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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to

provide the engineering, mathematical, and scientific communities with significant

developments in harmonic analysis, ranging from abstract harmonic analysis to

basic applications. The title of the series reflects the importance of applications and

numerical implementation, but richness and relevance of applications and imple-

mentation depend fundamentally on the structure and depth of theoretical under-

pinnings. Thus, from our point of view, the interleaving of theory and applications

and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,

developed, and deepened over time within many disciplines and by means of

creative cross-fertilization with diverse areas. The intricate and fundamental rela-

tionship between harmonic analysis and fields such as signal processing, partial

differential equations (PDEs), and image processing is reflected in our state-of-the-

art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as

wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analy-

sis, and fractal geometry as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with

some basic problems in digital signal processing, speech and image processing,

geophysics, pattern recognition, biomedical engineering, and turbulence. These

areas implement the latest technology from sampling methods on surfaces to fast

algorithms and computer vision methods. The underlying mathematics of wavelet

theory depends not only on classical Fourier analysis but also on ideas from abstract

harmonic analysis, including von Neumann algebras and the affine group. This

leads to a study of the Heisenberg group and its relationship to Gabor systems, and

of the metaplectic group for a meaningful interaction of signal decomposition

methods. The unifying influence of wavelet theory in the aforementioned topics

illustrates the justification for providing a means for centralizing and disseminating

information from the broader, but still focused, area of harmonic analysis. This will

be a key role of ANHA. We intend to publish with the scope and interaction that

such a host of issues demand.
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Along with our commitment to publish mathematically significant works at the

frontiers of harmonic analysis, we have a comparably strong commitment to

publish major advances in the following applicable topics in which harmonic

analysis plays a substantial role:

Antenna theory Prediction theory

Biomedical signal processing Radar applications

Digital signal processing Sampling theory

Fast algorithms Spectral estimation

Gabor theory and applications Speech processing

Image processing Time-frequency and time-scale
analysis

Numerical partial differential
equations

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of

Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the

development of mathematics, on the understanding of many engineering and

scientific phenomena, and on the solution of some of the most important problems

in mathematics and the sciences. Historically, Fourier series were developed in the

analysis of some of the classical PDEs of mathematical physics; these series were

used to solve such equations. In order to understand Fourier series and the kinds of

solutions they could represent, some of the most basic notions of analysis were

defined, for example, the concept of “function.” Since the coefficients of Fourier

series are integrals, it is no surprise that Riemann integrals were conceived to deal

with uniqueness properties of trigonometric series. Cantor’s set theory was also

developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,

such as sound waves, can be described in terms of elementary harmonics. There are

two aspects of this problem: first, to find, or even define properly, the harmonics or

spectrum of a given phenomenon, for example, the spectroscopy problem in optics;

second, to determine which phenomena can be constructed from given classes of

harmonics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-

ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in

Fourier analysis not only characterizes the behavior of the prime numbers but also

provides the proper notion of spectrum for phenomena such as white light; this

latter process leads to the Fourier analysis associated with correlation functions in

filtering and prediction problems, and these problems, in turn, deal naturally with

Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier

integral operators. Problems in antenna theory are studied in terms of unimodular

trigonometric polynomials. Applications of Fourier analysis abound in signal

processing, whether with the fast Fourier transform (FFT) or filter design or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet

theory. The coherent states of mathematical physics are translated and modulated

Fourier transforms, and these are used, in conjunction with the uncertainty princi-

ple, for dealing with signal reconstruction in communications theory. We are back

to the raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor
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Preface

The area of realtime data mining is currently developing at an exceptionally

dynamic pace. Realtime data mining systems are the counterpart of today’s “clas-

sic” data mining systems. Whereas the latter learn from historical data and then use

it to deduce necessary actions, realtime analytics systems learn and act continu-

ously and autonomously. In the vanguard of these new analytics systems are

recommendation engines (REs). They are principally found on the Internet, where

all information is available in real time and an immediate feedback is guaranteed.

In this book, we describe novel mathematical concepts for recommendation

engines based on realtime learning. These feature a sound mathematical framework

which unifies approaches based on control and learning theories, tensor factorization,

and hierarchical methods. Furthermore, they present promising results of numerous

experiments on real-world data. Thus, the book introduces and demystifies this

concept of “realtime thinking” for a specific application—recommendation engines.

Additionally, the book provides useful knowledge about recommendation engines

such as verification of results in A/B tests including calculation of confidence

intervals, coding examples, and further research directions.

The main goal of the research presented in the book consists of devising a sound

and effective mathematical and computational framework for automatic adaptive

recommendation engines. Most importantly, we introduce an altogether novel

control-theoretic approach to recommendation based on considering the customer

of an (online) shop as a dynamic system upon which the recommendation engine

acts as a closed-loop control system, the objective of which is maximizing the

incurred reward (e.g., revenue). Besides that, we also cover classical data

mining-based approaches and develop efficient numerical procedures for

computing and, especially, updating the underlying matrix and tensor decomposi-

tions. Furthermore, we take a step toward a framework that unifies the two

approaches, that is, the classical and the control-theoretic one. In summary, the

book proposes a very modern approach to realtime analytics and includes a lot of

new material.
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Currently, most books about recommendation engines focus on traditional

techniques, such as collaborative filtering, basket analysis, and content-based

recommendations. Recommendations are considered from a prediction point of

view only, that is, the recommendation task is reduced to the prediction of content

that the user is going to select with highest probability anyway. In contrast, in our

book we consider recommendations as a control-theoretic problem by investigating

the interaction of analysis and action. At this, an optimization problem with respect

to maximum reward is considered.

Another important frequently recurring theme in our train of thought is that of

hierarchical approaches. In recent decades, methods that capture and take into

account effects at different scales have turned out to be a key ingredient to

successfully tackling complex problems in signal processing and numerical solu-

tion of partial differential equations. Supported by the evidence that we shall

present in this book, we strongly conjecture that this paradigm may give rise to

major improvements in the efficiency of computational procedures deployed in the

framework of realtime recommendation engines. We therefore would like to stress

that this book is also a step toward introducing harmonic thinking in the theory and

practice of recommendation engines.

The book targets, on one hand, computer scientists and specialists in machine

learning, especially from the area of recommendation systems, because it conveys a

new way of realtime thinking especially by considering recommendation tasks as

control-theoretic problems. On the other hand, the book may be of considerable

interest to application-oriented mathematicians, because it consistently combines

some of the most promising mathematical areas, namely, control theory, multilevel

approximation, and tensor factorization.

Owing to the complexity of the subject, the book cannot go into all the details of

the mathematical theory, let alone its implementation. Nevertheless, it sets out the

basic assumptions and tools that are needed for an understanding of the theory. In

some areas of fundamental importance, we also offer more detailed mathematical

examples. Overall, however, we have tried to keep the mathematical illustrations

short and to the point.

The document structure is as follows. Chapter 1 offers a general introduction to

methods of realtime analytics and sets out their advantages and disadvantages as

compared with conventional analytics methods, which learn only from historical

data. Chapter 2 describes conventional approaches for recommendation engines

and shows how their inherently static methodology is their main weak point. The

use of realtime analytics methods is suggested as a way of overcoming precisely

this problem and, specifically, reinforcement learning (RL), one of the very

newest disciplines, which models the interplay of analysis and action. Chapter 3

provides a brief introduction to RL, while Chap. 4 applies this knowledge to

recommendation engines. There are still a number of fundamental problems to

resolve, however, requiring the introduction of some additional empirical assump-

tions. This is done in Chap. 5, resulting in a complete RL-based approach for

recommendation engines.
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Chapter 1

Chapter 2 Chapter 3

Chapter 5

Chapter 6 Chapter 8

Chapter 7 Chapter 9

Chapter 10

Chapter 4

Chapter 11

Chapter 12

Chapter 13

The next chapters are devoted to improve our solution, especially concerning

stability and speed of convergence. Thus, in Chap. 6 we study hierarchical methods

and add a hierarchical convergence accelerator to further boost the learning speed.

Chapter 7 represents an extension to the topic of hierarchical methods where a

powerful adaptive scoring technique is described—sparse grids. For a better exploi-

tation of the data in the calculation of recommendations, in Chap. 8 we introduce

matrix factorization techniques along with some adaptive implementation. Using the

tensor concept, Chap. 9 extends the factorization to the high-dimensional case. This

enables us to combine hierarchical RL with adaptive tensor factorization in order to

include additional dimensions into the realtime calculation of recommendations.

This “big picture,” which is still in the very beginning, is described in Chap. 10 and

concludes the technical description of our new recommendation approach.

In Chap. 11, we discuss statistically rigorous methods for measuring the success

of recommendation engines. Chapter 12 is devoted to the prudsys XELOPES

library which implements most of the algorithms described in this book and pro-

vides a powerful infrastructure for realtime learning. Finally, in Chap. 13 we

summarize the main elements covered in the book.

Parts of the book provide an easily understandable introduction to realtime

recommendations and do not require deep mathematical knowledge. Especially,

this applies to Chaps. 1 and 2 as well as Chaps. 11, 12, and 13. Chapters 3, 4, and 5

are devoted to reinforcement learning and assume basic knowledge of algebra and

statistics. In contrast, Chaps. 6, 7, 8, 9, and 10 address mathematically more

experienced readers and require solid knowledge of linear algebra and analysis.
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Chapter 1

Brave New Realtime World: Introduction

Abstract The chapter offers a general introduction to methods of realtime

analytics and sets out their advantages and disadvantages as compared with

conventional analytics methods, which learn only from historical data. In particular,

we stress the difficulties in the development of theoretically sound realtime analyt-

ics methods. We emphasize that such online learning does not conflict with

conventional offline learning but, on the opposite, both complement each other.

Finally, we give some methodical remarks.

1.1 Historical Perspective

“Study cybernetics!” the Soviet author Viktor Pekelis urged his young readers, of whom

I was one, in 1977 [Pek77]. But I didn’t, not least because by the time I could have done so,

cybernetics was no longer available as a study option. By the end of the 1970s, after more

than 25 years, the wave of enthusiasm for cybernetics had finally ebbed [Pia04]. So what

had gone wrong?

Cybernetics was established in the late 1940s by the American mathematician Norbert

Wiener as a scientific field of study exploring the open- and closed-loop control of

machines, living organisms and even entire social organizations [Wien48]. Cybernetics

was also defined as the “art of control,” and feedback in particular played a central role

here. Its purpose was to ensure that systems do not get out of hand but instead adapt

successfully to their environment. The thermostat is a classic example of a cybernetic

control.

In fact the scientific benefits were immense: cybernetics brought together such diverse

disciplines as control theory, neurology and information theory, and leading scientists such

as John von Neumann, Warren McCulloch and Claude Shannon were involved in its

development. It caused a sensation in the media. The possibilities offered by this new

discipline seemed infinite: robots would take on day-to-day chores, factories would manage

themselves, and computers would write poetry and compose music. More ambitiously still,

from 1971 onwards the Cybersyn project in Chile headed up by the Englishman Stafford

Beer sought to establish a centralized system of cybernetic economic control [Beer59]. And

in the Soviet Union the OGAS project [GV81] led by pioneering cyberneticists Viktor

Glushkov and Anatoly Kitov aimed to bring the entire Soviet planned economy under

automated control.

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,
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Ultimately, however, neither was successful. The Cybersyn project was brought to an

abrupt end by Pinochet’s coup d’etat, while OGAS was successfully blocked by Soviet

bureaucrats who feared the loss of their sinecures. Yet even if these projects had been fully

implemented, their immense complexity would inevitably have led to their ultimate failure.

When later we see how complicated it is to properly control even far simpler systems

(like our recommendation engines), we will appreciate the boldness – but also the

foolhardiness – of these endeavors. For in reality, even for much more straight-forward

tasks like computer chess or machine translation, cybernetics was for the moment unable to

live up to its expectations.

For that reason specific elements of cybernetics began to emerge as separate research

fields. Probably the most widely known of these is Artificial Intelligence (AI), which

initially was hyped in much the same way as cybernetics (although lacking its scientific

merit) but became discredited over time in public opinion. Like most mathematicians, I was

suspicious of AI: I associated it mainly with long-haired gurus who spoke in incompre-

hensible sentences, always ending with the threat that robots would take over the world. In a

word: cranks!

But I changed my mind after reading the classic Artificial Intelligence: A Modern
Approach by Stuart Russell and Peter Norvig [RN02]. This book centers on the concept

of an agent communicating with its environment. The authors then systematically introduce

different types of agent: planning and non-planning, learning and non-learning, determin-

istic and stochastic, etc. An AI system encompassing a wide array of diverse fields emerges.

What’s more, the practical successes of AI can no longer be ignored: computer programs

play better chess than grand masters, call centers work with voice control, and IBM’s

Watson computer recently dealt mercilessly with past champions on the American quiz

show Jeopardy. There is still a long way to go of course: modern robots still tend to move

like Martians; you have to repeat everything ten times to make voice control work, and

automated Google translation is a source of constant amusement. Yet the advances are

undeniable.

Michael Thess

1.2 Realtime Analytics Systems

The area of realtime data mining (realtime analytics, or onlinemethods for short) is

currently developing at an exceptionally dynamic pace. Realtime data mining

systems are the counterpart of today’s “classical” data mining systems (known as

offline methods). Whereas the latter learn from historical data and then use it to

deduce necessary actions (i.e., decisions), realtime analytics systems learn and act

continuously and autonomously; see Fig. 1.1. (Strictly speaking, they should

therefore be called realtime analytics action systems, but we will stick to the

established terms.) In the vanguard of these new analytics systems are recommen-
dation engines (REs). They are principally found on the Internet, where all

information is available in real time and an immediate feedback is guaranteed.

Realtime analytics systems mostly use adaptive analytics methods, which means

that they work incrementally: as soon as a new data set has been learned, it can be

deleted. Apart from anything else, the adaptive operating principle is a practical

necessity: if classic analytics methods were used, each learning step would require

an analysis of all historical data. As realtime systems learn in (almost) every

interaction step, the computing time would be unacceptably high.
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Before we look at the new approach in more detail, it is worth mentioning that

adaptive behavior is a mega-trend at present, not just in data mining but in many

scientific disciplines. Examples include adaptive finite element methods to solve

partial differential equations, adaptive control systems in production, and adaptive

e-learning in education.

1.3 Advantages of Realtime Analytics Systems

Let’s begin by discussing the general advantages and disadvantages of (adaptive)

realtime analytics systems. The advantages are higher quality, fewer statistical

conditions required, immediate adaptation to a changed environment, and no

storage of historical data necessary.

The first of these, higher quality, is the most important. Whereas classical data

mining is based exclusively on the analysis of historical data, the realtime analytics

paradigm is aimed at the interplay of analysis and action. This requires an entirely

new way of thinking and a new theoretical foundation. This foundation is reminis-

cent of the cybernetic approach and is based on control theory.
The common modeling of analysis and action is more than merely the sum of its

parts. Electromagnetic waves are a graphic example of this (Fig. 1.2). These waves

are based on the interplay of an electrical and a magnetic field, as defined by

Maxwell’s equations: the change in the electrical field over time is always associ-

ated with a spatial change in the magnetic field. Likewise, the change in the

magnetic field over time is associated in turn with a spatial change in the electrical

field. The result is a continuous wave of unsurpassed speed – that of light.

The same is true of the interplay of analysis and action: the results of the analysis

lead to improved actions (e.g., recommendations), which are instantly applied and

- Evaluation of response to
last action
- Update of analysis model

- Evaluation of analysis model
- Derivation of suitable action

Analysis Action

Fig. 1.1 Realtime analytics as interplay of analysis and action
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thus allow an immediate refinement of the analysis. So instead of using the same

model for actions for a constant period (e.g., a day or a campaign) – as in existing

data mining systems – and then analyzing the results subsequently, the continuous

interplay of analysis and action brings about a new quality of analytics systems.

The second advantage lies in the fact that adaptive analytics systems require

fewer statistical conditions, as they explore their environment independently and

can adapt to local circumstances. Adaptive finite element methods (FEMs) for

solving differential equations offer a nice analogy here: whereas conventional

FEM methods impose a number of regularity conditions on differential equations

(shape and smoothness of the boundaries, load function space, etc.), which in

practice are often difficult to verify, adaptive error estimators look independently

for potential error locations such as singularities and refine the solution function

grids locally. As a consequence, adaptive FEM methods, both in theory and in

practice, are far more flexible and robust than conventional methods.

The third advantage, immediate adaptation to a changed environment, follows

from the realtime concept. In classical data mining, models are first laboriously

constructed from historical data and then used productively for actions for some

considerable time. As a result, they are often out of date by the time they come to be

used, because environmental conditions such as availability or price have changed or

competitors have taken action. Realtime analytics models, on the other hand, are

always up to date and adapt constantly to their changed environment.

The fourth advantage has already been described: no storage of historical data

is necessary. Expensive data warehouses or data marts are no longer a condition for

realtime analytics, making it much leaner and more flexible.

1.4 Disadvantages of Realtime Analytics Systems

Of course, adaptive analytics systems have disadvantages as compared with

conventional systems too. They are much more complex theory, restricted

method classes, and direct feedback required.

