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Preface

This volume contains papers presented at the 13th International Conference on
Rough Sets, Fuzzy Sets and Granular Computing (RSFDGrC) held during June
25–27, 2011, at the National Research University Higher School of Economics
(NRU HSE) in Moscow, Russia. RSFDGrC is a series of scientific events span-
ning the last 15 years. It investigates the meeting points among the four major
disciplines outlined in its title, with respect to both foundations and applications.
In 2011, RSFDGrC was co-organized with the 4th International Conference on
Pattern Recognition and Machine Intelligence (PReMI), providing a great op-
portunity for multi-faceted interaction between scientists and practitioners.

There were 83 paper submissions from over 20 countries. Each submission was
reviewed by at least three Chairs or PC members. We accepted 34 regular papers
(41%). In order to stimulate the exchange of research ideas, we also accepted
15 short papers. All 49 papers are distributed among 10 thematic sections of
this volume. The conference program featured five invited talks given by Jiawei
Han, Vladik Kreinovich, Guoyin Wang, Radim Belohlavek, and C.A. Murthy,
as well as two tutorials given by Marcin Szczuka and Richard Jensen. Their
corresponding papers and abstracts are gathered in the first two sections of this
volume.

We would like to thank all authors and reviewers for their work and excellent
contributions. We express our gratitude to Lotfi A. Zadeh, who suggested many
talented scientists to serve as PC members. The success of the whole undertaking
would be impossible without collaboration with the Chairs of PReMI-2011, as
well as the Chairs of workshops co-organized with the main conference. We also
acknowledge the following organizations and sponsoring institutions: National
Research University Higher School of Economics (Moscow), Laboratoire Poncelet
(UMI 2615 du CNRS, Moscow), International Rough Set Society, International
Fuzzy Systems Association, Russian Foundation for Basic Research, ABBYY
Software House, Yandex (Moscow), and Springer. Last but not least, we are
grateful to all Chairs and organizers of RSFDGrC-2011, especially to Dmitry I.
Ignatov, whose endless energy saved us in the most critical stages of conference
preparation.

April 2011 Sergei O. Kuznetsov
Dominik Śl ↪ezak

Daryl H. Hepting
Boris G. Mirkin
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Construction and Analysis of Web-Based

Computer Science Information Networks

Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

hanj@cs.uiuc.edu

With the rapid development of the Web, huge amounts of information are avail-
able on the Web in the form of Web documents, structures, and links. It has
been a dream of the database and Web communities to harvest information ex-
hibited on the Web and reconcile the unstructured nature of the Web with the
semi-structured schemas of the database paradigm. This is a challenging task.
Even though databases are currently used to generate Web content in some
sites, the schemas of these databases are rarely consistent across a domain. How-
ever, with the recent research in Web structure mining and information network
analysis, major progress has been made at discovering Web hidden structures,
constructing heterogeneous information networks by integration of information
from structured databases and Web contents, and performing in-depth analysis
for systematic harvesting of such rich information on the Web.

Based on our recent research, we have been developing an innovative Web-based
information network analysis system, called WINACS (Web-based Information
Network Analysis for Computer Science) [6], which incorporates many recent, ex-
citing developments in data sciences to construct a Web-based computer science
information network, and discover, retrieve, rank, cluster, and analyze such an
information network. Taking computer science as a dedicated domain, WINACS
first discovers Web entity structures, integrates the contents in the DBLP database
with that on the Web to construct a heterogeneous computer science information
network. With this structure in hand, WINACS is able to rank, cluster and ana-
lyze this network and support intelligent and analytical queries. In this talk, we
will discuss the principles of information network-based Web mining, show mul-
tiple salient features of WINACS and demonstrate how computer science Web
pages and DBLP can be nicely integrated to support queries and mining in highly
friendly and intelligent ways. We envision the methodologies can be extended to
handle many other exciting information networks extracted from the Web, such
as general academia, governments, sports and so on.

The WINACS system is being developed at the Data Mining Research Group
in Computer Science, Univ. of Illinois, based on our recent research on Web struc-
ture mining, such as [8,7], and information network analysis, such as [4,3,2,1,5].

Acknowledgements. The work was supported in part by the U.S. National Sci-
ence Foundation grants IIS-09-05215, the Network Science Collaborative Tech-
nology Alliance Program (NS-CTA) of U.S. Army Research Lab (ARL) under

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 1–2, 2011.
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contract number W911NF-09-2-0053, and the Air Force Office of Scientific Re-
search MURI award FA9550-08-1-0265. The author would like to express his
sincere thanks to all the WINACS project group and the Ph.D. students in the
Data Mining Group of CS, UIUC for their dedication and contribution.
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Towards Faster Estimation of Statistics and
ODEs Under Interval, P-Box, and Fuzzy

Uncertainty: From Interval Computations to
Rough Set-Related Computations

Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
vladik@utep.edu

Abstract. Interval computations estimate the uncertainty of the result
of data processing in situations in which we only know the upper bounds
Δ on the measurement errors. In interval computations, at each interme-
diate stage of the computation, we have intervals of possible values of the
corresponding quantities. As a result, we often have bounds with excess
width. In this paper, we show that one way to remedy this problem is
to extend interval technique to rough-set computations, where at each
stage, in addition to intervals of possible values of the quantities, we also
keep rough sets representing possible values of pairs (triples, etc.).

The paper’s outline is as follows: we formulate the main problem
(Section 1), briefly overview interval computations techniques solve this
problem (Section 2), and then explain how the main ideas behind inter-
val computation techniques can be extended to computations with rough
sets (Section 3).

Keywords: interval computations, interval uncertainty, rough sets,
statistics under interval uncertainty.

1 Formulation of the Problem

Need for interval computations. In many real-life situations, we need to process
data, i.e., to apply an algorithm f(x1, . . . , xn) to measurement results x1, . . . , xn.

Measurements are never 100% accurate, so in reality, the actual value xi of
i-th measured quantity can differ from the measurement result x̃i. Because of
these measurement errors Δxi

def= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data
processing is, in general, different from the actual value y = f(x1, . . . , xn) of the
desired quantity y.

In many practical situations, we only know the upper bound Δi on the (abso-
lute value of) the measurement errors Δxi. In such situations, the only informa-
tion that we have about the (unknown) actual value of y = f(x1, . . . , xn) is that
y belongs to the range y = [y, y] of the function f over the box x1 × . . . × xn:

y = [y, y] = f(x1, . . . ,xn) def= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 3–10, 2011.
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The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [4].

Case of fuzzy uncertainty and its reduction to interval uncertainty. In addition to
bounds, we can also have expert estimates on Δxi. An expert usually describes
his/her uncertainty by using words from a natural language, like “most probably,
the value of the quantity is between 3 and 4”. To formalize this knowledge, it is
natural to use fuzzy set theory, a formalism specifically designed for describing
this type of informal (“fuzzy”) knowledge; see, e.g., [5].

In fuzzy set theory, the expert’s uncertainty about xi is described by a fuzzy
set, i.e., by a function μi(xi) which assigns, to each possible value xi of the i-th
quantity, the expert’s degree of certainty that xi is a possible value. A fuzzy set
can also be described as a nested family of α-cuts xi(α) def= {xi |μi(xi) ≥ α}.

Zadeh’s extension principle can be used to transform the fuzzy sets for xi

into a fuzzy set for y. It is known that for continuous functions f on a bounded
domain this principle is equivalent to saying that, for every α,

y(α) = f(x1(α), . . . ,xn(α)).

In other words, fuzzy data processing can be implemented as layer-by-layer inter-
val computations. In view of this reduction, in the following text, we will mainly
concentrate on interval computations.

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing the
enclosure for the range is the method which is sometimes called “straightforward"
interval computations. This method is based on the fact that inside the computer,
every algorithm consists of elementary operations (arithmetic operations, min,
max, etc.). For each elementary operation f(a, b), if we know the intervals a
and b for a and b, we can compute the exact range f(a,b). The corresponding
formulas form the so-called interval arithmetic:

[a, a] + [b, b] = [a + b, a + b]; [a, a] − [b, b] = [a − b, a − b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)];
1/[a, a] = [1/a, 1/a] if 0 �∈ [a, a]; [a, a]/[b, b] = [a, a] · (1/[b, b]).

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ⊇ y for the desired range.

From main idea to actual computer implementation. Not every real number
can be exactly implemented in a computer; thus, e.g., after implementing an
operation of interval arithmetic, we must enclose the result [r−, r+] in a
computer-representable interval: namely, we must round-off r− to a smaller
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computer-representable value r, and round-off r+ to a larger computer-
representable value r.

Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard
(see, e.g., [6]), even for computing the population variance V = 1

n ·∑n
i=1(xi−x)2,

where x = 1
n ·

∑n
i=1 xi (see [3]). If we get excess width, then we can use techniques

such as centered form, bisection, etc., to get a better estimate; see, e.g., [4].

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(x1) = x1 − x2

1 over
x1 = [0, 1] is y = [0, 0.25]. Computing this f means that we first compute
x2 := x2

1 and then subtract x2 from x1. According to straightforward interval
computations, we compute r = [0, 1]2 = [0, 1] and then x1 −x2 = [0, 1]− [0, 1] =
[−1, 1]. This excess width comes from the fact that the formula for interval
subtraction implicitly assumes that both a and b can take arbitrary values within
the corresponding intervals a and b, while in this case, the values of x1 and x2

are clearly not independent: x2 is uniquely determined by x1, as x2 = x2
1.

3 Rough Set Computations

Main idea. The idea behind (rough) set computations (see, e.g., [1,7,8]) is to
remedy the above reason why interval computations lead to excess width. Specif-
ically, at every stage of the computations, in addition to keeping the intervals
xi of possible values of all intermediate quantities xi, we also keep sets:

– sets xij of possible values of pairs (xi, xj);
– if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1], we
would then also generate and keep the set x12 = {(x1, x

2
1) |x1 ∈ [0, 1]}. Then,

the desired range is computed as the range of x1 − x2 over this set – which is
exactly [0, 0.25].

How can we propagate this set uncertainty via arithmetic operations? Let us
describe this on the example of addition, when, in the computation of f , we
use two previously computed values xi and xj to compute a new value xk :=
xi +xj . In this case, we set xik = {(xi, xi +xj) | (xi, xj) ∈ xij}, xjk = {(xj , xi +
xj) | (xi, xj) ∈ xij}, and for every l �= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.
From main idea to actual computer implementation. In interval computations, we
cannot represent an arbitrary interval inside the computer, we need an enclosure.
Similarly, we cannot represent an arbitrary set inside a computer, we need an
enclosure.
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To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts Xi; thus each box xi×xj is divided
into C2 subboxes Xi ×Xj. We then describe each set xij by listing all subboxes
Xi × Xj which have common elements with xij ; the union of such subboxes is
an enclosure for the desired set xij . This enclosure is a P-upper approximation
to the desired set.

This enables us to implement all above arithmetic operations. For example, to
implement xik = {(xi, xi +xj) | (xi, xj) ∈ xij}, we take all the subboxes Xi×Xj

that form the set xij ; for each of these subboxes, we enclosure the corresponding
set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi × Xj} into a set Xi × (Xi + Xj). This
set may have non-empty intersection with several subboxes Xi × Xk; all these
subboxes are added to the computed enclosure for xik. One can easily see that
if we start with the exact range xij , then the resulting enclosure for xik is an
(1/C)-approximation to the actual set – and so when C increases, we get more
and more accurate representations of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},
we consider all the triples of subintervals (Xi,Xj ,Xl) for which Xi ×Xj ⊆ xij ,
Xi × Xl ⊆ xil, and Xj × Xl ⊆ xjl; for each such triple, we compute the box
(Xi + Xj) × Xl; then, we add subboxes Xk × Xl which intersect with this box
to the enclosure for xkl.

Toy example: computing the range of x−x2. In straightforward interval compu-
tations, we have r1 = x with the exact interval range r1 = [0, 1], and r2 = x2

with the exact interval range x2 = [0, 1]. The variables r1 and r2 are dependent,
but we ignore this dependence and estimate r3 as [0, 1] − [0, 1] = [−1, 1].

In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First,
we divide the range [0, 1] into 5 equal subintervals R1. The union of the ranges
R2

1 corresponding to 5 subintervals R1 is [0, 1], so r2 = [0, 1]. We divide r2 into
5 equal subintervals [0, 0.2], [0.2, 0.4], etc. We now compute r12 as follows:
– for R1 = [0, 0.2], we have R2

1 = [0, 0.04], so only subinterval [0, 0.2] of the
interval r2 is affected;

– for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only subinterval [0, 0.2]

is affected;
– for R1 = [0.4, 0.6], we have R2

1 = [0.16, 0.36], so two subintervals [0, 0.2] and
[0.2, 0.4] are affected, etc.

× × ×
× ×

×
× ×

×

r1

r2
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For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2],
[0, 0.4], or [0.2, 0.6], so the union of R1 − R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer
and closer to the exact range [0, 0.25].

How to Compute rik. The above example is a good case to illustrate how we
compute the range r13 for r3 = r1 − r2. Indeed, since r3 = [−0.2, 0.6], we divide
this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12], [0.12, 0.28], [0.28, 0.44],
[0.44, 0.6].

– For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 − R2 = [−0.2, 0.2].
This covers [−0.2,−0.04], [−0.04, 0.12], and [0.12, 0.28].

– For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This interval covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.4, 0.6], we have two possible R2:
• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28],

[0.28, 0.44], and [0.44, 0.6];
• for R2 = [0.2, 0.4], we have R1 − R2 = [0, 0.4]; this covers [−0.04, 0.12],

[0.12, 0.28], and [0.28, 0.44].
– For R1 = [0.6, 0.8], we have R2

1 = [0.36, 0.64], so three possible R2: [0.2, 0.4],
[0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] =
[−0.2, 0.6], so all 5 subintervals are affected.

– Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2:

[0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] =
[−0.2, 0.4], so the first 4 subintervals are affected.

×
× ×

×
×

×
×
×
×

×
×
×
×
×

×
×
×
×

r1

r3

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to compute the
result with k digits of accuracy, i.e., with accuracy ε = 10−k, we must consider
exponentially many boxes (∼ 10k). In plain words, this method is only applicable
when we want to know the desired quantity with a given accuracy (e.g., 10%).

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy – an accuracy of 10% is more than enough.
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Let us describe the case when interval computations do not lead to the exact
range, but set computations do – of course, the range is “exact” modulo accuracy
of the actual computer implementations of these sets.

Example: estimating variance under interval uncertainty. Suppose that we know
the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to compute
the range of the variance V = 1

n · M − 1
n2 · E2, where M

def=
∑n

i=1 x2
i and

E
def=

∑n
i=1 xi.

A natural way to compute V is to compute the intermediate sums Mk
def=

∑k
i=1 x2

i and Ek
def=

∑k
i=1 xi. We start with M0 = E0 = 0; once we know the

pair (Mk, Ek), we compute (Mk+1, Ek+1) = (Mk + x2
k+1, Ek + xk+1). Since the

values of Mk and Ek only depend on x1, . . . , xk and do not depend on xk+1,
we can conclude that if (Mk, Ek) is a possible value of the pair and xk+1 is a
possible value of this variable, then (Mk + x2

k+1, Ek + xk+1) is a possible value
of (Mk+1, Ek+1). So, the set p0 of possible values of (M0, E0) is the single point
(0, 0), and once we know the set pk of possible values of (Mk, Ek), we can
compute pk+1 as

{(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}.
For k = n, we will get the set pn of possible values of (M, E). Based on this set,
we can then find the exact range of the variance V = 1

n · M − 1
n2 · E2.

What C should we choose to get the results with an accuracy ε · V ? On each
step, we add the uncertainty of 1/C. So, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps; at each
step, we need to analyze C3 combinations of subintervals for Ek, Mk, and xk+1.
Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For fixed accuracy C ∼ n,
we need O(n4) steps – a polynomial time, and for ε = 1/10, the coefficient at n4

is still 103 – quite feasible.
For example, for n = 10 values and for the desired accuracy ε = 0.1, we need

103 · n4 ≈ 107 computational steps – “nothing” for a Gigaherz (109 operations
per second) processor on a usual PC. For n = 100 values and the same desired
accuracy, we need 104 · n4 ≈ 1012 computational steps, i.e., 103 seconds (15
minutes) on a Gigaherz processor. For n = 1000, we need 1015 steps, i.e., 106

seconds – 12 days on a single processor or a few hours on a multi-processor
machine.

In comparison, the exponential time 2n needed in the worst case for the exact
computation of the variance under interval uncertainty, is doable (210 ≈ 103

steps) for n = 10, but becomes unrealistically astronomical (2100 ≈ 1030 steps)
already for n = 100.

Comment. When the accuracy increases to ε = 10−k, we get an exponen-
tial increase in running time – but this is OK since, as we have mentioned,
the problem of computing variance under interval uncertainty is, in general,
NP-hard.
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Other statistical characteristics. Similar algorithms can be presented for com-
puting many other statistical characteristics [1].

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m. Interval
uncertainty usually means that the exact functions fi are unknown, we only
know the expressions of fi in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parameters
whose values are the same for all moments t, and we may have parameters
whose values may differ at different moments of time – but always within given
intervals. In general, we have a system of the type

ẋi = fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)),

where fi is a known function, and we know the intervals aj and bj(t) of possible
values of ai and bj(t).

For the general system of ODEs, Euler’s equations take the form

xi(t + Δt) = xi(t) + Δt · fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)).

Thus, if for every t we keep the set of all possible values of a tuple

(x1(t), . . . , xm(t), a1, . . . , ak),

then we can use the Euler’s equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the previous
values bj(t − Δt), bj(t − 2Δt), etc., and not on the current values bj(t).

To predict the values xi(T ) at a moment T , we need n = T/Δt iterations.
To update the values, we need to consider all possible combinations of m+k+l

variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict the values at
moment T = n ·Δt in the future for a given accuracy ε > 0, we need the running
time n · Cm+k+l ∼ nk+l+m+1. This is still polynomial in n.

Towards extension to p-boxes and classes of probability distributions. Often, in
addition to the interval xi of possible values of the inputs xi, we also have
partial information about the probabilities of different values xi ∈ xi. An exact
probability distribution can be described, e.g., by its cumulative distribution
function (cdf) Fi(z) = Prob(xi ≤ z). In these terms, a partial information means
that instead of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for
each z, instead of the exact value F (z), we know an interval F(z) = [F (z), F (z)]
of possible values of F (z). Such an “interval-valued” cdf is called a probability
box, or a p-box, for short; see, e.g., [2].

Propagating p-box uncertainty via computations: a problem. Once we know
the classes Fi of possible distributions for xi, and data processing algorithms
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f(x1, . . . , xn), we would like to know the class F of possible resulting distribu-
tions for y = f(x1, . . . , xn).

Idea. For problems like systems of ODEs, it is sufficient to keep and update, for
all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).

4 Conclusions

In many practical situations, for each quantity xi, we only know the upper
bound Δi on the measurement error Δxi

def= x̃i − xi; in this case, once we know
the measurement result x̃i, the only information that we have about the actual
(unknown) value xi is that it belongs to the interval xi = [x̃i − Δi, x̃i + Δi].
For each quantity y = f(x1, . . . , xn), different values xi ∈ xi lead, in general, to
different values y; it is therefore desirable to find the range y of all such values.
In this paper, we show that for many problems, we can efficiently compute this
range if we follow the original computation of y step-by-step with a rough set
instead of a collection of exact values: we start with a box x1 × . . . × xn, and
then estimate rough sets corresponding to each intermediate result.
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Abstract. Uncertainty exists almost everywhere. In the past decades,
many studies about randomness and fuzziness were developed. Many
theories and models for expressing and processing uncertain knowledge,
such as probability & statistics, fuzzy set, rough set, interval analysis,
cloud model, grey system, set pair analysis, extenics, etc., have been
proposed. In this paper, these theories are discussed. Their key idea
and basic notions are introduced and their difference and relationship
are analyzed. Rough set theory, which expresses and processes uncertain
knowledge with certain methods, is discussed in detail.

Keywords: uncertain knowledge expressing, uncertain knowledge pro-
cessing, fuzzy set, rough set, cloud model.

1 Introduction of Uncertainty

The methods for uncertain knowledge expressing and processing have become
one of the key problems of artificial intelligence. There are many kinds of uncer-
tainties in knowledge, such as randomness, fuzziness, vagueness, incompleteness,
inconsistency, etc. Randomness and fuzziness are the two most important and
fundamental ones. Randomness implies a lack of predictability (causality). It
is a concept of non-order or non-coherence in a sequence of symbols or steps,
such that there is no intelligible pattern or combination. Fuzziness is the uncer-
tainty caused by the boundary region, reflecting the loss of excluded middle law.
There are many theories about randomness and fuzziness developed in the past
decades. Many theories and models have been proposed, such as probability &
statistics, fuzzy set [20], rough set [15], interval analysis [14], cloud model [13],
grey system [6], set pair analysis [22], extenics [4], etc.

In this paper, we specifically discuss fuzzy set, rough set, type-2 fuzzy set,
interval-valued fuzzy set, intuitionistic fuzzy set, cloud model, grey set, set pair
analysis, interval analysis, and extenics. The key ideas and basic notions of these
approaches are introduced and their differences and relationships are analyzed.
Some further topics and problems related to expressing and processing uncertain
knowledge based on rough set are discussed too.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 11–18, 2011.
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2 Set Theory

A set is a collection of distinct objects. Set is one of the most fundamental
concepts in mathematics. The basic operators of set theory are: intersection
(A ∩ B), union (A ∪ B), subtraction (A − B), and complement (Ac).

3 Fuzzy Set Theory

Fuzzy set, which was proposed by Zadeh as an extension of the classical notion
of set [20], whose elements have degrees of membership. In classical set theory,
the membership of elements in a set is assessed in binary terms according to a
bivalent condition — an element either belongs or does not belong to the set,
i.e., the membership function of elements in the set is one or zero. By contrast,
fuzzy set theory permits the gradual assessment of the membership of elements
in a set. The membership function is valued in the real unit interval [0, 1]. The
membership of an element x belonging to a fuzzy set A is defined as μA(x).
Quite typically, fuzzy set operators of intersection, union, and complement are
defined as μA∩B(x) = min{μA(x), μB(x)}, μA∪B(x) = max{μA(x), μB(x)}, and
μAc(x) = 1 − μA(x), respectively.

3.1 Type-2 Fuzzy Set

In 1975, Zadeh proposed a type-2 fuzzy set [21]. In 1999, Mendel argued that
“words mean different things to different people”, and claimed that we need
type-2 fuzzy set to handle “ambiguity” in natural language [11]. Type-2 fuzzy
set is a fuzzy set whose membership grades themselves is fuzzy set.

Definition 1 [11]. A type-2 fuzzy set, denoted Ã, is characterized by a type-
2 membership μÃ(x, u), where for each x ∈ U and u ∈ Jx ⊆ [0, 1] there is 0 ≤
μÃ(x, u) ≤ 1. Ã takes a form of {((x, u), μÃ(x, u))} or

∫

x∈X

∫

u∈Jx
μÃ(x, u)/(x, u),

where
∫∫

denotes the union over all admissible x and u.

Let Ã =
∫

x∈X

∫

u∈Jx
μÃ(x, u)/(x, u), B̃ =

∫

x∈X

∫

w∈Jx
μB̃(x, w)/(x, w) be two

type-2 fuzzy sets on U , where u, w ∈ Jx and μÃ(x, u), μB̃(x, w) ∈ [0, 1]. The
operations of union, intersection, and complement are defined as μÃ∪B̃(x) =
∫

u

∫

w

µÃ(x,u)∗µB̃(x,u)

u∨w , μÃ∩B̃(x) =
∫

u

∫

w

µÃ(x,u)∗µB̃(x,u)

u∧w , and μÃc(x) =
∫

u

µÃ(x,u)

1−u ,
respectively, where “∗” denotes a t−norm.

3.2 Interval-Valued Fuzzy Set

The interval-valued fuzzy set, which was proposed by Zadeh, is defined by an
interval-valued membership function.

Definition 2 [21]. Let U be a universe. Define a map A : U → Int([0, 1]), where
Int([0, 1]) is the set of closed intervals in [0, 1]. Then, A is called an interval-
valued fuzzy set on U and the membership function of A can be denoted by
A(x) = [A−(x), A+(x)].
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Operations take form of A ∪ B(x) = [sup(A−(x), B−(x)), sup(A+(x), B+(x))],
A ∩ B(x) = [inf(A−(x), B−(x)), inf(A+(x), B+(x))], and Ac = [1 − A+(x), 1 −
A−(x)], where A− = inf(A), A+ = sup(A) for any A ⊂ [0, 1]. Interval-valued
fuzzy set is sometimes called grey set proposed by Deng [6].

Definition 3 [18]. Let G be a grey set of U defined by two mappings of the
upper membership function μ̄G(x) and the lower membership function μ

¯G
(x) as

follows: μ̄G(x) : U → [0, 1]; μ
¯G

(x) : U → [0, 1], where μ
¯G

(x) ≤ μ̄G(x), x ∈ U .
When μ

¯G
(x) = μ̄G(x), the grey set G becomes a fuzzy set.

3.3 Intuitionistic Fuzzy Set

In fuzzy set theory, the membership of an element to a fuzzy set is a single value
between zero and one. But in real life, it may not always be certain that the
degree of non-membership of an element to a fuzzy set is just equal to 1 minus
the degree of membership, i.e., there may be some hesitation degree. So, as a
generalization of fuzzy set, the concept of intuitionistic fuzzy set was introduced
by Atanassov [1]. Bustince and Burillo [3] showed that vague set defined by Gau
and Buehrer [8] is equivalent to intuitionistic fuzzy set.

Definition 4 [1]. A = {〈x, μA(x), νA(x)〉|x ∈ U} is called an intuitionistic
fuzzy set, where μA : U → [0, 1] and νA : U → [0, 1] are such that 0 ≤ μA+νA ≤
1, and μA, νA ∈ [0, 1] denote degrees of membership and non-membership of x ∈
A, respectively. For each intuitionistic fuzzy set A in U , “hesitation margin”(or
“intuitionistic fuzzy index”) of x ∈ A is given by πA(x) = 1 − (μA(x) + νA(x))
which expresses a hesitation degree of whether x belongs to A or not.

Operations take form of A ∪ B = {〈x, max(μA(x), μB(x) ), min(νA(x), νB(x))〉
|x ∈ U}, A ∩ B = {〈x, min(μA(x), μB(x) ), max(νA(x), νB(x))〉|x ∈ U} and
Ac = {〈x, νA(x), μA(x)〉|x ∈ U}.

There are plenty of theories treating imprecision and uncertainty. Some of
them are extensions of fuzzy set theory, such as type-2 fuzzy set, interval-valued
fuzzy set, intuitionistic fuzzy set, etc., while the others try to handle imprecision
and uncertainty in a different way. Kerre [12] gave a summary of the links be-
tween fuzzy sets and other mathematical models such as flou set, two-fold fuzzy
set and L−fuzzy set [9]. Deschrijver [7] proved:

1. There exists an isomorphism between L−intuitionistic fuzzy set [2] and
L−fuzzy set. If L is the interval [0, 1] provided with the usual ordering,
an L−intuitionistic fuzzy set is an intuitionistic fuzzy set;

2. There exists an isomorphism between interval-valued intuitionistic fuzzy set
and L−fuzzy set for some specific lattice;

3. Intuitionistic fuzzy set can be embedded in interval-valued intuitionistic
fuzzy set, so interval-valued intuitionistic fuzzy set theory extends intuition-
istic fuzzy set theory;

4. There exists an isomorphism between interval-valued fuzzy set and intuition-
istic fuzzy set, so interval-valued fuzzy set theory is equivalent to intuition-
istic fuzzy set theory.
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4 Rough Set Theory

Although fuzzy set can express the phenomenon that the elements in the bound-
ary region belong to the set partially, it can not solve the “vague” problems that
there are some elements which can not be classified into either a subset or its
complement. For example: no mathematical formula to calculate the number of
vague elements; no formal method to calculate the membership of vague ele-
ments. Rough set, which was proposed by Pawlak in 1982 [15], uses two certain
sets, that is the lower approximation set and the upper approximation set, to
define the boundary region of an uncertain set based on an equivalence relation
(indiscernibility relation). The “vagueness degree” and the number of the vague
elements can be calculated by the boundary region of a rough set.

The information of most natural phenomenon has the following characteris-
tics: incomplete, inaccurate, vague or fuzzy. Classical set theory and mathemat-
ical logic can not express and deal with uncertainty problems successfully. The
rough set theory is designed for expressing and processing vague information.
The main advantage of rough set theory in data analysis is that it does not need
any preliminary or additional information about data.

Rough set theory deals with uncertain problems using precise boundary lines
to express the uncertainty. For an indiscernibility relation R and a set X , it
operates with R−lower approximation of X , R−upper approximation of X , and
R−boundary region of X , which are defined as RX = {x ∈ U |[x]R ⊆ X},
RX = {x ∈ U |[x]R ∩ X �= ∅}, and RNR (X) = RX − RX , respectively.

If the boundary region of a set is empty, it means that the set is crisp, otherwise
the set is rough (inexact). Nonempty boundary region means that our knowledge
about the set is not sufficient to define it precisely.

The lower approximation of X contains all objects of U that can be classified
into the class of X according to knowledge R. The upper approximation of X
is the set of objects that can be and may be classified into the class of X . The
boundary region of X is the set of objects that can possibly, but not certainly,
be classified into class of X . Basic properties of rough set are as follows [15]:

1. R(X ∪ Y ) = R(X) ∪ R(Y ), R(X ∪ Y ) ⊇ R(X) ∪ R(Y );
2. R(X ∩ Y ) ⊆ R(X) ∩ R(Y ), R(X ∩ Y ) = R(X) ∩ R(Y );
3. R(X − Y ) ⊆ R(X) − R(X), R(X − Y ) = R(X) − R(Y );
4. ∼ R(X) = R(∼ X), ∼ R(X) = R(∼ X).

5 The Relationships of Fuzzy Set and Rough Set

Both fuzzy set and rough set are generalizations of the classical set theory for
modeling vagueness and uncertainty. A fundamental question concerning both
theories is their connections and differences [16]. It is generally accepted that
they are related but distinct and complementary theories [5]. The two theories
model different types of uncertainty:

1. Rough set theory takes into consideration the indiscernibility between
objects. The indiscernibility is typically characterized by an equivalence
relation. Rough set is the result of approximating crisp sets using equivalence
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classes. The fuzzy set theory deals with the ill-definition of the boundary of
a class through a continuous generalization of set characteristic functions.
The indiscernibility between objects is not used in fuzzy set theory.

2. Rough set deals with uncertain problems using a certain method, while fuzzy
set uses an uncertain method.

3. Fuzzy membership function relies on experts’ prior knowledge. Rough set
theory doesn’t. For uncertainty of boundary regions, fuzzy set theory uses
membership to express it, while rough set theory uses precise boundary lines
to express it. Hence, fuzzy set theory and rough set theory could complement
each other’s advantages in dealing with uncertainties.

6 Cloud Model

Languages and words are powerful tools for human thinking, and the use of
them is the fundamental difference between human intelligence and the other
creatures’ intelligence. We have to establish the relationship between the human
brains and machines, which is performed by formalization. To describe uncer-
tain knowledge by concepts is more natural and more generalized than to do it
by mathematics. Li proposed a cloud model based on the traditional fuzzy set
theory and probability statistics, which can realize the uncertain transformation
between qualitative concepts and quantitative values.

Definition 5 [13]. Let U be the universe of discourse, C be a qualitative concept
related to U . The membership μ of x to C is a random number with a stable
tendency: μ : U → [0, 1], ∀x ∈ U, x → μ(x), then the distribution of x on U is
defined as a cloud, and every x is defined as a cloud drop. Qualitative concept
is identified by three digital characteristics: Ex (Expected value), En (Entropy)
and He (Hyper entropy).

Ex is the expectation of cloud drops’ distribution in the universe of discourse,
which means the most typical sample in the quantitative space of the concept.
En is the uncertainty measurement of qualitative concept, decided by the ran-
domness and the fuzziness of the concept. En reflects the numerical range which
can be accepted by this concept in the universe of discourse, and embodies the
uncertain margin of the qualitative concept. He is a measurement of entropy’s
uncertainty. It reflects the stability of the drops. The special numerical charac-
teristic of cloud lies in using three values to sketch the whole cloud constituted
by thousands of cloud drops, and it integrates the fuzziness and randomness of
language value represented by quality method.

In practice, the normal cloud model is the most important kind of cloud mod-
els. It is based on normal distribution, and was proved universally to represent
linguistic terms in various branches of natural and social science.

7 Set Pair Analysis

The set pair analysis theory, proposed by Zhao [22], is a novel uncertainty theory
that is different from traditional probability theory and fuzzy set theory. Set pair
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is a pair of two related sets and set pair analysis is a method to process many
kinds of uncertainties. The two sets have three relations: identical, different and
contrary, and the connecting degree is an integrated description of them.

Definition 6 [22]. Assuming H = (A, B) is a set pair of two sets A and B. For
some application, H has total N attributes and S of them are mutual attributes
of A and B, and P of them are contrary attributes, residual F = N − S − P
attributes are neither mutual nor opposite, then the connection degree of H is
defined as: μ = S

N + F
N i + P

N j, where S/N is identical degree, F/N is different
degree, and P/N is contrary degree. Usually, we use a, b and c denote them,
respectively, and a + b + c = 1.

8 Interval Analysis

Moore proposed an interval analysis theory, the purpose of which is to process
error analysis automatically [14]. Interval analysis implements the storing and
computing of data using interval, and the computing results ensure including all
the possible true values.

Definition 7 [14]. A continuous subset X = [x
¯
, x̄] on a real number domain R

is called a real interval, and the upper and lower endpoints of an interval are
represented by sup(X) and inf(X), respectively.

Let X = [x
¯
, x̄], Y = [y

¯
, ȳ] be real intervals. The set of operations {+,−, ∗,÷}

is provided as follows [14]: X + Y = [x
¯

+ y
¯
, x̄ + ȳ], X − Y = [x

¯
− ȳ, x̄ − y

¯
],

X ∗ Y = [min{x
¯
y
¯
, x
¯
ȳ, x̄y

¯
, x̄ȳ}, max{x

¯
y
¯
, x
¯
ȳ, x̄y

¯
, x̄ȳ}], and X ÷ Y = X ∗ 1

Y , where
1
Y = { 1

y |y ∈ Y } if 0 /∈ Y .
Interval methods can effectively define the function scope and provide strict

operation results in mathematical meaning, which enable it appropriate to solve
the problems of certain nonlinear equations and global optimization [10]. In
addition, uncertainty of data can be expressed by interval. It is suitable, e.g., for
solving nonlinear problems of parameter uncertainty in auto control [23].

9 Extension Set

The classical set and the fuzzy set mainly describe the “static” things. For the
description of transformation of object A with character A1 to object B with
character B1, Wen proposed the extension set to solve the qualitative description
for “yes (true)” and “no (false)” to quantitative description and also to the
variation procedures of “from yes to no” and “from no to yes” in 1983 [4]. It
provides a suitable mathematical tool for solving the contradiction problems.

Definition 8 [19]. Let U be a domain and k be a reflection from U to the real
domain R. Denote by Tu, Tk, and TU the transformation of element, transfor-
mation of correlation function, and transformation of domain, respectively. For
T ∈ {TU , Tk, Tu}, Ã(T ) = {(u, y, y′)|u ∈ U, y = k(u) ∈ R, y′ = Tkk(Tuu)} is
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called an extension set on U about T . y = k(u) and y′ = Tkk(Tuu) are called
the correlation function and extension function of Ã(T ), respectively.

Let Ã1(T1), Ã2(T2) be extension sets for Ti ∈ {T i
U , T i

k, T i
u} (i = 1, 2). Denote “or”

and “and” as T1 ∨ T2 and T1 ∧ T2, respectively. We can consider the following
operations [17]:

1. Ã1(T1) ∪ Ã2(T2) = {(u, y, y′)|u ∈ U, y = k(u), y′ = Tkk(Tuu)}, where T =
T1 ∨ T2 and k(u) = k1(u) ∨ k2(u);

2. Ã1(T1) ∩ Ã2(T2) = {(u, y, y′)|u ∈ U, y = k(u), y′ = Tkk(Tuu)}, where T =
T1 ∧ T2, k(u) = k1(u) ∧ k2(u);

3. Ãc
1(T1) = {(u, y, y′)|u ∈ U, y = −y1, y

′ = −y′1}.

10 Future Directions and Topics of Rough Set Based
Uncertain Knowledge Expressing and Processing

Rough set itself and the integration of rough set and other methods, including
vague set, neural network, SVM, swarm intelligence, GA, expert system, etc.,
can deal with difficult problems like fault diagnosis, intelligent decision-making,
image processing, huge data processing, intelligent control, and so on. At the
same time, there are also new research directions to be studied in the future:

1. The extension of equivalence relation: order relation, tolerance relation, sim-
ilarity relation, etc.;

2. Granular computing based on rough set theory (Dynamic Granular Com-
puting);

3. The interactions among attributes (features): interactions among redundant
attributes might be meaningful for problem expressing and solving;

4. The generalization of rough set reduction: reduction leads to over fitting
(over training) in the training samples space;

5. Domain explanation of knowledge generated from reduction: The knowledge
generated from data does not correspond to the human’s formal knowledge;

6. Rough set characterize the ambiguity of decision information systems, but
the randomness is not studied. Extended rough set model through combing
rough set and cloud model?

7. 3DM (Domain-oriented Data-driven Data Mining): Knowledge generated
should be kept the same as existed in the data sets; Reduce the dependence
of prior domain knowledge in data mining processes;

8. Granular computing based on cloud model: granules (concepts) could be
extracted from data using the backward cloud generator automatically.
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Abstract. This paper is a follow up to “Belohlavek, Vychodil: What
is a fuzzy concept lattice?, Proc. CLA 2005, 34–45”, in which we pro-
vided a then up-to-date overview of various approaches to fuzzy concept
lattices and relationships among them. The main goal of the present pa-
per is different, namely to provide an overview of conceptual issues in
fuzzy concept lattices. Emphasized are the issues in which fuzzy concept
lattices differ from ordinary concept lattices. In a sense, this paper is
written for people familiar with ordinary concept lattices who would like
to learn about fuzzy concept lattices. Due to the page limit, the paper
is brief but we provide an extensive list of references with comments.

1 Why Fuzzy Concepts?

1.1 Concepts in Formal Concept Analysis

In formal concept analysis (FCA, [4,48,25]), the notion of concept is used in
accordance with the Port-Royal logic [1], as an entity that consists of its extent
(objects to which the concept applies) and its intent (attributes covered by the
concept). In FCA, extents and intents are determined by a relation I between
a set X of objects and a set Y of attributes; 〈X, Y, I〉 is called a formal context.
〈X, Y, I〉, which represents the input data table with binary attributes, induces
two concept-forming operators, denoted here ↑ and ↓, and a formal concept of
I is defined as a pair 〈A, B〉 of A ⊆ X (extent) and B ⊆ Y (intent) satisfying
A↑ = B and B↓ = A; here A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I} and
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. B(X, Y, I), the set of all formal
concepts of I, ordered by inclusion ⊆ of extents (or, by ⊇ of intents) is a complete
lattice, called the concept lattice of I.

1.2 Psychological Evidence

There exists a strong evidence, established in the 1970s in the psychology of
concepts, see e.g. [33,46], that human concepts have a graded structure in that
whether or not a concept applies to a given object is a matter of degree, rather
than a yes-or-no question, and that people are capable of working with the
degrees in a consistent way. This finding is intuitively quite appealing because
people say “this product is more or less good” or “to a certain degree, he is a
good athlete”, implying the graded structure of concepts.
� Supported by Grant No. 202/10/0262 of the Czech Science Foundation.
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1.3 Fuzzy Logic as a Natural Choice

In his classic paper [49], Zadeh called the concepts with a graded structure fuzzy
concepts and argued that these concepts are a rule rather than an exception
when it comes to how people communicate knowledge. Moreover, he argued that
to model such concepts mathematically is important for the tasks of control,
decision making, pattern recognition, and the like. Zadeh proposed the notion
of a fuzzy set that gave birth to the field of fuzzy logic: A fuzzy set in a universe
U is a mapping A : U → L where L is [0, 1] or some other partially ordered set
of truth degrees. A(u) ∈ is interpreted as the degree to which u belongs to A
(to which the fuzzy set A applies to u). Fuzzy sets and fuzzy logic are nowadays
well established theoretically as well as in applications, see e.g. [31,32,35].

2 The Basic Approach

In its ordinary setting [25], FCA is designed to model “crisp” (term used in fuzzy
logic; other terms: yes-or-no, bivalent) concepts, i.e. concepts that either apply
or do not apply to any given object. To extend (generalize) FCA for graded
concepts, fuzzy logic seems an obvious choice. The first paper in this line is
[22] by Burusco and Fuentes-Gonzáles, followed by contributions by Pollandt
(PhD thesis published as [45]) and Belohlavek (the first published note is [5]).
The approach by Pollandt and Belohlavek is particularly important because it
uses residuated structures of truth degrees and can be regarded as the basic,
mainstream approach till now (even though various generalizations and variants
exist). Further early contributions include [21,36]. Since then, many other papers
appeared on FCA in a fuzzy setting. Some are listed in the references but we do
not intend to provide a representative list in this paper. Rather, as mentioned
above, we focus on differences from the ordinary case.

2.1 Basic Notions

We now present the basic approach. In fuzzy logic, one uses a set of truth
degrees equipped with (truth functions of) logical connectives. The basic ap-
proach uses so-called complete residuated lattices, which are certain algebras
L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 (introduced in [47] and brought in fuzzy logic by [30],
for further information see [10,31,32,34]). Elements a ∈ L are interpreted as
degrees of truth [32] (0 stands for full falsity and 1 stands for full truth). ⊗
(multiplication) and → (residuum) serve as the truth functions of “fuzzy con-
junction” and “fuzzy implication”. A common choice of L is L = [0, 1] or
L = {0, 1

n , . . . , n−1
n , 1} equipped with a

∨

-preserving ⊗ and its residuum →. Two
examples are: �Lukasiewicz (a ⊗ b = max(0, a + b − 1), a → b = min(1, 1 − a + b))
and Gödel (a ⊗ b = min(a, b), a → b = 1 if a ≤ b, a → b = b if a > b). Below, L
refers to some complete residuated lattice, LU denotes the set of all fuzzy sets
in universe U , i.e. set of all mappings from U to L.

For a given L, a formal fuzzy context (formal L-context) is a triplet 〈X, Y, I〉
where I is a fuzzy relation between ordinary sets X and Y (of objects and
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attributes), i.e. I : X × Y → L and I(x, y) ∈ L is interpreted as the degree
to which object x ∈ X has attribute y ∈ Y . This is the basic difference from
the ordinary case—one starts with a fuzzy (graded) relationship rather than
a yes-or-no relationship, and the fuzziness then naturally enters all subsequent
definitions. Typical examples of formal fuzzy contexts are data obtained from
questionnaires (objects x are respondents, attributes y are products/services,
I(x, y) is the degree to which x considers y good) [20]. 〈X, Y, I〉 induces the
concept forming operators ↑ : LX → LY (assigns fuzzy sets of attributes to
fuzzy sets of objects) and ↓ : LY → LX (same, but in the other direction) by:

A↑(y) =
∧

x∈X(A(x) → I(x, y)) and B↓(x) =
∧

y∈Y (B(y) → I(x, y)).
A formal fuzzy concept of I is a pair 〈A, B〉 consisting of fuzzy sets A ∈ LX and
B ∈ LY satisfying A↑ = B and B↓ = A. Due to the basic rules of predicate
fuzzy logic, A↑(y) is the truth degree of “y is shared by all objects from A”
and B↓(x) is the truth degree of “x has all attributes from B”. An important
consequence is that the verbal description, i.e. the meaning, of the notion of
a formal concept in a fuzzy setting is essentially the same as in the ordinary
case. The second consequence is that for L = {0, 1} (the residuated lattice is
then the two-element Boolean algebra of classical logic), formal fuzzy contexts
and formal fuzzy concepts become the ordinary formal contexts and formal con-
cepts (when identifying sets with their characteristic functions). Therefore, the
approach under discussion generalizes the notions of ordinary FCA. Put

B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A}
(set of all formal fuzzy concepts of I) and define on this set a binary relation ≤ by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B1 ⊇ B2).

Here,

A1 ⊆ A2 means that A1(x) ≤ A2(x) for all x ∈ X ; (*)

same for B1 ⊇ B2. The partial order ≤ makes B(X, Y, I) a complete lattice,
called the fuzzy concept lattice of I. There exists a basic theorem for fuzzy
concept lattices (with two different proofs [8,10,45], one is discussed in Sec. 3.1),
see also Sec. 3.3.

2.2 Related Approaches

Let us mention the following related approaches. Independently, [16,21,36] stud-
ied essentially the same notion, called crisply generated or one-sided fuzzy con-
cepts, which are fuzzy concepts with crisp extent (alternatively, crisp intent); see
[44] for a relationship to pattern structures. [16] shows that these are just partic-
ular fuzzy concepts and studies their structure within B(X, Y, I). Second, several
approaches exist that generalize the basic approach in that they use different,
more general residuated structures, see e.g. [12,17,29,37,38,39,42] (in some cases,
the motivation is purely mathematical, in the others, it comes from some need,
e.g. to reduce the number of formal concepts in a parameterized way [17]).
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3 Mathematical Structures Behind

3.1 Closure Operators, Systems, and Galois Connections

For a fuzzy context 〈X, Y, I〉, one may consider the complete lattices 〈LX , ⊆
〉 and 〈LY , ⊆〉 where ⊆ is the inclusion of fuzzy sets given by (*). As in the
ordinary case, 〈↑, ↓〉 forms a Galois connection between 〈LX , ⊆〉 and 〈LY , ⊆〉.
However, 〈↑, ↓〉 satisfies more: It forms a fuzzy Galois connection [6] in that it is
a Galois connection that is antitone w.r.t. graded inclusion. That is, it satisfies
(i) S(A1, A2) ≤ S(A↑2, A

↑
1) and (ii) A ⊆ A↑↓, plus the dual conditions for ↓.

S(A1, A2) =
∧

x∈X(A1(x) → A2(x)) is the degree of inclusion of A1 in A2 (degree
to which every element of A1 is also an element of A2). One has S(A1, A2) = 1
iff A1 ⊆ A2. S is therefore a graded generalization of the bivalent inclusion ⊆
of fuzzy sets and (i) is stronger than saying that (i’) A1 ⊆ A2 implies A↑2 ⊆ A↑1.
Now, with graded inclusion in the definition of a fuzzy Galois connection, things
are as in the ordinary case [25]. For example, there is a one-to-one correspondence
between fuzzy Galois connections and formal fuzzy contexts [6] (this is not true
if one uses (i’)).

Similar results hold true for closure operators involved in FCA: ↑↓ forms a
closure operator in 〈LX , ⊆〉 that is even a fuzzy closure operator [9], i.e. satisfies
(i) above; S(A1, A2) ≤ S(A↑↓1 , A↑↓2 ) (which is stronger than A1 ⊆ A2 implying
A↑↓1 ⊆ A↑↓2 ); and A↑↓ = (A↑↓)↑↓. In the ordinary case, the sets of fixpoints of
closure operators are just systems closed under arbitrary intersections, called
closure systems. The systems of fixpoints of fuzzy closure operators, called fuzzy
closure systems, are closed under intersection but also under so-called shifts.
For a ∈ L, the a-shift of a fuzzy set A ∈ LX is a fuzzy set a → A defined
by (a → A)(x) = a → A(x). Closedness under intersections is weaker than
closedness under intersections and shifts.

3.2 Reduction to the Ordinary Case

Two different ways of representing fuzzy Galois connections by ordinary Galois
connections are known. First, a fuzzy Galois connection may be represented by a
particular system of ordinary Galois connections indexed by truth values from L
[6]. Another type of representation is presented in [8]: A fuzzy Galois connection
induced by a fuzzy context 〈X, Y, I〉 may be represented by the Galois connection
of the ordinary context 〈X × L, Y × L, I×〉 where

〈〈x, a〉, 〈y, b〉〉 ∈ I× iff a ⊗ b ≤ I(x, y).
Importantly, the fuzzy concept lattice B(X, Y, I) is isomorphic to the ordinary
concept lattice B(X × L, Y × L, I×). This observation was utilized in [45] for
proving indirectly the basic theorem for fuzzy concept lattices (for a direct
proof, see e.g. [10]). Independently and within the context of Galois connections,
these results appeared in [8]. 〈X ×L, Y ×L, I×〉 results by what may be regarded
as a new type of scaling (double scaling), which works differently from the well-
known ordinal scaling [25] (a fuzzy context may be ordinally scaled to an ordinary
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context, but the resulting ordinary concept lattice is then different from the fuzzy
concept lattice; namely, it is isomorphic to the lattice of all crisply generated
fuzzy concepts [16]).

3.3 Fuzzy Concept Lattice as a Lattice?

As was mentioned above, a fuzzy concept lattice is a complete lattice whose
structure is described by a basic theorem for fuzzy concept lattices. Looking
at things this way may be regarded not satisfactory from the mathematical
viewpoint. For example, the well-known result saying that for a complete lattice
〈V, ≤〉, the ordinary concept lattice B(V, V, ≤) is isomorphic to 〈V, ≤〉 and more
generally, that for a partially ordered set 〈V, ≤〉, B(V, V, ≤) is essentially the
Dedekind-MacNeille completion, fails in a fuzzy setting if a fuzzy concept lattice
is regarded as a lattice. In order for things to work as in the ordinary case, a
many-valued (graded, fuzzy) partial order needs to be considered on the fuzzy
concept lattice. This is studied in [10,11], [40] contains additional results; see
also [50] (there exist further related papers).

4 Some Further Issues Different from Ordinary Case

4.1 Formal Concepts as Maximal Rectangles

As in the ordinary case, 〈A, B〉 is a formal fuzzy concept of I iff the Cartesian
product of A and B (based on ⊗) is a maximal Cartesian subrelation of I,
i.e. a “maximal rectangle of I” [6]. Different from the ordinary case is that the
correspondence between concepts of I and maximal rectangles of I is no longer
bijective: There may exist two (or more) different fuzzy concepts for which the
corresponding rectangle is the same.

4.2 For Infinite Set of Truth Degrees, Fuzzy Concept Lattice over
Finite Sets of Objects and Attributes May be Infinite

This is because in such a case the set LX × LY of possible fixpoints is infinite
and it may be indeed the case that the set of actual fixpoints is infinite (for
instance for �Lukasiewics operations, but not for Gödel). If only a part of the
concept lattice is used, this may not be a problem. If the whole concept lattice is
to be used, a pragmatic approach is to use a finite set L of truth degrees (using
small L is reasonable also due to the well-known 7 ± 2 phenomenon [43]).

4.3 Reduction of a Fuzzy Context

In the ordinary case, the reduction of a finite context consists in clarification (so
that there are no identical rows and columns in the input data table) and then
removing objects and attributes (rows and columns) for which the object- and
attribute-concepts are

∨

-reducible and
∧

-reducible. That is, we delete objects
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whose rows are intersections of other rows; same for attributes. This is because we
want to obtain the smallest set of rows that generates the same closure system
as the original set of rows and because the generating operation for ordinary
closure systems is the intersection. As was mentioned Sec. 3.1, in a fuzzy setting
we work with fuzzy closure systems and in this case, there are two generating
operations: intersection and a-shifts. Looking for the smallest generating set of
the fuzzy closure system of the original rows may be regarded as computing a
base in a certain space over L (analogous to computing a base of a linear subspace
generated by a set of vectors) [13]. Note that [27], which studies reduction of
many-valued contexts, deals with a different problem: in the construction of the
concept lattice of [27], only intersection plays a role.

4.4 Antitone vs. Isotone Galois Connections Induced by I

In the ordinary case, an anotitone Galois connection 〈∩, ∪〉 is induced by 〈X, Y, I〉
by A∩ = {y ∈ Y | for some x ∈ A : 〈x, y〉 ∈ I} and B∪ = {x ∈ X | for each y ∈
Y : 〈x, y〉 ∈ I implies y ∈ B}. It is well-known that due to the law of double
negation, 〈∩, ∪〉 and 〈↑, ↓〉 are mutually reducible [26] (essentially, fixpoints of
〈↑, ↓〉 induced by I may be identified with those of 〈∩, ∪〉 induced by the com-
plement of I). Such reduction fails in a fuzzy setting (because in fuzzy logic,
the law of double negation does not hold). However, a unified approach leaving
both 〈↑, ↓〉 and 〈∩, ∪〉 particular cases is still possible (see [12,29] for two different
approaches).

5 Further Issues

We conclude by brief comments on three other issues.

Algorithms. Due to the reduction described in Sec. 3.2, a fuzzy concept lattice
may be computed using existing algorithms for ordinary concept lattice. As is
shown in [14], a direct approach is considerably more efficient. The investigation
of algorithms for fuzzy concept lattices is, however, in its beginning.

Attribute Implications. This area is completely skipped in this paper (see [19]
for an overview of some results). This is an interesting area with several differ-
ences from the ordinary case. Up to now, the results are presented in various
proceedings of conferences on fuzzy logic.

Terminology. The terminology in the literature seems sometimes strange (this
is subjective, of course). In our view, “fuzzy data”, “fuzzy FCA”, or “fuzzy
formal concept” are not nice and perhaps make not much sense. Although we
understand that the first two may be considered useful shorthands, the analysis
is not fuzzy as suggested by “fuzzy FCA”. More reasonable are “data with fuzzy
attributes”, “FCA of data with fuzzy attributes”, an “formal fuzzy concept”.
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19. Bělohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Missaoui,
R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 45–60.
Springer, Heidelberg (2006)

20. Belohlavek, R., Vychodil, V.: Factor Analysis of Incidence Data via Novel Decom-
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Combining the results of a number of individually trained classification systems
to obtain a more accurate classifier is a widely used technique in pattern recog-
nition. In [1], we introduced a Rough Set Meta classifier (RSM) to classify web
pages. It tries to solve the problems of representing less redundant ensemble
of classifiers and making reasonable decision from the predictions of ensemble
classifiers, using rough set attribute reduction and rule generation methods on
a granular meta data generated by base classifiers from input data.

The proposed method consists of two parts. In the first part, the outputs of
individually trained classifiers are considered for constructing a decision table,
with each instance corresponding to a single row. Predictions made by individual
classifiers are used as condition attribute values and actual class – as decision
attribute value. In the second part, rough set attribute reduction and rule gen-
eration processes are used on that decision table to construct a meta classifier.
The combination of classifiers corresponding to the features of minimal reduct is
taken to form classifier ensemble for RSM classifier system. Going further, from
the obtained minimal reduct we compute decision rules by finding mapping be-
tween decision attribute and condition attributes. Decision rules obtained by
rough set techniques are then applied to perform classification task.

It is shown that (1) the performance of the meta classifier is better than the
performance of every constituent classifier, and (2) the meta classifier is optimal
with respect to a quality measure that we proposed. Some other theoretical re-
sults on RSM and comparison with Bayes decision rule are also described. There
are several ensemble classifiers available in literature like Adaboost, Bagging,
Stacking. Experimental studies show that RSM improves accuracy of classifi-
cation uniformly over some benchmark corpora and beats other ensemble ap-
proaches in accuracy by a decisive margin, thus demonstrating the theoretical
results. Apart from this, it reduces the CPU load compared to other ensemble
techniques by removing redundant classifiers from the combination.
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Knowledge Discovery in Databases (KDD) is a process involving many stages.
One of them is usually Data Mining, i.e., the sequence of operations that leads
to creation (discovery) of new, interesting and non-trivial patterns from data.
Under closer examination one can identify several interconnected smaller steps
that together make it possible to go from the original low-level data set(s) to
high-level representation and visualisation of knowledge contained in it. That
includes, among others, operations on data such as:

– Data preparation, in particular: feature selection, reduction, and construc-
tion.

– Data selection, in particular: data sampling, data reduction and decomposi-
tion of large data sets.

– Data filtering and cleaning, in particular: discretisation, quantisation,
dealing with missing/distorted data points.

– Knowledge model construction and management, in particular: decision
and/or association rule discovery, template discovery, rule set transforma-
tions.

While attempting to deal with some or all tasks listed above one may consider
using various existing methods. In practice, one will resort to those paradigms
and solutions, which are on one hand relevant for the given set of data and
comprehensive but, on the other hand, have readily available and easy to use
implementations. Quite frequently the choice of method for data analysis is de-
termined mostly by the existence and ease-of-use of the software toolbox that
has been prepared for the purpose. In this tutorial we would like to demonstrate
that among various choices for methodology and tools one may want to consider
those originating in the theory of Rough Sets.

Theory of Rough Sets (RS) has been around for nearly three decades
(cf. [1,2,3]). During that time it has transformed from being purely the theory
� The author is supported by the grant N N516 077837 from the Ministry of Sci-

ence and Higher Education of the Republic of Poland and by the National Cen-
tre for Research and Development (NCBiR) under Grant No. SP/I/1/77065/10 by
the strategic scientific research and experimental development program: “Interdisci-
plinary System for Interactive Scientific and Scientific-Technical Information”.
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of reasoning about data [1] into comprehensive, multi-faceted field of research
and practice (cf. [2,4]). Along the way it has absorbed and transformed several
ideas from related fields (cf. [5,6]) and produced several methods and algorithms
(cf. [7,8,9]). These algorithmic methods support various steps in KDD pro-
cess and have proven to be novel, practical and useful on some types of data.
More importantly, there exist several software libraries and toolboxes that make
it possible to use rough set approach with minimal programming effort (see
[10,11,12,13]).

In this short tutorial our goal will be to present a hands-on guide for using
methods and algorithms that originated in the area of Rough Sets for the pur-
poses of KDD. We will try to answer the common issue of choosing the right
method for a given set of data and convince the audience that in some situa-
tions the algorithms originating in RS theory are best suited for the job. We
will demonstrate how existing software tools may come handy at various steps
of KDD process.

The tutorial is intended to be mainly a practical guide. Therefore, only few
most fundamental and important notions from RS theory will be introduced in
detail. We will concentrate on methods and algorithms, paying only marginal
attention to (existing) theoretical results that justify their correctness and qual-
ity. Some simplification will be made in order to fit as much material as possible
into the limited time frame. Hence, it is also assumed that the audience is some-
what familiar with general concepts in KDD, Data Mining and Machine Learning
such as:

– tabular data representation, attribute-value space, sampling;
– learning from data, error rates, quality measures and evaluation models;
– typical tasks for Data Mining.

As a conclusion we will try to briefly point out possible new trends in both
basic and applied research on using RS methods in KDD. We will also explain
how the ideas originating in RS theory may influence areas other than KDD, for
example data warehousing (cf. [14]).
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Abstract. It is estimated that every 20 months or so the amount of in-
formation in the world doubles. In the same way, tools that mine knowl-
edge from data must develop to combat this growth. Fuzzy-rough set
theory provides a framework for developing such applications in a way
that combines the best properties of fuzzy sets and rough sets, in order
to handle uncertainty. In this tutorial we will cover the mathematical
groundwork required for an understanding of the data mining methods,
before looking at some of the key developments in the area, including
feature selection and classifier learning.

1 Introduction

Lately there has been great interest in developing methodologies which are
capable of dealing with imprecision and uncertainty, and the resounding amount
of research currently being done in the areas related to fuzzy [18] and rough sets
[14] is representative of this. The success of rough set theory is due in part to
three aspects of the theory. Firstly, only the facts hidden in data are analysed.
Secondly, no additional information about the data is required for data analysis
such as thresholds or expert knowledge on a particular domain. Thirdly, it finds
a minimal knowledge representation for data. As rough set theory handles only
one type of imperfection found in data, it is complementary to other concepts
for the purpose, such as fuzzy set theory. The two fields may be considered anal-
ogous in the sense that both can tolerate inconsistency and uncertainty - the
difference being the type of uncertainty and their approach to it; fuzzy sets are
concerned with vagueness, rough sets are concerned with indiscernibility. Many
relationships have been established [4,15] and more so, most of the recent studies
have concluded at this complementary nature of the two methodologies, espe-
cially in the context of granular computing. Therefore, it is desirable to extend
and hybridize the underlying concepts to deal with additional aspects of data
imperfection. Such developments offer a high degree of flexibility and provide
robust solutions and advanced tools for data analysis.

2 Fuzzy-Rough Feature Selection

Feature selection addresses the problem of selecting those input features that
are most predictive of a given outcome; a problem encountered in many areas
of computational intelligence. Unlike other dimensionality reduction methods,
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feature selectors preserve the original meaning of the features after reduction.
This has found application in tasks that involve datasets containing huge num-
bers of features (in the order of tens of thousands) which, for some learning
algorithms, might be impossible to process further. Recent examples include
text processing and web content classification [6].

There are often many features involved, and combinatorially large numbers
of feature combinations, to select from. Note that the number of feature subset
combinations with m features from a collection of N total features is N !/[m!(N−
m)!]. It might be expected that the inclusion of an increasing number of features
would increase the likelihood of including enough information to distinguish be-
tween classes. Unfortunately, this is not necessarily true if the size of the training
dataset does not also increase rapidly with each additional feature included. A
high-dimensional dataset increases the chances that a learning algorithm will
find spurious patterns that are not valid in general. More features may intro-
duce more measurement noise, and hence reduce performance (e.g. classification
accuracy). Most techniques employ some degree of reduction in order to cope
with large amounts of data, so an efficient and effective reduction method is
required.

Fuzzy-rough feature selection (FRFS) [3,6,8,17] provides a means by which
discrete or real-valued data (or a mixture of both) can be effectively reduced
without the need for user-supplied information. Additionally, this technique can
be applied to data with continuous or nominal decision attributes, and as such
can be applied to regression as well as classification datasets. Noise is an impor-
tant factor degrading the performance of reduction: a single misclassified object
prevents rough set analysis from making any conclusive statements about all
other objects it is related to. To reduce the impact of noise, the original rough
set approach has been adapted by using VPRS approximations (see e.g. [19]),
such that problematic elements are not taken into account as long as their relative
proportion remains below a certain threshold. Recently [1], a vaguely quantified
approach was proposed (VQRS) that goes one step further by relaxing this crisp
threshold into a smoother region of tolerance towards classification errors. The
approach has been integrated with FRFS approaches, providing a general model
that is robust and effective [2].

3 Fuzzy-Rough Nearest Neighbour Classification

The K-nearest neighbour (KNN) algorithm [5] is a well-known classification
technique that assigns a test object to the decision class most common among
its K nearest neighbours, i.e., the K training objects that are closest to the
test object. An extension of the KNN algorithm to fuzzy set theory (FNN) was
introduced in [12]. It allows partial membership of an object to different classes,
and also takes into account the relative importance (closeness) of each neigh-
bour w.r.t. the test instance. However, as Sarkar correctly argued in [16], the
FNN algorithm has problems dealing adequately with insufficient knowledge. In
particular, when every training pattern is far removed from the test object,
and hence there are no suitable neighbours, the algorithm is still forced to
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makeclear-cut predictions. This is because the predicted membership degrees
to the various decision classes always need to sum up to 1.

To address this problem, Sarkar [16] introduced a so-called fuzzy-rough owner-
ship function that, when plugged into the conventional FNN algorithm, produces
class confidence values that do not necessarily sum up to 1. However, this method
does not refer to the main ingredients of rough set theory, i.e., lower and upper
approximation. Fuzzy-rough nearest neighbours (FRNN) [11] is an alternative
approach, which uses a test object’s nearest neighbours to construct the lower
and upper approximation of each decision class, and then computes the member-
ship of the test object to these approximations. The method is very flexible, as
there are many options to define the fuzzy-rough approximations, including the
traditional implicator/t-norm based model [15], as well as the vaguely quantified
rough set model [1], which is more robust in the presence of noisy data.

4 Hybrid Fuzzy Rule Induction

Feature selection often precedes classification as a preprocessing step, simpli-
fying a decision system by selecting those conditional attributes that are most
pertinent to the decision, and eliminating those that are redundant and/or mis-
leading.

A common strategy in rough set theory is to induce rules by overlaying de-
cision reducts over the original (training) decision system and reading off the
values. In other words, by partitioning the universe via the features present in
a decision reduct, each resulting equivalence class forms a single rule. As the
partitioning is produced by a reduct, it is guaranteed that each equivalence class
is a subset of, or equal to, a decision concept, meaning that the attribute values
that produced this equivalence class are good predictors of the decision con-
cept. The use of a reduct also ensures that each object is covered by the set of
rules. A disadvantage of this approach is that the generated rules are often too
specific, as each rule antecedent always includes every feature appearing in the
final reduct. For this reason, the rule induction step can be directly integrated
into the feature selection process, generating rules on the fly [10]. In particu-
lar, the greedy hill-climbing algorithm used for subset search can be used such
that, at each step, fuzzy rules that maximally cover the training objects, with
a minimal number of attributes, are generated. For the purposes of combining
rule induction and feature selection, rules are constructed from fuzzy tolerance
classes (antecedents) and corresponding decision concepts (consequents).

5 Instance Selection

An additional hurdle faced by many of these techniques is the sheer volume
of data that must be processed and analysed. This increases the chances that
learning algorithms find spurious patterns that are not valid in general. Often,
the problem encountered is the prohibitively high number of training instances
present or conflicting information between them. In this case, instance selection
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is desired to make the volume of data manageable and to remove misleading
training instances in an effort to improve learned models from this data. Fuzzy-
rough instance selection (FRIS) approaches have been developed for this purpose
[7]. The main idea behind these approaches is to remove instances that cause
conflicts with other instances as determined by the fuzzy-rough positive region.
By removing these instances, the quality of training data can be improved and
classifier training time reduced.

6 Handling Missing Values

Central to traditional fuzzy-rough feature selection is the fuzzy tolerance re-
lation. From this, the fuzzy-rough lower approximations are constructed which
then form the fuzzy positive regions utilised in the degree of dependency measure.
Thus, the starting point for the process, type-1 fuzzy tolerance, is critical for its
success. It is recognised that type-1 approaches are unable to address particular
types of uncertainty due to their requirement of totally crisp membership func-
tions [13]. An interval-valued approach may therefore be able to better handle
this uncertainty and at the same time model the uncertainty inherent in missing
values. Currently, there is no way to handle such values in fuzzy-rough set theory.
Thus, the starting point for this is the interval-valued tolerance relation. If an
object contains a missing value for a particular feature, then the resulting degree
of similarity with other objects is unknown. In an interval-valued context, this
can be modeled by returning the unit interval when an attribute value is missing
for one or both objects. On this basis, fuzzy-rough data mining algorithms can
be constructed [9].
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Abstract. A method of possible equivalence classes has been developed
under information tables with missing values. To deal with imprecision
of rough approximations that comes from missing values, the concepts of
certainty and possibility are used. When an information table contains
missing values, two rough approximations, certain and possible ones, are
obtained. The actual rough approximation lies between the certain and
possible rough approximations. The method gives the same results as a
method of possible worlds. This justifies the method of possible equiva-
lence classes. Furthermore, the method is free from the restriction that
missing values may occur to only some specified attributes. Hence, we
can use the method of possible equivalence classes to obtain rough ap-
proximations between arbitrary sets of attributes having missing values.

Keywords: Rough sets, Incomplete information, Missing values, Possi-
ble equivalence classes, Lower and upper approximations.

1 Introduction

The framework of rough sets, proposed by Pawlak [20], is used in various fields
[26,27]. The framework is characterized by rough approximations, which consist
of lower and upper approximations, under using equivalence classes in infor-
mation tables containing only complete information. Even if the information
obtained from the real world does not contain any incomplete information, a de-
rived approximation is not unique; namely, two approximations, lower and upper
ones, are obtained. This comes from imprecision of knowledge that is obtained
from information tables with complete information. Also, real tables usually con-
tain incomplete information such as partial values, missing values, possibilistic
values, and so on [19]. Lots of studies have been made for information tables
with incomplete information [4,5,6,8,11,12,13,14,15,16,17,21,22,23,24,25].

The studies are broadly classified into two types. One is based on a method of
possible worlds, where equivalence classes are used [17,21,22,23]. Every missing
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value is replaced by some element of the domain and a set of possible tables is
created. Procedures using equivalence classes, which are established in dealing
with information tables containing only complete information, are applied to
each possible table. Then, the results from each table are aggregated.

The other method is based on observation that when an information table
contains incomplete information, we cannot obtain equivalence classes without
creating possible tables. Then, some other types of classes are used to derive
rough approximations, such as: tolerance classes [8], similarity classes [25], or
maximal consistent blocks [11]. Using a class that is not an equivalence class
is problematic, as rough approximations do not coincide with those from the
method of possible worlds [16], definability cannot be expressed, and mono-
tonicity of the accuracy of approximation may not hold [11].

Recently, an approach using possible equivalence classes without a need of
creating possible tables was proposed [12,13]. The approach assumes that an
object with missing values has only the possibility of being indiscernible with
other objects. It is called a method of possible equivalence classes [16]. In this
approach, rough approximations coincide with those from the method of possible
worlds. Also, monotonicity of the accuracy of approximation holds.

In this paper, we extend the method of possible equivalence classes by intro-
ducing the concept of certainty in addition to possibility. The paper is organized
as follows. In section 2, approaches based on rough sets are briefly addressed un-
der complete information. In section 3, the method of possible worlds is described
and a correctness criterion is shown for methods extended to deal with incom-
plete information. In section 4, we introduce the above-mentioned extension. In
section 5, conclusions are addressed.

2 Rough Sets Under Complete Information

A data set is represented as a table, called an information table, where each row
represents an object and each column does an attribute. The information table
is pair (U, AT ), where U is a non-empty finite set of objects called the universe
and AT is a non-empty finit set of attributes such that ∀a ∈ AT : U →
D(a) where set D(a) is the domain of attribute a. Binary relation IND(a) for
indiscernibility of objects on attribute a ∈ AT is IND(a) = {(o, o′) ∈ U × U |
a(o) = a(o′)}, where a(o) is the value for attribute a of object o. From the
relation, equivalence class Ea(o) containing object o is obtained: Ea(o) = {o′ |
(o, o′) ∈ IND(a)}. Finally, family Ea of equivalence classes on a is: Ea = {Ea(o) |
o ∈ O}. Equivalence class E ∈ Ea is characterized by value v that object o ∈ E
has on attribute a. This is expressed by Ea=v. Also, we can define the definability
for set O of discernible objects by using equivalence class Ei on a such that O
is a-definable if and only if ∃E1,···,El

∪i Ei = O. Using the family of equivalence
classes on a, lower approximation Apr

a
(O) and upper approximation Apra(O)

of set O of indiscernible objects are:

Apr
a
(O) = {E | E ∈ Ea, E ⊆ O}, Apra(O) = {E | E ∈ Ea, E ∩O 	= ∅}.
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Generally, an object is specified by values for attributes. Let Eb(O)1 be the
family of equivalence classes derived from O on attribute b. Lower approximation
Apr

a
(O/b) and upper approximation Apra(O/b) of set O of objects that are

specified by values for b are obtained on a:

Apr
a
(O/b) = {E | E ∈ Apr

a
(O′),O′ ∈ Eb(O)},

Apra(O/b) = {E | E ∈ Apra(O′),O′ ∈ Eb(O)}.
Equivalence classes E ∈ Apr

a
(O/b) and E ∈ Apra(O/b) are characterized by a

pair of values u and v that object o ∈ E has on attributes a and b, respectively.
This is expressed by Ea=u→b=v , which means that equivalence class Ea=u→b=v

supports rule a = u → b = v. Expressions in terms of a set of objects are:

apr
a
(O/b) = ∪E∈Apr

a
(O/b)E, apra(O/b) = ∪E∈Apra(O/b)E.

apr is used for the expressions by a set of objects whereas Apr by a family of
equivalence classes. Formulae on sets A and B of attributes are derived from
formulae on single attributes a and b:

IND(A) = ∩a∈AIND(a), EA = {∩a∈AEa | Ea ∈ Ea},
Apr

A
(O/B) = ∩b∈B{∩a∈AEa | Ea ∈ Apr

a
(O/b)},

AprA(O/B) = ∩b∈B{∩a∈AEa | Ea ∈ Apra(O/b)},
apr

A
(O/B) = ∩a∈A,b∈Bapr

a
(O/b),

aprA(O/B) = ∩a∈A,b∈Bapra(O/b).

3 Methods of Possible Worlds

Set repa(T ) of possible tables on attribute a is obtained from every missing
value on a being replaced by some element comprising the domain. Family Eti

a of
equivalence classes on a is derived from each possible table ti by using the method
addressed in Section 2. We use two types of aggregation, union and intersection.
Family

⋃ Ea of equivalence classes is the union of Eti
a , which is based on values

characterizing equivalence classes. The union is defined by:
⋃ Ea = {∪iE

ti
a=v | Eti

a=v ∈ Eti
a , v ∈ D(a)}.

When equivalence class E belongs to
⋃ Ea, every object o ∈ E has the same

value on a in at least one possible table. On the other hand, Family
⋂ Ea of

equivalence classes, the intersection of Eti
a , is defined by:

⋂ Ea = {∩iE
ti
a=v | Eti

a=v ∈ Eti
a , v ∈ D(a)}.

When E belongs to
⋂ Ea, every object o ∈ E has the same value on a in all

possible tables. Rough approximations
⋃

Apr
a
(O/b) and

⋃

Apra(O/b) are:
⋃

Apr
a
(O/b) = {∪iE

ti

a=u→b=v | Eti

a=u→b=v ∈ Apr
a
(O/b)ti , u ∈ D(a), v ∈ D(b)},

⋃

Apra(O/b) = {∪iE
ti

a=u→b=v | Eti

a=u→b=v ∈ Apra(O/b)ti , u ∈ D(a), v ∈ D(b)}.
1 (O) is usually omitted when O is equal to U .
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There exists an equivalence class that supports plural rules. In such a case,
equivalence classes with different rules are described, although they are identical
as a set. Rough approximations

⋂

Apr
a
(O/b) and

⋂

Apra(O/b) are:
⋂

Apr
a
(O/b) = {∩iE

ti

a=u→b=v | Eti

a=u→b=v ∈ Apr
a
(O/b)ti , u ∈ D(a), v ∈ D(b)},

⋂

Apra(O/b) = {∩iE
ti

a=u→b=v | Eti

a=u→b=v ∈ Apra(O/b)ti , u ∈ D(a), v ∈ D(b)}.
We have two types of definability. We say that set O ⊆ U of discernible objects
is certainly a-definable, if O is a-definable on a in every possible table, while O
is possibly a-definable, if O is a-definable on a in some possible tables [23]. For
expressions by a set of objects of rough approximations, we have:

⋃

apr
a
(O) = U − ⋂

apra(U −O),
⋂

apr
a
(O) = U − ⋃

apra(U −O),

where
⋃

apr
a
(O) = ∪iapr

a
(O)ti ,

⋂

apr
a
(O) = ∩iapr

a
(O)ti ,

⋂

apra(U −O) = ∩iapra(U −O)ti ,
⋃

apra(U −O) = ∪iapra(U −O)ti .

We adopt the results by the method of possible worlds as a correctness criterion
for extended methods. This is usually used in the field of databases dealing with
incomplete information [1,2,3,7,18,28]. This criterion is formally represented as
qA(T ) =

⊙

q′A(repA(T )) where q′A is the classical method that is described in
Section 2 and qA is an extended method of q′A, and

⊙

is an aggregate operator.

4 Methods of Possible Equivalence Classes

An approach using possible equivalence classes was originally proposed in [12,13].
The approach is called a method of possible equivalence classes. In the field of
databases with incomplete information, two types of sets, which mean certain
and possible answers, are obtained in query processing to tables containing miss-
ing values [9,10]. The method of possible equivalence classes that was described
in [16] deals with only possible rough approximations. Therefore, we extend it
to handle certainty in addition to possibility.

Possible equivalence classes on attributes are made by adding objects with
missing values to equivalence classes obtained from a set of objects with no
missing values on those attributes. Let Oc

a and Oi
a be sets of objects that have

no missing values and missing values on attribute a, respectively. For set Oc
a, we

obtain family E(Oc
a)2 of equivalence classes on a from using the classical method

addressed in Section 2. The family of the possible equivalence classes for object o
belonging to E ∈ E(Oc

a) is {E ∪E′ | E′ ∈ P(Oi
a)}, where P(Oi

a) is the power set
of Oi

a. Clearly, the family of possible equivalence classes including an object that
is an element of Oc

a is a lattice for ⊆ on attribute a. For example, we suppose
object o is included in equivalence class E ∈ E(Oc

a) and Oi
a = {o1, o2, o3}. The

lower bound is E and the upper bound is E ∪ Oi
a in the lattice. All equivalence

classes contained in the family have common part E ∈ E(Oc
a).

2 E(Oc
a) is formally Ea(Oc

a). The subscript a is omitted for simplicity.
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In addition, there are families of equivalence classes with common part ∅.
Element E ∈ P(Oi

a) is a possible equivalence class. P(Oi
a) is a lattice with the

lower bound ∅ and the upper bound Oi
a. Finally, family Pos(Ea)) of possible

equivalence classes on attribute a is:

Pos(Ea) = {E ∪ E′ | E ∈ E(Oc
a), E′ ∈ P(Oi

a)} ∪ P(Oi
a)\{∅}.

In each family of possible equivalence classes with a common part, we call the
lower bound and the upper bound the minimal possible equivalence class and the
maximal possible equivalence class, respectively. Family Pos(Ea)max of maximal
possible equivalence classes on a is:

Pos(Ea)max = {E ∪ Oi
a | E ∈ E(Oc

a)} ∪ Oi
a.

Family Pos(Ea)min of minimal possible equivalence classes is:

Pos(Ea)min = E(Oc
a).

Using maximal and minimal possible equivalence classes, possible rough approx-
imations Pos(Apr

a
(O)) and Pos(Apra(O)) of set O of indiscernible objects are:

Pos(Apr
a
(O)) = {E ∩ O | E ∈ Pos(Ea)max, ∃E′⊇E E′ ∈ Pos(Ea)min, E′ ⊆ O},

Pos(Apra(O)) = {E | E ∈ Pos(Ea)max, E ∩ O 	= ∅}.

Lower approximationPos(Apr
a
(O/b)) and upper approximationPos(Apra(O/b))

of set O of objects that are specified by values for attribute b are:

Pos(Apr
a
(O/b)) = {E | E ∈ Pos(Apr

a
(O′)),O′ ∈ Pos(Eb(O))max},

Pos(Apra(O/b)) = {E | E ∈ Pos(Apra(O′)),O′ ∈ Pos(Eb(O))max}.

Proposition 1. If E ∈ Pos(Apr
a
(O/b)), then ∃E′⊇E E′ ∈ Pos(Apra(O/b)).

Proposition 2. If C ⊆ A for sets A and C of attributes, then Pos(apr
C

(O/b))
⊆ Pos(apr

A
(O/b)) and Pos(aprA(O/b)) ⊆ Pos(aprC(O/b)).

Namely, monotonicity of the accuracy of approximations holds for expressions
based on objects.

Proposition 3. We have Pos(Apr
a
(O/b)) =

⋃

Apr
a
(O/b) and Pos(Apra(O/b))

=
⋃

Apra(O/b).

Certain rough approximations Cer(Apr
a
(O/b) and Cer(Apra(O/b)) of set O

of indiscernible objects are:

Cer(Apr
a
(O)) = {E | E ∈ Pos(Ea)min, ∃E′⊇E E′ ∈ Pos(Ea)max, E′ ⊆ O},

Cer(Apra(O)) = {E | E ∈ Pos(Ea)min, E ∩ O 	= ∅}.
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Lower and upper approximations – Cer(Apr
a
(O/b)) and Cer(Apra(O/b)) – of

set O of objects that are specified by values for b are:

Cer(Apr
a
(O/b)) = {E | E ∈ Cer(Apr

a
(O′)),O′ ∈ Pos(Eb(O))min},

Cer(Apra(O/b)) = {E | E ∈ Cer(Apra(O′)),O′ ∈ Pos(Eb(O))min}.

Proposition 4. If E ∈ Cer(Apr
a
(O/b)), then ∃E′⊇E E′ ∈ Cer(Apra(O/b)).

Proposition 5. If C ⊆ A for sets A and C of attributes, then Cer(apr
C

(O/b))
⊆ Cer(apr

A
(O/b)) and Cer(aprA(O/b)) ⊆ Cer(aprC(O/b)).

Namely, monotonicity of the accuracy of approximations holds for expressions
based on objects.

Proposition 6. If E ∈ Cer(Apr
a
(O/b)), then ∃E′⊇E E′ ∈ Pos(Apr

a
(O/b)).

If E ∈ Cer(Apra(O/b)), then ∃E′⊇E E′ ∈ Pos(Apra(O/b)).

Proposition 7. We have Cer(Apr
a
(O/b)) =

⋂

Apr
a
(O/b) and Cer(Apra(O/b))

=
⋂

Apra(O/b).

Definability in the method of possible equivalence classes is described as fol-
lows: set O of discernible objects is certainly a-definable, if ∪vEa=v = O, where
v ∈ ∪o∈Oa(o), missing value ∗ is replaced by D(a), and Ea=v ∈ Pos(Ea)max; set
O of discernible objects is possibly a-definable, if ∃E1,···,El

∪i Ei = O, where
Ei ∈ Pos(Ea). For expressions by a set of objects to set O of discernible objects,
we have:

Pos(apr
a
(O)) = U − Cer(apra(U −O)),

Cer(apr
a
(O)) = U − Pos(apra(U −O)),

where

Cer(apr
a
(O)) = {o | ∀v∈Va(o) ∃Ea=v Ea=v ∈ Pos(Ea)max, Ea=v ⊆ O},

Cer(apra(O)) = {o | ∀v∈Va(o) ∃Ea=v Ea=v ∈ Pos(Ea)min, Ea=v ∩ O 	= ∅},
Pos(apr

a
(O)) = {o | ∃v∈Va(o) ∃Ea=v Ea=v ∈ Pos(Ea), Ea=v ⊆ O},

Pos(apra(O)) = {o | ∃v∈Va(o) ∃Ea=v Ea=v ∈ Pos(Ea), Ea=v ∩ O 	= ∅}.

where if a(o) = ∗ set Va(o) is equal to D(a), otherwise {a(o)}.

Proposition 8. Set O of discernible objects is certainly a-definable in the
method of possible equivalence classes, if and only if it is so in the method
of possible worlds, whereas O is possibly a-definable in the method of possible
equivalence classes, if and only if it is so in the method of possible worlds.

From Propositions 3 and 7, the method of possible equivalence classes gives the
same rough approximations as the method of possible worlds.

It is also noticeable that any restriction such that only specified attributes
may have missing values does not at all impose on the method. Thus, we can
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use the method of possible equivalence classes to obtain rough approximations
between arbitrary sets of attributes having missing values in information tables.

5 Conclusions

We have extended the method of possible equivalence classes to deal with infor-
mation tables containing missing values. The extension is based on the concept
of certainty in addition to possibility.

Dual rough approximations, certain and possible rough approximations, are
obtained, because we cannot derive unique rough approximations under incom-
plete information. The actual rough approximations lie between certain and pos-
sible rough approximations.

The method gives the same results as the method of possible worlds. Certain
and possible rough approximations are equal to the intersection and the union
of rough approximations in all possible tables, respectively. This justifies the
method of possible equivalence classes.

Furthermore, the method is free from the restriction that missing values may
occur to only some specified attributes. Hence, we can use the method of possible
equivalence classes to obtain rough approximations between arbitrary sets of
attributes having missing values.
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Abstract. Rough sets based on binary relations are of generalized rough
sets. Meanwhile, the rough sets based on serial relations can be expressed
via basic set assignments. In this paper, the notion of general basic set
assignment is proposed by omitting a condition satisfied by basic set
assignment. By the new proposed notion, a generalized rough set model
is given. The relationships between the new model and the binary relation
based rough sets are examined in detail. The investigation shown that
virous types of binary relations can be characterized by general basic set
assignments clearly, and the new rough sets are of another form of binary
relation based rough sets.

Keywords: Basic set assignments, Binary relations, Rough sets.

1 Introduction

Rough set theory proposed by Pawlak [6,8] is a useful tool for dealing with
uncertainty in information systems. In this model, the connection among ob-
jects of universe is represented by an indiscernibility relations. Indiscernibility
relation, lower and upper approximations are key notions of Pawlaks rough set
model. However, equivalence relation seems to be a very stringent condition that
may limit the applications of rough set theory. Therefore, some interesting and
meaningful extensions of the Pawlak’s rough set model have been proposed in
the literature [2,4,5,16,18,19]. In the Meanwhile, important attention is paid on
rough set model based on arbitrary binary relations [13,14,17].

As for binary relation based rough sets, Yao [11,12] peculiarly mention that
interval structures and serial rough set algebra can be represented by basic set
assignments. The notion of basic set assignment was also implicitly used by
Fagin and Halpern [1], and by Harmanec et al. [3]. However, some type of bi-
nary relation based rough set algebra, for example, symmetric, transitive rough
set algebra, can not be expressed by basic set assignments. In order to solve this
problem, the generalization of rough sets via non-numeric functions is investi-
gated in this paper.

The rest of the paper is organized as follows. In next section, Pawlak rough sets
and its extensions based on binary relations are reviewed. Through generalizing
the notion of basic set assignment, the concept of general basic set assignment
is obtained in section 3. By the new defined notion we generalize Pawlak rough
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sets. The relationship between binary relations and general basic set assignments
is clarified. In section 4, various types of binary relations are characterized by
general basic set assignments. Section 5 presents the conclusions of the paper.

2 Preliminaries

In this section, we review Pawlak rough sets and its generalization briefly.

2.1 Pawlak Rough Sets

In Pawlak rough set model, the knowledge on the universe is described by equiv-
alence relations. The theoretic framework of Pawlak rough sets can be denoted
as a ordered pair (U, R) referred to as approximation space, where U is a finite
and nonempty set called universe of discourse, R an equivalence relation on U .
For any x ∈ U , the equivalence class including x is [x]R = {y ∈ U |(x, y) ∈ R},
by convention, simply denoted as [x]. The set of all equivalence classes on U ,
{[x]|x ∈ U}, is a partition of U , and denoted as U/R. In Pawlak rough set model,
equivalence classes are basic knowledge of the universe. Pawlak call them atoms
[7], or called elementary sets. Unions of atoms are called definable sets [7,8], all of
definable sets forms a σ-algebra denoted as σ(U/R), which represents the total
basic knowledge of the universe.

Let (U, R) be Pawlak approximation space, by the definable sets of σ(U/R),
X ⊆ U can be assigned with two definable sets, denoted as R(X) and R(X),
called the lower approximation and the upper approximation of X , respectively:

R(X) = {x ∈ U |[x] ⊆ X} =
⋃{[x]|[x] ⊆ X},

R(X) = {x ∈ U |[x] ∩ X �= ∅} =
⋃{[x]|[x] ∩ X �= ∅}.

It follows that R(X) ⊆ X ⊆ R(X). Hence X ∈ σ(U/R) if and only if R(X) =
R(X), then X ⊆ U is said to be rough if R(X) �= R(X), that is, X �∈ σ(U/R).

2.2 Extension of Pawlak Rough Sets

Considering binary relations between two universes, an extended rough set model
can be obtained.

Let U and W be two finite and nonempty universes of discourse. R ⊆ U×W is
a binary crisp relation (binary relation in short) from U to W , (x, y) ∈ R is also
denoted as xRy. For any x ∈ U, y ∈ W , we define xR as the set {y ∈ W |xRy},
Ry as {x ∈ U |xRy}, and xR and Ry are called the successor neighborhood of
x and the predecessor neighborhood of y, respectively. The relation R is called
serial if xR �= ∅ for all x ∈ U ; R is called inverse serial if Ry �= ∅ for all y ∈ W .
If U = W , R is called a binary relation on U . R is called reflexive if x ∈ xR
for all x ∈ U ; R is called symmetric if for any x, y ∈ U , xRy implies yRx; R is
called transitive if for any x, y, z ∈ U , xRy and yRz imply xRz.
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Let U and W be two finite nonempty universes of discourse, and R ⊆ U ×W .
The triple (U, W, R) is called a generalized approximation space. For X ⊆ W , the
lower and upper approximations of X with respect to (w.r.t.) (U, W, R), denoted
as R(X) and R(X), respectively, are defined by

R(X) = {x ∈ U |xR ⊆ X}, R(X) = {x ∈ U |xR ∩ X �= ∅}).

Obviously, when U = W and R is an equivalence relation on U , the above
model is identical with Pawlak rough set model.

The properties for the approximation operators R and R are list as follows:
∀X, Y ⊆ W ,

(L1) R(X) =∼ R(∼ X), (U1) R(X) =∼ R(∼ X);

(L2) R(W ) = U, (U2) R(∅) = ∅;

(L3) R(X ∩ Y ) = R(X) ∩ R(Y ), (U3) R(X ∪ Y ) = R(X) ∪ R(Y );

(L4) A ⊆ B ⇒ R(X) ⊆ R(Y ), (U4) A ⊆ B ⇒ R(X) ⊆ R(Y );

(L5) R(X ∪ Y ) ⊇ R(X) ∪ R(Y ), (U5) R(X ∩ Y ) ⊆ R(X) ∩ R(Y ).

3 Rough Sets Based on General Basic Set Assignments

In approximate reasoning, non-numeric functions usually be used to represent
uncertainty. Formally, a non-numeric functions is a mapping from one power
set to another. Different types of non-numeric functions satisfy corresponding
axioms [9,10,15].

Basic set assignment is a special kind of non-numeric functions. A basic set
assignment is a mapping j from power set P (W ) to another P (U), and satisfies
the following conditions:

(c1) j(∅) = ∅,

(c2)
⋃

A∈P (W )

j(A) = U ,

(c3) A �= B ⇒ j(A) ∩ j(B) = ∅, A, B ∈ P (W ).

If W = U , then j is called a basic set assignment on U . A subset A ∈ P (W )
with j(A) �= ∅ is called a focal set [12,15]. By the above condition (c2) and (c3)
we can see that the set of all j-images of all focal sets of j, Pj = {j(A)|A ⊆
W, j(A) �= ∅}, forms a partition of U .

In order to characterize the relationship between the approximation operators
w.r.t. generalized approximations space and basic set assignments more clearly,
the notion of basic set assignment is generalized as follows:

Definition 1. A non-numeric function j from P (W ) to P (U) is called a general
basic set assignment if j satisfies the conditions (c2) and (c3).

In generalized approximation space (U, W, R), R and R can be expressed by a
general basic set assignment jR induced from R.
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Let R be a binary relation between U and W . By R we construct a general
basic set assignment jR : P (W ) → P (U),

jR(A) = {x ∈ U |xR = A}, A ∈ P (W ). (1)

It is easy to check that jR satisfies the conditions (c2) and (c3). Hence jR is
a general basic set assignment. It should be noted that if R is a serial relation
then jR is a basic set assignment, otherwise jR is a general basic set assignment,
not a basic set assignment.

Proposition 1. Let R ⊆ U × W . Then

(1) x ∈ jR(A) ⇐⇒ A = xR, x ∈ U, A ⊆ W .
(2) x ∈ jR(xR), x ∈ U .
(3) Ry =

⋃

y∈A

jR(A), y ∈ W .

Making use of jR, R and R can be rewriten as

R(X) =
⋃

A⊆X

jR(A), R(X) =
⋃

A∩X �=∅
jR(A). (2)

Conversely, jR can also be calculated by R as follows:

jR(A) = R(A) −
⋃

B⊂A

R(B), A ⊆ W.

In view of Eq. (2), based on a general basic set assignment j from P (W ) to
P (U), we can define the lower and upper approximations of X ⊆ W as follows:

Definition 2. Let j be a general basic set assignment from P (W ) to P (U), and
X ⊆ W . Then the lower and upper approximations of X, denoted as j(X) and
j(X), respectively, are defined as

j(X) =
⋃

A⊆X

j(A), j(X) =
⋃

A∩X �=∅
j(A).

In the above rough set model, we can regard elements of Pj as elementary sets.
The empty set and the unions of one or more elementary sets are called definable
sets. The family of all definable sets formed from Pj is denoted by σ(Pj). Since
W is finite, σ(Pj) is the σ-algebra generated by Pj , Pj is its basis. Meanwhile,
from Definition 2 we can see that the lower approximation j(X) and the upper
approximation j(X) are definable sets.

In particular, if W = U then the approximation operators defined in Def. 2
degenerated into the approximation operators on single universe U .

From Eqs. (2), the following conclusions is clear.

Theorem 1. Let R ⊆ U × W . Then

R = jR, R = jR.
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Theorem 1 shows that binary relation based approximations are of general basic
set assignment based approximations. Now a natural question is that whether
the approximations based on general basic set assignment are also of binary
relation based approximations, the answer is positive.

