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Preface

Real measurements involve errors and uncertainties. Dealing with data imperfec-
tions and imprecisions is one of the modern data mining challenges. The term
“robust” has been used by different disciplines such as statistics, computer science,
and operations research to describe algorithms immune to data uncertainties.
However, each discipline uses the term in a, slightly or totally, different context.

The purpose of this monograph is to summarize the applications of robust
optimization in data mining. For this we present the most popular algorithms such
as least squares, linear discriminant analysis, principal component analysis, and
support vector machines along with their robust counterpart formulation. For the
problems that have been proved to be tractable we describe their solutions.

Our goal is to provide a guide for junior researchers interested in pursuing
theoretical research in data mining and robust optimization. For this we assume
minimal familiarity of the reader with the context except of course for some basic
linear algebra and calculus knowledge. This monograph has been developed so that
each chapter can be studied independent of the others. For completion we include
two appendices describing some basic mathematical concepts that are necessary for
having complete understanding of the individual chapters. This monograph can be
used not only as a guide for independent study but also as a supplementary material
for a technically oriented graduate course in data mining.

Orlando, FL Petros Xanthopoulos
Gainesville, FL Panos M. Pardalos
Norman, OK Theodore B. Trafalis
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Chapter 1
Introduction

Abstract Data mining (DM), conceptually, is a very general term that encapsulates
a large number of methods, algorithms, and technologies. The common denominator
among all these is their ability to extract useful patterns and associations from data
usually stored in large databases. Thus DM techniques aim to provide knowledge
and interesting interpretation of, usually, vast amounts of data. This task is crucial,
especially today, mainly because of the emerging needs and capabilities that
technological progress creates. In this monograph we investigate some of the most
well-known data mining algorithms from an optimization perspective and we study
the application of robust optimization (RO) in them. This combination is essential
in order to address the unavoidable problem of data uncertainty that arises in almost
all realistic problems that involve data analysis. In this chapter we provide some
historical perspectives of data mining and its foundations and at the same time we
“touch” the concepts of robust optimization and discuss its differences compared to
stochastic programming.

1.1 A Brief Overview

Before we state the mathematical problems of this monograph, we provide, for
the sake of completion, a historical and methodological overview of data mining
(DM). Historically DM was evolved, in its current form, during the last few decades
from the interplay of classical statistics and artificial intelligence (AI). It is worth
mentioning that through this evolution process DM developed strong bonds with
computer science and optimization theory. In order to study modern concepts and
trends of DM we first need to understand its foundations and its interconnections
with the four aforementioned disciplines.

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9878-1 1,
© Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis 2013
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2 1 Introduction

1.1.1 Artificial Intelligence

The perpetual need/desire of human to create artificial machines/algorithms able
to learn, decide, and act as humans, gave birth to AI. Officially AI was born in
1956 in a conference held at Dartmouth College. The term itself was coined by
J. McCarthy during that conference. The goals of AI stated at this first conference,
even today, might be characterized as superficial from a pessimist perspective or
as challenging from an optimistic perspective. By reading again the proceedings of
this conference, we can see the rough expectations of the early AI community: “To
proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can be so precisely described that a machine can be made to
simulate it” [37]. Despite the fact that even today understanding the basic underlying
mechanisms of cognition and human intelligence remain an open problem for
computational and clinical scientists, this founding conference of AI stimulated
the scientific community and triggered the development of algorithms and methods
that became the foundations of modern machine learning. For instance, bayesian
methods were developed and further studied as part of AI research. Computer
programming languages like LISP [36] and PROLOG [14] were also developed for
serving AI purposes, and algorithms such as perceptron [47], backpropagation [15],
and in general artificial neural networks (ANN) were invented for the same purpose.

1.1.2 Computer Science/Engineering

In literature DM is often classified as a branch of computer science (CS). Indeed a lot
of DM research has been driven by CS society. In addition to this, there were several
advances of CS that boosted DM research. Database modeling together with smart
search algorithms made possible the indexing and processing of massive databases
[1,44]. The advances, in software level, of database modeling and search algorithms
were accompanied by a parallel development of semiconductor technologies and
computer hardware engineering.

In fact there is a feedback relation between DM and computer engineering that
drives the research in both areas. Computer engineering provides cheaper and larger
storage and processing power. On the other hand these new capabilities pose new
problems for DM society, often related to the processing of such amounts of data.
These problems create new algorithms and new needs for processing power that is
in turns addressed by computer engineering society. The progress in this area can
be best described by the so-called Moore’s “law” (named after Intel’s cofounder
G. E. Moore) that predicted that the number of transistors on a chip will double
every 24 months [39]. The predictions of this simple rule have been accurate at least
until today (Fig. 1.1).

Similar empirical “laws” have been stated for hard drive capacity and hard
drive price. Hard drive capacity increases ten times every 5 years and the cost
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Fig. 1.2 Kryder’s “law” describes the exponential decrease of computer storage cost over time.
This rule is able to predict approximately the cost of storage space over the last decade

drops ten times every five years. This empirical observation is known as Kryder’s
“law” (Fig. 1.2) [61]. Similar rule which is related to network bandwidth per user
(Nielsen’s “law”) indicates that it increases by 50% annually [40]. The fact that
computer progress is characterized by all these exponential empirical rules is in
fact indicative of the continuous and rapid transformation of DM’s needs and
capabilities.

1.1.3 Optimization

Mathematical theory of optimization is a branch of mathematics that was originally
developed for serving the needs of operations research (OR). It is worth noting
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Fig. 1.3 The big picture. Scheme capturing the inderdependence among DM, OR, and the various
application fields

that a large amount of data mining problems can be described as optimization
problems, sometimes tractable, sometimes not. For example, principal component
analysis (PCA) and Fisher’s linear discriminant analysis (LDA) are formulated as
minimization/ maximization problems of certain statistical functionals [11]. Support
vector machines (SVMs) can be described as a convex optimization problem
[60] and linear programming can be used for development of supervised learning
algorithms [35]. In addition several optimization metaheuristics have been proposed
for adjusting the parameters of supervised learning models [12]. On the other side,
data mining methods are often used as preprocessing for before employing some
optimization model (e.g., clustering). In addition a branch of DM involves network
models and optimization problems on networks for understanding the complex
relationships between the nodes and the edges. In this sense optimization is a tool
that can be employed in order to solve DM problems. In a recent review paper the
interplay of operations research data mining and applications was described by the
scheme shown in Fig. 1.3 [41].

1.1.4 Statistics

Statistics set the foundation for many concepts broadly used in data mining. Histori-
cally, one of the first attempts to understand interconnection between data was Bayes
analysis in 1763 [5]. Other concepts include regression analysis, hypothesis testing,
PCA, and LDA. As discussed, in modern DM it is very common to maximize or
minimize certain statistical quantities in order to achieve some clustering (grouping)
or to find interconnections and patterns among groups of data.
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1.2 A Brief History of Robustness

The term “robust” is used extensively in engineering and statistics literature. In
engineering it is often used in order to denote error resilience in general, e.g.,
robust methods are these that are not affected much by small error interferences.
In statistics robust is used to describe all these methods that are used when the
model assumptions are not exactly true, e.g., variables follow exactly the assumed
distribution (existence of outliers). In optimization (minimization of maximization)
robustness is used in order to describe the problem of finding the best solution given
that the problem data are not fixed but obtain their values within a well-defined
uncertainty set. Thus if we consider the minimization problem (without loss of
generality)

min
x∈X

f (A,x) (1.1a)

where A accounts for all the parameters of the problem that are considered to
be fixed numbers, and f (·) is the objective function, the robust counterpart (RC)
problem is going to be a min–max problem of the following form:

min
x∈X

max
A∈A

f (A,x) (1.2a)

where A is the set of all admissible perturbations. The maximization problem
over the parameters A corresponds, usually, to a worst case scenario. The objective
of robust optimization is to determine the optimal solution when such a scenario
occurs. In real data analysis problems it is very likely that data might be corrupted,
perturbed, or subject to errors related to data acquisition. In fact most of the modern
data acquisition methods are prone to errors. The most usual source of such errors is
noise which is usually associated with the instrumentation itself or due to human
factors (when the data collection is done manually). Spectroscopy, microarray
technology, and electroencephalography (EEG) are some of the most commonly
used data collection technologies that are subject to noise. Robust optimization is
employed not only when we are dealing with data imprecisions but also when we
want to provide stable solutions that can be used in case of input modification. In
addition it can be used in order to avoid selection of “useless” optimal solutions
i.e. solutions that change drastically for small changes of data. Especially in case
where an optimal solution cannot be implemented precisely, due to technological
constraints, we wish that the next best optimal solution will be feasible and very
close to the one that is out of our implementation scope. For all these reasons, robust
methods and solutions are highly desired.

In order to outline the main goal and idea of robust optimization we will use
the well-studied example of linear programming (LP). In this problem we need to
determine the global optimum of a linear function over the feasible region defined
by a linear system.

min cTx (1.3a)

s.t. Ax = b (1.3b)

x ≥ 0 (1.3c)
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where A ∈ R
n×m,b ∈ R

n,c ∈ R
m. In this formulation x is the decision variable and

A,b,c are the data and they have constant values. The LP for fixed data values can
be solved efficiently by many algorithms (e.g., SIMPLEX) and has been shown that
it can be solved in polynomial time [28].

In the case of uncertainty, we assume that data are not fixed but they can take any
values within an uncertainty set with known boundaries. Then the robust counterpart
(RC) problem is to find a vector x that minimizes (1.3a) for the “worst case”
perturbation. This worst case problem can be stated as a maximization problem
with respect to A,b, and c. The whole process can beformulated as the following
min–max problem:

min
x

max
A,b,c

cTx (1.4a)

s.t. Ax = b (1.4b)

x ≥ 0 (1.4c)

A ∈ A ,b ∈ B,c ∈ C (1.4d)

where A ,B,C are the uncertainty sets of A,b,c correspondingly. problem (1.4) can
be tractable or untractable based on the uncertainty sets properties. For example, it
has been shown that if the columns of A follow ellipsoidal uncertainty constraints
the problem is polynomially tractable [7]. Bertsimas and Sim showed that if
the coefficients of A matrix are between a lower and an upper bound, then this
problem can be still solved with linear programming [9]. Also Bertsimas et al. have
shown that an uncertain LP with general norm bounded constraints is a convex
programming problem [8]. For a complete overview of robust optimization, we
refer the reader to [6]. In the literature there are numerous studies providing with
theoretical or practical results on robust formulation of optimization problems.
Among others mixed integer optimization [27], conic optimization [52], global
optimization [59], linear programming with right-hand side uncertainty [38], graph
partitioning [22], and critical node detection [21].