Fig. 1.2 An electromagnetic wave as interplay of an electrical and a magnetic field

4 1 Brave New Realtime World: Introduction



The significance of the first disadvantage, more complex theory, is often

completely underestimated. Developing an adaptive algorithm for an existing task

is not usually a problem. People tend to assume that the feedback loop will fix

any glitches, but they are wrong. Successfully developing adaptive methods, in

theory and in practice, is an art. For anyone who has ever come into contact with the

theory of adaptive error estimators of differential equations, most conventional

FEM solvers seem almost like light relief in comparison! The same is true of

realtime analytics methods. As we will see in this book, their whole philosophy is

far more complicated than that of conventional data mining approaches.

Incidentally, the example of light waves we looked at earlier can also be used

quite effectively to illustrate the problem of developing powerful adaptive systems.

Simply getting a sign wrong (even just for a moment) in the third or fourth

Maxwell’s equation would cause the entire electromagnetic wave literally to

collapse. It is not for nothing that physicists are constantly delighted by the

“beauty” of Maxwell’s equations.

Philosophically, one could argue that the greater capability and robustness of

adaptive behavior comes at the cost of a significantly increased workload in terms

of theoretical and practical preparation. And yet it is worth it: once their develop-

ment is complete, the practical advantages of adaptive realtime systems become

abundantly clear.

The second disadvantage, restricted method classes, is related to the first. It is

not merely difficult to design conventional data mining methods adaptively; in

some cases, it is downright impossible. It is a fuzzy boundary: any data mining

method can be made adaptive one way or another, but fundamental features of

the method, such as convergence or scalability, may be lost. These losses have to be

weighed up and checked in each individual case.

The third disadvantage appears self-evident: realtime analytics systems need a

direct feedback loop; otherwise they cannot be used. In many areas, such as

product placement in supermarkets for cross-selling or the mailing of brochures

in optimized direct mailings, no such loop exists. There is nothing to be done about

this – other than wait. And waiting helps: the introduction of new technologies is

constantly extending the potential applications for technologies with realtime

capability. In supermarkets, these include in-store devices such as customer

terminals, voucher dispensers, or electronic price tags, which are currently revolu-

tionizing high street retailing. But online and mobile sales channels too offer

excellent feedback possibilities. The trend is being reinforced by a general move

within business IT infrastructure toward service orientation (SOA, Web 2.0, etc.).

If we look at classic and adaptive analytics methods, we can see a general shift in

the understanding of analytics methods. Until recently,

Rule I: The larger the available data set, the better the analysis results.

In statistical terms, that is still true of course. But increasingly, it is also the

case that
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Rule II: Learning by direct interaction is more important than analyzing purely

historical data.

Clearly, knowing whether a customer bought milk 5 years ago, and in what

combination, is less important than the information about his/her response to the

milk offer in the current session. And knowing what moves a chess player made

2 years ago is much less important than understanding what tactics he/she is using in

the present game.

1.5 Combining Offline and Online Analysis

Despite a trend toward realtime analytics, we have seen that both classic and adaptive

analytics methods have their pros and cons. Ultimately, it is futile to try to trade one

off against the other – both are necessary. Fortunately, they complement each other

perfectly: historical data can be used with offline methods to create the initial analysis

model so that the online system is not starting from a blank slate. Once the online

system is operational, the analysis model is modified adaptively in real time. Offline

analytics can still be usefulwhen the online system is running, for integrating external

transactions which cannot be communicated to the system online.

Once again, chess can offer us a useful example here: an offline chess player

only learns by replaying games from chess books. By contrast, an online chess

player only ever plays against living opponents. A combination of the two is ideal:

replaying and learning from other people’s games and at the same time keeping up

with the practice.

To summarize,

Rule III: Offline and online learning complement each other organically.

For example, the recommendation engine of Sect. 12.3, the prudsys RDE,

always combines both types of analytics.

1.6 Methodical Remarks

Before embarking on the actual subject of recommendation engines, we’ll begin

with a few preliminary remarks on methodology.

Our principle, wherever possible, is to reduce a complex problem to simple basic

assumptions and then to address it in mathematical terms as fully as possible. In

other words, rather than tackling a problem in its most complex form and reaching

only vague conclusions, it is better to solve the simplified problem rigorously. After

that, it may be possible to use the knowledge obtained to solve the problem for more

6 1 Brave New Realtime World: Introduction
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complex assumptions, etc. For example, initially we will only calculate recommen-

dations based on the current product and only optimize them in a single step. Later

on we can then discard the second and ultimately also the first requirement, by

extending the method accordingly.

A good illustration of this is the discussion about infinity. Philosophers blustered

about the meaning of infinity for centuries, but it was scientists in the eighteenth

century working on the specific task of infinitesimal calculus who reduced the

concept of infinity to epsilon estimations. Suddenly infinity was easy to understand

and merely an abstraction. This viewpoint had become generally established when

at the end of the nineteenth century, while working on his continuum theory, the

German mathematician Georg Cantor dropped the bombshell that infinity does in

fact exist and can even be used in calculations. After much debate, this ultimately

led to a greater understanding of the concept of infinity, which then found expres-

sion in philosophy too.

Conversely, however, it is often argued that complex data mining algorithms are

not worthwhile because they are difficult to master. It is better, so the argument

goes, to use a simple algorithm and to provide large data sets. A classic example of

this is Google, which successfully uses a relatively simple search algorithm on vast

data sets. There is also an example of this in the area of recommendation engines:

Amazon’s item-to-item collaborative filtering (ITI CF). Quite simple in mathemat-

ical terms, it has displaced the previously used collaborative filtering, which was

very complex and poorly scaled.

Although this view seems perfectly pragmatic, and in the cases described here

has been successful too, it is nevertheless shortsighted. Generally speaking, one

could argue that people would still be living in caves if they had followed this way

of thinking. But there are also some very specific reasons for not adopting this

approach: most companies simply do not have enough data to generate meaningful

recommendations in this way. Nowadays even a small bookseller can in principle

offer the same millions of books as Amazon – so ITI CF would only generate

recommendations for a small fraction of its books. More sophisticated methods,

like content-based recommendations or, better still, the hierarchical approach

described in Chap. 6, are needed to resolve this problem. Moreover, the rapidly

accelerating pace of the Internet world, with its constantly changing products,

prices, ratings, competitors, and business models, is making realtime-capable

recommendation systems indispensable.

So the transition to more complex recommendation methods is unavoidable.

That does not mean, however, that all steps have to be perfect and mathematically

proven; practice has every right to rush on ahead of theory. This may seem like a

contradiction of the methodology we described earlier, but it isn’t. If we look at

shell theory in mechanics, for example, it is still not always capable of the rigorous

numerical calculation of the deformation of even simple bodies like a cylinder.

Yet supercomputers can successfully simulate the deformation of an entire car in

crash situations. Even if theoretically it is not entirely rigorous, should scientists

wait for another 100 years until shell theory is sufficiently mature before

performing crash simulations? Should thousands more people be allowed to lose
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their lives in the meantime before the go-ahead is given for “theoretically rigorous”

simulation? Of course not.

In the case of realtime recommendation engines too, there are still many

questions left unanswered. We will address these head on. We will also always

clearly emphasize empirical assumptions such as the Markov property or probabil-

ity assumptions. For one thing, it would be naive and wrong to seek to derive

everything in science purely in mathematical terms and to eliminate the necessary

empirical component (expressions such as “scientifically deduced” should always

sound alarm bells). And for another, it is important to understand about assumptions

so that in individual cases, the applicability of the recommendation method can

be verified in practice. That is why a methodologically rigorous procedure as

described in the introduction is essential: a stepwise approach to a self-learning

recommendation engine.

It is also clear that new ideas and methods, such as reinforcement learning for

recommendation engines as described here, usually need to mature for years before

they are suitable for practical application. The initial euphoria, especially when

everything seems to be “mathematically sound” and proven, is usually followed by

disillusionment in practice, with countless setbacks. But practical problems should

also be regarded as an opportunity, because tackling them often leads to the most

exciting theoretical advances. And when the method is finally ready for commercial

application, this is often followed by a dramatic breakthrough.

Finally, let’s pick up once more on some critical points regarding the general use

of recommendation engines (and of realtime analytics). This brings us back first

of all to the “cybernetic control” of the Soviet planned economy envisaged by the

OGAS project. Soviet economists blamed its failure on its inconsistent and piece-

meal implementation, and this has been a constant source of regret. Even now the

legend still lingers on in Russia that the Soviet economy would have developed

differently if only OGAS had been implemented consistently. As a consequence,

the “theory of economic control” – now opportunistically extended to include a

synthesis of market and planned economy – is undergoing a real revival in the

search for a “third way.” Ultimately, however, this is more about reinvigorating the

failed concept of the planned economy. The growing importance of cybernetics in

modern Russian economics is clearly a retrograde step (which does not mean to say

that the use of cybernetic approaches in economics is inherently wrong).

As we mentioned earlier, it is true that OGAS was not implemented correctly.

But it is also true that the entire concept was misguided. For one thing, predicting

key indicators in economics is difficult over the long term, and predicting an entire

economic system is impossible. The idea of controlling it completely is even more

absurd. Not to mention the fact that in a (market) economy, the state can never set

out to exercise control over the economy.

For that reason, the “father of cybernetics” Norbert Wiener excluded economics

and sociology entirely from the remit of cybernetics as a highly mathematized

science [Wien64]:
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The success of mathematical physics led the social scientist to be jealous of its power

without quite understanding the intellectual attitudes that had contributed to this power.

The use of mathematical formulae had accompanied the development of the natural

sciences and become the mode in the social sciences. Just as primitive peoples adopt the

Western modes of denationalized clothing and of parliamentarism out of a vague feeling

that these magic rites and vestments will at once put them abreast of modern culture and

technique, so the economists have developed the habit of dressing up their rather imprecise

ideas in the language of the infinitesimal calculus. . .
Difficult as it is to collect good physical data, it is far more difficult to collect long runs

of economic or social data so that the whole of the run shall have a uniform significance. . .
Under the circumstances, it is hopeless to give too precise a measurement to the

quantities occurring in it. To assign what purports to be precise values to such essentially

vague quantities is neither useful nor honest, and any pretense of applying precise formulae

to these loosely defined quantities is a sham and a waste of time.

From a modern perspective, Norbert Wiener’s assessment now seems too

pessimistic. Yet it highlights the difficulties inherent in these disciplines, and the

role of mathematical theories in economics in particular is still a subject for debates

today, usually each time after the Nobel Prize for economics is announced.

Recommendation engines are used primarily in retail, which also has a complex

environment. Where data mining is used in industrial quality assurance, for example,

environmental conditions are relatively constant (temperature and lighting conditions

in the factory, output speed, etc.), whereas in retail they are changing all the time.

We have already touched on this as an argument in support of realtime analytics.

Control is even more difficult. Empirical evidence shows that recommendation

engines change user behavior significantly. The skill, however, is to convert this

into increased sales. In many cases, the use of REs simply leads to the purchase of

alternative products, and this can even result in down-selling and a loss of sales. We

will look in detail at the subject of down-selling in mathematical terms in Chap. 5.

Fortunately, user behavior in the areas in which REs are used can generally be

predicted fairly reliably, albeit within strict limits in terms of time and content. And,

unlike the case with economics as described above, the primary and realistic aim of

REs is to control and direct user behavior. As such, the use of realtime methods

makes absolute sense. Nevertheless, to avoid unrealistic expectations, it is important

to stress the complexity of the retail environment (unlike the earlier example of the

electromagnetic wave). For that reason, having rigorous methods of gauging success

is of paramount importance, so we have devoted an entire chapter – Chap. 11 – to this

subject (although this does not relate solely to realtime analytics systems).

Finally, we mention that the book covers different mathematical disciplines that

sometimes require complex notations. To make the notation more understandable

and to reduce possible confusion, we included a summary of notation at the

beginning of the book. Nevertheless, the authors could not avoid that some symbols

are used for different representations. In these cases, the meaning should be clear

from the context.
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Chapter 2

Strange Recommendations?

On the Weaknesses of Current

Recommendation Engines

Abstract Currently, most approaches to recommendation engines focus on

traditional techniques such as collaborative filtering, basket analysis, and content-

based recommendations. Recommendations are considered from a prediction point

of view only, i.e., the recommendation task is reduced to the prediction of content

that the user is going to select with highest probability anyway. In contrast, in this

chapter we propose to view recommendations as control-theoretic problem by

investigating the interaction of analysis and action. The corresponding mathemat-

ical framework is developed in the next chapters of the book.

2.1 Introduction to Recommendation Engines

Recommendation engines (REs) for customized recommendations have become

indispensable components of modern web shops. REs offer the users additional

content so as to better satisfy their demands and provide additional buying appeals.

There are different kinds of recommendations that can be placed in different

areas of the web shop. “Classical” recommendations typically appear on product

pages. Visiting an instance of the latter, one is offered additional products that are

suited to the current one, mostly appearing below captions like “Customers who

bought this item also bought” or “You might also like.” Since it mainly respects the

currently viewed product, we shall refer to this kind of recommendation, made

popular by Amazon, as product recommendation. Other types of recommendations

are those that are adapted to the user’s buying behavior and are presented in a

separate area as, e.g., “My Shop,” or on the start page after the user has been

recognized. These provide the user with general but personalized suggestions

with respect to the shop’s product range. Hence, we call them personalized

recommendations.

Further recommendations may, e.g., appear on category pages (best

recommendations for the category), be displayed for search queries (search recom-

mendations), and so on. Not only products but also categories, banners, catalogs,

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,
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authors (in book shops), etc., may be recommended. Even more, as an ultimate goal,

recommendation engineering aims at a total personalization of the online shop,

which includes personalized navigation, advertisements, prices, mails, and text

messages. The amount of prospects is seemingly inexhaustible. For the sake of

simplicity, however, this book will be restricted to mere product recommendations –

we shall see how complex even this task is.

Recommendation engineering is a vivid field of ongoing research. Hundreds

of researchers, predominantly from the USA, are tirelessly devising new theories

and methods for the development of improved recommendation algorithms.

Why, after all?

Of course, generating intuitively sensible recommendations is not much of a

challenge. To this end, it suffices to recommend top sellers of the category of the

currently viewed product. The main goal of a recommendation engine, however,

is an increase of the web shop’s revenue (or profit, sales numbers, etc.). Thus, the

actual challenge consists in recommending products that the user actually visits and
buys, while, at the same time, preventing down-selling effects, so that the recom-

mendations do not simply stimulate buying substitute products and, therefore, in the

worst case, even lower the shop’s revenue.

This brief outline already gives a glimpse at the complexity of the task. It is even

worse: many web shops, especially those of mail-order companies (let alone book-

shops), by now have hundreds of thousands, even millions, of different products on

offer. From this giant amount, we then need to pick the right ones to recommend!

Furthermore, through frequent special offers, changes of the assortment as well as –

especially in the area of fashion – prices are becoming more and more frequent.

This gives rise to the situation that good recommendations become outdated soon

after they have been learned. A good recommendation engine should hence be in a

position to learn in a highly dynamic fashion. We have thus reached the main topic

of the book – adaptive behavior.

We abstain from providing a comprehensive exposition of the various

approaches to and types of methods for recommendation engines here and refer

to the corresponding literature, e.g., [BS10, JZFF10, RRSK11]. Instead, we shall

focus on the crucial weakness of almost all hitherto existing approaches, namely,

the lack of a control theoretical foundation, and devise a way to surmount it.

2.2 Weaknesses of Current Recommendation Engines

and How to Overcome Them

Recommendation engines are often still wrongly seen as belonging to the area of

classical data mining. In particular, lacking recommendation engines of their own,

many data mining providers suggest the use of basket analysis or clustering

techniques to generate recommendations. Recommendation engines are currently

one of the most popular research fields, and the number of new approaches is
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also on the rise. But even today, virtually all developers rely on the following

assumption:

If the products (or other content) proposed to a user are those which other users with a

comparable profile in a comparable state have chosen, then those are the best

recommendations.

Or in other words:

Approach I: What is recommended is statistically what a user would very

probably have chosen in any case, even without recommendations.

This reduces the subject of recommendations to a statistical analysis and

modeling of user behavior. We know from classic cross-selling techniques that

this approach works well in practice.

Yet it merits a more critical examination. In reality, a pure analysis of user

behavior does not cover all angles:

1. The effect of the recommendations is not taken into account: If the user

would probably go to a new product anyway, why should it be recommended at

all? Wouldn’t it make more sense to recommend products whose recommenda-

tion is most likely to change user behavior?

2. Recommendations are self-reinforcing: If only the previously “best” recom-

mendations are ever displayed, they can become self-reinforcing, even if

better alternatives may now exist. Shouldn’t new recommendations be tried

out as well?

3. User behavior changes: Even if previous user behavior has been perfectly

modeled, the question remains as to what will happen if user behavior suddenly

changes. This is by no means unusual. In web shops, data often changes on a

daily basis: product assortments are changed, heavily discounted special offers

are introduced, etc. Would it not be better if the recommendation engine were to

learn continually and adapt flexibly to the new user behavior?

There are other issues too. The above approach does not take the sequence of all

of the subsequent steps into account:

4. Optimization across all subsequent steps: Rather than only offering the user

what the recommendation engine considers to be the most profitable product in

the next step, would it not be better to choose recommendations with a view to

optimizing sales across the most probable sequence of all subsequent trans-

actions? In other words, even to recommend a less profitable product in some

cases, if that is the starting point for more profitable subsequent products?