According to Eq. (1), given a binary relation R from U to W , we can construct
a general basic set assignment jR. Conversely, from a general basic set assignment
j from P (W ) to P (U), we can also define a relation Rj from U to W as follows:

xRjy ⇐⇒ ∃A ⊆ W (y ∈ A, x ∈ j(A)), x ∈ U, y ∈ W. (3)

Hence we have the following proposition.

Proposition 2. If j is a general basic set assignment from P (W ) to P (U), then

(1) Rj =
⋃

A⊆W

j(A) × A,

(2) Rjy =
⋃

y∈A

j(A), y ∈ W .

Proposition 3. If j is a general basic set assignment from P (W ) to P (U), then

xRj = A ⇐⇒ x ∈ j(A), x ∈ U, A ⊆ W.

Proof. To consider two cases: A = ∅ and A �= ∅.

Case 1. A = ∅.
(⇒) From Eq. (3) we have

⇁(xRjy) ⇐⇒ ∀A ⊆ W (x ∈ j(A) ⇒ y �∈ A), x ∈ U, y ∈ W.

If xRj = ∅, the for any y ∈ W , y �∈ xRj , thus for any A ⊆ W , x ∈ j(A) implies
y �∈ A. Since there is unique j(B) ∈ Pj such that x ∈ j(B), for any y ∈ W ,
y �∈ B. Consequently, we know that B = ∅, this means that x ∈ j(∅).

(⇐) Assume that x ∈ j(∅) and xRj �= ∅. Let y ∈ xRj . Then there exists an
A ⊆ W such that y ∈ A and x ∈ j(A). As Pj is a partition on U , we realize
that A = ∅. So we get a wrong result y ∈ ∅. Therefore we can conclude that if
x ∈ j(∅) then xRj = ∅.

Case 2. A �= ∅.
(⇒) Suppose that xRj = A. By the definition of Rj , for any y ∈ A there exists

a B ⊆ W such that y ∈ B and x ∈ j(B). Since Pj is a partition on U , we know
B is unique. Thus A ⊆ B. On the other hand, for any y ∈ B, from x ∈ j(B) and
Eq. (3) we know xRjy, that is, y ∈ xRj = A. Hence B ⊆ A. Therefore A = B
holds, so x ∈ j(A).

(⇐) Assume x ∈ j(A). By Eq. (3) we have A ⊆ xRj . On the other hand, for
any y ∈ xRj , by the definition of Rj , there exists a B ⊆ W such that y ∈ B
and x ∈ j(B). j(A) = j(B) follows from that Pj is a partition on U . According
to property (c3) we can conclude that A = B, So y ∈ A. Hence xRj ⊆ A.
Combining A ⊆ xRj with A ⊆ xRj we obtain A = xRj . ��
By Eq. (1), Proposition 1 and 3, the following propositions can be given.
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Proposition 4. RjR = R, R ⊆ U × W .

Proposition 5. If j is a general basic set assignment from P (W ) to P (U), then
jRj = j.

The next conclusion directly follows from Proposition 4 and Theorem 1.

Theorem 2. For any j, a general basic set assignment from P (W ) to P (U),
we have

j = Rj , j = Rj .

Theorem 2 illustrates that general basic set assignment based approximations
are of binary relation based approximations.

Now that general basic set assignment based approximations are of binary
relation based approximations, of course, general basic set assignment based
approximation operators also satisfy the properties (L1-L5) and (U1-U5).

4 Binary Relations and General Basic Set Assignments

In this section, we investigate some characteristics of general basic set assign-
ments corresponding to different types of binary relations.

Theorem 3. If j is a general basic set assignment from P (W ) to P (U), then
Rj is serial if and only if j(∅) = ∅.
Proof. (⇒) If Rj is serial, then for any x ∈ U , xRj �= ∅. For any x ∈ U , since
xRj = ∅ is equivalent to x ∈ j(∅), it follows from xRj �= ∅ that x �∈ j(∅). By the
arbitrariness of x, we have j(∅) = ∅.

(⇐) Let x ∈ U . By Proposition 3 we have that xRj = ∅ is equivalent to
x ∈ j(∅). So if j(∅) = ∅, then xRj �= ∅ follows from that x �∈ j(∅). ��
Theorem 3 illustrates that only when j is a basic set assignment, Rj just be a
serial relation, that is to say, non-serial relations can not be generated by basic
set assignments.

Theorem 4. If j is a general basic set assignment from P (W ) to P (U), then
Rj is inverse serial if and only if there exists an A ⊆ W such that y ∈ A and
j(A) �= ∅, or equivalently

⋃

y �∈A

j(A) �= U .

Proof. It follows from Proposition (2) and the definition of inverse series. ��
Theorem 5. If j is a general basic set assignment on U , then Rj is reflexive if
and only if j(A) ⊆ A, A ⊆ U .

Proof. (⇒) Suppose Rj is reflexive. Then for any x ∈ U , x ∈ xRj . For any
A ⊆ U , if x ∈ j(A), then xRj = A by Proposition 3. According to x ∈ xRj we
have x ∈ A. Hence j(A) ⊆ A.

(⇐) Assume that j(A) ⊆ A for all A ⊆ U . For any x ∈ U , since j(xRj) ⊆ xRj ,
by Proposition 1 (2) and Proposition 5 we have x ∈ jRj (xRj) = j(xRj). Hence,
x ∈ xRj follows from j(xRj) ⊆ xRj . Therefore Rj is reflexive. ��
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Theorem 6. If j is a general basic set assignment on U , then Rj is symmetric
if and only if j(A) ∩ B �= ∅ implies j(B) ⊆ A.

Proof. (⇒) Suppose Rj is symmetric. If j(A)∩B �= ∅, we can take x ∈ j(A)∩B.
Thus, xRj = A follows from x ∈ j(A). For any y ∈ j(B), yRj = B holds. Noting
x ∈ B, we have x ∈ yRj . Since Rj is symmetric, y ∈ xRj follows, that is, y ∈ A.
By the arbitrariness of y, we can conclude j(B) ⊆ A.

(⇐) For any x, y ∈ U , if y ∈ xRj , then by denoting A = yRj and B = xRj

we know that y ∈ j(A) and x ∈ j(B) hold. Since y ∈ B, we get j(A) ∩ B �= ∅.
By the given condition we can gain j(B) ⊆ A. Since x ∈ j(xRj) = j(B), x ∈ A
holds, that is, x ∈ yRj. This proves that Rj is symmetric. ��
Theorem 7. If j is a general basic set assignment on U , then Rj is transitive
if and only if for any j(A), j(B) ∈ Pj , j(A) ∩ B �= ∅ implies A ⊆ B.

Proof. (⇒) Suppose Rj is transitive. If for any j(A), j(B) ∈ Pj , j(A)∩B �= ∅, by
taking x ∈ j(A)∩B, we have xRj = A. As j(B) �= ∅, take y ∈ j(B), so yRj = B.
For any z ∈ A, obviously z ∈ xRj . It follows from x ∈ B that x ∈ yRj . Since
Rj is transitive, we have z ∈ yRj , that is, z ∈ B. From the arbitrariness of z we
obtain A ⊆ B.

(⇐) For any x, y, z ∈ U , if y ∈ xRj and z ∈ yRj , denoting A = yRj and B =
xRj , we have j(A) �= ∅ and j(B) �= ∅. As y ∈ j(yRj) = j(A) and y ∈ xRj = B,
j(A) ∩ B �= ∅ holds. By the given condition we get A ⊆ B, that is, yRj ⊆ xRj .
Thus, according to z ∈ yRj we can conclude z ∈ xRj . Therefore it is proved
that Rj is transitive. ��

5 Conclusions

The theory of rough sets is typically studied based on the notion of an ap-
proximation space and the two induced non-numeric functions, lower and upper
approximations of subsets of a universe. This paper focus on the extension of
rough set model. By eliminating the normalization condition in the definition
of basic set assignment, the notion of general basic set assignment is proposed,
with the new proposed notion, new rough set model is established. Through
making the one to one correspondence between binary relations and general ba-
sic set assignments clear, the equivalence between binary relation based rough
sets and general basic set assignment based rough sets is understood. Finally,
many types of binary relations are characterized by general basic set assignments.
This paper’s work may be helpful for other non-numeric analysis approaches, e.g.
propositional logic, evidence theory, possibility theory, etc.
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Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on
Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

9. Wong, S.K.M., Wang, L.S., Yao, Y.Y.: Non-numeric Belief structures. In: Proceed-
ings of the Fourth International Conference on Computing and Information, pp.
274–277 (1992)

10. Wong, S.K.M., Wang, L.S., Yao, Y.Y.: On modelling uncertainty with interval
structures. Comput. Intell. 11, 406–426 (1995)

11. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International
Journal of Approximation Reasoning 15, 291–317 (1996)

12. Yao, Y.Y.: Interpretations of Belief Functions in the Theory of Rough Sets. Infor-
mation Sciences 104, 81–106 (1998)

13. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Infor-
mation Sciences 109(1-4), 21–47 (1998)

14. Yao, Y.Y.: Relational Interpretations of Neighborhood Operators and Rough Set
Approximation Operators. Information Sciences 111(1-4), 239–259 (1998)

15. Yao, Y.Y., Wong, S.K.M., Wang, L.S.: A non-numeric approach to uncertain rea-
soning. International Journal of General Systems 23, 343–359 (1995)

16. Zhu, P.: Covering rough sets based on neighborhoods: An approach without using
neighborhoods. Int. J. Approx. Reason (2010), doi:10.1016/j.ijar.2010.10.005

17. Zhu, W.: Generalized rough sets based on relations. Information Sciences 177(22),
4997–5011 (2007)

18. Zhu, W.: Relationship among basic concepts in covering-based rough sets. Infor-
mation Sciences 179(14), 2478–2486 (2009)

19. Ziarko, W.: Variable precision rough set model. Journal of Computer and System
Sciences 46, 39–59 (1993)



General Tool-Based Approximation Framework

Based on Partial Approximation of Sets
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Abstract. Let us assume that we observe a class of objects and have
some well-defined features with which an observed object possesses or
not. In real life, two relevant groups of objects can be established deter-
mined by our current and necessarily constrained knowledge. In partic-
ular, a group whose elements really possess a feature in question, and
another group whose elements substantially do not possess the same fea-
ture. In practice, as a rule, we can observe a feature of objects via only
tools with which we are able to judge easily whether an object possesses
a property or not. Of course, a property ascertained by tools does not
coincide with a feature completely. To manage this problem, we propose
a general tool-based approximation framework based on partial approx-
imation of sets in which a positive feature and its negative one of any
proportion of the observed objects can simultaneously be approximated.

Keywords: Approximations, approximation schemes, rough set theory,
partial approximation of sets.

1 Introduction

At the very beginning, we assume that we observe a class of objects which is
modelled as an abstract set, called the universe of discourse. In addition, let
us assume that we have some well-defined, decidable features with which an
observed object possesses or not. These features assign crisp subsets within the
universe. In other words, we model an object of interest as the element of an
abstract set, called the universe, and its property ‘it possesses a feature’ as ‘it is
the element of a crisp subset of this universe’.

In practice, two relevant groups of objects can be established determined by
our currently available and necessarily constrained knowledge: a group whose
elements really possess a feature in question, and another group whose elements
do not substantially possess the same feature. Both groups correspond two crisp

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 52–59, 2011.
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subsets of the universe. They are disjoint, and, in general, the union of them
does not add up to the whole universe. For obvious reasons, the former can be
marked with the adjective positive, whereas the latter with negative.

In real life, we cannot normally observe the features of objects directly. We
need tools at our disposal with which we are able to judge easily and unambigu-
ously whether an object possesses a property ascertained by a tool or not. It is
expected that these tools can be used simply and quickly. The objects classified
by a tool can also be modelled as one or more crisp subsets of the universe. With
a slight abuse of terminology, these subsets are also simply called tools.

As a rule, a property does not coincide with a feature completely. Different
tools form usually different subsets, but they are not necessarily disjoint. No-
tice that the complement of a tool is not necessarily tool at the same time. For
instance, let us take the tools being recursively enumerable. However, the com-
plement of a recursively enumerable set is not necessarily recursively enumerable
[10]. This significant fact confirms the partial nature of our approach [9].

Let us distinguish two types of tools: positive and negative ones. Positive
(resp., negative) tools provide an opportunity to locate a positive (resp,.
negative) subset. It is a natural assumption that the union of positive tools
and the union of negative tools are disjoint.

In practice, a feature which defines a positive (negative) subset is complicated.
In general, it is completely impossible to locate it with the only tool. Instead,
we need tools of finite or infinite number. To manage this problem we need an
approximation framework. It may be built on the rough set theory [8], because
it provides a powerful foundation to reveal and discover important structures in
data and classify complex objects.

The rough set theory was introduced by the Polish mathematician, Z. Pawlak
in the early 1980s [11], [12]. It may be seen as a new mathematical approach
to vagueness [6], [13], [15], [16]. According to Pawlak’s idea, the vagueness of a
subset within a finite universe U is defined by the difference of its upper and
lower approximations with respect to a partition of U .

Using partitions, however, is a very strict requirement. Our starting point
will be an arbitrary family of subsets of an arbitrary universe U . We will not
assume that this family of sets covers the universe whether that the universe
is finite. Our concepts of lower and upper approximations are straightforward
point-free generalizations of Pawlak’s ones [1]. We will apply it to build a tool-
based approximation framework in which a positive feature and its negative one
of any proportion of the observed objects can be approximated simultaneously.

The rest of the paper is organized as follows. In Section 2 we illustrate our
approach with a simple running example. Section 3 sums up the basic principles
of the partial approximation of sets. Only those facts will be considered which are
definitely necessary in the following. The major contributions of the paper are
covered in Section 4 in which we will propose a general tool-based approximation
framework. Its main notions are illustrated in Section 5. Finally, in Section 6,
we conclude the paper.
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2 An Illustrative Example

To illustrate our point of view let us see a simple running example. We want to
describe the safe behavior of a complex computer network system. All computer
applications or the whole computer system have an anticipated expected behavior
how they should or shouldn’t work. Its range may extend from the informal
presupposing activities of applications to more formal ones. The latter is posited
in user manuals and other different artifacts.

We focus solely on externally observable execution traces sent out by the
observed system, and model its expected behavior via these traces. Let U denote
the set of all execution traces generated by the system.

A+ is the set of expected execution traces describing expected behavior of the
running system. U \ A+ can be seen as the abnormal behavior of the system
which deviate from the previously defined expected profile. Its elements are
called anomalies [4]. According to our current available knowledge, however,
only a subset A− ⊆ U \ A+ can really be modelled as unexpected behavior of
the system. Its elements are usually called misuses. Of course, an unexpected
behavior has its own right to be profiled (for more details, see [2], [3]).

To justify A+ we have positive tools at our disposal whose elements are called
acceptable. They can be seen as the prescriptions of the security policy which
are modelled by sets of execution traces. To justify A− we have negative tools
at our disposal. Its elements are called unacceptable. They can be seen as the
proscriptions of the security policy which are modelled by sets of execution traces
too (see Fig. 1).

Notice that the subsets A+, A− and T +
1 , . . . , T+

5 , T−1 , . . . , T−4 are all crisp, in
addition A+ ∩ A− = ∅,

⋃

T+ ∩ ⋃

T− = ∅,
⋃

T+ ∪ ⋃

T− ⊆ U .1

– – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – –

– – –

+ + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + +

+ + + +

+++++

+++

U

+
2T

+
1T

+A

+
3T

+
5T

–A

–
1T

–
3T

–
4T

+
4T

–
2T

Positive tools: T+ = {T+
1 , T

+
2 , T

+
3 , T

+
4 , T

+
5 },

negative tools: T− = {T−
1 , T

−
2 , T

−
3 , T

−
4 }.

C�
T+(A+) = T+

4 ⊆ A+,

A+ ⊆ C�

T+(A+) = T+
2 ∪ T+

4 ∪ T+
5 .

C�
T−(A−) = T−

2 ⊆ A−,

A− �⊆ C�

T−(A−) = T−
1 ∪ T−

2 ∪ T−
3 .

C�
T+(A−) = ∅, C�

T+(A−) = T+
3 ,

C�
T−(A+) = C�

T−(A+) = ∅.

Fig. 1. Positive and negative tools (see Section 2). Some sample weak lower and upper
approximations in T+ and T−-approximation spaces (see Section 3).

1 If A ⊆ 2U , we define
⋃

A = {x | ∃A ∈ A(x ∈ A)}, and
⋂

A = {x | ∀A ∈ A(x ∈ A)}.
If A is an empty family of sets,

⋃ ∅ = ∅ and
⋂ ∅ = U .
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3 Fundamentals of Partial Approximation of Sets

First, let us see the basic concepts and properties of rough set theory [5], [12].
The pair (U, ε), where U is a finite universe of discourse and ε is an equivalence
relation on U , is called Pawlak’s approximation space. The elements of the par-
tition generated by ε are called ε-elementary sets. X ∈ 2U is ε-definable, if it
is a union of ε-elementary sets, otherwise X is ε-undefinable. By definition, the
empty set is considered to be an ε-definable set.

The lower and upper ε-approximations of X ∈ 2U can be defined in two
equivalent forms, in a point-free manner—based on the ε-elementary sets, and
in a point-wise manner—based on the elements [17].

The lower ε-approximation of X is2

ε(X) =
⋃

{Y | Y ∈ U/ε, Y ⊆ X} = {x ∈ U | [x]ε ⊆ X},

and the upper ε-approximation of X is

ε(X) =
⋃

{Y | Y ∈ U/ε, Y ∩ X �= ∅} = {x ∈ U | [x]ε ∩ X �= ∅}.

The set Bε(X) = ε(X)\ε(X) is the ε-boundary of X . X is ε-crisp, if Bε(X) =
∅, otherwise X is ε-rough.

Let DU/ε denote the family of ε-definable subsets of U . Clearly, ε(X), ε(X) ∈
DU/ε, the maps ε, ε : 2U → DU/ε are total, and many-to-one. It can easily be
seen ([12], Proposition 2.2, points 1, 9, 10) that the map ε is contractive and ε
is extensive, i.e., ∀X ∈ 2U (ε(X) ⊆ X ⊆ ε(X)).

Turning to the partial approximation of sets [1], from now on let U be any
nonempty set.

Definition 1. Let B ⊆ 2U be a nonempty family of nonempty subsets of U
called the base system. Its elements are the B-sets.

A family of sets D ⊆ 2U is B-definable if its elements are B-sets, otherwise D
is B-undefinable. A nonempty subset X ∈ 2U is B-definable if there exists a
B-definable family of sets D such that X =

⋃

D, otherwise X is B-undefinable.
The empty set is considered to be a B-definable set.

Definition 2. Let B ⊆ 2U be a base system and X be any subset of U .
The weak lower B-approximation of X is

C�
B(X) =

⋃

{Y | Y ∈ B, Y ⊆ X},

and the weak upper B-approximation of X is

C�
B(X) =

⋃

{Y | Y ∈ B, Y ∩ X �= ∅}.
2 Let ε be an arbitrary binary relation on U . We define [x]ε = {y ∈ U | (x, y) ∈ ε},

and U/ε denote the family of [x]ε.
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Let DB denote the family of B-definable sets of U . The maps C�
B : 2U → DB,

C�
B : 2U → DB are point-free generalizations of lower and upper ε-approxima-

tions. Obviously, C�
B(X), C�

B(X) ∈ DB, and the maps C�
B, C�

B are total, onto,
and many-to-one. Both of them are monotone.

Clearly, ∀X ∈ 2U (C�
B(X) ⊆ C�

B(X)). It can easily be seen ([1], Theorem 17)
that C�

B is contractive, but C�
B is extensive if and only if B covers the universe.

Definition 3. Let the fixed base system B ⊆ 2U and maps C�
B and C�

B be given.
The quadruple (U, B, C�

B, C�
B) is called a weak B-approximation space.

4 A General Tool-Based Approximation Framework

Let U be any nonempty set. Let A+, A− ∈ 2U be nonempty subsets of U such
that A+ ∩A− = ∅. A+ and A− are called the positive reference set and negative
reference set, respectively. In general, A+ ∩ A− = ∅ is the only requirement for
A+ and A−. Of course, additional relations between them may be supposed.

Furthermore, let and T+, T− ⊆ 2U be nonempty families of subsets of U such
that

⋃

T+ ∩⋃

T− = ∅. T+ is called positive or T+-tools, T− is called negative or
T−-tools. For each subset T+ ∈ T+ (resp., T− ∈ T−) it is easy to decide whether
an element of U belongs to T + (resp., T−) or not.

The sets in T+ are not necessarily pairwise disjoint, so they are not in T−.
Neither

⋃

T+ nor
⋃

T− covers U .
Note that, the adjectives positive and negative claim nothing else but that the

sets A+ (resp., T+) and A− (resp., T−) are well separated.
The quadruples (U, T+, C�

T+ , C�
T+) and (U, T−, C�

T− , C�
T−) form a weak T+-

approximation space and a weak T−-approximation space, respectively.
Borrowing the terminology from the inductive logic programming [7], the

mutual relationships between A+ and A− can be characterized by available T+

and T−-tools as follows. It is said that A+ is

– T+-complete if A+ ⊆ C�
T+(A+), T+-incomplete otherwise;

– T−-consistent if C�
T−(A+) = ∅, T−-inconsistent otherwise.

According to previous name conventions, a positive reference set A+ may be

– T+-complete and T−-consistent, T+-complete and T−-inconsistent ;
– T+-incomplete and T−-consistent, T+-incomplete and T−-inconsistent.

Similar specifications can be defined to the negative reference set A−. From
a pure combinatorial point of view, there may be in sum 4 · 4 = 16 different
situations. However, by the constraints A+ ∩ A− = ∅ and

⋃

T+ ∩ ⋃

T− = ∅,
some of them are impossible. Owing to limitations of length of this paper, all
possible different cases are not taken into account completely here.

The general framework can be used in three consecutive steps:

1. Justifying reference sets to reveal (in)consistencies and (in)complete regions
in terms of partial approximation of sets based on T+ and T−.
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2. Rebuilding positive and negative tools to resolve inconsistencies and eliminate
incomplete regions, if necessary.
– In the case of consistency, there is nothing to be done.
– In the case of inconsistency, we have to decide within the context of the

system if A+ (the concerned negative tool) is reasonable or not, and/or
whether A− (the concerned positive tool) is reasonable or not.

– In the case of completeness, we remove the covered positive and/or neg-
ative reference sets from the framework.

– In the case of incompleteness, we may decide within the context of the
system either to remove the uncovered subset from A+ (resp., A−) or
to augment the positive (resp., negative) tools with new subsets whose
elements are patterned upon one or more elements of the uncovered
subset of A+ (resp., A−). These new subsets may contain any element of
the universe, provided that they can easily be determined. For the new
T+-tools and/or T−-tools,

⋃

T+ ∩ ⋃

T− = ∅ should also be fulfilled.
By the end of steps 1 and 2, we obtain rebuilt tools T+

r and T−r .
3. Applying rebuilt tools to justify any subset of the universe in terms of partial

approximation of sets based on rebuilt positive and negative tools.

5 Applying General Framework to the Running Example

Examples depend on the actual observed real applications. However, there is no
room here to elaborate such examples, so we show these in an abstract way.

Step 1. Justifying reference sets in terms of partial approximation of sets based
on T+ and T− (see Fig. 1):

– A+ is T+-complete (A+ ⊆ C�
T+(A+)), T−-consistent (C�

T−(A+) = ∅).
– A− is T−-incomplete (A− �⊆ C�

T−(A−)), T+-inconsistent (C�
T+(A−) �= ∅).

Step 2. Rebuilding positive and negative tools (see Fig. 2):

– Since A+ was T+-complete, A+ was removed from the framework.
– Since A+ was T−-consistent, there was nothing to be done.
– A− was T−-incomplete, we decided that we augmented negative tools with

T +
5 , T +

6 patterned upon elements of the uncovered subset of A+.
– A− was T+-inconsistent, we decided that the positive tool T+

3 was reason-
able.

By the end of Steps 1 and 2, we obtained the rebuilt positive tools T+
r = T+,

and the rebuilt negative tools T−r = T− ∪ {T−5 , T−6 }.

Step 3. We apply the rebuilt tools to justify snapshots of the system as follows
(sample snapshots S1, S2, S3 are depicted in Fig. 2):

– C�
T+

r
(S2) is the set of all acceptable execution traces which certainly belong

to S2 with respect to the prescriptions of the security policy.
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As C�
T+

r
(S2) = T +

4 , T +
4 is the only prescription which in full belongs to S2.

– C�

T+
r

(S2) is the set of all acceptable execution traces which possibly belong
to S2 with respect to the prescriptions of the security policy.
As C�

T+
r

(S2) = T +
4 ∪T +

5 , only the prescriptions T +
4 , T +

5 of the security policy
can be associated with S2.

–
⋃

T+
r \ C�

T+
r

(S2) is the set of all acceptable execution traces which certainly
does not belong to S2 with respect to the prescriptions of the security policy.
As T +

1 �
⋃

T+
r \C�

T+
r

(S2), T+
1 is the only prescription which does not belong

to S2.
– Acceptable execution traces in C�

T+
r

(S2) \ C�
T+

r
(S2) = T +

5 \ T +
4 are abstained

because they cannot be uniquely classified either as belonging to S2 or as
not belonging to S2 with respect to the prescriptions of the security policy.
Notice that the set C�

T+
r

(S2)\C�
T+

r
(S2) can also be approximated. For instance,

C�

T+
r

(C�

T+
r

(S2) \ C�
T+

r
(S2)) = T +

2 ∪ T +
3 .

– As S2 �� C�

T+
r

(S2), the execution traces in S2 \C�

T+
r

(S2) are anomalous. Since

C�

T−
r

(S2) = T−3 ∪ T−6 , a subset of the anomalous traces are unexpected with

respect to the proscriptions T−3 and T−6 of the security policy.

Very similar statements can be made to the snapshot S1. Note that the snap-
shot S3 cannot be justified with all the available tools at all.

U

+
2T

+
1T

+
5T

+
4T

+
3T

–
1T

–
2T

–
3T

–
4T

–
5T

1S

2S

3S

–
6T

Rebuilt positive tools: T+
r = T+.

Rebuilt negative tools: T−
r = T− ∪ {T−

5 , T
−
6 }.

Sample snapshots of the system: S1, S2, S3.

C�

T+
r

(S1) = ∅, C�

T+
r

(S1) = T+
2 ∪ T+

5 ,

C�

T−
r

(S1) = C�

T−
r

(S1) = ∅.

C�

T+
r

(S2) = T+
4 , C�

T+
r

(S2) = T+
4 ∪ T+

5 ,

C�

T−
r

(S2) = ∅, C�

T−
r

(S2) = T−
3 ∪ T−

6 .

C�

T+
r

(S3),C�

T+
r

(S3),C�

T−
r

(S3),C�

T−
r

(S3) = ∅.

Fig. 2. Rebuilt positive and negative tools. Sample snapshots of the system.

6 Conclusion

In our paper, we have presented a framework in which many questions concerning
approximation problems without exact knowledge can be represented uniformly.
In addition to this, positive features and their substantially negative features of
observed objects can simultaneously be approximated.
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Abstract. The classification, ranking and sorting performance of Domi-
nance-based rough set approach (DRSA) will be affected by the incon-
sistencies of the decision tables. Two relaxation models (VC-DRSA and
VP-DRSA) have been proposed by Greco and Inuiguchi respectively to
relax the strict dominance principle. But these relaxation methods are
not always suitable for treating inconsistencies. Especially, some objects
which should be included in lower-approximations are excluded. After
analyzing the inadequacies of the two models, an improved variable pre-
cision model, which is called ISVP-DRSA, based on inclusion degree
and supported degree is proposed in this paper. The basic concepts are
defined and the properties are discussed. Furthermore, the lower ap-
proximations of ISVP-DRSA are the union of those of VC-DRSA and
VP-DRSA, and the upper approximations are the intersection of those
of the two models. Then more objects will be included in lower approxi-
mations and the quality of approximation classification is not poor than
the above two models. Finally, the efficiency of ISVP-DRSA is illustrated
by an example.

Keywords: Rough set, dominance based rough set approach, variable
precision, inclusion degree, supported degree.

1 Introduction

In order to deal with information systems with preference-ordered attributes,
Greco, Matarazzo and S�lowiński [1,2] presented a generalization of the rough
set approach, Dominance-based Rough Set Approach (DRSA). Similarly to the
original rough sets, DRSA is based on approximations of partitions of the ob-
jects into pre-defined categories. However differently to the original model, the
categories are ordered from the best to the worst and the approximations are
constructed using a dominance relation instead of an indiscernibility relation.
DRSA can be not only used to classify, but also to choice, rank, and sort [2].
The variable-consistency dominance-based rough set approach (VC-DRSA) has

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 60–67, 2011.
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been proposed in [3] to overcome the shortcomings of DRSA for treating incon-
sistent information systems. But as analyzing in [4], it does not always work well
when the decision table including outliers. Inuiguchi and Yoshioka introduced a
variable precision dominance-based rough set approach (VP-DRSA) [4] which is
based on supported degree to treat errors and missing condition attributes. But
it has been found that the marginal objects of classes will not be included in
the lower approximations when the decision table including outliers. Therefore,
few objects will support the weak decision rules, i.e. supported by few objects
from approximations. In order to overcome the shortcomings of VC-DRSA and
VP-DRSA, an improved variable precision model of DRSA is proposed, which is
based on inclusion degree and supported degree. The lower and upper approx-
imations are defined respectively and the properties are discussed. The lower
approximations are not less than VC-DRSA and VP-DRSA, while the upper ap-
proximations are not larger than those of the two models. Therefore, the quality
of approximation classification is not poor than the above two models.

The paper is organized as follows. In Section 2, some basic concepts of VC-
DRSA and VP-DRSA are reviewed. In Section 3, the improved variable precision
model of dominance-based rough set approach is introduced and an example is
given to illustrate how the improved model overcomes the shortcomings of VC-
DRSA and VP-DRSA. The paper is summarized in Section 4.

2 VC-DRSA and VP-DRSA

A decision table is defined as 4-tuple S = (U, R, V, f), where U is a finite set of
objects and R = C ∪ d is a finite set of attributes, C is the condition attribute
set and d is the decision attribute set. With every attribute a ∈ R, set of its
values Va is associated. Each attribute a determines a function fa : U → Va.
In multicriteria classification, condition attributes are criteria. The notion of
criterion involves a preference order in its domain. E.g. in Table 1, we have
U = {S1, S2, . . . , S17}, C = {Mathematics (Math), Literature (Lit)}, d=Passing
Status (PS) and V ={Utterly Bad (UB), Very Bad (VB), Bad (B), Medium (M),
Good (G), Very Good (VG), Excellent (E), Yes (Y), No (N)}.

See [1,2] for the basic concepts of DRSA.

2.1 VC-DRSA

Greco et al. proposed the variable consistency model of dominance-based rough
set approach (DRSA) [3] to treat the inconsistency problem. The main concepts
and properties are as follows.

For any P ⊆ C, we say that x ∈ U belongs to Cl≥t at consistency level l ∈(0,
1], if x ∈ Cl≥t and at least l×100% of all objects y∈ U dominating x with respect
to P also belong to Cl≥t , shown more formally as follows:

β =
|D+

P (x) ∩ Cl≥t |
|D+

P (x)| ≥ l. (1)
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Table 1. A decision table of student evaluation

Student Mathematics Literature Passing Status

S1 Excellent Very Good Yes
S2 Excellent Medium Yes
S3 Very Good Very Good No
S4 Very Good Good Yes
S5 Very Good Bad Yes
S6 Very Good Utterly Bad No
S7 Good Excellent Yes
S8 Medium Excellent Yes
S9 Medium Bad Yes
S10 Bad Medium No
S11 Bad Very Bad No
S12 Very Bad Medium No
S13 Very Bad Very Bad No
S14 Very Bad Utterly Bad No
S15 Utterly Bad Bad No
S16 Utterly Bad Very Bad Yes
S17 Utterly Bad Utterly Bad No

The level l controls the degree of consistency between objects qualified as be-
longing to Cl≥t . In other words, if l <1, then (1-l)×100% of all objects y ∈ U

dominating x with respect to P may not belong to Cl≥t and thus contradict the
inclusion of x in Cl≥t . Analogously, for any P ⊆ C we say that x ∈ U belongs
to Cl≤t at consistency level l ∈(0, 1], if x ∈ Cl≤t and at least l×100% of all the
objects y ∈ Udominated by x with respect to P also belong to Cl≤t .

The definition of P -lower approximations of the unions of classes Cl≥t and
Cl≤t at some consistency level l, respectively,

P l
V C(Cl≥t ) = {x ∈ Cl≥t : |D

+
P (x)∩Cl

≥
t |

|D+
P (x)| ≥ l},

P l
V C(Cl≤t ) = {x ∈ Cl≤t : |D

−
P (x)∩Cl≤t |
|D−

P (x)| ≥ l}.
(2)

The P -upper approximations of Cl≥t and Cl≤t can be defined by

P
l

V C(Cl≥t ) = U − P l
V C(Cl≤t−1), P

l

V C(Cl≤t ) = U − P l
V C(Cl≥t+1). (3)

For more details on VC-DRSA see [3]. Above definitions hold also for DRSA,
however, they can be simplified since in that case consistency level l equals 1.

2.2 VP-DRSA

Consider a decision table given in Table 1. The data of S3 and S16 can be
regarded as two outliers. These inconsistencies may be caused by some errors in
recording or observation.
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From Table 1, we have Cl≥Y = {S1, S2, S4, S5, S7, S8, S9, S16} and Cl≤N =
{S3, S6, S10, S11, S12, S13, S14, S15, S17}. Let P = C, l=0.8. We have P 0.8

V C(Cl≥Y )=
{S1,S2, S5,S7,S8, S9}, β(S5)=0.8, and β(S9)=0.875, as well as P 0.8

V C(Cl≤N ) =
{S6, S10, S11, S12,S14,S17}. The objects present in the lower approximations
obtained for consistency degree β=1 are in bold. Note S4 ∈ Cl≥Y (β(S4)=0.667)
which takes better values in both Math and Lit than S5 and S9 is not included
in P 0.8

V C(Cl≥Y ), but S5 and S9 are included in P 0.8
V C(Cl≥Y ). Analogously, S13 and

S15 ∈ Cl≥Y which takes worse values in both Math and Lit than S10, S11 and
S12 are not included in P 0.8

V C(Cl≤N ), but S10, S11 and S12 are.
In order to treat the inconsistencies caused by errors in recording, measure-

ment, observation, and so on, a variable-precision dominance-based rough set
approach (VP-DRSA) [4] was proposed by Inuiguchi, et al. They defined the
precision of x ∈ Cl≥t denoted by

β =
|D−P (x) ∩ Cl≥t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

. (4)

Then, given a precision level l ∈ (0, 1], corresponding to the P -lower approxima-
tion of Cl≥t , a P -lower approximation of Cl≥t with respect to P ⊆ C is defined
as a set of objects x ∈ Cl≥t whose degrees of precision are not less than l. In
order to correspond to the definitions of VC-DRSA, the lower approximations
of VP-DRSA are minor adjusted by us, shown as follows:

P l
V P (Cl≥t ) = {x ∈ Cl≥t :

|D−P (x) ∩ Cl≥t |
|D−P (x) ∩ Cl≥t | + |D+

P (x) ∩ Cl≤t−1|
≥ l}, (5)

P l
V P (Cl≤t ) = {x ∈ Cl≤t :

|D+
P (x) ∩ Cl≤t |

|D+
P (x) ∩ Cl≤t | + |D−P (x) ∩ Cl≥t+1|

≥ l}. (6)

By using the duality, corresponding to P -lower approximations, P -upper ap-
proximations of Cl≥t and Cl≤t with respect to P ⊆ C can be defined by

P
l

V P (Cl≥t ) = {x ∈ U :
|D−P (x) ∩ Cl≥t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

≥ 1 − l}, (7)

P
l

V P (Cl≤t ) = {x ∈ U :
|D+

P (x) ∩ Cl≤t |
|D+

P (x) ∩ Cl≤t | + |D−P (x) ∩ Cl≥t+1|
≥ 1 − l}. (8)

2.3 Inadequacies of VP-DRSA

From Table 1, for P = C, l=0.8, we obtain P 0.8
V P (Cl≥Y ) = {S1,S2, S4,S7,S8},

β(S4)=0.8, P 0.8
V P (Cl≤N ) = {S6, S13,S14, S15,S17}, β(S13)=0.83, β(S15)=0.8.

The following decision rules with consistency degree can be induced:

– if (f(x, Math)�E) then x ∈ Cl≥Y [α = 1],
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– if (f(x, Lit)�E) then x ∈ Cl≥Y [α = 1],
– if (f(x, Math)�M) and (f(x, Lit)�M) then x ∈ Cl≥Y [α = 0.83],
– if (f(x, Lit)≺UB) then x ∈ Cl≤N [α = 1],
– if (f(x, Math)≺V B) and (f(x, Lit)≺B) then x ∈ Cl≤N [α = 0.8].

Note S5 and S9 should be included in P 0.8
V P (Cl≥Y ). But S5 and S9 are marginal

objects of upward union of class Cl≥Y , i.e. |D−P (S5) ∩ Cl≥Y | and |D−P (S9) ∩ Cl≥Y |
are very small. Owing to the existing of S3, the supported degrees of S5 and S9

endorses included in Cl≥Y are smaller than the precision level l. Then they are
excluded from the P -lower approximation of Cl≥Y . Analogously, S10 and S11 are
not included in P 0.8

V P (Cl≤N ) owing to the outlier of S16. Therefore, S5, S9, S10

and S11 can not be classified by the decision rules which are induced from the
lower approximations. The classification accuracy is not satisfied.

3 Improved VP-DRSA Based on Inclusion Degree and
Supported Degree (ISVP-DRSA)

3.1 Definitions and Properties of ISVP-DRSA

In order to overcome the shortcomings of VC-DRSA and VP-DRSA, an improved
VP-DRSA which is based on inclusion degree and supported degree (simply,
ISVP-DRSA) is proposed.

The consistency degree of an object x ∈ U belongs to Cl≥t with respect to
P ⊆ C is defined by

β = max(
|D+

P (x) ∩ Cl≥t |
|D+

P (x)| ,
|D−P (x) ∩ Cl≥t |

|D−P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

). (9)

The degree of inclusion is a particular case of inclusion in a degree (rough in-
clusion) in rough mereology. Inclusion degree in rough set data analysis was
proposed in [5]. |D+

P (x) ∩ Cl≥t |/|D+
P (x)| denotes the inclusion degree of the

P -dominating set of x belongs to Cl≥t . But this parameter cannot treat the
inconsistency caused by outliers, as shown in Section 2.2. The concept of clas-
sification supported degree in DRSA was proposed in [4]. But only according
to the supported degree to determine whether an object should be included in
the lower approximations, the marginal objects will be excluded from the lower
approximations. Hence, so as to enlarge lower approximations and to treat the
inconsistencies caused by hesitation and errors, an object should be included in
the lower approximations if its inclusion degree or the supported degree is not
less than l.

Then, given a consistency level l ∈(0, 1], a P -lower approximation of Cl≥t with
respect to P ⊆ C is defined as a set of objects x ∈ Cl≥t whose inclusion degrees
or supported degrees are not less than l, i.e.
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P l
ISV P (Cl≥t ) = {x ∈ Cl≥t : max( |D

+
P (x)∩Cl≥t |
|D+

P (x)| ,

|D−
P (x)∩Cl

≥
t |

|D−
P (x)∩Cl≥t |+|D+

P (x)∩Cl≤t−1|
) ≥ l}.

(10)

A P -lower approximation of Cl≤t with respect to P ⊆ C is defined by

P l
ISV P (Cl≤t ) = {x ∈ Cl≤t : max( |D

−
P (x)∩Cl≤t |
|D−

P (x)| ,

|D+
P (x)∩Cl≤t |

|D+
P (x)∩Cl≤t |+|D−

P (x)∩Cl≥t+1|
) ≥ l}.

(11)

By using the duality, P -upper approximations of Cl≥t and Cl≤t with respect to
P ⊆ C can be defined by

P
l

ISV P (Cl≥t ) = U − P l
ISV P (Cl≤t−1), P

l

ISV P (Cl≤t ) = U − P l
ISV P (Cl≥t+1). (12)

P
l

ISV P (Cl≥t ) can be interpreted as the set of all the objects belong to Cl≥t ,
possibly ambiguous at consistency level l. P

l

ISV P (Cl≤t ) can be interpreted as
the set of all the objects belonging to Cl≤t , possibly ambiguous at consistency
level l. The P -boundaries (P -doubtful regions) of Cl≥t and Cl≤t are defined by

Bnl
PISV P

(Cl≥t ) = P
l

ISV P (Cl≥t ) − P l
ISV P (Cl≥t ),

Bnl
PISV P

(Cl≤t ) = P
l

ISV P (Cl≤t ) − P l
ISV P (Cl≤t ).

(13)

According to definitions of ISVP-DRSA, the following properties hold:

P
l

ISV P (Cl≥t ) = Cl≥t ∪ {x ∈ Cl≤t−1 : min( |D
−
P (x)∩Cl≥t |
|D−

P (x)| ,

|D−
P (x)∩Cl≥t |

|D−
P (x)∩Cl≥t |+|D+

P (x)∩Cl≤t−1|
) ≥ 1 − l}.

(14)

P
l

ISV P (Cl≤t ) = Cl≤t ∪ {x ∈ Cl≥t+1 : min( |D
+
P (x)∩Cl≤t |
|D+

P (x)| ,

|D+
P (x)∩Cl

≤
t |

|D+
P (x)∩Cl≤t |+|D−

P (x)∩Cl≥t+1|
) ≥ 1 − l}.

(15)

P l
ISV P (Cl≥t ) ⊆ Cl≥t ⊆ P

l

ISV P (Cl≥t ),
P l

ISV P (Cl≤t ) ⊆ Cl≤t ⊆ P
l

ISV P (Cl≤t ).
(16)

Bnl
PISV P

(Cl≥t ) = Bnl
PISV P

(Cl≤t−1), for t = 2, · · · , n. (17)

Bnl
PISV P

(Cl≤t ) = Bnl
PISV P

(Cl≥t+1), for t = 1, · · · , n − 1. (18)

Furthermore, according to the definitions of VC-DRSA, VP-DRSA and ISVP-
DRSA, the following theorems can be proved:

P l
ISV P (Cl≥t ) = P l

V C(Cl≥t ) ∪ P l
V P (Cl≥t ),

P l
ISV P (Cl≤t ) = P l

V C(Cl≤t ) ∪ P l
V P (Cl≤t ).

(19)
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P
l

ISV P (Cl≥t ) = P
l

V C(Cl≥t ) ∩ P
l

V P (Cl≥t ),
P

l

ISV P (Cl≤t ) = P
l

V C(Cl≤t ) ∩ P
l

V P (Cl≤t ).
(20)

γl
PISV P

(Cl) ≥ max(γl
PV C

(Cl), γl
PV P

(Cl)). (21)

3.2 Illustrative Example

An illustrative example is presented in this section. The data is shown in Table 1.
As discussed in Section 2.2 and Section 2.3, it is inappropriate to use VC-DRDA
and VP-DRSA for decision tables including outliers. It will be seen how Table 1
is analyzed appropriately by the proposed ISVP-DRSA.

Let P = C, l=0.8, then we obtain (the objects present in the lower ap-
proximations obtained for consistency degree β=1 are in bold): P 0.8

ISV P (Cl≥Y ) =
{S1,S2, S4, S5,S7,S8, S9}, β(S4)=0.8, β(S5)=0.8, β(S9)= 0.875. P 0.8

ISV P (Cl≤N )=
{S6, S10, S11, S12, S13,S14, S15,S17}, β(S10)=0.875, β(S11) =0.8, β(S12)=0.83,
β(S13)=0.83, β(S15)=0.8.

The following decision rules with precision degrees can be induced:

– if (f(x, Math)�E) then x ∈ Cl≥Y [α = 1],
– if (f(x, Lit)�E) then x ∈ Cl≥Y [α = 1],
– if (f(x, Math)�M) and (f(x, Lit)�B) then x ∈ Cl≥Y [α = 0.875],
– if (f(x, Lit)≺UB) then x ∈ Cl≤N [α = 1],
– if (f(x, Math)≺B) then x ∈ Cl≤N [α = 0.875].

From the P−lower approximations, it has been found that except the outliers S3

and S16, all the objects are included in the lower approximations of ISVP-DRSA.
Then the classification accuracy is improved.

Besides, P -upper approximations, P−boundaries and the quality of approxi-
mation classification can be computed as follows: P

0.8

ISV P (Cl≥Y ) = {S1, S2, S3, S4,

S5, S7, S8, S9, S16}, P
0.8

ISV P (Cl≤N ) = {S3, S6, S10, S11, S12, S13, S14, S15, S16, S17}.
Bn0.8

PISV P
(Cl≥Y ) = Bn0.8

PISV P
(Cl≤N ) = {S3, S16}. Also, γ0.8

PISV P
(Cl) = 0.882, as well

as γ0.8
PV C

(Cl) = 0.705 and γ0.8
PV P

(Cl)=0.588.
The P -lower approximations, P -boundaries and the approximation classifica-

tion qualities of the three models are shown as Table 2.
The above results illustrate the properties (14)-(18) and theorems (19)-(21).

Table 2. The results of the three models

VC-DRSA VP-DRSA ISVP-DRSA

P 0.8(Cl≥Y ) S1, S2, S5, S7, S8, S9 S1, S2, S4, S7, S8 S1, S2, S4, S5, S7, S8, S9

P 0.8(Cl≤N ) S6, S10, S11, S12, S6, S13, S14, S6, S10, S11, S12, S13,
S14, S17 S15, S17 S14, S15, S17

Boundaries S3, S4, S13, S15, S16 S3, S5, S9, S10, S11, S12, S16 S3, S16

γ0.8
P (Cl) 0.706 0.588 0.882
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4 Conclusions

After analyzing the inadequacies of VC-DRSA and VP-DRSA proposed by Greco
and Inuiguchi respectively in this paper, an improved variable precision DRSA
(ISVP-DRSA) which is based on inclusion degree and supported degree is pro-
posed. The properties of lower approximations and upper approximations are
investigated. And it is found that more objects will be included in the lower
approximations in ISVP-DRSA. Then more useful decision rules can be induced
and higher quality of approximation classification can be obtained. In the fu-
ture, we will concentrate on developing useful classification algorithms based on
ISVP-DRSA.
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Rough Numbers and Rough Regression
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Abstract. In this article a new model of regression is defined. On the
basis of the rough sets theory a notion of rough number is defined. Typical
real numbers calculations do not keep the additional information like
the uncertainty or the error of input data. Rough numbers remove this
limitation. It causes that rough numbers seem to be interested as the
basis of the new way of regression: rough regression.

Keywords: rough sets, rough numbers, machine learning, nonparamet-
ric regression, rough regression.

For over forty years people have been trying to specify the inexactitude with
notions like the fuzzyness [7] or roughness [3]. This human need of problems
simplification by generalization is associated with the price of loosing the accu-
racy. In this article a new approach of inexact data representation is described
that extends the limited Pawlak definition of a rough number [4]. With the wider
definition of the approximation space this definition makes it possible to define
basic arithmetical operation on rough numbers based on the whole R set. It finds
the application in the nonparametric regression.

1 Classical and Extended Models of Rough Numbers

Rough numbers [4] are based on the several following notions. For the set R
+

a sequence of nonnegative reals S=(xi)n
i=1 such that xi<xj , i<j is called the

categorization. The approximation space is the ordered pair A= (R+, S). Ev-
ery categorization S of R

+ induces partition π(s) on R
+ defined as π(S) =

{0, (0, x1), x1, . . . , xi, (xi, xi+1), . . .} where (xi, xi+1) denotes the open interval.
S(x) denotes the block of partition π(S) : x ∈ π(S). Let x∈(xi, xi+i). The closed
interval S(x) = 〈xi, xi+1〉 is called the closure S(x). Q(x) is the closed interval
〈0, x〉. For a given approximation space A(R+, S) for every Q(x) its lower and
upper approximation may be defined, denoted as S∗(Q(x)) and S∗(Q(x)) respec-
tively. S∗(Q(x))={y ∈ R

+: S(y) ⊆ Q(x)}; S∗(Q(x)) = {y ∈ R
+: S(y)∩Q(x) �= ∅}

As the S-lower and S-upper approximation of the nonnegative real number x the
following values are considered: S∗(x) = Sup{y ∈ S : y ≤ x}; S∗(x) = Inf{y ∈
S : y ≥ x}. All notions above lead to the definition of an approximation of a real
number x on the basis of a set of real numbers S: S(x) = (S∗(x), S∗(x)). The
number is exact in A = (R+, S) iff S∗(x) = S∗(x), otherwise it is inexact (rough)
in A. Every inexact number may be represented as a pair of exact numbers

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 68–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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or as the interval. Now, let S is the categorization of R: S ⊆ R. An approx-
imation space A = (R,S) will be denoted as AS . For a given S = (xi)n

i=1

the generalized projection Π is defined: Π(S) = {(−∞, x1), x1, (x1, x2), x2, . . .}.
Notions S(x) and S(x) remain as above. As AS is based on R, Q(x) should
be defined as Q(x) = (−∞, x〉 what causes that definitions of its S-lower and
S-upper approximations remain unchanged. Also definitions of real number x
remain the same as in [4]. This extension of the Pawlak definitions leads us to
the notion of rough real number. Every AS gives S exact numbers and S + 1
rough numbers. As the exact number x is also the rough number 〈x, x〉 we say
that every AS introduces 2S + 1 rough real numbers. Two of them has infinite
limits: (−∞, x1〉, 〈xmax,∞) and will be called nonfinite rough numbers. All other
will be called finite rough numbers. Exact rough number will be denoted as x
: 〈x, x〉 = x; inexact finite rough number x : 〈S∗(x),S∗(x)〉; inexact nonfinite
rough number x : 〈−∞, x1〉 and 〈xmax,∞〉; set of finite rough numbers: R ; set
of rough numbers (finite and nonfinite): R∞.

2 Rough Calculations and Rough Regression

Let ρ1, ρ2 are finite rough numbers: ρ1 = 〈a1, a2〉, ρ2 = 〈b1, b2〉. Consider: ad-
dition: ρ1 + ρ2 = 〈a1 + b1, a2 + b2〉; multiplication: ρ1 · ρ2 = 〈a1 · b1, a2 · b2〉;
mirroring: ρ1 and ρ2 will be called mirrored iff a1 = b2 and a2 = b1. The
function μ is called a mirror function: μ : R → R; μ(〈a, b〉) = 〈b, a〉. It is
easy to prove that ρ + μ(ρ) = 0. Addition and multiplication are commuta-
tive, have neutral and opposite elements, and satisfy distributivity of the mul-
tiplication over the addition. For every kernel function K : R → R a rough
kernel function K : R → R may be defined as follows: K(〈ρ1, ρ2〉) = (ρ2 −
ρ1)−1

∫ ρ2

ρ1
K(x)dx. Rough kernel function should take real values for real argu-

ments. It is easy to prove that K(〈ρ, ρ〉) = K(ρ) and that K(ρ) = K(μ(ρ)). One
of the most popular kernel estimators of the regression function is Nadraya–
Watson estimator [2][6]: ˜f(x) = [

∑n
i=1 yiK((x − xi)/h)]/[

∑n
i=1 K((x − xi)/h)]

where (xi, yi) are some known training points (xi, yi ∈ R), K is a kernel func-
tion and h is the smoothing parameter. In this section the extension of NW
estimator for rough numbers is presented. The process of roughing the real data
is as follows: for the set of real valued observations U = {(xi, yi)}n

i=1 the set
of 2n − 1 rough valued observations is defined in the following way: R(U)=
{(〈x1, x1〉, 〈y1, y1〉), (〈x1, x2〉,〈y1, y2〉),(〈x2, x2〉, 〈y2, y2〉), . . . , (〈xn, xn〉, 〈yn, yn〉)}.
As the set X is a categorization of R we may define the X − lower and X −upper
function regression. If ˜f(ρ) is the rough kernel regressor then the rough func-
tion FX may be defined as follows FX = {(u, ˜f(u)) : u ∈ R(X)} or: FX =
{(〈ui1, ui2〉, 〈 ˜f(ui)1, ˜f(ui)2〉) : ui = 〈ui1, ui2〉 ∈ R(X),
˜f(ui) = 〈 ˜f(ui)1, ˜f(ui)2〉, i = 1, . . . , 2X − 1}. From the definition above we may
define the X -lower and X -upper rough estimators of the function:

FX = {(〈ui1, ui2〉, 〈 ˜f(ui)1, ˜f(ui)1〉) : (〈ui1, ui2〉, 〈 ˜f(ui)1, ˜f(ui)2〉) ∈ FX}
FX = {(〈ui1, ui2〉, 〈 ˜f(ui)2, ˜f(ui)2〉) : (〈ui1, ui2〉, 〈 ˜f(ui)1, ˜f(ui)2〉) ∈ FX}
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3 Experiments and Results

As the kernel function the Epanechnikov kernel was used: K(x) = 0.75(1 −
x2), x ∈ 〈−1, 1〉. The smoothing parameter was calculated with the following
formula [5]: h = 1, 06 min(σ̃, ˜R/1.34)n−1/5. For the illustration of rough regres-
sion four noised data sets were used [1]: D1 : y = x + 2 exp (−16x2) ; D2 : y =
sin 2x + 2 exp (−16x2) ; D3 : y = 0.3 exp (−4(x + 1)2) + 0.7 exp (−16(x − 1)2) ;
D4 : y = 0.4x + 1. The distribution of the noise value was normal with the stan-
dard deviation as follows: 0.4, 0.3, 0.1, 0.15. The domain of every data set was
the closed interval [−2, 2]. Each data set contained 101 pairs of objects (x1 =
−2, x2 = −1.96, . . . , x101 = 2) what caused that for every set the same value of
smoothing parameter was calculated (hFG1 = hFG2 = hFG3 = hFG4 = 1.055).
After the roughing step all data set contained 201 pairs of rough numbers.

For the analysis of the regression error a popular RMSE measure was used:
RMSE = (n−1

∑n
i=1(y − ỹ)2)0.5. It is easy to prove that this definition may be

extended for rough regression error. On the left side of the Fig. 1 the partial
result of rough regression of the first data set is shown (rough regression for the
interval [−0.4, 0.18]). The solid black line represents the original analytical de-
pendence. Blue points represent data with noise and black ones mean the value
of the standard Nadraya–Watson kernel estimator. Finally, two red characteris-
tics illustrate the X -lower and the X -upper regression. Real and rough regression
error for all data sets are presented in table 1.

Comparison of real and rough regression, as the comparison of real and rough
RMSE, is shown on the right side of the Fig. 1. Let us assume that err = y− ỹ is
the real error and rerr = y − ŷR is the analogical rough error. Rough regression

Table 1. Regression errors for D1 and D2 datasets

Data set RMSE rough RMSE Data set RMSE rough RMSE

D1 0.4370 〈0.4384, 0.4374〉 D3 0.1179 〈0.1182, 0.1183〉
D2 0.3790 〈0.3809, 0.3801〉 D4 0.1426 〈0.1430, 0.1427〉
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Fig. 1. Left: X -upper and X -lower regression for the slice of the FG1 set (red lines),
noised data (blue diamonds), real kernel regression (black x-es). Right: rough RMSE
error with regards to real RMSE.
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will give better results than real regression if err − rerr > 0. On the Fig. 1 we
may see that on the ends of the interval rough regression gives worse results.

4 Conclusions and Further Works

This short paper tries to redefine existing and define not existing notions which
become the basis of the rough regression. These notions lead to the definition
of the rough number that is the ordered pair of real values. In this case the
nonparametric Nadaraya–Watson kernel regressor was shown as its application.

From the interpretative point of view the rough estimator gives more infor-
mation that real estimator: for the rough argument it gives the rough output
that is thinner if the local data dependence is more stable (there is no local
trend, it’s rather oscillating) or wider otherwise. For a rough argument of the
estimator the output rough value describes the range of possible values taken
by the dependence for the pointed values. For both arguments (real and rough
numbers) the result may be interpreted that the estimator of the value is the
number between the X -lower and the X -upper function regression.
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ematical advice.
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Abstract. Rough set theory provides a systematic way for rule ex-
traction, attribute reduction and knowledge classification in information
systems. Some measurements are important in rough sets. For exam-
ple, information entropy, knowledge dependency are useful in attribute
reduction algorithms. This paper proposes the concepts of the lower and
upper covering numbers to establish measurements in covering-based
rough sets which are generalizations of rough sets. With covering num-
bers, we establish a distance structure, two semilattices and a lattice
for covering-based rough sets. The new concepts are helpful in studying
covering-based rough sets from topological and algebraical viewpoints.

Keywords: Rough set, Covering, Measurement, Quantitative, Distance,
Covering number, Lattice.

1 Introduction

As a technique for data mining, rough set theory [1] has been used for rule
extraction, knowledge classification and so on. In order to characterize rough sets,
a number of measurements have been proposed, such as information entropy [2,3]
and knowledge dependency [4,5]. Based on these measurements, rough sets can
be studied quantitatively, and efficient algorithms for attribute reduction [6] can
be designed.

Covering-based rough set theory [7,8] is a generalization of rough set
theory. However, those measurements in rough sets can not be used in covering-
based rough sets. Therefore, there is much need to construct some measure-
ments in covering-based rough sets. Furthermore, the structure of covering-based
rough sets [9,10,11] have been a hotspot of study. It includes topological struc-
tures [12,13] and algebraical structures [14,15,16,17].

This paper proposes a measurement to study covering-based rough sets quan-
titatively. The concepts of the upper covering number and the lower covering
number are defined to measure a set in covering-based rough sets. With cover-
ing numbers, we establish a distance, a lattice and two semilattice structures
in covering-based rough sets. These structures are helpful for characterizing
covering-based rough sets quantitatively. Specifically, the distance is used to
� Corresponding author. williamfengzhu@gmail.com
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reveal the relationship between two subsets of a domain from a quantitative
point of view.

The rest of this paper is arranged as follows. Section 2 reviews some funda-
mental concepts. Section 3 proposes two concepts of the upper and lower cov-
ering numbers, and studies their properties. With covering numbers, a distance
structure, a lattice and two semilattices are established. Section 4 concludes this
paper.

2 Basic Definitions

This section presents some fundamental concepts to be used in this paper. The
classical rough set theory is based on equivalence relations. An equivalence rela-
tion corresponds to a partition, while a covering is an extension of a partition.

Definition 1. (Covering [7]) Let U be a domain of discourse, C a family of
subsets of U . If none of subsets in C is empty and

⋃

C = U , C is called a
covering of U .

Distance is a fundamental concept for computer science and mathematics. The
most commonly used distance is the Euclid distance. Posets and lattices are also
basic concepts in computer science.

Definition 2. (Distance [18]) Let X be a nonempty set, d : X × X −→ R a
real function. d is called a distance on X, if ∀x, y, z ∈ X, the following three
conditions hold:
(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ d(x, z) + d(z, y).

Definition 3. (Poset [18]) A relation R on a set P is called a partial order if
R is reflective, antisymmetric, and transitive. If R is a partial order on P , then
(P, R) is called a poset.

Definition 4. (Semilattice [18]) An upper-semilattice is a poset (P, R) in which
every subset {a, b} has a least upper bound a ∨ b. A lower-semilattice is a poset
(P, R) in which every subset {a, b} has a greatest lower bound a ∨ b. The upper-
semilattice and the lower-semilattice are also called semilattices.

Definition 5. (Lattice [18]) A lattice is a poset (P, R) which is an upper-lattice
and a lower-semilattice.

Here ∨, ∧ are binary operations, and (P,∨,∧) is an algebraic system induced by
the lattice (P,≤). Sometimes, we also call (P,∨,∧) a lattice.

3 Covering Numbers

Various measurements have been proposed to characterize rough sets quantita-
tively [5,19]. Similarly, we establish some measurements to describe covering-
based rough sets quantitatively.
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3.1 Definitions and Properties of Covering Numbers

The upper covering number of a subset of a domain is the minimal number of
some elements in a covering which can cover the subset. The lower covering
number of a subset is the maximal number of some elements in a covering which
can be included in the subset.

Definition 6. (Covering numbers) Let C be a covering of U . For all X ⊆ U ,
we define
N∗(X |C) = min{|B||(X ⊆ ⋃

B) ∧ (B ⊆ C)},
N∗(X |C) = |{K ∈ C|K ⊆ X}|.
N∗(X |C) and N∗(X |C) are called the upper and lower covering numbers of X
with respect to C. When there is no confusion, N∗(X |C) is denoted simply by
N∗(X), and N∗(X |C) by N∗(X).

Example 1. Let U = {a, b, c, d}, K1 = {a, b}, K2 = {a, c}, K3 = {b, c}, K4 =
{d}, C = {K1, K2, K3, K4}, X = {a, d}, Y = {a, b, c}. Then B1 = {K1, K4},
B2 = {K2, K4}, B3 = {K1, K2, K4}, B4 = {K1, K3, K4}, B5 = {K2, K3, K4},
and B6 = {K1, K2, K3, K4} are also coverings of X ; in other words, X ⊆ ⋃

Bi

for i ∈ {1, · · · , 6}. So N∗(X) = min{|Bi||1 ≤ i ≤ 6} = 2. N∗(X) = |{K ∈
C|K ⊆ X}| = |{K4}| = 1. Similarly, N∗(Y ) = 2 and N∗(Y ) = 3.

In particular, according to Definition 6, we know that N∗(∅) = 0 since ∅ ⊆ ⋃{∅}
and {∅} ⊆ C. The result makes the concept of the covering numbers more
reasonable.

In the following, we study the properties of covering numbers in detail, such
as monotonicity.

Proposition 1. Let C be a covering of U . ∀X, Y ⊆ U , the following properties
about the upper covering number hold:
(1) If X ⊆ Y , then N∗(X) ≤ N∗(Y );
(2) N∗(X

⋃

Y ) ≤ N∗(X) + N∗(Y );
(3) N∗(X) = 0 if and only if X = ∅;
(4) If K ∈ C, then N∗(K1) = 1, for all K1 ⊆ K, and K1 �= ∅.
Proof. (1) Suppose N∗(Y ) = |BY |. If BY is not the only one, then we choose
any one satisfying the condition. So X ⊆ Y ⊆ ⋃

BY and BY ⊆ C. Hence
N∗(X) = min{|B||(X ⊆ ⋃

B) ∧ (B ⊆ C)} ≤ |BY | = N∗(Y ).
(2) If X = ∅ or Y = ∅, the conclusion holds. More generally, suppose X �=
∅ and Y �= ∅. We assume N∗(X) = |BX | and N∗(Y ) = |BY |, which imply
X ⊆ ⋃

BX and Y ⊆ ⋃

BY . Hence X
⋃

Y ⊆ (
⋃

BX)
⋃

(
⋃

BY ) =
⋃

(BX

⋃

BY ).
On the other hand, BX

⋃

BY ⊆ C since BX ⊆ C and BY ⊆ C. Therefore,
N∗(X

⋃

Y ) ≤ |BX

⋃

BY | ≤ |BX | + |BY | = N∗(X) + N∗(Y ).
(3) and (4) are straightforward.

As an illustration, we consider the upper covering numbers of an element in a
covering and a set having only one element, respectively.

Corollary 1. Let C be a covering of U . For all K ∈ C, N∗(K) = 1.
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Corollary 2. Let C be a covering of U . For all x ∈ U , N∗({x}) = 1.

Similarly, we list some fundamental properties about the lower covering number.

Proposition 2. Let C be a covering of U and |C| = n. The following properties
about the lower covering number hold: ∀X, Y ⊆ U ,
(1) 0 ≤ N∗(X) ≤ n;
(2) N∗(U) = n;
(3) If X ⊆ Y , then N∗(X) ≤ N∗(Y );
(4) N∗(X) + N∗(Y ) ≤ N∗(X

⋃

Y ) + N∗(X
⋂

Y );
(5) N∗(X) + N∗(Xc) ≤ n, where Xc is the complement of X.

Based on the properties of the upper and lower covering numbers, the relation-
ship between covering numbers is explored as follows.

Proposition 3. Let C be a covering of U and |C| = n. For all X ⊆ U , N∗(X)+
N∗(Xc) ≤ n, where Xc is the complement of X.

Proof. N∗(X) + N∗(Xc) ≤ |{K ∈ C|K ⋂

X �= ∅}| + N∗(Xc) = n.

The relationships between covering numbers and partitions should also be stud-
ied. A sufficient and necessary condition is obtained; that is, a covering of a
domain is degenerated to a partition if and only if the upper covering number
of any subset of the domain and the lower covering number of its complement
equals to the number of elements in the covering.

Proposition 4. Let C be a covering of U and |C| = n. C is a partition of U if
and only if N∗(X) + N∗(Xc) = n for all X ⊆ U .

Proof. (=⇒): For all X ⊆ U , if C is a partition of U , then N∗(X) = |{K ∈
C|K ⋂

X �= ∅}|. Hence N∗(X)+N∗(Xc) = |{K ∈ C|K ⋂

X �= ∅}|+N∗(Xc) = n.
(⇐=): If N∗(X) + N∗(Xc) = n for all X ⊆ U , then according to Corollary 2,
N∗({x}) + N∗({x}c) = n, which implies N∗({x}) = |{K ∈ C|x ∈ K}| = 1 for
all x ∈ U . Hence C is a partition of U .

When a covering is degenerated to a partition, some new characteristics about
covering numbers are presented. Particularly, the upper covering number of a
subset of a domain is greater than the lower covering number.

Proposition 5. If C is a partition of U , then N∗(X) ≤ N∗(X) for all X ⊆ U .

3.2 Distance Established with Covering Numbers

The distance is a numerical description of how far apart objects are, and it is used
in many fields as a basic topological structure. In this subsection, we establishes
a distance structure in covering-based rough sets with covering numbers.

Definition 7. Let C be a covering of U . For all X, Y ⊆ U , we define a binary
operation d,
d : 2U × 2U −→ N ,
d(X, Y ) = N∗(X − Y ) + N∗(Y − X).
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Proposition 6. d is a distance on 2U .

Proof. Firstly, ∀X, Y ⊆ U , we know that d(X, Y ) ≥ 0. d(X, Y ) = 0 if and
only if N∗(X − Y ) = 0 and N∗(Y − X) = 0. According to Proposition 1, we
can get that d(X, Y ) = 0 if and only if X = Y . Secondly, d(Y, X) = N∗(Y −
X) + N∗(X − Y ) = N∗(X − Y ) + N∗(Y − X) = d(X, Y ). Thirdly, because
X − Y = X

⋂

Y C = X
⋂

(Z
⋃

ZC)
⋂

Y C = (X
⋂

Z
⋂

Y C)
⋃

(X
⋂

ZC
⋂

Y C) ⊆
(Z

⋂

Y C)
⋃

(X
⋂

ZC) = (Z − Y )
⋃

(X − Z) for all X, Y, Z ⊆ U where Y C ,
ZC are the complements of Y , Z with respect to U , respectively. N∗(X − Y ) ≤
N∗[(X − Z)

⋃

(Z − Y )] ≤ N∗(X − Z) + N∗(Z − Y ). This completes the proof.

3.3 Lattice Established with Covering Numbers

Lattices are important algebraical structures, and have a variety of applications
in the real world. This subsection establishes a lattice structure and two semi-
lattices in covering-based rough sets with covering numbers.

Definition 8. Let C be a covering of U . For all X, Y ⊆ U , if X ⊆ Y and
N∗(X) = N∗(Y ), we call Y an upper-set of X, and X a lower-set of Y .

The family of all upper-sets and the family of all lower-sets are semilattices.

Proposition 7. Let C be a covering of U . For all X ⊆ U , we call τX , τ
′
X the

family of all upper-sets, lower-sets of X, respectively, i.e.,

τX = {Y ⊆ U |(X ⊆ Y ) ∧ (N∗(X) = N∗(Y ))},
τ

′
X = {Y ⊆ U |(Y ⊆ X) ∧ (N∗(X) = N∗(Y ))}.

Then (τX ,
⋂

), and (τ
′
X ,

⋃

) are semilattices.

Proof. In fact, we only need to prove Y1

⋂

Y2 ∈ τ for all Y1, Y2 ∈ τ , and Y1

⋃

Y2 ∈
τ

′
for all Y1, Y2 ∈ τ

′
. For all Y1, Y2 ∈ τ , N∗(Y1) = N∗(X), X ⊆ Y1 and N∗(Y2) =

N∗(X), X ⊆ Y2. So X ⊆ Y1

⋂

Y2 ⊆ Y1. Thus N∗(X) ≤ N∗(Y1

⋂

Y2) ≤ N∗(Y1) =
N∗(X), that is, N∗(Y1

⋂

Y2) = N∗(X). Therefore, Y1

⋂

Y2 ∈ τ . Similarly, we
can prove Y1

⋃

Y2 ∈ τ
′

for all Y1, Y2 ∈ τ
′
.

There is widespread interest in breaking large objects into smaller, more easily
understood, pieces. A detached-set of a domain divides the domain and the
covering into two disjoint parts.

Definition 9. Let C be a covering of U and |C| = n. For X ⊆ U , if N∗(X) +
N∗(Xc) = n, we call X a detached-set of U with respect to C.

With the detached-set, a covering is divided into two smaller coverings of two
smaller domains. Moreover, the concept of the detached-set leads to a lattice
structure.

Proposition 8. Let C be a covering of U and |C| = n. ψ is denoted as the
family of all detached-sets of U , i.e.,

ψ = {X ⊆ U |N∗(X) + N∗(Xc) = n}.
Then (ψ,

⋃

,
⋂

) is a lattice.
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Proof. For all X, Y ∈ ψ, we have N∗(X)+N∗(Xc) = n and N∗(Y )+N∗(Y c) = n.
So 2n = (N∗(X) + N∗(Xc)) + (N∗(Y ) + N∗(Y c)) ≤ (N∗(X

⋃

Y ) + N∗(X
⋂

Y ))
+(N∗(Xc

⋃

Y c))+N∗(Xc
⋂

Y c) = [N∗(X
⋃

Y )+N∗((X
⋃

Y )c)]+[N∗(X
⋂

Y )+
N∗((X

⋂

Y )c)]. It means that N∗(X
⋃

Y )+N∗((X
⋃

Y )c) = n and N∗(X
⋂

Y )+
N∗((X

⋂

Y )c) = n. Thus X
⋃

Y ∈ ψ and X
⋂

Y ∈ ψ.

4 Conclusions

This paper proposes the concepts of covering numbers to characterize covering-
based rough sets quantitatively. Covering-based rough sets can be finely depicted
by covering numbers. Specifically, a sufficient and necessary condition on a par-
tition is obtained with covering numbers. Moreover, with covering numbers, a
distance, two semilattices and a lattice structures are established in covering-
based rough sets. Therefore, this work is helpful in describing covering-based
rough sets from topological and algebraical viewpoints.
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Abstract. The purpose of this paper is towards the algebraic study of
rough finite state machines, i.e., to introduce the concept of homomor-
phisms between two rough finite state machines, to associate a rough
transformation semigroup with a rough finite state machine and to in-
troduce the concept of coverings of rough finite state machines as well
as rough transformation semigroups.
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1 Introduction and Preliminaries

The concepts of homomorphism, transformation semigroup and covering play
prominent role in the study of finite state machines [2]. Much later, Malik,
Mordeson and Sen [3] introduced these ideas for fuzzy finite state machines and
explored their algebraic properties (cf., [5] for more details). Inspired from [6],
Basu [1] has recently introduced the concept of rough finite state automaton (a
concept resembles to rough finite state machine) and tried to design a recognizer
that accepts imprecise statements, while Tiwari, Srivastava and Sharan [7] stud-
ied the separated and connectedness properties of rough finite state automata.
The purpose of this paper is to introduce the concepts of homomorphism, trans-
formation semigroup and covering for rough finite state machines. In particular,
we establish a congruence relation to associate a semigroup with given rough fi-
nite state machine, which lead us to associate a rough transformation semigroup
to each rough finite state machine. Lastly, we introduce the notion of coverings
for both rough finite state machines and rough transformation semigroups.

Now, we collect some concepts associated with rough set theory, which are
useful in the next sections. We start from the following concept of approximation
space.

Definition 1. [6] Let X be a nonempty set and R be an equivalence relation on
X. Then the pair (X, R) is called an approximation space.
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Definition 2. [6] Let (X, R) be an approximation space and [x]R be the equiv-
alence class of x under R. Then lower approximation and upper approxi-
mation of A ⊆ X are, respectively, defined to be the sets

A = {x ∈ X | [x]R ⊆ A},and

A = {x ∈ X | [x]R ∩ A �= φ}.
For an approximation space (X, R), A ⊆ X is called a definable set if it is an
union of equivalence classes under R and a pair (L, U) of definable sets is called
a rough set in (X, R) if L ⊆ U , and if any equivalence class of x is a singleton
set {x} such that {x} ∈ U , then {x} ∈ L.

2 Rough Finite State Machines

In this section, we recall some concepts related to a rough finite state machine
and introduce the concept of homomorphism between two rough finite state
machines.

Definition 3. [1] A rough finite state machine (or RFSM) is a 4-tuple M =
(Q, R, X, δ), where Q is a nonempty finite set (the set of states of M), R is a
given equivalence relation on Q, X is a nonempty finite set (the set of inputs)
and δ is a map δ : Q×X → D×D. D being the collection of all definable sets in
the approximation space (Q, R), if δ(q, a) = (D1, D2), where q ∈ Q and a ∈ X,
then (D1, D2) is a rough set with D1 = A and D2 = A, for some A ⊆ Q.

If δ(q, a) = (D1, D2) with D1 = A and D2 = A, then by the abuse of notation,
we identify A as δ(q, a); thus D1 = δ(q, a) and D2 = δ(q, a) i.e., δ(q, a) =
(δ(q, a), δ(q, a)).

Definition 4. [1] For any equivalence class (block) B of R and a ∈ X, Ba =
(Ba, Ba) is called block transition, where Ba =

⋃{qa | q ∈ B}, Ba =
⋃{qa |

q ∈ B} and for a definable set D, Da =
⋃{Ba | B is a block of R and B ⊆ D},

Da =
⋃{Ba |B is a block of R and B ⊆ D}.

Let X∗ be the set of all words on X (i.e., finite strings of elements of X , which
form a monoid under concatenation of strings) including the empty word (which
we shall denote by ε). Throughout, ∀x ∈ X∗, |x| denotes the length of string x.

Definition 5. [7] For any equivalence class (block) B of R and x ∈ X∗, Bx =
(Bx, Bx), where Bx =

⋃{qx | q ∈ B}, Bx =
⋃{qx | q ∈ B} and for a definable

set D, Dx =
⋃{Bx | B is a block of R and B ⊆ D}, Dx =

⋃{Bx |B is a block
of R and B ⊆ D}.

Definition 6. [1] Let M = (Q, R, X, δ) be a RFSM. Define δ∗ : Q×X∗ → D×D
as follows:

1. ∀q ∈ Q, δ∗(q, εX) = ([q]R, [q]R), where [q]R is the equivalence class of q under
R, and ∀x ∈ X∗\{εX}, δ∗(q, x) = δ∗([q]R, x), and
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2. ∀q ∈ Q, ∀x ∈ X∗ and ∀a ∈ X, δ∗(q, xa) = (δ∗(q, xa), δ∗(q, xa)), where
δ∗(q, xa) = δ(δ∗(q, x), a) =

⋃{Ba | B is a block under R and B ⊆ δ∗(q, x)}
and δ∗(q, xa) = δ(δ∗(q, x), a) =

⋃{Ba | B is a block under R and B ⊆
δ∗(q, x)}.

In [1], it is shown that the transition function δ of a RFSM (Q, R, X, δ) can be
recursively extended to a function δ∗ : Q × X∗ → D × D as follows:

1. ∀q ∈ Q, δ∗(q, εX) = ([q]R, [q]R), where [q]R is the equivalence class of q under
R, and ∀x ∈ X∗\{εX}, δ∗(q, x) = δ∗([q]R, x), and

2. ∀q ∈ Q and ∀x, y ∈ X∗, δ∗(q, xy) = (δ∗(q, xy), δ∗(q, xy)), where δ∗(q, xy) =
δ∗(δ∗(q, x), y) =

⋃{By | B is a block under R and B ⊆ δ∗(q, x)} and

δ∗(q, xy) = δ∗(δ∗(q, x), y) =
⋃{By | B is a block under R and B ⊆ δ∗(q, x)}.

Inspired from [2], we now introduce the following definition of homomorphism
between two rough finite state machines.

Definition 7. A homomorphism from a RFSM M1 = (Q1, R1, X1, δ1) to
RFSM M2 = (Q2, R2, X2, δ2) is a pair of maps (f, g), where f : Q1 → Q2

and g : X1 → X2 are functions such that

1. (p, q) ∈ R1 ⇒ (f(p), f(q)) ∈ R2, ∀p, q ∈ Q1,
2. (f(δ1(q, a)), f(δ1(q, a))) ⊆ (δ2(f(q), g(a)), δ2(f(q), g(a))), ∀q ∈ Q1

and ∀a ∈ X1.

Let M1 = (Q1, R1, X1, δ1), M2 = (Q2, R2, X2, δ2) be two rough finite state
machines and (f, g) : M1 → M2 be a homomorphism. Let g∗ : X∗1 → X∗2 be a
map such that g∗(εX1) = εX2 and g∗(ua) = g∗(u)g(a), ∀u ∈ X∗1 and a ∈ X1.
Then we have the following lemma.

Lemma 1. Let M1 = (Q1, R1, X1, δ1), M2 = (Q2, R2, X2, δ2) be two rough finite
state machines and (f, g) : M1 → M2 be a homomorphism. Then g∗(xy) =
g∗(x)g∗(y), ∀x, y ∈ X∗1 .

Proof. Let x, y ∈ X∗1 . We prove the result by induction on |y| = n. If n = 0,
then y = εX1 and so xy = xεX1 = x. Thus g∗(xy) = g∗(x) = g∗(x)εX2 =
g∗(x)g∗(εX1) = g∗(x)g∗(y), whereby, the result is true for n = 0. Also, let the
result be true ∀z ∈ X∗1 such that |z| = n − 1, n > 0 and y = za, where a ∈
X1. Then g∗(xy) = g∗(xza) = g∗(xz)g(a) = g∗(x)g∗(z)g(a) = g∗(x)g∗(za) =
g∗(x)g∗(y). Hence the result is true for |y| = n. 	


Proposition 1. Let M1 = (Q1, R1, X1, δ1), M2 = (Q2, R2, X2, δ2) be two rough
finite statemachines and (f, g) : M1 → M2 be a homomorphism.Then (f(δ∗1 (q, x)),
f(δ∗1(q, x))) ⊆ (δ∗2(f(q), g∗(x)), δ∗2(f(q), g∗(x))), ∀q ∈ Q1 and ∀x ∈ X∗1 .
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Proof. Let q1 ∈ Q1 and x ∈ X∗1 . We prove the result by induction on |x| =
n. If n = 0, then x = εX1 and g∗(x) = g∗(εX1) = εX2 . Now ∀q ∈ Q1,
(f(δ∗1(q, εX1)), f(δ∗1(q, εX1))) = (f([q]R1), f([q]R1)) ⊆ ([f(q)]R2 , [f(q)]R2)
= (δ∗2(f(q), εX2), δ∗2(f(q), εX2 )) (as (q, q) ∈ R1 ⇒ (f(q), f(q)) ∈ R2, ∀q ∈
Q1). Let the result be true for all y ∈ X∗1 such that |y| = n − 1, n > 0
and x = ya, where a ∈ X1. Then (f(δ∗1(q, x)), f(δ∗1(q, x))) = (f(δ∗1(q, ya)),

f(δ∗1(q, ya))) = (f(δ1(δ∗1(q, y), a)), f(δ1(δ∗1(q, y), a))) ⊆ δ2(f(δ∗1(q, y)), g(a)),

δ2(f(δ∗1(q, y)), g(a))) ⊆ (δ2(δ∗2(f(q), g∗(y)), g(a)), δ2(δ∗2(f(q), g∗(y)), g(a)))

= (δ2(δ∗2(f(q), g∗(ya))), δ2(δ∗2(f(q), g∗(ya)))) = (δ∗2(f(q), g∗(ya)),
δ∗2(f(q), g∗(ya))) = (δ∗2(f(q), g∗(x)), δ∗2(f(q), g∗(x))). 	


3 Rough Transformation Semigroups

The notion of transformation semigroups has been introduced and studied in
both finite state machines and fuzzy finite state machines (cf., [2], [5]). In this
section, we introduce analogous notion for rough finite state machines and dis-
cuss their properties.

Recall from [5] that an equivalence relation ∼ on a semigroup (X, ∗) is called a
congruence relation on X if, ∀a, b, c ∈ X , a ∼ b ⇒ a∗c ∼ b∗c and c∗a ∼ c∗b.

Let (Q, R, X, δ) be a RFSM. Define a relation 
 on X∗ by x 
 y ⇔ (δ∗(q, x),
δ∗(q, x)) = (δ∗(q, y), δ∗(q, y)), ∀q ∈ Q, ∀x, y ∈ X∗. Then we have the following.

Proposition 2. Let (Q, R, X, δ) be a RFSM. Then the relation 
 is a congru-
ence relation on X∗.

Proof. It is obvious that the relation 
 is an equivalence relation on X∗. Let
x, y ∈ X∗ such that x 
 y and z ∈ X∗. Then ∀q ∈ Q, δ∗(q, xz) = (δ∗(q, xz),

δ∗(q, xz)) = (δ∗(δ∗(q, x), z), δ∗(δ∗(q, x), z)) = (δ∗(δ∗(q, y), z), δ∗(δ∗(q, y), z)) =

(δ∗(q, yz), δ∗(q, yz)) = δ∗(q, yz). Thus xz 
 yz. Similarly, zx 
 zy. Hence 
 is a
congruence relation on X∗. 	

For given RFSM M = (Q, R, X, δ), let [x] = {y ∈ X∗ : x 
 y} and E(M) =
{[x] : x ∈ X∗}. Define a binary operation ∗ on E(M) by [x] ∗ [y] = [xy], ∀
[x], [y] ∈ E(M). Then we have the following.

Proposition 3. For given RFSM M = (Q, R, X, δ), (E(M), ∗) is a finite semi-
group with identity.

Proof. Associativity of the ∗ is trivial. For [x] ∈ E(M), we have [x] ∗ [εX ] =
[xεX ] = [x] = [εXx] = [εX ] ∗ [x], whereby [εX ] is the identity of (E(M), ∗). Thus
(E(M), ∗) is a semigroup with identity. The finiteness of E(M) follows from the
fact that Q is finite and by the definition of relation 
. Hence (E(M), ∗) is a
finite semigroup with identity. 	
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Definition 8. A rough transformation semigroup (or RTS) is a 4-tuple
A = (Q, R, S, λ), where Q is a nonempty finite set (the set of states of A), R
is an equivalence relation on Q, S is a nonempty finite semigroup and λ : Q×S →
D×D, where D is the collection of all definable sets in the approximation space
(Q, R), such that ∀q ∈ Q,

1. if S contains the identity e, then λ(q, e) = ([q]R, [q]R), where [q]R is the
equivalence class of q under R, and

2. λ(q, uv) = (λ(q, uv), λ(q, uv)), where
λ(q, uv) = λ(λ(q, u), v) =

⋃{Bv | B is a block under R and B ⊆ λ(q, u)} and

λ(q, uv) = λ(λ(q, u), v) =
⋃{Bv | B is a block under R and B ⊆ λ(q, u)},

∀u, v ∈ S.

If, in addition, ∀q ∈ Q and u, v ∈ S, (λ(q, u), λ(q, u)) = (λ(q, v), λ(q, v)) ⇒ u =
v, holds. Then (Q, R, S, λ) is called faithful RTS.

Let A = (Q, R, S, λ) be a RTS which is not faithful. Define a relation ∼ on S by
u ∼ v ⇔ (λ(q, u), λ(q, u)) = (λ(q, v), λ(q, v)), ∀u, v ∈ S and ∀q ∈ Q. Then, it can
be easily seen that ∼ is an equivalence relation on S. Also, let u, v, w ∈ S and
u ∼ v. Then λ(q, uw) = (λ(q, uw), λ(q, uw)) = (λ(λ(q, u), w), λ(λ(q, u), w)) =

(λ(λ(q, v), w), λ(λ(q, v), w)) = (λ(q, vw), λ(q, vw)) = λ(q, vw). Thus uw ∼ vw.
Similarly, wu ∼ wv. Hence ∼ is a congruence relation on S.

Let [u] be the equivalence class of u induced by the relation ∼ and S/ ∼=
{[u] : u ∈ S}. Define μ : Q × S/ ∼→ D × D by μ(q, [x]) = λ(q, x), i.e.,
(μ(q, [x]), μ(q, [x])) = (λ(q, x), λ(q, x)), ∀q ∈ Q and ∀[x] ∈ S/ ∼. Now μ(q, [e]) =
([q]R, [q]R). Also, (μ(q, [x][y]), μ(q, [x][y])) = (μ(q, [xy]), μ(q, [xy])) = (λ(q, xy),

λ(q, xy)) = (λ(λ(q, x), y), λ(λ(q, x), y)) = (μ(μ(q, [x]), [y]), μ(μ(q, [x]), [y])),

∀[x], [y] ∈ S/ ∼. Again, let (μ(q, [x]), μ(q, [x])) = (μ(q, [y]), μ(q, [y])), ∀q ∈ Q.
Then (λ(q, x), λ(q, x)) = (λ(q, y), λ(q, y)), ∀q ∈ Q. Thus x ∼ y, whereby [x] = [y],
showing that (Q, R, S/ ∼, μ) is a faithful RTS.

Proposition 4. Let M = (Q, R, X, δ) be a RFSM. Then (Q, R, E(M), λ) is a
faithful RTS, where (λ(q, [x]), λ(q, [x])) = (δ∗(q, x), δ∗(q, x)), ∀q ∈ Q and ∀x ∈
X∗.

Proof. In view of Proposition 3.2, E(M) is a finite semigroup with identity
[εX ]. Obviously, λ(q, [εX ]) = ([q]R, [q]R). Let q ∈ Q and [x], [y] ∈ E(M). Then
λ(q, [x] ∗ [y]) = λ(q, [xy]) = δ∗(q, xy) = (δ∗(q, xy), δ∗(q, xy)) = (δ∗(δ∗(q, x), y),

δ∗(δ∗(q, x), y)) = (λ(λ(q, [x]), [y]), λ(λ(q, [x]), [y])). Also, let λ(q, [x]) = λ(q, [y]),

i.e., (λ(q, [x]), λ(q, [x])) = (λ(q, [y]), λ(q, [y])), ∀q ∈ Q. Then δ∗(q, x) = δ∗(q, y),
i.e., (δ∗(q, x), δ∗(q, x)) = (δ∗(q, y), δ∗(q, y)), ∀q ∈ Q. Thus x 
 y or [x] = [y].
Hence (Q, R, E(M), λ) is a faithful RTS. 	
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For RFSM M = (Q, R, X, δ), We shall denote by RTS(M), the RTS
(Q, R, E(M), λ), and call it the RTS associated with M .

Definition 9. A homomorphism from a RTS A1 = (Q1, R1, S1, λ1) to RTS
A2 = (Q2, R2, S2, λ2) is a pair of maps (α, β), where α : Q1 → Q2 and β : S1 →
S2 are functions such that

1. (p, q) ∈ R1 ⇒ (α(p), α(q)) ∈ R2, ∀p, q ∈ Q1,
2. β(uv) = β(u)β(v), ∀u, v ∈ S1,
3. if S1 and S2 contain the identity e1 and e2 respectively, then β(e1) = e2, and
4. (α(λ1(q, u)), α(λ1(q, u))) ⊆ (λ2(α(q), β(u)), λ2(α(q), β(u))), ∀q ∈ Q1 and

∀u ∈ S1.

A homomorphism (α, β) : A1 → A2 is called an isomorphism if α and β are
both one-one and onto.

Let S be a semigroup with identity e and (Q, R, S, λ) be a faithful RTS. Define
RFSM M = (Q, R, S, δ) by taking δ = λ. Consider RTS (M)= (Q, R, E(M), ρ),
where E(M) = S∗/ ∼ and (ρ(q, [u]), ρ(q, [u])) = (δ∗(q, u), δ∗(q, u)). Now, for all
q ∈ Q, (ρ(q, [e]), ρ(q, [e])) = (δ∗(q, e), δ∗(q, e)) = (λ(q, e), λ(q, e)) = ([q]R, [q]R).
Hence (ρ(q, [e]), ρ(q, [e])) = (ρ(q, [Λ]), ρ(q, [Λ])), where Λ is the empty word in
S∗. Thus [e] = [Λ].

Proposition 5. Let M = (Q, R, X, δ) be a RFSM and S be a semigroup with
identity e. Then RTS(M) is isomorphic to faithful RTS A = (Q, R, S, λ).

Proof. Let α : Q → Q and β : S → E(M) be maps such that α(q) = q and
β(u) = [u], ∀q ∈ Q and ∀u ∈ S. Let p, q ∈ Q. Then (p, q) ∈ R ⇒ (α(p), α(q)) ∈ R
holds from the definition of α. Let • be the binary operation of S and for
a, b ∈ S, a • b ∈ S, ab ∈ S∗. Then δ∗(q, a • b) = (δ∗(q, a • b), δ∗(q, a • b)) =

(δ(q, a • b), δ(q, a • b)) = (λ(q, a • b), λ(q, a • b)) = (λ(λ(q, a), b), λ(λ(q, a), b)) =

(δ(δ(q, a), b), δ(δ(q, a), b)) = (δ(q, ab), δ(q, ab)) = δ∗(q, ab), ∀q ∈ Q. Thus
[a • b] = [ab], showing that β(a • b) = [a • b] = [ab] = [a][b] = β(a)β(b).
Also, (ρ(α(q), β(u)), ρ(α(q), β(u))) = (ρ(q, [u]), ρ(q, [u])) = (δ∗(q, u), δ∗(q, u)) =
(δ(q, u), δ(q, u)) = (λ(q, u), λ(q, u)). Now it remains to show that α is one-
one and onto. Let u, v ∈ S be such that β(u) = β(v). Then [u] = [v]. Thus
(δ∗(q, u), δ∗(q, u)) = (δ∗(q, v), δ∗(q, v)), or that (δ(q, u), δ(q, u))=(δ(q, v), δ(q, v)),
implying that (λ(q, u), λ(q, u)) = (λ(q, v), λ(q, v)), or that u = v, as A is faith-
ful. Thus β is one-one. Also, it can be easily see that if ci ∈ S, i ∈ [1, n], then
[c1 • c2 • ....... • cn] = [c1c2.......cn] by the induction. Lastly, let [x] ∈ E(M). If
x = Λ, then [Λ] = [e] and β(e) = [Λ]. Let x = a1a2.......an, ai ∈ S, i ∈ [1, n].
Then β(a1 • a2 • ....... • an) = [a1 • a2 • ....... • an] = [a1a2.......an] = [x]. Thus β
is onto. 	
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4 Coverings

The concept of coverings for both finite state machines and fuzzy finite state
machines have introduced in (cf., [2], [5]). In this section, we introduce analogous
notion for RFSM.

Definition 10. Let M1 = (Q1, R1, X1, δ1) and M2 = (Q2, R2, X2, δ2) be two
rough finite state machines. Let η : Q2 → Q1 be an onto map and ξ : X1 → X2

be a map. Then the pair (η, ξ) is called a covering of M1 by M2, if

1. (p, q) ∈ R2 ⇒ (η(p), η(q)) ∈ R1, ∀p, q ∈ Q2, and
2. (δ∗1(η(q2), x), δ∗1(η(q2), x)) ⊆ (η(δ∗2(q2, ξ

∗(x))), η(δ∗2(q2, ξ∗(x))), ∀q2 ∈ Q2 and
∀x ∈ X∗1 , where ξ∗ : X∗1 → X∗2 is a map such that ξ∗(εX) = εX and
ξ∗(x) = ξ(x1)ξ(x2)...ξ(xn), ∀x = x1x2...xn ∈ X∗1 .

We shall denote by M1 � M2, the covering of M1 by M2 .

Definition 11. Let A1 = (Q1, R1, S1, λ1) and A2 = (Q2, R2, S2, λ2) be two
rough transformation semigroups. An onto map η : Q2 → Q1 is called covering
of A1 by A2, if

1. (p, q) ∈ R2 ⇒ (η(p), η(q)) ∈ R1, ∀p, q ∈ Q2, and
2. ∀s ∈ S1, ∃ ts ∈ S2 such that (λ1(η(q2), s), λ1(η(q2), s)) ⊆ (η(λ2(q2, ts)),

η(λ2(q2, ts))), ∀q2 ∈ Q2.

We shall denote by A1 � A2, the covering of A1 by A2 .

