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and Kenneth Sörensen (Eds.)

Adaptive and Multilevel Metaheuristics, 2008

ISBN 978-3-540-79437-0

Vol. 137. Lakhmi C. Jain, Mika Sato-Ilic, Maria Virvou,

George A. Tsihrintzis,Valentina Emilia Balas

and Canicious Abeynayake (Eds.)

Computational Intelligence Paradigms, 2008

ISBN 978-3-540-79473-8

Vol. 138. Bruno Apolloni,Witold Pedrycz, Simone Bassis

and Dario Malchiodi

The Puzzle of Granular Computing, 2008

ISBN 978-3-540-79863-7

Vol. 139. Jan Drugowitsch

Design and Analysis of Learning Classifier Systems, 2008

ISBN 978-3-540-79865-1

Vol. 140. Nadia Magnenat-Thalmann, Lakhmi C. Jain

and N. Ichalkaranje (Eds.)

New Advances in Virtual Humans, 2008

ISBN 978-3-540-79867-5

Vol. 141. Christa Sommerer, Lakhmi C. Jain

and Laurent Mignonneau (Eds.)

The Art and Science of Interface and Interaction Design (Vol. 1),
2008

ISBN 978-3-540-79869-9

Vol. 142. George A. Tsihrintzis, Maria Virvou, Robert J. Howlett

and Lakhmi C. Jain (Eds.)

New Directions in Intelligent Interactive Multimedia,2008

ISBN 978-3-540-68126-7

Vol. 143. Uday K. Chakraborty (Ed.)

Advances in Differential Evolution, 2008

ISBN 978-3-540-68827-3

Vol. 144.Andreas Fink and Franz Rothlauf (Eds.)

Advances in Computational Intelligence in Transport, Logistics,

and Supply Chain Management, 2008

ISBN 978-3-540-69024-5

Vol. 145. Mikhail Ju. Moshkov, Marcin Piliszczuk

and Beata Zielosko

Partial Covers, Reducts and Decision Rules in Rough Sets, 2008

ISBN 978-3-540-69027-6

Vol. 146. Fatos Xhafa and Ajith Abraham (Eds.)

Metaheuristics for Scheduling in Distributed Computing
Environments, 2008

ISBN 978-3-540-69260-7

Vol. 147. Oliver Kramer

Self-Adaptive Heuristics for Evolutionary Computation, 2008

ISBN 978-3-540-69280-5

Vol. 148. Philipp Limbourg

Dependability Modelling under Uncertainty, 2008

ISBN 978-3-540-69286-7

Vol. 149. Roger Lee (Ed.)

Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2008

ISBN 978-3-540-70559-8

Vol. 150. Roger Lee (Ed.)

Software Engineering Research, Management and

Applications, 2008

ISBN 978-3-540-70774-5

Vol. 151. Tomasz G. Smolinski, Mariofanna G. Milanova

and Aboul-Ella Hassanien (Eds.)

Computational Intelligence in Biomedicine and Bioinformatics,
2008

ISBN 978-3-540-70776-9

Vol. 152. Jaros�law Stepaniuk

Rough – Granular Computing in Knowledge Discovery and Data
Mining, 2008

ISBN 978-3-540-70800-1



Jaros�law Stepaniuk

Rough – Granular Computing
in Knowledge Discovery
and Data Mining

123



Professor Jaros�law Stepaniuk
Department of Computer Science
Bialystok University of Technology
Wiejska 45A, 15-351 Bialystok
Poland
Email: jstepan@wi.pb.edu.pl

ISBN 978-3-540-70800-1 e-ISBN 978-3-540-70801-8

DOI 10.1007/978-3-540-70801-8

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008931009

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the

material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data

banks.Duplication of this publication or parts thereof is permitted only under the provisions of

the German Copyright Law of September 9, 1965, in its current version, and permission for use

must always be obtained from Springer.Violations are liable to prosecution under the German

Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from

the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



To
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Foreword

If controversies were to arise, there would be no more need of
disputation between two philosophers than between two

accountants. For it would suffice to take their pencils in their hands,
and say to each other: ‘Let us calculate’.
Gottfried Wilhelm Leibniz (1646–1716)

Dissertio de Arte Combinatoria (Leipzig, 1666)

Gottfried Wilhelm Leibniz, one of the greatest mathematicians, discussed calculi
of thoughts. Only much later, did it become evident that new tools are necessary
for developing such calculi, e.g., due to the necessity of reasoning under uncer-
tainty about objects and (vague) concepts. Fuzzy set theory (Lotfi A. Zadeh,
1965) and rough set theory (Zdzis�law Pawlak, 1982) represent two different ap-
proaches to vagueness. Fuzzy set theory addresses gradualness of knowledge,
expressed by the fuzzy membership, whereas rough set theory addresses granu-
larity of knowledge, expressed by the indiscernibility relation. Granular comput-
ing (Zadeh, 1973, 1998) is currently regarded as a unified framework for theories,
methodologies and techniques for modeling calculi of thoughts, based on objects
called granules.

The book “Rough–Granular Computing in Knowledge Discovery and Data
Mining” written by Professor Jaroslaw Stepaniuk is dedicated to methods based
on a combination of the following three closely related and rapidly growing ar-
eas: granular computing, rough sets, and knowledge discovery and data mining
(KDD). In the book, the KDD foundations based on the rough set approach
and granular computing are discussed together with illustrative applications. In
searching for relevant patterns or in inducing (constructing) classifiers in KDD,
different kinds of granules are modeled. In this modeling process, granules called
approximation spaces play a special rule. Approximation spaces are defined by
neighborhoods of objects and measures between sets of objects. In the book,
the author underlines the importance of approximation spaces in searching for



VIII Foreword

relevant patterns and other granules on different levels of modeling for com-
pound concept approximations. Calculi on such granules are used for modeling
computations on granules in searching for target (sub) optimal granules and their
interactions on different levels of hierarchical modeling. The methods based on
the combination of granular computing, the rough and fuzzy set approaches al-
low for an efficient construction of the high quality approximation of compound
concepts.

The book “Rough–Granular Computing in Knowledge Discovery and Data
Mining” is an important contribution to the literature. The author and the
publisher, Springer, deserve our thanks and congratulations.

March 30, 2008 Andrzej Skowron
Warsaw, Poland



Preface

The purpose of computing is insight, not numbers.
Richard Wesley Hamming (1915–1998)

Art of Doing Science and Engineering: Learning to Learn

Lotfi Zadeh has pioneered a research area known as computing with words. The
objective of this research is to build intelligent systems that perform compu-
tations on words rather than on numbers. The main notion of this approach
is related to information granulation. Information granules are understood as
clumps of objects that are drawn together by similarity, indiscernibility or func-
tionality. Granular computing may be regarded as a unified framework for theo-
ries, methodologies and techniques that make use of information granules in the
process of problem solving.

Zdzia�law Pawlak has pioneered a research area known as rough sets. A lot of
interesting results were obtained in this area. We only mention that, recently,
the seventh volume of an international journal, Transactions on Rough Sets
was published. This journal, a subline in the Springer series Lecture Notes in
Computer Science, is devoted to the entire spectrum of rough set related issues,
starting from foundations of rough sets to relations between rough sets and
knowledge discovery in databases and data mining.

This monograph is dedicated to a newly emerging approach to knowledge dis-
covery and data mining, called rough–granular computing. The emerging con-
cept of rough–granular computing represents a move towards intelligent systems.
While inheriting various positive characteristics of the parent subjects of rough
sets, clustering, fuzzy sets, etc., it is hoped that the new area will overcome
many of the limitations of its forebears. A principal aim of this monograph is
to stimulate an exploration of ways in which progress in data mining can be
enhanced through integration with rough sets and granular computing.



X Preface

The monograph has been very much enriched thanks to foreword written by
Professor Andrzej Skowron. I also would like to thank him for his encouragement
and advice.

I am very thankful to Professor Janusz Kacprzyk who supported the idea of
this book.

The research was supported by the grants N N516 069235 and N N516 368334
from Ministry of Science and Higher Education of the Republic of Poland and
by the grant Innovative Economy Operational Programme 2007-2013 (Priority
Axis 1. Research and development of new technologies) managed by Ministry of
Regional Development of the Republic of Poland.

April 2008 Jaros�law Stepaniuk
Bia�lystok, Poland
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1 Introduction

The amount of electronic data available is growing very fast and this explosive
growth in databases has generated a need for new techniques and tools that can
intelligently and automatically extract implicit, previously unknown, hidden and
potentially useful information and knowledge from these data. These tools and
techniques are the subject of the fields of knowledge discovery in databases and
data mining.

In [218] ten most important problems in data mining research were identified.
We summarize ten problems below:

1. Developing a unifying theory of data mining. The current state of the
art of data mining research seems too ad-hoc. Many techniques are designed
for individual problems, such as classification of objects or clustering, but
there is no unifying theory. However, a theoretical framework that unifies
different data mining tasks including clustering, classification, association
rules would help the field and provide a basis for future research.

2. Scaling up for high dimensional data and high speed data streams.

One challenge is how to design classifiers to handle ultra-high dimensional
classification problems. There is a strong need now to build useful classifiers
with hundreds of millions of attributes, for applications such as text mining
and drug safety analysis. Such problems often begin with tens of thousands of
attributes and also with interactions between the attributes, so the number
of discovered new attributes gets huge quickly. One important problem is
mining data streams in extremely large databases.

3. Mining sequence data and time series data. Sequential and time se-
ries data mining remains an important problem. Despite progress in other
related fields, how to efficiently cluster, classify and predict the trends of
these data is still an important open topic. Examples of these applications
include the predictions of financial time series and seismic time series. In
[60] is proposed approach to evaluating perception that provides a basis for
optimizing various tasks related to discovery of compound granules repre-
senting process models, their interaction, or approximation of trajectories of

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 1–9, 2008.
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2 Introduction

discovered models of processes. In [62] and [63] is proposed a new approach
to the linguistic summarization of time series data.

4. Mining complex knowledge from complex data. One important type
of complex knowledge can occur when mining data from multiple relations.
In most domains, the objects of interest are not independent of each other,
and are not of a single type. We need data mining systems that can soundly
mine the rich structure of relations among objects, such as interlinked Web
pages, social networks, metabolic networks in the cell, etc. In particular, one
important area is to incorporate background knowledge into data mining.

5. Data mining in a network setting. Network mining problems pose a
key challenge. Network links are increasing in speed. To be able to detect
anomalies (e.g. sudden traffic spikes due to a denial of service attack or
catastrophic event), service providers will need to be able to capture IP
packets at high link speeds and also analyze massive amounts of data each
day. One will need highly scalable solutions for this problem.

6. Distributed data mining and mining multi-agent data. The problem
of distributed data mining is very important in network problems. In a dis-
tributed environment the problem is to discover patterns in the global data
seen at all the different places. There could be different models of distributed
data mining, but the goal obviously would be to minimize the amount of data
shipped between the various sites essentially, to reduce the communication
overhead. In distributed mining, one problem is how to mine across multiple
heterogeneous data sources: multi-database and multi-relational mining.

7. Data mining for biological and environmental problems. Many re-
searchers believe that mining biological data continues to be an extremely
important problem, both for data mining research and for biomedical
sciences.

8. Data mining process-related problems. Important topics exist in im-
proving data-mining tools and processes through automation. Specific issues
include how to automate the composition of data mining operations and
building a methodology into data mining systems to help users avoid many
data mining mistakes. There is also a need for the development of a theory
behind interactive exploration of complex data.

9. Security, privacy and data integrity. Related to the data integrity as-
sessment issue, the two most significant challenges are: develop efficient al-
gorithms for comparing the knowledge contents of the two (before and after)
versions of the data, and develop algorithms for estimating the impact that
certain modifications of the data have on the statistical significance of indi-
vidual patterns obtainable by broad classes of data mining algorithms.

10. Dealing with non-static, unbalanced and cost-sensitive data. An
important issue is that the learned pattern should incorporate time because
data is not static and is constantly changing in many domains. Another
related issue is how to deal with unbalanced and cost-sensitive data, a major
challenge in data mining research.
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In this book we discuss selected rough-granular computing solutions to some
above mentioned data mining problems.

Granular computing is inspired by Zadeh’s definition of information granule:
“Information granule is a clump of objects drawn together by indiscernibility,
similarity or functionality.” We start from elementary granules based on indis-
cernibility classes (as in the standard rough set model) and tolerance classes (as
in the tolerance rough set model) and investigate complex information granules.
Granular computing (GC, in short) may be regarded as a unified framework
for theories and methodologies that make use of granules in the process of prob-
lem solving. Granulation leads to information compression. Therefore computing
with granules, rather than objects provides gain in computation time, thereby
making the role of granular computing significant in knowledge discovery and
data mining.

Rough-granular computing (RGC, in short) is defined as granular computing
based on the rough set approach.

Knowledge Discovery in Databases (KDD, for short) has been defined as “the
nontrivial extraction of implicit, previously unknown, and potentially useful in-
formation from data” [21, 34]. Among others, it uses machine learning, rough
sets, statistical and visualization techniques to discover and present knowledge
in a form easily comprehensible to humans. Knowledge discovery is a process
which helps to make sense of data in a more readable and applicable form. It
usually involves at least one of two different goals: description and classification
(prediction). Description focuses on finding user-interpretable patterns describ-
ing the data. Classification (prediction) involves using some attributes in the
data table to predict values (future values) of other attributes (see. e.g. [71]).

The theory of rough sets provides a powerful foundation for discovery of im-
portant regularities in data and for objects classification. In recent years nu-
merous successful applications of rough set methods for real-life data have been
developed (see e.g. [103, 106, 108, 109, 110, 123, 124]).

We will now describe in some detail main contributions of this book.

Rough sets: classification of objects by means of attributes. Rough set
approach has been used in a lot of applications aimed to description of concepts.
In most cases only approximate descriptions of concepts can be constructed be-
cause of incomplete information about them. Let us consider a typical example
for classical rough set approach when concepts are described by positive and
negative examples. In such situations it is not always possible describe concepts
exactly, since some positive and negative examples of the concepts being de-
scribed inherently can not be distinguished one from another. Rough set theory
was proposed [106] as a new approach to vague concept description from incom-
plete data. The rough set approach to processing of incomplete data is based
on the lower and the upper approximation. The rough set is defined as the pair
of two crisp sets corresponding to approximations. If both approximations of a
given subset of the universe are exactly the same, then one can say that the
subset mentioned above is definable with respect to available information. Oth-
erwise, one can consider it as roughly definable. Suppose we are given a finite
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non-empty set U of objects, called the universe. Each object of U is character-
ized by a description constructed, for example from a set of attribute values.
In standard rough set approach [106] introduced by Pawlak an equivalence re-
lation (reflexive, symmetric and transitive relation) on the universe of objects
is defined from equivalence relations on the attribute values. In particular, this
equivalence relation is constructed assuming the existence of the equality relation
on attribute values. Two different objects are indiscernible in view of available
information, because with these objects the same information can be associated.
Thus, information associated with objects from the universe generates an indis-
cernibility relation in this universe. In the standard rough set model the lower
approximation of any subset X ⊆ U is defined as the union of all equivalence
classes fully included in X. On the other hand the upper approximation of X

is defined as the union of all equivalence classes with a non-empty intersection
with X.

In real data sets usually there is some noise, caused for example from impre-
cise measurements or mistakes made during collecting data. In such situations
the notions of ”full inclusion” and ”non-empty intersection” used in approxima-
tions definition are too restrictive. Some extensions in this direction have been
proposed by Ziarko in the variable precision rough set model [229].

The indiscernibility relation can be also employed in order to define not only
approximations of sets but also approximations of relations [29, 43, 101, 105,
138, 141, 177, 185]. Investigations on relation approximation are well motivated
both from theoretical and practical points of view. Let us bring two examples.
The equality approximation is fundamental for a generalization of the rough
set approach based on a similarity relation approximating the equality relation
in the value sets of attributes. Rough set methods in control processes require
function approximation.

However, the classical rough set approach is based on the indiscernibility re-
lation defined by means of the equality relations in different sets of attribute
values. In many applications instead of these equalities some similarity (toler-
ance) relations are given only. This observation has stimulated some researchers
to generalize the rough set approach to deal with such cases, i.e., to consider
similarity (tolerance) classes instead of the equivalence classes as elementary de-
finable sets. There is one more basic notion to be considered, namely the rough
inclusion of concepts. This kind of inclusion should be considered instead of the
exact set equality because of incomplete information about the concepts. The
two notions mentioned above, namely the generalization of equivalence classes
to similarity classes (or in more general cases to some neighborhoods) and the
equality to rough inclusion have lead to a generalization of classical approxima-
tion spaces defined by the universe of objects together with the indiscernibility
relation being an equivalence relation. We discuss applications of such approxi-
mation spaces for solution of some basic problems related to concept descriptions.

One of the problems we are interested in is the following: given a subset X ⊆ U

or a relation R ⊆ U ×U, define X or R in terms of the available information. We
discuss an approach based on generalized approximation spaces introduced and
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investigated in [141, 145]. We combine in one model not only some extension of
an indiscernibility relation but also some extension of the standard inclusion used
in definitions of approximations in the standard rough set model. Our approach
allows to unify different cases considered for example in [106, 229].

There are several modifications of the original approximation space definition
[106]. The first one concerns the so called uncertainty function. Information
about an object, say x is represented for example by its attribute value vector.
Let us denote the set of all objects with similar (to attribute value vector of x)
value vectors by I (x). In the standard rough set approach [106] all objects with
the same value vector create the indiscernibility class. The relation y ∈ I (x) is in
this case an equivalence relation. The second modification of the approximation
space definition introduces a generalization of the rough membership function
[107]. We assume that to answer a question whether an object x belongs to an
object set X we have to answer a question whether I (x) is in some sense included
in X.

Approximation spaces based on uncertainty functions and rough inclusions were
also investigated in [142, 145, 158, 186, 189]. Some comparison of standard ap-
proximation spaces [106] and the above mentioned approach in approximation of
concepts was presented in [42].

Reducts. We start with short history about top data mining algorithms [217].
Finding reduct algorithm [106] was in the nominations for top ten data mining
algorithms. ACM KDD Innovation Award and IEEE ICDM Research Contribu-
tions Award winners nominate up to 10 best-known algorithms in data mining.
Each nomination was verified for its citations on Google Scholar. Finding reduct
algorithm was in the 18 identified candidates for top ten algorithms in data
mining (for more details see [217]).

The ability to discern between perceived objects is important for constructing
many entities like reducts, decision rules or decision algorithms. In the classical
rough set approach the discernibility relation is defined as the complement of
the indiscernibility relation. However, this is, in general, not the case for the
generalized approximation spaces. The idea of Boolean reasoning is based on
construction for a given problem P a corresponding Boolean function gP with
the following property: the solutions for the problem P can be decoded from
prime implicants of the Boolean function gP . Let us mention that to solve real-
life problems it is necessary to deal with Boolean functions having large number
of variables. A successful methodology based on the discernibility of objects and
Boolean reasoning has been developed for computing of many important for
applications entities like reducts and their approximations, decision rules, as-
sociation rules, discretization of real value attributes, symbolic value grouping,
searching for new features defined by oblique hyperplanes or higher order sur-
faces, pattern extraction from data as well as conflict resolution or negotiation
(for references see the papers and bibliography in [103, 123, 124]). Most of the
problems related to generation of the above mentioned entities are NP-complete
or NP-hard. However, it was possible to develop efficient heuristics returning
suboptimal solutions of the problems. The results of experiments on many data
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sets are very promising. They show very good quality of solutions generated by
the heuristics in comparison with other methods reported in literature (e.g. with
respect to the classification quality of unseen objects). Moreover, they are very
efficient from the point of view of time necessary for computing of the solution. It
is important to note that the methodology allows to construct heuristics having
a very important approximation property which can be formulated as follows:
expressions generated by heuristics (i.e., implicants) close to prime implicants
define approximate solutions for the problem. The detailed comparison of rough
set classification methods based on combination of Boolean reasoning and ap-
proximate Boolean reasoning methodology and discernibility notion with other
classification methods one can find in books [103, 123, 124] and in paper [95].

Methods of Boolean reasoning for reducts and rule computation in standard
and tolerance rough set model were also investigated in [95, 145, 186, 189].

Knowledge discovery in medical data. Developed so far rough set methods
have shown to be very useful in many real life applications. Rough set based
software systems, such as RSES [15], ROSETTA [100], LERS [44], [45] and Rough
Family [166] have been applied to KDD problems. The patterns discovered by the
above systems are expressed in attribute-value languages. There are numerous
areas of successful applications of rough set software systems (for reviews see
[104]).

We present applications of rough set and clustering methods to knowledge dis-
covery in real life medical data set [187, 189, 197]. We consider four sub-tasks:

• identification of the most relevant condition attributes,
• application of nearest neighbor algorithms for rough set based reduced data,
• discovery of decision rules characterizing the dependency between values of

condition attributes and decision attribute,
• information granulation using clustering.

The nearest neighbor paradigm provides an effective approach to classifica-
tion and is one of the top ten algorithms in data mining [217]. The k-nearest
neighbor (kNN) classification finds a group of k objects in the training set that
are closest to the test object, and bases the assignment of a decision class on
the predominance of a particular class in this neighborhood. There are three
key elements of this approach: a set of labeled objects, e.g., a decision table, a
distance or similarity metric to compute distance between objects, and the value
of k, the number of nearest neighbors. To classify new object, the distance of this
object to the labeled objects is computed, its k-nearest neighbors are identified,
and the decision class of these nearest neighbors are then used to determine the
decision class the object.

A major advantage of nearest neighbor algorithms is that they are non-
parametric, with no assumptions imposed on the data other than the existence
of a metric. However, nearest neighbor paradigm is especially susceptible to the
presence of irrelevant attributes. We use the rough set approach for selection of
the most relevant attributes within the diabetes data set. Next nearest neighbor
algorithms are applied with respect to reduced set of attributes.
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The medical information system is presented at the end of the paper [189].

Mining knowledge from complex data. In learning approximations of com-
plex concepts there is a need to choose a description language. This choice may
limit the domains to which a given algorithm can be applied. There are at least
two basic types of objects: structured and unstructured. An unstructured ob-
ject is usually described by attribute-value pairs. For objects having an internal
structure first order logic language is often used. In the book we investigate
both types of objects. In the former case we use the propositional language with
atomic formulas being selectors (i.e. pairs attribute=value), in the latter case we
consider the first order language.

Attribute-value languages have the expressive power of propositional logic.
These languages sometimes do not allow for proper representation of complex
structured objects and relations among objects or their components. The back-
ground knowledge that can be used in the discovery process is of a restricted form
and other relations from the database cannot be used in the discovery process.
Using first-order logic (or FOL for short) has some advantages over propositional
logic. First order logic provides a uniform and very expressive means of repre-
sentation. The background knowledge and the examples, as well as the induced
patterns, can all be represented as formulas in a first order language. Unlike
propositional learning systems, the first order approaches do not require that
the relevant data be composed into single relation but, rather can take into
account data, which is organized in several database relations with various con-
nections existing among them. First order logic can face problems which cannot
be reduced to propositional logics, such as recurrent structures. On the other
hand, even if a problem can be reduced to propositional logics, the solutions
found in FOL are more readable and simpler than the corresponding ones in
propositional logics.

We consider some directions in applications of rough set methods to discovery
of interesting patterns expressed in a first order language. The first direction is
based on translation of data represented in first-order language to decision table
[106] format and next on processing by using rough set methods based on the
notion of a reduct. Our approach is based on the iterative checking whether
a new attribute adds to the information [198]. The second direction concerns
reduction of the size of the data in first-order language and is related to results
described in [86, 198]. The discovery process is performed only on well-chosen
portions of data which correspond to approximations in the rough set theory.
Our approach is based on iteration of approximation operators [198]. The third
approach to mining knowledge from complex data is based on the RSRL (Rough
Set Relational Learning) algorithm [194, 195]. Rough set methods in multi-
relational knowledge discovery were also investigated in [191, 192].

Complex concept approximations. One of the rapidly developing areas in
computer science is now granular computing (see e.g. [112, 113, 227, 228]). Sev-
eral approaches have been proposed toward formalization of the Computing with
Words paradigm formulated by Lotfi Zadeh. Information granulation is a very
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natural concept, and appears (under different names) in many methods related
to e.g. data compression, divide and conquer, interval computations, clustering,
fuzzy sets, neighborhood systems, and rough sets among others. Notions of a
granule and granule similarity (inclusion or closeness) are also very natural in
knowledge discovery.

We present a rough set approach for granular computing. The presented ap-
proach seems to be important for knowledge discovery in distributed environment
and for extracting generalized patterns from data (see problem “Distributed data
mining and mining multi-agent data” [218]). We discuss the basic notions related
to information granulation, namely the information granule syntax and seman-
tics as well as the inclusion and closeness (similarity) relations of granules. We
discuss some problems of generalized pattern extraction from data assuming
knowledge is represented in the form of information granules. We emphasize the
importance of information granule application to extract robust patterns from
data. We also propose to use complex information granules to extract patterns
from data in distributed environment. These patterns can be treated as a gen-
eralization of association rules.

Information granules synthesis in knowledge discovery was also investigated
in [149, 150, 190].

One of the main goals of the book is to illustrate different important is-
sues of granular computing by examples based on the rough set approach. In
Chapters 2, 4, and 5 are presented methods for defining granules on different
levels of modeling, e.g., elementary granules, approximation spaces, classifiers
or clusters. Moreover, approximations of granules defined by decision classes by
granules defined by conditional attributes are used as examples of some other
more compound granules. In Chapter 2, are also presented examples of quality
measures defined on granules and the optimization measures used in searching
for the target granules. The description size of granules is another important
issue of GC. Different kinds of reducts discussed in Chapter 3 can be treated
as illustrative examples related to this issue. Granules are constructed under
uncertainty from samples of some more elementary granules. Hence, methods
for inducing granules with relevant properties on their extensions play impor-
tant role in GC. Strategies for inducing classifiers and clusters discussed in
Chapters 4 and 5 are examples of such methods. Among such methods are
methods for fusion of the existing granules for obtaining more general relevant
granules. This also requires developing of the quality measures used for defining
the qualities of more compound granules from the qualities of less compound
ones. Examples of granules used in data mining from complex data are included
in Chapter 7. A general discussion on granular computing in searching for the
complex concept approximations is presented in Chapter 8.

The organization of the book is as follows.
In Chapter 2 we discuss standard and extended rough set models.
In Chapter 3 we discuss reducts and representatives in standard and tolerance

rough set models.
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In Chapter 4 we investigate decision rules generation in standard and tolerance
rough set models. We discuss also different quantitative measures associated with
rules.

In Chapter 5 we discuss selected clustering algorithms. We also present some
quality measures of information granulation.

In Chapter 6 we investigate knowledge discovery in real life medical data table.
In Chapter 7 we apply rough set concepts to mining knowledge from complex

data.
In Chapter 8 we discuss information granules in complex concepts approxi-

mation.
At the end of the book, we give a literature in two parts:

• bibliography (cited in the book),
• further readings (books and reviews uncited in the book but of interest for

further information).



2 Rough Sets

Rough set theory due to Zdzis�law Pawlak (1926–2006) [106, 108, 109, 110], is
a mathematical approach to imperfect knowledge. The problem of imperfect
knowledge has been tackled for a long time by philosophers, logicians and math-
ematicians. Recently it has become a crucial issue for computer scientists as
well, particularly in the area of computational intelligence [129], [99]. There are
many approaches to the problem of how to understand and manipulate imperfect
knowledge. The most successful one is, no doubt, the fuzzy set theory proposed
by Lotfi A. Zadeh [226]. Rough set theory presents still another attempt to solve
this problem. It is based on an assumption that objects are perceived by partial
information about them. Due to this some objects can be indiscernible. Indis-
cernible objects form elementary granules. From this fact it follows that some
sets can not be exactly described by available information about objects. They
are rough not crisp. Any rough set is characterized by its (lower and upper)
approximations.

One of the consequences of perceiving objects using only available information
about them is that for some objects one cannot decide if they belong to a given set
or not. However, one can estimate the degree to which objects belong to sets. This
is another crucial observation in building foundations for approximate reasoning.
In dealing with imperfect knowledge one can only characterize satisfiability of
relations between objects to a degree, not precisely. Among relations on objects
the rough inclusion relation, which describes to what degree objects are parts
of other objects, plays a special role. A rough mereological approach (see, e.g.,
[104, 122, 154]) is an extension of the Leśniewski mereology [77] and is based on
the relation to be a part to a degree. It will be interesting to note here that Jan
�Lukasiewicz was the first who started to investigate the inclusion to a degree of
concepts in his discussion on relationships between probability and logical calculi
[79].

In the rough set approach, we are searching for data models using the minimal
length principles. Searching for models with small size is performed by means of
many different kinds of reducts, i.e., minimal sets of attributes preserving some
constraints (see Chapter 3).

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 13–41, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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One of the very successful techniques for rough set methods is Boolean reason-
ing. The idea of Boolean reasoning is based on constructing for a given problem
P a corresponding Boolean function gP with the following property: the solu-
tions for the problem P can be decoded from prime implicants of the Boolean
function gP (see Figure 3.1). It is worth to mention that to solve real-life prob-
lems it is necessary to deal with Boolean functions having a large number of
variables.

A successful methodology based on the discernibility of objects and Boolean
reasoning has been developed in rough set theory for the computing of many
key constructs like reducts and their approximations, decision rules, association
rules, discretization of real value attributes, symbolic value grouping, searching
for new features defined by oblique hyperplanes or higher order surfaces, pat-
tern extraction from data as well as conflict resolution or negotiation (see, e.g.,
[95, 134]). Most of the problems involving the computation of these entities are
NP-complete or NP-hard. However, we have been successful in developing effi-
cient heuristics yielding sub-optimal solutions for these problems. The results of
experiments on many data sets are very promising. They show very good qual-
ity of solutions generated by the heuristics in comparison with other methods
reported in literature (e.g., with respect to the classification quality of unseen
objects). Moreover, they are very time-efficient. It is important to note that the
methodology makes it possible to construct heuristics having a very important
approximation property. Namely, expressions generated by heuristics (i.e., im-
plicants) close to prime implicants define approximate solutions for the problem
(see, e.g., [15]).

Standard rough set model is based on equivalence relations (see Section 2.1.3).
The notion of tolerance relation (see Section 2.1.4) is a basis for tolerance rough
set model. In this chapter we discuss basic concepts for standard and tolerance
rough set models. We investigate an idea to turn the equivalence into tolerance
relation, for more expressive modeling of the lower and upper approximations of
a crisp set.

The chapter is organized as follows. In Section 2.1 we recall basic concepts
of equivalence relations and tolerance relations. In Section 2.2 the notion of
information system is recalled. In Section 2.3 properties of approximations in
generalized approximation spaces are discussed. In Section 2.4 approximations
of relations are investigated. In Section 2.5 the notion of function approxima-
tion is discussed. In Section 2.6 we discuss in detail some quality measures of
approximation spaces. In Section 2.7 we discuss conventional and evolutionary
strategies for learning approximation space from data. In Section 2.8 we give
general remarks about rough sets in concept approximation.

2.1 Preliminary Notions

Based on the literature, in this section we discuss basic concepts of equivalence
relations and tolerance relations.
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2.1.1 Sets

The notion of a set is a basic one of mathematics. Most mathematical structures
refer to it. The area of mathematics that deals with collections of objects, their
properties and operations is called set theory. The creation of set theory is due
to German mathematician Georg Cantor (1845–1918).

The fact that an element x belongs to a set X is denoted by x ∈ X and the
notation x /∈ Y denotes that the element x is not a member of the set Y.

For the finite set X , cardinality, denoted by card(X), is the number of set
elements. For example, card({1, a, 2}) = 3.

A set X is a subset of set Y (X ⊆ Y ) if and only if every element of X is also
member of set Y .

The power set of a given set X (denoted by P (X)) is the collection of all
possible subsets of X. For example, the power set of the set X = {1, a, 2} is
P (X) = {∅, {1}, {a}, {2}, {1, a}, {1, 2}, {a, 2}, {1, a, 2}}.

Let X = {x1, x2, . . .} and Y = {y1, y2, . . .}. The Cartesian product of two sets
X and Y , denoted by X × Y, is the set of all ordered pairs (x, y) of elements
x ∈ X and y ∈ Y.

Given a non-empty set U , any subset R ⊆ U × U is called a binary relation
in U.

2.1.2 Properties of Relations

We consider here certain properties of binary relations.

Definition 2.1. Reflexivity. Given a non-empty set U and a binary relation
R ⊆ U × U, R is reflexive if and only if all the ordered pairs of the form (x, x)
are in R for every x ∈ U .

A relation which fails to be reflexive is called nonreflexive. We always consider
relations in some set and a relation (considered as a set of ordered pairs) can have
different properties in different sets. For example, the relation R = {(1, 1), (2, 2)}
is reflexive in the set U1 = {1, 2} and nonreflexive in U2 = {1, 2, 3} since it lacks
the pair (3, 3).

Definition 2.2. Symmetry. A relation R ⊆ U × U, is symmetric if and only
if for every ordered pair (x, y) ∈ U × U if (x, y) is in R, then the pair (y, x) is
also in R.

If for some (x, y) ∈ R, the pair (y, x) is not in R, then R is nonsymmetric.

Definition 2.3. Transitivity. A relation R ⊆ U × U, is transitive if and only
if for all x, y, z ∈ U if (x, y) ∈ R and (y, z) ∈ R, then the pair (x, z) is in R.

