatial patterns often exhibit conti-
nuity and high auto-correlation among nearby features.” Besides, current database
techniques use very simple representations of geographic objects and relationships
(e.g., point objects, polygons, and Euclidean distances).

Chawla et al. [4] suggest that data mining tasks should be extended to deal with
the unique characteristics intrinsic to geospatial data. Data structures, queries, and
algorithms need to be expanded to handle other geographic objects (e.g., moving ob-
jects) and relationships (e.g., non-Euclidean distances) [2]. One of the most serious
challenges is integrating time into database representations. Integrating geospatial
data sets from multiple sources (with varied formats, semantics, precision, and co-
ordinate systems) is another big challenge. The aforementioned challenges explain
the recent arise of a new discipline called Spatial (or Geospatial) Data Mining [4–6].

Spatial data mining is a subfield of data mining. It is concerned with the discov-
ery of interesting and useful but implicit knowledge in spatial databases. Sources of
geospatial data include satellite imagery, cartographic maps, census data, and mod-
eling runs of spatial differential equations. Similarly, [7] defines spatial data mining
as the extraction of knowledge, spatial relations, or other interesting patterns not ex-
plicitly stored in spatial databases. As for the term “Geospatial” in Geospatial Data
Mining (GDM), it refers to geographic data. “Geographic” refers to the specific case
where the data objects are geo-referenced and the embedding space relates (at least
conceptually) to locations on or near the Earth’s surface.

In this chapter, we first enumerate the most important characteristics of spa-
tial data that will be mined. We then briefly describe some well-known techniques
(namely, clustering, classification, association rules, and outlier detection) of GDM.
Few applications of GDM in the real life are also illustrated. Finally, we present the
main challenges that still to be faced in order to better support geospatial-temporal
applications in general and data mining in particular.

2 Data Characteristics in Geospatial Data Mining

The characteristics that make geospatial data “special” as a computing problem have
been acknowledged in many other writings such as [8] and in what follows a brief
summary of these characteristics (non-exhaustive list) is presented.

The first characteristic is that geospatial data repositories are very large. More-
over, existing GIS datasets usually consists of feature and attribute components
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which are archived in hybrid data management systems. Algorithmic requirements
differ substantially for relational (attribute) data management and for topological
(feature) data management [9]. Knowledge Discovery’s procedures have also to be
diversified in order to achieve all the operational goals within a geospatial com-
puting environment. The range and diversity of geographic data formats are also
challenging constraints. In fact, the traditional “vector” (spatial objects in an em-
bedding space) and “raster” (discrete representations of continuous spatial fields
using a grid-cell tessellation) formats are no longer the only data types in use. New
types of data formats have been proposed the last few years and which go beyond the
traditional formats. New sensors (e.g., satellites) are nowadays collecting such new
ill-structured data such as imagery and geo-referenced multi-media. geo-referenced
multi-media include audio, imagery, video, and text that can be related unambigu-
ously to a location on the Earth’s surface based on the location of the data collection
or its content [10]. This data structure rises up the complexity of the discovering
knowledge process [11].

Another characteristic of geospatial data relates to phase characteristics of data
collected cyclically. Data discovery must accommodate collection cycles that may
be unknown (e.g., identifying the cycles of shifts in major geological faults) or that
may shift from cycle to cycle in both time and space (for example the dispersion
patterns of a health epidemic, or of toxic waste).

Contrarily to other KD applications, geospatial–temporal applications involve
up to four interrelated dimensions of the information space. This additional unique
property of geographic data requires thus special consideration and techniques. For
example, some geographic phenomena such as travel times within urban areas or
mental images of geographic space and disease propagation over space and time
[12, 13], have properties that are non-Euclidean.

Spatial dependency and spatial heterogeneity are also other properties of ge-
ographic data. The former refers to the tendency of observations that are more
proximal in geographic space to exhibit greater degrees of similarity or dissimi-
larity (depending on the phenomena). The latter refers to the non-stationarity of
most geographic processes, meaning that global parameters do not reflect well the
process occurring at a particular location. While these properties have been tra-
ditionally treated as nuisances, recent geographic information technologies have
provided tools that can exploit these properties for new insights into geographic
phenomena (e.g., [14, 15]). In [4], it is even claimed that ignoring these properties
could affect the patterns derived from data mining techniques.

Finally, another unique aspect of geographic information is the complexity of
spatio-temporal objects and patterns. While non-geographic data objects can be
meaningfully represented discretely without losing important properties, geographic
objects cannot necessarily be reduced to points or simple line features without in-
formation loss. Relationships such as distance and direction are also more complex
with dimensional objects [16, 17]. Including time introduces additional complexity.
A simple strategy that treats time as an additional spatial dimension is not sufficient.
Time has different semantics than space. Indeed time is directional, has unique scal-
ing and granularity properties, and can be cyclical and even branching with parallel



254 N. Sahli and N. Jabeur

local time streams [18]. Spatial transformations are also complex: for example, a
formal model of possible transformations in spatial objects with respect to time
includes the operators create, destroy, kill, reincarnate, evolve, spawn, identity, ag-
gregate, disaggregate, fusion and fission. Nevertheless, these transformations are
information-bearing [19]. Roddick and Lees [18] also argue that the potential com-
plexity of spatio-temporal patterns may require meta-mining techniques that search
for higher-level patterns among the large number of patterns generated from spatio-
temporal mining.

3 Spatial Data Mining Techniques

The first option towards solving spatial data mining problems is to use classical data
mining tools which assume independence between different data points. However,
classical data mining methods often perform poorly on spatial data sets which have
high spatial auto-correlation. In this section, we briefly review the classical tech-
niques and then we focus on the specialized spatial data mining techniques which
can effectively model the notion of spatial-autocorrelation.

3.1 Classical Data Mining Techniques

Relationships among spatial objects are often implicit. It is possible to material-
ize the implicit relationships into traditional data input columns and then apply
classical data mining techniques. Many generic algorithmic strategies have been
generalized to apply to spatial data mining. For example, as shown in Table 1,
algorithmic strategies, such as divide-and-conquer, Filter-and-refine, ordering, hier-
archical structure, and parameter estimation, have been used in spatial data mining.
Few approaches have proposed to use classical data mining algorithms in GDM.
For example, in [20], the authors presented an approach for knowledge discovery in
geo-referenced databases, based on qualitative spatial reasoning principles, where
the location of geographic data was provided by qualitative identifiers. Direction,
distance and topological spatial relations were defined for a set of municipalities
(in Portugal). This knowledge and the composition table constructed for integrated
spatial reasoning, about direction, distance and topological relations, allowed for the
inference of new spatial relations analyzed in the data mining step of the knowledge
discovery process. The results obtained with the new system point out that tradi-
tional KDD systems, which were developed for the analysis of relational databases
and that do not have semantic knowledge linked to spatial data, can be used in the
process of knowledge discovery in geo-referenced databases, since some of this se-
mantic knowledge and the principles of qualitative spatial reasoning are available as
domain knowledge. The main advantages of such approaches include the use of al-
ready existing data mining algorithms developed for the analysis of non-spatial data;
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Table 1 Algorithmic strategies in spatial data mining [21]

Generic Spatial Data Mining

Divide-and-Conquer Space Partitioning
Filter-and-Refine Minimum-Bounding-Rectangle(MBR)
Ordering Plane Sweeping, Space Filling Curves
Hierarchical Structures Spatial Index, Tree Matching
Parameter Estimation Parameter estimation with spatial autocorrelation

an avoidance of the geometric characterization of spatial objects for the knowledge
discovery process; and the ability of data mining algorithms to deal with geospatial
and non-spatial data simultaneously, thus imposing no limits and constraints on the
results achieved.

3.2 Specialized Spatial Data Mining Techniques

Another way to deal with implicit relationships is to use specialized spatial data
mining techniques. We highlight four of the most common, namely, clustering, clas-
sification, association rules, and outlier detection.

Clustering

Clustering is a well established technique for data interpretation. It usually requires
prior information, e.g., about the statistical distribution of the data or the number of
clusters to detect. “Clustering” attempts to identify natural clusters in a data set. It
does this by partitioning the entities in the data such that each partition consists of
entities that are close (or similar), according to some distance (similarity) function
based on entity attributes. Conversely, entities in different partitions are relatively
far apart (dissimilar). An example of cluster is shown in Fig. 1.

Existing clustering algorithms such as K-means [22], PAM [23], CLARANS
[24], DBSCAN [25], CURE [26], and ROCK [27] are designed to find clusters
that fit some static models. For example, K-means, PAM, and CLARANS assume
that clusters are hyper-ellipsoidal or hyper-spherical and are of similar sizes. The
DBSCAN assumes that all points of a cluster are density reachable [25] and points
belonging to different clusters are not. However, all these algorithms can breakdown
if the choice of parameters in the static model is incorrect with respect to the data set
being clustered, or the model did not capture the characteristics of the clusters (e.g.,
size or shape). Because the objective is to discern structure in the data, the results
of a clustering are then examined by a domain expert to see if the groups suggest
something. For example, crop production data from an agricultural region may be
clustered according to various combinations of factors, including soil type, cumu-
lative rainfall, average low temperature, solar radiation, availability of irrigation,
strain of seed used, and type of fertilizer applied. Interpretation by a domain expert
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Fig. 1 Examples of likely cluster of breast cancer mortality rates in the USA

is needed to determine whether a discerned pattern- such as a propensity for high
yields to be associated with heavy applications of fertilizer-is meaningful, because
other factors may actually be responsible (e.g., if the fertilizer is water soluble and
rainfall has been heavy). Many clustering algorithms that work well on traditional
data deteriorate when executed on geospatial data (which often are characterized by
a high number of attributes or dimensions), resulting in increased running times or
poor-quality clusters [28]. For this reason, recent research has centered on the devel-
opment of clustering methods for large, highly dimensioned data sets, particularly
techniques that execute in linear time as a function of input size or that require
only one or two passes through the data. Recently developed spatial clustering
methods that seem particularly appropriate for geospatial data include partition-
ing, hierarchical, density-based, grid-based, and cluster-based analysis. Hierarchical
methods build clusters through top-down (by splitting) or bottom-up (through ag-
gregation) methods. Density-based methods define clusters as regions of space with
a relatively large number of spatial objects; unlike other methods, these can find
arbitrarily-shaped clusters. Grid-based methods divide space into a raster tessella-
tion and clusters objects based on this structure. Model-based methods find the best
fit of the data relative to specific functional forms. Constraints-based methods can
capture spatial restrictions on clusters or the relationships that define these clusters.

Classification

Whereas clustering is based on analysis of similarities and differences among en-
tities, “classification” constructs a model based on inferences drawn from data on
available entities and uses it to make predictions about other entities. For example,
suppose the goal is to classify forest plots in terms of their propensity for landslides.
Given historical data on the locations of past slides and the corresponding environ-
mental attributes (ground cover, weather conditions, proximity to roads and streams,
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land use, etc.), a classification algorithm can be applied to predict which existing
plots are at high risk or whether a planned series of new plots will be at risk under
certain future conditions. Spatial classification algorithms determine membership
based on the attribute values of each spatial object as well as spatial dependency on
its neighbors. Various classification methods have been developed in machine learn-
ing, statistics, databases, and neural networks; one of the most successful is decision
trees. Concerning machine learning methods, and in [29], the approach of [30] 1 is
generalized through a spatial classification learning algorithm that considers spatial
relationships defined as path relationships among objects in a defined neighborhood
of a target object. As for the decision trees method, authors in [31] apply a decision
tree induction algorithm to extracting knowledge about complex soil-landscape pro-
cesses. Their system combines background knowledge in the form of a soil survey
map with other environmental data to extract the expert’s judgments underlying the
subjective map. In [32], the authors use a type of artificial neural known as adaptive
resonance theory networks to extract knowledge from a remotely sensed imagery.

Association Rules

“Association rules” attempt to find correlations (actually, frequent co-occurrences)
among data. For instance, the association rules method could discover a correla-
tion of the form “forested areas that have broadleaf hardwoods and occurrences of
standing water also have mosquitoes.” In Fig. 2, Karasova et al. [33] represent in
the city map incident locations and the main interest points as well. They conclude

395639553954

4047 40494048

Fig. 2 Spatial representation of incident locations (red circle represents incident locations. Bars
and restaurants are illustrated by the ginger pink triangles)

1 [30] uses spatial buffers to classify objects based on attribute similarity and distance-based prox-
imity.
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that most of the incidents occur close to bars and restaurants. Koperski and Han
[34] pioneered the concept of association rules, providing detailed descriptions of
their formal properties as well as a top-down tree search technique that exploits
background knowledge in the form of a geographic concept hierarchy. Spatial as-
sociation rules include spatial predicates such as topological distance or directional
relations – in the precedent or antecedent [2]. Several new directions have been
proposed, including extensions for quantitative rules, extensions for temporal event
mining, testing the statistical significance of rules, and deriving minimal rules [7].
One of the most known types is co-location pattern: these are subsets of spatial ob-
jects that are frequently located together. Huang and his colleagues [35] develop
a multi-resolution filtering algorithm for discovering co-location patterns in spa-
tial data.

Outlier Detection

In [19], the authors define a spatial outlier as a spatially-referenced object whose
non-spatial attributes appear inconsistent with other objects within some spatial
neighborhood. This does not imply that the object is significantly different than
the overall database as a whole: it is possible for a spatial object to appear consis-
tent with the other objects in the entire database but nevertheless appear unusual
with a local neighborhood. “Outlier detection” involves identifying data items that
are atypical or unusual. In a sense, this definition leaves it up to the analyst (or
a consensus process) to decide what will be considered as unusual. Before ab-
normal observations can be singled out, it is necessary to characterize normal
observations. In this context, two activities are essential for characterizing a set
of data:

• Examination of the overall shape of the graphed data for important features, in-
cluding symmetry and departures from assumptions.

• Examination of the data for unusual observations that are far removed from the
mass of data. These points are often referred to as outliers. Two graphical tech-
niques for identifying outliers, scatter plots and box plots, along with an analytic
procedure for detecting outliers when the distribution is normal (Grubbs’ Test),
are used. For spatial problems, Ng [36] suggests that the distance-based outlier
analysis method could be applied to spatiotemporal trajectories to identify ab-
normal movement patterns through a geographic space.

Representing geospatial data for use in outlier analysis remains a difficult prob-
lem. Outlier detection, as shown in Fig. 3 is applied to detect significant outliers
(unusual occurrences) of the number of new cancer cases in the USA. Different col-
ors represent the number of lung cancer mortalities (of white males, 1950–1969)
in different states. The map shows a “hot spot” in MT, which is actually a site of
copper smelter. Typically, two or more data mining tasks are combined to explore
the characteristics of data and identify meaningful patterns. A key challenge is that,
as Thuraisingham argues in [37], “Data mining is still more or less an art.” Indeed,
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Fig. 3 Lung cancer mortality in the USA 1950–1969 [38]

we can never be sure if a given technique will always be effective in obtaining the
expected results. Similarly, we cannot affirm that given certain data characteristics,
a certain sequence of tasks would achieve the expected goal. Consequently, high
levels of experience and expertise are as important as applying the aforementioned
data mining techniques. The expert absolutely needs to try different options and will
often make errors before reaching a satisfactory result with the help of data mining
techniques. Thus, the development of geospatial-specific data mining tasks and tech-
niques will be increasingly important to help people analyze and interpret the vast
amount of geospatial data being captured. In addition, more research is needed to es-
tablish firm methodologies to perform data mining on spatial data. More specifically,
many research challenges have to be faced. They are presented at the end of this
chapter.

4 Applications

Efficient tools for extracting information from spatial data sets can be of importance
to organizations which own, generate and manage large geospatial data sets. In this
section, we present some examples of the applications of GDM tools and techniques
in different domains, namely, Business, traffic networks, and Earth observation.
These examples are only chosen for illustrative reasons; they do not constitute an
exhaustive list of applications. Other applications include the prediction of forest
fire hazardous areas [39].
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4.1 Application of GDM in Business

Nowadays, there is a huge amount of information describing both consumer and
business demographics related to practically every point on the map. Attached to
each map object (or point) can be a very detailed set of data describing it, such
as consumer and business demographics, site survey information, and historical
customer purchasing patterns. GIS provides operators that allow you to link tables
based on proximity as well as join related databases’ key fields. With this capabil-
ity, you can address questions such as: Where do my best customers live? Or what
competitive choices do my customers have in a given geographical area? GIS can
directly answer these and other similar questions [40]. Demographic reporting is
commonly used to generate a detailed characterization of potential store locations,
broader marketing regions, or individual customers. However, more information is
only better if you can effectively analyze it and assimilate it into actionable deci-
sions. Unfortunately, detailed information provided by GIS often does not directly
yield a decisive score that can be acted upon. Efficient tools for extracting informa-
tion from geospatial data are crucial to organizations which make decisions based
on large spatial data sets. Data mining products can be a useful tool in decision-
making and planning just as they are currently in the business world. To take GIS
analysis beyond demographic reporting to true market intelligence, it is then neces-
sary to incorporate the ability to analyze and condense a large number of variables
into a single score [40]. This is the strength of the data mining technology and the
reason why there is a new link between GIS and data mining. Depending upon the
application domain, GIS can combine historical customer or retail store sales data
with demographic, business, traffic, and market data. This data set is then used for
building predictive models to score new locations or customers for sales potential,
targeted marketing, and other similar applications. Thanks to spatial data mining
techniques, problems from different domains similar to those following examples
would be easily answered in retail, banking, and telecoms domain, respectively:

• How should inventory, merchandising and pricing be adjusted in different loca-
tions in order to make more profits?

• Which of savings account customers are the best candidates for brokerage ac-
counts and what are the most effective incentives to attract them?

• Which of my existing customers are most at risk to move to a competing carrier
and which non-customers are the best prospects to switch to my service?

Although many are already applying spatial data mining techniques in their busi-
ness, the current processes tend to be very disjointed and requiring the manual
movement of data between various software applications [40]. This tends to limit the
use of the technology to those who have skills in database management, GIS, data
analysis and predictive modeling, programming and, most importantly, the specific
business application. It is, thus, necessary in the future to integrate these technolo-
gies in a manner that will streamline the process. This will allow companies to focus
on the business opportunities instead of the technical aspects.
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4.2 Traffic Networks

One major challenge of traffic controlling is traffic prediction. In the last few years,
researchers proposed methods that are able to estimate the traffic density for a future
point of time. A lot of work has been published in the field of traffic data mining.
Some work has been published for the detection of traffic jams [41, 42]. Some of
them are based on clustering trajectories. The resulting clusters indicate routes with
potentially high traffic load. Further approaches are based on the detection of dense
areas of moving objects [43]. This approach tries to find moving clusters in moving
object databases. The difference with clustering trajectories is that the identity of
a moving cluster remains unchanged while its location and content may change
over time. Other traffic prediction approaches use historical observations which are
based on regression analysis [44] while some derive the current traffic data from a
sensor network measuring the traffic at certain locations in the traffic network [45].
More recently, Kriegel et al. [46] have proposed a statistical approach (based on
short-time observations of the traffic history) to predict the traffic density on any
edge of the network at a future point of time, which offers valuable information
for traffic control, congestion prediction and prevention. Another application (other
than traffic prediction) is the detection of suitable traveling paths for individuals
that want to travel to a certain destination in a possibly most cost-efficient way. An
example is given in [47] where the authors use an adaptive navigation method based
on historical traffic patterns mined from a large set of given traffic data.

4.3 Application to Earth Observation and Change Detection

Earth science data consists of a sequence of global snapshots of the Earth taken at
various points in time. Each snapshot consists of measurement values for a number
of variables (e.g., temperature, pressure, and precipitation) collected globally. This
remote sensing data (mainly conducted by the satellites of the NASA’s Earth Ob-
serving System (EOS)), combined with historical climate records and predictions
from ecosystem models, offers new opportunities for understanding how the Earth
is changing, for determining what factors cause these changes, and for predicting fu-
ture changes. Data mining techniques provide tools to discover interesting patterns
that capture complex interactions among global ocean temperatures, land surface
meteorology, and terrestrial carbon flux [48]. Although Earth Scientists have tra-
ditionally used statistical tools as their preferred method of data analysis, they are
interested in using data mining tools to complement the statistical tools for the fol-
lowing reasons. Zhang et al. [49] give three main reasons to justify the need of
data mining techniques. First, the statistical method of manually analyzing a sin-
gle dataset via making hypothesis and testing them is extremely demanding due
to the extremely large families of spatiotemporal hypotheses and patterns. Second,
classical statistics deals primarily with numeric data, whereas Earth Science data
contains many categorical attributes such as types of vegetation, ecological events,
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and geographical landmarks. Third, Earth Science datasets have selection bias in
terms of being convenience or opportunity samples rather than traditional idealized
statistical random samples from independent and identical distributions [50]. Data
mining allows Earth Scientists to spend more time choosing and exploring interest-
ing families of hypotheses derived from the data. More specifically, by applying data
mining techniques, some of the steps of hypothesis generation and evaluation will
be automated, facilitated, and improved. For example, images taken by satellites
can be analyzed in order to identify homogeneous groups of pixels which represent
various features or land cover classes of interest. Elements of visual interpretation
are then used to classify the features included in images. In digital images it is pos-
sible to model this process, to some extent, by using two methods: Unsupervised
Classifications and Supervised Classifications. The unsupervised classification is
a computerized method without direction from the analyst in which pixels with
similar digital numbers are grouped together into spectral classes using statistical
procedures such as nearest neighbor and cluster analysis. The resulting image may
then be interpreted by comparing the clusters produced with maps, air-photos, and
other materials related to the image site. In a supervised classification, the analyst
identifies several areas in an image which represent known features or land cover.
These known areas are referred to as “training sites” where groups of pixels are a
good representation of the land cover or surface phenomenon. Using the pixel infor-
mation the computer program (algorithm) then looks for other areas which have a
similar grouping and pixel value. The analyst decides on the training sites, and thus
supervises the classification process.

5 Research Challenges

In this section, we briefly present some research challenges that have to be faced in
order to better support geospatial–temporal applications in general and data mining
in particular. A first set of research topics is related to geospatial databases. In ad-
dition, research investments are needed in geometric algorithms to manipulate the
huge amount of available geospatial data. Finally, considerable work remains to be
done to improve the discovery of structure (in the form of rules, patterns, regulari-
ties, or models) in geospatial databases.

5.1 Geospatial Databases

Relational DBMSs are not appropriate for storing and manipulating geospatial data
because of the complex structure of geometric information [51]. Besides, geospa-
tial data often span a region in continuous space and time, but computers can only
store and manipulate finite, discrete approximations, which can cause inconsisten-
cies and erroneous conclusions. A particularly difficult problem for geospatial data
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is representing both spatial and temporal features of objects that move and evolve
continuously over time. Examples include hurricanes, pollution clouds, and pods
of migrating whales. Several commercial systems are now available with spatio-
temporal extensions. Nevertheless, these extensions are not comprehensive (i.e.,
they still require application-specific extensions) and do not accurately model space
and time for continuously moving objects [52]. Most of the research in moving-
object databases has concentrated on modeling the locations of moving objects as
points (instead of regions). Although few researchers have proposed new data mod-
els such as in [53], where the authors present an abstract model for implementing
a spatiotemporal DBMS extension based on a comprehensive model of geospatial
data types, more research is needed to achieve the requirements of moving objects.
Besides, researchers have to address problems of reasoning and modeling on very
short or highly variant temporal cycles. This would be very useful to support real-
time tornado tracking or avalanche prediction for instance. To achieve this goal,
more work is needed to develop real-time data mining, use knowledge discovery
tools to guide correlation of discovered data patterns across time, and validate data
trends across temporal discontinuities.

Query languages also will need to be extended to provide high-level access to
the new geospatial data types. For example, it should be possible to refer to fu-
ture events and specify appropriate triggers, such as “Sound an alarm when the
fire is within 10 km of any habitation.” The development of ontologies for geospa-
tial phenomena is another critical challenge. In the geospatial domain, ontologies
would define (non-exhaustive list) geographic objects, spatial relations, processes,
and situational aspects. Research on ontologies for geographic phenomena began
only recently [54]. More research is needed to design geospatial ontologies for each
specific application and be able to select the appropriate ontology for a given con-
text. According to [52], these ontologies should also be extendable (can evolve over
time). Another important challenge while dealing with geospatial databases is the
integration of geospatial data. The purpose of data integration is to combine data
from heterogeneous, multidisciplinary sources into one coherent data set. A well
known problem is conflation. Conflation refers to the integration of geospatial data
sets that come from multiple sources, are at different scales, and have different po-
sitional accuracies. Making the conflation process completely automatic is one of
the most challenging research issues here. More research is also required to cre-
ate new data models and languages specifically designed to support heterogeneous
spatiotemporal data sets. Besides, new languages and mechanisms must be devel-
oped to explicitly express spatial attributes. In this context, languages like XML as
well as resource discovery technologies may play an important role. Finally, and
due to the nature of the spatial data (missing or incomplete data), a preprocessing
phase is often required. However, research on the preprocessing of spatial data has
lagged behind. Hence, there is a need for preprocessing techniques for spatial data
to deal with problems such as treatment of missing location information and im-
precise location specifications, cleaning of spatial data, feature selection, and data
transformation [21].
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5.2 Issues in Geospatial Algorithms

Following the technologic expansion (especially in remote sensing), captured
geospatial data are available under different resolutions, levels of accuracy, and
formats. This diversity causes what is called imperfections (noisy and/or uncertain
data). For instance, while grid terrain representations (the format usually provided
by remote-sensing devices) are easily supported by simple algorithms, other rep-
resentations which are superiors to grids such as triangular irregular networks
(TINs) (used as massive terrain datasets for certain kinds of applications) introduce
inconsistencies when converted to the grid format. Besides, classical algorithms
which assume perfect data may thus not function correctly or efficiently in practice
since real-world data usually present many imperfections. New algorithms are then
required to deal with these constraints. Another limitation of existing algorithms
is related to computational memory. Indeed, most of these algorithms assume that
each memory access costs one unit of time regardless of where the access takes
place. This assumption is nowadays unrealistic since modern machines contain
a hierarchy of memory ranging from small, fast cache to large, slow disks. For
this reason, and according to [52], it is becoming increasingly important to design
memory-aware algorithms, in which data accessed close in time also are stored
close in memory. Mining spatial patterns is often computationally expensive. For
example, co-location mining algorithm is more expensive than the apriori algorithm
for classical association rule mining [55]. Research is needed to reduce the compu-
tational costs of spatial data mining algorithms by a variety of approaches including
the classical data mining algorithms as potential filters or components.

To conclude this second set of challenges, it is worth to say few words about the
classical/specialized algorithms dilemma. As previously discussed, both classical
and “specialized” algorithms can be used to mine spatial data. However, existing
literature does not provide guidance regarding the choice between the two classes of
techniques. Therefore, new research is needed to compare the two sets of approaches
in terms of effectiveness and computational efficiency [21].

5.3 Geospatial Data Mining

One of the most difficult data mining problems is to determine which task to per-
form (i.e., which class of patterns to look for) in a given data set. Besides, expert
users have to specify new types of patterns since the assumptions required for the
classical stochastic representations do not always hold. As a consequence, data min-
ing tools should not only support frequent patterns but also be extensible to search
for new patterns. In a typical data mining process, an analyst tries several data min-
ing tools (e.g., clustering, classification, association rules, and outlier analysis) and
data transformations (e.g., log transformations, dimensionality reductions, aggrega-
tion for a coarser granularity). This process is repeated until the analyst discovers
some new regularities or, conversely, detects anomalous conditions. However, the
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main problem is that analysts may not be trained to use all the aforementioned data
mining tools. The challenge is automate, as much as possible, the process by using
efficient algorithms. According to [52], software agents could assist the analyst by
indicating for which data sets a new algorithm is applicable, applying the algorithm,
and comparing the new results with the previous ones.

Moving and evolving objects are not only difficult to model (as previously men-
tioned), but also to be mined. A key problem is how to identify and categorize
patterns in the trajectories of moving objects, such as migrating birds or fish. An-
other difficult problem is to identify and categorize patterns in objects that evolve,
change, or appear and disappear over time, such as animal habitats. Thus, more data
mining algorithms are required to handle temporal dimensions and to support com-
plex spatial objects (other than points). According to [52], it is necessary to rethink
current data mining algorithms (clustering, classification, and association rules) in
terms of trajectories. Another direction is to create specialized algorithms for trajec-
tories with no constraints in two- or three-dimensional space (plus time) as opposed
to constrained trajectories such as movement along a network, or even more con-
strained, movement on a circuit.

The last challenge in this third set is related to visualization. Visualization in
spatial data mining is useful to identify interesting spatial patterns. During the data
mining process and to facilitate the visualization of spatial relationships, research is
needed to represent both spatial and non-spatial features. For example, many visual
representations have been proposed for spatial outliers. However, we do not yet have
a way to highlight spatial outliers within visualizations of spatial relationships. For
instance, in most existing visualizations, the spatial relationship between a single
spatial outlier and its neighbors is not obvious [21]. It is thus necessary to transfer
the information back to the original map in geographic space to check neighbor
relationships.

6 Conclusion

To conclude, the development of data mining and knowledge discovery tools must
be supported by a solid geographic foundation that accommodates the unique char-
acteristics (detailed in Sect. 2) and challenges presented by geospatial data. Classical
data mining and knowledge discovery methods have not been implemented to deal
effectively with geospatial data, whose sensitivities are known widely to geogra-
phers. Specialized techniques have been used to deal with this problem (see Sect. 3).
Even though many challenges are still to be addressed by researchers (see the pre-
vious section), geospatial data mining is at the heart of many applications. In fact,
and as illustrated in the fourth section of this chapter, extracting information from
geospatial data are crucial to different types of organizations which make decisions
based on large spatial data sets. With the expansion of the modern remote sensing
devices, geo-spatial data mining will certainly be crucial to capture relevant infor-
mation.
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Data Mining and Discovery of Chemical
Knowledge

Lu Wencong

In this chapter, the Data mining methods adopted are briefly introduced. The main
focuses are on the successful applications of data mining methods in chemistry and
chemical engineering. The discoveries of chemical knowledge cover the formation
of ternary Intermetallic compounds, structure–activity relationships of drugs, and
industrial optimization based on chemical data mining methods, especially by using
statistical pattern recognition and support vector machine.