To take the long-term rather than the short-term view?

These points all lead us to the following conclusion, which we mentioned right at

the start – while the conventional approach (Approach I) is based solely on the
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analysis of historical data, good recommendation engines should model the

interplay of analysis and action:

Approach II: Recommendations should be based on the interplay of analysis

and action.

In the next chapter, we will look at one such approach of control theory –

reinforcement learning. First though we should return to the question of why the

first approach still dominates current research.

Part of the problem is the limited number of test options and data sets. Adopting

the second approach requires the algorithms to be integrated into realtime applica-

tions. This is because the effectiveness of recommendation algorithms cannot be

fully analyzed on the basis of historical data, because the effect of the recommen-

dations is largely unknown. In addition, even in public data sets, the recommenda-

tions that were actually made are not recorded (assuming recommendations were

made at all). And even if recommendations had been recorded, they would mostly

be the same for existing products because the recommendations would have been

generated manually or using algorithms based on the first approach.

This trend was further reinforced by the Netflix competition [Net06]. The

company Netflix offered a prize of 1 million dollars to any research team which

could increase the prediction accuracy of the Netflix algorithm by 10 % using a

given set of film ratings. The Netflix competition was undoubtedly a milestone in

the development of recommendation systems, and its importance as a benchmark

cannot be overstated. But it pushed the development of recommendation algorithms

firmly in the direction of pure analytics methods based on the first approach.

So we can see that on practical grounds alone, the development of viable

recommendation algorithms is very difficult for most researchers. However, the

number of publications in the professional literature treating recommendations as a

control problem and adopting the second approach has been on the increase for

some time.

As a further boost to this way of thinking, prudsys AG chose the theme of

recommendation algorithms for its 2011 Data Mining Cup, one of the world’s

largest data mining competitions [DMC11]. The first task related to the classical

problem of pure analysis, based however on transaction data for a web shop. But the

second task looked at realtime analytics, asking participants to design a recommen-

dation program capable of learning and acting in realtime via a defined interface.

The fact that over 100 teams from 25 countries took part in the competition shows

the level of interest in this area.

A further example of new realtime thinking is the RECLAB project of

RichRelevance, another vendor of recommendation engines. Under the slogan

“If you can’t bring the data to the code, bring the code to the data,” it offers

researchers to submit their recommendation code to the lab. There, new algorithms

can be tested in personalization applications on live retail sites.
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Chapter 3

Changing Not Just Analyzing: Control

Theory and Reinforcement Learning

Abstract We give a short introduction to reinforcement learning. This includes

basic concepts like Markov decision processes, policies, state-value and action-

value factions, and the Bellman equation. We discuss solution methods like policy

and value iteration methods, online methods like temporal-difference learning, and

state fundamental convergence results.

It turns out that RL addresses the problems from Chap. 2. This shows that, in

principle, RL is a suitable instrument for solving all of these problems.

We have described how a good recommendation engine should learn step by step

by interaction with its environment. It is precisely this task that reinforcement

learning (RL), one of the most fascinating disciplines of machine learning,

addresses. RL is used among other things to control autonomous systems such as

robots and also for self-learning games like backgammon or chess. And as we will

see later, despite all problems, RL turns out to be an excellent framework for

recommendation engines.

In this chapter, we present a brief introduction to reinforcement learning before

in the subsequent chapter we consider its application to REs. For a detailed

introduction, we refer you to the standard work “Reinforcement Learning – An

Introduction” by Richard Sutton and Andrew Barton [SB98], from which some of

the figures in this chapter have been taken. Especially, following [SB98] for reasons

of a unified treatment, we will unify the model-based approach, the dynamic

programming, as well as the model-free approach, the actual reinforcement learn-

ing, under the term “reinforcement learning.”
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3.1 Modeling

RL was based originally on methods of dynamic programming (DP, the mathemat-

ical theory of optimal control), albeit that in machine learning, the theories and

terminology have since been developed beyond DP. Central to this – as is usual in

AI – is the term agent. Figure 3.1 shows the interaction between agent and

environment in reinforcement learning.

The agent passes into a new state (s), for which it receives a reward (r) from the

environment, whereupon it decides on a new action (a) from the admissible action set
for s (A(s)), by which in most cases it learns, and the environment responds in turn to

this action, etc. In such cases, we differentiate between episodic tasks, which come to

an end (as in a game), and continuing tasks without any end state (such as a service

robot whichmoves around indefinitely). The goal of the agent consists in selecting the

actions in each state so as to maximize the sum of all rewards over the entire episode.

The selection of the actions by the agent is referred to as its policy π, and that policy
which results inmaximizing the sum of all rewards is referred to as the optimal policy.

Example 3.1 As the first example for RL, we can consider a robot, which is

required to reach a destination as quickly as possible. The states are its coordinates,

the actions are the selection of the direction of travel, and the reward at every step

is �1. In order to maximize the sum of rewards over the entire episode, the robot

must achieve its goal in the fewest possible steps. ■

Example 3.2 A further example is chess once again, where the positions of the

pieces are the states, the moves are the actions, and the reward is always 0 except in

the final position, at which it is 1 for a win, 0 for a draw, and �1 for a loss (this is

what we call a delayed reward). ■

Example 3.3 A final example, to which we will dedicate more intensive study, is

recommendation engines. Here, for instance, the product detail views are the states,

the recommended products are the actions, and the purchases of the products are the

rewards. ■

Agent

Environment

action atstate st
reward rt

st+1

rt+1

Fig. 3.1 The interaction between agent and environment in RL
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3.2 Markov Property

In order to keep the complexity of determining a good (most nearly optimal) policy

within bounds, in most cases, it is assumed that the RL problem satisfies what is

called the Markov property:

Assumption 3.1 (Markov property): In every state, the selection of the best

action depends only on this current state and not on transactions preceding it.

A good example of a problem which satisfies the Markov property is once again

the game of chess. In order to make the best move in any position, from a

mathematical point of view, it is totally irrelevant how the position on the board

was reached (though when playing the game in practice, it is generally helpful). On

the other hand, it is important to think through all possible subsequent transactions

for every move (which of course in practice can be performed only to a certain

depth of analysis) in order to find the optimal move.

Put simply, we have to work out the future from where we are, irrespective of

how we got here. This allows us to reduce drastically the complexity of the

calculations. At the same time, we must of course check each model to determine

whether the Markov property is adequately satisfied. Where this is not the case, a

possible remedy is to record a certain limited number of preceding transactions

(generalized Markov property; see Chap. 10) and to extend the definition of the

states in a general sense.

Provided the Markov property is now satisfied (Markov decision process –
MDP), the policy π depends solely on the current state, that is, a ¼ π(s). RL is

now based directly on the DP methods for solution of the Bellman equation. This

involves assigning to each policy π an action-value function qπ(s,a) which assigns

for each state s and for all the permissible actions a for that state the expected value
of the cumulative rewards throughout the remainder of the episode. We shall refer

to this magnitude as the expected return R:

Rt :¼ rtþ1 þ γrtþ2 þ γ2rtþ3 þ . . . ¼
X1
k¼0

γkrtþkþ1, ð3:1Þ

where t denotes the current time step and γ ∈ [0,1] the rate for discounting future

rewards. For γ ¼ 0, the agent acts myopically in that it seeks to maximize only the

immediate reward rt + 1. With γ increasing, the agent acts in a more and more long-

term oriented fashion in that future rewards make a larger contribution. If γ < 1, the

infinite series always converges to finite value, provided that the sequence {rk} is

bounded.

If then for any two actions a, b ∈ A(s) : qπ(s,a) < qπ(s,b), then b ensures a

higher return than a. Therefore, the policy π(s) should prefer the action b to the

action a, but we will come to that in a minute.
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By analogy with Fig. 1.1, we see that while the update of the action-value

function qπ(s, a) corresponds to the analysis, the policy π(s) determines the selec-

tion of the correct action. The action-value function thus constitutes our analysis

model, and updating it is what we call learning.

We describe firstly the implementation of the policy for an action-value

function, that is, the selection of the action.

3.3 Implementing the Policy: Selecting the Actions

The basic policy for an action-value function is what we call the greedy policy,
which in every state s selects the action a which is the one that maximizes qπ(s, a):

π sð Þ ¼ arg max
a∈A sð Þ

qπ s; að Þ:

So in every state, the action with the largest action value is selected, or if there

are several having that value, then one of them. This is the most obvious selection.

In order, however, to avoid always restricting ourselves to exploiting existing

knowledge but rather to allow new actions to be explored, in addition to the

deterministic greedy policy, stochastic policies are also used. A stochastic policy

π(s, a) specifies for every state s and every action a ∈ A(s) the probability of

selection of a. So while in every state the deterministic policy always makes a

unique selection of the action, the stochastic policy permits the selection of

different actions with specified probabilities.

In the simplest case of a stochastic policy, at most steps, we select the best action

(greedy policy), but from time to time – that is, with the probability ε – we select an
action a ∈ A(s) at random. We call the resulting policy the ε -greedy policy.

The combination of exploitation and exploration can also be performed on a

sliding basis, that is, the frequency of selection of an action increases with its action

value. This is done by means of the softmax policy. For this, the recommendations

are calculated at every step in accordance with a probability distribution such as the

Boltzmann distribution:

π s; að Þ ¼ e
q s;að Þ

τX
b∈A sð Þ

e
q s;bð Þ

τ

where τ is the “temperature parameter.” A high value for τ asymptotically leads to an

even distribution of all actions (exploration); a low value for τ leads to selection of the
best actions (exploitation). In general, the softmax policy leads to better results than

the ε -greedy policy, but both in theory and in practice, it is more difficult to handle.

The correct interplay between exploitation and exploration is one of the central

issues in RL. Here again, chess provides a useful example: in most positions, we
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make what we think are the best moves. From time to time, however, we try out a

new move in a known position – even Kasparov does that. In doing so, we also

solve the problem of self-reinforcing recommendations (Chap. 2, Problem 2)

suffered by conventional recommendation engines.

3.4 Model of the Environment

Before finally addressing the Bellman equation, we still need a model of the

environment, which is given by the transition probabilities and rewards. Let pa
ss0

be the transition probabilities from the state s into state s0 as a result of the action
a and r a

ss0 the corresponding transition rewards. Put another way, if in the state s the

action a is performed, pa
ss0 gives the probability of passing into state s0 and r a

ss0 the

reward obtained as a result of the transition to s0. In particular,

X
s0

pa
ss0 ¼ 1, ð3:2Þ

that is, when performing the action a in state s, the sum of the transition probabil-

ities over all possible subsequent states s0 equals 1, because we must of necessity

pass into one of those states.

Example 3.4 Let us consider a fictional car which is being driven along

a mountainous road, mostly uphill. Let the states be the speeds s1 ¼ 80 km/h,
s2 ¼ 90 km/h, s3 ¼ 100 km/h, the actions a0 ¼ noaccelerator, a1 ¼ accelerator,

and the rewards always the speed values in the subsequent state, that is, we want to

get to our goal as quickly as possible (Fig. 3.2).

This gives us for the rewards:

r assi ¼ vi,

that is, the value of the speed vi in the subsequent state si independent of the state
s and the action a. If, for instance, the driver in the state s2 presses the accelerator,
that is, action a1, and passes into the state s3, then the reward is ra1s2s3 ¼ v3 ¼ 100.

a0

a1

h

km
s1 80=

h

km
s2 90=

h

km
s3 100=

a1 = accel a1 = accel a1 = accel

a0 = no accela0 = no accel a0 = no accel

a b

Fig. 3.2 A car with three speed states and two control actions
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The action “no acceleration” generally leads to reduced speed; however, on level

or downhill stretches, it can lead to constant or even increased speed. For instance,

for s2, we can specify

pa0s2s1 ¼ 0:75, pa0s2s2 ¼ 0:2, pa0s2s3 ¼ 0:05:

So if we drive at 90 km/h and do not accelerate, the probability that the speed

will reduce to 80 km/h is 75 %, that it will remain at 90 km/h is 20 %, and that it

will increase to 100 km/h is 5 %. Remember that in accordance with (3.2), the

probabilities must add up to 100 %. Similarly, for the remaining states s1 and s3, we
can define

pa0s1s1 ¼ 0:7, pa0s1s2 ¼ 0:3,
pa0s3s2 ¼ 0:9, pa0s3s3 ¼ 0:1:

The action “acceleration” of course has precisely the inverse effect. We start

once again with the specification for s2:

pa1s2s1 ¼ 0:1, pa1s2s2 ¼ 0:2, pa1s2s3 ¼ 0:7:

So if we drive at 90 km/h and accelerate, the probability that the speed will

increase to 100 km/h is 70 %, that it will remain at 90 km/h is 20 %, and that it

will decrease to 80 km/h is 10 %. Similarly, for the remaining states s1 and s3, we
can define

pa1s1s1 ¼ 0:3, pa1s1s2 ¼ 0:7,
pa1s3s2 ¼ 0:1, pa1s3s3 ¼ 0:9:

In so doing, we have adequately described our environment. ■

3.5 The Bellman Equation

We first define an MDP as a quadruplet M:¼(S, A, P, R) of the state and action

spaces S and A, the transition probabilities P, and rewards R. Please note that the

Markov property need not be explicitly stipulated to hold, since it implicitly follows

from the given representations of P and R.
Each policy π(s, a) induces aMarkov chain (MC), which is characterized by the

tuple Mπ :¼ (S, Pπ), where Pπ ¼ ( pπs, s0)s, s0∈S denote the transition probabilities

that result from following the policy π(s, a):

pπ
ss0 ¼

X
a∈A sð Þ

π s; að Þpa
ss0 : ð3:3Þ
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In other words, by following a policy, we obtain a sequence of states which is

generated by a Markov chain. The latter follows from the simple fact that the

probability of a transition from a state to another state under a given policy π(s, a)
depends exclusively on the current state s and not on its predecessors.

We thus arrive at the Bellman equation. For the discrete case, the action-value

function for each state s and each action a ∈ A(s) satisfies

qπ s; að Þ ¼
X
s0

pa
ss0 r a

ss0 þ γ vπ s
0

� �h i
, vπ sð Þ ¼

X
a

π s; að Þqπ s; að Þ: ð3:4Þ

vπ(s) is what we call the state-value function, which assigns to each state s the

expected cumulative reward, that is, the expected return. The state-value function

and action-value function are thus related and can be converted from one into the

other (provided the model of the environment is known).

At this point, we should further mention that the Bellman equation (3.4) repre-

sents the discrete counterpart of the Hamilton-Jacobi-Bellman (HJB) differential

equation, a fact which will become significant in Chap. 6 of the hierarchical

methods. For a detailed discussion of the HJB equation and the relation to other

formulations, we refer to [Mun00].

At the first glance, the Bellman equation appears rather complex, but it is not so

difficult to understand. Let us first consider the case γ ¼ 0, that is, taking into

account only the immediate reward. The Bellman equation (3.4) then takes the

following simplified form:

qπ s; að Þ ¼
X
s0

pa
ss0 r

a
ss0 : ð3:5Þ

The expected return in the state s on taking the action a therefore equals the sum
(over all possible subsequent states s0) for all products of the probability pa

ss0 of

passing into the subsequent state s0 and the reward r a
ss0 obtained by doing so.

For γ > 0, in addition to the immediate reward r a
ss0 , the expected additional

return over all subsequent transactions, which is γvπ(s0), must now be added for the

transition to the subsequent state s0 (“chain optimization”); see Fig. 3.3a. In general,

there are always two possibilities of reward in RL: the immediate reward or the

indirect reward via the fact that it leads to an attractive subsequent state (or both).

The state-value function can in turn be determined using (3.4) from the action-

value function, namely, as the sum (over all actions a permissible in s) of the

product of the probability of the selection of the action a by the existing policy and

its expected action value (Fig. 3.3b). By substituting the state-value function vπ into
(3.4), we can write it similarly to the Bellman equation (Fig. 3.4a):

qπ s; að Þ ¼
X
s0

pa
ss0 r a

ss0 þ γ
X
a0

π s
0
; a

0
� �

qπ s
0
; a

0
� �" #

: ð3:6Þ
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Since to qπ(s0, a0), too, a Bellman equation in accordance with (3.6) applies, with

new subsequent states s00 and actions a00 (which in part can contain the original s and
a!), the solution of (3.6) – unlike the 1-step special case (3.5) – is usually a more

complex undertaking. This reflects the fact that we are taking into account the entire

chain of subsequent transactions by which we address the Problem 4 in Chap. 2.

Since our transition probabilitiespa
ss0 in fact depend on the action a, we learn directly

from this and thus also solve Problem 1 in Chap. 2.

For the sake of completeness, we should also mention that in (3.4), we can

conversely eliminate the action-value function qπ. We then obtain the Bellman

equation for the state-value function (Fig. 3.4b):

vπ sð Þ ¼
X
a

π s; að Þ
X
s0

pa
ss0 r a

ss0 þ γvπ s
0

� �h i
: ð3:7Þ
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This is an even clearer form, since the state-value function vπ(s) depends only on
the state s, unlike the action-value function qπ(s, a), which additionally depends on

the action a.Wewill, however, mainlyworkwith the action-value function, since we

need it for the model-free case, which is of practical importance (and to which

we have yet to come), where it cannot be converted directly into the state-value

function (since in the model-free case pa
ss0 and r

a
ss0 are not explicitly known).