Using properties of relations we can consider some important classes of rela-
tions,namely, equivalence relations and tolerance relations.
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2.1.3 Equivalence Relations

Definition 2.4. An equivalence relation is a relation which is reflexive, symmet-
ric and transitive.

For every equivalence relation there is a natural way to divide the set on which it
is defined into mutually exclusive (disjoint) subsets which are called equivalence
classes. We write [x]R for the set of all y such that (x, y) ∈ R. Thus, when
R ⊆ U ×U is an equivalence relation, [x]R is the equivalence class which contains
x. The set U/R = {[x]R : x ∈ U} is called a quotient set of the set U by the
equivalence R. U/R is a subset of P (U) (the set of all subsets of U).

The relations “has the same hair color as” or “is the same age as” in the set
of people are equivalence relations. The equivalence classes under the relation
“has the same hair color as” are the set of blond people, the set of red-haired
people, etc.

Definition 2.5. Partition. Given a non-empty set U, a partition of U is a
collection of non-empty subsets of U such that

1. for any two distinct subsets X ⊆ U and Y ⊆ U , X ∩ Y = ∅,
2. the union of all the subsets in collection equals U.

Let us consider the set U = {1, a, 2}. The set {{1, 2}, {a}} is a partition of the
set U. However, the set {{1, 2}, {1, a}} is not a partition, because its members
are not disjoint.

The subsets of U that are members of a partition of U are called cells of
that partition. There is a close correspondence between partitions and equiva-
lence relations. Given a partition of set U, the relation R = {(x, y) ∈ U × U :
x and y are in the same cell of the partition of U} is an equivalence relation in
U. Conversely, given an equivalence relation R in U, there exists a partition of
U in which x and y are in the same cell if and only if (x, y) ∈ R.

2.1.4 Tolerance Relations

Definition 2.6. A relation R ⊆ U × U is called a tolerance relation if and only
if it is reflexive and symmetric.

So tolerance is weaker than equivalence; it does not need to be transitive. The
notion of tolerance relation is an explication of similarity or closeness. Relations
“neighbor of”, “friend of” can be considered as examples if we hold that every
person is a neighbor and a friend to him(her)self. As analogs of equivalence
classes and partitions, here we have tolerance classes and coverings. A set X ⊆ U
is called a tolerance preclass if it holds that for all x, y ∈ X, x and y are tolerant,
i.e. (x, y) ∈ R. A maximum preclass is called a tolerance class. So two tolerance
classes can have common elements.

Definition 2.7. Covering. Given a non-empty set U, a collection (set) P of
non-empty subsets of U such that

⋃

X∈P = U is called a covering of U.
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Given a tolerance relation in U, the collection of its tolerance classes forms a
covering of U. Every partition is a covering but not every covering is a partition.
For example, the set {{1, 2}, {1, a}} is a covering of the set U = {1, a, 2}.

2.2 Information Systems

In his seminal book, Pawlak [106] introduced the notion of information system,
also determined as knowledge representation system. In this section, we recall
some basic definitions.

Let U denote a finite non-empty set of objects, to be called the universe.
Further, let A denote a finite non-empty set of attributes. Every attribute a ∈ A
is a function

a : U → Va,

where Va is the set of all possible values of a, to be called the domain of a. In
the sequel, a(x), a ∈ A and x ∈ U, denotes the value of attribute a for object x.

Definition 2.8. A pair IS = (U, A) is an information system.

Usually, the specification of an information system can be presented in tabular
form.

Each subset of attributes B ⊆ A determines a binary B − indiscernibility
relation IND(B) consisting of pairs of objects indiscernible with respect to at-
tributes from B. Thus, IND(B) = {(x, y) ∈ U ×U : ∀a∈Ba(x) = a(y)}. IND(B)
is an equivalence relation and determines a partition of U, which is denoted by

Table 2.1. An Information System

U a1 a2 a3

x1 f early school short

x2 m preschool short

x3 f adolescence medium

x4 m preschool short

x5 m early school short

x6 m adolescence short

x7 f adolescence long

x8 f preschool medium

x9 m adolescence medium

Table 2.2. Partitions Defined by Indiscernibility Relations

IND(•) Partition U/IND(•)

{a1} {{x1, x3, x7, x8}, {x2, x4, x5, x6, x9}}

{a1, a2} {{x1}, {x2, x4}, {x3, x7}, {x5}, {x6, x9}, {x8}}

{a1, a2, a3} {{x1}, {x2, x4}, {x3}, {x5}, {x6}, {x7}, {x8}, {x9}}
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U/IND(B). The set of objects indiscernible with an object x ∈ U with respect
to B in IS is denoted by IB(x) and is called B − indiscernibility class. Thus,
IB(x) = {y ∈ U : (x, y) ∈ IND(B)} and U/IND(B) = {IB(x) : x ∈ U}.

Definition 2.9. A pair ASB = (U, IND(B)) is a standard approximation space
for the information system IS = (U, A), where B ⊆ A.

Example 2.10. The information system was adopted from the paper [189]. This
is the real life medical data set (see Chapter 6 for more details). For simplicity of
presentation we only consider part of this data set, namely IS = (U, A) , where
U = {x1, . . . x9} and A = {a1, a2, a3} . The attribute a1 means sex, the attribute
a2 means age of disease diagnosis and the attribute a3 means disease dura-
tion (see Table 2.1). We obtain Va1

= {f, m}, Va2
= {preschool, early school,

adolescence} and Va3
= {short, medium, long}.

Some examples of partitions defined by indiscernibility relations for informa-
tion system in Table 2.1 are given in Table 2.2.

In his book, Pawlak [106] gives also a formal definition of a decision table. An
information system with distinguished conditional attributes and decision at-
tribute is called a decision table.

Definition 2.11. A tuple DT = (U, A ∪ {d}), where d /∈ A is a decision table.

We will also use notation (U, A, d) for the decision table DT.

2.3 Approximation Spaces

In this section, we recall the definition of an approximation space from [141],
[145], [186], [189]. Approximation spaces can be treated as granules used for con-
cept approximation. They are some special parameterized relational structures.
Tuning of parameters makes it possible to search for relevant approximation
spaces relative to given concepts.

For every non-empty set U, let P (U) denote the set of all subsets of U (the
power set of U).

Definition 2.12. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

• U is a non-empty set of objects,
• I# : U → P (U) is an uncertainty function,
• ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).

An idea of approximation space is depicted on Figure 2.1.



Approximation Spaces 19

Fig. 2.1. Parameterized Approximation Space

2.3.1 Uncertainty Function

The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [106, 145]).

We assume that the values of the uncertainty function are defined using a
sensory environment, i.e., a pair (L, ‖ · ‖U ), where L is a set of formulas, called
the sensory formulas, and ‖ · ‖U : L −→ P (U) is the sensory semantics. We
assume that for any sensory formula α and any object x ∈ U the information if
x ∈ ‖α‖U holds is available. The set {α : x ∈ ‖α‖U} is called the signature of x in
AS and is denoted by InfAS(x). For any x ∈ U the set NAS(x) of neighborhoods
of x in AS is defined by NAS(x) = {‖α‖U : x ∈ ‖α‖U} and from this set the
neighborhood I(x) is constructed. For example, I(x) is defined by selecting an
element from the set {‖α‖U : x ∈ ‖α‖U} or by I(x) =

⋂

NAS(x). Observe that
any sensory environment (L, ‖ · ‖U ) can be treated as a parameter of I from the
vector # (see Definition 2.12).

Let us consider two examples.

Example 2.13. Any decision table DT = (U, A, d) [106] defines an approximation
space ASDT = (U, IA, ν$), where, as we will see, IA(x) = {y ∈ U : a(y) = a(x)



20 Rough Sets

for all a ∈ A}. Any sensory formula is a descriptor (selector), i.e., a formula of
the form a = v where a ∈ A and v ∈ Va with the standard semantics ‖a = v‖U =
{x ∈ U : a(x) = v}. Then, for any x ∈ U its signature InfASDT

(x) is equal to
{a = a(x) : a ∈ A} and the neighborhood IA(x) is equal to

⋂

NASDT
(x).

Example 2.14. Another example can be obtained assuming that for any a ∈
A there is given a tolerance relation τa ⊆ Va × Va (see, e.g., [145]). Let τ =
{τa}a∈A. Then, one can consider a tolerance decision table DTτ = (U, A, d, τ)
with tolerance descriptors a =τa

v and their semantics ‖a =τa
v‖U = {x ∈

U : vτaa(x)}. Any such tolerance decision table DTτ = (U, A, d, τ) defines the
approximation space ASDTτ

= (U, IA, ν$) with the signature InfASDTτ
(x) =

{a =τa
a(x) : a ∈ A} and the neighborhood IA(x) =

⋂

NASDTτ
(x) for any

x ∈ U .

The fusion of NASDTτ
(x) for computing the neighborhood of x can have many

different forms; the intersection is only an example. One can also consider some
more general uncertainty functions, e.g., with values in P 2(U) = P (P (U)) [161].
For example, to compute the value of I(x) first some subfamilies of NAS(x) can
be selected and next the family consisting of intersection of each such a subfamily
is taken as the value of I(x).

Note, that any sensory environment (L, ‖ · ‖U ) defines an information system
with the universe U of objects. Any row of such an information system for an
object x consists of information if x ∈ ‖α‖U holds, for any sensory formula
α. Let us also observe that in our examples we have used a simple sensory
language defined by descriptors of the form a = v. One can consider a more
general approach by taking, instead of the simple structure (Va, =), some other
relational structures Ra with the carrier Va for a ∈ A and a signature τ . Then
any formula (with one free variable) from a sensory language with the signature
τ that is interpreted in Ra defines a subset V ⊆ Va and induces on the universe
of objects a neighborhood consisting of all objects having values of the attribute
a in the set V .

Example 2.15. Let us define a language LIS used for elementary granule descrip-
tion, where IS = (U, A) is an information system. The syntax of LIS is defined
recursively by

1. (a in V ) ∈ LIS , for any a ∈ A and V ⊆ Va.
2. If α ∈ LIS then ¬α ∈ LIS .
3. If α, β ∈ LIS then α ∧ β ∈ LIS.
4. If α, β ∈ LIS then α ∨ β ∈ LIS.

The semantics of formulas from LIS with respect to an information system
IS is defined recursively by

1. ‖a in V ‖IS = {x ∈ U : a (x) ∈ V } .
2. ‖¬α‖IS = U − ‖α‖IS .
3. ‖α ∧ β‖IS = ‖α‖IS ∩ ‖β‖IS .
4. ‖α ∨ β‖IS = ‖α‖IS ∪ ‖β‖IS .
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A typical method used by the classical rough set approach [106] for construc-
tive definition of the uncertainty function is the following: for any object x ∈ U
there is given information InfA (x) (information vector, attribute value vector
of x) which can be interpreted as a conjunction EFB (x) of selectors a = a (x)
for a ∈ A and the set I# (x) is equal to ‖EFB (x)‖IS =

∥

∥

∧

a∈A a = a (x)
∥

∥

IS
.

One can consider a more general case taking as possible values of I# (x) any set
‖α‖IS containing x. Next from the family of such sets the resulting neighbor-
hood I# (x) can be selected or constructed. One can also use another approach
by considering more general approximation spaces in which I# (x) is a family of
subsets of U [20], [81].

2.3.2 Rough Inclusion Function

One can consider general constraints which the rough inclusion functions should
satisfy. Searching for such constraints initiated investigations resulting in cre-
ation and development of rough mereology (see, e.g., [118, 122] and the bibli-
ography in [118]). In this subsection, we present only some examples of rough
inclusion functions.

The rough inclusion function ν$ : P (U) × P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X, Y ⊆ U .

In the simplest case the standard rough inclusion function can be defined by
(see, e.g., [106, 145]):

νSRI (X, Y ) =

{

card(X∩Y )
card(X) if X �= ∅

1 if X = ∅.
(2.1)

Some illustrative example is given in Table 2.3.

Table 2.3. Illustration of Standard Rough Inclusion Function

X Y νSRI (X, Y )

{x1, x3, x7, x8} {x2, x4, x5, x6, x9} 0

{x1, x3, x7, x8} {x1, x2, x4, x5, x6, x9} 0.25

{x1, x3, x7, x8} {x1, x2, x3, x7, x8} 1

This measure is widely used by the data mining and rough set communities.
It is worth mentioning that Jan �Lukasiewicz [79] was the first one who used
this idea to estimate the probability of implications. However, rough inclusion
can have a much more general form than inclusion of sets to a degree (see, e.g.,
[118, 122, 161]).

Another example of rough inclusion function νt can be defined using the stan-
dard rough inclusion and a threshold t ∈ (0, 0.5) using the following formula:

νt (X, Y ) =

⎧

⎨

⎩

1 if νSRI (X, Y ) ≥ 1 − t
νSRI(X,Y )−t

1−2t
if t ≤ νSRI (X, Y ) < 1 − t

0 if νSRI (X, Y ) ≤ t

(2.2)
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The rough inclusion function νt is used in the variable precision rough set
approach [229].

Another example of rough inclusion is used for function approximation [161]
and relation approximation [185].

Then the inclusion function ν∗ for subsets X, Y ⊆ U × U , where X, Y ⊆ R
and R is the set of reals, is defined by

ν∗ (X, Y ) =

{

card(π1(X∩Y ))
card(π1(X)) if π1(X) �= ∅

1 if π1(X) = ∅
(2.3)

where π1 is the projection operation on the first coordinate. Assume now, that
X is a cube and Y is the graph G(f) of the function f : R −→ R. Then, e.g.,
X is in the lower approximation of f if the projection on the first coordinate of
the intersection X ∩G(f) is equal to the projection of X on the first coordinate.
This means that the part of the graph G(f) is “well” included in the box X ,
i.e., for all arguments that belong to the box projection on the first coordinate
the value of f is included in the box X projection on the second coordinate.

Usually, there are several parameters that are tuned in searching for a relevant
rough inclusion function. Such parameters are listed in the vector $. An example
of such parameters is the threshold mentioned for the rough inclusion function
used in the variable precision rough set model. We would like to mention some
other important parameters. Among them are pairs (L∗, ‖ · ‖∗U ) where L∗ is an
extension of L and ‖ · ‖∗U is an extension of ‖ · ‖U , where (L, ‖ · ‖U ) is a sensory
environment. For example, if L consists of sensory formulas a = v for a ∈ A and
v ∈ Va then one can take as L∗ the set of descriptor conjunctions. For rule based
classifiers we search in such a set of formulas for patterns relevant for decision
classes.

2.3.3 Lower and Upper Approximations

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2.16. For any approximation space AS#,$ = (U, I#, ν$) and any
subset X ⊆ U , the lower and upper approximations are defined by

LOW
(

AS#,$, X
)

= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(

AS#,$, X
)

= {x ∈ U : ν$ (I# (x) , X) > 0} .

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

The difference between the upper and lower approximation of a given set is
called its boundary region:

BN
(

AS#,$, X
)

= UPP
(

AS#,$, X
)

− LOW
(

AS#,$, X
)

.
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Rough set theory expresses vagueness by employing a boundary region of a set.
If the boundary region of a set is empty it means that the set is crisp, otherwise
the set is rough (inexact). A nonempty boundary region of a set indicates that
our knowledge about the set is not sufficient to define the set precisely. One
can recognize that rough set theory is, in a sense, a formalization of the idea
presented by a German mathematician Gotlob Frege (1848–1925) [37].

Several known approaches to concept approximations can be covered using
the discussed here approximation spaces, e.g., the approach given in [106], ap-
proximations based on the variable precision rough set model [229] or tolerance
(similarity) rough set approximations (see, e.g., [145] and references in [145]).

Rough sets can approximately describe sets of patients, events, outcomes,
keywords, etc. that may be otherwise difficult to circumscribe.

Example 2.17. Let U be a set of patients and we consider two attributes a2 (age
of disease diagnosis) and a3 (disease duration) (see Example 2.10 and Figure
2.2).

Let

Va2
= {preschool, early school, adolescence}

and

Va3
= {short, medium, long}.

In this case we obtain nine granules corresponding to conjunctions of descriptors
e.g.

(a2, preschool) ∧ (a3, medium), (a2, adolescence) ∧ (a3, short), . . .

For a set X of patients the lower and the upper approximation is also depicted
on Figure 2.2.

Example 2.18. We consider parameterized approximation spaces in information
retrieval problem [38, 39]. At first, in order to determine an approximation space,
we choose the universe U as the set of all keywords. Let DOC be a set of
documents, which are described by keywords. Let key : DOC −→ P (U) be a
function mapping documents into sets of keywords. Denote by c (xi, xj), where
c : U ×U −→ {0, 1, 2, . . .} , the frequency of co-occurrence between two keywords
xi and xj i.e.

c (xi, xj) = card ({doc ∈ DOC : {xi, xj} ⊆ key (doc)}) .

We define the uncertainty function Iθ depending on a threshold θ ∈ {0, 1, . . .}
as follows:

Iθ (xi) = {xj ∈ U : c (xi, xj) ≥ θ} ∪ {xi} .

One can consider the standard rough inclusion function.
A query is defined as a set of keywords. Different strategies of information

retrieval based on the lower and the upper approximations of queries and docu-
ments are investigated in [38, 39].
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Fig. 2.2. Approximations in the Standard Rough Set Model

The classification methods for concept approximation developed in machine
learning and pattern recognition make it possible to decide if a given object be-
longs to the approximated concept or not [47]. The classification methods yield
the decisions using only partial information about approximated concepts. This
fact is reflected in the rough set approach by assumption that concept approx-
imations should be defined using only partial information about approximation
spaces. To decide if a given object belongs to the (lower or upper) approximation
of a given concept the rough inclusion function values are needed. In the next sec-
tion, we show how such values, so needed in classification making, are estimated
on the basis of available partial information about approximation spaces.

2.3.4 Properties of Approximations

A rough set can be also characterized numerically by the coefficient called the
accuracy of approximation.

Definition 2.19. The accuracy of approximation is equal to the number

α
(

AS#,$, X
)

=
card

(

LOW
(

AS#,$, X
))

card
(

UPP
(

AS#,$, X
)) .
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If α
(

AS#,$, X
)

= 1, then X is crisp with respect to AS#,$ (X is precise with

respect to AS#,$), and otherwise, if α
(

AS#,$, X
)

< 1, then X is rough with
respect to AS#,$ (X is vague with respect to AS#,$).

We recall the notions of the positive region and the quality of approximation
of classification in the case of generalized approximation spaces.

Definition 2.20. Let AS#,$ = (U, I#, ν$) be an approximation space. Let
{X1, . . . , Xr} be a classification of objects (i.e. X1, . . . , Xr ⊆ U ,

⋃r
i=1 Xi = U

and Xi ∩ Xj = ∅ for i �= j, where i, j = 1, . . . , r).

1. The positive region of the classification {X1, . . . , Xr} with respect to the ap-
proximation space AS#,$ is defined by

POS
(

AS#,$, {X1, . . . , Xr}
)

=

r
⋃

i=1

LOW
(

AS#,$, Xi

)

.

2. The quality of approximation of the classification {X1, . . . , Xr} in the ap-
proximation space AS#,$ is defined by

γ
(

AS#,$, {X1, . . . , Xr}
)

=
card

(

POS
(

AS#,$, {X1, . . . , Xr}
))

card (U)
.

The positive region for three decision classes is depicted on Figure 2.3.
The quality of approximation of the classification coefficient expresses the

ratio of the number of all AS#,$-correctly classified objects to the number of all
objects in the data table. In other words

Number of objects in lower approximations

Total number of objects
.

Now, we list properties of approximations in generalized approximation spa-
ces. Next, we present definitions and give an idea of algorithms for checking
rough definability, internal undefinability etc.

Let AS = (U, I, ν) be an approximation space. For two sets X, Y ⊆ U the
equality with respect to the rough inclusion ν is defined in the following way:
X =ν Y if and only if ν (X, Y ) = 1 = ν (Y, X) .

Proposition 2.21. Assuming that for every x ∈ U we have x ∈ I (x) and that
νSRI is the standard rough inclusion one can show the following properties of
approximations:

1. νSRI (LOW (AS, X) , X) = 1 and νSRI (X, UPP (AS, X)) = 1.
2. LOW (AS, ∅) =νSRI

UPP (AS, ∅) =νSRI
∅.

3. LOW (AS, U) =νSRI
UPP (AS, U) =νSRI

U.
4. UPP (AS, X ∪ Y ) =νSRI

UPP (AS, X) ∪ UPP (AS, Y ) .
5. νSRI (UPP (AS, X ∩ Y ) , UPP (AS, X) ∩ UPP (AS, Y )) = 1.
6. LOW (AS, X ∩ Y ) =νSRI

LOW (AS, X) ∩ LOW (AS, Y ) .
7. νSRI (LOW (AS, X) ∪ LOW (AS, Y ) , LOW (AS, X ∪ Y )) = 1.
8. νSRI (X, Y ) = 1 implies νSRI (LOW (AS, X) , LOW (AS, Y )) = 1.
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Fig. 2.3. Positive Region

9. νSRI (X, Y ) = 1 implies νSRI (UPP (AS, X) , UPP (AS, Y )) = 1.
10. LOW (AS, U − X) =νSRI

U − UPP (AS, X) .
11. UPP (AS, U − X) =νSRI

U − LOW (AS, X) .
12. νSRI (LOW (AS, LOW (AS, X)) , LOW (AS, X)) = 1.
13. νSRI (LOW (AS, X) , UPP (AS, LOW (AS, X))) = 1.
14. νSRI (LOW (AS, UPP (AS, X)) , UPP (AS, X)) = 1.
15. νSRI (UPP (AS, X) , UPP (AS, UPP (AS, X))) = 1.

By analogy with the standard rough set theory, we define the following four
types of sets:

1. X is roughly AS-definable if and only if LOW (AS, X) �=νSRI
∅ and

UPP (AS, X) �=νSRI
U.

2. X is internally AS-undefinable if and only if LOW (AS, X) =νSRI
∅ and

UPP (AS, X) �=νSRI
U.

3. X is externally AS-undefinable if and only if LOW (AS, X) �=νSRI
∅ and

UPP (AS, X) =νSRI
U.

4. X is totally AS-undefinable if and only if LOW (AS, X) =νSRI
∅ and

UPP (AS, X) =νSRI
U.



Rough Relations 27

The intuitive meaning of this classification is the following.
If X is roughly AS-definable, then with the help of AS we are able to decide

for some elements of U whether they belong to X or U − X.
If X is internally AS-undefinable, then we are able to decide whether some

elements of U belong to U − X , but we are unable to decide for any element of
U , whether it belongs to X , using AS.

If X is externally AS-undefinable, then we are able to decide for some elements
of U whether they belong to X , but we are unable to decide, for any element of
U whether it belongs to U − X , using AS.

If X is totally AS-undefinable, then we are unable to decide for any element
of U whether it belongs to X or U − X , using AS.

The algorithms for checking corresponding properties of sets have O
(

n2
)

time
complexity, where n = card (U). Let us also note that using two properties of
approximations:

LOW (AS, U − X) =νSRI
U − UPP (AS, X) ,

UPP (AS, U − X) =νSRI
U − LOW (AS, X)

one can obtain internal AS-undefinability of X if and only if U −X is externally
AS-undefinable. Having that property, we can utilize an algorithm that check
internal undefinability of X to examine if U − X is externally undefinable.

2.4 Rough Relations

One can distinguish several directions in research on relation approximations.
Below we list some examples of them. In [105], [177] properties of the rough re-
lations are presented. The relationships of rough relations and modal logics have
been investigated by many authors (see e.g. [207], [138]). We refer to [138], where
the upper approximation of the input-output relation R(P ) of a given program
P with respect to indiscernibility relation IND is treated as the composition
IND ◦ R (P ) ◦ IND and where a special symbol for the lower approximation
of R (P ) is introduced. Properties of relation approximations in generalized ap-
proximation spaces are presented in [141], [186]. The relationships of rough sets
with algebras of relations are investigated for example in [101], [29]. Relation-
ships between rough relations and a problem of objects ranking are presented for
example in [43], where it is shown that the classical rough set approximations
based on indiscernibility relation do not take into account the ordinal properties
of the considered criteria. This drawback is removed by considering rough ap-
proximations of the preference relations by graded dominance relations [43] and
generally, dominance based rough set approach [164]. In [98] some properties of
rough relations found in the literature were proved.

In this section we discuss approximations of relations with respect to differ-
ent rough inclusions. For simplicity of the presentation we consider only binary
relations.

Let AS = (U, I, ν) be an approximation space, where U ⊆ U1 × U2 and
U, U1, U2 are non-empty sets.
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By πi (R) we denote the projection of the relation R ⊆ U onto the i − th axis
i.e. for example for i = 1

π1 (R) = {x1 ∈ U1 : ∃x2∈U2
(x1, x2) ∈ R} .

Definition 2.22. For any relations S, R ⊆ U the rough inclusion functions νπ1

and νπ2
based on the cardinality of the projections are defined as follows:

νπi
(S, R) =

{

card(πi(S∩R))
card(πi(S)) if S �= ∅

1 if S = ∅
,

where i = 1, 2.

We describe the intuitive meaning of the approximations in approximation spaces
AS$ = (U, I, ν$) , where $ ∈ {SRI, π1, π2}. The standard lower approximation
LOW (ASSRI , R) of a relation R ⊆ U has the following property: any objects
(x1, x2) ∈ U are connected by the lower approximation of R if and only if any ob-
jects (y1, y2) from I ((x1, x2)) are in the relation R. One can obtain some less re-
strictive definitions of the lower approximation using the rough inclusions νπ1

and
νπ2

. The pair (x1, x2) is in the lower approximation LOW (ASπ1
, R) if and only if

for every y1 there is y2 such that the pair (y1, y2) is from I ((x1, x2))∩R. One can
obtain similar interpretation for νπ2

. The upper approximation with respect to
all introduced rough inclusions is exactly the same, namely, the pair (x1, x2) ∈ U
is in the upper approximation UPP (AS$, R) , where $ ∈ {SRI, π1, π2} if and
only if there is a pair (y1, y2) from I ((x1, x2)) ∩ R.

Proposition 2.23. For the lower and the upper approximations the following
conditions are satisfied:

1. LOW (ASSRI , R) ⊆ R.
2. LOW (ASSRI , R) ⊆ LOW (ASπ1

, R) .
3. LOW (ASSRI , R) ⊆ LOW (ASπ2

, R) .
4. R ⊆ UPP (ASSRI , R) = UPP (ASπ1

, R) = UPP (ASπ2
, R) .

Example 2.24. We give some example which illustrates that the inclusions from
the last proposition can not to be replaced by equalities. Let us also observe that
the universe U need not be equal to the Cartesian product of two sets. Let the

Table 2.4. Uncertainty Function and Rough Inclusions

U I νSRI νπ1
νπ2

(1, 2) {(1, 2) , (1, 3)} 0.5 1 0.5

(2, 1) {(2, 1) , (2, 3) , (3, 1)} 0.67 0.5 1

(2, 3) {(2, 1) , (2, 3) , (3, 1)} 0.67 0.5 1

(3, 2) {(3, 2)} 1 1 1

(1, 3) {(1, 2) , (1, 3)} 0.5 1 0.5

(3, 1) {(2, 1) , (2, 3) , (3, 1)} 0.67 0.5 1
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Table 2.5. Approximations

LOW (ASSRI , R) {(3, 2)}

LOW (ASπ1
, R) {(1, 2) , (3, 2) , (1, 3)}

LOW (ASπ2
, R) {(2, 1) , (2, 3) , (3, 2) , (3, 1)}

UPP (AS$, R) U

universe U = {(1, 2) , (2, 1) , (2, 3) , (3, 2) , (1, 3) , (3, 1)} and the binary relation
R = {(1, 2) , (2, 1) , (2, 3) , (3, 2)} .

The definition of an uncertainty function I : U → P (U) and the rough
inclusions are described in Table 2.4.

The lower and the upper approximations of R in the approximation spaces
AS$ = (U, I, ν$) , where $ ∈ {SRI, π1, π2} are described in Table 2.5.

Proposition 2.25. The time complexity of algorithms for computing approxi-

mations of relations is equal to O
(

(card (U))2
)

.

2.5 Function Approximation

In this section, we are looking for the high quality (in the rough set framework)
of function approximation from available incomplete data. Our approach can be
treated as a kind of rough clustering of functional data.

Let us consider an example of function approximation. We assume that a
partial information is only available about a function, this means that, some
points from the graph of the function are known. We would like to present
a more formal description of function approximation. The application of this
concept for definition of rough-integral over partially specified functions is given
in [60].

First, let us introduce some notation. Let us assume U∞ is the universe of
objects and we assume that µ is a measure on a σ-field of subsets of U∞. By
U ⊆ U∞ we denote a finite sample (training set) of objects from U∞. We assume
that µ(U∞) < ∞. By R+ we denote the set of non-negative reals and by µ0 a
measure on a σ-field of subsets of R+. A function f : U −→ R+ will be called
a sample of a function f∗ : U∞ → R+ if f∗ is an extension of f . For any Z ⊆
U∞×R+ by π1(Z) and π2(Z) we denote the set {x ∈ U∞ : ∃y ∈ R+ (x, y) ∈ Z}
and {y ∈ R+ : ∃x ∈ U∞ (x, y) ∈ Z}, respectively.

If C is a family of neighborhoods, i.e., non-empty subsets of U∞ × R+ (mea-
surable relative to the product measure µ × µ0) then the lower approximation
of f relative to approximation space ASC (see Figure 2.4 where neighborhoods
marked by solid lines belong to the lower approximation and with dashed lines -
to the upper approximation) is defined by

LOW (ASC , f) =
⋃

{c ∈ C : f(π1(c) ∩ U) ⊆ π2(c)}. (2.4)
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Fig. 2.4. Function Approximation

Observe that this definition is different from the standard definition of the
lower approximation [106, 108]. We can easily see that if we apply the defini-
tion of relation approximation to f (it is a special case of relation) then the
lower approximation is almost always empty. The new definition is making it
possible express better the fact that the graph of f is “well” matching a given
neighborhood [158]. For expressing this a classical set theoretical inclusion of
neighborhood into the graph of f is not satisfactory.

One can define the upper approximation of f relative to ASC by

UPP (ASC , f) =
⋃

{c ∈ C : f(π1(c) ∩ U) ∩ π2(c) �= ∅}. (2.5)

In applications, neighborhoods are defined constructively by semantics of some
formulas. Let us assume that F is a given set of formulas and for any formula
α ∈ F there are defined two semantics: ‖α‖U ⊆ U ×R+ and ‖α‖U∞ ⊆ U∞×R+,
i.e., semantics on the sample U and on the whole universe U∞. We obtain two
families of neighborhoods FU = {‖α‖U ⊆ U × R+ : α ∈ F} and FU∞ =
{‖α‖U∞×R+

: α ∈ F}. To this end, we consider (measurable) neighborhoods of
the form Z × I where Z ⊆ U∞ and I is an interval of reals.

We know that ‖α‖U = ‖α‖U∞ ∩ (U × R+) but having the sample we do not
have information about the other objects from U∞ \ U . Hence, for defining the
lower approximation of f over U∞ on the basis of the lower approximation over
U some estimation methods should be used.
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Example 2.26. We present an illustrative example of a function f : U → R+

approximation where U = {1, 2, 4, 5, 7, 8}. Let f(1) = 3, f(2) = 2, f(4) = 2,
f(5) = 5, f(7) = 5, f(8) = 2. We consider three indiscernibility classes C1 =
[0, 3] × [1.5, 4], C2 = [3, 6] × [1.7, 4.5] and C3 = [6, 9] × [3, 4]. We compute pro-
jections of indiscernibility classes: π1(C1) = [0, 3], π2(C1) = [1.5, 4], π1(C2) =
[3, 6], π2(C2) = [1.7, 4.5], π1(C3) = [6, 9] and π2(C3) = [3, 4]. Hence we obtain
f(π1(C1) ∩ U) = f({1, 2}) = {2, 3} ⊆ π2(C1), f(π1(C2) ∩ U) = f({4, 5}) =
{2, 5} � π2(C2) but f(π1(C2) ∩ U) ∩ π2(C2) = {2, 5} ∩ [1.7, 4.5] �= ∅, f(π1(C3) ∩
U) = ∅. We obtain the lower approximation LOW (ASC , f) = C1 and the upper
approximation UPP (ASC , f) = C1 ∪ C2.

On can extend the discussed approach to function approximation for the case
when instead of the partial graph of a function it is given a more general infor-
mation consisting of many possible values for a given x ∈ U due to repetitive
measurements influenced by noise.

2.6 Quality of Approximation Space

A key task in granular computing is the information granulation process that
leads to the formation of information aggregates (patterns) from a set of available
objects. A methodological and algorithmic issue is the formation of transparent
(understandable) information granules inasmuch as they should provide a clear
and understandable description of patterns present in sample objects [3, 113].
Such a fundamental property can be formalized by a set of constraints that
must be satisfied during the information granulation process. Usefulness of these
constraints is measured by quality of an approximation space:

Quality1 : Set AS × P (U) → [0, 1],

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U.

Example 2.27. If the upper approximation UPP (AS, X)) �= ∅ for AS ∈ Set AS
and X ⊆ U then

Quality1(AS, X) = νSRI(UPP (AS, X), LOW (AS, X)) =

card(UPP (AS, X) ∩ LOW (AS, X))

card(UPP (AS, X))
=

card(LOW (AS, X))

card(UPP (AS, X))
.