1 Data-Mining-Based Prediction on Formation of Ternary
Intermetallic Compounds

1.1 Data-Mining-Based Prediction on Formation of Ternary
Intermetallic Compounds Between Nontransition Elements

The prediction of the formation of ternary intermetallic compounds in ternary alloy
systems is a very important and difficult task for the calculation of ternary alloy
phase diagrams. In this work, a systematic method based on data mining was pro-
posed to study the regularities of ternary intermetallic compound formation in an
empirical way, by using pattern recognition techniques developed in our lab and
Villars’s system of atomic parameters [1]. Here, data-mining-based prediction on
formation of ternary intermetallic compounds will be described and discussed based
on four categories: (1) system (ternary intermetallic compounds) between nontran-
sition elements; (2) system between transition elements; (3) system between one
nontransition element and two transition elements; (4) system between two non-
transition elements and one transition element.
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1.2 Methods of Investigation

Atomic Parameters Used for Data Mining

It is generally accepted that the physico-chemical behavior of alloy systems is
related to three factors: geometrical factor, charge transfer factor, and energy band
factor. The geometrical factor can be roughly described by some function of effec-
tive atomic radii, and the charge transfer factor should be described by the difference
of electronegativities of the constituent elements, while the energy band factor is
usually to be considered as some function of the number of valence electrons. In
Villars’s system of atomic parameters, the effective atomic radius is described as
some function ofRsp (pseudo-potential radius sum), the charge transfer is described
by XMB (the Martynov–Batsaanov scale of electronegativity), and the valence elec-
tron number is described by VE (the number of elements given by Villars). In this
work, the parameters given by Villars are used. But the VE value of Zn group ele-
ments (Zn, Cd, and Hg) used in this work is 2 (instead of 12) since the energy levels
of the d -orbitals are so deep. It is unlikely that spd hybridization plays a significant
role in intermetallic compound formation for Zn group elements.

Methods of Computation

In this work, atomic parameters Rsp, VE, and XMB (abbreviated R, V , and X , re-
spectively) and their functions (the ratio ofRsp and the difference ofXMB are usually
used to describe the geometrical factor and charge transfer factor, respectively. Here,
we denoteRmn D Rm=Rn, andXmn D Xm�Xn, respectively) are used to span the
multi-dimensional spaces. The representative points of ternary systems are “plotted”
into these spaces. If the representative points of ternary compound forming systems
are located in a definite zone in these spaces, various pattern recognition methods
can be used to find the mathematical models to describe the zone of ternary com-
pound formation. Linear projection methods making projection maps having good
separation between the representative points of ternary compound forming systems
and that of the systems without ternary compound formation are used to find the reg-
ularities of classification. Each projection map forms a rectangular frame or some
lines describing the boundaries of two kinds of points (ternary compound forming
and that without ternary compound). Based on a series of projection maps, a hy-
perpolyhedron will be defined in multi-dimensional space, as shown in Fig. 1, so
the envelop of the zone of ternary compound formation can be roughly represented
by this hyperpolyhedron. A series of inequalities describing the hyperplanes as the
boundaries of the hyperpolyhedron can be used as the criterion of ternary inter-
metallic compound formation. The “Materials Research Advisor” software is used
for the computation work [2]. By using this software, the inequalities describing the
hyperpolyhedron can be obtained automatically.
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Fig. 1 Conceptual
representation of the
hyperpolyhedron model
formed by intersection of the
rectangular tunnel
represented by rectangular
frames or hyperplanes

Data Files for Training and Model Building

Villars’s Data Bank for Ternary Alloy Systems has collected reliable known phase
diagrams of ternary alloy systems. Using this data bank, the data sets available can
be organized as four categories of ternary alloy systems mentioned in Sect. 1.1.
All samples are defined as two classes: class 1 (symbolized as “O” in diagrams
of this work) for samples of ternary compound formation and class 2 (symbolized
as “-” in diagrams of this work) for no ternary compound (for the sake of self-
consistency, the order of the three elements is defined as follows: the first element
has the lowest valency and the third element has the highest valency. If two ele-
ments have the same valency, they should be arranged in ascending electronegativity
values).

1.3 Results and Discussion

Intermetallic Compounds Between Nontransition Elements

If we confine our object of investigation to systems containing one common ele-
ment, the atomic parameters (or their functions) of the other two elements can be
used to span the multi-dimensional space to investigate the regularities of ternary
compound formation. For example, 47 Mg-containing ternary systems can be used
as the training set. By using Rsp, VE, and XMB of the other two components as
the features of data mining work, the linear projection map shown in Fig. 2 can be
obtained. It can be seen that the separation of two kinds of representative points is
rather clear-cut. The coordinates of this map are linear combinations of the atomic
parameters, as shown in Fig. 2.

Based on the data mining work, it has been found that the problems can be solved
easily if we treat the ternary systems containing metalloids and without metalloids
separately. Figure 3 illustrates bivariate maps for the 117 systems not containing
metalloids. Figure 3a is a plot with two radius ratio values R310 and R21. From
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Fig. 2 Formation of ternary compounds in Mg-containing systems. (open circle) Ternary com-
pound formation; (line) no ternary compound

Fig. 3a it can be seen that most of the systems without ternary compound formation
distribute near the point corresponding to nearly equal size of the three kinds of
atoms. Figure 3b shows that the electronegativity difference of the first and third
elements exhibits a strong influence on ternary compound formation. For these 117
training points all systems with X31 � 0:65 form ternary intermetallic compounds.
If we cut away the subspace with X31 � 0:65, a subset consisting of 53 samples
with X31 < 0:65 is formed. Using these 53 sample points as the training set, a
linear projection map with good separability can be obtained, as shown in Fig. 4. By
analyzing projection maps by this way, the criteria for ternary compound formation
for systems containing no metalloid can be obtained.

Based on data mining work, it can be found that the electronegativity of the
first element X1 is an influential parameter for ternary compound formation for
metalloid-containing alloy systems of nontransition metals. Systems with X1 <
1:26 usually form ternary intermetallic compounds, while most of the systems with
X1 > 1:26 do not form ternary intermetallic compounds. Figure 5 illustrates the
regularity of ternary compound formation in the subspace X1 > 1:26. The criterion
for ternary compound formation in this subspace can be expressed as follows:

24:48 � 9:156R1 � 2:733R2 � 1:140R3 C 9:759X1 C 1:631X2 � 2:117X3 � 25:33;
29:781 � 0:038R1 C 0:380R2 � 4:521R1 � 1:319X1 C 1:697X2 C 17:11X3 � 30:89:

Based on the earlier results, we can try to make a computerized prediction of
ternary intermetallic compounds using the atomic parameter-pattern recognition
method. For example, five newly discovered compounds, Sr-Hg–Pb, Sr-Hg–n, Li-
Ca–Al, Li-Zn–Ga, and Na-Cd–Ga, are “predicted” to be ternary compound forming
systems by the criteria found earlier. The predicted results are all in agreement with
the experimental results.
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Fig. 3 Bivariate maps showing the influence of Rsp and XMB on ternary compound formation.
(open circle) ternary compound formation; (line) no ternary compound

It is meaningful to discuss the physical background of the influences of these
factors. From the regularities found, a higher electronegativity differenceX31 favors
ternary compound formation. Since the order of constituent elements is arranged
with ascending valence and electronegativity, large X31 means that the sum of X21

andX32 is also large. A large electronegativity difference should induce strong inter-
atomic charge transfer and partial ionicity, and should stabilize the lattice of ternary
intermetallic compounds.
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It has been found that ternary alloy systems having nearly the same atomic radii
(in other words, the systems with both R31 and R21 within the range 1:0 ˙ 0:15)
usually do not form ternary intermetallic compounds. This can be understood as
follows: closepacking often increases the stability of intermetallic compounds; sys-
tems with atoms of different sizes may have more possibility of stacking these atoms
to form denser crystal lattices, and this favors ternary compound formation.

Intermetallic Compounds Between Transition Elements

In Sect. 830, the regularities of formation of ternary intermetallic compounds be-
tween nontransition elements have been found. In this section, the regularities of
the formation of ternary intermetallic compounds between three transition elements
are studied by similar strategies [3]

Figure 6 illustrates the regularity of formation of Fe-containing ternary com-
pounds. The criteria of formation for Fe-containing systems can be expressed as
follows:

0:077R1 C 0:0625R2 C 0:234R3 C 0:110V1 � 0:029V2 � 0:336V3 C 0:572X1

C0:314X2 C 1:086X3 � 3:281

�0:696R1 C 0:144R2 � 0:112R3 C 0:165V1 � 0:048V2 C 0:080V3 C 0:079X1

C0:673X2 � 0:093X3 � 1:418

X = 0.077R1+0.062R2+0.234R3+0.110V1–0.029V2–0.336V3+0.572X1–0.313X2–1.086X3–3.759

Y = –0.069R1–0.144R2–0.112R3+0.1647V1–0.048V2+0.080V3–0.079X1+0.693X2–0.093X3–1.119 
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Fig. 6 Formation of Fe-containing ternary compounds. (open circle) ternary compound formation;
(line) no ternary compound
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Fig. 7 Formation of Ag-containing ternary compounds. (open circle) ternary compound forma-
tion; (line) no ternary compound

Figure 7 illustrates the regularity of formation of Ag-containing ternary com-
pounds. The criteria of formation for Ag-containing systems can be expressed as
follows:

�0:049R1 � 0:285R2 C 0:123R3 C 0:192V2 C 0:315V3 � 36:849X1 � 0:106X2

�0:505X3 � �40:453

Based on the data file including 215 system with V1 equal to 8-11, i.e. all the
systems containing one, two, or three late transition elements, a bivariate map of
rather good separability is shown in Fig. 8a. It can be seen that all the systems with
R31 > 1:30 or R21 > 1:31 form ternary intermetallic compounds. But the 67 sam-
ple points in the subspace with R31 < 1:30 and R21 < 1:31 are still not classified
clearly. In Fig. 13.18b, these 67 samples can be separated into two subspaces: the
samples in the region with VE.3/ > 8 are all systems with no ternary compound
formation (on the borderline case of VE.3/ D 8 there are two borderline cases,
Fe-Co–Ni system and Fe–Co–Pt system, having disordered solid solution at high
temperature, but forming CuAu or AuCu3 type lattices by the decomposition of
solid solution at low temperature).

The left-hand side region of Fig. 8b distributes two kinds of sample points. Since
the systems containing Mn-group elements will be treated separately (Mn-group
elements are the borderline cases between early and late transition elements) in this
section. Here, we only take the sample points with VE.3/ � 6 to build a subset for
model building.
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Fig. 8 Ternary compound formation of late transition element-containing alloy systems. (open
circle) ternary compound formation; (line) no ternary compound

Figure 9 illustrates a linear projection map from a 8D space spanned by the VE,
XMB of three elements and two radius ratios Rsp.3/=Rsp.1/ and Rsp.2/=Rsp.1/.
The criterion of ternary compound formation for these systems can be expressed
as follows:

11 � V1 � 8
6 � V3 � 3
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0:136 � 0:166V1 � 0:038V2 C 0:172V3 C 0:439X1 � 0:641X2 � 0:796X3

�0:317R3 C 10:679R21 � 0:789

�1:236 � 0:073V10:034V2 � 0:269V3 C 0:278X1 � 0:322X2 C 0:474X3

C1:021R31 � 0:484R21 � �0:471:

The regularities of ternary compound formation for the systems consisting of
three early transition elements were investigated based on a subset data file con-
taining 245 sample with VE.1/ � 6. Figure 10 is a linear projection map of the
representative points of the ternary compound forming systems and the systems
without ternary compound formation for the systems consisting of three early tran-
sition elements.

Since the above-mentioned criteria for ternary compound formation are dealing
with early transition elements and late transition elements, and the elements of Mn-
group, Mn, W, and Re, are the borderline cases between early and late transition
elements they should be treated separately. Figure 11 illustrates the distribution of all
ternary alloy systems containing Mn, W, or Re. The criterion of ternary compound
formation for Mn-group containing systems can be expressed as follows:

�1:564R1 � 0:429R2 C 0:043R3 C 0:273V1 C 0:050V2 C 0:069V3 � 1:745X1

�0:454X2 C 1:695X3 � 3:021:

To test the prediction ability of the model obtained, two newly discovered com-
pounds of ternary intermetallic compounds between transition elements, Fe4NbTi
and Ni4PtU5 [4, 5], were used as the objects for testing the prediction ability.
Figure 12 illustrates the results of this “prediction”. It is obvious that the represen-
tative points are located in the ternary compound-forming region and these systems
should form ternary intermetallic compounds. This “prediction” result is in agree-
ment with experimental facts.
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Fig. 12 Test of prediction ability for ternary compound formation between transition ele-
ments. (triangle) ternary compound formation; (line) no ternary compound; (triangle) samples for
prediction

Intermetallic Compounds Between One Nontransition Element
and Two Transition Elements

In Sects. 840 and 856, the regularities of intermetallic compound formation between
nontransition elements, and that between transition elements have been discussed
based on data mining work [3, 6]. In this section, the results of the investigation
of ternary compound formation between two transition elements together with one
nontransition element will be reported.

The atomic parameters and computational methods used in this work are similar
to that in Sect. 840. In the data file for computation, the order of three element is
T � T 0 �M , where T and T 0 are transition elements and the number of d electrons
in unfilled shells of T is defined to be larger than that of T 0. Here,M denotes some
nontransition element.

Since transition elements can be classified as early transition elements (denoted
by ET ) and late transition elements (denoted by LT ), the ternary alloy systems of
T �T 0�M type can be classified into three groups:LT -LT –M ,LT –ET –M sys-
tems, and ET –ET –M systems. In this work, the regularities of ternary compound
formation of these three groups are investigated separately.

It has been found that the regularities of the formation of ternary compounds
in the alloy systems having one common constituent element can be described by
some projection maps obtained in pattern recognition work. For example, we can
use pattern recognition technique to investigate the regularities of ternary compound
formation of Ag-containing systems. Figure 13 illustrates a linear projection of the
representative points from the multi-dimensional space spanned by Rsp and XMB of
elements.
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Fig. 13 Formation of ternary intermetallic compounds in Ag-containing alloy systems. (open
circle) ternary compound formation; (line) no ternary compound

By this way, the criterion for ternary intermetallic compound formation can be
expressed as follows:

0:691R2� 0:002R3C 1:868X2C 0:743X3 � 3:481
�0:397R2� 0:400R2� 0:176X2� 0:266X3 � �2:421

Here, R, V , X are the abbreviations of Rsp, VE and XMB, respectively. It is
also possible to investigate the regularities of a nontransition element combine with
various pairs of transition elements. For example, the regularity of formation of
Al-containing ternary compounds with two later transition elements can be shown
by the linear projection map in Fig. 14. And the criterion for ternary compound
formation can be expressed as follows:

1:661R12C 0:0132V 1C 0:272V 2C 0:1039X12 � 4:89

Here, Rmn denotes Rm=Rn, and Xmn denotesXm �Xn.
Since the behavior of ternary compound formation of the systems with two

Cu-group elements seems different from other systems, the alloy systems with two
Cu-group elements (Cu, Ag, Au) and one nontransition element are treated sepa-
rately. Figure 15 illustrates the regularity of ternary compound formation of these
systems. The criterion of ternary intermetallic compound formation for these sys-
tems can be expressed as follows:

14:23 � 1:602R2� 1:263R3C 0:4758V 3C 9:027X2C 1:831X3 � 15:99
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12:95 � 0:6197R2C 4:245R3C 0:1496V 3C 3:491X2C 0:1670X3 � 13:91

Figure 16 illustrates the regularity of ternary intermetallic compound formation
of the systems containing two late transition elements and one nontransition element
(but not including the systems with two Cu-group elements). It can be seen that most
of these ternary systems form ternary intermetallic compounds, only a few of them
do not form intermetallic compound. The criterion for the systems without ternary
compound formation can be expressed as follows:

2:04 � R1 � 2:38
2:11 � R2 � 2:22
1:42 � R3 � 2:09
10 � V1 � 11

1:07 � X2 � 2:04
1:67 � X3 � 2:04
1:64 � X3 � 2:14

�1:38R1 � 9:24R2 � 1:04R3 � 0:34V1 C 0:29V2 C 0:66V3 C 0:11X1 � 3:69X2

�2:84X3 � �21:94
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In Villars’s Data Bank of Ternary Alloy Systems, it can be found that the number
of ternary intermetallic compounds between one early transition element, one late
transition element and one nontransition element is very large. Ternary compounds
of more than 1,500 ternary alloy systems are stored in this Data Bank. At the same
time, all ternary systems of this kind in this Data Bank have records of ternary in-
termetallic compound formation. On the other hand, there are some experimental
records about the perfect stability of Fe–Cr or Ni–Cr alloy in liquid alkali metals
[7]. It seems believable that the system of Fe–Cr or Ni–Cr do not form ternary inter-
metallic compounds with alkali metal such as Na and K. This fact can be understood
as follows: the spd hybridization between the d -orbitals of transition elements and
the s or p electrons of the nontransition element are the chief driving forces to en-
hance the ternary compound formation. So the energy levels of the s or p electrons
of nontransition element must be deep enough to enhance the spd hybridization.
Since the electronegativity of an element is related to the energy level of its va-
lence electrons, it is reasonable to define a margin value of electronegativity of a
nontransition element for the formation of ternary compound with an early transi-
tion element and a late transition element. For the XMB scale of electronegativity,
this margin value seems near 1.45. Therefore, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, As,
Sb, and Bi are the elements most easily to form ternary compounds with one early
transition element and one later transition element, while alkali metals cannot form
ternary compound of this type.

Based on this concept, it seems possible to use a simple argument for the
ternary compound formation: if a nontransition metallic element or metalloid hav-
ing XMB � 1:45, it can combine with one early transition element (or a rare earth
element) and one late element to form ternary intermetallic compound.

Two lately discovered ternary intermetallic compounds, CuPd13 Si13 and
RhFe5Al4 indicate that Cu–Pd–Si and Rh-Fe–Al systems are ternary compound-
forming systems. These two systems, not included in the training set mentioned
in this chapter, are used as the objects for “computerized prediction” based on the
regularities found. Figure 17 illustrates the results of computerized prediction by
the linear projection method. It can be seen that the representative points of these
predicted systems are located in the zone of ternary compound formation. These
results are in agreement with the experimental facts [8, 9].

Intermetallic Compounds Between Two Nontransition Elements
and One Transition Element

In our previous works, the regularities of the formation of ternary intermetallic
compounds between nontransition elements, transition elements, or one kind of non-
transition element with two kinds of transition elements have been studied by the
atomic parameter-pattern recognition method, with good results [3, 6, 10]. In this
section, we extend this strategy to investigate the regularities of the formation of
ternary intermetallic compounds consisting of one kind of transition element and
two kinds of nontransition elements.



Data Mining and Discovery of Chemical Knowledge 285

−2

−8 −6 −4 −2 0 2

−1

0

1

2

X

Y

X = −6.58R21 + 9.18R32 − 1.507V1 − 0.196V2 − 2.64V3 + 5.67X21 + 9.956X32 + 22.44

Y = −3.02R21 −1.13R32 − 0.10V1 − 0.05V2 + 1.39V3 − 0.17X21 − 1.90X32 + 0.44.
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Fig. 18 Regularity of formation of ternary compounds of Fe-containing systems. (open circle)
ternary compound formation; (line) no ternary compound

Figure 18 illustrates a linear projection map showing ternary compound forming
systems and systems without ternary compounds for Fe-containing alloys.

Figure 19 illustrates the regularities of ternary compound formation for early
transition element containing systems by using the pattern recognition diagram.
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Fig. 20 Bivariate map showing the influence ofXMB.3/ on the ternary compound formation. (open
circle) ternary compound formation; (line) no ternary compound

From bivariate maps it can be seen that the most important factor dominating
ternary compound formation is XMB.3/, as illustrated in Fig. 20. This fact can be
explained as follows: XMB.3/ is usually the higher value of the electronegativi-
ties of these two nontransition elements. A higher value of XMB.3/ corresponds
to deeper energy levels of the s or p electrons in the atoms of nontransition el-
ement. The deeper energy levels of s or p electrons favor the spd hybridization
between the atoms of transition element and nontransition elements. This spd hy-
bridization will stabilize the chemical bond between the atoms of the first element
and that of the third element. If the electronegativity of the second element is also
rather high (for example, in the case of system V–Si–Sb), the s and p electrons
of both nontransition elements will take part in the spd hybridization and make
the ternary compound stable. On the other hand, if the electronegativity of the
second element is rather low (for example, in the case of the system Ti-Li–Bi),
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Fig. 21 Regularity of formation of ternary compounds containing late transition elements. (open
circle) ternary compound formation; (line) no ternary compound

the electronegativity difference between the second and third elements will lead to
charge transfer between the atoms of the second element and the third element, and
the ionicity will stabilize the chemical bond between these atoms and thus make the
ternary compound stable.

Figure 21 illustrates the regularities of formation of ternary intermetallic com-
pounds containing late transition elements. The criterion of ternary compound
formation can be roughly expressed as follows:

0:736R31 C 0:075R21 C 0:0242V1 C 0:013V2 � 0:242V3 C 0:257X31

C0:125X32 C 0:733X3 � 3:066

Regularities of Formation of Ternary Compounds Containing
Cu-Group Elements

Figure 22 illustrates the regularity of the ternary intermetallic compound formation
for Cu-group element-containing systems. It can be seen that the criterion of ternary
compound formation can be roughly expressed as follows:

0:336R31C 0:035R21C 0:18V2� 0:55V3� 1:869X31C 1:143X32C 2:549 � 2:32

Figure 23 illustrates the regularity of formation of the ternary intermetallic com-
pounds containing Mn and Re. It can be shown that the criterion of ternary com-
pound formation can be expressed as follows:

2:06R1 � 0:285R2 C 0:128V2 � 0:003V3 � 51:38X1 C 3:512X3 � 94:95
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Two lately discovered ternary intermetallic compounds, Au-Ca–Ga and Au3Ba4

Si2O, indicate that Au-Ca–Ga and Au-Ba–Si systems are ternary-compound
forming systems. These two systems are not included into the training set and
are used as the objects of computerized prediction. The results are shown in
Fig. 24. It can be seen that these predicted objects are located in the zone of
ternary compound formation. These results are in agreement with the experimental
tests [11–13].
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Fig. 24 The results of test of prediction ability of pattern recognition method. (open circle) ternary
compound formation; (line) no ternary compound; (triangle) sample points of predicted systems

2 Data-Mining-Based Prediction on Structure–Activity
Relationships of Drugs

The research on structure–activity relationship (SAR) plays a very important role
in the process of drug development. SAR researches can be classified into two
categories: quantitative structure–activity relationships (QSAR) and qualitative
structure–activity relationships (QSAR). In QSAR analysis, biological activity is
quantitatively expressed as a function of physico-chemical properties of molecules.
QSAR involves modeling a continuous activity for quantitative prediction of the
activity of new compounds. QSAR aims to separate the compounds into a number
of discrete types, such as active and inactive. It involves modeling a discrete activity
for qualitative prediction of the activities of new compounds.

With the increasing demand for the research of SAR, the number of data min-
ing methods introduced into SAR has increased. Since there are a lot of data
mining methods including multiple linear or nonlinear regression (MLR or NLR),
partial least-square regression (PLSR), artificial neural networks (ANN), genetic al-
gorithms (GA), principal component analysis (PCA), multiple discriminate vector
(MDV), nonlinear mapping (NLM), decision trees (DT), wavelet transform (WT),
etc., one has to deal with the troublesome problem about model selection for a
particular data set with finite number of samples and multiple descriptors. It is
very important to select a proper model with good generalization ability, i.e., high-
prediction accuracy or low-mean relative error for the activities of new compounds
(unseen samples).

Generally speaking, the modeling problem is actually ill-posed in the sense of
Hadamard [14]. So, how to choose the right balance between model flexibility and
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overfitting to a limited training set is one of the most difficult obstacles for obtaining
a model with good generalization ability [15]. Since the number of samples available
in a real world data set is finite or relative small, the problem of overfitting in arti-
ficial neural network or nonlinear regression methods may become a rather serious
problem in some cases. As an effective way to overcome the problem of overfitting,
support vector machine (SVM) based on statistical learning theory (SLT) has been
proposed by V.N. Vapnik [16]. Now, SVM has gained successful application in such
research fields as vowel recognition [17], text recognition [18], time series forecast-
ing [19], combinatorial chemistry [20], proteins [21, 22], drug design [23], etc. We
also reported a series of applications of SVM in Chemistry [24].

The SVM methods include the support vector classification (SVC) and support
vector regression (SVR) algorithms [25]. In this section, two cases studied are given
to prove the significance of SVM application in the field of SAR. One case is QSAR
problem investigated by using SVC model. The other is QSAR problem studied by
using SVR model.

2.1 Methodology

Support Vector Classification [16, 25]

SVC has been recently proposed as a very effective method for solving pattern
recognition problems. The geometrical interpretation of SVC is that it chooses the
optimal separating surface, i.e. the hyperplane equidistant from two classes. This
optimal separating hyperplane has many nice statistical properties as detailed in
Vapnik [16].

Consider the problem of separating the set of training vectors belonging to two
separate classes, .y1; x1/::.yn; xn/; x 2 Rm; y 2 �1;C1 with a hyperplane wT xC
b D 0

If the training data are linearly separable, then there exists a pair .w; b/ such that

yi .w
T xi C b/� 1 � 0; i D 1; 2; : : : ; l

wT x C b � C1 for all x 2 T
wT x C b � �1 for all x 2 F

The decision rule is:
fw;b.x/ D sgn.wT x C b/;

where w is termed the weight vector and b the bias. Without loss of generality the
pair .w; b/ can be rescaled such that:

min
iD1;2;:::;l

jwT xi C bj D 1
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The learning problem is hence reformulated as: minimize jjwjj2 subject to the
constraints of linear separability. This is equivalent to maximizing the distance, nor-
mal to the hyperplane, between the convex hulls of two classes. The optimization is
now a quadratic programming (QP) problem:

Minimize
w;b

�.w/ D 1

2
jjwjj2

subject to: yi .wT xi C b/ � 1; i D 1; 2; :::; l .
This problem has global optimum. The Lagrangian for this problem is:

L.w; b;�/ D 1

2
jjwjj2 �

lX

iD1

�i Œyi .w
T xi C b/� 1�;

where � D �1; : : : ; �l are the Lagrange multipliers, one for each data point.
Hence, we can write:

F.�/ D
lX

iD1

�i � 1
2
jjwjj2 D

lX

iD1

�i � 1
2

lX

iD1

lX

jD1

�i�jyiyj x
T
i xj

note that the Lagrange multipliers are only nonzero when yi .wT xiCb/ D 1, vectors
for these cases are called support vectors since they lie closest to the separating
hyperplane. Then the optimal separating hyperplane is given by,

w� D
lX

iD1

��i xiyi

and the bias is given by:

b� D �1
2
.w�/T .xs C xr /;

where xr and xs are any support vector from each class satisfying,

yr D 1; ys D �1

The hard classifier is then,

f .x/ D sgnŒ.w�/T x C b��:

In the case where a linear boundary is inappropriate, the SVC can map the in-
put vector, x, into a high-dimensional feature space, F . By choosing a nonlinear
mapping ˚ , the SVC constructs an optimal separating hyperplane in this higher
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dimensional space. Among acceptable mappings are polynomials, radial basis func-
tions and certain sigmoid functions. Then, the optimization problem becomes

W.˛/ D
lX

iD1

˛i � 1
2

lX

i;jD1

yiyj˛i˛j h˚.xi /:˚.xj /i:

In this case, the decision function in SVC is as follows:

g.x/ D sgn.f .x// D sgn
 
X

i2SV

˛iyi h˚.x/:˚.xi /i C b
!

D sgn
 
X

i2SV

˛iyiK.x; xi /C b
!
;

where the xi is the support vectors and K.x; xi / is called kernel function equal to
the inner product of two vectors xi and xj in the feature space ˚.x/. The elegance
of using kernel function lied in the fact that one can deal with feature spaces of
arbitrary dimensionality without having to compute the map ˚.x/ explicitly. Any
function that satisfies Mercer’s condition can be used as the kernel function.

Support Vector Regression (SVR) [16, 25]

SVM can be applied to regression by the introduction of an alternative loss function
and the results appear to be very encouraging. In support vector regression (SVR),
the basic idea is to map the data X into a higher dimensional feature space F via
a nonlinear mapping ˚ and then to do linear regression in this space. Therefore,
regression approximation addresses the problem of estimating a function based on
a given data set G D f.xi ; di /gliD1 (xi is input vector, di is the desired value). SVR
approximates the function in the following form:

y D
lX

iD1

wi˚i .x/C b;

where fjphii .x/gliD1 is the set of mappings of input features, and fwi gliD1 and b are
coefficients. They are estimated by minimizing the regularized risk function R.C/:

R.C/ D C 1

N

NX

iD1

L�.di ; yi /C 1

2
jjwjj2;

where

L�.d; y/ D
	 jd � yj � � for jd � yj � �
0 otherwise
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and � is a prescribed parameter. .C=N/
PN

i L�.di ; yi / is the so-called empirical
error (risk) measured by �-insensitive loss functionL�.d; y/, which indicates that it
does not penalize errors below �. .1=2/jjwjj2 is used as a measurement of function
flatness. C is a regularized constant determining the tradeoff between the training
error and the model flatness. Introduction of slack variables “�” leads to the follow-
ing constrained function:

MaxR.w; ��/ D 1

2
jjwjj2 C C �

nX

iD1

.�i C ��i /;

s.t.w˚.xi /C b � di � � C �i ;

di � w˚.xi /� bi � � C �i ;

�; zetai � 0:

Thus, decision function becomes the following form:

f .x; ˛i ; ˛
�
i / D

lX

iD1

.˛i � ˛�i /K.x:xi /C b;

where ˛i ; ˛
�
i are the introduced Lagrange multipliers, satisfying the equality

˛i :˛
�
i D 0,˛i � 0,˛�i � 0; K.xi ; xj / is the kernel function; b D �1

2

P
l.˛i � ˛�i /

ŒK.xr � xi /CK.xs � xi /�, i D 1; : : : ; l₤.
Based on the Karush-Kuhn–Tucker (KKT) conditions of quadratic programming,

only a number of coefficients .˛i � ˛�i / will assume nonzero values, and the data
points associated with them could be referred to as support vectors.