After so many abstract explanations, we shall seek to illustrate the Bellman

equation using our simple example of a car.

Example 3.5 Let us now return to our example of a car, and calculate it exemplarily

for the Bellman equation with the discount parameter γ ¼ 0.5 for the policy which

in each of the three states performs the action a0, that is, the one where the

accelerator is never pressed.

From (3.6), we then obtain for the first state s1:

qπ s1; a0ð Þ ¼ pa0s1s1 ra0s1s1 þ 0:5qπ s1; a0ð Þ
h i

þ pa0s1s2 ra0s1s2 þ 0:5qπ s2; a0ð Þ
h i

¼ 0:7 � 80þ 0:5qπ s1; a0ð Þ½ � þ 0:3 � 90þ 0:5qπ s2; a0ð Þ½ �:

Similarly, we obtain for the second state s2:

qπ s2; a0ð Þ ¼ pa0s2s1 ra0s2s1 þ 0:5qπ s1; a0ð Þ
h i

þ pa0s2s2 ra0s2s2 þ 0:5qπ s2; a0ð Þ
h i

þ pa0s2s3 ra0s2s3 þ 0:5qπ s3; a0ð Þ
h i

¼ 0:75 � 80þ 0:5qπ s1; a0ð Þ½ � þ 0:2 � 90þ 0:5qπ s2; a0ð Þ½ �

þ 0:05 � 100þ 0:5qπ s3; a0ð Þ½ �

and for s3:

qπ s3; a0ð Þ ¼ pa0s3s2 ra0s3s2 þ 0:5qπ s3; a0ð Þ
h i

þ pa0s3s3 ra0s3s3 þ 0:5qπ s3; a0ð Þ
h i

¼ 0:9 � 90þ 0:5qπ s2; a0ð Þ½ � þ 0:1 � 100þ 0:5qπ s3; a0ð Þ½ �:

We thus have a system of three equations with three unknowns, the action

values. Its solution yields

qπ s1; a0ð Þ � 166, qπ s2; a0ð Þ � 167, qπ s3; a0ð Þ � 174:

So far, this is sensible: since, with no acceleration, the states s1 and s2 almost

always lead to the state s1, they also obtain largely the same expected return. Without

acceleration, the state s3 almost always leads to the state s2 and therefore has a higher
expected return. The fact that qπ(s2, a0) is somewhat higher than qπ(s1, a0) is due to
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that fact that with no acceleration, we still remain in the same state or even pass into

the next highest state in rare cases. The result is therefore plausible. ■

3.6 Determining an Optimal Solution

The question remains of how to determine an optimal solution to the Bellman

equation, since we neither know its action-value function qπ(s, a) nor its policy

π(s, a). A solution to this is provided by the policy iteration method from dynamic

programming, which in a generalized form can be used as a central tool in RL and

generally for REs.

Policy iteration is based on the following approach: starting with an arbitrary

initial policy π0, the action-value function qi corresponding to the current policy

πi is computed by solving the Bellman equation (3.6) in every step i ¼ 0,. . ., n (the
solution method will be described in Sect. 3.9.4). After this, we determine a greedy

policy corresponding to the action-value function qi, that is,

πiþ1 sð Þ ¼ arg max
a∈A sð Þ

qi s; að Þ:

In plain English, πi+1 is taken to be a policy which in every state s selects one
of the actions a, such as to maximize qi(s, a). For πi+1, the action-value function q

i+1

is then calculated in turn, and so on. This then yields a sequence of policies and

action-value functions:

π0 ! q0 ! π1 ! q1 ! π2 ! q2 ! ::::

It can be shown that after a finite number of iterations, this process terminates with

the optimal policy π* and corresponding action-value function q*, which satisfy

q� s; að Þ ¼ max
π

qπ s; að Þ, 8s∈S,8a∈A sð Þ:

Example 3.6 For our example of the car with γ ¼ 0.5 as above, policy iteration

yields – not surprisingly – the optimal policy π*, which stipulates that in each of the
three states, the action a1 be performed, that is, to always accelerate. The associated

action values are

q� s1; a1ð Þ � 182, q� s2; a1ð Þ � 194, q� s3; a1ð Þ � 198,

and are thus all greater than those of the non-acceleration policy considered in the

last example, which is incidentally the least successful among all policies.

What will happen if we decrease the reward of the third state? We might, for

instance, be pulled over by the police for exceeding a speed limit. The result for

different r ass3 values is shown in Fig. 3.5, where a) shows the case r ass3 ¼ 100 under

consideration. The lower the value now assigned to this reward, the more unattractive
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the transition into the last state. As r ass3 reduces, the number of states with

non-acceleration actions increases. In the last case d), r ass3 ¼ �500 finally becomes

so small that even in the first state, the optimal action is not to accelerate, although the

reward of the second state is higher than that of the first one. However, the transition

into the unattractive last state is so dangerous that, although we did not accelerate in

the second state, even the tiny probability of a transition into the last state is still too

high! Thus, our example of the car is a very good illustration of chain optimization.■
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→ greedy(q)π

Fig. 3.6 GPI. Policy and action-value functions interact until they are mutually consistent

and thus optimal
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For reinforcement learning, which encompasses more than just dynamic

programming, the idea of policy iteration has been generalized to general policy
iteration (GPI), which is illustrated in Fig. 3.6.

The GPI approach is thus the following: the policy is constantly being improved

with respect to the action-value function (policy improvement), and the action-

value function is constantly being driven toward the action-value function of the

policy (policy evaluation). If we compare Fig. 3.6 with the general case of

the adaptive analytics method shown in Fig. 1.1, the policy evaluation represents

the analysis step, while the policy improvement corresponds to the action. Virtually

all reinforcement learning methods can be described as GPI.

But that’s not all. The classic cross-selling approach, that is, Approach I from

Chap. 2, can also be interpreted as an instance of GPI: the user behavior is analyzed

(data mining model is evaluated) and its most promising products recommended

at every process step. This represents policy improvement. After this, the user

behavior, as changed by these recommendations, is analyzed afresh (a data mining

model is created), which corresponds to policy evaluation. Once again, the most

promising recommendations are derived from this, and so on. Of course, this is not a

mathematically rigorous reasoning, but it reveals the power of the GPI approach.

3.7 The Adaptive Case

Thus far, we have been solving the Bellman equation (3.4) merely by means of

static methods. Specifically, we have been assuming that a model of the environ-

ment be available beforehand in the form of its transition probabilities pa
ss0 and

rewards r a
ss0 , which then enables us to compute an optimal policy by means of

complex policy iteration once and for all. In this respect, we have been acting no

differently from the classical data mining approach (although, of course, the

transition to the control problem adds a new level of quality).

An interesting observation is that the policy iteration used here can be

interpreted throughout as a realtime analytics method in accordance with Fig. 1.1.

This raises the question of whether the problem (3.4) may also be solved adaptively.

The answer is yes! There are two main possibilities here:

1. Calculating the transition probabilities pa
ss0 and rewards r a

ss0 incrementally, then

seeking after an adaptive solution to (3.4)

2. Abandoning the model of the environment completely, that is, solve the Bellman

equation (3.4) indirectly, without explicit representations of pa
ss0 and r a

ss0

The starting point is the fundamental update equation

Xkþ1 ¼ Xk þ αkþ1 xkþ1 � Xkð Þ, ð3:8Þ

where Xk is the estimation of the target variable xk in the kth update step. Here

(xk+1 � Xk) is the current estimation error. It is reduced by taking a step toward
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the target variable. The coefficient αk is the step size and defines the speed of the

update.

Example 3.7 For αk ¼ 1
k, (3.8) is the step-size-like form of the average calculation,

that is,

x1 þ x2 þ . . . xn
n

¼ Xn ¼ Xn�1 þ 1

n
xn � Xn�1ð Þ,

where Xn�1 is recursively calculated in the same way:

Xkþ1 ¼ Xk þ 1

k þ 1
xkþ1 � Xkð Þ, k ¼ 1, . . . , n� 1, X1 ¼ x1:

From αk ¼ 1
k, we can immediately see that in the average calculation, the

contribution xk of the kth update step decreases. The average thus captures changes
in the behavior of the target variable relatively poorly – it is in a certain sense “lazy”

(which however is necessary in order for it to converge). But it is not so lazy that it

cannot asymptotically capture any fluctuations in the target variable, that is, even in

the kth step for a large k, αk is never “too small.” Mathematically, this is expressed

in the well-known property
X1
k¼1

1

k
¼ 1. ■

Both properties can be generalized, and the conditions for the convergence

of (3.8) are

X1
k¼1

αk ¼ 1,
X1
n¼1

α2k < 1: ð3:9Þ

The first condition ensures that the step remains large enough to capture

movements. The second condition guarantees that ultimately, the steps become

small enough to ensure convergence. For the average, because
X1
k¼1

1

k

� �2

< 1, the

second property of the convergence conditions (3.9) is also satisfied.

As well as the average, we will now consider a further important case, namely,

the constant step size αk ¼ α. Here – conversely to the average – the contribution of
xk in the kth update step is always the highest, and the contributions of the preceding
values xl, l < k decrease (even exponentially) as l reduces. In this way, the

constant step size adapts particularly quickly to changes in the target variable,

that is, it is very “agile” (but also therefore less stable). In fact, it even violates the

second convergence condition, since
X1
n¼1

α2 ¼ α2
X1
n¼1

1 ¼ 1. Constant step sizes

are used primarily for nonstationary problems, where violation of the second

convergence condition is not critical and may even be desirable. A practical
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advantage of constant step sizes is that we need not save the step-size value k, so we
only need to update our estimate Xk.

In practice, the average or the constant step size is often used, and the importance

of the correct step-size parameter αk is totally underestimated. Without going into

further details here, we stress once more the theoretical and practical importance of

this aspect for achieving a quick convergence of the process.

Update equations of the form (3.8) thus enable us to calculate the transition

probabilities pa
ss0 and rewards r

a
ss0 incrementally. But how can we perform the policy

iteration adaptively? It would be extremely computationally intensive to determine

it from scratch in every update step. The inherently adaptive approach in fact

permits a derived adaptive variant, asynchronous dynamic programming (ADP).

Here the sequence of policies and action-value functions is executed almost as the

realtime interaction proceeds, coupled with additional internal updates in order to

ensure convergence.

This is also interesting in that it enables the explorative mode to be designed in a

much more sophisticated way than just using the simple ε-greedy and softmax

policies. In explorative mode, therefore, those actions that can most quickly reduce

the statistical uncertainty in our system are selected, thus ensuring the most rapid

convergence. Selecting the correct actions is generally one of the most interesting

subject areas in RL.

3.8 The Model-Free Approach

The determination of the transition probabilities pa
ss0 and rewards r a

ss0 is often

computationally intensive and memory intensive, especially for large state and

action spaces S and A. This raises the question of whether the Bellman equation

(3.4) cannot also be solved indirectly even without a model of the environment.

In fact, this can be done, and the corresponding method is referred to as model-free.
In the following, we shall briefly present the most important model-free algorithm,

temporal-difference learning (TD) developed by Sutton.

The model-free approach is based on learning by iterative adaptation of the

action-value function q(s, a). We begin with the simple TD(0) method. At every

step t of the episode, the update is performed as follows:

q st; atð Þ :¼ q st; atð Þ þ αt rtþ1 þ γq stþ1; atþ1ð Þ � q st; atð Þð Þ: ð3:10Þ

Obviously, the equation is of the same form as the update (3.8), where eq st; atð Þ :
¼ rtþ1 þ γq stþ1; atþ1ð Þ is the target variable to be estimated. Please note that here,

t acts as an index for the state-action pair (st, at) rather than the update step k for the
value q(st, at). Strictly speaking, we must write

qkþ1 st; atð Þ ¼ qk st; atð Þ þ αtð Þkþ1 rtþ1 þ γqk stþ1; atþ1ð Þ � qk st; atð Þ� �
:
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So while t indicates the step within the episode, that is, along the chain

s1; a1ð Þ ! s2; a2ð Þ ! s3; a3ð Þ ! . . .

k is the index of the update for a fixed pair (st, at) throughout all episodes. In order

not to overburden the notation, we leave out the index k and in its place use the

assignment symbol “:¼.”

Before we come to the explanation, the first question immediately arises: since,

to carry out an update of the action value q(st, at) at step t in realtime, we need the

action value q(st+1, at+1) of the next step t + 1, how is this supposed to work in

practice? Doesn’t this remind you of Baron Münchhausen, who escapes from the

swamp by pulling himself up by the hair?

There are simple solutions to this: we can, for instance, wait until step t + 1 and
then perform the update (3.10), that is, always learn with a delay of one step. Or

we may exploit the fact that we determine the actions ourselves via the policy

(provided we are not learning from historical data): at step t, we already know our

next action at+1 and can thus work with the current q(st+1, at+1) (Fig. 3.7).
To continue with the explanation, αt is the learning parameter at step t.

The higher it is, the faster the algorithm learns. Thus, the current temporal-
difference dt is

dt st; at; stþ1; atþ1ð Þ ¼ rtþ1 þ γq stþ1; atþ1ð Þ � q st; atð Þ ð3:11Þ

and (3.10) takes the following form:

q st; atð Þ :¼ q st; atð Þ þ αtdt st; at; stþ1; atþ1ð Þ: ð3:12Þ

This means that we compute the new estimate eq st; atð Þ :¼ rtþ1 þ γq stþ1; atþ1ð Þ
and subtract the previous iterate q(st, at) therefrom. If eq st; atð Þ is greater than

q(st, at), then the latter is increased in accordance with (3.11); if eq st; atð Þ is less

than q(st, at), then the latter is decreased in accordance with (3.11).

So what does eq st; atð Þ :¼ rtþ1 þ γq stþ1; atþ1ð Þ mean? We know that q(st, at) is
the expected return taken across the remainder of the episode. The first term rt+1 is
the direct reward of the recommendation at. The second term γq(st+1, at+1) is the
expected return from the new state st+1. It follows that there are once again two

possibilities for the reason whyeq st; atð Þmay be higher than q(st, at): either the direct
reward rt+1 is high or the action at has led to a valuable state st+1 with a high action

value q(st+1, at+1) (or both).

at

at+1

st

st+1 st+2

Fig. 3.7 A sequence of

an episode of 2 steps
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At every step t, the TD(0) algorithm that was described modifies the action-value

function only in the current state st. Since, however, the action values of the following
states are also included in its calculation of the discount, conversely, the action values

of all preceding states can also be updated at each step, which significantly

increases the speed of learning. This is achieved using algorithms of the TD(λ)
family. By this means, at every step, all action values are updated as follows:

q s; að Þ :¼ q s; að Þ þ αtdt st; at; stþ1; atþ1ð Þzt s; að Þ, ð3:13Þ

where the weighting function zt(s, a) describes the relevance of the temporary

difference at the time point t for the state-action pair (s, a). The weighting function
zt(s, a) is called eligibility traces and assigns recently visited states with a higher

weighting than states which have not been visited for some time. The usual

definition of eligibility traces is

zt s; að Þ ¼ γλzt�1 s; að Þ þ 1, if s; að Þ ¼ �
st, at

�

γλzt�1 s; að Þ, if s; að Þ 6¼ �
st, at

�
(

, ð3:14Þ

where 0 � λ � 1 is the eligibility trace parameter. For this, zt(s, a) is initialized as

zero for all states. Obviously, zt(s, a) is relatively high if (s, a) is visited often and

(st, at) can be reached from (s, a) in only a few steps. The weighting zt(s, a) decreases
exponentially with the number of steps since the last visit of the pair (s, a).

For computational purposes, zt(s, a) can be set to zero if it falls below an epsilon

barrier specified beforehand, so that it is given a local support and thus can be

implemented asymptotically optimal with respect to computation time and mem-

ory. In practice, this means that after each update, (3.12) has been performed for the

current time step t, that is, for (st, at), the update (3.13) is performed for all

preceding time steps in the current episode t-1, t-2, . . ., t-m, where t-m is the last

preceding time step where zt(s, a) lies above the epsilon barrier. At the same time,

zt(s, a) must be updated in accordance with (3.14) for all affected time steps.

In this way, the TD(λ) algorithm described above performs a continual adapta-

tion of the action-value function q(s, a) in an intuitive fashion. It can be shown that
the TD(λ) algorithm converges in a certain probabilistic sense, which is technically

referred to as almost sure convergence, to the optimal policy π* and action-value

function q*. Of course, it can also be interpreted as a general policy iteration. At

every step t, a policy evaluation is always performed in accordance with (3.13), and

after that – based on the updated action-value function – a further policy improve-

ment is performed, and so on.

Notice that there exist different versions of the TD(λ) algorithm; the one we have

described here is called Sarsa(λ) because it works with the quintuple (st, at, rt+1,
st+1, at+1). Further important versions are concerned with Q learning, for example,

the Watkins Q(λ). We do not want to explain this here, and for details, refer to

[SB98].

We have shown that RL can also learn in an online fashion, thus solving Problem

3 in Chap. 2.
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3.9 Remarks on the Model

In what follows, we shall discuss some important details concerning the model that

we have hitherto abstained from addressing for the sake of a concise introduction.

Apart from being necessary for the exactness of mathematical model, however,

they mostly bring about practical consequences as well.