The value 1 − Quality1(AS, X) expresses the degree of completeness of our
knowledge about X , given the approximation space AS. This value is also called
the roughness of the set X with respect to AS. If roughness of the set X is 0
then X is crisp with respect to AS, and if Quality1(AS, X) < 1 then X is rough
(i.e., X is vague with respect to AS).
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Fig. 2.5. Granulation of Parameterized Approximation Spaces

Example 2.28. In applications, we usually use another quality measure anal-
ogous to the minimal length principle [128, 202] where also the description
length of approximation is included. Let us denote by description(AS, X) the
description length of approximation of X in AS. The description length may be
measured, e.g., by the sum of description lengths of algorithms testing mem-
bership for neighborhoods used in construction of the lower approximation, the
upper approximation, and the boundary region of the set X . Then the quality
Quality2(AS, X) can be defined by

Quality2(AS, X) = g(Quality1(AS, X), description(AS, X)),

where g is a relevant function used for fusion of values Quality1(AS, X) and
description(AS, X). This function g can reflect weights given by experts relative
to both criteria.

One can consider different optimization problems relative to a given class Set AS
of approximation spaces. For example, for a given X ⊆ U and a threshold
t ∈ [0, 1], one can search for an approximation space AS satisfying the constraint
Quality2(AS, X) ≥ t.

Another example can be related to searching for an approximation space sat-
isfying additionally the constraint Cost(AS) < c where Cost(AS) denotes the
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cost of approximation space AS (e.g., measured by the number of attributes
used to define neighborhoods in AS) and c is a given threshold. In the fol-
lowing example, we consider also costs of searching for relevant approximation
spaces in a given family defined by a parameterized approximation space (see
Figure 2.5). Any parameterized approximation space AS#,$ = (U, I#, ν$) is a
family of approximation spaces. The cost of searching in such a family for a rel-
evant approximation space for a given concept X approximation can be treated
as a factor of the quality measure of approximation of X in AS#,$ = (U, I#, ν$).
Hence, such a quality measure of approximation of X in AS#,$ can be defined
by

Quality3(AS#,$, X) = h(Quality2(AS, X), Cost Search(AS#,$, X)),

where AS is the result of searching in AS#,$, Cost Search(AS#,$, X) is the
cost of searching in AS#,$ for AS, and h is a fusion function, e.g., assuming
that the values of Quality2(AS, X) and Cost Search(AS#,$, X) are normalized
to interval [0, 1] h could be defined by a linear combination of Quality2(AS, X)
and Cost Search(AS#,$, X) of the form

λQuality2(AS, X) + (1 − λ)Cost Search(AS#,$, X),

where 0 ≤ λ ≤ 1 is a weight measuring an importance of quality and cost in
their fusion.

We assume that the fusion functions g, h in the definitions of quality are
monotonic relative to each argument.

Let AS ∈ Set AS be an approximation space relevant for approximation
of X ⊆ U , i.e., AS is the optimal (or semi-optimal) relative to Quality2.
By Granulation(AS#,$) we denote a new parameterized approximation space
obtained by granulation of AS#,$. For example, Granulation(AS#,$) can be
obtained by reducing the number of attributes or inclusion degrees (i.e., pos-
sible values of the inclusion function). Let AS′ be an approximation space
in Granulation(AS#,$) obtained as the result of searching for optimal (semi-
optimal) approximation space in Granulation(AS#,$) for approximation of X .

We assume that three conditions are satisfied:

• after granulation of AS#,$ to Granulation(AS#,$) the following property
holds: the cost

Cost Search(Granulation(AS#,$), X),

is much lower than the cost Cost Search(AS#,$, X);
• description(AS′, X) is much shorter than description(AS, X), i.e., the de-

scription length of X in the approximation space AS′ is much shorter than
the description length of X in the approximation space AS;

• Quality1(AS, X) and Quality1(AS′, X) are sufficiently close.

The last two conditions should guarantee that the values Quality2(AS, X)
and Quality2(AS′, X) are comparable and this condition together with the first
condition about the cost of searching should assure that

Quality3(Granulation(AS#,$, X)) is much better than Quality3(AS#,$, X).
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Taking into account that the parameterized approximation spaces are
examples of parameterized granules one can generalize the above example of
parameterized approximation space granulation to the case of granulation of
parameterized granules.

In the process of searching for (sub-)optimal approximation spaces different
strategies are used. Let us consider one illustrative example [160]. Let DT =
(U, A, d) be a decision system (a given sample of data) where U is a set of ob-
jects, A is a set of attributes and d is a decision. We assume that for any object x,
there is accessible only partial information equal to the A-signature of x (object
signature, for short), i.e., InfA(x) = {(a, a(x)) : a ∈ A} and analogously for any
concept there is only given a partial information about this concept by a sam-
ple of objects, e.g., in the form of decision table. One can use object signatures
as new objects in a new relational structure R. In this relational structure R
are also modeled some relations between object signatures, e.g., defined by the
similarities of these object signatures. Discovery of relevant relations on object
signatures is an important step in the searching process for relevant approxima-
tion spaces. In this way, a class of relational structures representing perception
of objects and their parts is constructed. In the next step, we select a language
L of formulas expressing properties over the defined relational structures and
we search for relevant formulas in L. The semantics of formulas (e.g., with one
free variable) from L are subsets of object signatures. Observe that each object
signature defines a neighborhood of objects from a given sample (e.g., decision
table DT ) and another set on the whole universe of objects being an extension
of U . In this way, each formula from L defines a family of sets of objects over
the sample and also another family of sets over the universe of all objects. Such
families can be used to define new neighborhoods of a new approximation space,
e.g., by taking unions of the described above families. In the searching process
for relevant neighborhoods, we use information encoded in the given sample.
More relevant neighborhoods are making it possible to define relevant approxi-
mation spaces (from the point of view of the optimization criterion). It is worth
to mention that often this searching process is even more compound. For exam-
ple, one can discover several relational structures (not only one, e.g., R as it was
presented before) and formulas over such structures defining different families
of neighborhoods from the original approximation space and next fuse them for
obtaining one family of neighborhoods or one neighborhood in a new approxi-
mation space. This kind of modeling is typical for hierarchical modeling [9], e.g.,
when we search for a relevant approximation space for objects composed from
parts for which some relevant approximation spaces have been already found.

2.7 Learning Approximation Space from Data

In this section we consider problem of learning approximation space from data.
The searching for proper approximation space is the crucial and the most difficult
task related to decision algorithm synthesis based on approximation spaces.
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2.7.1 Discretization and Approximation Spaces

Discretization is considered for real or integer valued attributes. Discretization is
based on searching for “cuts” that determine intervals. All values that lie within
each interval are then treated as indiscernible. Thus the uncertainty function for
an attribute a ∈ A is defined as shown below.

y ∈ Ia (x) if and only if values a (x) and a (y) are from the same interval.
Relations obtained on attribute values by using discretization are reflexive,

symmetric and transitive.
A simple discretization process consists of the following two steps:

1. Deciding the number of intervals, which is usually done by a user.
2. Determining the width of these intervals, which is usually done by the dis-

cretization algorithm.

Example 2.29. The equal width discretization algorithm first finds the minimal
and maximal values for each attribute. Then it divides this range of the attribute
value into a number of user specified, equal width intervals.

Example 2.30. In equal frequency discretization the algorithm first sorts the val-
ues of each attribute in an ascending order, and then divides them into the user
specified number of intervals, in such a way that each interval contains the same
number of sorted sequential attribute values.

These methods are applied to each attribute independently. They make no use
of decision class information.

Several more sophisticated algorithms for automatic discretization (with
respect to different optimization criteria) exist, for example one rule discretiza-
tion [52], Boolean reasoning discretization [95]. For overviews of different
discretization methods and discussion of computational complexity of discretiza-
tion problems see [95]. We outline here only Boolean reasoning discretization.
Let DT = (U, A ∪ {d}) be a decision table. For the sake of simplifying the ex-
position, we will assume that all condition attributes A are numerical. First, for
each attribute a ∈ A we can sort its value set Va to obtain the following ordering:

mina < . . . < vi
a < vi+1

a < . . . maxa.

Next, we place cuts in the middle of
[

vi
a, vi+1

a

]

, except for the situation when
all objects that have these values also have equal generalized decision values.
Boolean reasoning discretization is based on combining the cuts found by above
procedure with Boolean reasoning procedure for discarding all but a small num-
ber of cuts such that the discernibility of objects in DT is preserved. The set
of solutions to the problem of finding minimal subsets of cuts that preserve the
original discernibility of objects in DT with respect to the decision attribute d,
are defined by means of the prime implicants of a suitable Boolean function. Of-
ten we are interested in employing as few cuts as possible. Then the set covering
heuristic is typically used to arrive at a single solution.
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Sometimes the best result is obtained by manual discretization. For example,
in Chapter 6 discretization of numeric attributes in real life diabetes data was
done manually according to medical norms.

2.7.2 Distances and Approximation Spaces

Other approach to searching for an uncertainty function is based on the assump-
tion that there are given some distances on attribute values. Let a ∈ A be an
attribute. We assume that in the set Va a distance function δa : Va × Va → R+

(by R+ we denote the set of non-negative reals) is defined. The distance func-
tion δa is assumed to satisfy the axioms of a pseudometric, i.e., for any values
v1, v2, v3 ∈ Va :

1. δa(v1, v2) ≥ 0 (non-negativity condition),
2. δa(v1, v1) = 0 (reflexivity),
3. δa(v1, v2) = δa(v2, v1) (symmetry),
4. δa(v1, v2) + δa(v2, v3) ≥ δa(v1, v3) (triangular inequality).

The distance function δa models the relation of similarity between attribute
values. The properties of symmetry and triangular inequality are not necessary
to model similarity but they are fundamental for the efficiency of many learn-
ing methods described in the literature [216]. Relations obtained on attribute
values by using distances are at least reflexive. For review of different distances
defined on attribute values see [214]. Here we only present some examples of
such distances.

Example 2.31. Let (U, A ∪ {d}) be a decision table. One can use the overlap
metric, which defines the distance for an attribute as 0 if the values are equal,
or 1 if they are different, regardless of which two values they are. The function
overlap defines the distance between two values v and v′ of an attribute a ∈ A
as:

overlapa (v, v′) =

{

1 if v �= v′

0 if v = v′
.

Example 2.32. The Value Difference Metric (VDM) provides an appropriate dis-
tance function for nominal attributes. A version of VDM (without the weighting
schemes but with normalization into zero-one interval) defines the distance be-
tween two values v and v′ of an attribute a ∈ A as:

vdma (v, v′) =
1

r (d)

r(d)
∑

i=1

(νSRI (Xv, Xi) − νSRI (Xv′ , Xi))
2 ,

where r(d) is a number of decision classes, νSRI is the standard rough inclusion,
Xi = {x ∈ U : d (x) = i} and Xv = {x ∈ U : a (x) = v} .

Using the distance measure VDM, two values are considered to be closer if
they have more similar classifications. For example, if an attribute color has
three values red, green and blue, and the application is to identify whether or
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not an object is an apple, then red and green would be considered closer than
red and blue because the former two have correlations with decision apple.

If this distance function is used directly on continuous attributes, all values
can potentially be unique. Some approaches to the problem of using VDM on
continuous attributes are presented in [214].

Example 2.33. One can also use some other distance function for real or integer
valued attributes, for example

diffa (v, v′) =
|v − v′|

maxa − mina

,

where maxa and mina are the maximum and minimum values, respectively, for
an attribute a ∈ A. The normalization of numerical attributes with the range of
values maxa − mina makes numerical and nominal attributes equally significant.

Example 2.34. One can also use the difference between attribute values defined
as follows

differencea (v, v′) =

⎧

⎨

⎩

|v − v′| if a is continuous
0 if a is nominal and v = v′

1 otherwise
(2.6)

One should specify in searching for optimal uncertainty function at least two
elements:

• a class of parameterized uncertainty functions,
• an optimization criterion.

Definition 2.35. Let δa : Va × Va −→ [0, ∞) be a given distance function on
attribute values, where Va is the set of all values of attribute a ∈ A. One can
define the following uncertainty function

y ∈ Ifa

a (x) if and only if δa (a (x) , a (y)) ≤ fa (a (x) , a (y)) ,

where fa : Va × Va → [0, ∞) is a threshold function.

Example 2.36. We present two examples of a threshold function fa.

1. For every x, y ∈ U one can define fa (a (x) , a (y)) = εa, where 0 ≤ εa ≤ 1 is
a given real number.

2. One can define for real or integer valued attribute a ∈ A,

fa (a (x) , a (y)) = εα
a ∗ a (x) + εβ

a ∗ a (y) + εa,

where εα
a , εβ

a and εa are given real numbers.

Some special examples of uncertainty functions one can also derive from the lit-
erature. In [162] strict and weak indiscernibility relations were considered which
can define some kind of uncertainty functions. In some cases, it is natural to
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consider relations defined by so-called ε-indiscernibility [72]. The global uncer-
tainty function for a set of attributes A is usually defined as the intersection i.e.
IA (x) =

⋂

a∈A Ia (x) . For some other examples of local and global uncertainty
functions see [186].

Different methods of searching for parameters of proper uncertainty functions
are discussed for example in [72], [196]. In [196] genetic algorithm was applied
for searching for adequate uncertainty functions of the type Iεa

a , where εa =
fa (a (x) , a (y)) for every x, y ∈ U. The optimization criterion can be based for
example on maximization of the function which combines three quantities. The
first quantity can be based on the quality of approximation of classification
γ (AS, {X1, . . . , Xr}) . For specification of the second quantity we first define
two relations:

Rd = {(x, y) ∈ U × U : d (x) = d (y)} ,

RIA
= {(x, y) ∈ U × U : y ∈ IA (x)} .

Using introduced rough inclusions of relations one can measure degree of inclu-
sion of Rd in RIA

in at least three ways:

• νSRI (Rd, RIA
) ,

• νπ1
(Rd, RIA

) ,
• νπ2

(Rd, RIA
) .

The third quantity can be based on the result of the cross-validation test. The
idea of cross-validation is depicted on Figure 2.6. For example, in 3–fold cross-
validation, the original data table is partitioned into three subtables. From three
subtables, a single subtable is retained for testing and the remaining two subta-
bles are used as training data. The cross-validation process is then repeated three
times, with each of the three subtables used exactly once as the testing data.
The three results from the folds then can be averaged (or otherwise combined)
to produce a single estimation.

In the simplest case one can optimize the combination of three quantities as
follows:

weightγ∗γ (AS, {X1, . . . , Xr})+weightν∗νSRI (Rd, RIA
)+weighttest∗test (AS) ,

where
weightγ , weightν, weighttest ≥ 0 and weightγ + weightν + weighttest = 1.

In the case of weighttest = 0 first part of the objective function is introduced
to prevent shrinking of the positive region of partition. The second part of the
objective function is responsible for an increase in the number of connections.
We inherit the notion of connections from simple observation, that if y ∈ IA (x)
then we can say that there is a connection between x and y. We propose to
discern two kinds of connections between objects, namely “good” and “bad”:

• x has a good connection with y if and only if (x, y) ∈ RIA
and (x, y) ∈ Rd,

• x has a bad connection with y if and only if (x, y) ∈ RIA
and (x, y) /∈ Rd.

We are interested only in connections between objects with the same decision
(“good” connections). So, the objective function tries to find out some kind
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Fig. 2.6. Cross–Validation (CV–3)

of balance between enlarging RIA
and preventing the shrinking of the positive

region POS (AS, {X1, . . . , Xr}). If we decrease the value of εa then for every
object x ∈ U the Iεa

a (x) will not change or become larger. So, starting from
εa = 0 and increasing the value of threshold we can use above property to find all
values when Iεa

a (x) changes. We can create lists of such thresholds εa for each a ∈
A. Next we can check all possible combinations of thresholds to find out the best
for our purpose. Of course it can be a long process because, in the worst case, the

number of combinations is equal to: 1
2

∏

a∈A

(

card (Va)
2 − card (Va)

)

+1. So, it is

visible that we need some heuristics to find, maybe not the best of all, but a close
to optimal solution in reasonable time. In [196], we use genetic algorithms for this
purpose. One application of this method to handwritten numerals recognition is
reported in [67].

2.8 Rough Sets in Concept Approximation

The concept approximation problem is the basic problem investigated in ma-
chine learning, pattern recognition [47] and data mining [69]. It is necessary
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to induce approximations of concepts (models of concepts) from available ex-
perimental data. The data models developed so far in such areas as statistical
learning, machine learning, pattern recognition are not satisfactory for approx-
imation of complex concepts that occur in the perception process. Researchers
from different areas have recognized the necessity to work on new methods for
concept approximation (see, e.g., [18, 208]). The main reason for this is that these
complex concepts are, in a sense, too far from measurements which renders the
searching for relevant features in a huge feature space infeasible. There are sev-
eral research directions aiming at overcoming this difficulty. One of them is based
on the interdisciplinary research where the knowledge pertaining to perception
in psychology or neuroscience is used to help dealing with complex concepts
(see, e.g., [117]). There is a great effort in neuroscience towards understanding
the hierarchical structures of neural networks in living organisms [33, 117]. Also
mathematicians are recognizing problems of learning as the main problem of
the current century [117]. These problems are closely related to complex system
modeling as well. In such systems again the problem of concept approximation
and its role in reasoning about perceptions is one of the challenges nowadays.
One should take into account that modeling complex phenomena entails the use
of local models (captured by local agents, if one would like to use the multi-
agent terminology [78]) that should be fused afterwards. This process involves
negotiations between agents [78] to resolve contradictions and conflicts in lo-
cal modeling. This kind of modeling is becoming more and more important in
dealing with complex real-life phenomena which we are unable to model using
traditional analytical approaches. The latter approaches lead to exact models.
However, the necessary assumptions used to develop them result in solutions
that are too far from reality to be accepted. New methods or even a new science
therefore should be developed for such modeling [40].

One of the possible approaches in developing methods for complex concept
approximations can be based on the layered learning [200]. Inducing concept
approximation should be developed hierarchically starting from concepts that
can be directly approximated using sensor measurements toward complex target
concepts related to perception. This general idea can be realized using additional
domain knowledge represented in natural language. For example, one can use
some rules of behavior on the roads, expressed in natural language, to assess from
recordings (made, e.g., by camera and other sensors) of actual traffic situations,
if a particular situation is safe or not [97]. To deal with such problems one should
develop methods for concept approximations together with methods aiming at
approximation of reasoning schemes (over such concepts) expressed in natural
language. The foundations of such an approach, creating a core of perception
logic, are based on rough set theory [106] and its extension rough mereology
[104, 122], both invented in Poland, in combination with other soft computing
tools, in particular with fuzzy sets.

The outlined problems are some special problems which can be formulated in
a more general setting in granular computing.
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Information granulation can be viewed as a human way of achieving data
compression and it plays a key role in implementing the divide-and-conquer
strategy in human problem-solving [226]. Granules are obtained in the process
of information granulation.

Granular computing (GC) is based on processing of complex information en-
tities called granules. Generally speaking, granules are collections of entities that
are arranged together due to their similarity, functional adjacency or indistin-
guishability [49, 220, 222, 226].

One of the main branch of GC is Computing with Words and Perceptions
(CWP). GC “derives from the fact that it opens the door to computation and
reasoning with information which is perception - rather than measurement -
based. Perceptions play a key role in human cognition, and underlie the remark-
able human capability to perform a wide variety of physical and mental tasks
without any measurements and any computations. Everyday examples of such
tasks are driving a car in city traffic, playing tennis and summarizing a story”
[225, 226].

We consider the optimization tasks in which we are searching for optimal
solutions satisfying some constraints. These constraints are often vague, impre-
cise, and/or specifications of concepts and their dependencies which constitute
the constraints, are incomplete. Decision tables [106] are examples of such con-
straints. Another example of constraints can be found, e.g., [8, 9, 10, 154] where
a specification is given by a domain knowledge and data sets. Domain knowledge
is represented by an ontology of vague concepts and the dependencies between
them. In a more general case, the constraints can be specified in a simplified
fragment of a natural language [226].

Granules are constructed using information calculi. Granules are objects con-
structed in computations aiming at solving the mentioned above optimization
tasks. In our approach, we use the general optimization criterion based on the
minimal length principle [127, 128]. In searching for (sub-)optimal solutions it is
necessary to construct many compound granules using some specific operations
such as generalization, specification or fusion. Granules are labeled by param-
eters. By tuning these parameters we optimize the granules relative to their
description size and the quality of data description, i.e., two basic components
on which the optimization measures are defined.

From this general description of tasks in GC it follows that together with
specification of elementary granules and operation on them it is necessary to
define measures of granule quality (e.g., measures of their inclusion, covering or
closeness) and tools for measuring the size of granules. Very important are also
optimization strategies of already constructed (parameterized) granules.

We consider the above mentioned problems in further chapters of this book.
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3.1 Introduction

Nowadays, we deal with large data tables that include up to billions of objects
and up to several thousands of attributes. We often face a question whether we
can remove some data from a data table preserving its basic properties, that
is – whether a table contains some superfluous data. This chapter provides an
introduction to rough set based data preprocessing methods, which are concerned
with selection of attributes to reduce the dimensionality and improve the data
for subsequent data mining analysis.

One of the problems related to practical applications of rough set methods is
whether the whole set of attributes is necessary and if not, how to determine
the simplified and still sufficient subset of attributes equivalent to the original.
The rejected attributes are redundant since their removal cannot worsen the
classification. There are usually several such subsets of attributes and those
which are minimal with respect to inclusion are called reducts. Finding a minimal
reduct (i.e. reduct with a minimal cardinality of attributes among all reducts) is
NP-hard [137]. One can also show that the number of reducts of an information

system with m attributes may be as large as

⎛

⎝

m

⌊m/2⌋

⎞

⎠ (see also Table 3.1).

Table 3.1. Possible Number of Reducts

m 10 12 14 16 18 20 22 24 26 28
⎛

⎝

m

⌊m/2⌋

⎞

⎠ 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600

This means that computation of reducts is a non-trivial task and it can not
be solved by a simple increase of computational resources. Significant results in

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 43–56, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



44 Data Reduction

this area have been achieved in [137]. The problem of finding reducts can be
transformed to the problem of finding prime implicants of a monotone Boolean
function. An implicant of a Boolean function g is any conjunction of literals
(variables or their negations) such that, if the values of these literals are true
under an arbitrary valuation val of variables, then the value of the function g
under val is also true. A prime implicant is a minimal implicant (with respect to
the number of literals). Here we are interested in implicants of monotone Boolean
functions i.e. functions constructed without the use of negation. The problem
of finding prime implicants is known to be NP-hard, but many heuristics are
presented for the computation of one prime implicant.

The general scheme of Boolean reasoning is depicted on Figure 3.1.

Fig. 3.1. Boolean Reasoning

The general scheme of applying Boolean reasoning to a problem RED of
reducts computation can be formulated as follows:

1. Encode the problem RED as a Boolean function gRED.
2. Compute the prime implicants of gRED.
3. Solutions to RED are obtained by interpreting the prime implicants of gRED.

In this chapter we discuss reducts in tolerance rough set model which is a very
natural extension of standard rough set model. We consider an approximation
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spaces AS of the form AS = (U, I, νSRI) with two conditions for an uncertainty
function I :

1. For every x ∈ U, we have x ∈ I (x) (called reflexivity).
2. For every x, y ∈ U, if y ∈ I (x) , then x ∈ I (y) (called symmetry).

The chapter is organized as follows. In Section 3.2 the equivalence between
reducts and prime implicants of monotonic Boolean functions is investigated.
The significance of attributes and the stability of reducts are also considered. In
Section 3.3 selection of representative objects is investigated.

3.2 Reducts

In this section we discuss different definitions of a reduct for a single object
and for all objects in a given information system [145]. We also propose similar
definitions for a decision table. Those definitions have a property that, like in the
standard rough set model (see [106, 137]) and in the variable precision rough set
model (see [73, 229]) the set of prime implicants of a corresponding discernibility
function is equivalent to the set of reducts.

The computation of all types of reducts is based on generalized discernibility
matrix. Discernibility matrix was introduced in [137]. We consider dissimilarity
instead of discernibility.

Definition 3.1. Let IS = (U, A) be an information system. By the generalized

discernibility matrix we mean the square matrix (cx,y)x,y∈U
, where

cx,y = {a ∈ A : y /∈ Ia (x)} .

3.2.1 Information Systems and Reducts

Reduct computation can be translated to computing prime implicants of a
Boolean function. The type of reduct controls how the Boolean function is
constructed.

In the case of reducts for an information system, the minimal sets of attributes
that preserve dissimilarity between objects. Thus the full tolerance relation is
considered. Therefore resulting reduct is a minimal set of attributes that enables
one to introduce the same tolerance relation on the universe as the whole set of
attributes does.

In the case of object-related reducts we consider the dissimilarity relation
relative to each object. For each object, there are determined the minimal sets of
attributes that preserve dissimilarity of that object from all the others. Thus, we
construct a Boolean function by restricting the conjunction to only run over the
row corresponding to a particular object x of the discernibility matrix (instead
of over all rows). Hence, we obtain the discernibility function related to object x.
The set of all prime implicants of this function determines the set of reducts of A
related to the object x. These reducts reveal the minimum amount of information
needed to preserve dissimilarity of x from all other objects.
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Let IS = (U, A) be an information system such that the set A = {a1, . . . , am}.
We assume that a∗

1, . . . , a
∗
m are Boolean variables corresponding to attributes

a1, . . . , am, respectively.
In the following definitions we present more formally notions of both types of

reducts.

Definition 3.2. A subset B ⊆ A is called a reduct of A for an object x ∈ U if

and only if

1. IB (x) = IA (x) .
2. For every proper subset C ⊂ B the first condition is not satisfied.

Definition 3.3. A subset B ⊆ A is called a reduct of A if and only if

1. For every x ∈ U, we have IB (x) = IA (x) .
2. For every proper subset C ⊂ B the first condition is not satisfied.

In the following theorems, we present equivalence between reducts and prime
implicants of suitable Boolean functions called discernibility functions.

Theorem 3.4. For every object x ∈ U we define the following Boolean function

gA,x (a∗
1, . . . , a

∗
m) =

∧

y∈U

∨

a∈cx,y

a∗.

The following conditions are equivalent:

1. {ai1 , . . . , aik
} is a reduct for the object x ∈ U in the information system

(U, A) .
2. a∗

i1
∧ . . . ∧ a∗

ik
is a prime implicant of the Boolean function gA,x.

Theorem 3.5. We define the following Boolean function

gA (a∗
1, . . . , a

∗
m) =

∧

x,y∈U

∨

a∈cx,y

a∗.

The following conditions are equivalent:

1. {ai1 , . . . , aik
} is a reduct for the information system (U, A) .

2. a∗
i1

∧ . . . ∧ a∗
ik

is a prime implicant of the Boolean function gA.

Example 3.6. The flags data table was adopted from the book [131]. The data set
is a table listing various features of the flags of different states of the USA, along
with the information whether or not the state was a union (U) or confederate
(C) state during the civil war. For simplicity of presentation we only consider
part of this data set, namely DT = (U, A ∪ {d}) , where U = {x1, . . . x9} and
A = {a1, a2, a3, a4} (see Table 3.2).

For presentation of reducts in the information system (U, A) , we assume that
the last column (“Type”) is not given.
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Table 3.2. Flags Data Table

a1 a2 a3 a4 d

Flag Stars Hues Number Word Type

Alabama x1 0 2 0 0 C

Virginia x2 0 5 0 4 C

Tennesee x3 3 3 0 0 C

Texas x4 1 3 0 0 C

Louisiana x5 0 4 0 4 C

Illinois x6 0 6 2 6 U

Iowa x7 0 5 0 10 U

Ohio x8 17 3 0 0 U

New Jersey x9 0 5 1 3 U

Table 3.3. Discernibility Matrix for Information System

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 − a2 − − − a2, a3 a2, a4 a1 a2

x2 a2 − − − − a3 − a1 −

x3 − − − − − a2, a3 a4 a1 −

x4 − − − − − a2, a3 a4 a1 −

x5 − − − − − a3 − a1 −

x6 a2, a3 a3 a2, a3 a2, a3 a3 − a3 a1, a2, a3 −

x7 a2, a4 − a4 a4 − a3 − a1, a4 −

x8 a1 a1 a1 a1 a1 a1, a2, a3 a1, a4 − a1

x9 a2 − − − − − − a1 −

We consider for all attributes a ∈ A, the following uncertainty function:

y ∈ Iεa
a (x) if and only if diffa (a (x) , a (y)) ≤ εa i.e.

|a (x) − a (y)|

maxa − mina

≤ εa.

We choose the following thresholds:

εa1
= 5

17 , εa2
= 0.5, εa3

= 0.5 and εa4
= 0.7.

We consider an approximation space ASA = (U, IA, νSRI) , where the global
uncertainty function IA : U → P (U) is defined by

IA (x) =
⋂

a∈A

Iεa
a (x) .

We construct the discernibility matrix (see Table 3.3). For example for the
object x3 we obtain the following discernibility function

gA,x (a∗
1, a

∗
2, a

∗
3, a

∗
4) = (a∗

2 ∨ a∗
3) ∧ a∗

4 ∧ a∗
1.

Object related reducts are presented in Table 3.4.
For the information system we can not reduce the set of attributes, namely

there is only one reduct equal to {a1, a2, a3, a4} .
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Table 3.4. Object Related Reducts in Information System

Object related reducts

x1 {a1, a2}

x2 {a1, a2, a3}

x3 {a1, a2, a4} , {a1, a3, a4}

x4 {a1, a2, a4} , {a1, a3, a4}

x5 {a1, a3}

x6 {a3}

x7 {a3, a4}

x8 {a1}

x9 {a1, a2}

3.2.2 Decision Tables and Reducts

We present methods of attributes set reduction in a decision table. General
scheme of this approach is depicted on Figure 3.2.

If we consider a decision table instead of an information system, this translates
to a modification of the discernibility function constructed for the information
system. Since we do not need to preserve dissimilarity between objects with the
same decision, we can delete those expressions from the discernibility function
that preserve dissimilarity between objects within the same decision class. Thus,
a resulting reduct is a minimal set of attributes that enables to make the same
decisions as the whole set of attributes.

In the case of computing reducts in a decision table, decision rules can be also
computed at the same time for efficiency reasons. Let us note that object-related
reducts will typically produce shorter rules than reducts calculated for decision
table, where length of rules is measured in the number of selectors used in an
induced rule.

Let DT = (U, A ∪ {d}) be a decision table. In the following definitions we
present more formally all types of reducts.

Definition 3.7. A subset B ⊆ A is called a relative reduct of A for an object

x ∈ U if and only if

1. {y ∈ IB (x) : d (y) �= d (x)} = {y ∈ IA (x) : d (y) �= d (x)} .
2. For every proper subset C ⊂ B the first condition is not satisfied.

Illustrative example is depicted on Figure 3.3.

Definition 3.8. A subset B ⊆ A is called a relative reduct of A if and only if

1. POS (ASB , {d}) = POS (ASA, {d}) .
2. For every proper subset C ⊂ B the first condition is not satisfied.

In the following theorems we demonstrate an equivalence between relative
reducts and prime implicants of suitable Boolean functions.
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Fig. 3.2. Two Kinds of Reducts in Decision Table

Theorem 3.9. For every object x ∈ U and the Boolean function defined by

gA∪{d},x (a∗
1, . . . , a

∗
m) =

∧

y∈U,d(y) �=d(x)

∨

a∈cx,y

a∗

the following conditions are equivalent:

1. {ai1 , . . . , aik
} is a relative reduct for the object x ∈ U in the decision table

DT.
2. a∗

i1
∧ . . . ∧ a∗

ik
is a prime implicant of the Boolean function gA∪{d},x.

Theorem 3.10. For the Boolean function defined by

gA∪{d} (a∗
1, . . . , a

∗
m) =

∧

x,y∈U,d(y) �=d(x)

∨

a∈cx,y

a∗
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Fig. 3.3. Idea of Object Related Reducts

the following conditions are equivalent:

1. {ai1 , . . . , aik
} is a relative reduct of A.

2. a∗
i1

∧ . . . ∧ a∗
ik

is a prime implicant of the Boolean function gA∪{d}.

Example 3.11. We consider Table 3.2 with decision attribute ”Type”. We obtain
the relative (with respect to decision) discernibility matrix described in Table
3.5. For example for object x7 the discernibility function

gA∪{d},x7
(a∗

1, a
∗
2, a

∗
3, a

∗
4) = (a∗

2 ∨ a∗
4) ∧ a∗

4 ∧ a∗
4 ≡ a∗

4.

In Table 3.6 we present the set of all relative reducts related to particular
objects.

Now we discuss a heuristic [196] which can be applied to the computation of
relative reducts without explicit use of discernibility function. We can also use
the presented method to simplification of discernibility function.