Proposition 6. (i) Let M1, M2 and M3 be rough finite state machines. Then
M1 � M2, M2 � M3 ⇒ M1 � M3.
(ii) Let A1, A2 and A3 be rough transformation semigroups. Then A1 � A2,
A2 � A3 ⇒ A1 � A3.

Proof. The proof is straightforward. 	


Proposition 7. Let M1 and M2 be two rough finite state machines such that
M1 � M2, then RTS(M1) � RTS(M2).

Proof. Let M1 = (Q1, R1, X1, δ1) and M2 = (Q2, R2, X2, δ2) be two rough
finite state machines such that M1 � M2. Then there exists an onto map
η : Q2 → Q1 and a map ξ∗ : X∗1 → X∗2 such that (δ∗1(η(q2), x), δ∗1(η(q2), x))
⊆ (η(δ∗2(q2, ξ

∗(x))), η(δ∗2(q2, ξ∗(x))), ∀q2 ∈ Q2 and ∀x ∈ X∗1 . Let RTS(M1)
= (Q1, R1, E(M1), λ1) and RTS(M2) = (Q2, R2, E(M2), λ2) be rough trans-
formation semigroups associated with rough finite state machines M1 and M2

respectively. Also, let s ∈ E(M1). Then ∃ x ∈ X∗1 such that s ∈ [x]. Again,
let ts = [ξ∗(x)] ∈ E(M2) and q2 ∈ Q2. Then (λ1(η(q2), s), λ1(η(q2), s)) =
(λ1(η(q2), [x]), λ1(η(q2), [x])) = (δ∗1(η(q2), x), δ∗1(η(q2), x)) ⊆ (η(δ∗2(q2), ξ∗(x)),
η(δ∗2(q2), ξ∗(x))) = (η(λ2(q2), [ξ∗(x)]), η(λ2(q2), [ξ∗(x)])) = (η(λ2(q2), ts),
η(λ2(q2), ts)), showing that RTS(M1) � RTS(M2). 	
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5 Conclusion

Chiefly inspired from [3] and [5], we tried to present here the concept of ho-
momorphism between two rough finite state machines, rough transformation
semigroup associated with a rough finite state machine and coverings of rough
finite state machines as well as rough transformation semigroups for the study of
algebraic rough machines theory. Even, much more can be done in this direction
by introducing the concept of different products of rough finite state machines,
as in [4].

Acknowledgments. The authors gratefully thank the reviewers for their ob-
servations.
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1 Introduction

Rough set theory [3] is a useful mechanism for uncertainty processing. Several
extensions have been proposed, such as variable precision rough set model [10],
graded rough set model [5,6], or rough set covering models [1,9].

In the view of granular computing [7], an equivalence relation on a universe can
be regarded as a granulation, and a partition on the universe – as a granulation
space [4]. Qian and Liang [2] introduced the rough set model based on multi-
granulations, where multi-equivalence relations must be used because of user
requirements or problem specification.

This paper proposes the rough set model based on multi-covering relations.
The lower and upper approximations of a set are defined by multi-covering re-
lations on the universe, and some basic properties are introduced. One can see
that the rough set model based on multi-covering relations is an extension of the
rough set model based on multi-granulations.

2 Preliminaries

In this section, we present some necessary concepts and preliminaries required
in the sequel of our work. The detailed descriptions of the related theories can
be found in the source papers [2,3,8,9]. Qian and Liang [2] proposed the rough
set model based on multi-granulations called MGRS.

Definition 1 [2]. Let K = (U,R) be a knowledge base and R be a family of
equivalence relations on U . For any X ⊆ U and P, Q ∈ R, the lower and upper
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approximations of X can be defined as P + QX = {x ∈ U | [x]P ⊆ X∨[x]Q ⊆ X}
and P + QX =∼ P + Q(∼ X), where ∼ X is the complement of X in U .

Definition 2 [9]. Let U be a universe of discourse and C be a covering of U .
The pair < U, C > is called a covering approximation space. For ∀x ∈ U , the
set md(x) is called the minimal description of x, where md(x) = {K ∈ C|x ∈
K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)}.

Definition 3 [9]. Let < U, C > be a covering approximation space. For X ⊆
U , the covering lower and upper approximations of X are defined as C(X) =
{x ∈ U | ∩ md(x) ⊆ X} and C(X) = {x ∈ U | (∩md(x)) ∩ X 
= ∅}.

Proposition 1 [8]. The covering lower and upper approximations have the
following properties: (1) CX ⊆ X ⊆ CX ; (2) C∅ = C∅ = ∅ and CU = CU = U ;
(3) C(X ∩ Y ) = CX ∩ CY and C(X ∪ Y ) = CX ∪ CY ; (4) C(CX) = CX and
C(CX) = CX ; (5) If X ⊆ Y , then CX ⊆ CY and CX ⊆ CY ; (6) C(X) =∼
C(∼ X).

Theorem 1 [8]. Let C be a covering of U . C and reduct(C) generate the same
lower and upper approximation operators, where reduct(C) is the reduction of
C on U .

3 Approximation Operators of CMGRS

In this section, we extend MGRS to covering rough set model based on multi-
granulations, called CMGRS. Some basic properties of the lower and upper ap-
proximations are discussed.

Definition 4. Let < U,C > be a knowledge base, C be a family of coverings on U
and P, Q ∈ C. For any X ⊆ U , its lower and upper approximations with respect
to P, Q are defined as P + QX = {x ∈ U | ∩ mdP (x) ⊆ X ∨ ∩mdQ(x) ⊆ X}
and P + QX =∼ P + Q(∼ X). If P + Q(X) = P + QX , then X is defin-
able. Otherwise X is called a covering rough set with respect to P, Q. The pair
(P + QX, P + QX) is called a covering rough set based on P, Q.

Definitions 1 and 4 are the same when C is a family of partitions. We show the
difference between the two models using example 1.

Example 1. Let < U,C > be a knowledge base, where U = {a, b, c, d}, and for
P, Q ∈ C there is P = {{a, b}, {b, c, d}, {c, d}} and Q = {{a, c}, {b, d}, {a, b, d}}.
If X = {a, d}, then P∩Q = {{a}, {b}, {c}, {d}, {a, b}, {b, d}}. Surely, P∩Q is also
a covering of U . There is P ∩ QX = {a, d}, P ∩ QX = {a, d}, P + QX = {a},
and P + QX = {a, c, d}. So P ∩ QX 
= P + QX and P ∩ QX 
= P + QX .

Lemma 1. Let < U,C > be a knowledge base, P, Q ∈ C. Then for each X ⊆ U
we have P + QX = PX ∪ QX and P + QX = PX ∩ QX .
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Proposition 2. Let < U,C > be a knowledge base, P, Q ∈ C. For each X ⊆ U ,
the following properties hold: (1) P + QX ⊆ X ⊆ P + QX ; (2) P + Q∅ =
P + Q∅ = ∅ and P + QU = P + QU = U ; (3) P + Q(∼ X) =∼ P + QX and
P + Q(∼ X) =∼ P + QX ; (4) P + Q(P + QX) = P + QX ⊆ P + Q(P + QX);
(5) P + Q(P + QX) ⊆ P + QX = P + Q(P + QX); (6) P + QX = Q + PX

and P + QX = Q + PX .

Proposition 3. Let < U,C > be a knowledge base, P, Q ∈ C. For each X, Y ⊆
U , the following properties hold: (1) P + Q(X ∩Y ) = (PX ∩PY )∪ (QX ∩QY );
(2) P + Q(X ∪ Y ) = (PX ∪PY )∩ (QX ∪QY ); (3) P + Q(X ∩ Y ) ⊆ P + QX ∩
P + QY ; (4) P + Q(X∪Y ) ⊇ P + QX∪P + QY ; (5) If X ⊆ Y , then P + QX ⊆
P + QY and P + QX ⊆ P + QY ; (6) P + Q(X ∪ Y ) ⊇ P + QX ∪ P + QY and
P + Q(X ∩ Y ) ⊆ P + QX ∩ P + QY .

Example 2. (Continued from Example 1) If Y = {a, b}, then X ∩ Y = {a}
and X ∪ Y = {a, b, d}. There is PX = ∅, PX = {a, c, d}, QX = {a}, QX =
{a, b, c, d}, PY = {a, b}, PY = {a, b}, and QY = {a}, QY = {a, b, c, d}. Then
P + Q(X ∩Y ) = {a} = (PX ∩PY )∪ (QX ∩QY ), P + Q(X ∪Y ) = {a, b, c, d} =
(PX ∪ PY ) ∩ (QX ∪ QY ), P + Q(X ∩ Y ) = {a} ⊆ P + QX ∩ P + QY = {a},
P + Q(X ∪ Y ) = {a, b, c, d} ⊇ P + QX ∪ P + QY = {a, c, d}, Y = {a, b} ⊂
X ∪ Y = {a, b, d}, P + QY = {a, b} ⊂ P + Q(X ∪ Y ) = {a, b, d}, P + QY =
{a, c, d} ⊂ P + Q(X ∪ Y ) = {a, b, c, d}, P + Q(X ∪ Y ) = {a, b, d} ⊇ P + QX ∪
P + QY = {a, b}, and P + Q(X ∩ Y ) = {a} ⊆ P + QX ∩ P + QY = {a, c, d}.

Definition 5. Let < U,C > be a knowledge base, P, Q ∈ C, reduct(P ) =
{P1, . . . , Pp}, and reduct(Q) = {Q1, . . . , Qq}. For each x ∈ U , if x ∈ Pi(1 ≤ i ≤
p) and x ∈ Qj(1 ≤ j ≤ q), then there is Pi ⊆ Qj , we say reduct(P ) is finer than
reduct(Q), denoted by P � Q.

Theorem 2. Let < U,C > be a knowledge base, P, Q ∈ C. If P � Q, then, for
each X ⊆ U , we have: (1) P + QX = PX and (2) P + QX = PX .

Definition 6. Let < U,C > be a knowledge base, C be a family of coverings on U
and Pi ∈ C, i = 1, . . . , n. For any X ⊆ U , the lower and upper approximations
of X in U with respect to P1, . . . , Pn are defined as

∑

i PiX = ∪{x ∈ U | ∩
mdPi(x) ⊆ X, i ≤ n} and

∑

i PiX =∼ ∑

i Pi(∼ X).

Definition 6 implies the following properties of the lower and upper approxima-
tion operators.

Proposition 4. Let < U,C > be a knowledge base, C be a family of coverings on
U , Pi ∈ C, i = 1, . . . , n. For any X, Y ⊆ U , the following properties are satisfied:
(1)

∑

i PiX =
⋃

i PiX and
∑

i PiX =
⋂

i PiX ; (2)
∑

i Pi(∼ X) =∼ ∑

i PiX

and
∑

i Pi(∼ X) =∼ ∑

i PiX ; (3) If X ⊆ Y , then
∑

i PiX ⊆ ∑

i PiY and
∑

i PiX ⊆ ∑

i PiY .
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Proposition 5. Let < U,C > be a knowledge base, C be a family of cover-
ings on U , Pi ∈ C, i = 1, . . . , n. For any Xj ⊆ U, j = 1, . . . , m, the following
properties are satisfied: (1)

∑

i Pi(
⋂

j Xj) =
⋃

i (
⋂

j PiXj); (2)
∑

i Pi(
⋃

j Xj) =
⋂

i (
⋃

j PiXj); (3)
∑

i Pi(
⋂

j Xj) ⊆ ⋂

j (
∑

i PiXj); (4)
∑

i Pi(
⋃

j Xj) ⊇ ⋃

j (
∑

i Pi

Xj); (5)
∑

i Pi(
⋃

j Xj) ⊇ ⋃

j (
∑

i PiXj); (6)
∑

i Pi(
⋂

j Xj) ⊆ ⋂

j (
∑

i PiXj).

Theorem 3. Let < U,C > be a knowledge base, C be a family of coverings on
U , Pi ∈ C, i = 1, . . . , n. For any X ⊆ U , the following properties are satisfied:
(1) If P1 � Pi, i = 1, . . . , n, then

∑

i PiX = P1X ; (2) If P1 � Pi, i = 1, . . . , n, then
∑

i PiX = P1X .

4 Conclusion

The extension of Pawlak rough set model is an important direction of research. In
this paper, along the line of Qian and Liang [2], we proposed the covering rough
set model based on multi-granulations and we discussed some of its interesting
properties that may be important for future real life applications.
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A Descriptive Language Based on Granular

Computing – Granular Logic
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Abstract. In this article, a granular logic defined in granular space is
studied. Value of any individual variable in the logic is token as a granule
or granulation, so the logic is viewed as second logic. The logic will be
applied to describe the theorems in granular mathematics and its proof
and to describe clinic experience and its reasoning of medicinal experts.

Keywords: Rough sets, Fuzzy sets, Granular computing, Operations
on granulations, Granular logic.

1 Introduction

According to the research and development of rough sets and rough logic [1−4],
the concepts of information granulation and granular computing are proposed.
Hobbs published an article “granularity” [5] in 1985, and applied it to the prob-
lem solving in AI. It was defined by the predicate in classical logic, but the
operation rules on granularities were not defined. Skowron described informa-
tion granules in 2001, formulating the concept of granular language for the first
time [6], but its syntax and semantics were not defined. Polkowski studied an-
other type of logic in 2004 [7] and reported the granular logic in granular space
in 2006 [8]. However, that logic was not defined completely.

In this paper, real granulation and its relative operations in real granular
space R∗ are introduced. Secondly, syntax and semantics of the granular logic
are defined in R∗.

2 Granulation in Real Sets and Related Operations

Based on Robinson’s nonstandard analysis [9] and Zadeh’s granular mathematics
[10], we may find out that a super real number in nonstandard analysis or a real
number in granular mathematics is essentially a real granulation in granular real
space R∗. The operations on granulations in R∗ may be discussed as follows.

2.1 Real Granular Space

Let us discuss the granulations in one-dimensional real granular space R∗. The
granulations in two or more dimensions may be considered analogously.
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Let R be a real space, where each real number a could be constructed as a
real granulation. Hence, we have a real granular space R∗ based on R. Obviously,
R ⊆ R∗. Any real number a and positive infinitely small number ε constructs an
interval (a − ε, a + ε). It is called a granulation, denoted by a∗.

2.2 Indiscernibility Relation in R∗

Let a∗, b∗ ∈ R∗. a∗ and b∗ are indiscernible, denoted by a∗∞b∗, iff

a∗ � b∗ = ε∗ ∈ R∗

where � is subtraction symbol in R∗ and ε∗ is infinitely small granulation in R∗.
It means that the finite parts of a∗ are same as finite parts of b∗, as well as infinite
parts of a∗ are different from infinite parts of b∗ but they are infinete approached
each other, that is, an+1 is infinite approached to with bn+1, · · · , an+m is infinite
approached to with bn+m.

The operation laws of granulations in R∗ are defined as follows:

a∗
⊕

b∗ = (a + b)∗ a∗ � b∗ = (a − b)∗

a∗
⊗

b∗ = (a × b)∗ a∗ � b∗ = (a ÷ b)∗

We may prove that the operation laws are right according to the properties of
interval operations in fuzzy mathematics [11].

3 Granular Logic

Granular logic is supposed to be a good tool for studying information reasoning
[7, 8, 11, 12]. Here we discuss only the granular logic defined in real granular
space. The logic is abbreviated as LU .

3.1 Syntax

Let R be real space and R∗ be real granular space. If U is a sub-space of R, then
U∗ is a sub-space of R∗.

(1) Symbol Sets
Constants: All elements in U ; Variables: x1, . . . , xn, . . .;
Predicates: ∞, ∈; Conjunctives: ∧, ¬;
Quantifier: ∃; Square brackets: [, ].

(2) Well-Formed Formulae
Atomic formulae:

u1∞u2, u1∞xi, xi∞u2, xi∞xj ; u1 ∈ u2, u1 ∈ xi, xi ∈ u2, xi ∈ xj .

The formula with no conjunctive or quantifier is called atomic. All atomic for-
mulae are the formulae in LU . Let α, β be the formulae in LU . Then

¬[α], ∃xi[α], [α] ∧ [β], ¬[¬[α]], ¬[∃xi[α]], ∃xi[¬[α]], ∃xi[∃xj [α]] are in LU .
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(3) Sentences
Formulae that do not include any free variables are called sentences.

(4) Axioms and Inferences
The above logic’s axioms and inferences should be analogous with other non-
standard logics [1 − 4].

3.2 Semantics

(1) The truth values of sentences or formulae
Let K ⊆ LU be the set of all sentences. The map t is defined in K, t : K →
{true, false}. If α is a sentence, then it must be one of the following cases:

– There is no quantifier: u1 ∈ u2, t(α) = true, or u1 /∈ u2, t(α) = false.
u1∞u2, t(α) = true, or u1¬∞u2, t(α) = false;

– α is ¬[β], or [β] ∧ [γ], or ∃xi[δ], where β, γ are sentences. If δ is the sentence
including only free variable xi, then t(α) = true or t(α) = false;

– t(α) = true, written in |=∞ α, t(α) = false, denoted by |=∞ ¬[α].

For example, let u ∈ U be granular individual variable. Let formula α be
[u¬∞∅] ∧ [¬∃xi[xi ∈ u]]. Then t(α) = true.

(2) [α] → [β] iff ¬[[α] ∧ [¬[β]]];

(3) [α] ∨ [β] iff ¬[[¬[α]] ∧ [¬[β]]];

(4) ∀xi[α] iff ¬[∃xi[¬[α]]];

(5) [α] ↔ [β] iff [[α] → [β]] ∧ [[β] → [α]] iff [¬[[α] ∧ [¬[β]]]] ∧ [¬[[β] ∧ [¬[α]]]].

4 Granular Mathematical Theorems in R∗

Let f be continuous at the granulation a∗ ∈ A∗ ⊆ R∗, i.e., for each ε∗ > 0∗,
there is δ∗ > 0∗, such that for all x∗ ∈ A∗ such that | x∗ � a∗ |∈ δ∗, we have

| f∗(x∗) � f∗(a∗) |∈ ε∗.

The granular mathematical theorem is described with the formula in LU as

� [∀ε∗[∃δ∗∀x∗[> (δ∗, 0∗) ∧ x∗ ∈ A∗∧ | x∗ � a∗ |∈ δ∗]]
→ [> (ε∗, 0∗)∧ | f∗(x∗) � f∗(a∗) |∈ ε∗]]

For example, the problems of modeling the experience and reasoning of medical
experts may be described using the above principles [11, 12].

5 Perspective of Studying Granular Logic

The presented approach can be used in the future to provide a new methodology
for the research on granular computing. Also, it may offer some new ideas for
practical applications of both classical and nonstandard logics.
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Abstract. The article is devoted to the analysis of dynamic models
of fuzzy relational cognitive maps. Therefore, the selection process was
analyzed, in a way of optimal (in some sense) parameters of these models,
in particular such quantities as linguistic variables and fuzzy relations.
Two-stage approach was applied to the optimization issue, composed of
conditional optimization and adaptation. Certain results of simulation
research concerning the designed method were also adduced.

1 Introduction

Available information about elements of the analyzed object, as well as connec-
tions between them plays a crucial role, when elaborating the dynamic systems
(technical, economical, sociological and others). The availability level of infor-
mation, which is necessary for the elaborating process, has a significant impact
on the calculation difficulty degree, when it comes to computer implementation
of elaborated models.
When creating dynamic models with incomplete information, dynamic models

of relational cognitive maps [1,2,3,4,6,7,8,9,10,11] are often used in recent time.
Models of this type determine connections between significant concepts of that
system and are based on the relation between temporary increases in the value
of the concepts [4,8,10,11]. In practical (computer) realization of such models,
computational difficulties associated with the arithmetic of fuzzy numbers and
uncertainty as to the nature of the relationship between concepts play a signifi-
cant role. That problem brings to the attempt to choose the optimal parameters
of these models.
The article carries a certain approach to the problem of optimal choice of

parameters and relations in dynamic models of fuzzy relational cognitive maps.
Other approaches to solving similar problems were presented e.g. in [1,4,7].

2 Dynamic Models of Fuzzy Relational Cognitive Maps

The term ”cognitive maps” is usually used for certain mathematical and IT
models, intended to formalize the examined problem of complex system, as a
set of concepts imitating variables system (features) and cause - effect relations
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between them, taking into account interaction (static or dynamic) and relation
alterations [1,2,3,4,8,10].
In accordance to the above mentioned definition, cognitive maps may be pre-

sented in the form of following sets:

< X, R > (1)

where: X = [X1, ..., Xn]T – value set of map concepts (state vector); R = {Ri,j}
– relation matrix between variables Xi and Xj ; n – number of concepts; i, j =
1, ..., n.
Matrix R can take different forms and one of them is a form of fuzzy relations

Ri,jwith the corresponding member functions and the set universum scope.
The dynamic model of fuzzy relational cognitive map is described by following

equation:

Xk(t + 1) = Xk(t) ⊕
n

⊕

i=1

[(

Xi(t) � Xi(t − 1)
)

◦ Ri,k

]

(2)

where: k – number of considered output concept (k = 1, ..., n); t – discrete time;
n – the number of concepts; ⊕ – fuzzy summation operation; � – fuzzy subtrac-
tion operation; Ri,k – single fuzzy relation between fuzzy concepts with i and k
numbers; ◦ – maxmin fuzzy composition operation.

The fuzzyfication of concepts and relations results in a problem of choice of
in some sense optimal (in terms of calculations) parameters.

3 Fuzzyfication Parameters Optimization Problem

Parametric optimization of the system described with a cognitive map (and so,
often impossible for analytical description) encounters additional problems aris-
ing from the operation nature of such objects. The primary one is fundamental
inability for mathematical determination of the optimal operation point of the
model, resulting from, e.g. mathematical determined minimum of the optimiza-
tion criterion, may prove to be impractical in the real employ system (mainly
due to the time needed by the numerical system to do calculations in too com-
plex model). Therefore, an approximate approach is proposed in this article, to
solve this problem, composed of two stages:

– selection of conditionally approximate optimal parameters of the fuzzyfica-
tion (number of linguistic variables and elementary fuzziness coefficient of
linguistic variables) - the decision as to achieve the ”proper” point of the
operation model is made by an expert,
– the parameters adaptation of individual fuzzy relations between concepts
in dynamic model - the decision is also made by an expert, but it may be
automated by adopting appropriate, limiting criterion value.
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This chapter is devoted to the description of the first stage solution for opti-
mization task.
In the analyzed problem of applying fuzzy cognitive maps, Gaussian-type

allocation function is being introduced [5]:

μXi(x) = e
−

(

x−Xi
σi

)2

(3)

where: Xi – centre of the i-th linguistic variable member function; i = 1, ..., K;
K – number of linguistic variables; σi – fuzziness coefficient of the i-th linguistic
variable (it’s possible when σ1 = σ2 = = σK)

Model (1) can be represented graphically as shown Fig. 1.

Fig. 1. Visualization of fuzzy cognitive map (1), where: Xi – fuzzy value of the i-th
concept, Ri,j - fuzzy relation between i and j concepts (i, j = 1, ..., n)

Creating the individual fuzzy relations Ri,j , mentioned in (1), (2) and shown
in Fig. 1, is a separate issue, which was discussed, among others, in [10]. Their
construction is based on two-argument Gaussian-type member functions μRi,j

(although triangular, trapezoid and other functions also can be used [10]) of
following type:

μRi,j (x1, x2) = e
−

(

x2−ri,j(x1)
σi,j

)2

(4)

where: μRi,j – member function of the fuzzy relation between concepts i-th and
j-t; x1, x2 - axes of fuzzy relation universum; σi,j - fuzziness coefficient of fuzzy
relation between concepts i and j; ri,j - fuzzy relation power coefficient (ri,j(1)
corresponds with relation power in crisp model).
In the article, for the choice of conditionally optimal parameters of the fuzzy-

fication (first stage of the optimization), the compliance criterion of fuzzyfication
and defuzzyfication in following symbolic form [10] was applied:

J(Q) = ‖Xw − Xo‖2 ⇒ min
Q

(5)

Ql+1 = Ql − αlΔJ(Ql) (6)
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where: Xw – value of fuzzyfied concept (after defuzzyfication); Xo – the value
of reference concept (crisp); Q = [X1, ..., XK , σ1, ..., σK , K]T – vector of the
fuzzyfication parameters; ‖‖ – selected norm, e.g.: J(Q) = 1

2

(

Xw
j (Q)−Xo

j (Q)
)2
;

αl > 0 – algorithm step; j – number of the selected concept; ΔJ(Ql) – direction
rate of J(Q) increment; l = 0, ..., L.
To solve problem (5) one can, in principle, use different optimization algo-

rithms based on e.g. gradient, genetic and other methods [1,4,7].

4 Adaptation Algorithm of the Relations Parameters

When implementing the algorithm of fuzzy relations Ri,j parameters adaptation
different types of learning algorithms can be applied what makes possible to
change different features of the relations.
General algorithm of the adaptation of fuzzy relations functions is presented

below as:
– dynamic connections between Xi(t) and Xi(t + 1) in the object and the adap-
tation model of a type (2);
– adaptation criterion:

J1(P ) = ‖X(t) − XM (t)‖2 ⇒ min
P

(7)

where: P = {Rj,i} – adaptation parameters matrix; ‖‖ – selected norm; X(t) =
[X1(t), ..., Xn(t)]T ; XM (t) = [XM

1 (t), ..., XM
n (t)]T – values of concepts in the ob-

ject and the model; X(0) = XM (0); t = 0, ..., T − 1; T – discrete time range;
i, j = 1, ..., n;

– formal algorithm of relation Rj,i(t) adaptation, type:

Rj,i(t + 1) = Rj,i(t) ⊕ ΔRj,i(t) (8)

where: Rj,i(t) – fuzzy relation between j and i concepts of the system’s model
in t adaptation step; ΔRj,i(t) – ”increase” of fuzzy relation; R(0) – initially set
relation; t = 0, ..., T − 1; i, j = 1, ..., n.
Algorithm (8) can be attended as well as unattended. Adaptation process (8)

formally consists of numeriac and functional adaptations. The specific example
of algorithm (8) will be presented in the simulation research results description
(chapter 5).

5 Selected Simulation Results

This chapter presents some results of the simulation for the second stage (adap-
tation of individual relations’ parameters) of the model optimization (described
in chapters 3 and 4) for the example of relational cognitive map from Fig. 2.
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Fig. 2. An exemplary fuzzy relational cognitive map. X1, ..., X4 – fuzzy values of
concepts; Ri,j – fuzzy relation between i and j concepts of the object map

5.1 Model Building Assumptions

The following assumptions were introduced into the model:

Powers of relations – presented in Table 1 in a scalar form.

Table 1. A table of fuzzy relations’ powers (crisp relations matrix)

r X1 X2 X3 X4

X1 0 0 0.5 0.4
X2 0.3 0 0.3 0
X3 0 0 0 0.4
X4 0 -0.6 0 0

The initial values of concepts
The model’s operation consisted of a single stimulation of selected concepts us-
ing external signals, of which values are presented in Table 2.

Table 2. Values of external stimulating signals

Concept X1 X2 X3 X4

Stimulation value 0.6 0.3 0 0

Fuzzyfication universum
For the purpose of analysis, normalized values from the range [-1, 1] were used.
Concepts’ and relations’ values were fuzzyfied on a universum in the range of
[-2, 2].
Type of member functions for fuzzy concepts and relations
Gaussian-type member functions were used in accordance to (3) for fuzzy values
of concepts and in accordance to (4) for fuzzy relations.
Dynamic model of fuzzy cognitive map has the form of (2) for n = 4 and uses
adaptation criterion in the form (7).
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5.2 Parameters Adaptation of Individual Relations

After selecting the optimal set of general parameters combination one can go to
the modification of individual fuzzy relations’ parameters.
The adaptation algorithm type (8) for the t cycle of signals circulation inside

the dynamic model (t step of discrete time) consists in recurrent executing of
the following consecutive steps:

1. Execute t cycles of signals circulation in crisp reference model – obtaining
reference values of examined concepts (they can be got in a different way,
e.g. from expert knowledge or measurement data).

2. Select initial values of parameters change coefficients Δr and Δσ.
3. Execute t cycles of signals circulation in a fuzzy model.
4. Calculate defuzzyfied values of concepts aberrations from crisp reference
values (determined in step 1).

5. For each tested concept (e.g. Xp) and each relation, by which takes the sig-
nals from other concepts (e.g. Ri,p) investigate whether it’s possible to reach
the concept value closer to the reference value after increasing or decreasing
the relation power ri,p with Δr. If so, a new ri,p value has to be accepted.

6. For each examined concept (e.g. Xp) and each relation, by which takes the
signals from other concepts (e.g. Ri,p) investigate whether it’s possible to
reach the concept value closer to the reference value after increasing or de-
creasing the fuziness coefficient σi,p with Δσ. If so, a new σi,p value has to
be accepted.

7. After modification of all fuzzy relations investigate whether the assumed
model accuracy was obtained. If not, go back to step 3. If it’s deemed nec-
essary, you can change (reduce) parameters Δr and Δσ value.

8. Repeat above steps until assumed criterion of the algorithm end is achieved.

The described above algorithm was used to designate the time waveforms of
powers and fuzziness coefficients of fuzzy relations for the model of Fig. 2 with
parameters as in Table 1 with initial values as in Table 2. Adaptation of fuzzy
relations have been made for subsequent steps (within the range from the 5th till
the 30th step) discrete time in fuzzy model with universum range of [-2, 2]. For
the model purpose, K = 17 and σ = 0.6 (for all fuzzyfied concepts and relations)
were used. As a result sets of values of relations’ powers and fuzziness coefficients
were obtained for all considered steps of discrete time. Fig. 3 presents selected
courses (for fuzzy relations that influenced X2) of these parameters changes
depending on discrete time step chosen as reference moment.
Initial (before the adaptation process) values of r1,2, r3,2 and r4,2 parameters

are presented in Table 1.
It is worth to notice, that adjusting of the model parameters in adaptation

process led to ”creation” of new relations (initial zero values of powers of fuzzy
relations R1,2 and R3,2 are replaced with the others – nonzero).
To illustrate the correctness of the method, three simulations of the course of

conceptX2 value were carried out. There were respected conditions as in Table 2:
for crisp model, fuzzy model without adaptation (with parameters from Table 1)
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Fig. 3. Courses of changes of selected fuzzy relation powers: a) and fuzziness coeffi-
cients: b) obtained as a result of the relation adaptation in relational fuzzy cognitive
map from Fig. 2. t - discrete time; r - relation power; σ - relation fuzziness coefficient

Fig. 4. Parameters adaptation result in model from Fig. 2, made for a single step
of discrete time (t = 30). Time courses of X2 value in a crisp model a) and (after
defuzzyfication) in fuzzy model: b) before adaptation c) after adaptation

and fuzzy model after adaptation (with parameters obtained for the selected –
30th step of discrete time). The result of reference crisp model operation is shown
in Fig. 4a). Comparison results of courses in fuzzy models (after defuzzyfication)
are presented in Fig. 4b) and c).
Comparison of courses from Figs.: 4a), 4b) and 4c) proves significant conver-

gence of concepts values (in the 30th step of discrete time) of crisp and fuzzy
models after adaptation of relations parameters.

6 Conclusions

Optimization and adaptation of fuzzy model parameters is crucial for its accu-
racy and, hence, its usefulness for modelling the activity of real systems. The
approach to the optimization of the model parameters, presented in the article,
allows creating fuzzy cognitive maps that meet two main conditions of the model
efficiency: possibly high accuracy and possibly low number of linguistic variables.
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Selected results of the research, adduced in the article, indicate advantages of
the described approach. The modification algorithm (in continual mode) of se-
lected fuzzy relations’ parameters is planned to be worked out in the next stage,
to make them optimal not only in the one selected, but in each step of discrete
time.
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Abstract. Kheirfam and Hasani [5] proposed a method for the sensitivity 
analysis for fuzzy linear programming problem with fuzzy variables. In this 
paper, a new method is proposed for solving same type of problems. The main 
advantage of proposed method over the existing method is that if the same 
problems are solved by both the existing as well as proposed method then the 
obtained results will be same, while, it is easy and less time consuming to apply 
the proposed method as compared to existing method. To illustrate the proposed 
method and to show the advantage of proposed method the numerical examples, 
solved by Kheirfam and Hasani, are solved by the proposed method and the 
obtained results are compared.   

Keywords: Fuzzy linear programming problems, Ranking function, Sensitivity 
analysis, Trapezoidal fuzzy numbers.  

1   Introduction 

The fuzzy set theory [13] is being applied massively in many fields these days. One of 
these is linear programming problems. Sensitivity analysis is well-explored area in 
classical linear programming. Sensitivity analysis is a basic tool for studying 
perturbations in optimization problems. There is considerable research on sensitivity 
analysis for some operations research and management science models such as linear 
programming and investment analysis.  

Fuzzy linear programming (FLP) provides the flexibility in values. But even after 
formulating the problem as FLP problem, one cannot stick to all the values for a long 
time or it is quite possible that the wrong values got entered. With time the factors 
like cost, required time or availability of product etc. changes widely. Sensitivity 
analysis for FLP problem needs to be applied in that case. Sensitivity analysis is one 
of the interesting researches in FLP problem. 

Zimmermann [14] attempted to fuzzify a linear program for the first time, fuzzy 
numbers being the source of flexibility. Zimmermann also presented a fuzzy approach 
to multi-objective linear programming problem and its sensitivity analysis. Sensitivity 
analysis in FLP problem with crisp parameters and soft constraints was first 
considered by Hamacher et al. [4]. 

Tanaka and Asai [9] proposed a method of allocating the given investigation cost 
to each fuzzy coefficients by using sensitivity analysis. Tanaka et al. [10] formulated 
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a FLP problem with fuzzy coefficients and the value of information was discussed via 
sensitivity analysis. Sakawa and Yano [8] presented a fuzzy approach for solving 
multi- objective linear fractional programming problem via sensitivity analysis. 

Fuller [2] proposed that the solution to FLP problems with symmetrical triangular 
fuzzy numbers is stable with respect to small changes of centers of fuzzy numbers. 
Perturbations occur due to calculation errors or just to answer managerial questions 
“What if …”. Such questions propose after the simplex method and the related 
research area refers to as basis invariance sensitivity analysis. 

Dutta et al. and several other authors [1], [11] studied sensitivity analysis for fuzzy 
linear fractional programming problem. Gupta and Bhatia [3] studied the 
measurement of sensitivity for changes of violations in the aspiration level for the 
fuzzy multi-objective linear fractional programming problem. Precup and Preitl [7] 
performed the sensitivity analysis for some fuzzy control systems. Lotfi et al. [6] 
developed a sensitivity analysis approach for the additive model. Kheirfam  and 
Hasani�[5] studied the basis invariance sensitivity analysis for FLP problems.  

In this paper, the shortcomings of the existing methods [5] are pointed out. To 
overcome these shortcomings, a new method is proposed for the sensitivity analysis 
for fuzzy variable linear programming problem. To illustrate the proposed method, 
numerical examples are solved and the obtained results are discussed. 

This paper is organized as follows: A new method for sensitivity analysis for fuzzy 
variable linear programming problems is proposed in Section 2. In Section 3, 
proposed method is explained with the help of numerical examples. Conclusions are 
discussed in Section 4. 

2   Proposed Method 

Kheirfam and Hasani [5] proposed a method for the sensitivity analysis of the 
following type of FLP problems with fuzzy variables:  

 Maximize (or Minimize)            ,
~~ XCz T

ℜ=  

 Subject to 

ℜ≤XA
~

 or ℜ=  or ,
~
bℜ≥                                       (1) 

X
~

is non-negative trapezoidal fuzzy vector.   

where, ,]
~

[
~

1×= mjbb ,]~[
~

1×= njxX ,][ nmijaA ×= ,][ 1 nj
T cC ×=  ℜ  is a linear ranking 

function, ),,,(~
jjjjj dcbax =  and ),,,(

~
jjjjj srqpb =  are the trapezoidal fuzzy 

numbers. 
In this section, a new method is proposed for dealing with same type of problems. 

The steps of proposed method are as follows: 
 

Step 1. Convert the FLP problem )1( , into the following crisp linear programming 

(CLP) problem ).2(  

 Maximize (or Minimize)   ),
~

( XC Tℜ  

 Subject to 

            ),
~

()
~

( bororXA ℜ≥=≤ℜ .0
~

)
~

( ≥ℜ X            (2) 
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Step 2. Solve the CLP problem, obtained in Step 1, to find the optimal solution 

jjj cba ,,  and jd . 
 

Step 3. Find the fuzzy optimal solution by substituting the values of  jjj cba ,,  and 

,jd  obtained from Step 2, in ).,,,(~
jjjjj dcbax =

 
 

Step 4.  Check that which of the following case is to be considered: 
 

1. Change in requirement vector .
~
b  

2. Addition of a new fuzzy variable.  
3. Addition of new fuzzy constraint. 
4. Deletion of a fuzzy variable. 
5. Deletion of a fuzzy constraint. 

 

Case 1: Change in Requirement Vector b
~

 

If the change in right hand side (RHS) or requirement vector is made i.e., b
~

 is 

changed to '
~
b in )1(  then, replace )

~
(bℜ by )'

~
(bℜ  in CLP problem )2(  to obtain ).3(   

 Maximize (or Minimize)   ),
~

( XCTℜ  

 Subject to 

         ),'
~

()
~

( bXA ℜ=ℜ 0)
~

( ≥ℜ X           (3) 

where, nj
T

nmijnjmj cCaAxXbb ×××× ==== 111 ]~[
~

,][,]~[
~

,]
~

['
~

 and ℜ  is a linear ranking 

function, ),,,(~
jjjjj dcbax = and ),,,(

~
jjjjj srqpb =  are the trapezoidal fuzzy 

numbers. Now apply the existing sensitivity analysis technique to find the optimal 
solution of )3(  with the help of optimal solution of )2(  and use Step 3 of the 

proposed method to find the fuzzy optimal solution of the resulting FLP problem.  
 

Case 2: Addition of a New Fuzzy Variable 
Suppose a new fuzzy variable, say 1

~
+nx  having 0)~( 1 ≥ℜ +nx  be added in ).1(  Assume 

that 1+nc  is the cost and 1+nA  is the column associated with 1
~

+nx  then 

replace )
~

( XAℜ by )~~
( 11 ++⊕ℜ nn xAXA and )

~
( XC Tℜ by )~~

( 11 ++⊕ℜ nn
T xcXC  in CLP 

problem )2(  to obtain the new CLP problem ).4(   

 Maximize (or Minimize)  ),~~
( 11 ++⊕ℜ nn

T xcXC  

 Subject to 

),
~

()~~
( 11 bxAXA nn ℜ=⊕ℜ ++ .0)~(,0)

~
( 1 ≥ℜ≥ℜ +nxX     (4) 

where, nj
T

nmijnjmj cCaAxXbb ×××× ==== 111 ][,][,]~[
~

,]
~

[
~

 and ℜ  is a linear ranking 

function. Now apply the existing sensitivity analysis technique to find the optimal 
solution of )4(  with the help of optimal solution of )2(  and use Step 3 of the 

proposed method to find the fuzzy optimal solution of the resulting FLP problem.  
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Case 3: Addition of a New Fuzzy Constraint 
Suppose a new fuzzy constraint is added in the original FLP problem )1(  then, 

replace )
~

()
~

( bXA ℜ=ℜ  by )'
~

()
~

'( bXA ℜ=ℜ  in CLP problem )2(  to obtain new 

CLP problem ).5(   

 Maximize (or Minimize)  ),
~

( XCTℜ  
 Subject to 

),'
~

()
~

'( bXA ℜ=ℜ .0)
~

( ≥ℜ X                    (5) 

where, nj
T

nmijnjmj cCaAxXbb ××+××+ ==== 1)1(11)1( ][,][',]~[
~

,]
~

['
~

and ℜ  is a linear 

ranking function. Now apply the existing sensitivity analysis technique to find the 
optimal solution of )5(  with the help of optimal solution of )2(  and use Step 3 of the 

proposed method to find the fuzzy optimal solution of the resulting FLP problem.  
 
Case 4: Deletion of a Fuzzy Variable 
Suppose a fuzzy variable nx~  having 0)~( ≥ℜ nx  is deleted from the original FLP 

problem )1(  then, replace )
~

( XAℜ  by )'
~

'( XAℜ  and )
~

( XCTℜ by )'
~

( XCTℜ in CLP 

problem )2(  to obtain new CLP problem ).6(  

 Maximize (or Minimize)   ),'
~

( XCTℜ  

 Subject to 

),
~

()'
~

'( bXA ℜ=ℜ  .0)'
~

( ≥ℜ X                   (6) 

where, )1(1)1(1)1(1 ][,][,]~['
~

,]
~

[
~

−×−××−× ==== nj
T

nmijnjmj cCaAxXbb  and ℜ  is a linear 

ranking function. Now apply the existing sensitivity analysis technique to find the 
optimal solution of )6( with the help of optimal solution of )2(  and use Step 3 of the 

proposed method to find the fuzzy optimal solution of the resulting FLP problem.  
 

Case 5: Deletion of a Fuzzy Constraint 
Suppose a fuzzy constraint is to be deleted from original FLP problem )1(  then, 

replace )
~

()
~

( bXA ℜ=ℜ  by )'
~

()
~

'( bXA ℜ=ℜ  in CLP problem )2( to obtain new CLP 

problem ).7(  

 Maximize (or Minimize)    ),
~

( XC Tℜ  
 Subject to 

 ),'
~

()
~

'( bXA ℜ=ℜ .0)
~

( ≥ℜ X                  (7) 

where, nj
T

nmijnjmj cCaAxXbb ××−××− ==== 1)1(11)1( ][,][,]~[
~

,]
~

[
~

 and ℜ  is a linear 

ranking function. Now apply the existing sensitivity analysis technique to find the 
optimal solution of )7(  with the help of optimal solution of )2(  and use Step 3 of the 

proposed method to find the fuzzy optimal solution of the resulting FLP problem.  
 

Remark: The definitions of trapezoidal fuzzy numbers, non-negative trapezoidal fuzzy 
numbers, equality of trapezoidal fuzzy numbers, arithmetic operations between 
trapezoidal fuzzy numbers and ranking index can be seen in Kheirfam and Hasani [5]. 
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3   Numerical Examples 

In this section, proposed method is illustrated with the help of a numerical example:  
 

Example 3.1 Consider the FLP problem,  
 Minimize ℜ=z~ Ө 1

~x Ө 2
~x Ө ,~2 3x  

 Subject to 
  ),13,8,5,3(~2~~

321 ℜ≤⊕⊕ xxx ),16,10,6,4(~
2 ℜ≤x 1

~x Ө ),14,6,1,6(~~~
321 −≤⊕⊕ ℜxxx  

  .0
~~,~,~

321 ℜ≥xxx                                  (8) 
 

(a) Discuss the effect of changing the requirement vector from 
)14,6,1,6(),16,10,6,4(),13,8,5,3( −  to )11,8,4,2(),6,5,3,1(),15,12,10,8(  on the fuzzy 

optimal solution of resulting FLP problem. 
(b) Find the effect of addition of a new fuzzy variable 4

~x  having 0)~( 4 ≥ℜ x  with 

cost 8  and column vectors T)7,5,0(  respectively on the current fuzzy optimal 

solution. 
(c) Find the effect of addition of a new fuzzy constraint )4,3,2,1(~~~2 321 ℜ≤⊕⊕ xxx  

on the current fuzzy optimal solution. 
(d) If a fuzzy variable 3

~x  having 0)~( 3 ≥ℜ x  is deleted from the given FLP problem 

)8(  find the fuzzy optimal solution of resulting FLP problem. 

(e) Discuss the effect of deletion of a fuzzy constraint 
)14,6,1,6(~~~

321 −≤⊕⊕ ℜxxx from given FLP problem )8(  on the fuzzy optimal 

solution of resulting FLP problem. 
 

Solution:  
Assuming ),,,(~

11111 dcbax = , ),,,(~
22222 dcbax =  and ),,,(~

33333 dcbax =  and using 

Step 1 of the proposed method the FLP problem )8(  is converted into the following 

CLP problem: 

 Minimize ),2222(
4

1
321321321321 dddcccbbbaaa −−−−−−−−−−−−  

 Subject to 
 ,292222 321321321321 ≤+++++++++++ dddcccbbbaaa  

 ,3621212121 ≤−+−+−+− ddccbbaa  

 ,15321321321321 ≤+++++++++++ dddcccbbbaaa                    (9) 

 ,01111 ≥+++ dcba ,02222 ≥+++ dcba ,03333 ≥+++ dcba  

 ,0,0,0 111111 ≥−≥−≥− cdbcab ,0,0,0 222222 ≥−≥−≥− cdbcab  

 .0,0,0 333333 ≥−≥−≥− cdbcab  
 

The optimal solution of the CLP problem )9(  is:  

5.14,0,0,0,0,0,0,0,0,0,0,0 321321321321 ============ dddcccbbbaaa and 

the optimal value is .25.7−  Using Step 3 of the proposed method the fuzzy optimal 



108 A. Kumar and N. Bhatia 

 

solution is given by 

).5.14,0,0,0(~),0,0,0,0(~),0,0,0,0(~
321 === xxx  

Since, 625.3)~(,0)~(,0)~( 321 =ℜ=ℜ=ℜ xxx  so all the trapezoidal fuzzy numbers 

321
~,~,~ xxx  whose rank will be 0, 0 and 3.625 respectively will be the fuzzy optimal 

solution of the resulting FLP problem and putting all such values of 321
~,~,~ xxx  in 

objective function, a fuzzy number representing the fuzzy optimal value of resulting 
FLP problem, may be obtained. In all cases, rank of obtained trapezoidal fuzzy 
number will be 25.7−  i.e. there will be an infinite numbers of fuzzy optimal solutions 
of the resulting problem. Some of the fuzzy optimal solutions of the resulting FLP 
problem, different from solution obtained by Kheirfam and Hasani [5] are shown 
below: 
 

(i) )7,4,5.2,1(~),1,1,1,2(~),2,1,1,2(~
321 =−−=−−= xxx and rank of fuzzy 

optimal value is 25.7− .  
(ii) )5,4,3,5.2(~),2,1,0,3(~),2,1,0,3(~

321 =−=−= xxx  and rank of fuzzy optimal 

value is 25.7−  etc. 
 

(a)    Since the requirement vector is changed from )16,10,6,4(),13,8,5,3( and 

)14,6,1,6(−  to )6,5,3,1(),15,12,10,8( and )11,8,4,2(  in the original FLP problem 

)8(  so replacing )16,10,6,4(),13,8,5,3( ℜℜ  and by )6,5,3,1(),15,12,10,8( ℜℜ and 

)11,8,4,2(ℜ  i.e., ,29 36 and 15 by ,45 15 and 25  respectively in )9( . Applying 

existing sensitivity analysis technique, the optimal solution of resulting CLP 
problem with the help of optimal solution of CLP problem )9(  is  

5.22,0,0,0,0,0,0,0,0,0,0,0 321321321321 ============ dddcccbbbaaa

and the optimal value is .25.11−  Using Step 3, the fuzzy optimal solution is given by
  ).50.22,0,0,0(~),0,0,0,0(~),0,0,0,0(~

321 === xxx  
 

(b) Suppose a new fuzzy variable 4
~x  having 0)~( 4 ≥ℜ x  with cost 8  and column 

T)7,5,0(  respectively is added in the original FLP problem )8(  then, first convert 

the CLP problem )9(  into a new CLP problem as discussed in Case 2. Applying 

existing sensitivity analysis technique, the optimal solution of the resulting CLP 
problem with the help of optimal solution of CLP problem )9(  is:  

0,0,0,0

,5.14,0,0,0,0,0,0,0,0,0,0,0

4444

321321321321

====
============

dcba

dddcccbbbaaa

and the optimal value is .25.7−  Using Step 3, the fuzzy optimal solution is given by  

  ).0,0,0,0(~),5.14,0,0,0(~),0,0,0,0(~),0,0,0,0(~
4321 ==== xxxx  

 

(c) Suppose a new fuzzy constraint )4,3,2,1(~~~2 321 ℜ≤⊕⊕ xxx  is added to the 

original FLP problem )8(  then, add the constraint:  



 Sensitivity Analysis for Fuzzy Linear Programming Problems 109 

 

  102222 321321321321 ≤+++++++++++ dddcccbbbaaa  to CLP 

problem ).9(  Applying existing sensitivity analysis technique, the optimal 

solution of resulting CLP problem with the help of optimal solution of CLP 
problem )9(  is: 

10,0,0,0,0,0,0,0,0,0,0,0 321321321321 ============ dddcccbbbaaa

and the optimal value is .5−  Using Step 3, the fuzzy optimal solution is given by 
  )10,0,0,0(~),0,0,0,0(~),0,0,0,0(~

321 === xxx  

 

(d) Suppose a fuzzy variable 3
~x  having 0)~( 3 ≥ℜ x  is deleted from the given FLP 

problem )8(  then, first convert the CLP problem )9(  into a new CLP problem as 

discussed in Case 4. Applying existing sensitivity analysis technique, the optimal 
solution of resulting CLP problem with the help of optimal solution of CLP 
problem )9(  is: 

 15,0,0,0,0,0,0,0 21212121 ======== ddccbbaa and the optimal value is 

.75.3−=z  Using Step 3, the fuzzy optimal solution is given by        

  )15,0,0,0(~),0,0,0,0(~
21 == xx  

 

(e) Suppose a fuzzy constraint )14,6,1,6(~~~
321 −≤⊕⊕ ℜxxx  is deleted from the 

original FLP problem )8(  then, delete the constraint: 

15321321321321 ≤+++++++++++ dddcccbbbaaa  from CLP problem 

).9(  Applying existing sensitivity analysis technique, the optimal solution of 

resulting CLP problem with the help of optimal solution of CLP problem )9(  is: 

0,0,0,25.7,0,0,25.7,0,0,0,0,0 321321321321 ============ dddcccbbbaaa  

 and the optimal value is .25.7−  Using Step 3, the fuzzy optimal solution is given 
by 
   ).0,25.7,25.7,0(~),0,0,0,0(~),0,0,0,0(~

321 === xxx  

4   Conclusions  

In this paper, a new method is proposed for sensitivity analysis for fuzzy variable 
linear programming problems. By using proposed method the fuzzy optimal solution 
of FLP problems can be easily obtained and also it is less time consuming as 
compared to the existing method [6]. To illustrate the proposed method numerical 
examples are solved.  
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Abstract. In this paper we introduce a method for the empirical re-
construction of a fuzzy model of measurements on the basis of testing
measurements using a possibility-theoretical approach. The method of
measurement reduction is developed for solving a problem of an estima-
tion of parameters of a fuzzy system. It is shown that such problems are
reduced to minimax problems. If the model is unknown it can be restored
from testing experiments and can be applied for handling the problems
of the type of forecasting the behavior of a system.

Keywords: mathematical modeling, fuzzy sets, decision making, anal-
ysis and interpretation of data, measurement and computing systems.

1 Introduction

The probability methods actually proved to be ineffective in the modeling of
complex physical, technical, social, and economic objects, subjective opinions,
etc. This explains an increased interest from the middle of the last century to
the improbability models of randomness, fuzziness, and uncertainty [1,2,3,4,5,6].

In the present paper we used the possibility-theoretical approach [7] for an
empirical reconstruction of the fuzzy model of measurements. Methods are de-
veloped for solving a problem of an estimation of parameters of fuzzy systems.
These problems come from the analysis and interpretation of the data received
in measuring experiments. The class of similar problems in the mathematical
statistics has received the name of problems of regress.

In the monograph [7] were developed methods for the reduction of fuzzy mea-
surements where the model of the measuring device is given accurately by known
linear operator A ∈ (RN → Rn). Also, there were studied the optimal properties
for the estimates of a maximum possibility.

In this paper a model of a measuring device A is unknown and information
about it is extracted from the results of test experiments by measuring accurately
the known input test signals [8].

Consider the possibilistic model of the measuring experiment, where the input
of the measuring device A receives a signal f from the measured object. The
measurement of its output Af is accompanied by an additive error of z, and the
measurement result is a vector x. It is considered that signals x, f and z are

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 111–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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implementations of the fuzzy vectors ξ ∈ Rn, ϕ ∈ RN , ν ∈ Rn, where RN and
Rn are linear spaces. The model of the measuring device is a fuzzy element Λ
in the space (RN → Rn) of linear operators. Its output signal is a fuzzy vector
Λϕ. Thus a scheme of the measuring experiment is written as

ξ = Λϕ + ν. (1)

The problems of the interpretation of measurements (1) are considered in the
theory of measurement and computing systems [9] which consists in the most
accurate estimation of the parameters η of a studied object

η = Uϕ. (2)

It is assumed that a linear operator U whose output signal Uϕ should be syn-
thesized by a measuring computing system and should give the most accurate
estimation of the parameters η.

The possibility-theoretical model is defined by the joint distribution of the
possibilities of the following fuzzy elements: the output signal ξ ∈ Rn of the
measurement component of the measuring-computing system, the fuzzy operator
Λ ∈ (RN → Rn) which is a model of measuring device, the fuzzy vector ϕ ∈ RN

which simulates the input signal, the noise ν and the fuzzy vector η ∈ RM of
parameters of the object under investigation.

πξ,Λ,ϕ,η(x, A, f, u), (x, A, f, u) ∈ Rn × (RN → Rn) ×RN ×RM . (3)

The value πξ,Λ,ϕ,η(x, A, f, u) is equal to the possibility of the equalities ξ = x,
Λ = A, ϕ = f , η = u.

The marginal distribution

πξ,η(x, u) = sup
f∈RN ,A∈(RN→Rn)

πξ,Λ,ϕ,η(x, A, f, u), (x, u) ∈ Rn ×RM , (4)

defines a model for interpreting the measurement. In particular, this model allows
us to obtain an estimate for the parameters η based on the measurement result
ξ = x as an estimate of the maximum of possibility

û(x) = sup
u∈RM

πξ,η(x, u), x ∈ Rn. (5)

The consistency of the model of experiment can be estimated based on the prior
distribution of the signal ξ

πξ(x) = sup
u∈U

πξ,η(x, u), x ∈ Rn. (6)

If for example ξ = x is the measurement result and πξ(x) = 0 then the model
(3) has to be recognized as an inadequate model of experiment.

The problem of reduction when the model of measurements exactly known
was solved in the paper [7]. There is considered that Λ = A and the link between
fuzzy elements ξ and ϕ for finding distribution (3) is defined by the distribution
of transition possibilities
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πξ|ϕ(x | f), x ∈ Rn, f ∈ RN , (7)

determining the dependence of the distribution of the fuzzy element ξ on
values f ∈ RN of fuzzy element ϕ, and the distribution

πϕ(f), f ∈ RN , (8)

represents a priori information about the possible values the signal ϕ.
The equality

πξ,ϕ(x, f) = min(πξ|ϕ(x | f), πϕ(f)), (x, f) ∈ Rn ×RN ,

determines the joint distribution of ξ, ϕ.
The estimate of the maximum possibility of fuzzy element η is obtained by

using the distribution of transition possibility

πη|ϕ(u | f), u ∈ RM , f ∈ RN , (9)

and with the a priori distribution (8).
At the same time

πη,ϕ(u, f) = min(πη|ϕ(u | f), πϕ(f)), (f, u) ∈ RN ×RM .

Since the distribution of transition possibility

πξ|ϕ,η(x | f, u) = πξ|ϕ(x | f), x ∈ Rn, u ∈ RM , f ∈ RN , (10)

doesn’t depend on u, the distribution (3) is determined by the following relations:

πξ,ϕ,η(x, f, u) = min(πξ|ϕ(x | f), πϕ,η(f, u)) =
= min(πξ|ϕ(x | f), πη|ϕ(u | f), πϕ(f)), x ∈ Rn, u ∈ RM , f ∈ RN .

(11)

In this case, the consistency of the model experiment is defined by the possibility
πξ(x) = sup

f∈RN

πξ,ϕ(x, f) of the result of measurement ξ = x ∈ Rn.

2 The Problem of Reduction and Reconstruction of the
Model

Now suppose that the model of measuring device is unknown and informa-
tion about it can be extracted from the measurements of known test signals
f1, . . . , fm. A scheme of the testing measuring experiment is written as

ξj = Λfj + νj , j = 1, . . . , m; (12)

where νj ∈ Rn is the fuzzy element that characterizes the measurement error.
There are a set of test signals f1, . . . , fm, a set of results of there registration

ξ1, . . . , ξm and a set of measurement errors ν1, . . . , νm. Let us introduce the linear
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operator F ∈ (Rm → RN ) and the fuzzy linear operators Ξ ∈ (Rm → Rn),
N ∈ (Rm → Rn), that are defined for any vector t = (t1, . . . , tm) ∈ Rm by the
equations

Ft =
m

∑

j=1

˜fjtj , Ξt =
m

∑

j=1

xjtj , Nt =
m

∑

j=1

νjtj . (13)

Using the notation (13), we write the scheme of test measurements as (12)
in the form

Ξ = ΛF + N. (14)

The expression (14) enables us to write a transition possibility πΞ|Λ(· | ·) in
the form

πΞ|Λ(X | A) = πN (X − AF ).

Now consider the measurement scheme of the fuzzy vector ϕ ∈ Rn

ξ = Λϕ + ν, (15)

where the result we have to reduce to a form that is peculiar to the measurement
f by the scheme (2). Suppose that a distribution πϕ(·) and πν(·) of the fuzzy
vectors ϕ ∈ RN and ν ∈ Rn are given. Then, considering that the transition
possibilities takes the form of πξ|ϕ,Λ(x | f, A) = πν(x − Af), where x ∈ Rn is
the measurement result of the fuzzy element ξ in (15), we obtained the following
relations for the joint distribution πξ,ϕ,Λ,Ξ(x, f, A, X):

πξ,ϕ,Λ,Ξ(x, f, A, X) = min(πξ|ϕ,Λ,Ξ(x | f, A, X), πϕ,Λ,Ξ(f, A, X)) =
= min(πν(x − Af), πΞ|ϕ,Λ(X | f, A), πϕ,Λ(f, A) =
= min(πν(x − Af), πN (X − AF ), πϕ(f), πΛ(A)).

(16)

It is considered that the distribution of ξ for the fixed Λ and ϕ doesn’t depend
on Ξ, the distribution of Ξ at a fixed Λ doesn’t depend on ϕ, and the fuzzy
elements ϕ and Λ are independent. So if we know the a priori distribution of
πϕ(f) and πΛ(A), then πϕ,Λ(f, A) = min(πϕ(f), πΛ(A)).

Further, we note that the distribution of πη|ξ,ϕ,Λ,Ξ(u | x, f, A, X) for fixed ϕ
doesn’t depend on ξ, Λ, Ξ, so

πξ,ϕ,Λ,Ξ,η(x, f, A, X, u) = min(πη|ϕ(u | f), πξ,ϕ,Λ,X(x, f, A, X)),

and taking into account (16) we obtained:

πξ,ϕ,Λ,Ξ,η(x, f, A, X, u) =
{

min(πν(x − Af), πN (X − AF ), πϕ(f), πΛ(A)), if u = Uf,
0, if u �= Uf.

The problem of reduction and empirical reconstruction of the model of mea-
surements now is reduced to the estimation of the maximum of possibility of the
fuzzy elements η and Λ. That is, essentially, the calculation of the estimates ̂A
and ̂f of the fuzzy elements Λ and ϕ from the maximin problem:

( ̂A, ̂f) = arg max
A,f

min(πν(x − Af), πN (X − AF ), πϕ(f), πΛ(A)) (17)
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and the subsequent calculation of the estimate û = U ̂f .

The reduction of measurements with the a priori fuzzy constraints to
coordinates of the signals and the matrix elements Λ. Let the vectors of
the spaces RN , Rn and RM are given by their coordinates, the operators from
(RN → Rn) are given by its matrixes and the a priori distribution of possibilities
of the fuzzy vectors, and the operator Λ are defined as the fuzzy constraints on
the coordinates and matrix elements by the following relations: for the vectors
ν = (ν1, . . . , νn) ∈ Rn and ϕ = (ϕ1, . . . , ϕN ) ∈ RN from (15)

πν(x1, . . . , xn) = μ0

(

min
i=1,...,n

|xi|
σi

)

(18)

and

πϕ(f1, . . . , fN ) = μ0

(

min
i=1,...,N

(

|fi − f0,i|
σ

(ϕ)
i

))

(19)

respectively, for the for vectors νj = (νj1, . . . , νjn) ∈ Rn, j = 1, . . . , m from (12),
for the matrix Nij = (nji),

πN (x11, . . . , xmn) = μ0

(

min
i=1,...,n; j=1,...,m

( |xji|
σij

))

, (20)

for the matrix (Λij), i = 1, . . . , n, j = 1, . . . , N , of linear operator Λ

πΛ(A11, . . . , AnN ) = μ0

(

min
i=1,...,n; j=1,...,N

(

|Aij − A0,ij |
σ

(A)
ij

))

. (21)

Where μ0(·) : [0,∞) → [0, 1] is a strictly decreasing function, μ0(0) = 1,
lim

z→∞μ0(z) = 0. The constants in the denominators of the formulas (18)–(21)
are given by values that determine the value of ”fuzziness” of relevant variables.
And constants f0,i and A0,ij , i = 1, . . . , n, j = 1, . . . , N define the most possible
value of the vector ϕ ∈ RN and the matrix of the operator Λ respectively.

Then the problem (17) reduces to

( ̂A, ̂f) = arg inf
A,f

⎛

⎜

⎝
max

⎛

⎜

⎝
max

i=1,...,n

⎛

⎜

⎝

|xi−
N
∑

k=1
Aikfk|

σi

⎞

⎟

⎠
, max
s=1,...,n;t=1,...,m

⎛

⎜

⎝

|
N
∑

k=1
AskFkt−Xst|

σst

⎞

⎟

⎠
,

max
q=1,...,N

(

|fq−f0,q |
σ
(ϕ)
q

)

, max
p=1,...,n; l=1,...,N

(

|Apl−A0,pl|
σ
(A)
pl

)))

.

(22)

For a fixed vector f ∈ RN the minimax problem determines the matrix ele-
ments of ̂Aij the matrix of ̂A (22) reduces to a linear programming problem [10].
The minimization with respect to f ∈ RN is carried out numerically.
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If the operator Λ and the input signal f of the reducible measurement a priori
arbitrary, then πΛ(A) = 1 for every A ∈ (RN → Rn) and πϕ(f) = 1 for every
f ∈ RN , and the problem (17) takes the simpler form

( ̂A, ̂f) =

= arg infA,f

⎛

⎜

⎝
max

⎛

⎜

⎝
max

i=1,...,n

⎛

⎜

⎝

|xi−
N
∑

k=1
Aikfk|

σi

⎞

⎟

⎠
, max
s=1,...,n;t=1,...,m

⎛

⎜

⎝

|
N
∑

k=1
AskFkt−Xst|

σst

⎞

⎟

⎠

⎞

⎟

⎠

⎞

⎟

⎠
.

(23)

The solution of minimax problem is carried out in two stages. The minimiza-
tion of A ∈ (RN → Rn) is reduced to the solving linear programming problem.
Then the numerical minimization of f ∈ RN is realized.

Let us to summarize the results.

Theorem 1. If ( ̂A, ̂f) is the solution of the problem (22) (or (23) in the absence
of a priori constraints on the possible values of the operator Λ and the vector
f), then the reduction of the measurement ξ (15) to the form (2) is equal to
û = U ̂f . The possibility that the model of measurements (14) and (15) consents
with measurement results ξ = x and Ξ = X is equal to μ0(z), where z is the
minimax value that is obtained by solving the problem (22) (or (23)).

The method for calculating the estimate of the maximum a posteriori
features. The method for solving the problem (22) (or (23) in the absence of
a priori knowledge about the possible values of the operator Λ) consists of two
phase. At the first phase for each fixed vector f ∈ RN the value of the function
q(f) is defined as the value that obtained by solving the minimax problem (22)
(or (23)) in relation to the matrix elements ̂Aij of the matrix ̂A. This minimax
problem for fixed f reduces to a linear programming problem. At the second
phase we numerically minimize the function q(·) by f ∈ RN . If a minimum of
q(·) for f ∈ RN is attained at f = ̂f then the desired estimate is û = U ̂f .

Example. The fuzzy value of ϕ ∈ R1 is measured in the experiment scheme

ξ = kx + b + ν, (24)

and information about the linear dependence of y = kx+ b, k, b ∈ R1, contained
in the test measurements

ξj = kxj + b + νj , j = 1, . . . , m,

the fuzzy measurement errors ν and νj are characterized by distribution of pos-
sibilities

πν(z) = μ0(z), πν(zj) = μ0(zj), j = 1, . . . , m. (25)

It is required to estimate the value of the argument x by the result of ξ =
y measurement (24) and the results of ξj = yj test measurements (25). The
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constants k, b of the linear dependence (25) and value of x in (24) are a priori
arbitrary.

We insert the linear operator A(k b ) ∈ (R2 → R1) and vector f =
(

x
1

)

∈ R2

for writing the measurement scheme (24) and (25) in the following form

ξ = Af + ν, ξj = Afj + νj , j = 1, . . . , m.

As consistent with Theorem 1 for reduction of measurement (24) we should solve
the minimax problem:

inf
k,b,x

max
(

|y − kx − b|, max
j=1,...,m

(|yj − kxj − b|)
)

. (26)

The minimum of k, b for the fixed x is the computed solution of the linear
programming problem in which you have to find the minimum of the linear
function q = (l, g), l = (1, 0, 0), g = (q, k, b), for subset of R2, that is dedicated
by linear inequalities:

(b, g) ≥ y, (d, g) ≥ −y, (bj , g) ≥ yj, (dj , g) ≥ −yj, j = 1, . . . , m, (27)

where

b = (1, x, 1), d = (1,−x,−1), bj = (1, xj , 1), dj = (1,−xj ,−1), j = 1, . . . , m.
(28)

If g(x) = (q(x), k(x), b(x)) is its solution, the solution (26) is obtained from
the minimization of q(x) by x ∈ R1 : q(x̂) = minx q(x).

The value of x̂ is an estimate of the maximum of possibility of required to
define argument of the linear function (24). And its concomitant reconstructed
model of the linear dependence is given by the coefficients k∗ = k(x̃), b∗ = b(x̃).
With regard to adequacy, if μ0(q(x̂)) = 0 then the model experiment have to
be recognized as out of keeping to the results of the measurements and these
estimates have to be considered as inadequate.

Computer Experiment. Consider the numerical experiment that implements
the example described above. It is based on the model of the photosynthetic sys-
tem. It is measured the synthesized ATP under the influence of light. According
to the numerical experiment we can predict by the exit of ATP the time when
it has received. In this case, the measurements don’t have a stochastic compo-
nent and the system is a complex, multidimensional and evolving over time. We
can’t apply a probabilistic approach for interpretation of such measurements.
Therefore the fuzzy method was applied to estimate the model parameters.

The measurement model corresponds to the linear equation (24). The infor-
mation about the linear dependence of y = kx+ b, where k, b ∈ R1, is contained
in the test measurements. Where y is the number of synthesized ATP, k is the
rate of ATP synthesis complex ATP synthase, x is the time in milliseconds. It
is required to restore the fuzzy model of measurements and then estimate the
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value of the argument x the time t, when a certain amount of ATP had been
obtained by result ξ = y of measurement (24).

When solving linear programming problems was obtained the estimate x̂ =
0.46 of the maximum of possibility value of the argument of linear function
(24). The reconstructed model is given by the set of coefficients k∗ = 3.1738
b∗ = 0.0031. The estimate of time of the maximum of possibility for the ATP
exit that was equal to 99 ATP was 31.19 ms and at the experiment we obtained
the ATP exit that was equal to 99 ATP at 31 and 32 ms.

3 Conclusions

In this paper we consider the empirical reconstruction of the fuzzy model of mea-
surements on the basis of testing measurements using the possibility-theoretical
approach. It is shown that if the fuzzy model is unknown, it can be restored
from testing experiments and can be applied to the decision of problems of
type of forecasting the behavior of a system. The decision of these problems
is received numerically on the basis of effective methods and algorithms. This
work was supported by the Russian Foundation for Basic Research (project no.
11-07-00338-a).
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Abstract. In this paper, we propose a dominance-based fuzzy rough set
approach for the decision analysis of a preference-ordered possibilistic in-
formation systems, which is comprised of a finite set of objects described
by a finite set of criteria. The domains of the criteria may have ordinal
properties that express preference scales. In the proposed approach, we
first compute the degree of dominance between any two objects based
on their possibilistic evaluations with respect to each criterion. This re-
sults in a fuzzy dominance relation on the universe. Then, we define the
degree of adherence to the dominance principle by every pair of objects
and the degree of consistency of each object. The consistency degrees
of all objects are aggregated to derive the quality of the classification,
which we use to define the reducts of an information system. In addition,
the upward and downward unions of decision classes are fuzzy subsets of
the universe. The lower and upper approximations of the decision classes
based on the fuzzy dominance relation are thus fuzzy rough sets. By us-
ing the lower approximations of the decision classes, we can derive two
types of decision rules that can be applied to new decision cases.

1 Introduction

The rough set theory proposed in [13] provides an effective tool for extracting
knowledge from information systems. When rough set theory is applied to multi-
criteria decision analysis (MCDA), it is crucial to deal with preference-ordered
attribute domains and decision classes [3,4,5,17]. The original rough set theory
cannot handle inconsistencies arising from violations of the dominance princi-
ple due to its use of the indiscernibility relation. Therefore, the indiscernibility
� This work was partially supported by NSC (Taiwan) Grants: 99-2410-H-346-001

(T.F. Fan) and 98-2221-E-001-013-MY3(C.J. Liau).
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relation is replaced by a dominance relation to solve the multi-criteria sorting
problem; and the information system is replaced by a pairwise comparison table
to solve multi-criteria choice and ranking problems. The approach is called the
dominance-based rough set approach (DRSA). For MCDA problems, DRSA can
induce a set of decision rules from sample decisions provided by decision-makers.
The induced rules form a comprehensive preference model and can provide rec-
ommendations about a new decision-making environment.

A strong assumption about information systems is that each object takes ex-
actly one value with respect to an attribute. However, in practice, we may only
have incomplete information about the values of an object’s attributes. Thus,
more general information systems are needed to represent incomplete informa-
tion. For example, set-valued and interval-valued information systems have been
introduced to represent incomplete information [9,10,11,12,18]. DRSA has also
been extended to deal with missing or uncertain values in MCDA problems
[3,17,2,8]. Since an information system with missing or uncertain values is a
special case of possibilistic information systems, we propose further extending
DRSA to the decision analysis of possibilistic information systems. In this paper,
we investigate such an extension based on the fuzzy dominance principle.

In the proposed approach, we first compute the degree of dominance between
any two objects based on their possibilistic evaluations with respect to each crite-
rion. This results in a fuzzy dominance relation on the universe. Then, we define
the degree of adherence to the dominance principle by every pair of objects and
the degree of consistency of each object. The consistency degrees of all objects
are aggregated to derive the quality of the classification, which we use to define
the reducts of possibilistic information systems. In addition, the upward and
downward unions of decision classes are fuzzy subsets of the universe. The lower
and upper approximations of the decision classes based on the fuzzy dominance
relation are thus fuzzy rough sets. By using the lower approximations of the
decision classes, we can derive two types of decision rules that can be applied in
new decision-making environments.

The remainder of the paper is organized as follows. In Section 2, we review
the dominance-based rough set approach. In Section 3, we present the extension
of DRSA for decision analysis of possibilistic information systems. Section 4
contains some concluding remarks.

2 Review of Rough Set Theory and DRSA

The basic construct of rough set theory is an approximation space, which is
defined as a pair (U, R), where U is a finite universe and R ⊆ U × U is an
equivalence relation on U . We write an equivalence class of R as [x]R if it contains
the element x. For any subset X of the universe, the lower approximation and
upper approximation of X are defined as RX = {x ∈ U | [x]R ⊆ X} and
RX = {x ∈ U | [x]R ∩ X �= ∅} respectively.
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Although an approximation space is an abstract framework used to represent
classification knowledge, it can easily be derived from a concrete information
system. In [14], an information system1 is defined as a tuple T = (U, A, {Vi | i ∈
A}, {fi | i ∈ A}), where U is a nonempty finite set, called the universe; A is a
nonempty finite set of primitive attributes; for each i ∈ A, Vi is the domain of
values of i; and for each i ∈ A, fi : U → Vi is a total function. An attribute in
A is usually denoted by the lower-case letters i or a. In decision analysis (and
throughout this paper), we assume the set of attributes is partitioned into {d}∪
(A−{d}), where d is called the decision attribute, and the remaining attributes
in C = A − {d} are called condition attributes . Given a subset of attributes B,
the indiscernibility relation with respect to B is defined as ind(B) = {(x, y) |
x, y ∈ U, fi(x) = fi(y)∀i ∈ B}. Obviously, for each B ⊆ A, (U, ind(B)) is an
approximation space.

For MCDA problems, each object in an information system can be seen as
a sample decision, and each condition attribute is a criterion for that decision.
Since a criterion’s domain of values is usually ordered according to the decision-
maker’s preferences, we define a preference-ordered information system (POIS)
as a tuple T = (U, A, {(Vi,
i) | i ∈ A}, {fi | i ∈ A}), where (U, A, {Vi | i ∈
A}, {fi | i ∈ A}) is a classical information system; and for each i ∈ A, 
i⊆
Vi × Vi is a binary relation over Vi. The relation 
i is called a weak preference
relation or outranking on Vi, and represents a preference over the set of objects
with respect to the criterion i [17]. The weak preference relation 
i is supposed
to be a complete preorder, i.e., a complete, reflexive, and transitive relation.
In addition, we assume that the domain of the decision attribute is a finite
set Vd = {1, 2, · · · , n} such that r is strictly preferred to s if r > s for any
r, s ∈ Vd.

To deal with inconsistencies arising from violations of the dominance principle,
the indiscernibility relation is replaced by a dominance relation in DRSA. Let P
be a subset of criteria. Then, we can define the P -dominance relation DP ⊆ U×U
as follows:

(x, y) ∈ DP ⇔ fi(x) 
i fi(y)∀i ∈ P. (1)

When (x, y) ∈ DP , we say that x P -dominates y, and that y is P -dominated
by x. We usually use the infix notation xDP y to denote (x, y) ∈ DP . Given
the dominance relation DP , the P -dominating set and P -dominated set of x
are defined as D+

P (x) = {y ∈ U | yDP x} and D−P (x) = {y ∈ U | xDP y}
respectively. In addition, for each t ∈ Vd, we define the decision class Clt
as {x ∈ U | fd(x) = t}. Then, the upward and downward unions of classes
are defined as Cl≥t =

⋃

s≥t Cls and Cl≤t =
⋃

s≤t Cls respectively. We can
then define the P -lower and P -upper approximations of Cl≥t and Cl≤t by us-
ing the P -dominating sets and P -dominated sets instead of the equivalence
classes.

1 Also called knowledge representation systems, data tables, or attribute-value sys-
tems.
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3 DRSA for Possibilistic Information Systems

3.1 Preference-Ordered Possibilistic Information Systems

A general approach to specify the uncertainty of information is to use possibility
distributions. A possibility distribution on a domain V is simply a function
π : V → [0, 1]. Intuitively, π specifies the degree of possibility of each element in
the domain V . π(v) = 1 and π(v) = 0 mean that the element v is fully possible
and totally impossible respectively, while the intermediate values in (0, 1) mean
partial possibilities of v. We usually assume that a possibility distribution is
normalized , i.e., supv∈V π(v) = 1. Let π1 and π2 be two possibility distributions
on V . Then, we say that π1 is at least as specific as π2, denoted by π1 ≤ π2, if
π1(v) ≤ π2(v) for each v ∈ V . Let us denote the set of all normalized possibility
distributions on V by (V → [0, 1])+. Then, a preference-ordered possibilistic
information system (POPIS) is a tuple T = (U, A, {(Vi,
i) | i ∈ A}, {fi | i ∈
A}), where U, A, {(Vi,
i) | i ∈ A} are defined as above, and for each i ∈ A,
fi : U → (Va → [0, 1])+.

3.2 Fuzzy Dominance Relation

In a POPIS, the objects may have imprecise evaluations with respect to the
condition criteria and imprecise assignments to decision classes. Thus, the dom-
inance relation between objects can not be determined with certainty. Instead,
since possibility information for each value is available in a POPIS, we can use the
extension principle in fuzzy set theory to compute the degree of dominance[19].
The extension principle extends an operation or a relation on a base domain
to the class of all fuzzy sets or possibility distributions on the domain. In our
context, we use the extension principle to extend the preference relation 
i on Vi

to a fuzzy preference relation between two possibility distributions on Vi. Conse-
quently, the dominance relation between two objects with respect to the criterion
i is determined by their respective possibility distributions on the domain of the
criterion. Let ⊗, ⊕ and → denote, respectively, a t-norm operation, an s-norm
operation and an implication operation2 on [0, 1]. Then, the dominance relation
with respect to the criterion i is a fuzzy relation Di : U × U → [0, 1] such that

Di(x, y) = sup
v1,v2∈Vi

{fi(x)(v1) ⊗ fi(y)(v2) | v1 
i v2}. (2)

After deriving the fuzzy dominance relation for each criterion, we can aggre-
gate all the relations into P -dominance relations for any subset of criteria P .
Thus, the fuzzy P dominance relation DP : U × U → [0, 1] is defined as

DP (x, y) =
⊗

i∈P

Di(x, y). (3)

2 For the properties of these operations, see a standard reference on fuzzy logic, such
as [7].
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Since the dominance relation is a fuzzy relation, the satisfaction of the dominance
principle is a matter of degree. Thus, the degree of adherence of (x, y) to the
dominance principle with respect to a subset of condition criteria P is defined
as

δP (x, y) = DP (x, y) → Dd(x, y), (4)

and the degree of P -consistency of x is defined as

δP (x) =
⊗

y∈U

(δP (x, y) ⊗ δP (y, x)). (5)

Let T be a POPIS. Then, the quality of the classification of T based on the set
of criteria P is defined as

γP (T ) =
∑

x∈U δP (x)
|U | . (6)

Note that γP (T ) is monotonic with respect to P , i.e., γQ(T ) ≤ γP (T ) if Q ⊆ P .
Thus, we can define every minimal subset P ⊆ C such that γP (T ) = γC(T ) as a
reduct of C, where C = A − {d} is the set of all condition criteria. In addition,
the degree of P -consistency is monotonic with respect to P , so a reduct is also a
minimal subset P ⊆ C such that δP (x) = δC(x) for all x ∈ U . However, because
δP (x) is less sensitive to individual changes in δP (x, y), we can not guarantee
that a reduct will preserve the degree of adherence to the dominance principle
for each pair of objects. To overcome such difficulty, we can adopt the following
alternative definition of the quality of the classification:

ηP (T ) =

∑

x,y∈U δP (x, y)
|U |2 . (7)

The reducts can also be defined in terms of this kind of definition.

3.3 Dominance-Based Fuzzy Rough Approximations

In a POPIS, the assignment of a decision label to an object may be impre-
cise, so the decision classes may be fuzzy subsets of the universe. Their mem-
bership functions are derived from the possibility distributions associated with
the assignments of the objects. Specifically, for each t ∈ Vd, the decision class
Clt : U → [0, 1] is defined by

Clt(x) = fd(x)(t). (8)

Then, the upward and downward unions of classes are defined by

Cl≥t (x) = sup
v≥t

fd(x)(v) = Πx({v ≥ t}) (9)

and
Cl≤t (x) = sup

v≤t
fd(x)(v) = Πx({v ≤ t}) (10)
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respectively, where Πx is the possibility measure corresponding to the possibility
distribution fd(x). Finally, since our dominance relation is a fuzzy relation and
the decision classes are fuzzy sets, the lower and upper approximations of the
classes are defined in the same way as those for fuzzy rough sets[1,15]. More
specifically, the P -lower and P -upper approximations of Cl≥t and Cl≤t for each
t ∈ Vd are defined as fuzzy subsets of U with the following membership functions:

P (Cl≥t )(x) =
⊗

y∈U

(DP (y, x) → Cl≥t (y)), (11)

P (Cl≥t )(x) =
⊕

y∈U

(DP (x, y) ⊗ Cl≥t (y)), (12)

P (Cl≤t )(x) =
⊗

y∈U

(DP (x, y) → Cl≤t (y)), (13)

P (Cl≤t )(x) =
⊕

y∈U

(DP (y, x) ⊗ Cl≤t (y)). (14)

3.4 Decision Rules

To represent knowledge discovered from a POPIS, we consider a preference-
ordered possibilistic decision logic (POPDL). The well-formed formulas (wff) of
POPDL are Boolean combinations of atomic formulas of the form (≥i, πi) or
(≤i, πi), where i ∈ A and πi ∈ (Vi → [0, 1])+. When πi is a singleton possibility
distribution such that π(x) = 1 if x = v and π(x) = 0 if x �= v, we abbreviate
(≥i, πi) (resp. (≤i, πi)) as (≥i, v) (resp. (≤i, v)).

Let P denote a reduct of a POPIS and let t ∈ Vd. Then, for each object x,
where P (Cl≥t )(x) > 0 (or above some pre-determined threshold), we can derive
the first type of fuzzy rule:

P (Cl≥t )(x) :
∧

i∈P

(≥i, fi(x)) −→ (≥d, t); (15)

and for each object x, where P (Cl≤t )(x) > 0 (or above some pre-determined
threshold), we can derive the second type of fuzzy rule:

P (Cl≤t )(x) :
∧

i∈P

(≤i, fi(x)) −→ (≤d, t), (16)

where P (Cl≥t )(x) and P (Cl≤t )(x) are the respective degrees of truth of the rules.
Now, for a new decision case with evaluations based on the condition criteria

P , we can apply these two types of rules to derive the case’s decision label
assignment. Specifically, let x be a new object such that, for each criterion i ∈ P ,
fi(x) ∈ (Vi → [0, 1])+ is given; and let α be a rule c :

∧

i∈P (≥i, πi) −→ (≥d, t)
discovered by the proposed approach. Then, according to the rule α, we can
derive that the degree of satisfaction of fd(x) 
d t is ε(α, fd(x) 
d t) = c ⊗
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⊗

i∈P

⊕

v1�iv2
(fi(x)(v1) ⊗ πi(v2)). Let R≥t denote the set of all rules with a

consequent (≥d, t
′) such that t′ ≥ t. Then, the final degree of fd(x) 
d t is

⊕

α∈R≥
t

ε(α, fd(x) 
d t′). We can derive the degree of fd(x) �d t from the
second type of rule in a similar manner.

Mathematically, the evaluations and assignments in a POPIS are possibility
distributions, so the atomic formulas of POPDL may also include any possibil-
ity distributions on the domain. However, in general, the set of all (normalized)
possibility distributions is infinite, even though the domain is finite. This may
result in a very large set of rules. Moreover, most of the possibility distributions
may lack semantically meaningful interpretation for human users; hence, the in-
duced rules may be hard to use. To resolve the difficulty, the standard practice
in fuzzy logic is to use a set of meaningful linguistic labels whose interpreta-
tions are simply possibility distributions on the domain. Thus, the evaluations
and assignments given in a POPIS are restricted to the (usually finite) set of
linguistic labels, so the set of atomic formulas in our POPDL only contains
(≥i, πi) or (≤i, πi), where πi is a linguistic label. For example, if the evaluated
criterion is “score” and its domain is [0,100], then the set of linguistic labels
may be {poor, fair, good, excellent}, and their corresponding interpretations are
possibility distributions on the domain.

4 Conclusion

The work reported in this paper extends DRSA to a dominance-based fuzzy
rough set approach (DFRSA), which can be applied to the reduction of criteria
and the induction of rules for decision analysis in a POPIS.

In contrast to other approaches that deal with imprecise evaluations and as-
signments, DFRSA induces fuzzy rules instead of qualitative rules. Thus, it would
be worthwhile to compare DFRSA with other extensions of DRSA for handling
uncertain information systems, e.g., those proposed in [6,16].

Since DFRSA is a general framework, we do not specify the t-norm operations
used in the aggregation of consistency degrees or the implication operations used
in the definition of adherence to the dominance principle. Hence, we do not
present detailed algorithms for the computation of reducts. The computational
aspects of DFRSA for specialized t-norm and implication operations will also be
addressed in a future work.
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10. Kryszkiewicz, M., Rybiński, H.: Reducing information systems with uncertain at-
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Abstract. The two main approaches to fuzzy concept lattice creation are the 
one-sided threshold approach and the fuzzy closure approach. These two 
methods are applied to gene annotation data files that are converted into fuzzy 
formal contexts by translating evidence codes into a degree of evidence strength 
in [0, 1]. Fuzzy factor analysis is also applied to this same test data. These three 
methods are briefly described and then compared based on their results using 
the gene annotation data files.  

Keywords: Fuzzy concept lattices, threshold, fuzzy closure operator, factor 
analysis. 

1   Introduction 

Numerous researchers have proposed approximate reasoning techniques to handle 
these imprecision in the Semantic Web [1]. In the past few years research has been 
supporting the integration of fuzzy logic for knowledge representation on the 
Semantic Web [2].  A result of this research is fuzzy ontologies and a variety of 
methods to create them, one of which is fuzzy formal concept analysis (FFCA). A 
fuzzy formal context is specified by a matrix with a set of objects X for its rows and a 
set of attributes or properties Y for its column. The relation R between the objects and 
the attributes is a fuzzy binary relation. The degree is taken from the interval [0, 1] 
and indicates that the object xi possesses the attribute yj to a certain degree.  

Two main approaches can be found for creating fuzzy concept lattices. The one-
sided or α-cut threshold method is used in a variety of applications to create fuzzy 
ontologies [3]-[5]. The fuzzy formal context is viewed as a set of fuzzy sets over the 
attributes if the objects are given preference. Each fuzzy set describes one of the 
objects in the fuzzy formal context. Alternatively, the attributes can be given 
preference so that the fuzzy formal context is viewed as a set of fuzzy sets over the 
objects. When used to construct fuzzy ontologies, the objects have typically been 
given preference. The second approach recently presented in [6], the fuzzy closure 
operator approach, views a fuzzy formal context as a whole, i.e., it does not give 
preference to either the objects or the attributes of the fuzzy formal context and does 
not use thresholds. Experiments with this approach have been performed using 
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generated fuzzy formal contexts that have certain characteristics such as various 
distributions of membership degrees within the fuzzy formal context in order to 
evaluate its practical performance.  

The fuzzy closure method generates a huge number of fuzzy concepts, even for 
small fuzzy formal contexts and sparse distributions. In [7] an approximation 
algorithm decomposes a fuzzy formal context into a product of two graded matrices 
with the number of factors as small as possible. These factors correspond to fuzzy 
concepts that summarize the information and permit a simpler interpretation than that 
of the complete fuzzy concept lattice. This paper summarizes the results of comparing 
the two FFCA approaches and extends the work in [8] and [9].   Gene annotation data 
files which play an important role in bioinformatics research are used to create real 
world fuzzy formal contexts. The fuzzy factor analysis algorithm is also used on this 
same data to gain insights into the relationships between these three algorithms.  

2   Fuzzy Concept Lattice Creation and Fuzzy Factor Analysis  

Each approach is briefly described below. More details for the threshold approach are 
in [3], for the fuzzy closure approach in [6], and for factor analysis in [7].    

2.1   One-Sided Threshold Method 

If objects are given preference, an object xi ∈  X, the set of all objects, in a fuzzy 
formal context K with attribute set Y is represented as a fuzzy set Φ(xi) as { R(xi,y1)/y1, 
R(xi,y2)/y2, ..., R(xi,yn)/yn } where R(xi,yj) is the degree to which object xi possesses 
attribute yj. Then a fuzzy formal concept is defined by specifying an α value, also 
referred to as a confidence threshold. For A ⊆  X, then the crisp definition simply is 
modified to require R(x, y) ≥ α instead of R(x, y) = 1 as given: 

}),(,|{' α≥∈∀∈= yxRAxYyA                                  (1) 

and similarly, B ⊆ Y 

}),(,|{' α≥∈∀∈= yxRByXxB                                 (2) 

The threshold α eliminates from the original fuzzy formal context all (x, y) pairs 
with degree less than the threshold resulting in a crisp formal context for all 
remaining pairs. FCA is then used to create the concepts and the concept lattice 
structure, but no fuzziness exists at that point. Each crisp formal concept is changed 
into a fuzzy formal concept (Af, B) where A'=B and B' =A and each x∈  A has a 
membership degree defined as 

   ).,(min)( yxRxA Byf ∈=                                            (3) 

If B is the empty set, then Af(x) = 1 for every x.  A is the extent and B is the intent 
of the fuzzy formal concept. The term fuzzy concept is used in the remainder of the 
paper as an abbreviation for fuzzy formal concept. When the object is given 
preference, the extent of the fuzzy concept is a fuzzy set. Each object’s membership 
degree specifies the minimum degree to which it possesses all the attributes in the 
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intent. The partial ordering of fuzzy concepts ≤ is defined such that (A1f, B1) ≤ (A2f, 
B2) if and only if A1f ⊆  A2f and equivalently B2 ⊆  B1. This approach creates a set 
of fuzzy concepts and a fuzzy concept lattice based on the ≤ ordering.  The one-sided 
(object preference) threshold method produces fuzzy set extents and crisp intents, i.e. 
all attributes in the intent have membership degrees of 1.0. 

 2.2   Fuzzy Closure Method 

The fuzzy closure method produces fuzzy concepts with both fuzzy extents and fuzzy 
intents. It requires R(x, y) values be taken from a complete residuated lattice L in the 
real unit interval [0, 1]. The lattice structure requires the fuzzy conjunction ⊗ and a 
residuum →, i.e., a fuzzy implication operator. In [6], they use Łukasiewicz operators 

 

)1,1min(

)1,0max(

baba

baba

+−=→
−+=⊗

 .                                        
(4) 

 

The set of all fuzzy sets using L in a universe X is denoted by LX where a fuzzy set 
A means a mapping A: X →  L assigning to any x ∈ X a truth degree A(x) ∈ L to 
which x belongs to A. Given the fuzzy formal context <X, Y, R>, for fuzzy sets A ∈ LX 
and B ∈ LY, , fuzzy sets A↑ ∈ LY and B↓ ∈ LX are defined as 

       A↑(y) = min x∈ X (A(x) → R(x,y))  

  B↓(x) = min y∈ Y (B(y) → R(x,y))                                  (5) 

A↑(y) specifies the truth degree that the attribute y is possessed by all objects in the 
fuzzy set A. Similarly, B↓(x) specifies the truth degree that the object x possesses all 
attributes in the fuzzy set B. <A, B> is a fuzzy formal concept if A↑ = B and B↓ = A. 
Denote B <X, Y, R> = {<A, B> | A↑ = B, B↓ = A} as the set of all fuzzy concepts for 
the fuzzy formal context <X, Y, R>. The conceptual hierarchy is modeled by the 
relation ≤ defined on B <X, Y, R > by <A1, B1> ≤ <A2, B2> if and only if A1 ⊆ A2 (or, 
equivalently B1 ⊇ B2). The set B<X, Y, R> under the relation ≤ is a fuzzy concept 
lattice. Since fuzzy concepts are simply the fixpoints of a particular fuzzy closure 
operator [6], computing all fuzzy concepts reduces to computing all fixpoints of a 
fuzzy closure operator. The set of all fixed points of C is denoted by fix(C), such that 
fix(C) = {A ∈ LX  | A=C(A)}.  Given a formal context <X, Y, R>, the compound 
mapping ↑↓: LX →  LX is a fuzzy closure operator in X and ↓↑: LY →  LY is a fuzzy 
closure operator in Y. The fixpoints of ↑↓ and the fixpoints of ↓↑ are just the extents 
and intents respectively of the fuzzy formal concepts of <X, Y, R>.   The algorithm in 
[6] was implemented and used for comparison purposes in this paper.  

2.3   Fuzzy Factor Analysis Method 

In [9] factor analysis using tradition matrix decomposition is extended for the fuzzy 
formal context. Matrix decomposition produces two matrices A and B from a single n 
x m matrix R representing the relationship between the n objects and the m attributes 
such that R = A ◦ B.  The n x k object-factor matrix A explains how the hidden k factors 
are related to the objects, and the k x m factor-attribute matrix B explains how the 
hidden k factors are related to the attributes. A goal is to keep k small. The grades of 
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memberships used in R, A, and B must be from a bounded scale. That is, L must be a 
finite set of membership degrees. Entries Ail and Blj are the degree to which factor l 
applies to object i and the degree to which attribute j is a manifestation of factor l, 
respectively. The object-attribute relation is as following: object i has attribute j if 
there is a factor l which applies to i and for which j is one of its manifestations. To 
produce the matrices A and B, the matrix composition operation ◦ used in this 

algorithm is not the usual matrix product. Instead, this algorithm uses a t-norm ⊗ and 
is defined as:  

.)( 1 ljil
k
lij BABA ⊗∨= =o

                                          
   (6) 

The factors are fuzzy concepts of R. Assume (C, D) is a fuzzy formal concept of R 
with C the fuzzy extent and D the fuzzy intent. Then C(i) is the degree to which 
object i possesses all attributes in D. D(j) is the degree to which attribute j is 
possessed by all objects in C. Now given a set of fuzzy formal concepts for F = {(C1, 
D1),  … (Ck, Dk)}, the AF matrix is created as an n x k matrix where lth column 
specifies degrees assigned to objects in Cl, i.e., (AF)il =Cl(i). Similarly, the BF matrix 
is created as a k x m matrix where lth row specifies the degrees assigned to attributes 
in Dl,, i.e., (BF)lj =Dl(j). For the lth column in Cl(i), each degree is the degree to which 
factor l applies to object i.  For the lth row, Dl,(j) is the degree to which factor l applies 
to attribute j. If R = AF ◦BF, then F represents the set of factors which can completely 
explain the data.  