1.2.1 Robust Optimization vs Stochastic Programming

Here it is worth noting that robust optimization is not the only approach for
handling uncertainty in optimization. In the robust framework the information
about uncertainty is given in a rather deterministic form of worst case bounding
constraints. In a different framework one might not require the solution to be feasible
for all data realization but to obtain the best solution given that problem data are
random variables following a specific distribution. This is of particular interest when
the problem possesses some periodic properties and historical data are available. In
this case the parameters of such a distribution could efficiently be estimated through
some model fitting approach. Then a probabilistic description of the constraints
can be obtained and the corresponding optimization problem can be classified as
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a stochastic programming problem. Thus the stochastic equivalent of the linear
program (1.3a) will be:

min
x,t

t (1.5a)

s.t. Pr{cTx ≤ t,Ax ≤ b} ≥ p (1.5b)

x ≥ 0 (1.5c)

where c,A, and b are random variables that follow some known distribution, p is
a nonnegative number less than 1 and Pr{·} some legitimate probability function.
This non-deterministic description of the problem does not guarrantee that the
provided solution would be feasible for all data set realizations but provides a
less conservative optimal solution taking into consideration the distribution-based
uncertainties. Although the stochastic approach might be of more practical value in
some cases, there are some assumptions made that one should be aware of [6]:

1. The problem must be of stochastic nature and that indeed there is a distribution
hidden behind each variable.

2. Our solution depends on our ability to determine the correct distribution from the
historic data.

3. We have to be sure that our problem accepts probabilistic solutions, i.e., a
stochastic problem solution might not be immunized against a catastrophic
scenario and a system might be vulnerable against rare event occurrence.

For this, the choice of the approach strictly depends on the nature of the problem
as well as the available data. For an introduction to stochastic programming, we
refer the reader to [10].



Chapter 2
Least Squares Problems

Abstract In this chapter we provide an overview of the original minimum least
squares problem and its variations. We present their robust formulations as they
have been proposed in the literature so far. We show the analytical solutions for
each variation and we conclude the chapter with some numerical techniques for
computing them efficiently.

2.1 Original Problem

In the original linear least squares (LLS) problem one needs to determine a linear
model that approximates “best” a group of samples (data points). Each sample
might correspond to a group of experimental parameters or measurements and each
individual parameter to a feature or, in statistical terminology, to a predictor. In
addition, each sample is characterized by an outcome which is defined by a real
valued variable and might correspond to an experimental outcome. Ultimately we
wish to determine a linear model able to issue outcome prediction for new samples.
The quality of such a model can be determined by a minimum distance criterion
between the samples and the linear model. Therefore if n data points, of dimension
m each, are represented by a matrix A ∈ R

n×m and the outcome variable by a vector
b ∈ R

n (each entry corresponding to a row of matrix A), we need to determine a
vector x ∈ R

m such that the residual error, expressed by some norm, is minimized.
This can be stated as:

min
x

‖Ax− b‖2
2 (2.1)

where ‖ · ‖2 is the Euclidean norm of a vector. The objective function value is also
called residual and denoted r(A,b,x) or just r. The geometric interpretation of this
problem is to find a vector x such that the sum of the distances between the points
represented by the rows of matrix A and the hyperplane defined by xTw− b = 0
(where w is the independent variable) is minimized. In this sense this problem is a

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9878-1 2,
© Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis 2013
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Fig. 2.1 The single input single outcome case. This is a 2D example the predictor represented by
the a variable and the outcome by vertical axis b

first order polynomial fitting problem. Then by determining the optimal x vector will
be able to issue predictions for new samples by just computing their inner product
with x. An example in two dimensions (2D) can be seen in Fig. 2.1. In this case
the data matrix will be A = [a e] ∈ R

n×2 where a is the predictor variable and e a
column vector of ones that accounts for the constant term.

The problem can be solved, in its general form, analytically since we know
that the global minimum will be at a Karush–Kuhn–Tucker (KKT) point (since
the problem is convex and unconstrained) the Lagrangian equation LLLS(x) will
be given by the objective function itself and the KKT points can be obtained by
solving the following equation:

dLLLS(x)
dx

= 0 ⇔ 2ATAx = ATb (2.2)

In case that A is of full row rank, that is rank(A) = n, matrix ATA is invertible
and we can write:

xLLS =
(
ATA

)−1
ATb � A†b (2.3)

Matrix A† is also called pseudoinverse or Moore–Penrose matrix. It is very
common that the full rank assumption is not always valid. In such case the most
common way to address the problem is through regularization. One of the most
famous regularization techniques is the one known as Tikhonov regularization [55].
In this case instead of problem (2.1) we consider the following problem:

min
x

(‖Ax− b‖2+ δ‖x‖2) (2.4)
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Fig. 2.2 LLS and regularization. Change of linear least squares solution with respect to different δ
values. As we can observe, in this particular example, the solution hyperplane is slightly perturbed
for different values of δ

by using the same methodology we obtain:

dLRLLS(x)
dx

= 0 ⇔ AT(Ax− b)+ δ Ix = 0 ⇔ (ATA+ δ I)x = ATb (2.5)

where I is a unit matrix of appropriate dimension. Now even in case that ATA is not
invertible we can compute x by

xRLLS = (ATA+ δ I)−1ATb (2.6)

This type of least square solution is also known as ridge regression. The
parameter δ controls the trade-off between optimality and stability. Originally
regularization was proposed in order to overcome this practical difficulty that arises
in real problems and it is related to rank deficiency described earlier. The value of δ
is determined usually by trial and error and its magnitude is smaller compared to the
entries of data matrix. In Fig. 2.2 we can see how the least squares plane changes
for different values of delta.

In Sect. 2.5 we will examine the relation between robust linear least squares and
robust optimization.
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2.2 Weighted Linear Least Squares

A slight, and more general, modification of the original least squares problem is the
weighted linear least squares problem (WLLS). In this case we have the following
minimization problem:

min
x

rTWr = min
x

(Ax− b)TW (Ax− b) = min
x
‖W 1/2(Ax− b)‖ (2.7)

where W is the weight matrix. Note that this is a more general formulation since
for W = I the problem reduces to (2.1). The minimum can be again obtained by the
solution of the corresponding KKT systems which is:

2ATW (Ax− b) = 0 (2.8)

and gives the following solution:

xWLLS = (ATWA)−1ATWb (2.9)

assuming that ATWA is invertible. If this is not the case regularization is employed
resulting in the following regularized weighted linear least squares (RWLLS)
problem

min
x

(
‖W 1/2(Ax− b)‖2 + δ‖x‖2

)
(2.10)

that attains its global minimum for

xRWLLS = (ATWA+ δ I)−1AWb (2.11)

Next we will discuss some practical approaches for computing least square solution
for all the discussed variations of the problem.

2.3 Computational Aspects of Linear Least Squares

Least squares solution can be obtained by computing an inverse matrix and applying
a couple of matrix multiplications. However, in practice, direct matrix inversion is
avoided, especially due to the high computational cost and solution instabilities.
Here we will describe three of the most popular methods used for solving the least
squares problems.
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2.3.1 Cholesky Factorization

When matrix A is of full rank, then AAT is invertible and can be decomposed through
Cholesky decomposition in a product LLT where L is a lower triangular matrix. Then
(2.2) can be written as:

LLTx = ATb (2.12)

that can be solved by a forward substitution followed by a backward substitution. In
case that A is not of full rank, then this procedure can be applied to the regularized
problem (2.5).

2.3.2 QR Factorization

An alternative method is the one of QR decomposition. In this case we decompose
matrix AAT into a product of two matrices where the first matrix Q is orthogonal
and the second matrix R is upper triangular. This decomposition again requires data
matrix A to be of full row rank. Orthogonal matrix Q has the property QQT = I thus
the problem is equivalent to

Rx = QTATb (2.13)

and it can be solved by backward substitution.

2.3.3 Singular Value Decomposition

This last method does not require full rank of matrix A. It uses the singular value
decomposition of A:

A =UΣV T (2.14)

where U and V are orthogonal matrices and Σ is diagonal matrix that has the singular
values. Every matrix with real elements has an SVD and furthermore it can be
proved that a matrix is of full row rank if and only if all of its singular values are
nonzero. Substituting with its SVD decomposition we get:

AATx = (UΣV T)(V ΣUT)x =UΣ2UTx = ATb (2.15)

and finally
x =U(Σ2)†UTATb (2.16)

The matrix (Σ2)† can be computed easily by inverting its nonzero entries. If A is
of full rank then all singular values are non-zero and (Σ2)† =(Σ2)−1. Although SVD
can be applied to any kind of matrix it is computationally expensive and sometimes
is not preferred especially when processing massive datasets.
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2.4 Least Absolute Shrinkage and Selection Operator

An alternative regularization technique for the same problem is the one of least abso-
lute shrinkage and selection operator (LASSO) [54]. In this case the regularization
term contains a first norm term δ‖x‖1. Thus we have the following minimization
problem:

min
x

(‖Ax− b‖2+ δ‖x‖1
)

(2.17)

Although this problem cannot be solved analytically as the one obtained after
Tikhonov regularization, sometimes it is preferred as it provides sparse solutions.
That is the solution x vector obtained by LASSO has more zero entries. This
approach has a lot of applications in compressive sensing [2, 16, 34]. As it will
be discussed later this regularization possesses further robust properties as it can be
obtained through robust optimization for a specific type of data perturbations.