Implementation of Support Vector Machine (SVM)

Referring to the literature [16, 26], the SVM software package including SVC and
SVR was programmed in our lab [27]. The validation of the software was tested in
some applications in chemistry and chemical engineering [24,28]. All computations
were carried out on a Pentium IV computer with a 2.66G Hz processor.

2.2 Using Support Vector Classification for Anti-HIV-1 Activities
of HEPT-Analog Compounds

The pandemic form of sexually transmitted human immunodeficiency virus (HIV)
that causes the acquired immunodeficiency syndrome (AIDS) has lead to the devel-
opment of various non-nucleoside reverse transcriptase inhibitors (NNRTIs), which
are less toxicand chemically more stable, have slower metabolizing rate and are
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slower emitted from the human body than nucleoside reverse transcriptase inhibitors
(NRTIs). Among the non-nucleoside analogues, 1-[(2-hydroxyethoxy)methyl]-6-
(phenylthio)-thymine (HEPT) is a potent inhibitor of HIV-1 reverse transcriptase
(RT), an enzyme, which is necessary for the catalytic formation of proviral DNA
from viral RNA [29].

In this work, we apply the support vector classification (SVC) method to inves-
tigate the structure–activity relationship (SAR) of the HEPT-analogue compounds
with anti-HIV-1 activities. We constructed the qualitative model on the basis of the
SVC, with structural descriptors calculated using the HYPERCHEM software. The
performance of SVC proved to be outstanding, which underlines the significance of
this method.

Data set

In order to test the applicability of the method in quantitative structure–activity re-
lationships we used a data set consisting quantitative activities for 36 deoxy HEPT
analogues [30]. The general formula of the HEPT-analogue compounds studied in
this work is shown in Fig. 25. Our data set can be sorted into two classes, “Class 1”
and “Class 2”, containing the compounds with high and low anti-HIV-1 activities,
i.e. those with EC50 < 1 and EC50 > 1�mol=L, respectively.

Descriptors

Generally speaking, molecular structures can be described by various descriptors,
including electronic parameters, geometric parameters and hydrophobic param-
eters. We defined 15 descriptors in this work. First we optimised 3D structures
of the molecules by molecular mechanics as implemented in the HYPERCHEM
software [31] using the MM+ force field with the Polak-Ribiere algorithm until
the root-mean-square gradient became less than 0.1 Kcal/mol. Quantum chemical
parameters were obtained for the most stable conformation of each molecule

Fig. 25 Structures of the
HEPT-analog compounds
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by using the PM3 semiempirical molecular orbital method at the restricted
Hartree-Fock level with no configuration interaction [32], other parameters were
obtained by using the appropriate option of the HYPERCHEM software. The de-
scriptors obtained are as follows: HOMO (highest occupied molecular orbital)
energy, LUMO (lowest unoccupied molecular orbital) energy, ?E (difference be-
tween HOMO and LUMO), TE (total energy), HF (heat of formation), EE (total
electronic energy), SA (surface area), MV (molecular volume), logP (partition coef-
ficient), MR (molecular refractivity), MP (molecular polarisability), MD (molecular
dipole) and MW (molecular weight), Q2 and Q4 (net charges on atoms 2 and 4,
respectively).

Owing to the redundancy of some parameters, the selection of descriptors for a
QSAR study is not straightforward. However, the selection of descriptors will con-
tribute a lot to construct the actual model. Generally, the presence of irrelevant or
redundant descriptors can cause the model to focus attention on the idiosyncrasies
of individual samples and lose sight of the broad picture that is essential for gen-
eralization beyond the training set. Especially, this problem is compounded when
the number of observations is also relatively small. In this work, we applied the en-
tropy method [33] for the given data set of 15 measurements to choose a subset of
descriptors. In the computation, the rate of separability R (R D 1 � N2=N1) was
defined as a criterion to select the key descriptors that determined the anti-HIV-1
activities of the compounds. Here, N1 was the number of the samples with high
activities predicted correctly, while N2 was the number of the samples with low ac-
tivities misclassified. We supposed that the entropy of data set was measured by R
value. Therefore, six selected descriptors (Q4, MV, LogP, MR, MP, and MW) were
found suitable to construct the SVC model without degrading R value or increas-
ing the entropy of data set. The results indicated that the anti-HIV-1 activities were
affected by Q4 and MP as important electronic factors, which were the integrated
embodiments of induction, resonance and hydrogen bond effect as well. At the same
time, MV and MR were significant geometric factors; LogP and MW were the im-
portant hydrophobic factors, which were represented in the selected features and the
derived model. Table 1 consists of anti-HIV-1 activities EC50 and the reduced sub-
set of six descriptors. Further combinations of descriptors may exist, which may be
useful for the classification of the data set used here, but the selected subset proved
to be appropriate for a successful prediction of activities, therefore we did not look
for further sets.

Selection of the Kernel Function and the Capacity Parameter C

Similarly to other multivariate statistical models, the performance of SVC is related
to the number of dependent and independent variables as well as the combination
of parameters used. In the computation of SVC, we have to deal with the capacity
(or regularization) parameter C and the kernel function adopted. In this work, we
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Table 1 Descriptors, structures and anti-HIV-1 activities for 36 HEPT-analogs studied in this work
EC50

No. X R0 R00 Y .�mol=L/ Q4 MV .Å
3
/ LogP MR MP MW

1 O CH2OCH2CH2OMe Me H 8:7 �0:4921 922:31 1:98 84:19 33:13 322:38

2 O CH2OCH2CH2OC5H11�n Me H 55 �0:4295 1143:2 3:58 102:7 40:47 378:49

3 O CH2OCH2CH2OCH2Ph Me H 20 �0:4610 1145:4 3:76 108:8 42:79 398:48

4 O CH2OMe Me H 2:1 �0:4874 778:59 2:14 73:14 28:82 278:33

5 O CH2Pr Me H 3:6 �0:4386 857:01 3:15 81:16 31:86 290:38

6 O CH2OCH2CH2SiMe3 Me H 32 �0:4849 1026:7 1:65 93:96 38:48 364:53

7 O CH2OCH2Ph Me H 0:088 �0:4782 1004:9 3:92 97:76 38:48 354:42

8 S CH2OEt Me H 0:026 �0:5121 911:29 4:00 90:78 35:65 322:44

9 S CH2OEt Et 3,5-Me2 0:0044 �0:6025 1029:4 4:94 100:9 39:32 350:49

10 S CH2OEt Et 3,5-Cl2 0:013 �0:5121 1002:0 5:04 100:4 39:51 391:33

11 S CH2 � i � Pr Et H 0:22 �0:5581 921:26 4:67 93:92 36:85 320:47

12 S CH2OCH2 � c � Hex Et H 0:35 �0:4807 1121:8 5:56 111:8 44:06 390:56

13 S CH2OCH2Ph Et H 0:0078 �0:5307 1076:9 5:44 110:6 43:48 384:51

14 S CH2OCH2Ph Et 3,5-Me2 0:0069 �0:4316 1191:5 6:37 120:7 47:15 412:56

15 S CH2OCH2C6H4.4 � Me/ Et H 0:078 �0:4460 1129:9 5:91 115:7 45:31 398:54

16 S CH2OCH2C6H4.4 � Cl/ Et H 0:012 �0:4780 1118:0 5:96 115:4 45:41 418:96

17 S CH2OCH2CH2Ph Et H 0:091 �0:5349 1128:8 5:69 115:4 45:31 398:54

18 S CH2OEt i-Pr H 0:014 �0:4564 959:74 4:34 95:33 37:49 336:47

19 S CH2OCH2Ph i-Pr H 0:0068 �0:4761 1120:8 5:77 115:2 45:31 398:54

20 S CH2OEt c-Pr H 0:095 �0:4433 932:38 3:83 93:52 36:72 334:45

21 O CH2OEt Et H 0:019 �0:5970 890:71 2:88 82:49 32:49 306:38

22 O CH2OEt Et 3,5-Me2 0:0054 �0:6257 997:32 3:82 92:57 36:16 334:43

23 O CH2OEt Et 3,5-Cl2 0:0074 �0:4855 976:42 3:92 92:10 36:35 375:27

24 O CH2 � i � Pr Et H 0:34 �0:5363 932:75 3:30 86:91 34:33 320:41

25 O CH2OCH2 � c � Hex Et H 0:45 �0:5732 1090:9 4:44 103:5 40:90 374:5

26 O CH2OCH2Ph Et H 0:0059 �0:5893 1057:1 4:32 102:4 40:32 368:45

27 O CH2OCH2Ph Et 3,5-Me2 0:0032 �0:5956 1160:5 5:25 112:4 43:99 396:5

28 O CH2OCH2CH2Ph Et H 0:096 �0:5897 1109:9 4:57 107:1 42:15 382:48

29 O CH2OEt i � Pi H 0:012 �0:5153 929:99 3:21 87:04 34:33 320:41

30 O CH2OCH2Ph i-Pi H 0:0027 �0:6302 1091:7 4:65 106:9 42:15 382:48

31 O CH2OEt c-Pi H 0:1 �0:5675 901:01 2:71 85:24 33:55 318:39

32 O H Me H 250 �0:4319 655:81 1:70 62:39 24:52 234:27

33 O Me Me H 150 �0:4319 699:62 1:94 67:29 26:35 248:3

34 O Et Me H 2:2 �0:4913 748:51 2:28 72:04 28:19 262:33

35 O Bu Me H 1:2 �0:4990 856:21 3:15 81:16 31:86 290:38

36 O CH2OCH2CH2OH Me H 7 �0:4770 864:37 1:70 79:44 31:30 308:35

applied the leaving-one-out cross-validation (LOOCV) procedure to find the suit-
able capacity parameter C and the appropriate kernel function for the SVC model.
The better is the model, the smaller is Pw, the number of wrong predictions using
the LOOCV method. Therefore, we employed Pw as a criterion to determine the
appropriate kernel function and the optimal capacity parameter C. Figure 26 depicts
Pw versus the capacity parameter C from 0.1 to 250 with different kernel functions
including linear, radial basis, polynomial and sigmoid functions. It was found that
the radial basis kernel function with C > 50 provides the best performance for
the SVC.
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Fig. 26 Dependence of Pw on C using LOOCV with different kernel functions

Modeling of SVC

According to the results obtained in Sect. 902, the optimal SVC model for discrim-
inating between high and low activities of compounds could be constructed using
the radial basis kernel function with a capacity parameter C D 100:

g.x/ D sgn
 
X

i2SV

˛iyiexpf�jjx � xi jj2

2

g C b
!
;

where 
 D 1 and b D 0:977 with yi D 1 for the samples of “Class 1” and yi D �1
for the samples of “Class 2.” x is a sample vector with unknown activity to be dis-
criminated, xi is one of the support vectors. Based on this SVC model, the samples
were discriminated as those of high anti-HIV-1 activities (EC50 < 1�mol=L), if
g.x/ � 0. Using SVC model for the classification of anti-HIV-1 activities of the
HEPT- analogue compounds, the accuracy of classification was 100% by using the
radial basis kernel function with the capacity parameter C D 100. Figure 27 illus-
trates the trained and predicted results of classes of samples with SVC model.

Results of cross validation test

In the leaving-one-out cross-validation (LOOCV) test, the first compound is omit-
ted, then a classification function is developed using the remaining ones, finally the
omitted compound is classified. In a second step, the first compound is included and
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Fig. 27 The g(x) function for trained (left) and predicted (right) results for the HEPT derivatives

the second one is removed, then the procedure continues until the last compound is
removed. Figure 27 (right) illustrates the positioning of classes of samples combin-
ing the LOOCV test with SVC. It is seen that none of the samples is inappropriately
classified. These results underline the robustness of the SVC model since the pre-
diction accuracy of the LOOCV test is 100% as compared to that of a stepwise
discriminant analysis, which achieved only a prediction accuracy of 94% [30].

2.3 Predeicting Aldose Reductase Inhibitory Activities
of Flavones Using Support Vector Regression

Diabetes mellitus is a major and growing public health problem throughout the
world, with an estimated worldwide prevalence in 2000 of 150 million people,
expected to increase to 220 million people by 2010 [34]. Although the pathology
of diabetes is not clear, several pathogenic processes may be involved in the de-
velopment of diabetes. Diabetic complications including cataract, neuropathy, and
retinopathy are proved to be involved the accumulated sorbitol in diabetic cases. In
healthy people, glucose is metabolized through the Embden- Meyerhoff pathway. In
cases of diabetes mellitus, with the increased levels of glucose in insulin-insensitive
tissues the Aldose Reductase (AR) in the polyol pathway facilitates the conversion
of glucose to sorbitol [35,36] Thus, if the inhibitors of AR (ARI) are potent enough
and nontoxic, they not only prevent but also lead to the cure of the complications
arising out of diabetes mellitus. Many of flavones were proved to be effective in in-
hibiting of AR activity. Matsuda and co-workers studied the AR inhibitory activity
of a large number of flavones and related compounds from traditional antidiabetic
remedies [37].

The study on quantitative structure–activity relationships (QSAR) of the Aldose
Reductase (AR) inhibitory activity of flavones has important significance for
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predicting inhibitory activity of flavones. Yenamandra S. Prabhakar and co-workers
studied QSAR of the Aldose Reductase (AR) inhibitory activity of 48 flavones us-
ing Free-Wilson, Combinatorial Protocol in Multiple Linear Regression (CP-MLR),
and Partial Least Squares (PLS) procedures [38].

In this work, support vector regression (SVR) was applied to QSAR study on the
Aldose Reductase Inhibitory Activity of Flavones, to obtain a proper model with
high accuracy of prediction for the activities of new compounds.

Data Set

The general formula of the flavones studied in this work is shown in Fig. 28. The
structural information of 48 flavones and their reported rat lens aldose reductase
(AR) inhibitory activity (�logIC50 , here IC50 is the concentration, in moles per
liter, required to produce 50% inhibition) are listed in Table 2. In this work, 227
parameters were available as molecular descriptors: 158 parameters come from the
reference [38], 50 were calculated by topology software including Auto correlation
Topological Index, Extended adjacency index, AM index, Molecular connectivity
index, Balaban index, Wiener index, Path/Walks Descriptors, Flexibility index, Xu
index, MC index, Schultz Molecular Topological Index and some EI index, and
other 19 parameters including electronic, geometric and some physicochemical
property parameters were calculated by HyperChem Release 7 software.

Selection of Kernel Function and the Molecular Descriptors

To build an appropriate model with good predicting ability, a suitable kernel
function was selected from linear kernel function, polynomial kernel function,
and radial basis kernel function. Root mean squared error (RMSE) in LOOCV
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Fig. 28 General structure of the flavones (R3 and R7 may be H, OH, OMe, or O-glycoside and
R5, R3, R4, and R5 may be H, OH, or OMe) associated with ratlens aldose reductase inhibitory
activity



300 L. Wencong

Table 2 Observed Aldose Reductase Inhibitory Activity of Flavones
�logIC50 �logIC50

Compd. R3 R5 R7 R’3 R’4 R’5 Exp. Pred.

1 H H OH H H H 5.00 4.90

2 H OH OH H H H 5.07 5.09

3 H H OH H OH H 5.42 5.75

4 H H H OH OH H 6.43 6.04

5 H H OH OH OH H 6.52 6.07

6 H OH OH H OH H 5.66 5.69

7 H OH SU1 H OH H 4.64 5.02

8 H OH SU2 H OMe H 5.33 4.56

9 H OH OH OH OH H 6.35 6.13

10 H OH OH OH OMe H 5.07 5.39

11 H OH OMe OH OMe H 4.92 5.10

12 H OH OMe OMe OMe H 4.14 4.44

13 H OH SU1 OH OH H 6.00 5.28

14 H OH SU3 OH OH H 5.51 5.88

15 H OH SU1 OH OMe H 4.64 4.52

16 OH OH OH H OH H 5.00 5.25

17 SU3 OH OH H OH H 5.29 5.47

18 OH OH OH OH OH H 5.66 5.64

19 OH OH OMe OH OH H 5.57 5.38

20 OH OH OH OH OMe H 4.96 4.92

21 OMe OH OMe OH OH H 6.09 5.57

22 OH OH OMe OH OMe H 5.22 4.63

23 OMe OH OMe OH OMe H 4.47 4.84

24 OH OH OMe OMe OMe H 4.14 3.90

25 OMe OH OMe OMe OMe H 4.60 4.17

26 SU1 OH OH OH OH H 5.35 5.13

27 SU4 OH OH OH OH H 5.52 5.10

28 SU5 OH OH OH OH H 6.82 5.99

29 SU6 OH OH OH OH H 6.75 7.03

30 SUI OH SU1 OH OH H 4.08 4.41

31 SU2 OH OH OH OH H 5.05 5.66

32 SU2 OH OMe OH OH H 4.68 5.33

33 SU2 OH OMe OH OMe H 4.39 4.62

34 SU2 OH OMe OMe OMe H 4.06 3.97

35 OH H OH OH OH H 5.43 5.65

36 OH OH OH OH OH OH 4.54 5.19

37 OH OH OH OH OMe OH 4.72 4.98

38 OH OH OMe OH OH OH 4.68 4.84

39 OMe OH OMe OH OH OH 4.92 5.10

40 OH OH OMe OH OMe OH 4.62 4.62

41 OH OH OMe OMe OMe OH 4.36 3.96

42 SU5 OH OH OH OH OH 5.42 5.45

43 SU5 OH OH OH OMe OH 5.42 5.13

44 SU5 OH OMe OH OMe OH 4.32 4.90

45 SU5 OH OH OMe OMe OH 4.68 4.56

46 SU5 OH OMe OMe OMe OH 4.15 4.28

47 SU5 OH OMe OMe OMe OMe 4.15 3.95

48 SU7 OH OH OH OH OH 7.09 6.65

In these compounds, the substituent groups corresponding to the SUgar moieties have been
abbreviated as SU suffixed with a number as SU1:for O-ˇ-D-glucopyranosyl; SU2 for O-
ˇ-D-glucopyranosyl(6 ! 1)-O-˛-L-rhamnopyranosyl; SU3 for :O-ˇ-D-glucopyranosiduronic
acid; SU4 for: O-ˇ-D-galacotopyranosyl; SU5 for O-˛-L-rhamnopyranosyl; SU6 for O-˛-L-
arabinopyranosyl; SU7 for O-(2-galloyl)-˛-L-rhamnopyranosyl [38]
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(leaving-one-out cross-validation) of SVR was used as the criteria of optimal set for
QSAR analysis. In general, the smaller value of RMSE obtained, the better set of
parameters gained. The RMSE is defined as:

RMSE D
sPn

iD1.pi � ei /2

n
;

Where ei is the experimental value of i sample,Pi is the predicted value of i sample,
n is the number of the whole samples.

The changing tendency of RMSE in LOOCV of SVR with the regularization pa-
rameter C and epsilon under three kernel functions including linear kernel function,
polynomial kernel function, and radial basis kernel function are given in Figs. 29
and 30.

Based on Figs. 29 and 30, it was found that the linear kernel function was suitable
to build SVR model with minimum of RMSE among the three kernel functions.

Two hundred and twenty-seven descriptors were available as molecular descrip-
tors in this work, the presence of irrelevant or redundant descriptors can cause
the model to focus attention on the idiosyncrasies of individual samples and lose
sight of the broad picture that is essential for generalization beyond the training
set generally. Thus, a major focus in descriptors selection is the search for a set
of molecular descriptors that give the best possible correlation between molecular
structures and their inhibitory activities. In this work, either of descriptor i or j
was deleted if the value of rij (correlation coefficient between descriptors i and j )
was large than 0.9. After that, there were 56 descriptors left. Then, Genetic algo-
rithm based on LOOCV of SVR was introduced for descriptors selection. Finally,
the optimal model was obtained with the minimum of RMSE 0.39214 (CD10,
epsilonD 0.15) and seven selected descriptors: dChivps9 (Chi valence path differ-
ences of lengths “orders” 9), ESHaaCH (E-State of atom type HaaCH), EsssCH2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

R
M

S
E

Value of Epsilon

0.4

0.6

0.8

1.0
linear kernel function
radial basis kernel function
polynomial kernel function

Fig. 29 RMSE in LOOCV vs. the epsilon with C D 10
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Fig. 30 RMSE in LOOCV vs. the C with epsilonD 0.15

(E-State of atom type ssCH2), n2Pag (count of alpha-gamma vertices), degree2 (de-
gree number of connectionsD2), I 03 (defined indicator for R3-substituent position
of 2-aryl-benzpyran-4-one; “1” for OH and “0” otherwise), I 04 (defined Indicator
for R4-substituent position of 2-aryl-benzpyran-4-one; “1” for OH and “0” other-
wise).

Optimization of SVR parameters

Figure 31 illustrates the parameters (C and epsilon) optimized in SVR model using
seven descriptors with linear kernel function.

From Fig. 31, the minimum value of RMSE was found in SVR model with C D
210 and epsilonD 0.06 under the linear kernel function.

Results of LOOCV of SVR and Discussion

Based on seven descriptors selected in Sect. 919, Figs. 32 and 33 illustrate
[�logIC50](Exp.) vs. the trained [�logIC50](Cal.) and predicted [�logIC50]
(Pred.) of LOOCV in SVR models with C D 210 and epsilonD 0.06 under the
linear kernel function, respectively.

From Fig. 32, the value of r (correlation coefficient) between [�logIC50](Exp.)
and [�logIC50](Cal.) is 0.887, ARE (the average of relative error) is 0.0557 and
AAE(the average of absolute error) is 0.287.

From Fig. 33, the value of r (correlation coefficient) between [�logIC50](Exp.)
and [�logIC50]( Pred.) is 0.866, ARE is 0.0622 and AAE is 0.319.

In this work, r and F (see Table 3) were obtained to estimate the performance of
trained models [26].R2

c v (see Table 4) were obtained to estimate the performance of
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Fig. 31 RMSE in LOOCV vs. C and epsilon with linear kernel function
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Table 3 r , ARE and AAE
are obtained by trained model
with seven descriptors

Model PLS CP�MLR SVR

r 0.887 0.890 0.887
ARE 0.0560 0.0554 0.0557
AAE 0.288 0.284 0.287

F 21.08 21.77 21.08

Table 4 R2cv, ARE , AAE ,
and RMSE obtained by
LOOCV of SVR with seven
parameters

Model PLS CP-MLR SVR

R2cv 0.634 0.723 0.750
ARE 0.0699 0.0656 0.0622
AAE 0.366 0.338 0.319
RMSE 0.467 0.407 0.385

prediction models. Where F is the F -ratio between the variances of calculated and
observed activities, R2

c v is cross-validated correlation coefficient from the LOOCV
procedure, F and R2

c v are defined as follows:

F D r2.n � k � 1/
k.1 � r2/

Rcv D
s

1 � PRESSP
.yact � ymean/2

PRESS D
X

.ypred � yact /
2
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In equations above, n is the number of compounds, r the correlation coefficient,
k the number of used parameters, yact the actual value of y, ymean the mean value of
y, and ypred is the value of prediction.

Based on Table 3, it can be found that the trained results of different models have
no large differences. Based on Table 3, however, the value of R2

c v in SVR model is
the maximum among three models. It indicates that the prediction ability of SVR
model was the best of all.
r D 0:882, F D 20:10, R2

c v D 0:691 were reported in Yenamandra S. Prab-
hakar’s best model [18], while r D 0:887, F D 21:08, R2

c v D 0:750 were obtained
in SVR model. Therefore, it can be concluded that SVR model with seven selected
descriptors in this work has better predicting ability than Yenamandra S. Prabhakar’s
best model.

2.4 Conclusion

The SVM has been introduced as a robust and highly accurate data mining tech-
nique. The studies on qSAR of HEPT-analog compounds indicated that the pre-
dictive power of SVC outperforms that of the stepwise discriminant analysis. The
studies on QSAR of Flavones proved that the prediction performance of SVR model
were better than those of MLR or PLS models. Therefore, it can be concluded that
the SVC is a good approach for the approximation of qualitative classification such
as qSAR problems and that the SVR is a very promising tool for the approximation
of quantitative regression such as QSAR problems, both with great potential in the
research of drugs.

The training and optimization using SVM are easier and faster compared with
other machine learning techniques, because there are fewer free parameters and only
support vectors (only a fraction of all data) are used in the generalization process.
Although no single method can be called uniformly superior to others, SVM is a
very useful data-mining tool, which is especially suitable for finding relationships
for a small size of data set. This allows generalising the conclusions drawn on the
basis of such relationships. However, it should be mentioned that the success of
SVM does not mean the fact that the classical data processing methods would be
useless in SAR research. On the contrary, a clever strategy is to integrate SVM with
other data processing methods together to make problem-solving for SAR.

3 Data-Mining-Based Industrial Optimization System
for Chemical Process

Many chemical reaction systems in industrial production involve chemical reac-
tions, heat transfer, mass transfer and fluid flow. The comprehensive modeling
of these processes is very important for the industrial optimization. During the



306 L. Wencong

last decades, process optimization and monitoring have been developed into an
important branch of research and development in chemical engineering. The first-
principle models have been used in the optimization of chemical processes [39–
41]. However, those models are usually very difficult to obtain because of the
complexity of the processes, and are also difficult to implement for on-line opti-
mization since optimizations based on mechanistic models are usually very time-
consuming.

In fact, large volumes of data in chemical process operation and control are col-
lected in modern distributed control and automatic data logging systems. By using
data mining, the useful information hidden in these data can be extracted not only
for fault diagnosis but also for the optimal control with the objective of saving en-
ergy, increasing yield, reducing pollution, and decreasing production cost. However,
compared with the more accurate laboratory data, the data from industrial processes
have special characteristics: (1) the data usually have a higher noise/signal ratio.
Even in a modern plants, there are uncontrollable factors affecting the production
processes, such as the composition fluctuation of raw materials, shifts of produc-
tion requirements, environmental fluctuation, operation accidents, influence of the
unsteady state in the starting step and the transition from one operational mode to
another mode; (2) the process data usually have a very nonuniform distribution,
most of the data points are concentrated within the limited region based on the op-
eration rules, and the data points outside of this region are thinly scattered; and (3)
the features or variables of the data sets are usually not independent on each other,
but more or less relevant to each other. Therefore, the data are usually in low quality
for data mining. In recent years, linear data mining techniques, such as partial least
squares (PLS) [42, 43], principal component analysis (PCA) [44, 45], and Fisher
discriminant analysis (FDA) [46, 47], were frequently used in chemical process op-
timization and fault diagnosis. It has also been reported that nonlinear data mining
techniques, such as artificial neural networks (ANN) [48–50] and genetic algorithms
(GA) [51–53], can be applied to this field. And even the newly developed technol-
ogy such as support vector machine (SVM) [54–56] method, which can be used for
both linear and nonlinear cases, has been successfully employed in process indus-
tries. Despite the great progress of data mining methods, difficulties still exist in the
method fusion, feature selection, automatic model, model validation, model updat-
ing, multi-model building, and on-line monitoring. Moreover, many newly proposed
data mining technologies for processes optimization and monitoring either lack ef-
fective validation modules or depend on one validation algorithm, thus leading to a
low identification reliability or sensitivity.

In recent years, we developed a Data Mining Optimization System (DMOS) for
chemical process optimization and monitoring, which integrated database, pattern
recognition, artificial intelligence, statistical learning, and domain knowledge. In
Sect. 3.1, the principles and functions of the implemented methods are described
briefly. Then both off-line and on-line DMOS software are introduced in Sect. 1.2.
Finally, a case study of process optimization of ammonia synthesis is provided in
Sect. 1.3.
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3.1 Methodology

It is generally accepted that different data mining technologies are suitable for
modeling different types of data sets, without any generalized method fitting for
all cases. Therefore, both linear and nonlinear data mining technologies including
K-nearest Neighbor (KNN), PLS, PCA, FDA, ANN, GA, SVM are implemented in
the DMOS. Some novel techniques developed in our lab, such as hyper-polyhedron
(HP) [57], are also implemented in the DMOS.

The frequently used data mining technologies can be referred to the correspond-
ing references [58–66]. PLS is widely adopted for modeling linear relationships
between multivariate measurements in chemometrics. The central idea of PCA is to
reduce the dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in the data
set. FDA is a linear dimensionality reduction technique in terms of maximizing the
separation between several classes. KNN is one of the best performers in a large
number of classification problems. ANN is an adaptive system that can be used to
model complex relationships between inputs and outputs or to find patterns in data.
ANN has been attracting great interest in modeling nonlinear relationships. GA is
an advanced optimization technique that mimics the selection processes occurring
in nature. In the DMOS, a GA-based algorithm is used for searching optimal param-
eters in an n-dimension space. SVM has become an increasingly popular technique
for machine learning activities including classification, regression, and outlier de-
tection. As compared with other algorithms used in data mining, SVM exhibits an
outstanding advantage of generalization in processing small data sets.