To find one relative reduct, we build a discernibility matrix. Next, we make
reduction of superfluous entries in this matrix. We set an entry to be empty
if it is a superset of another non-empty entry. At the end of this process we
obtain the set COMP of so called components. From the set of components
the described type of reduct can be generated by applying Boolean reasoning.
We present heuristics for computing one reduct of the considered type with the
possibly minimal number of attributes. These heuristics can produce sets which
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Table 3.5. Relative Discernibility Matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 − − − − − a2, a3 a2, a4 a1 a2

x2 − − − − − a3 − a1 −

x3 − − − − − a2, a3 a4 a1 −

x4 − − − − − a2, a3 a4 a1 −

x5 − − − − − a3 − a1 −

x6 a2, a3 a3 a2, a3 a2, a3 a3 − − − −

x7 a2, a4 − a4 a4 − − − − −

x8 a1 a1 a1 a1 a1 − − − −

x9 a2 − − − − − − − −

Table 3.6. Relative Object Related Reducts

Object related reducts

x1 {a1, a2}

x2 {a1, a3}

x3 {a1, a2, a4} , {a1, a3, a4}

x4 {a1, a2, a4} , {a1, a3, a4}

x5 {a1, a3}

x6 {a3}

x7 {a4}

x8 {a1}

x9 {a2}

are supersets of considered reducts but they are much more efficient than the
generic procedure.

First, we introduce a notion of a minimal distinction. By a minimal distinction
(md, in short) we understand a minimal set of attributes sufficient to discern
between two objects. Let us note that the minimal component com consists of
minimal distinctions and card(com) is equal or greater than card(md). We say,
that md is indispensable if there is a component made of only one md. We
include all attributes from the indispensable md to R. Then from COMP we
eliminate all these components which have at least one md equal to md in R. It
is important that the process of selecting attributes to R will be finished when
the set COMP is empty. We calculate for any md from COMP :

c (md) = w1 ∗ c1 (md) + w2 ∗ c2 (md), where

c1 (md) =
(

card(md∩R)
card(md)

)p

and

c2 (md) =

(

card({com∈COMP :∃md′⊂commd′⊂(R∪md)})
card(COMP )

)q

.

For example, we can assume p = q = 1.
The first function is a ”measure of extending” of R. Since we want to minimize

cardinality of R, we are interested in finding md with the largest intersection
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with actual R. In this way, we always add to R an almost minimal number of new
attributes. The second measure is used to examine profit by adding attributes
from md to R. We want to include in R the most frequent md in COMP and
minimize COMP as much as possible. When c2(md) = 1, then after ”adding
this md” to R we will obtain a pseudo-reduct i.e. a superset of a reduct.

3.2.3 Significance of Attributes and Stability of Reducts

A problem of relevant attribute selection is one of the importance and have been
studied in machine learning and knowledge discovery [69]. There are also several
attempts to this problem based on rough sets.

One of the first ideas in rough set based attribute selection [106] was to con-
sider as relevant those attributes which are in the core of an information system,
i.e. attributes that belong to the intersection of all reducts of that system.

It is also possible to consider as relevant attributes those from some approx-
imate reducts of sufficiently high quality. As it follows from the considerations
concerning reduction of attributes, they can not be equally important and some
of them can be eliminated from a data table without loose information contained
in the table. The idea of attribute reduction can be generalized by introduction
of the concept of attribute significance. This concept enables evaluation of at-
tributes not only over a two-valued scale, dispensable – indispensable, but by
associating with an attribute a real number from the [0, 1] closed interval. This
number expresses the relevance of the attribute in the information table.

Significance of an attribute a ∈ B ⊆ A in a decision table DT = (U, A ∪ {d})
can be evaluated by measuring the effect of removing of an attribute a ∈ B from
the attribute set B on the positive region defined by the table DT. As shown
previously, the number γ (ASB, {d}) expresses the degree of dependency between
attributes B and d. We can ask how the coefficient γ (ASB, {d}) changes when
an attribute a is removed, i.e., what is the difference between γ (ASB , {d}) and
γ(ASB−{a}, {d}). We can normalize the difference and define the significance of
an attribute a as

σ(ASB ,{d})(a) =
γ (ASB, {d}) − γ(ASB−{a}, {d})

γ(ASB, {d})
.

Thus the coefficient σ(a) can be understood as the error of classification which
occurs when attribute a is dropped.

Example 3.12. We consider Table 3.2 with decision attribute ”Type”. Let ASA =
(U, IA, νSRI) be an approximation space defined in Example 3.6. The uncertainty
function IA is presented in Table 3.7.

We obtain

LOW (ASA, ‖d = C‖DT ) = {x1} ,

LOW (ASA, ‖d = U‖DT ) = {x6, x8} ,
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Table 3.7. Uncertainty Function

IA (•)

x1 {x1, x3, x4, x5}

x2 {x2, x3, x4, x5, x7, x9}

x3 {x1, x2, x3, x4, x5, x9}

x4 {x1, x2, x3, x4, x5, x9}

x5 {x1, x2, x3, x4, x5, x7, x9}

x6 {x6, x9}

x7 {x2, x5, x7, x9}

x8 {x8}

x9 {x2, x3, x4, x5, x6, x7, x9}

hence γ(ASA, {d}) = 3
9 . For every attribute a ∈ A we obtain:

γ(ASA−{a1}, {d}) =
1

9
and σ(ASA,{d})(a1) =

2

3
,

γ(ASA−{a2}, {d}) =
2

9
and σ(ASA,{d})(a2) =

1

3
,

γ(ASA−{a3}, {d}) =
2

9
and σ(ASA,{d})(a3) =

1

3
,

γ(ASA−{a4}, {d}) =
3

9
and σ(ASA,{d})(a4) = 0.

Another approach to the problem of relevant attributes selection is related to
dynamic reducts (see e.g. [5]) i.e. condition attribute sets appearing “sufficiently
often” as reducts of samples of the original decision table. The attributes be-
longing to the “majority” of dynamic reducts are defined as relevant. The value
thresholds for “sufficiently often” and “majority” need to be tuned for the given
data. Several of the reported experiments show that the set of decision rules
based on such attributes is much smaller than the set of all decision rules and
the quality of classification of new objects is increasing or at least not signif-
icantly decreasing if only rules constructed over such relevant attributes are
considered.

We recall the notion of a stability coefficient of a reduct [5]. Let DT =
(U, A ∪ {d}) be a decision table. One can say that DT ′ = (U ′, A ∪ {d}) is a
subtable of DT if and only if U ′ ⊂ U. Let B ⊆ A be a relative reduct for
(ASA, {d}). Let F denote a set of subtables of DT = (U, A ∪ {d}) . The number

card ({DT ′ ∈ F : B is a reduct in DT ′})

card (F )

is called the stability coefficient of the reduct B.
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3.3 Representatives

In some sense dual to the problem of attribute set reduction is the problem of
object number reduction (selection). In the standard rough set approach it seems
that the first idea is to take one element from every equivalence class defined by
a set of attributes. When we consider overlapping classes the above idea should
be modified. In this section we discuss the problem of proper representative
object selection from data tables. We discuss equivalence of the problem of object
number reduction to the problem of prime implicants computation for a suitable
Boolean function.

The general problem can be described as follows:
Given a set of objects U , the reduction process of U consists in finding a new

set U ′ ⊂ U . The objects which belong to the set U ′ are chosen for example
by using an evaluation criterion. The main advantage of the evaluation criterion
approach is that a simple evaluation criterion can be defined which ensures a high
level of efficiency. On the other hand, the definition of the evaluation criterion
is a difficult problem, because in the new data set some objects are dropped
and only a good evaluation criterion preserves the effectiveness of the knowledge
acquired during the subsequent learning process.

There are many methods of adequate representative selection (see for example
[25, 41, 88, 119, 120, 189, 196]).

In the standard rough set model, representatives can be computed from every
indiscernibility class. In this section we discuss representative selection based
on generalized approximation spaces and Boolean reasoning. This approach was
suggested in [136].

3.3.1 Representatives in Information Systems

We assume that AS = (U, IA, νSRI) is an approximation space, where U =
{x1, . . . , xn} is a set of objects and let x∗

1, . . . , x
∗
n be Boolean variables corre-

sponding to objects x1, . . . , xn, respectively.

Definition 3.13. Let (U, A) be an information system. A subset U ′ ⊆ U is a

minimal set of representatives if and only if the following two conditions are

satisfied:

1. For every x ∈ U there is y ∈ U ′ such that x ∈ IA (y) .
2. For every proper subset U” ⊂ U ′ the first condition is not satisfied.

In the next theorem we obtain a characterization of minimal sets of representa-
tives in information systems.

Theorem 3.14. We define the Boolean function

g(U,A) (x∗
1, . . . , x

∗
n) =

∧

xi∈U

∨

xj∈IA(xi)

x∗
j .
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The following conditions are equivalent:

1. {xi1 , . . . , xik
} is a minimal set of representatives.

2. x∗
i1

∧ . . . ∧ x∗
ik

is a prime implicant of the Boolean function g(U,A).

Example 3.15. We consider Table 3.2 without decision attribute ”Type”. From
the uncertainty function IA presented in Table 3.7, we obtain the Boolean
function

g(U,A) (x∗
1, . . . , x

∗
9) = (x∗

1 ∨ x∗
3 ∨ x∗

4 ∨ x∗
5) ∧ (x∗

2 ∨ x∗
3 ∨ x∗

4 ∨ x∗
5 ∨ x∗

7 ∨ x∗
9) ∧ . . . ∧

(x∗
2 ∨ x∗

3 ∨ x∗
4 ∨ x∗

5 ∨ x∗
6 ∨ x∗

7 ∨ x∗
9) .

Computing prime implicants of g(U,A), we obtain the following sets of
representatives:

{x1, x2, x6, x8} , {x1, x6, x7, x8} , {x2, x3, x6, x8} , {x3, x6, x7, x8} ,
{x2, x4, x6, x8} , {x4, x6, x7, x8} , {x5, x6, x8} , {x1, x8, x9} , {x3, x8, x9} ,
{x4, x8, x9} and {x5, x8, x9} .

3.3.2 Representatives in Decision Tables

In decision tables, we also consider the decision in computation of minimal sets
of representatives.

Definition 3.16. Let (U, A ∪ {d}) be a decision table. A subset U ′ ⊆ U is a

relative minimal set of representatives if and only if the following two conditions

are satisfied:

1. For every x ∈ U there is y ∈ U ′ such that x ∈ IA (y) and d (x) = d (y) .
2. For every proper subset U” ⊂ U ′ the first condition is not satisfied.

Illustrative example is depicted in Figure 3.4. We can formulate a similar theorem
for computation of representatives in a decision table as with computation of
relative reducts.

Theorem 3.17. Let ST (xi) = {xj ∈ U : xj ∈ IA (xi) , d (xi) = d (xj)}.
We define the Boolean function

g(U,A∪{d}) (x∗
1, . . . , x

∗
n) =

∧

xi∈U

∨

xj∈ST (xi)

x∗
j .

The following conditions are equivalent:

1. {xi1 , . . . , xik
} is a relative minimal set of representatives.

2. x∗
i1

∧ . . . ∧ x∗
ik

is a prime implicant of g(U,A∪{d}).

Below we sketch an algorithm for computation of one set of representatives with
minimal or near minimal number of elements.

The main difference between finding out one set of representatives and one
relative reduct is in the way in which we calculate and interpret components.
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Fig. 3.4. Representatives (Circles Represent Objects and Squares Representatives)

In case of the relative set of representatives we do not build the discernibility
matrix, but we replace it by a similar table containing for any object xi all
objects similar to xi and with the same decision:

ST (xi) = {xj ∈ U : xj ∈ IA (xi) , d (xi) = d (xj)} .

After reduction, we obtain components as essential entries in ST . For COMP
we can apply the algorithm used to compute a reduct assuming card(md) = 1.
We add to the constructed relative absorbent set any object which is the most
frequent in COMP and then eliminate from COMP all components having this
object. This process terminates when COMP is empty. For more details see
[196].
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Any classification algorithm should consists of some classifiers together with
a method of conflicts resolving between the classifiers when new objects are
classified. In this chapter we discuss two classes of classification algorithms.
Algorithms from the first class are using sets of decision rules as classifiers to-
gether with some methods of conflict resolving. The rules are generated from
decision tables with tolerance relations using Boolean reasoning approach. They
create decision classes descriptions. However, to predict (or classify) new object
to a proper decision class it is necessary to fix some methods for conflict resolving
between rules recognizing the object and voting for different decisions. We also
discuss how such decision rules can be generated using Boolean reasoning. Algo-
rithms of the second kind are based on the nearest neighbor method (k − NN)
(see, top ten data mining algorithms [217]). We show how this method can be
combined with some rough set method for relevant attribute selection.

The organization of this chapter is as follows. In Section 4.1 the concept of
granularity in rules is discussed. In Section 4.2 decision rules in standard and
tolerance rough set model are discussed. In Section 4.3 we give some overview
of quantitative measures for decision rule ranking. The received ranking can
be used for rule filtration or for conflict between decision rules resolving when
new objects are classified. In Section 4.4 we discuss a hybrid method received
by combining the k − NN method with some methods for relevant attribute
selection.

4.1 Information Granulation and Rules

We present some definitions concerning decision rules also called classification
rules. A rule

If λ then ξ
is composed of a condition λ and a decision part ξ. The decision part usually

describes the predicted class. The condition part λ is a conjunction of selec-
tors, each selector being a condition involving a single attribute. For nominal
attributes, this condition is a simple equality test, for example Sex = f. For

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 59–66, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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numerical attributes, the condition is typically inclusion in an interval, for ex-
ample 7 ≤ Age < 13. Decision rules for nominal attributes are represented as
statements in the following form:

If a1 = v1 and ... and ak = vk then d = i.

To emphasize the use of information granulation in rule-based computing [21],
let us consider a rule of the form

If λ then ξ

where λ and ξ are represented as numerical intervals in the space of real valued
attributes. A low level of granularity of the condition λ associated with a high
level of granularity of the conclusion ξ describes a rule of high relevance: it
applies to a wide range of objects (as its condition λ is not very detailed) while
offering a very specific conclusion ξ. On the other hand, if we encounter a rule
containing a very detailed condition λ with quite limited applicability while the
conclusion ξ is quite general, we may view rule’s relevance to be quite limited.
In general, increasing granularity of the condition λ and decreasing granularity
of conclusion ξ decrease the quality of the rule.

4.2 Decision Rules in Rough Set Models

In this section we show how to use Boolean reasoning approach for decision
rule generation from data tables extended by tolerance relations defined on the
attribute value vectors. The general scheme is depicted on Figure 4.1.

It is important to note that the aim of Boolean reasoning in considered prob-
lems is to preserve some properties described by discernibility relations. In the
classical rough set approach the discernibility relation is equal to the comple-
ment of the indiscernibility relation. However, in more general cases, (e.g. related
to tolerance relation) one can define the discernibility relation in a quite differ-
ent way (e.g. one can define the discernibility not by I(x) ∩ I(y) = ∅, not by
y /∈ I(x)). We discuss how the Boolean reasoning method works for the classical
case of discernibility relation {(x, y) ∈ U×U : y /∈ I(x)}. However, one can easily
modify it for other cases of discernibility relations. The decision rule generation
process for, so called minimal rules, can be reduced to the generation of relative
object related reducts. These reducts can be computed as prime implicants of an
appropriate Boolean function. Let us mention that the presented methods can
be extended for computing of approximate decision rules e.g. association rules
[2, 95].

Decision rules are generated from reducts. So in order to compute decision
rules, reducts have to be computed first. One can use different kinds of reducts
(object-related or for data table) and different methods of reducts computation.
For example the reducts one can compute by exhaustive calculation. This method
finds all reducts by computing prime implicants of a Boolean function.

For example one can use object-related reducts. One can conceptually over-
lay each reduct over the decision table it was computed from, and read off the
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Fig. 4.1. Decision Rules in Tolerance Rough Set Model

attribute values. We give two examples of selectors with respect to two different
types of uncertainty functions:

If an uncertainty function Ia for an attribute a ∈ A is defined by
y ∈ Ia (x) if and only if a (x) = a (y)
(as in the standard rough set model) then for the attribute a from some reduct

related to an object x ∈ U a constructed selector is of the form a = a (x) .
If an uncertainty function Iεa

a for a numeric attribute a ∈ A is defined by
y ∈ Iεa

a (x) if and only if δa (a (x) , a (y)) ≤ εa,
where δa is a distance function and εa ∈ [0, 1] is a real number then
for the attribute a from some relative reduct related to an object x ∈ U a

constructed selector should exploit the form of a distance function. For example,
for the distance function diffa a constructed selector is of the form

a ∈ [a (x) − εa ∗ (maxa − mina) , a (x) + εa ∗ (maxa − mina)] .

Example 4.1. Let us consider data from Table 3.2. Using relative object related
reducts (see Table 3.6) we obtain rules presented in Table 4.1.

In [132] and [133] tolerance rough set model to approximate rule calculation is
discussed. A genetic algorithm is used for fuzzification of obtained decision rules.
Presented experimental results show that the proposed method allows getting a
smaller set of decision rules with usually better classification abilities.
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Table 4.1. Rules Based on Relative Object Related Reducts

Objects Rules

x1 if a1 ∈ [0, 5] and a2 ∈ [2, 4] then d = C

x2 if a1 ∈ [0, 5] and a3 ∈ [0, 1] then d = C

x3 if a1 ∈ [0, 8] and a2 ∈ [2, 5] and a4 ∈ [0, 7] then d = C

x3 if a1 ∈ [0, 8] and a3 ∈ [0, 1] and a4 ∈ [0, 7] then d = C

x4 if a1 ∈ [0, 6] and a2 ∈ [2, 5] and a4 ∈ [0, 7] then d = C

x4 if a1 ∈ [0, 6] and a3 ∈ [0, 1] and a4 ∈ [0, 7] then d = C

x5 if a1 ∈ [0, 5] and a3 ∈ [0, 1] then d = C

x6 if a3 ∈ [1, 2] then d = U

x7 if a4 ∈ [3, 10] then d = U

x8 if a1 ∈ [12, 17] then d = U

x9 if a2 ∈ [3, 6] then d = U

4.3 Evaluation of Decision Rules

Decision rules induced from a data table can be evaluated along at least two
dimensions: performance (prediction) and explanatory features (description). By
performance is meant assessment of how well the set of rules does in classifying
new objects, according to some specified performance criterion. By explanatory
features is meant how interpretable the rules are, so that one might gain some
insight into how the classification or decision making process is carried out. How
these two evaluation dimensions are to weighted is a matter of the intended
role of the generated rules. If the set of rules is to operate in a fully automated
environment, then performance may be the main feature of interest. Conversely,
if the set of rules induction is part of a knowledge discovery process, then the
interpretability of the rules will be more important.

Different methods for classification vary in how much they facilitate the knowl-
edge discovery aspect, depending on the type of classifiers they produce. A point
that is often held forth in favor of methods that produce rule sets is that the
models are directly readable and interpretable.

For example, classification one can perform by the following algorithm. Pre-
sented with a given object (information vector) to classify, the algorithm scans
through the rule set and determines if each rule fires (is applicable). Rules whose
antecedent are not in direct conflict with the contents of the information vector
fire. If no rules fire, the most frequent decision in the decision table is taken. This
means that the dominating decision in the data set is suggested. If more than one
rule fires, these may indicate more than one possible decision class. An election
process among the firing rules is then performed in order to resolve conflicts and
rank the decisions. First, one can accumulate the votes for each possible decision
by each firing rule. Second, the accumulated number of votes for each possible
decision defines a certainty coefficient for each decision class. The decision class
with the largest certainty coefficient is selected. Ties are resolved by the majority
voter algorithm.
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Table 4.2. Contingency Table Representing the Quantitative Information about the
Rule

ξ ¬ξ

λ card
(

‖λ ∧ ξ‖
DT

)

card
(

‖λ ∧ ¬ξ‖
DT

)

card
(

‖λ‖
DT

)

¬λ card
(

‖¬λ ∧ ξ‖
DT

)

card
(

‖¬λ ∧ ¬ξ‖
DT

)

card
(

‖¬λ‖
DT

)

card
(

‖ξ‖
DT

)

card
(

‖¬ξ‖
DT

)

card (U)

Let DT = (U, A ∪ {d}) be a given data table. We use the set-theoretical inter-
pretation of rules. It relates a rule to data sets from which the rule is discovered.

Using the cardinalities of sets, we obtain the 2×2 contingency table representing
the quantitative information about the rule if λ then ξ (see Table 4.2).

Using the elements of the contingency table, we may define the support of a
decision rule Rule of the form if λ then ξ by

supportDT (Rule) = card (‖λ‖DT ∩ ‖ξ‖DT )

and its accuracy by

accuracyDT (Rule) =
card (‖λ‖DT ∩ ‖ξ‖DT )

card (‖λ‖DT )
.

This quantity shows the degree to which λ implies ξ. It may be viewed as
the conditional probability of a randomly selected object satisfying ξ given that
the element satisfies λ. In set-theoretic terms, it is the degree to which ‖λ‖DT is
included in ‖ξ‖DT and is equal to νSRI (‖λ‖DT , ‖ξ‖DT ) . Different names were
given to this measure, including, the confidence (for mining association rules [2])
and the absolute support [219].

The coverage of Rule is defined by

coverageDT (Rule) =
card (‖λ‖DT ∩ ‖ξ‖DT )

card (‖ξ‖DT )
.

In set-theoretic term, it is the degree to which ‖ξ‖DT is included in ‖λ‖DT

and is equal to νSRI (‖ξ‖DT , ‖λ‖DT ) .
In Figure 4.2 are depicted four decision rules types for ξ defined by condition

d = 1. Each dashed set represents ‖λ‖DT .
The rule quality for the rules in a rule set Rule Set is determined by a quality

function:
q : Rule Set → [0, 1] .

Michalski [87] suggests that high accuracy and coverage are requirements of
decision rules. qM is a weighted sum of the measures of the accuracy and the
coverage properties:

qM (Rule) = w ∗ accuracyDT (Rule) + (1 − w) ∗ coverageDT (Rule).

In the Torgo quality function qT [203] the accuracy value is judged to be the
more important than coverage. The weight is made dependent on accuracy:

qT (Rule) is qM (Rule) with w =
1

2
+

1

4
accuracyDT (Rule).
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Fig. 4.2. Four Types of Rules

The Brazdil quality function qB [17] is a product of accuracy and coverage.

qB(Rule) = accuracyDT (Rule) ∗ ecoverageDT (Rule)−1.

The Pearson quality function qP [19] is based on the theory of contingency tables.
Let

p1 = card (‖λ ∧ ξ‖DT ) ∗ card (‖¬λ ∧ ¬ξ‖DT ) ,

p2 = card (‖λ ∧ ¬ξ‖DT ) ∗ card (‖¬λ ∧ ξ‖DT ) .

Using p1 and p2 we define

qP (Rule) =
(p1 − p2)

2

card (‖λ‖DT ) ∗ card (‖ξ‖DT ) ∗ card (‖¬λ‖DT ) ∗ card (‖¬ξ‖DT )
.
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An overview of rule quality formulas is given in [19].
It is easy to observe that the presented formulas yield values from the inter-

val [0, 1] . One can also observe [19] that discussed quality functions are non-
decreasing functions of accuracy and coverage.

Example 4.2. Let us consider data from Table 3.2. We compute different coeffi-
cients, for the rule

Rule : if a1 ∈ [0, 5] and a3 ∈ [0, 1] then d = C
obtained from the relative object related reduct {a1, a3} for the objects x2

and x5.
For Rule we obtain the 2 × 2 contingency Table 4.3.

Table 4.3. Example of Contingency Table Representing the Quantitative Information
about Rule

d = C ¬ (d = C)

a1 ∈ [0, 5] ∧ a3 ∈ [0, 1] 5 2 7

¬ (a1 ∈ [0, 5] ∧ a3 ∈ [0, 1]) 0 2 2

5 4 9

We compute support, accuracy and coverage:

supportDT (Rule) = card (‖a1 ∈ [0, 5] ∧ a3 ∈ [0, 1]‖DT ∩ ‖d = C‖DT ) = 5,

accuracyDT (Rule) =
card (‖a1 ∈ [0, 5] ∧ a3 ∈ [0, 1]‖DT ∩ ‖d = C‖DT )

card (‖a1 ∈ [0, 5] ∧ a3 ∈ [0, 1]‖DT )
=

5

7
,

coverageDT (Rule) =
card (‖a1 ∈ [0, 5] ∧ a3 ∈ [0, 1]‖DT ∩ ‖d = C‖DT )

card (‖d = C‖DT )
= 1.

We obtain the following qualities of Rule :

qM (Rule) = w ∗ accuracyDT (Rule) + (1 − w) ∗ coverageDT (Rule) =

w ∗
5

7
+ (1 − w) ∗ 1 = 1 −

2

7
∗ w,

where 0 ≤ w ≤ 1 is a parameter,

qT (Rule) =

(

1

2
+

1

4
accuracyDT (Rule)

)

∗ accuracyDT (Rule)+

(1 −

(

1

2
+

1

4
accuracyDT (Rule)

)

) ∗ coverageDT (Rule) =

(

1

2
+

5

28

)

∗
5

7
+

(

1

2
−

5

28

)

∗ 1 = 0.81,

qB (Rule) = accuracyDT (Rule) ∗ ecoverageDT (Rule)−1 =
5

7
,

qP (Rule) =
(5 ∗ 2 − 2 ∗ 0)

2

7 ∗ 5 ∗ 2 ∗ 4
= 0.36.
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4.4 Nearest Neighbor Algorithms

Learning in nearest neighbors algorithm consists of storing the presented data
table. When a new object is encountered, a set of similar related objects is
retrieved from memory and used to classify the new object.

The nearest neighbors method is an example of analogy-based reasoning. A
reasoning system assumes that there is a data table providing the complete
information about objects. When the system is asked about new object without
decision it retrieves similar (analogous) objects from data table and the decision
is completed on the basis of the information about the retrieved objects.

One advantage of nearest neighbors algorithm is that training is very fast. The
second advantage is that the algorithm can learn complex relationships between
condition and decision attributes.

One disadvantage of nearest neighbor approach is that the cost of classifying
new objects can be high. This is due to the fact that nearly all computation
takes place at classification time.

The second disadvantage is based on observation that nearest neighbor ap-
proach can be easily fooled by irrelevant attributes. Namely, the distance be-
tween objects is calculated based on all attributes of the data table. This lies
in contrast to methods based on rough set approach that select only a subset
of the attributes when forming a decision algorithm (set of rules). For example,
consider applying nearest neighbors approach a problem in which each object
is described by twelve attributes, but where only three of these attributes are
relevant to determining the classification. In this case, objects that have iden-
tical values for the three relevant attributes may nevertheless be distant from
one another in twelve dimensional space. As a result, the metric used by nearest
neighbors algorithm - depending on all 12 attributes - will be misleading. The
distance between neighbors will be dominated by the large number of irrelevant
attributes.

One approach to overcoming this problem is to completely eliminate the least
relevant attributes from the set of all attributes. The relevant attributes are
extracted using rough set approach based, for example, on so called dynamic
reducts. The details of the approach are discussed in Chapter 6. Next k − NN
method is applied to the relevant attributes only.
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In this chapter we recall the concept of clustering and discuss in detail some
selected algorithms.

The organization of this chapter is as follows. In Section 5.1 selected clus-
tering algorithms are discussed. In Section 5.2 the self-organizing system for
information granulation is recalled. In Section 5.3 we discuss some clustering al-
gorithms received by combining clustering with methods of the rough set theory.
In Section 5.4 quality of information granulation is discussed.

5.1 From Data to Clusters

Clustering arises as an algorithmic framework for data mining. It is important
task in several data mining applications including document retrieval and image
segmentation. Let us observe that dividing n objects into nc clusters (granules)
gives rise to a huge number of possible partitions, which is expressed in the form
of the Stirling number of the second kind S(n, nc). Stirling numbers of the second
kind obey the recurrence relation S(n, nc) = S(n − 1, nc − 1) + nc · S(n − 1, nc)
with S(n, 1) = 1 and S(n, n) = 1. The Stirling numbers of the second kind are
given by the explicit formula:

S(n, nc) =

nc
∑

j=1

(−1)nc−j jn−1

(j − 1)!(nc − j)!
=

1

nc!

nc
∑

j=1

(−1)nc−j

⎛

⎝

nc

j

⎞

⎠jn

In the case of n = 107 (see medical case study in Chapter 6) and nc = 2, . . . , 11
the number of possible partitions is presented in Table 5.1.

This means that computation of optimal partition is a non-trivial task and it can
not be solved by a simple increase of computational resources. Obviously, we need
to resort to some optimization techniques the ones known as clustering methods.

There are many clustering methods, most of them designed for particular
purposes and applications. They may be divided in the following categories:
partitioning, model-based, hierarchical, density-based and grid-based. Partition-
ing algorithms perform clustering assigning labels to the individual object from

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 67–77, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Table 5.1. Number of Possible Partitions for n = 107

nc 2 3 4 5 6 7 8 9 10 11

S(107,nc) 1032 1050 1063 1073 1080 1087 1092 1096 10100 10104

the dataset, hierarchical techniques create a structure explaining dependencies
in the data, in density-based clustering density of data is examined and grid-
based methods do clustering on the quantized space into a finite number of
cells [59].

Partitioning algorithms are based on optimizing a criterion function that is
the most common the sum-squared-error function. The most popular partition-
ing method is k-means (in the top 10 data mining algorithms [217]). The k-means
algorithm is a simple iterative method to partition a given data set into a user
specified number of clusters k. This algorithm has been discovered by several
researchers across different disciplines (see e.g. [84] and references in [217]). The
k-means algorithm can be placed in the larger context of hill-climbing algo-
rithms. The algorithm works as follows: initially the data are grouped arbitrary,
then in next steps the objects are moved to the nearest cluster to minimalize
the criterion function. The clusters are determined by their centroids. Iterations
are repeated until there is no objects to move. Although simple partitional al-
gorithms suffer from some difficulties, among the other things, the number of
clusters is required a priori and they find problems when clusters are large varied
in size. The applied criterion function limits to processing only concentric data.
Despite of the mentioned disadvantages the k-means algorithm is the most often
used method in clustering.

Hierarchical clustering algorithms create a kind of tree of clusters, called den-
drogram showing relationship among objects. Grouping into the desired number
of clusters is achieved by cutting the dendrogram at an appropriate level. Den-
drogram can be created in two way: agglomerative and divisive. Agglomerative
approach starts from connected pairs of the most similar objects forming clus-
ters. Then in followings steps the most similar clusters are joined. The number
of clusters in every step is decreasing to one. Divisive approach works from top
to down of the tree, starting from all objects forming one cluster. The clus-
ters are split in two at every iteration until they are composed of one object.
On account of method of distance calculation between clusters they can be di-
vided in single-link [168], complete-link (hcl) [68] and minimum-variance [211]
approaches.

In complete-link (or complete linkage) hierarchical clustering, we merge in
each step the two clusters with the smallest maximum pairwise distance. In other
words, in complete-link clustering (complete-linkage) clustering, the similarity
of two link clustering clusters is the similarity of their most dissimilar members
(see Figure 5.1). This results in a preference for compact clusters with small
diameters over long, straggly clusters. This is a very popular technique offering
good quality results.
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Fig. 5.1. Minimum Similarity used by the Hierarchical Complete-Link (hcl) Algorithm

In model-based clustering there is a hypothesized model for each of the clus-
ters and the task is to find the best fitting of the parameters of that model
[36]. Example model-based approach is neural networks with SOM [70]. Finite
mixture distributions provide a flexible and mathematical-based approach to the
clustering of data observed on random phenomena. We focus in the experiments
with medical data on the use of normal mixture models, which can be used to
cluster data. These mixture models can be fitted by maximum likelihood via
the EM (ExpectationMaximization) algorithm (which is in the group of top ten
data mining algorithms [217]) (for references see e.g. [215, 217]).

Density-based clustering technique groups neighboring objects basing on their
density condition. This group of methods can cope with data of arbitrary shapes
and is often used in spatial clustering. Typical density-based method is DB-
SCAN (Density-Based Spatial Clustering of Applications with Noise) [32]. We
introduce the notion of the ε− neighborhood. Given some object x ∈ U, the ε−
neighborhood, denoted by Iε(x) is defined as:

Iε(x) = {y ∈ U : δ(x, y) ≤ ε}

The form of the distance function δ implies the geometry of the ε− neighbor-
hood. Higher values of ε produce larger neighborhoods. We introduce another
parameter, minPts, that tells us how many objects fall within a neighborhood.
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Core object is an object with at least minPts objects within a ε− neighbor-
hood.

We say that x ∈ U is y ∈ U directly density reachable with parameters ε and
minPts if and only if x ∈ Iε(y) and card(Iε(y)) ≥ minPts.

Objects x ∈ U and y ∈ U are density reachable if and only if there exists a
chain of directly density reachable objects from x to y.

A cluster is defined as a maximal set of density connected objects (with respect
to reachability).

The algorithm DBSCAN starts with an arbitrary object, and retrieves all
object reachable from it with a distance no more than a given ε parameter. All
such objects are therefore part of the same cluster, together with the arbitrary
starting object, and are later used to recognize new nearby objects.

The DBSCAN algorithm consists of the following sequence of steps.
Set up the parameters of the neighborhood, ε and minPts:

1. Arbitrary select an object x ∈ U
2. Find (retrieve) all objects density reachable from x with respect to ε and

minPts
3. If x is a core object, then the cluster is formed
4. Otherwise x is a border object, no objects are density-reachable from x and

move on to the next object of U
5. Continue the process until all of the objects from U have been processed

Grid-based techniques quantize the space into a multi-resolution grid data
structure and then do all operations on the quantized space. Time of processing
data is independent directly on the data object and depends only on the number
of cells in each dimension in quantized space. It makes the methods fast, but
characterized by a small accuracy. Additionally, they have a tendency to identify
clusters that do not exist. An example of grid-based algorithm is STING [210].