3.9.1 Infinite-Horizon Problems

As rendered in Sect. 3.1, we distinguish between episodic task, that is, those that

terminate, and continuing tasks, that is, those that do not terminate. To facilitate

their treatment in form and content, they will be considered within a unified

framework.

As regards continuing tasks, we have no further remarks apart from the require-

ment that γ < 1. As has already been established in Sect. 3.2, this requirement is

necessary to ensure existence and uniqueness of the expected results.

With regard to episodic tasks, like those that primarily concern our recommen-

dation engines, the following question arises: how, after all, do we describe the

end of an episode? Since, according to (3.2), the transition probabilities for

each state-action pair sum up to one, an episode actually never terminates. To

circumvent this, we introduce a so-called terminal (or, absorbing) state, which

allows for transitions to no state other than itself, and the corresponding reward is

set to zero (Fig. 3.8).

Hence, after a certain time step at which the terminal state has been reached, all

further rewards are (in the example depicted by Fig. 3.8, this time step is 3)

rt ¼ 0, t > ta:

Thus, the sum (3.1) is also well defined for episodic tasks, and we may therefore

consider both continuous and episodic tasks as infinite sums. Both types of tasks

are said to be infinite-horizon problems [BT96]. Eventually, it should be mentioned

that episodic tasks with γ ¼ 1 are referred to as stochastic shortest path problems,
the special properties of which have been studied comprehensively in control

theory.

r1 = +1

s0 s1 s2

r2 = +1 r3 = +1

r5 = 0
r4 = 0

s3

Fig. 3.8 Example of an episode with terminal state (gray box)
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3.9.2 Properties of Graphs and Matrices

In the following, we shall, on one hand, consider the matrix of transition probabil-

ities P ¼ ( pss0)s,s0∈S, on the other hand, the thereby induced graph Γ(P). (Here, we
shall ignore the actions a; P ¼ Pπ will denote the transition probability matrix of

the Markov chainMπ.) For a detailed version of this discussion, we refer the reader

to the fundamental work by Paprotny [Pap10]. Furthermore, the general

link between matrix analysis and numerical linear algebra on one hand and dynamic

programming and stochastic iterative methods on the other hand has been

studied therein.

We first define the graph Γ(P) of the matrix P. We recall that a directed graph is

described by its sets of nodes and edges. In our case, the set of nodes is precisely

the state space, and the set of edges is the set of possible state transitions.

Thus, formally, the directed graph of P is defined as

Γ Pð Þ :¼ n;E
� �

, i; jð Þ∈E , pij 6¼ 0:

A tuple (s1, . . . , sl) of nodes si is said to be a path of length l-1 from s1 to sl, if

si; siþ1ð Þ∈E 8i∈l� 1:

A path is called a cycle, if s1 ¼ sl. A node is reachable from v ∈ S, if there is a
path from v to w in Γ. These notions are illustrated by Fig. 3.9.

Intuitively, a matrix is said to be reducible if it can be transformed into an upper

block triangular matrix by some permutation. A matrix is called irreducible if it is
not reducible. The graph Γ is said to be strongly connected, if for each pair of nodes

v, w ∈ S, there is a path from v to w in Γ. The following holds: P is irreducible

if and only if Γ(P) is strongly connected. So, P in the example from Fig. 3.9 is

irreducible.

Irreducibility of P is a prerequisite for several important properties in RL and, in

particular, ensures convergence of some important procedures, as, for example, the

=
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0.30.2
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000.5 0.5
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P

s3

s1

s4

s2

s5

Fig. 3.9 Example of a matrix P (with five states) and the thereby induced graph Γ(P). The latter
contains, e.g., the cycles (s1, s2, s1), (s1, s5, s4, s3, s1), as well as (s5, s5)
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TD(λ) algorithm. In case that the system be reducible, it may be decomposed into

smaller irreducible subsystems that may then be considered separately.

Since P is a row stochasticmatrix, that is, a matrix of transition probabilities, its

rows sum up to 1; see (3.2). In other words, the vector of all ones is an eigenvector

of P corresponding to the eigenvalue 1. Since P is nonnegative, its largest row sum

coincides with its row sum norm. Therefore, 1 is also the spectral radius of P, that is,
the largest absolute value of its eigenvalues.

A fundamental result of the theory of nonnegative matrices states that any

irreducible nonnegative matrix has a positive spectral radius which is itself an

eigenvalue. Furthermore, this eigenvalue is algebraically simple. This eigenvalue

and the corresponding left (right) eigenvector are referred to as Perron eigenvalue
and left (right) Perron vector, respectively.

The matrix P is said to be primitive if it is irreducible and the absolute value

of all of its eigenvalues except the Perron eigenvalue is strictly smaller than

the spectral radius. This abstract definition may be captured by the following simple

criterion: the matrix P is primitive if and only if Pk is (strictly) positive for some

positive integer k. The following sufficient condition holds: the matrix P is prim-

itive if it is irreducible and pii > 0 for some i∈n. Hence, for example, our matrix

from Fig. 3.9 is primitive, since p55 ¼ 0, 5 > 0. In terms of the graph Γ(P), this
corresponds to the criterion of the existence of a cycle of length 1, that is, a node is

connected to itself.

Thus, we essentially conclude our brief introduction to fundamental algebraic

properties of the transition probability matrix P. At the same time, we saw that each

of these has an intuitive graph theoretical counterpart with respect to the graph

induced by P. We will make use of these properties below.

3.9.3 The Steady-State Distribution

As noted above, the property (3.2) is called row stochasticity. If P is primitive, the

Perron-Frobenius theorem implies that

lim
k!1

Pk

ρ Pð Þ ¼
xyT

yTx
, x, y ∈Rn,

where

Px ¼ σ Pð Þx, x > 0, 1 . . . 1ð Þ
x1

⋮
xn

0
B@

1
CA ¼ 1; yTP ¼ σ Pð ÞyT ,

y > 0, 1 . . . 1ð Þ
y1

⋮
yn

0
B@

1
CA ¼ 1:
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Here, σ(P) denotes the spectral radius of P, that is, the largest absolute value of
its eigenvalues. Moreover, x and y are referred to as right and left Perron vector,
respectively. As stated above, the spectral radius satisfies σ(P) ¼ 1 since P is

stochastic, and we may write the right Perron vector as

x ¼ 1

n

1

⋮
1

0
@

1
A:

Let us now consider the left Perron vector. Since, by definition, it is positive and

satisfies 1Ty ¼ 1, we may consider it as a probability distribution on S. In virtue of

the Perron-Frobenius theorem, we obtain

Pk !k!1 1

⋮
1

0
@

1
A y1 . . . ynð Þ

for primitive P. This distribution is referred to as the steady-state distribution
(or stationary distribution), to which the user behavior converges. This property

is a prerequisite for the convergence of the TD(λ) algorithm as well as other

procedures.

Example 3.8 To illustrate the abstract discussion, we consider an outright simple

example, which is depicted by Fig. 3.10.

We thus have two states and the following transition matrix P:

P ¼ 0:4 0:6
0:3 0:7

� �
:

Then the left Perron vector is given by

y1 y2ð Þ 0:4 0:6
0:3 0:7

� �
¼ y1 y2ð Þ, 1 1ð Þ y1

y2

� �
¼ y1 þ y2 ¼ 1,

3
2

=y2
3
1

=y1

p22 = 0.7

p
12 

= 0.6

p21 = 0.3

p
11

= 0.4

1s 2s

Fig. 3.10 A graph Γ(P) (with two states) and its steady-state probabilities
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and we obtain

y ¼

1

3

2

3

0
BBB@

1
CCCA:

In words, if a user in state 1 dwells on it with 40 % probability and switches to

state 2 with 60 % probability and, conversely, remains in state 2 with 70 % proba-

bility and moves to state 1 with 30 % probability, he/she will – in a session of infinite

length – be found in state 1 in 33 % and in state 2 in 66 % of the trajectory. ■

3.9.4 On the Convergence and Implementation
of RL Methods

In this section, we will investigate the convergence of the two most important

methods that we have introduced so far: the policy iteration from Sect. 3.6 and the

temporal-difference learning from Sect. 3.8. So the question is: do these methods

converge against the optimal policy and under which assumptions? The question of

the convergence speed will not be addressed here.

The question of convergence is far more than of theoretical interest only.

Because in the end for the solution of our practical problems, that is, computation

of recommendations, we want to be sure that a solution even exists.

We start with the policy iteration. In Sect. 3.5, we mentioned that by selecting a

policy π for the Markov decision process, we obtain a Markov chain. Indeed, by

determining the decision in form of the policy, there remains nothing more to

decide in the decision process but only to model the Markov chain.

The Bellman equation (3.7) can be written compactly in vector notation as

vπ ¼ rπ þ γPπvπ , ð3:15Þ

where the vectors of the state values vπ and rewards rπ are defined as follows:

vπ ¼ vπ s1ð Þ vπ s2ð Þ . . . vπ sNð Þ½ �T ,
rπ ¼ rπ s1ð Þ rπ s2ð Þ . . . rπ sNð Þ½ �T ,

rπ sð Þ ¼
X
a

π s; að Þ
X
s0

pa
ss0 r

a
ss0

ð3:16Þ

and Pπ is the matrix of transition probabilities pπ
ss0 (3.3).

Similarly, the Bellman equation for the action-value function (3.6) can be

reformulated as
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wπ ¼ r̂ π þ γP̂ πwπ , ð3:17Þ

where the vectors of the action values wπ and rewards r̂ π together with the matrix of

transition probabilities P̂ π are defined as follows:

wπ ¼ qπ s1; a1ð Þ qπ s1; a2ð Þ . . . qπ sN; aMð Þ½ �T ,
r̂ π ¼ r̂ π s1; a1ð Þ r̂ π s1; a2ð Þ . . . r̂ π sN; aMð Þ½ �T ,

r̂ π s; að Þ ¼
X
s0

pa
ss0 r

a
ss0 ,

p̂ π
s,a, s0,a0 sð Þ ¼ pa

ss0π
�
s0, a0

�
:

ð3:18Þ

We now exemplarily consider the state-value function and define the Bellman
operator Tπ for a policy π as

Tπ vð Þ ¼ rπ þ γPπv

and consider the iteration

vkþ1 ¼ Tπ vk
� �

: ð3:19Þ

The following proposition can be easily shown.

Proposition 3.1 For all MDPs, each policy has a unique and finite state-value

function, which is the unique fix point of the iteration defined in Equation (3.19).

The iteration converges to its unique fix point at asymptotic rate γ for any initial

guess. The asymptotic rate is attained in l∞.
Thus, Proposition 3.1 ensures that in each policy evaluation step of the policy

iteration, we will find a unique solution of the Bellman equation.

We now turn our attention to the existence and uniqueness of an optimal policy

π*, that is, a policy fulfilling

vπ
� � vπ , π ∈ ΠM,

where ΠM is the space of all policies of the Markov decision process M. The

following theorem provides the desired result.

Theorem 3.1 The policy iteration terminates after a finite number of iterations
with the tuple (π*, vπ*).

Thus, it turns out that the convergence of the policy iteration does not require

further specific assumptions.

At the same time, iteration (3.19) answers the open question of Sect. 3.4 for a

solution method of the Bellman equation for a given policy π. In case we are

working with the action-value function instead of the state-value function, as, for

example, in Sect. 3.6, everything described here carries over to the action values

wπ, and we obtain instead of (3.19) the fix point equation
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wkþ1 ¼ T̂ π wk
� �

, T̂ π wð Þ ¼ r̂ π þ γP̂ πw:

Therefore, we can now enlist the complete algorithm of the policy iteration

(Algorithm 3.1). To make the description easier, we again use the state-value

function, having in mind that it looks similar for the action-value function.

Algorithm 3.1: Policy iteration

Input: transition probabilities P and -rewards R, discount rate γ, small inner

bound θ ∈ R, θ > 0

Output: optimal state-value function v*

1. procedure POLICY_ITERATION(v, P, R, γ, θ)
2. repeat ⊳ block of policy evaluation

3. Δ :¼ 0

4. for each s ∈ S do

5. v :¼ v(s)

6. v(s) :¼ ∑s0p
πðsÞ
ss0 [r

πðsÞ
ss0 + γv(s0)]

7. Δ :¼ max(Δ, |v � v(s)|)
8. end for

9. until Δ < θ
10. policy-stable:¼true ⊳ block of policy improvement

11. for each s ∈ S do

12. b :¼ π(s)
13. π(s) :¼ arg max a ∑s0r

a
ss0[p

a
ss0 + γv(s0)]

14. if b 6¼ π(s) then
15. policy-stable:¼false
16. end if

17. end for

18. if policy-stable then
19. stop

20. else

21. goto 2

22. end if

23. return v
24. end procedure

25. initialize v(s), π(s) 8 s ∈ S arbitrarily

26. v:¼ POLICY_ITERATION(v, P, R, γ, θ)
27. return v

Of course, there are numerous variants of policy iteration for the solution of the

Bellman equation. First, instead of directly applying (3.19) in the policy evaluation

for the solution of (3.15), which may be considered as a simple Richardson

iteration, we may employ more sophisticated iteration procedures. We shall address

this in Chap. 6, in particular with respect to its connection with hierarchical

methods for convergence acceleration.
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Another important approach consists in linking policy evaluation and improve-

ment more strongly: instead of carrying out the entire policy evaluation to compute

the state-value function of a fixed policy exactly before executing the policy

improvement step, we carry out the latter in after each step of the iteration in the

policy evaluation. The resulting approach is thus more feasible (which does not

imply that it be faster or better) and is referred to as value iteration.
The value iteration is represented by Algorithm 3.2.

Algorithm 3.2: Value iteration

Input: transition probabilities P and -rewards R, discount rate γ, small inner

bound θ ∈ R, θ > 0

Output: optimal state-value function v*
1: procedure VALUE_ITERATION(v, P, R, γ, θ)
2: repeat

3: Δ :¼ 0

4: for each s ∈ S do

5: v :¼ v(s)
6: v(s) :¼ maxa ∑s0p

a
ss0 [r

a
ss0 + γv(s0)]

7: Δ :¼ max(Δ, |v � v(s)|)
8: end for

9: until Δ < θ
10: return V
11: end procedure

12: initialize v(s), π(s) 8 s ∈ Sarbitrarily
13: v:¼ VALUE_ITERATION(v, P, R, γ, θ)
14: return v

Concerning the solution of the Bellman equation (3.15), the policy iteration may

be algebraically interpreted as additive and the value iteration as multiplicative
approach.

Finally, we will formally write down the Asynchronous DP algorithm. Since it

exists in different version, we consider the one that we use in our tests in Chap. 5.

This version is a fully adaptive one where also the transition probabilities and

rewards are determined incrementally. Since it is an in-place method, it formally

rather represents a value iteration.

Algorithm 3.3: Adaptive ADP

Input: online rewards r and -transitions s0, discount rate γ, small inner bound

θ ∈ R, θ > 0

Output: optimal state-value function v*
1: initialize v(s), π(s), pass0 , r

a
ss0 8 s, s0 ∈ S, a ∈ A(s)arbitrarily

2: repeat for each episode

(continued)
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Algorithm 3.3: (continued)

3: initialize s, a
4: repeat each step of episode
5: take action a, observe r, s0

6: update pass0 , rass0 , e.g. using (3.8)

7: v(s) :¼ maxa ∑s0p
a
ss0 [r

a
ss0 + γv(s0)]

8: until s is terminal
9: v:¼ VALUE_ITERATION(v,P,R,γ,θ) ⊳update v over all states

10: until stop

Of course, in step 9, also the policy iteration of Algorithm 3.1 may be applied.

Additionally, step 9 is not required to be performed after each episode – the call

may also occur less often. It is also not necessary to compute v exactly, for example,

the iteration process may be stopped before the termination criterion is fulfilled.

One iteration sweep through all states is enough. We only need to ensure that no

states are left out permanently in the ADP.

Now we switch to the convergence of the TD(λ) method which is a more

complex topic. First, we rewrite the TD(λ) method (3.13) in vector notation and

include the iteration index k:

wk :¼ wk þ αtztd
k
t , ð3:20Þ

where wk in accordance to (3.17) represents the vector of action values qk(s, a) and

zt ¼ zt s1; a1ð Þ zt s1; a2ð Þ . . . zt sN; aMð Þ½ �T :

The following theorem ensures the convergence.

Theorem 3.2 Let the following assumptions hold:

1. π is a policy for an MDP M such that Mπ is irreducible and aperiodic.
2. itð Þt∈N0

is a trajectory generated by Mπ.

3. λ ∈ [0, 1]

4. The sequence of step sizes αtð Þt∈N0
satisfies (3.9).

Then, for any initial guess w0, the sequence wk
� �

k∈N0
generated by the iteration

(3.20) converges almost surely to wπ.
Now following the reasoning of Sect. 3.6, by selecting a proper policy in each

iteration step, we ensure the convergence of the TD(λ) method to the optimal policy

π*. For details, we refer to [BT96].