3.2 DMOS: A Software System Based on Data Mining
for Chemical Process Optimization and Monitoring

Two kinds of tasks exist in complex chemical processes monitoring and optimiza-
tion: (1) the off-line performance analysis and optimization based on long-term
historical data, conducted by supervisors and engineers and (2) the online evalu-
ation, optimization, and monitoring conducted by operators [67]. The supervisors
and engineers monitor the long-range performance of a plant to identify opportu-
nities for improvement and causes for poor operation, and a substantial amount of
data involving a long term is usually used in the analysis. The operators require
instant information to keep the process within acceptable working conditions. If un-
acceptable working performance appears, rapid response or intervention is needed
to restore the unit back to acceptable working performance. Analysis of large vol-
umes of multivariate data is overwhelming so a computer automated data analysis
tool can convert this data to useful information.

To meet demands of these two types of tasks, the DMOS software has two oper-
ating modes: the off-line version and on-line version.
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Description of the Off-line DMOS Version

The schematic diagram of the off-line DMOS version is given in Fig. 34. The three
main components of the program are data warehouse, data mining algorithms, and
custom-built system.

The component of data warehouse is used to save and update the process data
from a distributed control system (DCS), related database, or process records. The
component of data mining algorithms integrates all the data mining methods that can
be used for data sampling, data evaluation, data structure analysis, features selection,
correlation analysis, coefficient analysis, and model building, visualization analysis,
and optimization scheme generating.

It should be mentioned that preprocessing data correctly is extremely important,
because all subsequent analyses depend on the efficacy of the preprocessing proce-
dure. Solid process knowledge and good engineering judgment are involved in most
aspects of data preprocessing, such as process parameters selection, selection of the
number of samples, and outlier point identification. The main goal of data mining
is to obtain an accurate optimization model with good performance of prediction on
production process.

The visualization analysis module provides an important graphical user inter-
face to intuitively reveal the optimal results. The optimization scheme generating
module reports all kinds of optimal results to engineers or operators according to
given demands. The optimization model obtained by off-line DMOS software can
be exported to the on-line DMOS software.

Figure 35 is a data processing flowchart of the off-line DMOS version. It has been
proved to be a powerful information processing flow in many processes optimal
cases [68].

Customized system provides a platform on which users can develop specialized
on-line or off-line DMOS systems for their specific chemical process optimization
unit. To accommodate different process optimization problems, we design different
workflows adopting different data mining techniques, executing processes and result
reports.

Data
Acquisition

Data
Warehouse

Data
Pre-processing

Data Mining Visualization
Analysis

Optimization Scheme
Generating

Data mining 
Algorithms

Custom-built
System

Custom-built
Software

Fig. 34 The schematic of the off-line DMOS version
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Fig. 35 Data processing flowchart of the off-line DMOS version

Fig. 36 The main operation window interface of off-line DMOS version

The graphical user interface (GUI) is programmed in MS Visual Basic, and can
be installed and run on any PC with a window operating system. The main window
of the GUI is given in Fig. 36. It consists of a menu bar, a project view window, and
a visual zone. At the top of the window is the menu bar with eight items, which can
be activated by means of the mouse pointer. The main menus cover the related op-
erations such as project, editing, analysis, optimization model, diagnosis, operation
guidance, management, and help. Correspondingly, the pop up sub-menus are avail-
able to perform some project related operations such as new project, open project,
project view, data exporting, save graph, project exporting, model exporting, and ex-
iting the project. Figure 37 shows the sub-window of the virtual instruments used for
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Fig. 37 The sub-window of virtual instruments for parameters adjustment of off-line DMOS
version

some special parameters adjustment. Using this window, the operator can determine
the direction and size of the special technical parameter adjustment.

Description of the on-line DMOS version

The on-line DMOS version consists of two different user interfaces. One is devel-
oped for the administrator and the other for the operator. The administrator interface
offers all the required components for importing of the models, making of the rules
and other general configuration tools. The operator interface has all the information
required for on-line monitoring of the processes, which can be made transparent for
the operators. Through this window it is possible to monitor the current state of a
process and even to predict the future trend without concerning about transfer of
data or other modifications. Figure 38 gives the sub-window of the virtual instru-
ments used for some special parameters adjustment.
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Fig. 38 The sub-window of virtual instruments for parameters adjustment of on-line DMOS
version

Case Study of DMOS: Optimization of Ammonia Synthesis Process

The Haber–Bosch process for ammonia synthesis is considered to be one of the most
significant scientific discoveries in the early twentieth century [69]. Ammoniais has
been applied to various sectors, such as fertilizer productions, textile processing,
water purification, explosive manufacturing, etc.; and the large scale production and
application as fertilizer is by far the most important factor for the great increase in
food production of the twentieth century. As a consequence of the increasing world
population, there is no reason to suspect that the significance of NH3 will become
less important in the future.

In this work, the data set including 2088 samples each with 38 features and one
target were collected from the DCS system of the ammonia synthesis unit in Yunnan
Yunwei Group Co., Ltd. (China). The target of optimization is to increase the flow
of fresh synthesis gas (FI, m3=s). Feature selection techniques were used to search
the chief factors determining the target.

It is generally accepted that different data mining methods are suitable for dif-
ferent data structure, and no generally applicable method for all cases. Therefore,
before modeling we had better know the data structure, i.e., the geometrical or topo-
logical relationship between the optimal zone (the zone of good sample points) and
the operation zone (the zone corresponding to the conditions of present operation).
Here, we classify the data structures into two topological types: one-side type and



312 L. Wencong

Fig. 39 Topological types of data structure: (a, b) one-side type and (c, d) inclusion type

Table 5 The target and the features used in optimization model

FI (m3/s) Flow of fresh synthesis gas TIC02(K) Temperature in the
second-stage reactor

AI(%) Hydrogen content of fresh
synthesis gas

TIC03(K) Temperature in the third-stage
reactor

TI01(K) Inlet temperature in the first-stage
reactor

TI03(K) Temperature in the third-stage
reactor

TIC01(K) Outlet temperature in the
first-stage reactor

TI04(K) Inlet temperature in the waste
heat boiler

TI02(K) Temperature in the second-stage
reactor

TI05(K) Outlet temperature in the water
cooler

inclusion type. Figure 39 illustrates the characteristics of these two types. After the
differentiation of different topological types, we can use different methods for the
feature selection and the modeling of different topological data structures.

Preliminary statistical analysis indicated that the type of data set was one-side
structure, so two methods were adopted for feature selection: one was based on a
voting method (providing the results of PCA, PLS, and KNN methods), and the
other was based on the hyper-polyhedron method. Fortunately, both methods gave
the same result. As a result, nine features from 38 features were selected to model
the flow of fresh synthesis gas: AI (%), TI01 (K), TIC01 (K), TI02 (K), TIC02 (K),
TIC03 (K), TI03 (K), TI04 (K), and TI05 (K). The descriptions of the target and the
nine features are listed in Table 5.

The process optimization results show that the optimal operation conditions of
ammonia synthesis lie in a near linear optimization zone. Therefore, PCA method
is applied to the optimization of ammonia synthesis unit.

The PCA model is built based on all process data. Figure 40 gives the PCA score
plot to visualize the clusters in the data set. The distributed region of data cluster
with class “1” (with target value more than 9.45 m3=s) is the optimal zone, which
can be described by following two inequalities in original feature space:

�452:002 < 0:074.AI/ � 0:144.TIC01/� 0:048.TI02/� 0:119.TI03/ � 0:023.TI01/

�0:060.TIC02/� 0:130.TIC03/ � 0:069.TI04/ � 0:096.TI05/ < �445:285 (1)

75:384 < �0:287.AI/C 0:022.TIC01/� 0:039.TI02/� 0:022.TI03/ � 0:189.TI01/
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Fig. 40 Seven PCA score plot of ammonia synthesis process data
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Fig. 41 Loading chart of PCA model

C0:091.TIC02/C 0:054.TIC03/� 0:104.TI04/ � 0:154.TI05/ < 79:890 (2)

By keeping the operation conditions within the optimal zone, the flow of fresh
synthesis gas can be increased significantly.

Figure 41 is the variable loadings of all the nine features on the principal compo-
nents. The most important technical parameters are TI01, TI03, and TI04 based on
the principal component loadings and the scores. The higher inlet temperature in the
waste heat boiler (TI04), the higher temperature in the third stage reactor (TI03), and
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the lower inlet temperature in the first stage reactor will contribute to the increased
flow of fresh synthesis gas.

The PCA model is validated by carrying out an experimental investigation and
comparing the factual class of sample points of industrial process with the model-
predicted class. A test set with 80 samples derived from continuous industrial
process data that were excluded from the training set, was used to validate the PCA
model. The results show that the accuracy of the prediction for the sample class was
95.00%. So, the model based PCA meets the requirement of ammonia synthesis
process optimization. As a result, the model can be exported to on-line DMOS
software, which can realize the on-line monitoring and optimization of ammonia
synthesis process.

Discussions and Conclusions

Data-mining-based optimization and monitoring for chemical processes are a great
challenge both for research and practice, because it may be dangerous to use a wrong
mathematical model in practical operation of a chemical plant. The high noise/signal
ratio data acquired from practical operations may sometimes lead to wrong conclu-
sions in process modeling. The following rules should be obeyed in modeling for
chemical processes: (1) it is necessary to use the knowledge of domain experts in
data processing. The domain experts can judge whether the mathematical model is
reasonable or not, or whether it is dangerous or not; (2) it is necessary to use as many
as methods of data mining available and then make knowledge fusion based on the
overall data mining results. The linear projection techniques such as FDA, PCA,
and PLS methods are very useful, because linear projections can reveal the simple
relationships between target and features. At the same time, nonlinear data mining
techniques, such as ANN and GA, should also be used to increase the reliability
of the mathematical models. The mathematical models should also be validated by
some predefined schemes. For example, if a mathematical model not only fits well
the data of training set, but also gives good prediction results by an independent
validation test, this mathematical model should be considered as a robust one; (3)
the industrial optimization task is to find an optimal operation zone in the high-
dimensional space spanned by influencing parameters. It is not necessary to include
all good sample points into the optimal operation zone for optimal control, but the
optimal operation zone must be large enough to make the control practically fea-
sible. To make optimal control more reliable, the optimal operation zone should
separate as far as possible from the operation zone where bad sample points dis-
tributed. For fault diagnosis, it is also necessary to find a reliable operation zone to
avoid the fault. Therefore, the optimal operation zone for industrial optimization or
the safe operation zone to avoid fault should be selected from subspaces where good
sample points are distributed and separated far away from the bad sample region;
and (4) sometimes the geometrical form of the optimal operation zone will become
too complicated for data fitting. In such cases, it is usually helpful to divide the hy-
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perspace into subspaces, so that the geometry of optimal region can be simplified
and modeling can be conducted.

In the present work, a comprehensive and graphical computer software, the data
mining optimization system (DMOS), for chemical process optimization and mon-
itoring has been developed. The DMOS can be used both for off-line and on-line
purposes. The user-friendly interface and a great bank of data mining methods
implemented in DMOS make the operation easy, convenient, and adaptable. The
DMOS has some exciting characteristics such as method fusion, feature selec-
tion, automatic model, model validation, model updating, multi-model building, and
on-line monitoring, which contribute to solve the optimization and monitoring prob-
lems of complex chemical processes. The successful application of the DMOS in
ammonia synthesis process promises its great potential in chemical process opti-
mization and monitoring.
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Data Mining and Discovery of Astronomical
Knowledge

Ghazi Al-Naymat

1 Introduction

Spatial data is essentially different from transactional data in its nature. The objects
in a spatial database are distinguished by a spatial (location) and several non-spatial
(aspatial) attributes. For example, an astronomy database that contains galaxy data
may contain the x, y and z coordinates (spatial features) of each galaxy, their types
and other attributes.

Spatial datasets often describe geo-spatial or astro-spatial (astronomy related)
data. In this work, we use a large astronomical dataset containing the location of
different types of galaxies. Datasets of this nature provide opportunities and chal-
lenges for the use of data mining techniques to generate interesting patterns. One
such pattern is the co-location pattern. A co-location pattern is a group of objects
(such as galaxies) each of which is located in the neighborhood (within a given
distance) of another object in the group.

A clique is a special type of co-location pattern. It is described as a group of
objects such that all objects in that group are co-located with each other. In other
words, given a predefined distance, if a group of objects lie within this distance
from every other object in the group, they form a clique. Figure 1 shows eight dif-
ferent objects fA1;A2;A3;B1;B2;B3;B4; C1g. The set fB1;B2;A3g is a clique.
However, fB1;B2;A3; C1g is not, because C1 is not co-located with B2 and A3,
therefore fB1;B2;A3; C1g is a co-location pattern only.

In this chapter, we consider maximal cliques. A maximal clique is a clique
that does not appear as a subset of another clique in the same co-location pat-
tern (and therefore the entire dataset, as each object is unique). For example, in
Fig. 1, fA1;A2;B4g forms a maximal clique as it is not a subset of any other
clique. However, fA3;B2;B3g is not a maximal clique since it is a subset of the
clique fA3;B1;B2;B3g (which in turn is a maximal clique). The second column
of Table 1 shows all the maximal cliques in Fig. 1.

G. Al-Naymat (�)
School of Information Technologies, The University of Sydney, Sydney, Australia
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B3 B2

A1A3 B1 C1
a b

B4A2

Fig. 1 An example of clique patterns

Table 1 Representing maximal cliques of Fig. 1 as complex relationships

Complex without Complex with
Raw maximal Non-complex negative negative

ID Maximal cliques cliques relationships relationships relationships

1 fA3, B1, B2, B3g fA, B, B, Bg fA, Bg fA, B, B+g fA, B, B+, �Cg
2 fB1, C1g fB, Cg fB, Cg fB, Cg f�A, B, Cg
3 fA1, A2, B4g fA, A, Bg fA, Bg fA, A+, Bg fA, A+, B, �Cg

In our dataset, each row corresponds to an object (galaxy) and contains its type
as well as its location. We are interested in mining relationships between the types
of objects. Examples of object types in this dataset are “early-type” galaxies and
“late-type” galaxies. To clarify, we are not interested in the co-locations of specific
objects, but rather, the co-locations of their types. Finding complex relationships
between such types is useful information in the astronomy domain – this will be
shown in Sect. 1.2. In Fig. 1, there are three types: fA;B;C g.

In this chapter, we focus on using maximal cliques to allow us to mine interesting
complex spatial relationships between the object types. A complex spatial relation-
ship includes not only whether an object type, say A, is present in a (maximal)
clique, but:

• Whether more than one object of its type is present in the (maximal) clique. This
is a positive type and is denoted by AC.

• Whether objects of a particular type are not present in a maximal clique; i.e., the
absence of types. This is a negative type and is denoted by �A.

The inclusion of positive and/or negative types makes a relationship complex.
This allows us to mine patterns that state, for example, that A occurs with mul-
tiple Bs but not with a C . That is, the presence of A may imply the presence of
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multiple Bs and the absence of C . The last two columns of Table 1 show examples
of (maximal) complex relationships. We propose an efficient algorithm (GridClique)
to extract all maximal clique patterns from a large spatial data – the Sloan Digital
Sky Survey (SDSS) data.

We are not interested in maximal complex patterns (relationships) in themselves,
as they provide only local information (i.e., about a maximal clique). We are how-
ever interested in sets of object types (including complex types) that appear across
the entire dataset (i.e., among many maximal cliques). In other words, we are inter-
ested in mining interesting complex spatial relationships (sets), where “interesting”
is defined by a global measure. We use a variation of the minPI (minimum Partici-
pation Index) measure [1] to define interestingness (1)

minPI.P / D min
t2P
fN.P /=N.ftg/g: (1)

Here, P is a set of complex types we are evaluating, and N.
/ is the number
of maximal cliques that contain the set of complex types. We count the occurrences
of the pattern (set of complex types) only in the maximal cliques. This means that
if the minPI of a pattern is above ˛, then we can say that whenever any type t 2 P
occurs in a maximal clique, the entire pattern P will occur at least as a fraction
alpha of those maximal cliques. Using minPI is superior to simply using N.P /
because it scales by the occurrences of the individual object types, thus reducing the
impact of a non-uniform distribution on the object types.

In this work we focus on maximal cliques because:

• The process of forming complex positive relationships makes sense. Suppose we
extract a clique that is not maximal, such as fA1;B4g from Fig. 1. We would
not generate the positive relationship fAC; Bg from this, even though each of
fA1;B4g are co-located with fA2g. So we get the correct pattern only once we
have considered the maximal cliques.

• Negative relationships are possible. For example, consider the maximal clique
in row 1 of Table 1. If we did not use maximal cliques, then we would consider
fB1;B2;B3g, and from this we would incorrectly infer that the complex rela-
tionship fB;BC;�Ag exists. However, this is not true because A is co-located
with each of fB1;B2;B3g. Therefore, using non-maximal cliques will generate
incorrect negative patterns.

• Each maximal clique will be considered as a single instance (transaction) for the
purposes of counting. In other words, we automatically avoid multiply counting
the same objects within a maximal clique.

• Mining maximal cliques reduces the number of cliques by removing all redun-
dancy. It is possible to mine for maximal cliques directly. And because negative
types cannot be inferred until the maximal clique is mined, it does not make sense
to mine cliques that are not maximal.

The previous reasons demonstrate the value of our proposed algorithm Grid-
Clique given it mines all maximal clique patterns from large spatial data and
puts them into a format which can be mined easily using association rule mining
techniques.
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1.1 Problem Statement

The problem that we are considering in this chapter consists of two parts:

1. Given a large spatial dataset (astronomy dataset), extract all maximal clique pat-
terns. More specifically, extract all co-location patterns that are not subsets of
any other co-location patterns.

2. Given the set of maximal cliques, find all interesting and complex patterns that
occur among the set of maximal cliques. More specifically, find all sets of object
types, including positive and negative (i.e., complex) types that are interesting as
defined by their minPI being above a threshold.

To solve the above problem efficiently, we propose a heuristic based on a
divide-and-conquer strategy. Our proposed heuristic is GridClique [2] as it will
be described in Sect. 3.2. After obtaining the maximal clique patterns the problem,
therefore, becomes an itemset mining task. To achieve this very quickly, we use the
GLIMIT algorithm [3].

Including negative types makes the problem much more difficult, as it is typical
for spatial data to be sparse. This means that the absence of a type can be very
common. Approaches relying on an Apriori style algorithm find this very difficult;
however, this is not a problem for our approach.

1.2 Contributions

In this chapter, we make the following contributions:

1. We introduce the concept of maximal cliques. We describe how the use of maxi-
mal cliques makes more sense than simply using cliques, and we show that they
allow the use of negative patterns.

2. We propose a heuristic GridClique on the basis of a divide-and-conquer strategy,
to mine maximal clique patterns that will be used in mining complex co-location
rules (MCCRs).

3. We propose a general procedure that splits the maximal clique generation,
complex pattern extraction and interesting pattern mining tasks into modular
components.

4. We contribute to the astronomy domain by proving existing facts when analyzing
the complex association rules that are generated by our proposed approach. For
example, we managed to answer questions such as the one depicted in Fig. 2.

A preliminary version of this work was presented in [2]. However, in this
chapter, we used GridClique to do more analysis using the new release of SDSS
Data (DR6).1 We described the data preparation stage in detail. A performance

1 http://www.sdss.org/dr6.
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Imply the absence of

?

Does the presence of

Elliptical Galaxy
(Early)

Spiral Galaxy
(Late)

Fig. 2 An interesting question which can be answered by our method

comparison between GridClique and Naı̈ve approach is also presented here to show
the efficiency of the GridClique algorithm. GridClique applied to gain more knowl-
edge than what presented in the preliminary version such as reporting very interest-
ing rules that reflect the relationship between the defined galaxy types. Example of
some interesting rules was shown and introduced to the astronomy domain. In this
study, we show the complete mining process by adding the data preparation stage to
the proposed framework. Table 2 provides a description for all used notations.

1.3 Chapter Outline

This chapter is organized as follows. Section 2 illustrates the important concepts
and notations used in this work. In Sect. 3, we give detailed description about our
approach for extracting knowledge from astronomical dataset. Section 4 contains
our experiments and the analysis of the results. A summary of the chapter is given
in Sect. 5.

2 Basic Definitions and Concepts

Consider a set of objects O with fixed locations. Given an appropriate distance
measure d W O �O ! R we can define a graph G as follows; let O be the vertices
and construct an edge between two objects o1 2 O and o2 2 O if d.o1; o2/ � � ,
where � is a chosen distance. A co-location pattern is a connected subgraph.
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Table 2 Description of the notations used

Symbol Description

MCCR Mining complex co-location rule
parsec Unit of length used in astronomy. It stands for “parallax of one arc second”
Mpc An abbreviation of “megaparsec,” which is one million parsecs, or 3,261,564 light

years
arcmin Unit of angular measurement. Sizes of objects on the sky, field of view of telescopes,

or practically any angular distance “Arc of Minutes”
minPI Minimum participation index
maxPI Maximum participation ratio
SDSS Sloan digital sky survey
z RedShift
zWarning Parameter used to guarantee that the corrected RedShift values are used
zConf RedShift confidence
X X-coordinate
Y Y -coordinate
Z Z-coordinate
U Ultraviolet
R Red light magnitude
r-band r-Band Petrosian magnitude
Ho Hubble’s constant
LRG Luminous Red Galaxies
O Spatial objects with fixed locations
oi The i th spatial object
G Undirected graph
CM Maximal clique
P A set of complex types
N.
/ Number of maximal cliques that contain the set of complex types
T Set of transactions
Card.
/ Cardinality of a set
d
e Function that gives the ceiling of a value
b
c Function that gives the floor of a value
EucDist Euclidean distance

Definition 1 (Clique). A clique C 2 O is any fully connected subgraph of G.
That is, d.o1; o2/ � � 8fo1; o2g 2 C � C .

As we have mentioned in Sect. 1, we use maximal cliques so that we can define
and use complex patterns meaningfully and to avoid double counting.

Definition 2 (Maximal Clique). A maximal clique CM is a clique that is not a
subset (sub-graph) of any other clique. So that CM 6	 C 8C 2 O .

Definition 3 (Clique Cardinality). A cardinality (Card) is the size of a clique
and it is given in (2). For example, if we have a clique C D fo1; o2; o3g, then
Card.C / D 3.

Card.C / D jfo 2 O W o 2 C gj; (2)

where j 
 j denotes the number of elements in a set.
Generally, cardinality of a set is a measure of the “number of elements of the set.”
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3 Mining Complex Co-location Rules

The MCCRs process is illustrated through the flowchart in Fig. 3. It consists of
four stages. First, the data preparation process, which starts by downloading the
spatial data from the SDSS repository and then putting it in the desired format.
Section 3.1 provides details about this stage. Second, the GridClique algorithm finds
all maximal clique patterns, and strips them of the object identifiers – producing raw
maximal cliques (Table 1). The GridClique algorithm is described in Sect. 3.2. One
pass is then made over the raw maximal cliques in order to extract complex relation-
ships. We describe this in Sect. 3.3. This produces maximal complex cliques, each
of which is then considered as a transaction. An interesting itemset mining algo-
rithm, using minPI as the interestingness measure, is used to extract the interesting
complex relationships. We describe this in Sect. 3.4.

Figure 3 shows that the clique generation and complex relationship extraction are
local procedures, in the sense that they deal only with individual maximal cliques. In
contrast, the interesting pattern mining is global – it finds patterns that occur across
the entire space. We consider subsets of maximal cliques only in the last step – after
the complex patterns have been extracted.

Global: Mines co-locations that are  globally 
interesting (considers all  complex cliques) 

Mine All
Maximal
CliquesSpatial

Data
(SDSS)

Extract
Complex
Cliques

(Relationships)

Mine
Interesting

(and
Complex)
Patterns

A,B,B,B
B,C
A,A,B
…

A,B,B+,-C
-A,B,C
A,A+,B,-C
…

A1  (5,2)
A2  (4,0)
B4  (6,0)
…

Local: only members of the maximal clique 
are considered.

…
A,B
A,-C
-A,C
…

GridClique

Prepare 
the

Extracted
Data

Fig. 3 The complete process of mining complex co-location rules (MCCRs)
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3.1 Data Preparation

3.1.1 Data Extraction

This section describes the method for extracting attributes from the SDSS Data
Release 6 and using them to categorize galaxy objects. A view called SpecPhoto
which is derived from a table called SpecPhotoAll is used. The latter is a join be-
tween the PhotoObjAll and SpecObjAll tables. In other words, SpecPhoto is view of
joined Spectro and PhotoObjects which contains only the clean spectra.

The concern is to extract only the galaxy objects from the SDSS using the param-
eter (object type = 0). The total number of galaxy type objects stored in the SDSS
catalog is 507,594. To ensure the accuracy for calculating the distance between ob-
jects and the earth, which leads to calculate the X; Y; and Z coordinates for each
galaxy, number of parameters are used, such as zConf < 0:95 (the rigid objects)
and zWarning D 0 (correct RedShift). Therefore, the number of galaxy objects is
reduced to 365,425.

SDSS release DR6 provides a table called Neighbors. This table contains all ob-
jects that are located within 0.5 arcmin, this makes it not useful in this research
because there is no ability to choose any other distance greater than 0.5 arcmin to
form the neighborhood relationship between objects. For example, in our experi-
ments .1; : : : ; 5/Mpc (distances) are used as the thresholds to check if objects are
co-located or not.2 Table 3 lists the extracted fields from the SDSS (DR6) that have
been used during the preparation process.

The raw data was obtained from SDSS (DR6) [4]. This data is extracted
from the online catalog services using several SQL statements. The catalog of-
fers a very elegant interface that allows users to extract easily the preferred

Table 3 The SDSS schema
used in this work

No Field name Field description

1: specObjID Unique ID
2: z Final RedShift
3: ra Right ascension
4: dec Declination
5: cx x of Normal unit vector
6: cy y of Normal unit vector
7: cz z of Normal unit vector
8: primTarget prime target categories
9: objType object type : GalaxyD 0
10: modelMag u Ultraviolet magnitude
11: modelMag r Red Light magnitude

2 See http://csep10.phys.utk.edu/astr162/lect/distances/distscales.html for details.
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Fig. 4 The front end of the SDSS SkyServer. It provides an SQL search facilities to the entire
stored data

data (Fig. 4). The catalog provides other tools that can be used to browse all
tables and views in the SDSS data. This catalog is accessible from the SDSS
website.3

The first SQL statement used to extract the first 65,000 objects (galaxies) is as
follows:

Select top 65000 specObjID, cx, cy,
cz, primTarget, z,
dbo.fObjTypeN(objType) as objType,
(299792.485 * z/71) as Mpc,
modelMag_u - modelMag_r as ’U-R’
modelMag_r

From specPhoto
Where z>0 and zConf>0.95 and zWarning=0

and objtype =0
Order by specObjID;

3 http://cas.sdss.org/dr6/en/tools/search/sql.asp.
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The second SQL statement used to extract the second 65,000 objects starting
from the last object’s ID (119286486972497000) is as follows:

Select top 65000 specObjID, cx, cy,
cz, primTarget, z,
dbo.fObjTypeN(objType) as objType,
(299792.485 * z/71) as Mpc,
modelMag_u - modelMag_r as ’U-R’
modelMag_r

From specPhoto
Where z>0 and zConf>0.95 and zWarning=0

and objtype =0
and specObjID>119286486972497000

Order by specObjID;

The second SQL statement is different from the first one by adding the a condi-
tion specObjID > flastIDg. The reason behind extracting just 65,000 objects is to
be able to handle them using Microsoft Excel 2003, which was used to clean some
records.

Data Transformation

The extracted data needs to be transformed into the right format before start
mining it. Transforming the data makes it accessible using Oracle10g, where we
uploaded the data into a normalized database. The use of the Oracle helps us in (1)
manipulating the extracted data and report some statistics about it, (2) eliminating
the undesired fields that we had to extract when we initially downloaded the data
from the SDSS repository, and (3) calculating the distance between galaxy objects
and the earth. Few tables were created to store the extracted data. We created num-
ber of stored procedures to categorize galaxy objects and put the data into the right
format.

New Attributes Creation

Having all necessary fields extracted, the next step is to calculate for each galaxy
the exact value of the X; Y , and Z coordinates that are not stored in the SDSS
data. The following steps show the process of calculating the coordinates of each
galaxy:

1. Calculating the distance between the earth and galaxy objects using Hubble’s law
and redshift z value (3).

D � c � z

Ho

; (3)

where c is the speed of light, z is the object RedShift, and Ho is the Hubble’s
constant. Currently, the best estimate for this constant is 71 km s�1 Mpc�1 [5,6].
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2. Considering the extracted unit vectors cx, cy, and cz and multiplying them byD
that obtained form the previous step. Equations (4), (5) and (6) used to calculate
the final value of X; Y and Z coordinates, respectively.

X D D � cx: (4)

Y D D � cy: (5)

Z D D � cz: (6)

Galaxies Categorization

Our purpose is to mine complex co-location rules in astronomy data. Therefore,
we have to add to our prepared data the galaxy types. More specifically, to use the
association rule mining technique on the prepared data the galaxy type is used. If
we go back to the supermarket example fbread! cheeseg rule, instead we use, for
example, fGalaxy type A ! Galaxy type Bg. This rule can be interpreted as the
presence of galaxy type A implies the presence of galaxy type B .

Galaxy types did not exist in the SDSS data. Therefore, we used several param-
eters to find the galaxy object types. This was performed as follows:

1. The difference between Ultraviolet U and Red light magnitude R, is used to
categorize galaxy objects into either “Early” or “Late.” If the difference �2.22
the galaxy is considered to be “Early,” otherwise “Late.”

2. The value of the r-band Petrosian magnitude indicates whether a galaxy is
“Main” (close to the earth) or “Luminous Red Galaxies” LRG ( far away from
the earth). If r-band �17.77 the galaxy object is “Main,” otherwise it is LRG [7].

Consequently, four galaxy types were found as a combination of the above
mentioned types. These categories are: Main-Late, Main-Early, LRG-Late, and
LRG-Early.

3.2 Mining Maximal Cliques

The stage of mining maximal cliques is the process of transforming the raw spatial
data into transactional type data that can be used by any association rule mining
techniques. This is a crucial step and it is performed using the our proposed algo-
rithm (GridClique).