5.2 Self-Organizing Clustering System

The SOSIG (Self-Organizing System for Information Granulation) algorithm
is a clustering system designed for detecting granules present in data. It is a
successor of SArIS algorithm [213]. The algorithm SOSIG is described in detail
in [75]. In this section we only recall main idea of the system.

SOSIG creates a network structure of connected objects forming clusters.
Organization of the system, including as well the objects as the connections,
is constructed on the basis of relationships between input data, without any
external supervision. The structure points are representatives of input data,
that is an individual object from the structure stands for one or more object
from input set. In effect of this the number of representatives is much less than
clustered data without lost of information.

Let us assume that input data is defined as an information system IS = (U, A)
[106], where U = {x1, . . . , xn} is a set of objects and A = {a1, . . . , ak} is a set of
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attributes. Result generated by SOSIG is also described by an information sys-
tem IS′ = (Y, A∪{agr}), where the last attribute agr : Y → {1, . . . , nc} denotes
label of generated granule and card(Y ) ≤ card(U) and ∀x ∈ U∃y ∈ Y (δ(x, y) <
NAT ). In terminology of artificial immune systems, U can be interpreted as the
set of antigens and Y can be interpreted as the set of antibodies (see [213]).
The parameter NAT (network affinity threshold) defines neighborhood of ob-
jects from IS′. It directly influences level of granulation of the input set. Initial
value of NAT is proportional to maximal number of nearest neighbor distances
in the input set (see Equation 5.1).

NATinit = max({min({δ(xi, xj) : xj ∈ U & xj 	= xi}) : xi ∈ U}) (5.1)

The following values of NAT are calculated from current state of the network
(see Equation 5.2).

NAT =
1

rg
∗

∑

yi∈Y min({δ(yi, yj) : yj ∈ Y & yj 	= yi})

card(Y )
(5.2)

where rg ∈ (0, ∞) is a resolution of granulation parameter. The most often value
of granulation resolution parameter is 2.0 (estimated theoretically and confirmed
in experiments) assigned to the most separated clusters. Decreasing the value
of rg it is possible to identify granules in higher resolution. The NAT directly
affects cluster formation as connections in network are determined if the objects
are in their neighborhoods.

After initial phase, like normalization of data, calculation initial value of NAT,
iterated steps of the algorithm follow. First, the system objects are assessed. The
measure of their usefulness is a stimulation level sl expressed by Equation 5.3.

sl(y) = NAT − min({δ(y, x) : x ∈ U}) (5.3)

Then useless objects are removed. It affects as well not stimulated objects as
redundant ones. As redundant are determined points having the same input
object in their neighborhood. The best of them stay in the network and also
not redundant ones for other input data. This process controls the size of the
network prevents forming excessively dense clusters. It results in compression
phenomenon.

The remaining objects are re-connected and labeled. Components of the same
granule have equal label, whereas the granule is determined by edges between the
objects in the structure. Then there is calculated a new value of NAT parameter
(see Equation 5.2). When stopping criterion is met, the algorithm is stopped
after connections reconstruction. Otherwise following steps are carried out. As
a stopping criterion there is considered a stable state of the network, that is the
state of small fluctuations of network size and value of NAT. The last step is a
procedure of replication of the all objects. Further modification of their attribute
values allows searching better solution nearby examined network object. There
is also a step introducing to the system object from input data not recognized
yet. This operation avoids leaving not represented area in the training set.
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Further classification of new as well as training objects can be performed
using so-created structure. To assign a label to considered object it is necessary
to determine neighborhood objects from network structure. The neighborhood
of the object is defined by final value of the NAT (the last calculated value) of
the SOSIG. The predominant value of the labels is given to the examined object.

5.3 Rough Clustering

In this section we recall some clustering methods combined with rough set
methodology.

Clustering in relation to rough set theory is attracting increasing interest
among researchers. In [93] rough sets are used to model the clusters in terms of
lower approximation and boundary region (the part of an upper approximation
that is not covered by a lower approximation). To initialize the rough k-means
one has to select the weights of the lower approximation and the boundary re-
gion as well as the number of clusters. Mitra argued that a good initial setting of
these parameters is one of the main challenges in rough set clustering. Genetic
algorithms are used to tune the threshold, and relative importance of upper
and lower approximation parameters of the sets. The Davies-Bouldin clustering
validity index is used as the fitness function of the genetic algorithm, that is
minimized. In [114] the performance of rough k-means algorithm [83] with re-
spect to its compliance to the classical k-means was investigated. The following
assumptions for rough k-means algorithm were made:

• An object belongs to one lower approximation at most.
• If an object is no member of any lower approximation it belongs to two or

more upper approximations.
• A lower approximation is a subset of its corresponding upper approximation.

Let (U, {a1, . . . , ap}) be an information system with p > 0 real valued at-
tributes and {Ci ⊆ U : i = 1, . . . , k} be a set of clusters. We define mLOW

i and
mBN

i by

mLOW
i =

∑

x∈LOW (Ci)

(a1(x), . . . , ap(x))

card(LOW (Ci))
,

mBN
i =

∑

x∈BN(Ci)

(a1(x), . . . , ap(x))

card(BN(Ci))
.

The means mi where i = 1, . . . , k are computed as weighted sums of the
objects x ∈ U in the lower approximation LOW (Ci) (weight wLOW ) and the
boundary region BN(Ci)) (weight wBN )

mi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wLOW ∗ mLOW
i + wBN ∗ mBN

i if BN(Ci) 	= ∅ & LOW (Ci) 	= ∅

mLOW
i if BN(Ci) = ∅ & LOW (Ci) 	= ∅

mBN
i if BN(Ci) 	= ∅ & LOW (Ci) = ∅

(5.4)



Rough Clustering 73

The parameters wLOW ≥ 0 and wBN ≥ 0 correspond to the relative impor-
tance of the lower approximation and the boundary region, and wLOW +wBN =1.

Then rough k-means clustering algorithm goes as follows:

1. Define the initial parameters: the weights wLOW and wBN , the number of
clusters k and a threshold ε

2. Randomly assign the data objects to one lower approximation (and to the
corresponding upper approximation).

3. Calculate the means according to Equation 5.4.
4. For each data object, determine its closest mean. If other means are not rea-

sonably farer away as the closest mean (defined by the threshold ε) assign the
data object to the upper approximations of these close clusters. Otherwise
assign the data object to the lower approximation (and to the corresponding
upper approximation) of the cluster of its closest mean.

5. Check convergence. If converged: Stop otherwise continue with Step 3.

If the upper approximation of each cluster is equal to its lower approxima-
tion, then the clusters are conventional clusters. Therefore, the boundary region
BN(Ci) (for i = 1, . . . , k) is empty and Equation 5.4 reduce to conventional
mean calculations.

In [92] the authors exploit the rough set based decision rules to obtain ini-
tial approximate mixture model parameters. Rough set theory offers a fast and
robust solution to the initialization and local minima problems of iterative re-
finement clustering (like EM and k-means).

In [82] the time complexity of two approaches for obtaining intervals of clusters
is discussed. Both the approaches use properties of rough sets. One approach is
based on genetic algorithms, and the other is an adaptation of k-means algorithm.

Analysis and estimation of incomplete data is an increasingly important issue
in many fields of knowledge discovery in databases. The paper [80] investigates
missing data imputation techniques with the aim of constructing robust algo-
rithms. Traditional clustering algorithms, e.g., k-means clustering, which are
normally crisp, have been widely used in imputation. However, the crispness
property makes the algorithms less practical, because an object could be as-
signed to more than one cluster. Integrating fuzzy sets into k-means clustering
helps solve the crispness because the fuzzy membership function models the
membership degree of an object in a cluster. Based on fuzzy set theory and
rough set theory, the paper [80] presents three imputation algorithms, fuzzy
k-means, rough k-means, and rough-fuzzy k-means.

In [48] an indiscernibility-based clustering method is presented. The main ben-
efit of this method is that it can be applied to proximity measures that do not
satisfy the triangular inequality. Additionally, it may be used with a proximity
matrix thus it does not require direct access to the original attribute values.

In [1] was proposed the following approach based on clustering and rough sets:

1. Cluster formation via unsupervised clustering algorithms,
2. Database simplification and attribute selection via attribute discretization,
3. Decision rule extraction via rough set methods.
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The approach was tested using biomedical databases.
In [126] the basic idea is to find reducts in an information system and apply

them to any clustering procedure able to cope with discrete data. The authors
apply the approach to a toy example of animal taxonomy in order to show its
functionality.

In [85] the authors propose a rough–fuzzy c-means algorithm (RFCM), based
on rough sets and fuzzy sets. While the membership function of fuzzy sets en-
ables efficient handling of overlapping clusters, the concepts of lower and up-
per approximations deals with incompleteness in class definition. Each partition
is represented by three parameters, namely, a cluster prototype, a crisp lower
approximation, and a fuzzy boundary. Several quantitative measures based on
rough sets evaluate the performance of the proposed algorithm. The authors
observed that RFCM is superior to other c-means algorithms.

In [115] a rough k-medoids clustering algorithm was introduced. The algorithm
was applied to four different data sets (synthetic, colon cancer, forest and control
chart data). The authors compared the results of these experiments to rough k-
means and discussed the strengths and weaknesses of the rough k-medoids.

5.4 Evaluation of Clustering

Together with specification of elementary granules it is necessary to define mea-
sures of granule quality [159]. In spite of the diversity of clustering algorithms,
the aim of clustering techniques is detection of granules, that are possibly the
most compact and separable. The compactness expresses how close the objects
in a cluster are. For example, consider a variance of the objects. In this case
the lower the value of the variance, the higher the compactness of the cluster.
We are interested in compact clusters, thus low values of compactness are desir-
able. Separability expresses how distinct the clusters are. Some way of expressing
separability is to compute inter cluster distances. We obtain most compact and
separable granules with small values of intra cluster distances and large values
of inter cluster distances.

To evaluate compactness and separation of discovered clusters there were
proposed statistics so-called validity indices. Validity indices are designed to es-
timation of quality of obtained partitioning. Assessment the most optimal result
needs calculation of validity indices for different values of algorithm’s parame-
ter, what usually is a number of clusters. The most commonly used are Dunn
and Dunn-like statistics and Davies-Bouldin (DB) index [46]. Their advantage is
exhibition no trends with respect to the number of clusters, therefore the mini-
mum (DB) or maximum (Dunn) value indicate the most optimal partition. The
Dunn’s value for specified number of granules nc is defined by Equation 5.5. Let
U be a set of objects and let Ci be a cluster, where i = 1, . . . , nc. We assume
that nc > 1.

Dnc = min
i=1,...,nc

{

min
j=i+1,...,nc

(

d(Ci, Cj)

maxk=1,...,nc diam(Ck)

)}

(5.5)
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where d (Ci, Cj) is the dissimilarity function between two clusters Ci and Cj

defined as

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (5.6)

and diam(C) is a diameter of a cluster defined as follows:

diam(C) = max
x,y∈C

d(x, y) (5.7)

Follows the above definition the index value is large for compact clusters
situated significantly far from one another.

The DB index is expressed by Equation 5.8. It is defined for the number of
clusters equals nc.

DBnc =
1

nc

nc
∑

i=1

(

max
j=1,...,nc,j �=i

Rij

)

(5.8)

where

Rij =
stdev (Ci) + stdev (Cj)

d(Ci, Cj)
(5.9)

where stdev (Ci) (stdev (Cj)) denotes standard deviation of a cluster Ci (Cj ,
respectively). The standard deviation of a cluster i is given by Equation 5.10.

stdev (Ci) =
1

|Ci|

√

∑

x∈Ci

(d (x, x))
2

(5.10)

where x is a centroid of a cluster and d (x, x) is an Euclidean distance between
the point x and the centroid x.

The DB index measures the average similarity between each cluster and its
most similar one, thus it is desirable to minimize this value.

Kaufman and Rousseeuw [74] proposed the Silhouette index (SI) to measure
the strengths of clusters. For a given cluster C ⊆ U , this method assign to
each object yi of the cluster C a quantitative measure si, which indicates the
membership of object in the cluster it has been assigned. Let ai be the average
distance of the object yi to other objects in the cluster C and bi is the average
distance of yi to objects in the nearest neighbor cluster besides its own. We
define

si =
bi − ai

max(ai, bi)

This index si can take values from −1 to 1. When the index is zero, then the
object yi has equal distance to its cluster and its nearest neighbor cluster. If the
index is positive, then the object yi is closer to its cluster than other clusters.
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If the index is negative, then the object yi is wrongly assigned to the current
cluster. The SI index is then defined in Equation 5.11.

SI =
1

card(U)

∑

yi∈U

si (5.11)

Thus, if all objects are correctly assigned, then SI should be close to 1.
Although there are many proposed validity indices they suffer from limitations

like assumption of distribution of clusters (the most often elliptical and spherical)
or requirement of clusters of equal size and densities [46]. The last proposed
index, CDbw is based on cluster compactness and separation. It is product of
two components Sep(nc) and Intra dens(nc) (see Equation 5.12).

CDbw(nc) = Sep(nc) · Intra dens(nc) (5.12)

where nc denotes a number of clusters in examined partitioning. The value
Intra dens(nc) depends on density of granules (described in the following text)
and Sep(nc) is a measure of separability of clusters defined as follows:

Sep(nc) =

∑nc

i=1

∑nc

j=1,i�=j min d(clos repi, clos repj)

1 + Inter dens(nc)
(5.13)

Separability is proportional to the sum of distances between the closest repre-
sentative points close rep from pair-wise clusters and inversely proportional to
measure of density between clusters Inter dens(nc). Representative points are
objects from a training set selected by Farthest First (FF) algorithm for every
cluster. The FF algorithm works as follows: initially the cluster centroid is de-
termined. Then there is selected the first representative point from the training
data located the farthest from the centroid. In the following steps are selected
the farthest objects from the previously determined representatives. The steps
are repeated until the required number r of representatives is reached. Den-
sity between clusters is expressed by Equation 5.14. It is desirable to generate
partitioning of the lowest inter-cluster density.

Inter dens(nc) =

nc
∑

i=1

nc
∑

j=1,j �=i

(

d(clos repi, clos repj)

stdev (Ci) + stdev (Cj)
· density(uij)

)

(5.14)

The component stdev (C) is the standard deviation of clusters previously de-
fined by Equation 5.10 and density(uij) density of input objects around the
point uij defined by Equation 5.15. The point uij is the middle point of the line
segment defined by the closest clusters’ representatives close repi and close repj .

density(uij) =

∑

x∈Ci∪Cj
f(x, uij)

card(Ci) + card(Cj)
(5.15)

The density(uij) represents the percentage of points in the cluster i and the
cluster j that belong to the neighborhood of uij . This neighborhood is defined
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to be a hyper-sphere with center uij and radius the average standard deviation
of the clusters between which the density is estimated. The function f(x, uij) is
defined as:

f(x, uij) =

⎧

⎨

⎩

0 if d(x, uij) > stdev (Ci) + stdev (Cj))/2

1 otherwise.
(5.16)

The second component of Equation 5.12 determines the average density within
clusters and is defined as the percentage of points that belong to the neighbor-
hood of representative points of the considered clusters. The goal is the density
within clusters to be significant high. Intra dens(nc) is given by the following
equation:

Intra dens(nc) =
1

nc

nc
∑

i=1

1

r

∑

vij∈Ci

density(vij)

stdev (Ci)
(5.17)

where

density(vij) =
∑

x∈Ci

g(x, vij) (5.18)

The function g(x, vij) is described by Equation 5.19.

g(x, vij) =

⎧

⎨

⎩

0 if d(x, vij) > stdev (Ci)

1 otherwise.
(5.19)

To determine a good clustering scheme it is required to find a maximum value
of CDbw.

In general, while the presented validity indexes are useful, in many cases they
may produce inconclusive results. They offer only some guidelines and do not
decisively point at the unique number of granules.



6 A Medical Case Study

Many interesting applications of rough set methods are reported. Let us mention
only some of medical applications: risk pattern identification in the treatment of
infants with respiratory failure [6], treatment of duodenal ulcer by HSV [111],
analysis of data from peritoneal lavage in acute pancreatitis [165], knowledge
acquisition in nursing [45], medical databases (e.g. headache, meningitis, CVD)
analysis ([204, 205]), image analysis for medical applications ([61, 94]), surgical
wound infection [66], preterm birth prediction [45], medical decision–making on
board space station Freedom (NASA Johnson Space Center) [45], diagnosing in
progressive encephalopathy [209], data preparation for data mining in medical
data sets [56], selection of important attributes for medical diagnosis systems
[57], visualization of rough set decision rules for medical diagnosis systems [58],
automatic detection of speech disorders [24], rough set-based filtration of sound
applicable to hearing prostheses [23], discovery of attribute dependences in dia-
betes data [187].

In this chapter the applications of the rough set theory to identify the most
relevant attributes and to induce decision rules from a real life medical data set
are discussed (see also [187, 189]). Information granulation using clustering is also
investigated [197]. The real life medical data set concerns children with diabetes
mellitus. Three methods are considered for identification of the most relevant
attributes. The first method is based on the notion of reduct and its stability.
The second method is based on particular attribute significance measured by
relative decrease of positive region after its removal. The third method is inspired
by the wrapper approach, where the classification accuracy is used for ranking
attributes. The rough set approach additionally offers the set of decision rules.
For the rough set based reduced data application of nearest neighbor algorithms
is also investigated. The presented methods are general and one can apply all of
them to different kinds of data sets.

The structure of the chapter is as follows. The description of clinical data is
presented in Section 6.1. The searching for optimal attribute subsets is discussed
in Section 6.2. In Section 6.3 application of nearest neighbors algorithms is inves-
tigated. In Section 6.4 discovery of decision rules is investigated. In Section 6.5

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 79–96, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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experiments with tolerance thresholds are presented. In Section 6.6 experiments
with clustering algorithms are presented.

6.1 Description of the Clinical Data

There are two main forms of diabetes mellitus:

• type 1(insulin-dependent),
• type 2 (non-insulin-dependent).

Type 1 usually occurs before age 30, although it may strike at any age. The
person with this type is usually thin and needs insulin injections to live and
dietary modifications to control his or her blood sugar level. Type 2 usually
occurs in obese adults over age 40. It’s most often treated with diet and exercise
(possibly in combination with drugs that lower the blood sugar level), although
treatment sometimes includes insulin therapy.

We consider data about children with insulin-dependent diabetes mellitus
(type 1). Insulin-dependent diabetes mellitus is a chronic disease of the body’s
metabolism characterized by an inability to produce enough insulin to pro-
cess carbohydrates, fat, and protein efficiently. Treatment requires injections of
insulin.

Complications may happen when a person has diabetes. Some effects, such as
hypoglycemia, can happen any time. Others develop when a person has had dia-
betes for a long time. These include damage to the retina of the eye (retinopathy),
the blood vessels (angiopathy), the nervous system (neuropathy), and the kid-
neys (nephropathy). The typical form of diabetic nephropathy has large amounts
of urine protein, hypertension, and is slowly progressive. It usually doesn’t occur
until after many years of diabetes, and can be delayed by tight control of the
blood sugar. Usually the best lab test for early detection of diabetic nephropathy
is measurement of microalbumin in the urine. If there is persistent microalbumin
over several repeated tests at different times, the risk of diabetic nephropathy is
higher. Normal albumin excretion is less than 20 microgram/min (less than 30
mg/day). Microalbuminuria is 20-200 microgram/min (30-300 mg/day).

Twelve condition attributes, which include the results of physical and labo-
ratory examinations and one decision attribute (microalbuminuria) describe the
database used in our experiments. The database is shown at the end of the paper
[189]. The data collection so far consists of 107 cases. The collection is growing
continuously as more and more cases are analyzed and recorded. Out of twelve
condition attributes eight attributes describe the results of physical examina-
tions, one attribute describes insulin therapy type and three attributes describe
the results of laboratory examinations. The former eight attributes include sex,
the age at which the disease was diagnosed and other diabetological findings.
The latter three attributes include the criteria of the metabolic balance, hyper-
cholesterolemia and hypertriglyceridemia. The decision attribute describes the
presence or absence of microalbuminuria. All this information is collected during
treatment of diabetes mellitus.
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Table 6.1. Names and Types of Attributes

Symbol Attribute name Attribute type

a1 Sex string

a2 Age of disease diagnosis (years) integer

a3 Disease duration (years) integer

a4 Appearance diabetes in the family string

a5 Insulin therapy type string

a6 Respiratory system infections string

a7 Remission string

a8 HbA1c float

a9 Hypertension string

a10 Body mass string

a11 Hypercholesterolemia string

a12 Hypertriglyceridemia string

d Microalbuminuria string

Table 6.2. Ranges, Means and Standard Deviations of the Numerical Attributes

Class Attribute Range Mean Std. dev.

Yes a2 [1, 17] 9.75 4.01
& a3 [2, 13] 5.86 2.02
No a8 [4.3, 12.73] 8.31 1.48

a2 [2, 16] 10.82 3.02
Yes a3 [2, 13] 5.93 1.98

a8 [4.3, 11.61] 8.46 1.56

a2 [1, 17] 8.57 4.63
No a3 [3, 13] 5.78 2.08

a8 [5.46, 12.73] 8.14 1.39

Table 6.3. Attributes and Their Values after Discretization

Attribute Attribute values

a1 f, m

a2 < 7, [7, 13) , [13, 16) , ≥ 16

a3 < 6, [6, 11) , ≥ 11

a4 yes, no

a5 KIT, KIT IIT

a6 yes, no

a7 yes, no

a8 < 8, [8, 10) , ≥ 10

a9 yes, no

a10 <3, 3-97, >97

a11 yes, no

a12 yes, no

d yes, no
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Table 6.4. Characterization of Patients Group after Discretization

% Count

Total number of patients 100 107

Sex

Male 54.21 58

Female 45.79 49

Age of disease diagnosis (years)

< 7 22.43 24

[7, 13) 49.53 53

[13, 16) 22.43 24

≥ 16 5.61 6

Disease duration (years)

< 6 51.40 55

[6, 11) 42.99 46

≥ 11 5.61 6

HbA1c

< 8 42.99 46

[8, 10) 42.06 45

≥ 10 14.95 16

Microalbuminuria

yes 52.34 56

no 47.66 51

Attribute names and types can be found in Table 6.1.
The range, the mean and the standard deviation of the numerical attributes

can be found in Table 6.2. Additionally attributes with numeric values were
discretized. Although several algorithms for automatic discretization exist (for
overviews see [95]), in this analysis discretization was done manually accord-
ing to medical norms. Attributes and their values after discretization are pre-
sented in Table 6.3. Basic data information after discretization is presented in
Table 6.4.

6.2 Relevance of Attributes

One can measure the importance of attributes with respect to different aspects.
One can also consider different strategies searching for the most important sub-
set of attributes. For example one can exhaust all possible subsets of the set
of condition attributes and find the optimal ones. In general, its complexity
(the number of subsets need to be generated) is O

(

2card(A)
)

, where card (A)
is a number of attributes. This strategy is very time consuming. Therefore we
consider less time consuming strategies.

In this section the relevance of attributes is evaluated and compared using
three methods.
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6.2.1 Reducts Application

We compute the accuracy of approximation of decision classes. From Table 6.5 one
can observe that both decision classes are definable by twelve condition attributes.

Table 6.5. Accuracy of Approximation of Decision Classes

Decision class Yes No

Number of patients 56 51

Cardinality of lower approximation 56 51

Cardinality of upper approximation 56 51

Accuracy of approximation (α) 1.0 1.0

There are six reducts. Three reducts with nine attributes and three reducts
with ten attributes. Reducts are presented in Table 6.6. Sign “+” means occur-
rence of the attribute in a reduct. Stability of reducts was verified on subtables.
This idea was inspired by the concept of dynamic reducts [5]. Based on ex-
perimental verification, reducts for full data table are more stable than other
attribute subsets. For example in one experiment we choose 30 subtables start-
ing from 90% to 99% of all objects in data table, thus we consider 300 subtables.
Six mentioned above reducts were also reducts at least in 69% from 300 subtables
and other subsets were reducts in less than 10% of subtables.

In the Table 6.6 stability of the reducts based on four experiments is also pre-
sented. We consider 300 subtables in every experiment. The sampling strategy is
the following: subtables are sampled on 10 equally spaced levels with 30 samples
per level. In the following four experiments we consider different sampling levels:

• Experiment 1: 60%, 64%, ..., 96% of the original table.
• Experiment 2: 70%, 73%, ..., 97% of the original table.

Table 6.6. Reducts, Their Stability and Classification Accuracy

Attribute/Reduct B1 B2 B3 B4 B5 B6

a1 + + + + + +

a2 + + + + + +

a3 + + + + + +

a4 - + + + + +

a5 + + + + + +

a6 + - - - + +

a7 - + + + - -

a8 + + + + + +

a9 + - - + - +

a10 + - + - + +

a11 + + - - + -

a12 + + + + + +

Stability of the reduct 65% 59% 58% 54% 47% 43%

Classification accuracy 63% 77% 71% 76% 68% 70%
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• Experiment 3: 80%, 82%, ..., 98% of the original table.
• Experiment 4: 90%, 91%, ..., 99% of the original table.

In all experiments we consider subtables with at least 60% of the original
table to preserve representability. On the other hand from evaluations presented
in [5] we deduce that the number of at least 300 subtables is enough for good
estimation of the stability coefficient.

For every reduct one can also compute classification accuracy based on leave-
one-out method. The results are presented in the last row of the Table 6.6.

From the above analysis we infer that the reduct B2 is a relatively stable
subset of attributes with high classification accuracy of generated rules.

6.2.2 Significance of Attributes

For the set of all condition attributes the quality of approximation of classifica-
tion is equal to 1.

In the first step we consider attributes that are in all six reducts. Thus we
consider attributes in core. The quality of approximation is equal to 0.76. The
ranking of core attributes is presented in Table 6.7. The idea is to evaluate each
individual attribute with the significance measure. This evaluation results in
a value attached to an attribute. Attributes are then sorted according to the
values. The attribute with the least significance (the smallest contribution to
the quality of the approximation) is removed and the process is repeated. One
can stop the algorithm when the quality of approximation equals zero.

Table 6.7. Ranking Core Attributes

Attribute removed Resulting quality of approximation

a12 0.74

a5 0.55

a1 0.40

a3/a8 0.09

a2 0

6.2.3 Wrapper Approach

We consider method inspired by wrapper approach [69]. The subsets of attributes
are evaluated based on the cross-validation result.

We recall that the cross-validation is based on the following procedure. Choose
k > 1 and partition the available data table DT = (U, A ∪ {d}) into disjoint data
subtables DTi = (Ui, A ∪ {d}) of equal size, where i = 1, . . . , k. For i from 1 to k

use DTi for the test set, and the remaining data for training set. Compute clas-
sification accuracy for all k experiments. The average classification accuracy is a
result of cross-validation test. Leave-one-out is a special case of cross-validation
procedure. In leave-one-out cross-validation the set of card (U) = n objects is
repeatedly divided into a training set of size n − 1 and test set of size 1, in all
possible ways.
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In the succeeding steps of the analysis that attribute is removed which removal
leads to the best result of the cross-validation test. Let DT = (U, A ∪ {d}) be a
data table. The general scheme of the algorithm is as follows:

B := A;
Repeat B := B − {a} , where a = arg maxa∈B

{

AC
(

DTB−{a}

)}

.

Until Stop Condition;

where DTB−{a} = (U, (B − {a}) ∪ {d}) and the resulting accuracy coefficient is

AC
(

DTB−{a}

)

.

The partial results of the analysis are presented in Table 6.8. The leave-one-
out test was used for accuracy estimation. The best result 79.44% was obtained
for six attributes. The further removal of attributes thus not led to the increase
of classification accuracy.

Table 6.8. Classification Accuracy and Quality of Approximation (γ)

Attribute I II III IV V VI

a1 63.55 62.62 64.49 62.62 62.62 60.75

a2 67.29 64.49 68.22 66.36 71.96 65.42

a3 69.16 66.36 67.29 66.36 66.36 69.16

a4 64.49 63.55 71.03 71.03 71.96 69.16

a5 69.16 69.16 68.22 71.96 72.90 79.44

a6 70.09 72.90 - - - -

a7 69.16 68.22 71.03 72.90 71.03 74.77

a8 62.62 62.62 64.49 65.42 66.36 62.62

a9 71.03 - - - - -

a10 68.22 70.09 76.64 - - -

a11 68.22 70.09 71.03 73.83 73.83 -

a12 68.22 70.09 73.83 74.77 - -

γ 1.0 1.0 1.0 0.98 0.95 0.80

Every method allows to analyze data from different angle. Combining the
results of the three methods one can find the following three condition attributes
as the most relevant: Age of disease diagnosis, HbA1c and Disease duration. This
result is consistent with the general medical knowledge about this disease.

6.3 Rough Set Approach as Preprocessing for Nearest

Neighbors Algorithms

In this section we discuss the experiments with nearest neighbor algorithms
(see for example [69, 89], for more details). The nearest neighbor algorithm re-
tains the entire training data set during learning. This algorithm assumes all
objects correspond to points in n-dimensional space. In our experiments the
nearest neighbors of an object are defined in terms of the Euclidean distance.
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More precisely, let DT = (U, A ∪ {d}) be a decision table, for every two objects
x, y ∈ U the Euclidean distance is defined by

E (x, y) =

√

∑

a∈A

(a (x) − a (y))2 (6.1)

A more general definition calculates the distance as

distance (x, y) =

√

∑

a∈A

wa ∗ difference (a (x) , a (y))
2

(6.2)

where wa is a non-negative weight value assigned to attribute a and the difference
between attribute values is defined by Equation 2.6.

Nearest neighbor algorithms are especially susceptible to the inclusion of ir-
relevant attributes in the data set, and several studies has shown that the clas-
sification accuracy degrades as the number of irrelevant attributes is increased
(see e.g. [76]). Therefore we use in our experiments relevant subsets of attributes
(based on rough set analysis).

Before applying nearest neighbors method to diabetes data, the values of non-
numerical attributes were converted into numerical data in the manner described
in Table 6.9.

Table 6.9. Conversion of Non-Numeric Attributes

Attribute values

a1 f - 0, m - 1

a4 yes - 1, no - 0

a5 KIT - 1, KIT IIT - 0

a6 yes - 1, no - 0

a7 yes - 1, no - 0

a9 yes - 1, no - 0

a10 <3 - 0, 3-97 - 1, >97 - 2

a11 yes - 1, no - 0

a12 yes - 1, no - 0

d yes - 1, no - 0

For number k ∈ {1, . . . , 10} of nearest neighbors and different attribute sub-
sets (three most important attributes, all attributes and six reducts) we obtain
the leave-one-out results presented in Table 6.10. The best results are obtained
for the set A3 = {a2, a3, a8} .

We also compare the obtained results with linear discriminant classifier (for
subsets of attributes as in nearest neighbors method). The idea of this procedure
is to divide object set by a series of lines in two dimensions, planes in three
dimensions and, generally hyperplanes in many dimensions (see for example
[89], for more details). New objects are classified according to the side of the
hyperplane that they fall on.
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Table 6.10. Nearest Neighbors Method

k A3 A B1 B2 B3 B4 B5 B6

1 73.83 73.83 71.96 76.64 70.09 70.09 81.31 73.83

2 90.65 85.98 86.92 87.85 87.85 86.92 87.85 86.92

3 75.70 72.90 72.90 75.70 71.96 73.83 73.83 71.96

4 83.18 79.44 79.44 82.24 80.37 80.37 80.37 78.50

5 79.44 72.90 71.96 72.90 73.83 75.70 73.83 73.83

6 85.98 83.18 82.24 84.11 85.05 85.05 83.18 83.18

7 79.44 76.64 76.64 76.64 76.64 80.37 75.70 78.50

8 82.24 82.24 80.37 82.24 84.11 83.18 80.37 82.24

9 78.50 77.57 77.57 74.77 80.37 80.37 77.57 77.57

10 81.31 82.24 82.24 82.24 82.24 82.24 81.31 82.24

The method requires numerical attribute vector, therefore we use conversion
of the values of non-numerical attributes into numerical data (see Table 6.9)
before applying linear discriminants.

In Table 6.11 we present the results obtained by linear discriminant classifier
(and attribute subsets as for nearest neighbors method) with leave-one-out test.

Table 6.11. Linear Discrimination

A3 A B1 B2 B3 B4 B5 B6

72.53 67.17 66.37 65.21 58.88 60.66 66.37 66.37

The best result is also in the case of the set A3 with three attributes, but is
about 18% worse than for two nearest neighbors method.

6.4 Discovery of Decision Rules

Further analysis of the data table consists in determining the relationships be-
tween values of the attributes and presence or absence of microalbuminuria i.e.
looking for representation of these relationships in the form of decision rules.

The exhaustive generation of object related reducts and rules from reducts
was used to perform the experiment.

In the current experiment the data set has been split three times and all
parts of the experiment have been duplicated for each of the three splits. This
approach lessens the impact of randomness in the results.

The following procedure was repeated for i = 1, 2, 3. The data table DT =
(U, A ∪ {d}) , where card (U) = 107 and A = {a1, . . . , a12} was split randomly
into a testing set DTtesti

= (Utesti
, A ∪ {d}) and a training set DTtraini

=
(Utraini

, A ∪ {d}) containing approximately 33% (card (Utesti
) = 35) and 67%

(card (Utraini
) = 72) of the objects in DT, respectively.