3   Experiments and Analysis of Results 

In [5] the threshold approach is used to create a fuzzy concept lattice to develop a 
fuzzy ontology. In [6], experiments using the fuzzy closure method look at its 
practical performance based on characteristics of the formal context such as the 
distribution of the truth degrees in randomly generated contexts. The experiments 
described here use real-world data to compare the results of these methods. 

3.1   Experimental Datasets  

When a gene is annotated with terms from the Gene Ontology (GO) [10], an evidence 
code is provided. It can be interpreted as the degree of association strength between a 
GO term and a gene product. These codes are translated into membership degrees as 
done in [11]. Traceable Author Statement (TAS) is 1.0. Inferred from Sequence 
Similarity (ISS) is 0.8.  Inferred from Electronic Annotation (IEA) is 0.6.  Non-
traceable Author Statement (NAS) is 0.4. Not Documented (ND) and Not Recorded 
(NR) were modified from 0.1 to 0.2 since the fuzzy closure operator requires that the 
set of membership degrees in L must form a closed lattice, i.e., they must be closed on 
the implication operator so that L= {0, 0.2, 0.4. 0.6, 0.8, 1.0}.  

A fuzzy formal context is created with the genes as the objects, the GO terms as the 
attributes, and the numeric evidence codes as the degree of association of the GO term 
with the gene.  The gene annotation data file GPD 194 data set [11] contains 194 
human gene products (proteins). Here genes are classified into three families: 
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collagen, myotubularin, and receptor precursor. The fuzzy formal context created 
using the collagen family gene annotation data is shown in Figure 1. Due to space 
limitations, the other family annotation data is not provided. Table 1 shows the 
characteristics of the formal context for the three families and the combined set. 

 
Fig. 1. Fuzzy formal context for the Collagen Family 

 Table 1. Characteristics of Fuzzy Formal Contexts for Gene Annotation files 

Family # of Objects # of Attributes Fill % 
Collagen 13 23 20 
Myotubularin 7 14 35 
Receptor precursor 7 35 33 
Three combined 27 63 (9 common) 10 

3.2   Threshold vs. Fuzzy Closure  

For all four test data sets, α ≥ 0.2 is used. Column 1 of Table 2 gives the test data set. 
Columns 2 and 3 give the number of concepts produced by the respective approaches. 
Notice the significant difference in the sizes of the concept lattices.  Column 4 gives 
the number of α-cut concepts exactly matching a fuzzy closure concept. The extent of 
the α-cut concept must agree with that of the fuzzy closure concept both with respect 
to the set of objects and their membership degrees. The intent of the α-cut concept, 
however, only matches the set of attributes in the intent of the fuzzy closure concept.  
Very few exact concept matches are found. Column 5 gives the number of concepts 
from the fuzzy closure approach that match an α-cut concept ignoring the membership 
degrees. Column 6 gives the number of concepts in the alpha-cut approach having 
exactly the same extent including matching degrees. Column 7 gives the number of 
extents from the fuzzy closure approach that match to an α-cut extent, ignoring the 
membership degrees. Column 8 gives the number of intents from the fuzzy closure 
approach that match to an α-cut intent, ignoring the membership degrees.  
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Table 2. Threshold vs. Closure Summary 

Test Cases # of concepts # 
concepts 
Exact 
matches 

# 
concepts
Matches

#  
Extent  
Exact 
matches 

#  
Extent  
matches 

# 
Intent  
matches 

Threshold Closure       
Collagen 26 1160 2 12 26 1160 1160 

Myotubularin 13 470 1 5 13 470 470 

Receptor 17  913 1 19 17 913 913 

Combined 62 3495 4 30 62 3495 3495 

 
Columns 2 and 6 have identical values. That is, each extent produced by the 

threshold approach maps exactly to an extent in one of the fuzzy closure concepts. 
The set of extents from the threshold approach are a subset of those from the fuzzy 
closure approach. Secondly, column 3 values are identical to that of column 7 and 
column 8.   Ignoring degrees, the extents produced by the closure approach result in 
the same set of extents from the threshold approach. A large number of extents 
produced by the closure approach are identical in the set of objects they contain.  For 
example, for the 1160 extents of the collagen data, 26 sets of extents are unique and 
repeatedly used with varying membership degrees and similarly, for the intents of the 
collagen data.  The fuzzy closure approach generates a vast number of fuzzy concepts, 
many of which are very close or similar to already existing fuzzy concepts within the 
lattice. The threshold approach using the smallest membership degree in the fuzzy 
formal context as the α-cut value is much simpler and produces all the extent sets and 
intent sets of the fuzzy closure approach ignoring membership degrees.  The fuzzy 
closure approach provides additional information with respect to the intents 
membership degrees.  The fuzzy closure operator approach generates a vast number 
of fuzzy concepts, many of which are very close or similar to already existing fuzzy 
concepts with small differences between the memberships degrees in the extent and 
intents going from one parent concept to its children. Examining such large fuzzy 
concept lattices to uncover information hidden in the fuzzy formal context could be 
very challenging.  

3.3   Fuzzy Factor Analysis vs. Fuzzy Concept Lattice Creation  

Table 3 compares the factor analysis and threshold approach. For factor analysis the 
Łukasiewicz implication and the min tnorm were used. Column 2 and column 3 give 
the number of concepts produced by the respective approaches. Column 4 gives the 
number of α-cut concepts that exactly match (object and its degree) to a factor in 
factor analysis.  The intent of the α-cut concept, however, only has to agree with the 
set of attributes in the intent of the factor. Column 5 lists the number of concepts in 
the α-cut approach that match to a factor with respect to the set of objects in the extent  
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and the set of attributes in the intent. Column 6 lists the number of concepts in the 
factor analysis that have exactly the same extent, (object and its degree) as a concept 
in the α-cut approach. Column 7 lists the number of factor extents that match to an α-
cut extent, ignoring the degrees. Column 8 gives how many factor intents are matched 
to an α-cut intent, ignoring the membership degrees of the factor intent.  

 

Table 3. Threshold vs. Factor Analysis Summary 

Test Cases # of concepts #  
Factors 
Exact 
matches 

# 
Factors 
Matches

#  
Extent  
Exact 
matches 

#  
Extent  
matches 

# 
Intent  
matches 

Threshold Factor       
Collagen 26 13 0 7 2 13 1 

Myotubularin 13 8 0 2 0 8 0 

Receptor 17  9 0 6 0 9 0 

Combined 62 32 1 16 2 32 3 

 
Column 4 shows that for all cases except the combined, no exact matches exist 

between the two. Column 5, however, shows except for the myotubularin data that 
over 50% of the factors produced agree with a threshold concept with respect to its set 
of objects in the extent and the set of attributes in the intent. Column 6 shows that 
very few or none of the threshold fuzzy extent sets correspond to that of a factor 
extent set. Column 7 being identical to column 3, however, indicates that all the 
extent sets of factors correspond to an extent set of a concept from the threshold 
approach when degrees are ignored. The set of extents for the factor analysis is a 
subset of that of the threshold approach when membership degrees are ignored. 
Although the threshold approach has not been run giving the attributes preference, it 
seems highly likely that all the intents of these factors would also corresponds to 
intent of a fuzzy concept for the threshold approach if degrees are not considered.  

4  Conclusions and Future Work 

A major difference between the two approaches to creating a fuzzy concept lattice is 
the number of fuzzy concepts produced. Since the threshold approach transforms the 
fuzzy formal context into a crisp context, it simplifies the process and produces a 
much fewer number of fuzzy concepts. The set of fuzzy extents produced by the 
threshold method is always a subset of that of the fuzzy closure approach.  If 
membership degree is ignored, the set of extents are identical.  All the extent sets of 
the factors correspond to an extent set of a threshold fuzzy concept when degrees are 
ignored.  Although not discussed in the above experimental section, experiments with 
implication operators for the fuzzy closure approach revealed that the Łukasiewicz 
implication always produced a significantly larger number of concepts than the Gödel 
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implication, i.e., in the thousands versus in the hundreds. The combination of the 
Łukasiewicz implication with the min tnorm in factor analysis produced factors that 
more quickly covered a larger percentage of the formal context matrix.  However, the 
factors produced by the Gödel implication with the min tnorm produces smaller 
concepts, i.e. with respect to the sizes of the intents and extents.   

Future plans are to experiment with other real world application data and develop 
visualization features to browse a fuzzy concept lattice and the factors to allow users 
to see their coverage of the fuzzy formal context entries. 
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Abstract. This position paper presents the main problems in classical
and modern Fuzzy Theory and gives solutions in Formal Concept Anal-
ysis for many of these problems. To support the successful cooperation
between scientists from the communities of Fuzzy Theory and Formal
Concept Analysis the author starts with this position paper an initia-
tive, called “Pragmatics in Fuzzy Theory”.

Keywords: Fuzzy Sets, Formal Concept Analysis, Conceptual Scaling,
Distributed Objects.

1 Fuzzy Theory and Formal Concept Analysis

We assume that the reader is familiar with Fuzzy Theory [12,13,1] and Formal
Concept Analysis [7,4].

1.1 Fuzzy Concepts

The first paper combining Fuzzy Theory and Formal Concept Analysis was writ-
ten by Burusco and Fuentes-Gonzáles [3]. A slightly different version of the same
idea is the definition of a fuzzy concept lattice by Pollandt [6,5] and, indepen-
dently, Belohlávek (see 3.3 in [2]). In 2002, Belohlávek published his nice book
[1] on Fuzzy Relational Systems. A good overview over several constructions of
certain fuzzy concept lattices is given in [2].

1.2 How Formal Concept Analysis Met Fuzzy Theory

As a member of the research group on Formal Concept Analysis in Darmstadt
I can tell that we all had been surprised that there is a mathematically clear
theory generalizing our conceptual approach. It was a good luck, that Silke
Pollandt (née: Umbreit) joined our research group in Darmstadt in about 1995
when she had finished her doctoral thesis [6,5]. Her mathematical approach was
fine, but we saw several problems in the applications of fuzzy concept lattices.
At the International Conference on Conceptual Knowledge Processing in 1996
in Darmstadt Ana Burusco and R. Fuentes-Gonzáles gave a talk about their
work; the next talk was “Conceptual Processing of Fuzzy Data” by the author.
That was the early phase of a long lasting discussion about Fuzzy Theory and
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Formal Concept Analysis. The middle phase of this discussion happened from
1997 - 2000 at several EUFIT-conferences with Lotfi Zadeh. The latest phase of
this discussion started at the Third International Conference on Formal Concept
Analysis (ICFCA) in Lens (France) 2005, where Radim Belohlávek and his group
the first time joined an FCA-conference. From that time on we regularly met the
very active group of Radim Belohlávek at the ICFCA and at his international
conference on Concept Lattices and their Applications (CLA).

1.3 Problems in Fuzzy Theory

Now we mention the main problems in classical and modern Fuzzy Theory.

Problem 1.1 (Fuzzy Implications): What is the meaning of a fuzzy implica-
tion “If m1 is v1, then m2 is v2 ”, for example “If the pressure is high, then the
weather is fine”? In classical Fuzzy Theory one tries to represent the meaning
of such an implication by the construction of a fuzzy relation R ∈ [0, 1](X1×X2)

which depends only on the membership functions of v1 and v2. Examples are the
Kleene-Dienes implication, the Lukasiewicz implication, the stochastic implica-
tion, the Goguen implication, the Gödel implication, the Sharp implication and
the Mamdani implication - and they all have some disadvantages (see [8,9]).

Problem 1.2 (Linguistic Variables): Zadeh [13] has introduced the notion
of a linguistic variable without defining it in a mathematical precise way and
without a definition of the direct product of two linguistic variables. Such a
definition is necessary for the meaningful representation of fuzzy implications.
The problem lies in the fact that any product of two linguistic variables over
the real unit interval [0, 1] has to be a linguistic variable over [0, 1] × [0, 1], but
this square did not fit into the methodology of fuzzy sets. I believe, that this
was the reason for the many different trials for the introduction of implications
mentioned in Problem 1.1.

Problem 2.1 (Meaning of Residuated Lattices): This problem has two
main aspects: the order theoretic aspect and the algebraic one. In all applica-
tions mentioned in the cited literature the ordinal aspect is used similarly as in
conceptual scaling theory. The (usually truncated) algebraic operations are not
connected to some meaning in the applications - and that yields problems in the
interpretation of the fuzzy concept lattices which depend on the algebraic struc-
ture. For example, the differences in the meaning of the Lukasiewicz, Gödel, and
the product algebra for the fuzzy concept lattices generated from them seem to
be not well-understood (see [1], chapter 2, p. 239.)

Problem 3.1 (Fuzzy Concept Lattices): fuzzy concept lattices are too big.
It was observed very early that a fuzzy concept lattice often has much more
concepts than a concept lattice of the same data.

Problem 3.2 (Interpretation of Fuzzy Concepts): Fuzzy concept lattices
are difficult to interpret. The reason is that there is no easily readable rule
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corresponding to the reading rule in FCA. For more details the reader is referred
to the main theorem of fuzzy concept lattices (see [1], p. 262). As a consequence,
all diagrams of fuzzy concept lattices in [1] are drawn without the usual labeling
of the object and attribute concepts. This labeling is the main tool for the
visualising power of line diagrams in FCA.

2 Solutions and Hints

The two main problems (Problem 1.1 and 1.2) in classical Fuzzy Theory have
been solved by the author in [8,9] by introducing a Fuzzy Scaling Theory using
(realized) linguistic variables (over an ordered set!) and their product which is
a linguistic variable over the direct product of the corresponding ordered sets.
That leads to a clear understanding of the question why fuzzy implications can
not be treated meaningfully over linear logics: the product of two intervals is
not an interval. It also leads to an understanding of the different roles of the set
G of measured objects and the set X of values of the given measurement. The
object distribution on the concept lattice of the derived context of the direct
product of the linguistic variables does not only show the fuzzy implications as
implications of a formal context, it also shows partial implications (which hold
up to some exceptions).

Problem 2.1 should be treated in practice by using complete residuated lat-
tices only if the algebraic structure of the residuated lattice corresponds to the
practical problem - but that will happen quite seldom. I emphasize to compare
applications of complete residuated lattices with applications treated by usual
conceptual scaling theory. The investigation of the interrelation of conceptual
and algebraic structures should be forced.

Problem 3.1 can be understood as follows: it is well-known (see [5], p. 34) that
a fuzzy context (G, M, R) over a complete residuated lattice L where R ∈ LG×M

can be viewed as a many-valued context and conceptually scaled with the ordinal
scale (L, L,≥) in such a way that the concept lattice of the derived formal context
is isomorphic to the join-subsemilattice of the fuzzy concept lattice generated
by the crisp formal objects (g, 1) for g ∈ G. Since the fuzzy context can be
reconstructed even from this (small) concept lattice of the derived context the
usually much larger fuzzy concept lattice is not necessary for this reconstruction
of the given information; and in that sense it is too big!

Problem 3.2 should be solved from a general point of view: In colloquial lan-
guage we use terms like “this cloud” to denote a cloud without describing it in
all details. The formal description should therefore also have the possibility to
adapt the granularity of the description to the given purpose. I have the feeling
that fuzzy concept lattices have lost some flexibility for a suitable adaptation.
One of the main reasons seems to be the fact that the formal objects (x, a) with
x ∈ X and a ∈ L (for some L-Fuzzy context (X, Y, R)) do not have a counterpart
in colloquial language.

In the next section we give a short alternative conceptual description of fuzzy-
ness without using membership functions.
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3 Representation of Fuzzyness by Distributed Objects

To be short, the main idea for the representation of fuzzyness without using
membership functions is described by an example: imagine a beautiful sunset
with fuzzy clouds. To represent it, I take a digital photo. Assume that for each
of the millions of pixels we have its place, given by two coordinates, and we have
three numbers describing the color of this pixel. For a conceptual knowledge
processing of these data I use the pixels as formal objects of a data table, formally
described as a Conceptual Semantic System (CSS) as introduced by the author
(see [11]). I also use the notion of an object in a CSS and the notion of the
trace of an object. An object is just a tupel of values, for example a triple of
color values. The trace of such a triple is then the set of places of those pixels
which have the given color triple. These traces can be arbitrarily fuzzy. For a
mathematical introduction the reader is referred to [11].

Concluding remark: I am looking forward to have valuable discussions con-
cerning “Pragmatics in Fuzzy Theory”.
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Abstract. In this paper an aspect of collaborative construction of deci-
sion support systems based on fuzzy cognitive maps (FCM) is considered.
We propose a way for cooperation in developing process of this systems
by different experts and tuning developed systems to given conditions.
These goals are attained by employing regularization methods, available
since FCM is considered as a neural network. Interpretation and moti-
vation of such approach are described. On the base of fuzzy cognitive
map and fuzzy hierarchy model the new approach of Fuzzy Hierarchi-
cal Modeling is introduced. Advantages of the method are described. A
novel approach to overcoming inherent limitations of Hierarchical Meth-
ods by exploiting cognitive maps and multiple distributed information
repositories is proposed.

Keywords: Fuzzy Cognitive Map, hybrid decision support, regulariza-
tion.

1 Introduction

The work with experts implies a lot of problems. Some of them are closely
examined in [1], where many aspects of FCM hybrid DSS are discussed. In
this work we concentrate on two problems. The first one is problem of expert
inaccessibility for tuning system to given environment when it vary a little from
specific part of the expert experience. And the other one is allowing experts to
work together on one system or allow their models to collaborate. Solution for
these problems comes through generalization of models; we employ methods of
regularization to realize it in custom hybrid decision support system.

2 Regularization

Regularization was introduced for solving ill-posed problems by substitution of
original problem with finding of special function that is very close to original
but differs a little to treat it as well-posed. Firstly it made an assumption about
solution type than the function of this type included into the special function
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with regularizational parameter which determining balance between solution dis-
tance from original problem and estimate function. Great parameter value leads
solution to be the same function you intoduced and there is no solution at all
when parameter equals zero. Regularization often addressed as Occam’s razor
application because it solve the problem by some degree of restriction on possible
solution.

2.1 Neural Networks Regularization

Statistical methods of artificial intelligence employs regularization as one of ma-
jor tool. Primarily it lets to control over-fitting by introducing some additional
information to the model (eg. introducing of prior distribution). Usually this in-
formation is a penalty for complexity (eg. restrictions for smoothness or bounds
on the vector space norm). Usually neural networks regularization is error func-
tional minimization. Most often error functional is sum of bias squares with
depending on function smoothness addition. Choose of this restrictions will re-
flects in structural changes of the network optimizing its size and work time.

2.2 Regularization of FCM

Regularization was not effectively applied to FCMs though some attempts were
made (eg. [2]). A very nice approach described in [3]. They used FCM for core
of their image clustering algorithm. The procedure is that rasterized image first
presented as a network where each pixel becomes a node of the cognitive map.
After some processing of training set—number of clusters is given—the FCM
works as reasoner deciding what cluster should each pixel correspond by com-
puting its degree of membership. The decision depends on linear combination of
two coefficients, called “causal weights”. The first is actual regularization and
the other is addressed as “contextual” coefficient—which promote relation of
nearby pixel–nodes to the same cluster—they used with some constant weight
by themselves. This last define the balance of context and regularization for the
decision. Actual regularization done as iterative process computing measure be-
tween estimate membership degree and its value at current moment (iteration)
of the concept (pixel–node). So it means that we shift the membership degree
to count not from zero but from its statistical estimate.

But notable efforts are made for developing different ways for FCMs refine-
ment and adjustment. A lot of methods of artificial intelligence employed for
this task. Neural nets learning is one of successful among them. This approach
efficiently used in [4]. The essence of this approach is to let FCM behave as a
fuzzy neural net where concepts become nodes and their causal edges become
synapses. With this change we get the ability to improve the net, eg. to apply
some learning algorithm or regularize it.

Hansen and Rassmussen evolved research on adaptive regularization (intro-
duced to neural networks). Adaptive regularization is a way to take into account
of imposed restrictions particular environment. This becomes possible through
modifying regularizing functional. It is changed so it could react to few pa-
rameters of interest. This approach to regularization provide different ways of
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pruning weights. In their work [5] they demonstrated two methods for pruning
with some sort of a threshold (which differ in the approach depth the first one is
plain Bayesian classifier, the other based on minimizing of generalization error).

Since we switched from pure causal view on the net (FCM) to fuzzy neural
perception of it this kind of processing seems very natural for its structure.
Demand in such transformation of ready FCM comes from task of tuning the
system in the same time preserving knowledge retrieved from expert. Applying
adaptive regularization with different parameters required level of generalization
could be obtained [6].

3 Interpretation of FCM Regularization

After appropriate pruning of weights in a FCM, it becomes consciously editable
to the experts working with it. The task of placing FCM to optimal cognitive level
of expert perception induced by requirement of negative emotions minimizing.
Here we define emotions as value of cognitive dissonance occurring at the given
moment.

Solving the problem of collaborative decision making include dealing with
task of cooperative decision support systems construction. Each expert has very
own experience and therefore representations of subject area slightly differs one
from another. FCM approach helps to handle this contradictions by finding
common ground for developing collaborative system accepted by all participating
contributors. This common ground is a proper generalization of given individual
structures. Generalization done as removing “redundant” connections between
nodes being aware of eventually growing number of mistakes in model. The edges
to remove computes by adaptive regularization of model. This let to customize
given model to given conditions.

4 Hybrid Decision Support Model

4.1 Fuzzy Hierarchy Model

The background of the proposed method for comparative evaluation of alter-
natives (variants of the decisions made) is provided by the well-known Saati
hierarchical model [7] modified in [8]. This model is a weighted oriented acyclic
graph G that consists of a tree T , oriented from the root to leaves l1, ..., lp and
the set A = {a1, ..., aM} of nodes-alternatives, each of which is connected by
oriented arcs (li, aj) with all leaves.

The tree T is the hierarchy of goals known in decision-making theory. The
general goal of the situation control corresponds to the root of the tree. The
hierarchy is constructed using the expert up-down method. The general goal is
decomposed into the subgoals (criteria) that characterize it. In turn, the subgoals
are divided into criteria of a more particular character. The process of structural
decomposition of the control goal is terminated when all criteria that cannot
be further decomposed l1, ..., lp have been determined. Such criteria are called
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leaf criteria. When formulating criteria, the “rule of positive relation” should be
valid. This means that if the estimate of attainability of the goal increases, then
the estimate of attainability of the goal for an adjacent criterion of a higher level
also increases.

The level of a tree node is defined as usual. The root has level 0. A node has
level h if the length of the route from the root to it is h. All nodes (including the
leaf ones) are numbered beginning with 1, and the number of a node of level h is
always less than the number of any node of a lower level. Nonleaf nodes are also
denoted by khi, where h is the level number and i is the number of the node. The
expressions (khi, kh+1,j) and (i, j) are equivalent and describe the same arc, and
we always have i < j. The leaf nodes (which can be located at different levels),
as above, are always denoted by l1, ..., lp.

All weights of arcs and nodes belong to the segment [0, 1]. For the weights of
arcs of the tree T , we have the following normalization condition: for any node
khi, the sum of weights of all arcs going from it to nodes of level h + 1 is equal
to one. The weight ωij of the arc (khi, kh+1,j) means the relative importance of
the criterion kh+1,j for the criterion of a higher level khi. Particular values of the
weights of arcs are determined by receiving from experts pairwise comparisons of
the relative importance of criteria and their subsequent processing with account
of the normalization conditions.

Under the condition that the weights of arcs are known, the weights of tree
nodes are up-down determined recurrently as follows. The weight u0 of the root
is equal to one. The weight uj of the node kh+1,j adjacent to the node khi is
determined by the formula

uj = ωijui . (1)

By the normalization condition, the sum of weights of all nodes of level h + 1
adjacent to the same node kri is equal to its weight, i.e., ui.

For each alternative aj ∈ A, its estimate F (aj) of the attainability of the
general goal is determined by the formula

F (aj) =
p

∑

i=1

ωijui , (2)

where ωij is the weight of the arc (li, aj) and ui is the weight of the leaf criterion
li. The alternative aq is the best one if it has the maximum estimate among all
other alternatives.

4.2 Fuzzy Cognitive Model

A cognitive map is a weighted oriented graph with n nodes. Nodes vi are called
factors (in English-language literature, they more often are called concepts). A
variable yi(t) corresponds to a factor vi (i = 1, ..., n). This variable can take
linguistic values. The set of such values is linearly ordered and generates a lin-
guistic scale Zi = {zi1, zi2, ..., zir}, where zi1 and zir are the minimum and
maximum elements of the set. In general, each factor has its own linguistic
scale the number of elements of which is determined by the experts. The vector
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Y (t) = (y1(t), ..., yn(t)) is called the situation state at the time instant t. The
weights of arcs are numbers and belong to the interval [-1, 1]. They are given by
the adjacency matrix W = ||wij ||; the value wij characterizes the effect of the
factor vi on the factor vj , and the sign characterizes the character of the effect.

For convenience of computations, we define a mapping φ of linguistic scales
of factors on the number interval [0, 1] as follows. For a linguistic scale Zi =
{zi1, zi2, ..., zir}, we divide the interval [0, 1] into r equal intervals, whose bound-
aries are denoted in the increasing order b0 = 0, b1, ..., br−1, br = 1. We set
φ(zik = bk−1−bk

2 (the element zik is mapped to the center of the kth interval).
The mapping φ : Zi −→ [0, 1] allows us to make the algorithms of the model nu-
merical. The inverse mapping φ−1 : [0, 1] −→ Zi is a homomorphism, all points
that belong to the interval (bk−1, bk) are mapped into a single point zik. With
the help of the mapping φ, the situation state can be represented in a numerical
form X(t) = φ(Y (t)) = (φ(y1(t)), ..., φ(yn(t))). In what follows, we will work
with the numerical representation of the situation state X(t).

An increment of the factor vi at the time instant t + 1 is the value pi(t+1) =
xi(t + 1)xi(t). Since increments may be negative, the values of pi belong to the
segment [-1, 1]. Assume that vj1, ..., vjk is the set of all factors that are input
factors for the factor vi (i.e., the initial nodes of the arcs incoming vi). Then,
in general, the value xi at the time instant t + 1 depends on the values of the
incoming factors at the time instant t and the weights of arcs connecting these
factors with the factor vi

xi(t + 1) = fi(xj1(t), ..., xjk(t), wj1,i, ..., wjk,i), (3)

and the functions fi attached to different factors are different in general. In
applications, a simpler case is considered when these functions for all factors
are the same. This allows one to use matrix methods for solving problems of
situation analysis. The functions depend only on the increments of the values of
factors and do not depend on their state.

Obtainment of a prognosis of the situation development. The problem
of prognosis is formulated as follows. Given: a cognitive map G(V, W ), where
V is the set of nodes (situation factors), and W is the adjacency matrix; a
set Z1, . . . , Zn of scales of all factors of the situation; an initial situation state
X(0) = (x1(0), . . . , xn(0)); and an initial vector of the increments of the situa-
tion factors P (0) = (p1(0), . . . , pn(0)), it is necessary to find the situation state
X(1), . . . , X(n) and the vectors of increments P (1), . . . , P (n) at consecutive dis-
crete time instants 1, . . . , n, where n (the number of nodes) is chosen so that
the influence of the initial perturbation can reach all nodes. The prognosis of
situation development is determined by a matrix relation

P (t + 1) = P (t) ◦ W, (4)

where ◦ is the max-product rule, pi(t + 1) = maxj(|pj(t)wji|).
The scheme for dealing with the model is as follows. An expert specifies in

linguistic values an initial state of the situation Y (0) and the next state Y (1),
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which arises after control actions. Based on these data, the numerical initial
increment P (0) = φ(Y (1)) − φ(Y (0)) = X(1) − X(0) is computed. The sub-
sequent computations are numerical. Using operation 4, the increments at the
consecutive time instants t = 1, ..., n are computed, and the situation state is
determined from the relation

X(t + 1) = X(t) + P (t + 1) . (5)

To interpret the prognosis and to give the results to the expert, we use the
inverse mapping φ−1 from numerical values to linguistic ones. When obtaining a
prognosis, together with computation of the vector P (t+1), we compute the vec-
tor C = {c1(t+1), ..., cn(t+1)}. The value ci(t+1) is called a consonance of the
factor vi and is determined as follows. Denote by p+

i (t+1) the maximum of posi-
tive increments that are input into the factor vi, i.e., p+

i (t+1) = maxj(pj(t)wji),
pj(t)wji ≥ 0. Analogously, p−i (t + 1) is the maximum of the absolute values of
negative increments that are input to the factor vi; then, we have

ci(t + 1) =
|p+

i (t + 1) + p−i (t + 1)|
|p+

i (t + 1)| + |p−i (t + 1)| . (6)

The consonance ci(t + 1) characterizes the degree of certainty of the prognosis
at the time instant t + 1.

4.3 Integrated Model

The main idea of the integration consists in (1) establishing a correspondence
between a certain subset of factors of the cognitive map and leaf criteria of
the estimation model and constructing a mapping of the values of factors to
the values of leaf criteria of the estimation model; and (2) representing the
alternative decisions proposed for the estimation in the hierarchical model, i.e.,
control actions, as the vectors of increments of control factors, i.e., the factor of
the cognitive map which the DMP can directly affect. (Note that it is supposed
that the estimation model does not change in the course of situation analysis.)

At the first stage of constructing the integrated model, a general goal is formu-
lated, the hierarchy of criteria is constructed, the level of leaf criteria is selected,
and the weights of leaf criteria are determined. At the second stage, a cogni-
tive map that satisfies the following condition is constructed. Each leaf criterion
of the estimation model corresponds to a certain factor of the cognitive map.
The set of such factors that cover the whole set of leaf criteria is denoted by
V ∗. To construct a cognitive map, we suggest to use the methodology based
on structural and functional decomposition of the situation. This methodology
was described in detail in [9]. This methodology considers the situation in two
aspects, structural and functional. The structural aspect is based on the de-
composition (up-down) of the application domain into components (elements of
the situation) connected by the relation “part-the whole object.” For each ele-
ment, the factors that determine it are selected. Among the set of factors that
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characterize all elements of the situation, the factors are selected that are close
in meaning to the leaf criteria of the estimation hierarchy, which generate the
set V ∗.

Both structural decomposition and functional description (relations between
the factors and their weights) are performed by experts. Therefore, the maps
designed by different experts can be different, since they reflect their subjective
understanding of the problem to some extent. However, the requirement to select
the set V ∗ guarantees that all variants of cognitive maps contain the same factors
formulated in the same language, in terms of the leaf criteria of the estimation
model. The third stage of designing the integrated model consists in constructing
leaf criteria based on the scale of factors of the set V ∗.

The procedure of formation of alternative decisions and their estimation in
the integrated model are as follows:
experts form the source alternatives;
each alternative ai is represented in the form of a vector Pi(0) of increments of
all factors of the cognitive map;
by formulas 4 and 5, a prognosis of development of the situation under the ini-
tial increment Pi(0) is computed, i.e., the vector Xi(n) of the values of situation
factors at the step n;
the values x∗ij(n) factors from the set V ∗ are mapped in the values of the corre-
sponding leaf criteria, i.e., the value ψj(x∗ij(n));
the alternative is estimated in the estimation model by the formula

F (ai) =
∑

ψj(x∗ij)uj , (7)

where the sum is over all factors from the set V ∗;
as the best alternative, the alternative with the maximum estimate is chosen
F (aq) = maxj=1,...,M F (aj).

5 Conclusion

We showed conjunction of two fuzzy approaches to decision support to one hybrid
system allowing both to act alternatively, basing on results of each other. The
first part of system is fuzzy hierarchy model, the other one is fuzzy cognitive map.
It process results of the hierarchy model and directs it work. For constructing of
such complex system for a big subject area was proposed applying regularization
to FCM component for its generalization and allowing collaboration on it. Also
at CCAS A. N. Averkin with team research genetic programming approach to
FCM training. Currently a method developed which allows to train FCMs based
on fuzzy relational equations. This part of the work is at the stage of preparation
for publication, and interested researchers will be able to learn about it soon.

Acknowledgments. This paper is partially supported by RFBR projects No.
10-01-00851 and 11-01-00959.
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Abstract. In the paper the evolutionary strategy is used for learning
of neuro-fuzzy structures of a Mamdani type applied to modelling of
nonlinear systems. In the process of evolution we determine parame-
ters of fuzzy membership functions, specific t-norm in a fuzzy inference,
specific t-norm for aggregation of antecedents in each rule, and specific
t-conorm describing an aggregation operator. The method is tested using
well known approximation benchmarks.

1 Introduction

Neuro-fuzzy systems combine the natural language description of fuzzy systems
and the learning properties of neural networks. In literature various structures of
such systems and corresponding learning methods have been proposed (see e.g.
[1]-[3], [6], [8], [10]). Recently several algorithms have been developed to increase
interpretability and accuracy of these systems. For various methods of designing
fuzzy rule-based systems the reader is referred e.g. to [2]-[4], [9]-[11], [13].

In our previous works ([2] [11]) we developed the idea of flexible neuro-fuzzy
systems for classification. In such systems the type of triangular norms was found
in the process of learning using the back propagation method. In this paper we
extend that idea, using the evolutionary strategy (μ, λ) (see e.g. [5]), for mod-
elling of nonlinear systems. In the process of evolution we determine parameters
of fuzzy membership functions, specific t-norm in an a fuzzy inference, specific
t-norm for aggregation of antecedents in each rule, and specific t-conorm de-
scribing an aggregation operator. It should be emphasized, that performance
of fuzzy systems depends on applied triangular norms, therefore their proper
choice is very important. Our method is tested using well known approximation
benchmarks.

2 Description of Neuro-Fuzzy System of a Mamdani
Type

We consider multi-input, multi-output neuro-fuzzy system mapping X → Y,
where X ⊂ Rn and Y ⊂ Rm. The fuzzifier performs a mapping from the

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 147–154, 2011.
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observed crisp input space X ⊂ Rn to the fuzzy sets defined in X. The most com-
monly used fuzzifier is the singleton fuzzifier which maps x̄ = [x̄1, . . . , x̄n] ∈ X
into a fuzzy set A′ ⊆ X characterized by the membership function

μA′ (x) =
{

1 if x = x̄
0 if x �= x̄ . (1)

The fuzzy rule base consists of a collection of N fuzzy IF THEN rules in the
form Rk :
[

IF x1 is Ak
1 AND . . . AND xn is Ak

n THEN y1 is Bk
1 AND . . . AND ym is Bk

m

]

,
(2)

where x = [x1, . . . , xn] ∈ X, y = [y1, . . . , ym] ∈ Y, Ak
1 , Ak

2 , . . . , Ak
n are fuzzy sets

characterized by membership functions μAk
i

(xi), i = 1, . . . , n, k = 1, . . . , N ,
whereas Bk

j are fuzzy sets characterized by membership functions μBk
j

(yj),
j = 1, . . . , m, k = 1, . . . , N . The fuzzy inference determines a mapping from the
fuzzy sets in the input space X to the fuzzy sets in the output space Y. Let
Ak = Ak

1 × Ak
2× . . . × Ak

n. Each of N rules (2) determines fuzzy sets B̄k
j ⊂ Y

given by the compositional rule of inference

B̄k
j = A′ ◦ (

Ak → Bk
j

)

(3)

characterized by membership functions

μB̄k
j

(yj) = μAk
1×...×Ak

n→Bk
j

(x̄, yj) = μAk→Bk
j

(x̄, yj) = T
{

τk (x̄) , μBk
j

(yj)
}

,

(4)
where T {·} is a t-norm and τk (x̄) is a firing strength of the k-th rule, k=1, . . . , N ,
defined as follows:

τk (x̄) = μAk (x̄) =
n

T
i=1

{

μAk
i

(x̄i)
}

. (5)

The aggregation operator, applied in order to obtain the fuzzy set B′j based on
fuzzy sets B̄k

j , k = 1, . . . , N , is the t-konorm operator. The aggregation is carried
out by

Bj′ =
N
⋃

k=1

B̄k
j . (6)

The membership function of B′j is determined by the uses of a t-norm, i.e.:

μB′
j

(yj) =
N

S
k=1

{

μB̄k
j

(yj)
}

. (7)

The defuzzifier performs a mapping from the fuzzy sets B′j to a crisp point ȳj ,
j = 1, . . . , m, in Y ⊂ R. The COA (center of area) method is defined by the
following formula:

ȳj =

∫

Y

yj · μB′
j

(yj) dyj

∫

Y

μB′
j

(yj) dyj
(8)
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or by

ȳj =

N
∑

r=1
ȳB

j,r · μB′
j

(

ȳB
j,r

)

N
∑

r=1
μB′

j

(

ȳB
j,r

)

(9)

in the discrete form, where ȳB
j,r are centres of the membership functions μBr

j
(y),

i.e. for j = 1, . . . , m and r = 1, . . . , N , we have:

μBr
j

(

ȳB
j,r

)

= max
yj∈Y

{

μBr
j

(yj)
}

. (10)

Consequently, in Mamdani approach formula (9) takes the following form:

ȳj=f (x̄)=

N
∑

r=1
ȳr

j

N

S
k=1

{

T

{

n

T
i=1

{

μAk
i

(x̄i)
}

, μBk
j

(

ȳr
j

)

}}

N
∑

r=1

N

S
k=1

{

T

{

n

T
i=1

{

μAk
i

(x̄i)
}

, μBk
j

(

ȳr
j

)

}} . (11)

3 Neuro-Fuzzy Systems with Various Types of Triangular
Norms

In our study we use non-parameterized (Zadeh, algebraic, bounded, drastic)
and parameterised (Aczel-Alsina, Dombi, Frank, Schweizer-Sklar, Yager) tri-
angular norms (see e.g. [7]). The hyperplanes corresponding to parameterized
families of t-norms and t-conorms can be adjusted in the process of evolution-
ary learning of an appropriate parameter. In order to design a specific neuro-
fuzzy system one should specify input and output membership functions and
specify triangular norms: t-conorm for aggregation described by formula (7),
t-norm for generation of inferences described by formula (4), and t-norm for
aggregation of antecedents in each rule, described by formula (5). In this pa-
per a new learning algorithm for evolution of flexible neuro-fuzzy inference sys-
tems, described by formula (11), is proposed. In the process of evolution we
find type of triangular norms and all parameters described in the previous sec-
tion.

4 Designing and Learning of Neuro-Fuzzy Systems with
Various Types of Triangular Norms

The structure of the neuro-fuzzy system described by formula (11), its parame-
ters and type of adjustable triangular norms used for aggregation of rules, con-
nections of antecedents and consequences and aggregation of antecedents were
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found using the evolutionary strategy (μ, λ). Moreover, the learning algorithm
has the following components:

– A repair procedure of the temporary population for the adjustable triangular
norms described as follows:

{pτ
k < ε0 ⇒ pτ

k = ε0, pI
k < ε0 ⇒ pI

k = ε0, p
agr < ε0 ⇒ pagr = ε0} , (12)

where ε0 is a small positive number chosen before the evolution process.
– Fitness function calculated as the average of the classification mistakes in

the learning sequence.
– Crossover and mutation operations for chromosomes Xstr

j and Xalg
j analogous

to the classical genetic algorithm with obvious modifications (see e.g. [12]).

4.1 Evolution of Structure

In our study a structure of neuro-fuzzy systems is found based on the evolution
of chromosomes Xstr

j given by

Xstr
j =

⎛

⎝

type of triangular norm of aggregation of antecedents,
type of triangular norm of inference operator,
type of triangular norm of aggregation of rules

⎞

⎠

=
(

Xstr
j,1 , Xstr

j,2 , Xstr
j,3

)

, (13)

where j = 1, . . . , μ for parent population or j = 1, . . . , λ for temporary popula-
tion. The gene named ”type of triangular norm of aggregation of antecedents”,
”type of triangular norm of inference operator” and ”type of triangular norm of
aggregation of rules” takes values from the set 0 for Zadeh triangular norm, 1
for algebraic triangular norm, 2 for bounded triangular norm, 3 for drastic tri-
angular norm, 4 for Aczel-Alsina triangular norm, 5 for Dombi triangular norm,
6 for Frank triangular norm, 7 for Schweizer-Sklar triangular norm, 8 for Yager
triangular norm.

For temporary population we use the recombination (crossover) and the mu-
tation operations:

– Single-point crossover, with probability pc chosen before the evolution pro-
cess, analogous to the classical genetic algorithm.

– Mutation, with probability pm chosen before the evolution process, analogous
to the classical genetic algorithm with obvious modifications. For example,
mutation of gene coding type of triangular norm is performed by a random
selection of its value from the set {0, 1, 2, 3, 4, 5, 6, 7, 8}. Choosing value of
probability pm we should realize that chromosomes Xstr

j , j = 1, . . . , λ, before
and after mutation are independent each of other. Therefore, if pm increases,
then mutation resembles random sampling.
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4.2 Evolution of Parameters

In the system described by formula (11) there are L = 2N (n + m + 1) + 1 pa-
rameters to be found in the evolution process: parameters {x̄A

i,k, σA
i,k} of Gaussian

membership functions μAk
i

(x̄i), parameters {ȳB
j,k, σB

j,k} of Gaussian membership
functions μBr

j
(x̄i), parameters {pτ

k} of parameterized t-norm for aggregation of
antecedents in each rule, parameters {pI

k} of parameterized t-norm for genera-
tion of inferences described by formula (4), parameter {pagr} of parameterized
t-conorm for aggregation described by formula (7). We apply evolutionary strat-
egy (μ, λ) for learning all parameters taking into account restrictions imposed
on particular parameters. In a single chromosome, according to the Pittsburgh
approach, a complete linguistic model is coded in the following way:

Xpar
j =

⎛

⎝

x̄A
1,1, σ

A
1,1, . . . , x̄

A
n,1, σ

A
n,1, ȳ

B
1,1, σ

B
1,1, . . . , ȳ

B
m,1, σ

B
m,1, p

τ
1 , pI

1, . . .
x̄A

1,N , σA
1,N , . . . , x̄A

n,N , σA
n,N , ȳB

1,N , σB
1,N , . . . , ȳB

m,N , σB
m,N , pτ

N , pI
N ,

pagr

⎞

⎠

=
(

Xpar
j,1 , Xpar

j,2 , . . . , Xpar
j,L

)

,

(14)
where j = 1, . . . , μ for parent population or j = 1, . . . , λ for the temporary
population. The self-adaptive feature of the algorithm is realized by assigning to
each gene a separate mutation range described by the standard deviation

σpar
j =

(

σpar
j,1 , σpar

j,2 , . . . , σpar
j,L

)

, (15)

where j = 1, . . . , μ for the parent population or j = 1, . . . , λ for the temporary
population.

For temporary population we use the recombination (crossover) and the mu-
tation operations:

– Crossover with averaging the values of the genes:

Xpar′
j1,g = 1

2

(

Xpar
j1,g + Xpar

j2,g

)

, Xpar′
j2,g = Xpar′

j1,g , (16)

and
σpar′

j1,g = 1
2

(

σpar
j1,g + σpar

j2,g

)

, σpar′
j2,g = σpar′

j1,g , (17)

where g = 1, . . . , L.
– Mutation:

σpar′
j,g = σpar

j,g exp (τ ′N (0, 1) + τNj,g (0, 1)) , (18)

and
Xpar′

j,g = Xpar
j,g + σpar′

j,g Nj,g (0, 1) , (19)

where σpar
j,g denotes current value of the mutation range of the j-th chro-

mosome, j = 1, . . . , λ, of the g-th gene, g = 1, . . . , L, σpar′
j,g denotes a new

value of the mutation range, N (0, 1) is the number drawn from the normal
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distribution, Nj,g (0, 1) is the number drawn the normal distribution of the j-
th chromosome, j = 1, . . . , λ, of the g-th gene, g = 1, . . . , L, and τ ′, τ denote
constants chosen before the evolution process. The following formulas can
be found in literature (see e.g. [5]):

τ ′ =
C√
2L

, (20)

and
τ =

C
√

2
√

L
, (21)

where C takes value 1 the most frequently. In order to avoid convergence of
the mutation range to 0, we use the following formula:

σpar′
j,g < ε0 ⇒ σpar′

j,g = ε0, (22)

where ε0 is a small positive number chosen before the evolution process.

Each individual of the parental and temporary populations is represented by
sequence of chromosomes

〈

Xstr
j ,Xpar

j , σpar
j

〉

, given by formulas (13)-(15). The
genes of the first chromosome take integer values, whereas the genes of the two
last chromosomes take real values.

5 Simulation Results

The neuro-fuzzy system (11) is simulated on the chemical plant problem and
modeling of static nonlinear function (HANG problem) (see e.g. [13]).

The evolution process is characterized by the following parameters: μ = 10,
λ = 500, pm = 0.077, pc = 0.770, ψ = 0.01, C = 1.2, number of generations =
250, and ε0 = 0.01. For the problems we found the type of triangular norm of
aggregation of antecedents, type of triangular norm of implication, and type of
triangular norm of aggregation of rules.

5.1 Chemical Plant Problem

We deal with a model of an operator’s control of a chemical plant. The plant
produces polymers by polymerisating some monomers. Since the start up of the
plant is very complicated, men have to perform the manual operations at the
plant. Three continuous inputs are chosen for controlling the system: monomer
concentration, change of monomer concentration and monomer flow rate. The
output is the set point for the monomer flow rate.

The best result (RMSE = 0.0085) is obtained for the neuro-fuzzy system
(11) with m = 1, N = 6, Dombi t-norm in aggregation of antecedents, algebraic
triangular norm in implication, and algebraic triangular norm in aggregation of
rules (see Table 1).
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Table 1. Simulation results

No Name of gene Problem
Chemical
Plant

HANG

1 type of tr. norm of aggregation of antecedents Dombi Yager
2 type of tr. norm of implication algebraic Zadeh
3 type of tr. norm of aggregation of rules algebraic algebraic

Zadeh

algebraic
Dombi

Yager

Zadeh

algebraicDombi

Yager

Zadeh
algebraic

Yager

Zadeh
algebraic

Yager

Zadeh

algebraic

Yager

algebraic

Dombi

Yager

a.1) a.2)

b.1) b.2)

c.1) c.2)

Fig. 1. The types of triangular norms encoded in the genes of chromosomes of the
population µ after the last generation of learning of neuro-fuzzy system (11) in: a)
aggregation of antecedents, b) implication, c) aggregation of rules for chemical plant
problem (a.1, b.1, c.1) and HANG problem (a.2, b.2, c.2)

5.2 HANG Problem

The problem is to approximate a nonlinear function given by

y (x1, x2) =
(

1 + x−2
1 + x−1.5

2

)2
. (23)

We obtained 50 input output data by sampling the input range x1, x2 ∈ [1, 5].
The best result (RMSE = 0.0691) is obtained for the neuro-fuzzy system

(11) with m = 1, N = 5, Yager t-norm in aggregation of antecedents, Zadeh
triangular norm of implication, and algebraic triangular norm in aggregation of
rules (see Table 1).

In Fig. 1 we present the types of triangular norms encoded in the genes of chro-
mosomes of the population μ after the last generation of learning of neuro-fuzzy
system (11). One can see that in our simulations, which illustrate approximation
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problems, nonparametric triangular norms were selected to build aggregation
operators and inference operators, whereas parametric triangular norms were
selected to build operators of aggregation of premises of rules.

6 Conclusions

In the paper we presented a novel method for designing and learning of flexible
neuro-fuzzy systems for nonlinear approximation. The method is based on the
evolutionary strategy (μ, λ) and allows to find both the structure and parameters
of the system in the process of evolution.
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and the Foundation for Polish Science TEAM project 2010-2014.
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9. �Lȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math.
Comput. Sci. 13(2), 215–223 (2003)

10. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2007)
11. Rutkowski, L., Cpa�lka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Net-

works 14(3), 554–574 (2003)
12. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Hei-

delberg (2008)
13. Sugeno, M., Yasukawa, T.: A fuzzy logic based approach to qualitative modeling.

IEEE Trans. on Fuzzy Systems 1, 7–31 (1993)



Time Series Processing and Forecasting
Using Soft Computing Tools

Nadezhda Yarushkina1, Irina Perfilieva2, Tatiana Afanasieva1,
Andrew Igonin1, Anton Romanov1, and Valeria Shishkina1

1 Ulyanovsk State Technical University,
Severny Venec, 32, 432027 Ulyanovsk, Russia

2 Institute for Research and Applications of Fuzzy Modeling
University of Ostrava

30. dubna 22, 701 03 Ostrava 1, Czech Republic
jng@ultsu.ru, Irina.Perfilieva@osu.cz, tv.afanaseva@mail.ru,

agigonin@gmail.com, romanov73@gmail.com, shvv@ulstu.ru

Abstract. The aim of this contribution is to show that the combination of F-
transform, fuzzy relations, neural networks and genetic algorithms can be suc-
cessfully used in analysis and forecast of short time series encountered in finan-
cial analysis of a small enterprize. We propose to represent a time series trend
by the direct F-transform components and to model it by one of three different
models that are based on a linear autoregressive equation, neural network or fuzzy
relation autoregressive equation. An optimal model of the trend will be chosen by
a genetic algorithm. In comparison with other time series techniques the proposed
one is simple and effective in computation and forecast.

In the application part, we present a description of a new software system that
has been elaborated on the basis of the proposed theory. It includes analysis of
time series and their tendencies in linguistic terms.

Keywords: F-transform, time series processing, fuzzy tendencies, soft. comput-
ing

1 Introduction

The analysis and forecasting of time series is based on its suitable decomposition. There
are two approaches to the decomposition of a time series. The first one (called Box-
Jenkins methodology [1]) uses a combination of an autoregressive model and a moving
average model, so that a time series is represented by its values in previous time mo-
ments. The second approach uses aggregative decomposition components such as trend,
cycle, etc., so that a time series is represented by an additive or multiplicative combina-
tion of these components contemporarily. In our contribution, we propose a new com-
bination of the two above described approaches, where the aggregative decomposition
components are modeled by respective autoregressive models. The advantage of our
methodology over those from which it stems, consists in its simplicity and thus, higher
efficiency.
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Because the notion of trend has no precise definition, we use two methods for the
trend modeling: the F-transform [4] and the method of local tendencies (see [8]), see
details in Section 4.

The notion of a fuzzy transform (F-transform, for short) see, e.g., [4,5] turned out
to be very useful in combination with other soft computing techniques. In [6,3], we
successfully applied the inverse F-transform and perception-based logical deduction to
time series analysis and prediction. In this contribution, we propose a novel approach
which consists in using the direct F-transform in combination with fuzzy relation pro-
cessing tool, neural networks and genetic algorithms. We show that time series analysis
and processing can be successfully performed on the basis of this powerful combina-
tion.

The term fuzzy tendency of a fuzzy time series has been introduced in [8] with the
purpose to characterize dynamics (systematic movement) of a TS. In the second part of
our contribution, we explain how time series decomposition and forecast can be made
on the basis the F-transform together with other soft computing tools. An advantage of
the presented method is its applicability to the analysis and forecast of short time series
which cannot be processed by statistical methods due to their insufficient length. Last,
an application to express analysis of short time series will be demonstrated.

2 Discrete F-Transform and Its Matrix Representation

2.1 Fuzzy Partition and Its Matrix Representation

Generally, the F-transform of a function f : P −→ R is a vector whose components
can be considered as weighted local mean values of f . Throughout this paper we will
assume that R is the set of real numbers, [a,b] ⊆ R, and P = {p1, . . . , pl}, n < l, is a
finite set of points such that P ⊆ [a,b]. Function f : P −→ R defined on the set P is
called discrete.

Below, we will remind basic facts about the F-transform as they were presented in
[4], and then introduce its relaxed version and matrix representation.

Let f : P −→ R be an arbitrary function on P. The first step in the definition of
the F-transform of f is a selection of a fuzzy partition of the interval [a,b] by a finite
number n : 2 ≤ n ≤ l − 2 of fuzzy sets A1, . . . ,An : [a,b] → [0,1], identified with their
membership functions. There are three axioms which characterize a fuzzy partition:

1. (locality) - for every k = 1, . . . ,n, Ak(x) = 0 if x ∈ [a,b]\ [xk−1,xk+1];
2. (continuity) - for every k = 1, . . . ,n, Ak is continuous on [xk−1,xk+1];
3. (density) - ∑l

j=1 Ak(p j) > 0, k = 1, . . . ,n.

The membership functions A1, . . . ,An in the fuzzy partition are called basic functions.
We say that the basic function Ak covers a point p j if Ak(p j) > 0.

In the subsequent text, we will fix an interval [a,b], a finite set of points P ⊆ [a,b]
and a fuzzy partition A1, . . . ,An of [a,b]. Denote ak j = Ak(p j) and consider n× l matrix
A with elements ak j. We will say that A is a partition matrix of P.
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2.2 Discrete F-Transform

Once the basic functions A1, . . . ,An are selected, we define (see [4]) the (direct) F-
transform of a function f : P −→ R as a vector (F1, . . . ,Fn) where the k-th component
Fk is equal to

Fk =
∑l

j=1 f (p j) ·Ak(p j)

∑l
j=1 Ak(p j)

, k = 1, . . . ,n. (1)

Let us identify the function f : P −→ R with the row vector f = ( f1, . . . , fl) of its
values on P so that f j = f (p j), j = 1, . . . , l. Moreover, let partition A1, . . . ,An be repre-
sented by the matrix A. Then we will say that the row vector Fn(f) = (F1, . . . ,Fn) is the
F-transform of f if

(F1, . . . ,Fn) =
(

(AfT )1

a1
, . . . ,

(AfT )n

an

)

(2)

where (AfT )k is the k-th component of the product Af, ak = ∑l
j=1 ak j, k = 1, . . . ,n. The

following properties characterize the Fn(f):

P1. The mapping Fn : R
l → R

n such that Fn : f → Fn(f) is linear.
P2. Components F1, . . . ,Fn of Fn(f) minimize the following function

Φ(y1, . . . ,yn) =
n

∑
k=1

l

∑
j=1

( f j − yk)2ak j.

3 Time Series Decomposition

Assume that yt , t = 1, . . . ,T , T ≥ 3, is a time series. We consider it as a discrete function
which is defined on the set PT = {1, . . . ,T} of time moments. Let A1, . . . ,An, n < T ,
be basic functions which constitute a fuzzy partition of the interval [1,T ]. Denote Pk,
k = 1, . . . ,n, a subset of PT consisting of points covered by Ak. Note that due to the
density condition on a fuzzy partition, every Pk is not empty.

Let Fn(y)= (Y1, . . . ,Yn) be the F-transform of time series yt with respect to A1, . . . ,An.
We say that {yt −Yk | t ∈ Pk} is the k-th residual vector of yt with respect to Ak, k =
1, . . . ,n. For t = 1, . . . ,T , k = 1, . . . ,n we denote

rtk =

{

yt −Yk, if t ∈ Pk,

−∞, otherwise

so that R = (rtk) is a T ×n matrix of residua.
In the following two propositions we show an estimation of the F-transform of a

residual vector and a decomposition of a time series yt .

Proposition 1. Let R = (rtk) be the T × n matrix of residua of a time series yt with
respect to fuzzy partition A1, . . . ,An of [1,T ]. Let A be the n×T partition matrix of the
set PT . Then

– AR = 0,
– Fn(rk) = 0, k = 1, . . .n.
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Proposition 2. Let yt be a time series on [1,T ] and A1, . . . ,An a fuzzy partition of [1,T ].
If Fn(y) is the F-transform of yt and R = (rtk) is the T ×n matrix comprised of residual
vectors then yt can be represented as follows:

yt =
n

∨

k=1

(Yk + rtk). (3)

Remark. In the decomposition (3), the F-transform components are considered as trend
components of the time series yt .

4 Models of Trend

In this section, we will use decomposition (3) of a time series and propose models of
thus obtained parts. These models will be then used for forecast. Because we use similar
approaches for modeling trend components and residual vectors, we will describe only
the first one.

Let the following sequence of trend components Y1, . . . ,Yn be an autoregressive of
order q, 1 ≤ q ≤ 5, so that

Yk+q = ϕ(Yk,Yk+1, . . . ,Yk+q−1), k = 1, . . . ,n−q−1. (4)

In our approach, we investigate three general models of ϕ: linear, neural network and
fuzzy relation. Let us briefly characterize each of them.

(a) Formally, a linear model of (4) is characterized by

Yk+q = α1Yk + α2Yk+1 + · · ·+ αqYk+q−1, k = 1, . . . ,n−q−1. (5)

Obviously, (5) is a system of linear equations with unknown α1,α2, . . . ,αq. We
propose to solve this system numerically.

(b) Neural network approximation of (4) is realized by a group of three models that dif-
fer in a way of representation of arguments in (4). The neural network is configured
as a multilayer perceptron.

(c) Fuzzy relation model of (4) has been proposed in [7]. Without going into specific
details, we can reproduce it by the following equation:

Ỹk+q = (Ỹk, . . . ,Ỹk+q−1)◦R, k = 1, . . . ,n−q−1, (6)

where (Ỹk, . . . ,Ỹk+q−1,Ỹk+q) are respective fuzzy sets on a range Y of a time series,
◦ is a max−min-composition, and R is a fuzzy relation on Y q+1. We extend the
group of fuzzy relation models (6) by the following two:

ΔỸk+q = (ΔỸk, . . . ,ΔỸk+q−2)◦R, k = 1, . . . ,n−q−1, (7)

and

Ỹk+q = (Ỹk, . . . ,Ỹk+q−1,ΔỸk, . . . ,ΔỸk+q−2)◦R, k = 1, . . . ,n−q−1, (8)

where ΔỸk is a fuzzy set that characterizes the first difference Yk+1 −Yk. It is worth
noticing that ΔỸk is an instance of a local tendency of a time series (see [8] for
detailed theory). Expressions (6)–(8) represent systems of fuzzy relation equations
with respect to unknown fuzzy relations R. Under certain conditions, these systems
are solvable. A solution R is a required model of (4).
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5 Short Time Series Forecast

In this section, we will apply the time series decomposition (3) to forecast short time
series. Due to short lengths, they can be hardly processed by statistical methods. Since
our decomposition (3) consists of two parts, we will forecast both of them, i.e. a trend
component and its residual counterpart. We will explain our approach in more details
below.

Our forecast will be based on the model (4) which contains two a priori unknown
parameters: q and ϕ. They will be identified by the following standard procedure: the
last component Yn is not used in (4) and is forecasted by each of three specified above
models. The best model minimizes the criterion MAPE:

MAPE =
1
n

n

∑
k=1

∣

∣

∣

∣

∣

|Yk − ̂Yk|
Yk

∣

∣

∣

∣

∣

100%. (9)

It will be used for the forecast of an unknown value of Yn+1 (and similarly, rn+1). Then
obtained forecasts Yn+1 and rn+1 will be combined by (3) and used for the forecast of
the next time series value.

In (Figure 1) we illustrate our method on the example of one chosen time series of the
length 25 with real economical data. Four different partitions of [1,T ] with triangular
shaped basic functions are considered. In all cases, we produce forecasts of the last
F-transform component and of the respective portion of the time series.

We see that the MAPE value of the trend forecast does not directly depend on a
robustness of a partition. Thus other parameters (e.g., the above discussed) should be
included into the optimization procedure. More details are in the next section.

Fig. 1. Four forecasts of the same time series: Upper left. The forecast of the last 2 values. Each
basic function covers 5 points. Trend MAPE=0,21. Time series MAPE=7.32. Upper right. The
forecast of the last 3 values. Each basic function covers 7 points. Trend MAPE=4,16. Lower left.
The forecast of the last 4 values. Each basic function covers 9 points. Trend MAPE=15,75. Lower
right. The forecast of the last 5 values. Each basic function covers 11 points. Trend MAPE=4,068.
Time series MAPE=15,08.



160 N. Yarushkina et al.

The same time series as in the example above, has been processed by the ForecastPro
software package which combines a majority of recommended statistical methods such
as ARMA, ARIMA, Box-Jenkins, etc. Because the given time series is too short, the
exponential smoothing method was applied as the only possible one. We illustrate the
result of the ForecastPro in Figure 2 below where a forecast of the last 5 values is shown.
It is seen that comparable (by the number of forecasted values) forecasts are in Figure 1
(Lower right) and Figure 2. Both forecasts have almost equal MAPE values.

Fig. 2. Time series of the length 25, and the forecast of the last 5 values made by the ForecastPro.
Time series MAPE=14,51.

At the end of this section, we show that on the benchmark “Alabama”, which contains
data on university entrants, our forecast is significantly better than known statistical and
fuzzy methods. The below given table contains the values of MAPE of four known
methods used for a forecast of one future value.

Table 1. Comparison of TS modeling for University of Alabama TS

ARIMA Song [7] Huarng [2] The proposed method
5,49 3,11 1,5294 0, 96

6 Express Analysis of Short Time Series and Web-service

In this section, we present a demonstration of the software system that has been elab-
orated on the basis of the proposed theory. The system is focused on express analysis
of short time series. Moreover, it is a part of the Internet service which has been de-
veloped with the purpose to help small companies in verification of their economic
stability.

More than 40 real time series have been processed by the software system. In the
below given table we show models that have been chosen after optimization as well
as a characteristic (number of covered points (Number CP)) of an optimal partition.
The choice was among two models of (4): linear (LN), and neural network (NN) (see
Section 4).

A brief analysis of optimal methods and their parameters shows that robust partitions
are preferable to finer ones.
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Table 2. Optimal methods for forecast of time series trends and their MAPE

TS (code)Length of TSNumber CPMethodMAPE (trend)%
2-6 40 11 NN 4,95
2-8 43 13 NN 3,7
2-9 42 7 LN 2,3
2-10 90 11 LN 5,99
2-11 57 9 NN 16,77
2-12 150 5 LN 0,85
2-13 25 11 LN 2,04
3-15 13 9 NN 11,10
3-16 13 9 NN 3,30
3-17 13 7 LN 1,98
3-24 12 5 NN 0,21
3-25 12 9 NN 17,39

6.1 Genetic Optimization

In this section, we will describe the optimization algorithm that helps to reduce a dimen-
sion of a search space. By this we mean the space which we characterized in the previ-
ous section and which is connected with the following parameters: number of points that
are covered by basic functions (Number CP), order of the regression model q, degree
of seasonality, structure of an input vector in the neural network. The last parameter de-
termines whether our regression model depends on previous trend values, or it depends
on previous trend values and their first differences, or it depends on first differences of
previous trend values. The optimization criterion is a value of MAPE.

The chosen optimization algorithm is a genetic algorithm with a classical structure.
We restrict the number of epochs and by this exclude those combinations of parame-
ters which cannot be optimal for a certain time series. It is worth noticing that genetic
optimization is the first step of our software system. It does not solve the problem of
global optimization, but significantly reduces the search space. The final optimal choice
of parameters that are used for a final forecast is made on the basis of a full overview.

7 Conclusion

In this contribution, we have shown that the combination of F-transform, fuzzy rela-
tions, neural networks and genetic algorithms can be successfully used in analysis and
forecast of short time series encountered in financial analysis of a small enterprize. We
described how a time series can be decomposed into a sequence of trend values and a
sequence of residual vectors, and proposed the algorithm which forecasts both compo-
nents.

We outlined the new software system that has been elaborated on the basis of the
proposed theory. Besides the F-transform, it includes analysis of time series and their
tendencies in linguistic terms, time series processing with the help of neural networks,
optimization of forecast by genetic algorithms. The elaborated software system is fo-
cused on express analysis of short time series which cannot be processed by statistical
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methods.It is shown that on some benchmarks, the proposed software system works
better that known statistical and fuzzy methods. This software system is a part of the
Internet service which has been developed with the purpose to help small companies in
verification of their economic stability.
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Abstract. Strategic asset management is concerned with a complex
process that usually involves a variety decision making situations. But
managers, decision makers, and experts dealing with optimization prob-
lems often have a lack of information on the exact values of some param-
eters and in the same time are unable to put into the model important
aspects that couldn’t be defined as crisp. To deal with this kind of impre-
cise data, Fuzzy Sets provide a powerful tool to model and solve these
problems. A method for solving Fuzzy Linear Programming problems
is provided, and this method is applied to a concrete real problem for
foreign exchange market. With proposed fuzzy model in this work, asset
managers obtain a tool for making better decisions for FX transactions
when exchange rates are not known.

Keywords: Fuzzy Linear Programming, Foreign Exchange Market.

1 Introduction

By its very nature, financial dynamics of assets markets concerns largely volatile
market systems that simultaneously exhibit phenomena of randomness, uncer-
tainty, and fuzziness [1,2,3]. Hence this system and other social systems currently
are being revisited using computational intelligence models and techniques. As
a humanistic science, economics should thus have been one of the early prime
targets for utilizing Fuzzy Set theory. Applications of Fuzzy Sets within the field
of intelligent decision making have, for the most part, consisted of fuzzifications
of the classical theories of decision making.

The main motivation for this paper is to give an example of application of
Fuzzy Theory and latest achievements in researches on a particular problem.
The formulated scenario in this paper, for foreign exchange market is impos-
sible to solve with classical or crisp mathematical models, especially fuzzyness
in right-hand site coefficients. The importance of elaborated application in this
paper is significant, having in mind that the cash management separately and
generally as important part of the asset management is conducted in very unsta-
ble environment and benefits of such non-crisp applications can lead to better
results in middle and long term time periods.
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2 Fuzzy Linear Programming

A linear programming problem (LPP) in general may be defined as the problem
of maximizing or minimizing a linear function subject to linear constraints. Fuzzy
Linear Programming is used when optimization occurs under uncertainty, when
any vague quantity appears in LPP, in coefficients or constraints [4,5,6,7,8,9,12].

This offers many non-crisp definable possibilities. First we may not want to
actually maximize or minimize the objective function. Secondly, the constraints
might be vague. The ≤ sign might not be defined in the traditional sense to the
degree that smaller violations may be acceptable.

Most general form of Fuzzy LPP where all coefficients we assume are Fuzzy
Numbers can be written as:

max c1x1 + ... + cnxn subject to :
ai1x1 + ... + ainxn ≤g bi, i = 1, ...m; xj ≥ 0, j = 1, ..., n . (1)

The methods for solving Fuzzy LPP are well established [10,12,13]. In this work,
the elaborated problem is stated as Fuzzy Linear Programming problem with
technological and right-hand-side coefficients. Most widely known is the method
proposed by Bellman and Zadeh, known as Symmetric method [7,13]. Mathe-
matically the Fuzzy Set for the solution of Fuzzy LPP can be written as:

D = [(
m
⋂

i=1

Ci)
⋂

G](X) (2)

where Ci are defined Fuzzy Sets for the constraints, and G is Fuzzy Set of fuzzy
optimal values.

In order to develop the more concrete form for this solution, some assumptions
should be accepted. That is,aij and bi are Fuzzy Numbers with the membership
functions of this form:

μv (x) =

⎧

⎨

⎩

1 , x < v
v+u−x

u , v ≤ x < v + u
0 , x ≥ v + u .

(3)

Here x ∈ R, so the Fuzzy Numbers in Fuzzy LPP can be written as aij=[aij

aij+dij ] and bi=[bi bi+pi].
Defuzzification of the problem is based on the calculation of the lower and

upper bounds of the optimal values. Objective function takes values between zl

and zu while technological coefficients take values between aij and aij+dij and
the right-hand side coefficients take values between bi and bi+pi. Defuzzified
form of (2) becomes:

max λ

λ(zu − zl) −
n

∑

j=1

cjxj + zl ≤ 0 (4)

n
∑

j=1

(aij + λdij)xj + λpi − bi ≤ 0, 1 ≤ i ≤ m; xj ≥ 0, 0 ≤ λ ≤ 1 .
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3 Foreign Exchange Market and Illustrative Example

Foreign exchange market exists everywhere where one currency is traded for
another. For interest in this work are a long term planned transactions where
the exact exchange rate is unknown in the time when the trade will take place.

For purpose in this work we will assume that the total cost is a linear func-
tion of transferred amount, i.e. costij=kij*xij . Optimization problem arises to
determine amounts xij that should be transferred from account i to account j in
way the function of cost be minimized. xij represents the amounts expressed in
the currency Bj .

min fcost =
k,l
∑

i=1,j=1

kijxij

m
∑

j=1

xij ≤ ai, i = 1..n, n ∈ N (5)

n
∑

i=1

erijxij ≥ bj, j = 1..m, m ∈ N ; xij ≥ 0

where erij are the Fuzzy Numbers for exchange rates, ai available amount of
currency Ai,bj minimum but not exact amount we should indemnify of currency
Bj that is different from Ai.

Illustrative example: A Bank on the account in a Brazilian bank has 100.000
Brazilian Reals. Main goal of the Bank is to indemnify minimum 10.000 USD in
USA and 15.000 CAD in Canada. The transfer costs between the banks are 5%
and 4% from transferred money respectively.

With respect to the past values of exchange rate between BRL and USD
and BRL and CAD, appropriate Fuzzy Numbers are defined as er11=[0,58 0,6],
er21=[0,56 0,62], b1=[10000 20000], b2=[15000 35000].

On this definition, the symmetric method proposed by Bellman and Zadeh is
applied.

After solving 16 crisp LPP using Optimization toolbox in MATLAB, results
are zl=-4224,1 and zup=-1801.1. In solving non convex problem (4) special ap-
proach is required (see e.g. [10]). Solving these problems with iterations is quite
precise, but generally it takes much more iterations to obtain wanted precision.
In this paper problem is solved with iteration.

The value of λ=0,51050 is the maximum value for which the problem (5) has a
feasible solution. For that value of λ, the cost would be 2987,16 BLR. This result
can be interpreted as, at certainty level 0,51050 the cost will be minimized for
the stated problem. So if the exchange rates are lower than 0,59021 and 0,59063
we can revoke maximum 15105 USD and 25210 CAD at minimum cost. For
better exchange rate it is recommended to redesign the problem.
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4 Conclusion

We showed how the concepts of Fuzzy Set Theory can be applied to the real
problem. We studied how to incorporate unpredictable values of exchange rates
and aspiration levels, which are human-formulated, into the solution model. The
defined model represents a valuable tool for better decision making in volatile
environment. This paper shows one more time that economics is a field where
applications of Fuzzy Sets Theory can be very successful.

In order to find the maximum value of λ in further research, one may ap-
ply an adaptive intelligent controller. According to the past values and recent
trends that affect exchange rates, it should model the membership functions for
exchange rates.

References

1. Ingersoll, J.E.: Theory of Financial Decision Making, pp. 65–140. Rowman & Lit-
tlefield Publishers Inc., Baltimore (1987)

2. Campbell, J.Y., Lo, A.W., MacKinley, A.C.: The Econometrics of Finance Markets.
Princeton University Press, Princeton (1997)

3. Dimirovski, G.M., Dinibütün, A.T., Kile, F., Neck, R., Stahre, J., Vlacic, L.: Con-
trol system approaches for susstainable development in globalization age. Annual
Reviews in Control 30(1), 103–115 (2006)

4. Zimmermann, H.J.: Fuzzy programming and linear programming with several ob-
jective functions. Fuzzy Sets & Systems 1, 45–55 (1978)

5. Bellman, R.E., Zadeh, L.A.: Decision making in fuzzy environment. Management
Science 17, 209–215 (1970)

6. Rogers F., Neggers J., Younbae J.: Method for optimizing linear problems with
fuzzy constraints. In: International Mathematical Forum, vol. 3(23) (2008)

7. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall, Upper Saddle River (1995)

8. Bruckley, J.J., Feruing, T.: Evolution algorithm solution to fuzzy problems: Fuzzy
linear programming. Fuzzy Sets & Systems 109, 35–53 (2000)

9. Wang, L.X.: A Course in Fuzzy Systems and Controls. Prentice-Hall, Englewood
Cliffs

10. Gasimov R.N., Yenilmez K.: Solving Fuzzy Linear Programming Problems with
Linear Membership Functions, Internet published paper citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.95.8155\&rep=rep1\&type=pdf

11. Rogers F., Neggers J., Jun Y.: Method for optimizing linear problems with fuzzy
constraints. In: International Mathematical Forum, vol. 3(23) (2008)

12. Cadenas, J.M., Verdegay, J.L.: Using fuzzy numbers in Linear Programming. IEEE
Transactions on SMC-part B: Cybernetics 27(6)

13. Fuller R., Zimmerman H.J.: Approximate Reasoning for Solving Fuzzy Linear pro-
gramming Problems, Internet published paper citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.49.7492\&rep=rep1\&type=pdf

14. Royal Forex, FOREX, Study book for successful foreign exchange dealing, Inter-
net publications www.earnforex.com/forex-e-books/beginner-forex-trading/

Study_Book_for_Successful_Foreign_Exchange_Dealing.pdf

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.8155&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.8155&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.7492&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.7492&rep=rep1&type=pdf
www.earnforex.com/forex-e-books/beginner-forex-trading/Study_Book_for_Successful_Foreign_Exchange_Dealing.pdf
www.earnforex.com/forex-e-books/beginner-forex-trading/Study_Book_for_Successful_Foreign_Exchange_Dealing.pdf


Fuzzy Optimal Solution of Fuzzy Transportation

Problems with Transshipments

Amit Kumar, Amarpreet Kaur and Manjot Kaur

School of Mathematics and Computer Applications
Thapar University, Patiala-147 004, India

amit rs iitr@yahoo.com, amanpreettoor@gmail.com,

manjot.thaparian@gmail.com

Abstract. In this paper a new method, named as Mehar’s method, is
proposed for solving fuzzy transportation problems with transshipments.
Also, it is shown that it is better to use Mehar’s method as compared to
the existing method.

1 Introduction

In conventional transportation and transshipment problems [1] it is assumed that
decision maker is sure about the precise values of transportation cost, availability
and demand of the product. In real world applications, all these parameters may
not be known precisely due to uncontrollable factors. To deal with such situa-
tions several authors have represented the different parameters by fuzzy numbers
[18] and proposed different methods for solving fuzzy transportation problems
[2,9,11,12,13,15,16,17] and fuzzy transshipment problems [3,4,5,6,7,8,10,14].

2 Proposed Method

Kumar et al. [10] proposed fuzzy linear programming approach for finding the
fuzzy optimal solution of fuzzy transportation problems with transshipment.
In the existing method [10] the fuzzy linear programming formulation of the
chosen fuzzy transportation problem with transshipment is converted into four
crisp linear programming formulations of crisp transportation problems with
transshipment and then all the obtained crisp linear programming problems are
solved by Simplex method [1]. But in the literature, it is pointed out that it is
better to use modified distribution method [1] for finding the solution of crisp
transportation problems as compared to Simplex method.

Due to the same reason, in this section a new method, named as Mehar’s
method, based on modified distribution method, is proposed for finding the
fuzzy optimal solution of same type of problems.

The steps of the proposed method are as follows:

Step 1. Split Table 3 [10] into four crisp transportation tables i.e., Table 1,
Table 2, Table 3 and Table 4 respectively.

Step 2. Find the optimal solution aij ; bij −aij ; cij −bij and dij −cij by solving

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 167–170, 2011.
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the crisp transportation problems, shown by Table 1; Table 2; Table 3 and Table
4 respectively, by using modified distribution method.
where, λij = a′

ij+b′
ij+c′

ij+d′
ij

4 , ρij = b′
ij+c′

ij+d′
ij

4 , δij = c′
ij+d′

ij

4 , and ξij = d′
ij

4 .

Step 3. Find the values of aij , bij , cij and dij by solving the equations obtained
in Step 2 and also find x̃ij = (aij , bij , cij , dij).

Step 4. Find the minimum total fuzzy transportation cost by putting the values

of x̃ij in
m+n
∑

i=1

m+n
∑

j=1

c̃ij ⊗ x̃ij .

Table 1. First crisp transportation table

S1 S2 · · · Sm D1 D2 · · · Dn
S1 0 λ12 · · · λ1m λ1(m+1) λ1(m+2) · · · λ1(m+n) q1
S2 λ21 0 · · · λ2m λ2(m+1) λ2(m+2) · · · λ2(m+n) q2
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Dn λ(m+n)1 λ(m+n)2 · · · λ(m+n)m λ(m+n)(m+1) λ(m+n)(m+2) · · · 0 p1

p1 p1 · · · p1 q′1 q′2 · · · q′n

Table 2. Second crisp transportation table

S1 S2 · · · Sm D1 D2 · · · Dn
S1 0 ρ12 · · · ρ1m ρ1(m+1) ρ1(m+2) · · · ρ1(m+n) r1 − q1
S2 ρ21 0 · · · ρ2m ρ2(m+1) ρ2(m+2) · · · ρ2(m+n) r2 − q2
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Dn ρ(m+n)1 ρ(m+n)2 · · · ρ(m+n)m ρ(m+n)(m+1) ρ(m+n)(m+2) · · · 0 p2 − p1

p2 − p1 p2 − p1 · · · p2 − p1 r′1 − q′1 r′2 − q′2 · · · r′n − q′n

Table 3. Third crisp transportation table

S1 S2 · · · Sm D1 D2 · · · Dn
S1 0 δ12 · · · δ1m δ1(m+1) δ1(m+2) · · · δ1(m+n) s1 − r1
S2 δ21 0 · · · δ2m δ2(m+1) δ2(m+2) · · · δ2(m+n) s2 − r2
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p3 − p2 p3 − p2 · · · p3 − p2 s′1 − r′1 s′2 − r′2 · · · s′n − r′n
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Table 4. Fourth crisp transportation table

S1 S2 · · · Sm D1 D2 · · · Dn
S1 0 ξ12 · · · ξ1m ξ1(m+1) ξ1(m+2) · · · ξ1(m+n) t1 − s1
S2 ξ21 0 · · · ξ2m ξ2(m+1) ξ2(m+2) · · · ξ2(m+n) t2 − s2
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Dn ξ(m+n)1 ξ(m+n)2 · · · ξ(m+n)m ξ(m+n)(m+1) ξ(m+n)(m+2) · · · 0 p4 − p3

p4 − p3 p4 − p3 · · · p4 − p3 t′1 − s′1 t′2 − s′2 · · · t′n − s′n

3 Advantages of the Proposed Method

To show the advantage of the proposed method over existing method [10] a fuzzy
transportation problem with transshipment, [Example 5.1, 10], is solved by using
the proposed method and it is shown that the obtained results are same while it
is easy to apply the proposed method as compared to the existing method [10].

3.1 Results

On solving the fuzzy transshipment problem [10], the obtained fuzzy optimal
solution and minimum total fuzzy transportation cost is x̃11 = (16, 30, 44, 56),
x̃13 = (6, 8, 10, 20), x̃14 = (4, 10, 12, 14), x̃16 = (0, 2, 8, 8), x̃21 = (0, 0, 0, 2), x̃22 =
(16, 30, 44, 58), x̃26 = (0, 4, 8, 10), x̃33 = (16, 30, 44, 58), x̃44 = (16, 30, 44, 58),
x̃54 = (6, 6, 6, 6), x̃55 = (16, 30, 44, 58), x̃66 = (16, 30, 44, 58)and remaining are
(0, 0, 0, 0) and (8, 38, 90, 166).

3.2 Discussion

It can be easily seen that the results of the fuzzy transportation problems with
transshipment, obtained by using the existing method [10] and the proposed
method are same but as discussed in, Section 2, it is easy to use the proposed
method as compared to existing method [10].

4 Conclusion

The shortcoming of an existing method [10] for finding the fuzzy optimal solu-
tion of fuzzy transportation problem with transshipment are pointed out and
to overcome the shortcoming of the existing method a new method, named as
Mehar’s method, is proposed for solving the same type of problem.

Acknowledgements. The authors would like to thank to the anonymous re-
viewers for their suggestions. Special thanks go to Ms. Mehar Kaur.
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Abstract. In this paper, a new method, named as Mehar’s method, is
proposed for solving fully fuzzy project crashing problems and a new
representation of LR flat fuzzy numbers, named as JMD representation
of LR flat fuzzy numbers, are introduced. Also, it is shown that it is
better to use JMD representation of LR flat fuzzy numbers as compared
to the existing representation of LR flat fuzzy numbers.

1 Introduction

Management of complex projects that consists of a large number of interre-
lated activities poses problems involved in planning, scheduling, and control,
especially when the project activities have to be performed in a specified tech-
nological sequence. But in real-world applications, the time required to complete
the various activities in a research and development project may be known only
approximately due to insufficient information. To deal quantitatively with impre-
cise information, the concepts and techniques of probability could be employed.
However, probability distribution requires a priori predictable regularity or a
posteriori frequency determination to construct. As an alternative, uncertain
values can be represented by fuzzy sets.

For finding the fuzzy critical path and fuzzy project crashing, several ap-
proaches and algorithms are proposed over the past years [5,2,1,4].

2 JMD Representation of LR Flat Fuzzy Numbers

Kumar and Kaur [3] proposed JMD representation of triangular fuzzy numbers
and shown that it is better to use JMD representation of triangular fuzzy num-
bers as compared to existing representation of triangular fuzzy numbers. On the
same direction in this section, a new representation of LR flat fuzzy numbers,
named as JMD representation of LR flat fuzzy numbers, are introduced.

Definition 1. Let (m, n, αL, αR)LR be an LR flat fuzzy number then its JMD
representation is (x, αL, αM , αR)JMD

LR , where x = m − αL, αM = n − m.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 171–174, 2011.
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Definition 2. A JMD LR flat fuzzy number ˜A = (x, αL, αM , αR)JMD
LR is said

to be non-negative JMD LR flat fuzzy number iff x ≥ 0.

Definition 3. Let (x, αL, αM , αR)JMD
LR be a JMD LR flat fuzzy number then

�(x, αL, αM , αR)JMD
LR = x+ 3(αL)+2(αM )+αR

4 for L(x) = R(x) = max {0, 1−x}.

3 Mehar’s Method with JMD LR Flat Fuzzy Numbers

In this section, a new method, named as Mehar’s method, is proposed to find
the fuzzy optimal solution of the fully fuzzy project crashing (FFPC) problems.
The steps of Mehar’s method are as follows:

Step 1. If all the parameters ˜Cij , ˜Dij , ˜Yij , ˜tij , x̃j and ˜T are represented
by JMD LR flat fuzzy numbers (cij , α

L
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ij , αR

ij)
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ij , δR

ij)
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ij)
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ij)
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L
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j )JMD

LR and (t, ψL,

ψM , ψR)JMD
LR respectively, then the linear programming formulation of project

crashing problem [6] can be written as:
Minimize
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ij)
JMD
LR is a non-negative JMD LR flat fuzzy

number ∀(i, j) ∈ A; (xj , γ
L
j , γM

j , γR
j )JMD

LR is an unrestricted JMD LR flat fuzzy
number ∀ j where, A = set of all activities (i, j), ˜Dij = fuzzy normal time for
(i, j), ˜tij = maximum allowable fuzzy crash time for (i, j), ˜Cij = incremental fuzzy
crashing costs for (i, j), ˜Yij = number of fuzzy time units by which duration of (i, j)
is crashed, x̃i = earliest fuzzy time for event i, x̃1 = project fuzzy start time, x̃n =
project fuzzy completion time, ˜T = specified project fuzzy completion time.

Step 2. Using Definition 2 and Definition 3, convert the fuzzy linear pro-
gramming (FLP) problem, obtained in Step 1, into the following crisp linear
programming (CLP) problem:
Minimize �(

∑

(i,j)∈A

(cij , α
L
ij , α

M
ij , αR

ij)
JMD
LR ⊗ (yij , β

L
ij , β

M
ij , βR

ij)
JMD
LR )

subject to �((xj , γ
L
j , γM

j , γR
j )JMD

LR ) + �((yij , β
L
ij , βM

ij , βR
ij)

JMD
LR ) ≥ �((xi, γ

L
i ,

γM
i , γR

i )JMD
LR )+�((dij , δ

L
ij , δ

M
ij , δR

ij)
JMD
LR ) ∀(i, j) ∈ A; �((yij , β

L
ij , β

M
ij , βR

ij)
JMD
LR ) ≤

�(tij , ηL
ij , η

M
ij , ηR

ij)
JMD
LR )∀ (i, j) ∈ A; �((x1, γ

L
1 , γM

1 , γR
1 )JMD

LR ) = �((0, 0, 0,

0)JMD
LR );�((xn, γL

n , γM
n , γR

n )JMD
LR ) ≤ �((t, ψL, ψM , ψR)JMD

LR ); γL
j , γM

j , γR
j , ≥

0 ∀ j; yij , β
L
ij , β

M
ij , βR

ij ≥ 0 ∀ (i, j) ∈ A; xj is a real number ∀ j.
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Step 3. Solve the CLP problem, obtained in Step 2, to find the minimum fuzzy
crashing cost for completing the project within specified fuzzy time by putting
the values of ˜Yij = (yij , β

L
ij , β

M
ij , βR

ij) in
∑

(i,j)∈A

˜Cij ⊗ ˜Yij .

4 Advantages of JMD LR Flat Fuzzy Numbers

In this section, the results of the same problem obtained by using existing and
JMD LR flat fuzzy numbers are compared in Table 1.

Table 1. Comparative study

Details of crisp constraints and crisp Details of crisp constraints and crisp
variables in the CLP formulation obtained variables in the CLP formulation obtained

by using Mehar’s method with existing by using Mehar’s method with JMD

representation of LR flat fuzzy numbers representation of LR flat fuzzy numbers
((m, n, αL, αR)LR) ((x, αL, αM , αR)JMD

LR )

Number of crisp constraints Number of crisp constraints
corresponding to N fuzzy corresponding to N fuzzy

constraints = N constraints = N

Crisp variables corresponding to one Crisp variables corresponding to one
non-negative LR flat fuzzy variables non-negative JMD LR flat fuzzy

((m, n, αL, αR)LR) are variables ((x, αL, αM , αR)JMD
LR ) are

m, n, αL, αR, m − αL, n − m ≥ 0, αL, αM , αR, x ≥ 0
Crisp variables corresponding to one Crisp variables corresponding to one
unrestricted LR flat fuzzy variables unrestricted JMD LR flat fuzzy variables

((m, n, αL, αR)LR) are αL, αR, n − m ≥ 0 ((x, αL, αM , αR)JMD
LR )are αL, αM , αR ≥ 0

and m, n are real numbers and x is a real number
Number of crisp variables corresponding Number of crisp variables corresponding

to one non-negative LR flat fuzzy variables to one non-negative JMD LR flat fuzzy
((m, n, αL, αR)LR) are 6 variables ((x, αL, αM , αR)JMD

LR ) are 4

Number of non-negative crisp variables Number of non-negative crisp variables
corresponding to (u) non-negative LR corresponding to (u) non-negative JMD LR

flat fuzzy variables = 6 × u flat fuzzy variables = 4 × u

Number of unrestricted crisp variables Number of unrestricted crisp variables
corresponding to (v) unrestricted LR corresponding to (v) unrestricted JMD LR

flat fuzzy variables = 5 × v flat fuzzy variables = 4 × v

Total number of crisp Total number of crisp
constraints = N + 6 × u + 5 × v constraints = N + 4 × u + 4 × v

To show the advantages of JMD representation of LR flat fuzzy numbers
over existing representation of LR flat fuzzy numbers, a FFPC problems, chosen
in Example 1, is solved by using Mehar’s method with existing representation
of LR flat fuzzy numbers and Mehar’s method with JMD representation of
LR flat fuzzy numbers and it is shown that it is better to use Mehar’s method
with JMD representation of LR flat fuzzy numbers over Mehar’s method with
existing representation of LR flat fuzzy numbers.

Table 2. ˜Dij , ˜tij , ˜Cij for each activity

Activity Activity name ˜Dij(days) ˜tij (days) ˜Cij ($)
(1, 2) Build foundation (3, 6, 2, 4)LR (1, 3, 1, 1)LR (20, 40, 10, 10)LR
(2, 3) Build walls and ceilings (6, 9, 1, 3)LR (2, 4, 1, 1)LR (10, 15, 5, 15)LR
(3, 5) Build roofs (9, 12, 5, 3)LR (0.5, 1.5, 0.5, 0.5)LR (15, 25, 10, 10)LR
(3, 6) Do electrical wiring (4, 6, 3, 3)LR (1.5, 2.5, 0.5, 0.5)LR (80, 100, 60, 20)LR
(3, 4) Put in windows (3, 5, 1, 1)LR (1, 3, 1, 1)LR (20, 23, 8, 2)LR
(4, 5) Put on siding (5, 6, 2, 4)LR (2, 4, 1, 1)LR (15, 30, 5, 35)LR
(5, 6) Paint house (2, 3.5, 0.5, 1.5)LR (0.5, 1.5, 0.5, 0.5)LR (30, 50, 20, 20)LR
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Example 1. Find the minimum fuzzy crashing cost for completing the project
within (15, 25, 10, 10)LR days. The fuzzy normal time ˜Dij , incremental fuzzy
crashing cost ˜Cij and the maximum allowable fuzzy crash time ˜tij for each
activity are given in Table 2, where, L(x) = R(x) = max {0, 1 − x}.

4.1 Results

For solving the FFPC problem, chosen in Example 1, by using Mehar’s method
with existing representation of LR flat fuzzy numbers and Mehar’s method with
JMD representation of LR flat fuzzy numbers there is need to solve CLP prob-
lems having 88 and 68 constraints respectively while the minimum fuzzy crashing
cost obtained by using both the methods are same.

4.2 Physical Interpretation of Results

Using Mehar’s method with JMD representation of LR flat fuzzy numbers the
fuzzy crashing cost is (45, 55, 75, 85)JMD

LR = (100, 175, 55, 85)LR which can be
physically interpreted as follow:

The least amount of minimum crashing cost is 45 $, the most possible
amount of minimum crashing cost lies between 100 $ and 175 $ and the greatest
amount of minimum crashing cost is 260 $.

5 Conclusion

A new method, named as Mehar’s method, for finding the fuzzy optimal solution
of fully fuzzy project crashing problems and a new representation of LR flat
fuzzy numbers, named as JMD representation of LR flat fuzzy numbers, are
introduced.

Acknowledgements. The authors would like to thank to the anonymous re-
viewers for their suggestions. Special thanks go to Ms. Mehar.
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Abstract. This paper advances rule generation in Lipski’s incomplete
information databases, and develops a software tool for rule genera-
tion. We focus on three kinds of information incompleteness. The first
is non-deterministic information, the second is missing values, and the
third is intervals. For intervals, we introduce the concept of a resolu-
tion. Three kinds of information incompleteness are uniformly handled
by NIS-Apriori algorithm. An overview of a prototype system in Prolog
is presented.

Keywords:Lipski’s incomplete information databases, Rule generation,
Apriori algorithm, Rough sets, Prolog.

1 Introduction

In our previous research, we coped with rule generation in Non-deterministic
Information Systems (NISs) [9]. In contrast to Deterministic Information
Systems (DISs) [8,12], NISs were proposed by Pawlak [8] and Orłowska [7]
to better handle information incompleteness in data. Recently, we focused on
Lipski’s Incomplete Information Databases (IIDs) [5,6], and proposed rule
generation in IIDs [11]. We treat the obtained methodology as a step toward
more general rule-based data analysis, where both data values and descriptors
take various forms of incompleteness, vagueness or non-determinism.

In this paper, we advance the previous rule generation in IIDs, and develop a
prototype system, which can handle three kinds of information incompleteness.
The first kind of information incompleteness is non-deterministic information
[8,7], the second is missing values [3,4], and the third is intervals.
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Fig. 1. A NIS and 24 derived DISs. The number of derived DISs is finite. However,
it usually increases in the exponential order with respect to the level of incompleteness
of NIS′s values.

The paper is organized as follows: Section 2 recalls data representation and
rule generation in DISs and NISs. Section 3 introduces the same for IIDs,
and presents implementation and execution. Section 4 concludes the paper.

2 Rule Generation in DISs and NISs

We omit formal definitions of DISs and NISs. Instead, we show an example in
Figure 1. We identify a DIS with a standard table. In a NIS, each attribute
value is a set. If the value is a singleton, there is no incompleteness. Otherwise,
we interpret it as a set of possible values, i.e., each set includes the actual value
but we do not know which of them is the actual one.