GridClique Algorithm

The GridClique algorithm uses a heuristic based on a divide-and-conquer strategy to
efficiently extract maximal clique patterns from large spatial dataset (SDSS). This is
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Table 4 An example of two-
dimensional dataset

Object type X-coordinate Y -coordinate

A1 2.5 4.5
A2 6 4
A3 2 9
B1 1.5 3.5
B2 5 3
B3 5 4
C1 2.5 3
C2 6 3
D1 3 9
D2 7 1.5

achieved by dividing the space into a grid structure based on a predefined distance.
The use of the grid structure plays a vital role for reducing the search space. Our
heuristic treats the spatial objects (galaxies) as points in a plane and it uses grid
structure when mining the maximal clique patterns. We use the Euclidean distance
as the distance measure because it is very efficient to compute.

The aim of the GridClique algorithm is to extract maximal clique patterns that
exist in any undirected graph. It is developed using an index structure through grid
implementation. Table 4 contains 10 objects and their X and Y coordinates; this in-
formation will be used to explain the functionality of the GridClique algorithm. The
SDSS is a three-dimensional dataset, but in our example we use two-dimensional
dataset for simplicity. Algorithm 1 displays the pseudocode of the GridClique algo-
rithm.

The 10 spatial objects in Table 4 are depicted in Fig. 5. The figure will be used as
an example when we explain our algorithm. The objects are used as spatial points
and are placed in the plane using their coordinates. The edges in each subgraph are
generated between every two objects on the basis of the co-location condition. That
is, if the distance between any two objects is �d , where d is a predefined threshold,
an edge will be drawn between the two objects (Fig. 5a). The GridClique algorithm
works as follows:

1. It divides the space into a grid structure which contains cells of size d �d (Lines
1–12). The grid space is structured where each cell has a key (GridKey). This
key is a composite of X , Y , and Z coordinates (Line 5). We used a special data
structure (hashmap) which is a list that stores data based on an index (key) to
speed up retrieving the stored data. The number of cells depends on the maximum
value of X and Y coordinates in the dataset. Having coordinates for each cell
helps in placing the points in their corresponding cells. The total number of cells
is calculated using (7).

Number of cells D dmax.X/

d
e � dmax.Y /

d
e; (7)
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Algorithm 1 GridClique algorithm
Input: Set of points .P1; 
 
 
 ; Pn/, Threshold d
Output: A list of maximal clique patterns.
fGenerating grid structure.g

1: GridMap �

2: PointList fP1; 
 
 
 ; Png
3: for all Pi 2 PointList do
4: Get the coordinates of each point Pkx; Pky; Pkz

5: Generate the composite key (GridKey=(Pkx ; Pky; Pkz)).
6: if GridKey 2 GridMap then
7: GridMap Pi
8: else
9: GridMap new GridKey

10: GridMap:GridKey Pi
11: end if
12: end for
fObtaining the neighborhood lists.g

13: for all pi 2 GridMap do
14: pi :list �

15: NeighborGrids (the 27 neighbor cells of pi )
16: NeighborList �

17: if NeighborGridsi :size./ > 1 then
18: for all pj 2 NeighborGridsj do
19: if EucDist .pi ; pj / � d then
20: pi :list  pj (pi ; pj are neighbors)
21: end if
22: end for
23: end if
24: NeighborList pi :list
25: end for
fPruning neighborhood list if at least one of its items violates the maximal clique defini-
tion.g

26: TempList �

27: MCliqueList �

28: for all Recordi 2 NeighborList do
29: RecordItems Recordi
30: for all pi 2 RecordItems do
31: for all pj 2 RecordItems do
32: if EucDist.pi ; pj / � d then
33: Templist pj (pi ; pj are neighbors)
34: end if
35: end for
36: end for
37: MCliqueList Templist
38: end for
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Fig. 5 An example to illustrate the process of extracting maximal clique patterns from two-
dimensional dataset

where max.X/ and max.Y / are the maximum of X and Y coordinates, respec-
tively. The function d
e is the ceiling of any value.
In our example data, the maximum values of X and Y coordinates are 7 and 9,
respectively. The predefined distance d D 2. Using (7), the number of cells will
be 20. After structuring the grid space, the algorithm then places the points into
their corresponding cells (Lines 6–11). This is performed by considering the X
and Y coordinates of the corresponding cell as the bXc and bY c coordinates
of the placed point (Fig. 5b).4 For example, if we consider object fA1g, its X
and Y coordinates are 2.5 and 4.5, respectively; to place it in the grid space, its
corresponding cell will be the one which has GridKey D .2; 4/.

2. GridClique finds (Lines 13–25) each object’s neighbors and adds them to a list
– this list is the neighborhood list. The algorithm checks the neighborhood list

4 b
c is a function that gives the floor of a value.
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members with respect to the definition of maximal clique which is all members
(objects) are co-located with each other. In other words, the distance between
every two objects is �d . For each object, the algorithm considers nine cells5

(NeighborGrids in Line 15) to check their members if they are co-located with
the object being checked.
Considering the example in Fig. 5, a list for each object is created. Our concern
is to find only co-location patterns that have at least two objects (i.e., cardinality
�2), because one object does not give co-location information. Therefore, there
is no need to count objects that do not have connections (i.e., a relationship) with
at least one other object. However, in our example all objects share relationships
with others. For example, object fA1g has a relationship with objects fB1,C1g.
It can be seen that these objects share the same neighborhood (co-located) – a
neighborhood list will be generated for object fA1g. Figure 5c shows the neigh-
borhood list for each object.

3. It prunes any neighborhood list that contains at least one object that violates the
maximal clique definition (Lines 26–38). For example, list 7 is pruned because
one of its members fA2g is not co-located with fD2g. The shaded lists (2, 3, 6,
9, and 10) in Fig. 5c are pruned for the same reason. The MCliqueList (Line
27) is a special data structure called hashset. This set does not allow repetition –
this has helped us to report only distinct maximal clique patterns.

As a result of the previous steps, a list of distinct maximal clique patterns will be
reported. For example, fA1, B1, C1g is a maximal clique, and so forth for lists 4, 5,
and 8 (Fig. 5d).

GridClique Algorithm Analysis

This section discusses the GridClique algorithm’s completeness, correctness, and
complexity.

Completeness: All points in neighborhood lists appear as set or subset in maximal
clique lists. After acquiring the entire neighbors for each point, another check among
these neighbors is conducted to assure that all points are neighbors with each other.
Intuitively, doing that results to have repeated neighborhood lists. Therefore, this
ensures finding all maximal cliques in any given graph. The repeated neighborhood
lists will be pruned using the hashset data structure.

Correctness: Every subset of a maximal clique appears in the neighborhood list.
Thus, all maximal cliques that appear in maximal clique lists will not be found as
a subset in another maximal clique, since this is the definition of maximal clique.
Figure 6 displays an undirected graph and the neighborhood list and the existing
maximal clique patterns. As can be seen, the pair fA;Dg does not appear in the
neighborhood list, because the distance between A and D does not satisfy the co-
location condition. Therefore, the pair fA;Dg will not be included in the maximal

5 In two-dimensional space the number of neighbor cells is 9; however, in three-dimensional space
it is 27.
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cliques list. In other words, any subset of any maximal clique that appears in the
neighborhood list will not appear as an independent maximal clique. In this way,
the correctness of the proposed algorithm is shown.

Complexity: Firstly, assume there are N points and c cells, and assume that all
points are uniformly distributed. Hence, on average there is N=c points per cell.
Assume each cell has l neighbors. Then, to create the neighborhood list of one
point, l.N=c/ points need to be examined to check if they are within distance d .
Since the total number of points is N , the cost is O.N 2l=c/. And since c � l , an
assumption, that this part of the algorithm is sub-quadratic, can be stated.

Secondly, the pruning stage for the neighborhood lists. Again assume that on
average the length of each neighborhood list is k. Then, for each neighborhood list,
k points have to be checked against the co-location condition – the cost is O.k2/.
The total cost for this step is O.Nk2/ .

Ultimately, the total cost is the cost of putting the points in cell (O.N/), the
cost of creating the neighborhood lists O.N 2l=c/, and the cost of pruning the lists
O.Nk2/. Therefore, the complexity of the algorithm is O.N.N l=c C k2 C 1//.

3.3 Extracting Complex Relationships

A relationship is complex if it consists of complex types as defined in Sect. 1.
Extracting a complex relationship R from a maximal clique CM is straightfor-

ward – we simply use the following rules for every type t :

1. If CM contains an object with type t , R D R [ t (non-complex relationship).
2. If CM contains more than one object of type t , R D R [ tC (positive relation-

ship).
3. If CM does not contain an object of type t , R D R [ �t (negative relationship).
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Table 5 Spatial relationships with real-life examples from the astronomy domain [8]

Relationship Notation Description Example

Non-complex A! B Presence of B in the
neighborhood of A

Sa type spiral galaxies!
Sb type spiral galaxies

Positive A! AC Presence of many instances
of the same feature in a
given neighborhood

Elliptic galaxies tend to
cluster more strongly.
E!EC

Negative A!�B Absence of B in the
neighborhood of A

Elliptic galaxies tend to
exclude spiral galaxies.
E!�S

Complex AC! �C;B Combination of two or more
of the above relationships

Clusters of elliptic galaxies
tend to exclude other
types of galaxies.
E+!�S

If R includes a positive type AC, it will always include the basic type A. This is
necessary so that maximal cliques that contain AC will be counted as containing A
when we mine for interesting patterns.

As mentioned earlier, the negative type makes sense only if we use maximal
cliques. The last three columns of Table 1 show the result of applying Rule 1, Rule 1
and Rule 2, and all three rules, respectively. Table 5 provides four relationship types
supported with real-life examples from the astronomy domain.

3.4 Mining Interesting Complex Relationships

In itemset mining, the dataset consists of a set of transactions T , where each transac-
tion t 2 T is a subset of a set of items I ; i.e., t � I . In our work, the set of complex
maximal cliques (relationships) becomes the set of transactions T . The items are the
object types – including the complex types such as AC and �A. For example, if the
object types are fA;B;C g, and each of these types is present and absent in at least
one maximal clique, then I D fA;AC;�A;B;BC;�Bg. An interesting itemset
mining algorithm mines T for interesting itemsets. More details about the mining
process can be found in [9].

4 Experiments and Results

4.1 Experimental Setup

All experiments were carried out on “Windows XP Pro” operated laptop with a
2.0 GHz Pentium 4M processor and 2 GB main memory. The data structures and
algorithms were implemented in Java.
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We used a real life three-dimensional astronomy dataset from the SDSS.6 We
extracted galaxies with special features giving a total of 365,425 objects (Sect. 3.1).
The distance threshold used for generating the maximal cliques was 1, 2, 3, 4, and
5 Mpc; however, we mostly used 1 Mpc.

A total of 121,506 maximal cliques (transactions) were generated in 39.6 s. This
is quite a large dataset. We processed these in a number of ways as described in
Sect. 3.3.

4.2 Results

This section reports the results obtained from the use of the GridClique algorithm
and the process of mining co-location rules.

Galaxy Types in Large Maximal Cliques

In this experiment we applied the GridClique algorithm on the “Main” galaxies ex-
tracted from SDSS data to generate maximal cliques with neighborhood distance as
4 Mpc. We selected the cliques with the largest cardinality (22). Figure 7a and 7b
show the distribution of “Late” and “Early” type galaxies in the reported cliques,
respectively. These results show that large cliques consist of more “Early” type
galaxies (Elliptic) than “Late” type galaxies (Spiral). This conforms with the fact
which says “Elliptic galaxies tend to cluster more strongly than any other galaxy
objects” [10].

Cliques Cardinalities

Figure 8 shows the clique cardinalities in the “Main” galaxies. It shows that cliques
with cardinality between 2 and 5 (small cliques) are more frequent than large
cliques. In other words, in the universe there are no large clusters of galaxies.
We mean by large clusters, large number of galaxy objects that are in the same
neighborhood of each other. Although in this experiment we used very large thresh-
old (4 Mpc), we obtained a large number of small cliques.

GridClqiue Performance

Since the previously proposed algorithms, which enumerate maximal clique pat-
terns, are not specifically designed to mine the SDSS, a Naı̈ve algorithm was

6 http://cas.sdss.org/dr6/en/tools/search/sql.asp.
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Fig. 7 The existence of galaxies in the universe

implemented on the basis of brute force approach to obtain bench marks – this
allows us to check the completeness of our algorithm. In this section, we show the
effect of two factors on the GridClqiue algorithm, namely, distance and number of
spatial objects. This section gives a comparison between the GridClique and Naı̈ve
algorithms as well.

Figure 9a shows the runtime of the GridClique algorithm with various numbers
of objects (galaxies) and distance values. It illustrates that the runtime increases



338 G. Al-Naymat

x 104

F
re

q
u

en
cy

Main Galaxy Cliques

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20 30 40 50 60 70 800 10

Clique Cardinality 

Fig. 8 Cliques cardinalities for Main galaxies using threshold = 4 Mpc

d=1 d=2 d=3 d=4 d=5

0

50

100

150

200

250

300

350

400

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

Number of Objects

R
u

n
ti

m
e 

(S
ec

o
n

d
s)

a

(a) The runtime of GridClique using differ-
ent distances and number of objects. The
distance and the number of objects were
changed in increments of 1 Mpc and 50,000,
respectively.

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

D=5 D=10 D=15 D=20 D=25 D=30

0

20

40

60

80

100

120

Number of objects

R
u

n
ti

m
e 

(S
ec

o
n

d
s)

b

(b) The runtime of GridClique using different
large distances and small number of objects.
The distance and the number of objects were
changed in increments of 5 Mpc and 5,000, re-
spectively

Fig. 9 GridClique runtime

slightly as the number of objects and distance increase. The distance and the number
of objects were changed in increments of 1 Mpc and 50,000, respectively.

To explain further, when the distance increases the grid size increases. By in-
creasing number of objects at the same time, it allows more objects to appear in the
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same cells or in the neighbor cells of the grid. In other words, increasing the number
of objects increases the cell density. Hence, the two factors (distance and number of
objects) affect the runtime of the GridClique algorithm.

In Fig. 9b, we show the performance of the GridClique algorithm using large dis-
tances. We changed the distance and the number of objects in increments of 5 Mpc
and 5,000, respectively. This experiment shows that although the distances is large,
the GridClique algorithm run time trends are similar to those when the distance is
small, because the sparse nature of the astronomy data.

Figure 10 shows the effects of two factors (number of objects and the distance) on
the Naı̈ve algorithm runtime. It is clear that the algorithm is not affected when using
different distances. However, its runtime increases exponentially as the number of
objects increases.

We have carried out an experiment to compare the GridClique performance with
the Naı̈ve. Figure 11 shows that GridClique outperforms the Naı̈ve algorithm with
a difference of several order of magnitudes! We have used a distance of 1 Mpc; the
number of objects was changed in increments of one thousand objects. The run time
is given in logarithmic scale.

Interesting Rules from SDSS

By applying the itemset mining algorithm on the maximal cliques which are gener-
ated by GridClique, very interesting rules have been discovered. Table 6 lists sample
of these interesting rules. Rules 1 and 2 show that while single instances of “Early”
and “Late” galaxies are found in the neighborhood of each other, their clusters are
found in isolation.

Rules 3 and 5 answer the question mentioned in Fig. 2. That means, the existence
of a cluster of elliptical galaxies “Early” repels the existence of spiral “Late” ones.
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Table 6 Sample of associ-
ation rules produced by our
MCCRs technique, where the
antecedents and consequents
of these rules are galaxy-type
objects

Neighborhood distanceD 1 Mpc
Rule number Minimum confidenceD 0.75

1 LrgEarly! LrgLate
2 LrgLate! LrgEarly
3 LrgEarly+!�LrgLate
4 LrgLate+!�LrgEarly
5 MainEarly+!�MainLate
6 MainLate+!�MainEarly

5 Summary

In this chapter, we demonstrated the problem of MCCRs in order to discover as-
tronomical knowledge. That is, a systematic approach to mine complex spatial
co-location pattern in SDSS data. We defined the term maximal clique in the context
of mining complex spatial co-location. Maximal clique is fundamental to our work.

The MCCRs approach consists of two mining steps. First, it enumerates ef-
ficiently maximal clique patterns. In order to achieve the first mining step we
have proposed a heuristic (GridClique) based on a divide-and-conquer strategy that
considers all spatial objects as points in a plane. Then, it divides the plane into grid
structure which helps in reducing the search space. The reported maximal cliques
are considered to be the transactional data. MCCRs then uses the transactional data
for mining interesting co-location rules using an association rule mining technique.
The achieved results conformed to real facts in the astronomy domain and this has
weighed up our proposed method favorably.
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On-board Data Mining

Steve Tanner, Cara Stein, and Sara J. Graves

Networks of remote sensors are becoming more common as technology improves
and costs decline. In the past, a remote sensor was usually a device that collected
data to be retrieved at a later time by some other mechanism. This collected data
were usually processed well after the fact at a computer greatly removed from the
in situ sensing location. This has begun to change as sensor technology, on-board
processing, and network communication capabilities have increased and their prices
have dropped.

There has been an explosion in the number of sensors and sensing devices, not
just around the world, but literally throughout the solar system. These sensors are
not only becoming vastly more sophisticated, accurate, and detailed in the data they
gather but they are also becoming cheaper, lighter, and smaller. At the same time, en-
gineers have developed improved methods to embed computing systems, memory,
storage, and communication capabilities into the platforms that host these sensors.
Now, it is not unusual to see large networks of sensors working in cooperation with
one another. Nor does it seem strange to see the autonomous operation of sensor-
based systems, from space-based satellites to smart vacuum cleaners that keep our
homes clean and robotic toys that help to entertain and educate our children.

But access to sensor data and computing power is only part of the story. For all the
power of these systems, there are still substantial limits to what they can accomplish.
These include the well-known limits to current Artificial Intelligence capabilities
and our limited ability to program the abstract concepts, goals, and improvisation
needed for fully autonomous systems. But it also includes much more basic engi-
neering problems such as lack of adequate power, communications bandwidth, and
memory, as well as problems with the geolocation and real-time georeferencing re-
quired to integrate data from multiple sensors to be used together.

Given the limitations of current systems, what is driving the push to develop
sensor networks and autonomous systems? What place does data mining have in
such environments? What techniques and solutions are people using to work around
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the problems encountered in the real world? At this point in time, the answers are
almost all pragmatic in nature rather than absolute or rigorously and mathematically
proved. Like most robotic and remote sensing systems, on-board data mining is
more of an engineering endeavor than an academic one.

For on-board data processing efforts, it is important to work closely with domain
scientists to verify that the algorithms accurately identify the phenomena of interest
to them. They can also help with identifying false alarms or missed detections, and
weighing the costs of each. Also, on-board algorithms don’t have to duplicate all
of the details that would result from the complete processing of an image on the
ground. For example, in an Earth-monitoring application, rather than giving detailed
results about a dust storm, the on-board algorithm can simply detect the dust storm
and mark the data as high priority for downlink. Then, further processing can be
done on the ground. Using the simplest processing techniques possible is a good
approach, given the constraints. Complexity should be added only as necessary and
feasible [11].

1 Problems Encountered with On-Board Mining

Before delving into current and planned efforts in on-board data mining, it is useful
to consider the types of problems and issues that are likely to arise with such sys-
tems. What technical roadblocks have stood in the way of widespread use of data
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analysis and mining in on-board systems? The simple answer is severe resource
constraints. On-board processing by definition means working in a constrained en-
vironment of some sort. The constraints vary considerably but generally fall into
several broad categories: power, bandwidth, computation, and storage. In addi-
tion, the on-board environment introduces two problems associated with the data
itself that the system must overcome: noise, and incorrect and incomplete measure-
ments. What’s more, the data must be georeferenced in some way, so that analysis
algorithms can correlate data coming either from different sensors or from tempo-
rally separate readings. Typically in non-on-board systems, the data cleaning, and
georeferencing steps are completed at a central location as part of post-processing,
and result in several different data products, which are often not available until days,
weeks, or even months after the data is initially gathered. This luxury is not avail-
able for on-board applications, which must deal with the noisy data results and with
tagging the data through the use of a georeferencing scheme to make the data im-
mediately usable.

1.1 Power

Perhaps the most obvious problem in on-board data mining applications is power.
Many on-board mining applications are associated with sensor platforms that are
physically removed from any consistent or sizable power source. This has a pro-
found impact on how much data analysis can take place on-board the platform. Even
if there is sufficient computational capability and storage, there may not be enough
energy to drive the computers. This is a very different environment from desktop,
cluster, or grid computation, where power is rarely a concern, and when it is, it is
addressed well beforehand.

In the case of space-based systems, the lack of adequate power is due to being
located in a remote and extremely hostile environment. Most space-based systems
have batteries and some sort of recharging capability (e.g. fuel cell or solar), but it
is rarely enough to drive all of the on-board systems all of the time. In the case of
solar power generation on satellites, great care must be taken to schedule tasks such
that they are compatible with the day–night orbital path of the platform – something
which few data mining researchers have to contend with.

For many ground-based systems, the problem is often one of size/weight con-
straints. Often, the sensors must be small and disconnected from a power grid,
making the use of battery power a necessity. This may be due to the remote loca-
tions of placement (e.g. for environmental monitoring in remote geographic areas).
It may also be due to the need for stealth, as in the case of surveillance and military
sensors, or at least discretion, as is often the case for security cameras.

The implication of this dearth of energy is the need to husband power consump-
tion very aggressively. For data mining, that may impact the type of algorithms used,
how they are used, or when they are used. Often software developers will need to
consider the efficiency of a process in light of the sensor data size to determine how
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much energy a given algorithm will need. In some cases, the data mining plans may
need to either use a lower resolution data feed (for example, sampling every other
pixel instead of every pixel) or a lower sampling rate (sampling every other image
instead of every image). In the most adaptive systems, the scheduler may be able to
decide how to approach power consumption in a dynamic way – for example using
higher power consuming algorithms during the daylight hours and a simpler, lower
power version at night.

1.2 Bandwidth

Bandwidth is a significant obstacle in on-board data mining. Communication from
a sensor platform, either with other sensors or with central downlink locations, is
an expensive endeavor. It is expensive in terms of time, required hardware (and
thus weight), power, and computational capabilities. Most developers of sensors
and sensor platforms strive to limit either the frequency of communications or the
amount of data sent, or both. For many sensor systems, there simply isn’t enough
bandwidth to send all of the gathered information, or just as limiting, there isn’t
enough power to drive the data through the network connections. This is especially
true of wireless sensor networks, where passing information to a central processing
center requires multiple hops from sensor platform to sensor platform.

This limits the amount of data mining that can be accomplished, since data min-
ing algorithms may not have access to all of the potential data available. Data mining
in pursuit of data fusion using multiple sources becomes problematic. However, data
mining may actually be able to play a vital role in resolving this bandwidth prob-
lem. If the proper algorithms are employed, quick data analysis on-board a platform
may be able to filter out unnecessary data, leaving only valuable data to vie for the
limited communication resources.

In the case of earth science satellites, often simple filters are employed to elimi-
nate poor sensor measurements. Cloud masks are an example of this, for instruments
that can neither measure through clouds nor gather useful data about the clouds
themselves. However, developing real-time cloud mask filters is nontrivial. Sun
glint, snow packs, and other environmental factors make this a difficult task.

Data mining classification algorithms are a prime example of techniques that
may be able to reduce the amount of data needed to be transmitted. These can even
be used to deal with concept drift and environmental changes, for example through
the use of a dynamically changing ensemble of classifiers, each tuned to a different
environmental condition.

One must consider the impact of data mining on the need for bandwidth, and care
must be taken not to overwhelm the network capacity. The most appropriate mining
algorithms then are ones that reduce either the amount of data or the dimensionality.
Luckily, these are often the very algorithms used in the initial data processing for
data mining.
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Fig. 2 Many commercial venders are offering a variety of small, inexpensive wireless sensor
platforms and sensor packages. This small platform from Crossbow Technology, Inc. contains
an accelerometer, temperature, humidity, and light sensors – perhaps useful for environmental
monitoring applications (Image courtesy of Crossbow Technology, Inc.)

1.3 Computation

Computational limitations, combined with the need for timely results, are probably
the biggest hurdle to overcome in the deployment of on-board data mining applica-
tions. Simply put, there may not be enough computing cycles to thoroughly analyze
the gathered data on-board the sensor platform. This means, sacrifices must often
be made in the amount or type of analysis that can fit within the computational con-
straints of the on-board system. Two typical approaches are to limit the resolution
of the data to be analyzed or to limit the frequency of the analysis.

Consider a frame-based camera system linked with an on-board image process
analysis application, in which the camera generates a series of M images per sec-
ond, each of size n � n pixels. For the sake of simplicity, consider the use of a
straightforward convolution algorithm as one step in the data mining process. A
typical convolve algorithm uses a mask of some sort to filter the 2D image in one
pass – so its computational requirement is approximately .n2 �M/ � C , where C
is a constant based on the complexity of the algorithm. If there isn’t enough compu-
tational power to meet this requirement, the developer has two basic choices: either
limit the resolution of the images (reduce the size of n) or limit the number of im-
ages to process (reduce the size of M ). The choice will depend on the application’s
overall goals and requirements. Which sacrifice has the least impact on the final
outcome – lower resolution or fewer frames? In an application that monitors for
intrusion detection, perhaps the frame rate isn’t particularly important, but higher
resolution images, which may help with identification of the intruders, are. In an
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application that is part of a rocket propulsion health management system, perhaps
the frame rate and quick response to millisecond changes is the overriding concern
– in this case, changes are of a fast but relatively coarse nature.

1.4 Storage and Memory

The idea of on-board data mining implies access to the data being collected. But how
much data is gathered depends heavily on the sensor platform and the storage and
memory resources available. Often, when the platforms are designed, these areas are
given short shrift. Memory utilizes precious power, and storage takes up valuable
space and weight. This may greatly impact the types of algorithms that can be used
and the approaches taken to perform the data analysis. Typically, this means that
there is little or no data archived, so there is little chance for multiple passes over
the data. This makes taking advantage of temporal analysis difficult. Algorithms that
focus on dealing with streaming data may be the best approach – many of these are
designed as one-pass analysis tools.

Another issue that may arise is concept drift or changes due to environmen-
tal conditions. Since there may be no archived data to provide historical context,
care must be taken to deal with such things as diurnal, seasonal, or weather-based
changes. Imagine an outdoor sensor monitoring a city park. The environment there
will look quite different depending on the season – snow, deciduous trees, even dif-
fering clothing fashions will shift from season to season. If an historical archive of
these changes is available, adapting to them is considerably easier. But what of an
autonomous system without access to such archives? For systems that have periodic
contact with a base station, this issue may be addressable through manual means –
by uploading new classification algorithms as seasons change, for example. Without
that access, the system needs to be able to adapt to these changes on its own. Such
adaptability can be especially difficult to implement. For example, one approach is
to have a group of algorithms to select from, and base the selection on the latest
results – if the last run of the analysis indicated rain, then use algorithms that take
that into account, until rain is no longer detected. However, in a rapidly changing
environment this approach may lead to a system that is constantly chasing what
happened in the immediate past rather than what is happening right now.

1.5 Georeferencing

One can image a fully functioning sensor network comprised of a group of heteroge-
neous sensor platforms connected together via some communications means. Each
of these platforms would have one or more sensors connected to it and have a com-
puting facility including a processor and memory. In many cases, the topology of
the network, and the capabilities of each platform and its sensors would be known,
allowing for the development of applications geared specifically for such a network.
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However, in many cases, such a priori information may not be on hand. How then
can the best use of these resources be made?

One approach is to use some type of formal descriptions as a means to pass
information between sensors, the platforms they are connected to, and remote com-
puting locations separate from the sensors and platforms themselves. Through the
use of such formal means, sensing processes running on the sensors or sensor plat-
forms could advertise their capabilities while other analysis and decision support
processes running at any number of locations could discover these capabilities and
match them with their own needs.

2 The Use of Standards for On-Board Data Mining

There are a number of approaches being researched and implemented for resource
discovery and resource advertising within computer network systems. Most of these
are aimed at either specific types of services or specific types of network architec-
tures. However, with the advent of web services protocols, there is a move to make
resource discovery and advertisement a more general purpose service within the
wider network community. One such approach that has direct bearing on on-board
data mining is undertaken by the developers of SensorML.

2.1 SensorML

SensorML is part of a larger effort by the Open GIS Consortium (OGC) to develop
technologies and standards that will support better use of Geographic Information
Systems (GIS) data (OGC). SensorML operates under the assumption that there
are three fundamental types of information that may be observed. These types of
information are the object to be observed, which must have physical properties that
can be measured and quantified; data values taken from observations of that object
by a sensor; and meta-data about the sensor, including the location and time of the
observations. Meta-data about the sensor may also include characteristics of the
sensor that can help a user understand the values of the measurements as well as
their quality and veracity.

SensorML is concerned primarily with the description of sensor characteristics.
The information is seen by the authors [SensorML] as being used in three primary
ways:

• To process raw sensor data into usable measurements and for georegistration
• To provide a limited amount of data conversion on-board the sensor or sensor

platform itself
• To provide either on-board or downstream processes with sensor characteristics

that may impact further data analysis.
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SensorML includes descriptions of:

• Observation characteristics such as physical properties measured, quality char-
acteristics, and response characteristics.

• Geometry characteristics such as size, shape, and spatial weight function of sam-
ples, as well as geometric and temporal characteristics of sensor data collections

• Description and documentation such as history and reference information

In summary, the primary use for the language is to make access to sensor data
more automated and straightforward by supporting the description of sensors and
systems of sensors.

2.2 Describing Sensors in SensorML

The most basic definition assumed by SensorML is that “sensors are devices for
the measurement of physical quantities.” This is clearly a very broad definition,
encompassing everything from the simplest thermometer to the most complex on-
orbit satellites. In fact, this also includes the use of humans as the measurement
device. A more subtle aspect is that the term “measurement” is also broadly used
here, and is not limited to a numeric quantity.