We used Michalski’s quality function (with weight w of accuracy equal to 0)
discussed in Section 4.3 for rule filtering. Thus, this experiment corresponds to
filtering according to coverage. For summary of obtained results see Table 6.12.
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Table 6.12. Quality and Number of Rules

Quality Number of rules

DT DTtrain1
DTtrain2

DTtrain3

(0, 0.05) 472 223 291 304
[0.05, 0.1) 204 189 262 220
[0.1, 0.15) 43 88 73 51
[0.15, 0.2) 16 32 19 17
[0.2, 0.25) 2 13 2 7

≥ 0.25 1 9 4 1

> 0 738 554 651 600

The difference between classification accuracy obtained for unfiltered rule set
(quality threshold equal to zero) and the rules with quality greater or equal than
a given threshold is presented in Table 6.13.

Table 6.13. Difference in Classification Accuracy

Quality threshold DTtest1
DTtest2

DTtest3

0.00 0% 0% 0%

0.05 3% 3% 3%

0.10 0% 3% 0%

0.15 -3% 0% -20%

0.20 -11% -29% -34%

0.25 -20% -46% -57%

We present examples of rules selected by medical experts from the set of all
rules with qM ≥ 0.1, where rules are generated from full data table DT.

if a2 ∈ [7, 13) and a3 ∈ [6, 11) and a11 = yes then d = yes

accuracyDT = 1, coverageDT = 0.25
if a1 = m and a2 < 7 and a4 = KIT then d = no

accuracyDT = 1, coverageDT = 0.20.

if a1 = m and a3 < 6 and a4 = KIT and a8 < 8 and a9 = no then d = no

accuracyDT = 1, coverageDT = 0.20.

if a2 < 7 and a3 ∈ [6, 11) then d = no

accuracyDT = 1, coverageDT = 0.18.

if a1 = f and a3 ∈ [6, 11) and a11 = yes then d = yes

accuracyDT = 1, coverageDT = 0.14.

6.5 Experiments with Tolerance Thresholds

In this section we discuss selected results of numerous experiments performed by
the author with uncertainty functions defined by distance measures and thresh-
old functions.
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We present results for three data tables (U, A ∪ {d}) , (U, A3 ∪ {d}) and
(U, A − A3 ∪ {d}) with twelve, three A3 = {a2, a3, a8} and nine condition at-
tributes, respectively. We assume that for all non-numerical attributes the un-
certainty function is defined in the standard way, i.e., for all a ∈ A − A3

Ia (x) = {y ∈ U : a (x) = a (y)} .

The following thresholds have been found for attributes from A3 :
εa2

= 0.063, εa3
= 0.182, εa8

= 0.16 in the optimization process with respect to
classification accuracy.

We compute the accuracy of approximation of decision classes. From Table 6.14
one can observe that both decision classes are only roughly definable by condition
attributes with above thresholds.

We compare the results of leave-one-out test for attribute subsets A3, A and
A − A3. The best results are presented in Table 6.15.

Table 6.14. Accuracy of Approximation of Decision Classes with Tolerance Thresholds

Attribute set Decision class Yes No

Cardinality of lower approximation 53 46
A Cardinality of upper approximation 61 54

Accuracy of approximation (α) 0.87 0.85

Cardinality of lower approximation 11 13
A3 Cardinality of upper approximation 94 96

Accuracy of approximation (α) 0.12 0.14

Cardinality of lower approximation 42 34
A − A3 Cardinality of upper approximation 73 65

Accuracy of approximation (α) 0.58 0.52

Table 6.15. Leave-One-Out Results

Attribute subset Classification accuracy

A3 79.44

A 66.36

A − A3 63.55

Comparing results from Table 6.15 we obtain one more argument that at-
tributes a2, a3 and a8 are very relevant for prediction of d.

Discussing obtained decision rules with medical doctors, we observe that some-
times the obtained rules are not very informative for medical experts. More pre-
cisely the selectors in obtained rules are not necessarily in exact correspondence
with norms used by medical doctors.

This observation can be extended to two different knowledge discovery prob-
lems, namely, prediction and description. Experiments with tolerance thresholds
and also in some sense with the nearest neighbors method are showing that on
the one hand the discretization of numerical attributes based on medical norms
can be not optimal with respect to classification accuracy. On the other hand the
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understanding of decision rules by medical doctors is better when the discretiza-
tion is based on medical norms, than in case of decision rules with selectors based
on tolerance thresholds.

6.6 Experiments with Clustering Algorithms

The aim of the experiments carried out is to present information granules ob-
tained in clustering process. To create the granules there were selected algo-
rithms k-means, hierarchical complete-link (hcl), EM, DBSCAN and SOSIG (see
Chapter 5).

Some preliminary results of granulation of not normalized data has been
presented in [197].

Normalization consists of transforming numerical values into a specific range.
The attributes have been normalized to interval [0, 1]. We normalize each nu-
merical attribute a using (for any x ∈ U) the transformation

anew(x) =
a(x) − mina

maxa − mina

.

Table 6.16. Evaluation of Clusterings of the Diabetes Data Including the Decision
Attribute Created by Algorithms: k-means and EM

Method index optimal nc
value

Dunn 0.43 6-9
k-means DB 1.51 10

SI 0.18 10
CDbw 1.82 3

Dunn 0.43 9,10
EM DB 1.79 10

SI 0.15 2
CDbw 1.85 3

Table 6.17. Evaluation of Clusterings of the Diabetes Data Excluding the Decision
Attribute Created by Algorithms: k-means and EM

Method index optimal nc
value

Dunn 0.48 10
k-means DB 1.35 9

SI 0.19 9,10
CDbw 2.18 2

Dunn 0.48 9,10
EM DB 1.38 4

SI 0.16 2
CDbw 1.16 2
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The clustering was executed with the decision attribute (microalbuminuria)
present and without it. The algorithms k-means and EM have been run for
nc = 2, 3, ..., 10, the method SOSIG for various values of granulation resolution
rg and DBSCAN for various values of parameter ε with minPts = 3 (the ε pa-
rameter stands for radius of density neighborhood and minPts denotes minimal
number of objects in single cluster). Every partitioning is assessed by indices
Dunn’s, DB, SI and CDbw. The results containing less than 90% objects from
input set clustered were not taken into consideration.

Table 6.16 presents evaluation of granulation of the 13 dimensional diabetes
data. Table 6.17 presents evaluation of granulation of the same set excluding
the decision attribute microalbuminuria. There is high discrepancy in optimal
partitioning indicated by the values in Tables 6.16 and 6.17. The most often
distinguished is clustering containing 8, 9 and 10 clusters, however there are also
indicated results containing 2, 3 and 4 groups.

In DBSCAN result for ε < 1.1 regardless of minPts value only 20-30 objects
were clustered, whereas for ε > 1.1 all input objects were assigned to one cluster.

Fig. 6.1. MDS Plot of Information System with Attributes a2, a3, a8, a9, a11, a12, d
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Fig. 6.2. MDS Plot of Information System with Attributes a2, a3, a8, a9, a11, a12

The only partitioning is obtained for ε = 1.1 containing 2 groups of 99 and 8 el-
ements. Calculated assessment indices were DB=2.24, Dunn=0.36, CDbw=1.90,
SI=0.12. Since high difference in sizes of clusters and low quality indicated the
result is not taken in further considerations.

Similar results were obtained in SOSIG granulation. There was also threshold
value of rg parameter (rg = 2.2 in 13 dimensional set and rg = 2.1 in 12
dimensional set grouping) below which not enough input objects were clustered
and the result contained representatives not connected to each other. Over the
threshold value the partitioning was composed of all objects forming one cluster.

Considering described before examples and ambiguous results of granulation
13 and 12 attributes of diabetes data one can assume there is absence of compact
and separable clusters in the data. Presence of microalbuminuria attribute exerts
an influence on obtained clustering, however separability of groups is low in both
cases. This is concluded on the basis of highly diverse assessment values for
parametrical clustering methods k-means, hierarchical and EM. More effortless
and unambiguous interpretation is in case of SOSIG result. There is or not
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enough number of input objects clustered (the value of rg parameter is too
low) or all the objects are forming one cluster. Formation one group implies the
objects are equally similar to one another.

In further exploration of the data set, six attributes were chosen based on med-
ical experts suggestion. It was selected set {a2, a3, a8, a9, a11, a12}. The multi-
dimensional scaling (MDS) plot [22] of seven dimensional data {a2, a3, a8, a9, a11,

a12, d} is presented in Figure 6.1. The multi-dimensional scaling plot of six
dimensional data {a2, a3, a8, a9, a11, a12} is presented in Figure 6.2.

Tables 6.18 and 6.19 contains the best quality indices of partitioning algo-
rithms calculated for the set of selected 6 attributes and determined by them
number of clusters. When there is the microalbuminuria included in the training
data excepting CDbw tending to indicate 2 granules partitioning, the remain-
ing indices suggest presence great number of granules in the data. The most
indicated number of granules is 7, 9 and 10.

Table 6.18. Evaluation of the Best Clusterings of the Diabetes Data with Seven
Attributes Selected Including the Decision Attribute Created by Algorithms: k-means,
hcl and EM

Method index optimal nc
value

Dunn 0.63 5, 7
k-means DB 0.33 10

SI 0.52 7
CDbw 11.86 2

Dunn 0.62 5-7
hcl DB 0.29 10

SI 0.53 10
CDbw 11.86 2

Dunn 0.53 3
EM DB 0.04 9

SI 0.37 6
CDbw 13.04 3

Tables 6.20 and 6.21 hold evaluation of clusterings using SOSIG and DB-
SCAN methods. In case of data with the decision attribute there are threshold
values of the parameters s (SOSIG) and ε (DBSCAN), below which not enough
number of input objects are clustered and over which all objects are joined in
one cluster. The algorithms created 9 granules partitioning for narrow range of
the parameters (s ∈ [1.8, 2.1], ε ∈ [0.4, 1.0]), however the indices are greater for
SOSIG result.

When excluding the microalbuminuria attribute from the data the number
of granules present is decreasing. The most often distinguished clustering is the
result composed of 4 granules. In Table 6.19 for CDbw index are placed 2 values of
the index, since the second value, although smaller, were also distinguished by the
index. The algorithms SOSIG and DBSCAN performed partitioning composed



94 A Medical Case Study

Table 6.19. Evaluation of the Best Clusterings of the Diabetes Data with Six At-
tributes Selected Excluding the Decision Attribute Created by Algorithms: k-means,
hcl and EM

Method index optimal nc
value

Dunn 0.77 4
k-means DB 0.25 8

SI 0.55 4
CDbw 17.11, 2

11.86 4

Dunn 0.63 4
hcl DB 0.16 9

SI 0.57 5
CDbw 17.11, 2

14.12 3

Dunn 0.56 2,4
EM DB 0.22 10

SI 0.48 4
CDbw 19.54, 2

10.93 4

Table 6.20. Evaluation of Clusterings of the Diabetes Data with Seven Attributes
Selected Including the Decision Attribute Created by SOSIG and DBSCAN Algorithms

Method index s < 1.8 s = 1.8 s = 2.1 s > 2.1

Dunn < 90% 0.86 0.86 all
SOSIG DB objects 0.16 0.19 objects

SI clustered 0.64 0.63 in one
CDbw 8.67 4.97 group

index ε < 0.4 ε = 0.4 ε = 1.0 ε > 1.0

Dunn < 90% 0.20 0.49 all
DBSCAN DB objects 0.50 0.30 objects

SI clustered 0.46 0.57 in one
CDbw 1.66 1.90 group

of 6 granules. Assessment of the results are in Table 6.21. There is also a range
of the parameters s and ε to cluster the data. The SOSIG algorithm granules
are characterized of greater values of the assessment indices.

The best result is obtained by SOSIG algorithm (the best values of quality in-
dices) and the result is taken for further analysis. The final granulation of diabetes
data by SOSIG method is presented in Tables 6.22. Upper table concerns 7 di-
mensional data (the decision attribute included). The set is split in 9 granules of
size 3 to 32. The first granule is greatest (32 objects). It is characterized by low
to average level of HbA1c, not occurring any additional complications like Hy-
pertension, Hypercholesterolemia or Hypertriglyceridemia. There is also absent
microalbuminuria in this group. The following great granule contain 21 objects.
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Table 6.21. Evaluation of Clusterings of the Diabetes Data with Six Attributes Se-
lected Excluding the Decision Attribute Created by SOSIG and DBSCAN Algorithms

Method index s < 2.2 s = 2.2 s = 2.8 s > 2.8

Dunn < 90% 0.86 0.78 all
SOSIG DB objects 0.17 0.19 objects

SI clustered 0.61 0.60 in one
CDbw 12.68 12.87 group

index ε < 0.3 ε = 0.3 ε = 1.0 ε > 1.0

Dunn < 90% 0.15 0.56 all
DBSCAN DB objects 0.32 0.25 objects

SI clustered 0.50 0.57 in one
CDbw 4.15 14.83 group

Table 6.22. Composition of Granules of the Diabetes Data with 6 Attributes Selected
Including (Upper Table) and Excluding (Bottom Table) the Decision Attribute Created
by SOSIG Algorithm

Gr. No of a2 a3 a8 a9 a11 a12 d
lab. obj.

1 32 [2,16] (3,12] [7.74-10.85] 0 0 0 0
2 9 (11,16] [2,7) [8.47-11.51] 1 0 0 1
3 5 (10,15) (4,7) [7.5-9.99] 1 0 0 0
4 6 (3,9] (4,5) [8.72-10.60] 0 1 0 0
5 3 (2,10) (5,8) [9.51-11.27] 0 1 1 0
6 13 [5,14) (4,12] [7.14-11.94] 0 1 0 1
7 21 (2,16] (3,7) [6.65-10.48] 0 0 0 1
8 7 (7,13] (4,7) [9.93-11.57] 0 1 1 1
9 3 (11,12] (6,8) [9.93-11.45] 1 1 1 1

Gr. No of a2 a3 a8 a9 a11 a12

lab. obj.

1 53 [1,17] (3,12) [6.65-10.78] 0 0 0
2 14 (7,16] (4,7) [7.5-11.51] 1 0 0
3 10 (2,13] (4,8) [9.51-11.57] 0 1 1
4 20 (3,16] (4,12] [7.14-11.94] 0 1 0
5 3 (11,12] (6,9] [9.87-11.45] 1 1 1

Distinguished attributes are low to average of the disease duration (a3) and low to
average of HbA1c level. Similar to the previous group there are not present addi-
tional complication, however microalbuminuria appears. The third of the largest
granules is composed of 13 objects representing patients of medium to late age of
diabetes diagnosis, suffering from Hypercholesterolemia with microalbuminuria
present. The remaining granules have considerably smaller size but are well dis-
tinguishable from the others owing to the features (see Table 6.22).

There are 6 granules of data distinguished by SOSIG in 6 dimensional di-
abetes data. One of them is considerable small (3 objects) comparing to the
others (10-53 objects). The greatest granule consists objects regardless of value
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Table 6.23. Semantically Described Granules Created by SOSIG with Applying Med-
ical Norms (6 Attributes Selected)

Gr. No of a2 a3 a8 a9 a11 a12

lab. obj.

1 53 all age all time below&norm no no no
2 14 early school& short& whole range yes no no

adolescence medium
3 10 preschool& short& norm& no yes yes

early school medium over
4 20 all age all time whole range no yes no
5 3 early school medium norm&over yes yes yes

of attribute a2 and a3, with very small to average values of HbA1c and without
Hypertension, Hypercholesterolemia and Hypertriglyceridemia. Following group
contains 14 objects with average to very high value of a2 (with medium to very
late age of diabetes diagnosis), small to average disease duration a3 and small
to high HbA1c level. It occurs Hypertension in this group, however do not the
remaining complications (Ht = 0, Hg = 0). The third granule contains 10 ele-
ments with low to high value of a2 (with early to late age of diabetes diagnosis),
small to average disease duration a3 and average to high level of HbA1c. The
granule is characterized by Hypertension not occurring, whereas problems of
Hypercholesterolemia and Hypertriglyceridemia exist. The following granule of
20 objects is described by medium to very late age of diabetes diagnosis (a2)
regardless of the attributes a3 and HbA1c. The patients from this group suffer
from Hypercholesterolemia, whereas there is no problem with Hypertension and
Hypertriglyceridemia. The smallest granule contains objects with medium age
of illness diagnosis (a2), average duration of diabetes and average to high HbAc1
level. The patients from the granule suffer from Hypertension and Hypercholes-
terolemia and Hypertriglyceridemia as well.

6.7 Conclusions

The approach presented in this chapter can be treated as an example of data
mining for biological problems (one of challenging problems in data mining
research [218]).



7 Mining Knowledge from Complex Data

7.1 Introduction

One important type of complex knowledge can occur when mining data from
multiple relations. In most domains, the objects of interest are not independent
of each other, and are not of a single type. For example in World Wide Web

• Text has a list structure. We consider sequences of words.
• HTML has a tree structure (nested tags).
• Hyperlinks have a graph structure (linked pages).

In fact, most real domains have combinations of different types of internal
and external structure nested at multiple levels of abstraction. We need data
mining systems that can soundly mine the rich structure of relations among
objects, such as interlinked Web pages, social networks, metabolic networks in
the cell, etc. Yet another important problem is how to mine non-relational data.
For example described by formulas of first-order logic.

Approximation spaces are fundamental structures for the rough set approach
[106, 108, 109, 110, 145]. In this chapter we show how the rough set approach
can be used for mining knowledge from complex data.

In learning approximations of concepts, there is a need to choose a descrip-
tion language. This choice may limit the domains to which a given algorithm
can be applied. There are at least two basic types of objects: structured and un-
structured. An unstructured object is usually described by attribute-value pairs.
For objects having an internal structure first order logic language is often used.
Attribute-value languages have the expressive power of propositional logic. These
languages sometimes do not allow for proper representation of complex struc-
tured objects and relations among objects or their components. The background
knowledge that can be used in the discovery process is of a restricted form and
other relations from the database cannot be used in the discovery process. Us-
ing first-order logic (or FOL for short) has some advantages over propositional
logic [16, 30, 91]. First order logic provides a uniform and very expressive means
of representation. The background knowledge and the examples, as well as the
induced patterns, can all be represented as formulas in a first order language.

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 99–110, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Unlike propositional learning systems, the first order approaches do not require
that the relevant data be composed into a single relation but, rather, they can
take into account data organized in several database relations with various con-
nections existing among them.

The chapter is organized as follows. In Section 7.2 we discuss notions of rela-
tional learning. In Sections 7.3, 7.4 and 7.5 we consider application of rough set
methods to discovery of interesting patterns expressed in a first order language.
In Section 7.4 rough set methodology is used in the process of selecting relevant
facts from background knowledge. The selection is based on constants occurring
in positive and negative examples of a target relation. In Section 7.5 rough set
methodology is used in the process of selecting literals which may be a part of a
rule. In Section 7.6 we shortly discuss similarity measures combined with rough
set methodology in classification and description of complex structured objects.

7.2 Relational Data Mining

Before moving on to the algorithm for learning of a set of rules, let us introduce
some basic terminology from relational learning.

Relational learning algorithms learn classification rules for a concept [30, 91].
The program typically receives a large collection of positive and negative exam-
ples from real-world databases as well as background knowledge in the form of
relations. Let p be a target predicate of arity m and r1, . . . , rl be background
predicates, where m, l > 0 are given natural numbers. We denote the constants
by con1, . . . , conn, where n > 0. A term is either a variable or a constant. An
atomic formula is of the form p (t1, . . . , tm) or ri (t1, . . . , tm) where the t′s are
terms and i = 1, . . . , l. A literal is an atomic formula or its negation. If a literal
contains a negation symbol (¬), we call it a negative literal, otherwise it is a
positive literal. A clause is any disjunction of literals, where all variables are
assumed to be universally quantified. The learning task for relational learning
systems is as follows:

Input

a set X+
target of positive and a set X−

target of negative training examples (ex-
pressed by literals without variables) for the target relation,
background knowledge (or BK for short) expressed by literals without variables
and not including the target predicate.

Output

a set of ξ ← λ (equivalently expressed in the form if λ then ξ) rules, where ξ is
an atomic formula of the form p (var

p
1 , . . . , varp

m) with the target predicate p and
λ is a conjunction of literals over background predicates r1, . . . , rl, such that the
set of rules satisfies the positive examples relatively to background knowledge.

We will adopt the lower and the upper approximations for subsets of the set
of target examples. First, we define the coverage of a rule.

Definition 7.1. A substitution is a mapping of variables to terms. The coverage
of Rule, written Coverage(Rule), is the set of examples such that there exists
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a substitution giving values to all variables appearing in the rule (in such a way
that all the occurrences of a given variable are replaced by the same term) and
all literals of the rule are satisfied for this substitution.

The set of the positive (negative) examples covered by Rule is denoted by
Coverage+(Rule), Coverage−(Rule), respectively.

Remark 7.2. For any literal L, we obtain

Coverage(h ← b) = Coverage(h ← b ∧ L) ∪ Coverage(h ← b ∧ ¬L).

Let U = X+
target ∪ X−

target and Rule Set = {Rule1, . . . , Rulen}.

Definition 7.3. For the set of rules Rule Set and any example x ∈ U the un-
certainty function is defined by

IRule Set(x) = {x} ∪
n
⋃

i=1

{Coverage(Rulei) : x ∈ Coverage(Rulei)} .

The lower and upper approximations may be defined as earlier but in this case
they are equal to the forms presented in Remark 7.4.

Remark 7.4. For an approximation space ASRule Set = (U, IRule Set, νSRI) and
any subset X ⊆ U, the lower and the upper approximations are defined by

LOW (ASRule Set, X) = {x ∈ U : IRule Set(x) ⊆ X} ,

UPP (ASRule Set, X) = {x ∈ U : IRule Set(x) ∩ X �= ∅} ,

respectively.

7.3 From Complex Data into Attribute–Value Data

In this section we discuss the approach based on two steps. First, the data is
transformed from first-order logic into decision table format by the iterative
checking whether a new attribute adds any relevant information to the decision
table. Next, the reducts and rules from reducts [106, 145, 189] are computed
from the decision table obtained.

Data represented as a set of formulas can be transformed into attribute–
value form. The idea of translation was inspired by LINUS and DINUS sys-
tems (see, e.g., [30]). We start with a decision table directly derived from the
positive and negative examples of the target relation. Assuming that we have
m-ary target predicate, the set U of objects in the decision table is a subset of
{con1, . . . , conn}m

. Decision attribute dp : U → {+, −} is defined by the target
predicate with possible values “ + ” or “ − ”. All positive and negative examples
of the target predicate are now put into the decision table. Each example forms a
separate row in the table. Then background knowledge is applied to the decision
table. We determine all the possible applications of the background predicates
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to the arguments of the target relation. Each such application introduces a new
Boolean attribute.

To analyze the complexity of the obtained data table, let us consider the
number of condition attributes. Let Ari

be a set of attributes constructed for
every predicate symbol ri, where i = 1, . . . , l. The number of condition attributes
in constructed data table is equal to

∑l

i=1 card (Ari
) resulting from the possible

applications of the l background predicates on the variables of the target relation.
The cardinality of Ari

depends on the number of arguments of target predicate
p (denoted by m) and the arity of ri. Namely, card (Ari

) is equal to mar(ri),

where ar (ri) is the arity of the predicate ri. The number of condition attributes
in obtained data table is polynomial in the arity m of the target predicate p and
the number l of background knowledge predicates, but its size is usually so large
that its processing is unfeasible. Therefore, one can check interactively if a new
attribute is relevant, i.e., if it adds any information to the decision table and,
next we add to the decision table only relevant attributes.

Two conditions for testing if a new attribute a is relevant are proposed:

1. γ
(

ASB∪{a}, {X+, X−}
)

> γ (ASB, {X+, X−}) ,

where X+ and X− denote the decision classes corresponding to the target
concept. An attribute a is added to the decision table if this results in a
growth of the positive region with respect to the attributes selected previ-
ously.

2. QDIS(a) = νSRI (X+ × X−, {(x, y) ∈ X+ × X− : a (x) �= a (y)}) ≥ θ,

where θ ∈ [0, 1] is a given real number. An attribute a is added to the
decision table if it introduces some discernibility between objects belonging
to different non-empty classes X+ and X−.

Each of these conditions can be applied to a single attribute before it is
introduced to the decision table. If this attribute does not meet a condition,
it should not be included into the decision table. The received data table is
then analyzed by a rough set based systems. First, reducts are computed. Next,
decision rules are generated.

Example 7.5. The problem with three binary predicates r1, r3, p and one unary
predicate r2 can be used to demonstrate the transformation of relational learning
problem into attribute–value form. Suppose that there are the following positive
and negative examples of a target predicate p :

X+
target = {p(1, 2), p(4, 1), p(4, 2)}, X−

target = {¬p(6, 2), ¬p(3, 5), ¬p(1, 4)}.

Consider the background knowledge about relations, r1, r2, and r3 :
r1(5, 1), r1(1, 2), r1(1, 4), r1(4, 1), r1(3, 1), r1(2, 6), r1(3, 5), r1(4, 2),
r2(1), r2(2), r2(3), r2(4), r2(6), r3(2, 1), r3(1, 4), r3(2, 4),
r3(2, 5), r3(3, 2), r3(3, 5), r3(5, 1), r3(5, 3), r3(2, 6), r3(4, 2).

We then transform the data into attribute–value form (decision table). In
Table 7.1, a quality index QDIS of potential attributes is presented.

Using conditions introduced in this section some attributes will not be in-
cluded in the resulting decision table. For example, the second condition with
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Table 7.1. Quality QDIS of Potential Attributes

Symbol Attribute QDIS(•)
a1 r2(var1) 0

a2 r2(var2) 0.33

a3 r1(var1, var1) 0

a4 r1(var1, var2) 0.33

a5 r1(var2, var1) 0.56

a6 r1(var2, var2) 0

a7 r3(var1, var1) 0

a8 r3(var1, var2) 0.56

a9 r3(var2, var1) 0.33

a10 r3(var2, var2) 0

Table 7.2. Resulting Decision Table DT0.3 (t denotes true and f denotes false), Un-
certainty Function and Rough Inclusion

(var1, var2) a2 a4 a5 a8 a9 dp IA0.3
(•) νSRI (•, X+) νSRI (•, X−)

(1, 2) t t f f t + {(1, 2)} 1 0

(4, 1) t t t f t + {(4, 1)} 1 0

(4, 2) t t f t t + {(4, 2)} 1 0

(6, 2) t f t f t - {(6, 2)} 0 1

(3, 5) f t f t t - {(3, 5)} 0 1

(1, 4) t t t t f - {(1, 4)} 0 1

QDIS(•) ≥ θ = 0.3 would permit the following attribute set into the decision
table: A0.3 = {a2, a4, a5, a8, a9}.

Therefore, DT0.3 = (U, A0.3 ∪ {d}) finally. We obtain two decision classes:
X+ = {(1, 2) , (4, 1) , (4, 2)} and X− = {(6, 2) , (3, 5) , (1, 4)} . For the obtained
decision table we construct an approximation space ASA0.3

= (U, IA0.3
, νSRI)

such that the uncertainty function and the rough inclusion are defined in
Table 7.2. Then, we can compute reducts and decision rules.

7.4 Selection of Relevant Facts

An approach presented in this section consists of the following steps:

1. Selection of potentially relevant facts from background knowledge.
2. Application of a relational learning system such as RSRL (see Section 7.5)

to the selected formulas.

The selection is based on constants occurring in positive and negative exam-
ples of a target relation. The set of all constants occurring in a fact x is denoted
by CON (x) . CON can be treated as a set valued attribute. A set of constants
for a set of facts X is defined by CON (X) =

⋃

x∈X CON (x) .
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Training set reduction begins with determining the set of constants in all
positive and negative examples for the target predicate. Such set is denoted as
CON (Xtarget) . We consider a data table (U, {CON} ∪ {d}) , where U is the
set of all facts from background knowledge, CON : U → P ({con1, . . . , conn}) ,

where P ({con1, . . . , conn}) is the set of all subsets of constants and d : U →
{0, 1} . For every x ∈ U we assume d (x) = 1 if and only if CON (x) ⊆
CON (Xtarget) . The selections can be represented as lower and upper approx-
imations of Xd=1 = {x ∈ U : d (x) = 1} in the family of approximation spaces

AS
fCON

CON =
(

U, I
fCON

CON , νSRI

)

, where

fCON (CON (x) , CON (x′)) = w1 ∗ card(CON(x))
card(CON(x)∪CON(x′))+

w2 ∗
card(CON(x′))

card(CON(x)∪CON(x′)) + ε

and w1, w2 and ε are parameters.

Definition 7.6. Let AS
fCON

CON =
(

U, I
fCON

CON , νSRI

)

be an approximation space,

where

1. U is the set of all formulas from background knowledge,
2. the uncertainty function I

fCON

CON is defined by

x′ ∈ I
fCON

CON (x) if and only if

1 −
card (CON (x) ∩ CON (x′))

card (CON (x) ∪ CON (x′))
≤ fCON (CON (x) , CON (x′)) . (7.1)

Any uncertainty function contributes to a different approximation space which
results in different kinds of approximations that show different properties.

We then define two transformations LOW : P (U) → P (U) and UPP :

P (U) → P (U) based on the lower and upper approximations in AS
fCON

CON .

Starting with Xd=1 one can construct a sequence of approximations by con-
stantly applying one of these transformations first on Xd=1 and then on the
approximation resulting from the previous step.

Thus, the problem of selection is reduced to constantly applying upper (lower)
approximation in the same approximation space to the upper (lower) approxi-
mation set obtained in the previous step.

The input data reduction problem is then defined as taking into account facts

that are included in LOW
(

AS
fCON

CON , Xd=1

)

. If this approximation appears to

be too restrictive, which results in a bad quality of the discovered knowledge,

then we consider UPP
(

AS
fCON

CON , Xd=1

)

. If this does not meet our expectations,

either, we proceed to consider the following approximations:

UPP
(

AS
fCON

CON , UPP
(

AS
fCON

CON , Xd=1

))

and so on. We can stop when the

approximation is sufficient to learn up in order to obtain a satisfactory definition
of the target concept.

Since Xtarget = X+
target ∪X−

target (the union of positive and negative examples
of the target relation) we may also consider separate approximations of sets
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Table 7.3. Background Knowledge and Uncertainty Functions for ε = 0.5 and ε = 0.25

U x• CON I0.5
CON(•) I0.25

CON(•)
k(5, 1) x1 {1, 5} {x1, x11, x24} {x1, x24}
k(6, 7) x2 {6, 7} {x2, x15} {x2}
k(1, 2) x3 {1, 2} {x3, x11, x12, x17} {x3, x17}
k(1, 4) x4 {1, 4} {x4, x5, x11, x14, x18} {x4, x5, x18}
k(4, 1) x5 {1, 4} {x4, x5, x11, x14, x18} {x4, x5, x18}
k(3, 1) x6 {1, 3} {x6, x11, x13} {x6}
k(2, 6) x7 {2, 6} {x7, x12, x15, x27} {x7, x27}
k(3, 5) x8 {3, 5} {x8, x13, x23, x26} {x8, x23, x26}
k(3, 7) x9 {3, 7} {x9, x13, x25} {x9, x25}
k(4, 2) x10 {2, 4} {x10, x12, x14, x19, x28} {x10, x19, x28}
h(1) x11 {1} {x1, x3, x5, x6, x11, x17, x18, x24} {x11}
h(2) x12 {2} {x3, x7, x10, x12, x17, x19, x20, x21, x22, x27, x28} {x12}
h(3) x13 {3} {x6, x8, x9, x13, x22, x23, x25, x26} {x13}
h(4) x14 {4} {x4, x5, x10, x14, x18, x19, x28} {x14}
h(6) x15 {6} {x2, x7, x15, x27} {x15}
h(8) x16 {8} {x16} {x16}

r(2, 1) x17 {1, 2} {x3, x11, x12, x17} {x3, x17}
r(1, 4) x18 {1, 4} {x4, x5, x11, x14, x18} {x4, x5, x18}
r(2, 4) x19 {2, 4} {x10, x12, x14, x19, x28} {x10, x19, x28}
r(2, 5) x20 {2, 5} {x12, x20} {x20}
r(2, 7) x21 {2, 7} {x12, x21} {x21}
r(3, 2) x22 {2, 3} {x12, x13, x22} {x22}
r(3, 5) x23 {3, 5} {x8, x13, x23, x27} {x8, x23, x26}
r(5, 1) x24 {1, 5} {x1, x11, x24} {x1, x24}
r(7, 3) x25 {3, 7} {x9, x13, x25} {x9, x25}
r(5, 3) x26 {3, 5} {x8, x13, x23, x26} {x8, x23, x26}
r(2, 6) x27 {2, 6} {x7, x12, x15, x27} {x7, x27}
r(4, 2) x28 {2, 4} {x10, x12, x14, x19, x28} {x10, x19, x28}

corresponding to X+
target and X−

target which are added after the approximation
process. This approach results in a more restrictive approximation.

We give an illustrative example of the proposed approach.

Example 7.7. Let X+
target = {z(1, 2), z(4, 1), z(4, 2)} be the set of positive exam-

ples and X−
target = {¬z(6, 2), ¬z(3, 5), ¬z(1, 4)} be the set of negative examples.