A rule (more correctly, a candidate for a rule) is an implication τ in the form
of Condition_part ⇒ Decision_part. We employ support(τ) and accuracy(τ)
to express the rule’s appropriateness as follows [1,8] (see also Figure 2):

Specification of the rule generation task in a DIS
For threshold values α and β (0 < α, β ≤ 1), find each implication τ satisfying
support(τ) ≥ α and accuracy(τ) ≥ β.

In NISs, the same τ may be generated by different tuples, so we use notation
τx to express that τ is generated by an object x. Let DD(τx) denote {ψ | ψ is
a derived DISs and τx occurs in ψ }, and we define the next task.

Specification of the rule generation task in a NIS
(The lower system) Find each implication τ such that support(τx) ≥ α and
accuracy(τx) ≥ β (for an object x) hold in each ψ ∈ DD(τx).
(The upper system) Find each implication τ such that support(τx) ≥ α and
accuracy(τx) ≥ β (for an object x) hold in some ψ ∈ DD(τx).

Both above systems depend on |DD(τx)|. In [10], we proved some simplify-
ing results illustrated by Figure 3. We also showed how to effectively compute
support(τx) and accuracy(τx) for ψmin and ψmax independently from |DD(τx)|.
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Fig. 2. A pair (support,accuracy) corresponding to the implication τ

Due to Figure 3, we have the following equivalent specification.

Equivalent specification of the rule generation task in a NIS

(The lower system). Find each implication τ such that minsupp(τx) ≥ α and
minacc(τx) ≥ β for an object x (see Figure 3).

(The upper system). Find each implication τ such that maxsupp(τ) ≥ α and
maxacc(τ) ≥ β for an object x (see Figure 3).

In [10], we extended rule generation onto NISs and implemented a software
tool called NIS-Apriori. NIS-Apriori does not depend upon the number of
derived DISs. This paper is extending this software tool to Lipski’s Incomplete
Information Databases.

3 Rule Generation in Incomplete Information Databases

Now, we advance from NISs to IIDs. We introduce an example of an IID, and
consider it. The formal definitions of an IID are in [11].

3.1 An Example of an Incomplete Information Database

In Table 1, we have DomainAge={20, 21, ..., 70}, DomainSex={male, female},
DomainDepartment={dp1, dp2, dp3}andDomainSalary={400, 401, 402, ..., 2000}.
For handling information incompleteness, the attribute values of Age and Salary
are intervals, and the attribute values of Sex and Department are either a value, a
subset of the domain or a missing value ∗. Missing values ∗ and intervals are often
employed for handling information incompleteness.

3.2 Non-deterministic Information and Missing Values

In Table 1, we have two missing values, i.e., two ∗ symbols. In rough sets, the do-
main DOM is usually a finite set, therefore we identify ∗ with non-deterministic
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Fig. 3. A distribution of pairs (support,accuracy) for τx. There exists ψmin ∈ DD(τx)
which makes both support(τx) and accuracy(τx) the minimum. There exists ψmax ∈
DD(τx) which makes both support(τx) and accuracy(τx) the maximum. We denote
such quantities as minsupp, minacc, maxsupp and maxacc, respectively.

information DOM . Namely, we replace two ∗ symbols with {dp1, dp2, dp3} and
{male, female}, and we obtain a NIS for a set of attributes {Sex, Department}.
Thus, we consider 96 (=25 × 3) derived DISs like in Figure 1, and we see that
an actual DIS exists within 96 derived DISs.

3.3 Information Incompleteness about Intervals and Derived DISs

Now, we consider information incompleteness for intervals. We usually interpret
an interval [lower, upper] as that the actual value is between lower and upper.
Information incompleteness for intervals is a relative concept. For example, let
us consider number π. The interval [3.14, 3.15] will be enough for students, but
it will be too simple for researcher. This example is also related to granularity
and granular computing in general [13]. Consider the following definition.

Definition 1. [11] For an attribute A whose values are intervals, let us fix a
threshold value γA > 0. We say that an interval [lower, upper] is “definite”, if
its length (upper − lower) is not higher than γA. Otherwise, we say that it is
“indefinite”. We call γA a resolution of V ALA.

Example 1. In Table 1, consider γAge=1. Then information about x4, x6 and
x8 is definite, and information about other objects is indefinite. For x1, there
are three possible intervals: [22, 23], [23, 24], [24, 25]. For γAge=10, information
about all objects is definite, and there is no information incompleteness.

According to Definition 1 and Example 1, we can re-define derived DISs (de-
pending upon the resolution) for intervals. We can also consider a figure Figure
1 for Table 1. However, the number of derived DISs may not be finite. For
example, for an interval [0, 1]={x : real_number|0 ≤ x ≤ 1} and γ=0.1, the
number of definite intervals is infinite.
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Table 1. A example of Incomplete Information Database (IID)

OB Age Sex Department Salary

x1 [22, 25] female ∗ [400, 500]

x2 [20, 25] female {dp2, dp3} [500, 600]

x3 [25, 30] male {dp1, dp2} [400, 700]

x4 [36, 36] ∗ dp2 [700, 750]

x5 [37, 40] male {dp1, dp2} [500, 800]

x6 [43, 43] female {dp2, dp3} [600, 800]

x7 [45, 50] male dp3 [700, 900]

x8 [52, 52] male dp3 [800, 900]

x9 [53, 57] male dp3 [1000, 1500]

x10 [60, 70] male dp3 [1100, 2000]

3.4 Descriptors and Rule Generation in IIDs

In a DIS, we consider each implication τ from a table. If τ satisfies support(τ) ≥
α and accuracy(τ) ≥ β, we pick up this τ as a candidate of rule. In a NIS, we
followed this strategy, and defined DD(τx) in Section 2. For handling categorical
data in rough sets, we usually suppose that each domain of attribute values is
finite. So, we implicitly handled finite number of descriptors, and we did not
specify any descriptor for rule generation.

However, we may need to specify descriptors in an IID, because there may
be infinite number of them. Also, each rule is expressed by descriptors, so the
selection of descriptors is very important. We see this is the next important
issue for rule generation in IIDs. In the current prototype system in Prolog, we
explicitly specify each descriptor in a data set.

Our rule generation basically depends upon the consistency in rough sets, and
we also need to consider the Dominance based Rough Sets Approach (DRSA)
[2]. By using the property of the ordered set, we will be able to generate a soft-
ware with more general functionality. This is the next important issue, too. The
following is the tentative rule generation task in IIDs.

Specification of the tentative rule generation task in an IID
(Assumption). Descriptors are given, and each implication τ is defined by given
descriptors. Each DD(τx) is a set of derived DISs with definite intervals.
(The lower system). The same definition in NISs.
(The upper system). The same definition in NISs.

3.5 Data Expression and Equivalence Classes

The following is the real data for Table 1. The prototype system in Prolog can
handle any data set in the following syntax.
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object(10,4). /* #object=10, #attribute=4 */
support(0.2). /* constraint: support is more than 0.2 */
accuracy(0.5). /* constraint: accuracy is more than 0.5 */
decision(4). /* decision attribute */
attrib(1,age,5,[[25,30],[30,40],[40,50],[50,60],[60,100]]).
resolution(1,interval,5). /* resolution of age */
attrib(2,sex,2,[male,female]).
resolution(2,set,1).
attrib(3,department,3,[dp1,dp2,dp3]).
resolution(3,set,1).
attrib(4,salary,4,[[300,600],[600,800],[800,1000],[1000,2000]]).
resolution(4,interval,100).

data(1,[[22,25],female,nil,[400,500]]).
data(2,[[20,25],female,[dp2,dp3],[500,600]]).
data(3,[[25,30],male,[dp1,dp2],[400,700]]).
data(4,[[36,36],nil,dp2,[700,750]]).
data(5,[[37,40],male,[dp1,dp2],[500,800]]).
data(6,[[43,43],female,[dp2,dp3],[600,800]]).
data(7,[[45,50],male,dp3,[700,900]]).
data(8,[[52,52],male,dp3,[800,900]]).
data(9,[[53,57],male,dp3,[1000,1500]]).
data(10,[[60,70],male,dp3,[1100,2000]]).

In this data set, five descriptors for an attribute Age and four descriptors for an
attribute Salary are specified. For attributes Sex and Department, [sex, male],
[sex, female], [department, dp1], [department, dp2] and [department, dp3] are
specified. According to the values of support and resolution, this data set is at
first translated to the internal data. The following is a part of it:

upper(3,1,[department,dp1],[],[1,3,5]).
upper(3,2,[department,dp2],[4],[1,2,3,4,5,6]).
lower(3,3,[department,dp3],[7,8,9,10],[1,2,6,7,8,9,10]).
lower(4,1,[salary,[300.0,600.0]],[1,2],[1,2,3,5]).
lower(4,2,[salary,[600.0,800.0]],[4,6],[3,4,5,6,7]).
upper(4,3,[salary,[800.0,1000.0]],[8],[7,8]).
lower(4,4,[salary,[1000.0,2000.0]],[9,10],[9,10]).

The fourth and fifth arguments mean the minimum equivalence class and
the maximum equivalence class for a descriptor. For Sex and Department, if
attribute value of an object x is definite, x is added to fourth and fifth ar-
guments of the descriptor. If attribute value is indefinite, x is added to the
fifth argument of the related descriptors. For Age and Salary, we suppose
the intervals INTx of an object x and INTdesc of a descriptor. If INTx ⊆
INTdesc, x is added to fourth and fifth arguments of the descriptor. Otherwise,
if [lower, upper]=INTx ∩ INTdesc 	= ∅ and upper − lower ≥ γ, x is added to
the fifth argument of the related descriptors. By using the fourth argument inf
and the fifth argument sup, we can easily obtain minsupp(τx), minacc(τx),
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maxsupp(τx) and maxacc(τx), and we may apply NIS-Apriori algorithm by
using these four criterion values [10] to rule generation in Table 1.

3.6 Execution for Table 1

Now, we show the example of real execution for Table 1. By step1 command,
we obtain rules in the form of [AttributeA, valA] ⇒ [Salary, valSalary]. In the
lower system, we obtained a rule (minsupp(τ)=0.2, minacc(τ)=0.5), which we
call certain rule. This rule τ satisfies the constraints of support and accuracy in
each derived DIS, where τ occurs. Object 1 and 2 support this τ . In the upper
system, we obtained 11 rules, which we call possible rules.

––- 1st STEP –––––––––––––––––––––––––––
File=tlip.pl, Support=0.2, Accuracy=0.5
===== Lower System ==================================================
[13] [sex,female]=>[salary,[300,600]] (0.2,0.5) [1,2]
The Rest Candidates:[[[2,1],[4,4]],[[3,3],[4,4]]]
(Next Candidates are Remained)
===== Upper System ==================================================
[2] [age,[30,40]]=>[salary,[600,800]] (0.2,1.0) [4,5] IGC [5]
[6] [age,[40,50]]=>[salary,[600,800]] (0.2,1.0) [6,7] IGC [7]
[14] [sex,male]=>[salary,[600,800]] (0.4,0.5714285714) [3,4,5,7]
[17] [sex,female]=>[salary,[300,600]] (0.2,0.6666666667) [1,2]
[18] [sex,female]=>[salary,[600,800]] (0.2,0.5) [4,6] IGC [4]

: : :
[32] [department,dp3]=>[salary,[1000,2000]] (0.2,0.5) [9,10]
The Rest Candidates:[[[2,1],[4,1]],[[2,1],[4,3]],[[2,1],[4,4]],:::
(Next Candidates are Remained)
EXEC_TIME=0.0(sec)

In order to obtain rules in the form of [AttributeA, valA] ∧ [AttributeB, valB]
⇒ [Salary, valSalary], we execute step2, and we have the following:

––- 2nd STEP –––––––––––––––––––––––––––
===== Lower System ==================================================
[1] [sex,male]&[department,dp3]=>[salary,[1000,2000]] (0.2,0.5) [9,10]
The Rest Candidates:[]
(Lower System Terminated)
===== Upper System ==================================================
[3] [sex,male]&[dep::,dp3]=>[salary,[800,1000]] (0.2,0.5) [7,8] IGC [7]
[4] [sex,male]&[department,dp3]=>[salary,[1000,2000]] (0.2,0.5) [9,10]
The Rest Candidates:[]
(Upper System Terminated)
EXEC_TIME=0.0(sec)
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4 Concluding Remarks

In this paper, we proposed how to formulate and solve the rule generation prob-
lem for Incomplete Information Databases. Our prototype was examined for an
exemplary practical data set (mammographic.csv, the object size is 150, the at-
tribute size is 6, the number of derived DISs is about 1046).
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Abstract. To predict the future state of a physical system, we must
know the differential equations ẋ = f(x) that describe how this state
changes with time. In many practical situations, we can observe individ-
ual trajectories x(t). By differentiating these trajectories with respect to
time, we can determine the values of f(x) for different states x; if we
observe many such trajectories, we can reconstruct the function f(x).
However, in many other cases, we do not observe individual systems,
we observe a set X of such systems. We can observe how this set X
changes, but not how individual states change. In such situations, we
need to reconstruct the function f(x) based on the observations of such
“set trajectories” X(t). In this paper, we show how to extend the stan-
dard differentiation techniques of reconstructing f(x) from vector-valued
trajectories x(t) to general set-valued trajectories X(t).

Keywords: prediction under uncertainty, differentiation of
interval-valued and set-valued functions.

1 Formulation of the Problem

One of the main objectives of science and engineering: a brief reminder. One of
the main objectives of science is to predict the future state of different systems.
We want to predict the future weather, we want to predict the future trajectories
of celestial bodies, etc. To make these predictions, we need to know the current
state of the system, and we need to know how the state evolves with time.

For engineering, the main objective is to produce a design that satisfies the
given properties, a control that leads the object into the given location, etc. In
all such problems, we also need to be able to predict the future behavior of the
designed and/or controlled system. The state of a physical object (system) can be
characterized by the values x = (x1, . . . , xn) of different physical characteristics
x1, . . . , xn of this object. For a celestial object, these characteristics include its
mass, its location, its velocity, its angular velocity relative to different axes, its
brightness and reflectivity at different places, etc. For the atmosphere, these

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 183–190, 2011.
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characteristics include temperature, atmospheric pressure, wind speed, etc., at
different locations. The evolution of macro-objects is usually reasonably well
described by a (deterministic) ordinary differential equation ẋ = f(x), where

ẋ
def=

dx

dt
is the time derivative.

Need for empirical differentiation. In many cases, the mapping f(x) that de-
scribes the system’s dynamics is known. For example, a point object can be
characterized by its location r and its velocity v: x = (r, v). Newton’s equations
mr̈ = F (r) describe the dynamics of this object in the force field F (r). These
equations can be described in the desired form ẋ = f(x) as follows: ẋ = v,
v̇ = F (r), i.e., f(r, v) = (v, F (r)).

However, often, we do not know the exact dynamics f(x). In such situations,
we need to reconstruct the values f(x) based on the observed trajectories of a
system, i.e., on the values x(ti) measured for different values t1 < t2 < . . . < tm.
When the observations are close in time, we can approximately describe the

corresponding time derivatives as ẋ(ti) ≈ x(ti) − x(ti−1)
ti − ti−1

, and then reconstruct

f(x) from the condition that ẋ(ti) = f(x(ti)) for all observation moments ti –
and for all observed objects x(t).

Need for interval-valued and set-valued functions: case of uncertainty. The above
description is based on the ideal case when we observe a single object and its
trajectory. In practice, often, instead of a single object, we observe the whole
group of objects, a group in which it is very difficult to distinguish between
individual objects.

For example, in biology, we can analyze the spread of the bacteria or viruses
by tracing the corresponding epidemics, but it is practically impossible to trace
individual bacteria or viruses. In meteorology, we can trace, e.g., how water goes
from one state into another, from clouds to rain to rivers to evaporation etc.,
but it is impossible to trace individual molecules. In such cases, at any given
moment of time t, instead of a single state x(t), we observe the collection (set)
X(t) of different states.

Need to extend differentiation techniques to interval-valued and set-valued func-
tions. In order to make predictions, we need to know the dynamics f(x). Thus,
we need to be able to reconstruct the dynamics from the observed sets X(t1),
X(t2), . . . , X(tn). For the case of exactly known states, when each set X(ti)
consists of a single state X(ti) = {x(ti)}, this reconstruction is based on the
differentiation. Thus, it is reasonable to call the process of reconstructing the
dynamics f(x) from the observed sets “differentiations” of the corresponding
set-valued function X(t).

Differentiation of set-valued functions: what is known. There have been many
generalizations of differentiation to set-valued functions. Many such generaliza-
tions appeared in rough set theory; see, e.g., [19]. The main idea behind rough
sets is that instead of the exact set X of possible states, we only store its lower
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and upper approximations X and X: the set X ⊆ X is formed by all the granules
that are fully contained in X , and the set X ⊇ X is formed by all the granules
that may have common elements with X . When the situation changes, both sets
change. To describe the rate of such change, Pawlak described differentiation of
rough sets [19,20]; see also [14,15,18,22,23,24,25].

Similar set-valued differentiation procedures [1,4,8,9,10,11,12,21] have been
defined in within a set-valued analysis [2,3], when we need, e.g., to find the opti-
mal shape (set) of a design (see, e.g. [16]). Several papers describe the application
of these techniques to the important problem of find the range of the solution to
a differential equation under uncertain initial conditions and uncertain values of
the parameters; see, e.g., [5,6,7].

What we do. None of the existing set differentiation procedures directly solves our
problem – of reconstructing the function f(x) from the observed set trajectories
X(t). We show, however, that by properly modifying the known differentiation
techniques, we can extract the dynamics f(x) from the observed behavior X(ti).
This extraction uses techniques that generalize the standard differentiation tech-
niques from the case of vector-valued trajectories x(t) to the more general case
of set-valued trajectories X(t).

In this paper, we first consider a 1-D (interval-valued) case in Section 2, then
a fuzzy case in Section 3, and finally, the general multi-D case in Section 4.

2 Case of Interval-Valued Functions

Formulation of the case. Let us start with the simplest case in which the state of
a system is characterized by a single variable x, i.e., when x = x1 and n = 1. In
this case, each state is a point on a real line, and thus, for each moment of time
t, the set X(t) of all observed states is a subset of the real line. In general, the set
X(t) of observed states can be disconnected (in the standard topological sense).
However, in this case, we would be able to individually trace every connected
component separately. So, for our purpose, it makes sense to consider the case
when the set X(t) of possible states is connected. It also makes sense to consider
the case when this set is bounded – since in practice, most observed collections
are bounded. On the real line, the only bounded connected sets are intervals.
Thus, we can conclude that for every t, we observe the corresponding interval
X(t) = [x(t), x(t)].

Analysis of the problem. Let f(x) be a function that describes the system’s
dynamics. This means that once at some moment t, we have a state x(t), then
at the next moment of time t+Δt, we have the state x(t+Δt) ≈ x(t)+f(x(t))·Δt.
Different values x ∈ [x(t), x(t)] lead, in general, to different values x + f(x) ·Δt.
Thus, to find the upper endpoint x(t + Δt) of the interval

X(t + Δt) = [x(t + Δt), x(t + Δt)],

we need to find the largest possible value of the expression x + f(x) · Δt when
x ∈ [x(t), x(t)].
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In physics, in most dynamical equations, the transformation f(x) is usually
smooth (differentiable). Thus, it is reasonable to assume that f(x) is differ-
entiable and thus, that the mapping x → x + f(x) · Δt is also differentiable.
The derivative of this mapping with respect to x is equal to 1 + f ′(x) · Δt.
When the time step Δt is sufficiently small, we have |f ′(x) · Δt| � 1 and thus,
1+f ′(x) ·Δt > 0. Hence, on this interval, the transformation x → x+f(x) ·Δt is
strictly increasing. Thus, the largest value x(t+Δt) of the expression x(t+Δt) =
x(t) + f(x(t)) · Δt is attained when x(t) attains its largest value, i.e., when
x(t) = x(t). In other words, x(t + Δt) ≈ x(t) + f(x(t)) · Δt. Thus, we have
ẋ = f(x).

Similarly, the smallest possible value x(t + Δt) of the expression x(t + Δt) =
x(t) + f(x(t)) · Δt is attained when x(t) attains its smallest value, i.e., when
x(t) = x(t). In other words, x(t + Δt) ≈ x(t) + f(x(t)) · Δt. Thus, we have
ẋ = f(x). Hence, we arrive at the following conclusion.

Conclusion: how to reconstruct the dynamics from the interval-valued observa-
tions. If, for each moment of time ti, we know the interval X(ti) = [x(ti), x(ti)],
then we can reconstruct the dynamics f(x) as follows. First, we estimate

ẋ(ti) ≈ x(ti) − x(ti−1)
ti − ti−1

; ẋ(ti) ≈ x(ti) − x(ti−1)
ti − ti−1

.

Then, we reconstruct f(x) from the conditions that ẋ(ti) = f(x(ti)) and ẋ(ti) =
f(x(ti)) for all observation moments ti – and for all observed interval-valued
trajectories X(t).

Example. For radioactive decay, ẋ = −k · x, so x(t) = x(0) · exp(−k · t). Thus, if
we start with an interval X(0) = [1, 2], we get X(t) = [exp(−k · t), 2 ·exp(−k · t)].
By differentiating the lower endpoint, we conclude that for every t, we have
f(exp(−k · t)) = −k · exp(−k · t), i.e., that indeed f(x) = −k · x.

3 Fuzzy Case: Observation

Formulation of the problem. Instead of observing the crisp interval X(t), we can
be observing a fuzzy interval. In other words, in addition to the interval [x(t), x(t)]
that is guaranteed to contain all the observed objects, for every degree α from
the interval (0, 1), we also have narrower intervals [xα(t), xα(t)] (alpha-cuts of
the corresponding fuzzy sets) that contain x(t) with certainty α.

Analysis of the problem. It is known that for every bounded continuous trans-
formation, the alpha-cut of the result is equal to the result of applying this
transformation to the original alpha-cut; see, e.g., [13,17]. Thus, for each α, the
corresponding α-cut intervals [xα(ti), xα(ti)] form a sequence from which we can
extract f(x) – by using the interval-based techniques described in the previous
section. As a result, we arrive at the following technique.

Conclusion: how to reconstruct the dynamics from the fuzzy-valued observations.
Let us assume that for each moment of time ti, we know the fuzzy value X(ti).
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In other words, we assume that for every moment of time ti and for every degree
α ∈ (0, 1], we know the interval [xα(ti), xα(ti)]. Then we can reconstruct the
dynamics f(x) as follows. First, we estimate

ẋα(ti) ≈ xα(ti) − xα(ti−1)
ti − ti−1

; ẋα(ti) ≈ xα(ti) − xα(ti−1)
ti − ti−1

.

Then, we reconstruct f(x) from the conditions that ẋα(ti) = f(xα(ti)) and
ẋα(ti) = f(xα(ti)) for all observation moments ti, for all degrees α, and for all
observed interval-valued trajectories X(t).

4 General Multi-D Case

Formulation of the problem. In the multi-dimensional case, at different moments
of time t, we observe the set X(t) of states. For an individual state x(t) ∈ X(t),
we do not know what will be the corresponding state x(t + Δt) at the next
moment of time t+Δt, we only know that this unknown state x(t+Δt) belongs
to the observed set X(t + Δt). We also know that all the states from the set
X(t + Δt) are obtained from the states of the set X(t) by the corresponding
evolution ẋ = f(x). We may observe several different evolving sets X (1)(t),
X(2)(t), . . . . Our objective is, based on this information, to reconstruct the
dynamics f(x).

Definitions and the main result. Let us formulate our main result in precise
terms. By a dynamical system, we mean a smooth function f : IRn → IRn. By a
smooth set X , we mean a simply connected open set whose boundary ∂X is a
smooth surface. For every dynamical system f and for every smooth set X , by
a set trajectory, we mean a function that maps each positive real number t into
the set X(t) = {x(t) : x(0) ∈ X & ẋ = f(x)}. Let us denote the class of all set
trajectories corresponding to a system f by T (f).

Our main result is that is that a dynamical system is uniquely determined by
the class of its set trajectories, i.e., if T (f) = T (f ′) then f = f ′.

Comment. As we will see from the proof, in order to uniquely determine f , it is
not necessary to know all set trajectories, it is sufficient to have a class of set
trajectories for which, for every point x ∈ IRn, we have n set trajectories X(i)(t)
and moments of time ti at which x ∈ ∂X(i)(ti) and at which the n normal vectors
N (i) ⊥ ∂X(i)(ti) are linearly independent.

Analysis of the problem. Let x0 be any point on the border ∂X(t), and let N be
a normal vector, i.e., the unit vector orthogonal to ∂X(t) at the point x0 (i.e.,
orthogonal to the tangent plane to X(t)).

As the states evolve, each state x ∈ X(t) changes into the next state
x + f(x) · Δt. Locally, when x is close to x0, the value f(x) is close to f(x0)
and thus, the whole plane shifts by the vector Δx

def= f(x0) · Δt. Let us first
consider the situation when the vector f(x0) is in the tangent plane. In this
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situation, while each state changes, the plane itself does not change. Thus, since
we only observe the set X(t) – i.e., in effect, its boundary ∂X(t) – locally, we
will not observe any difference. A general shift Δx can be represented as a linear
combination of two shifts:

– a shift in the direction from the plane – which we cannot observe, and
– a shift in the direction orthogonal to the plane, i.e., in the direction parallel

to the normal vector; this shift we can observe.

In geometric terms, the shift in the direction of N can be represented as
(Δx, N) · N , where (a, b) def=

∑

i

ai · bi is a scalar (dot) product of two vectors,

and the shift in the direction from the plane has the form Δx− (Δx, N) ·N . The
value (Δx, N) is actually equal to the distance between the two tangent planes:

– the tangent plane to the border set ∂X(t) at the point x0, and
– the tangent plane to the border set ∂X(t + Δt) at the point closest to x0.

So, by measuring this distance, we can find the scalar product (Δx, N) =
(f(x0), N) · Δt, and thus, we can find the scalar product (f(x0), N). If we have
several families of sets X(1)(t), . . . , X(k)(t), then, in general, the normal vectors
N (j) corresponding to the moment when the boundaries of the corresponding
sets pass through (or close to) the point x0, are different. Thus, we can get the
scalar products (f(x0), N (j)) corresponding to different vectors N (j). Once we
know a sufficient number of such products, we can thus uniquely reconstruct the
vector f(x0) – i.e., all n coordinates fi(x0) of this vector – from the correspond-

ing system of linear equations
n
∑

i=1

fi(x0) · N (j)
i = (f(x0), N (j)). As a result, we

arrive at the following conclusion.

Conclusion: how to reconstruct the dynamics from the set-valued observations.
Let us assume that we have k dynamically changing sets. For each such set
X(j), j = 1, . . . , k, for different moments of times t

(j)
1 < t

(j)
2 < . . . < t

(j)
k < . . .

we observe the sets X(j)(t(j)k ) of possible states. As before, we assume that the
consecutive moments are close to each other, i.e., t

(j)
k+1 ≈ t

(j)
k . Then, we can

reconstruct the function f(x) as follows.
For each family j, for each moment t

(j)
k , and for each point x from the bound-

ary ∂X(j)(t(j)k ) of the set X(j)(t(j)k ), we compute the distance Δρ
(j)
k (x) between

the following two planes:

– the plane P tangent to ∂X(j)(t(j)k ) at the point x, and
– the plane tangent to ∂X(j)(t(j)k+1) at a point which is the closest to x.

Then, we compute the ratio
Δρ

(j)
k (x)

t
(j)
k+1 − t

(j)
k

. We also compute the unit vector N
(j)
k (x)

which is orthogonal to the plane P . Then, we conclude that the value f(x) of
the desired dynamical function f(x) satisfies the equation (f(x), N (j)

k (x)) =
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Δρ
(j)
k (x)

t
(j)
k+1 − t

(j)
k

. After that, we reconstruct the desired function f(x) from the fact

that these equations – with known values of the right-hand side – must be
satisfied for all the points x on all the boundaries ∂X(j)(t(j)k ). Specifically, to
find the value f(x0) for a given x0, we collect all such equations for close val-
ues x ≈ x0. Since x0 ≈ x, we conclude that f(x0) ≈ f(x) and thus, that

(f(x0), N (j)
k (x)) ≈ (f(x), N (j)

k (x)) =
Δρ

(j)
k (x)

t
(j)
k+1 − t

(j)
k

. In general, for these equations,

the normal vectors N
(j)
k (x) will be different, so we have sufficiently many linear

equations of the type (f(x0), N (j)
k (x)) ≈ Δρ

(j)
k (x)

t
(j)
k+1 − t

(j)
k

. from which we can uniquely

reconstruct the vector f(x0).

5 Conclusions

In order to predict the evolution of a system, we need to know the differential
equations that describe how its state changes with time. These equations can be
determined from observations when we observe several trajectories of individual
systems. However, in many practical situations, we do not observe individual
trajectories, we observe the whole set of systems that evolve together, we ob-
serve how this set changes, but not how individual trajectories change. In this
paper, we show that based on several such set observations, we can also uniquely
reconstruct the differential equations that describe the system’s dynamics.
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Abstract. Concept lattices are mathematical structures useful for many
tasks in knowledge discovery and management. A concept lattice is ba-
sically obtained from binary data encoding the membership of some at-
tributes to some objects. Dealing with complex data brings the important
problem of discretization and the associated loss of information. To avoid
discretization, (i) pattern structures and (ii) symbolic data analysis pro-
vide means to analyze such complex data directly. We compare both these
approaches and show how they are mutually beneficial.

Keywords:Concept analysis, Symbolic data analysis, Pattern structures.

1 Introduction

Many classification problems can be formalized by means of a formal context, a
binary relation between an object set and an attribute set indicating whether an
object has or does not have an attribute [4]. According to the so-called Galois
connection, one may classify within formal concepts a set of objects sharing a
same maximal set of attributes, and vice-versa. Concepts are ordered in a lat-
tice structure called concept lattice within the Formal Concept Analysis (FCA)
framework [4]. FCA can be used for a number of purposes like knowledge formal-
ization and acquisition, ontology design, and data mining. To handle complex
data in FCA, pattern structures have been proposed as a generalization of for-
mal contexts to complex data [9,8]. On the other hand, Symbolic Data Analysis
(SDA [1]) aims at analyzing data such as numbers, intervals, sets of discrete
values, etc. An object is described by a vector of values with each dimension
corresponding to a variable, and each variable may be of different type. [2,3]
addressed the problem of building concept lattices by formalizing “symbolic ob-
jects” in SDA and properly defined Galois connections between these symbolic
individuals and their descriptions. The links between the FCA and SDA ap-
proaches still remain unclear. Both methods show the same behaviour when
working on the same data, but the goal of this paper is to argue how the SDA
formalism for building concept lattices can be taken into account in FCA in a
universal way, to facilitate comprehension and future extension.

The paper is organized as follows. Section 2, 3 respectively present SDA, and
pattern structures. Both approaches are compared and discussed in Section 4.
Limited by space, we assume that the reader is familiar with FCA [4].
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2 Symbolic Galois Lattices in Symbolic Data Analysis

Symbolic Data Analysis takes its roots in data analysis and as well in prob-
ability theory and statistics [1]. Let Ω be a set of individuals, D be a set of
descriptions, and Y be a mapping between Ω and D. D may include any kind
of descriptions, e.g. numbers, symbolic values, intervals, propositional variables,
etc. The mapping Y associates with each ω ∈ Ω a description d ∈ D having
the form of a vector of values. For example, considering Table 1 below, we have:
Y (ω1) = (y1(ω1), y2(ω1)) = ([75, 80], [1, 2]). The description of an individual or
a class of individuals is called an intensional description.

Description of two individuals can be compared w.r.t. the type of values, thanks
to comparison operators in {=,⊆,⊇,∈,�,−→, . . .}. For example, Y (ω4) ⊆ Y (ω1)
in Table 1, means that Y (ω4) = (y1(ω4), y2(ω4)) ⊆ Y (ω1) = (y1(ω1), y2(ω1)).
Now, given Ω and D, we precisely define the notion of a symbolic object.
Symbolic object – Let Oi be the “description space” for variable yi and D =
O1× . . .×Op, with yi(ω) = di ∈ Oi for an individual ω in Ω. di is the description
of attribute yi(ω) ∈ Y (ω). A symbolic object s is a triplet s = (a, R, d) where
a is a mapping between Ω and {0, 1} (or {false, true}) called extension, R is a
comparison operator between descriptions, and d = (d1, . . . , dp) is a description
vector.

Table 1. A data table

y1 y2

ω1 [75, 80] [1, 2]
ω2 [60, 80] [1, 1]
ω3 [50, 70] [2, 2]
ω4 [72, 73] [1, 2]

For example, in Table 1, Ω = {ω1, ω2, ω3, ω4},
Y = {y1, y2}, with Y (ω1) = (y1(ω1), y2(ω1)) =
([75, 80], [1, 2]). Then, s = (a, =, ([75, 80], [1, 2])) is a
symbolic object describing individual ω1 as y1(ω1) =
[75, 80] and y2(ω1) = [1, 2]. A straightforward exten-
sion of the notion of symbolic object is given by as-
sertion objects.
Assertion object – Let us define an assertion object with the following mapping:

ψ: ω −→ [y1(ω)Rd1] ∧ . . . ∧ [yp(ω)Rdp]

such that ψ(ω) = 1 iff yi(ω)Rdi ∀i = 1, . . . , p holds, ∧ being the logical con-
junction. Intuitively, ψ(ω) defines a conjunction of events which is true iff ev-
ery event is itself true. For example, an assertion object ψ1 is given by (y1 ⊆
[60, 80])∧ (y2 ⊆ [1, 2]), with ψ1(ω1) = ψ1(ω2) = ψ1(ω4) = 1. Accordingly, the ex-
tent of an assertion object ψ w.r.t. Ω is given by extΩ(ψ) = {ω ∈ Ω | ψ(ω) = 1}.
The extent of ψ is the set of individuals whose description fulfills the descrip-
tion of the assertion object. For example, extΩ(ψ1) = {ω1, ω2, ω4}. Moreover,
extΩ([y1 ⊇ [72, 73]] ∧ [y2 ⊆ [1, 2]]) = {ω2, ω4}.

Symbolic order – Let A denote the set of assertion objects. A partial ordering
is defined on A as follows: ∀α, β ∈ A, α ≤Ω β ⇒ extΩ(α) ⊆ extΩ(β). Further,
Galois connections can be defined between ℘(Ω) and A depending on the choice
of a “generalization operator” for building the upper bound of two assertions
objects (see [2,10]).

Hereon, we consider only the interval data for sake of simplicity and for com-
parison with the FCA formalism. We introduce two Galois connections, one
based on generalization by union and the other by intersection.
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Generalization by union – The common description of a set of assertion objects
is based on the union of the description of each assertion object. More precisely,
let us consider the two dual derivation operators f and g:

f : (℘(Ω),⊆) −→ (A,≤Ω)

X −→ ψ = ∧j [yj(ω) R
⋃

ωi∈X

{yj(ωi)}]

g : (A,≤Ω) −→ (℘(Ω),⊆)
ψ = ∧j [yj(ω)RWj ] −→ extΩ(ψ) = {ω | yj(ω) R Wj = 1, j = 1 . . . p}
where Wj = {yj(ω) R

⋃

ωi∈X

{yj(ωi)}

For example, in Table 1:

f({ω1, ω2}) = [y1 ⊆ ([75, 80] ∪ [60, 80])] ∧ [y2 ⊆ ([1, 2] ∪ [1, 1])]
= [y1 ⊆ [60, 80]]∧ [y2 ⊆ [1, 2]]

g(f({ω1, ω2})) = {ω1, ω2, ω4}
The compositions of derivation operators f and g, i.e. f ◦ g and g ◦ f , are closure
operators as in classical FCA [2,10]. In sequence, the pair ({ω1, ω2, ω4}, ([y1 ⊆
[60, 80]]∧ [y2 ⊆ [1, 2]])) defines a concept w.r.t. generalization by union.
Generalization by intersection – Generalization by intersection is defined in the
same way as generalization by union, replacing the union operation ∪ with the
intersection operation ∩, and inclusion ⊆ by reverse inclusion ⊇. For example,
from Table 1:

f({ω1, ω2}) = [y1 ⊇ ([75, 80] ∩ [60, 80])] ∧ [y2 ⊇ ([1, 2] ∩ [1, 1])]
= [y1 ⊇ [75, 80]]∧ [y2 ⊇ [1, 1]]

g(f({ω1, ω2})) = {ω1, ω2}
Accordingly, the pair ({ω1, ω2}, ([y1 ⊇ [75, 80]] ∧ [y2 ⊇ [1, 1]])) defines a concept
w.r.t. generalization by intersection.

Given a Galois connection (f, g), the closure operators f ◦g and g◦f , a concept
is a pair with an extension which is a closed set (of objects) for g ◦ f and an in-
tension which is a closed set (of attributes) for f ◦g. A lattice of assertion objects
can be built just as a concept lattice in FCA called symbolic Galois lattice (but
algorithims are not exactly the same and are inefficient). We also discuss the re-
lation between the formalism of symbolic/assertion objects and FCA. As we can
see, the formalism of symbolic/assertion objects is powerful and very interesting
because it can be applied to various and very heterogeneous data. However, this
formalism looks rather complicated to comprehend and explain. Moreover, the
algorithmic aspects have not been considered important unlike their treatment in
FCA. Additionaly, some extensions of symbolic/assertion objects, e.g. to graphs,
are not straightforward.

In the next section, we introduce pattern structures, an extension of FCA for
working with complex data and in particular intervals, which in our opinion,
subsume the symbolic/assertion object formalism in most of its dimensions.



194 P. Agarwal et al.

3 Pattern Concept Lattices

Pattern structures are introduced [5] in full compliance with FCA and can be
thought of as a “generalization” of formal contexts to complex data from which
a concept lattice can be built without any a priori scaling.

In classical FCA, the operators of the Galois connection put in correspondence,
the elements of the lattices (2G,⊆) of objects and (2M ,⊆) of attributes and vice-
versa. These lattices are partially ordered sets. This means that if one needs to
build concept lattices where objects are not described by binary attributes but
by complex descriptions (graphs, intervals, ...), one has to define a partial order
on object descriptions. This is the main idea of pattern structures formalizing
objects from G and their descriptions called patterns from a set D where patterns
are ordered in a meet-semi-lattice (D,�) [5]. In classical FCA, if we consider the
lattice of attributes (2M ,⊆), it is straightforward that ∀N, O ⊆ M , N ⊆ O ⇔
N ∩O = N , e.g. with M = {a, b, c}, {a, b} ⊆ {a, b, c} ⇔ {a, b}∩{a, b, c} = {a, b}.
The set-intersection operator ∩ has the properties of a meet operator in a semi-
lattice. This is the underlying idea for ordering patterns with a subsumption
relation �: given two patterns c, d ∈ D, c � d ⇔ c � d = c. Then, building the
concept lattice is in full compliance with FCA theory.

Formally, let G be a set of objects, (D,�) be a semi-lattice of object descrip-
tions, and δ : G → D be a mapping. (G, (D,�), δ) is called a pattern structure.
Elements of D are called patterns and are ordered by ordering relation �: given
c, d ∈ D one has c � d ⇐⇒ c � d = c. We use the operator (.)� to derive two
sets as follows:

A� =
�

g∈A δ(g), for any A ⊆ G,
d� = {g ∈ G | d � δ(g)}, for any d ∈ (D,�)

These operators form a Galois connection between (P(G),⊆) and (D,�).
(.)�� is a closure operator. Pattern concepts of (G, (D,�), δ) are pairs of the
form (A, d), A ⊆ G, d ∈ D, such that A� = d and A = d�, and d is called a
pattern intent while A is a pattern extent. When partially ordered by (A1, d1) ≤
(A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 � d1), the set of all pattern concepts forms a
complete lattice called a pattern concept lattice. An example is given in the
next section. Standard FCA algorithms need slight modification to compute the
pattern concept lattice, see e.g. [5,8].

4 Symbolic Galois Lattices with Pattern Structures

4.1 Handling Heterogeneous Variables with Pattern Structures

SDA works on data tables where each column corresponds to a variable yi which
has a range with different types of values. Pattern structures consider a partially
ordered set of descriptions (D,�), corresponding to one variable in terms of SDA.
However, we can consider a semi-lattice (Dyi ,�yi) for each variable yi ∈ Y .
The direct product of all these semi-lattices gives a semi-lattice (D,�) with
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all possible descriptions of objects and sets of objects. Therefore given a set
Y = {y1, ..., yp} of p variables, we define

(D,�) = (Dy1 ,�y1) × ... × (Dyp ,�yp)

where each (Dyi ,�yi), i ∈ [1, p] is the poset of descriptions for variable yi ∈ Y .
(D,�) corresponds to the set D in SDA, i.e. the description space, provided with
a partial ordering � such that, for any c, d ∈ D, c � d = c ⇐⇒ c � d.

We call a pattern d ∈ D, as defined above, a pattern vector. Writing di as the
ith component of pattern vector d ∈ D, we have for any c, d ∈ D:

c � d = (c1 �y1 d1, ..., cp �yp dp) and c � d ⇔ ci �yi di ∀i = 1...p

Table 2. A data table

y1 y2 y3
g1 [75,80] [1,2] {a,b}
g2 [60,80] [1,1] {d,e}
g3 [50,70] [2,2] {a,c}
g4 [72,73] [1,2] {a}

Fig. 1. Pattern concept lattice raised from Table 2

Each dimension i of a pattern vector corresponds to a variable yi. Each vari-
able yi may have a different type for which a semi-lattice operation �yi has to
be defined according to the current data analysis and goals. Consider variable
y1 in Table 2. As in SDA, we can define �y1 as either interval convexification or
intersection. In case of interval convexification, with a1, b1, a2, b2 ∈ R, we have:

[a1, b1] �y [a2, b2] = [min(a1, a2), max(b1, b2)]
[a1, b1] �y [a2, b2] ⇔ [a1, b1] ⊇ [a2, b2]

When �yi corresponds to interval intersection, we have:

[a1, b1] �y [a2, b2] = [max(a1, a2), min(b1, b2)]
[a1, b1] �y [a2, b2] ⇔ [a1, b1] ⊆ [a2, b2]
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Now that object descriptions are partially ordered, the general Galois connec-
tion defined for pattern structures allows us to directly compute pattern concepts
and lattices from heterogeneous data. Consider the example in Table 2. It can be
represented by a pattern structure (G, (D,�), δ) where G = {g1, g2, g3, g4} and
δ(g1) = ([75, 80], [1, 2], {a, b}). Descriptions contain two inter-valued variables -
y1, y2 and one categorical variable - y3. We choose the following semi-lattice op-
eration for each variable – interval convexification for �y1 , interval intersection
for �y2 and set intersection for �y3 . The general Galois connection is illustrated
as follows:

{g1, g3}� = δ(g1) � δ(g3)
= ([75, 80], [1, 2], {a, b})� ([50, 70], [2, 2], {a, c})
= ([75, 80]�y1 [50, 70], [1, 2]�y2 [2, 2], {a, b} �y3 {a, c})
= ([50, 80], [2, 2], {a})

{g1, g3}�� = ([50, 80], [2, 2], {a})�

= {g ∈ G | ([50, 80], [2, 2], {a}) � δ(g)}
= {g1, g3, g4}

The first operator (.)� gives the infimum of descriptions δ(g1) and δ(g3) in (D,�).
The second operator (.)� gives the set of objects “sharing” a given description.
Hence, ({g1, g3, g4}, ([50, 80], [2, 2], {a}) is a pattern concept of (G, (D,�), δ). The
set of all pattern concepts gives rise to a pattern concept lattice given in Figure 1.
Each node gives a pattern concept, while each line denotes ordering relation ≤
on concepts. Accordingly, the higher a concept is, the more objects it has in its
extent. Due to the choice of semi-lattice operation for each variable, the higher
a concept is, the larger are the intervals for variable y1 (convexification), the
smaller are the intervals and attribute sets for variable y2 and y3 respectively
(intersection). The links with SDA formalism are then natural. We provide an
example of pattern concept and its equivalent concept in SDA terms:

({g1, g4}, ([72, 80], [1, 2], {a}))
≡ ({g1, g4}, ([y1 ⊆ [72, 80]] ∧ [y2 ⊇ [1, 2]] ∧ [y3 ⊇ {a}]))

While SDA first requires to represent complex objects as symbolic/assertion
objects (conjunction of events), pattern structures consider object descriptions
in their original form. SDA proposes two kinds of Galois connection depending
on a generalization operation (intersection or union). In pattern structures we
have to define a semi-lattice operation inducing a partial ordering and can use
the general Galois connection (and associated FCA algorithms) to build concept
lattices from heterogeneous data. Generalization with union or intersection are
particular cases of the � operation in (D,�).

4.2 Handling Missing Values

It often happens that objects are partially described and, therefore, have missing
values. In SDA, two kinds of missing values are proposed: (i) the object has a
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value, but we do not know it, and (ii) the object has no value for this variable and
should be considered as such. Given a variable yi and its description space Oyi ,
SDA describes such missing values as (i) its definition domain with [y ⊆ Oyi ],
and (ii) the empty set with [yi ⊇ ∅].

These two kinds of missing values can also be considered with pattern struc-
tures. These values should belong to the poset (D,�) and be ordered w.r.t. �.
Now, we denote the missing values (i) as ∗ and (ii) as ?, and ∗, ? ∈ D. We
simply have d � ∗ and ? � d for any d ∈ D. Accordingly, the description
space is no more a semi-lattice (D,�) but rather a lattice (D,�,�), such that
c � d = d ⇐⇒ c � d. Actually, both missing values correspond to the small-
est and the largest element in this lattice, respectively. For an interval-valued
variable yi provided with convexification as infimum �yi , the element ∗ corre-
sponds to the largest interval defined on the variable domain, while the element
? corresponds to the empty interval.

4.3 Links with Conceptual Scaling

With an appropriate discretization procedure, a pattern structure can be reduced
to a formal context such that concepts in both data representations are in a
one-to-one correspondence [5]. Processing the former may be more efficient and
obvious than processing the latter, but this should be investigated for each kind
of complex data and semi-lattice operation [5,8].

For example, consider the pattern structure (G, (D,�), δ) where G = {g1, g2},
D = {[1, 1], [2, 2], [1, 2]}, δ(g1) = [1, 1] and δ(g2) = [2, 2]. Here we have a single
attribute. Let � be defined as interval convexification. One has {g1, g2}� = [1, 2].
Now, consider the formal context (G, M, I) with same set of objects and the set
of attributes M = {y ≤ w, y ≥ w, ∀w ∈ {1, 2}}, i.e. M = {y ≤ 1, y ≤ 2, y ≥
1, y ≥ 2}. {1, 2} is the set of all interval end-points of object descriptions. A
binary attribute m ∈ M is a constraint on R, e.g. “y ≤ 1”∈ M . Then, (g, m) ∈ I
holds if the value describing object g in the above pattern structure respects the
constraint m. Therefore, g′1 = {y ≤ 1, y ≥ 1, y ≤ 2}, while g′2 = {y ≥ 1, y ≤
2, y ≥ 2}. We get {g1, g2}′ = g′1 ∩ g′2 = {y ≥ 1, y ≤ 2} whose interpretation in R

exactly corresponds to {g1, g2}� = [1, 2].
The operation that builds (G, M, I) from (G, (D,�), δ) in this example is

called interordinal scaling [4]. In this case, [8] showed that pattern concepts and
formal concepts in both data representations are in one-to-one correspondence
and equivalent w.r.t. to their interpretation in R. Therefore, one can consider
either pattern structures or so-called representation contexts, since both data
representations highlight different computational properties which depend on
original data (size, distribution, etc). SDA does not suggest to investigate rep-
resentation contexts.

5 Conclusion

Pattern structures allow to directly consider complex data, avoiding to repre-
sent descriptions as symbolic/assertion objects. One general Galois connection is
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sufficient to consider several data-types, hence it is not required to define a new
Galois connection for different data-types and description generalization oper-
ations (with union and intersection in SDA). Indeed, the main core of pattern
structures lies in defining an appropriate semi-lattice operation inducing a par-
tial order of descriptions. This is rather simple with numerical and categorical
data as illustrated in this paper, but much more difficult with graph data, as
discussed in [5].

Avoiding discretization and loss of information, generally leads to a great
amount of concepts, as noticed both in SDA and pattern structures [3,6,8,7]. In
SDA, the authors of [2,3] showed how to reduce concept lattices to simpler hier-
archies. These reduction techniques are based on quality criteria defined in SDA,
but require that the concept lattice is already computed, a bottleneck for very
large databases. On the other hand, pattern structures propose to project object
descriptions with “simpler ones” before the computation, allowing to reduce the
number of concepts. This gives interesting perspectives of research to consider
well studied SDA quality criteria within pattern structures.
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Abstract. The paper contains an analysis of integrity constraints for
multiargument relationships in fuzzy databases. It is assumed that at-
tribute values are represented by means of interval-valued possibility
distributions. The analysis is carried out using the theory of functional
dependencies. The notion of functional dependency has been appropri-
ately extended according to the representation of fuzzy data. The paper
formulates the rules to which (n-1)-ary relationships embedded in the
n-ary relationship must be subordinated.
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1 Introduction

Fuzzy database models have been created for managing and retrieving imperfect
information [1,2]. There are two major approaches concerning fuzzy data rep-
resentation, namely, the similarity-based approach [3] and the possibility-based
approach [4]. In the present paper it is assumed that attribute values are rep-
resented by means of interval-valued possibility distributions. The idea of this
concept addresses the problem of applying imprecise possibility measures. The
interval-valued possibility distribution is defined using the notion of an interval-
valued fuzzy set [5,6]. Functional dependencies which exist between attributes
reflect integrity constraints and should be studied during the design process. The
notion of functional dependency has to be extended according to the represen-
tation of fuzzy data [7,8,9,10]. In further considerations it will be applied the
definition using an interval-valued fuzzy implicator [11,12].

In database models, usually binary relationships occur between entity sets.
When designing, it may be necessary to define n-ary relationships. Furthermore,
within such connections there may exist relationships comprising fewer than n
sets. However, there is no complete arbitrariness. The relationships ”embedded”
in n-ary relationships are subjected to certain restrictions. This issue for ternary
relationships was presented in [13,14]. For various types of ternary relationships
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the authors formulated the rules to which the binary relationships between pairs
of sets are subjected. This analysis may be also carried out using the theory of
functional dependencies (FDs). A multiargument relationship may be formally
presented using the relational notation: R(X1, X2, ... , Xn), where R is the name
of the relationship and attributes Xi denote keys of entity sets which participate
in it. The functional dependencies

U − {Xi} → Xi, i = 1, 2, ... , n (1)

describe the integrity constraints for R and must not be infringed. They consti-
tute a restriction for (n-1)-ary relationships. The FDs describing the relation-
ships between (n-1) attributes ”embedded” in the n-ary relationship may be
presented as follows:

U − {Xi, Xj} → Xi, i �= j, i = 1, 2, ... , n . (2)

The imposition of the FD (2) is possible if Xi does not belong to any candidate
key of R.

The paper extends the idea presented in [15]. The aim is to analyze multiar-
gument relationships in fuzzy databases with attributes represented by interval-
valued possibility distributions. The paper is organized as follows. Section 2
presents the basic notions related to interval-valued possibility distributions.
Section 3 contains the definition of a fuzzy functional dependency, extended
Armstrong’s rules and extended normal forms. These notions are used in section
4 in analysis of fuzzy multiargument relationships.

2 Interval-Valued possibility distributions

The idea of an interval-valued fuzzy set (IVF) extends a traditional notion of
the Zadeh fuzzy set [16,17]. Membership degrees assigned to elements in a given
IVF are expressed by means of closed subintervals of [0,1].

Definition 1. Let U be a universe of discourse. An interval-valued fuzzy set F
in U is a set of ordered pairs:

F = {< x, μF (x) >: x ∈ U, μF (x) : U → Int([0, 1])}, (3)

where μF (x) = [μFL(x), μFU (x)], Int([0,1]) stands for the set of all closed subin-
tervals of [0,1].

The interval μF (x) approximates the correct value of the membership degree.
Values of μFL(x) and μFU (x) are interpreted as the lower and upper membership
functions, respectively. Interval-valued fuzzy sets F and G are equal iff ∀x μF (x)
= μG(x). In order to define a closeness measure between IVFs one has to establish
an order relation for intervals [18]. In further considerations it will be assumed
the following partial order [11]:

[aL, aU ] ≤ [bL, bU ] ⇔ aL ≤ bL and aU ≤ bU . (4)
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An IVF A is included in an IVF B, A ⊆ B, if and only if ∀x μAL(x) ≤ μBL(x)
and μAU (x) ≤ μBU (x) [19]. The degree of inclusion ⊆ (A, B) can be obtained by
means of an interval-valued fuzzy implicator I: Int([0,1]) × Int([0,1]) → Int([0,1]):

⊆ (A, B)L = infxI(μA(x), μB(x))L, ⊆ (A, B)U = infxI(μA(x), μB(x))U . (5)

A closeness measure =c (A, B) between IVFs A and B is a mapping IF (U) ×
IF (U) → Int([0,1]), where IF (U) denotes a set of all IVFs in U . The bounds of
=c (A, B) can be expressed by the following formulas:

=c (A, B)L = min(infxI(μA(x), μB(x))L, infxI(μA(x), μB(x))L),
=c (A, B)U = min(infxI(μA(x), μB(x))U , infxI(μA(x), μB(x))U ). (6)

In further considerations we will apply an extension of the Gödel-Brouwer im-
plicator [11]:

I([a, b], [c, d]) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[c, d] if a > c and b > d
[c, 1] if a > c and b ≤ d
[1, 1] if a ≤ c and b ≤ d
[d, d] if a ≤ c and b > d

(7)

Based on the concept of IVFs one can define the concept of interval-valued
possibility distributions.

Definition 2. Let U be a universe of discourse, X be a variable on U and F be
an interval-valued fuzzy set with μF (x) = [μFL(x), μFU (x)]. The interval-valued
possibility distribution of X with respect to F is defined as

ΠX = {πX(x)/x : x ∈ U, πX(x) = μF (x)}, (8)

where πX(x) = [πXL (x), πXU (x)] is a closed subinterval of [0,1].

A closeness measure =c (ΠX , ΠY ) between two interval-valued possibility dis-
tributions ΠX and ΠY is defined as the possibility that ΠX = ΠX [10]:

=c (ΠX , ΠY )L = supxmin(πXL (x), πYL (x)),
=c (ΠX , ΠY )U = supxmin(πXU (x), πYU (x)). (9)

This measure can be extended for tuple closeness within the possibilistic database
framework. A tuple t of relation R(X1, X2, ... , Xn) is of the form: t = (ΠX1 ,
ΠX2 , ... , ΠXn ). Let t and t′ be two tuples of relation R. The degree that t = t′

is expressed by the following formulas:

=c (t, t′)L = mini(=c (ΠXi , Π
′
Xi

)L), =c (t, t′)U = mini(=c (ΠXi , Π
′
Xi

)U ).
(10)
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3 Functional Dependencies in Fuzzy Databases

The existence of a classical FD X → Y between attributes X and Y means
that the values of X uniquely determine the values of Y . In fuzzy databases
this interpretation is not sufficient because of imprecise values of attributes.
Therefore the classical definition has to be extended. In [10] Chen has introduced
the definition of the fuzzy functional dependency (FFD) for the possibilistic fuzzy
data model with the use of a fuzzy implicator. If attribute values are allowed to
be interval-valued possibility distributions this definition has to be modified. We
will name this type of FFD an interval fuzzy functional dependency (IFFD).

Definition 3. Let R(U) be a relation scheme and let X and Y be subsets of U :
X, Y ⊆ U , where U = {X1, X2, ... , Xn}. An interval fuzzy functional depen-
dency X →θ Y is said to exist in θ = [θL, θU ] degree if and only if for every
relation r of R the following conditions are met:

mint1,t2∈rI(t1(X) =c t2(X), t1(Y ) =c t2(Y ))L ≥ θL,

mint1,t2∈rI(t1(X) =c t2(X), t1(Y ) =c t2(Y ))U ≥ θU , (11)

where θL, θU , ∈ [0,1], =c is a closeness measure (9) and I is an interval-valued
fuzzy implicator (7).

A dependency X →θ Y is partial if there exists a set X ′ ⊂ X such that X ′ →θ Y .
In the opposite case X →θ Y fully. The set of attributes K ⊆ U such that
K →θ U fully is a θ-key of R(U). Its elements are called θ-prime-attributes.

Example 1. Consider the relationship PES(P , E, S) between the post held (P ),
education (E) and salary (S) with the following IFFDs: PE →[0.7, 0.8] S and
SE →[0.5, 0.6] P . The scheme PES has two candidate keys: PE - [0.7, 0.8]-key
and SE - [0.5, 0.6]-key.

Like in classical relational databases there are the following inference rules known
as extended Armstrong’s axioms:

A1: Y ⊆ X ⇒ X →θ Y for all θ
A2: X →θ Y ⇒ XZ →θ Y Z
A3: X →α Y ∧ Y →β Z ⇒ X →γ Y , γ = [min (αL, βL), min (αU , βU )]

From A1, A2 and A3 the following inference rules can be derived:

D1: X →α Y ∧ X →β Z ⇒ X →λ Y Z, γ = [min (αL, βL), min (αU , βU )]
D2: X →α Y ∧ WY →β Z ⇒ XW →λ Z, γ = [min (αL, βL), min (αU , βU )]
D3: X →α Y ∧ Z ⊆ Y ⇒ X →α Z
D4: X →α Y ∧ X →β Y for α ≤ β

Based on the notion of IFFD the definitions of classical normal forms can
be appropriately extended. The first fuzzy normal form (F1NF) specifies the
structure of relations. It is required that any attribute value of relations in F1NF
is represented by an excluding possibility distribution which means that all the
elements of the attribute domain are mutually exclusive. The further normal
forms are based on IFFDs which exist between the key and nonkey attributes.
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Definition 4. Scheme R (X1, X2, ... , Xn) is in θ-fuzzy second normal form (θ-
F2NF) if every θ-nonprime-attribute is fully functionally dependent on a θ-key
in α degree, where α = [αL, αU ].

Example 2. Scheme PES from the previous example is in [0.5, 0.6]-F3NF. Let
us augment it by attribute A determining age and assume that its values are
connected with values of attribute P . Let us assume that the relationship be-
tween the post and age is expressed by P →φ A, φ = [φL, φU ]. In result of such
modification PE is a θ-key with θL = min(φL, 0.5) and θU = min(φU , 0.6).
However because of the introduced dependency the modified scheme is not in
[0.5, 0.6]-F3NF. There is a non-prime-attribute dependent on a part of the θ-key.

Definition 4 excludes the possibility of the occurrence of θ-key subset, which
would determine a θ-nonprime-attribute.

Definition 5. Scheme R (U), U = {X1, X2, ... , Xn}, is in θ-fuzzy third normal
form (θ-F3NF) if for every IFFD X →φ Y , where X, Y ⊆ U , Y �∈ X, X contains
a θ-key of R or Y is a θ-prime-attribute.

The definition of θ-F3NF eliminates the possible occurrence of transitive depen-
dencies between the attributes.

Example 3. Let us consider the relation EES with attributes Em - employee, E
- education and S - salary. Let us assume that between its attributes there are
IFFDs: Em →[0.6, 0.8] E and E →[0.7, 0.9] S. Basing on transitivity axiom they
yield the dependency Em →[0.6, 0.8] S. The key of EES is Em. It is the [0.6,
0.8]-key. Attributes E and S disturb the conditions of definition 5, because E is
not a θ-key and S is not a θ-prime-attribute. The θ-fuzzy third normal form is
obtained in result of the decomposition into relations with schemes: EE(Em, E)
- [0.6, 0.8]-F3NF and ES(E, S) - [0.7, 0.9]-F3NF. This decomposition maintains
the dependencies.

Eliminating from definition 5 the possibility that attribute Y in X →θ Y is
θ-prime leads to a stronger definition. This is a definition of θ-fuzzy Boyce-Codd
normal form.

Definition 6. Scheme R (U), U = {X1, X2, ... , Xn}, is in θ-fuzzy Boyce-Codd
normal form (θ-FBCNF) if for every IFFD X →φ Y , where X, Y ⊆ U , Y �∈ X,
X contains a θ-key of R.

4 Fuzzy Multiargument Relationships

Let us consider the ternary relationship R(X ,Y ,Z) with the following IFFDs:

XY →α Z, XZ →β Y, Y Z →γ X, (12)

where α = [αL, αU ], β = [βL, βU ], γ = [γL, γU ]. The scheme R has three can-
didate θ-keys. Let us define the following interval-valued fuzzy sets of attributes:

L = {γc/X, βc/Y, αc/Z}, B = {α/X, β/Y, γ/Z}. (13)
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where αc = [1 − αU , 1 − αL], βc = [1 − βU , 1 − βL], γc = [1 − γU , 1 − γL].
Membership grades of attributes depend on levels of suitable IFFDs. If an at-
tribute does not occur on the right side of any dependency (12) its degrees of
membership to L and B are equal to [1, 1] and [0, 0] respectively.

The possibility to impose fuzzy binary relationships is limited by intervals
α, β and γ. Let us consider the imposition of the dependency Y →φ X, where
α = [φL, φU ]. Its consequence is the dependency Y Z →φ X. If φ > γ the inter-
vals determining the membership of X in sets L and B change, which means
the disturbance of the integrity conditions. Hence the following theorem can be
formulated:

Theorem 1. In the fuzzy ternary relationship R(X,Y ,Z) with IFFDs (12) there
may exist binary relationships determined by IFFDs of the form V →φ W , where
V, W ∈ {X, Y, Z}, if φ ≤ α for W = Z, φ ≤ β for W = Y , φ ≤ γ for W = X.

Remark 1. Let us notice that the imposition of Y →φ X introduces Y →λ Z,
where λ = [λL, λU ]. For we have: Y →φ X ∧ XY →α Z ⇒ Y →λ Z, where λL

= min (φL, αL), λU = min (φU , αU ).

Example 4. The sets L and B for relation PES from example 1 are as follows:
L = {[0.4, 0.5]/P, [1, 1]/E, [0.2, 0.3]/S} and B = {[0.5, 0.6]/P, [0.7, 0.8]/S}.
Let us consider the imposition of the dependency E →[0.3, 0.4] P . This imposi-
tion creates another dependency: E →[0.3, 0.4] S (rule D2). Thus a new θ-key
(attribute E) with θ = [0.3, 0.4] has been created. Scheme PES is in [0.3, 0.4]-
FBCNF. Membership grades in sets L and B remain the same. The imposition is
admissible. If the level φ of the imposed dependency were greater then [0.5, 0.6]
the integrity constraints would be disturbed.

The obtained result can generalized for fuzzy n-ary relationships. Let there exist
in the relationship R(X1, X2, ... , Xn) the following IFFDs:

U − {Xi} →αi Xi, where αi = [αiL , αiU ], i = 1, 2, ... , m, m ≤ n. (14)

The scheme R(X1, X2, ... , Xn) has m θ-keys in the form U − {Xi}. From
dependencies (14) the following sets L and B result:

L = {αc
1/X1, ... , αc

m/Xm, 1/Xm+1, ... , 1/Xn}, (15)

B = {α1/X1, ... , αm/Xm}. (16)

where αc
i = [1 − αiU , 1 − αiL ]. Attributes Xm+1, ... , Xn fully belong to L. Their

number equals n−m. The imposition of (n-1)-ary relationships cannot disturb
integrity constraints determined by dependencies (14). Therefore the levels γi of
the imposed IFFDs:

U − {Xi, Xj} →γi Xi, where i �= j, i, j = 1, 2, ..., n , γi = [γiL , γiU ] (17)

must satisfy the following condition: γi ≤ αi, where αi denotes the level of the
relevant dependency (14). Due to the Armstrong’s rules: U−{Xi, Xj} →γi Xi ⇒



Multiargument Relationships in Fuzzy Databases 205

U−{Xi} →γi Xi. If γi ≤ αi, then U−{Xi} →αi Xi ⇒ U −{Xi} →γi Xi. Thus
the obtained dependency is not contradictory to (14). Otherwise the imposition
is not allowed. Its consequence is a change of the membership intervals for Xi

in sets L and B.

Theorem 2. In the fuzzy n-ary relationship R (X1, X2, ... , Xn) with IFFDs
(14), there may exist (n-1)-ary relationships determined by IFFDs (17), in which
γi ≤ αi.

Scheme R(X1, X2, ... , Xn) with IFFDs (14) occurs in θ-FBCNF, where θ =
[mini(αiL ), mini(αiU )]. After having introduced IFFDs (17) the conditions of
definition 6 may be disturbed. Let us examine the consequences of imposing the
dependency U−{Xi, Xj} →γi Xi, where i �= j, i = 1, 2, ... , m, j = 1, 2, ... ,
n and γi ≤ αi. Let us assume that m > 1. If m < n there are attributes fully
belonging to L. They cannot occur on the right side of any IFFD (14). If j ≤ m
from U−{Xj} →αj Xj the attribute Xi can be eliminated. Basing on rule D2
we obtain: U−{Xi, Xj} →γi Xi ∧ U−{Xj} →αj Xj ⇒ U−{Xi, Xj} →λi,j Xj ,
where λi,j = [min(γiL , αjL ), min(γiU , αjU )]. A new key arises. This is formed
by attributes occurring on the left side of the introduced dependency. The con-
ditions of the definition of θ-FBCNF have not been disturbed. If j > m, i.e. Xj

fully belongs to L, no new key will be formed. Scheme R(X1, X2, ... , Xn) will
not occur in θ-FBCNF. The left side of the dependency U−{Xi, Xj} →γi Xi

does not contain the key. However, it will remain in θ-F3NF, because Xi is θ-
prime. If (m = 1) there exists only one admissible dependency (7). Its imposition
introduces a partial dependency of attribute Xi on the θ-key which means a dis-
turbance in the conditions defining the θ-fuzzy second normal form.

5 Conclusions

The paper analysis fuzzy multiargument relationships with attributes repre-
sented by means of interval-valued possibility distributions. The starting point
are interval fuzzy functional dependencies (14) existing between all attributes of
the relationship R(X1, X2, ... , Xn). Their levels are determined by means of
subintervals of [0,1]. They determine the integrity constraints for R. The subject
of considerations was the possible occurrence - within the n-ary relationship - of
interval fuzzy functional dependencies (17) describing the relationships between
(n-1) attributes. They cannot disturb the integrity constraints. Such dependen-
cies are admissible if their levels do not exceed in the sense of order (4) the levels
of relevant dependencies (14). The imposition of them may disturb the normal
form of scheme R.
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Abstract. Through analyzing limitations of four existing dominance relations in 
disjunctive set-valued information systems, a variable precision dominance 
relation is proposed, and an extended rough set model based on the variable 
precision dominance relation is defined. In order to derive much simpler 
attribute representation, a discernibility matrix is defined, and an attribute 
reduction method based on the discernibility matrix is developed.  

Keywords: disjunctive set-valued information system; rough set; variable 
precision dominance relation; attribute reduction. 

1   Introduction 

Classical rough set theory is based on the indiscernibility relation, and mainly studies 
the complete information system. But in many practical issues, some attribute values 
in an information system may be unknown or multi-values. Furthermore, attributes 
are sometimes with preference-ordered domains, and the ordering of properties of 
attributes plays a crucial role. To solve these problems, Zhang et al. [6] proposed the 
concept of set-valued information system and used it to process incomplete 
information. Greco et al. [1, 2] proposed the dominance-based rough set approach to 
take account of the ordering properties of attribute. Qian et al. [4] introduced four 
possible dominance relations to the disjunctive set-valued information systems. 

The four dominance relations in [4] are based on comparing the minimum or the 
maximum value in the value domain of one object with that of another object, but do 
not consider attribute values between the minimum value and the maximum value. 
Therefore, the four existing dominance relations cannot perfectly characterize the 
degree that one object dominates another one, and lack of adaptability of noise data. 
In addition, all the objects in disjunctive set-valued information systems can only get 
one value in the value domain, so it may happen that the condition of the dominance 
relation cannot meet, just because the minimum or the maximum value in the value 
domain is not available. For these reasons, we propose a variable precision dominance 
relation based on the probability theory, in order to depict certain degree of the 
dominance relation between two objects, and enhance adaptability of noisy data. 

The rest of the paper is organized as follows. In Section 2, a variable precision 
dominance relation is proposed, and a rough set model based on the variable precision 
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dominance relation is established. In Section 3, an attribute reduction method is 
presented. Finally, the paper is summarized in Section 4.  

2   Rough Set Model Based on Variable Precision Dominance 
Relation  

Definition 1. Set-valued Information System(SvIS) can be defined as 4-tuple 
S=(U,A,V,f), where U={x1,x2,...,xn} is a non-empty finite set of objects, 
A={a1,a2,...,am} is a non-empty finite set of attributes, and V is the set of attribute 
values. f: U×A→2V is a set-valued mapping such that ∀ x∈ U, a∈ A |f(x,a)| ≥ 1, where |·| 
denotes the cardinality of a set. 

 

Definition 2. Let S= (U,A,V,f ) be SvIS, if the domain of condition attributes is 
ordered according to the decreasing or increasing preference, then S is called Set-
valued Ordered Information System(SvOIS).  
 

It is assumed that the domain of attribute a ∈ A is completely pre-ordered, let a 
denote, then y a x means that y is at least as good as x with respect to attribute a, 
and y a x ⇔  f(y,a) ≥ f(x,a) (the domain of attribute a is increasing preference). 

In disjunctive SvIS, some objects may have more than one value for an attribute. 
Furthermore, for any x ∈ U, a∈ A, the value of each attribute is only one of value 
domain. In this paper, we assume that the probability that every object gets each value 
in the value domain is equal. For any xi, xj ∈ U, a ∈ A, several kinds of possible 
relationships between f(xi ,a) and f(xj ,a)  are shown in Fig.1. 

C2C1 C3

f (xi , a)

f (xj , a)

 

Fig. 1. Possible relationships of arbitrary two attribute set-values 

In Fig.1, C1 denotes the situation of f(xj ,a)<min f(xi ,a), C2 stands for the situation 
of min f(xi ,a) ≤ f(xj ,a)<max f(xi ,a), and C3 depicts the situation of f(xj ,a) ≥ max f(xi ,a). 
In the following, we give the definition of minimum probability that xj  dominates xi 

with respect to attribute a, denoted by a
jiP . 

a
jiP =
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where |·| denotes the cardinality of a set, ]1,0[∈a
jiP shows the degree that xj  dominates 

xi, and the larger the value of a
jiP , the greater the degree. 
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Definition 3. Let S=(U,A,V,f ) be a disjunctive SvOIS, B ⊆ A, for a given variable 

precision k ∈ (0,1], the variable precision dominance relation k

BR≥ and the 

corresponding dominance class 
k

Bix ≥][ can be respectively defined as follows: 

k

BR≥ ={(xj , xi ) ∈ U×U | Ba∈∀ a
jiP ≥ k}, k

Bix ≥][ = { xj ∈  U | (xj , xi ) ∈
k

BR≥ }.       (2) 

Definition 4. Let S=(U,A,V,f ) be a disjunctive SvOIS, for any X ⊆ U and B ⊆ A, the 

lower approximation )(XR
k

B
≥ , the upper approximation )(XR

k

B
≥ of X  are respectively 

defined as follows: 

)(XR
k

B
≥ ={x∈ U | (x ∪

k

Bx ≥][ ) ⊆  X }, )(XR
k

B
≥ ={x∈ U | (x ∪

k

Bx ≥][ ) ∩  X ≠ ∅ }. (3) 

From definition 3 and definition 4, we can easily get the following properties: 
 

Property 1. Let k

BR≥ be the variable precision dominance relation, then 

(1) if kPa
iiBa ≥∀ ∈ , then k

BR≥ is reflexive, but not symmetric and transitive; 

(2) if kPa
iiBa <∃ ∈ , then k

BR≥ is not reflexive, symmetric and transitive; 

(3) if ABC ⊆⊆ , then 
kkk

ABC RRR ≥≥≥ ⊇⊇ , 
kkk

AiBiCi xxx ≥≥≥ ⊇⊇ ][][][ ; 

(4) if 10 21 ≤≤≤ kk , then 21 kk

BB RR ≥≥ ⊇ , 21
][][

kk

BiBi xx ≥≥ ⊇ ; 

(5) if 10 21 ≤≤≤ kk , then XXRXR
kk

BB ⊆⊆ ≥≥ )()(
21 , )()(

12
XRXRX

kk

BB
≥≥ ⊆⊆ ; 

(6) if UYX ⊆⊆ , then )()( YRXR
kk

BB
≥≥ ⊆ , )()( YRXR

kk

BB
≥≥ ⊆ . 

3   Attribute Reduction in Disjunctive SvOIS 

In OIS, some attributes can be reduced from the original attribute set, as long as the 
ordering of  objects can be preserved in terms of a given dominance relation [3,4]. 

 

Definition 5. Let S=(U,A,V,f ) be a disjunctive SvOIS, B ⊆ A, k

BR≥ is the variable 

precision dominance relation. If k

BR≥ = k

AR≥ , and for any b∈ B, 
k

bBR≥
}{\ ≠ k

AR≥ , then B is 

called attribute reduction of S. 
 

Obviously, an attribute reduction is a minimum subset of attributes satisfying 
k

BR≥ = k

AR≥  in a disjunctive SvOIS. 
 

Definition 6. Let S=(U,A,V,f ) be a disjunctive SvOIS, if B={B1, B2,..., Bm} is the set 
of all attribute reduction, then core=

1
l

l m
B

≤ ≤
∩  is the core attribute set, K=

1
\l

l m
B core

≤ ≤
∪  is 

the relatively indispensable attribute set, and I=U \
1

l
l m

B
≤ ≤
∪ =U \ (core ∪K ) is the 

dispensable attribute set. Where ‘\’ denotes set difference. 
 

Definition 7. Let S=(U,A,V,f ) be a disjunctive SvOIS. For any xi ,xj ∈ U, if 
Disk(xj,xi)={a∈ B | (xj ,xi)∉ k

aR≥
}{ }, then Disk(xj,xi) is called discernibility attribute set 
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between xi  and xj with respect to B , and DISk= (Disk(xj,xi) 
| xi , xj ∈ U ) is the 

discernibility matrix. 
 

Afer the discernibility matrix is established, we can continue to use the discernibility 
function in [5] to simplify the disjunctive SvOIS.  
 

Property 2. Suppose that S=(U,A,V,f ) is a disjunctive SvOIS. If Disk(xj,xi) is the 
discernibility attribute set of S with respect to k

BR≥ , then k

BR≥ = k

AR≥  if and only if 

B ∩Disk(xj,xi) ≠ ∅ , where, Disk(xj,xi) ≠ ∅ . 

4   Conclusion 

Set-valued information systems are generalized models of single-valued information 
systems. They could be divided into two categories: conjunctive and disjunctive set-
valued information systems. In this paper, we proposed a variable precision 
dominance relation based on the probability theory in disjunctive set-valued 
information systems. And then, we established a rough set model based on the 
variable precision dominance relation. Finally, we defined the discernibility matrix, 
and developed an attribute reduction method based on the discernibility matrix. 
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Abstract. Soft set theory in combination with the interval-valued fuzzy
set has been proposed as the concept of the interval-valued fuzzy soft set.
However, up to the present, few documents have focused on parameter
reduction of the interval-valued fuzzy soft sets. In this paper, we pro-
pose a definition of normal parameter reduction of interval-valued fuzzy
soft sets, which considers the problems of sub-optimal choice and added
parameters. Then, a heuristic algorithm of normal parameter reduction
for interval-valued fuzzy soft sets is presented. Finally, an illustrative
example is employed to show our contribution.

Keywords: Fuzzy soft sets, Soft sets, Interval-valued fuzzy soft sets,
Reduction, Normal parameter reduction.

1 Introduction

Soft set theory was firstly proposed by a Russian Mathematician Molodtsov
[1] in 1999. It is a new mathematical tool for dealing with uncertainties. In
recent years, there has been a rapid growth in interest in soft set theory and its
applications[2], and great progresses of study on soft set theory have been made.
Furthermore soft set models in combination with the interval-valued fuzzy set
have been proposed as the concept of the interval-valued fuzzy soft set [3] by
Yang et al. And it is worthwhile to mention that some effort has been done to
such issues concerning reduction [4] of soft sets. However, up to the present, few
documents have focused on parameter reduction of the interval-valued fuzzy soft
sets. So, in this paper, we propose a definition of normal parameter reduction
of interval-valued fuzzy soft sets and give a heuristic algorithm to achieve the
normal parameter reduction of interval-valued fuzzy soft sets.

This paper is organized as follows. Section 2 reviews the basic notions of
interval-valued fuzzy soft sets. Section 3 gives a definition of normal parameter
reduction of interval-valued fuzzy soft sets and a related heuristic algorithm
which is illustrated by an example. Finally, section 4 presents the conclusion
from our work.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 211–214, 2011.
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2 Essential Rudiments

In this section, we review some definitions with regard to soft sets, interval-valued
fuzzy soft sets and the related application.

Let U be a non-empty initial universe of objects, E be a set of parameters in
relation to objects in U, P (U)be the power set of U, and A ⊂ E.The definition
of soft set is given as follows.

Definition 1. (See [1]).A pair (F,A)is called a soft set over U if and only if F
is a mapping of E into the set of all subsets of the set U.

That is, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2. (See [5]).An interval-valued fuzzy set X̂ on an universe U is a
mapping such that

X̂ : U → Int([0, 1]) (1)

where Int([0,1])represents the set of all closed subintervals of [0,1], the set of all
interval-valued fuzzy sets on U is denoted by ˜ψ(U). Let X̂ ∈ ˜ψ(U). For every x ∈
U , μ−

X̂
(U) and μ+

X̂
(U) are regarded as the lower and upper degrees of membership

x to X̂ (0 ≤ μ−
X̂

(U) ≤ μ+

X̂
(U) ≤ 1), respectively. μX̂(x) = [μ−

X̂
(U), μ+

X̂
(U)] is

referred to as the degree of membership an element x to X̂ .

Definition 3. (See [3]).Let U be an initial universe of objects and E be a set of
parameters in relation to objects in U. A pair (ω̃,E)is called an interval-valued
fuzzy soft set over ˜ψ(U), where ω̃ is a mapping given by

ω̃ : E → ˜ψ(U) (2)

That is, an interval-valued fuzzy soft set is a parameterized family of interval-
valued fuzzy subsets of U. Hence, its universe is the set of all interval-valued
fuzzy sets of U, i.e ˜ψ(U).

Algorithm 1. Yang et al. [3] presented the algorithm to solve fuzzy decision
making problems based on interval-valued fuzzy soft sets in the following. More
details can be found in [3].

3 Normal Parameter Reduction of Interval-Valued Fuzzy
Soft Sets

In this section, we give a definition of normal parameter reduction of interval-
valued fuzzy soft sets and present a heuristic algorithm to achieve it.
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Definition 4. For interval-valued fuzzy soft set (˜S, E),U = {h1, h2, ..., hn},
E = {e1, e2, ..., en},μ˜S(ej)(hi) = [μ−

˜S(ej)
(hi), μ+

˜S(ej)
(hi)] is the degree of mem-

bership an element hi to ˜S(ej). We denote d
˜S(ej)(hi) as score of membership

degrees for ej,where it is formulated as

d
˜S(ej)

(hi) =
n

∑

k=1

(μ−
˜S(ej)

(hi) − μ−
˜S(ej)

(hk)) +
n

∑

k=1

(μ+
˜S(ej)

(hi) − μ+
˜S(ej)

(hk)) (3)

Definition 5. For interval-valued fuzzy soft set (˜S, E),U = {h1, h2, ..., hn},
E = {e1, e2, ..., en},if there exists a subset A =

{

e
′
1, e

′
2, ..., e

′
p

}

⊂ E satisfying
∑

ek∈A d
˜S(ek)(h1) =

∑

ek∈A d
˜S(ek)(h2) = ... =

∑

ek∈A d
˜S(ek)(hn), then A is dis-

pensable,otherwise, A is indispensable. B ⊂ E is defined as a normal parameter
reduction of E, if the two conditions as follows are satisfied
(1) B is indispensable
(2)

∑

ek∈E−B d
˜S(ek)(h1) =

∑

ek∈E−B d
˜S(ek)(h2) = ... =

∑

ek∈E−B d
˜S(ek)(hn)

Algorithm 2. Normal parameter reduction of interval-valued fuzzy soft sets

(1) Input interval-valued fuzzy soft sets (˜S, E)and the parameter set E;
(2) Compute score of membership degrees d

˜S(ej)(hi) , for 1 ≤ i ≤ n,1 ≤ j ≤ m;

(3) Check A, where A =
{

e
′
1, e

′
2, ..., e

′
p

}

⊂ E, if
∑

ek∈A d
˜S(ek)(h1) =

∑

ek∈A d
˜S(ek)(h2) = ... =

∑

ek∈A d
˜S(ek)(hn),

and then A is put into a candidate parameter reduction set.
(4) Find the maximum cardinality of A in the candidate parameter reduction
set and get E-A as the optimal normal parameter reduction.

Example 1. Let (˜S, E) be an interval-valued fuzzy soft set with the tabular
representation displayed in Table 1. Suppose that U = {h1, h2, h3, h4, h5, h6},
E = {e1, e2, e3, e4, e5, e6} .

Table 1. An interval-valued fuzzy soft set (˜S, E)

U/E e1 e2 e3 e4 e5 e6 ci ri

h1 [0.5,0.8] [0.1,0.3] [0.3,0.5] [0.4,0.5] [0.7,0.9] [0.5,0.8] [2.5,3.8] 0.6
h2 [0.3,0.4] [0.5,0.6] [0.6,0.8] [0.6,0.8] [0.4,0.6] [0.2,0.3] [2.6,3.5] -0.6
h3 [0.4,0.6] [0.6,0.7] [0.5,0.6] [0.3,0.4] [0.6,0.7] [0.1,0.3] [2.5,3.3] -2.4
h4 [0.7,0.9] [0.2,0.3] [0.2,0.3] [0.0,0.1] [0.9,1.0] [0.1,0.2] [2.1,2.8] -7.8
h5 [0.1,0.3] [0.5,0.7] [0.8,0.9] [0.5,0.7] [0.2,0.5] [0.6,0.7] [2.7,3.8] 1.8
h6 [0.1,0.2] [0.7,0.9] [0.8,1.0] [0.9,1.0] [0.2,0.4] [0.6,0.8] [3.3,4.3] 8.4

We can obtain score of membership degrees for(˜S, E) by the formula of (3),
which is given in Table 2.
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Table 2. The score of membership degrees for (˜S, E)

U/E e1 e2 e3 e4 e5 e6 ri

h1 2.5 -3.7 -2.5 -0.8 2.5 2.6 0.6
h2 -1.1 0.5 1.1 2.2 -1.1 -2.2 -0.6
h3 0.7 1.7 -0.7 -2.0 0.7 -2.8 -2.4
h4 4.3 -3.1 -4.3 -5.6 4.3 -3.4 -7.8
h5 -2.9 1.1 2.9 1.0 -2.9 2.6 1.8
h6 -3.5 3.5 3.5 5.2 -3.5 3.2 8.4

From the Table 2, we can obtain{e1, e3} and {e3, e5} satisfying
∑

ek∈A

d
˜S(ek)(h1) =

∑

ek∈A

d
˜S(ek)(h2) = ... =

∑

ek∈A

d
˜S(ek)(hn) = 0

Thus {e2, e4, e5, e6} and {e1, e2, e4, e6} are the normal reduction of the interval-
valued fuzzy soft set(˜S, E).

4 Conclusion

Pioneering work on the interval-valued fuzzy soft sets has been done by Yang
et al. However, up to the present, few documents have focused on parameter
reduction of the interval-valued fuzzy soft sets. In this paper, we have proposed
a definition and the related property of normal parameter reduction of interval-
valued fuzzy soft sets and give a heuristic algorithm to achieve the normal pa-
rameter reduction of interval-valued fuzzy soft sets, which considers the problems
of sub-optimal choice and added parameters. Finally, an example illustrates our
contribution.
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Abstract. Feature selection remains as one of effective and efficient
techniques in text categorization. Selecting important features is crucial
for effective performance in case of high imbalance in data. We introduced
a method which incorporates game theory to feature selection with the
aim of dealing with high imbalance situations for text categorization. In
particular, a game is formed between negative and positive categories to
identify the suitability of features for their respective categories. Demon-
strative example suggests that this method may be useful for feature
selection in text categorization problems involving high imbalance.

1 Introduction

Feature selection is a process which selects a subset of features, that are con-
sidered as important [1,2,3,4]. Text categorization systems are often faced with
high class imbalance. For example, in binary classification setting where the cat-
egory of interest is taken as positive class while the union of all other categories
are taken as negative [5]. The number of positive examples is fewer than nega-
tive ones in such cases. Previous studies suggest that efficiently tailoring feature
selection can be useful in such cases for increased performance [6,7].

There are two major feature selection approaches in text categorization,
namely, one sided and two sided approaches [7]. Methods in these approaches
assign positive or negative values to features. These values indicate feature’s
importance level or utilities to be used for classification. Features representing
positive category are assigned positive values, while features representing nega-
tive category are assigned negative values. Methods in one sided approach select
features with high positive values. Methods in two sided approach selects features
with high absolute value, implicitly [5]. Both approaches have their limitations.
Methods in one sided approach ignore the importance of negative features. It is
suggested that the presence of negative features are necessary for higher classifi-
cation rate as they can increase confidence in rejecting irrelevant examples [6,7].
Similarly, methods in two sided (implicit combination) approach, based on their
definitions, will assign higher absolute values to positive features compared to
negative ones [7]. In reality, when signs are ignored, fewer negative features are
selected. To overcome the limitations, an explicit combinational approach was

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 215–222, 2011.
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Table 1. Probabilities of words

w1 w2 w3 w4 w5 w6 w7 w8

Probabilities in positive category 0.7 0.5 0.4 0 0 0 0.5 0.6

Probabilities in negative category 0 0 0 0.7 0.5 0.3 0.6 0.5

introduced [7]. Highly positive and negative features generated by a particular
one sided method were selected with this approach. It is suggested that the ex-
plicit combinational approach may provide better results than the above two
approaches [7]. In addition, a comparative study suggested that the explicit
combinational approach has superior performance than implicit approaches [5].

Most of the existing approaches favor features that are indicative of either pos-
itive or negative category. However, there might be features that are indicative
of both categories. It is plausible to include such features in some applications.
The challenge remains on how to effectively select these features. In this article,
we employ game theory for such purpose. A game is setup with positive and
negative category players. The goal of players is to reach a dominant position
over others or to cooperate with others in order to reach an optimal position.

2 Feature Selection in High Class Imbalance

Existing feature selection approaches are not suitable for selecting features that
are representative of both positive and negative categories. We will examine
four feature selection methods. Correlation coefficient (CC) and GSS coefficient
(GSS) [7] are chosen for one sided approach while chi square (CHI) [8] and gini
index (GINI) [9] for two sided approach.

For text categorization, we demonstrate the incompetence of these approaches
with an example. Let us consider an imbalanced data with 10 documents in pos-
itive and 100 in negative categories. There are eight words in these documents
represented as w1, w2, ..., w8. Table 1 shows the probabilities of these words in
documents of the two categories. The probability of a word in a category, refers
to the fraction of documents from that category containing the word. For exam-
ple, the probability of 0.7 for w1 in positive category suggest that 7 out of 10
positive documents contains w1. The scores of the words in respective methods
are summarized in Table 2.

Table 3 presents the results of feature rankings. The rankings for explicit
approach were obtained from methods in one sided approach. Words with highest
scores receive the highest ranks in respective methods. We note that w7 and w8

are not considered as important by any method. If we are interested in top three
features, they will be ignored for all the methods.

Let us consider w7 of Table 1. The word has similar level of probabilities in
both categories. The existing methods consider w7 less important, as it does not
differentiate these two categories. However, the same word may be useful, if we
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Table 2. Scores of features corresponding to different methods

w1 w2 w3 w4 w5 w6 w7 w8

One sided metrics CC 8.244 6.91 6.143 -4.183 -2.887 -1.937 -0.585 0.575
GSS 0.058 0.042 0.033 -0.058 -0.041 -0.025 -0.008 0.008

Implicit combinational CHI 67.96 47.62 37.74 17.50 8.333 3.75 0.342 0.331
metrics GINI 0.49 0.25 0.16 0 0 0 0.002 0.004

Table 3. Features rankings for different approaches

Feature rankings
1 2 3 4 5 6 7 8

One sided CC and GSS w1 w2 w3 w8 w7 w6 w5 w4

Implicit combination CHI w1 w2 w3 w4 w5 w6 w8 w7

GINI w1 w2 w3 w8 w7 (w4w5w6)

Explicit combination ranking for positive w1 w2 w3 w8 w7 w6 w5 w4

ranking for negative w4 w5 w6 w7 w8 w3 w2 w1

consider the times it appear in documents of the two categories. If the times of
occurrence of w7 in positive documents is much large than the times in negative
documents, we may consider w7 as an important feature for positive category.

Suppose, that we use an explicit combinational approach, the rankings in
categories may be obtained by sorting the words based on their probabilities in
respective categories. The new ranking of the words with their probabilities in
Table 1 would be

– w1, w8, (w7, w2), w3, (w4, w5, w6), for positive and
– w4, w7, (w8, w5), w6, (w1, w2, w3), for negative category.

Words in brackets are of equal probabilities. We may select features based on the
rankings. Suppose that we consider positive category to be twice as important as
negative category. We may select two positive features for every negative feature.
Therefore, w1, w8 and w4 would be selected in this case. Three types of features,
that is, those indicative of positive category (i.e., w1), negative category (i.e.,
w4), and both of them (i.e., w8) are selected.

A particular feature may be considered as good for positive category, negative
category, both of them or neither of them. We try to find a systematic method,
which can be used to find the best choice among the four decisions.

3 Feature Selection with Game Theory

Game theory attempts to mathematically assess situations, where an individual
success in making a decision among choices depends on the decision choices of
others [10,11]. It has been utilized in many areas such as economics, machine
learning and rough sets [12,13,14,15].
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A game can be formally defined as G = {P, S, F}, where P represents a set
of players, S a set of strategies, and F a set of payoff functions. We follow the
following four steps for a feature selection game.

Identifying the Player Set: Two players representing positive category and
negative category, are considered in this study. The set of players is denoted
as P = {C+, C−}, where C+ represents positive category and C− the negative
category. Players will try to determine the features utility for their respective
categories using suitable payoff functions. The final decision is based on each
player’s achieving maximum payoff.

Identifying the Strategy Set: To participate in a game, each player should
have a set of strategies. Individual strategies may be realized as actions. Hence,
we have two sets of strategies with actions corresponding to the two players.
Setting the strategy sets for C+ as S+ and C− as S−, the two sets are denoted
as S+ = {a1, a2, ...., an} and S− = {a1, a2, ...., an}. This means that there are
n actions available for each player. We simplify two actions here, i.e., action a1

to keep the feature and a2 to discard the feature. To differentiate the actions of
the two players, we use notation a+

i to denote the actions of C+ and a−i for C−

where i represents the action.

Determining the Payoff Functions: A payoff or utility function is a result
of a player’s action. More formally, the payoff of player i, performing action aj

can be measured as ui,j = u(aj). The set of all u functions acting in game G can
be represented by a set F. In this game F = {uC+ , uC−}, where uC+ represents
the set of payoff functions for the player C+ and uC− the player C−. Given an
action of the opponent, a player can choose from two possible actions. Hence,
we need four payoff functions for each player. We denote the payoff of player i,
performing an action j, given action k by the second player as ui(j|k). The payoff
set for each player can be denoted as,

uC+ = {uC+(a+
1 |a−

1 ), uC+(a+
1 |a−

2 ), uC+(a+
2 |a−

1 ), uC+(a+
2 |a−

2 )},

uC− = {uC−(a−
1 |a+

1 ), uC−(a−
1 |a+

2 ), uC−(a−
2 |a+

1 ), uC−(a−
2 |a+

2 )}.
We now define individual payoff functions. Let us denote the positive category

as cat and the negative cat. For a particular word w, we denote the number of
documents from cat and cat containing w as A and B respectively. Similarly,
the number of documents from cat and cat that does not contain w are denoted
by C and D respectively. The conditional probabilities of a particular word w’s
presence or absence in category cat or cat are defined as,

P (w|cat) =
A

∑

d∈cat d
, P (w|cat) =

B
∑

d∈cat d
,

P (w|cat) =
C

∑

d∈cat d
, and P (w|cat) =

D
∑

d∈cat d
.