From a modeling point of view, sensors are typically thought of as one of two
primary types. The first is in-situ sensors, which typically measure something within
its immediate area (e.g. a room-monitoring system). The second is remote sensors,
which typically measure things from a much greater distance (e.g. a satellite that
measures reflected radiation from the Earth’s surface).

This distinction between the types is important to understand because SensorML
uses only one type of coordinate system to describe both types of sensors. Any ge-
ometric properties described within the schema are defined in terms of the local
coordinate system (local to that sensing component). It is only through the use of
an association between the sensor and its platform (with its own coordinate sys-
tem), and that platform’s geospatial reference frame, that the sensor can be properly
placed in relation to both its environment and other sensors. This makes it possible
to describe a sensor once and then deploy it to many locations, including mobile
ones. The implication for on-board data mining, especially for orbital platforms, is
large.

Since the physical location of a sensor is not part of its descriptions, one might
assume that it would make sense to describe a sensor type, and then have that de-
scription applied to a whole group or family of sensors. After all, this is the way
XML languages are used to describe groups of data sets and other standard enti-
ties. However, each sensor is unique in a variety of ways, requiring a unique XML
description. For example, each sensor has unique identifiers such as ID and serial
number, as well as additional calibration information specific to that sensor. Sen-
sorML is set up to gather this additional information, and can also store a history
description that records the changes to the sensor as time progresses.
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2.3 Sensor Platforms

A “sensor system” includes one or more sensors and the platform on which they
reside. The platform does not make any measurements of physical phenomena, and
is thus not a sensor itself. However, the platform does measure its location and
orientation, which may be dynamic, as in the case of using an aircraft or a satellite
as a sensor platform. The platform’s location and orientation information is very
germane to the readings of the sensors aboard that platform. So, while the sensor
platform and the sensor itself are considered to be two separate entities, they have a
very strong association with one another.

This association is accomplished through the use of “coordinate frames.” The
sensor and the platform each have a coordinate frame. The sensor’s coordinate frame
locates the sensor on the platform, while the platform’s coordinate frame locates
the platform in spatial relation to the larger environment. The coordinate frames are
described in terms of coordinate reference systems (CRS). The relationship between
a sensor’s CRS and its platform’s CRS is then used to relate both to an external CRS,
such as geographic latitude and longitude. These CRSs enable the georegistering of
sensors and their measurements. Currently, CRSs are applied only to location, not
to temporal information. For example, a relationship between “Earth time” and the
delta time of a sensor’s scan start cannot be captured in current CRSs.

Fig. 3 Relationship of sensor frame (pink) to the moving platform frame (black) (Courtesy of
Open Geospatial Consortium, Inc.)
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2.4 Measurements and Response

SensorML can be used to describe properties of a sensor’s measurements, specif-
ically, the physical properties being measured by the sensor and the quality of the
measurements.

Response characteristics can also be modeled. For example, SensorML can
model a sensor’s responsiveness to changing environmental conditions. These re-
sponses include sensitivity, accuracy, and precision. This information could be very
useful to an ensemble data mining approach for dynamically selecting the algo-
rithms most appropriate for the given current conditions.

Overall, by providing a way to describe sensors and system of sensors, and their
characteristics and locations, SensorML aids the on-board data mining effort by
addressing the problem of georeferencing data from sensors that move.

3 The Use of FPGAs for On-Board Systems

One approach to addressing the problems of limited computing resources and lim-
ited power availability is through the use of Field Programmable Gate Arrays
(FPGAs) as a means to drive the on-board computing systems. Simply put, FPGAs
provide a means to implement software algorithms in hardware, thus increasing
speed and hopefully reducing power consumption and heat generation. FPGAs are
based on reconfigurable components such as flip-flops and multiplexers, with a bank
of SRAM to hold the configuration information and control the functionality of
the device. The state of the bits in the SRAM determines the behavior of the de-
vice, allowing it to be adapted or customized for different tasks as needed. While
somewhat slower than customized hardware, their adaptability makes FPGAs more
attractive than a customized chip or hardware solution. The primary downsides to
using FPGAs are twofold: the hardware is more expensive, and they can be difficult
to program.

Because they are reconfigurable, FPGAs are good tools for prototyping systems.
In early FPGAs, the time to reconfigure the system was substantial, limiting their use
for actual on-board systems. However, as the cost and time for reconfiguration have
dropped (some systems approach reconfiguration times of milliseconds), and as they
have become more sophisticated, they have come to be used in production systems.
They are especially well suited to data mining applications because they have great
potential for parallelism, they perform bit-level operations very efficiently, they can
accommodate high bandwidth, and they can be changed dynamically to suit an in-
dividual application [68].

There are a number of applications where FPGAs have been used or tested for
their applicability to data mining. In one study in Greece, the authors found that im-
plementing the a priori algorithm for data mining using FPGAs was several orders-
of-magnitude faster than the fastest available non-FPGA implementation [19]. In
other studies, FPGAs were used for image processing and weather modeling, both
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required substantial numbers of matrix operations. In one case, FPGAs were used in
conjunction with a host computer to perform real-time image processing algorithms
from an image stream. For each image, line buffering was performed using a 2D
digital Finite Impulse Response filter convolution kernel; then noise reduction was
performed using a Gaussian 3 � 3 kernel, followed by edge detection using Pre-
witt filters. The system performance was substantially faster than a software only
solution, but still provided the researchers with the necessary flexibility to adapt the
system [15].

In Turin, Italy, FPGAs have been used in a system that collects temperature, hu-
midity, and precipitation data on a routine basis every 15 min and uses that data to
make very local weather predictions for the next one, two, and three hours. Such
forecasts are especially useful in applications where weather can cause dangerous
conditions within a small area. For example, rain can have a substantial impact on
the course of a race, and a thunderstorm or fog can shut down an airport. Predicting
weather involves considerable data from different sources and is usually compu-
tationally intensive. In most cases, observation data is sent to a central computing
location, often a large-scale cluster configuration. In this case, however, data min-
ing techniques are employed locally to select the best predictors for a given set of
conditions, since the cross-correlations among predictors may change depending on
conditions. By implementing such a system using FPGAs, the performance require-
ments for real-time forecasting were met, and the system was platform independent
and adaptable to other applications [14].

In another study using FPGAs for image processing, a single FPGA was used,
without any host computer or other co-processors. This created a very inexpensive
system with high performance and very low power consumption of only 200 mW,
compared to existing systems created to do the same sorts of tasks, which used 600-
4,000 mW. The FPGA system was at least comparable in speed to other systems, at
a tiny fraction of the cost [16].

The ability to achieve high performance with low expense and power consump-
tion is obviously very appealing for satellites and space applications. One system
was designed using FPGAs to ascertain the physical properties of an observed area
from satellite data in real time, with the intention of using the system for on-board
image analysis and data compression. Data streams from different sensors had to
be fused and processed to accomplish this. The system was created by connecting
the sensors to a PCI bus, and connecting a host processor and a series of FPGAs
to the same bus to process the data. With this simple architecture, the system was
faster than Pentium-based PCs by two to three orders-of-magnitude. In addition, the
authors suggested that further improvement could be achieved by replacing the bus
with interconnections among the FPGAs, since the bus was the primary bottleneck
in their studies, and by improving the parallelization of the algorithms used [13].

An FPGA-based system has been proposed for use aboard the Mars scout mis-
sion Mars Volcanic Emission and Life (MARVEL), expected to launch in 2011.
On-board will be the Mars Atmospheric Trace Molecule Spectroscopy (MATMOS)
instrument, observing the sunrise and sunset in a 3-min observation period every-
day. These observations will produce far more data than can possibly be downlinked
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to Earth, but 112 min per day will be available for data processing, which will in-
clude heavy use of FFT [17]. That may not sound like much processing time, but
considering the environment, it is a substantial commitment of resources.

Several existing systems were considered and discarded because they lacked
the processing power to perform this task in the time allotted. However, an FPGA
system-on-a-chip solution was found to meet the requirements. The FPGA system is
cheap, small, scalable, reconfigurable, and uses very little power. FPGAs are espe-
cially suited for use in systems for space missions because they are easier to change,
update, and reuse than traditional hardware; they carry less risk of obsolescence;
they lend themselves to parallel processing and modularity; and they offer more im-
plementation options than traditional systems. Notably, with an FPGA system, the
division of processing between hardware and software is flexible [17].

For this application, an FPGA system was the only available choice that could
keep up with the requirements for on-board data processing. The authors estimate
that the on-board data processing system they propose will reduce the volume of
data for downlink by about 80 times, resulting in an expected savings of tens of
millions of dollars over a 2-year mission [17].

Some current space observing missions are using multiple sensors of different
types on the same satellite, resulting in large quantities of heterogeneous data to be
downlinked and processed. As instruments are deployed farther from Earth, down-
linking all of the data becomes less and less feasible, requiring years or decades
for deep space missions. For those applications, on-board data fusion becomes crit-
ical, and it must be accomplished within the constraints of low power consumption
[13]. One clear direction for computing aboard these missions is using FPGAs in a
smart payload computer for space, using multiple FPGAs in parallel and large mem-
ory banks to hold the data waiting to be processed. Depending on the application,
custom co-processors such as a dedicated FFT core may also be used. By imple-
menting these ideas and parallelizing processing as much as possible, new systems
can achieve performance that was impossible with traditional processors [17].

By enabling very efficient parallel processing, FPGAs represent a considerable
step toward addressing the problems of power, computation, and, to a certain extent,
memory and storage in an on-board data mining system. As more sophisticated data
mining can be done in an on-board system, the issue of bandwidth will also be
alleviated – these systems will be able to summarize, filter, and prioritize data so
that the volume of data needing to be downlinked is reduced considerably.

4 Applications for On-Board Data Mining

Although the problems and obstacles associated with on-board data mining are very
real, advances in technology have enabled on-board data mining to be performed in
some applications. On-board data mining has already proven useful in the areas of
autonomous and unmanned vehicles, as well as biometrics.
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4.1 Autonomy

One area where on-board data mining has been successfully implemented and de-
ployed is in autonomous spacecraft. For components such as satellites and planetary
rovers, the traditional approach has been to gather and store the data on-board the
component, and then wait for an opportunity to send it all to ground-based downlink
stations on Earth for processing. However, there are problems and severe limitations
with this approach, the primary one being that there is usually limited bandwidth
available to send the data to Earth [6]. In some cases, a satellite has the capability
to collect much more data than it can reasonably transmit. If all data processing
and analysis is done at a ground-based facility, any data that exceeds the downlink
capacity cannot be used [10]. Also, when interesting events or discoveries are un-
covered in the data that comes from a satellite or rover, often further observation of
the phenomena would be desirable. If data analysis is performed after the fact, there
may be a considerable time lag between the time when a phenomenon is first ob-
served by the instrument and when it is detected on the ground. By the time the data
is downlinked and analyzed, retargeting the craft to further study the phenomenon
becomes difficult or impossible [6].

However, if the data can be processed on-board the craft, an interesting phe-
nomena can be detected much more quickly, and the craft can react dynamically
by retargeting itself for further observations. Furthermore, if data processing occurs
on-board the craft, the data can be prioritized and only the interesting or relevant
data would be sent to Earth [6]. For instance, if an image is obscured by clouds or
other weather that the instrument cannot penetrate, there is no need to waste band-
width downlinking it. (Of course if scientists are interested in studying clouds, that
is another matter.) On the other hand, if an instrument’s data contains information
about a new and unexpected volcanic eruption, that data should be a high prior-
ity for downlinking, and should be able to preempt other lesser data aside in the
schedule.

There are several projects in which on-board data mining has been successfully
implemented on autonomous space craft. Three of the most successful are EO-1,
Mars Odyssey, and rovers on Mars.

4.2 EO-1

Earth Observing-1 (EO-1) is an Earth science oriented satellite, flying in the same
orbit as Landsat 7. One of its missions is to test new technologies for remote earth
observation [7]. In 2003, the Autonomous Sciencecraft Experiment (ASE) was
launched aboard EO-1. The ASE commands EO-1 and retargets the spacecraft in
response to events of interest to scientists, capturing further detail of those events as
they occur [4]. ASE consists of three parts: on-board science processing algorithms,
which analyze data on-board the craft, detect events, and specify an appropriate re-
action to those events; on-board planning and scheduling software, which schedules
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the craft’s activities based on analysis of the data, input from the ground, and the
craft’s capabilities; and robust execution software, which monitors the plan and
progress, making sure the craft operates within the bounds of safety even in the
face of anomalies [4].

Specifically, science analysis algorithms look for recognizable landscape features
or events such as floods, ice formations, clouds, and volcanoes [5]. Before launch,
scientists chose locations to monitor events to look for, and an appropriate course
of action for each event. They also used archived data to train automatic feature
recognition software to recognize specific types of events and landscape features.
Once on-board the spacecraft, the algorithms can monitor an area for changes over
time or unusual occurrences by comparing multiple images taken over the same
location [3].

This is where the strength of data mining in an on-board environment comes into
play. As part of the on-board data analysis, scientists developed a Support Vector
Machine (SVM) classifier to identify the pixels in an image as water, ice, land, snow,
or cloud. Sometimes, if data is missing or bad in some bands, an extra “unknown”
class is also used. Knowing the proportion of each of these elements in the image
can give clues as to what is happening on the ground. For instance, if an image is
not obstructed by clouds and the area has the proper proportions of snow, ice, and
water, then that area is flagged as probably containing ice breakup [6]. This type of
event can prove useful in studying the effects of global climate change.

When the algorithm detects an event of interest or an anomaly, it can summarize
the data, send an alert, change the craft’s observation schedule to study the phe-
nomenon further, or simply select only the relevant data to downlink to earth [3].

Once the science analysis algorithms have identified a phenomenon for further
study, the on-board planning and scheduling software rebuilds the spacecraft’s plan
to include further observations, if this is feasible and in keeping with the craft’s
mission priorities. The Continuous Activity Scheduling Planning Execution and
Replanning (CASPER) system is responsible for this task. Based on observations,
plans from the ground, and priorities set by the scientists, the CASPER system can
retarget the craft for further observations [4]. The CASPER system works by taking
all the goals specified for the spacecraft by scientists and by the automated sys-
tem, considering the current state of the craft, and identifying all conflicts. Then it
iteratively modifies the plan until all conflicts are eliminated, using the scientists’
specified priorities for data observation [5].

The CASPER system conveys the plan to the robust execution system using
spacecraft command language (SCL) [4]. Then the robust execution system exe-
cutes the plan. It monitors the state of the craft and checks each command for safety
before executing it. In the case of a hazard or anomaly, the robust execution system
can override the plan generated by CASPER to preserve the safety of the craft [5].

In action, the ASE system operates in a cycle. First, ASE gets prioritized goals
from the ground. Then, CASPER makes a plan, choosing the appropriate instru-
ments for each target. The EO-1 spacecraft takes images of the target, and the
algorithms analyze those images. If they include changes or phenomena of inter-
est, a new goal of continuing to monitor the location is created. Otherwise, the data
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in question is marked as not of interest and is not downlinked to earth. If a new goal
has been generated, CASPER makes a new plan, and the cycle starts again [5].

The ASE system was created in the face of some difficult challenges. One of the
major challenges was communication with earth. The EO-1 spacecraft is in commu-
nication with earth for only eight 10-min periods per day. This puts great limitations
on the amount of input and control from the ground, and the amount of data that can
be downlinked. Meanwhile, the instruments on the craft have limited observation
capabilities, so the craft must control itself without being able to see the bigger pic-
ture. All this must be done with very limited computing resources. On-board EO-1,
ASE was allocated 4 MIPS and only part of the craft’s 128 MB of memory. Yet
the ASE system has to manage a complex spacecraft with thousands of parts in the
hostile environment of space at high financial stakes, ensuring the safety of the craft
and maximizing the scientific return from it [4].

Since launch, the ASE system has had considerable impact on the EO-1 mis-
sion. The ability for the craft to re-task itself dynamically has enabled much greater
flexibility in observations. Previously, plans for the craft were made 5–11 days in
advance; with ASE, the timeframe is more like several hours. Also, ASE makes it
easier to work around anomalies. Before, the planning and scheduling was done by
hand and required considerable thought and knowledge of the spacecraft’s capabili-
ties. Automating that task has saved considerable time. Overall, implementing ASE
has resulted in cost reductions of over $1 million per year [5].

4.3 Mars Odyssey

As with EO-1, the Mars Odyssey satellite, which observes and maps the surface of
Mars, has benefited from on-board data mining efforts. In particular, this craft had
the potential to cover more area if there were sufficient bandwidth to downlink the
data [10]. Given the success of ASE, scientists wanted to create a similar system to
observe Mars [12]. As on EO-1, on-board data mining could enable detection and
fast reaction to events as they happen as well as prioritizing the data for downlink.
Also, in the course of analysis, additional products such as summaries and alerts
are generated with little or no extra effort. These products can be very useful to
scientists, and they can be downlinked in place of a whole file when expedient to
save bandwidth [11].

In this effort, the Thermal Emission Imaging System (THEMIS) camera on the
Odyssey was used. This camera was chosen because of its high spatial resolution
and thermal sensitivity [11]. Areas of particular interest to scientists observing Mars
include detecting thermal anomalies, dust storms, and the movement of polar ice
caps [12].

Detecting thermal anomalies on Mars is of particular interest to scientists be-
cause so little is known about Mars. Thermal anomalies are caused by lava flow,
frost at low altitude, and very fresh impact craters. They also could be caused by
subsurface hydrothermal activity, which would be a significant discovery. An on-
board data mining algorithm was developed to detect these thermal anomalies using
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a threshold based on the season, location, and time of day. If a pixel has a value out-
side the expected range, it is labeled as an anomaly. Post-processing is conducted
to eliminate images with too many pixels flagged, which is indicative of a false
alarm [11].

Another area of interest to scientists is estimating aerosol opacity. Specifically, al-
gorithms have been developed using an SVM regression model to flag dust and wa-
ter ice clouds, which are of interest in understanding the Martian atmosphere [11].

Monitoring the seasonal migration of the polar ice caps on Mars is also of interest
to scientists [10]. These ice caps are made of CO2, and grow and shrink each year
with the seasons. This change represents a significant change in the distribution
of mass on the planet, which leads to a change in the center of gravity, that is so
dramatic it can be observed from earth [10].

In observing the ice caps, one goal is to monitor the location of the edge of the
ice cap. To this end, images were taken of the north polar ice cap, on the side of
Mars facing the sun, from north to south. Some images contained only ice cap,
some contained only noncap land, and some contained the edge. First, the images
were classified by whether they contained the edge or not. Since the CO2 ice has a
significantly different temperature than that of nonice cap land, a histogram of the
temperatures was used. If a histogram of the temperatures recorded in the image
contained two peaks, one represented the temperatures of the ice cap and the other
the temperatures of the land, indicating that the edge of the ice cap was contained in
the image. If the histogram contained only one peak, the image contained only ice
or nonfrozen land [11].

Once the images were classified, the images containing the edge were processed
to find the location of the edge. The ice caps do not actually have a distinct edge;
rather, the ice gets thinner and thinner, then there is CO2 frost, then just patches of
frost. The scientists declared the point at which less than half the ground had frozen
CO2 to be the edge of the ice cap. The Bimodal Image Temperature (BIT) histogram
analysis algorithm was created to find the edge of the ice cap in an image. The
algorithm uses the temperature histogram of the image to identify the temperature
of the ice cap edge. The minimum point of the dip between the ice cap peak and
the land peak represents the temperature of the edge of the ice cap. The algorithm
goes through the image and marks each pixel as less than that temperature (ice cap)
or greater (nonice land). The northernmost line in the image where less than half of
the pixels are marked as ice cap is then declared to be the edge of the ice cap. This
location is noted [10].

This algorithm runs in linear time, and it has the advantage of not requiring
the data to be calibrated before processing. This is significant, since the data on-
board the satellite is not calibrated, and calibrating it would require considerably
more processing resources [11]. Another advantage is that once the location of the
edge of the ice cap is known, if there is not enough bandwidth to downlink the
entirety of the images containing it, just the location data can be transmitted to
earth [10].

One unexpected result of these efforts is the discovery of an additional band of
water ice sometimes present at the edge of the polar ice cap. This band appears as
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Fig. 4 Mars Odyssey’s mission is to map chemical elements and minerals on the surface of Mars,
look for water in the shallow subsurface, and analyze the radiation environment to determine its
potential effects on human health (Image Courtesy of NASA)

a third peak in the temperature histogram of some images, too warm to be CO2 ice
but too cold to be nonice land. It grows wider as the CO2 ice recedes in the spring.
Prior to this work, its existence was only guessed at [11].

As with running ASE on EO-1, this effort faced major constraints. The processor
aboard the Odyssey runs at 20 MHz, and only of 20% capacity, and 40 MB of
memory was allocated for on-board data analysis. With those processing resources,
the algorithm had to be fast enough to keep up with the data collection, which occurs
at 9,600 pixels per second [11].

4.4 Mars Rover

Like the previous satellite projects, the Mars rovers face constraints of limited down-
link capacity and major delays, making full control from Earth nearly impossible.
The traditional approach of manually selecting targets for sampling based on the
previous (Martian) day’s images, or guessing and blindly directing the rover toward
suspected targets, was fraught with delays and inaccuracies [8]. Meanwhile, as rover
guidance and distance measurement systems improved, the rovers were able to
travel farther, gathering more data, but with no increase in bandwidth to downlink
that data [9].
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Fig. 5 The Mars Rover mission has been wildly successful in exploring the Martian surface (Im-
age Courtesy of NASA)

The On-board Autonomous Science Investigation System (OASIS) was devel-
oped to allow each rover to analyze data on-board, identifying items of interest
in its images and retargeting itself as necessary for further study. OASIS manages
geologic data on-board the rover, identifies terrain features and selects targets of
interest, and plans and schedules rover movement using the same CASPER system
used on EO-1 [9].

The Mars rover mainly seeks to identify different types of rocks in the landscape.
To do this, feature detection is used. First, an image is split into ground vs. sky.
If the sky is in the image, edge detection is performed to find the horizon, seed
areas of low variance are selected, and the sky is identified by filling in from those
seeds [9].

Once sky is identified, clouds are detected by finding areas of high variance in the
sky. For rock detecting, the sky is masked out. The remaining image is normalized,
smoothed, and the edges are detected. Rocks are identified by using an edge walker
to find closed shapes in the image [9].

Once the rocks in the image have been identified, the algorithm picks specific
points on individual rocks as targets [8]. Rock properties such as albedo, shape,
size, and texture are estimated and used to prioritize the rocks for further study,
since these characteristics indicate the type of rock. Unusual rocks are marked with
a higher priority, but care is taken to make sure representative rocks are also in-
cluded [9].

Once this processing has occurred, the algorithm can flag images as useful or
not. For example, images with no clouds are of no use to scientists who are study-
ing clouds and should not be sent to earth unless they contain something else of
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interest. Once the targets have been identified, new goals are generated and sent
to CASPER, which creates a new plan for the rover, studying as many targets as
possible according to priority [9].

Future expansions to this research include more sophisticated rock property
gauging, recognizing more features, being able to recognize the same target from
different angles and distances, and being able to identify larger geographical bound-
aries such as hills, plains, and river channels. However, even without those improve-
ments, this effort has benefited the rover program by enabling a rover to identify
new targets on the fly, examine interesting things as it discovers them if resources
are available, and prioritize data for downlink to earth, thus maximizing scientific
benefit from the resources available [9]. Clearly, adding on-board data mining capa-
bilities to deep space missions is the next step.

4.5 Deep Space

As space exploration moves farther from Earth, the large latencies, high error rates,
and limited communication opportunities involved mean more potential benefit
from performing data mining on-board the instrument or spacecraft [35]. Fu-
ture deep space missions will include autonomous operations, including on-board
fault-detection and repair as well as on-board data mining [36]. Intelligent schedul-
ing, data prioritizing, and on-board data mining will be crucial to the maximization
of resources in space [35].

Autonomy is already being pursued in deep space exploration. In 1998, Deep
Space 1 (DS1) was launched for the purpose of testing the viability of new, high-
risk technologies. It was the first deep space probe to use an autonomous on-board
navigation system, called AutoNav. It was given a baseline trajectory, plus a set of
information about the locations of asteroids, planets, stars, and the intended targets
for DS-1. As DS-1 separated from the launch vehicle, AutoNav worked with the At-
titude Control System (ACS) to determine the craft’s attitude based on the positions
of the stars, and move the craft as needed. This included turning the spacecraft to be
in optimal position to catch the sun for power generation [35].

To perform these navigation functions, the AutoNav system relies on images
gathered from on-board cameras. The AutoNav system plans which upcoming im-
ages it requires, and works with the ACS system to position the craft so that those
images can be captured. The images are processed, and the necessary information
is extracted to compute the current location and attitude of the craft. The AutoNav
system is then able to calculate the track from the current position to the next and
make an assessment of the craft’s progress. If necessary, AutoNav works with ACS
to perform a course correction [38].

In testing, the AutoNav system was able to get the spacecraft within 2.5 km of
its target locations and arrive within 5 s of its scheduled times – which is fairly
impressive for an autonomous system with all of space to run around in. This is
all the more impressive because there were considerable problems with the CCD
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camera on which the system relied. Furthermore, this type of navigation combined
with continuous low-thrust propulsion had never been attempted before, either auto-
matically or manually [38]. After some ground-based parameter tuning, AutoNav’s
accuracy was further improved [40].

After the initial tests ended, the AutoNav system continued to control DS1,
including maneuvering the craft for an encounter with comet Borrelly. Again, Au-
toNav performed successfully, maneuvering the craft within 2,200 km of the comet
despite the failure of another major component of the ACS, the Stellar Reference
Unit (SRU) [39]. As a result of its navigational success, DS1 was able to send back
the best images and science data ever collected from a comet [41].

DS1 also used an autonomous remote agent to plan and update the spacecraft’s
schedule based on the mission goals and the state of the craft. This system performed
well in tests, including working around simulated faults [40], proving the viability
of such autonomous navigation capabilities.

By incorporating these autonomous systems into DS1, NASA was able to reduce
costs considerably. The ground operations team averaged only 50 full-time equiva-
lent personnel, resulting in considerable cost savings over the larger team that would
be required for a more hands-on mission [40]. The total cost for the DS1 mission
was under $150 million [41] – relatively inexpensive in the world of space craft.

As an additional note, autonomous spacecraft can also be supported by au-
tonomous ground stations. The Deep Space Terminal (DS-T) was created as a
terminal in the Deep Space Network (DSN) to monitor instruments in space without
human intervention. In 1998, DS-T successfully demonstrated its intended func-
tion by autonomously receiving, processing, recording, and distributing data from a
probe orbiting Mars to the rest of the network [37].

5 Unmanned Vehicles

Like autonomous vehicles in space, unmanned vehicles, whether on the ground
(UGVs), in the air (UAVs), or under water (AUVs), represent a great opportunity
to take advantage of on-board data mining. For these vehicles to make the leap from
remotely controlled devices to autonomous objects, they need to be able to perform
their own planning, scheduling, and control tasks. One approach for accomplishing
this, suggested by Tim Grant [46], follows the Observe–Orient-Decide–Act model
(sometimes referred to as the OODA-Loop). The OODA-Loop was originally devel-
oped for use by fighter pilots to quickly make decisions and act on those decisions
[46] and has been used successfully in a number of AI-based systems. In addition,
complete path planning algorithms have been developed to find optimal paths using
two different approaches: probabilistic roadmaps (RPM) and rapidly exploring ran-
dom trees (RRT). Since, in the case of some UAVs, the vehicles in question would
be flying in the same airspace as commercial airliners, collision avoidance is cru-
cial. The systems also need to be able to replan based on new information, such as
obstacles or updated no-fly zones. These approaches performed well in a test flight
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involving fully deployed UAVs [48]. Similarly, navigation systems for unmanned
ground vehicles (UGVs) have been proposed, using GPS and compass readings for
location and orientation [49].

For small devices, movement similar to that of birds or insects is often useful.
This behavior is called swarming. Basically, each vehicle or sensor moves based on
simple rules, but as they interact, an emergent intelligent behavior seems to occur, as
seen with ants looking for food – each ant’s behavior may seem random, but taken
together the collective hive behaves in an intelligent manner. As such algorithms
are optimized for parallel processing, they can be very useful for determining UAV
behavior, especially when there are many small, unsophisticated UAVs working to-
gether [45].

Another approach is to use fuzzy logic for planning and control of UAVs. By
employing fuzzy decision trees, a plan can be developed that accounts for factors
including risk to the vehicle, fuel consumption, other costs, and mission goals and
priorities, while determining the optimal trajectory for each UAV. Using fuzzy deci-
sion trees, the UAVs can also collaborate automatically without human intervention,
again taking into account each vehicle’s goals, safety, and priorities [43].

UAVs are becoming increasingly important to the military, especially for surveil-
lance missions. In particular, urban surveillance presents challenges of seeing
around corners and picking out the relevant information from a busy image. One
application in which on-board data mining can be particularly advantageous is
in target tracking. In this case, a UAV can go into a dangerous environment and
pursue a target such as a suspected terrorist or a vehicle. To accomplish this, the
UAV needs to be able to identify the target from the images it collects, track its
movement though a series of temporally separate images, and navigate to follow
the same path. This is not an easy task, but must be performed on-board. Bandwidth
constraints limit the ability to transmit the images for processing elsewhere and to
send feedback to the vehicle – the delays involved would be unacceptable. This is
one application where the advances in on-board data mining result in clear, imme-
diate benefits to the safety of humans – expendable and autonomous UAVs are sent
into harm’s way and convey results back to humans located in relative safety [50].

In one approach addressing this type of application, Support Vector Regression
was used to establish the location of a stationary enemy radar station. This was done
by tracking the radar pulse as received by three UAVs flying together in a triangular
formation and using that information to calculate the location of the source of the
signal. This work represents a first step toward a scalable solution that would track
stationary and moving targets using multiple mobile platforms [51].