2.5 Robust Least Squares

2.5.1 Coupled Uncertainty

Now we will study the robust version of problem (2.1). The results presented here
were first described in [20] and similar results were independently obtained in [18].
At the end we describe some extensions that were first described in [17]. As we
discussed earlier the RC formulation of a problem involves solution of a worst case
scenario problem. This is expressed by a min–max (or max–min) type problem
where the outer min (max) problem refers to the original one whereas the inner
max (min) to the worst admissible scenario. For the least squares case the generic
RC formulation can be described from the following problem:

min
x

max
ΔA∈UA,Δb∈Ub

‖(A+ΔA)x− (b+Δb)‖2 (2.18)

where ΔA,ΔB are perturbation matrices and UA.UB are sets of admissible perturba-
tions. As in many robust optimization problems, the structural properties of UA,UB

are important for the computational tractability of the problem. Here we study the
case where the two perturbation matrices are unknown but their norm is bounded by
a known constant. Thus we have the following optimization problem:

min
x

max
‖ΔA‖≤ρA,‖Δb‖≤ρb

‖(A+ΔA)x− (b+Δb)‖2 (2.19)

This type of uncertainty is often called coupled uncertainty because the uncer-
tainty information is not given in terms of each sample individually but in terms
of the whole data matrix. This can be interpreted as having a total uncertainty
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“budget” which not required to be distributed evenly among the dataset. Under this
assumption we do not have any particular information for individual data points and
the resulting solution to this problem can be extremely conservative. First we will
reduce problem (2.19) to a minimization problem through the following lemma

Lemma 2.1. The problem (2.19) is equivalent to the following:

min
x

(‖Ax− b‖+ρA‖x‖+ρb) (2.20)

Proof. From triangular inequality we can obtain an upper bound on the objective
function of (2.19):

‖(A+ΔA)x− (b+Δb)‖ ≤ ‖Ax− b‖+ ‖ΔAx−Δb‖ (2.21)

≤ ‖Ax− b‖+ ‖ΔA‖‖x‖+‖Δb‖ (2.22)

≤ ‖Ax− b‖+ρA‖x‖+ρB (2.23)

Now if in the original problem (2.19) we set

ΔA =
Ax− b

‖Ax− b‖
xT

‖x‖ρA, Δb =− Ax− b
‖Ax− b‖ρB (2.24)

we get

‖(A+ΔA)x− (b+Δb)‖ = ‖Ax− b+ΔAx−Δb‖

= ‖Ax− b‖
(

1+
‖x‖

‖Ax− b‖ρA +
1

‖Ax− b‖ρB

)

= ‖Ax− b‖+ρA‖x‖+ρB (2.25)

This means that the upper bound obtained by the triangular inequality can be
achieved by (2.24). Since the problem is convex, this will be its global optimum.

We can easily observe that the point (2.24) satisfies the optimality conditions.
Since problem (2.20) is unconstrained, its Lagrangian will be the same as the cost
function. Since this function is convex we just need to examine the points for which
the derivative is equal to zero and consider separate cases for the non-differentiable
points. At the points where the cost function is differentiable we have:

∂LRLLS(x)
∂x

= 0 ⇔ AT(Ax− b)
‖Ax− b‖ +

x
‖x‖ρA = 0 (2.26)

From this last expression we require x �= 0 and Ax �= b (we will deal with this
cases later). If we solve with respect to x, we obtain:

1
‖Ax− b‖

(
AT(Ax− b)+ x

‖Ax− b‖
‖x‖ ρA

)
= 0 (2.27)
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or (
ATA+ρA

‖Ax− b‖
‖x‖ I

)
x = ATb (2.28)

and finally

x = (ATA+ μI)−1ATb, where μ =
‖Ax− b‖

‖x‖ ρA (2.29)

In case that Ax = b the solution is given by x = A†b where A† is the Moore–
Penrose or pseudoinverse matrix of A. Therefore we can summarize this result in
the following lemma:

Lemma 2.2. The optimal solution to problem (2.20) is given by:

x =

{
A†b if Ax = b

(ATA+ μI)−1ATb, μ = ρA
‖Ax−b‖
‖x‖ otherwise

(2.30)

Since in this last expression μ is a function of x we need to provide a way in
order to tune it. For this we need to use the singular value decomposition of data
matrix A:

A =U

[
Σ
0

]
V T (2.31)

where Σ is the diagonal matrix that contains the singular values of A in descending
order. In addition we partition the vector UTb as follows:

[
b1

b2

]
=UT b (2.32)

where b1 contains the first n elements and b2 the rest m−n. Now using this decom-
positions we will obtain two expressions for the numerator and the denominator of
μ . First for the denominator:

x = (ATA+ μI)−1ATb =
(
VΣ2V T + μI

)−1
VΣb1 =V

(
Σ2 + μI

)−1 Σb1 (2.33)

the norm will be given from

‖x‖= ‖Σ(Σ2 + μI)−1‖ (2.34)

and for the numerator

Ax− b = U

[
Σ
0

]
V TV

(
Σ2 + μI

)−1 Σb1 − b (2.35)

= U

([
Σ
0

]
(
Σ2 + μI

)−1 Σb1 −UTb

)
(2.36)
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= U

([
Σ(Σ2 + μI)−1Σb1 − b1

−b2

])
(2.37)

= U

[−μ(Σ2 + μI)−1b1

−b2

]
(2.38)

and for the norm

‖Ax− b‖=
√
‖b2‖2 +α2‖(Σ2 + μI)−1b1‖2 (2.39)

Thus μ will be given by:

μ =
‖Ax− b‖

‖x‖ = ρA

√
‖b2‖2 +α2‖(Σ2 + μI)−1b1‖2

‖Σ(Σ2 + μI)−1b1‖ (2.40)

Note that in the present analysis we assume that data matrix A is of full rank.
If this is not the case similar analysis can be performed (for details, see [17]). The
final solution can be obtained by the solution of (2.40) computationally. Next we
will present some variations of the original least squares problem that are discussed
in [17].

2.6 Variations of the Original Problem

In [17] authors introduced least square formulation for slightly different perturbation
scenarios. For example, in the case of the weighted least squares problem with
weight uncertainty one is interested to find:

min
x

max
‖ΔW‖≤ρW

‖((W +ΔW)(Ax− b))‖ (2.41)

using the triangular inequality we can obtain an upper bound:

‖(W +ΔW)(Ax− b)‖ ≤ ‖W (Ax− b)‖+ ‖ΔW(Ax− b)‖ (2.42)

≤ ‖W(Ax− b)‖+ρW‖Ax− b‖ (2.43)

Thus the inner maximization problem reduces to the following problem:

min
x

(‖W (Ax− b)‖+ρW‖Ax− b‖) (2.44)

by taking the corresponding KKT conditions, similar to previous analysis, we
obtain:
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∂LWLLS(x)
∂x

=
∂‖W (Ax− b)‖

∂x
+

∂‖Ax− b‖
∂x

(2.45)

=
ATW T(WAx−Wb)

‖W (Ax− b)‖ +ρW
AT(Ax− b)
‖Ax− b‖ (2.46)

By solving the equation
∂LWLLS(x)

∂x
= 0 (2.47)

we find that the solution should satisfy

AT(W TW + μI)Ax = AT(W TW + μI)b where μw =
‖W (Ax− b)‖
‖Ax− b‖ (2.48)

Giving the expression for x

x =

⎧
⎨

⎩

A†b if Ax = b
(WA)†Wb if WAx =Wb(
AT(W TW + μwI

)
A)−1AT

(
W TW + μwI

)
b otherwise

(2.49)

where μw is defined in (2.48). The solution for the last one can be obtained through
similar way as for the original least squares problem. In another variation of the
problem the uncertainty can be given with respect to matrix A but in multiplicative
form. Thus the robust optimization problem for this variation can be stated as
follows:

min
x

max
‖ΔA‖≤ρA

‖(I+ΔA)Ax− b‖ (2.50)

which can be reduced to the following minimization problem:

min
x

(‖Ax− b‖+ρA‖Ax‖) (2.51)

then by similar analysis we obtain:

∂LMLLS(x)
∂x

=
AT(Ax− b)

‖AT(Ax− b)‖ +ρA
ATAx
‖Ax‖ = 0 (2.52)

and finally

x =

{
(ATA)†b if ATAx = ATb
(
ATA(1+ μA)

)−1
ATb,μA = ‖AT(Ax−b)‖

‖Ax‖ otherwise
(2.53)
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2.6.1 Uncoupled Uncertainty

In the case that we have specific knowledge for the uncertainty bound of each data
point separately we can consider the corresponding problem. The solution for this
type of uncertainty reveals a very interesting connection between robustness and
LASSO regression. Originally this result was obtained by Xu et al. [63]. Let us
consider the least squares problem where the uncoupled uncertainties exist only
with respect to the rows of the data matrix A:

min
x

max
ΔA∈A

||(A+ΔA)x− b||2 (2.54)

where the uncertainty set A is defined by:

A � {(δ1,δ2, . . . ,δm)|‖δi‖ ≤ ρi} (2.55)

For the maximization problem and for a fixed vector x:

max
ΔA∈A

‖(A+ΔA)x− b‖2 = max
ΔA∈A

‖Ax− b+Δx‖2 (2.56)

= max
ΔA∈A

‖Ax− b+
m

∑
i=1

xiδi‖2 (2.57)

≤ max
ΔA∈A

‖Ax− b‖2+
m

∑
i=1

‖xiδi‖2 (2.58)

≤ max
ΔA∈A

‖Ax− b‖2+
m

∑
i=1

|xi| ·ρi (2.59)

This provides an upper bound for the objective function. This bound is obtained
by proper use of the triangular inequality. On the other side if we let

u =

{
Ax−b

‖Ax−b‖2
if Ax �= b

any unit norm vector otherwise
(2.60)

Next we define the perturbation being equal to

δ ∗
i �

{−ci · sign(x)u if xi �= 0
−ciu o/w

(2.61)

This perturbation belongs to the set of admissible perturbations since ‖δ ∗
i ‖2 = ci.

If we set the perturbation in the maximization problem of (2.54) equal to (2.61), we
get:
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max
ΔA∈A

‖(A+ΔA)x− b‖2 ≥ ‖(A+ΔA)x− b‖2 (2.62)

= ‖(A+(δ ∗
1 ,δ

∗
2 , . . . ,δ

∗
m))x− b‖2 (2.63)

= ‖Ax− b+ ∑
i:xi�=0

(−xi · sgn(xi)u)‖2 (2.64)

= ‖Ax− b+ u ·
m

∑
i=1

ci|xi|‖2 (2.65)

= ‖Ax− b‖2+
m

∑
i=1

ci|xi| (2.66)

The last equation combined with (2.59) yields that the maximization problem:

max
ΔA∈A

‖(A+ΔA)x− b‖2 (2.67)

attains its maximum for the point ΔA = (δ1,δ2, . . . ,δm) where δi, i = 1, . . . ,m is
defined by (2.61). This proves that the original problem can be written as:

min
x

max
ΔA∈A

‖(A+ΔA)x− b‖2 = min
x

{

‖Ax− b‖2+
m

∑
i=1

ci · |xi|
}

(2.68)

The last is nothing but a regularized linear least squares problem with l1
regularization term. The last relation not only proves another interesting connection
between regularization and robustness but also suggests a practical method for
adjusting the regularization parameter in case that we have prior knowledge of data
uncertainty.