Incorporating Game Theory in Feature Selection for Text Categorization 219

Table 4. Action scenarios for players

Player Action Objective Required Characteristic

C+

a+
1 Include feature Present in many and absent in few positive

examples i.e. high value for P (w|cat)
a+
2 Do not include Absent in many and present in few positive

feature examples i.e. high value for P (w|cat)

C−
a−1 Include feature Present in many and absent in few negative

examples i.e. high value for P (w|cat)
a−2 Do not include Absent in many and present in few negative

feature examples i.e. high value for P (w|cat)

When both players decide to keep a feature, high probability is desired in
both categories (i.e., higher value of P (w|cat) and P (w|cat)). The average func-
tion can be useful to represent utility of players in this case. The average will
be relatively low if any of the two probabilities is low. Higher average value can
be expected, when both probabilities are high. The payoffs for the players are
calculated as {P (w|cat) + P (w|cat)}/2 in this case. Alternatively, both play-
ers may decide to discard a feature. The desired property in this case is high
probability of features absence in both categories. The payoff for players are
calculated similarly as {P (w|cat) + P (w|cat)}/2. The player C+ may decides to
keep a feature while C− decides to discard, the payoffs are calculated as P (w|cat)
and P (w|cat), respectively. Finally, C+ may choose to discard and C− to keep
a feature. The corresponding payoffs are calculated as P (w|cat) and P (w|cat),
respectively. Table 4 summarize the action scenarios for both players.

Implementing Competition: Finally, we need to express the game as a com-
petition or cooperation between players in a payoff table. This is presented in
Table 5. In order to find actions of players, we determine Nash equilibrium [11]
within the payoff table. Intuitively, this means that none of the players can be
benefited by changing his or her strategy, given the other player’s chosen action.

The actions of the players in the game mutually define the usefulness of a
feature belonging to positive or negative categories. If we define sets, FS+ and
FS− as sets of features representing positive and negative categories, the game
will determine the inclusion or exclusion of features in these sets. In particular,
a feature is included in FS+, when the players actions are a+

1 and a−2 , while in

Table 5. The payoff matrix for C+ and C−

C−

a−1 a−2

C+ a+
1 uC+(a+

1 |a−
1 ), uC−(a−

1 |a+
1 ) uC+(a+

1 |a−
2 ), uC−(a−

2 |a+
1 )

a+
2 uC+(a+

2 |a−
1 ), uC−(a−

1 |a+
2 ) uC+(a+

2 |a−
2 ), uC−(a−

2 |a+
2 )
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FS−, when actions are a+
2 and a−1 . A feature may be included in both sets when

actions of the players are a+
1 and a−1 . Finally, we may discard a feature when

the actions are a+
2 and a−2 . A game may be implemented for all features in this

way. The final features set can be obtained as FS = FS+
⋃

FS−.

4 A Demonstrative Example

Let us demonstrate the application of game theory using the earlier example.
Based on probabilities in Table 1, one can obtain the values of payoff functions.
For example, the payoff of C+ for taking action a+

1 given action a−1 of C− is,

uC+(a+
1 |a−

1 ) = {P (w|cat) + P (w|cat)}/2 = {0.7 + 0}/2 = 0.35.

Table 6 shows the payoff table for w1. The cells with bold numbers represent the
Nash equilibrium. The actions of players in the state of equilibrium are a+

1 for
C+ and a−2 for C−. In this state, none of the players can achieve a higher payoff,
given the other player’s chosen action. For example, changing the action of C+

from a+
2 to a+

1 will decrease the payoff from 0.7 to 0.65. The actions of players
mutually decide to include w1 in FS+.

Table 6. The payoff table for w1 Table 7. The payoff table for w2

C− C−

a−1 a−2 a−1 a−2

C+ a+
1 0.35, 0.35 0.70,1.0

C+ a+
1 0.25, 0.25 0.50, 1.0

a+
2 0.30, 0.0 0.65, 0.65 a+

2 0.50, 0.0 0.75,0.75

For the other two words i.e., w2 and w3, the equilibrium in their respective
payoff tables results in the final decision of discarding them. This is presented
in Table 7 and Table 8.

Table 8. The payoff table for w3 Table 9. The payoff table for w4

C− C−

a−1 a−2 a−1 a−2

C+ a+
1 0.20, 0.20 0.40, 1.0

C+ a+
1 0.35, 0.35 0.0, 0.30

a+
2 0.60, 0.0 0.80,0.80 a+

2 1.0,0.7 0.65, 0.65

We now consider w4’s payoff as shown in Table 9. The actions of players in
equilibrium are a+

2 for C+ and a−1 for C−. We note that both of players have
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maximized their payoffs, given the chosen action of another player. The chosen
actions of players in this case, corresponds to the decision of including w4 in
FS−. Similarly, for w5 and w6, the actions in equilibrium corresponds to the
decision of discarding. This is shown in Table 10 and Table 11.

Table 10. The payoff table for w5 Table 11. The payoff table for w6

C− C−

a−1 a−2 a−1 a−2

C+ a+
1 0.25, 0.25 0.0, 0.50

C+ a+
1 0.15, 0.15 0.0, 0.70

a+
2 1.0, 0.50 0.75,0.75 a+

2 1.0, 0.30 0.85,0.85

For the last two words, w7 and w8, the payoff tables are shown in Table 12
and Table 13. For both words, the actions for C+ and C− in equilibrium are
a+
1 and a−1 respectively. In other words, both players agree that the feature is

important and thus should be included in both FS+ and FS−.

Table 12. The payoff table for w7 Table 13. The payoff table for w8

C− C−

a−1 a−2 a−1 a−2

C+ a+
1 0.55,0.55 0.50, 0.40

C+ a+
1 0.55,0.55 0.60, 0.50

a+
2 0.50, 0.60 0.45, 0.45 a+

2 0.40, 0.50 0.45, 0.45

After implementing the game for all of the words, we have FS+ = {w1, w7, w8}
and FS− = {w4, w7, w8}. The final features set FS = {w1, w4, w7, w8}, contains
all the three types of features. We observed that the words w7 and w8, which
represent both categories, are included in the final features set. Furthermore,
the method decides the ratio between positive and negative features implicitly.
In reality, one can modify the payoff functions, which may result different ratio,
consistent with importance assigned to categories. It is suggested that the game
theory approach may help us in selecting important features that are indicative
of both positive and negative categories.

5 Conclusion

Existing feature selection approaches give preference to features indicating either
positive or negative categories. These approaches may not be suitable for select-
ing features that indicate both categories. This article presents a feature selection
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method incorporated with game theory, for text categorization problems involv-
ing high class imbalance. In particular, a game between two players, positive and
negative category is implemented. The players find the utilities of features for
their respective category and take appropriate actions. The importance of the
method is that it is able to include features indicating either positive category,
negative category or both of them. Demonstrative example suggests that it may
be useful in text categorization applications involving high imbalance.
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Abstract. Knowledge reduction is one of the main problems in the
study of rough set theory. This paper deals with knowledge reduction
in the sense of reducing attributes in random information systems with
fuzzy decisions based on the Dempster-Shafer theory of evidence. The
concepts of lower approximation reducts, upper approximation reducts,
random belief reducts and random plausibility reducts in random fuzzy
decision systems are introduced. The relationships among these reducts
are examined.

Keywords: Belief functions, fuzzy decisions, knowledge reduction, ran-
dom information systems, rough sets.

1 Introduction

Imprecision and uncertainty are two important aspects of incompleteness of in-
formation. One theory for the study of insufficient and incomplete information
in intelligent systems is rough set theory [2]. The primitive notions of rough
set theory are a dual pair of lower and upper approximations induced from an
approximation space. Another important method used to deal with uncertainty
in information systems is the Dempster-Shafer theory of evidence [3]. The fun-
damental numeric measures are a dual pair of belief and plausibility functions
derived from the belief structure.

There are strong connections between rough set theory and Dempster-Shafer
theory of evidence. It has been demonstrated that various belief structures are
associated with various approximation spaces such that the different dual pairs
of lower and upper approximation operators induced by approximation spaces
may be used to interpret the corresponding dual pairs of belief and plausibility
functions induced by belief structures [4,7,8,10]. Based on this observation, the
Dempster-Shafer theory of evidence may be used to analyze knowledge reduction
and knowledge acquisition in information systems (see e.g. [1,5,6,9,12]).

In the traditional rough set approach, the values of attributes are assumed
to be nominal data, i.e. symbols. In many applications, however, the decision
attribute-values can be linguistic terms (i.e. fuzzy sets). The traditional rough
set approach would treat these values as symbols, thereby some important in-
formation included in these values such as the partial ordering and membership
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degrees is ignored, which means that the traditional rough set approach cannot
effectively deal with fuzzy initial data (e.g. linguistic terms). On the other hand,
the available database may be obtained by a randomization method. Thus a new
rough set model is needed to deal with such data. In this paper, we will propose
the concept of random information systems with fuzzy decisions and discuss the
issue of attribute reduction in such systems by using the Dempster-Shafer theory
of evidence.

2 Fuzzy Evidence Theory Induced by a Crisp Belief
Structure

Throughout this paper, U will be a nonempty finite set called the universe of
discourse. The class of all subsets (fuzzy subsets, respectively) of U will be
denoted by P(U) (by F(U), respectively). For a fuzzy set X ∈ F(U), if there
exists an x ∈ U such that X(x) = 1, then X is referred to as a normalized fuzzy
set. The cardinality of a fuzzy set X is denoted by |X | =

∑

x∈U X(x). We use
the symbols ∨ and ∧ to denote the maximum and minimum, respectively. We
state that if X is a fuzzy set of U and P is a probability measure on U , then
the probability of the fuzzy set X , denoted by P(X), is defined, in the sense of
Zadeh [11], by

P(X) =
∑

x∈U

X(x)P({x}). (1)

Notice that if we define P(x) =: P({x}) = 1/|U | for all x ∈ U and P(X) =
|X |/|U | for all X ∈ P(U), then P : P(U) → [0, 1] is a probability measure on U .

The Dempster-Shafer theory of evidence, also called the “evidence theory” or
the “belief function theory”, is treated as a promising method of dealing with
uncertainty in intelligence systems. The basic representational structure in the
Dempster-Shafer theory of evidence is a belief structure [3].

Definition 1. Let U be a non-empty finite set, a set function m : P(U) → [0, 1]
is referred to as a crisp basic probability assignment if it satisfies axioms (M1)
and (M2):

(M1) m(∅) = 0, (M2)
∑

A⊆U

m(A) = 1.

A set X ∈ P(U) with nonzero basic probability assignment is referred to as a
focal element. We denote by M the family of all focal elements of m. The pair
(M, m) is called a belief structure on U .

Associated with each belief structure, a pair of fuzzy belief and plausibility func-
tions can be defined [8].

Definition 2. Let (M, m) be a crisp belief structure on U . A fuzzy set function
Bel : F(U) → [0, 1] is referred to as a CF-belief function induced from (M, m)
on U if

Bel(X) =
∑

{Y :Y ∈M}
m(Y )

∧

u∈Y

X(u) ∀X ∈ F(U). (2)
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A fuzzy set function Pl : F(U) → [0, 1] is referred to as a CF-plausibility function
induced from (M, m) on U if

Pl(X) =
∑

{Y :Y ∈M}
m(Y )

∨

u∈Y

X(u) ∀X ∈ F(U). (3)

It can be verified that

Bel(X) ≤ Pl(X) ∀X ∈ F(U). (4)

Moreover, the CF-belief and CF-plausibility functions based on the same belief
structure are connected by the dual property

Pl(X) = 1 − Bel(∼ X) ∀X ∈ F(U), (5)

where ∼ X is the complement of the fuzzy set X . Similar to the crisp belief and
plausibility functions, it can be proved that the CF-belief function is a fuzzy
monotone Choquet capacity on U , i.e., it satisfies the following properties [7]:

(FMC1) Bel(∅) = 0,
(FMC2) Bel(U) = 1,
(FMC3) for all Xi ∈ F(U), i = 1, 2, . . . , k,

Bel(
k
⋃

i=1

Xi) ≥
∑

∅�=J⊆{1,2,...,k}
(−1)|J|+1Bel(

⋂

i∈J

Xi).

And the CF-plausibility function is a fuzzy alternating Choquet capacity on U ,
i.e., it satisfies the following properties:

(FAC1) Pl(∅) = 0,
(FAC2) Pl(U) = 1,
(FAC3) for all Xi ∈ F(U), i = 1, 2, . . . , k,

Pl(
k
⋂

i=1

Xi) ≤
∑

∅�=J⊆{1,2,...,k}
(−1)|J|+1Pl(

⋃

i∈J

Xi).

3 Random Information Systems with Fuzzy Decisions
and Rough Fuzzy Approximations

The notion of information systems provides a convenient tool for the represen-
tation of objects in terms of their attribute values. An information system (IS
for short) is a pair (U, AT ), where U = {x1, x2, . . . , xn} is a non-empty, finite
set of objects called the universe of discourse and AT = {a1, a2, . . . , am} is a
non-empty, finite set of attributes, such that a : U → Va for any a ∈ AT , where
Va is called the domain of a.

Each non-empty subset B ⊆ AT determines an indiscernibility relation as
follows:

RB = {(x, y) ∈ U × U : a(x) = a(y) ∀a ∈ B}. (6)
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Since RB is an equivalence relation on U , it forms a partition U/RB = {[x]B :
x ∈ U} of U , where [x]B denotes the equivalence class determined by x with
respect to (wrt) B, i.e., [x]B = {y ∈ U : (x, y) ∈ RB}.

A decision system (sometimes called a decision table) is a pair (U, C ∪ {d})
where (U, C) is an IS, and d /∈ C is a distinguished attribute called the decision, in
this case C is called the conditional attribute set, d is a mapping d : U → Vd from
the universe U into the value set Vd, we assume, without any loss of generality,
that Vd = {d1, d2, . . . , dr}. d is called a fuzzy decision if, for each x ∈ U , d(x) is
a fuzzy subset of Vd, i.e., d : U → F(Vd), with no lose of generality, we represent
d as follows:

d(xi) = di1/d1 + di2/d2 + · · · + dir/dr, i = 1, 2, . . . , n, (7)

where dij ∈ [0, 1]. In this case, (U, C ∪ {d}) is called an IS with fuzzy decisions.
For the fuzzy decision d, we define a fuzzy indiscernibility binary relation Rd on
U as follows:

Rd(xi, xk) = min{1 − |dij − dkj | : j = 1, 2, . . . , r}, i, k = 1, 2, . . . , n. (8)

Then, we obtain a fuzzy similarity class Sd(x) of x ∈ U in the system S =
(U, C ∪ {d}) as follows:

Sd(x)(y) = Rd(x, y), y ∈ U. (9)

Since Sd(x)(x) = Rd(x, x) = 1, we see that Sd(x) : U → [0, 1] is a normalized
fuzzy set of U . Denote by U/Rd the fuzzy similarity classes induced by the fuzzy
decision d, i.e.

U/Rd = {Sd(x) : x ∈ U}. (10)

If P is a normalized probability measure on U , that is, P(x) > 0 for all x ∈ U and
∑

x∈U

P(x) = 1, then the triple (U, P, AT ) is referred to as a random IS. Likewise,

(U, P, C ∪ {d}) is called a random decision system with fuzzy decisions where
(U, C ∪ {d}) is a decision system with fuzzy decisions. It should be noted that
an IS may be treated as a random IS with a special probability P(x) = 1/|U |
for all x ∈ U .

Definition 3. Let S = (U, C ∪ {d}) be an IS with fuzzy decisions. For B ⊆ C
and X ∈ F(U), we define the lower and upper approximations of X wrt (U, RB)
as follows:

RB(X)(x) =
∧

y∈[x]B

X(y), RB(X)(x) =
∨

y∈[x]B

X(y), x ∈ U. (11)

According to Definition 3, the following Property 1 can be easily concluded.

Property 1. Let S = (U, C ∪ {d}) be an IS with fuzzy decisions. If A ⊆ B ⊆ C
and X ∈ F(U), then

RA(X) ⊆ RB(X) ⊆ X ⊆ RB(X) ⊆ RA(X). (12)
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Theorem 1. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions. For
B ⊆ C and X ∈ F(U), if RB(X) and RB(X) are, respectively, the lower and
upper approximations of X wrt (U, RB) defined by Definition 3, denote

BelB(X) = P(RB(X)) =
∑

x∈U

RB(X)(x)P(x),

PlB(X) = P(RB(X)) =
∑

x∈U

RB(X)(x)P(x),
(13)

then BelB : F(U) → [0, 1] and PlB : F(U) → [0, 1] are, respectively, a CF-
belief function and a CF-plausibility function on U , and the corresponding basic
probability assignment mB is

m
B

(Y ) =
{

P(Y ), if Y ∈ U/RB,
0, otherwise. (14)

By Property 1 and Theorem 1, we can easily conclude following

Property 2. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions. If
A ⊆ B ⊆ C and X ∈ F(U), then

BelA(X) ≤ BelB(X) ≤ P(X) ≤ PlB(X) ≤ PlA(X). (15)

4 Attribute Reducts in Random Information Systems
with Fuzzy Decisions

In this section, we discuss attribute reducts in a random IS with fuzzy decisions.

Definition 4. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions and
B ⊆ C. Then

(1) B is referred to as a lower approximation consistent set of S if

RB(Sd(x)) = RC(Sd(x)) ∀x ∈ U. (16)

If B is a lower approximation consistent set of S and no proper subset of B
is a lower approximation consistent set of S, then B is referred to as a lower
approximation reduct of S.

(2) B is referred to as an upper approximation consistent set of S if

RB(Sd(x)) = RC(Sd(x)) ∀x ∈ U. (17)

If B is an upper approximation consistent set of S and no proper subset of B is
an upper approximation consistent set of S, then B is referred to as an upper
approximation reduct of S.

(3) B is referred to as a random belief consistent set of S if

BelB(Sd(x)) = BelC(Sd(x)) ∀x ∈ U. (18)

If B is a random belief consistent set of S and no proper set of B is a random
belief consistent set of S, then B is referred to as a random belief reduct of S.
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(4) B is referred to as a random plausibility consistent set of S if

PlB(Sd(x)) = PlC(Sd(x)) ∀x ∈ U. (19)

If B is a random plausibility consistent set of S and no proper subset of B is
a random plausibility consistent set of S, then B is referred to as a random
plausibility reduct of S.

Theorem 2. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions and
B ⊆ C, then

(1) B is a lower approximation consistent set of S iff B is a random belief
consistent set of S.

(2) B is a lower approximation reduct of S iff B is a random belief reduct of
S.

Proof. (1) “⇒” If B is a lower approximation consistent set of S, that is,
RB(Sd(x)) = RC(Sd(x)) for all Sd(x) ∈ U/Rd. Then

∑

y∈U

RB(Sd(x))(y)P(y) =
∑

y∈U

RC(Sd(x))(y)P(y) ∀Sd(x) ∈ U/Rd. (20)

That is,
P(RB(Sd(x)) = P(RC(Sd(x)) ∀Sd(x) ∈ U/Rd. (21)

Consequently

BelB(Sd(x)) = BelC(Sd(x)) ∀Sd(x) ∈ U/Rd. (22)

Thus, B is a random belief consistent set of S.
“⇐” If B is a random belief consistent set of S, for any x ∈ U, by the definition,

we have BelB(Sd(x)) = BelC(Sd(x)), that is,

P(RB(Sd(x)) = P(RC(Sd(x)). (23)

Equivalently,
∑

y∈U

RB(Sd(x))(y)P(y) =
∑

y∈U

RC(Sd(x))(y)P(y). (24)

Since B ⊆ C, by Eq. (12), we have

RB(Sd(x))(y) ≤ RC(Sd(x))(y) ∀y ∈ U. (25)

Notice that P is a normalized probability on U , i.e., P(y) > 0 for all y ∈ U, then,
combining Eqs. (24) and (25), we must have

RB(Sd(x))(y) = RC(Sd(x))(y) ∀y ∈ U. (26)

Therefore
RB(Sd(x)) = RC(Sd(x)). (27)

Thus, we have proved that B is a lower approximation consistent set of S.
(2) It follows immediately from (1).
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Similar to Theorem 2, the following Theorem 3 implies that in a random IS
with fuzzy decisions the concepts of upper approximation reduct and plausibility
reduct are equivalent.

Theorem 3. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions and
B ⊆ C, then

(1) B is an upper approximation consistent set of S iff B is a random plau-
sibility consistent set of S.

(2) B is an upper approximation reduct of S iff B is a random plausibility
reduct of S.

Proof. It is similar to the proof of Theorem 2.

According to Eq. (15) and Theorems 2 and 3, we can conclude following

Theorem 4. Let S = (U, P, C ∪ {d}) be a random IS with fuzzy decisions and
B ⊆ C. Then

(1) B is a random belief consistent set of S iff
∑

D∈U/Rd

BelB(D) =
∑

D∈U/Rd

BelC(D). (28)

(2) B is a random plausibility consistent set of S iff
∑

D∈U/Rd

PlB(D) =
∑

D∈U/Rd

PlC(D). (29)

(3) B is a random belief reduct of S iff
∑

D∈U/Rd

BelB(D) =
∑

D∈U/Rd

BelC(D) (30)

and for each B′ ⊂ B,
∑

D∈U/Rd

BelB′(D) <
∑

D∈U/Rd

BelC(D). (31)

(4) B is a random plausibility reduct of S iff
∑

D∈U/Rd

PlB(D) =
∑

D∈U/Rd

PlC(D) (32)

and for each B′ ⊂ B,
∑

D∈U/Rd

PlB′(D) >
∑

D∈U/Rd

PlC(D). (33)

Theorem 4 implies that, in a random IS with fuzzy decisions, a random belief
reduct (respectively, a random plausibility redcut) is a minimal attribute set to
keep the sum of degrees of belief (respectively, plausibility) of fuzzy similarity
decision classes generated by the full conditional attributes.
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5 Conclusion

Rough set theory and Dempster-Shafer theory of evidence are two important
ones to deal with imprecision and uncertainty. The lower and upper approxi-
mations and belief and plausibility measures of a set respectively characterize
the non-numeric and numeric uncertain aspects of the available information.
In this paper, we have introduced the notions of lower approximation reducts,
upper approximation reducts, random belief reducts and random plausibility
reducts in random information systems with fuzzy decisions. We have examined
relationships among these reducts. We will investigate knowledge reduction and
knowledge acquisition in random fuzzy decision systems in our further study.
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Abstract. The attribute set of some information systems is composed of
both regular attributes and criteria. In order to obtain information reduc-
tion of this type of information systems, equivalence relation should be
defined on the regular attributes and dominance relation on the criteria.
Firstly, suppose condition attributes are criteria and decision attributes
are regular attributes, dominance-equivalence relation is introduced,and
the Discernibility-Matrix (DM) method of reduct generation is developed
and compared with the attribute significance method. Secondly, when con-
dition attributes are the hybrid of regular attributes and criteria,
equivalence-dominance relation is then defined and Discernibility-Matrix
approach of reduction generation is also provided.The effectiveness of this
method is shown by both theoretical proof and illustrative example.

Keywords: Equivalence relation, Dominance relation, Postitive domian
Reduction, Discernibility matrix, Attribute significance.

1 Introduction

In rough set theory, the concept of reduct is introduced based on equivalence re-
lation [1], especially for incomplete or inconsistent systems [2-4], which removes
unnecessary information without losing classification ability of information sys-
tems. On the other hand, the information systems based on dominance relations
[5] can deal with attributes with partial order, such as real number attributes and
ordinal symbolic attributes. Different types of reductions are introduced based
on dominance relations in [6-10]. However, sometimes there are both ordinal and
non-ordinal attributes in one information system such as table 1. The values of
color are light and dark, which are non-ordered; while the preference-order of
price values are continuous and should not be ignored. The equivalence relation
cannot take the ordered information into account and therefore the generated
rules (knowledge) cannot reflect the information either. To deal with this type
of information systems, Greco, Slowinski and Blaszczynski [11-16] developed the
framework of dominance-based rough set approach(DRSA), where the ordinal
attribute is called as criterion, and the non-ordinal attribute is called as regu-
lar attribute. In general, DRSA assumes that there are monotonic constraints
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Table 1. Information system with the hybrid of criteria and regular attributes

NO. color size year price choice

1 light large 2010 117000 no

2 light large 2003 35900 yes

3 dark normal 2006 29900 yes

4 dark medium 2004 19300 no

5 dark small 2004 11400 no

6 light small 2006 14200 yes

7 light large 2009 106000 no

8 light large 2004 420000 yes

9 dark medium 2006 20410 no

10 light normal 2007 29800 no

11 light large 2010 83900 no

12 light large 2010 83900 yes

between condition attributes and decision attributes. For the hybrid attribute
set which contains both criteria and regular attributes, they suggest in [15][16]to
transform all the regular attributes into criteria by duplicating these attributes
respectively with increasing and decreasing order, for instance,color is replaced
by color1 and color2, where the values of color1 are increased, that is light<dark;
while in color2, it is considered that light>dark. Then the information system
completely consists of criteria,and it can be handled by DRSA.However, the du-
plication of attributes makes the information systems more complicated, thus
increase the computational load in reduction generation. Furthermore, consider-
ing a completely no-ordinal attribute(e.g., color takes values ”red, blue, green”)
as criteria is difficult to understand in the sense of semantic meaning, and the
generated rules often need post-processing, such as simplifying ≥ (or ≤) to =.
To address this problem, we propose to introduce respectively equivalence rela-
tion to the regular attributes and dominance relation to criteria. For example,
define equivalence relation to color and size, and define dominance relation to
year and price, and the information system will be based on the equivalence-
dominance relations. In order to compute reductions, equivalence classes and
dominance classes are merged to equivalence-dominance classes, which is cover-
age of the universe. Then we directly define the concept of reduction and the
discernibility-matrix method of reduction computation.

In the remainder of the paper, Section 2 briefly introduces a few basic con-
cepts in DRSA. In Section 3, we consider information systems whose decision
attributes are regular attributes and all the condition attributes are criteria, the
dominance-equivalence relation is defined and the lower-approximation reduc-
tion is point out to be positive domain reduction in [8]. We then develop the
discernibility-matrix method (called DM method) to the above reduction,and
compare it with the attribute significance method. In Section 4, when the con-
ditional attributes are the hybrid set of criteria and regular attributes, we de-
fine the equivalence-dominance relation and reduction and further give the DM
method.Finally,conclusions are given in Section 5.



Discernibility-Matrix Method Based on the Hybrid 233

2 Basic Concepts in Dominance-Based Rough Set
Approach

Definition 2.1 [6]. A 5-tupleDS = (U, A, F, D, G) is referred to as a target
information system, where(U, A, F ) is an information system

U = {x1, x2, · · · , xn} is a non-empty finite set of objects;
A = {a1, a2, · · · , an} is a finite set of condition attributes;
D = {d1, d2, · · · , dq} is a finite set of decision attributes;
F = {fk : U → Vk, k ≤ p},Vk is the finite domain of ak;
G = {gk : U → V ′k , k′ ≤ q},x ∈ U , V ′k is the finite domain of dk.

Definition 2.2 [6]. Let I = (U, A, F, D, G) be a target information system,
B ⊆ A, the dominance relation induce by B of I are respectively denoted as:

R≤B = {(xi, xj) ∈ U × U : fl(xi) ≤ fl(xj), ∀al ∈ B}
B-dominance relation class of an object x can be defined as:

[xi]
≤
B = {xj ∈ U : (xi, xj) ∈ R≤B} = {xj ∈ U : fl(xi) ≤ fl(xj), ∀al ∈ B}

Definition 2.3 [9]. For any X ⊆ U , upper approximation and lower approxi-
mation of X respect to dominance relation R≤B can be defined as:

R≤A(X) = {xi ∈ U : [xi]
≤
A

⋂

X 	= ∅}, R≤A(X) = {xi ∈ U : [xi]
≤
A ⊆ X}

Definition 2.4 [8]. Assume that decision attributes be regular attribute. Based
on dominance relation, the positive region of decision attribute set D relative to
condition attribute (criteria) set A can be defined as:

POSA(D) = ∪X∈U/DR≤A(X)

Definition 2.5 [8]. Let B ⊆ A. If POSB(D) = POSA(D), B is said to be
a positive domain consistent set. If no proper subset of B is positive domain
consistent set, then B is called a positive domain reduction.

[8] has proposed an algorithm for the computation of positive domain reduc-
tion based on attribute significance.

Definition 2.6. The significance of attribute subset B(B′ ⊂ B ⊆ A) can be
denoted as:

SGF (B′, B, D) =
|POSB(D)|−|POSB\B′ (D)|

|U|

When SGF (B′, B, D) = 0, B′ is not necessary in B; otherwise, B′ is indispens-
able to B and cannot be removed.

3 Dominance-Equivalence Relation and DM Method

For target information systems whose decision attributes are regular attributes
and all conditional attributes are criteria, the dominance relation R≤B is called
dominance-equivalence relation in this paper. This is to distinguish this type
of information systems with the completely dominance-based systems, in which
both condition and decision attributes are criteria.[8] defines positive domain
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reduction and introduces condition attribute significance to obtain one positive
domain reduction. In this section, we provide a DM method based on dominance-
equivalence relation.

Definition 3.1. Let I = (U, A, F, D, G) be a target information system, B ⊆ A,
Denote U/R≤B = {[xi]

≤
B : xi ∈ U}, U/RD = {D1, D2, · · · , Dr},
ηB = (R≤B(D1), R≤B(D2), · · · , R≤B(Dr))

where[xi]
≤
B = {y ∈ U : (x, y) ∈ R≤B}, ηB is the dominance domain function of U .

Proposition 3.1. Let I = (U, A, F, D, G) be a target information system, B ⊆
A, B is said to be a positive domain consistent set if and only if for any Di ∈
U/RD, we have R≤B(Di) = R≤A(Di), that is, ηB = ηA. If no proper subset of B is
the positive domain consistent set, then B is called a positive domain reduction.

Theorem 3.1. Let I = (U, A, F, D, G) be a target information system, B ⊆ A,
B is said to be a positive domain consistent set if and only if for any Di ∈ U/RD,
when x ∈ R≤B(Di), y 	∈ R≤B(Di), ∃b ∈ B such that fb(x) > fb(y)

Proof : The proof is similar to that of theorem 1 in [7].

Definition 3.2. Let I = (U, A, F, D, G) be a target information system,denote:

D∗η = {(xi, xj) : xi ∈ R≤A(Di), xj 	∈ R≤A(Di)}

Dη(xi, xj) =
{

ak ∈ A, fak
(xi) > fak

(xj), (xi, xj) ∈ D∗η;
∅, (xi, xj) 	∈ D∗η.

where Dη(xi, xj) is the positive domain discernibility attribute set of xi and xj .
AndMη = (Dη(xi, xj), xi, xj ∈ U) is referred as the positive domain discernibil-
ity matrix.

Using the defined discernibility matrix,multiple reductions can be obtained.
Some set of rules are then extracted and can be used in the task of classification.
We compare this decernibility-matrix method with the reduction computation
algorithm based on attribute significance [8]. In our method, majority voting of
the rules is used in classification. 15 data sets from the UCI machine learning
repository are selected to conduct the experiments, which have regular decision
attributes.Randomly select 50% samples as training set, and the rest as testing
set.

Table 2 shows the results. M# is the number of attributes, ”Correct recogni-
tion” is the proportion of the correctly classified samples, and ”rejection rate” is
the proportion of the samples that are not covered by the rules.We can see that
the results of the two methods are similar for both correct recognition rate and
rejection rate. Compared with attribute significance method, DM method has
higher correct recognition rate and lower rejection rate on eight data sets. For
other data sets, attribute significance method is slightly better. Therefore DM
method can obtain multiple reductions without losing correct recognition rate.
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Table 2. Discernibility-Matrix Method and Attribute Significance Method

Data set M# Attribute significance method Discernibility matrix method
Correct recognition rate Rejection rate Correct recognition rate Rejection rate

Auto-mpg 7 55.80% 25.00% 53.93% 24.57%

adult-stretch 8 70.91% 24.45% 72.27% 24.55%

balance-scale 5 73.51% 0.00% 75.64% 0.00%

bezdekIris 5 90.73% 3.07% 90.73% 3.47%

breast-cancer 10 91.60% 0.27% 90.17% 0.86%

bupa 7 64.19% 4.77% 65.84% 3.50%

Diabetes 8 73.22% 5.72% 70.87% 6.54%

sky 4 63.12% 7.50% 65.00% 8.75%

shuttle-landing 6 63.12% 36.77% 65.00% 35.00%

Heart-statlog 11 57.00% 24.52% 62.48% 22.11%

wine 13 47.22% 36.11% 45.00% 34.44%

Wine-quality 11 47.63% 20.79% 48.50% 31.59%

Ecoli 7 59.41% 11.71% 61.18% 9.06%

Iris 4 90.00% 4.13% 89.20% 4.93%

Pima 8 71.90% 6.64% 71.85% 6.15%

Average - 67.96% 14.16% 68.51% 14.34%

4 Equivalence-Dominance Relation and DM Method

In some information systems, condition attributes is a hybrid set of regular
attributes and criteria, and decision attributes are still regular attributes. We
introduce the concept of equivalence-dominance relation, and correspondingly
define some relevant concepts.

Definition 4.1. C is a hybrid set of criterion and regular attributes, A ⊂ C is
a regular attribute set, B = C −A is a criterion set. The equivalence-dominance
relation induced by C is denoted as:

R≈≤C = {(x, y)|fA(x) = fA(y) and fB(x) ≤ fB(y)}

Definition 4.2. Let A, B, C be the same as in Definition 4.1. C- equivalence-
dominance relation class of an object x can be defined as follows:

[xi]≈≤c = [xi]A
⋂

[xi]
≤
B

Definition 4.3. For any X ⊆ U , upper approximation and lower approximation
of equivalence-dominance relation of R≈≤ can be defined as follows:

R≈≤C (X) = {xi ∈ U : [xi]
≈≤
C ∩ X 	= ∅}, R≈≤C (X) = {xi ∈ U : [xi]

≤
C ⊆ X}

The relative positive region of decision attribute set D to C can be defined as:
POS≈≤C (D) = ∪{xj |[xj ]≈≤C ⊆ Di} = ∪X∈U/DR≈≤C (X), where j = 1, 2, · · · , n.Di

is the i − th equivalence class defined on D.
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Definition 4.4. P ⊆ C, if P can retain the positive region based on equivalence-
dominance relation, and the subset of P cannot, then P is called a positive
domain reduction of C.

Example 4.1. Considering the information system in Table 1 based on
equivalence-dominance relation.

Denote D = choice; a1 = color, a2 = size, a3 = year, a4 = price
Let A = {a1, a2}; B = {a3, a4}.According to the definitions, we have:

[x1]≈≤C = {x1, x11, x12}; [x2]≈≤C = {x2}; [x3]≈≤C = {x3}; [x4]≈≤C = {x4}
[x5]≈≤C = {x5}; [x6]≈≤C = {x6}; [x7]≈≤C = {x7, x11, x12}; [x8]≈≤C = {x8}
[x9]≈≤C = {x9}; [x10]≈≤C = {x10}; [x11]≈≤C = [x12]≈≤C = {x11, x12}
D1 = {x1, x4, x5, x7, x9, x10, x11}, D2 = {x2, x3, x6, x8, x12}

Based on the equivalence-dominance relation,the lower approximations and pos-
itive region are:

R≈≤C (D1) = {x2, x3, x6, x8}; R≈≤C (D2) = {x4, x5, x9, x10}
POS≈≤C (D) = {x2, x3, x4, x5, x6, x8, x9, x10}
According to the definition 4.3-4.4,{a1, a2} ∩ {a4} is the positive domain re-

duction. Next,DM method of positive domain reduction based on equivalence-
dominance relation is given.

Definition 4.5. Let I = (U, A, F, D, G) be an information system based on
equivalence-dominance relation, and P ⊆ C. Denote U/R≈≤P = {[xi]

≈≤
P : x ∈

U}, U/RD = {D1, D2, · · · , Dr},
ρ≈≤P = (R≈≤P (D1), R≈≤P (D2), · · · , R≈≤P (Dr))

where [xi]
≈≤
P = {y ∈ U : (x, y) ∈ R≈≤P }, ρ≈≤P is called dominance domain func-

tion of P in U .

Definition 4.6. Let I = (U, A, F, D, G) be an information system based on
equivalence-dominance relation, and P ⊆ C. If ρ≈≤P = ρ≈≤C , P is said to be
a positive domain consistent set; If no proper subset of P is positive domain
consistent set, P is also called a positive domain reduction.

Proposition 4.1. Let I = (U, A, F, D, G) be an information system based on
equivalence-dominance relation, and P ⊆ C. P is a positive domain consistent
set if and only if for any Di ∈ U/RD,R≈≤P (Di) = R≈≤C (Di) holds.

Then we give the judgment theorem of positive domain reduction.

Theorem 4.1. Let I = (U, A, F, D, G) be an information system based on
equivalence-dominance relation, A ⊂ C is a regular attribute set, B = C − A is
a criterion set, and P ⊆ C. P is a positive domain consistent set if and only if
for any Di ∈ U/RD, when x ∈ R≈≤C (Di), y 	∈ R≈≤C (Di), ∃p ∈ P (1)If p ∈ A then
fp(x) 	= fp(y)(2)If p ∈ B, thenfp(x) > fp(y).

Proof ”⇒”The proof is by contradiction.
There exist Di ∈ U/RD, assume when x ∈ R≈≤C (Di), y 	∈ R≈≤C (Di), ∃p ∈ P (1)If
p ∈ A then fp(x) = fp(y)(2)If p ∈ B, thenfp(x) ≤ fp(y). That is ∀p ∈ P, fp(x) ≤
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fp(y).So,y ∈ [x]≈≤P . On the other hand, B is a positive domain consistent set,
for ∀Di ∈ U/RD, we have R≈≤P (Di) = R≈≤C (Di). Because x ∈ R≈≤C (Di), x ∈
R≈≤P (Di), that is, [x]≈≤P ⊆ Di, and y ∈ [x]≈≤P , [y]≈≤P ⊆ [x]≈≤P , we have [y]≈≤P ⊆
Di so y ∈ R≈≤P (Di). Therefore, y ∈ R≈≤C (Di), it is in contradiction to y 	∈
R≈≤C (Di).

”⇐”Assume that P is a positive domain consistent set, there exist Di ∈
U/RD, such that R≈≤P (Di) 	= R≈≤C (Di). That is ∈ x0 ∈ R≈≤C (Di) and x0 	∈
R≈≤P (Di), so [x0]≈≤C ⊆ Di, and [x0]≈≤P 	⊆ Di. Because [x0]≈≤C ⊆ [x0]≈≤P , there

exist y0 ∈ [x0]≈≤P , and y0 	∈ Di, that is, y0 	∈ R≈≤C (Di), which implies x0 ∈
R≈≤C (Di), y0 	∈ R≈≤C (Di). Therefore, (1)If ∃p ∈ A, we have fp(x0) 	= fp(y0)(2)If

∃p ∈ B, fp(x0) > fp(y0)holds. Obviously, it is in contradiction to y0 ∈ [x0]≈≤P .
This completes the proof.

Definition 4.7. Discernibility matrix of positive domain reduction can be de-
fined as:

Mn×n = (cij)n×n =

⎛

⎜

⎜

⎜

⎝

c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

⎞

⎟

⎟

⎟

⎠

where cij = cij ′ ∪ cij ′′.i, j = 1, 2, · · · , n

cij ′ =
{{α ∈ A, fα(xi) 	= fα(xj)}, (xi, xj) ∈ D∗η;

∅, (xi, xj) 	∈ D∗η.

cij ′′ =
{{ak ∈ B, fak

(xi) > fak
(xj)}, (xi, xj) ∈ D∗η;

∅, (xi, xj) 	∈ D∗η.

D∗η = {(xi, xj) : xi ∈ R≈≤C (Di), xj 	∈ R≈≤C (Di)},Di ∈ U/RD

Example 4.2. Consider Table 1.We can compute positive domain discernibility
matrix as follows, where i means the i-th attribute ai.

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
4 ∅ ∅ 1,2 1,2 ∅ 4 ∅ 1,2 2 4 4

1,2,4 ∅ ∅ 2,3 2 ∅ 1,2,4 ∅ 2 1 1,2,4 1,2,4

1,2,4 1,2,3,4 2,4 ∅ ∅ 1,2 1,2,4 1,2,4 ∅ ∅ 1,2,4 1,2,4

1,2,4 1,2,3,4 2,4 ∅ ∅ 1,2 1,2,4 1,2,4 ∅ ∅ 1,2,4 1,2,4

2,4 ∅ ∅ 1,2,3,4 2,3 ∅ 2,4 ∅ 1,2,4 2,4 2,4 2,4

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
4 ∅ ∅ 1,2 1,2 2 4 ∅ 1,2 2 4 4

1,2,4 1,2,3,4 2,4 ∅ ∅ 1,2 1,2,4 1,2,3,4 ∅ ∅ 1,2,4 1,2,4

2,4 2,3,4 1,2,4 ∅ ∅ 2,3 2,4 2,3 ∅ ∅ 2,4 2,4

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
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Consequently, we have

(a1) ∧ (a2) ∧ (a4) ∧ (a1 ∨ a2 ∨ a4) ∨ (a2 ∨ a4) ∧ (a1 ∨ a3 ∨ a4) = a1 ∧ a2 ∧ a3

This result is consistent with that using the definition of reduction in Example
4.1. Using this discernibility matrix, other reductions can be also obtained.

5 Conclusion

In order to extract the most important information from the complex data
(whether it is ordinal or non-ordinal), reduction computation is necessary. We
give a new discernibility-matrix method to obtain the positive domain reduction
and compare it with the attribute significance method in [8]. Then a reduction
method with more complex data is given based on equivalence-dominance rela-
tion. For this type of data,we also provide discernibility-matrix method to obtain
the positive domain reduction. The effectiveness of this method is guaranteed
by both theoretical proof and illustrative examples.
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Abstract. In the conventional rough set theory, the decision matrix
method is known as one of the method extracting the rules[1]. However,
devising an efficient algorithm for the decision matrix method has sel-
dom been reported to date. Consequently, this paper studies the process
of reducing the decision matrix, finds several properties useful for the
rule extraction and proposes an effective algorithm for the extraction.
The algorithm is implemented in a piece of software and a simulation
experiment is conducted to compare the reduced time of the software
with that of LEM2[2][3]. As the results, the newly developed software is
confirmed to perform exceptionally well under taxing conditions.

1 Consideration on the Decision Matrix

In order to study the decision matrix method proposed by Shan and Ziarko[1], we
specify a decision table which has condition attributes {A(k) | k = 1, ..., K} with
their attribute values A(k) = {a(k, v) | v = 1, ..., V (k)} and the corresponding
decision attribute Y = {y1, y2}. The decision matrix to discern samples of Y =
y1 from those of Y = y2 is expressed by the following two equations:

p(i) = ∧J
j=1D(i, j), (1)

R1 = ∨I
i=1p(i), (2)

where D(i, j) = ∨K
k=1 a(k, v(i))|a(k,v(i)) �=a(k,v(j)) means that a(k, v(i)) which de-

notes a value of the k-th attribute of the i-th sample s(i) of Y = y1, differs from
that of the j-th sample s(j) of Y = y2.

1.1 Consideration on Reducing Eq. (1)

With regard to (1), the following property is approved:

Proposition 1: p(i) possibly includes only a(1, v(i)), a(2, v(i)), ..., a(K, v(i))
which construct s(i).
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Proposition 1 is evident by the property of D(i, j). Accordingly, the reduced
result of (1) can be once encoded by a(k) (k = 1, ..., K) and replace them by the
original values when decoded. One fast method of finding the rules permitted
by (1) is the following procedure:

Step1: Transform D(i, j) into the following bit pattern Δ(i, j):

Δ(i, j) = (δ(1, v(i), ..., δ(k, v(i)), ..., δ(K, v(i))), (3)

where δ(k, v(i)) =
{

1 (a(k, v(i)) �= a(k, v(j)))
0 (a(k, v(i)) = a(k, v(j))) .

Step2: Execute the conjunction of the corresponding bit between Δ(i, j) and
Bp(n), where Bp(n) = (δ(1), ..., δ(k), ..., δ(K)), n =

∑K−1
k=0 δ(K−k)2k, and

δ(k) = 1 or 0 (n = 1, ..., 2K − 1).
The bit pattern Bp(n), which Δ(i, j), that is D(i, j), permits, has the results
of the conjunction that all of the bits are not zero. On the contrary, the
prohibited bit pattern Bp(n) has the result that all bits are 0.

Step3: Execute Step 2 for j = 1 to J .
Step4: Arrange the permitted Bp(n) as SBp = {Bp(n(l)) | l = 1, ..., L}.

The set SBp should be arranged not to be redundant, that is, to be indepen-
dent of each other in the members Bp(n(l1)) and Bp(n(l2)) (1 ≤ l1 < l2 ≤ L)
by the following procedures (Arrange Strategy):

If Bp(n(l1)) ∧ Bp(n(l2)) = Bp(n(l1)) then delete Bp(n(l2)) from SBp (...

Bp(n(l2)) is contained in Bp(n(l1))),
If Bp(n(l1)) ∧ Bp(n(l2)) = Bp(n(l2)) then delete Bp(n(l1)) from SBp (...

Bp(n(l1)) is contained in Bp(n(l2))).

Suppose SBp = {Bp(m) | m = 1, ..., M} arranged by the above strategy.
The results of (1) is obtained by decoding Bp(m) (m = 1, ..., M) by use of the
attribute values of the i-th sample s(i) (= a(1, v(i)) a(2, v(i)) ... a(K, v(i))) and
denoted by Q = {q(m) | m = 1, ..., M}.

1.2 Consideration on Reducing Eq. (2)

We examine the way of reducing (2) based on the results of (1). The following two
properties are approved in the processes of the reduction (due to the limitation
of paper space, we omit the proofs of the below two propositions):

Proposition 2: The reduction by the type of the complementarity law: xy ∨
xy = x, never occurs in the Boolean operation of (2).

Proposition 3: The reduction by the type of the absorption law: x ∨ xy = x,
never occurs in the Boolean operation of (2).

Accordingly, only the type of the idempotent law: x ∨ x = x, occurs in the
reduction in (2) and the different terms derived from (1) are the results of (2),
which largely omits the reduction operations in (2).
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List No. Procedure DMM
1: (input: sets Srow = {s(i)|i = 1, ..., I} and Scolum = {s(j)|j = 1, ..., J} ,

output: a set τ)
2: Initialize: I, J, K set; τ = φ; T = φ; T = {t(nT )|nT = 1, .., NT }; NT = 0;
3: For (i = 1; i ≤ I; i + +) {

SBp = {sbp(nSBp)|nSBp = 1, ..., NSBp}; SBp = φ; NSBp = 0;

4: For (n = 1; n ≤ 2K − 1; n + +) {
5: For (j = 1; j ≤ J; j + +) { if Bp(n) ∧Δ(i, j) == 0 then goto L1; }

NSBp + +; sbp(NSBp)← Bp(n); // add Bp(n) to SBp
L1: } // end of n-loop

6: arrange SBp by arrange strategy → SBp = {Bp(m)|m = 1, ..., M}
7: decode SBp → Q = {q(m)|m = 1, ..., M}; // results of (1)
8: For (m = 1; m ≤ M ; m + +) {
9: For (nT = 1; nT ≤ NT ; nT + +) { if t(nT ) == q(m) then goto L2; }
10: NT + +; t(NT )← q(m) // add q(m) to T
11: L2: } // end of m-loop
12: } // end of i-loop
13: G← Srow;
14: While (G �= φ) {
15: Select t(l) such that |t(l) ∩G| is maximum; If a tie occurs, select the first t(l);

// For set X, |X| denotes the cardinality of X.
τ ← τ + t(l);

16: G← G− t(l) ∩G; T ← T − t(l);
} // end of while

Fig. 1. An algorithm of fast decision matrix method (FDMM)

2 An Effective Algorithm to Reduce the Decision Matrix

Figure 1 shows an algorithm for FDMM (Fast Decision Matrix Method) de-
scribed in C language style based on the considerations in 1.1 and 1.2. In the
figure, the input data sets Srow and Scolum are a decision table whose contra-
dicted data are arranged by use of the lower or upper approximation method.
The output data τ is a set of the conjunction terms derived from (1) and (2).
This algorithm proceeds each sample s(i), and hence the algorithm requires only
a memory area of I +J although a matrix generally requires that of I ×J . After
reducing (1) and (2), procedures from line 13 to line 16 is added in order to
obtain the minimum number of rules covering Srow since the result of reducing
the decision matrix is not necessarily optimal.

3 Simulation Experiment — Comparison of the
Execution Time with Existing Software

We developed the algorithm shown in Fig. 1 into a piece of software using C lan-
guage, and implemented it in a personal computer to compare the execution time
[sec] of extracting rules with that of LEM2 software[3] within the ROSE2 system[2].

The following two rules were specified in advance in order to generate samples
and make their decision matrix:

Rule1: if (A(1) = a(1, 1) and A(2) = a(2, 1)) or (A(3) = a(3, 1) and A(4) =
a(4, 1)) then Y = y1,

Rule2: if (A(1) = a(1, 2) and A(2) = a(2, 2)) or (A(3) = a(3, 2) and A(4) =
a(4, 2)) then Y = y2.
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Table 1. A comparison of the time on reducing rules between FDMM and LEM2
(Nactual → (tF DMM , tLEM2), Nactual: actual data number, tF DMM [s]: time of FDMM,
tLEM2 [s]: time of LEM2)

(a) (K, V (k)) = (5, 5)

N = 1000 N = 5000 N = 10000
(907)→(0, 3) (3288)→(3, 85) (4640)→(4, 98)
(912)→(0, 3) (3322)→(3, 82) (4660)→(3, 127)
(918)→(0, 5) (3333)→(3, 86) (4725)→(3, 81)

(b) (K, V (k)) = (6, 6)

N = 1000 N = 5000 N = 10000
(993)→(1, 6) (4846)→(21, 1158) (9417)→(75, 13129)
(994)→(1, 5) (4854)→(21, 1059) (9432)→(84, 12319)
(995)→1, 6) (4871)→(21, 1307) (9442)→(77, 11383)

The sample data of the condition attribute values were generated randomly, and
the corresponding decision value was decided according to Rule 1 and Rule 2.
However, the decision value of Y was randomly assigned in the case where the
generated set satisfied both of the specified rules and/or neither of the specified
rules could be applied.

The specifications and conditions for the experiment were as follows: The
number of the condition attributes K was 5 and 6, and the number of the
attribute values V (k) corresponding to the two cases was constantly 5 and 6,
regardless of each respective condition attribute. We denote this specification as
(5, 5) and (6, 6) respectively. The number of the generated data N was 1000, 5000
and 10000, and the lower approximation was used to make the consistent data
set. The experiment was conducted three times for each case using a personal
computer with an Intel Core2 CPU with 1.66 [GHz] clock speed and 2038 [MB]
of RAM memory.

The results of the experiments are summarized in Table 1, where the time
of extracting rules by FDMM tFDMM and by LEM2 tLEM2 are shown corre-
sponding to the actual data number Nactual, deleting the redundant data in the
form: Nactual → (tFDMM , tLEM2), since the data was randomly generated and
included the same data. The times shown in the table are truncated to the near-
est second. The difference between FDMM and LEM2 grew to more than 100
times at N = 10000 and (K, V (k)) = (6, 6). The results in Table 1 show that
FDMM performs exceptionally well under taxing conditions such as with a large
number of data and growing number of condition attributes and their values.
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Abstract. As a generalization of the classical reduct problem, test-cost-
sensitive attribute reduction aims at finding a minimal test-cost reduct.
The performance of an existing algorithm is not satisfactory, partly be-
cause that the test-cost of an attribute is not appropriate to adjust the
attribute significance. In this paper, we propose to use the test-cost sum
of selected attributes instead and obtain a new attribute significance
function, with which a new algorithm is designed. Experimental results
on the Zoo dataset with various test-cost settings show performance im-
provement of the new algorithm over the existing one.

Keywords: Cost-sensitive learning, attribute reduction test-cost, accu-
mulated cost.

1 Introduction

In many data mining applications, redundant data make the mining task rather
difficult. Removing them can facilitate the mining task and make the data more
visible. Attribute reduction [1][2][3] is a successful technique for this purpose.
Recently we have indicated the test-cost-sensitive attribute reduction problem
in [4] and defined it formally in [5]. It focuses on the test-cost instead of the
classification accuracy. We argue that this problem is important since data are
not free [6]. The algorithm framework in [5] is devoted to this problem. Specif-
ically, we designed an attribute significance function based on the test-cost of
each attribute and a user-specified factor λ, and obtain a substantial algorithm.
The performance of the algorithm is, however, not satisfactory.

This paper proposes a new attribute significance function based on the accu-
mulated test-cost, namely the total test-costs of selected attributes. Respective
heuristic algorithm is designed with this function. We compare the new algo-
rithm with the existing one using some exemplary data, and found that neither
algorithm always wins. This phenomenon coincides with no-free-lunch theorems
(www.no-free-lunch.org/). Fortunately, the new algorithm is stably better than
the existing one from the statistical point of view. This claim is validated through
experimental on four UCI [7] datasets.
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2 Problem Definition

We consider the simplest while most widely used test-cost-sensitive decision sys-
tems as follows.

Definition 1. [4] A test-cost-independent decision system (TCI-DS) S is the
6-tuple:

S = (U, C, D, {Va|a ∈ C ∪ D}, {Ia|a ∈ C ∪ D}, c), (1)

where U is a finite set of objects called the universe, C is the set of conditional
attributes, D is the set of decision attributes, Va is the set of values for each
a ∈ C ∪ D, Ia : U → Va is an information function for each a ∈ C ∪ D,
c : C → R

+ ∪ {0} is the test-cost function. The test-cost of any ∅ ⊂ A ⊆ C is
given by c(A) =

∑

a∈A c({a}) =
∑

a∈A c(a).

The concept of a reduct [1] is well known in the rough sets society. In this paper,
we are interested in reducts with the minimal test-cost.

Definition 2. Let Red(S) be the set of all reducts of S. Any R ∈ Red(S) where
c(R) = min{c(R′)|R′ ∈ Red(S)} is called a minimal test-cost reduct.

3 Accumulated Cost Based Heuristic Function

The heuristic function is to the central of a heuristic reduction algorithm. In [5]
we proposed a function as follows:

fwei(B, ai, c) = fe(B, ai)c(ai)λ, (2)

where λ is a non-positive number, and fe(B, ai) is the information gain of ai

when attributes in B are selected. Here we propose a new function as follows:

facc(B, ai, c) = fe(B, ai)c(B ∪ {ai})λ. (3)

That is, we use the total test-cost of B ∪ {ai} instead of the test-cost of ai to
produce the weighting factor. Therefore the new function is called the accumu-
lated cost based attribute significance function, and the new algorithm is called
the accumulated cost based test-cost-sensitive attribute reduction algorithm. The
influence of this revision will be discussed in detail in Section 4.

Note that superscripts wei and acc are employed to distinguish these two
functions. Although computing c∗(B ∪ {ai}) in Equation (3) is slightly more
complex than computing c∗(ai) in Equation (2), the time complexity is still
less than that of computing fe(B, ai). Hence this algorithm has the same time
complexity as that of [5]. For brevity, in the following context algorithms based
on fwei and facc will be called WEI and ACC, respectively.
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4 Experiments

We have undertaken experiments on 4 different datasets from the UCI library
[7]. On all datasets the new algorithm is stably better than the existing one from
statistical point of view. Due to the space limitation, we only list results on Zoo.
Since there is no test-cost setting, we generate random numbers in [1, 100], and
assign them as test-costs. Note that given different test-cost settings, the dataset
is viewed as different. Therefore our experiments are far from one run.

There is a need to define a number of evaluation metrics to compare their
performances [5]. Let the number of experiments be K, and the number of suc-
cessfully finding an optimal reduct be k, the finding optimal factor (FOF) is
defined as op = k

K . For a dataset with a particular test-cost setting, let R′ be
an optimal reduct. The exceeding factor of a reduct R is ef(R) = c∗(R)−c∗(R′)

c∗(R′) .
The exceeding factor provides a quantitative metrics to evaluate the perfor-
mance of a reduct. Let the number of experiments be K. In the i-th experiment
(1 ≤ i ≤ K), the reduct computed by the algorithm be Ri. The average exceeding

factor (AEF) is defined as
∑ K

i=1 ef(Ri)

K .

4.1 Running Examples

Neither algorithm is better than the other one. We list one example here.

Example 1. Let the cost vector c = [88, 51, 33, 14, 56, 70, 85, 64, 87, 51, 53, 72,
15, 93, 52, 13], By running the exhaustive algorithm we know that the optimal
reduct is {c, f, h, m, p}, and its test-cost is 195. Program executions of these
two algorithms are listed in Table 1.

Table 1 indicates that ACC is better than WEI in Example 1. Note that coun-
terexamples also exists, that is, WEI outperforms ACC in some other cases.

Table 1. An example where ACC is better than WEI

Algorithm WEI ACC

Operation Step Attribute subset Attribute subset

Compute the core 1 {f, m} {f, m}
2 {d, f, m} {d, f, m}
3 {d, f, m, p} {d, f, m, p}
4 {c, d, f, m, p} {c, d, f, m, p}

Add attributes 5 {c, d, f, k, m, p} {c, d, f, h, m, p}
6 {c, d, f, j, k, m, p}
7 {c, d, f, h, j, k, m, p}

Remove attributes 8 {d, f, h, j, k, m, p} {c, f, h, m, p}
9 {d, f, h, k, m, p}

The constructed reduct {d, f, h, k, m, p} {c, f, h, m, p}
The exceeding-factor 0.1744 0

Is optimal NO YES
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4.2 Results

Fig. 1 (a) shows the results of FOF, where λ is from −1.5 to −7. The FOF of the
new algorithm is about 1.86% better than that of the existing algorithm. Fig.
1 (b) shows the results of AEF. The AEF of the new algorithm is about 0.24%
better than that of the existing algorithm.
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Fig. 1. (a) Finding optimal factor; (b) Average exceeding factor

5 Conclusions

This paper proposes a new attribute significance function for the test-cost-
sensitive reduction problem, and therefore obtain a respective algorithm ACC.
ACC is not always better than the existing algorithm WEI while running par-
ticular examples. However, from the statistical point of view, it is stably better
than WEI in terms of finding optimal factor and average exceeding factor.
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Abstract. A disjunctive model of box bicluster and tricluster analysis
is considered. A least-squares locally-optimal one cluster method is pro-
posed, oriented towards the analysis of binary data. The method involves
a parameter, the scale shift, and is proven to lead to ”contrast” box bi-
and tri-clusters. An experimental study of the method is reported.

Keywords: box, bicluster, tricluster.

1 Introduction

The concept of bicluster emerges when the data relate two different sets of objects
to each other so that highly related pairs of subsets, partitions or even hierar-
chies can be distinguished in each of the sets. This cluster structure was first
made explicit by J.Hartigan[2,3] and dubbed as biclustering by B.Mirkin[7]. The
concept and corresponding methods gained popularity in several applied areas of
which probably the most effective is bioinformatics (see, for example, Madeira
and Oliveira[5], Prelic et al.[10]). A somewhat more conservative and mathe-
matically driven approach to establishing relations between a set of objects and
a set of attributes was taken in developing the abstract formal model concept
(Wille and Ganter[1]). The notion of a formal concept was first developed for
binary data matrix R = (rij), i ∈ I, j ∈ J , where all rij are either 1 or 0, which
is the case we consider here. A formal concept (V, W ), where V ⊆ I, W ⊆ J ,
corresponds to all rij = 1 for i ∈ V, j ∈ W in such a way that adding elements
to either V or W would break the equation at least at one pair (i, j). This no-
tion is well justified in application to well developed ”contexts” R, but seems
somewhat rigid when applied to real world datasets. This is why researchers
have been trying to relax the notion of formal concepts by admitting some zeros
inside the box (V, W ) and some unities outside it (see, for example, Pensa and
Boullicaut[9]). In this respect, the box clustering approach proposed by Mirkin
et al.[6] seems another form of relaxation of the notion of formal concept. Yet
the box clustering algorithms proposed in Mirkin et al.[6] are not applicable to
the binary data. Therefore, we put a threefold goal for this paper:
� Corresponding author
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(1) To propose and explore a model and algorithm for biclustering boxes
suitable for binary contexts;

(2) Extend it to triclustering of binary data involving three interrelated data
objects;

(3) Apply both bi- and tri-clustering algorithms to real world datasets.

2 The Notions of Formal Concept and Box Clustering

A data matrix R = (rij), with i ∈ I (objects) and j ∈ J (attributes), such that
either rij = 1 or rij = 0 is referred to as a conceptual context. A formal concept
is a pair of sets (V, W ), that is, a biset, such that V ⊆ I, W ⊆ J and

rij = 1 for all (i, j) ∈ V × W (1)

and neither V nor W can be increased without breaking the property (1). The
cardinalities will be denoted by #V = n, #W = m.

The condition of all within-entries being non-zero can be too restrictive, es-
pecially with noisy data. There have been attempts at modifying both of these
conditions by admitting a few zeros inside and most zeros outside (Pensa and
Boulicaut[9], Rome and Haralick[11], Ignatov and Kuznetsov[4]).The data recov-
ery clustering can be utilized to address this as well.

A set of box clusters (λt, Vt, Wt), t = 1, . . . , T , forms a disjunctive box cluster
model of data R if

rij = maxt=1,...,T λtvitwjt + λ0 + eij (2)

where eij are sufficiently small, and λ0, 0 < λ0 < 1, plays the role of an intercept
in linear data models. This model differs from those of additive bi-clustering
since (2) involves the operation of maximization rather than summation. To
fit (2) with a relatively small number of boxes, assume λ0 to be constant and
specified before the fitting of the model. Then the model in (2) can be rewritten
by putting r′ij = rij − λ0 on the left, so that λ0 becomes a similarity shift value
rather than an intercept.

We apply here the one-by-one fitting strategy (Mirkin[7]) so that each box
cluster (λt, Vt, Wt) in (1) is found as a most deviant from the ”middle”, that is,
minimizing the residuals in a single cluster model (with a constant λ0)

r′ij = rij − λ0 = λviwj + eij (3)

with the least squares criterion. In this formulation, v = (vi) and w = (wj) are
binary membership vectors of V and W , respectively, so that viwj = 1 if and
only if (i, j) ∈ V × W like it is in a formal concept.

Let us initially assume λ0 = 0 so that r′ij = rij . Box cluster (λt, Vt, Wt)
minimizing the least squares criterion

L2 = Σij(r′ij − λviwj)2 (4)
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over real λ and binary vi, wj , must lead to optimal λ being equal to the within-
box average:

λ = Σi∈V,j∈W r′ij/nm (5)

which is the proportion of ones within the box minus λ0, and, assuming that the
λ is optimal, criterion L2 in (4) admits the following decomposition:

L2 = Σijr
′2
ij − λ2nm (6)

thus implying the following criterion to maximize

g(V, W ) = λ2nm (7)

According to (6), this criterion expresses the contribution of the box (V, W )
to the data scatter Σijr

′2
ij which is useful to see how closely the box follows the

data. On the other hand, criterion (7) combines two contrasting criteria for a
box to be optimal: (a) the largest area, (b) the largest proportion of within-box
unities. If restricted to a within-box non-zero option, the criterion (7) would lead
to the formal concepts of the largest sizes, nm, as the only maximizers.

3 Locally Optimal Box Cluster

As the optimal intensity of a box (V, W ) is fully determined by the summary
entries within the box formed, we identify the box cluster with just sets V and
W , that is, biset (V, W ). With no loss of generality assume that it is V ′ that
differs from V , by adding or removing an entity i∗ ∈ I, while W ′ = W :

Diff(i∗) = [zir
2(i∗, W ) + 2zir(V, W )r(i∗, W ) − r2(V, W )/n]/(m(n + z)) (8)

where z∗i equals 1 if i∗ is added to V and -1 if i∗ is removed from V , and r(V, W )
denotes the sum of all R′ entries within box V × W and r(i∗, W ) is the sum of
all r′i∗j over j ∈ W . A symmetric expression holds for Diff(j∗) at j∗ ∈ J .

A local search algorithm can be drawn starting from every entity i ∈ V (or
j ∈ W ):

Algorithm Bicluster Box (i)
0. Take V = i and W = { j | rij = 1} as the starting box.
1. Find Diff(8) for all elements of I and J , take that D∗ which is maximum.
2. If D∗ is not positive, halt. Otherwise, perform the operation of adding/

removing for the corresponding entity and return to Step 1 with the updated
box.

The resulting cluster box is provably rather contrast:

Statement 1
If box cluster (V, W ) is found with BBox() algorithm then, for any entity outside
the box, its average similarity to it is less than the half of the within-box simi-
larity λ; in contrast, for any entity belonging to the box, its average similarity
to it is greater than or equal to the half of the within-box similarity λ.
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Fitting model (2) can be done by applying algorithm BBox() starting from
each of the entities and retaining only different and most contributing solutions.
Let us remind that the contribution of a box bicluster is but the value of crite-
rion (7).

The subtracted λ0 value can be used as a user-defined parameter to control,
on average, the box cluster sizes. In our experiments we take λ to be the average
value of R, that is, proportion of unities in the matrix.

4 Extending to Triclusters and P-Clusters

The model (2), as well as criteria (4) and (7) and algorithm BBox are easily
extended to the case when the data refer to relations between more than two sets.
Specifically, one may suggest that there are p different entity sets, I1, I2, . . . , Ip

such that relation R is p-ary, that is, corresponds to a subset of Cartesian product
ρ ⊆ I1 × I2 × . . . × Ip. Then we would consider p-ary boxes. For the sake of
simplicity, further on we consider only the case when p = 3, so that the three
sets are denoted I, J , and K, whereas their subsets, by V , W , and U , respectively.

An extended form of model (2) is

rijk = maxt=1T λtvitwjtukt + λ0 + eijk (i ∈ I, j ∈ J, k ∈ K) (9)

whereas criteria (4) and (7) lead to

L2 = Σijk(r′ijk − λviwjuk)2 (10)

and
g(V, W, U) = λ2nml (11)

where n,m, and l are cardinalities of V , W , and U , respectively, and the optimal
λ being the average value of all the R′ three-way entries. The value of (11) shows
contribution of the tricluster to the data scatter.

The value of difference D(i∗) = g(V ′, W, U)g(V, W, U), where V ′ differs from
V by the state of just one entity i∗ ∈ I so that i∗ either belongs to V ′ if i∗ /∈ V
or does not, if i∗ ∈ V , is expressed with a formula analogous to (8):

D(i∗) = [r2(i∗,W,U) + 2zi∗r(V,W,U)r(i∗,W,U) − zi∗r
2(U, V,W )/n]/((n+ zi∗)ml)

Here zi∗ = 1, if i∗ is added to V and zi∗ = −1 otherwise, r(V, W, U) is the sum
of all the entries in R′ over (i, j, k) ∈ V × W × U , and r(i∗, V, W ) is the sum
of all the r′i∗jk over j ∈ W and k ∈ U . A symmetric expression holds for the
changes in box (V, W, U) over j∗ ∈ W and k∗ ∈ U . This leads to the following
tricluster finding algorithm.

Algorithm Tricluster Box (i)

1.Take V = { i} , W = { j : rijk = 1 for some k} and U = { k | rijk = 1 for
some j} as the starting box.
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2. Find D(i∗),D(j∗) and D(k∗) for all i∗ ∈ I, j∗ ∈ J , and k∗ ∈ K and J , take
that of the values D which is maximum, denote it D∗.

3. If D∗ is not positive, halt. Otherwise, perform the operation of adding/
removing for the corresponding entity and return to Step 1 with the updated
box.

A statement, similar to Statement 1, holds.

Statement 2
If box cluster B = (V, W, U) is found with TriclusterBox() algorithm then, for
any entity outside the box, its average similarity to B is less than the half of
the within-box similarity λ; in contrast, for any entity belonging to the box, its
average similarity to B is greater than or equal to the half of the within-box
similarity λ.

5 Experiments

We have run experiments with synthetic data sets, just to see that BiclusterBox
is competitive towards both generalized formal concepts algorithms and conven-
tional bicluster algorithms. We also run experiments on three-way data, first, to
see if our triclusters are any good, and second, to compare solutions found with
tricluster and bicluster algorithms. That is possible if one considers a three-way
dataset over I × J × K as a two-way dataset over I × (J × K), that is, over I
and Cartesian product of the two other sets, J × K. We describe here some of
the experiments.

Experiment 1. Take a binary 30 × 15 data table R0 comprising three non-
overlapping formal concepts from Pensa and Boulicaut[9]. All R0′s entries are
zeros except for those within three boxes comprising, in respect, first 10 rows
(from 1 to 10) and first 5 columns (from 1 to 5), second 10 rows (from 11
to 20) and second 5 columns (from 6 to 10), and third 10 rows (from 21 to
30) and third 5 columns (from 11 to 15), whose all entries are ones. Then this
matrix is changed to a matrix Rp by randomly changing its every entry with the
probability p%, p = 1, 2, . . . , 40. Algorithm BBox(i) has been applied to each
Rp, with its mean subtracted as λ0, at each i ∈ I and j ∈ J , and sets of differing
results stored as Bp and Dp. To compare these results with the original concepts
in R0, we utilized the extension of Jaccard coefficient described in Pensa and
Boulicaut[9].

Specifically, given two bisets, (V, W ) and (V ′, W ′), ratio of the areas of the
rectangles corresponding to their intersection and union is taken as the measure
of similarity:

S((V, W ), (V ′, W ′)) = |V ∩ V ′||W ∩ W ′|/(|V ∪ V ′||W ∪ W ′|).
so that

σ(B, B′) = ΣimaxjS((Vi, Wi), (V ′j , W ′
j))/|B| (12)

The averaged results of runs of two versions of approximate BBox algorithm
through several rounds of generated matrices Rp(p = 1, 2, , 40) are summarised
in Figure 1.
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Fig. 1. Graphs of σ measure between the original three concepts and results of Box
and Dual bicluster algorithms (Mirkin[8]) applied to the binary Rp matrix at different
levels of random noise, p = 1, 2, .., 40%. The third graph represents the σ values at
4-bisets by Pensa and Boullicaut[9].

Experiment 2. Pre-specified biclusters are set similarly here, yet the error is
introduced via additive Gaussian noise so that the data become non-binary and
general biclustering algorithms are applicable. We compare BBox with the best
algorithm Bimax according to Prelic et al. [10] (see Figure 2). Here we refer to
scoring functions measuring relevance and recovery as those utilized by Prelic et
al. [10]. Given two sets of boxes on I × J , B and B′, consider expression

sI(B, B′) = Σ(v,w)∈Bmax(v′,w′)∈B′Jac(v, v′)/|B| (13)

where Jac(v, v′) = |v∩v′|/|v∪v′|, the celebrated Jackard similarity index between
sets v and v′. This is referred to as measure of recovery of B by B′, and measure
of relevance of B versus B′. BBox appears to be better than Bimax in recovery
and worse than that in relevance.

Experiment 3. A binary file of a ternary relation between 250
movies, 738 keywords and 20 genres have been downloaded from Web-site:

Fig. 2. Comparison of BBox and Bimax on the additive noise data
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Table 1. Most contributing triclusters for 250 popular movies

Contrib.% Movie Keyword Genre

28.5 ’Star Wars:V-The Empire Strikes Back (1980)’ ’Rebel’ ’Adventure’
’Star Wars (1977)’ ’Princess’ ’Action’
’Star Wars:VI - Return of the Jedi (1980)’ ’Empire’ ’Sci-Fi’

’Death Star’ ’Fantasy’

18.9 ’12 Angry Men (1957)’ ’Murder’ ’Crime’
’Double Indemnity (1944)’ ’Trial’ ’Drama’
’Chinatown (1974)’ ’Widow’ ’Thriller’
’The Big Sleep (1946)’ ’Marriage’ ’Mystery’
’Witness for the Prosecution (1957)’ ’Private’ ’Film-Noir’
’Dial M for Murder (1954)’ ’Detective’
’Shadow of a Doubt (1943)’ ’Blackmail’

’Letter’

18.0 ’The Return of the King (2003)’ ’Ring’ ’Adventure’
’The Fellowship of the Ring (2001)’ ’Middle Earth’ ’Action’
’The Two Towers (2002)’ ’Fantasy’

18.0 ’Terminator 2: Judgment Day(1991) ’ ’Future’ ’Thriller’
’The Terminator (1984)’ ’Cyborg’ ’Sci-Fi’

http://www.imdb.com/chart/top (accessed on 10 April 2009). In fact, the data
involves more than 6500 keywords, but only those present at six or more of the
movies have been used in our computations.

TBox(i) algorithm found 84 triclusters containing more than one movie. Most
contributing triclusters are in Table 1. Those who know of the movies can see
that these are rather tight and meaningful indeed. We also took the data as a
two-way table of movies over all possible pairs keyword-genre, to see if those
results could be found without developing a novel algorithm. This gave a much
smaller number of non-trivial biclusters, just 40 of them. Some of biclusters
match the triclusters in Table 1 rather closely. Table 2 presents two of them,
just to illustrate the differences. The most important difference is that biclusters
are less expressive, in spite of more degrees of freedom: they can take any set
of keyword-genre pairs whereas triclusters carry only Cartesian products. Take,
for example, ”Star Wars” biclusters it comprises just Cartesian product of set
of keywords, Princess, Empire, of set of genres Adventure, Action, Sci-Fi, thus
missing less trivial keywords ”Rebel” and ”Death Star” that have been picked
up by the tricluster.

A similar observation can be made about tri- and bi-clusters containing ”12 An-
gry Men” movie: the description of the biclusters, in Table 2, even if not a Cartesian
product, seems rather dry and trivial in comparison to the description in Table 1.

Experiment 4. This experiment has been carried out with a 200 × 50 × 295
data set C extracted from website: http://www.automotive.com/index.html
(in November 2010; the dataset is available from the authors on request). This
concerns 200 passenger car models along with their 50 possible features. Be-
sides, each car model is associated with a set of car models that are said to be

 http://www.imdb.com/chart/top
http://www.automotive.com/index.html
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Table 2. Comparable most contributing biclusters

Contrib.% Movie Keyword,Genre

18.0 ’Star Wars:V-The Empire Strikes Back (1980)’ ’Princess, Adventure’
’Star Wars (1977)’ ’Princess, Action’
’Star Wars:VI - Return of the Jedi (1980)’ ’Princess, Sci-Fi’

’Empire, Adventure’
’Empire, Action’
’Empire, Sci-Fi’

10.1 ’12 Angry Men (1957)’ ’Murder, Drama’
’To Kill a Mockingbird (1962)’ ’Trial, Crime’
’Witness for the Prosecution (1957)” ’Trial, Drama’

’Trial, Mystery’

comparable to the model under consideration. The set of comparable cars ap-
pears to be somewhat greater than the car set, totalling to 295 car models.
On comparing triclusters found at C with biclusters found at its two-way,
200 × (50 × 295), version, triclusters versus biclusters show trends similar to
those observed at the movie data set as illustrated in Table 3 for a set of budget
cars appeared at both of the approaches.

Table 3. A budget car tricluster (columns 1,2 and 3) versus its bicluster namesake
(columns 1, 4)

Tricluster: V (Car) Tricluster: W (Feature) Tricluster: U (Comparable)

’Ford Fiesta Sdn’ ’4-Door’ ’Toyota Yaris sedan’
’Hyundai Accent Sdn’ ’Front Wheel Drive’ ’Chevrolet Aveo 4-door sedan”
’Mazda 2 Hb’ ’5 passengers’ ’Honda Fit’

’5-speed Manual’

Bicluster intent part for set V (Feature ×Comparable)

’4-Door,Toyota Yaris sedan’
’4-Door,Honda Fit’
’Front Wheel Drive,Toyota Yaris sedan’
’Front Wheel Drive,Honda Fit’
’5 passengers,Toyota Yaris sedan’
’5 passengers,Honda Fit’

Another curiosity is that in all the most contributing triclusters (V, W, U),
the set of comparable cars U does not necessarily cover the set V but is always
biased towards more luxury cars than V , as can be seen in Table 3 in column 3
versus column 1.

6 Conclusion

The approximation approach proves flexible enough to develop effective meth-
ods for biclustering of binary data and extend them to p-way binary data.
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Specifically, a viable algorithm for triclustering has been developed, for the first
time in the literature, to our knowledge. In our experiments with two ternary
contexts it has proved more effective than the corresponding biclustering proce-
dures.

The approximation methods proposed in this paper can be viewed in two
aspects: (a) finding one ”best” p-cluster, or (b) filling in a disjunctive model
of the p-cluster structure of the given p-ary context. The ”p-Box” algorithms
developed in the paper depend on a specific entry in the context, thus appear
to be rather computationally intensive, and thus not competitive, in the aspect
(a). In this regard, we tried to accelerate the repetitive process by applying the
algorithm only to those entries that have not been processed in the previous
iterations yet. Unfortunately, this leads to poor results and should be further
elaborated. If, however, one concentrates on the aspect (b) – revealing the entire
cluster structure in a disjunctive way, then we can safely claim that our approach
leads to a solution to this problem. It is still time consuming and the future efforts
should address this issue.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

2. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statis-
tical Association 67(337), 123–129 (1972)

3. Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)
4. Ignatov, D., Kuznetsov, S.: Biclustering methods using lattices of closed subsets.

In: Proceedings of 12th National Conference on Artificial Intelligence, Moscow,
FML, vol. 1, pp. 175–182 (2010) (in Russian)

5. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 1(1), 24–45 (2004)

6. Mirkin, B., Arabie, P., Hubert, L.: Additive two-mode clustering: the error-variance
approach revisited. Journal of Classification 12, 243–263 (1995)

7. Mirkin, B.: Mathematical Classification and Clustering, p. 448. Kluwer, Dordrecht
(1996)

8. Mirkin, B.: Two goals for biclustering: ”Box” and ”Dual” methods (2008) (unpub-
lished manuscript)

9. Pensa, R.G., Boulicaut, J.-F.: Towards fault-tolerant formal concept analysis. In:
Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 212–223.
Springer, Heidelberg (2005)

10. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,
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Abstract. A novel approach to triclustering of a three-way binary data
is proposed. Tricluster is defined in terms of Triadic Formal Concept
Analysis as a dense triset of a binary relation Y , describing relationship
between objects, attributes and conditions. This definition is a relax-
ation of a triconcept notion and makes it possible to find all triclusters
and triconcepts contained in triclusters of large datasets. This approach
generalizes the similar study of concept-based biclustering.

Keywords: formal concept analysis, data mining, triclustering, three-
way data, folksonomy.

1 Introduction

The term biclustering was coined by B.Mirkin in 1996 [15] and the appear-
ance of triclustering and n-clustering was only a matter of time. The similar
approach, called direct clustering, was proposed in early 70s by Hartigan [10].
In the Formal Concept Analysis method, introduced in 1982 by R. Wille [17,9],
a particular kind of bicluster was used for analysis of binary data, notably for-
mal concept. The Triadic (Formal) Concept Analysis (TCA) was introduced
by Lehman and Wille [14] in 1995 as an extension of dyadic Formal Concept
Analysis for the case of three-way binary data. The notions of formal concepts
and triconcepts describe a useful pattern in binary data that is homogeneous
and closed (maximal) in algebraic sense. Due to the rigid structure of formal
concepts and computational complexity of processing algorithms (exponential
w.r.t. size of input data), some relaxations of the formal concept notion were
introduced for dyadic (relevant and dense bisets [3], concept factorization tech-
niques [1], dense biclusters [11]) and triadic cases (triadic concept factors [2]).
There are also exist several techniques for reduction of the number of formal
concepts to only relevant ones, for example, iceberg lattices and stability indices
mining. The need for scalable and efficient triclustering algorithms became clear
with the growth of popularity and sizes of social resource tagging systems. The
three-way data “user-tag-resource”, so called folksonomy, is a core data struc-
ture in such systems. One of the known algorithms for mining folksonomies is
the TRIAS algorithm [12]. There is also a promising approach to mine n-ary
relational data [5,6]; its implementation (DataPeleer) is based on closed sets
and outperforms another similar algorithm CubeMiner [13] for mining closed
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trisets. Some researchers go further and actively apply closed trisets for mining
complex attribute dependencies in three-way binary data, for example, triadic
implications [8].

The paper is organized as follows. In the next section, we introduce main def-
initions of Triadic Concept Analysis. In the section 3 we define dense triclusters
and describe their properties, present the algorithm and evaluate its complexity,
discuss some heuristics, and also provide the reader with examples. Section 4
presents the description of the bibsonomy datasets and computer experiments
with them. Section 5 concludes the paper.

2 Main Definitions

A triadic context K = (G, M, B, Y ) consists of sets G (objects), M (attributes),
and B (conditions), and ternary relation Y ⊆ G×M×B. An incidence (g, m, b) ∈
Y shows that the object g has the attribute m under condition b.

For convenience, a triadic context is denoted by (X1, X2, X3, Y ). A triadic
context K = (X1, X2, X3, Y ) gives rise to the following diadic contexts K

(1) =
(X1, X2 × X3, Y

(1)), K
(2) = (X2, X2 × X3, Y

(2)), K
(3) = (X3, X2 × X3, Y

(3)),
where gY (1)(m, b) :⇔ mY (1)(g, b) :⇔ bY (1)(g, m) :⇔ (g, m, b) ∈ Y . The deriva-
tion operators (primes or concept-forming operators) induced by K

(i) are denoted
by (.)(i). For each induced dyadic context we have two kinds of such derivation
operators. That is, for {i, j, k} = {1, 2, 3} with j < k and for Z ⊆ Xi and
W ⊆ Xj × Xk, the (i)-derivation operators are defined by:

Z �→ Z(i) = {(xj , xk) ∈ Xj × Xk|xi, xj , xk are related by Y for all xi ∈ Z},

W �→ W (i) = {xi ∈ Xi|xi, xj , xk are related by Y for all (xj , xk) ∈ W}.
Formally, a triadic concept of a triadic context K = (X1, X2, X3, Y ) is a triple
(A1, A2, A3) of A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, such that for every {i, j, k} =
{1, 2, 3} with j < k we have A

(i)
i = (Aj ×Ak). For a triadic concept (A1, A2, A3),

the components A1, A2, and A3 are called the extent, the intent, and the
modus of (A1, A2, A3). It is important to note that for interpretation of K =
(X1, X2, X3, Y ) as a three-dimensional cross table, according to our definition,
under suitable permutations of rows, columns, and layers of the cross table, the
triadic concept (A1, A2, A3) is interpreted as a maximal cuboid full of crosses.
The set of all triadic concepts of K = (X1, X2, X3, Y ) is called the concept
trilattice and is denoted by T(X1, X2, X3, Y ).

3 Mining Dense Triclusters

3.1 Prime, Double Prime and Box Operators of 1-Sets

To simplify the notation, we denote by (.)′ all prime operators, as it is usually
done in FCA. For our purposes consider a triadic context K = (G, M, B, Y ) and



From Triconcepts to Triclusters 259

Table 1. Concept-forming operators of 1-sets

Prime operators of 1-sets Their double prime counterparts

m′ = { (g, b) |(g,m, b) ∈ Y } m′′ = { m̃ |(g, b) ∈ m′ and (g, m̃, b) ∈ Y }

g′ = { (m, b) |(g,m, b) ∈ Y } g′′ = { g̃ |(m, b) ∈ g′ and (g̃,m, b) ∈ Y }

b′ = { (g,m) |(g,m, b) ∈ Y } b′′ = { ˜b |(g,m) ∈ b′ and (g,m, b̃) ∈ Y }

introduce primes, double primes and box operators for particular elements of G,
M , B, respectively. In what follows we write g′ instead of {g}′ for 1-set g ∈ G
and similarly for m ∈ M and b ∈ B: m′ and b′.

We do not use double primes, but box operators that we introduce below:

g� = { gi | (gi, bi) ∈ m′ or (gi, mi) ∈ b′}
m� = { mi | (mi, bi) ∈ g′ or (gi, mi) ∈ b′}
b� = { bi | (gi, bi) ∈ m′ or (mi, bi) ∈ g′}

Let K = (G, M, B, Y ) be a triadic context. For a triple (g, m, b) ∈ Y , the
triple T = (g�, m�, b�) is called a tricluster.

The density of a tricluster (A, B, C) of a triadic context K = (G, M, B, Y ) is
given by the fraction of all triples of Y in the tricluster, that is ρ(A, B, C) =
|I ∩ A × B × C|/|A||B||C|.

The tricluster T = (A, B, C) is called dense if its density is greater than a
predefined minimal threshold, i.e. ρ(T ) ≥ ρmin. For a given triadic context K =
(G, M, B, Y ) we denote by T(G, M, B, Y ) the set of all its (dense) triclusters.

Property 1. For every triconcept (A, B, C) of a triadic context K = (G, M, B, Y )
with nonempty sets A, B, and C we have ρ(A, B, C) = 1.

Property 2. For every triclucter (A, B, C) of a triadic context K = (G, M, B, Y )
with nonempty sets A, B, and C we have 0 ≤ ρ(A, B, C) ≤ 1.

Proposition 1. Let K = (G, M, B, Y ) be a triadic context and ρmin = 0. For
every Tc = (Ac, Bc, Cc) ∈ T(G, M, B, Y ) there exits a tricluster T = (A, B, C) ∈
T(G, M, B, Y ) such that Ac ⊆ A, Bc ⊆ B, Cc ⊆ C.

Example 1. Consider 33 = 27 formal triconcepts, 24 with ρ = 1 and 3 void
triconcepts with ρ = 0 (there are empty sets of either users, resources or tags).
Although this data is small, we have 27 patterns to analyze (maximal num-
ber of triconcepts for the context size 3 × 3 × 3 ); this is because the data
is the power set triadic context. We can conclude that users u1, u2, and u3

share almost the same sets of tags and resources. So, they are very similar
in terms (tag, resource) of shared pairs and it is convenient to reduce the
number of patterns describing these data from 27 to 1. The tricluster T =
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Table 2. A small example with Bibsonomy data

t1 t2 t3
u1 × ×
u2 × × ×
u3 × × ×

r1

t1 t2 t3
u1 × × ×
u2 × ×
u3 × × ×

r2

t1 t2 t3
u1 × × ×
u2 × × ×
u3 × ×

r3

({u1, u2, u3}, {t1, t2, t3}, {r1, r2, r3}) with ρ = 0.89 is exactly such a reduced pat-
tern, but its density is slightly less than 1. Each of triconcepts in T = {(∅,
{t1, t2, t3}, {r1, r2, r3}), ({u1}, {t2, t3}, {r1, r2, r3})...({u1, u2, u3}, {t1, t2}, {r3})}
is contained, w.r.t. componentwise set inclusion, in T .

3.2 An Algorithm: TRICL

The idea is obvious: For all (g, m, w) ∈ I with ρ(g�, m�, w�) ≥ ρmin the algo-
rithm stores T = (g�, m�, w�) in T. In the pseudo-code of TRICL (Alg. 1) we
provide computational details rather than simple algebraic description. It allows
us to better evaluate the complexity of the main algorithm’s steps and gives ideas
on code implementation. The complexity of the first loop (steps 2-10) is O(|I|).
The main loop complexity (steps 15-19) is trickier: O(|Y ||T|| log(|T|)|G||M ||B|)
or, since we know that |T| ≤ |Y |, it is O(|Y |2|| log(|Y |)|G||M ||B|). The factor
|G||M ||B| appears due to the computation of a tricluster ρ density, this value is
indeed hard to compute for large triclusters.

We propose a heuristic to compute ρ(T ), based on checking only some amount
of randomly selected triples contained in the given tricluster T . For a tricluster
T = (A, B, C) we perform the density estimation ρ̂(T ) = |P |/|N |, where P =
{(g, m, b)|(g, m, b) ∈ N ∩ Y }, N is a set of |N | randomly chosen elements of the
tricluster. The parameter |N | can be chosen relatively small, say 1

10 · |A||B||C|.

4 Real Data and Experiments

In our experiments we analyzed the freely available data from the popular social
bookmarking system bibsonomy [4]. We ran the TRICL algorithm on a part of
the data consisting of all users, resources, tags and tag assignments to detect
communities of users that have similar tagging behavior.

We used only tas file which is actually the list of tuples (tag assignments):
who attached which tag to which resource/content.

– 1. user (number, no user names available)
– 2. tag
– 3. content id (matches bookmark.content id or bibtex.content id)
– 4. content type (1 = bookmark, 2 = bibtex)
– 5. date

For our purposes we need only fields 1, 2, and 3 of the tuple.
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Algorithm 1. TRICL
Data: K = (G,M,B, Y ) – formal context, ρmin – density threshold
Result: T = {(Ak, Bk, Ck)|(Ak, Bk, Ck) – dense tricluster}
begin

for (g,m, b) ∈ Y do
if g not in PrimesObj then

PrimesObj[g] = g′

if m not in PrimesAttr then
PrimesAttr[m] = m′

if b not in PrimesCond then
PrimesCond[b] = b′

if g not in BoxesObj then

BoxesObj[g] = g�

if m not in BoxesAttr then

BoxesAttr[m] = m�

if b not in BoxeesCond then

BoxesCond[b] = b�

for (g,m, b) ∈ Y do
Tkey = hash((BoxesObj[g], BoxesAttr[m],BoxesCond[b]));
if Tkey not in T then

if ρ(BoxesObj[g],BoxesAttr[m],BoxesCond[b]) ≥ ρmin then
T[Tkey] = ((BoxesObj[g], BoxesAttr[m],BoxesCond[b]))

The resulting folksonomy (bibsonomy) consists of |U | = 2 337 users, |T | = 67
464 tags and |R| = 28 920 resources (bookmarks and bibtex’s entries), that are
linked by |Y | = 816, 197 triples. We want to note that we have to deal here with
a cuboid consisting of 4 559 624 602 560 cells.

We have also investigated the statistical distribution of the data before using
TRICL algorithm. We calculated and plotted histogram for users and the number
of (tag, document) assignment pairs, and similar histograms for tags and their
number of (user, document) pairs, and for documents and their number of (user,
tag) pairs. We found that the data follows Power Law distribution p(x) = Cx−α

with α = 3, 6778 and variance σ = 0, 0001 in the case of documents vs number
of (user, tag) assignments. For user and tag data we obtained α = 2, 13 and
α = 1, 8 respectively. We computed α using ML estimator as described in [16]
and verified the results by software mentioned in [7].

This introspection can afford us to use greedy approach to our data if we want
to mine large and (relatively) dense triclusters, due to even not so big part of
users have the most portion of (tag, user) assignments (similar conclusions for
tags and documents distributions).

We measured the run-time performance of our implementation (in Python
2.7.1) on a Pentium Core Duo system with 2 GHz and 2 GB RAM. We used
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Fig. 1. Histogram of numbers of pairs (document, tag) for all triples of bibsonomy data

Table 3. Experimental results for k first triples of tas dataset with ρmin = 0

k, number of first triples |U | |T | |R| |T| |T| Trias, s TriclEx,s TriclProb,s

100 1 47 52 57 1 0.2 0.2 0.2
1000 1 248 482 368 1 1 1 1
10000 1 444 5193 733 1 2 46,7 47
100000 59 5823 28920 22804 4462 3386 10311 976
200000 340 14982 61568 - 19053 > 24 h > 24h 3417

Java implementation of Trias algorithm by R. Jäschke [12] to build all triconcepts
of a certain context. The results of the experiments are presented in Table 3.
The last two columns shows the mean execution time of Tricl with full and
probabilistic density calculation strategies respectively.

Table 4. Density of triclusters distribution for 200 000 first triples of tas dataset with
ρmin = 0

low bound of ρ upper bound of ρ number of triclusters

0 0,05 18617
0,05 0,1 195
0,1 0,2 112
0,2 0,3 40
0,3 0,4 20
0,4 0,5 10
0,5 0,6 8
0,6 0,7 1
0,7 0,8 1
0,8 0,9 0
0,9 1 49
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In our experiments the ρ̂ estimate has only 0.13 mean absolute error for a
tricluster size |N | = 1/10 , ρmin = 0, and 200 000 first triples of the bibsonomy
data. The algorithm becomes drastically faster than Trias and TriclEx in the
case of our probabilistic computational strategy.

Density distribution of triclusters for 200 000 first triples of bibsonomy dataset
is given in the Table 4.

5 Conclusion

We proposed an FCA-based approach to triclustering. We showed that:

– The (dense) triclustering is a good alternative for TCA since the total num-
ber of triclusers in real data is significantly less than the number of tricon-
cepts.

– The (dense) triclustering is able to cope with a large number of triconcepts.
In the worst cases of tricontexts (or dense cuboids in them) only their main
diagonal is empty and considers such cuboids as a whole tricluster. This
is very relevant property for mining tricommunities in social bookmarking
systems.

– The proposed algorithm has good scalability on real-world data especially
when used with greedy covering approach and optimized version of the den-
sity calculation procedure.

We will continue our work on triclustering in several directions:

– Investigate mixing of several constraint-based approaches to triclustering
(e.g., mining dense triclusters first and then frequent trisets in them).