UAVs are also coming into wider use by civilian agencies, including the depart-
ment of transportation. They provide a lower cost alternative to manned vehicles
while allowing faster and more flexible deployment compared to fixed cameras
mounted along highways. For remote areas, UAVs may be the only cost-effective
option for traffic monitoring. Beyond simply transmitting video of traffic flow to
ground sites for processing, UAVs with on-board data mining capabilities have the
potential to recognize accidents or emergencies and alert emergency personnel with
images and location information [44].
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There are many opportunities for applying on-board data mining in underwa-
ter applications as well. In one project, autonomous underwater vehicles (AUVs)
were used to study the sea floor, looking for bacterial mats living near offshore
mud volcanoes or areas rich in organic matter. As multiple AUVs worked together,
their images could be combined to produce video mosaics and georeferenced im-
ages showing the areas explored. Scientists on one such project developed the IBU
software to automatically analyze the images, a process that had been completely
manual before [52].

As this project produced large volumes of data, thousands of images per cam-
paign, on-board processing was used to distinguish the relevant parts of an image
from the background and send only the relevant parts on for further processing on
the surface. After performing manual and automated analysis of a set of 2,840 video
images and comparing the automated results with the manually identified images,
scientists found that the automated analysis software exhibited better than 90% pre-
cision. These positive results can be extended to move more of the processing to the
UAVs, allowing them to become more autonomous and make decisions based on
their analysis of images as they are captured [52].

New unmanned underwater vehicles are being developed that can autonomously
control themselves and collaborate with each other while floating freely with the
ocean currents. By moving with the currents rather than being stationary or self-
propelled, these vehicles can observe the ocean life in its natural state without
disturbing it. This sort of device is also uniquely suited to tracking such things as
oil spill spread, pollution dispersion, and plankton community evolution. In one test
case, individual prototype devices have been deployed successfully. The eventual
goal is to release many of these devices together and allow them to interact through
an acoustic network. Since these devices are designed to travel without human con-
trol and the range of underwater modems is only a few miles, bandwidth will be at
a premium [47]. Any on-board data mining that these devices can do will be very
valuable in reducing the communication requirements.

6 Biometrics

In addition to enabling instruments in hostile or distant environments to perform
autonomously, on-board data mining technology is also enabling advances in bio-
metric systems. Biometric systems are one or more sensors used to monitor some
facet of the human body. Such sensors may be placed in well connected areas –
for example, the fingerprint systems now in use at many airports. But others either
are placed in a covert way to surreptitiously monitor a location or are portable sys-
tems meant for use by individuals to monitor their health. Thus, many of the usual
problems and approaches to on-board mining come into play with these systems.

As an example, computer-based authentication systems are commonplace –
key cards, username/password systems, etc. Many such systems currently use
knowledge-based or token-based authentication: authentication based on something
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you know (such as a password or PIN) or something you have (such as a card or a
key). However, these systems are prone to unauthorized access if someone obtains
the password or steals the card or key. Biometrics offers the possibility for unique
and secure identification of each and every person. There are two primary types
of biometric data: static, involving a physical attribute such as fingerprints or an
iris scan; and dynamic, involving behavior, such as keystroke dynamics, signature
dynamics, or even a person’s gait [21].

To date, most single-source biometric systems have relatively poor performance;
however, if multiple sources of biometric data are combined, biometric systems can
approach near-flawless performance. For example, a system may check the user’s
fingerprint, gait, and voice for identification. By using more than one attribute, the
user may still be authenticated if the reading of one attribute is corrupted in some
way. For example, if the user has a cold, voice recognition may be impacted. Simi-
larly, dust on the lens or unfavorable lighting may interfere with facial recognition.
Using multiple attributes allows a positive identification to be made despite such
problems. However, it results in a high volume of heterogeneous data to process.
One method that has been found effective in such a case is Bayesian Model Av-
eraging with Decision Trees and a sweeping strategy. This method is particularly
effective in situations where risk evaluation is crucial, such as at border checkpoints
and transportation hubs [21].

Even when using just one biometric attribute, data volume can still be an issue,
and identification is subject to problems such as lighting variation. For example,
although the use of fingerprints for identification is one of the most mature and
proven biometrics, fingerprint recognition and classification are still a difficult prob-
lem. To improve accuracy and reduce processing time, one approach is to normalize
the images, extract features, classify the image, and then recognize the fingerprint
based on its classification. Normalization includes adjusting all images to the same
darkness/brightness, and adjusting the orientation. Images can also be enhanced by
thinning and increasing contrast. Then a line detector can be used for feature ex-
traction of uniquely identifying characteristics, in this case detection of ridges and
furrows. A given pattern of ridges and furrows is classified as a whorl, arch, tent,
etc., using a neural network approach. Finally, using a crisp k nearest neighbor al-
gorithm, the image is matched against selected images in the database based on the
classification. This saves considerable processing time in not having to search the
entire database. In tests, this approach achieved a 97.4% recognition rate [22].

Similarly, face recognition is subject to difficulties resulting from cropping, dif-
ferences in pose angle, and differences in lighting. Several approaches have been
used, including Principal Component Analysis (PCA), Linear Discriminant Anal-
ysis (LDA), and eigenfaces, an approach using feature vectors and the Euclidean
distance between them. However, all of these methods are very sensitive to outliers
in the data, specifically “noisy” images with lighting, cropping, or pose angle differ-
ent from the images in the database, making their use in convert situations difficult.
However, one study found that by implementing an automated system to filter out
images whose feature vectors represent outliers, that is, noisy images, the recogni-
tion rate of a face recognition system could be improved by 10–20% [26].
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These incremental types of improvements become crucial in on-board applica-
tions, where processing time, power, and network connectivity may all be limited.
For example, in border control systems, the person must be identified accurately and
processed expediently. Considerable discussion has occurred regarding including
biometric data in passports. In 2002, the International Civil Aviation Organization
(ICAO) put forth standards for future passports, including the use of smart cards for
storing biometric data [31]. The benefits of more reliable identification for border
control and security purposes are obvious. However, this plan is not without obsta-
cles. To develop and maintain a database of biometric data, fingerprints and faces for
example, for travelers worldwide is a large and costly endeavor. Identifying a trav-
eler from such a large database in a timely fashion is another problem. Also, the cost
of issuing passports with secure smart card technology must be considered, as well
as the security of the data once in the smart card and in the database, and user resis-
tance to giving biometric data. The security of the system is of utmost importance:
if the biometrics data can be stolen or manipulated, the entire effort may do more
harm than good. In 2005, an early Dutch biometric passport was cracked in 2 h using
a PC, so this is a real issue [29]. However, some progress has been made. Visitors
to the U.S. from countries participating in a visa waiver program have fingerprint
scans and a digital photograph collected at the time a visa is issued. At that time,
these biometrics are compared against a database of criminals and terrorist suspects.
If the visitor is not among the banned, the visa is issued. The biometric data is then
used to verify the visitor’s identity on entry and exit into the US. [32] [33].

In the commercial world, there are a number of examples of biometrics sys-
tems that have been deployed successfully. IBM Thinkpads and Korean LG mobile
phones have both incorporated fingerprint recognition for user authentication. Also,
in a pilot study, the Port of Palm Beach, Florida, used photographs and fingerprints
to identify and track visitors, and to keep out banned visitors. Furthermore, the
Pinellas County Sheriff’s Office in Florida implemented a face recognition system
using digital cameras and docking stations in patrol cars. In less than 1 year, 37
identifications were made leading to arrests. None of these identifications would
have been made without the on-board systems in the patrol cars [31].

A more unusual application for on-board data mining with biometrics is used for
mood analysis. The Mood Phone analyzes acoustic information in speech and ascer-
tains the speaker’s mood. This information is conveyed in real time to the listener by
a color coded light that also varies in intensity based on the intensity of the speaker’s
mood. This information can be very useful to people who are impaired in detecting
others’ moods themselves, including people with autism or Asperger’s syndrome.
Another emotion detecting application uses a glove with sensors to monitor skin
temperature, conductivity, and heart rate. This system can estimate the user’s emo-
tional state with up to 75% accuracy. One possible application for this technology is
for use with students, to detect when they become frustrated with a training scenario
and need personal attention [23].

Biometrics such as command use frequency and habits based on time of day can
be used to detect intrusion and thwart an attack to a computer network. One study
used these factors to achieve a 90% recognition rate for users of a university system
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for users who had executed at least 50 commands [24]. Haptics, including pressure
and torque when using a stylus and feedback-generating pad, have also been shown
to uniquely identify users [25]. Even simpler attributes such as typing style and idle
time patterns can be used to identify a user. For example, in a system developed for
online gaming to stop account theft and sharing one account among several people,
the patterns of idle time between commands were found to uniquely identify users.
In this study, activity logs for 287 users of the game Angel’s Love were analyzed.
Any users who logged fewer than 200 min during the study time were eliminated.
For the remaining users, there was a high correlation between active time (intervals
where the character moved continually, with no pauses of a second or more) and
idle time (intervals of 1 s to 30 min when the character did not move). The idle
time distribution had greater variation among users, varying in central tendency and
overall shape, whereas the active time varied considerably less among users, so the
idle time was used as the indicator. In this study, when the length of playing history
was fixed to 200 min, user detection could be performed in 20 min with over 90%
accuracy. The addition of other factors, such as movement patterns in the game and
mouse/keyboard behavior, could speed up the detection process [28].

Keyboard behavior, specifically typing style, has been shown to be effective in
user authentication and requires no special hardware [30]. Using the delays between
pairs of keystrokes, users can be identified uniquely when entering a user ID and
password [20, 30]. In one study, only eight rules were required to identify the le-
gitimate users with over 95% accuracy. Specifically, the first few and last pairs of
characters were enough to make a correct classification – the entire user ID and
password do not need to be stored or analyzed. Also, the legitimate user tends to
type his or her login ID faster than any other person [20].

On-board data mining has life-saving potential when applied to health monitor-
ing and alert systems. Sets of sensors that are worn continually allow for a better
understanding of the patient’s baseline state as well as immediate notification in the
event of an anomaly such as a heart attack or stroke. Traditional in-home health
monitoring systems were awkward and cumbersome, relying heavily on wires for
communication. They had short memory banks of 24 h or less and no processing
capabilities on their own. Instead, systems are being developed that can store and
process several weeks of data while withstanding the conditions of ordinary life, in-
cluding temperature extremes, vigorous activity, and sleep. The sensors are smaller,
less obtrusive, noninvasive, and nonirritating to the skin. By combining these sen-
sors with intelligent processing and on-board data mining software, a significant
improvement is realized. Health deterioration can be detected earlier and health care
providers notified, while reducing the need for in-person medical appointments and
monitoring. Furthermore, these advanced systems can provide a valuable bank of
detailed information about the patient’s condition to the medical practitioners, much
more so than with traditional monitoring systems or occasional office visits [55].

Systems have been designed to accomplish this task. In one proposed system,
a Cyberjacket, a modular wearable computing platform, is augmented with an
ECG, and oxygen saturation monitor, and a temperature sensor. The Cyberjacket
already includes a GPS device and accelerometers to detect location and motion.
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By combining these components, a reasonably unobtrusive and mobile system can
be created, enabling health conditions to be monitored in the patient’s everyday life
and referenced with context information including time of day and location [54].

A similar system has been proposed using a Smart Shirt with sensors for heart
rate, body temperature, and blood pressure, as well as a GPS device to record lo-
cation. Data from the sensors would be fed into a PDA using Bluetooth. Then the
PDA would display signal data and perform quick analysis on the data. In the event
of an anomaly or emergency, the PDA would alert medical personnel, using loca-
tion information provided by the GPS to direct them to the patient. Under normal
circumstances, the PDA would also feed the data to a larger server, which would
perform further data mining using association rules and classification [53].

A third system, the Wearable Wireless Body/Personal Area Network (WWBAN)
has been implemented and tested. This system involves a three-tier network: the
wearable sensors send data to a PDA using a short-range wireless network, the PDA
passes the data on to a home or central server using wireless LAN protocols, and
then the home server can periodically update the patient’s record at the hospital or
doctor’s office using a secure internet connection. The PDA includes personal server
(PS) software, providing an interface to display the data to the user while monitoring
the user’s health and providing feedback, including alerts in the event of an anoma-
lous condition. Using data from the motion sensors, the PS can discriminate the
general activity of the user (sitting, walking, running, lying down) and incorporate
that information with the health metrics provided by the sensors and the patient’s
history to give a more complete picture of the patient’s condition and status [57,60].

These systems and others like them have great potential for many health appli-
cations in addition to ongoing monitoring of vital signs. Another system, called
LiveNet, uses classifiers to distinguish among activities such as walking, sitting,
and biking, as well as more subtle activities such as head-nodding or shaking. The
LiveNet system also incorporates voice processing to detect stress and emotional
arousal. In addition, the system can detect shivering with up to 95% accuracy using
real-time classifier systems based on Gaussian Mixture Models. One application
for this is in monitoring soldiers working in harsh climates and determining their
hypothermia risk. LiveNet is also in pilot testing for monitoring Parkinson’s dis-
ease symptoms, epilepsy seizures, and even depression. The continual monitoring
and analysis provided by the system has great potential in helping doctors tailor
treatments based on individual patients’ true symptoms and experiences, rather than
heuristics and average dosages [58].

Data from wearable sensors can also provide insight into stroke patients’ re-
covery and rehabilitation. By using wearable sensors to monitor stroke patients’
activities, therapy can be better tailored to their needs. During a test of the system,
patients performed tasks including lifting a pencil, turning a key, flipping a card, and
other tasks often used to assess a stroke patient’s level of impairment. Using algo-
rithms from the data mining toolkit Waikato Environment for Knowledge Analysis
(WEKA) and linear regression models, features from each task were analyzed, and
models were built to predict the patient’s scores on clinical tests, getting within 10%
of the average clinical score [59].



On-board Data Mining 371

7 Sensor Networks

As the field of on-board data mining advances, integrating the data from multiple
sensors and getting them to communicate and work together is the next step. De-
ployment of multiple networked sensors is becoming a more and more common
method to monitor large geographic areas. This is due in part to the declining costs
of such sensors, but also to the improvements in both wired and wireless network
connections. Such networking is the cornerstone of sensor networks. In order for
the system to derive the maximum advantage from the gathered information, the
components in the network must be able to communicate their observations to each
other.

NASA has been at the forefront of such networks for some time. However, it is
the military and homeland security interests that are increasingly pushing the tech-
nologies in this area. For example, the Defense Intelligence Agency’s 5-year plan
for leveraging basic research describes a sensor network consisting of intelligent and
autonomous space-borne, airborne, and ground-based sensors [61]. These sensors
will act independently of one another, yet each will be capable of both publishing
and receiving sensor information, observations, and alerts among other sensors in
the network. Furthermore, these sensors will be capable of acting on alerts and in-
formation received from other sensors in the network, perhaps altering acquisition
properties of their instruments, changing the location of their platform, or updating
processing strategies for their own observations to provide responsive information
or additional alerts.

Such autonomous and intelligent sensor networking capabilities provide signif-
icant benefits for collections of heterogeneous sensors within any environment,
including those used for treaty verification, covert monitoring, and changing bat-
tlespaces, but they are crucial for multi-sensor observations and surveillance. For
these applications, real-time communication with external components and users
may be inhibited, and the environment may be hostile.

In all environments, mission automation and communication capabilities among
disparate sensors will enable quicker response to interesting, rare, or unexpected
events, especially important in time-critical situations such as chemical detection,
missile firings, or battlefield situations. Another advantage of an intelligent network
of heterogeneous sensors is that all of the sensors can benefit from the unique ca-
pabilities of each sensor in the network. There are a number of efforts underway to
manage real-time sensor data. Some areas of focus include data compression and re-
duction, sensor fusion, real-time data mining, and other operational level algorithms
(e.g. [62–66]). Many of these approaches deal quite effectively with streaming data
in resource-constrained environments such as sensor networks.

NASA and the National Science Foundation have a number of sensor network
efforts currently in operation and a number that are in the research and devel-
opment phases. Some of these are aimed at space-based applications, but many
are ground-based systems geared toward environmental, weather, biological, and
health monitoring. For example, several sensor networks have been deployed to
monitor volcanic activity around the world, including some on the US mainland
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as well as in Hawaii and Alaska. Most of these systems are comprised of sensors
deployed around the perimeter of known active volcanoes, and are diligently mea-
suring for any change in activity (e.g. [67]). Some of these networks are also linked
with satellite data such as NASA’s Moderate Resolution Imaging Spectroradiome-
ter (MODIS), which takes thermal measurements on a global basis. For the people
living and working near such geologic features, any change that may signal an im-
minent eruption is obviously of great interest. Most of these networks include some
level of data processing within the network itself, including limited amounts of data
mining.

Another area of intense research is in the monitoring of coastal areas. Applica-
tions include border protection efforts, using networks of cameras to monitor ports,
and even tsunami warning systems that are being deployed after the devastating
Indian Ocean tsunami in 2004. The use of sensor networks for environmental mon-
itoring is becoming more widespread as well. All of these applications represent
areas where on-board data mining provides added value by enabling information
gathering that was previously infeasible or by supporting the optimized use of re-
sources.

8 Conclusion

On-board data mining represents a powerful technology with the potential to im-
prove the efficacy and efficiency of a range of applications. Great strides have
already been made in the areas of biometrics, autonomous and unmanned vehicles,
and other areas, resulting in new exploration, better data availability to scientists,
cost savings, and improvements in security and medicine. As technology improves,
harnessing the power of on-board data mining will become increasingly feasible.
It is likely that you will be seeing its use in applications in your own work and
even your own home and vehicles. This will be a field to watch for exciting new
developments.
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Data Streams: An Overview
and Scientific Applications

Charu C. Aggarwal

1 Introduction

In recent years, advances in hardware technology have facilitated the ability to col-
lect data continuously. Simple transactions of everyday life such as using a credit
card, a phone, or browsing the web lead to automated data storage. Similarly,
advances in information technology have lead to large flows of data across IP net-
works. In many cases, these large volumes of data can be mined for interesting
and relevant information in a wide variety of applications. When the volume of the
underlying data is very large, it leads to a number of computational and mining
challenges:

• With increasing volume of the data, it is no longer possible to process the data
efficiently by using multiple passes. Rather, one can process a data item at most
once. This leads to constraints on the implementation of the underlying algo-
rithms. Therefore, stream mining algorithms typically need to be designed so
that the algorithms work with one pass of the data.

• In most cases, there is an inherent temporal component to the stream mining
process. This is because the data may evolve over time. This behavior of data
streams is referred to as temporal locality. Therefore, a straightforward adapta-
tion of one-pass mining algorithms may not be an effective solution to the task.
Stream mining algorithms need to be carefully designed with a clear focus on the
evolution of the underlying data.

Another important characteristic of data streams is that they are often mined in a
distributed fashion. Furthermore, the individual processors may have limited pro-
cessing and memory. Examples of such cases include sensor networks, in which
it may be desirable to perform in-network processing of data stream with limited
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processing and memory [1, 2]. This chapter will provide an overview of the key
challenges in stream mining algorithms which arise from the unique setup in which
these problems are encountered.

This chapter is organized as follows. In the next section, we will discuss the
generic challenges that stream mining poses to a variety of data management and
data mining problems. The next section also deals with several issues which arise in
the context of data stream management. In Sect. 3, we discuss several mining algo-
rithms on the data stream model. Section 4 discusses various scientific applications
of data streams. Section 5 discusses the research directions and conclusions.

2 Stream Management Issues

Since data streams are processes which create large volumes of incoming data, they
lead to several challenges in both processing the data as well as applying traditional
database operations. For example, when the incoming rate of the data streams is
higher that that can be processed by the system, techniques are required in order to
selectively pick data points from the stream, without losing accuracy. This technique
is known as loadshedding.
Loadshedding in Data Streams. Since data streams are generated by processes
which are extraneous to the stream processing application, it is not possible to con-
trol the incoming stream rate. As a result, it is necessary for the system to have the
ability to quickly adjust to varying incoming stream processing rates. One partic-
ular type of adaptivity is the ability to gracefully degrade performance via “load
shedding” (dropping unprocessed tuples to reduce system load) when the demands
placed on the system cannot be met in full given available resources. The loadshed-
ding can be tailored to specific kinds of applications such as query processing or
data mining. A discussion of several loadshedding techniques are provided in book.
Join Processing in Data Streams. Stream join is a fundamental operation for relating
information from different streams. This is especially useful in many applications
such as sensor networks in which the streams arriving from different sources may
need to be related with one another. In the stream setting, input tuples arrive con-
tinuously, and result tuples need to be produced continuously as well. We cannot
assume that the input data is already stored or indexed, or that the input rate can be
controlled by the query plan. Standard join algorithms that use blocking operations,
e.g., sorting, no longer work. Conventional methods for cost estimation and query
optimization are also inappropriate, because they assume finite input. Moreover, the
long-running nature of stream queries calls for more adaptive processing strategies
that can react to changes and fluctuations in data and stream characteristics. The
“stateful” nature of stream joins adds another dimension to the challenge. In gen-
eral, in order to compute the complete result of a stream join, we need to retain all
past arrivals as part of the processing state, because a new tuple may join with an
arbitrarily old tuple arrived in the past. This problem is exacerbated by unbounded
input streams, limited processing resources, and high performance requirements,
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as it is impossible in the long run to keep all past history in fast memory. A
survey on different join processing techniques in data streams may be found
in book.
Indexing Data Streams. The problem of indexing data streams attempts to create a
an indexed representation, so that it is possible to efficiently answer different kinds
of queries such as aggregation queries or trend based queries. This is especially
important in the data stream case because of the huge volume of the underlying
data. We note that most traditional indexes require multiple passes to create. We do
not have this luxury in the data stream model because of one-pass constraints. A
discussion of several models for data stream computation may be found in [3].
Stream Cube Analysis of Multi-dimensional Streams. Much of stream data resides at
a multi-dimensional space and at rather low level of abstraction, whereas most an-
alysts are interested in relatively high-level dynamic changes in some combination
of dimensions. To discover high-level dynamic and evolving characteristics, one
may need to perform multi-level, multi-dimensional on-line analytical processing
(OLAP) of stream data. Such necessity calls for the investigation of new architec-
tures that may facilitate on-line analytical processing of multi-dimensional stream
data [4, 5]. A stream cube architecture was proposed in [4, 5] that effectively per-
forms on-line partial aggregation of multi-dimensional stream data, captures the
essential dynamic and evolving characteristics of data streams, and facilitates fast
OLAP on stream data. Stream cube architecture facilitates online analytical pro-
cessing of stream data. While this is needed for online stream mining and query
processing, the process of model creation requires effective management of the in-
coming data.

3 Stream Mining Algorithms

In this section, we will discuss the key stream mining problems and will discuss the
challenges associated with each problem. We will also provide a wide overview of
the different directions of research for these problems.

3.1 Data Stream Clustering

Clustering is a widely studied problem in the data mining literature. However, it
is more difficult to adapt arbitrary clustering algorithms to data streams because
of one-pass constraints on the data set. An interesting adaptation of the k-means
algorithm has been discussed in [6] which uses a partitioning based approach on the
entire data set. This approach uses an adaptation of a k-means technique in order
to create clusters over the entire data stream. However, in practical applications, it
is often desirable to be able to examine clusters over user-specified time-horizons.
For example, an analyst may desire to examine the behavior of the clusters in the
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data stream over the past 1 week, the past 1 month, or the past year. In such cases, it
is desirable to store intermediate cluster statistics, so that it is possible to leverage
these in order to examine the behavior of the underlying data.

One such technique is micro-clustering [7], in which we use cluster feature vec-
tors [8] in order to perform stream clustering. The cluster feature vectors keep track
of the first-order and second-order moments of the underlying data in order to per-
form the clustering. These features satisfy the following critical properties which
are relevant to the stream clustering process:

• Additivity Property. The statistics such as the first- or second-order moments can
be maintained as a simple addition of statistics over data points. This is critical
in being able to maintain the statistics efficiently over a fast data stream. Fur-
thermore, additivity also implies subtractivity; thus, it is possible to obtain the
statistics over a particular time horizon, by subtracting out the statistics at the
beginning of the horizon from the statistics at the end of the horizon.

• Computational Convenience. The first and second order statistics can be used to
compute a vast array of cluster parameters such as the cluster centroid and radius.
This is useful in order to be able to compute important cluster characteristics in
real time.

It has been shown in [7], that the micro-cluster technique is much more effective
and versatile than the k-means based stream technique discussed in [6]. This broad
technique has also been extended to a variety of other kinds of data. Some examples
of such data are as follows:

• High Dimensional Data. The stream clustering method can also be extended to
the concept of projected clustering [9]. A technique for high dimensional pro-
jected clustering of data streams is discussed in [10]. In this case, the same
micro-cluster statistics are used for maintaining the characteristics of the clus-
ters, except that we also maintain additional information which keeps track of
the projected dimensions in each cluster. The projected dimensions can be used
in conjunction with the cluster statistics to compute the projected distances which
are required for intermediate computations. Another innovation proposed in [10]
is the use of decay-based approach for clustering. The idea in the decay-based
approach is relevant for the case of evolving data stream model, and is applicable
not just to the high dimensional case, but any of the above variants of the micro-
cluster model. In this approach, the weight of a data point is defined as 2��
t ,
where t is the current time-instant. Thus, each data point has a half-life of 1=�,
which is the time in which the weight of the data point reduces by a factor of
2. We note that the decay-based approach poses a challenge because the micro-
cluster statistics are affected at each clock tick, even if no points arrive from the
data stream. In order to deal with this problem, a lazy approach is applied to
decay-based updates, in which we update the decay-behavior for a micro-cluster
only if a data point is added to it. The idea is that as long as we keep track of the
last time ts at which the micro-cluster was updated, we only need to multiply the
micro-cluster statistics by 2��.tc�ts/, where tc is the current time instant. After
multiply the decay statistics by this factor, it is possible to add the micro-cluster
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statistics of the current data point. This approach can be used since the statistics
of each micro-cluster decay by the same factor in each track, and it is therefore
possible to implicitly keep track of the decayed values, as long as a data point is
not added to the micro-cluster. In the latter case, the statistics need to be updated
explicitly, while other counts can still be maintained implicitly.

• Uncertain Data. In many cases, such as in sensor networks, the underlying data
may be noisy and uncertain. In such cases, it may be desirable to incorporate
the uncertainty into the clustering process. In order to do so, the micro-cluster
statistics are appended with the information about the underlying uncertainty in
the data. This information can be used in order to make more robust clustering
computations. The advantages of using the uncertainty into the clustering process
are illustrated in [11].

• Text and Categorical Data. A closely related problem is that of text and categor-
ical data. The main difference with the quantitative domain is the nature of the
statistics which are stored for clustering purposes. In this case, we maintain the
counts of the frequencies of the discrete attributes in each cluster. Furthermore,
we also maintain the inter-attribute correlation counts which may be required
in a variety of applications. In [12], an efficient algorithm has been proposed
for clustering text and categorical data streams. This algorithm also allows for a
decay-based approach as in [10].

3.2 Data Stream Classification

The problem of classification is perhaps one of the most widely studied in the con-
text of data stream mining. The problem of classification is made more difficult by
the evolution of the underlying data stream. Therefore, effective algorithms need to
be designed in order to take temporal locality into account. The concept of stream
evolution is sometimes referred to as concept drift in the stream classification liter-
ature. Some of these algorithms are designed to be purely one-pass adaptations of
conventional classification algorithms [13], whereas others (such as the methods in
[14, 15]) are more effective in accounting for the evolution of the underlying data
stream. The broad methods which are studied for classification in the data stream
scenario are as follows:
VFDT Method. The VFDT (Very Fast Decision Trees) method has been adapted
to create decision trees which are similar to those constructed by a conventional
learner with the use of sampling based approximations. The VFDT method splits
a tree using the current best attribute, taking into consideration the fact that the
number of examples used are sufficient to preserve the Hoeffding bound in a way
that the output is similar to that of a conventional learner. The key question dur-
ing the construction of the decision tree is the choice of attributes to be used for
splits. Approximate ties are broken using a user-specified threshold of acceptable
error-measure for the output. It can be shown that for any small value of ı, a par-
ticular choice of the split variable is the correct choice with probability at least
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1 � ı, if a sufficient number of stream records have been processed. This number
has been shown in [13] to increase at a relatively modest rate of ln.1=ı/. This bound
can then be extended to the entire decision tree, so as to quantify the probability
that the same decision tree as a conventional learner is created. The VFDT method
has also been extended to the case of evolving data streams. This framework is re-
ferred to as CVFDT [15], and it runs VFDT over fixed sliding windows in order
to always have the most updated classifier. Jin and Agrawal [16] have extended the
VFDT algorithm in order to process numerical attributes and reduce the sample
size which is calculated using the Hoeffding bound. Since this approach reduces
the sample size, it improves efficiency and space requirements for a given level of
accuracy.
On Demand Classification. While most stream classification methods are focussed
on a training stream, the on demand method is focussed on the case when both the
training and the testing stream evolves over time. In the on demand classification
method [14], we create class-specific micro-clusters from the underlying data. For
an incoming record in the test stream, the class label of the closest micro-cluster
is used in order to determine the class label of the test instance. In order to handle
the problem of stream evolution, the micro-clusters from the specific time-horizon
are used for the classification process. A key issue in this method is the choice of
horizon which should be used in order to obtain the best classification accuracy. In
order to determine the best horizon, a portion of the training stream is separated
out and the accuracy is tested over this portion with different horizons. The optimal
horizon is then used in order to classify the test instance.
Ensemble-based Classification. This technique [17] uses an ensemble of classifi-
cation methods such as C4.5, RIPPER and naive Bayes in order to increase the
accuracy of the predicted output. The broad idea is that a data stream may evolve
over time, and a different classifier may work best for a given time period. Therefore,
the use of an ensemble method provides robustness in the concept-drifting case.