Finally, we enlist the TD(λ) algorithm, namely, the Sarsa(λ) version, in Algo-

rithm 3.4.
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Algorithm 3.4: Sarsa(λ)

Input: online rewards r and -transitions s0, step-size α, discount rate γ, eligibility
trace parameter λ
Output: optimal action-value function q*
1: initialize arbitrarily q(s, a), z(s, a) ¼ 0 8 s ∈ S, 8 a ∈ A(s)
2: repeat for each episode
3: initialize s, a
4: repeat for each step of episode
5: take action a, observe r, s0

6: choose a0 from s0 using policy derived from q (e.g. ε-greedy)
7: d :¼ r + γq(s0, a0) � q(s, a)
8: z(s, a) :¼ z(s, a) + 1

9: for all s, a do

10: q(s, a) :¼ q(s, a) + αdz(s, a)
11: z(s, a) :¼ γλz(s, a)
12: end for

13: until s is terminal
14: until stop

3.10 Summary

In this chapter, we gave a short introduction to reinforcement learning. We have

seen that RL addresses the problems from Chap. 2. This shows that in principle, RL

is a suitable tool for solving all of the four problems described in Chap. 2.

Furthermore, in addition to online learning, we had previously suggested offline

learning by policy iteration for solving the Bellman equation. Both approaches are

linked consistently via the action-value and state-value functions. We can, for

instance, calculate the action-value function offline, using historical data, and

then update it online. In this way, RL is also a very nice example of the link

between the two types of learning, in accordance with Rule III in Chap. 1.

We now return to reinforcement learning and consider its application to recom-

mendation engines.
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Chapter 4

Recommendations as a Game: Reinforcement

Learning for Recommendation Engines

Abstract We describe the application of reinforcement learning to recommendation

engines. At this, we introduce RE-specific empirical assumptions to reduce

the complexity of RL in order to make it applicable to real-live recommendation

problems. Especially, we provide a new approach for estimating transition probabil-

ities of multiple recommendations based on that of single recommendations.

The estimation of transition probabilities for single recommendations is left as an

open problem that is covered in Chap. 5. Finally, we introduce a simple framework

for testing online recommendations.

An effective approach to using reinforcement learning for recommendation engines

is described below. In the simplest case, the product detail views form the states, the

recommended products the actions, and the rewards the clicks or purchases of

the products. The goal consists (depending on the chosen reward) in maximizing

the activity (clicks) or the success (sales).

Figure 4.1 illustrates the use of RL for product recommendations in a web shop

and shows the interaction between the recommendation engine and the user. Here,

the optimal proven recommendations are marked with “*.”

In the first and third steps, the recommendation engine is following the

proven recommendations (exploitation); in the second step, a new recommendation

is tried out (exploration). The user ignores the first recommendation, but accepts

the second and third. The feedback arrows symbolize the updating of the

recommendations.

Although this modeling may appear self-evident, it nevertheless represents a

highly complex task. Firstly, web shops generally offer very many products, as

a rule between a few thousand up to a few million (for instance, at a bookshop).

Many of these products have virtually no transaction history, i.e., they have scarcely

ever been bought; indeed, some have never even been clicked on. Furthermore,

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_4, © Springer International Publishing Switzerland 2013
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the existing transactions are mostly clicks, whereas, on the other hand, placements

in the shopping basket (SB) and purchases are far more infrequent. However,

maximizing sales is the primary goal of REs. Let us summarize these two

problems again:

1. High numbers of products, a majority of which have minimal transaction

history.

2. The vast majority of transactions are clicks; only a fraction are placements in

the shopping basket and purchases.

We know, however, from the theory and practice of RL that high transaction

numbers are necessary in order to achieve convergence. The above problems

therefore appear to be killer arguments against the direct use of RL for REs.

There already exist first approaches for using reinforcement learning for recom-

mendation engines [GR04, RSP05, SHB05, TGK07, Mah10]. However, most of

them are not able to overcome the complexity problems.

Therefore, additional empirical assumptions are made and justified below, which

reduce the complexity of using RL for REs.

A

B

CD

D

E

E

F*

E*

C*

F

User enters the 
shop via A

User goes to 
product B

RE recommends 
product C

User goes to 
product D

RE recommends 
product E

User goes to 
product E

RE recommends 
product F

Fig. 4.1 Example of reinforcement learning for product recommendations in a web shop
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4.1 Basic Approach

As described initially, each product view represents a state s and a recommendation

of another product represents an action a. Each web session (session for short)

forms an episode.

The result is that the interaction between user and recommendation engine in

each web session can be considered as a sequence of product transitions under the

influence of recommendations (Fig. 4.2):

This permits us to model the most important statistical characteristics such as

action values, transition probabilities, and rewards using rules s! s0, which can be
saved, for instance, in files or database tables (we will explain the details of this

later). Of course, not every action will necessarily lead to an accepted recommen-

dation: the user can also ignore the recommendations and go to an entirely unrelated

product. In this case, however, the product transition is added as a new rule to the

rule base and thus provides a new potential action.

Since all actions a represent product views, the sets of states S and actions A are

isomorphic:

S ffi A: ð4:1Þ

It should be noted that for reasons of complexity, not all actions A are considered

for each state s, but only a subset A(s), which initially contains all product

transitions that have actually occurred, together with actions derived by other

means such as hierarchies (Chap. 6). By this means, the action set A(s) expands
dynamically in the course of the learning process.

In accordance with (4.1), we introduce the notation sa for the product associated
with the recommendation a (i.e., the recommended product “a”). Conversely,

as represents the recommendation associated with the product s. The successor

states corresponding to the recommendations of the action set A(s) are denoted by

SA(s), and thus the isomorphism (4.1) also applies on the recommendations of any

state s: SA(s) ffi A(s). The number of recommendations in s, i.e., the cardinality of

the action set, is usually denoted by m.
At each step, the RE receives a reward r. The sum of all the rewards should be

maximized over the complete session. The reward is defined for each step as

follows: if a product s is placed in the shopping basket or is bought, the preceding

action (i.e., the “recommendation” a, which has led to the product) receives the

sA

a1

s1 s2 s3 sn−1 sn

a2 a3 an−2 an−1

Fig. 4.2 Sequence of products and recommendations as states and actions including absorbing

state sA
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value of the product s (price, revenue, etc.) as its reward; otherwise, it receives a
small click reward, close to 0. This reflects the primary goal of seeking to maximize

the shopping basket values or the sales/revenue. Note that orders constitute a

delayed reward, since, in most cases, they appear only at the end of a session.

The definition of the correct reward is linked to various refinements that will not be

further explored here.

We now come to the statistical characteristics. Let us state our first fundamental

assumption:

Assumption 4.1 (Markov property for REs): In every state s, the optimal

action a, i.e., the best recommendation, depends solely on the current state s,
i.e., the product under consideration.

Of course, this Markov property for REs is satisfied only incompletely, since the

best recommendation also depends on the preceding states of s together with their

transactions. Nevertheless, for the evaluation of a recommendation by the user, the

product currently viewed plays the main role, so the assumption may be considered

reasonable. (There is also compelling empirical evidence on this point, namely,

classic cross-selling, which is described using precisely this form of rules and

whose effectiveness is beyond doubt.)

As a further simplification, let us assume that the reward in the state transition

from s to s0 is independent of the influence of the action a:

Assumption 4.2 (Reward property for REs): For each state transition from

s to s0, the obtained reward r a
ss0 is independent of the action a.

This means that

r a
ss0 ¼ rss0 : ð4:2Þ

In fact, it can be assumed that the user’s decision as to whether or not to place a

product in the shopping basket depends primarily on the product itself and not on

the preceding recommendation. Thus, the estimated reward can technically be

validly saved as a characteristic of the rule s ! s0.
The action-value function q(s,a) assigns the expected return, i.e., the expected

sales over the remainder of the session, to each product s and to each of its

recommendations a. Technically, q(s,a) can thus also be represented by the rule

s ! sa from product s to the recommended product sa.
There remains the question of the transition probabilities pa

ss0 . This is a compli-

cated subject, which we shall consider in depth in Chap. 5.
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4.2 Multiple Recommendations

So far, we have been assuming that there is only a single recommendation a. REs,
however, generally recommend more than one product. We therefore now turn to

the case of multiple (or composite) recommendations, i.e.,

a ¼ a1, . . . , akð Þ

is a recommendation composed of k single recommendations (Fig. 4.3).

From the point of the reinforcement learning theory as presented in Chap. 3,

we can consider composite recommendations a as single actions in absolute the

same way as we did it with our single recommendations a. The problems which we

are facing are of rather computational nature since the number of admissible actions

a in a state smay be huge and in general we are no more able to process all actions,

e.g., for calculating the policy. However, we will solve this problem step by step.

First, we notice that due to Assumption 4.2, we do not need to care about

multiple recommendations in the transition reward, i.e.,

ra
ss0 ¼ rss0 :

Much more demanding is the problem of the transition probabilities. We will

introduce two approaches on how transition probabilities for multiple recommen-

dations pa
ss0 can be expressed through transition probabilities of single recommen-

dations pa
ss0 (the latter will be studied in the next chapter).

We firstly make the following assumption, which is usual for statistics:

Assumption 4.3 (Multiple recommendation probability property): For

the multiple recommendation a , the transition probabilities of the single

recommendations pai
ss0

can be considered as stochastically independent.

That means we assume that recommendations are not mutually cannibalistic.

This is a reasonable assumption.

4.2.1 Linear Approach

Based on Assumption 4.3, the following approach is suitable: the transition

probability for multiple recommendations pa
ss0 is equal to the average of the

sA

a1

s1 s2 s3 sn−1 sn

a2 a3 an−2 an−1

Fig. 4.3 Sequence of products and multiple recommendations as states and actions
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transition probabilities of the single recommendationspa
ss0 . This gives the transition

probability pa
ss0 as

pa
ss0 ¼ p

a1;...;akð Þ
ss0

¼ 1

k

Xk
i¼1

paiss0 : ð4:3Þ

The advantage of this approach is that it is simple and linear with respect to the

single probabilities paiss0 . However, for the case that we only work with probabilities

of state transitions associated with the recommendations, i.e., pa
ssa
, the presented

approach is not applicable as we will show later. We therefore introduce a more

sophisticated approach also based on Assumption 4.3.

4.2.2 Nonlinear Approach

For ease of reading, we will omit the product s from the indices and denote the

recommended or transition product by its index. Thus, we write paissj ¼: pi
j ,

a ¼: 1, . . . , kð Þ, and p
a1, ...,a kð Þ
ssj ¼: p

1;...;kð Þ
j .

In order to illustrate the problem, let us consider the case of two recommenda-

tions. For the case of the two single probabilities p1 :¼ p11 and p2 :¼ p22, we

now need to determine the composite transition probabilities p1 :¼ p
1;2ð Þ
1 and

p 2 :¼ p
1;2ð Þ
2 . Without loss of generality, let us consider p 1, which we initially

determine as follows:

p1 ¼ p1 ¼ p1 1� p2ð Þ þ p1p2,

i.e., the probability of the transition for product 1 is the sum of the probabilities that

the user is interested in product 1 and not in product 2 and that he/she goes to

product 1, i.e., p1(1 � p2), and that she is interested in both products and goes to

both of them, i.e., p1p2.
Now a user cannot, however, click on both recommendations at the same time;

so it is reasonable to model the second case as p1p2
p1

p1þp2
. The interest in the case

of both recommendations is thus multiplied by the probability that in this case, the

user decides in favor of product 1. This yields

p1 ¼ p1 1� p2ð Þ þ p1p2
p1

p1 þ p2
:

Similarly, we obtain for p 2

p2 ¼ 1� p1ð Þp2 þ p1p2
p2

p1 þ p2
:
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Both functions are illustrated in Fig. 4.4, wherein p1 is to be found in (a) and

p2 in (b).

Example 4.1 We stick to the case of two recommendations. Suppose that for a

single recommendation a1 that probability that a user accepts this recommendation

is 90 %, i.e., p1 ¼ 0.9. Let further the acceptance probability of a second single

recommendation a2 be 40 %, i.e., p2 ¼ 0.4.

Then, if both recommendations a1 and a2 are issued, the probability that the user
accepts this first recommendation a1 is

p1 ¼ 0:9 1� 0:4ð Þ þ 0:9 � 0:4 0:9

0:9þ 0:4
� 0:79:

Similarly, we obtain the probability that the user accepts the second recommen-

dation a2 as

p2 ¼ 1� 0:9ð Þ0:4þ 0:9 � 0:4 0:4

0:9þ 0:4
� 0:15:

Thus, these probabilities are lower than their single recommendation counter-

parts p1 and p2, respectively. This is reasonable because of the obvious relation

p1 þ p2 � 1 (the user can accept at most one recommendation). We also see the

nonlinearity of the approach: while the ratio of the initial probabilities was

p1/p2 ¼ 0.7/0.4 ¼ 2.25, it now has increased to p1=p2 ¼ 0:79=0:15 ¼ 5:27.
For comparison, we also consider our linear approach. Since we do not know the

cross-product probabilities, we assume them to be zero, i.e., p21 ¼ p12 ¼ 0. Then

(4.3) leads to

a b
zmaxzmax

xmax

zminzmin
xmin

xmax

x

xmin

zz

x

Fig. 4.4 Plot of the composite probabilities p1 and p2 as functions of the single probabilities p1 and
p2
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p1 ¼
1

2
p11 þ p21
� � ¼ 1

2
p1 ¼ 0:45

for the first recommendation and

p2 ¼
1

2
p12 þ p22
� � ¼ 1

2
p2 ¼ 0:2

for the second recommendation. Both probabilities are obviously lower than 50 %.

We now see the problem: if, e.g., p1 has been estimated as 0.7, i.e., for both

recommendations a1 and a2 issued, the user in 70 % selects the first one, we would

obtain p1 ¼ 2p1 ¼ 1:4. This is obviously nonsensical. For this reason, the linear

approach can only by used meaningfully if we use all probabilities pij instead of just

those associated with the recommendations pi. ■
The entire expression can be extended without principal difficulty to

k recommendations displayed together, even though the notation is somewhat

awkward:

p
1;...;kð Þ
l ¼ Fl p1; . . . ; pkð Þ ¼

X
Q∈ lf g[P k\ lf gð Þ

Y
i∈Q

pi
Y
j∈k\Q

1� pj
� � plX

i∈Q

pi
ð4:4Þ

Here, k ¼ 1; . . . ; kf g is the index set of feasible recommendations, and P its

power set, so lf g [ P k\ lf g� �
is the set of subsets of k that do not contain l united

with the singleton set of l.
In terms of our initial terminology, (4.4) may be expressed as follows:

pass0 ¼ p a1;...;akð Þ
ssal

¼ p
1;...;kð Þ
l ¼ Fl p1; . . . ;pkð Þ ¼: Fal pa1ssa1

; . . . ;pakssak

� �
, s0 ¼ sal : ð4:5Þ

This implies that as opposed to the linear approach (4.3), the approach (4.5)

works out only for those successor products sal that are associated with one of the

single recommendations al. A further disadvantage compared to the linear case is,

of course, the nonlinearity itself.

If we combine the probabilities as vectors p ¼ p
1;...;kð Þ
1 . . . p

1;...;kð Þ
k

� �T
and

p ¼ ( p1 . . . pk)
T, this mapping of single into multiple recommendation probabil-

ities is expressed as a vector function F ¼ (F1 . . . Fk)
T

p ¼ F pð Þ: ð4:6Þ

Since in practice, however, we can determine only p, we need the inverse

p ¼ F�1 pð Þ: ð4:7Þ

Unfortunately, the function F from (4.4) is a nonlinear function. It is,

however, smooth and (component-wise) monotone. In addition, the number of
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recommendations k is not too high in practice, mostly less than 10, so the inverse

F� 1 can be determined robustly using, e.g., Newton’s method, especially because

in the incremental methods, the preceding values of p can be used as starting values.

In practice, this gives rise to, e.g., the following modified method for determin-

ing the transition probabilities according to the adaptive approach (3.8) as we need

them in the ADP Algorithm 3.3.

Let us first consider the simple update of the single probabilities jp, where j is
the update step. This is displayed in Algorithm 4.1 (of course, there are many other

ways to calculate the transition probabilities).

Algorithm 4.1: Updating the single probabilities

Input: vector of single probabilities jp, index of the accepted recommendation

l (�1 if none has been accepted), step size αj
Output: updated vector of single probabilities j+1p

1: procedure UPDATE_P_SINGLE(jp, l, αj)
2: for i ¼ 1, . . . , k do
3: if i ¼ l then
4: j+1pi :¼ jpi + αj(1 � jpi)
5: else

6: j+1pi :¼ jpi + αj(0 � jpi)
7: end if

8: end for

9: return j+1p

10: end procedure

For the probabilities of multiple recommendations, only the single probabilities
jp are stored internally. After issuing the multiple recommendation, we first

compute the expected composite probabilities jp ¼ F jp
� �

. Then, we update the

latter according to the accepted and rejected recommendations by virtue of Algo-

rithm 4.1, and we obtain the updated composite probabilities jþ1p . The latter, in

turn, figure in the equation jþ1p ¼ F�1 jþ1p
� �

, which is solved by means of the

Newton method with jp as an initial guess, and we obtain the current single

probabilities j+1p.