As pointed out by the authors in [63] the above result can be generalized for any
arbitrary norm. Thus the robust regression problem

min
x

max
ΔA∈Up

‖(A+ΔA)x− b‖p (2.69)

with

Up � {(δ1,δ2, . . . ,δm)|‖δi‖p ≤ ρi} (2.70)

is equivalent to the following problem

min
x

{

‖Ax− b‖p+
m

∑
i=1

ci · |xi|
}

(2.71)

This shows that LASSO type regularization can be the robust equivalent of a
general regression problem regardless the norm given that the induced perturbations
are defined as in (2.70).



Chapter 3
Principal Component Analysis

Abstract The principal component analysis (PCA) transformation is a very com-
mon and well-studied data analysis technique that aims to identify some linear
trends and simple patterns in a group of samples. It has application in several areas
of engineering. It is popular from computational perspective as it requires only
an eigendecomposition or singular value decomposition. There are two alternative
optimization approaches for obtaining principal component analysis solution, the
one of variance maximization and the one of minimum error formulation. Both
start with a “different” initial objective and end up providing the same solution.
It is necessary to study and understand both of these alternative approaches. In the
second part of this chapter we present the robust counterpart formulation of PCA
and demonstrate how such a formulation can be used in practice in order to produce
sparse solutions.

3.1 Problem Formulations

In this section we will present the two alternative formulation for the principal
component analysis (PCA). Both of them are based on different optimization
criteria, namely maximum variance and minimum error, but the final solution is the
same. The PCA transformation was originally proposed by Pearson in 1901 [43],
and it is still used until today in its generic form or as a basis for more complicated
data mining algorithmic scheme. It offers a very basic interpretation of data allowing
to capture simple linear trends (Fig. 3.1). At this point we need to note that we
assume that the mean of the data samples is equal to zero. In case this is not true we
need to subtract the sample mean as part of preprocessing.

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9878-1 3,
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Fig. 3.1 Two paths for PCA. PCA has two alternative optimization formulations that result in the
same outcome. One is to find a space where the projection of the original data will have maximum
variance and the second is to find the subspace such that the projection error is minimized

3.1.1 Maximum Variance Approach

In this case we try to find a subspace of dimensionality p < m for which the
variability of the projection of the points is maximized. If we denote with x̄ the
sample mean:

x̄ =
1
n

n

∑
i=1

xi (3.1)

then the variance of the projected data on the subspace defined by the direction
vector u will be:

1
n

n

∑
i=1

(
uTxi − uTx̄

)2
=

1
n

n

∑
i=1

(
uT(xi − x̄)

)2
= uT

(
∑n

i=1(xi − x̄)T(xi − x̄)
n

)
u (3.2)

and given that the variance covariance matrix is defined by:

S =
∑n

i=1(xi − x̄)T(xi − x̄)
n

(3.3)

Equation (3.2) can be written in matrix notation as:

uTSu (3.4)

If we restrict, without loss of generality, our solution space just to the vectors
u with Euclidean unit norm, then PCA problem can be expressed as the following
optimization problem:
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max
u

uTSu (3.5a)

s.t. uTu = 1 (3.5b)

The Lagrangian LPCA(u,λ ) for this problem will be:

LPCA(u,λ ) = uTSu+λ (uTu− 1) = 0 (3.6)

where λ is the Lagrange multiplier associated with the single constraint of the
problem. The optimal points will be given by the roots of the Lagrangian (since
S is positive semidefinite the problem is convex minimization). Thus

Su = λ u (3.7)

This equation is satisfied by all the eigenpairs (λn,un), i = 1, . . . ,n where

λ1 ≤ λ2 ≤ ·· · ≤ λn (3.8)

are the ordered eigenvalues and ui’s are the corresponding eigenvectors. The
objective function is maximized for u = un,λ = λn and the optimal objective
function value is uT

n Sun = uT
n λnun = λn‖un‖2 = λn.

3.1.2 Minimum Error Approach

An alternative derivation of PCA can be achieved through a different path. In this
approach the objective is to rotate the original axis system such that the projection
error of the dataset to the rotated system will be minimized. Thus we define a set
of basis vector {ui}m

i=1. As soon as we do this we are able to express every point,
including our dataset points, as a linear combination of the basis vectors.

xk =
m

∑
i=1

akiui =
m

∑
i=1

(
xT

k ui
)

ui, k = 1, . . . ,n (3.9)

Our purpose is to approximate every point xk with x̃k using just a subset p < m
of the basis. Thus the approximation will be:

x̃k =
p

∑
i=1

(
xT

k ui
)

ui +
m

∑
i=p+1

(
x̄Tui

)
ui, k = 1, . . . ,n (3.10)

where x̄ is the sample mean. The approximation error can be computed through a
squared Euclidean norm summation over all data points:

n

∑
k=1

‖xk − x̃k‖2. (3.11)
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We can obtain a more compact expression for xk − x̃k:

xk − x̃k =
m

∑
i=1

(
xT

k ui
)

ui −
(

p

∑
i=1

(
xT

n ui
)

ui +
m

∑
i=p+1

(
x̄Tui

)
ui

)

(3.12a)

=
m

∑
i=p+1

(
(xT

k ui)ui − (x̄Tui)ui
)

(3.12b)

=
m

∑
i=p+1

(
(xk − x̄)Tui

)
ui. (3.12c)

Then the solution can be estimated by minimizing (3.11) and by constraining the
solution to the vectors of unit Euclidean norm

min
u

m

∑
i=p+1

uT
i Sui = max

u

p

∑
i=1

uT
i Sui (3.13a)

s.t. uTu = 1 (3.13b)

This optimization problem is similar to the one obtained through the maximum
variance approach (the only difference is that we are looking for the first p
components instead of just one) and the solution is given by the first p eigenvectors
that correspond to the p highest eigenvalues (can be proved through analytical
solution of KKT system).

3.2 Robust Principal Component Analysis

Now we will describe a robust optimization approach for PCA transformation.
Again we need to clarify that the purpose of this work is to investigate the
application of robust optimization in the PCA transformation. There have been
several robust PCA papers in the literature that deal with the application of robust
statistics in PCA [26] and they are of interest when outliers are present in the data.
Unlike supervised learning approaches like SVM, where the objective is to find
the optimal solution for the worst case scenario, the purpose of robust formulation
of PCA, as described in [3], is to provide components explaining data variance
while at the same time are as sparse as possible. This is in general called sparse
principal component analysis (SPCA) transformation. By sparse solutions we mean
the vectors with large number of zeros. In general sparsity can be enforced through
different methods. Sparsity is a desired property, especially in telecommunications,
because it allows more efficient compression and faster data transmission. An SPCA
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formulation can be obtained if we add a cardinality constraint that strictly enforces
sparsity. That is:

max uTSu (3.14a)

s.t uTu = 1 (3.14b)

card(x) ≤ k (3.14c)

where card(·) is the cardinality function and k is parameter defining the maximum
allowed component cardinality. Matrix S is the covariance matrix defined previously
and u is the decision variable vector. Alternatively this problem can be casted as a
semidefinite programming problem as follows:

max Tr(US) (3.15a)

s.t Tr(U) = 1 (3.15b)

card(U) ≤ k2, (3.15c)

U � 0,Rank(X) = 1 (3.15d)

where U is the decision variable matrix and � denotes that the matrix is positive
semidefinite (i.e. aTXa ≥ 0, ∀a ∈ R

n). Indeed the solution to the original problem
can be obtained from the second one since conditions (3.15d) guarantee that U = u ·
uT. Instead of strictly constraining the cardinality we will demand eT ·abs(U) ·e ≤ k
(where e is the vector of 1’s and abs(·) returns the matrix whose elements are the
absolute values of the original matrix). In addition we will drop the rank constraint
as this is also a tough to handle constraint. We obtain the following relaxation of the
original problem:

max Tr(US) (3.16a)

s.t Tr(U) = 1 (3.16b)

eT · abs(U) · e ≤ k (3.16c)

U � 0 (3.16d)

the last relaxed problem is a semidefinite program with respect to matrix variable
U . We can rewrite it as follows:

max Tr(US) (3.17a)

s.t Tr(U) = 1 (3.17b)

eT · abs(U) · e ≤ k (3.17c)

U � 0 (3.17d)
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If we now remove the constraint (3.17c) and add a penalization term to the objective
function, we obtain the following relaxation:

max Tr(US)−ρeT · abs(U) · e (3.18a)

s.t Tr(U) = 1 (3.18b)

U � 0 (3.18c)

where ρ is parameter (Lagrange multiplier) determining the penalty’s magnitude.
By taking the dual of this problem we can have a better understanding for the nature
of the problem.

min λ max(S+V) (3.19a)

s.t. |Vi j| ≤ ρ , i, j = 1, . . . ,n (3.19b)

where λ max(X) is the maximum eigenvalue of matrix X . The problem (3.18) can be
rewritten as the following min–max problem:

max
X�0,Tr(U)=1

min
|Vi j |≤ρ

Tr(U(S+V)) (3.20a)

More precisely the goal is to determine the component that corresponds to the
maximum possible variance (which is the original PCA objective) by choosing the
most sparse solution (according to the sparsity constraints).



Chapter 4
Linear Discriminant Analysis

Abstract In this chapter we discuss another popular data mining algorithm that
can be used for supervised or unsupervised learning. Linear Discriminant Analysis
(LDA) was proposed by R. Fischer in 1936. It consists in finding the projection
hyperplane that minimizes the interclass variance and maximizes the distance
between the projected means of the classes. Similarly to PCA, these two objectives
can be solved by solving an eigenvalue problem with the corresponding eigenvector
defining the hyperplane of interest. This hyperplane can be used for classification,
dimensionality reduction and for interpretation of the importance of the given
features. In the first part of the chapter we discuss the generic formulation of LDA
whereas in the second we present the robust counterpart scheme originally proposed
by Kim and Boyd. We also discuss the non linear extension of LDA through the
kernel transformation.