– Search for better approaches to tricluster’s density estimation.
– Develop a unified theoretical framework for triclustering based on closed

sets.
– Take into account the nature of real-world data for optimization (data spar-

sity, distribution of values, etc.).
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12. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias - an algorithm
for mining iceberg tri-lattices. In: ICDM, pp. 907–911. IEEE Computer Society,
Los Alamitos (2006)

13. Ji, L., Tan, K.L., Tung, A.K.H.: Mining frequent closed cubes in 3d datasets. In:
Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L.,
Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 811–822. ACM, New York (2006)

14. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis,
G., Levinson, R., Rich, W., Sowa, J. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43.
Springer, Heidelberg (1995)

15. Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht (1996)
16. Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemporary

Physics 46(5), 323–351 (2005)
17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In: Rival, I. (ed.) Ordered Sets, Boston, pp. 445–470 (1982)

http://bibsonomy.org


Learning Inverted Dirichlet Mixtures for

Positive Data Clustering

Taoufik Bdiri and Nizar Bouguila

Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Canada, Qc, H3G 2W1

t_bdiri@encs.concordia.ca, bouguila@ciise.concordia.ca

Abstract. In this paper, we propose a statistical model to cluster pos-
itive data. The proposed model adopts a mixture of inverted Dirichlet
distributions and is learned using expectation-maximization (EM) for pa-
rameters estimation and the minimum message length criterion (MML)
for model selection. Experimental results using both synthetic and real
data are presented to show the advantages of the proposed model.

1 Introduction

Cluster analysis is one of the fundamental tools for exploring and analyzing the
underlying structure of a given data set and has been applied in a variety of prob-
lems from different disciplines such as pattern recognition, biology, psychology,
image processing, economy and medicine [1]. The main objective is to divide a
given set of multidimensional vectors into homogeneous clusters. A lot of cluster-
ing algorithms can be found in the literature where finite mixtures are perhaps
the most widely used and cited models [2]. Most of the conventional mixture
models have been proposed for general data by considering, for instance, Gaus-
sian distributions. In many applications, however, the generated data are not
Gaussian. In previous works, we have shown that the Dirichlet distribution, for
instance, can be an excellent alternative to the Gaussian for proportional data
[3,4]. The goal of this work is to generalize it to the case of positive data. As it
is to be expected, the chosen probability density function has to take into ac-
count this fact. We propose then to consider the inverted Dirichlet distribution.
In particular, we propose an EM-based framework [2] for the estimation of the
parameters of an inverted Dirichlet mixture model. One of the major difficulties
associated with finite mixture models is that we have to determine automatically
the number of mixture components. This challenging task has been the subject
of extensive studies in the past (see, for instance, [4]) and is handled in our case
by developing an MML-based criterion [4,5].

The paper is organized as follows: In Section 2, we briefly present the inverted
Dirichlet mixture and an approach to learn this mixture model is proposed. Some
examples are used and some simulation results are presented to demonstrate the
effectiveness of the proposed model in Section 4. Finally, Section 5 concludes the
paper.
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2 The Inverted Dirichlet Mixture Model

If a D-dimensional positive vector X = (X1, X2, ..., XD) follows an inverted
Dirichlet distribution, the joint density function is given in [6]

p(X|α) =
Γ (|α|)

∏D+1
d=1 Γ (αd)

D
∏

d=1

Xαd−1
d (1 +

D
∑

d=1

Xd)−|α| (1)

where Xd > 0, d = 1, 2, . . . , D, α = (α1, . . . , αD+1) is the vector of parameters
and |α| =

∑D+1
d=1 αd, αd > 0, d = 1, 2, . . . , D +1. Let X = {X1, X2, . . . ,XN} be

a data set of N D-dimensional positive vectors with a common, but unknown,
probability density function p(X|Θ). Generally X is composed of different, say
M , clusters, thus p(X|Θ) may be approximated with sufficient accuracy by a
finite M -components mixture model:

p(X|Θ) =
M
∑

j=1

p(X |αj)pj (2)

where pj are the mixing proportions which are positive and sum to one, and
p(X|αj) is the inverted Dirichlet distribution. The symbol Θ refers to the entire
set of parameters Θ = {α1, α2, . . . ,αM , p1, p2, . . . , pM}.

In the following, we first develop the maximum likelihood (ML) estimates
of our mixture. Then, we develop an MML criterion and we give the complete
learning algorithm. The ML estimate, associated with a sample of observations,
is a choice of parameters which maximizes the probability density function of
the sample. The log-likelihood is generally maximized, instead of the likelihood,
within the EM framework where each Xn is supposed to have arisen from one of
the M clusters. Thus, let Z = {Z1, . . . ,ZN} denote the missing group-indicator
vectors where the jth element of Zn, Znj , is equal to one if Xn belongs to
cluster j and zero, otherwise. The complete data in this case are (X ,Z) and the
associated complete-data log-likelihood is given by

Φc(X ,Z|Θ) =
M
∑

j=1

N
∑

n=1

Znj

(

log pj + log p(Xn|αj)
)

(3)

The EM algorithm proceeds iteratively in two steps, The expectation (E) step
and the maximization (M) step. In the E-step, we compute the conditional ex-
pectation of Φc(X ,Z|Θ) which is reduced to the computation of the posterior
probabilities (i.e. the probability that a vector Xn is assigned to a cluster j):

p(j|Xn, αj) =
pjp(Xn|αj)

∑M
j=1 pjp(Xn|αj)

(4)

Then, the conditional expectation of the complete-data log-likelihood given by

Q(X , Θ) =
M
∑

j=1

N
∑

n=1

p(j|Xn, αn)
(

log pj + log p(Xn|αj)
)

(5)
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is maximized in the M-step. To resolve this optimization problem, we must de-
termine the solution to ∂

∂ΘQ(X , Θ) = 0. Calculating the derivative with respect
to αjd, d = 1, . . . , D, we obtain

∂Q(X , Θ)
∂αjd

=
N

∑

n=1

p(j|Xn, αj)
(

Ψ(|αj |) − Ψ(αjd) + log
( Xnd

1 +
∑D

d=1 Xnd

)

)

(6)

where Ψ(.) is the digamma function. The derivative with to respect αjD+1 is

∂Q(X , Θ)
∂αjD+1

=
N

∑

n=1

p(j|Xn, αj)
(

Ψ(|αj |)−Ψ(αjD+1)+log
( 1

1 +
∑D

d=1 Xnd

)

)

(7)

According to the previous two equations, it is clear that a closed-form solution
to estimate αj does not exist. Thus, we will use an iterative approach namely
the Newton-Raphson method expressed as

α̂new
j = α̂old

j − H−1
j Gj j = 1, 2, . . . , M (8)

where Hj is the Hessian matrix associated with Q(X , Θ) and Gj is the vector
of first derivatives, Gj = (∂Q(X ,Θ)

∂αj1
, . . . , ∂Q(X ,Θ)

∂αjD+1
)T . To calculate the Hessian of

Q(X , Θ) we have to compute the second and mixed derivatives:

∂2Q(X , Θ)
∂2αjd

= (Ψ ′(|αj |) − Ψ ′(αjd))
N

∑

n=1

p(j|Xn, αj) d = 1, . . . , D + 1 (9)

∂2Q(X , Θ)
∂αjd1∂αjd2

= Ψ ′(|αj |)
N

∑

n=1

p(j|Xn, αj) d1 �= d2 d1, d2 = 1, . . . , D + 1 (10)

where Ψ ′(.) is the trigamma function. Concerning the parameters pj , it is straight-
forward to show that a closed-form solution does exist and is given by:

pj =
∑N

n=1 p(j|Xn, αj)
N

(11)

In the following, we focus on the development of an MML criterion for model
selection to have a certain trade-off between flexibility and model complexity.
The message length for a mixture of distributions is given by [5]

MessLen � − log(h(Θ))− log(p(X|Θ))+
1
2

log(|F (Θ)|)+
Np

2
(1− log(12)) (12)

where h(Θ) is the prior probability, p(X|Θ) is the likelihood, F (Θ) is the ex-
pected Fisher information matrix, |F (Θ)| is its determinant, and Np is the num-
ber of free parameters which is equal to M(D + 2) − 1. The selection of the
number of clusters is carried out by finding the minimum with regards to Θ of
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the message length MessLen. The expected Fisher information matrix is gen-
erally approximated by complete-data Fisher information matrix [7], then:

|F (Θ)| � |F (p1, . . . , pM )|
M
∏

j=1

|F (αj)| (13)

where |F (p1, . . . , pM )| is given by [4]:

|F (p1, . . . , pM )| =
NM−1

∏M
j=1 pj

(14)

and |F (αj)| is the Fisher information with regards to αj . For F (αj), let us
consider the jth cluster of the mixture Xj = (X l, . . . ,X l+nj−1), where l ≤ N
and nj is the number of elements in cluster j, with parameter αj . Let p(Xj |αj)
be the log-likelihood function associated with Xj , then

− ∂2 log(p(Xj |αj))
∂αjd1∂αjd2

= −njΨ
′(|αj |) d1, d2 = 1, . . . , D + 1 d1 �= d2 (15)

− ∂2 log(p(Xj |αj))
∂2αjd

= −nj(Ψ ′(|αj |) − Ψ ′(αjd)) d = 1, . . . , D + 1 (16)

|F (αj)| = (1 − Ψ ′(|αj |)
D+1
∑

d=1

1
Ψ ′(αjd)

)nD+1
j

D+1
∏

d=1

Ψ ′(αjd) (17)

By substituting the previous equation and Eq. 14 into Eq. 13, we obtain

F (Θ) =
N

∏M
j=1 pj

M
∏

j=1

[

(1 − Ψ ′(|αj |)
D+1
∑

d=1

1
Ψ ′(αjk)

)nD+1
j

D+1
∏

d=1

Ψ ′(αjd)
]

(18)

Regarding h(Θ), we make a common assumption in the case of finite mixture
models by supposing that αj and the vector (p1, . . . , pM ) are independent:

h(Θ) = h(p1, . . . , pM )
M
∏

j=1

h(αj) (19)

We will now define the densities h(αj) and h(p1, . . . , pM ). We know that the
vector (p1, . . . , pM ) is defined on the simplex {p1, . . . , pM |∑M−1

j=1 pj < 1}, then
a natural choice, as a prior, for this vector is a symmetric Dirichlet Distribution
with parameters set to one which gives a uniform prior [4]:

h(p1, . . . , pM ) = (M − 1)! (20)

As for h(αj) and in the absence of other knowledge about the αjd, we choose
the following uniform prior, which has been found appropriate according to our
experiments, over the range [0, e6|α̂j |/α̂jk] where α̂j is the estimated vector:

h(αjk) =
e−6α̂jk

|α̂j | (21)
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By substituting Eqs. 21 and 20 in Eq. 19, we obtain the following:

log(h(Θ)) =
M−1
∑

j=1

log(j) − 6M(D + 1) − (D + 1)
M
∑

j=1

log(|α̂j |) +
M
∑

j=1

D+1
∑

d=1

log(α̂jd)

(22)
Below we give the complete learning algorithm for each candidate value of M :

1. Input: N D-dimensional vectors Xn and a specified number of clusters M .
2. Initialization algorithm 1

3. E-Step: Compute the posterior probabilities p(j|Xn, αj) using Eq. 4.
4. M-Step:

– Update the αj using Eq. 8, j = 1, . . . , M .
– Update pj using Eq. 11, j = 1, . . . , M .

5. If pj < ε, then discard component j and go to 3.
6. If the convergence test is passed terminate, else go to 3.
7. Calculate the associated criterion MML(M) using Eq. 12.

3 Experimental Results

In this section, we first validate our algorithm using synthetic data and then
using a real data set. The convergence test in our learning algorithm was based
on the variation of the likelihood function and ε was set to 10−6.

3.1 Synthetic Data

We tested our algorithm on several generated multi-dimensional data. In the
following, we show one example of a two-dimensional data set that we have gen-
erated. We use D = 2 for ease of representation. Data were generated from three
inverted Dirichlet densities (see figure 1) with different parameters as shown in
table 1. A total of 100 samples for each of the two first densities and a total of
50 samples for the third distribution were taken. The message length values as
a function of the number of clusters are presented in table 2, where we can see
clearly that the MML criterion has found the exact number of clusters.

3.2 Real Data

Here we investigate the performance of our algorithm and compare the modeling
capabilities of inverted Dirichlet and Gaussian mixtures using a well-known data
set. The classification was performed using the Bayesian decision rule after the
classes densities were estimated and the number of clusters was selected. The
used data set, called Haberman dataset [9], contains cases from a study that was
conducted between 1958 and 1970 at the University of Chicago’s Billings Hospi-
tal on the survival of patients who had undergone surgery for breast cancer. The
1 For the initialization we use the K-Means algorithm and the method of moments

developed for the inverted Dirichlet as done for the Dirichlet in [8].
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Fig. 1. A two-dimensional artificial mixture model with three components

Table 1. Real and estimated mixture parameters for the two-dimensional generated
data set

Cluster 1 p1 = 0.4 α11 = 15 α21 = 65 α31 = 30
p̂1 = 0.4 α̂11 = 14.83 α̂21 = 64.38 α̂31 = 29.58

Cluster 2 p2 = 0.4 α12 = 65 α22 = 15 α32 = 30
p̂2 = 0.4 α̂12 = 64.06 α̂22 = 14.90 α̂32 = 29.69

Cluster 3 p3 = 0.2 α13 = 30 α23 = 34 α33 = 35
p̂3 = 0.2 α̂13 = 30.54 α̂23 = 34.32 α̂33 = 35.51

Table 2. Message length values as a function of the number of clusters for the two-
dimensional generated data set

M Message Length
1 716.51
2 440.24
3 333.05
4 347.61
5 360.78
6 371.36
7 381.71
8 393.98
9 390.93
10 400.61

dataset contains 306 instances, and four attributes including the class attribute.
These attributes are: age of patient at time of operation, patient’s year of op-
eration, number of positive auxiliary nodes detected, survival status (1 = the
patient survived 5 years or longer (S), 2 = the patient died within 5 year (D)).
It has 225 instances from class 1, and 81 instances from class 2. By applying
our algorithm to this dataset, the MML criterion has found that M = 2 leads
us to the minimum message length. So we have two classes, which meets the
specification of our dataset (see table 3). Using Gaussian mixture, however, we
failed to obtain the exact number of clusters (i.e. M = 3 was wrongly favored) as
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Table 3. The message length as a function of the number of clusters in the case of the
Haberman dataset when using inverted Dirichlet mixture

M Message Length
1 5297.5
2 3645.6
3 6480.6
4 5791.3
5 5234.1
6 6851.5
7 6640.4
8 N/A
9 N/A
10 N/A

Table 4. The message length as a function of the number of cluster in the case of the
Haberman dataset when using Gaussian mixture

M Message Length
1 2604.7
2 2407.4
3 2372.6
4 2492.9
5 2529.8
6 2627.0
7 2773.2
8 2860.3
9 2572.7
10 N/A

shown in table 4. Table 5 displays the confusion matrices for Haberman dataset
classification when using both the inverted Dirichlet mixture and the Gaussian
mixture which we have forced to consider M = 2. From this table we notice that
the classification based on the inverted Dirichlet mixture is significantly more
accurate and precise than the one based on the Gaussian mixture.

Table 5. Confusion matrices for Haberman dataset classification using both the in-
verted Dirichlet and the Gaussian mixture models

inverted Dirichlet Gaussian
S D

S 195 30

D 51 30

S D

S 150 75

D 27 54
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4 Conclusion

The main goal of this work was to find meaningful structure in a set of unlabeled
non Gaussian positive vectors through inverted Dirichlet mixture-based model-
ing. A complete learning algorithm has been presented and applied to synthetic
and real data.
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Abstract. An additive spectral method for fuzzy clustering is presented.
The method operates on a clustering model which is an extension of the
spectral decomposition of a square matrix. The computation proceeds by
extracting clusters one by one, which allows us to draw several stopping
rules to the procedure. We experimentally test the performance of our
method and show its competitiveness.

In spite of the fact that many relational fuzzy clustering algorithms have been
developed already [1,2,3,4,12], most of them are ad hoc and, moreover, they all
involve manually specified parameters such as the number of clusters or thresh-
old of similarity without providing any guidance for choosing them. We apply
a model-based approach of additive clustering, combined with the spectral clus-
tering approach, to develop a novel relational fuzzy clustering method that is
both adequate and supplied with model-based parameters helping to choose the
right number of clusters.

We assume the data in the format of what is called similarity or relational
data, that is a matrix W = (wtt′), t, t′ ∈ T , of similarity indexes wtt′ , between
objects t, t′ from a set of objects T . We further assume that this similarity values
are but manifested expressions of some hidden relational patterns which can be
represented by fuzzy clusters. We propose to formalize a relational fuzzy cluster
as represented by two items: (i) a membership vector u = (ut), t ∈ T , such that
0 ≤ ut ≤ 1 for all t ∈ T , and (ii) an intensity μ > 0 that expresses the extent of
significance of the pattern corresponding to the cluster. With the introduction
of the intensity, applied as a scaling factor to u, it is the product μu that is a
solution rather than its individual co-factors. Given a value of the product μut, it
is impossible to tell which part of it is μ and which ut. To resolve this, we follow
a conventional scheme: let us constrain the scale of the membership vector u on
a constant level, for example, by a condition such as

∑

t ut = 1 or
∑

t u2
t = 1,

then the remaining factor will define the value of μ. The latter normalization
better suits the criterion implied by our fuzzy clustering method and, thus, is
accepted further on.
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To make the cluster structure in the similarity matrix sharper, we apply the
spectral clustering approach to pre-process a raw similarity matrix W into A
by using the so-called normalized Laplacian transformation as related to the
popular clustering criterion of normalized cut [6]. This criterion relates to the
minimum non-zero eigenvalue of the Laplacian matrix. To change this to the
maximum eigenvalue, we further transform this to its pseudo-inverse matrix,
which also increases the gaps between eigenvalues.

Our additive fuzzy clustering model follows that of [11,7,10] and involves K
fuzzy clusters that reproduce the pseudo-inverted Laplacian similarities att′ up
to additive errors according to the following equations:

att′ =
K

∑

k=1

μ2
kuktukt′ + ett′ , (1)

where uk = (ukt) is the membership vector of cluster k, and μk its intensity.
The item μ2

kuktukt′ is the product of μkukt and μkukt′ expressing participation
of t and t′, respectively, in cluster k. This value adds up to the others to form the
similarity att′ between topics t and t′. The value μ2

k summarizes the contribution
of the intensity and will be referred to as the cluster’s weight.

To fit the model in (1), we apply the least-squares approach, thus minimizing
the sum of all e2

tt′ . Within that, we attend to the one-by-one principal component
analysis strategy for finding one cluster at a time by minimizing

E =
∑

t,t′∈T

(btt′ − ξutut′)2 (2)

with respect to unknown positive ξ weight (so that the intensity μ is the square
root of ξ) and fuzzy membership vector u = (ut), given similarity matrix B =
(btt′).

At the first step, B is taken to be equal to A. After each step, the found cluster
is subtracted from B, so that the residual similarity matrix for obtaining the next
cluster is equal to B − μ2uu′ where μ and u are the intensity and membership
vector of the found cluster. In this way, A indeed is additively decomposed
according to formula (1) and the number of clusters K can be determined in the
process.

The optimal value of ξ at a given u is proven to be

ξ =
u′Bu

(u′u)2
(3)

which is obviously non-negative if B is semi-positive definite.
By putting this ξ in equation (2), we arrive at E = S(B) − ξ2 (u′u)2 , where

S(B) =
∑

t,t′∈T b2
tt′ is the similarity data scatter.

Let us denote the last item by

G(u) = ξ2 (u′u)2 =
(

u′Bu
u′u

)2

, (4)
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so that the similarity data scatter is the sum S(B) = G(u) + E of two parts,
G(u) explained by cluster (μ,u), and E, unexplained. Therefore, an optimal
cluster is to maximize the explained part G(u) in (4) or its square root

g(u) = ξu′u =
u′Bu
u′u

, (5)

which is the celebrated Rayleigh quotient: its maximum value is the maximum
eigenvalue of matrix B, which is reached at its corresponding eigenvector, in the
unconstrained problem.

This shows that the spectral clustering approach is appropriate for our prob-
lem. According to this approach, one should find the maximum eigenvalue λ and
corresponding normed eigenvector z for B, [λ, z] = Λ(B), and take its projection
to the set of admissible fuzzy membership vectors.

Our clustering approach involves a number of model-based criteria for halting
the process of sequential extraction of fuzzy clusters. The process stops if either
is true:

1. The optimal value of ξ (3) for the spectral fuzzy cluster becomes negative.
2. The contribution of a single extracted cluster to the data scatter becomes

too low, less than a pre-specified τ > 0 value.
3. The residual data scatter becomes smaller than a pre-specified ε value, say

less than 5% of the original similarity data scatter.

The described one-by-one Fuzzy ADDItive-Spectral cluster extraction method
is referred to as FADDIS. We have experimentally compared FADDIS with other
approaches, specifically, with those used at (a) ordinary graphs for revealing com-
munity structure, (b) affinity similarity data derived from feature based infor-
mation, (c) small real-world benchmark dissimilarity datasets, and (d) genuine
similarity data [8]. In this paper we describe one of the experiments - in compar-
ing the performance of FADDIS with various versions of fuzzy c-means algorithm
[1]. In this, we carry on the experiment described in [2]. This experiment con-
cerns a two-dimensional data set, that we refer to as Bivariate4, comprising four
clusters generated from bivariate spherical normal distributions with the same
standard deviation 950 at centers (1000, 1000), (1000,4000), (4000, 1000), and
(4000, 4000), respectively (see Fig. 1).

This data was analyzed in [2] by using the matrix D of Euclidean distances
between the generated points. Five different fuzzy clustering methods have been
compared, three of them relational, by Roubens [9], Windham [12] and NER-
FCFM [4], and two of the fuzzy c-means with different preliminary pre-processing
options of the similarity data into the entity-to-feature format, FastMap and
SMACOF [2]. Of these five different fuzzy clustering methods, by far the best
results have been obtained with the fuzzy c-means method applied to a five-
feature set extracted from D with FastMap method [2]. The adjusted Rand
index [5] of the correspondence between the generated clusters and those the
best is equal on average, of 10 trials, 0.67 (no standard deviation is reported in
[2]).
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Fig. 1. Bivariate4: the data of four Gaussian bivariate clusters [2]

In our computations, five consecutive FADDIS clusters have been extracted
for each of randomly generated ten Bivariate4 datasets. The algorithm halts at
stop condition (2): ‘cluster’s contribution is too small’. Then the very first ap-
proximate cluster is discarded as reflecting just the general connectivity, and the
remaining four are defuzzified into partitions so that every entity is assigned to
its maximum membership class. The average values of the adjusted Rand in-
dex (ARI) in these experiments are 0.70 (0.03) at 500-and 1000-strong datasets,
whereas ARI=0.73 (0.01) at 2500-strong generated datasets (the standard devi-
ations are reported in the parentheses). This favorably compares with ARI value
of 0.67 reported in [2] as the best achieved with fuzzy c-means.
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Abstract. The proposition of adaptive selection of rule quality mea-
sures during rules induction is presented in the paper. In the applied
algorithm the measures decide about a form of elementary conditions in
a rule premise and monitor a pruning process. An influence of filtration
algorithms on classification accuracy and a number of obtained rules is
also presented. The analysis has been done on twenty one benchmark
data sets.

Keywords: rules induction, rules quality measures, classification.

1 Introduction

Knowledge discovery in databases is a process of extraction of unknown, non-
trivial and useful patterns from data. One of the most popular representations
of such patterns, because of its simplicity, is a rule form (1).

IF a1 ∈ Va1and . . . and ak ∈ Vak
THEN d = Vd (1)

Rules induction is made on the basis of training data set DT = (U, A ∪
{d}), where U is the finite set of objects characterized by the set of conditional
attributes A and the decision attribute d. Each attribute a ∈ A is treated as a
function a: U → Da, where Da is the range of the attribute a. The consequence of
the assumed notation is that in the rule of the form (1) we have {a1, . . . , ak} ⊆
A, Vai ⊆ Dai , and vd ∈ Dd. The expression a ∈ V is called the conditional
descriptor; a set of objects with equal values of decision attribute is the decision
class (notation: Xv = {x ∈ U : d(x) = v}).

The algorithms building a coverage of training set are usually applied during
the rule induction. The most popular algorithms are: RIPPER [4], CN2 [3], the
AQ family [7] and the algorithms derived from the rough sets theory [5,11,13].
Rules are also employed for descriptive purposes (description based on rule in-
duction, subgroup discovery [8,14]) because of their clearness. Rule induction
algorithms exploiting a specific, domain or expert knowledge about an analyzed
problem are also developed [12].
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All of the algorithms mentioned above employ measures that decide either
about form of a determined rule or about which of already determined rules
may be removed or joined. These measures are called the rule quality measures
and their main goal is such steering of induction and/or reduction processes that
an output rule set contains rules with the best quality. A set composed of rules
with good generalization (high classification accuracy) and description abilities
(small number of output rules) is the rule set with high quality. Measures used
in the rule growth process are usually different from measures employed in the
pruning process. One can notice that at fixed induction algorithm, the kind of
used measure influences results obtained by a classifier [6,10,11]. Results are here
meant as the classification accuracy (average classification accuracy or the area
under the ROC curve) and a number of induced rules. The majority of works
concerning rules induction focus on finding one fixed method of induction that
guarantees obtaining generally better classification results regardless of the kind
of analyzed data set (in particular, the number of classes, examples distribution).
In [6] an attempt at predicting the number of positive (preal) and negative (nreal)
examples covered by a rule on a data set irrespective of the training set was
made. Thus, the matter is to define the real quality of the rule. Attempts at
relating the numbers (preal and nreal) with 9 parameters describing the rule on
the training set by with the aid of the regression method or SVM were made.
The parameters were, inter alia, rule precision, the true positive rate of rule,
the false positive rate, the number of positive examples. Over 30 benchmark
data sets have been evaluated in order to determine linear regression coefficients
relating the mentioned 9 parameters with the values pval and nval. The quality
measure defined in this way didn’t prove better than other known measures (e.g.
m-estimate).

A similar work is the earlier An’s paper [1], in which attempts at defining
conditions of recommendation for proper quality measure according to the ana-
lyzed data set characteristic were made. In the research, inter alia, the number
of decision classes and distribution of examples among classes were taken into
consideration. However, experimental justification that the obtained recommen-
dations lead to better results didn’t succeed. Both of the approaches are strongly
dependent on the number and variety of data sets designed for a creation of the
model recommending a quality measure.

In this paper, the other approach basing on adaptive measure selection during
rules growing, pruning and filtering is presented. The appropriate measure selec-
tion is determined by the classifier quality gained by the measure on validation
data sets independent of the testing set. The influence of one of the three rule fil-
tration algorithms on the rule number and classification accuracy has been also
researched. The number of conflicts during the classification and the number
of conflicts resolved incorrectly were also monitored in order to verify whether
the further improvement of the classifier quality is possible. We hope that the
information will enable us to improve the classification accuracy through giv-
ing consideration in voting not only to the quality of voting rules, but also to
information about a testing object neighbourhood.
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The presented works are the continuation of the research contained in papers
[10,11]. The mentioned paper by Jansen and Fürnkranz [6] had a strong influence
on the paper, too. In the next sections, the process of adaptive measures selection
in the rule induction process is discussed. Results of the experiments carried out
on twenty one benchmark data sets are also described.

2 Rule Quality Measures

Values of most known rule quality measures [2,11] can be determined basing
on analysis of a contingency table (or so-called PN space [2]), that allows to
describe rules behavior with relation to the training set. Let p denote a set of
positive examples covered by the rule r (P stands for all positive examples),
and n denote a set of negative examples covered by the rule r (N stands for all
negative examples). Then we can define the following table:

p n p + n
P − p N − n P + N − p − n

P N P + N

The basic measures defined for the rule are the accuracy (precision) p/(p +
n) and the coverage p/P . We aim at inducing rules characterized by maximal
accuracy and maximal coverage.

The following known measures that evaluate the rule accuracy and the cover-
age simultaneously were used in tests described in this paper: laplace, m-estimate
[2], g-measure [2], gain [11], Cohen [1], C2 [1], rule specificity and sensitivity,
weighted relative accuracy [2]. The measures have been chosen due to high qual-
ity of results obtained by them [6,10,11]. Moreover, three additional measures
have been tested. The first is the lift measure used for rules assessment by the
See5 program. The second one is modified C2 measure. The C2 measure can be
expressed by the product of two components. The accuracy occurs in one of the
components, the rule coverage in the other. In the modified version of C2 the
expression (p−n)/(p + n) was used in place of accuracy. The expression is more
restrictive than the precision and is applied in the RIPPER program [4] for rules
pruning. The third measure, not used up till now, is p-value of a rule calculated
for the exact Fisher test.

For the assessment of a statistical significance of a rule, we consider the follow-
ing null hypothesis: assignment of examples covered by the rule to the decision
class indicated by the rule is equivalent to a random assignment of the examples
to the class. A p-value of the test is calculated by summing up probabilities ob-
tained for all possible rules recognising as many examples as the analysed rule
but characterized by higher precision. A p-value for the rule r which covers p
positive and n negative examples can be computed using the formulas (2, 3).

p(r) =

(

p+n
p

)(

P+N−p−n
P−p

)

(

P+N
P

) (2)
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p-val(r) =
min{P−p,n}

∑

k=0

p(p + k, n − k) (3)

Values of the p-val measure belong to the interval 〈0, 1〉. The measure, like the
others, is monotone with respect to p and n (provided that the second parameter
value is fixed).

Each of the measures chosen for experiments evaluates a rule in a different
manner. Some measures place stronger emphasis on the rule accuracy, another
ones on its coverage. Some of them reflect examples distribution in the training
set, and other ones not.

3 Data-Driven Selection of Rules Quality Measures in
Rules Induction Algorithm

The process of creating a rule in the form (1) based on a certain data set consists
in selection of conditional attributes that will create conditional descriptors and
in establishing ranges of the descriptors (i.e. sets Va).

The idea of rule induction algorithm presented below is a modification of the
MODLEM algorithm [13]. Our version of the algorithm is named q-MODLEM.
The rule premise generation process includes selection of conditional attributes,
which create conditional descriptors, and determination of their ranges. The
algorithm works in the following way: sorted in non-decreasing order values of
each conditional attribute are one by one tested in order to find so called cut-
off point g. The cut-off point is in the middle between two successive attribute
a values (e.g. va < g < wa) which separate positive examples from negative
ones. The cut-off point g divides current range of values of attribute a into
two ranges: (−∞, g〉 and 〈g, +∞) and current set of training examples into two
corresponding to these ranges subsets: U1 and U2. Let us assume that the set U1

contains more positive examples than the set U2, then the descriptor (−∞, g〉 is
added to already existing rule premise and the rule is evaluated by an established
quality measure (algorithm’s parameter). The cut-off point maximizing a value
of the quality measure for the rule extended in this way is the best. Establishing
an optimal descriptor causes its adding to the rule premise permanently. Then a
process of searching a new cut-off point is initiated. Descriptors are added to the
rule as long as adding the next one doesn’t cause the increase of rule precision.
After the grown phase, the pruning phase is initialized. The shortening algorithm
uses the hill climbing strategy, which consists in removing elementary conditions
as long as a rule keeps (or increases) its quality.

Independently on the method of rules induction, the output rules set can
be reduced by the use of joining [9] and/or filtration [10,11] algorithms. The
algorithms of joining and filtration of the rules set are briefly described below.

The next pruning procedure consists in rules filtration. Additionally, the fil-
tration algorithm applies a tuning data set. During filtration, rules which are
unnecessary on the ground of some criterion (for example, classification accu-
racy on the training and the tuning data set) are removed from the rules set.
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The process of filtration is done by one of three following algorithms: Forward,
Backwards, Coverage. The Forward algorithm, starting with one-rule (the best
one – the higher quality) descriptions of decision classes, builds a classifier, and
then in each iteration, successively adds a rule from the ranking list to the clas-
sifier if addition of this rule increases the quality of classifier. The process of
rule addition stops if the filtered rules set has the same quality as the whole
(unfiltered) rules set. The Backwards algorithm works in the opposite way –
starting with the weakest rule it successively removes rules from the classifier.
Forward and Backwards algorithms apply information about quality of single
rules (verification on the training set) and their classification abilities (verifica-
tion on the training and the tuning set). The third algorithm just builds the
coverage of a training set of examples using the rules ranking established by
the selected quality measure. Only rules that cover examples already covered by
rules with higher quality are removed. A detailed description of the first version
of the q-MODLEM algorithm can be found in [10].

In an adaptive selection of measures the induction algorithm receives a list
of quality measures which can be used during cut-off points searching, growing,
pruning and filtration of rules. The chosen measure is assumed to be applied
consequently on each stage of rule induction and optimization. The selection of
the best measure is made by cross-validation on the training set. The measure
which obtains the best classification accuracy (or average classification accuracy
– depending on what we want to optimize) is then used for rules induction
based on the whole training set and applied for test examples classification. In
the next section, the results of the experiments comparing the arbitrary and
adaptive measure selection are presented.

4 Experiments

In the experiments described below twenty one benchmark data sets (balance-
scale, breast-wisc, bupa, car, Australian credit, German credit, diabetes, ecoli,
glass, heart Cleveland, heart statlog, ionosphere, iris, kdd-synthetic-control, lym-
phography, prnn-synthetic, segment, sonar, splice, wine, yeast) have been used.
The 10-fold cross-validation was used as the testing methodology as well as for
selection (done on training examples set) of the best measure. It means that
various quality measures could be optimal for individual folds during one exper-
iment. For measures m-estimate and g-measure values of parameters m and g
were set to 22.4 and 2.

After rules induction, each of three filtration algorithms was activated. For-
ward and Backwards algorithms require the tuning examples set. In the described
experiments, during rules induction, 15% of examples has been excluded from
the training part and the set was treated as tuning set. Adding (the Forward
algorithm) and removing (the Backwards algorithm) a rule occurred in the case
when it caused a growth (the Forward algorithm) or did not cause a decrease
(the Backwards algorithm) of the classification accuracy on any of training and
tuning sets.

The results for all three algorithms are presented in the Table 1.
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Table 1. Average results of 10xCV experiments

Quality Filtration Acc. Std. Avg. Std. Rules Std. Confl. Neg. p-Value
Acc. Confl.

Auto None 83.51 5.2 77.61 6.4 144.4 24.2 33 8 -
Auto Coverage 83.09 5.0 76.36 6.1 50.5 10.0 30 8 0.03809
g-measure None 82.86 5.6 75.62 6.3 169.4 7.8 27 8 0.08881
C2 None 82.56 5.1 76.09 6.1 148.4 8.1 28 8 0.06525

C2F None 82.45 4.5 74.50 5.4 135.1 7.2 36 11 0.12862
m-estimate Coverage 82.33 5.0 74.53 5.8 58.5 4.4 42 13 0.00587
Lift None 82.23 5.7 79.43 6.7 185.9 7.3 24 9 0.05553
C2 Coverage 82.21 4.6 75.41 5.5 43.1 3.2 17 5 0.01913
m-estimate None 82.18 5.0 74.35 5.7 101.7 7.6 45 13 0.00030
C2F Coverage 82.06 4.7 73.89 5.6 52.3 3.6 27 8 0.06864
g-measure Coverage 82.01 5.2 74.68 6.1 62.7 4.2 17 5 0.00380
Auto Backwards 81.84 5.3 75.08 6.3 21.5 6.4 33 9 0.00059
m-estimate Forward 81.80 5.0 75.40 6.1 29.1 6.9 21 7 0.00036
m-estimate Backwards 81.68 5.5 75.32 6.5 27.1 6.7 25 7 0.00093
Auto Forward 81.52 5.2 75.53 6.3 21.3 8.6 26 8 0.00018
Lift Coverage 81.40 5.5 76.80 6.4 54.9 3.5 11 4 0.00277
Cohen Backwards 81.18 6.1 75.09 6.8 17.3 4.4 48 14 0.00036
RIPPER – 81.09 5.02 74.27 6.24 18.9 3.4 – – 0.00277
C2 Forward 80.97 4.6 74.11 6.2 23.6 6.4 9 2 0.00012
C2F Forward 80.90 4.9 73.19 6.0 25.5 6.7 14 4 0.00036
Cohen Forward 80.86 5.7 76.14 6.6 10.7 2.4 36 11 0.00016
p-Val Backwards 80.86 5.8 73.67 6.5 13.6 3.7 46 13 0.00028
Cohen None 80.83 5.8 76.34 6.3 40.4 4.0 66 19 0.00093
C2 Backwards 80.81 4.9 74.42 5.9 20.2 5.2 9 2 0.00005
Gain Forward 80.80 5.0 75.34 6.3 10.4 2.5 41 12 0.00003
Gain Backwards 80.80 5.6 73.74 6.5 12.8 3.3 47 13 0.00001
C2F Backwards 80.79 5.1 73.69 6.1 21.6 5.7 16 4 0.00028
Cohen Coverage 80.71 5.8 76.21 6.4 26.0 2.6 65 19 0.00059
Wra Backwards 80.43 5.2 73.83 5.7 14.6 3.7 57 16 0.00004
p-Val Forward 80.41 5.7 74.26 6.5 10.7 3.0 38 11 0.00002
g-measure Forward 80.20 5.1 73.27 6.7 33.8 7.2 7 2 0.00003
g-measure Backwards 80.07 5.3 73.62 6.6 28.9 5.5 8 2 0.00004
Rss Backwards 79.98 5.4 73.36 5.9 14.6 3.5 57 16 0.00002
Lift Forward 79.79 5.2 74.02 6.3 31.6 7.7 5 2 0.00002
p-Val None 79.66 5.7 73.00 6.4 39.0 4.8 70 23 0.00119
p-Val Coverage 79.59 5.6 73.20 6.3 24.5 2.8 68 23 0.00032
Lift Backwards 79.47 5.6 73.64 6.6 27.7 6.4 5 2 0.00003
Gain None 79.35 5.2 72.92 5.9 34.6 5.0 71 23 0.00054
Wra Forward 79.20 5.3 74.96 6.0 8.6 2.1 48 16 0.00001
Rss Forward 79.18 5.3 74.88 6.0 8.6 2.0 47 16 0.00010
Gain Coverage 79.16 5.3 73.00 6.3 22.8 2.9 70 23 0.00003
Rss Coverage 76.58 5.7 71.79 6.4 19.3 2.3 79 28 0.00010
Wra Coverage 76.46 5.7 71.68 6.4 19.4 2.2 79 28 0.00000
Rss None 75.66 5.4 70.68 6.5 28.3 3.5 80 31 0.00018
Wra None 75.61 5.5 70.62 6.5 28.3 3.5 81 31 0.00016
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The classification algorithm uses the voting scheme; rule’s voting strength is
reflected by its quality. Unrecognized examples are assigned to majority
decision class. The meaning of columns in Table 1 is the following: Filtration -
denotes the applied filtration algorithm, Acc. - denotes the classification accu-
racy, Avg.Acc. - denotes the mean of decision classes accuracies, Rules - denotes
the rules number, Std - denotes the standard deviation. The percentage of con-
flicts during classification and conflicts resolved incorrectly are also presented in
the table. Results obtained by the RIPPER algorithm (the Rapid-Miner package
implementation) are also given for comparative purposes. Additionally, p-value
for the Wilcoxon test is given in the last column. The algorithm which uses au-
tomatic measure selection has been compared with each the other algorithms.
The results in italics indicate p-value less than 0.05, and the results in bold –
p-value less than 0.1. The algorithm with automatic quality measure selection
gives statistically better results on the analyzed data sets, except one case, when
the modified C2 measure was used.

It’s worth noticing that improving classification accuracy in the automatic
method doesn’t happen at expense of average accuracy loss (which affects sen-
sitivity and specificity of the classifier).

The analysis of the ranking presented in the Table 1 shows that higher clas-
sification accuracy is obtained at the cost of a bigger number of rules, which
is confirmed by, inter alia, the [15] observations in relation to the Occam razor
critique and rule number reduction. Filtration algorithms produce statistically
worse results. The algorithm generating the coverage of a training set is here
the best one. A considerable decrease of the rules number and decrease of the
classification accuracy has been noticed for Forward and Backwards filtration al-
gorithms. At the same time, a number of classification conflicts for the reduced
rule set is relatively big, and a tidy part of them is settled incorrectly. It gives
a chance to improve the accuracy of a classifier composed of a small number of
rules. Authors want to obtain such improvement by taking the neighborhood of
tested object covered by individual rules into consideration.

5 Conclusions

The method of automatic selection of quality measure that controls the process
of growing and pruning of rules has been presented in the paper. The method en-
ables us to obtain statistically better results than the algorithm which applies an
arbitrary selected measure. The measure selection was optimized in order to ob-
tain its highest classification accuracy. A similar optimization can be carried out
for the average accuracy or for a complex measure which takes accuracy(and/or
average accuracy) and complexity of a model into account.

Despite considerable reduction of the number of rules, filtration algorithms
taking advantage of classification abilities of the filtered rule set has led to statis-
tically worse accuracy. The underlying cause may be the method assumed, which
assesses whether a rule should be added to the filtered rule set or not. There were
no such decreases observed in the paper [11] in which the whole training set was
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used as the tuning set for the same algorithm. Further works will focus, inter
alia, on the improvement of the voting algorithm by taking the neighborhood
of tested object covered by individual rules into consideration, and by making
use of information about a level of statistical significance of rule in the filtration
(perhaps enabling the correction of so-called false discovery rate).
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Abstract. This paper describes a new tool for the study of relationships
between depth and number of misclassifications for decision trees. In ad-
dition to the algorithm the paper also presents the results of experiments
with three datasets from UCI Machine Learning Repository [3].
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1 Introduction

Decision trees are widely used as predictors, as a way of knowledge represen-
tation and as algorithms for problem solving. To have a more understandable
decision tree we need to minimize the number of nodes in the tree. To have a
faster decision tree we need to minimize the depth or average depth of the tree.
And to have a more accurate decision tree we need to minimize the number of
misclassifications.

We created a tool based on dynamic programming which allows us to optimize
decision trees relative to the depth, the average depth, the number of nodes, and
the number of misclassifications sequentially [1,2]. In this paper, we consider a
new tool (an extension to our software) which allows us to study relationships
between the depth and the number of misclassifications of a decision tree. We can
find the minimum depth of a decision tree with at most n misclassifications as
well as the minimum number of misclassifications among all decision trees with
depth at most p. We consider the work of this tool on three decision tables from
UCI ML Repository [3]: lymphography, breast-cancer, and tic-tac-toe.

2 Basic Notions

In this paper, we consider only decision tables with discrete attributes. These
tables do not contain missing values and equal rows. Consider a decision table
T depicted in Fig. 1. Here f1, . . . , fm are the names of columns (conditional
attributes); c1, . . . , cN are nonnegative integers which can be interpreted as de-
cisions (values of the decision attribute d); bij are nonnegative integers which
are interpreted as values of conditional attributes (we assume that the rows
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f1 . . . fm d

b11 . . . b1m c1
. . . . . .

bN1 . . . bNm cN

Fig. 1. Decision table

(b11, . . . , b1m), . . . , (bN1, . . . , bNm) are pairwise different). We denote by E(T )
the set of attributes (columns of the table T ), each of which contains different
values. For fi ∈ E(T ) let E(T, fi) be the set of values from the column fi.

Let fi1 , . . . , fit ∈ {f1, . . . , fm} and a1, . . . , at be nonnegative integers. We
denote by T (fi1 , a1) . . . (fit , at) the subtable of the table T , which consists of
such and only such rows of T that at the intersection with columns fi1 , . . . , fit

have numbers a1, . . . , at respectively. Such nonempty tables (including the table
T ) will be called separable subtables of the table T . For a subtable Θ of the
table T , we will denote by R(Θ) the number of unordered pairs of rows that are
labeled with different decisions. A minimum decision value which is attached to
the maximum number of rows in a nonempty subtable Θ will be called the most
common decision for Θ.

A decision tree Γ over the table T is a finite directed tree with root in which
each terminal node is labeled with a decision. Each nonterminal node is labeled
with a conditional attribute, and for each nonterminal node the outgoing edges
are labeled with pairwise different nonnegative integers. Let v be an arbitrary
node of Γ . We now define a subtable T (v) of the table T . If v is the root then
T (v) = T . Let v be a node of Γ that is not the root, nodes in the path from
the root to v be labeled with attributes fi1 , . . . , fit , and edges in this path be
labeled with values a1, . . . , at respectively. Then T (v) = T (fi1 , a1), . . . , (fit , at).

Let Γ be a decision tree over T . We will say that Γ is a decision tree for T if
any node v of Γ satisfies the following conditions:

– If R(T (v)) = 0 then v is a terminal node labeled with the most common
decision for T (v);

– Otherwise, either v is a terminal node labeled with the most common decision
for T (v), or v is labeled with an attribute fi ∈ E(T (v)) and if E(T (v), fi) =
{a1, . . . , at}, then t edges leave node v, and these edges are labeled with
a1, . . . , at respectively.

Let Γ be a decision tree for T . For any row r of T , there exists exactly one
terminal node v of Γ such that r belongs to the table T (v). Let v be labeled with
the decision b. We will say about b as about the result of the work of decision
tree Γ on r.

3 Representation of Sets of Decision Trees

Consider an algorithm for construction of a graph Δ(T ), which represents the
set of all decision trees for the table T . Nodes of this graph are some separable
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subtables of the table T . During each step we process one node and mark it with
the symbol *. We start with the graph that consists of one node T and finish
when all nodes of the graph are processed.

Let the algorithm has already performed p steps. We now describe the step
number (p + 1). If all nodes are processed then the work of the algorithm is
finished, and the resulting graph is Δ(T ). Otherwise, choose a node (table) Θ
that has not been processed yet. Let b be the most common decision for Θ.
If R(Θ) = 0, label the considered node with b, mark it with symbol * and
proceed to the step number (p + 2). If R(Θ) > 0, then for each fi ∈ E(Θ)
draw a bundle of edges from the node Θ (this bundle of edges will be called
fi-bundle). Let E(Θ, fi) = {a1, . . . , at}. Then draw t edges from Θ and label
these edges with pairs (fi, a1), . . . , (fi, at) respectively. These edges enter into
nodes Θ(fi, a1), . . . , Θ(fi, at). If some of the nodes Θ(fi, a1), . . . , Θ(fi, at) are
not present in the graph then add these nodes to the graph. Mark the node Θ
with the symbol * and proceed to the step number (p + 2).

��

��

b

Fig. 2. Trivial
decision tree

��

��
fi

�
���

�
���

a1 at

Γ1

. . .
�

�
��

�
�
��

Γt

�
�

��

�
�
��

Fig. 3. Aggregated decision tree

Now for each node Θ of the graph Δ(T ), we describe the set of decision trees
corresponding to the node Θ. We will move from terminal nodes, which are
labeled with numbers, to the node T . Let Θ be a node, which is labeled with a
number b. Then the only trivial decision tree depicted in Fig. 2 corresponds to
the node Θ.

Let Θ be a nonterminal node (table) then there is a number of bundles of edges
starting in Θ. We consider an arbitrary bundle and describe the set of decision
trees corresponding to this bundle. Let the considered bundle be an fi-bundle
where fi ∈ (Θ) and E(Θ, fi) = {a1, . . . , at}. Let Γ1, . . . , Γt be decision trees from
sets corresponding to the nodes Θ(fi, a1), . . . , Θ(fi, at). Then the decision tree
depicted in Fig. 3 belongs to the set of decision trees, which correspond to this
bundle. All such decision trees belong to the considered set, and this set does not
contain any other decision trees. Then the set of decision trees corresponding to
the node Θ coincides with the union of sets of decision trees corresponding to
the bundles starting in Θ and the set containing one decision tree depicted in
Fig. 2, where b is the most common decision for Θ. We denote by D(Θ) the set
of decision trees corresponding to the node Θ.

The following proposition shows that the graph Δ(T ) can represent all decision
trees for the table T .
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Proposition 1. Let T be a decision table and Θ a node in the graph Δ(T ).
Then the set D(Θ) coincides with the set of all decision trees for the table Θ.

4 Relationships between Depth and Number of
Misclassifications

Let T be a decision table with N rows and m columns labeled with f1, . . . , fm,
and D(T ) be the set of all decision trees for T . Let Γ ∈ D(T ) then the depth of
Γ , denoted as h(Γ ), is the maximum length of a path from the root to a terminal
node of Γ and the number of misclassifications for decision tree Γ for the table
T , denoted as μ(Γ ), is the number of rows r in T for which the result of the
work of decision tree Γ on r does not equal to the decision attached to the row
r. It is clear that the minimum values of h and μ on D(T ) are equal to zero, an
upper bound on the value of h on D(T ) is m, and an upper bound on the value
of μ on D(T ) is N . We denote Bh = {0, 1, . . . , m} and Bμ = {0, 1, . . . , N}. We
now define two functions GT : Bh → Bμ and FT : Bμ → Bh as follows:

GT (n) = min{μ(Γ ) : Γ ∈ D(T ), h(Γ ) ≤ n}
for any n ∈ Bh, and

FT (n) = min{h(Γ ) : Γ ∈ D(T ), μ(Γ ) ≤ n}
for any n ∈ Bμ.

The function GT can be represented by the tuple (GT (0), . . . ,GT (m)) of its
values. The function FT can also be represented similarly.

We now describe an algorithm which allows us to construct the function GΘ

for any node (subtable) Θ from the graph Δ(T ).We begin from terminal nodes
and move to the node T .

Let Θ be a terminal node. It means that all rows of Θ are labeled with the
same decision b and the decision tree Γb as depicted in Fig. 2 belongs to D(Θ).
It is clear that h(Γb) = 0 and μ(Γb) = 0 for the table Θ. Therefore GΘ(n) = 0
for any n ∈ Bh.

Consider a node Θ, which is not a terminal node and a bundle of edges, which
starts from this node. Let these edges be labeled with pairs (fi, a1), . . . , (fi, at),
and enter into nodes Θ(fi, a1), . . . , Θ(fi, at), respectively, to which the functions
GΘ(fi,a1), . . . ,GΘ(fi,at) are already attached.

We correspond to this bundle (fi-bundle) the function Gfi

Θ , which for any
n ∈ Bh \ {0} is defined as follows:

Gfi

Θ (n) = min{μ(Γ ) : Γ ∈ D(Θ, fi), h(Γ ) ≤ n},
where D(Θ, fi) is the set of decision trees for Θ corresponding to the considered
bundle. In this set we have all trees from D(Θ) in which the root is labeled with
fi and only such trees. It is not difficult to show that for any n ∈ Bh \ {0},

Gfi

Θ (n) = GΘ(fi,a1)(n − 1) + · · · + GΘ(fi,at)(n − 1).
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It is not difficult to prove that for any n ∈ Bh \ {0},

GΘ(n) = min{Gfi

Θ (n) : fi ∈ E(Θ)}.

We know that there is only one decision tree with depth zero in D(Θ). This
is the tree Γb as depicted in Fig. 2, where b is the most common decision for Θ.
For this tree, we have h(Γb) = 0 and μ(Γb) for Θ is equal to the number of rows
in Θ which are labeled with decisions other than b. So,

GΘ(0) = N(Θ) − N(Θ, b),

where N(Θ) is the number of rows in Θ and N(Θ, b) is the number of rows in
Θ which are labeled with the decision b.

We can use the following proposition to construct the function FT .

Proposition 2. For any n ∈ Bμ, FT (n) = min{p ∈ Bh : GT (p) ≤ n}.

Note that to find the value FT (n) for n ∈ Bμ it is enough to make O(log|Bh|) =
O(log m) operations of comparison.

5 Experimental Results

We implemented the algorithm presented in this paper in DeepComputing
(our software system for the study of decision trees, developed at KAUST) and
performed several experiments on datasets (decision tables) acquired from UCI
ML Repository [3]. In the following, we present the experimental results and
show the plots depicting relationships between the number of misclassifications
and the depth of decision trees.

5.1 Lymphography

Figure 4 contains two plots for the decision table lymphography (18 attributes
and 148 rows). The first plot shows the relationship between the number of mis-
classifications and the depth (the minimum number of misclassifications among
decision trees whose depth is at most the given value) and the second one shows
the relationship between the depth and the number of misclassifications (the
minimum depth among decision trees for which the number of misclassifications
is at most the given value).

5.2 Breast-Cancer

Figure 5 contains two plots for the decision table breast-cancer (9 attributes
and 266 rows). The first plot shows the relationship between the number of mis-
classifications and the depth and the second one shows the relationship between
the depth and the number of misclassifications.
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5.3 Tic-Tac-Toe

Figure 6 contains two plots for the decision table tic-tac-toe (9 attributes and
958 rows). The first plot shows the relationship between the number of misclas-
sifications and the depth and the second one shows the relationship between the
depth and the number of misclassifications.

6 Conclusions

The paper is devoted to the consideration of a tool for studying the relationships
between the depth and the number of misclassifications for decision trees. The
application of our software tool is illustrated by the experiments with three
datasets from the UCI ML Repository [3]. Further studies will be connected
with the extension of this tool to more complexity measures such as the average
depth and the number of nodes of decision trees, and to inconsistent decision
tables [4].
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Abstract. Fuzzy decision trees have been substantiated to be a valuable tool 
and more efficient than neural networks for pattern recognition task due to 
some facts like computation in making decisions are simpler and important 
features can be selected automatically during the design process. Here we 
present a feed forward neural network which learns fuzzy decision trees during 
the descent along the branches for its classification. Every decision instances of 
decision tree are represented by a node in neural network. The neural network 
provides the degree of membership of each possible move to the fuzzy set 

 corresponding to each decision instance. These 

fuzzy values constitute the core of the probability of selecting the move out of 
the set of the children of the current node. This results in a natural way for 
driving the sharp discrete-state process running along the decision tree by 
means of incremental methods on the continuous-valued parameters of the 
neural network. A simulation program in C has been deliberated and developed 
for analyzing the consequences. The effectiveness of the learning process is 
tested through experiments with three real-world classification problems.  

Keywords: Decision tree, pattern classification, fuzzy system, artificial neural 
networks, fuzzy logic. 

1   Introduction 

It is well known that decision trees (DT) [1, 4] are the operational support of non-
deterministic computations and also very efficient for pattern recognition task [3]. 
Actually, as long as pattern recognition is considered, a DT can be considered as more 
efficient than a neural network (NN). There are mainly two reasons, first the 
computations in making decisions are simpler – only one feature is used in each non-
terminal node, and the only computation can be a very simple comparison (say, 

axi < ). Second, important features can be selected automatically during the design 

process.  In using an NN, since we do not know which feature is important, the only 
thing we can do is to use all features. However, the DTs do not have the adaptive or 
learning ability, and thus they cannot be used in changing environment. This problem 
can be avoided if we map a DT to neural network. Actually there is a very simple 

>><< movegood  
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mapping from DT to neural network. This mapping integrates the symbolic approach 
(DT) and sub-symbolic one (neural network). Specifically, this makes DTs adaptable, 
and at the same time, provides a systematic approach for structural learning of  
DTs. 

In the stream of learning from examples to select the appropriate paths over a given 
decision tree, various architectural solutions and learning algorithms have been 
proposed [5-15]. Error back-propagation is the most used training algorithm, but other 
algorithms like the Widrow-Hoff learning rule are employed [14].  The use of 
backpropagation learning rule in neuro-fuzzy system to train fuzzy rules for the 
classification problem has been already consider in many real world applications [19].  

Our learning approach follows simple backpropagation, with the following 
distinguishing features: (1) the same feed forward neural network is deputed to make 
decisions on each node. (2) The feed forward neural network is not a plain external 
classifier for the children of a given node, but is coupled with the decision tree in a 
tight way and (3) the training algorithm is especially devised to properly back 
propagate a particular error function along the branches of the decision tree . 

The key thought of presented approach is to train a feed forward neural network to 
output the degree of membership [2] to the fuzzy set  in 

correspondence to an input move. Here each neuron is represented as a decision node 
capable of making decisions based on inputs. One important aspect of the proposed 
approach is any neuron can be replaced with a full feed forward neural network if a 
single neuron is not capable of making decisions. We have used a feed forward neural 
network in place of each neuron represented. The learning procedure we propose 
offers a set of operational options concerning the objective function to be minimized 
and the decision tree visiting methods. The output of a feed forward neural network 
plays a double role in incremental training methods: locally, it is the primer for 
subsequent states; globally, it is the input to the error function. This double role 
becomes extremely critical in the essentially discrete dynamics of our neural network, 
with the risk of getting the training process stuck in the meaningless fixed points. To 
avoid this drawback we give to the fuzzy values returned by the network the general 
meaning of conditional probability - after proper normalizations - of preferring one 
move among the available alternatives. There is one more issue pertaining related to 
generation of decision tree from real time information. For generation of decision 
trees, various algorithms have been proposed [16] and successfully worn.  

The proposed learning procedure used for decision trees using simple 
backpropagation has been tested over well-known real time statistics i.e. IRIS [17], 
image segmentation [18], Postoperative Patient Data. The results obtained exhibit the 
inadequacy of backpropagation algorithm for classification. The adequate 
classification can be achieved using proposed procedure. The procedure envisages 
superior consequences in contrast with the feed forward neural network. The next 
section discusses the methodology and design of the problem. The experimental 
analysis and results have been shown in section 3. A brief discussion is presented in 
section 4. The Section 5 concludes this paper with a summary, the conclusions of this 
study. 
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2   Methodology and Simulation Design 

The architecture of presented neural network system is extended from the multilayer 
feed forward neural network. At the lowest level, every decision instances of decision 
tree are represented by a node in neural network. The neural network whose inputs are 
the branches of the decision tree and whose outputs are the corresponding preference 
scores i.e. degree of membership. Since we presume that the branches of the decision 
tree do not look mutually independent to the neural network and we ask it sequentially 
node by node. The neural network system consists of the components of a 
conventional neural network system except that computation of degree of membership 
for each decision instance is performed by each neuron and the neural network’s 
learning capacity is provided to enhance the system knowledge.  

2.1   Simple Neural Network Architecture 

The input-output stimuli’s for a particular data set are trained with the neural network 
has three layers: one input layer, one output layer and a combination of hidden 
layer(s). Classification of fuzzy information can’t be accomplished precisely with the 
help of conventional artificial neural network architecture. 

In backpropagation training algorithm, an input pattern vector P having n features 

as . Classification of these patterns will be in M classes having the 

output pattern respectively . In the backpropagation learning 

algorithm the change in weight vector is being done according to the calculated error 
in the network, after iterative training. The error and change in weights in the network 
can be calculated as, 

 

  (2.1.5) 

 

                                                                                (2.1.6) 

 

           (2.1.7) 

 

for m = 1 to M output pattern features and p = 1 to P presented input patterns and 

 is the squared difference between the actual output value of output 

layer for pattern P and the target output value. 

2.2   Representation of Decision Tree over Neural Network 

A decision tree is constructed from a training set, which consists of objects. Each 
object is completely described by a set of attributes and a class label. Attributes can  
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Fig. 1. Descent of the neural advisor for the decision tree. At each node the network outputs a 

value .  is the degree of membership for deciding the output of each node. Node is 

represented by a neural network that learns a decision instance from a decision tree. 

have ordered or unordered values. The concept underlying a data set is the true 
mapping between the attributes and class. A noise-free training set is one in which all 
the objects are generated using the underlying concept. A decision tree contains zero 
or more internal nodes and one or more leaf nodes. All internal nodes have two or 
more child nodes. All internal nodes contain splits, which test the value of an 
expression of the attributes. Arcs from an internal node t to its children are labeled 
with distinct outcomes of the test at t. each leaf node has a class label associated with 
it. The task of constructing a tree from the training set has been called tree induction, 
tree building and tree growing. Most existing tree induction systems proceed in a 
greedy top-down fashion. Starting with an empty tree and the entire training set, some 
variant of the following algorithm is applied until no more splits are possible.  

If all the training examples at the current node t belong to category c, create a leaf 
node with the class c; otherwise, score each one of the set of possible splits S, using a 
goodness measure; choose the best split s* as the test at the current node; create as 
many child nodes as there are distinct outcomes of s*. Label edges between the parent 
and child nodes with outcomes of s*, and partition the training data using s* into the 
child nodes; a child node t is said to be pure if all the training samples at t belong to 
the same class. Repeat all above steps on all impure child nodes. 

In our study, we adopted this representation of fuzzy decision tree as a list of 5-
tuples. Each 5-tuples corresponds to a node. There are two kinds of nodes non-
terminal & terminal node. Specifically a node is defined by  

 

{ }sizePlabeltnode ,,,, μ=    (2.2.1) 
 

Here t is the node number. The node ( 0=t ) is called the root; label is the class 
label of a terminal node, and it is meaningful only for terminal nodes; P is pointer to 
the parent. For root it is NULL; µ is degree of membership for suggesting a decision 
for the next move.  

Suppose we have p input-output stimuli, each having n features and each 
stimulus belongs to one of M classes. In fuzzy artificial neural network, the degree of 
membership for ith pattern (i = 1 to P patterns) with the jth class (j = 1 to M classes) 
can be generated as follows, 

abμ abμ
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(2.2.2) 

 

This method of generating degree of membership is taken from the standard 
Gaussian membership function (MF). A Gaussian MF is determined completely by c 
and σ; c represents the MFs center and σ determines the MFs width. Size is the size of 
the node when it is considered a sub-tree. The size of the root is the size of whole tree 
and of terminal node is 1. 

We adopted backpropagation learning algorithm as the learning for our presented 
approach. Since the neural network has to learn to follow branching decision paths, 
the whole process must split into two stages; on the single tree node, the usual process 
feeds the inner dynamics of the network. Along the branches of the decision tree we 
have a process which obeys the syntactic rules of the decision process. 

Now, in correspondence to each step of the second stage, the error to be minimized 
must depend in a non-linear way on the switching variables (network outputs at each 
layer) local to the current node of the decision tree. The method we used for 
computing the gradient of the error function is forward in both the stages. As 
discussed, the task of our neural network is to computer the degree of membership for 
each decision instance. The generated degree of membership will decide the next 
move. Indeed, among the possible modalities of carrying the decision process out, we 
followed the approach: at each decision node we select the moves that receive the 
highest score and continue from there our exploration of the decision tree. 
Intermediate strategies may plan to follow at each step a limited number of favorite 
next moves and to take a final decision from the collected paths.  

Every node (ith instance of decision tree) will generate degree of membership based 
on training data. This process will produce a vector V (p, m) of degree of membership 
corresponding to the relationship between various input-output stimuli’s as follows; 

 

V =     (2.2.3) 

 

Here represents the input pattern vector for training. For 

classification of this input pattern vector of degree of membership with the fuzzy-
neural network system a target output corresponding each input pattern in the form of 
degree of membership may be defined as follows, 
 

          (2.2.4) 
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This vector of degree of membership will be used as input-output stimuli’s for 
training to the fuzzy-neural network system in support of generating the appropriate 
classification using the backpropagation algorithm.  

3   Experiments and Results 

In order to consistently validate our method, we performed two experiments for three 
different sets of data i.e. IRIS, image segmentation and Postoperative Patient Data. 
First we are attempting to classify both the real-world data with the conventional 
artificial neural network, later the classification is carried out using the proposed 
approach of learning decision trees using neural network. First experiment was 
executed with the varying neural network architectures for generating the possible 
appropriate classification. Different combinations of hidden layers for artificial neural 
network have been used for investigating the adequacy of simple neural network. We 
have chosen three combinations of hidden layers i.e. one, two and three hidden layers. 
In the second approach, initially we used to generate the decision tree. These decision 
trees are now mapped to feed forward neural network. A decision instance is 
represented by a node in the feed forward neural network. A node can be a simple 
neuron or again a simple feed forward neural network depending upon the capability 
to produce degree of membership based on decision tree instance. Here we have used 
a simple feed forward neural network for a node. This node gives the degree of 
membership based on the inputs applied to decision trees. Tolerance of neural 
network has taken for error i.e. (MAXE ≤ 0.001 or 0.1%).  IRIS data contains four 
fuzzy input constraints to decide classification in three different classes named IRIS 
Setosa, IRIS Versicolor, and IRIS Virginica. Here we are considering only necessary 
30 out of 150 rules for classification. Image segmentation contains 19 input 
constraints to decide classification in seven different classes named brickface, sky, 
foliage, cement, window, path and grass. Here we have all 210 training samples for 
learning of feed forward neural network based on backpropagation. Postoperative 
Patient data contains 8 input constraints to decide classification in three classes 
different named I (patient must be sent to Intensive Care Unit), S (patient prepared to 
go home) and A (patient is out of danger and ready to send to general hospital floor). 

3.1   Feed-Forward Neural Network 

Here we have performed the experiment for classification of IRIS, image 
segmentation and Postoperative Patient data with varying hidden layers. We have 
trained all the sample data for around 100 times. Figure 3 depicts the results. The 
results clearly show the difficulties of feed-forward neural network for learning and 
classifying various data. 

3.2   Fuzzy Decision Tree over Feed Forward Neural Network 

These decision trees are mapped to feed forward neural network as in figure-1. A 
decision instance is represented by a node in the feed forward neural network. A node 
can be a simple neuron or again a simple feed forward neural network depending  
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Fig. 2. Comparison of Classification of various data using Backpropagation algorithm 

upon the capability to produce degree of membership based on decision tree instance 
and input parameters. We have used a simple feed forward neural network for a node. 
Here we have performed the experiment for classification of IRIS, image 
segmentation and Postoperative Patient data with varying hidden layers inside a node. 
We have trained all the sample data for around 100 times. Figure 2 depicts the result. 
The results clearly show the superiority of presented approach for learning and 
classifying various data over artificial neural network. 

 

Fig. 3. Comparison of Classification of various data using presented approach 
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4   Conclusion 

We mapped a decision tree generated from data related real world problems to neural 
network. The different decision instances are mapped to various nodes in neural 
network. We propose a higher order system, where a single neural network is the 
switcher of a decision tree. This single neural network consists of various nodes 
mapped to decision tree instances. We have used the backpropagation learning 
algorithm for generating the degree of membership based on parameters i.e. decision 
tree instances, input-output stimuli’s, where the assessment of a discrete goal variable 
is driven by an incremental learning process.  

The results demonstrated that, large significant differences exist between the 
performances of backpropagation feed forward neural network and presented 
approach for the classification problem of IRIS, image segmentation and Post-
Operative Patient data in the terms of accuracy, convergence and epochs. These 
results recommend the adequacy of approach for classification. In first experiment i.e. 
using feed forward neural network, success percentage is quite lower for IRIS, image 
segmentation and Post-Operative Patient data.  
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Abstract. Fast-flux is a kind of DNS technique used by botnets to hide
the actual location of malicious servers. It is considered as an emerging
threat for information security. In this paper, we propose an approach
to detect the fast-flux service network (FFSN) using data mining tech-
niques. Furthermore, we use the resampling technique to solve imbal-
anced classification problem with respect to FFSNs detection. Experi-
ment results in the real datasets show that our approach improves the
detective precision and effectiveness compared with existing researches.

1 Introduction

Botnets have been created to perform a wide range of illegal activities [1]. An
emerging new use of botnets by cyber-criminals is a technique called Fast-Flux
Service Networks (FFSNs). FFSNs are used in many illegal practices, including
online pharmacy shops, money mule recruitment sites, phishing websites, illegal
adult content, malicious browser exploit websites and the distribution of malware
downloads, etc [2][5]. Generally speaking, FFSNs refer to rapidly changing the
mapping between IP address and domain name. Each victim’s request to visit
the web server will thus reach one of the bots, and then the bot will proxy
the request to the real server [9][12]. For this reason, it is hard to find out
the mother-ship, which is the control unit behind FFSN. ICANN (The Internet
Corporation for Assigned Names and Numbers) describes fast flux as ’rapid and
repeated changes to host and/or name server resource records, which results in
rapidly changing the IP address to which the domain name of an Internet host
or name server resolves [3]. According to the Honeynet Project [5], FFSNs are
categorized into two different types. One is single-flux and the other is double-
flux. The single-flux only puts the IP address of the domain name in flux, while
double-flux refers to dynamically and repeatedly changing the IP addresses of
both the bots and their authoritative DNS [12]. The main difference between
them is that the latter has an additional layer of protection.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 302–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



An Improvement for Fast-Flux Service Networks Detection 303

However, FFSNs have some features which make it become possible to detect
that kind of criminal behaviors [4]. The study of these malicious networks fo-
cused on characteristics of such networks. Alper Caglayan, et al [6] showed that
such networks share common lifecycle characteristics, and form clusters based
on size, growth and type of malicious behavior. Jose Nazario, et al [2] provided
heuristics principles on the identification and qualification of domains. T. Holz,
et al [7] presented the empirical study of fast-flux service networks and devel-
oped a metric to detect FFSNs. Three categories of features were extracted in
[8]. Wu, et al [9] used data mining technique for the detection of fast-flux service
networks based on four attributes.

Earlier works have their limitations mainly in the poor precision of detection
of FFSNs class, therefore it is difficult to put them into practical use. In this
paper, we propose a classification based approach to combine the resampling
technique with the feature extraction from the collected datasets for the fast-
flux detection. The experiment results show that our approach improves the
detective precision and effectiveness significantly.

The organization of this paper is as follows. Section 2 gives a brief introduction
on the characteristics of FFSNs and describes two additional extracted attributes
as the fast flux features. Section 3 presents our approach and framework based
on data classification technique for fast-flux detection. In Section 4, we show the
experiment results and comparative study with other works. In Section 5, we
have the concluding remarks and future work.

2 Characteristics of FFSN

Our detection strategy is based on the analysis of combination of following six
distinguished attributes as fast flux features.

2.1 Num asn

The number of unique ASNs (Autonomous System Number) for all A records,
which keep the mapping between hostname and an IP address of the host. Nor-
mally, benign domains tend to return only A records from one particular AS
(Autonomous System). On the contrary, FFSNs whose machines are scattered
across different ISPs may return A records from different ASs.

2.2 Num cname

The number of cname, where cname is an alias for one name to another. There
is a tendency that FFSNs have less than 1 cnames.

2.3 Num ns

The number of name server (NS). We can get it from NS records. The name server
can also be hosted in FFSNs. Therefore, it often returns several NS records. The
number of NS records returned by benign domains is usually very small.
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2.4 Num address

The number of different IP addresses. It is equal to the number of unique A
records returned in all DNS lookups. In the Fast-Flux Service Networks, the
mother-ship periodically updates these resource records to put new compromised
machines and remove the fault ones. For this reason, compared with benign
domains which commonly return only one to three A records, fast-flux domains
often return more A records.

In addition, we compute two additional statistic values as the fast flux feature
as follows, compared to existing approaches.

2.5 TTL (Time-To-Live)

It is a parameter that specifies the amount of seconds the response remains valid.
Most of the flux-agents are end-user machines and consequently they will appear
on-line and disappear very frequently [8]. To guarantee the high availability of
the service offered through the fast-flux network, the set of active flux-agents has
to be updated as soon as one of them changes its state. And then, the updating
state must be rapidly transmitted across the Internet until the victims knows
about the updating. So, the returned answers from DNS must change rapidly.
That is the reason that most of FFSNs have lower TTL. However, there are also
some benign domains especially Web portals with a low TTL. In spite of this,
our experiment shows that TTL is a distinguishing feature attribute. The lower
the time-to-live associated to the various DNS resource records of a domain, the
higher the probability that the domain is malicious. We take the average time-
to-live of A records as the value of TTL. The computational formula is defined
as follows.

TTL =

∑

1≤i≤nSINGLE
ttli

nSINGLE
. (1)

where the value ttli is the ttl value of ith A records, The value nSINGLE is the
number of IP addresses a single lookup returns.

2.6 Rate flux

Due to the restrictions in establishing an FFSN, an attacker does not have di-
rectly control over the machines which run the FFSN. That is, flux-agents may
go down at any time, so the attacker has to grasp a large number of compro-
mised machines to make sure that when some flux-agents are halted, others can
normally operate to offer illegal services. From these facts, we can infer that the
total number of flux-agents in FFSNs could be more than currently available
flux-agents, so we define rate flux as following value to measure the diversifica-
tion of IP addresses for a domain.

rate flux =
nALL

nSINGLE
. (2)
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Table 1. Comparison of five benign and malicious records using the selected features

num asn num cname num ns num address rate flux ttl fast flux

Benign 1 3 4 1 1 15,635 N
1 1 2 1 1 4,833 N
1 1 2 1 1 1,252 N
1 1 2 3 1 21,505 N
1 1 2 3 1 65,703 N

Fast flux 2 0 6 7 2.571 600 Y
2 0 2 3 1.667 12 Y
3 1 4 3 1.333 60 Y
4 0 7 4 1 300 Y
3 1 4 3 1.667 60 Y

Here we compute the value nALL as the number of unique IP addresses for
a domain collected within a time period. A value rate flux = 1 means that
the set of IP addresses remain constant within this period, which is common
for benign domains. In contrast, rate flux > 1 indicates that the total number
of IP addresses more than that of currently available IP addresses, which is a
strong implication of FFSNs.

Table 1 shows the feature attribute values of both fast-flux networks and
benign ones. It is observed that the rate flux value of benign is always 1, whereas
the value of fast-flux is almost always greater than 1. That is because fast-flux
networks change IP addresses frequently. What’s more, when it comes to ttl,
the value of fast-flux is far more less than benign networks. There are also some
differences of other feature attributes between fast-flux networks and benign
ones.

3 The Approach

In this section, we present a three-steps approach for the fast-flux detection
based on data classification technique, namely, generalize the patterns from the
observed and collected real data of both the fast-flux networks and the benign
ones to predict unknown URLs. First, we perform the DNS lookup with the
tool dig [11] to collect the observed information from the given URLs. Then,
the data is stored in database and we can extract discriminative features which
reflect the differences between fast-flux and benign networks through the feature
extractor. After that, feature vector is created. At last, these features are used
to train a classifier to detect fast-flux networks. When the classifier is built,
suspicious URLs were processed in the same way and feature vector are put into
the classifier to test whether they are fast-flux networks or benign ones.

According to [9], the KNN method could perform better than other ones. On
the other hand, due to imbalanced nature of the dataset, we here use the Random
Forest(RF) classifier to make a comparative study. That is because its character-
istics including bagging, ensembling and attribute raising that are widely used
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to overcome imbalanced data set problems and for classifier accuracy improve-
ment [10].The classifier based on this method which overcome imbalanced data
set problems performs better than generalized linear regression model.

4 Experiments and Analysis

The data sets of our experiment are from real data resource monitored by four
enterprises and corresponding departments. All of them are divided into two
domain lists, i.e., white list and black list. We use TP rate, FP rate, Precision,
Recall and F-Measure as performance measures. Furthermore, we also use ROC
Area [13] as performance metric.

The experiment is carried out in three parts. First, there are only four at-
tributes including num asn, num cname,num ns and num address. The first
part is a comparative study between these original attributes and combination of
rate flux. Meanwhile, considering the imbalanced class, resampling technique is
used to solve the problem. Next, compared with the results of the five attributes
we obtained, TTL is added to check whether the outcome could be improved
significantly. Finally, we use the data from three departments as training data,
the fourth department’s data as testing data to further confirm that the feature
attributes are discriminative during the real applications. In the following tables,
the negative class (character N) is represented as benign networks while the pos-
itive class (character Y) represents fast-flux. The distribution of experimental
instances are shown in Table 2.

Table 2. Positive and negative instances distribution

positive examples 1,697 6.34%

negative examples 24,806 93.66%

Considering the cost of predicting the fast-flux networks as benign ones is
much higher than classifying the benign ones as the fast-flux networks, therefore
we mainly focus on the classification performance of Y class. The results of the
first part are shown in Table 3.

Here we use KNN classifier with parameter K = 1 and Random Forest (RF)
classifier for the experimental comparison. With the Random Forest classifier,
the TP rate of class Y is only 0.175, although the precision is 0.924. It means
that most of the fast-flux networks are mistakenly classified. In contrast, using
the KNN as classifier, the TP rate is raised to 0.467, but the precision is reduced
to 0.249, so it is likewise an equally unsatisfactory result. Thus, we can conclude
that the combination of these four attributes is not enough to classify the data
into discriminating categories, and we therefore consider that new features need
to be added.

When the rate flux attribute is added, the improvement in TP rate of class
Y is 0.167 using the KNN classifier and the value of precision is nearly doubled.
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Table 3. Comparison between four attributes and five attributes with rate flux +

TP rate FP rate Precision Recall F-Measure ROC Area Class

Four KNN 0.467 0.095 0.249 0.467 0.325 0.686 Y
Attributes RF 0.175 0.001 0.924 0.175 0.294 0.878 Y
Rate flux KNN 0.634 0.046 0.485 0.634 0.55 0.794 Y
Added RF 0.582 0.006 0.86 0.582 0.695 0.959 Y
Resample KNN 0.741 0.031 0.621 0.741 0.676 0.955 Y

RF 0.751 0.036 0.584 0.751 0.657 0.952 Y

On the other hand, the precision is still inadequate since it is less than 0.5. If the
Random Forest classifier is used, the precision value reaches to 0.86. Meanwhile,
the TP rate declines by 5.2% in comparison with KNN. It is not difficult to
conclude that the rate flux attribute is a useful one, although the outcomes are
not very satisfactory. Then, the resample method is used to solve the problem
of imbalanced classification. After several tests, the results are better when the
resample rate is 1:4 or 1:5. On this occasion, TP rate is 0.751 most favorable,
reflecting an increase of 11.7% compared with the best results of the preceding
experiments. The low precision suggests that combination of five attributes is
not a qualified discriminative feature. However, taking the improvements of per-
formance into consideration, the rate flux is a discriminative attribute in the
classification.

In the second experiment, the attribute TTL is added. The results are shown
in Table 4. From Table 4, a significant increase in both TP rate and precision
value of class Y can be found in comparison with the results of five attributes,
when TTL attribute is added. The highest TP rate is 0.942, with a precision
value 0.955. What’s more, TP rate and precision value are always above 0.92
whether you choose the KNN or the Random Forest classifier. Therefore, the
TTL attribute is much more discriminative in the classification.

Table 4. Results of five attributes with TTL +

TP rate FP rate Precision Recall F-Measure ROC Area Class

Six KNN 0.942 0.003 0.955 0.942 0.948 0.999 Y
Attributes (K=1) 0.997 0.058 0.996 0.997 0.997 0.999 N
With RF 0.925 0.002 0.968 0.925 0.946 0.998 Y
TTL 0.998 0.075 0.995 0.998 0.996 0.998 N

Furthermore, the third experiment is made to simulate the detection of FF-
SNs under real-world conditions and to make sure that the combination of six
attributes is discriminative enough to classify them. In this part, there are 21,758
examples in the training set and 13,406 examples in the test set. Details of the
data set are shown in Table 5.

The results of the third part are as shown in Table 6.
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Table 5. The distribution of training set and test set

Training positive examples 1,551 7.12%
set negative examples 20,207 92.88%
Test positive examples 565 4.21%
set negative examples 12,841 95.79%

Table 6. Results of the third part of the experiment

TP rate FP rate Precision Recall F-Measure ROC Area Class

Six KNN 0.935 0.002 0.95 0.935 0.942 0.999 Y
Attributes (K=1) 0.998 0.065 0.997 0.998 0.997 0.999 N

RF 0.904 0.001 0.966 0.904 0.934 0.998 Y
0.999 0.096 0.996 0.999 0.997 0.998 N

The results illustrate that TTL is an important attribute in the classification
and the six attributes we selected as feature attributes are more discrimina-
tive. Compared with the results in [9], almost each performance index is greatly
improved. Taking run time into consideration, ca. 5 seconds is needed under
Random Forest classifier,while it takes almost 106 seconds to get the result in
KNN(K=1) classifier.Considering the data are collected under the real world
conditions, we can conclude that the method will be applicable to the detection
of fast-flux service networks.

At last, an additional experiment is made to determine whether TTL and
rate flux provide enough information for FFSNs detection.This time only TTL
and rate flux are chosen as feature attributes.Using the dataset of Table 2,TP
rate of class Y is 0.818 and 0.797 in KNN(K=1) classifier and Random Forest
classifier, respectively.If we use the dataset of Table 5 ,TP rate of class Y is 0.781
in KNN(K=1) classifier and 0.742 in Random Forest classifier.Apparently,the
combination of TTL and rate flux contains much information but not enough
to detect FFSNs.

5 Conclusion

In this paper, the framework of detecting fast-flux service networks based on data
mining technique is presented. Furthermore, we add two new attributes, i.e., fast-
flux rate and TTL into the features of fast-flux. The results show that TP rate
and Precision are significantly improved, which illustrates the combination of six
attributes are more discriminative. To sum up, the features we selected provide
an insight for implementing data mining techniques to detect fast-flux service
networks and make it applicable. In the future work, we are going to find an
effective way to classify legal fast-flux networks and the malicious ones.

Acknowledgments. This work was granted by Tsinghua National Laboratory
for Information Science and Technology.
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Abstract. We describe an online learning algorithm that builds a sys-
tem of decision rules for a classification problem. Rules are constructed
according to the minimum description length principle by a greedy algo-
rithm or using the dynamic programming approach.

Keywords: decision rules, online learning, greedy algorithm, dynamic
programming.

1 Introduction

Decision rules are widely used for representing knowledge extracted from large
volumes of statistical or experimental data and to build classifiers that predict
characteristics of new objects on the basis of information on existing objects [2].

Exact decision rules can be “overlearned”, i.e., may depend on the “noise”
present in the input data. Therefore, recent years particular attention has been
devoted to the study of approximate decision rules [2,1].

Models with shorter descriptions are commonly believed to be more appro-
priate among the models with similar accuracy (minimum description length
principle [3]). Following this principle, we are interested in building shortest
decision rules with a given degree of accuracy.

In this paper, we consider online algorithm for construction of an ensemble of
approximate decision rules. The decision rules built either by greedy algorithm
[1] or by an algorithm based on dynamic programming [4]. We assume in the
process of learning decision tables T1, T2, . . . , TN appear consecutively. During
learning, the algorithm is unable to store the tables itself, but can accumulate
some information about the incoming data.

2 Decision Tables and α-Decision Rules

Decision table is a rectangular table T with n columns filled with nonnegative
integers. Columns of the table are assigned attributes f1, . . . , fn. The table rows
� This research was supported by the Russian Federal Program “Scientists and Edu-
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are pairwise different, and each row r is labeled with a decision – a nonnegative
integer d(r). The rows are interpreted as tuples of attribute values.

A subtable of T is a table obtained from T by removing some rows with their
assigned decisions. Let j(1), . . . , j(t) ∈ {1, . . . , n} and b1, . . . , bt be nonnegative
integers. Denote by T (fj(1), b1) . . . (fj(t), bt) the subtable of the table T , contain-
ing the rows from T , which at the intersection with the columns fj(1), . . . , fj(t)

have numbers b1, . . . , bt respectively.
Let r = (a1, . . . , an) be a row of the table T . Denote by U(T, r) the set of rows

in T , which are labeled with decisions other than d(r). Let r′ ∈ U(T, r). We say
that an attribute fi separates the row r from the row r′ if at the intersection
with the column fi the rows r and r′ contain different numbers. Let α be a real
number, and 0 ≤ α < 1. The expression fi(1) = ai(1) ∧ . . .∧ fi(m) = ai(m) → d(r)
is called an α-decision rule for r and T if the attributes fi(1), . . . , fi(m) separate
from r at least (1−α)|U(T, r)| rows from U(T, r) (or, equivalently, leave at most
α|U(T, r)| rows from U(T, r) unseparated). The number m is called the length
of the decision rule.

3 Initial Classifier

Let T1, . . . , TN be a sequence of decision tables. For i = 1, . . . , N , the decision
table Ti contains n columns labeled with attributes f1, . . . , fn. Table rows are
pairwise different, and each row r is labeled with a decision – a number di(r)
from the set {1, ..., k}.

The online algorithm sequentially receives the tables T1, . . . , TN . The algo-
rithm processes one table Ti at a time and proceed with Ti+1 only after process-
ing of Ti is completed. Due to memory restrictions, only a limited information
about each table can be stored. The online algorithm starts with constructing
so-called initial classifier based on table T1.

Let us split the table T1 into two sub-tables Tc and Tp. The first subtable
is used for construction of a system of α-decision rules and the second one for
pruning of the system. Choose a real α, 0 ≤ α < 1, and apply either the greedy
algorithm [1] or the dynamic programming algorithm [4] to construct for each
row r of the table Tc an α-decision rule for Tc and r. The greedy algorithm al-
lows for an arbitrary α, but for the other algorithm, α values close to zero make
the construction computationally expensive. Let the following α-decision rule
was constructed for the row r: fi(1) = ai(1) ∧ . . . ∧ fi(m) = ai(m) → d1(r). Re-
place the right-hand side of this rule d1(r) with the tuple (p1, . . . , pk), where
for i = 1, . . . , k, pi is the number of rows with the decision i in the table
Tc(fi(1), ai(1)) . . . (fi(m), ai(m)). Denote by rule(Tc, r) the resulted rule

fi(1) = ai(1) ∧ . . . ∧ fi(m) = ai(m) → (p1, . . . , pk). (1)

We call (1) a generalized α-decision rule for Tc and r. Denote by Sα(Tc) the
constructed system of rules {rule(Tc, r) : r ∈ Tc}. This system can be used
as a classifier predicting decision for a new object O given by tuple of values
(b1, . . . , bn) of attributes f1, . . . , fn.
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We say that the decision rule (1) is applicable to the object O, if bi(1) =
ai(1), . . . , bi(m) = ai(m). Let us find all the decision rules in Sα(Tc) applicable
to the object O and sum up elementwise the tuples from the right-hand sides
of these rules:

∑

(p1, . . . , pk) = (
∑

p1, . . . ,
∑

pk). Denote the resulted tuple by
(P1, . . . , Pk). Then the predicted decision for the object O is the index of the
maximum element in the tuple (P1, . . . , Pk) (if the maximum is reached on sev-
eral elements, take the first one).

If none of the rules of Sα(Tc) is applicable to the object O, then we take the
most common decision in the table Tc as a decision for O.

Let us describe the operation of rule pruning. We assign to each rule rule(Tc, r)
from Sα(Tc) (see (1)) a set of real numbers A(Tc, r). For j = 1, . . . , m, consider
the rule

fi(1) = ai(1) ∧ . . . ∧ fi(j) = ai(j) → (p1, . . . , pk). (2)

Denote βj = 1− |U(Tc, r, j)|/|U(Tc, r)|, where |U(Tc, r, j)| is the number of rows
in U(Tc, r) that are separated from the row r by the attributes fi(1), . . . , fi(j).
Then A(Tc, r) = {β1, . . . , βm}. Denote A = ∪A(Tc, r) where the union is taken
on all rows r of the table Tc.

Let β ∈ A. For each rule rule(Tc, r) (see (1)) from Sα(Tc) find the minimum
j ∈ {1, . . . , m}, for which the rule (2) is a generalized β-decision rule for Tc and
r, i.e., 1 − |U(Tc, r, j)|/|U(Tc, r)| ≤ β. Denote the resulting rule by ruleβ(Tc, r)
and denote by Sβ(Tc) the constructed system of rules {ruleβ(Tc, r) : r ∈ Tc}.

For each β ∈ A, apply the classifier Sβ(Tc) to all rows of the table Tp. Denote
by ERβ(Tp) the number of rows from Tp, for which the predicted value of the
decision differ from the actual decision. Chose γ ∈ A that minimizes ERγ(Tp).
Denote S1 = Sγ(Tc). We call S1 the initial classifier for the table T1.

4 Online Algorithm

The classifier S1 continues to learn on the rows of tables T2, T3, . . .. Let r be one
of these rows and fi(1) = ai(1) ∧ . . . ∧ fi(j) = ai(j) → (p1, . . . , pk) an arbitrary
rule from S1 that is applicable to r. Then processing of the row r changes the
right-hand side of the considered rule: the value pl is increased by one, where l
is the decision of the row r. If no rule in S1 is applicable to the row r, then the
row r with its decision l is added to the table D, which was empty initially.

We assume that some threshold Δ is defined, such that once the number of
rows in D exceeds Δ, then finished processing the current table Ti, we construct
the initial classifier for the table D and denote it S2. It may happen that D
contains identical rows. Then from each group of identical rows we leave one,
labeled with the most common decision. Once the classifier S2 is built, all rows
are removed from the table D.

The initial classifiers S1 and S2 now form a new classifier, which continues
to learn on the rows of tables Ti+1, Ti+2, . . .. Let r be one of these rows. If S1

contains rules applicable to r, then the right-hand sides of these rules are changed
as described at the beginning of this section. Rules from S2 do not change in
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this case. Otherwise, if none of the rules from S1 is applicable to the row r, then
start working with the classifier S2. If S2 contains rules applicable to r, then
the right-hand sides of these rules are updated as described at the beginning of
this section. Otherwise, the row r with its decision is added to the table D. If
the number of rows in D exceeds the threshold Δ, then finished processing the
current table Tq, leave in the table D only pairwise different rows, construct the
initial classifier S3 for the table D, remove all rows from D, etc.

Let at some moment initial classifiers S1, S2, . . . , St have been built. This
sequence of classifiers continues to learn on the rows of not yet processed ta-
bles Te, Te+1, . . .. Let r be one of these rows. The algorithm looks for the min-
imum i ∈ {1, . . . , t}, for which Si contains rules applicable to r. Right-hand
sides of these rules are updated as described at the beginning of this section.
Rules of the systems S1, . . . , Si−1, Si+1, . . . , St remain unchanged. If the systems
S1, S2, . . . , St contain no rules applicable to r, then the row r with its decision
is added to the table D, etc.

The process of learning of the sequence of elementary classifiers S1, S2, . . . , St

can be interrupted at any time, and the sequence of modified initial classifiers
S1, S2, . . . , St (with modified right-hand sides of decision rules) can be used for
predicting the decision for a new object O, given by the values (b1, . . . , bn) of the
attributes (f1, . . . , fn) for this object. Let us find the minimum i ∈ {1, . . . , t}, for
which Si contains rules applicable to O. Then find in Si all decision rules appli-
cable to O and sum up their right-hand side tuples elementwise:

∑

(p1, . . . , pk) =
(
∑

p1, . . . ,
∑

pk). Denote by (P1, . . . , Pk) the resulting tuple. Then the predicted
decision for the object O is the index of the maximum element in the tuple
(P1, . . . , Pk) (if the maximum is reached on several elements, take the first one).

If none of the rules in the systems S1, S2, . . . , St are applicable to the object O,
then take the most common decision assigned to the rows of already processed
tables T1, . . . , TN as decision for the object O.

5 Conclusions

We described a new online algorithm for construction of an ensemble of approx-
imate decision rules. We are planning to compare it with the existing algorithms
on a representative set of test examples.
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Abstract. This work is devoted to the problem of automatic image an-
notation. This problem consists in assigning words of a natural language
to an arbitrary image by analyzing textural characteristics (low-level fea-
tures) of images without any other additional information. It can help to
extract intellectual information from images and to organize searching
procedures in a huge image base according to a textual query. We pro-
pose the general annotation scheme based on the statistical classes and
their classification. This scheme consists in the following. First we derive
the low-level features of images that can be presented by histograms. Af-
ter that we represent these histograms by statistical classes and compute
secondary features based on introduced inclusion measures of statistical
classes. The automatic annotation is produced by aggregating secondary
features using linear decision functions.

Keywords: automatic image annotation, image retrieval, low-level fea-
tures, statistical classes, inclusion measures.

1 Introduction

Nowadays there are many visual data bases accessible in Internet, but it is hard
to find such information because the usual textual query cannot be processed
properly because, in general, images do not have additional description, that can
be matched with textual representation. To solve this problem, it is necessary
to provide effective methods for automatic image annotation enabling to obtain
image annotations consisting of words and describing the image content.

There are many methods proposed for this problem which differ in some as-
pects such as image features representation and type of classifier used [1,2]. In
the recent investigations two main features representations are used equally of-
ten: regional representation, when each image region is described separately with
own feature vector, and global representation, where whole image is described by
the one vector of low-level features. While regional representation could be more
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00591.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 314–321, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Automatic Image Annotation Based on Statistical Classes 315

discriminative, the accurate image segmentation, required for it, is hard problem.
As regards annotation model, in the early years various probabilistic methods
dominate here (such as Bayesian classifiers and particularly Cross-Media Rele-
vance Models [3,4])along with some machine learning algorithms [2,5]).Recent
years Theory of Rough Sets proposes promising approaches for building classi-
fiers and dicision rules for solving this sort of classification tasks [13].