Algorithm 4.2: Updating the single probabilities from multiple

recommendations

Input: vector of single probabilities jp, issued recommendations

a ¼ a1, . . . , akð Þ, index of the accepted recommendation l (�1 if none has

been accepted), step size αj
Output: updated vector of single probabilities j+1p

(continued)
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Algorithm 4.2: (continued)

1: procedure UPDATE_P_MULTI(jp, a , l, αj)

2: jp :¼ F jp
� �

⊳ conversion into composite

probabilities

3: jþ1p :¼ UPDATE_P_SINGLE( jp , l, αl ) ⊳ update of composite

probabilities

4: jþ1p :¼ F�1 jþ1p
� �

⊳ conversion into single

probabilities

5: return
j+1

p

6: end procedure

In practice, the function F together with its inverse F�1 turns out to be very

helpful tools for converting back and forth between the transition probabilities of

single and multiple recommendations.

We conclude with a final remark. So far, we have only considered one fixed

multiple recommendation a ¼ a1, . . . , akð Þ. However, in reality, different multiple

recommendations ai ¼ ai1 , . . . , aikð Þ are issued subsequentially, and even the

number of their single recommendations k may vary. Different multiple recom-

mendations ai and aj often share similar single recommendations, i.e.,

ail ¼ ajm ¼: as0 , leading to the update of the same single probabilities p
as0
ss0 . This

raises the questions of the consistency and stability of Algorithm 4.2 when applied

to all recommendations.

Let V be the space of all multiple recommendations paiss0 and their

“recommended” states s0:

V :¼ pa i

ss0

� �
s0∈Sa i , i∈Ρs

j0 � pa i

ss0 � 1,
X
s0∈Sa i

pa i

ss0 � 1

8<
:

9=
;:

Here, we consider all multiple recommendations ai over the power set P n
� �

where n is the number of all products and Ps is the corresponding index set. Further,

let W be the space of all single recommendations p
as0
ss0 :

W :¼ p
as0
ss0

� �
s0∈SA sð Þ

j0 � p
as0
ss0 � 1

n o
:

We rewrite (4.6) by explicitly mentioning that it applies to a particular multiple

recommendation ai:

p ai ¼ Fai pai
� �

, p ai :¼ p ¼ paiss0
� �

s0
, pai :¼ p ¼ p

as0
ss0

� �
s0 , Fai :¼ F:

Next, we extend Fai to F
ai
G such that it works on the whole space W by simply

ignoring all single probabilities not belonging to the recommendations of ai. By

p G ¼ p ai
� �

i
¼ F

ai
G pGð Þ

� �
i
¼: FG pGð Þ, p G∈V, pG∈W,
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we have formally introduced the vector function FG : W ! V:

p G ¼ FG pGð Þ: ð4:8Þ

In the same way, from (4.7), we derive the inverse F�1
G : VF � V ! W:

pG ¼ F�1
G p Gð Þ: ð4:9Þ

Example 4.2 To make the discussion less abstract, we give a very simple example.

Consider the case where we have only two products, i.e., n ¼ 2. Then we have

two single recommendations a1 and a2 and three multiple recommendations

a1 ¼ a1ð Þ, a2 ¼ a2ð Þ, a3 ¼ a1; a2ð Þ. This yields the following probability spaces:

V :¼ pa1ss1 ; p
a2
ss2
; pa3ss1 ; p

a3
ss2

n o��0 � pa i

ss0 � 1, pa 3

ss1
þ pa 3

ss2
� 1

n o
,

W :¼ p
as1
ss1 ; p

as2
ss2

� ���0 � p
as0
ss0 � 1

� �
:

Let us consider the first “multiple” recommendation a1 ¼ a1ð Þ. Then the relation

p a1 ¼ Fa1 pa1
� �

simply translates into

pa1ss1

� �
¼ Fa1 pa1ss1

� �
¼ pa1ss1

� �
:

For the global function F
a 1

G , we get

pa 1

ss1

� �
¼ F

a 1

G

pa1ss1
pa2ss2

	 

¼ pa1ss1

� �
:

Same holds for the second “multiple” recommendation a2 ¼ a2ð Þ. For the third
(and only real) multiple recommendation a 3 ¼ a1; a2ð Þ, the mapping p a 3 ¼ Fa 3

pa1
� �

now becomes more complex:

pa 3
ss1

pa 3
ss2

 !
¼ Fa 3

pa1ss1
pa2ss2

	 

¼

pa1ss1 1� pa2ss2

� �
þ pa1ss1p

a2
ss2

pa1ss1
pa1ss1 þ pa2ss2

pa2ss2 1� pa1ss1

� �
þ pa1ss1p

a2
ss2

pa2ss2
pa1ss1 þ pa2ss2

0
BBBB@

1
CCCCA
:

In this case, Fa 3 is also our global function, i.e., Fa 3

G ¼ Fa 3 . Thus, we arrive at

the complete global mapping:
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pa1ss1
pa2ss2
pa3ss1
pa3ss2

0
BBB@

1
CCCA ¼

F
a1
G pa1ss1

� �

F
a 2

G pa2ss2

� �

F
a 3

G pa1ss1 ; p
a2
ss2

� �� �
1

F
a 3

G pa1ss1 ; p
a2
ss2

� �� �
2

0
BBBBBB@

1
CCCCCCA

¼

pa1ss1
pa2ss2

pa1ss1 1� pa2ss2

� �
þ pa1ss1p

a2
ss2

pa1ss1
pa1ss1 þ pa2ss2

pa2ss2 1� pa1ss1

� �
þ pa1ss1p

a2
ss2

pa2ss2
pa1ss1 þ pa2ss2

0
BBBBBBBB@

1
CCCCCCCCA

¼ FG
pa1ss1
pa2ss2

	 

:

In the same way, the global mapping F�1
G can be derived. Here, F

a 1

G

� ��1

¼ F
a 1

G ,

F
a2
G

� ��1

¼ F
a2
G , and F

a2
G

� ��1

is defined as F�1 according to (4.7). It is easy to see

that F�1
G FGpG ¼ pG 8 pG ∈ W.

However, since the space V consists of four free probabilities pa 1
ss1
, pa 2

ss2
, pa 3

ss1
, pa 3

ss2

(apart from the restriction pa 3
ss1

þ pa 3
ss2

� 1) and the spaceW only of the two p
as1
ss1 , p

as2
ss2 ,

the image space VF ¼ FG(W ) is really a proper subset of V, i.e., there exist

probabilities pG ∈ V : pG =2 VF. ■
Thus, F�1

G is really the inverse of FG. Since ran FG ¼ VF � V is a proper subset

of V, the inverse F�1
G is not defined over all elements of V. Unfortunately, our

observations are made in the space V. But technically, the mapping MF defined by

Algorithm 4.2 can be applied to all vectors of V.

The good news is: since FG and F�1
G are continuous and V,W are convex, as long

as our assumptions hold (Assumption 4.3 and the one of the nonlinear approach),

i.e., p G∈VF, the result of the mapping MF converges to the right solution

pG ¼ F�1
G p Gð Þ. If our assumptions are violated, i.e., p G =2 VF, the result of MF is

oscillating. Yet, the second good news is: the closer the distance of p G to VF, the

less is the oscillation. This is illustrated in Fig. 4.5.

GF

GF

GF

WFV

V

1
Gp

1
Gp

3
Gp

2
Gp

)( 2
GpΩ

)( 3
GpΩ

MF

MF

MF

)( 3
GpΩ

)( 2
GpΩ

Fig. 4.5 Illustration of the stability of the mappingMF. The first probability vectorp
1
G is inside VF

and modeled accurately by p1G. The second probability vector p 2
G is slightly outside VF and

modeled by the domainΩ (p2G). Backward transformation by FG leads to the domainΩ p 2
G

� �
which

is quite close to p 2
G. The third vector p 3

G is far from VF leading to bad approximation results
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This stability result means that the less our model assumptions are violated, the

better our observed probabilities can be estimated. Similar reasoning applies to the

methods for the estimation of transition probabilities presented in Sect. 5.2.3.

4.3 Remarks on the Modeling

In what follows, we would like to study the remarks from Sect. 3.9 with regard to

the above devised model of recommendation engines.

As we are dealing with recommendation engines with episodic tasks, the question

for the terminal state arises. Indeed, we have already seen the latter in Figs. 4.2 and

4.3. It is, indeed, meaningful for two reasons: first, it has a clear interpretation with

regard to content, as it assigns to each product the probability that a user terminates

the session afterward, i.e., leaves the shop. Second, it is relevant for the computation

of transition probabilities. According to (3.2), these must sum up to one, as P is

stochastic. Indeed, one could ignore the end of the session when computing P, but
this would result in adulterated transition probabilities. Since the latter are multi-

plied with the rewards in the Bellman equation (3.4), their actual magnitude matters.

As opposed to all the other states, which represent products, there is, of course,

no action affiliated to the terminal state – since this would mean to suggest the user

to leave the shop.

Another issue is the question of whether it is meaningful to consider recommen-

dations from products to themselves, i.e., pss. This corresponds to the representation
of rules of the form s! s.We remind the reader that this is a sufficient condition for

primitivity of the matrix P (together with irreducibility, which we shall address later

on). At the first glance, these rules do not convey much information; they only

signify that the user repeatedly calls the product up, i.e., hits the refresh button.

(This is different when we operate on the level of categories as in Chap. 6.) On the

other hand, they are, for the same reasons as the terminal state, relevant with regard

to the computation of transition probabilities. Hence, the internal usage of these

transitions is recommendable. They must, however, not serve as recommendations,

as they would give rise to products recommending themselves.

Finally, let us turn to the question of irreducibility. In most practical applica-

tions, it does not hold. In Chaps. 6, 7, 8, and 9 on hierarchical methods and

factorizations, we shall, however, deal with procedures that enable to compute an

almost unlimited amount of recommendations for each product, i.e., transitions

satisfying pss0 > 0. This may easily be exploited to render P irreducible. At the

same time, irreducibility may also have positive effects since it decomposes the

global problem into uncoupled subproblems. An example is Theorem 6.1 about

the convergence of the multigrid method. Thus, the value of irreducibility has to

be checked depending on the used method.

Let us summarize: it is reasonable to include the terminal state in the model of

the RE. So is it, in general, to capture cycles of length 1. Invoking special tools, it is

possible to ensure that P be irreducible. Thus, the essential conditions for conver-

gence of the TD algorithm are satisfied.
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4.4 Verification Methods

Subsequently, we shall address the verification methods for RL procedures that we

shall use in Chap. 5.

To this end, we employ historical data from real online shops. These consist of

log files that have been generated by the recommendation module of prudsys RDE

(Sect. 12.3.1). The files contain basic transactions, as well as the recommendations

issued by the RDE (for the recommendation group). The most relevant columns of

the log files (CSV format) are listed in Table 4.1 (further columns like user ID and

channel ID have been omitted).

The control group serves the purpose of comparing the efficiencies of running

the shop with or without the recommendation engine (Chap. 11).

A row of a log file then looks as follows (for confidentiality reasons, all entries

have been made up):

2009-04-18 11:36:21, 386AC17893,0,0045322,17.48,0,0,7889965
05564556

This row tells us that on April 18, 2009, at 11:36:21 AM, the product 0045322,

the price of which amounts to 17.48 EUR, was viewed within the session

386 AC17893, which belongs to the recommendation group, and the products

7889965 and 05564556 were thereupon recommended.

For the online recommendation algorithms, we make use of the following online

verification method: the historical data are parsed session-wise, and the transactions

are carried out in their original order of sequence. For each product view, the

engine’s recommendations are requested. Subsequently, the latter are compared

with the actual views, adds to basket, and purchases and the surveys of correct

predictions as well as forecasted revenue are updated. Table 4.2 illustrates the

procedure by an example of a session.

In step 1, the user views product A and the RE issues the recommendations C and

B. The counter of views is increased by one. In the second step, the user switches to

product D and the RE recommends E and A; the view counter is again increased by

Table 4.1 Description of the columns of the transaction files generated by prudsys RDE

Column label Description

time Date and time of the transaction

transactID Unique ID of the session

group The session’s group affiliation (0, recommendation; 1, control group)

itemID Unique ID of the product

price Price of the product

transType Type of transaction (0, click; 1, add to basket; 2, purchase; etc.)

order Number of purchased units (only for transType ¼ 2)

itemsAction Recommended products
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one and attains the value 2. Since D is none of the previous recommendations, the

counter of views correctly predicted by the RE remains at 0. In step 3, the product D

is added to basket; the basket counter is increased.

In step 4, another view of A takes place; this time, this coincides with the second

recommendation issued by theRE, and hence, its view counter is now also increased by

one. Since, in step 5, the correctly predicted product has been added to basket, the RE’s

basket counter also increases by one. In the last step 6, only the product recommended

by the RE is eventually bought. Therefore, the buy counter increases by one and

the forecasted revenue by the price of the purchased product (here, 35 EUR). By and

large, the RE has correctly predicted 33%of the actual views, 50%of the products that

have actually been added to basket, and 100 % of the purchased products.

Please mind that in step 4, the RE issues recommendations that differ from those

for the same product in step 1 (namely, C and E instead of C and B). This is because

the RE learns dynamically. As a result of this dynamic, the measurements obtained

in simulation mode differ slightly from those obtained in online mode. Neverthe-

less, the order of magnitude is the same, and with an increasing number of trans-

actions, the measurements assimilate toward each other.

Besides the above-described online procedure for assessing the quality of fore-

cast, we also occasionally deploy offline validation procedures. Here, we subdivide

the transaction data into a training set and a test set, which are, respectively, drawn

from transaction logs of different days, for example, the file of April 18th for

training and that of April 19th for testing. Sometimes, however, we also carry out

the training-test decomposition within the same session, which is, e.g., accom-

plished by using all but the last n transactions of each session for training and the

remaining ones for testing.

We now learn the recommendation model from the training set, as in the online

test, and apply it to forecasting on the test set. The qualities of forecasts are

computed with respect to the same characteristic figures for views, adds to basket,

purchases, and revenue. In terms of the terminology commonly used in the area of

verification of recommendation algorithms [SKKR00], we measure the precision
(what we have used so far). We abstain from using the recall, another popular
measure, which describes the coverage ratio of the test set by recommendations.

To avoid overloading the already fairly complex testing procedures, we also refrain

from further measures.

Table 4.2 Illustration of the simulation

Real Correct forecast

Step TA REs Views Baskets Buys Rev. Views Baskets Buys Rev.

1 A C, B 1 0 0 0 0 0 0 0

2 D E, A 2 0 0 0 0 0 0 0

3 D basket 2 1 0 0 0 0 0 0

4 A C, E 3 1 0 0 1 0 0 0

5 A basket 3 2 0 0 1 1 0 0

6 A bought 3 2 1 35.00 1 1 1 35.00

Quality of forecast 33 % 50 % 100 % 100 %
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4.5 Summary

This chapter was devoted to the application of reinforcement learning to recom-

mendation engines. We have introduced RE-specific empirical assumptions to

reduce the complexity of RL in order to make it applicable to real-life recommen-

dation problems. Especially, we provided a new approach for estimating transition

probabilities of multiple recommendations from that of single recommendations.

Nevertheless, the estimation of transition probabilities for single recommendations

was left as an open problem that will be addressed in the next chapter. Finally, we

introduced a simple framework for testing online recommendations.
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Chapter 5

How Engines Learn to Generate

Recommendations: Adaptive Learning

Algorithms

Abstract This chapter is mainly devoted to the question of estimating transition

probabilities taking into account the effect of recommendations. It turned out that

this is an extremely complex problem. The central result is a simple empirical

assumption that allows reducing the complexity of the estimation in a way that is

computationally suitable to most practical problems. The discussion of this

approach gives a deeper insight into essential principles of realtime recommenda-

tion engines. Based on this assumption, we propose methods to estimate the

transition probabilities and provide some first experimental results. Although the

results look promising, more advanced techniques are highly desirable. Such

techniques like hierarchical and factorization methods are presented in the follow-

ing chapters.

In Chap. 4, we have gathered all the ingredients to apply the reinforcement learning

approaches described in Chap. 3 to recommendation engines. Except for one thing,

we still do not have the transition probabilities pa
ss0 ! These are really problematic,

because we would have to save not only all the product transitions s ! s0 but also
those for all recommendations a that are generated. For large web shops, in

particular, this can result in huge numbers of rules, of the order of magnitude of

all transactions and thus containing thousands of millions of rules. Not only would

this be technically difficult, it would also be extremely unstable, because most of

those rules would have hardly any statistical basis.

Therefore, we must make some empirical assumptions in order to achieve

plausible simplifications. The simplest approach is the classical one: we simply

ignore the recommendations a. We therefore work only with the transition proba-

bilities pss0 , i.e., without considering the actions a. We refer to pss0 as unconditional
transition probabilities, in contrast to conditional transition probabilities pa

ss0 .
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We designate the corresponding approach using unconditional transition probabil-

ities as the unconditional or probabilistic approach in contrast to the conditional
approach using conditional probabilities. Below, we will derive expressions for

both approaches and then combine them in a useful form.

5.1 Unconditional Approach

The probabilistic approach thus corresponds to the classical view described by

Approach 1 in Chap. 2. For this, we apply RL approaches formally, so as, for

instance, to factor in rewards and chain optimization, i.e., we use the formal

advantages of RL in order to broaden the classical approach. Thus, instead of

recommending a product s0, which after viewing s is bought most frequently, we

incorporate its reward r. That seems logical. In addition, we give preference to those

products which, including subsequent purchases by existing customers, lead to the

highest sales. So, chain optimization seems reasonable as well.