4.1 Original Problem

The linear discriminant analysis (LDA) is a fundamental data analysis method
originally proposed by R. Fisher for discriminating between different types of
flowers [23]. The intuition behind the method is to determine a subspace of lower
dimension, compared to the original data sample dimension, in which the data points
of the original problem are “separable” (Fig. 4.1). Separability is defined in terms
of statistical measures of mean value and variance. One of the advantages of LDA
is that the solution can be obtained by solving a generalized eigenvalue system.
This allows for fast and massive processing of data samples. In addition LDA can
be extended to non-LDA through the kernel trick [4]. The original algorithm was
proposed for binary class problems but multi-class generalizations have also been
proposed [45]. Here we will discuss both starting from the simple two-class case.

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
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Fig. 4.1 The intuition behind
LDA. Data samples in two
dimensions are projected in a
lower dimension space (line).
The line has to be chosen so
that the projection maximizes
the “separability” of the
projected samples

Let x1, . . . ,xp ∈ R
m be a set of p data samples belonging to two different class

sets, A and B. For each class we can define the sample means:

x̄A =
1

NA
∑
x∈A

x, x̄B =
1

NB
∑
x∈B

x (4.1)

where NA,NB are the number of samples in A and B, respectively. Then for each class
we can define the positive semidefinite scatter matrices described by the equations:

SA = ∑
x∈A

(x− x̄A)(x− x̄A)
T,SB = ∑

x∈B

(x− x̄B)(x− x̄B)
T (4.2)

Each of these matrices expresses the sample variability in each class. Ideally we
would like to find a hyperplane, defined by the vector φ , for which if we project the
data samples their variance would be minimal. That can be expressed as:

min
φ

(
φTSAφ +φTSBφ

)
= min

φ
φT(SA + SB)φ = min

φ
φTSφ (4.3)

where S = SA + SB by definition. On the other side, the scatter matrix between the
two classes is given by

SAB = (x̄A − x̄B)(x̄A − x̄B)
T. (4.4)

According to Fisher’s intuition we wish to find a hyperplane in order to maximize
the distance between the means between the two classes and at the same time
to minimize the variance in each class. Mathematically this can be described by
maximization of Fisher’s criterion:

max
φ

J (φ) = max
φ

φTSABφ
φTSφ

. (4.5)
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This optimization problem can have infinitely many solutions with the same
objective function value. That is for a solution φ∗ all the vectors c ·φ∗ give exactly
the same value. If, without loss of generality, we replace the denominator with an
equality constraint in order to choose only one solution. Then the problem becomes:

max
φ

φTSABφ (4.6a)

s.t. φTSφ = 1 (4.6b)

The Lagrangian associated with this problem is:

LLDA(x,λ ) = φTSABφ −λ (φTSφ − 1) (4.7)

where λ is the lagrange multiplier that is associated with the constraint (4.6b). Since
SAB is positive semidefinite the problem is convex and the global minimum will be
at the point for which

∂LLDA(x,λ )
∂x

= 0 ⇔ SABφ −λ Sφ = 0 (4.8)

The optimal φ can be obtained as the eigenvector that corresponds to the smallest
eigenvalue of the following generalized eigensystem:

SABφ = λ Sφ (4.9)

Multiclass LDA is a natural extension of the previous case. Given n classes, we
need to redefine the scatter matrices: the intra-class matrix becomes

S = S1 + S2 + · · ·+ Sn (4.10)

while the inter-class scatter matrix is given by

S1,...,n =
n

∑
i=1

pi(x̄i − x̄)(x̄i − x̄)T (4.11)

where pi is the number of samples in the i-th class, x̄i is the mean for each class, and
x̄ is the total mean vector calculated by

x̄ =
1
p

n

∑
i=1

pix̄i.

The linear transformation φ we wish to find can be obtained by solving the following
generalized eigenvalue problem:

S1,...,nφ = λ Sφ .
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LDA can be used in order to identify which are the most significant features
together with the level of significance as expressed by the corresponding coefficient
of the projection hyperplane. Also LDA can be used for classifying unknown
samples. Once the transformation φ is given, the classification can be performed
in the transformed space based on some distance measure d. The class of a new
point z is determined by

class(z) = argmin
n
{d(zφ , x̄nφ)} (4.12)

where x̄n is the centroid of n-th class. This means that first we project the centroids
of all classes and the unknown points on the subspace defined by φ and we assign
the points to the closest class with respect to d.

4.1.1 Generalized Discriminant Analysis

In the case that the linear projection model cannot interpret the data, we need
to obtain a nonlinear equivalent of LDA [4]. This can be achieved by the well-
studied kernel trick. In this case we embed the original data points (input space) to
a higher dimension space (feature space) and then we solve the linear problem. The
projection of this linear discriminant in the feature space is a nonlinear discriminant
in the input space. This kernel embedding is performed through a function κ : Rm �→
R

q where q is the dimension of the feature space. Then the arithmetic mean on the
feature space for each class will be:

x̄κ
1 =

1
NA

∑
x∈A

κ(x), . . . , x̄κ
n =

1
NB

∑
x∈B

κ(x), (4.13)

the scatter matrices for each class in the feature space

V1 = ∑
x∈A

(κ(x)− x̄κ
A)(κ(x)− x̄κ

A)
T, . . . ,Vn = ∑

x∈B

(κ(x)− x̄κ
B)(κ(x)− x̄κ

B)
T (4.14)

and the variance between classes in the feature space will be:

B1,...,n =
n

∑
i=1

pi(x̄
κ
i − x̄κ)(x̄κ

i − x̄κ)T (4.15)

and the Fisher’s criterion in the feature space:

min
y

J k(y) =
yT(B1,...,n)y
yT(∑n

i=1 Vi)y
(4.16)
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The solution can be obtained from the eigenvector that corresponds to the smallest
eigenvalue of the generalized eigensystem B1,...,ny = λ (∑n

i=1 Vi)y. There are several
functions that are used as kernel functions in the data mining literature. For a more
extensive study of kernel theoretical properties, we refer the reader to [51].

4.2 Robust Discriminant Analysis

The RC formulation of robust LDA was proposed by Kim et al. [30,31]. As in other
approaches the motivation for a robust counterpart formulation of LDA comes from
the fact that data might be imprecise, thus the means and the standard deviations
computed might not be trustworthy estimates of their real values. The approach that
we will present here considers the uncertainty on the mean and standard deviation
rather on the data points themselves. For the robust case we are interested to
determine the optimal value of Fisher’s criterion for some undesired, worst case
scenario. In terms of optimization this can be described by the following min–max
problem.

max
φ�=0

min
x̄A,x̄B,SA,SB

φT(x̄A − x̄B)(x̄A − x̄B)
Tφ

φT(SA + SB)φ
= max

φ�=0
min

x̄A,x̄B,SA,SB

(φT(x̄A − x̄B))
2

φT(SA + SB)φ
(4.17)

In other words we need to estimate the optimal vector φ , defining the Fisher’s
hyperplane, given that a worst case scenario, with respect to means and variances,
occurs. This problem’s solution strongly depends on the nature of the worst
case admissible perturbation set. In general we denote the set of all admissible
perturbation U ⊆ R

n ×R
n × Sn

++× Sn
++ (by Sn

++ we denote the set of all positive
semidefinite matrices). Then the only constraint of the inner minimization problem
would be (x̄A, x̄B,SA,SB) ∈ U . In case that we are able to exchange the order of the
minimization and the maximization without affecting the problem’s structure, we
could write:

max
φ�=0

min
(x̄A,x̄B,SA,SB)∈U

(φT(x̄A − x̄B))
2

φT(SA + SB)φ
= min

(x̄Ax̄B,SA,SB)∈U
(x̄A − x̄B)(SA + SB)

−1(x̄A − x̄B)
T

(4.18)
For a general min–max problem, we can write

min
x∈X

max
y∈Y

f (x,y) = max
y∈Y

min
x∈X

f (x,y) (4.19)

if f (x,y) is convex function with respect to both x, concave with respect to y and also
X ,Y are convex sets. This result is known as strong min–max property and was
originally proved by Sion [53]. When convexity does not hold we have the so-called
weak min–max property:

min
x∈X

max
y∈Y

f (x,y) ≥ max
y∈Y

min
x∈X

f (x,y) (4.20)
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Thus in [30,31] Kim et al. provide such a minimax theorem for the problem under
consideration that does not require the strict assumptions of Sion’s result. This result
is stated in the following theorem

Theorem 4.1. For the following minimization problem

min
(wTa)2

wTBw
(4.21)

let (aopt,Bopt) be the optimal solution. Also let wopt = (Bopt)−1 ·aopt. Then the point
(wopt,aopt,Bopt) satisfies the following minimax property:

((wopt)Taopt)2

(wopt)TBoptwopt = min
(a,B)

max
w

(wTa)2

wTBw
= max

w
min
(a,B)

(wTa)2

wTBw
(4.22)

Proof. See [31].

Here it is worth noting that this result has a variety of applications including
signal processing and portfolio optimization (for details, see [30]). Thus the solution
for the robust problem can be obtained by solving the following problem:

min (x̄A − x̄B)(SA + SB)
−1(x̄A − x̄B)

T (4.23a)

s.t (x̄Ax̄B,SA,SB) ∈ U (4.23b)

Assuming that U is convex problem (4.23) is a convex problem. This holds
because the objective function is convex as a matrix fractional function (for detailed
proof, see [13]). Next we will examine the robust linear discriminant solution for a
special case of uncertainty sets. More specifically let us assume that the Frobenius
norm of the differences between the real and the estimated value of the covariance
matrices is bounded by a constant. That is

US = UA ×UB (4.24)

UA = {SA|‖SA − S̄A‖F ≤ δA} (4.25)

UB = {SB|‖SB − S̄B‖ ≤ δB} (4.26)

In general the worst case minimization problem can be expressed:

min
(x̄A,x̄B,SA,SB)

= min
(x̄A,x̄B)∈Ux

(x̄A − x̄B)

max(SA,SB)∈US
φT(SA + SB)φ

(4.27)

The problem in the denominator can be further simplified:

max
(SA,SB)∈US

φT(SA + SB)φ = φT(S̄A + S̄B + δAI+ δBI)φ (4.28)
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Thus the robust solution will be given by the solution to the convex optimization
problem:

min
(x̄A,x̄B)

(x̄A − x̄B)
T(S̄A + S̄B+ δAI + δBI)−1(x̄A − x̄B) (4.29)

which is simpler than (4.23). Following similar analysis it is possible to generalize
the robust LDA to nonlinear datasets through kernel. Details can be found in [13]. It
is worth noting that this connection between regularization and robustness appears
over and over in many of the algorithms presented in this monograph. This makes
us think that data mining algorithms share some very basic common principles. This
can be intuitive but it is very interesting that it is confirmed through mathematically
rigorous methods.