Let background knowledge be presented in the column labeled by U of the
Table 7.3. All facts will be labeled by x with subscript (see the second col-
umn). The set of all constants occurring in a given fact from background knowl-
edge is presented in column labeled by CON (see Table 7.3). We obtain CON

(Xtarget) = {1, 2, 3, 4, 5, 6} and the set Xd=1 is equal to

{x ∈ U : d(x) = 1} = {x ∈ U : CON(x) ⊆ CON(Xtarget)} =

= {x1, x3, . . . , x8, x10, . . . , x15, x17, . . . , x20, x22, x23, x24, x26, x27, x28}.
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Table 7.4. Relevant Facts for Rule 7.2

Xtarget k(var1, var2) h(var2) r(var2, var1) z(var1, var2)

(1, 2) +(x3) +(x12) +(x17) +

(4, 1) +(x5) +(x11) +(x18) +

(4, 2) +(x10) +(x12) +(x19) +

(6, 2) − +(x12) +(x27) −
(3, 5) +(x8) − +(x26) −
(1, 4) +(x4) +(x14) − −

For simplicity of presentation, we assume that in fCON from Equation 7.1 the
coefficient w1 = w2 = 0. Let us consider two examples ε = 0.5 and ε = 0.25.
From the Equation 7.1 we obtain the uncertainty functions presented in columns
labeled by I0.5

CON (•) and I0.25
CON (•).

We compute the lower and upper approximations for ε ∈ {0.25, 0.5, 0.75}.

LOW
(

AS0.25
CON , Xd=1

)

= Xd=1 = UPP
(

AS0.25
CON , Xd=1

)

= {x1, x3, x4, x5, x6,

x7, x8, x10, x11, x12, x13, x14, x15, x17, x18, x19, x20, x22, x23, x24, x26, x27, x28}.

LOW
(

AS0.5
CON , Xd=1

)

= {x1, x3, x4, x5, x6,

x7, x8, x10, x11, x12, x14, x17, x18, x19, x20, x22, x23, x24, x26, x27, x28}.

UPP
(

AS0.5
CON , Xd=1

)

= U − {x16}.

LOW
(

AS0.75
CON , Xd=1

)

= {x1, x4, x5, x11, x14, x18, x23, x24}.

UPP
(

AS0.75
CON , Xd=1

)

= U − {x16}.

For ε = 0.25 we do not obtain any reduction of the set Xd=1.

For ε = 0.75 the lower approximation reduces the number of facts in back-
ground knowledge. The upper approximation is almost equal to U, thus, further
iteration of upper approximation seems to be unnecessary in this case as well as
for ε = 0.5.

Let us observe that for the illustrative rule

z(var1, var2) ← k(var1, var2) ∧ h(var2) ∧ r(var2, var1) (7.2)

the facts from Xd=1 − LOW
(

AS0.5
CON , Xd=1

)

= {x2, x9, x13, x15, x16, x21, x25}
seems to be irrelevant (see Table 7.4).

7.5 The Rough Set Relational Learning Algorithm

In this section we recall the RSRL (Rough Set Relational Learning) algorithm
[191]. Some preliminary versions of this algorithm were presented in [194, 195].
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Input to RSRL consists of relations defined extensively as sets of tuples of
constants. RSRL also needs examples of tuples that do not belong to the target
relation (negative examples). A type of approximation should also be specified.
RSRL uses a covering approach similar to FOIL (see references in [30]).

To select the most promising literal from the candidates generated at each
step, RSRL considers the performance of the rule over the training data. The
evaluation function card(R(L, NewRule)) used by RSRL to estimate the util-
ity of adding a new literal is based on the numbers of discernible positive and
negative examples before and after adding the new literal (see Figure 7.1).

Fig. 7.1. The set of discernible positive and negative examples before and after adding
the new literal L is equal to the union of two Cartesian products (Coverage+(L) ×
Coverage−(¬L)) ∪ (Coverage+(¬L) × Coverage−(L))

Some modification of the algorithm RSRL were presented in [195]. The mod-
ified algorithm generates rules as the original RSRL but its complexity is lower
because it performs operations on the cardinalities of sets without computing
the sets.

7.6 Similarity Measures and Complex Objects

In [53, 55] an algorithm for classification of complex structured objects is pro-
posed. The algorithm is designed for data expressed in a first-order logic lan-
guage. Such a data set consists of sets of positive and negative examples of a
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Algorithm 1. RSRL Algorithm

input : Target predicate,BK, X+

target ∪ X−

target, app //where Target predicate

is a target predicate with a set X+

target of positive examples and a set

X−

target of negative examples, BK is a background knowledge, app is a
type of approximation (app ∈ {lower, upper}).

output: Learned rules //where Learned rules is a set of rules for “positive
decision class”.

Pos ←− X+
target;

Learned rules ←− ∅;
while Pos �= ∅ do

Learn a NewRule;
NewRule ←− most general rule possible;
R ←− Pos × X−

target;
while R �= ∅ do

Candidate literals ←− generated candidates; // RSRL generates
candidate specializations of NewRule by considering a new literal L that
fits one of the following forms:
• r(var1, . . . , vars), where at least one of the variable vari in the created

literal must already exist in the positive literals of the rule;
• the negation of the above form of literal;

Best literal ←− arg max L∈Candidate literalscard(R(L,NewRule)); //
(the explanation of R(L, Rule) is depicted in Figure 7.1 )
if R(Best literal, NewRule) = ∅ or (app = upper and (NewRule �= most
general rule possible)
and Coverage+(NewRule) �= Coverage+(NewRule∧Best literal)) then

exit while;
end

Add Best literal to NewRule preconditions; //Add a new literal to
specialize NewRule;
if Coverage−(NewRule) = ∅ then

exit while;
end

R := R \ R(Best literal,NewRule);
end

Learned rules ←− Learned rules ∪ {NewRule} ;
Pos ←− Pos \ Coverage+(NewRule);

end

target relation, and a background knowledge including literals obtained on the
base of other relations. Target examples are understood as complex structured
objects. The task of the algorithm is to find a pattern enabling to distinguish
positive examples from the negative ones. In presented approach, the pattern is
represented by a similarity degree of target examples. Some similarity measure
is applied to target examples in order to compare them. Target examples are as
similar as background literals related to the target examples. In order to find
a similarity degree of examples, a set of candidates being real numbers in the
range of [0, 1] is considered. For each of them, the algorithm checks how many
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positive and negative examples are similar to other positive examples. We select
a degree for which the number of similar positive (negative) examples is high-
est (lowest). In the process of searching for a similarity degree, some notions of
rough set methodology are applied. The author uses an approximation space in
which the uncertainty function is constructed on the base of a similarity mea-
sure proposed in the paper. The lower and the upper approximations defined
in the approximation space are applied to target examples. The lower or the
upper approximation of a set of positive examples are considered. The type of
approximation can be fixed by a user. An example belongs to the approximation
if it is similar at least to the degree under consideration to positive examples.
The approximation is computed for each degree of a set of candidates. A de-
gree found over a training data is used in classification of new examples. An
example is classified as positive if it belongs to the approximation computed
with respect to the degree, and it is classified as negative otherwise. The paper
[53] also includes results of some experiments performed by the algorithm. Two
data sets were used in the experiments. The first one is related to the document
understanding and describes components of single page documents. The second
one is related to the family relations. In general, the algorithm obtained a high
percentage of examples classified correctly.

An essential advantage of the approach presented in [53, 55] is the size of the
pattern generated over a training data. Regardless of a data set, the pattern is
one real number in the range of [0, 1]. However, an algorithm has some draw-
back, namely the training data set is needed in the process of classification of
new examples. On the base of the results of experiments, one can observe that
effectiveness of the approach depends on selection of the parameters and the
type of approximation. A measure applied to compute a similarity degree may
have a significant influence on the results of experiments.

In [54, 55] several similarity measures on complex structured objects are in-
vestigated. The measures are designed for data expressed in a first-order logic
language. The goal of the proposed similarity measures is to distinguish positive
examples from the negative ones. It is based on the assumption that positive ex-
amples are more similar to each other than to the negative ones. Some measures
proposed in [54] are based on simple measures known in literature. Other more
advanced measures are based on distance ones, and some of them use a notion
of permutation. Similarity measures are the base of an algorithm for description
and classification of objects. The algorithm proposed in [54] transforms data ex-
pressed in the first-order logic language into a decision table. The decision table
returned by the algorithm is of the following form:

• objects represent target examples,
• values of condition attributes are computed by applying similarity measures

(of examples) or functions using the similarity measures,
• the values of decision attribute corresponds to classes of positive and negative

examples.

The approach is similar to approaches based on propositionalization [30]. How-
ever, an attribute is constructed in a different way than in case of a typical
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propositionalization method. Data stored in such a table can be analyzed by any
appropriate attribute-value learner. In presented approach, rough set methods
are used in order to induce decision rules from the table. The rules are treated as
a description of target examples, and they are used in classification of new exam-
ples. In experiments, the author uses a decision table consisting of one condition
attribute. The attribute expresses for each example of the table its similarity to
positive examples. Two methods of construction of such an attribute are pro-
posed. The paper also includes results of some experiments performed by the
algorithm. Similarly as in [53], two data sets were used in the experiments. The
first one is related to the document understanding and describes components of
single page documents. The second one is related to the family relations. In gen-
eral, the algorithm obtained a high percentage of examples classified correctly.
One can conclude that effectiveness of the algorithm depends on factors such as:

• a way of computation of subsets of background literals related to target
examples,

• a similarity measure applied to distinguishing target examples,
• a method applying similarity measures to generation of patterns describing

positive (and alternatively negative) examples.

Some goals of future research are an extension of similarity measures to data
with different types and a consideration of a decision table with more than one
condition attribute.

7.7 Conclusions

Four cases of application of rough set methods to discovery of interesting pat-
terns from relational data are described. The first case presented in this chapter
is based on translation of the first order data into decision table format. The
second case is based on selection of potentially relevant facts from background
knowledge. The third case is based on the algorithm RSRL for the first order
rules generation. We showed that approximation spaces are basic structures for
knowledge discovery from complex data (multi-relational data). The fourth case
is based on combining similarity measures with rough set methods.

Furthermore, the presented approach can be treated as a step towards the
understanding of rough set methods in the problem of mining complex knowledge
from complex data (see challenging problems in data mining research [218]).
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The rough set approach was further developed to deal with more compound
granules than elementary granules. In this chapter, we present a methodology for
modeling of compound granules using the rough set approach. The methodology
is based on operations on information systems. There are two basic steps in
such a modeling. In the first step, new granules are constructed from objects
represented by granules in some already constructed information systems. These
new granules are used as objects in the new constructed information systems. In
the second step the features of the new granules are added. This approach can
be used for modeling, e.g., compound granules in spatio-temporal reasoning.

This chapter is structured as follows. In Section 8.1 we recall the definition
of information granulation. We also discuss systems of granules and examples
of granules. In Section 8.2 we investigate granules in multiagent systems. In
Section 8.3 we discuss modeling of compound granules based on information
systems. In Section 8.4 we discuss rough-fuzzy granules.

8.1 Information Granulation and Granules

The concept of information granulation is rooted in several papers starting with
[220] in which the concepts of a linguistic variable and granulation were intro-
duced. Information granulation is performed on granules. In this chapter we
assume that any granule is a pair:

(name, content), (8.1)

where name is the granule name and content describes details of the granule
construction together with their meaning (semantics).

In many examples, the granule names (labels) are formulas from some lan-
guage and the granule contents are interpreted as the semantics of such formulas.
In other examples, granule contents can have more compound structures defined
by some other granules. For example, one can consider a granule representing a
cluster

(patient cluster, cluster), (8.2)

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 111–131, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where patient cluster is the name of a patient cluster in a medical database
having similar symptoms and cluster consists of a cluster definition including
the cluster construction and its semantics. Let us consider one more example:

(safe, classifier), (8.3)

where safe is a vague concept describing that the situation of the road is safe and
classifier is the induced approximation of the vague concept safe. Each classifier
can be treated as a granule with name describing the classifier construction and
content describing the classifier semantics. The granule presented in the last
example describes, in a sense, the meaning of the vague concept safe relative,
e.g., to an agent implemented in a computer system.

In the following sections, we present some systems of granules making it pos-
sible to describe construction of different kinds of basic granules.

8.1.1 Granule Systems

In this section, we present a basic notion for our approach, i.e., granule system.
Any such system S consists of a set of granules G. Moreover, a family of re-
lations with the intended meaning to be a part to a degree between granules is
distinguished. The degree structure is described by a relation to be an exact part.
More formally, a granule system is any tuple

S = (G, H, <, {νp}p∈H , size) (8.4)

where

1. G is a non-empty set of granules;
2. H is a non-empty set of granule inclusion degrees with a binary relation

< (usually a strict partial order) which defines on H a structure used to
compare the degrees;

3. νp ⊆ G × G is a binary relation to be a part to a degree at least p between
granules from G, called rough inclusion;

4. size : G −→ R+ is the granule size function, where R+ is the set of nonneg-
ative reals.

In constructing of granule systems it is necessary to give a constructive defi-
nition of all their components.

In particular, one should specify how more compound granules are defined
from already defined granules or given elementary granules. Usually, the set
of granules is defined as the least set generated from distinguished elementary
granules by some operations on the granules. In the following sections, we discuss
several examples of such operations.

One can consider the following examples of formulas defining elementary
granules:

1. a set of descriptors (selectors) of the form (a, v) where a ∈ A and v ∈ Va for
some finite attribute set A and value sets Va;

2. a set of descriptor conjunctions.
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In the standard rough set model granules are corresponding to indiscernibility
classes of an equivalence relation.

Examples of complex granules are tolerance granules created by means of
similarity (tolerance) relation between elementary granules, decision rules or
sets of decision rules.

Notice that the existing measures of inclusion should be extended on more
compound granules. Strategies for these extensions are selected so that con-
structed granules allow us to make a progress in constructing the target granules.
In the following sections, we outline some of these issues in modeling of granules.

8.1.2 Name and Content: Syntax and Semantics

In this section, we present examples of granules with names defined by some
formulas and with contents defined by semantics of these formulas.

Formulas are used to express properties of objects. Hence, we assume that
together with a given information system there are defined

• a set of formulas Φ over some language,
• semantics Sem of formulas from Φ, i.e., a function from Φ into the power set

P (U) .

Let us consider an example [106]. We define a language LIS used for ele-
mentary granule description, where IS = (U, A) is an information system. The
syntax of LIS is defined recursively by

1. (a in V ) ∈ LIS, for any a ∈ A and V ⊆ Va.

2. If α ∈ LIS then ¬α ∈ LIS .

3. If α, β ∈ LIS then α ∧ β ∈ LIS.

4. If α, β ∈ LIS then α ∨ β ∈ LIS.

The semantics of formulas from LIS with respect to an information system IS

is defined recursively by

1. SemIS(a in V ) = {x ∈ U : a (x) ∈ V } .

2. SemIS(¬α) = U − SemIS(α).
3. SemIS(α ∧ β) = SemIS(α) ∩ SemIS(β).
4. SemIS(α ∨ β) = SemIS(α) ∪ SemIS(β).

We now present the syntax and the semantics of examples of granules. These
granules are constructed by taking collections of already specified granules. They
are comprise parameters which can be adjusted in applications. In the following
sections we discuss some other kinds of operations on granules as well as the
inclusion and closeness relations for such granules.

Let us note that any granule g formally can be defined by the granules syntax
Syn(g) and semantics Sem(g). However, for simplicity of notation we often use
only one component of the granules to denote it.
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8.1.3 Examples of Granules

Elementary granules. In an information system IS = (U, A) , elementary
granules are defined by EFB (x) , where EFB is a conjunction of selectors (de-
scriptors) of the form a = a (x) , B ⊆ A and x ∈ U. For example, the meaning
of an elementary granule a = 1 ∧ b = 1 is defined by
SemIS (a = 1 ∧ b = 1) = {x ∈ U : a(x) = 1 & b(x) = 1} .

Thus, in the system

SB = (GB, H, <, {νp}p∈H , size) (8.5)

of elementary granules GB is a set of conjunctions of selectors, H = [0, 1] and
νp(EFB , EF ′

B) if and only if

card (SemIS (EFB) ∩ SemIS (EF ′
B))

card (SemIS (EFB))
≥ p

The number of conjuncts in the granule can be taken as the granule size and it
is one of parameters to be tuned, e.g., by the dropping condition technique used
in machine learning.

One can extend the set of elementary granules assuming that if α is any
Boolean combination of descriptors over A, then (Bα) and (Bα) define syntax
of elementary granules too, for any B ⊆ A.

Sequences of granules. Let us assume that S is a sequence of granules and
the semantics SemIS (•) in IS of its elements have been defined. We extend
SemIS (•) on S by

SemIS (S) = {SemIS (g)}g∈S .

Example 8.1. Granules defined by rules in information systems are examples of
sequences of granules. Let IS be an information system and let (α, β) be a new
granule received from the rule if α then β where α, β are elementary granules
of IS. The semantics SemIS ((α, β)) of (α, β) is the pair of sets

(SemIS (α) , SemIS (β)) .

If the right hand sides of rules represent decision classes, then the number of
conjuncts on the left hand sides is one of the parameters to be adjusted dur-
ing classifier construction. A typical goal is to search for minimal (or less than
minimal) number of such conjuncts (corresponding to the largest generalization)
which still guarantee the satisfactory degree of inclusion in a decision class.

Sets of granules. Let us assume that a set G of granules and the semantics
SemIS (•) in IS for granules from G have been defined. We extend SemIS (•)
on the family of sets H ⊆ G by SemIS (H) = {SemIS (g) : g ∈ H}. One can
consider as a parameter of any such granule its cardinality or its size (e.g., the
length of such granule representation). In the first case, a typical problem is
to search in a given family of granules for a granule of the smallest cardinality
sufficiently close to a given one.
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Example 8.2. One can consider granules defined by sets of rules. Assume that
there is a set of rules Rule Set = {(αi, βi) : i = 1, . . . , k} . The semantics of
Rule Set is defined by

SemIS (Rule Set) = {SemIS ((αi, βi)) : i = 1, . . . , k} .

The above mentioned searching problem for a set of granules corresponds in the
case of rule sets to searching for the simplest representation of a given rule col-
lection by another set of rules (or a single rule) sufficiently close to the collection.

Example 8.3. Let us consider a set G of elementary granules – describing possible
situations together – with decision table DTα representing decision tables for any
situation α ∈ G. Assume Rule Set (DTα) to be a set of decision rules generated
from decision table DTα (e.g., in the minimal form). Now let us consider a new
granule

{(α, Rule Set (DTα)) : α ∈ G}

with semantics defined by

{SemDT ((α, Rule Set (DTα))) : α ∈ G} =
{(SemIS (α) , SemDT (Rule Set (DTα))) : α ∈ G}.

An example of a parameter to be tuned is the number of situations represented in
such granule. A typical task is to search for a granule with the minimal number
of situations creating together with the sets of rules, corresponding to them, a
granule sufficiently close to the original one.

Extension of granules defined by tolerance relation

Now we present examples of granules obtained by application of a tolerance
relation (i.e., reflexive and symmetric relation; for more information see, e.g.,
[145]).

Example 8.4. One can consider extension of elementary granules defined by tol-
erance relation. Let IS = (U, A) be an information system and let τ be a
tolerance relation on elementary granules of IS. Any pair (τ : α) is called a
τ -elementary granule. The semantics SemIS ((τ : α)) of (τ : α) is the family
{SemIS (β) : (β, α) ∈ τ}. Parameters to be tuned in searching for relevant tol-
erance granule can be its support (represented by the number of supporting it
objects) and its degree of its inclusion (or closeness) in some other granules as
well as parameters specifying the tolerance relation.

Example 8.5. Let us consider granules defined by rules of a tolerance information
systems [145]. Let IS = (U, A) be an information system and let τ be a tolerance
relation on elementary granules of IS. If if α then β is a rule in IS then
the semantics of a new granule (τ : α, β) is defined by SemIS ((τ : α, β)) =
SemIS ((α, τ)) × SemIS ((β, τ)) . Parameters to be tuned are the same as in the
case of granules being sets of more elementary granules as well as parameters of
the tolerance relation.
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Example 8.6. We consider granules defined by sets of decision rules correspond-
ing to a given evidence in tolerance decision tables. Let DT = (U, A, d) be a
decision table and let τ be a tolerance on elementary granules of IS = (U, A).
Now, any granule (α, Rule Set (DTα)) can be considered as a representative for
the granule cluster

(τ : (α, Rule Set (DTα)))

with the semantics

SemDT ((τ : (α, Rule Set (DTα)))) =
{SemDT ((β, Rule Set (DTβ))) : (β, α) ∈ τ} .

One can see that the considered case is a special case of the granules from
Example 8.3 with G defined by a tolerance relation.

8.2 Granules in Multiagent Systems

Granules are involved in many tasks of approximate reasoning in multiagent
systems [78]. Among them are

1. understanding granules used by other agents;
2. interaction of granules in searching for patterns used for compound concepts

approximation;
3. discovery of new granules in interaction with environments used for predic-

tion of behavior.

We will present several compound granules used in solving such tasks.
We begin from a short discussion on approximation spaces, i.e., granules used

in concept approximation. Approximation spaces can be used by a given agent
for approximating concepts used by another agent [135, 152]. In the simplest
case, as the result of such an interaction, a decision table is obtained. This table
is then used for concept approximation. We show that concept approximation on
an extension of a given sample of objects can be treated as a searching task for
an extension of approximation space. We also outline applications of granules in
compound concept approximation where compound hierarchical patterns (hier-
archical pattern granules) for approximation of such concepts are constructed by
interaction of simpler patterns (pattern granules). Granulation of such patterns is
used in searching for concept approximations (data models) with (sub-)minimal
size and with satisfactory quality. It is worthwhile to mention that granulation
can also be applied to rules used for patterns construction. In approximation
of compound concepts we propose to use a domain ontology that makes the
searching for compound concept approximation feasible [8, 9, 10, 154, 200]. In
the ontology [169] (vague) concepts and local dependencies between them are
specified. Global dependencies can be derived from local dependencies. Such
derivations can be used as hints in searching for relevant compound patterns
(granules) in approximation of more compound concepts from the ontology. The
ontology approximation problem is one of the fundamental problems related to
approximate reasoning in distributed environments. One should construct (in a
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given language that is different from the ontology specification language) not
only approximations of concepts from ontology but also vague dependencies
specified in the ontology. It is worthwhile to mention that an ontology approxi-
mation should be induced on the basis of incomplete information about concepts
and dependencies specified in the ontology. Granule calculi based on rough sets
have been proposed as tools making it possible to solve this problem. Vague
dependencies have vague concepts in premises and conclusions. The approach
to approximation of vague dependencies based only on degrees of closeness of
concepts from dependencies and their approximations (classifiers) is not satis-
factory for approximate reasoning. Hence, more advanced approach should be
developed. Approximation of any vague dependency is a method which allows
for any object to compute the arguments “for” and “against” its membership
to the dependency’s conclusion on the basis of the analogous arguments relative
to the dependency’s premises. Any argument is a compound granule (compound
pattern). Arguments are fused by local schemes (production rules) discovered
from data. Further fusions are possible through composition of local schemes,
called approximate reasoning schemes (AR schemes) (see, e.g., [10, 104, 212]).
To estimate the degree to which (at least) an object belongs to concepts from on-
tology the arguments “for” and “against” those concepts are collected and next
a conflict resolution strategy is applied to them to predict the degree. This in-
ference process is analogous to the inference process used in fuzzy logic [65] with
numerical degree of membership functions. In the considered case, the numerical
values are substituted by arguments “for” and “against” and the fuzzification
is replaced by rules defining how the arguments from the left hand sides of de-
pendencies are transformed to arguments for the concepts on the right hand
sides. The defuzzification is substituted by conflict resolution strategy. In the
discussed approach it is assumed that the rules are discovered from data and
domain knowledge.

The performed experiments based on approximation of concept ontology (see,
e.g., [3, 4, 104, 145, 152, 154, 158, 193]) showed that domain knowledge enables
to discover relevant patterns in sample objects for compound concept approx-
imation. Our approach to compound concept approximation and approximate
reasoning about compound concepts is based on the rough-granular approach.

For modeling computations of multiagent systems more compound granules
are needed. Let us observe that granule systems themselves can also be treated
as granules. For example, each agent can be represented by a granule system.
Moreover, in granular computations modeling the behavior of multiagent systems
some specific operations on granules representing granule systems should be
defined. There are several reasons for introducing such operations. For example,

1. granule systems of agents should be adaptively changed in interaction of
agents with environments;

2. during coalition formation by a team of agents their granule systems should
be fused into a new granule system relevant for the new coalition.

Other compound granules are needed for reasoning about behavior of agents in
multiagent systems.
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8.2.1 Rough Set Approach to Concept Approximation

In this section we consider the problem of approximation of concepts over a uni-
verse U∞ (concepts that are subsets of U∞). We assume that the concepts are
perceived only through some subsets of U∞, called samples. This is a typical sit-
uation in the machine learning, pattern recognition, or data mining approaches
[47, 69]. We explain the rough set approach to induction of concept approxima-
tions using the generalized approximation spaces of the form AS = (U, I#, ν$)
and an extension operation of such approximation spaces.

Let U ⊆ U∞ be a finite sample. By ΠU : P (U∞) → P (U) we denote a
perception function from P (U∞) into P (U) defined by ΠU (C) = C ∩U for any
concept C ⊆ U∞ (see Figure 8.1).

Let AS = (U, I, ν) be an approximation space over the sample U . The problem
we consider is how to extend the approximations of ΠU (C) defined by AS to
approximation of C over U∞. We show that the problem can be described as

Fig. 8.1. Perception Function
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searching for an extension ASC = (U∞, IC , νC) of the approximation space
AS, relevant for approximation of C. This requires to show how to extend the
inclusion function ν from subsets of U to subsets of U∞ that are relevant for
the approximation of C. Observe that for the approximation of C it is enough
to induce the necessary values of the inclusion function νC without knowing the
exact value of IC(x) ⊆ U∞ for x ∈ U∞.

Let AS be a given approximation space for ΠU (C) and let us consider a
language L in which the neighborhood I(x) ⊆ U is expressible by a formula
pat(x), for any x ∈ U . It means that I(x) = ‖pat(x)‖U ⊆ U , where ‖pat(x)‖U

denotes the meaning of pat(x) restricted to the sample U . In case of rule based
classifiers patterns of the form pat(x) are defined by attribute value vectors.

We assume that for any new object x ∈ U∞\U we can obtain (e.g., as a result
of sensor measurement) a pattern pat(x) ∈ L with semantics ‖pat(x)‖U∞ ⊆ U∞.
However, the relationships between granules over U∞ like sets: ‖pat(x)‖U∞ and
‖pat(y)‖U∞ , for different x, y ∈ U∞, are, in general, known only if they can be
expressed by relationships between the restrictions of these sets to the sample
U , i.e., between sets ΠU (‖pat(x)‖U∞) and ΠU (‖pat(y)‖U∞).

The set of patterns {pat(x) : x ∈ U} is usually not relevant for approxi-
mation of the concept C ⊆ U∞. Such patterns are too specific or not enough
general, and can directly be applied only to a very limited number of new ob-
jects. However, by using some generalization strategies, one can search, in a
family of patterns definable from {pat(x) : x ∈ U} in L, for such new pat-
terns that are relevant for approximation of concepts over U∞. Let us consider
a subset PATTERNS(AS, L, C) ⊆ L chosen as a set of pattern candidates for
relevant approximation of a given concept C. For example, in case of rule based
classifier one can search for such candidate patterns among sets definable by sub-
sequences of attribute value vectors corresponding to objects from the sample
U . The set PATTERNS(AS, L, C) can be selected by using some quality mea-
sures checked on meanings (semantics) of its elements restricted to the sample U

(like the number of examples from the concept ΠU (C) and its complement that
support a given pattern). Then, on the basis of properties of sets definable by
these patterns over U , we induce approximate values of the inclusion function
νC on subsets of U∞ definable by any of such pattern and the concept C.

Next, we induce the value of νC on pairs (X, Y ) where X ⊆ U∞ is definable
by a pattern from {pat(x) : x ∈ U∞} and Y ⊆ U∞ is definable by a pattern
from PATTERNS(AS, L, C).

Finally, for any object x ∈ U∞ \U we induce the approximation of the degree
νC(‖pat(x)‖U∞ , C) applying a conflict resolution strategy Conflict res (a voting
strategy, in case of rule based classifiers) to two families of degrees:

{νC(‖pat(x)‖U∞ , ‖pat‖U∞) : pat ∈ PATTERNS(AS, L, C)}, (8.6)

{νC(‖pat‖U∞ , C) : pat ∈ PATTERNS(AS, L, C)}. (8.7)

Values of the inclusion function for the remaining subsets of U∞ can be chosen in
any way – they do not have any impact on the approximations of C. Moreover,
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observe that for the approximation of C we do not need to know the exact
values of the uncertainty function IC – it is enough to induce the values of the
inclusion function νC . Observe that the defined extension νC of ν to some subsets
of U∞ makes it possible to define an approximation of the concept C in a new
approximation space ASC .

Observe that one can also follow principles of Bayesian reasoning and use
degrees of νC to approximate C.

In this way, the rough set approach to induction of concept approximations
can be explained as a process of inducing a relevant approximation space.

Any approximation space can be treated as a compound granule labeled by
many parameters such as attribute sets defining the neighborhoods, rough inclu-
sions, neighborhood size measures, parameters of patterns used for estimation
of the extension of the rough inclusion. One can define the quality of a given
approximation space relative to an approximated concept, e.g., by means of the
boundary region size and also the approximation space size measured by an ag-
gregation of the sizes of the approximation space components. In the process of
searching for the (sub-)optimal granule, i.e., in this case a classifier, all these pa-
rameters are tuned using the minimal length principle. In searching for relevant
components of approximation spaces, employing various kinds of reducts plays
an important role.

8.2.2 Compound Concept Approximation

The strategies for data models inducing developed so far are often not satis-
factory for approximation of compound concepts that occur in the perception
process. Researchers from the different areas have recognized the necessity to
work on new methods for concept approximation (see, e.g., [47, 208]). The main
reason for this is that these compound concepts are, in a sense, too far from mea-
surements which makes the searching for relevant features infeasible in a very
huge space. There are several research directions aiming at overcoming this diffi-
culty. One of them is based on the interdisciplinary research where the knowledge
pertaining to perception in psychology or neuroscience is used to help to deal
with compound concepts (see, e.g., [35, 90]). There is a great effort in neuro-
science towards understanding the hierarchical structures of neural networks in
living organisms [90]. Also mathematicians are recognizing problems of learning
as the main problem of the current century [117]. These problems are closely
related to complex system modeling as well. In such systems again the problem
of concept approximation and its role in reasoning about perceptions is one of
the challenges nowadays. One should take into account that modeling complex
phenomena entails the use of local models (captured by local agents, if one would
like to use the multi-agent terminology [28, 78]) that should be fused afterwards.
This process involves negotiations between agents [28, 78] to resolve contradic-
tions and conflicts in local modeling. This kind of modeling is becoming more
and more important in dealing with complex real-life phenomena which we are
unable to model using traditional analytical approaches. The latter approaches
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lead to exact models. However, the necessary assumptions used to develop them
result in solutions that are too far from reality to be accepted. New methods or
even a new science therefore should be developed for such modeling [40].

One of the possible approaches in developing methods for compound concept
approximations can be based on the layered (hierarchical) learning [200]. In-
ducing concept approximation should be developed hierarchically starting from
concepts that can be directly approximated using sensor measurements toward
compound target concepts related to perception. This general idea can be re-
alized using additional domain knowledge represented in natural language. For
example, one can use some rules of behavior on the roads, expressed in natu-
ral language, to assess from recordings (made, e.g., by camera and other sen-
sors) of actual traffic situations, if a particular situation is safe or not (see, e.g.,
[9, 10, 97]). The hierarchical learning has been also used for identification of risk
patterns in medical data and extended for therapy planning (see, e.g. [6]). To
deal with such problems one should develop methods for concept approximations
together with methods aiming at approximation of reasoning schemes (over such
concepts) expressed in natural language. The foundations of such an approach,
creating a core of perception logic, are based on rough set theory [106]. The (ap-
proximate) Boolean reasoning methods can be scaled to the case of compound
concept approximation.

Let us consider more examples.

Example 8.7. The prediction of behavioral patterns of a compound object eval-
uated over time is usually based on some historical knowledge representation
used to store information about changes in relevant features or parameters. This
information is usually represented as a data set and has to be collected during
long-term observation of a complex dynamic system. For example, in case of
road traffic, we associate the object-vehicle parameters with the readouts of dif-
ferent measuring devices or technical equipment placed inside the vehicle or in
the outside environment (e.g., alongside the road, in a helicopter observing the
situation on the road, in a traffic patrol vehicle). Many monitoring devices serve
as informative sensors such as GPS, laser scanners, thermometers, range find-
ers, digital cameras, radar, image and sound converters (see, e.g. [206]). Hence,
many vehicle features serve as models of physical sensors. Here are some ex-
emplary sensors: location, speed, current acceleration or deceleration, visibility,
humidity (slipperiness) of the road. By analogy to this example, many features
of compound objects are often dubbed sensors. We discuss (see also [9]) some
rough set tools for perception modeling that make it possible to recognize be-
havioral patterns of objects and their parts changing over time. More complex
behavior of compound objects or groups of compound objects can be presented
in the form of behavioral graphs. Any behavioral graph can be interpreted as
a behavioral pattern and can be used as a complex classifier for recognition of
complex behaviors. The complete approach to the perception of behavioral pat-
terns, based on behavioral graphs and the dynamic elimination of behavioral
patterns, is presented in [9]. The tools for dynamic elimination of behavioral
patterns are used for switching-off in the system attention procedures searching
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for identification of some behavioral patterns. The developed rough set tools for
perception modeling are used to model networks of classifiers. Such networks
make it possible to recognize behavioral patterns of objects changing over time.
They are constructed using an ontology of concepts provided by experts that
engage in approximate reasoning on concepts embedded in such an ontology.
Experiments on data from a vehicular traffic simulator [7] are showing that the
developed methods are useful in the identification of behavioral patterns.