The automatic image annotation can be considered as a classification prob-
lem, in which we should choose words from a given vocabulary that describe the
image relevantly. In this investigation we don’t consider the semantic textual
descriptions and our output result should be the list of words ordered by their
significance or relevance to a given image. Let us notice that the annotations
based on textural features of images can reflect general image characteristics,
that represented by words like “day”, “night”, “sea”, “tree”, “city”, that de-
scribe the image in the whole. And we apply for this low-level features based
on evaluation of gradient, colors distribution and various textural characteris-
tics. As a rule, low-level image features can be some numerical characteristics
or samples that are often represented by histograms. This way of representation
can be used for describing colors distributions, the distribution of gradient di-
rections and so on. These characteristics should be stable to scene illumination
and scaling. Because it is hard to find an explicit connection between low-level
features and words, it is reliable to use methods from pattern recognition the-
ory: according to the problem statement we have a learning sample of annotated
images and we have to build decision functions allowing us to classify an arbi-
trary image using words of a given vocabulary. The main characteristics of this
pattern recognition problem are the following:

1. A huge number of classes to which a given image can belong (the number of
classes is equal to the cardinality of a chosen vocabulary).

2. Classes are not disjoint in general.
3. It is impossible precisely to define boundaries between classes.
4. As a rule, low-level features can be represented as independent samples of a

random variable that characterizes the image.
5. A very high dimension of feature space in which the classification problem

should be solved.

These characteristics of the classification problem can be easily derived by an-
alyzing its nature. For example, a city landscape can include houses, trees, and
some times a part of the picture can include sea outlook. If a picture contains a
palm, it is not possible to judge whether the photo was made within the house
or outside. If we classify images using words “morning”, “day”, “evening”, and
“night”, then it is hard to define exact boundaries between classes “day” and
“evening”, “night” and “morning”. Trying to increase classification quality, we
should increase the number of the used low-level features, and this also forced
the increasing of the feature space dimension. These characteristics lead to the
following classification scheme, depicted on Fig. 1.

According to this scheme, images should be processed first for extracting low-
level features, then the secondary features are derived, and the annotation is
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Fig. 1. General scheme of the automatic image annotation procedure

constructed by aggregating secondary features. Sometimes the secondary features
extraction can be understood as a problem of decreasing feature space dimension.

2 Low-Level Image Features

Low-level feature extraction is a very important stage of automatic annotation
algorithm because it provides the base for building the image representation.
Low-level features producing image annotation should meet humans perception
of image similarity and satisfy certain conditions allowing to consider these fea-
tures as patterns for classification. The main of such requirements are:

– invariance with respect to image scaling and to lighting conditions of image
capturing;

– small correlation of different features;
– the dimension of obtained patterns should be adequate to the size of key-

words used.

We briefly describe here four low-level feature types which are the most appro-
priate in terms of required properties. We have successfully used these features
for the construction of automatic image annotation system.
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Histogram of Oriented Gradient (HoG). allows to determine appearance
of the local objects and to recognize their shape [5]. HoG-descriptors calculation
is performed using rectangular grid. The grid consists of cells small spatial re-
gions which are combined to the larger intersected areas called “blocks”. For an
image the matrices of gradient magnitudes in horizontal and vertical directions
are calculated for each color channel in RGB color space. As the orientation
and magnitude for each pixel the corresponded values are taken from the color
channel with the maximal magnitude. For each cell one calculates histograms of
gradient orientations and joins histograms which compose a block. Histograms
belonging to the one block are normalized to achieve invariance to the local
illumination changes.

Measure of the background homogeneity. can be useful, for example, to
distinguish such scene types as landscape, portrait or macro [6]. Image back-
ground is relatively large areas of connected pixels with the similar color charac-
teristics. We calculate the measure of background homogeneity using Shannon
entropy of every color channel as described in [6]. To obtain more informative
image representation, we calculate the measure of background homogeneity for
particular rectangles from some regular grid.

Color histograms. evaluate an image property that is very important for
human visual perception — the color distribution. The key issue here is the
choice of the appropriate color space. We use for this purpose CIELab color space,
which has been designed as the space with linear color changes with respect to the
human perception. To achieve illumination invariance we discard L (“lightness”)
component of the (L, a, b) pixel component and build two-dimensional histogram
from two remaining chrominance color components.

Texture image features. Texture determines surfaces features which are help-
ful for objects recognition. One of the most informative texture features is one
introduced in [7], which includes such characteristics as coarseness, contrast and
directionality of the texture. The coarseness characterizes the size of the struc-
tural units forming the texture. The texture contrast value indicates how much
gray levels vary within an image and in what degree their distribution is biased
to white or black. Feature of texture directionality is calculated in the each pixel
from the magnitudes of histogram peaks. For detailed description of calculation
procedure see [7].

3 Statistical Classes Classification

3.1 Notion of Statistical Class

Here we use the notion of statistical class [8], that is introduced for the finite
case as follows. Let X = {x1, ..., xn} be a finite universal set and let U = 2X be
the powerset of X . Assume also that the space X is equipped with an additive
measure V , called the volume measure. Then any statistical class F can be
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defined by a probability measure P on U , that has to be absolutely continuous
w.r.t. the volume measure V . Because we assume that all low-level features can
be described by histograms, we postulate that any such feature is a histogram,
which can be considered as an evaluation of a probability distribution. Secondary
features are computed by using inclusion measures of statistical classes. Let us
remind that the absolute continuity for a finite case means that xi ∈ X and
P ({xi}) > 0 implies that V ({xi}) > 0. Therefore, it is possible to define a
probability density by formula

h(x) =
{

P ({x})/V ({x}) if V ({x}) > 0,
0, otherwise.

Using the probability density we can compute the probability of any event A ∈ U
by P (A) =

∑

x∈A

h(x)V ({x}). The last sum can be considered as an integral sum

for Lebesgue integral, therefore, we can write: P (A) =
∫

A

h(x)dV . It is clear that

the density function can be considered as another way for defining the statistical
class. In real applications, the volume measure has to be chosen such that it
can discriminate statistical classes in the best way. If we have no sufficient prior
information, we can assume V ({x}) = c > 0 for all x ∈ X , in particular, c = 1
or c = 1/n. Obviously, in the last case, V is a probability measure on U .

Theoretically the inclusion relation of statistical classes is introduced with
the so-called minimal events. In this paper we drop this theoretical construction
(see for details [8]). For practical applications it is sufficient to know of how this
relation is defined by using membership functions. Given a statistical class F ,
defined by a probability measure PF with a density hF (x). Then functions

μ
F

(x) =
∑

y∈X|hF (y)<hF (x)

PF ({y}) and μ̄F (x) =
∑

y∈X|hF (y)≤hF (x)

PF ({y})

are called a lower and an upper membership functions of the statistical class F
respectively. By definition, the statistical class F1 is included to the statistical
class F2, i.e. F1 ⊆ F2, if μ

F1
(x) ≤ μ

F2
(x) and μ̄F1(x) ≤ μ̄F2(x) for all x ∈ X . It is

possible to prove that membership functions define each statistical class uniquely.
In the next, we consider set-theoretical operations on statistical classes, which
are produced with the help of min and max operations:

1. μ
F1∩F2

(x) = min
(

μ
F1

(x), μ
F2

(x)
)

, μ̄F1∩F2(x) = min (μ̄F1(x), μ̄F2 (x)) are
membership functions of the statistical class F1 ∩ F2;

2. μ
F1∪F2

(x) = max
(

μ
F1

(x), μ
F2

(x)
)

, μ̄F1∪F2(x) = max (μ̄F1(x), μ̄F2(x)) are
membership functions of the statistical class F1 ∪ F2.
It is possible that a statistical class F1∩F2 or F1∪F2 can not be generated by
a probability measure. The sense of this can be explained while considering
classification problems.

An inclusion measure of statistical classes μ (F1 ⊆ F2) is introduced for
evaluating an inclusion degree of statistical class F1 into statistical class F2. By
definition, μ (F1 ⊆ F2) ∈ [0, 1] and μ (F1 ⊆ F2) = 1 iff F1 ⊆ F2. This functional
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can be introduced in various ways but we don’t describe all of them, see [8,9,10]
for details. Here we use the inclusion measure axiomatically defined in [9]. Let
us introduce an auxiliary function

ψ (F1 ⊆ F2) = 0.5

∫

X

(

μ
F2

(x) + μ̄F2 (x)
)

dP1 = 0.5
∑

x∈X

(

μ
F2

(x) + μ̄F2 (x)
)

P1 (x) .

Then an inclusion measure is defined as

μ (F1 ⊆ F2) = ψ (F1, F1 ∩ F2) + 1 − ψ (F2, F1 ∪ F2) .

Let us notice that in the last formula it is necessary to compute membership
functions of statistical classes F1 ∩ F2 and F1 ∪ F2.

3.2 Secondary Features Construction Based on Inclusion Measures

Let we have a set {S1, S2, ..., Sn} of etalon statistical classes. Then the classifi-
cation of any statistical class F consists in computing the following classifying
vector: (μ (F ⊆ S1) , ..., μ (F ⊆ Sn)).

Let us show how to get secondary features using inclusion measures. Since
secondary features can be represented by means of histograms, we can assume
that any low-level feature is a histogram being an estimate of probability dis-
tribution. For example, features derived with the help of the gradient directions
are the set of histograms that correspond to different positions of the scanning
window. Features of the texture coarseness and background homogeneity can be
represented as a histogram if we calculate these features for different positions
of the scanning window.

Let us consider how to build etalon classes. Assume that images are annotated
such that a keyword corresponds to the part or the whole image. For example,
if an image is annotated by a word “building”, then the annotation procedure
would be more precise if to compute the statistical characteristics for the part of
the image, where the building is situated. Assume that we are going to extract
secondary features for buildings. For this aim, we should first construct etalon
classes corresponding to the word “building”. The simplest way to do so is to
compute the histogram for the all images from the learning sample that are
annotated by the word “building”. Let us assume that the etalon class S has
been constructed that corresponds to the word w (“building”) and a to given
low-level feature b. Then for image classification, we has to compute histograms,
corresponding to b. Let these histograms are statistical classes F1, ..., Fl. Then
the secondary feature is p(w|b) = max {μ (F1 ⊆ S) , ..., μ (Fl ⊆ S)}. Notice that
in the last formula the maximum is used, because we choose in this case the
part of the image that is the most relevant to the keyword w. Notice also that
the inclusion measure has a probabilistic interpretation: it is a mean value of
conditional probability of minimal events that correspond to the etalon class S
provided that we observe the statistical class F . Hence, the greater value p(w|b)
is, the greater probability is that the image is annotated by the keyword w.
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3.3 The Aggregation of Secondary Features

Assume that on this stage we have a vocabulary W = {w1, ..., wm} and a set
of features B = {b1, ..., bn}. The secondary features are presented by p(wi|bj).
The next procedure is to construct aggregation functions ϕi : [0, 1]n → [0, 1],
allowing us to compute the global features: p(wi) = ϕi (p(wi|b1), ..., p(wi|bn)),
i = 1, ..., n, which have to give us the global evaluation that the keyword wi is
relevant to the analyzed image.

Let ϕ : [0, 1]n → [0, 1] be a aggregation function. Then it has the following
properties [11]: 1) ϕ(0) = 0 and ϕ(1) = 1, where 0 = (0, ..., 0) 1 = (1, ..., 1);
2) ϕ(x) ≤ ϕ(y) for x ≤ y, where x = (x1, ..., xn), y = (y1, ..., yn), and x ≤ y if
xi ≤ yi for all i ∈ {1, ..., n}.

If we assume that the features are independent, then it is rational to use linear

aggregation functions of the type ϕ(x) =
n
∑

i=1

aixi, where ai ≥ 0, i = 1, ..., n, and
n
∑

i=1

ai = 1. Let we annotate images by the rule: an image is annotated by a

keyword wi if p(wi) > εi. In this scheme parameters of aggregation functions ϕi

and non-negative numbers εi have to be estimated using the learning sample.
Suppose that the learning sample consists of N images. In this case any image
with a number k ∈ {1, ..., N} is described by a vector of secondary features
pk = (pk(wi|b1), ..., pk(wi|bn)), that characterizes the relevance of the keyword
wi. Assume further that we code with a number δk ∈ {−1, 1} the information
whether or not the image with the number k is annotated by the keyword wi,
assuming that δk = 1 if wi is in the image annotation, and δk = −1, otherwise.
Then we have a learning problem of searching a vector a = (a1, ..., an)T and a
threshold value ε so that the number of false classifications would be minimal. In
other words, the number of true inequalities δk(pka−ε) > 0 k = 1, ..., N , would
be maximal. Such optimization problem of finding a linear classifier is classical
in pattern recognition theory and can be solved by any well-known algorithm,
in particular, perceptron algorithm [12].

4 Conclusion

In this paper a problem of automatic image annotation is considered and a
general scheme for this problem is presented based on low-level image features
extraction. The key properties of low-level features are discussed and several
feature types with desired properties are briefly described. The further anno-
tation procedure is based on extracting secondary features from the low-level
features and on classifying the obtained patterns. For this purpose, the notion
of statistical class and the inclusion measure of statistical classes are introduced.
In our problem, we propose to use statistical classes for representing probabil-
ity distributions of low-level features. A scheme of classifying statistical classes
into etalon classes, which correspond to keywords, is given. The generation of
annotations is produced by the aggregation of secondary features using linear
decision functions constructed by the learning procedure based on perceptron
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algorithm. The presented annotation scheme is implemented practically and has
shown its effectiveness provided by the proposed algorithms.
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Abstract. In this paper we consider applications of well-known numer-
ical classifiers to the problem of character recognition (optical character
recognition, OCR). We discuss the requirements which these classifiers
should meet to solve this problem. Various modifications of well-known
algorithms are proposed. Recognition rates of these classifiers are com-
pared on real character datasets.

Keywords: OCR, numerical classifiers, recognition rate, naive Bayes,
nearest neighbor, decision tree, concept lattice.

1 Introduction

Numerical classifiers based on various machine learning methods [1] are often
used in character recognition software. These methods can automatically build
classification rules based on numerical descriptions of known objects (training
samples).

The aim of this paper is to determine, which learning approaches can solve
best the character recognition problem. Learned classifiers are tested as a part of
recognition schema, which is used in ABBYY OCR Technologies. Starting from
structure of this recognition schema, we formulate requirements for numerical
classifiers used in this schema. Experimental results obtained with classifiers used
in ABBYY OCR Technologies are compared with results of various ”classical”
algorithms.

2 ABBYY OCR Technologies Recognition Schema

Structure of ABBYY OCR Technologies recognition schema [2] is shown in
Fig. 1.

Three numerical classifiers on the left part of Fig. 1 are build on different sets
of numerical attributes. In classification process they operate in a sequence. If
the recognition confidence of at least one of them is enough, the classification
process stops.
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Fig. 1. ABBYY OCR Technologies recognition schema

Raster classifier operates directly with black-and-white character image with-
out numerical attributes calculation, so it’s description is beyond the scope of
this paper. Omnifont and contour classifiers are numerical and are based on fol-
lowing decision rule. First, training samples of each class are clustered separately.
The next stage of classification is organized using nearest neighbor classification,
where Mahalanobis distance [2] is used as a measure of distance between test set
objects and training set clusters.

In this schema the aim of numerical classifiers is only to build list of hypothesis
(possible results of classification) arranged by their confidence. The next stage of
classification process is differential classifier. It rearranges hypothesis list using
modified bubble sort, where each two hypothesis (classes) are compared by their
individual linear classifier.

3 Requirements Imposed on Classifiers by Recognition
Schema

Starting from considered recognition schema, we will formulate requirements for
any numerical classifier that can be potentially used in this schema.

High recognition rate. The most evident requirement for such classification algo-
rithm is its high recognition rate. Experimental results are listed in section 5, but
the approximate lower boundary is 95% right classification. If recognition rate
of some classifier is considerably lower than 95%, such classifier is not suitable
for practical symbol recognition.

Hypothesis generation. Recognition schema as a whole must be able to generate
not only single classification results, but several classification variants (hypoth-
esis). This feature allows us to correct recognition results using linguistic infor-
mation (dictionary) when all symbols are already recognized. Thus numerical
classifier is responsible for hypothesis generation inside the recognition schema.
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Therefore additional restriction is imposed on previous requirement. The clas-
sifier has to generate first right hypothesis in 95% cases, but moreover in the
rest 5% cases right hypothesis should appear in the hypothesis list.

Hypothesis confidence estimation. Classifier must be able to estimate confidence
of each hypothesis (in other words, probability that the hypothesis is right). This
property of algorithm allows us to use cut-offs to improve classification speed:
if one of the classifiers recognized symbol with high confidence, then it is not
necessary to launch next classifiers.

High speed. First of all, it is necessary to emphasize that this requirement implies
high recognition speed of the algorithm on particular training set (not asymp-
totic complexity of the algorithm). This particular speed obviously depends on
algorithm realization. Therefore here we formulate only qualitative requirement:
learning stage of classification should include the greater of algorithm complex-
ity. Results of learning stage ought to be saved in compact data, which can
further be easily and rapidly used on the classification stage. Such data is called
samples.

4 Modifications of Classical Algorithms

Nearest neighbor [3] and Naive Bayes [3] classifiers can be easily improved in
order to generate hypotheses and to calculate their confidence.

Nearest neighbor algorithm. We can simply consider k nearest neighbors instead
of single one. An obvious way to determine hypothesis confidence is to use dis-
tance function d (s, s0) (distance between object s and object/cluster s0 which
represent particular hypothesis).

The best complexity is shown by the modification of the kNN algorithm which
involves training set clusterization. In that case after stage of learning we need
to store only cluster centers (instead of all attribute values for all objects of
training set). Thus, we reduce complexity of classification stage. Notice that this
modification of kNN algorithm is used in ABBYY OCR Technologies [2] so it is
treated as a starting point for comparison.

Naive Bayes classifier. Modification of this algorithm which generates hypothe-
ses and calculates their confidence is also obvious. We can use probability value
to select best hypotheses.

The values of probabilities can be calculated in advance at the stage of learn-
ing. Therefore this algorithm is considered to be rather fast, but it needs large
amount of precomputed data.

5 Modifications of Decision Tree Classifier

Modifications of decision tree classifier [1] and concept lattice classifier [4] that
generate hypotheses is not as evident as previous modifications. Here we describe
two approaches to this problem.
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Post-fuzzification. Using classical algorithm C4.5 [5] without any changes to build
decision tree, we modify classification stage according to method described in [6].
Contrary to deterministic choice between two successors T1 and T2 of node T ,
we consider ”fuzzy” classification step, moving to the node Tj (j = 1, 2) with
probability pj . Integral probability of the classification path is the multiplication
of elementary step probabilities. Hypothesis list contains classification results
obtained with the most probable paths. To optimize classification we propose
well-known beam search method [7]. Probability pj can be defined as a piecewise
function which is constant inside the interval of the attribute ai values of objects
from the node Tj and exponentially decreases outside the interval.

Random forest. Another method which we propose for decision tree hypothesis
generation is random forest [8] (voting of several decision trees). Random forest
is widely used in order to improve classifier recognition rate (we show in section
6 that this effect really takes place). But we also involve random forest as a
decision tree hypothesis generation method.

Each of random forest decision trees is build using randomly generated subsets
of initial training set and attribute set. Classical random forest generates single
classification result (class which was returned by most of decision trees). We treat
classes returned by all trees as hypotheses list, and we define the confidence of
hypothesis as number of trees which returned such classification result.

Notice that this approach can be also applied to combine results of concept
lattice classifiers.

Combination of these methods. Considered methods can be easily combined.
Each tree from the random forest can generate several hypotheses itself. We can
define many methods to combine confidences obtained from different trees and
make the final list of hypotheses. For instance, we can use sum of each class
confidences or their maximum.

6 Experimentation

Experiments were carried out with the training set (9000 symbols, 73 numerical
attributes) and test set (300000 symbols) used in ABBYY OCR Technologies.

6.1 Decision Tree Construction Method

There exist various classical methods for decision tree construction. One can
perform input data discretization (using either, one or another cutting criteria)
and then launch C4.5 algorithm for discrete attributes. On the other hand, mod-
ification of C4.5 algorithm for continuous input data can be used. Perhaps, it
is better to use concept lattice instead of decision tree. That is the reason why
the first experiment aimed at the comparison of classification accuracies of the
approaches (Table 1).

Therefore, decision tree built directly on numerical data shows the best result.
Concept lattice classifier seems to be appropriate only for little training sets [4].
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Table 1. Recognition rates of tree-like classifiers

Algorithm Cutting criteria Recognition rate (%)

decision tree (discretization) entropy 87.63
decision tree (discretization) Hotelling coefficient 87.98
decision tree (no discretization) entropy 89.94
decision tree (no discretization) Gini index 88.32
concept lattice 89.60

Probably the reason is that it is difficult to find a priori logical relationships
between attributes in case when training set contains thousands of objects.

Notice that all classical decision tree algorithms do not reach required 95%
recognition rate, but further we deal with their modifications discussed above,
which demonstrate higher recognition rate.

6.2 Decision Tree Hypotheses Generation

Let us compare methods for decision tree hypotheses generation using best de-
cision tree algorithm from previous experiment. Recognition rates of these algo-
rithms are shown in Fig. 2. For post-fuzzification algorithm, N maximal number
of tree paths maintained by beam search algorithm. For random forest, N is a
number of voting decision trees.

Random forest demonstrates the best hypotheses generation, post-fuzzification
results are worse and almost independent from hypotheses count.

Fig. 2. Decision tree hypotheses generation comparison
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6.3 Recognition Rate Comparison

To compare recognition rates of considered algorithms, we measure percent of
cases, when right hypothesis appears among N first ones generated by algorithm.
This measure is defensible, because differential classifier which operates after
numerical classifier will possibly choose right hypothesis from any position in
the hypotheses list.

Experimental results are shown in Fig. 3.

Fig. 3. Classifiers recognition rate comparison

Therefore, the best results for all values of N are shown by random for-
est classifier. For high lengths of hypothesis list, high recognition rate is also
demonstrated by naive Bayes classifier.

6.4 Ability to Organize Cut-Offs Efficiently

Trying to estimate ability to organize cut-offs of various classifiers quantitatively,
we encounter following problem. An obvious way to organize cut-offs is to specify
the boundary value of confidence and to reject hypotheses with the confidence
less than this boundary value. But every classification algorithm uses its own
method to define confidence, so such confidences are incomparable. Our proposal
is to avoid direct comparison of confidences, considering following parametric
dependence. To characterize the strength of cut-off, we consider the average
length of hypotheses list N(p). To characterize recognition rate, we consider the
percent of cases when right hypothesis appears in hypotheses list.
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Fig. 4. Cut-offs organization comparison

Thus, for short hypotheses list, the best results are demonstrated by naive
Bayes algorithm. But for long hypotheses list best recognition rate is shown by
random forest classifier.

7 Conclusion

Based on our experiments, we can propose modifications of naive Bayes classi-
fier, nearest neighbor classifier (with clusterization) and random forest classifier,
which generate first hypothesis with more than 95% precision and a list of 8
hypotheses with 99% precision. The best recognition rate is reached by the ran-
dom forest algorithm (more than 97%). This algorithm also demonstrates best
ability to organize cut-offs on high average hypotheses list lengths.

References

1. Mitchell, T. M.: Machine Learning. McGraw-Hill, New York (1997)
2. Tereschenko, V.V.: Development and realization of new principles of handprint doc-

uments automatic recognition for computer systems. Moscow (1999) [in Russian]
3. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.

Springer-Verlag, New York (2001)



Machine Learning Methods in Character Recognition 329

4. Itskovich, L.A., Kolotienko, S.S., Kuznetsov, S.O.: Character recognition using con-
cept lattices: realization and comparison with the other approaches. Proceedings of
51th MIPT scientific conference, Moscow (2008) [in Russian]

5. Quinlan, J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos,
CA (1993)

6. Nguyen, H.S., Nguyen S.H.: Fast split selection method and its application in deci-
sion tree construction from large databases. International Journal of Hybrid Intelli-
gent Systems 2, 149–160 (2005)

7. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
(2010)

8. Breiman, L.: Random forests. Machine Learning 45/1, 5–32 (2001)



A Liouville-Based Approach for Discrete Data

Categorization

Nizar Bouguila

Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Canada, Qc, H3G 2W1

bouguila@ciise.concordia.ca

Abstract. In this paper, we describe a learning approach based on the
smoothing of multinomial estimates using Beta-Liouville distributions.
Like the Dirichlet, the Beta-Liouville is conjugate to the multinomial.
It has, however, an important advantage which is its more general co-
variance matrix. Empirical results indicate that the proposed approach
outperforms previous smoothing techniques based mainly on the Dirich-
let distribution.

1 Introduction

The phenomenal growth of internet has resulted in the availability of huge
amount of data composed of natural language texts, images and videos. A highly
desirable objective is the automatic organization and modeling of this content.
Several approaches have been proposed in the past. A common important step
in all these approaches is the transformation of these data into feature vectors
representations that can be used by learning algorithms. In many applications,
these feature vectors are discrete and describe the frequency of features (ex.
frequency of words in a given text or visual words in a given image) [10].

Various statistical techniques have emerged to meet the needs of scientific
workers dealing with discrete data. Finite mixture models are among the most
widely used techniques [4]. An important problem in this case is the choice of
an appropriate probability density function to model the data. Several studies
have shown that the widely used Gaussian distribution, based on asymptotic
normality assumption, is inappropriate for discrete data [14]. The multinomial
is then generally used as an alternative. This assumption has, however, several
drawbacks especially in the case of rare features since it is based directly on the
counts. The most widely used approach to overcome this problem is to use the
Dirichlet as a prior to the multinomial to smooth the multinomial parameters
estimates [11,8]. But, even this well-accepted technique has its own drawbacks.
Indeed, although some success has been reported, there has also been criticism
point out that this approach may not behave well when the covariance structure
of the parameters is not negative.

The goal of this paper is to present another alternative based on the Liouville
family of distributions from which we extract the Beta-Liouville. Like the Dirich-
let, the Beta-Liouville is conjugate to the multinomial, yet it has a more general
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covariance structure which makes it more useful in real-life applications. This
fact is shown through an application involving automatic objects categorization.

The rest of this paper is organized as follows. In Section 2 we present our
smoothing model. Experimental results are presented in Section 3. Finally, we
give our conclusion in Section 4.

2 The Smoothing Model

2.1 Background

Given a set of N frequency (or count) vectors X = {X1, . . . ,XN} representing
N textual (or visual) documents where Xn = (Xn1, . . . , XnV ), Xnv denotes
the frequency of feature (e.g. word, visual word, etc) wv in document n among
the set of features (e.g. vocabulary) V =< w1, . . . , wV >. V denotes the total
number of features (e.g. total number of words in the vocabulary). A given
vector X ∈ X is generally considered to have a multinomial distribution with
parameters π = (π1, . . . , πV−1):

p(X |π) ∝
V
∏

v=1

πXv
v (1)

where πv > 0 denotes the probability of observing the particular vth feature wv

in the document represented by X, and πV = 1 − ∑V−1
v=1 πv.

Consider the task of estimating the parameters over the set X . Using only the
frequencies, we obtain the following:

π̂v =
Xv

∑V
v=1 Xv

v = 1, . . . , V (2)

Many studies, however, have shown that this estimator is “poor” especially in
the case of large sparse data where the number of features is high. In this case the
frequencies can be small and then the observed proportions will tend to zero [3].
The usual approach to tackle this problem is to smooth the estimates by using
the Dirichlet as a prior to the multinomial (i.e. suppose that the multinomial
parameters are random variables which follow a Dirichlet distribution). As a
basis for such choice is the fact that the Dirichlet is conjugate to the multinomial
which gives us the following smoothed estimates [10]:

π̂v =
Xv + αv

∑V
v=1(Xv + αv)

(3)

where (α1, . . . , αV ) is the vector of hyperparameters (i.e. the parameters of the
Dirichlet taken as a prior). Smoothing approaches based on Dirichlet priors have
several main weaknesses. Indeed, in spite of its flexibility and the fact that it
is conjugate to the multinomial, the Dirichlet has a very restrictive negative
covariance matrix which violates generally experimental observations in practi-
cal situations [6,2]. Then, it is necessary to postulate a plausible prior for the
multinomial parameters.
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2.2 The Model

If a vector π = (π1, . . . , πV−1) has a (V − 1)-variate Beta-Liouville distribution
with positive parameters θ = (α1, . . . , αV−1, α, β), then [15]:

p(π|θ) =
Γ (

∑V−1
v=1 αv)Γ (α + β)
Γ (α)Γ (β)

V−1
∏

v=1

παv−1
v

Γ (αv)
(
V−1
∑

v=1

πv)α−∑ V −1
v=1 αv (1 −

V−1
∑

v=1

πv)β−1

(4)
It is worth pointing out that the Beta-Liouville is reduced to the Dirichlet when
α =

∑V−1
v=1 αv and β = αV . Let us assume that π follows a finite Beta-Liouville

mixture [5]:

p(π|Θ) =
M
∑

j=1

pjp(π|θj) (5)

where p(π|θj) is a Beta-Liouville distribution with parameters θj , {pj} is the set
of mixing parameters which are positive and sum to one, and Θ = {{pj}, {θj}}.
Having this mixture as a prior, the joint distribution of X and π is

p(X, π|Θ) ∝
M
∑

j=1

pj

[

Γ (
∑V−1

v=1 αjv)Γ (αj + βj)
Γ (αj)Γ (βj)

V−1
∏

v=1

π
αjv+Xv−1
v

Γ (αjv)
(6)

× (
V−1
∑

v=1

πv)αj−
∑V −1

v=1 αjv (1 −
V−1
∑

v=1

πv)βj+XV −1

]

Then, it is easy to show that the marginal is

p(X|Θ) ∝
M
∑

j=1

pj
Γ (

∑V−1
v=1 αjv)Γ (αj + βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

Γ (α′j)Γ (β′j)
∏V−1

v=1 Γ (α′jv)

Γ (
∑V−1

v=1 α′jv)Γ (α′j + β′j)
(7)

where α′jv = αjv + Xv, α′j = αj +
∑V−1

v=1 Xv and β′j = βj + XV . Having the joint
and marginal distributions in hand, we can show that πv can be estimated as
follows:

π̂v =
M
∑

j=1

p(j|X)
α′j

α′j + β′j

α′jv
∑V−1

v=1 α′jv

v = 1, . . . , V − 1 (8)

π̂V = 1 −
V−1
∑

v=1

π̂v (9)

where

p(j|X) =
pj

Γ (
∑ V −1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V −1

v=1 Γ (αjv)

Γ (α′
j)Γ (β′

j)
∏V −1

v=1 Γ (α′
jv)

Γ (
∑ V −1

v=1 α′
jv)Γ (α′

j+β′
j)

∑M
j=1 pj

Γ (
∑ V −1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V −1

v=1 Γ (αjv)

Γ (α′
j)Γ (β′

j)
∏V −1

v=1 Γ (α′
jv)

Γ (
∑ V −1

v=1 α′
jv)Γ (α′

j+β′
j)

(10)
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and can be viewed as the posterior probability that the vector X will be
assigned to cluster j when the marginal distribution p(X|Θ) in Eq. 7 is taken
as the parent distribution to model the data. Note that when M = 1, Eq. 8 is
reduced to

π̂v =
α′

α′ + β′
α′v

∑V−1
v=1 α′v

(11)

Finally, it is noteworthy that Eq. 11 is itself reduced to Eq. 3 if we take α =
∑V−1

v=1 αv and β = αV .

2.3 Model Learning

According to Eq. 8 the smoothing of the multinomial parameters requires the
estimation of p(j|X), αj , βj and αjv. Traditionally, the estimation of finite
mixture models has been based on the maximum likelihood approach:

max
Θ

{

p(X|Θ) =
N
∏

n=1

p(Xi|Θ)
}

(12)

In some situations, however, maximizing the likelihood is not straightforward or
appropriate. In our case, for instance, the maximization of the likelihood leads
to the following estimate for the pj parameters:

pj =
1
N

N
∑

n=1

p(j|XN ) (13)

However, a closed-form solution does not exist for the θj = (αj , βj , {αjv}) pa-
rameters. Thus, we use a Newton-Raphson approach, based on the first and
second derivatives of the loglikelihood function, to estimate these parameters:

θnew
j = θold

j − (∂2 log p(X|Θ)
∂2θj

)−1 ∂ log p(X|Θ)
∂θj

(14)

Note that one needs to have a criterion to allow a trade-off between goodness of
fit and the complexity of the smoothing mixture model. Here, we use the MDL
criterion 1 given by [25]

MDL(M) = − log(p(X|Θ)) +
1
2
Np log(N) (15)

where Np = M(D+3)−1 is the number of free parameters in the mixture model.
Concerning the initialization, we use of the spherical K-means [13], rather than
the well-known K-means with Euclidean distance. This choice is justified by the
fact that count data lack a Euclidean structure since they are represented in
terms of multinomial models. The spherical K-means is applied in conjunction
1 One may use other selection criteria (see, [9], for instance, for discussions about other

selection criteria).



334 N. Bouguila

with the method of moments [10] based on the first and second moments of the
Beta-Liouville distribution. Having the initialization algorithm and the MDL
criterion in hand, the complete smoothing parameters learning algorithm can be
summarized as the following:

Algorithm
For each candidate value of M ∈ [Mmin, Mmax]:

1. Apply the initialization algorithm.
2. E-Step: Compute the posterior probabilities p(j|Xn) using Eq. 10.
3. M-Step:

(a) Update the pj using Eq. 13.
(b) Update the θj using Eq. 14.

4. Calculate the associated criterion MDL(M) using Eq. 15.
5. Select the optimal model M∗ such that: M∗ = arg maxM MDL(M)

3 Experimental Results

We are now ready to illustrate how to apply the learning approach developed
in this paper. We consider in particular the problem of objects categorization
in images. Indeed, an increasingly overwhelming quantities of images are gener-
ated everyday. A crucial problem is the analysis, modeling and categorization of
these images [8,1,7]. The main goal of this section is to compare our approach to
previous smoothing techniques. The majority of these techniques can be viewed
actually as special cases of the Dirichlet-based smoothing such as the one pro-
posed in [18,19] which suggests adding a 1

2 count to every frequency (Jeffreys
smoothing). In an earlier work, the suggestion was to add a count of one to
every frequency [17] (Laplace smoothing). The same suggestions can be found
in [16]. The authors in [20] have increased the counts by 1

V , where V is the
dimensionality of the vector (Perks smoothing).

Objects categorization involves two main phases. First, feature extraction
which maps each image to a vector in high-dimensional space. Second, the clus-
tering of the resulted vectors. Several approaches and techniques have been pro-
posed in the past. In particular, an interesting approach based on image patches,
extracted at points of interest, has been proposed in [12]. This approach that
we will consider here can be summarized as follows. First, up to 1000 square
image patches are taken as image features and are extracted around interest
points obtained using the approach described in [22]. Moreover, 300 patches are
added from a uniform grid of 15 × 20 cells that is projected onto the image.
The main goal of these added patches is to take into account the homogene-
ity of objects. Having the patches in hand, a PCA dimensionality reduction is
applied by keeping only 40 coefficients. The resulting data are then clustered
with a Linde-Buzo-Gray algorithm [21] by considering the Euclidean distance.
Thus, each image patch is assigned to a cluster which allows to represent each
image by a histogram of cluster frequencies (i.e. each entry in the histogram is
created by counting how many patches belong to its associated cluster). As each
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image is now represented by a vector of counts, we can obviously assume that it
is generated by a multinomial distribution which parameters can be estimated
using our developed algorithm. In the following experiments we set the number
of clusters to 512 (i.e. we use 512-dimensional count vectors to represent the
images) and the results are averaged over 10 runs of the algorithm.

Two image databases are selected to evaluate our approach and are the
Columbia Object libraries (COIL-20 and COIL-100). COIL-20 contains 1440
images of 20 objects (72 images per object) [23]. Each object is represented in
the database by 72 images obtained by the rotation of the object through 360◦

in 5◦ steps. COIL-100 complete the COIL-20 with additional 80 objects (72 im-
ages per object) and consists then of 7200 images [24]. Figure 1 shows some of
the 20 objects in the COIL-20 and figure 2 shows examples of images from the
additional 80 objects. Both databases have been divided into disjuncts sets of
50% training and 50% test images.

Fig. 1. Examples of images from the COIL-20 data set

Fig. 2. Examples of images from the COIL-100 data set

Table 1 shows the recognition rates for the COIL-20 and COIL-100 databases
using the multinomial with several smoothing techniques.

Table 1. Recognition rates (%) for the COIL-20 and COIL-100 databases using dif-
ferent smoothing methods

Method COIL-20 COIL-100

Laplace 83.11 ± 0.32 81.07 ± 0.66
Jefferys 82.82 ± 0.54 80.95 ± 0.59
Perks 82.79 ± 0.86 80.67 ± 0.54

Dirichlet 84.26 ± 0.65 83.28 ± 0.71
Beta-Liouville 87.09 ± 0.63 86.22 ± 0.64

According to the categorization results, we can see clearly that Beta-Liouville
smoothing performs better than the other approaches which can be explained by
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the flexibility of this model and by the fact that the other smoothing techniques
are actually just special cases.

4 Conclusion

A new smoothing technique for multinomial parameters estimation has been
proposed in this paper. The proposed approach is based on the Beta-Liouville
distribution which general covariance nature together with its conjugacy to the
multinomial make it an attractive alternative to the Dirichlet. The proposed
model is illustrated by an application which involves objects categorization. Ac-
cording to this application, we find that our smoothing approach performs better
than other previous approaches. The model is capable of two forms of extension
of practical importance. The first one could involve the introduction of feature
selection to automatically detect the most important features for a given appli-
cation. The second one could involve the online learning of parameters to take
into account the dynamic nature of databases. Finally, it is noteworthy that
the proposed framework could be applied also for other problems such as text
segmentation and natural language processing.
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Abstract. A new modification of the method of directed alternatives’
enumeration using theKullback–Leibler discrimination information is pro-
posed for half-tone image recognition.Results of an experimental study in
the problem of face images recognition with a large database are presented.
It is shown that the proposed modification is characterized by increased
speed of image recognition (5-10 times vs exhaustive search).

1 Introduction

Processing large image databases [1] is a well-known challenging problem [2].
Traditional image recognition [3] methods based on exhaustive search [4] cannot
be implemented in real-time applications. Thus method of directed enumeration
of alternatives (MDEA) has been proposed [5]. The practical capabilities of our
method are limited because of distances matrix containing the distances between
given alternatives from the database. This matrix could be too huge to be stored
in the RAM. In this paper we propose novel MDEA modification to decrease
recognition complexity using the most valuable part of this matrix.

The rest of the paper is organized as follows. Section 2 introduces new MDEA
modification to reduce the amount of necessary memory. In Section 3, we present
the experimental results in application to faces recognition problem. Concluding
comments are presented in Section 4.

2 MDEA Modification

In this paper, we use a histogram-based method [6], which applies the minimum
information discrimination criterion [7]. Let a set of R half-tone images Xr =
‖xr

uv‖ , (u = 1, U, v = 1, V , r = 1, R) be specified. Here U and V are the image
height and width, xr

uv ∈ {0, 1, . . . , xmax} is the intensity of an image point with
coordinates (u, v); and xmax is the maximum intensity. It is required to assign
a new input image X = ‖xuv‖ to one of the R classes.

According to approach [8], we consider a random variable - color of image
Xr. Its distribution Hr =

[

hr
1, h

r
2, . . . , h

r
xmax

]

is known as ”color histogram” [4].
Then color histogram H is defined for the input image X . It is required to verify

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 338–341, 2011.
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R hypotheses on the distribution Hr. The optimal decision in Bayesian terms is
equivalent [7] to the minimum discrimination information criterion

ρKL (X/Xr) =
xmax
∑

x=1

hx ln (hx/hr
x) → min . (1)

Statistic ρKL(X/Xr) defines the Kullback–Leibler information discrimination
[7]. Based on metric properties of discrimination (1), we first transform criterion
(1) to a simplified form, suitable for practical implementation:

ρKL (X/Xr) < ρ0 = const (2)

Here ρ0 is the threshold for the admissible discrimination on the images from
one class due to their known variability.

Following the general computation scheme (1), (2), we reduce the image recog-
nition problem to a check of the first N variants X1,. . . ,X N from the database.
Let us arrange these images in decreasing order of their discriminations (1). As a
result, we have an ordered sequence of template images {Xi1 , Xi2 . . . XiN }. This
procedure is used to obtain the first local optimum XiN . In the second step, for
the image XiN from the matrix P = ‖ρij‖ of values ρij=ρKL (Xi/Xj), we find
the set of M < R images X(M) =

{

XiN+1 , . . . XiN+M

}

:
(

∀Xi /∈ X(M)
) (

∀Xj ∈ X(M)
)

Δρ (Xi) ≥ Δρ (Xj) (3)

where
Δρ(Xj) = |ρKL (Xj/Xi) − ρKL (X/XiN )| (4)

We add one more (M + 1)-th element XiN+M+1that did not fall in the control
sample in the previous computation step. As a result, for the analysis we obtain
the second sample

{

Xi1 , , ..., XiN , . . . XiN+M+1

}

. Next, all computations of the
first step are repeated cyclically until, in some step, an element X∗ satisfies
condition (2).

Generally, there may be a considerable gain in the total number of checks
(1) compared to the database size R. It’s explained by the fact that probability
p of desired image X∗ containing inX(M), usually exceeds the probability of
belonging X∗ to M alternatives for random choice

p = P
{

X∗ ∈ X(M)
}

>> p0 = M/R (5)

Actually, the probability p (5) should depend also on the distance between
X and XiN . We could assume that image XiN contains valuable information
to obtain X∗ if it’s closer (or further) to object X , than the majority of other
images from database. To show this fact, we measure the dependence of p from
ρKL (X/XiN ) for large faces database [9]. The 6000 photographs of 400 different
people were selected as templates R = 900 of the most different images using
clusterization [4].

Parameter M was fixed to 64. Dependence of probability p on the discrim-
ination ρKL (X/XiN ) is shown at Fig.1. Based on it we suppose that though
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Fig. 1. Dependence of Probability p on ρKL (X/XiN )

minimum probability p (0.25 based on this graph) is quite greater than random
search success probabilityp0=M/R=64/900=0.07, the most valuable (in terms of
further computations decrease) distances are concentrated in the Fig.1 ”corners”

Thus we propose to store not all matrix P, but only the most T lower and
the most T higher distances to reference images for each image from database.
Here T=const<R/2 is parameter of proposed modification. The ratio 2T/R de-
termines the decrease of memory usage. This approach causes modification of
rule (4) to select set X(M). If stored part of P isn’t enough to determine X(M)

based on (4),(5) we just miss this step and select randomly one of image from
database until procedure (4),(5) could be applied.

3 Experimental Results

The face recognition procedure was tested for large database [8]. The photos were
preliminary processed to detect faces using OpenCV library. Then detected faces
were divided into 16 (4x4) parts for information discrimination computation.
Each part was normalized [4]. Such fragmentation [10] is used to take into ac-
count heterogeneous illumination of images. The discrimination between images
was calculated as a sum of discriminations (1) between these parts.

In the first case 1000 test images and the Kullback–Leibler discrimination
(1) were used with the original MDEA and the following method parameters
were chosen: N = 9 and M = 32, ρ0 = 0.19 . Using the MDEA (2)–(6), we
obtained an average number of discrimination (1) calculation equal to 11.1% of
R. In this case, condition (2) was not satisfied for any template from the given
database for 6.9% of the test images; therefore, all R alternatives were checked.
The recognition accuracy is 98.1%.

In the second case, proposed modification was used and the parameter T = 32
was chosen. This approach shows practically the same result as for the previ-
ous experiment. With a probability of 90%, the number of template images
to check does not exceed 15% of R. The error probability increases a bit (to
2.3%) with 12.8% of average number of checks. The increase of latter fac-
tor to less than 2% is appropriate to the most applications as we achieved
memory economy in 2×32/900×100%≈7%. I.e. the proposed modification needs
900×2×32×(4+8)/1024=675 Kb additional RAM (in comparison with 9.27 Mb



Image Recognition with a Large Database Using Method 341

RAM for original implementation). The memory to store whole database (count-
ing for 1 byte per pixel) is approximately 8Mb.

At the end, MDEA was used with conventional l1 metric to compare pix-
els, instead of information discrimination (1). The error probability increases
to 4.5%, and the average number of distance calculation was 21% of R. And
again, proposed modification achieves the same accuracy with 23.5% distance
calculations and even 4Mb RAM as l1 is a symmetric metric.

4 Conclusion

The problem of increasing the computation speed has attracted considerable
interest of experts in both the theory and practice of pattern recognition. Despite
a huge number of approaches, most of the algorithms compare an input image
with each template image, and unavoidably cannot be implemented in real-
time mode for large databases. For solution of that problem MDEA [5] may
be used to reduce the computational complexity by 5-10 times. The efficiency
of this method depends on the matrix of distances between given alternatives
from the database. Storage of the whole matrix demands twice more RAM in
comparison with the amount of memory needed for image database storage This
paper showed that proposed modification overcomes this limitation both for
information discrimination [7] and conventional l1 criterions [4].
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Abstract. We discuss theoretical foundations and practical implemen-
tation of the compound object identification methodology based on in-
formation granules, fuzzy relations, and the architecture of comparators.
We report its application in the commercial project aimed at visualiza-
tion of the Polish Self-Government Elections in 2010, where one of the
main technical challenges was to be able to identify the administrative
areas by basing on their imprecise images.

Keywords: Comparators, Fuzzy Sets, Image Analysis, Granulation.

1 Introduction

Generally, the paper deals with a task of image-related spatial object identifica-
tion based on available finite set of already known objects (see e.g. [2]).

The process of identification can be designed in many ways. One may measure
some properties, e.g., the lengths of a quadrangle’s edges, and identify it as a
square if the lengths are positive and equal to each other. This simple example
illustrates the following two stages: obtaining information about the object on
the basis of various kinds of techniques and, secondly, interpreting the results
of the first stage (see e.g. [1]). The second phase does not refer to the object
but only to its measured values, which are further subject to transformation and
logical interpretation. Measures respond to some questions formulated as logical
sentences that lead through a set of rules towards the final identification.

Another methodology is to demonstrate the identity to an already known
reference object [3]. For the above example, it would mean finding the identical
quadrangle known as a square and consequently deciding that the investigated
object is a square as well. The objects’ identity may be examined relatively to
the given scopes. Various scopes can be analyzed using various features extracted
analogously to the above-discussed rule-based approach, although they are now
used for the object comparisons rather than for the logical interpretation.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 342–349, 2011.
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Regardless of whether objects are compared to each other or matched against
some rules, it is impossible to expect such comparisons/matchings to provide
the exact outcomes. Actually, in such areas as compound object identification or
recognition, there is a need to work with similarities at the level of both whole
objects and their particular components (see e.g. [6]). In our previous research
(see [8] for further references), we investigated various applications of compound
object comparators based on similarities modeled using fuzzy relations [4].

A comparator is a logical structure responsible for the process of comparing
objects by means of predefined features. Its performance depends on the choice
of reference objects and the search method. It can also refer to the repository
of forbidden objects and features. If object b is not forbidden for object a, we
compute fuzzy membership of (a, b) to a fuzzy similarity relation. Definition of
membership can be adjusted to reflect a general similarity within a given object
class or, e.g., similarity of some specific aspects of objects. Membership can be
represented as a function µ : R × R → [0, 1]. The degree of similarity can be
further treated as an input to an activation function f : [0, 1] → {0, 1}, with a
threshold adjusted according to the expert knowledge or, e.g., some heuristic op-
timization process. As a result, for each input object, we can get: a) no reference
objects (because of forbidden features or not exceeding the activation threshold
for µ), b) exactly one reference object, or c) multiple reference objects [8].

In this paper, we report a usage of object identification methodology in the
project aimed at visualization of the results of the Polish Self-Government Elec-
tions in 2010.1 The task included color-based presentation of attendance in the
administrative areas of Poland, such as provinces, counties, and communes.
There were three sources of input data: 1. Attendance information for every
commune; 2. Contour of every commune; 3. The map of Poland divided onto
communes. Attendance results and contours were labeled with the communes’
administrative codes. However, because of the project limitations, those codes
were not present at the map of Poland. Thus, there was a need to identify
communes on the map. As manual identification was out of the question and
the quality of images extracted from the map did not allow for exact matching
(different scales, resolution, etc.), the implementation was based on the above-
discussed comparators, where the input commune images constituted the repos-
itory of reference objects and the images extracted from the map of Poland were
treated as the objects to be identified. We refer to Figure 1 for illustration.

The paper is organized as follows: Section 2 shows how to extract the reference
images from the map of Poland. Section 3 explains how to granulate images in
order to approximate their features. In particular, we show how to express the
coverage of granules by the investigated areas, as well as how to find extreme
points in each of granules and encode directions of lines connecting those points
as a string. Section 4 discusses how to introduce a fuzzy relation over granulated
representations of images. Section 5 presents an illustrative example and final
results. Section 6 describes some of our future research directions.

1 wybory2010.pkw.gov.pl/att/1/eng/000000.html
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Fig. 1. The administrative area identification schema. The arrows correspond to par-
ticular stages of the process outlined in Sections 2-4.

2 Data Segmentation

The first phase of our application aims at extracting the images of particular
administrative areas of Poland. Usually, they are connected. Otherwise, further
steps involve comparisons of the connected subareas in order to identify the
whole areas. There are also cases of areas contained in another areas. Surely, all
such situations need to be detected and appropriately processed.

At the beginning, we need a map of the administrative divisions of Poland. We
can assume that the map has two colors: RGB(255,255,255) for the inside area
and RGB(0,0,0) for the borders. The first step is to eliminate the area outside
the borders of Poland. We use the flood fill2 method to paint the external area
with RGB(125,125,125). Then we compute the standard histogram [7]. Its score
for brightness 255 indicates how many pixels are not painted.

The next step is repeated until there are no RGB(255,255,255) pixels left. We
start from the left side of the map and choose a fixed number of coordinates
of RGB(255,255,255) pixels. For each chosen pixel, we use flood fill to repaint
the corresponding (sub)area to RGB(50,50,50). Then we read the newly colored
pixels, add the single-pixel border, and save the new image with the coordinates
of the corresponding pixel in its filename. The image stores the smallest polygon
that can cover the given area. The polygon’s size is [0, w]× [0, h], where w and h
denote the area’s width and height. The area is in RGB(250,250,250), the border
is in RGB(0,0,0), and the rest of polygon is in RGB(255,255,255).

After extraction of each new image file, we repaint RGB(50,50,50) pixels on
the main map to RGB(125,125,125) and partially recompute the histogram.3 The
termination condition – no RGB(255,255,255) pixels left on the map – means
that there are no more areas to extract. This finishes the segmentation phase
and defines the input to the next steps, as illustrated in Figure 2.

2 en.wikipedia.org/wiki/Flood_fill
3 The map’s fragment to be recomputed is decided using an additional algorithm.
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Fig. 2. Activity diagram of the described algorithm. We refer to [8] for more details
about the third phase, at the level of arbitrary compound objects.

3 Image Granulation

Once the areas are isolated, we need a layer that describes them in a way con-
venient for imprecise comparisons. This section outlines how to construct such
a layer by means of information granules [6]. In Section 4, we show how to use
the obtained descriptions to conduct the identification process.

Resolution of every image is parameterized by integers m and n, such that
0 < m < w and 0 < n < h. This means dividing the image onto n×m granules.
Parameters m and n can be chosen based on the expert knowledge or tuned
experimentally. They have a significant impact on the quality of the process. If
m and n are too high, the algorithm may not find a sufficiently good solution.
If they are too low, we can get many equivalent solutions. Resolution may vary
for each of images and, actually, it can be recomputed dynamically if the images
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are stored appropriately (see Section 6; cf. [8]). However, when comparing two
images, we should set up the same m and n for both of them.

For a given image, denote the set of its granules by G = {g1, . . . , gn×m}. Each
granule corresponds to a rectangular subsurface of the image’s polygon. Using
granules, we can approximate various aspects of images, such as size, proportions,
or shape. In this paper, we focus on the following features:

Coverage. The idea is to compute the degrees of granules’ overlap with the
area represented by the given image. We can easily do it by computing each
granule’s histogram and reading its score for brightness 250. For image a and its
granule gi ∈ G, let us divide this score by the number of pixels in gi and denote
the result as cova

i . We will use such coefficients in the next section in order to
define similarities between the pairs of images.

Contour. The idea is to choose some extreme points and connect them. For
every gi ∈ G, extreme points look as follows:

(xi
←, yi

←), (xi
→, yi

→), (xi
↑, y

i
↑), (xi

↓, y
i
↓) (1)

with coordinates defined over Ci, which is the contour of gi:

xi
← = min{x : (x, y) ∈ Ci} yi

← = max{y : (x, y) ∈ Ci, x = xi
←}

xi→ = max{x : (x, y) ∈ Ci} yi→ = max{y : (x, y) ∈ Ci, x = xi→}
yi
↑ = min{y : (x, y) ∈ Ci} xi

↑ = max{x : (x, y) ∈ Ci, y = yi
↑}

yi
↓ = max{y : (x, y) ∈ Ci} xi

↓ = max{x : (x, y) ∈ Ci, y = yi
↓}

(2)

The next step is to draw straight lines between the above points and describe
them by some linguistic variables. For each image and its related set of granules
G, consider (x0, y0) such that:

x0 = min{x : (x, y) ∈ ⋃

i gi}
y0 = max{y : (x, y) ∈ ⋃

i gi, x = x0} (3)

Starting from (x0, y0), we can express directions of lines leading to each next
extreme point4 by means of variables such as right, up, left, down, right-up,
right-down, etc. Going further, we can label each image with a string that is
concatenation of abbreviations of particular directions. For instance, we can use
two-letter codes, e.g.: RR for right and RU for right-up.

We may also use various types of so called modifiers to describe directions
more or less precisely. The lengths of strings depend on the choice of m and n,
as well as the applied modifiers. As already mentioned, the choice of granula-
tion’s resolution should be the same for each pair of compared objects. However,
modifiers responsible for the precision of directions may differ.

In summary, the output of this phase takes the form of the set of images’
descriptions, computed under specified granulation parameters.
4 We choose each next extreme point clockwise, basing on the 8-point neighborhood,

remembering the recently visited points in order to backtrack if necessary.
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Fig. 3. The Wejherowski County (grey). One of the areas is selected for identification
(dark-grey). Its granulation is compared with granulations of the reference objects
(right part). We can also see an example of the area (dark) identified as including a
smaller area (white) at the first phase of the algorithm.

4 Area Identification

Finally, we need to find the most similar reference object(s). Similarities should
be handled differently for different representations. For linguistic descriptions of
contours described in the previous section, we follow the experience of the first
author with some other applications requiring string comparisons (see [8] for
references) and define the following membership function:

µcontour(a, b) = 1 − DL(a, b) / max(n(a), n(b)) (4)

where DL(a, b) is the Levenshtein distance5 between linguistic descriptions of
objects a, b, and n(a), n(b) denote the lengths of these descriptions. One may
surely consider also other measures [5]. Our application is designed in a way
that enables to replace the formulas for µ easily.

With regards to the granules’ coverage, we may consider the following:

µcoverage(a, b) = 1 − ∑n×m
i

∣

∣cova
i − covb

i

∣

∣ / n × m (5)

For the purposes of this paper, we use the following aggregated similarity:

µ(a, b) = 1
2 (µcontour(a, b) + µcoverage(a, b)) (6)

Comparing to [8], we did not consider any forbidden features that may block
comparisons of specific objects even prior to computation of memberships. On
the other hand, we carefully tuned the activation threshold for µ (see Section
1). Also, we implemented an additional procedure for the following cases:

1. If some reference object was not chosen for any of investigated objects, then
use it for the most similar unidentified object even if its degree of similarity
is not greater than the activation threshold.

2. If some reference object was chosen for many investigated objects, then use
it for the most similar of them and re-identify the remaining ones excluding
the already used reference objects.

5 en.wikipedia.org/wiki/Levenshtein_distance
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Table 1. The values of µcontour and µcoverage for 9 communes in the Wejherowski
County. The numbers in brackets denote whether correct reference objects are the
most similar, 2nd most similar, etc., to particular objects to be identified.

Area Contour Coverage
1 0.670 (2) 0.974 (1)
2 0.735 (1) 0.953 (1)
3 0.596 (4) 0.849 (3)
4 0.632 (2) 0.972 (1)
5 0.761 (1) 0.904 (1)
6 0.676 (1) 0.970 (1)
7 0.660 (1) 0.936 (1)
8 0.628 (1) 0.888 (1)
9 0.573 (4) 0.944 (1)

5 Example and Results

For illustration purposes, let us consider a sub-map of one of the counties in
Poland – the Wejherowski County (Figure 3). As a result of the first phase of
the algorithm (Section 2), we obtain 9 image files to be identified.

The first image has width w = 61 and height h = 69. For parameters m = n =
4, after rounding 61/4 to 15 and 69/4 to 17, we obtain granules g1 = {(x, y) :
x ∈ [0, 15), y ∈ [0, 17)}, g2 = {(x, y) : x ∈ [15, 29), y ∈ [0, 17)}, etc.

Let us now take a look at how the contour’s description is built. For the
analyzed image, not all extreme points are distinguished. For g1 we obtain only
two of them: (7, 16) and (14, 2). For g2 we have all four: (15, 1), (17, 0), (29, 15),
and (28, 16). This shows that the corresponding strings of directions can vary in
length and the formulas for µcontour need to take it into account.

Table 1 presents the results for all 9 communes in the Wejherowski County.
In this case, our algorithm was 100% accurate, although the numbers reported
in brackets might suggest otherwise. Out of two components of function (6),
µcoverage looks better. However, our tests show that using µcoverage itself would
provide worse results. It seems that µcoverage plays the leading role but µcontour

contributes additionally in situations when comparator based only on µcoverage

would provide multiple reference objects or no reference objects at all. With this
respect, modifications of (6) are on our future research roadmap.

The presented implementation enabled us to identify 338 out of 380 admin-
istrative areas of Poland. All those 338 areas were identified correctly. In order
to accomplish the project related to visualization of the Polish Self-Government
Elections in 2010, the remaining 42 areas were analyzed manually.

It is important to add that without an extra verification based on two rules
outlined in the end of the previous section the number of unidentified areas
would increase by 10. One of such cases is actually the 3rd item in Table 1.
Indeed, its correct identification was possible only because other communes in
the Wejherowski County were matched with high enough confidence.
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6 Conclusions

We discussed the identification mechanism based on comparing information ob-
tained by granulating and aggregating compound objects. As a case study, we
presented practical implementation of our approach for the purposes of visual-
ization software. The proposed approach is a continuation of our previous re-
search related to comparators (see [8] for further references). It can be applied
to different types of objects (not necessarily images). Surely, for other types of
objects some other values will be aggregated. However, the scheme of handling
the resulting granules and their aggregated descriptions remains the same.

Out of many technical details that were skipped in this paper, let us mention
about data management. In our approach, compound objects are stored in the
Infobright’s RDBMS,6 which is optimized with respect to large volumes of data
(therefore, the objects can be represented in an extremely detailed way; e.g.,
images can be stored at the level of particular pixels) and analytical types of SQL
statements (therefore, e.g., image granulation and comparison operations can be
quickly executed with various resolution settings; [8]). Ultimately, our goal is to
establish the database environment for flexible identification and recognition of
various types of compound objects (images, texts, sequences, processes).
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Abstract. This paper presents the ongoing project which attempts to solve the 
problem of measuring users' satisfaction by utilizing methods of discovering 
users' implicit attitudes. In the initial stage, authors attempted to use the Implicit 
Association Test (IAT) in order to discover users' implicit attitudes towards a 
virtual character. The conventional IAT procedure and scoring algorithm were 
used in order to find possible lacks of original method. Results of the initial 
experiment are shown in the paper along with method modification proposal 
and preliminary verification experiment.  

Keywords: Embodied Conversational Agent, Human-Computer Interaction, 
Implicit Association Test. 

1   Introduction 

Measuring users' satisfaction is the integral part of the Human-Computer Interaction 
(HCI) field [1]. At the same time measuring user satisfaction with any computer-
based electronic appliance is a very challenging task. Being often interconnected with 
and referred to users' attitudes, methods of discovering humans' satisfaction signs 
have been developed very intensively. 

In our work we assume that although humans can adapt to any kind of interface, 
the most effective one is given to us by nature. It is natural face-to-face 
communication. Providing computers with the abilities to communicate with us in a 
shape of Embodied Conversational Agents (ECA) [2], we can dramatically increase 
the efficiency of human-computer collaborative performance. 

Nevertheless we believe that introducing state-of-art technologies in graphics, 
speech processing and dialog management is not the only condition of success in this 
task. A number of issues related to social and cultural aspects of communications 
among humans and computers should be considered. Gathering feedback from 
humans about their attitudes towards agents is used in a number of research projects 
as a measure of team effectiveness. This is supported by the assumption that the more 
natural and pleasant interaction is with an agent, the more effective a team 
performance on a collaborative task. In order to discover humans' attitudes a number 
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of report based methods such as surveys and interviews are used. All of these methods 
have unquestionable advantage such as simplicity and low cost, however they all tend 
to rely upon a humans' awareness, honesty, cultural aspects.  

Measuring subjects' performance in different kinds of collaborative tasks is another 
method for investigating effects of ECAs. Normally a combination of statistically 
significant surveys with collaborative task performance measurement gives high 
validity, however other metrics are often needed in order to verify results. 

The Implicit Association Test [3] is a powerful psychological tool which has been 
already used for more than a decade in psychology. Further developments of the 
procedure and scoring algorithms of the IAT are ongoing, aiming to solve a number 
of different issues of the original IAT [4]. One of the best known modifications of the 
test is the Go/No-go Association Task [5], which aims to eliminate the need to bring a 
pair of categories into comparison. There are also some other modifications of the 
test, such as a Brief IAT [6] and Single Attribute IAT [7], which aim to solve known 
issues, simplify and improve the original test. 

This goal of our research is to investigate a modification of the IAT which will 
extend the application domain of the conventional test to the possibility of using it 
with unfamiliar information and for indirect attitude measurements. Particularly, we 
use the conventional IAT in order to evaluate humans' attitudes towards slightly 
different kinds of presenting information by the same social actor. However our 
application method differs in principle from the original test application, we used a 
conventional test without any modification in order to discover it's possible 
drawbacks and find solutions. In this paper we propose modifications in the procedure 
and the scoring algorithm of the original IAT along with preliminary verification data. 

The paper is organized as follows. Section 2 shows key differences between 
conventional IAT and applying a test to assess different types of presenting 
information. Section 3 contains a description and results of a conducted experiment 
along with our attempts to modify the original test and preliminary verification data. 
Known issues and future work directions are discussed in Section 4. The paper is 
concluded in Section 5. 

2   Hypothesis 

The Implicit Association Test is a very powerful psychological tool which can be 
used in order to discover a subjects' implicit preferences towards different categories. 
Particularly, IAT can be used to measure attitudes towards different kinds of objects 
and concepts, stereotypes, self-esteem and self-identity. The test requires a subject's 
rapid (in fact, as fast as possible) categorization of stimuli which appear on a screen. 
The problem is that the test will give a reliable result if and only if subjects make a 
reasonable number of mistakes, trying to keep a balance between rapid categorization 
without thinking and spontaneous key pressing. In order to achieve reliable results, 
subject are required to be a fluent English readers (if a test is conducted in English) 
and be aware of the topic of the test.  

Some very well-known tests allows us to measure attitudes towards, for example, 
flowers and insects, different races, and food preferences. If flowers and insects are 
assessed, the stimuli are names or images of particular flowers and insects.  
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In our case we want to compare two methods of presenting information. We just 
want to know whether a virtual agent with rich animation can attract subjects more 
than just audio-presentation by the same voice as used in the case of agent. 
Noticeably, in this case we are talking about the same social actor. We do not 
compare different agents. We would like to go deeper and compare interfaces of the 
same agent. 

In order to achieve this goal we use two slightly different information blocks, one 
of which is presented by a full-featured agent and the second by voice only. This 
causes the principal difference between our application and original usage of the IAT: 
in our case subjects are not familiar with these information blocks. These are not 
things which the subject uses every day. Thus, as opposed to the original IAT, in our 
test subject are expected to make not only misprints, but also mistakes. We believe 
that results given by the conventional test are not reliable because correct answers are 
always shown to subjects during a test and this can cause a learning-while-testing 
side-effect, which can tamper results.  

Thus, our experiment has two goals. The first one is to discover whether the body 
of an agent really make sense for humans. The second is to find whether the learning-
while-testing effect really exists. 

As a result of this experiment, we expect to see at least a weak preference for one of 
the methods of presenting information from most of subjects. No preference will mean 
that our test is not well designed and it can not “catch” the difference in two 
presentation styles. We also expect to see a learning-while-testing side effect, which is 
caused by the procedure of the conventional test and which should make results of the 
test less reliable, because we obviously should eliminate any learning during the test.  

3   Presenter Agent Experiment 

The objective of the experiment is to investigate by using conventional IAT, whether 
the body of the ECA has an effect on subjects' attitudes towards two different 
methods of information mediation: full-featured ECA-based presentation and vocal 
presentation.  

The experiment consists of two stages. In the first stage subjects were asked to 
learn two different stories from the presenter agent. Both stories are biographies of 
two famous Russian writers and both stories are unfamiliar to subjects. The key 
difference between the two stories is the presence of the ECA on the screen. One 
story was presented by the female agent with a synthesized female voice and a rich set 
of non-verbal cues, while the other story was presented by the same female voice 
only. Both stories were accompanied with the same number of illustrations which 
were used later as categories and items in the IAT. Both stories are approximately the 
same size (200 and 226 words) and difficulty of memorization. The order of stories 
and method of presenting (which of two stories is presented by ECA and which by 
voice only) were chosen individually for each subject. Before the experiment subjects 
were told that the test will evaluate their attitudes towards interactions with agents. 
Subjects were not told that they should memorize information with will be presented. 
A screen-shot of the full-featured ECA-based presentation is shown in Fig. 1. As 
opposed to the previous method, in vocal presentation the agent does not appear on 
the screen, but the entire environment remains absolutely the same.  
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Fig. 1. Screen-shot of the full-featured ECA-based presentation. ECA (female) gives an oral 
presentation which is accompanied by images (presentation pane on the right wall of the room). 

According to [8] people tend to unconsciously interpret the same voice as the same 
social actor. By choosing the same female voice for both stories we eliminated the 
necessity of comparing distinct social actors. Instead, two methods of information 
mediating from the same social actor were assessed by the IAT.  

In the second stage, subjects' attitudes towards information mediation methods 
were assessed by the IAT. Thus, two key differences between our experiment and the 
conventional IAT are (as we previously mentioned in Section 2):  

 

a) attempt to utilize indirect method of measurement with IAT (we assess 
methods of information mediation by assessing information blocks which were 
presented to subjects); 

b) attempt to use the IAT on items which subjects are not familiar with 
(information blocks had been learned at most half-an-hour before the IAT). 

3.1   Results 

In total 10 subjects have participated in the experiment. Eight of them are students 
and two are administrative staff of Kyoto University, eight male and two female, all 
Asians, and all can listen and read in English fluently. Their results are shown in 
Figure 2. 

The horizontal axis of this graph represents the number of correct answers and the 
vertical axis represents the D measure. The positive value of the D measure shows 
subject's preference towards full-featured ECA-based style of presentation and vice 
versa, the negative value shows preference towards voice-only presentation. All 
subjects had an error rate of less than 25% during the test. It should be noted that in 
this figure we do not distinguish between mistakes and misprints as well as between 
misprints in testing and reference categories. This means that the real number of 
meaningful mistakes might be less than shown on the graph.  

Thus, subjects #8, and #2 do not show any significant preference for any kind of 
presentation. Subjects #3, #9, and #10 show slight preference for ECA-based 
presentations, however subjects #1, and #7 show slight preference for voice-only  
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Fig. 2. Results of the IAT. X axis: number of correct answers in %; Y axis: result of the test (D 
measure) 

presentations. Subject #5, and #6 have moderate preference for ECA-based and voice-
only presentations respectively. Finally, subject #4 shows a strong preference for the 
ECA-based presentation. Altogether, five subjects show significant preference for 
ECA-based presentations, three subjects show preference for voice-only presentations 
and only two subjects do not show any significant preferences. This conforms to the 
first part of our hypothesis.  

An important fact is that the three subjects who show significant preference for one 
of presentation styles, reported that they could memorize correct answers during the 
test. Thus, they confirmed that they experienced the learning-while-testing effect. 
Some other subjects also experienced the same effect, however they did not report 
clearly about it. According to Fig. 3 subjects #2, #5, #6, #9, and #10 gave more 
correct answers in blocks 6 and 7 than in blocks 3 and 4. Please note, that for Fig. 3 
and Fig. 4 we calculated only meaningful mistakes and misprints, eliminating 
misprints in reference categories. The total number of answers is 32. And as we can 
see, none of the subjects made zero mistakes. The best result was given by subject #6 
in the blocks 6 and 7 – 29 correct answers. 

 

Fig. 3. Number of mistakes made in compared categories. Dark gray column – number of 
correct answers in block 3 + block 4; light gray column – block 6 + block 7. 
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Within ten minutes after the experiment subjects were asked to take the test once 
again. D-measures of the second test were not used and do not appear in Fig. 2, 
however we tried to find and analyze changes in the numbers of mistakes. These 
results are shown in Fig. 4. 

 

Fig. 4. Number of mistakes made in compared categories. Dark gray column – number of 
correct answers in the first test (mean of all pairing blocks); light gray column – second test 
(mean of all pairing blocks). 

As we can see from the graph, subject #8 made quite a lot of mistakes in the 
second test, but all other subjects gave significantly more correct answers. In our 
opinion this means that subject learned correct answers during the first test and this 
confirms the second part of hypothesis.  

3.2   Revised IAT Procedure and Scoring Algorithm 

According to the aforesaid we propose to modify the procedure and scoring algorithm 
of the original IAT in order to address described issues. 

The only difference in the procedure of the proposed test from the original one is 
that mistakes are not emphasized to subjects. We tried to not modify the essentials of 
scoring algorithm in order to be able to compare results of both tests. The difference 
is that before scoring we entirely remove each stimuli for which the number of 
mistakes exceeds 35% of their total numbers of presentations. In addition a further 
processing of wrong answers (such as giving penalties as in the original coring) was 
eliminated.  

The modified test was preliminary verified by using a “flowers-insects” test 
scenario. This test is designed to measure subjects implicit preference towards flowers 
or insects. Results of the experiment are presented in Fig. 5. 

In total 7 subjects have participated in the preliminary experiment. All are 
Europeans, aged from 26 to 37, students and lecturers of different schools of Kyoto 
University. The English ability is ranged from intermediate to fluent. 

Subjects were asked to first pass a conventional test and then a modified test 
without any time lag. Results of the modified test are presented on the graph. D-
measure of the modified test shows that all subjects show strong preference towards 
flowers (from 0.63 up to 1.25). This correlates with results of the conventional IAT. 
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Fig. 5. Results of the modified IAT. X axis: number of correct answers in %; Y axis: result of 
the test (D measure). Positive value stands for the preference towards flowers. 

4   Conclusions and Future Work 

Taking into account the difference between conventional usage of an IAT and using 
an IAT for evaluating ECAs, several key issues can be defined and addressed in 
future work. 

The one of conceptual issues is related to the fact that a conventional IAT deals 
with well known concepts while in the case of evaluating ECAs users deal with just-
learned information, and this can cause mistakes in addition to misprints which are 
normal for the conventional IAT. In the conducted experiment subjects had only one 
chance to memorize information. Before the experiment they were not told that they 
should memorize information presented during the experiment, so they were expected 
to make mistakes. 

On the other hand, during the conventional IAT wrong answers are always shown. 
Bearing in mind that in conventional IAT mistakes are not supposed to happen 
(misprints only, because subject deal with very familiar concepts only) this approach 
is very reasonable. However, for unfamiliar concepts, which we use in the 
experiment, it may cause a learning-while-testing side effect since each item is shown 
several times during the experiment. 

Our proposed solution for the described problem includes several steps. The first is 
to not to emphasize wrong answers during experiment. Essentially, this will minimize 
the learning-while-testing effect, but at the same time can distort final results. We 
propose to eliminate all stimuli for which the total number of mistakes exceeds a 
fixed number. The proposed test is preliminary verified by experiment, however 
further verification is needed.  

5   Summary 

The goal of this work is to evaluate the potential possibility of using the Implicit 
Association Test where subjects' awareness of comparison concepts is less than in the 
case of conventional IAT, and to figure out possible issues related to this specific 
application. This paper presents results of the initial experiment where we used the 
conventional IAT procedure and scoring algorithms without any modifications along 
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with our proposal for modifying the test. The data collected during the experiment 
shows how significant the difference between conventional usage of IAT and the 
proposed method is and which key issues should be addressed in future work. We 
showed our initial experiment which confirms our hypothesis about the effect of agent 
presence on the screen during presentation and procedural drawbacks of the 
conventional IAT in our particular circumstances. We made an analysis of D-
measures and numbers of mistakes for each participant. We conducted a preliminary 
experiment with the modified test and outlined the directions of future research.  

References 

1. Sears, A., Jacko, J.A. (eds.): Human-Computer Interaction Handbook, 2nd edn. CRC Press, 
Boca Raton (2007) ISBN 0-8058-5870-9 

2. Cassell, J., Sullivan, J., Prevost, S., Churchilll, E.F. (eds.): Embodied Conversational 
Agents. MIT Press, Cambridge (2000) 

3. Greenwald, A.G., McGhee, D.E., Schwartz, J.K.L.: Measuring individual differences in 
implicit cognition: The Implicit Association Test. Journal of Personality and Social 
Psychology 74, 1464–1480 (1998) 

4. Greenwald, A.G., Nosek, B.A., Banaji, M.R.: Understanding and Using the Implicit 
Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social 
Psychology 85, 197–216 (2003) 

5. Nosek, B.A., Banaji, M.R.: The go/no–go association task. Social Cognition 19, 625–664 
(2001) 

6. Sriram, N., Greenwald, A.G.: The Brief Implicit Association Test. Experimental 
Psychology 56, 283–294 (2009) 

7. Penke, L., Eichstaedt, J., Asendorpf, J.B.: Single-Attribute Implicit Association Tests (SA-
IAT) for the Assessment of Unipolar Constructs. Experimental Psychology 53(4), 283–291 
(2006) 

8. Nass, C., Steuer, J.S., Tauber, E.: Computers are social actors. In: Proceeding of the 
Computer-Human Interaction (CHI 1994) Conference, pp. 72–78 (1994) 



Visualization of Semantic Network

Fragments Using Multistripe Layout

Alexey Lakhno and Andrey Chepovskiy

Higher School of Economics,
Data Analysis and Artificial Intelligence Department,

Pokrovskiy boulevard 11, 109028 Moscow, Russia
alakhno@gmail.com,achepovskiy@hse.ru

Abstract. Semantic network is an information model of knowledge do-
main. Objects and their relations are specified with an attributed graph.
Multistripe layout is suitable for visualization of relations incident to
the selected set of objects. The method provides a compact drawing that
is guaranteed to avoid link crossings and label overlaps for objects and
relations of corresponding subnetwork. In this paper we describe a com-
mon scheme of the multistripe layout approach and propose the way of
visualization of semantic network fragments. These fragments may con-
tain additional relations and objects in comparison with subnetworks
considered earlier.

Keywords: semantic networks, relations visualization, multistripe lay-
out, attributed graph drawing, link crossings, label overlaps.

1 Introduction

Semantic networks provide a natural representation of information about re-
lations between objects. Formally semantic network can be considered like an
attributed graph that contains labels on vertices and edges. The vertices of this
graph correspond to the objects of knowledge domain, while the edges can be
treated as the relations between them. The labels on vertices and edges specify
the descriptions for corresponding objects and relations.

Multistripe layout, proposed in [1], is a method for drawing subnetworks in-
duced by the set of relations incident to the selected objects. This method can
be used for visualization of selected objects’ direct relations. Multistripe layout
provides regular and easy to follow drawings that can be used for visual analysis
and report creation. Multistripe layout guarantees no link crossings and label
overlaps. However the structure of concerned subnetworks is quite limited. There
can be only selected objects and the objects directly adjacent to them (secondary
objects). All other objects are ignored by the algorithm. Relations between the
secondary objects are also out of scope. In this paper we propose an extension
of the multistripe layout method that handles the limitations stated above.

Graph drawing covers a wide range of problems concerned with the visual-
ization of networks and related combinatorial structures. A solid survey of this

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 358–364, 2011.
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area can be found in [2,3]. Multistripe layout combines several ideas from differ-
ent graph drawing approaches. In a visibility representation, originally proposed
in [4], each vertex is mapped to a horizontal segment and each edge to a ver-
tical segment. This idea is used for visualization of the selected objects and
their relations. The secondary objects are represented with rectangles bounding
their labels. For visualization of relations multistripe layout uses polyline draw-
ing convention — each edge is drawn as a polygonal chain. Edge labels are also
represented with their bounding rectangles.

The rest of the paper is organized in the following way. Section 2 provides
a formal description of subnetworks that can be visualized with the multistripe
layout method and its extension. In Sect. 3 we describe a basic idea of the
multistripe layout and its construction procedure. Section 4 presents the idea of
layout extension. Finally, we summarize and conclude our work in Sect. 5.

2 The Object of Visualization

Multistripe layout method deals with the visualization of subnetworks induced
with a set of relations incident to the selected objects. We assume that we are
given

– A (possibly directed) graph G0 = 〈V0, E0〉, where V0 is a set of vertices and
E0 is a set of edges. There are no selfloops in G, but it may contain multiple
edges.

– Vertex and edge labels specified with the dimensions of bounding rectangles:
w(v), h(v) for v ∈ V0 and w(e), h(e) for e ∈ E0, where w is the width and h
is the height of rectangle.

– The selected vertices set V ′ ⊆ V0 corresponding to the selected objects set.

The object of multistripe layout visualization is a subnetwork specified with
a subgraph G = 〈V, E〉 of the graph G0 where:

E = {e ∈ E0| the edge e is incident to some vertex u ∈ V ′} ; (1)

V = {v ∈ V0| the vertex v is incident to some edge e ∈ E} . (2)

The graph G contains the selected vertices from V ′ and the vertices directly
adjacent to them. Let’s call the vertices from V \ V ′ as secondary ones. There
are no edges between the secondary vertices in G as each edge e ∈ E is incident
to some vertex u ∈ V ′. So each edge of the graph G connects either a pair u1, u2

of selected vertices from V ′ or a selected vertex u ∈ V ′ and a secondary vertex
v ∈ V \ V ′.

The extension, proposed in this paper, allows to use the multistripe layout
method for visualization of network fragments of more general type. These frag-
ments may incorporate the vertices, which are not directly adjacent to the se-
lected vertices from V ′ but are connected to them through a chain of edges.
Denote the set of additional vertices as Vadd. Besides there can be a number
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of additional edges eadd = (v1, v2) where v1, v2 ∈ (V \ V ′) ∪ Vadd. Let Eadd be
the set of such edges. So the extended subnetwork is specified with a graph
Gext = 〈Vext, Eext〉 where Vext = V ∪ Vadd and Eext = E ∪ Eadd.

3 Multistripe Layout

Let’s illustrate the idea of multistripe layout with a network fragment, which
contains two selected vertices (Fig. 1). The selected vertices are represented
with horizontal segments. The space between the segments is divided into three
stripes: stripe A is used for layout of the secondary vertex labels, stripes B′ and
B′′ are used for layout of the edge labels.

u1

u2

v1

v2

v3

v4

B'

A

B''

Fig. 1. Multistripe layout fragment: u1, u2 — selected vertices; v1, v2, v3, v4 — sec-
ondary vertices. Dark shaded rectangles correspond to vertex labels, light shaded rect-
angles correspond to edge labels. A, B′ and B′′ — layout stripes.

In a general case, if the selected set V ′ contains n vertices, multistripe layout
uses n + 1 stripes for the secondary vertex labels and 2n stripes for the edge
labels (Fig. 2). The algorithm of multistripe layout construction consists of six
steps:

1. Fix a relative order of the selected vertices u1, . . . , un ∈ V ′.
2. Choose an addition order for the edges connecting selected vertices.
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A1

A2

A3

B1

B2

B3

B4

... ... ...

u1

u2

Fig. 2. Layout stripes: A1, A2, . . . — the stripes for layout of the secondary vertex
labels; B1, B2, . . . — the stripes for layout of the edge labels

3. For every secondary vertex v ∈ V \ V ′ define some layout stripe Ai.
4. Choose an addition order for the secondary vertices v1, . . . , vm ∈ V \ V ′.
5. Perform the layout of the edges that connect selected vertices. The edges are

added to the drawing one by one according to the order defined in Step 2.
The layout of each edge is performed in such a way to avoid label overlaps
with the edges added earlier.

6. Perform the layout of the secondary vertices and the edges adjacent to them.
The vertices are added one by one according to the order defined in Step 4.
The layout procedure of each vertex performs the layout of adjacent edges.

The detailed description of the algorithm can be found in [1]. Here we shall
focus on Step 5 and Step 6 as their understanding is essential for the proposed
layout extension. For each edge e considered in Step 5 denote the set of stripes
crossed by e as C(e). The position of e is defined by the state of the stripes from
C(e). So for each of the stripes we keep the profile that describes the border
between the busy part and the free part of the stripe (Fig. 3). After the addition
of edge e all profiles from C(e) are updated. Similarly for each secondary vertex
v considered in Step 6 let C(v) be the set of stripes that are crossed by the edges
incident to v or used for v label placement. The profiles of the stripes from C(v)
are used for proper layout of v that is done in the following way:

– calculate the limitations on the placement of v and its adjacent edges;
– compare the limitations and perform the coordinated layout;
– update the profiles from C(v) according to performed layout changes.



362 A. Lakhno and A. Chepovskiy

Fig. 3. Stripe profile. The dotted line separates busy and free parts of the stripe.

4 Layout Extension

The original multistripe layout method can be used for visualization of rela-
tions incident to the selected objects (Sect. 2). The corresponding subnetwork
is specified with a graph G = 〈V, E〉 where V contains the selected vertices V ′

and the secondary ones V \ V ′. There are two main ideas behind the visualiza-
tion of Gext = 〈V ∪ Vadd, E ∪ Eadd〉 using multistripe layout. The first one is
the incorporation of Vadd into the general mulistripe layout scheme temporarily
connecting the vertices from Vadd to the selected vertices. Vertex vadd ∈ Vadd

should be connected to selected vertex u ∈ V ′ if and only if they are connected
with a chain of edges that does not pass through the other selected vertices.
So according to the definition of Vadd each vertex vadd ∈ Vadd will be adjacent
to some selected vertex u ∈ V ′ and can be treated as a secondary vertex. The
second idea is the consideration of additional edges from Eadd in Step 4 during
the secondary vertices ordering. Connected vertices should be placed as close as
possible. If the secondary vertices v1 and v2 connected with an edge eadd ∈ Eadd

are placed to the same stripe Ai this idea allows to perform the automatic layout
of eadd and its label in Ai. This perfectly works if there are one or two selected
objects. However it can be used in a general case if there are no edges between
the secondary vertices placed in different stripes.

The extension was implemented as a layout plugin for i2 Analyst’s Note-
book analytical system [5]. This software is designed for security investigations,
risk management and fraud detection in business, law enforcement and counter
terrorism activity support. We considered a problem of visualization of mobile
contacts network. The objects of this network correspond to subscribers while
the edges correspond to calls and messages. The analysis of such networks is
actively used in police investigations for detection of criminal groups [6]. The
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proposed extension allows to perform automatic layout of complementary objects
and relations on the schemes and thus visualize additional information (Fig. 4).
It seems that multistripes layout method and its extension may also appear
to be useful for social networks visulization. If users are treated as the objects
of corresponding semantic network then multistripe layout method can provide
drawings of the acquaintance circles of selected sets of users.

Fig. 4. The layout of mobile contacts network fragment. Additional objects and rela-
tions are marked with circles.

5 Conclusion

Multistripe layout is a method of visualization of relations incident to the selected
set of objects. In this paper we presented the way to extend the applicability of
multistripe layout to the network fragments of more general type. These frag-
ments may contain additional vertices, which are not directly adjacent to the
selected set of objects, and the edges that connect secondary vertices. The appro-
bation of proposed method was performed on the base of i2 Analyst’s Notebook.
The method perfectly works if there are one or two selected objects. However it
can be used for bigger selected sets on the assumption of some restrictions on
the structure of relations.
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1 Introduction

Nowadays, special kind of information gaining popularity is the one coming from
social networks. In the paper we study basic statistical and graph-theoretical
properties of the collaboration graph, which is an example of a large social net-
work. To build such graph we use the data collected in the Rough Set Database
System [9]. The collaboration graph contains data, among others, on Z. Pawlak,
his co-authors, their co-authors, et cetera. In principle, the main idea presented
in the paper is similar to the one of Erdos number [3], enriched with some con-
cepts and techniques from social network analysis [1]. Analyzing our data we
discover hidden patterns of collaboration among members of the rough set com-
munity [6],[8] which can be interesting for this community and others. Our data
also provides fairly large, appealing real-life graphs on which one can test graph
algorithms, in the spirit of [4].

Professor Zdzis�law Pawlak (1926-2006) is one of the most known Polish com-
puter scientists. He is a creator of the rough set theory [5] and a promoter of
collaboration within the rough set community. This was the major inspiration
for introducing the Pawlak number and the Pawlak collaboration graph.

The paper is organized as follows. Section 2 provides a definition of the Pawlak
collaboration graph. In Section 3, we describe basic analysis results of the Pawlak
collaboration graph. Section 4 includes concluding remarks and further work
considerations.

2 Pawlak Collaboration Graph

In order to reveal a social phenomenon of collaboration in rough set research,
we defined the collaboration graph in the paper [6]. In the considered graph
the vertices represent all researchers (rough set paper authors [9] in particular),
whereas the edges represent collaboration relations between two given authors.
Two vertices of the graph are joined with an edge, if the two authors have had a
joint research paper published, with or without other co-authors. A simple edge
fixed between two authors in the graph means one or more co-publications. The
structure of the collaboration graph together with its basic properties have been
presented in [6]. In order to characterize more precisely existing collaboration
between the rough set community members we define a subgraph of the graph
with a distinguished vertex corresponding to Pawlak.

S.O. Kuznetsov et al. (Eds.): RSFDGrC 2011, LNAI 6743, pp. 365–368, 2011.
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Table 1. The evolution of the Pawlak graph over time

nP = 0, 1 nP = 2 nP = 3 nP = 4 nP = 5 nP = 6 nP = 7 Graph G

Year |V1| |E1| |V2| |E2| |V3| |E3| |V4| |E4| |V5| |E5| |V6| |E6| |V7| |E7| |V | |E|
2006 23 411 251 518 198 219 130 149 74 64 16 5 4 5 724 1566

2007 23 424 261 559 220 237 134 157 82 67 16 5 4 8 776 1680

2008 23 433 266 595 242 319 180 440 169 160 37 10 6 3 923 2161

2009 23 439 271 630 260 393 210 453 192 206 51 33 12 3 1019 2382

2010 23 439 271 631 269 393 210 453 192 206 51 33 12 3 1019 2383

Before introducing such graph definition, we need the one of the Pawlak num-
ber. The Pawlak number nP of an author is defined as follows: Pawlak himself
has nP = 0; people who have written a joint paper with Pawlak have nP = 1;
and their co-authors, with the Pawlak number not defined yet, have nP = 2; etc.
Pawlak numbers can be interpreted as vertex distances (the number of edges in
a shortest path joining two given vertices) from Pawlak vertex.

The experiments showed that the number of people signified with the Pawlak
number from 0 to 7, according to the RSDS data, is: 1, 22, 271, 260, 210, 192, 51,
12, respectively. Thus, the median of Pawlak numbers is 3; the mean is 3.47, and
the standard deviation - 1.32. In our case the standard deviation is low which
indicates that the data points tend to be very close to the mean. This in turns
most authors (about 68 percent, assuming normal distribution) have the Pawlak
number from the interval [2.15,4.79], considering one standard deviation. When
it comes to two standard deviations almost all the authors (approximately 95
percent) obtain the Pawlak number falling into [0.83,6.11].

A graph G = (V, E), where V is a set of vertices representing known authors in
our RSDS database with nP ≤ 7 and E is a set of edges connecting two authors,
if they wrote a joint paper, and at least one of them has nP ∈ {0, 1, . . . , 6}. The
graph G is called the Pawlak collaboration graph (the Pawlak graph in short).
Currently, the data on collaboration among authors with nP = 8 is not available
in our database, yet.

3 Basic Analysis of Pawlak Collaboration Graph

We can turn now to the issue of collaboration in rough set research. Firstly,
we provide basic statistics of the Pawlak graph G, then more advanced graph-
theoretical analysis of its properties. Table 1 shows the evolution of the Pawlak
graph over time. It is clear that the graph’s size grows significantly in time.
However, the size of subgraphs related to particular Pawlak numbers decreases
with the vary numbers’ increase (omitting Pawlak numbers 0 and 1).

As Table 2 indicates, the average degree (average number of co-authors col-
laborating with an author) fluctuates between 21.59 for the Pawlak number 1
and 2.42 for the Pawlak number 7 with distinctive decreasing trend. A similar
tendency can be observed in the case of the maximum degrees.
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Table 2. Basic statistics on degrees in the Pawlak graph

nP ∈ {0, 1} nP = 1 nP = 2 nP = 3 nP = 4 nP = 5 nP = 6 nP = 7

Minimum 2 2 1 1 1 1 1 2

Median 24.5 4.5 13.0 9.5 16.5 6.5 3.5 2.5

Average degree 21.61 21.59 5.35 3.54 5.12 3.42 2.73 2.42

Maximum 63 63 37 30 55 21 6 3

If we remove Pawlak himself and his connections from the graph G we get so
called the truncated Pawlak collaboration graph G′.

The data used in this article covers the period from 1981 to 2010. The latest,
2010 edition, of the graph G contains 1019 vertices and 2383 edges, and the
graph G′ has 1018 vertices and 2361 edges. There are 1294 vertices outside
G, which for this analysis purpose will be ignored as they do not collaborate
with so called Pawlak research group. Other graph-theoretical properties of G′

provide further insight into the rough set researchers’ interconnections. There
are 3 connected components in G′. The largest component contains 996 authors
and two remaining ones are small (2 and 20 authors). Next, we concentrate on
the largest component of G′. The diameter (maximum distance between two
vertices) of the largest component is 12 and the radius (minimum eccentricity of
a vertex, with an eccentricity defined as the maximum distance from that vertex
to any other) is 6. For any fixed vertex u in the largest component, we can enquire
about the shape of the distance distribution from u to the other 995 vertices in
this component. The distance from u to v is certainly the Pawlak number of v,
when u is Pawlak. It would be interesting to determine the shape of the distance
distribution from a given u to other vertices in the largest component of G′, and
compare the outcome with the results presented in [2].

As a final measure of collaboration, we use the concepts of a k-core and the
collaborativeness defined below.

Let G = (V, E) be a graph, W ⊆ V , and let v ∈ V . A maximal subgraph
Hk = (W, E|W ) induced by the set W is called a k-core iff ∀v ∈ W : degHk

(v) ≥
k [1]. The core of maximum order is called the main core.

In the experiments as a measure of author’s collaborativeness [1] we use the
quantity coll(v) = core(v)

core(v) , where core(v) is the largest value k for v such that it
belongs to a k-core, and core(v) is the average core number of all co-authors for
v such that core(v) = 0, if N(v) = ∅ otherwise N(v) = 1

|N(v)|
∑

u∈N(v) core(u),
where N(v) = {u ∈ V : (v, u) ∈ E} called neighborhood of vertex v. We assume
that coll(v) = 0, if core(v) = 0. This parameter measures the openness of the
author v towards external authors.

In G′ the main core consists of 21 vertices (total number of authors), and its
order is 20. The average number of all co-authors in G′ is 26.6, and the average
of their collaborativeness is 1.275. For all the authors from the main core of G′

the minimal value of the parameter coll is 1.0, and the maximal one - 2.231.
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4 Conclusions and Future Work

The analysis’ results of the Pawlak graph using the authors’ own software have
been presented in the paper. They provide hidden patterns of collaboration
among members of the rough set community. Additional restrictions on co-
authors have been set for the sake of other interpretation of obtained results
and more rigorous analysis. In the approach we have computed the characteris-
tics of the Pawlak graph in which two authors are linked in the graph, if they
have written a joint paper whether, or not, other authors were involved. It is
interesting to define the Pawlak collaboration graph in such a way that we put
an edge between two vertices, if the authors have a joint paper, with no other
co-authors. It is clear that this new definition of the Pawlak graph is more restric-
tive than previous one. It provides a wonderful opportunity for further study on
publishing patterns among rough set researchers. This exemplifies the problems
we would like to investigate by applying the approach presented in the paper.
Moreover, following papers will be devoted to some additional techniques for
analysis of large social networks and their parts’ visualisations, in the case of
the Pawlak graph (cf. [1]).

Last but not least, seeing the following statement: ’My Pawlak number is...’
on home pages of the rough set researchers or people interested in that field,
would be a great pleasure. Authors of this paper collected the related data and
made them available at the URL: http://rsds.univ.rzeszow.pl (Pawlak numbers)
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