Chapter 5
Support Vector Machines

Abstract In this chapter we describe one of the most successful supervised learning
algorithms namely suppor vector machines (SVMs). The SVM is one of the
conceptually simplest algorithms whereas at the same time one of the best especially
for binary classification. Here we illustrate the mathematical formulation of SVM
together with its robust equivalent for the most common uncertainty sets.

5.1 Original Problem

Support vector machines (SVM) is one of the most well-known supervised clas-
sification algorithms. It was originally proposed by V. Vapnik [60]. The intuition
behind the algorithm is that we wish to obtain a hyperplane that “optimally”
separates two classes of training data. The power of SVM lies in the fact that
it has minimal generalization error (at least in the case of two classes) and the
solution can be obtained computationally efficient since it can be formulated as a
convex programming problem. Its dual formulation can be used in order to boost
the performance even more. As for other supervised classification methods SVM
original formulation refers to binary classification problems.

Given a set of data points xi, i = 1, . . . ,n and an indicator vector d ∈ {−1,1}n the
class information of the data points we aim to find a hyperplane defined by (w,b)
such that the distance between the hyperplane and the closest of the data points
of each class (support vectors) (Figs. 5.1 and 5.2). This can be expressed as the
following optimization problem:

min
w,b

1
2
‖w‖2 (5.1a)

s.t. di
(
wTxi + b

)≥ 1, i = 1, . . . ,n (5.1b)
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Fig. 5.1 Separation by
hyperpalnes. The SVM
determines the hyperplane
with the maximum possible
margin

Fig. 5.2 The nonseparable
case. The soft SVM allows
misclassification but
penalizes each misclassified
point

For this problem the Lagrangian equation will be:

LSVM(w,b,α) =
1
2

wTw−
n

∑
i=1

αi
[
di
(
wTxi + b

)− 1
]

(5.2)

where α = [α1 α2 . . .αn] are Lagrange multipliers. In order to determine them we
need to take the partial derivatives with respect to each decision variable and set
them equal to zero.

∂LSVM(w,b,α)

∂w
= 0 ⇔ w =

n

∑
i=1

αidixi (5.3a)

∂LSVM(w,b,α)

∂b
= 0 ⇔

n

∑
i=1

αidi = 0 (5.3b)
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if we substitute in (5.2) we get:

LSVM(w,b,α) =
1
2

n

∑
i, j=1

αiα jdid j〈xix j〉−
n

∑
i, j=1

αiα jd j〈x j,xi〉+ b
n

∑
i=1

αdi +
n

∑
i=1

αi

(5.4a)

=
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j〈xi,x j〉 (5.4b)

Then we can express the dual of the original SMV problem as follows:

max
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j〈xi,x j〉 (5.5a)

s.t.
n

∑
i=1

diαi = 0 (5.5b)

αi ≥ 0 i = 1, . . . ,n (5.5c)

The last is a also a convex quadratic problem that can be solved efficiently. Once
the optimal dual variables α∗

i , i = 1, . . . ,n are found, then the optimal separation
hyperplane w∗ can be obtained from:

w∗ =
n

∑
i=1

diα∗
i xi (5.6)

Note that b does not appear in the dual formulation thus it should be estimated
through the primal constraints

b∗ =−maxdi=−1〈w∗xi〉+mindi=1〈w∗xi〉
2

(5.7)

This model can give a separation hyperplane in case that the two classes
are linearly separable. When this assumption does not hold the optimization
problem becomes infeasible and we need to slightly modify this original hard
margin classification model so that it remains feasible even when some points are
misclassified. The idea is to allow misclassified points but at the same time to
penalize misclassifications making it a less favorable solution.

min
w,b,ξi

1
2

(

‖w‖2 +C
n

∑
i=1

ξ 2
i

)

(5.8a)

s.t. di
(
wTxi + b

)≥ 1− ξi, i = 1, . . . ,n (5.8b)
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where C is the penalization parameter. Note that this model becomes the same
as (5.1a) and (5.1b) as C 	→ +∞. Formulation (5.8a) and (5.8b) is known as soft
margin SVM.

This formulation can be seen as a regularized version of formulation (5.1a) and
(5.1b). The Lagrangian of (5.8a) and (5.8b) will be:

LSVM−S(w,b,ξ ,α) =
1
2

wTw+
C
2

n

∑
i=1

ξ 2
i −∑

i=1
αi
[
di
(
wTxi + b− 1+ ξi

)]
(5.9)

where, again, αi are appropriate Lagrangian multipliers. The dual formulation can
be easily obtained in a way similar to the hard margin classifier. The only difference
is that now we will have an additional equation associated with the new ξ variables.
Setting the derivation of the Lagrangian equal to zero for each of the decision
variables gives the following KKT system:

∂LSVM(w,b,ξ ,α)

∂w
= 0 ⇔ w =

n

∑
i=1

diαixi (5.10a)

∂L (w,b,ξ ,α)

∂ξ
= 0 ⇔Cξ = α ⇔ ξ =

1
C

α (5.10b)

∂LSVM(w,b,ξ ,α)

∂b
= 0 ⇔

n

∑
i=1

diαi = 0 (5.10c)

Substituting these equation to the primal Lagrangian we obtain:

LSVM−S(w,b,ξ ,α) =
1
2

wTw+
C
2

n

∑
i=1

ξ 2
i −∑

i=1

αi
[
di
(
wTxi + b− 1+ ξ

)]
(5.11a)

=
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j〈xi,x j〉+ 1
2C

〈α,α〉− 1
C
〈α,α〉

(5.11b)

=
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j〈xi,x j〉− 1
2C

〈α,α〉 (5.11c)

=
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j

(
〈xi,x j〉+ 1

C
δi j

)
(5.11d)

where δi j is the kronecker δ where it is equal to 1 when i= j and it is zero otherwise.
The dual formulation of the problem is thus:

max
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j

(
〈xi,x j〉+ 1

C
δi j

)
(5.12a)
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Fig. 5.3 A kernel map converts a nonlinear problem into a linear problem

s.t.
n

∑
i=1

diαi = 0 (5.12b)

αi ≥ 0 i = 1, . . . ,n (5.12c)

Once the optimal dual variables have been obtained, the optimal separation hy-
perplane can be recovered similar as in hard margin classifier. Given the hyperplane
a new point xu can be classified in one of the two classes based on the following
rule:

dxu = sgn(wTxu + b) (5.13)

where sgn(·) is the sign function. To address the problem of nonlinearity that
frequently occurs in real world problems, one can use kernel methods. Kernel
methods [50] provide an alternative approach by mapping data points x in the
input space into a higher dimensional feature space F through a map ϕ such that
ϕ : x 	→ ϕ(x). Therefore a point x in the input space becomes ϕ(x) in the feature
space.

Even though very often the function ϕ (x) is not available, cannot be computed,
or does not even exist, the dot product 〈ϕ (x1),ϕ (x2)〉 can still be computed in the
feature space through a kernel function. In order to employ the kernel method, it
is necessary to express the separation constraints in the feature space in terms of
inner products between the data points ϕ(xi). Then in the higher dimensional feature
space we can construct a linear decision function that represents a nonlinear decision
function in the input space. Figure 5.3 describes an example of a kernel mapping
from a two-dimensional input space to a two-dimensional feature space. In the input
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space the data cannot be separated linearly, however can be linearly separated in the
feature space.

The following three nonlinear kernel functions are usually used in the SVM
literature [24]:

• polynomial:(xTx+ 1)p,
• radial basis function (RBF): exp(− 1

2σ 2 ‖x− xi‖2),

• tangent hyperbolic (sigmoid): tanh(β xTx+β1), where β ,β1 ∈ R.

It is worth noting that the nonlinear version of SVM can be obtained if we just
replace the dot product function with another kernel function ϕ(xi,x j). For example
the dual soft margin kernel SVM formulation will be:

max
n

∑
i=1

αi − 1
2

n

∑
i, j=1

αiα jdid j

(
ϕ(xi,x j)+

1
C

δi j

)
(5.14a)

s.t.
n

∑
i=1

diαi = 0 (5.14b)

αi ≥ 0 i = 1, . . . ,n (5.14c)

In fact the linear case is a special kernel case as the dot product can be seen as
an admissible kernel function, i.e. ϕ(·, ·) = 〈·, ·〉. One of the fundamental limitations
of the generic formulation of soft SVM is that it is proposed just for the two-class
case (binary classification). This might pose a problem, since many of the real world
problems involve data that belong to more than two classes.

Majority voting scheme [60]: According to this approach, given a total of N classes,
we solve the SVM problem for all binary combinations (pairs) of classes. For
example for a three-class problem (class A, class B, and class C), we find the
separation hyperplanes that correspond to the problems A vs B, A vs C, and B vs
C. When a new point comes, then each classifier “decides” on the class of this point.
Finally the point is classified into the class with the most “votes.”

Directed acyclic graph approach [42]: For the majority voting process one needs to
construct a large number of training binary classifiers in order to infer the class of an
unknown sample. This can pose a computational problem to the performance. Thus
in the directed acyclic graph we try to minimize the number of necessary classifiers
required. This can be achieved by considering a tree that eliminates one class at each
level. An example with four classes is illustrated in Fig. 5.4.