Example 8.8. The following example concerns human computer-interfaces that
allow for a dialog with experts to transfer to the system their knowledge about
structurally compound objects. For pattern recognition systems [27], e.g., for
Optical Character Recognition (OCR) systems it will be helpful to transfer to
the system a certain knowledge about the expert’s view on border line cases. The
central issue in such pattern recognition systems is the construction of classifiers
within vast and poorly understood search spaces, which is a very difficult task.
Nonetheless, this process can be greatly enhanced with knowledge about the in-
vestigated objects provided by a human expert. We developed a framework for
the transfer of such knowledge from the expert and for incorporating it into the
learning process of a recognition system using methods based on rough mereol-
ogy. It is also demonstrated how this knowledge acquisition can be conducted in
an interactive manner, with a large dataset of handwritten digits as an example.

The next two examples are related to approximation of compound concepts in
reinforcement learning and planning.

Example 8.9. In reinforcement learning [26, 64, 201], the main task is to learn
the approximation of the function Q(s, a), where s, a denotes a global state
of the system and an action performed by an agent ag and, respectively and
the real value of Q(s, a) describes the reward for executing the action a in the
state s. In approximation of the function Q(s, a) probabilistic models are used.
However, for compound real-life problems it may be hard to build such models
for such a compound concept as Q(s, a) [208]. We propose another approach
to approximation of Q(s, a) based on ontology approximation. The approach is
based on the assumption that in a dialog with experts an additional knowledge
can be acquired making it possible to create a ranking of values Q(s, a) for
different actions a in a given state s. In the explanation given by expert about
possible values of Q(s, a) are used concepts from a special ontology of concepts.
Next, using this ontology one can follow hierarchical learning methods to learn
approximations of concepts from ontology. Such concepts can have temporal
character too. This means that the ranking of actions may depend not only on
the actual action and the state but also on actions performed in the past and
changes caused by these actions.

Example 8.10. In [6], a computer tool based on rough sets for supporting auto-
mated planning of the medical treatment is discussed. In this approach, a given
patient is treated as an investigated complex dynamical system, whilst diseases
of this patient (RDS, PDA, Sepsis, Ureaplasma and Respiratory Failure) are
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treated as compound objects changing and interacting over time. As a measure
of planning success (or failure) in experiments, a special hierarchical classifier
that can predict the similarity between two plans as a number between 0.0 and
1.0 is used. This classifier has been constructed on the basis of the special ontol-
ogy specified by human experts and data sets. It is important to mention that
besides the ontology, experts provided the exemplary data (values of attributes)
for the purpose of concepts approximation from the ontology. The methods of
construction such classifiers are based on approximate reasoning schemes (AR
schemes, for short) and were described, e.g., in [6, 9, 10, 97]. This method was
used for approximation of similarity between plans generated in automated plan-
ning and plans proposed by human experts during the realistic clinical treatment.

8.3 Modeling of Compound Granules

Methods based on information systems are crucial in modeling of compound
pattern granules.

Let us first recall a generalization of information systems (see, e.g., [109]). For
any attribute a ∈ A of an information system (U, A) we consider together with
the value set Va of a a relational structure Ra over the universe Va. We also con-
sider a language La of formulas (of the same relational signature as Ra). Such
formulas interpreted over Ra define subsets of the Cartesian products of Va. For
example, any formula α with one free variable defines a subset ‖α‖Ra

of Va. Let
us observe that the relational structure Ra (without functions) induces a rela-
tional structure over U . Indeed, for any k-ary relation r from Ra one can define
a k-ary relation ga ⊆ V k

a by (x1, . . . , xk) ∈ ga if and only if (a(x1), . . . , a(xk)) ∈ r

for any (x1, . . . , xk) ∈ Uk. Hence, one can consider any formula from La as a
constructive method of defining a subset of the universe U with a structure in-
duced by Ra. Any such a structure is a new information granule. On the next
level of hierarchical modeling, i.e., in constructing new information systems we
use such structures as objects and attributes are properties of such structures.
Next, one can consider the similarity between new constructed objects and then
their similarity neighborhoods will correspond to clusters of relational struc-
tures. This process is usually more complex. This is because instead of relational
structure Ra we usually consider a fusion of relational structures corresponding
to some attributes from A. The fusion makes it possible to describe constraints
that should hold between parts obtained by composition from less compound
parts. Examples of relational structures can be defined by indiscernibility, simi-
larity, intervals obtained in discretization or symbolic value grouping, preference
or spatio-temporal relations (see, e.g., [69, 145]). One can see that parameters to
be tuned in searching for relevant (for target concept approximation) patterns
over new information systems are, among others, relational structures over value
sets, the language of formulas defining parts, and constraints.

The main basic steps in hierarchical modeling are the following:

1. the structures of granules on a higher level are constructed from structures
of granules on the lower level;
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2. a language for expressing properties of structures on a higher level is selected;
3. some formulas (features) of the structures on a higher level are selected as

relevant for pattern granule construction;
4. indiscernibility (or tolerance) classes defined by a new constructed informa-

tion system are used as pattern granules on the higher level.

In the following sections, we discuss in more detail some issues related to the
outlined modeling.

8.3.1 Constrained Sums of Granules

One of the main task in granular computing is to develop calculi of granules
[152], [154]. Information systems used in rough set theory are a particular kind
of granules. In the section we study operations on such granules, basic for rea-
soning in distributed systems of granules. The operations are called constrained
sums. They are developed by interpreting infomorphisms between classifications
[4]. In [157] we have shown that classifications [4] and information systems [106]
are, in a sense, equivalent. Operations, called constrained sums, seem to be very
important in searching for patterns in data mining (e.g., in spatio-temporal rea-
soning) or in more general sense in generating relevant granules for approximate
reasoning using calculi on granules [157].

First we recall the definition of infomorphism for two information systems
[157]. The infomorphisms for classifications are introduced and studied in [4].

For all formulas α ∈ LIS and for all objects x ∈ U we will denote x |=IS α if
and only if x ∈ SemIS(α).

Definition 8.11. [157] If IS1 = (U1, A1) and IS2 = (U2, A2) are information
systems then an infomorphism between IS1 and IS2 is a pair (f∧, f∨) of func-
tions f∧ : LIS1

→ LIS2
, f∨ : U2 → U1, satisfying the following equivalence

f∨(x) |=IS1
α if and only if x |=IS2

f∧(α) (8.8)

for all objects x ∈ U2 and for all formulas α ∈ LIS1
.

The infomorphism will be denoted shortly by

(f∧, f∨) : IS1 ⇄ IS2.

8.3.2 Sum of Information Systems

In this section we discuss a sum of two information systems.

Definition 8.12. Let IS1 = (U1, A1) and IS2 = (U2, A2) be information sys-
tems. These information systems can be combined into a single information sys-
tem, denoted by +(IS1, IS2), with the following properties:

• The objects of +(IS1, IS2) consist of pairs (x1, x2) of objects from IS1 and
IS2 i.e. U = U1 × U2
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• The attributes of +(IS1, IS2) consist of the attributes of IS1 and IS2, except
that if there are any attributes in common, then we make distinct copies, so
as not to confuse them.

Proposition 8.13. There are infomorphisms (f∧
k , f∨

k ) : ISk ⇄ +(IS1, IS2) for
k = 1, 2 defined as follows:

• f∧
k (α) = αISk

(the ISk-copy of α) for each α ∈ LISk

• for each pair (x1, x2) ∈ U , f∨
k ((x1, x2)) = xk

Given any information system IS3 and infomorphisms (f∧
k,3, f

∨
k,3) : ISk ⇄ IS3,

there is a unique infomorphism (f∧
1+2,3, f

∨
1+2,3) : +(IS1, IS2) ⇄ IS3 such that in

Figure 8.2 one can go either way around the triangles and get the same result.

Fig. 8.2. Sum of Information Systems IS1 = (U1, A1) and IS2 = (U2, A2)

Example 8.14. Let us consider a diagnostic agent testing failures of the space
robotic arm. Such an agent should observe the arm and detect a failure if, e.g.,
some of its parts are in abnormal relative position. Let’s assume, in our simple
example, that projections of some parts on a plane are observed and a failure is
detected if the projections of some triangular or rectangular parts are in some
relation, e.g., the triangle is not included sufficiently inside the rectangle. Hence,
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Table 8.1. Information System ISrectangle with Uncertainty Functions

Urectagle a b Ia(·) Ib(·) IA1
(·)

x1 165 yes {x1, x3, x5, x6} {x1, x3} {x1, x3}

x2 175 no {x2, x4, x6} {x2, x4, x5, x6} {x2, x4, x6}

x3 160 yes {x1, x3, x5} {x1, x3} {x1, x3}

x4 180 no {x2, x4} {x2, x4, x5, x6} {x2, x4}

x5 160 no {x1, x3, x5} {x2, x4, x5, x6} {x5}

x6 170 no {x1, x2, x6} {x2, x4, x5, x6} {x2, x6}

Table 8.2. Information System IStriangle with Uncertainty Function IA2

Utriangle c IA2
(·)

y1 t1 {y1, y3}

y2 t2 {y2}

y3 t1 {y1, y3}

any considered object consists of parts: a triangle and a rectangle. Objects are
perceived by some attributes expressing properties of parts and a relation (con-
straint) between them.

First, we construct an information system, called the sum of given informa-
tion systems. Such system represents objects composed from parts without any
constraint. It means that we consider as the universe of objects the Cartesian
product of the universes of parts (Tables 8.1-8.3).

Let us consider three information systems

ISrectangle = (Urectangle, Arectangle), IStriangle = (Utriangle, Atriangle)

and +(ISrectangle, IStriangle) = (Urectangle × Utriangle, {(a, 1), (b, 1), (c, 2)}) pre-
sented in Table 8.1, Table 8.2 and Table 8.3, respectively. Let Urectangle be a set
of rectangles and Arectangle = {a, b}, Va = [0, 300] and Vb = {yes, no}, where
the value of a means a length in millimeters of horizontal side of rectangle and
for any object x ∈ Urectangle b(x) = yes if and only if x is a square.

Let Utriangle be a set of triangles and Atriangle = {c} and Vc = {t1, t2}, where
c(x) = t1 if and only if x is an acute-angled triangle and c(x) = t2 if and only if
x is a right-angled triangle.

We assume all values of attributes are made on a given projection plane. The
results of measurements are represented in information systems. Tables 8.1-8.2
include only illustrative examples of the results of such measurements. We define
uncertainty functions as follows

y ∈ Ia(x) if and only if |a(x) − a(y)| ≤ 5

y ∈ Ib(x) if and only if b(x) = b(y)

y ∈ IA1
(x) if and only if (y ∈ Ia(x) and y ∈ Ib(x))

We assume that (a, 1)((xi, yj)) = a(xi), (b, 1)((xi, yj)) = b(xi) and
(c, 2)((xi, yj)) = c(yj), where i = 1, . . . , 6 and j = 1, 2.
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Table 8.3. An Information System +(ISrectangle, IStriangle) with Uncertainty Func-
tion IA1,A2

Urectangle × Utriangle (a, 1) (b, 1) (c, 2) IA1,A2
((·, ·))

(x1, y1) 165 yes t1 {x1, x3} × {y1, y3}

(x1, y2) 165 yes t2 {x1, x3} × {y2}

(x1, y3) 165 yes t1 {x1, x3} × {y1, y3}

(x2, y1) 175 no t1 {x2, x4, x6} × {y1, y3}

(x2, y2) 175 no t2 {x2, x4, x6} × {y2}

(x2, y3) 175 no t1 {x2, x4, x6} × {y1, y3}

(x3, y1) 160 yes t1 {x1, x3} × {y1, y3}

(x3, y2) 160 yes t2 {x1, x3} × {y2}

(x3, y3) 160 yes t1 {x1, x3} × {y1, y3}

(x4, y1) 180 no t1 {x2, x4} × {y1, y3}

(x4, y2) 180 no t2 {x2, x4} × {y2}

(x4, y3) 180 no t1 {x2, x4} × {y1, y3}

(x5, y1) 160 no t1 {x5} × {y1, y3}

(x5, y2) 160 no t2 {x5} × {y2}

(x5, y3) 160 no t1 {x5} × {y1, y3}

(x6, y1) 170 no t1 {x2, x6} × {y1, y3}

(x6, y2) 170 no t2 {x2, x6} × {y2}

(x6, y3) 170 no t1 {x2, x6} × {y1, y3}

8.3.3 Sum of Approximation Spaces

In this section we present a simple construction of approximation space for the
sum of given approximation spaces.

Let AS#k
= (Uk, I#k

, νSRI) be an approximation space for information sys-
tem ISk, where k = 1, 2.

We define an approximation space +(AS#1
, AS#2

) for information system
+(IS1, IS2) as follows:

1. the universe is equal to U1 × U2;
2. I#1,#2

((x1, x2)) = I#1
(x1) × I#2

(x2);
3. the inclusion function νSRI in +(AS#1

, AS#2
) is the standard rough inclu-

sion function.

We have the following property:

Proposition 8.15. For any subsets X ⊆ U1 and Y ⊆ U2 we obtain

LOW (+(AS#1
, AS#2

), X × Y ) =

LOW (AS#1
, X) × LOW (AS#2

, Y ) (8.9)

UPP (+(AS#1
, AS#2

), X × Y ) =

UPP (AS#1
, X) × UPP (AS#2

, Y ). (8.10)

Proof. We assume that I#1
: U1 → P (U1), I#2

: U2 → P (U2) and I#1,#2
: U1 ×

U2 → P (U1 × U2). Let x1 ∈ U1 and x2 ∈ U2. We have I#1,#2
((x1, x2)) ⊆ X × Y
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if and only if I#1
(x1) ⊆ X and I#2

(x2) ⊆ Y . Moreover, I#1,#2
((x1, x2)) ∩ (X ×

Y ) �= ∅ if and only if I#1
(x1) ∩ X �= ∅ and I#2

(x2) ∩ Y �= ∅.

Example 8.16. For information system ISrectangle we define an approximation
space ASA1

= (Urectangle, IA1
, νSRI) such that

y ∈ I5
a(x) if and only if |a(x) − a(y)| ≤ 5. This means that rectangles x and

y are similar with respect to the length of horizontal sides if and only if the
difference in lengths is not greater than 5 millimeters.

Let y ∈ Ib(x) if and only if b(x) = b(y) and
y ∈ IA1

(x) if and only if ∀c∈A1
y ∈ Ic(x)

Thus, we obtain uncertainty functions represented in the last three columns
of Table 8.1.

For the information system IStriangle we define an approximation space as
follows:

y ∈ IA2
(x) if and only if c(x) = c(y) (see the last column of Table 8.2).

For +(ISrectangle, IStriangle) we obtain IA1,A2
((x, y)) = IA1

(x) × IA2
(y) (see

the last column of Table 8.3).

8.3.4 Sum with Constraints of Information Systems

In this section we consider a new operation on information systems often used
in searching, e.g., for relevant patterns. We start from the definition in which
the constraints are given explicitly.

Definition 8.17. Let ISi = (Ui, Ai) for i = 1, . . . , k be information systems and
let R be a k-ary constraint relation in U1 × . . . × Uk, i.e., R ⊆ U1 × . . . × Uk.
These information systems can be combined into a single information system
relatively to R, denoted by +R(IS1, . . . , ISk), with the following properties:

• The objects of +R(IS1, . . . , ISk) consist of k-tuples (x1, . . . , xk) of objects
from R, i.e., all objects from U1 × . . . × Uk satisfying the constraint R.

• The attributes of +R(IS1, . . . , ISk) consist of the attributes from the sets
A1, . . . , Ak, except that if there are any attributes in common, then we make
distinct copies, so as not to confuse them.

Usually the constraints are defined by conditions expressed by Boolean combi-
nation of descriptors of attributes. It means that the constraints are built from
expressions a = v, where a is an attribute and v is its value, using proposi-
tional connectives ∧, ∨, ¬. Observe, that in constraint definition we use not only
attributes of parts (i.e., from information systems IS1, . . . , ISk) but also some
other attributes specifying relation between parts. In our example (see Table 8.4),
the constraint R1 is defined as follows: the triangle is sufficiently included in the
rectangle. Any row of this table represents an object (xi, yj) composed of the
triangle yj included sufficiently into the rectangle xi.

Let us also note that constraints are defined using primitive (measurable)
attributes different than those from information systems describing parts. This
makes the sum with constraint operation different from theta join. On the other
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Table 8.4. Information System +R1
(ISrectangle, IStriangle)

(Urectangle × Utriangle) ∩ R1 a′ b′ c′

(x1, y1) 165 yes t1

(x1, y2) 165 yes t2

(x2, y1) 175 no t1
(x2, y2) 175 no t2

(x3, y1) 160 yes t1

(x3, y2) 160 yes t2
(x4, y1) 180 no t1

(x4, y2) 180 no t2
(x5, y1) 160 no t1

(x5, y2) 160 no t2

(x6, y1) 170 no t1
(x6, y2) 170 no t2

hand one can consider that the constraints are defined in two steps. In the first
step we extend the attributes for parts and in the second step we define the
constraints using some relations on these new attributes.

Let us observe that the information system +R(IS1, . . . , ISk) can be also
described using an extension of the sum +(IS1, . . . , ISk) by adding a new binary
attribute aR : U1 × . . . × Uk → {0, 1} that is the characteristic function of the
relation R and by taking a subsystem of the received system consisting of all
objects having value one for this new attribute.

The constraints used to define the sum (with constraints) can be often spec-
ified by information systems. The objects of such systems are tuples consisting
of objects of information systems that are arguments of the sum. The attributes
describe relations between elements of tuples. One of the attribute is a char-
acteristic function of the constraint relation (restricted to the universe of the
information system). In this way we obtain a decision system with the decision
attribute defined by the characteristic function of the constraint and conditional
attributes are the remaining attributes of this system. From such decision table
one can induce classifier for the constraint relation. Next, the classifier can be
used to select tuples in the construction of the sum with constraints.

Example 8.18. Let us consider three information systems

ISrectangle = (Urectangle, Arectangle), IStriangle = (Utriangle, Atriangle),

+R1
(ISrectangle, IStriangle),

presented in Table 8.1, Table 8.2 and Table 8.4, respectively. We assume that
R1 = {(xi, yj) ∈ Urectangle × Utriangle : i = 1, . . . , 6 j = 1, 2}. We also assume
that a′((xi, yj)) = a(xi), b′((xi, yj)) = b(xi) and c′((xi, yj)) = c(yj), where
i = 1, . . . , 6 and j = 1, 2.

The above examples are illustrating an idea of specifying constraints by exam-
ples. Table 8.4 can be used to construct a decision table partially specifying
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characteristic functions of the constraint. Such a decision table should be ex-
tended by adding relevant attributes related to the object parts, which allows to
induce the high quality classifiers for the constraint relation. The classifier can
then be used to filter composed pairs of objects that satisfy the constraint. This
is an important construction because the constraint specification usually cannot
be defined directly in terms of measurable attributes. It can be specified, e.g., in
natural language. This is the reason that the process of inducing of the relevant
classifiers for constraints can require hierarchical classifier construction [104].

The constructed constraint sum of information systems can contain some
incorrect objects. This is due to improper filtering of objects by the constraint
classifier induced from data (with accuracy usually less than 100%). One should
take this issue into account in constructing nets of information systems.

8.3.5 Constraint Sum of Approximation Spaces

Let AS#i
= (Ui, I#i

, νSRI) be an approximation space for information system
ISi, where i = 1, . . . , k and let R ⊆ U1 × . . . × Uk be a constraint relation.
We define an approximation space +R(AS#1

, . . . , AS#k
) for +R(IS1, . . . , ISk)

as follows:

1. the universe is equal to R;
2. I#1,...,#k

((x1, . . . , xk)) = (I#1
(x1) × . . . × I#k

(xk)) ∩ R;
3. the inclusion relation νSRI in +R(AS#1

, . . . , AS#k
) is the standard inclusion

function.

We have the following properties of approximations:

Proposition 8.19

LOW (+R(AS#1
, . . . , AS#k

), X1 × . . . × Xk) =

R ∩ (LOW (AS#1
, X1) × . . . × LOW (AS#k

, Xk)) (8.11)

UPP (+R(AS#1
, . . . , AS#k

), X1 × . . . × Xk) =

R ∩ (UPP (AS#1
, X1) × . . . × UPP (AS#k

, Xk)). (8.12)

8.4 Rough–Fuzzy Granules

In this section, we discuss rough-fuzzy granules. Such granules are important for
many applications. To explain the main idea behind such granules let us consider
the problem of construction of a classifier for a vague concept specified by a
sample of positive and negative examples. Quite often, the induced boundary
region of the concept can be too large and later the information that a given
object falls into the boundary region may not be that meaningful in applications.
In such cases, one can try to distinguish different parts in the boundary region
representing different shades of the concept. Next, with these parts being treated
as new concepts, their approximations are constructed. For applications, it is very
important to have linearly ordered parts, called layers. The boundary regions of
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layers should satisfy the constraint that each of them has non-empty intersection
with two neighboring layers only. Next, approximations of layers are extended
from a given sample to the whole space of objects. The induced membership
functions for the parts can be treated as rough-fuzzy membership functions of
linguistic variables [221] corresponding to parts (e.g., low, medium, high). In this
way, we obtain a family of classifiers as an approximation of a given concept.
We call such a family a rough-fuzzy granule.

Below we present a more formal description of the above idea.
Let DT = (U, A, d) be a decision table where the decision d is the fuzzy

membership function ν restriction to the objects from U. Consider reals 0 <

c1 < . . . < ck where ci ∈ (0, 1] for i = 1, . . . , k. Any ci defines ci-cut by Xi =
{x ∈ U : ν(x) ≥ ci}. Assume that X0 = U and Xk+1 = Xk+2 = ∅. A rough-fuzzy
granule (rf-granule, for short) corresponding to (DT, c1, . . . , ck) is any granule
g = (g0, . . . , gk) such that for some B ⊆ A,

SemB(gi) = [LOW (ASB , (Xi − Xi+1)), UPP (ASB , (Xi − Xi+1))] , (8.13)

for i = 0, . . . , k, and

UPP (ASB, (Xi − Xi+1)) ⊆ (Xi−1 − Xi+2), for i = 1, . . . , k,

where SemB(gi) denotes the semantics of gi.
Any function ν∗ : U → [0, 1] satisfying the conditions

ν∗(x) = 0, for x ∈ U − UPP (ASB, X1), (8.14)

ν∗(x) = 1, for x ∈ LOW (ASB , Xk),

ν∗(x) = ci−1, for x ∈ LOW (ASB , (Xi−1 − Xi)), and i = 2, . . . , k − 1,

ci−1 < ν∗(x) < ci, for x ∈ (UPP (ASB, Xi) − LOW (ASB , Xi)),

where i = 1, . . . , k, and c0 = 0,

is called a B-approximation of ν.

For applications, it is necessary to develop heuristics searching for relevant
attributes and parts as well as their approximations. The constructed rough-
fuzzy granules are used, e.g., in approximation of other concepts.

8.5 Conclusions

We have discussed some issues for intelligent systems based on granular comput-
ing. The most important are applications of granules for mining complex knowl-
edge from complex data (one of challenging problems in data mining research [218]).

The approach can be extended to adaptive approximation of concepts in multi-
agent systems, e.g., for control of complex adaptive systems (this problem is
related to distributed data mining and mining multi-agent data [218]).

In our opinion rough–granular computing is a good foundation for “developing
a unifying theory of data mining” [218].



9 Concluding Remarks

In this book we have outlined a methodology for knowledge discovery and data
mining by means of rough–granular computing. Several research directions are
related to rough–granular computing. We enclose a list of such directions to-
gether with examples of problems.

1. Developing foundations for information granule systems. Certainly,
still more work is needed to develop solid foundations for synthesizing and
analyzing information granule systems. In particular, methods for construct-
ing hierarchical information granule systems and methods for representing
such systems should be developed.

2. Algorithmic methods for inducing parameterized approximation

spaces from data and background knowledge. Some methods have
already been reported, such as the discovery of approximation space based
on discretization of attributes and methods based on distance functions.
However, these are only initial steps toward algorithmic methods for inducing
parameterized approximation spaces from data and background knowledge.

3. Algorithmic methods for synthesizing of approximate reasoning

schemes. It was observed that problems of negotiation and conflict res-
olution are of great importance in synthesizing of approximate reasoning
schemes. The problem arises, e.g., when we are searching in a given set of
agents for a granule sufficiently included or close to a given one. These agents,
often working with different systems of information granules, can derive dif-
ferent granules, and their fusion will be necessary to obtain the relevant
output granule. In the fusion process, negotiations and conflict resolutions
are necessary. Much more work should be done in this direction by using
the existing results on negotiations and conflict resolution. In particular,
Boolean reasoning methods seem to be promising.

4. Fusion methods in rough–granular computing. A basic problem is
fusion of the inputs (information) derived from information granules. This
fusion makes it possible to contribute to the construction of new granules.

J. Stepaniuk: Rough - Gran. Comput. in Knowl. Dis. & Data Min., SCI 152, pp. 135–136, 2008.
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5. Discovery of multiagent systems relevant to given problems. Quite
often, agents and communication methods among them are not given a priori
with the problem specification, and the challenge is to develop methods
for discovering multiagent system structures relevant to given problems, in
particular, methods for discovering relevant communication protocols.
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23. Czyżewski, A., Kostek, B.: Rough Set-Based Filtration of Sound Applicable to
Hearing Prostheses. In: Tsumoto, S., Kobayashi, S., Yokomori, T., Tanaka, H.
(eds.) Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy
Sets and Machine Discovery (RSFD 1996), Tokyo, November 6-8, pp. 168–175
(1996)
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94. Mrózek, A., P�lonka, L.: Rough Sets in Image Analysis. Foundations of Computing
Decision Sciences 18(3-4), 259–273 (1993)

95. Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in
Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V.
LNCS, vol. 4100, pp. 344–523. Springer, Heidelberg (2006)

96. Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular Computing: A Rough Set
Approach. An International Journal of Computational Intelligence 17(3), 514–
544 (2001)



References 143

97. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept
synthesis. In: Peters, J.F., Skowron, A., Grzyma�la-Busse, J.W., Kostek, B. (eds.)
Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg
(2004)

98. Nicoletti, M.C., Uchoa, J.Q., Baptistini, M.T.Z.: Rough Relation Properties. Int.
J. Appl. Math. Comput. Sci. 11(3), 621–635 (2001)

99. Ogiela, M.R., Tadeusiewicz, R.: Modern Computational Intelligence Methods
for the Interpretation of Medical Image. Studies in Computational Intelligence,
vol. 84. Springer, Heidelberg (2008)

100. Ohrn, A., Komorowski, J., Skowron, A., Synak, P.: The Design and Implemen-
tation of a Knowledge Discovery Toolkit Based on Rough Sets - The Rosetta
System. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discov-
ery 1, Methodology and Applications, pp. 376–399. Physica-Verlag, Heidelberg
(1998)

101. Or�lowska, E.: Information Algebras. In: Alagar, V.S., Nivat, M. (eds.) AMAST
1995. LNCS, vol. 936, pp. 55–65. Springer, Heidelberg (1995)

102. Pal, S.K., Mitra, P.: Pattern Recognition Algorithms for Data Mining: Scalability,
Knowledge Discovery, and Soft Granular Computing. Chapman & Hall, Ltd.,
London (2004)

103. Pal, S.K., Skowron, A. (eds.): Rough-Fuzzy Hybridization A New Trend in Deci-
sion Making. Springer, Heidelberg (1999)

104. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough–Neural Computing: Tech-
niques for Computing with Words. Springer, Berlin (2004)

105. Pawlak, Z.: Rough Relations. Bulletin of the Polish Academy of Sciences. Tech-
nical Sciences 34(9-10), 587–590 (1986)

106. Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

107. Pawlak, Z., Skowron, A.: Rough Membership Functions. In: Fedrizzi, M.,
Kacprzyk, J., Yager, R.R. (eds.) Advances in the Dempster-Shafer Theory of
Evidence, pp. 251–271. John Wiley and Sons, New York (1994)

108. Pawlak, Z., Skowron, A.: Rudiments of rough sets. An International Journal of
Information Sciences 177(1), 3–27 (2007)

109. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. An International Journal
of Information Sciences 177(1), 28–40 (2007)

110. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. An International
Journal of Information Sciences 177(1), 41–73 (2007)
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S�lowiński, R. (ed.): Intelligent Decision Support - Handbook of Applications and Ad-
vances of the Rough Sets Theory, System Theory, Knowledge Engineering and Prob-
lem Solving, vol. 11. Kluwer Academic Publishers, Dordrecht (1992)

Zhong, N., Liu, J. (eds.): Intelligent Technologies for Information Analysis. Springer,
Heidelberg (2004)

A.2 Transactions on Rough Sets

Peters, J.F., Skowron, A., Grzyma�la-Busse, J.W., Kostek, B.z., Świniarski, R.W.,
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R. (eds.): RSCTC 2006. LNCS (LNAI), vol. 4259. Springer, Heidelberg (2006)

Hirano, S., Inuiguchi, M., Tsumoto, S. (eds.): Proceedings of International Workshop on
RoughSetTheory andGranularComputing (RSTGC2001),Matsue, Shimane, Japan,
May 20-22 (2001); Bulletin of the International Rough Set Society 5(1-2) (2001)

Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.): RSEISP 2007. LNCS
(LNAI), vol. 4585. Springer, Heidelberg (2007)

Lin, T.Y., Wildberger, A.M. (eds.): Soft Computing: Rough Sets, Fuzzy Logic, Neu-
ral Networks, Uncertainty Management, Knowledge Discovery. Simulation Councils,
Inc., San Diego (1995)

Polkowski, L., Skowron, A. (eds.): RSCTC 1998. LNCS (LNAI), vol. 1424. Springer,
Heidelberg (1998)

Skowron, A. (ed.): SCT 1984. LNCS, vol. 208. Springer, Heidelberg (1985)
Skowron, A., Szczuka, M. (eds.): Proceedings of the Workshop on Rough Sets in Knowl-

edge Discovery and Soft Computing at (ETAPS 2003), Elsevier, Amsterdam, Nether-
lands, April 12-13 (2003); Electronic Notes in Computer Science 82(4) (2003),
http://www.elsevier.nl/locate/entcs/volume82.html
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A.5 Selected Web Resources

International Rough Set Society (IRSS) is a non-profit organisation intended as a forum
for contacts and exchange of information between members of scientific community
whos’ research is related to the rough set theory, http://roughsets.home.pl/www/

RSES (Rough Set Exploration System) is a toolkit for analysis of table data. It is based
on methods and algorithms coming from the area of rough sets,
http://logic.mimuw.edu.pl/~rses/

Fig. A.1. Rough Set Exploration System

http://roughsets.home.pl/www/
http://logic.mimuw.edu.pl/~rses/
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ROSE (Rough Sets Data Explorer) is a software implementing basic elements of the
rough set theory and rule discovery techniques,
http://idss.cs.put.poznan.pl/site/rose.html

ACM Special Interest Group on Knowledge Discovery and Data Mining – a Knowledge
Discovery and Data Mining Society under the umbrella of ACM,
http://www.sigkdd.org/

KDnuggets.com (KD stands for Knowledge Discovery) is the source of information
on Data Mining, Web Mining, Knowledge Discovery, and Decision Support Top-
ics, including News, Software, Solutions, Companies, Jobs, Courses, Meetings, and
Publications, http://www.kdnuggets.com/

http://idss.cs.put.poznan.pl/site/rose.html
http://www.sigkdd.org/
http://www.kdnuggets.com/
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decision

attribute 35

rule 59

table 18, 19

discernibility

function 46

matrix 45

Dunn’s index 74

dynamic reducts 53

elementary

granule 13, 114

function

approximation 29

rough inclusion 18

uncertainty 18

granule 111

elementary 13, 114

rough-fuzzy 131

system 112

hierarchical modeling 123

implicant 44

prime 44

indiscernibility

class 18

relation 17

infomorphism 124

information system 17
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literal 100

lower

approximation 22

metric

overlap 36

value difference 36

neighborhood 19

partition 16

positive region 25

properties of approximations 25

quality of approximation 25

quality of approximation of classification

25

reduct

approximate 52

for an information system 45

object-related

in a decision table 48

in an information system 45

relative 48

relation

binary 15

equivalence 16

reflexive 15

reflexivity 15

symmetric 15

symmetry 15

tolerance 16

transitive 15

transitivity 15

relational learning 100

rough

inclusion

function 18

rough-fuzzy

granule 131

rough inclusion

standard 21

rule quality 65

sensory

environment 19

formulas 19

semantics 19

set

externally undefinable 26

internally undefinable 26

roughly definable 26

totally undefinable 26

sets of granules 114

Silhouette index 75

SOSIG system 70

stability of reduct 53

standard

rough inslusion 21

Stirling number 67

subset 15

sum of approximation spaces 127

sum of information systems 124

with contraints 128

support 63

term 100

uncertainty

function 18

upper

approximation 22

variable precision rough set model 22
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