3.3 Frequent Pattern Mining

The problem of frequent pattern mining was first introduced in [18], and was exten-
sively analyzed for the conventional case of disk resident data sets. In the case of
data streams, one may wish to find the frequent itemsets either over a sliding win-
dow or the entire data stream [19, 20]. In the case of data streams, the problem of
frequent pattern mining can be studied under several models:
Entire Data Stream Model. In this model, the frequent patterns need to be mined
over the entire data stream. Thus, the main difference from a conventional pattern
mining algorithm is that the frequent patterns need to be mined in one pass over
the entire data stream. Most frequent pattern mining algorithms require multiple
passes in order to estimate the frequency of patterns of different sizes in the data.
A natural method for frequent pattern counting is to use sketch-based algorithms in
order to determine frequent patterns. Sketches are often used in order to determine
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heavy-hitters in data streams, and therefore, an extension of the methodology to the
problem of finding frequent patterns is natural. Along this line, Manku and Motwani
[21] proposed the first one lass algorithm called Lossy Counting, in order to find all
frequent itemsets over a data stream. The algorithm allows false positives, but not
false negatives. Thus, for a given support level s, the algorithm is guaranteed not to
contain all frequent itemsets whose support is greater than s��. Another interesting
approach in [22] determines all the frequent patterns whose support is greater than
s with probability at least 1 � ı, which the value of ı is as small as desired, as
long as one is willing to add space and time complexity proportional to ln.1=ı/.
Thus, this model does not allow false negatives, but may miss some of the frequent
patterns. The main advantage of such a technique is that it is possible to provide a
more concise set of frequent patterns at the expense of losing some of the patterns
with some probability which is quite low for practical purposes.
Sliding Window Model. In many cases, the data stream may evolve over time, as a
result of which it is desirable to determine all the frequent patterns over a particular
sliding window. A method for determining the frequent patterns over a sliding win-
dow is discussed in [23]. The main assumption of this approach is that the number
of frequent patterns are not very large, and therefore, it is possible to hold the trans-
actions in each sliding window in main memory. The main focus of this approach is
to determine closed frequent itemsets over the data stream. A new mining algorithm
called MOMENT is proposed, and the main idea is based on the fact that the bound-
ary between closed frequent itemsets and frequent itemsets moves very slowly. A
closed enumeration tree is developed in order to keep track of the boundary be-
tween closed frequent itemsets and the rest of the itemsets. Another method which
is able to mine frequent itemsets over arbitrary time granularities is referred to as
FPSTREAM [24]. This method is essentially an adaptation of the FP-Tree method
to data streams.
Damped Window Model. We note that pure sliding windows are not the only way
by which the evolution of data streams can be taken into account during the mining
process. A second way is to introduce a decay factor into the computation. Specifi-
cally, the weight of each transaction is multiplied by a factor of f < 1, when a new
transaction arrives. The overall effect of such an approach is to create an exponen-
tial decay function on the arrivals in the data stream. Such a model is quite effective
for evolving data stream, since recent transactions are counted more significantly
during the mining process. An algorithm proposed in [25] maintains a lattice for
recording the potentially frequent itemsets and their counts. While the counts of
each lattice may change upon the arrival of each transaction, a key observation is
that it is sufficient to update the counts in a lazy way. Specifically, the decay factor is
applied only to those itemsets whose counts are affected by the current transaction.
However, the decay factor will have to be applied in a modified way by taking into
account the last time that the itemset was touched by an update. In other words, if tc
be the current transaction index, and the last time the count for the itemset was up-
dated was at transaction index ts < tc , then we need to multiply the current counts
of that itemset by f ts�tc before incrementing the count of this modified value. This
approach works because the counts of each itemset reduce by the same decay factor
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in each iteration, as long as a transaction count is not added to it. We note that
such a lazy approach is also applicable to other mining problem, where statistics
are represented as the sum of decaying values. For example, in [10], a similar lazy
approach is used in order to maintain decay-based micro-cluster statistics for a high
dimensional projected stream clustering algorithm.

3.4 Change Detection in Data Streams

As discussed earlier, the patterns in a data stream may evolve over time. In many
cases, it is desirable to track and analyze the nature of these changes over time. In
[26–28], a number of methods have been discussed for change detection of data
streams. In addition, data stream evolution can also affect the behavior of the un-
derlying data mining algorithms since the results can become stale over time. The
broad algorithms for change diagnosis in data streams are as follows:
Velocity Density Estimation. In velocity density estimation [26], we compute the rate
of change of data density of different points in the data stream over time. Depending
upon the direction of density rate of change, one may identify regions of dissolution,
coagulation, and shift. Spatial profiles can also be constructed in order to determine
the directions of shift in the underlying data. In addition, it is possible to use the ve-
locity density concept in order to identify those combinations of dimensions which
have a high level of evolution. Another technique for change quantification is dis-
cussed in [27], which uses methods for probability difference quantification in order
to identify the changes in the underlying data. In [28], a method is discussed in order
to determine statistical changes in the underlying data. Clustering [7] can be used
in order to determine significant evolution in the underlying data. In [7], micro-
clustering is used in order to determine significant clusters which have evolved in
the underlying data.

A separate line of work is the determination of significant changes in the re-
sults of data mining algorithms because of evolution. For example in [7], it has
been shown how to determine significant evolving clusters in the underlying data.
In [14], a similar technique has been used to keep a refreshed classification model in
the presence of evolving data. In this respect, micro-clustering provides an effective
technique, since it provides a way to store intermediate statistics of the underly-
ing data in the form of clusters. In [14], a micro-cluster based nearest neighbor
classifier is used in order to classify evolving data streams. The key idea is to con-
struct class-specific micro-clusters over a variety of time horizons, and then utilize
the time horizon with the greatest accuracy in order to perform the classification
process. The issue of stream evolution has been extended to many other prob-
lems such as synopsis construction and reservoir sampling [29]. We will provide
a detailed discussion of some of the methods such as reservoir sampling slightly
later.
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3.5 Synopsis Construction in Data Streams

The large volume of data streams poses unique space and time constraints on the
computation process. Many query processing, database operations, and mining al-
gorithms require efficient execution which can be difficult to achieve with a fast data
stream. Furthermore, since it is impossible to fit the entire data stream within the
available space, the space efficiency of the approach is a major concern. In many
cases, it may be acceptable to generate approximate solutions for many problems
by summarizing the data in a time and space-efficient way. In recent years, a num-
ber of synopsis structures have been developed, which can be used in conjunction
with a variety of mining and query processing techniques [30]. Some key synop-
sis methods include those of sampling, wavelets, sketches and histograms. The key
challenges which arise in the context of synopsis construction of data streams are as
follows:
Broad Applicability. The synopsis structure is typically used as an intermediate
representation, which is then leveraged for a variety of data mining and data man-
agement problems. Therefore, the synopsis structure should be constructed in such
a way that it has applicability across a wide range of problems.
One-pass constraint. As in all data stream algorithms, the one-pass constraint is
critical to synopsis construction algorithms. We would like to design all synopsis
construction algorithms in one pass, and this is not the case for most traditional
methods. In fact, even simply methods such as sampling need to be re-designed in
order to handle the one-pass constraint.
Time and Space Efficiency. Since data streams have a very large volume, it is es-
sential to create the synopsis in a time- and space-efficient way. In this sense,
some of the probabilistic techniques such as sketches are extremely effective for
counting-based applications, since they require constant-space for provable proba-
bilistic accuracy. In other words, the time- and space-efficiency depends only upon
the accuracy of the approach rather than the length of the data stream.
Data Stream Evolution. Since the stream evolves over time, a synopsis structure
which is constructed from the overall behavior of the data stream is not quite as
effective as one which uses recent history. Consequently, it is often more effective
to create synopsis structures which either work with sliding windows, or use some
decay-based approach in order to weight the data stream points.

One key characteristic of many of the above methods is that while they work
effectively in the one-dimensional case, they often lose their effectiveness in the
multi-dimensional case either because of data sparsity or because of inter-attribute
correlations. Next, we will discuss the broad classes of techniques which are used
for synopsis construction in data streams. Each of these techniques have their own
advantages in different scenarios, and we will take care to provide an overview of the
different array of methods which are used for synopsis construction in data streams.
The broad techniques which are used for synopsis construction in data streams are
as follows:
Reservoir Sampling. Sampling methods are widely used for traditional database ap-
plications, and are extremely popular because of their broad applicability across a
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wide array of tasks in data streams. A further advantage of sampling methods is that
unlike many other synopsis construction methods, they maintain their inter-attribute
correlations across samples of the data. It is also often possible to use probabilis-
tic inequalities in order to bound the effectiveness of a variety of applications with
sampling methods.

However, a key problem in extending sampling methods to the data stream sce-
nario, is that one does not know the total number of data points to be sampled in
advance. Rather, one must maintain the sample in a dynamic way over the entire
course of the computation. A method called reservoir sampling was first proposed
in [31], which maintains such a sample dynamically. This technique was originally
proposed in the context of one-pass access of data from magnetic-storage devices.
However, the techniques also naturally extend to the data stream scenario.

Let us consider the case, where we wish to obtain an unbiased sample of size
n from the data stream. In order to initialize the approach, we simply add the first
n points from the stream to the reservoir. Subsequently, when the .t C 1/th point
is received, it is added to the reservoir with probability n=.t C 1/. When the data
point is added to the reservoir, it replaces a random point from the reservoir. It can
be shown that this simple approach maintains the uniform sampling distribution
from the data stream. We note that the uniform sampling approach may not be very
effective in cases where the data stream evolves significantly. In such cases, one
may either choose to generate the stream sample over a sliding window, or use a
decay-based approach in order to bias the sample. An approach for sliding window
computation over data streams is discussed in [32].

A second approach [29] uses biased decay functions in order to construct syn-
opsis from data streams. It has been shown in [29] that the problem is extremely
difficult for arbitrary decay functions. In such cases, there is no known solution to
the problem. However, it is possible to design very simple algorithms for some im-
portant classes of decay functions. One of these classes of decay functions is the
exponential decay function. The exponential decay function is extremely important
because of its memory less property, which guarantees that the future treatment of a
data point is independent of the past data points which have arrived. An interesting
result is that by making simple implementation modifications to the algorithm of
[31] in terms of modifying the probabilities of insertion and deletion, it is possible
to construct a robust algorithm for this problem. It has been shown in [29] that the
approach is quite effective in practice, especially when there is significant evolution
of the underlying data stream.

While sampling has several advantages in terms of simplicity and preservation
of multi-dimensional correlations, it loses its effectiveness in the presence of data
sparsity. For example, a query which contains very few data points is unlikely to be
accurate with the use of a sampling approach. However, this is a general problem
with most techniques which are effective at counting frequent elements, but are not
quite as effective at counting rare or distinct elements in the data stream.
Sketches. Sketches use some properties of random sampling in order to perform
counting tasks in data streams. Sketches are most useful when the domain size of
a data stream is very large. In such cases, the number of possible distinct elements



Data Streams: An Overview and Scientific Applications 387

become very large, and it is no longer possible to track them in space-constrained
scenarios. There are two broad classes of sketches: projection based and hash based.
We will discuss each of them in turn.

Projection based sketches are constructed on the broad idea of random projec-
tion [33]. The most well known projection-based sketch is the AMS sketch [34,35],
which we will discuss below. It has been shown in [33], that by by randomly sam-
pling subspaces from multi-dimensional data, it is possible to compute �-accurate
projections of the data with high probability. This broad idea can easily be extended
to the massive domain case, by viewing each distinct item as a dimension, and the
counts on these items as the corresponding values. The main problem is that the vec-
tor for performing the projection cannot be maintained explicitly since the length of
such a vector would be of the same size as the number of distinct elements. In
fact, since the sketch-based method is most relevant in the distinct element scenario,
such an approach defeats the purpose of keeping a synopsis structure in the first
place.

Let us assume that the random projection is performed using k sketch vectors,
and rj

i represents the j th vector for the i th item in the domain being tracked. In
order to achieve the goal of efficient synopsis construction, we store the random
vectors implicitly in the form of a seed, and this can be used to dynamically generate
the vector. The main idea discussed in [36] is that it is possible to generate random
vectors with a seed of size O.log.N //, provided that one is willing to work with
the restriction that rj

i 2 f�1;C1g should be 4-wise independent. The sketch is

computed by adding rj
i to the j th component of the sketch for the i th item. In the

event that the incoming item has frequencyf , we add the value f 
rj
i . Let us assume

that there are a total of k sketch components which are denoted by .s1 : : : sk/. Some
key properties of the pseudo-random number generator approach and the sketch
representation are as follows:

• A given component rj
i can be generated in poly-logarithmic time from the seed.

The time for generating the seed is poly-logarithmic in the domain size of the
underlying data.

• A variety of approximate aggregate functions on the original data can be com-
puted using the sketches.

Some example of functions which can be computed from the sketch components are
as follows:

• Dot Product of two streams. If .s1 : : : sk/ be the sketches from one stream, and
.t1 : : : tk/ be the sketches from the other stream, then sj cdottj is a random vari-
able whose expected value of the dot product.

• Second Moment. If .s1 : : : sk/ be the sketch components for a data stream, it can
be shown that the expected value of s2

j is the second moment. Furthermore, by us-
ing Chernoff bounds, it can be shown that by selecting the median ofO.log.1=ı/
averages ofO.1=�2/ copies of sj �cdottj , it is possible to guarantee the accuracy
of the approximation to within 1C� with probability at least 1 � ı.
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• Frequent Items. The frequency of the i th item in the data stream is computed
by by multiplying the sketch component sj by rj

i . However, this estimation is
accurate only for the case of frequent items, since the error is estimation is pro-
portional to the overall frequency of the items in the data stream.

More details of computations which one can perform with the AMS sketch are dis-
cussed in [34, 35].

The second kind of sketch which is used for counting is the count-min sketch
[37]. The count-min sketch is based upon the concept of hashing, and uses k D
ln.1=ı/ pairwise-independent hash functions, which hash onto integers in the range
.0 : : : e=�/. For each incoming item, the k hash functions are applied and the fre-
quency count is incremented by 1. In the event that the incoming item has frequency
f , the corresponding frequency count is incremented by f . Note that by hashing
an item into the k cells, we are ensuring that we maintain an overestimate on the
corresponding frequency. It can be shown that the minimum of these cells provides
the �-accurate estimate to the frequency with probability at least 1 � ı. It has been
shown in [37] that the method can also be naturally extended to other problems
such as finding the dot product or the second-order moments. The count-min sketch
is typically more effective for problems such as frequency-estimation of individual
items than the projection-based AMS sketch. However, the AMS sketch is more ef-
fective for problems such as second-moment estimation.
Wavelet Decomposition. Another widely known synopsis representation in data
stream computation is that of the wavelet representation. One of the most widely
used representations is the Haar Wavelet. We will discuss this technique in detail
in this section. This technique is particularly simple to implement, and is widely
used in the literature for hierarchical decomposition and summarization. The basic
idea in the wavelet technique is to create a decomposition of the data characteris-
tics into a set of wavelet functions and basis functions. The property of the wavelet
method is that the higher order coefficients of the decomposition illustrate the broad
trends in the data, whereas the more localized trends are captured by the lower order
coefficients.

We assume for ease in description that the length q of the series is a power of 2.
This is without loss of generality, because it is always possible to decompose a series
into segments, each of which has a length that is a power of two. The Haar Wavelet
decomposition defines 2k�1 coefficients of order k. Each of these 2k�1 coefficients
corresponds to a contiguous portion of the time series of length q=2k�1. The i th
of these 2k�1 coefficients corresponds to the segment in the series starting from
position .i �1/ 
q=2k�1C1 to position i �q=2k�1. Let us denote this coefficient by
 i

k
and the corresponding time series segment by S i

k
. At the same time, let us define

the average value of the first half of the S i
k

by ai
k

and the second half by bi
k

. Then,
the value of  i

k
is given by .ai

k
� bi

k
/=2. More formally, if ˚ i

k
denote the average

value of the S i
k

, then the value of  i
k

can be defined recursively as follows:

 i
k D .˚2
i�1

kC1 �˚2
i
kC1/=2 (1)



Data Streams: An Overview and Scientific Applications 389

The set of Haar coefficients is defined by the� i
k

coefficients of order 1 to log2.q/.
In addition, the global average ˚1

1 is required for the purpose of perfect reconstruc-
tion. We note that the coefficients of different order provide an understanding of the
major trends in the data at a particular level of granularity. For example, the coeffi-
cient  i

k
is half the quantity by which the first half of the segment S i

k
is larger than

the second half of the same segment. Since larger values of k correspond to geomet-
rically reducing segment sizes, one can obtain an understanding of the basic trends
at different levels of granularity. We note that this definition of the Haar wavelet
makes it very easy to compute by a sequence of averaging and differencing opera-
tions. In Table 1, we have illustrated how the wavelet coefficients are computed for
the case of the sequence .8; 6; 2; 3; 4; 6; 6; 5/. This decomposition is illustrated in
graphical form in Fig. 1. We also note that each value can be represented as a sum of
log2.8/ D 3 linear decomposition components. In general, the entire decomposition

Table 1 An example of wavelet coefficient computation

Granularity Averages DWT Coefficients
(Order k) ˚ values  values

k D 4 (8, 6, 2, 3, 4, 6, 6, 5) �
k D 3 (7, 2.5, 5, 5.5) (1, �0.5,�1, 0.5)
k D 2 (4.75, 5.25) (2.25, �0.25)
k D 1 (5) (-0.25)

(5)

−0.5

−1

0.5

(4.75, 5.25)

(7, 2.5, 5, 5.5)

(8, 6, 2,  3, 4, 6, 6, 5) 1

−0.25

−0.25

5

2.25

Fig. 1 Illustration of the wavelet decomposition
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Fig. 2 The error tree from the wavelet decomposition

may be represented as a tree of depth 3, which represents the hierarchical decom-
position of the entire series. This is also referred to as the error tree. In Fig. 2, we
have illustrated the error tree for the wavelet decomposition illustrated in Table 1.
The nodes in the tree contain the values of the wavelet coefficients, except for a spe-
cial super-root node which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, or the series
values have been normalized so that the average is already zero. We further note
that the number of wavelet coefficients in this series is 8, which is also the length
of the original series. The original series has been replicated just below the error-
tree in Fig. 2, and it can be reconstructed by adding or subtracting the values in the
nodes along the path leading to that value. We note that each coefficient in a node
should be added, if we use the left branch below it to reach to the series values.
Otherwise, it should be subtracted. This natural decomposition means that an entire
contiguous range along the series can be reconstructed by using only the portion
of the error-tree which is relevant to it. Furthermore, we only need to retain those
coefficients whose values are significantly large, and therefore affect the values of
the underlying series. In general, we would like to minimize the reconstruction error
by retaining only a fixed number of coefficients, as defined by the space constraints.
While wavelet decomposition is easy to perform for multi-dimensional data sets, it
is much more challenging for the case of data streams. This is because data streams
impose a one-pass constraint on the wavelet construction process. A variety of one-
pass algorithms for wavelet construction are discussed in [30].
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Histograms. The technique of histogram construction is closely related to that of
wavelets. In histograms the data is binned into a number of intervals along an at-
tribute. For any given query, the counts from the bins can be utilized for query
resolution. A simple representation of the histogram method would simply partition
the data into equi-depth or equi-width intervals. The main inaccuracy with the use of
histograms is that the distribution of data points within a bucket is not retained, and
is therefore assumed to be uniform. This causes inaccuracy because of extrapolation
at the query boundaries. A natural choice is to use an equal number of counts in each
bucket. This minimizes the error variation across different buckets. However, in the
case of data streams, the boundaries to be used for equi-depth histogram construc-
tion are not known a priori. We further note that the design of equi-depth buckets is
exactly the problem of quantile estimation, since the equi-depth partitions define the
quantiles in the data. Another choice of histogram construction is that of minimizing
the variance of frequency variances of different values in the bucket. This ensures
that the uniform distribution assumption is approximately held, when extrapolat-
ing the frequencies of the buckets at the two ends of a query. Such histograms are
referred to as V-optimal histograms. Algorithms for V-optimal histogram construc-
tion are proposed in [38, 39]. A more detailed discussion of several algorithms for
histogram construction may be found in [3].

3.6 Dimensionality Reduction and Forecasting in Data Streams

Because of the inherent temporal nature of data streams, the problems of dimension-
ality reduction and forecasting and particularly important. When there are a large
number of simultaneous data stream, we can use the correlations between different
data streams in order to make effective predictions [40, 41] on the future behavior
of the data stream. In particular, the well known MUSCLES method [41] is useful
in applying regression analysis to data streams. The regression analysis is helpful in
predicting the future behavior of the data stream. A related technique is the SPIRIT
algorithm, which explores the relationship between dimensionality reduction and
forecasting in data streams. The primary idea is that a compact number of hidden
variables can be used to comprehensively describe the data stream. This compact
representation can also be used for effective forecasting of the data streams. A dis-
cussion of different dimensionality reduction and forecasting methods (including
SPIRIT) is provided in [3].

3.7 Distributed Mining of Data Streams

In many instances, streams are generated at multiple distributed computing nodes.
An example of such a case would be sensor networks in which the streams are gener-
ated at different sensor nodes. Analyzing and monitoring data in such environments
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requires data mining technology that requires optimization of a variety of criteria
such as communication costs across different nodes, as well as computational, mem-
ory or storage requirements at each node. There are several management and mining
challenges in such cases. When the streams are collected with the use of sensors, one
must take into account the limited storage, computational power, and battery life
of sensor nodes. Furthermore, since the network may contain a very large number
of sensor nodes, the effective aggregation of the streams becomes a considerable
challenge. Furthermore, distributed streams also pose several challenges to min-
ing problems, since one must integrate the results of the mining algorithms across
different nodes. A detailed discussion of several distributed mining algorithms are
provided in [3].

4 Scientific Applications of Data Streams

Data streams have numerous applications in a variety of scientific scenarios. In this
section, we will discuss different applications of data streams and how they tie in to
the techniques discussed earlier.

4.1 Network Monitoring

Many large telecommunication companies have massive streams of data containing
information about phone calls between different nodes. In many cases, it is desirable
to analyze the underlying data in order to determine the broad patterns in the data.
This can be extremely difficult especially if the number of source-destination com-
binations are very large. For example, if the company has over 106 possible nodes
for both the source and the destination, the number of possible combinations is 1012.
Maintaining explicit information about such a large number of pairs is practically
infeasible both from a space-and computational point of view.

Many natural solutions have been devised for this problem which rely on the
use of a sketch-based approach in order to compress and summarize the underly-
ing data. Sketches are extremely efficient because they use an additive approach in
order to summarize the underlying data stream. Sketches can be used in order to de-
termine important patterns such frequent call patterns, moments or even joins across
multiple data sources.

4.2 Intrusion Detection

In many network applications, the intrusions appear as sudden bursts of patterns in
even greater streams of attacks over the world-wide web. This makes the problem
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extremely difficult, because one cannot scan the data twice, and we are looking for
patterns which are embedded in a much greater volume of data.

Stream clustering turns out to be quite useful for such problems, since we can
isolate small clusters in the data from much larger volumes of data. The formation
of new clusters often signifies an anomalous event which needs to be investigated.
If desired, the problem can be combined with supervised mining of the underlying
data. This can be done by creating supervised clusters in which each cluster may
belong only to a specific-class. When known intrusions are received in the stream,
they can be used in order to create class-specific clusters. These class-specific clus-
ters can be used to determine the nature of new clusters which arise from unknown
intrusion behavior.

4.3 Sensor Network Analysis

Sensors have played an increasingly important role in recent years in collecting a
variety of scientific data from the environment. The challenges in processing sensor-
data are as follows:

• In many cases, sensor data may be uncertain in nature. The challenge is to clean
the data in online fashion and then apply various application-specific algorithms
to the problem. An example for the case of clustering uncertain data streams is
discussed in [11].

• The number of streams which are processed together are typically very large.
This is because of the large number of sensors at which the data may be collected.
This leads to challenges in effective storage and processing of such data.

• Often the data from different sensors may only be available in aggregated form
in order to save on storage space. This leads to challenges in extraction of the
underlying information.

Synopsis construction techniques are a natural approach for sensor problems be-
cause of the nature of the underlying aggregation. Sketch techniques can be used
in order to compress the underlying data and use it for a variety of data mining
purposes.

4.4 Cosmological Applications

In recent years, cosmological applications have created large volumes of data. The
installation of large space stations, space telescopes, and observatories result in large
streams of data on different stars and clusters of galaxies. This data can be used
in order to mine useful information about the behavior of different cosmological
objects. Similarly, rovers and sensors on a planet or asteroid may send large amounts
of image, video or audio data. In many cases, it may not be possible to manually
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monitor such data continuously. In such cases, it may be desirable to use stream
mining techniques in order to detect the important underlying properties.

The amount of data received in a single day in such applications can often exceed
several tera-bytes. These data sources are especially challenging since the underly-
ing applications may be spatial in nature. In such cases, an attempt to compress the
data using standard synopsis techniques may lose the structure of the underlying
data. Furthermore, the data may often contain imprecision in measurements. Such
imprecisions may result in the need for techniques which leverage the uncertainty
information in the data in order to improve the accuracy of the underlying results.

4.5 Mobile Applications

Recently new technologies have emerged which can use the information gleaned
from on-board sensors in a vehicle in order to monitor the diagnostic health of the
vehicle as well as driver characterization. Two such applications are the VEDAS
system [42], and the OnStar system designed by General Motors. Such systems
require quick analysis of the underlying data in order to make diagnostic character-
izations in real time. Effective event-detection algorithms are required in order to
perform this task effectively.

The stock market often creates large volumes of data streams which need to be
analyzed in real time in order to make quick decisions about actions to be taken. An
example of such an approach is the MobiMine approach [43] which monitors the
stock market with the use of a PDA.

4.6 Environmental and Weather Data

Many satellites and other scientific instruments collect environmental data such as
cloud cover, wind speeds, humidity data and ocean currents. Such data can be used
to make predictions about long- and short-term weather and climate changes. Such
data can be especially massive if the number of parameters measured are very large.
The challenge is to be able to combine these parameters in order to make timely
and accurate predictions about weather driven events. This is another application of
event detection techniques from massive streams of sensor data.

5 Conclusions and Research Directions

Data streams are a computational challenge to data mining problems because of the
additional algorithmic constraints created by the large volume of data. In addition,
the problem of temporal locality leads to a number of unique mining challenges
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in the data stream case. This chapter provides an overview to the generic issues in
processing data streams, and the specific issues which arise with different mining
algorithms.

While considerable research has already been performed in the data stream area,
there are numerous research directions which remain to be explored. Most research
in the stream area is focussed on the one pass constraint, and generally does not deal
effectively with the issue of temporal locality. In the stream case, temporal locality
remains an extremely important issue since the data may evolve considerably over
time. Other important topics which need to be explored are as follows:

• Streams are often collected by devices such as sensors in which the data is often
noisy and error-driven. Therefore, a key challenge is to effectively clean the data.
This may involve either imputing or modeling the underlying uncertain data.
This can be challenge, since any modeling needs to be done in real time, as large
volumes of the data stream arrive.

• A related area of research is in using the modeled data for data mining tasks.
Since the underlying data is uncertain, the uncertainty should be used in order to
improve the quality of the underlying results. Some recent research addresses the
issue of clustering uncertain data streams [11].

• Many recent applications such as privacy-preserving data mining have not been
studied effectively in the context of data streams. It is often a challenge to per-
form privacy-transformations of continuously arriving data, since newly arriving
data may compromise the integrity of earlier data. The data stream domain pro-
vides a number of unique challenges in the context of the privacy problem.
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k-mers, 226

Abduction, 79
Abductive inference, 79
absent words, 220
alphabet, 210
approximate repeats, 221
association rule mining, 239
automata, 212
Automated discovery, 77
Automated scientific discovery, 77
axiom, 129
axiomatisation, 126

Bayesian conditionalisation, 82
Bayesian epistemology, 82
Bayesian net, 84
branching tandem repeat, see repeat, 215, 219

Calibration, 82
Causal Bayesian net, 84
Causal Markov Condition, 84
Causal net, 84
chaining, 237
Concepts of the Sciences, 79
Confirmation, 78

Datalog, 134
Demarcation, 78
Discovery, 79
Dynamic interaction, 80

Equivocation, 82
Evidence integration, 85, 86
exact match, 225

left maximal, 225
maximal, 225
rare MEMs, 228
right maximal, 225, 227

Explanation, 78

Falsificationism, 80
Forecast aggregation, 85
FP-growth algorithm, 241
frequent itemsets, 239

Hypothesis choice, 79

Inductivism, 80
Influence relation, 86

Knowledge integration, 86

look-up table, 211

Machine learning, 77
maximal exact matches, see exact match, 227
Maximum entropy principle, 83
Model selection, 79
Modeling, 79

Objective Bayesian net, 87
Objective Bayesianism, 82

pattern matching, 223
global, 223
local exact matches, 225
semi-global, 223
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plagiarism, 243
prefix, 210
Probabilistic, 84
Probability, 82

Realism, 78
repeat

branching tandem, 215, 219
dispersed, 215
fixed length, 215
heuristics, 239
left maximal, 214
maximal, 214, 216
repeated pair, 214
right maximal, 214
supermaximal, 214, 218
tandem, 215, 219, 234

repeat, approximate tandem repeats, 234
repeated pair, see repeat
reverse complement, 211

Scientific machine learning, 77
Scientific Method, 78
seed-and-extend, 236
sequence alignment, 228

global alignment, 229

heuristics, 235
local alignment, 231
semi-global alignment, 232
suffix-prefix alignment, 234

sequence comparison, 223
spam, 243
string, 210
string kernels, 242
Subjective Bayesianism, 82
substring, 210
suffix, 210
suffix array, 214
suffix tree, 213, 214
Systematising, 79

tandem repeat, see repeat, 215, 219, 234
text documents, 243

semi-structured, 243
unstructured, 243

text documents: XML, 244
Theorising, 79
trie, 212

unique subsequences, 220
Unity, 78
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