A straightforward observation regarding these two multiclass generalization
strategies is that they can be used for any type of binary classifiers (not only SVM)
with or without the use of kernel.
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Fig. 5.4 Directed acyclic graph approach for a four-class example (A,B,C and D). At the first level
of the tree the sample goes through the A vs B classifier. Then depending on the outcome the
sample is tested through the A vs C or B vs C. The total number of binary classifiers needed equals
the depth of the tree

5.1.1 Alternative Objective Function

In a more general framework there has been proposed alternative objective function
that can be used for SVM classification yielding in computationally different
problems. In the general form one can express the objective function as fp(w)
where p corresponds to the type of norm. Along these lines we can express
the penalty function as g(C,ξ ) where C can be either a number, meaning that
all points are penalized the same way, or a diagonal matrix, with each diagonal
element corresponding to the penalization coefficient of each data sample. In
practice, different penalization coefficient might be useful when, for example, the
classification problem is imbalanced (the training samples of one class is much
higher than the other). For the case of SVM that we already presented we assumed
quadratic objective and penalty functions:

f2(w) = ‖w‖2
2 = wTw, g(C,ξ ) = ξ TCξ (5.15)

Another popular choice is

f (w) = ‖w‖1, g(C,ξ ) = 〈C,ξ 〉 (5.16)

In this case the SVM formulation becomes:

min ‖w‖1 + 〈C,ξ 〉 (5.17a)

s.t. di(w
Txi + b)≥ 1− ξi, i = 1, . . . ,n (5.17b)

It is easy to show that the last formulation can be solved as a linear program (LP).
More specifically if we introduce the axillary variable α we can obtain the following
equivalent formulation of problem (5.17a) and (5.17b)
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min
n

∑
i=1

αi + 〈C,ξ 〉 (5.18a)

s.t. di

(
n

∑
i=1

αi〈xi,x j〉+ b

)

≥ 1− ξi, i = 1, . . . ,n (5.18b)

αi ≥ 0, ξi ≥ 0, i = 1, . . . ,n (5.18c)

It is worth noting that the linear programming approach was developed indepen-
dently from the quadratic one.

5.2 Robust Support Vector Machines

The SVMs is one of the most well-studied application of robust optimization in data
mining. The theoretical and practical issues have been extensivaly explored through
the works of Trafalis et al. [56, 58], Nemirovski et al. [6], and Xu et al. [62]. It is
of particular interest that robust SVM formulations are tractable for a variety of
perturbation sets. At the same time there is clear theoretical connection between
particular robustification and regularization [62]. On the other side, several robust
optimization formulation can be solved as conic problems. If we recall the primal
soft margin SVM formulation presented in the previous section:

min
w,b,ξi

1
2

(

‖w‖2 +C
n

∑
i=1

ξ 2
i

)

(5.19a)

s.t. di
(
wTxi + b

)≥ 1− ξi, i = 1, . . . ,n (5.19b)

ξi ≥ 0, i = 1, . . . ,n (5.19c)

for the robust case we replace each point xi with x̃i = x̄i + σi where x̄i are the
nominal (known) values and σi is an additive unknown perturbation that belongs
to a well-defined uncertainty set. The objective is to solve the problem for the worst
case perturbation. Thus the general robust optimization problem formulation can be
stated as follows:

min
w,b,ξi

1
2

(

‖w‖2 +C
n

∑
i=1

ξ 2
i

)

(5.20a)

s.t. min
σi

(
di
(
wT(x̄i +σi)+ b

))≥ 1− ξi, i = 1, . . . ,n (5.20b)

ξ ≥ 0, i = 1, . . . ,n (5.20c)
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Note that since the expression of constraint (5.20b) corresponds to the distance
of the ith point to the separation hyperplane the worst case σi would be the one that
minimizes this distance. An equivalent form of constraint (5.20b) is:

di
(
wTx̄i + b

)
+min

σi
di
(
wTσi

)≥ 1− ξi, i = 1, . . . ,n (5.21)

Thus, solving the robust SVM optimization problem involves the following
problem:

min
σi∈Uσi

di
(
wTσi

)
, i = 1, . . . ,n (5.22)

for fixed w, where Uσi is the sets of admissible perturbations corresponding to ith
sample. Suppose that the lp norm of the unknown perturbations are bounded by
known constant.

min di
(
wTσi

)
, i = 1, . . . ,n (5.23a)

s.t. ‖σi‖p ≤ ρi (5.23b)

By using Hölders inequality (see appendix) we can obtain:

|di(w
Tσi)| ≤ ‖w‖q‖σi‖p ≤ ρi‖w‖q (5.24)

where ‖ · ‖q is the dual norm of ‖ · ‖p. Equivalently we can obtain:

−ρi‖w‖q ≤ di(w
Tσi) (5.25)

Thus the minimum of this expression will be −ρi‖w‖q. If we substitute this
expression in the original problem, we obtain:

min
w,b,ξi

1
2

(

‖w‖2 +C
n

∑
i=1

ξ 2
i

)

(5.26a)

s.t. di
(
wT(x̄i +σi)+ b

)−ρi‖w‖q ≥ 1− ξi, i = 1, . . . ,n (5.26b)

ξi ≥ 0, i = 1, . . . ,n (5.26c)

The structure of the obtained optimization problem depends on the norm p. Next
we will present some “interesting” case. It is easy to determine the value of q from
1/p+ 1/q = 1 (for details see appendix). For p = q = 2, we obtain the following
formulation:

min
w,b,ξi

1
2

(

‖w‖2 +C
n

∑
i=1

ξ 2
i

)

(5.27a)

s.t. di
(
wTx̄i + b

)−ρi‖w‖2 ≥ 1− ξi, i = 1, . . . ,n (5.27b)

ξi ≥ 0, i = 1, . . . ,n (5.27c)
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The last formulation can be seen as a regularization of the original problem.
Another interesting case is when the uncertainty is described with respect to the
first norm (box constraints). In this case the robust formulation will be:

min
w,b,ξi

1
2

(

‖w‖∞ +C
n

∑
i=1

ξi

)

(5.28a)

s.t. di
(
wT(x̄i +σi)+ b

)−ρi‖w‖∞ ≥ 1− ξi, i = 1, . . . ,n (5.28b)

ξi ≥ 0, i = 1, . . . ,n (5.28c)

Since the dual of l1 norm is the l∞ norm. If we further more assume that the
norm of the loss function is expressed with respect to the l1 norm, then the obtained
optimization problem can be solved as a linear program (LP). The drawback of
this formulation is that it is not kernalizable. More specifically if we introduce
the axillary variable α , we can obtain the following equivalent formulation of
problem (5.28a), (5.28b) and (5.28c):

min
α ,w,b,ξi

α + 〈C,ξ 〉 (5.29a)

s.t. di
(
wT(x̄i +σi)+ b

)−ρiα ≥ 1− ξi i = 1, . . . ,n (5.29b)

ξi ≥ 0 i = 1, . . . ,n (5.29c)

α ≥−wk k = 1, . . . ,n (5.29d)

α ≥ wk k = 1, . . . ,n (5.29e)

α ≥ 0 (5.29f)

If the perturbations are expressed with respect to the l∞ norm, then the equivalent
formulation of SVM is:

min (‖w‖1 + 〈C,ξ 〉) (5.30a)

s.t. di
(
wTxi + b

)−ρi‖w‖1 ≥ 1− ξi i = 1, . . . ,n (5.30b)

ξi ≥ 0 i = 1, . . . ,n (5.30c)

In the same way if we introduce the auxiliary variables α1,α2, . . . ,αn, the formula-
tion becomes

min
αi,w,b,ξi

n

∑
i=1

αi + 〈C,ξ 〉 (5.31a)

s.t. di
(
wTx̄+ b

)−ρi

n

∑
i=1

αi ≥ 1− ξi i = 1, . . . ,n (5.31b)
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ξi ≥ 0 i = 1, . . . ,n (5.31c)

αi ≥−wi i = 1, . . . ,n (5.31d)

αi ≥ wi i = 1, . . . ,n (5.31e)

αi ≥ 0 i = 1, . . . ,n (5.31f)

It is worth noting that for all robust formulations of SVM the classification rule
remains the same as for the nominal case: class(u) = sgn

(
wTu+ b

)
. Next we will

describe the feasibility approach formulation, an SVM like optimization approach
with linear objective function, and its robust equivalent.

5.3 Feasibility-Approach as an Optimization Problem

As the SVM algorithm, the feasibility-approach algorithm can be formulated
through an optimization problem. Suppose that we have a set of � samples
{x1,x2, . . . ,x�} and we want a weight vector w and a bias b that satisfies yi(wTxi +
b) ≥ 1 for all i = 1, . . . , �. This feasibility problem can be expressed as an LP
problem [19] by introducing an artificial variable t ≥ 0 and solving the following

min t

s.t. yi(w
Txi + b)+ t ≥ 1

t ≥ 0, (5.32)

where w ∈ R
n and b and t are scalar variables. By minimizing the slack variable

t we can decide if the separation is feasible. If the optimal value t̂ = 0, then the
samples are linearly separable and we have a solution. If t̂ > 0, there is no separating
hyperplane and we have a proof that the samples are nonseparable. In contrast to
the SVM approach, we keep the same slack variable t constant for each separation
constraint.

5.3.1 Robust Feasibility-Approach and Robust SVM
Formulations

In [48] Santosa and Trafalis proposed the robust counterpart algorithm of the
feasibility approach formulation. Consider that our data are perturbed. Instead of
having the input data point xi, now we have xi = x̃i + ui where ui is a bounded
perturbation with ‖ui‖ ≤ √η , η is a positive number, and x̃i is the center of the
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Fig. 5.5 Finding the best classifier for data with uncertainty. The bounding planes are moved to
the edge of the spheres to obtain maximum margin

uncertainty sphere where our data point is located. Therefore, the constraints in
(5.32) become

yi(〈w,xi〉+ b)+ t ≥ 1

⇔ yi(〈w, x̃i〉+ 〈w,ui〉+ b)+ t ≥ 1, i = 1, . . . , �

t ≥ 0,

‖ui‖ ≤
√

n. (5.33)

Our concern is the problem of classification with respect to two classes and
for every realization of ui in the sphere S(0,

√
η). In order to increase the margin

between the two classes (and therefore having the best separating hyperplane), we
try to minimize the dot product of w and ui in one side of the separating hyperplane
(class −1) and maximize the dot product of w and ui in the other side (class 1)
subject to ‖ui‖ ≤ √

η . In other words in (5.33) we replace 〈w,ui〉 with its minimum
value for the negative examples (class −1) and with its maximum value for the
positive examples (class 1). By this logic, we are trying to maximize the distance
between the classifier and points on different classes (see Fig. 5.5) and therefore
increasing the margin of separation.

Therefore we have to solve the following two problems

max 〈w,ui〉 s.t. ‖ui‖ ≤ √
η

for yi =+1 and
min 〈w,ui〉 s.t. ‖ui‖ ≤√

η

for yi =−1.
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Using Cauchy–Schwarz inequality, the maximum and the minimum of the dot
product of 〈w,ui〉 will be

√
η ‖w‖ and −√

η ‖w‖ respectively. By substituting the
maximum value of 〈w,ui〉 for yi = 1 and its minimum value for yi = −1 in (5.33),
we have

min t

s.t.
√

η ‖w‖+wTx̃i + b+ t ≥ 1, for yi =+1
√

η ‖w‖−wTx̃i − b+ t ≥ 1, for yi =−1

t ≥ 0. (5.34)

If we map the data from the input space to the feature space F , then g(x) =
sign(wTϕ(x)+ b) is a decision function in the feature space. In the feature space,
(5.34) becomes

min t

s.t.
√

η ‖w‖+wTϕ(x̃i)+ b+ t ≥ 1, for yi =+1
√

η ‖w‖−wTϕ(x̃i)− b+ t ≥ 1, for yi =−1

t ≥ 0. (5.35)

We can represent w as

w =
�

∑
i=1

αiϕ(x̃i), (5.36)

where αi ∈ R. By substituting w with the above representation and substituting
〈ϕ(x̃),ϕ(x̃)〉 with K, we have the following robust feasibility-approach formulation

min t

s.t.
√

η
√

αTKα +Kiα + b+ t ≥ 1, for yi =+1
√

η
√

αTKα −Kiα − b+ t ≥ 1, for yi =−1

t ≥ 0, (5.37)

where Ki is the 1×� vector corresponding to the ith line of the kernel matrix K. Note
that we reorder the rows of the matrix K based on the label. It is important to note
that most of the time we do not need to know explicitly the map ϕ . The important
idea is that we can replace 〈ϕ(x),ϕ(x)〉 with any suitable kernel k(x,x).
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By modifying the constraints of the SVM model incorporating noise as in the
feasibility-approach, we have the following robust SVM model formulation:

min
1
2

αTKα +C
�

∑
i=1

ti

s.t.
√

η
√

αTKα −Kiα − b+ ti ≥ 1, for yi =−1
√

η
√

αTKα +Kiα + b+ ti ≥ 1, for yi =+1

ti ≥ 0. (5.38a)

Note that the above formulations are SOCP problems. By margin(η), we define
the margin of separation when the level of uncertainty is η . Then

margin(η) =
(1+ ‖w‖√η − b)− (−1− b+

√
(η)‖w‖)

‖w‖

=
2+ 2

√
η ‖w‖

‖w‖ =
2

‖w‖ + 2
√

η = margin(0)+ 2
√

η (5.39)

The above equation shows that as we increase the level of uncertainty η , the
margin is increasing in contrast to [57] formulation where the margin is decreasing.



Chapter 6
Conclusion

In this work, we presented some of the major recent advances of robust optimization
in data mining. Through this monograph, we examined most of the data mining
methods from the scope of uncertainty handling with only exception the principal
component analysis (PCA) transformation. Nevertheless the uncertainty can be seen
as a special case of prior knowledge. In prior knowledge classification, for example,
we are given together with the training sets some additional information about the
input space. Another type of prior knowledge other than uncertainty is the so-called
expert knowledge, e.g., binary rule of the type “if feature a is more than M1 and
feature b less than M2 then the sample belongs to class x.” There has been significant
amount of research in the area of prior knowledge classification [33, 49] but there
has not been a significant study of robust optimization on this direction.

On the other side there have been several other methods able to handle uncer-
tainty like stochastic programming as we already mentioned at the beginning of the
manuscript. Some techniques, for example, conditional value at risk (CVAR), have
been extensively used in portfolio optimization and in other risk related decision
systems optimization problems [46] but their value for machine learning has not
been fully investigated.

Application of robust optimization in machine learning would be an alternative
method for data reduction. In this case we could replace groups of points by convex
shapes, such as balls, squares or ellipsoids, that enclose them. Then the supervised
learning algorithm can be trained just by considering these shapes instead of the full
sets of points.

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9878-1 6,
© Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis 2013
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Appendix A
Optimality Conditions

Here we will briefly discuss the Karush–Kuhn–Tucker (KKT) Optimality Condi-
tions and the method of Lagrange multipliers that is extensively used through this
work. In this section, for the sake of completion we are going to describe the
technical details related to optimality of convex programs and the relation with KKT
systems and methods of Lagrange multipliers. First we will start by giving some
essential definitions related to convexity. First we give the definition of a convex
function and convex set.

Definition A.1. A function f : X ⊆R
m �→R is called convex when λ f (x)+ (1−λ )

f (x)≥ f (λ x+(1−λ )x) for 0 ≤ λ ≤ 1 and ∀x ∈ X .

Definition A.2. A set X is called convex when for any two points x1,x2 ∈ X the
point λ x1 +(1−λ )x2 ∈ X for 0 ≤ λ ≤ 1.

Now we are ready to define a convex optimization problem

Definition A.3. An optimization problem minx∈X f (x) is called convex when f (x)
is a convex function and X is a convex set.

The class of convex problems is really important because they are classified
as problems that are computationally tractable. This allows the implementation of
fast algorithms for data analysis methods that are realized as convex problems.
Processing of massive datasets can be realized because of this property. Once we
have defined the convex optimization problem in terms of the properties of its
objective function and its feasible region we will state some basic results related
to their optimality.

Corollary A.1. For a convex minimization problem a local minimum x∗ is always
a global minimum as well. That is if f (x∗) ≤ ( f (x)) for x ∈ S where S ⊆ X then
f (x∗)≤ f (x) for x ∈ X.

P. Xanthopoulos et al., Robust Data Mining, SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9878-1,
© Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis 2013
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Proof. Let x∗ be a local minimum such that f (x∗) < f (x),x ∈ S ⊆ X and another
point x̄ being the global minimum such that f (x̄) < f (x),x ∈ X . Then by convexity
of the objective function it holds that

f (λ x̄+(1−λ )x∗) = f (x∗+λ (x̄− x∗))≤ λ f (x̄)+ (1−λ ) f (x∗)< f (x∗) (A.1)

on the other side by local optimality of point x̄ we have that there exist λ ∗ > 0 such
that

f (x∗)≤ f (x∗+λ (x̄− x∗)), 0 ≤ λ ≤ λ ∗ (A.2)

which is a contradiction.

This is an important consequence that explains in part the computational track-
tability of convex problems. Next we define the critical points that are extremely
important for the characterization of global optima of convex problems. But before
that we need to introduce the notion of extreme directions.

Definition A.4. A vector dRn is called feasible direction with respect to a set S at
a point x if there exist c ∈R such that x+λ d ∈ S for every 0 < λ < c.

Definition A.5. For a convex optimization problem minx∈X f (x) where f differen-
tiable every point that satisfies dT∇ f (x∗) ≥ 0,d ∈ Z(x∗) (where Z(x∗) is the set of
all feasible directions of the point x∗) is called a critical (or stationary) point.

Critical points are very important in optimization as they are used in order
to characterize local optimality in general optimization problems. In a general
differentiable setup stationary points characterize local minima. This is formalized
through the following theorem.

Theorem A.1. If x∗ is a local minimum of a continuously diffentiable function f
defined on a convex set S, then it satisfies dT∇ f (x∗)≥ 0,d ∈ Z(x∗).

Proof. [25] p. 14.

Due to the specific properties of convexity, in convex programming, critical points
are used in order to characterize global optimal solutions as well. This is stated
through the following theorem.

Theorem A.2. if f is a continuously differentiable function on an open set contain-
ing S, and S is a convex set then x∗ ∈ S is a global minimum if and only if x∗ is a
stationary point.

Proof. [25] pp. 14–15.

The last theorem is a very strong result that connects stationary points with global
optimality. Since stationary points are so important for solving convex optimization
problems, it is also important to establish a methodology that would allow us to
discover such points. This is exactly the goal of Karush–Kuhn–Tucker conditions
and method of Lagrangian multipliers. (They are actually different sides of the same
coin.) This systematic methodology was first introduced by Lagrange in 1797 and
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it was generalized through the master thesis of Karush [29] and finally they became
more popular known through the work of Kuhn and Tucker [32]. These conditions
are formally stated through the next theorem.

Theorem A.3 (KKT conditions). Given the following optimization problem

min f (x) (A.3a)

s.t. gi(x)≥ 0, i = 1, . . . ,n (A.3b)

hi(x) = 0, i = 1, . . . ,m (A.3c)

x ≥ 0 (A.3d)

The following conditions (KTT) are necessary for optimality

∇ f (x∗)+
n

∑
i=1

λi∇gi(x
∗)+

m

∑
i=1

μi∇hi(x
∗) (A.4a)

λigi(x
∗) = 0 i = 1, . . . ,n (A.4b)

λi ≥ 0 i = 1, . . . ,n (A.4c)

For the special case that f (·),g(·),h(·) are convex functions, then the KKT
conditions are also sufficient for optimality.

Proof. See [25]

The (A.4a) is also known as Lagrangian equation and λi are also known as
lagrange multipliers. Thus one can determine stationary for a problem by just
finding the roots of the Lagrangian’s first derivative. For the general case this
method is formalized through the Karush–Kuhn–Tucker optimality conditions. The
important of these conditions is that under convexity assumptions they are necessary
and sufficient.

Due to the aforementioned results that connect stationary point with optimality
we can clearly see that one can solve a convex optimization problem just by solving
the corresponding KKT system. The corresponding points would be the solution to
the original problem.



Appendix B
Dual Norms

Dual norms is a mathematical tool, necessary for the analysis of robust support
vector machines formulation.

Definition B.1. For a norm ‖ · ‖ we define the dual norm ‖ · ‖∗ as follows

‖x‖∗ = sup{xTα|‖x‖ ≤ α} (B.1)

There are several properties associated with the dual norm that we will briefly
discuss here.

Property B.1. A dual norm of a dual norm is the original norm itself. In other words

‖x‖∗∗ = ‖x‖ (B.2)

Property B.2. A dual of an la norm is lb norm where a and b satisfy the following
equation

1
a
+

1
b
= 1 ⇔ b =

a
a− 1

(B.3)

Immediate results of the previous property is that

• The dual norm of the Euclidean norm is the Euclidean norm (b = 2/(2−1)= 2).
• The dual norm of the l1 norm is l∞

Next we will state Hölders inequality and Cauchy Swartz inequality which are
two fundamental inequalities that connect the primal and the dual norm.

Theorem B.1 (Hölders inequality). For a pair of dual norms a and b, the
following inequality holds:

〈x · y〉 ≤ ‖x‖a‖y‖b (B.4)

For the special case that a = b = 2 then Hölders inequality reduces to Cauchy–
Swartz inequality

〈x · y〉 ≤ ‖x‖2‖y‖2 (B.5)
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