In the strict RL sense, that is nonsensical. We only learn the policy which users

pursue on their own initiative without regard to the recommendations, and we

reinforce this. But as we have seen, the generalized general policy iteration at

least offers a general justification of this approach. And the results are good in

practice.

The approach thus tends to implement the recommendations with the highest

unconditional transition probabilities and action values. Let us start with the

“simple” case (3.5). The direct use of (3.5) would take us no further forward

here, since

qπ s; að Þ ¼
X
s0

pa
ss0 r

a
ss0 ¼

X
s0

pss0 rss0 ¼ q0 s; að Þ ¼ q0 sð Þ

would yield the same action value for all recommendations a. In fact, if the

transition probabilities were independent of issuing recommendations, one

would not need any recommendations at all. Therefore, we make the following

assumption:

Assumption 5.1 (Unconditional probability property): For each state

transition from s to the state sa associated with the action a, the transition proba-

bility pa
ssa

is considered as proportional to the unconditional probability pssa , i.e.,

pa
ssa

¼ dpssa 0 with the factor d > 1. For any other state transition from s to s0 under
the action a, the transition probability pa

ss0 is likewise considered as proportional to

the unconditional probability pss0, i.e., p
a
ss0 ¼ cpss0, but with the factor c < 1.

In other words, delivering recommendation a increases the probability of the

transition for the product sa associated with it. The higher the unconditional
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probability pssa , the higher the conditional probability pa
ssa
. The transition probabil-

ities pa
ss0 for all other products s

0are, conversely, influenced negatively by delivering
a, since (3.2) applies. Of course, our probability property is of a somewhat abstract

nature, since, because of the equation system being strongly overdetermined, c and
d cannot be uniquely determined in general. Nevertheless, it is helpful for qualita-

tive discussion.

Thus (3.5) takes the following form:

qπ s; að Þ ¼ pa
ssa
rssa þ

X
s0 6¼sa

pa
ss0 rss0 ¼ dpssarssa þ

X
s0 6¼sa

cpss0 rss0

and yields

qπ s; að Þ � qπ s; bð Þ ¼ d � cð Þ pssa rssa � pssb rssb
� �

> 0 , pssa rssa > pssb rssb :

The formula for calculating the action value can be derived immediately from

this:

qP s; að Þ ¼ pssa rssa , ð5:1Þ

which we will refer to as the (simplified) P-Version below. A recommendation is

thus strong if it is either frequently clicked on, or carries a high reward, or both.

Approach (5.1) may now be expanded for case γ > 0 in accordance with (3.6),

whereupon we obtain the full P-Version:

qP s; að Þ ¼ pssa rssa þ γpssa
X
a0

π sa; a
0

� �
qP sa; a

0
� �

: ð5:2Þ

As described in Chap. 3, we can now update pssa and rssa in realtime and thus

calculate (5.1) and (5.2) either in an off-line fashion or (5.1) directly online or (5.2)

online using ADP methods like Algorithm 3.3.

Alternatively, for the model-free case, we can very easily apply the TD-Version

in a similar way, although we have to employ a few empirical tricks to overcome

the problem of multiple recommendations. In practice, the unconditional approach

works quite successfully; the P-Version works better than the TD-Version.

Example 5.1 Subsequently, we shall illustrate the results of the unconditional

approach by means of a practical example. Here, we shall employ the online

verification methods described in Sect. 4.4. We forgo the chain property, i.e., we

assign γ ¼ 0. Thus, we use the simple P-Version according to (5.1) with an

adaptive update of the transition probabilities pssa and rewards rssa . To observe

unbiased user behavior, only transactions of sessions belonging to the control group

have been included in the analysis.
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Here, on one hand, the back-then recommendations manually devised by the

shop operators have been issued. As these are static, we obtain the actual prediction

rate of the manual recommendations. On the other hand, we study recommenda-

tions of the P-Version. To render the task more challenging, the algorithm literally

starts from scratch, i.e., the learning starts with the simulation data.

The data are courtesy of a major mail-order company. They have been purified

by removing invalid products as well as multiple calls of product views, which all in

all results in a higher prediction rate. Approximately 600,000 transactions with

4,500 products are left in the purified set. The corresponding prediction rates

(in terms of percentage) are displayed in Table 5.1.

The P-Version turns out to achieve about twice the rate of the manual recom-

mendations, which gives evidence for the quality and learning performance of the

approach.

As a further refinement, the prediction rates of both types of recommendations

with respect to product views (PVs) and revenue have been simulated for the first

12,000 transaction steps. The results (in terms of percentage) are displayed in

Table 5.2 and Fig. 5.1.

The P-Version turns out to surpass the manual recommendations in terms of all

measures of prediction quality after approximately 5,000 steps. Moreover, the

learning rate of the former exhibits a logarithmic decay thereafter. After only

Table 5.1 Simulation results comparing prediction rates

of manual recommendations with those of recommendations

generated by the P-Version

Manual P-Version

Clicks 4.15 8.63

Baskets 3.57 8.24

Orders 3.71 8.70

Revenue 4.30 8.37

Table 5.2 Prediction rates against the number of transaction steps

Steps PVs manual Revenue manual PVs P-Version Revenue P-Version

1,000 4.49 3.26 5.28 3.64

2,000 4.37 5.26 5.76 4.90

3,000 4.45 4.93 6.19 5.49

4,000 4.40 4.44 6.54 6.10

5,000 4.36 4.25 6.76 6.56

6,000 4.34 4.27 7.08 6.88

7,000 4.36 4.28 7.23 7.23

8,000 4.32 4.30 7.38 7.38

9,000 4.32 4.40 7.43 7.39

10,000 4.31 4.36 7.45 7.31

11,000 4.26 4.36 7.42 7.44

12,000 4.19 4.37 7.46 7.28
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12,000 steps, the P-Version attains a rate of almost 7.5 %, which in the course of the

day increases to no more than about 8.5 %. Taking preceding days into account

yields an increase of only about 10 %. ■

5.2 Conditional Approach

Next, we proceed a step further than the unconditional approach and consider the

solution of (3.5) as a control problem, i.e., using the conditional probabilities pa
ss0 .

To this end, we need to simplify the determination of the transition probabilities

pa
ss0 . We make the following assumption introduced by Thess:

Assumption 5.2 (Conditional probability property): For each state transition

from s to s0 under the action a, for which s0 is not the state sa associated with

the action a, the transition probability pa
ss0 is considered as proportional to the

unconditional probability pss0 , i.e., p
a
ss0 � pss0 .

It follows that (in addition to the direct determination of pa
ssa
)

pa
ss0 ¼ c s; að Þpss0 , s0 6¼ sa ð5:3Þ

where c(s, a) is a constant depending only on s and a. We will call the approach

based on Assumption 5.2 the DP-Version.
In other words, if a recommendation a is delivered but not accepted, and instead

of the recommended product sa, the user clicks on another product s0, we assume

that the user selected this independently of the current recommendation a.
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Fig. 5.1 Prediction rates against the number of transaction steps

5.2 Conditional Approach 61

http://dx.doi.org/10.1007/978-3-319-01321-3_3


This description is somewhat simplified, as the delivery of the recommendation

a has already been incorporated into the scaling via the coefficient c(s, a); however,
the relationship of the values for the conditional probabilities pa

ss0 in respect of s0 is
determined by each of the unconditional probabilitiespss0 . We therefore assume that

there are some users who are not influenced by recommendations (because, for

instance, they are working from a shopping list). Although their overall influence is

already limited by the recommendation a (since there is another user group which

is open to the recommendations, hence the scaling factor c), their specific behavior
in the transition from s to s0 is unaffected.

It follows that instead of saving all transition probabilities pa
ss0 , we only need to

save the conditional probabilities pa
ssa

(i.e., between recommendation and

recommended product) together with the unconditional probabilities pss0 . Techni-

cally, this means that for every rule s ! s0, both p
a
s
0

ss0
(i.e., the probability that the

recommendation of the product s0 be accepted) and pss0 (i.e., the probability that a

user goes from product s to product s0 without a recommendation s0) are saved.
A similar method was proposed some time ago in [SHB05], but in a more

incomplete form. In particular, the coefficients c(s, a) were merely modeled as

c(s) therein, which prevents adequate handling of down-selling, as we shall

shortly see.

Let us firstly consider again the solution to (3.5), in order to determine

the optimal recommendations. So as now to determine the complete transition

probabilities pa
ss0 , we use the relationship (3.2), and in combination with (5.3), we

obtain

pa
ssa

þ c s; að Þ
X
s0 6¼sa

pss0 ¼ 1: ð5:4Þ

Furthermore, from

X
s0

pss0 ¼ 1

follows the relation

X
s0 6¼sa

pss0 ¼ 1� pssa ,

which, when used in (5.4), finally enables the calculation of c(s, a):

c s; að Þ ¼ 1� pa
ssa

1� pssa
, ð5:5Þ

which represents the change of all transition probabilities induced by recommen-

dation a (except for the target state sa).
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Using (5.5), (3.5) can be determined:

qπ s; að Þ ¼ pa
ssa
rssa þ c s; að Þ

X
s0 6¼sa

pss0 rss0 : ð5:6Þ

Expressed in words, for the product s, the action value of the recommendation

a is equal to the probability of the acceptance of this recommendation multiplied by

the corresponding reward plus the weighted sum of the unconditional transition

probabilities multiplied by their rewards. For simplicity’s sake, we will occasion-

ally refer to the first term pa
ssa
rssa as the conditional and the second term (without the

scaling factor)
X
s0 6¼sa

pss0 rss0 as the unconditional action value.

Despite their apparent simplicity, equations (5.5) and (5.6) are extremely inter-

esting. As with many fundamental relationship equations, they deserve detailed

study. Consider, for instance, Maxwell’s equations. Through their fundamental

interpretation, James Clerk Maxwell was able to predict the existence of electro-

magnetic waves, which were later confirmed experimentally by Heinrich Hertz. By

further studying them, Henri Poincare was able to derive the invariability of the

speed of light, from which Albert Einstein finally developed the special relativity

theory. Of course, (5.5) and (5.6) are not Maxwell’s equations, and the authors are

no Poincare or Einstein; nevertheless, it is rewarding to spend some more time

on them.

5.2.1 Discussion

If we consider (5.6) more closely, we see that the conditional action value is the

direct value of the recommendation, whereas the unconditional action value repre-

sents the value of the other product transitions. The scaling factor c controls the

weighting between the two. While, therefore, the conditional action value reflects

the success of the recommendation, the unconditional action value gives the

“recommendation-free” potential (i.e., the product transitions that occur even

without a recommendation), whose influence is reduced by the success of the

recommendation.

If the transition probabilities pa
ssa

and pssa are both small, c(s, a) can be regarded

as approximately 1, and both action values have the same weighting. As soon,

however, as pa
ssa

is significantly greater than pssa0 i.e., the recommendation a is

strongly accepted, c(s, a) << 1 is true, and the influence of the unconditional

action value is reduced as compared to that of the conditional one. If the improve-

ment in the conditional action value overtakes the reduction in the unconditional,

the recommendation is successful. On the other hand, the recommendation may

suffer from down-selling: the popular recommendation captures more reward

overall from the previous product transitions than it generates as new reward.
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Conversely, it may occur, though rather seldom in practice, that the response to

the recommendation a leads to a decrease in the associated transition probability

(for instance, by cannibalizing multiple product recommendations). We then have

pa
ssa

<< pssa and hence c(s, a) >> 1: the unconditional action value would be

extremely strongly weighted – an apparently absurd effect. However, it should be

noted here that because of the relationship
X
s0 6¼sa

pss0 ¼ 1� pssa , a large pssa leads to a

small unconditional action value, and we must perform a limit value consideration

here. We will explore this in more depth in the course of the special cases of (5.6).

For a quantitatively better understanding of (5.6), let us consider for the product

s the difference between the action values of two recommendations a and b:

qπ s; að Þ � qπ s; bð Þ ¼ pa
ssa
rssa þ c s; að Þ

X
s0 6¼sa

pss0 rss0 � pb
ssb
rssb � c s; bð Þ

X
s0 6¼sb

pss0 rss0

¼ pa
ssa
rssa � pb

ssb
rssb þ c s; að Þpssbrssb � c s; bð Þpssa rssa

þ c s; að Þ
X

s0 6¼sa, sb

pss0 rss0 � c s; bð Þ
X

s0 6¼sa, sb

pss0 rss0

¼ pa
ssa

� c s;bð Þpssa
h i

rssa � pb
ssb

� c s;að Þpssb
h i

rssb þ c s;að Þ � c s;bð Þ½ �
X

s0 6¼sa, sb

pss0 rss0 :

By preliminary use of the estimate c s;að Þ ¼ 1�p a
ssa

1�pssa
� 1 and similarly c(s, b) � 1,

we obtain

qπ s;að Þ�qπ s;bð Þ� pa
ssa

�pssa

h i
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Δpa

rssa|{z}
ra

� pb
ssb

�pssb

h i
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Δpb

rssb|{z}
rb

¼Δpara�Δpbrb: ð5:7Þ

If, for the sake of simplicity, we initially set all rewards to 1, we have

qπ s; að Þ � qπ s; bð Þ � Δpa � Δpb:

Since we can generally assume that for a product s the probability of a product

transition to a product sy is higher if y is recommended, we have

py
ssy

> pssy ,

and we obtain the following interpretation. The recommendation a is then certainly

better than the recommendation b if the difference Δpa between the transition prob-

abilities increased by the product recommendation is greater than the similar differ-

ence Δpb for the recommendation b. Instead therefore of making recommendations

a with the highest transition probability pa (:¼ pssa ) as in classical data mining, the

recommendations a that are made are those with the highest difference between the
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conditional and unconditional transition probability Δpa. That is, those recommenda-

tions which most increase the transition probability. This is also logical, since the

unconditional transition probabilities pa are in fact achieved even without recommen-

dations. By the way, it can be generally assumed that in most cases the relationship

pa � Δpa

has an approximate validity, which is why classical data mining methods

work to some extent (see also previous section: Δpa ¼ pa
ssa

� pssa

� �
¼ dpssa � pssa

¼ d � 1ð Þpssa � pa).

If we now discard the restriction regarding the 1-rewards, then, according to (5.7),

recommendation a will then certainly be better than recommendation b if the

difference in action value Δpara for the transition probability increased by the product
recommendation is higher than the difference in action value Δpbrb due to recom-

mendation b. This is an extension of the preceding case and its content is clear.

It should, however, be remembered that even the simplification c(s, a) � 1 is not

always valid in practice and, moreover, is not always useful. In order to understand

this, consider just our two products a and b. We assume that a has a high reward ra,
but Δpa ¼ 0, i.e., the transition to the product, occurs equally well without a

recommendation and brings high sales. Now let b be a product whose recommen-

dation is strongly accepted but which is associated with a low reward rb. The reality
is qπ(s, a) > qπ(s, b), but the simplification delivers the opposite:

qπ s; að Þ � qπ s; bð Þ � Δpara � Δpbrb ¼ 0� Δpbrb < 0:

So the simplification c(s, a) � 1 conceals the risk of down-selling; therefore, we

do not generally apply it in practice. If we ignore it, we obtain for our example

qπ s; að Þ � qπ s; bð Þ ¼ pa
ssa

� c s; bð Þpssa
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δpa bð Þ

ra � Δpbrb ¼ Δpa bð Þra � Δpbrb:

Since with increasing Δpb ¼ pb
ssb

� pssb , conversely, c s; bð Þ ¼ 1�p b
ssb

1�pssb
decreases,

this leads in turn to an increasing Δpa(b). The raising of the action value by the

increased acceptance of b works against its decrease by the reduced action potential
of a, which is reflected by the scaling factor c. The decision between recommen-

dations a and b is dependent on which of the two effects predominates.

We have therefore established that if pa
ssa

and pssa are both small, it is practical to

work with c(s, a) ¼ 1 (even if pa
ssa

is higher than pssa by a multiple, or vice versa).

Otherwise we must work with the exact scaling factor c(s, a).

5.2 Conditional Approach 65



5.2.2 Special Cases

We investigate and interpret below important special cases of (5.6). For this we

firstly write out in full (5.6) with (5.5):

qπ s; að Þ ¼ pa
ssa
rssa þ

1� pa
ssa

1� pssa

X
s0 6¼sa

pss0 rss0 : ð5:8Þ

The following special cases arise:

1. pa
ssa

¼ pssa (no effectiveness of the recommendation):

qπ s; að Þ ¼ pssa rssa þ
X
s0 6¼sa

pss0 rss0 ¼
X
s0

pss0 rss0 ¼ q0 sð Þ,

and all recommendations a lead to the same q0 action value

2. pa
ssa

¼ 0 (no acceptance of the recommendation):

qπ s; að Þ ¼ 1

1� pssa

X
s0 6¼sa

pss0 rss0 :

The interpretation is that the action value of the recommendation

a corresponds to the weighted unconditional action value. The conditional action
value disappears. The reward for the recommendation plays no role at all, since

there never is a transition to the product sa.
3. pa

ssa
¼ 1 (total acceptance of the recommendation):

qπ s; að Þ ¼ rssa ,

which means that the recommendation a always obtains its full reward. The

unconditional action value disappears.

4. pssa ¼ 0 (no acceptance of the “recommendation” in the control group):

qπ s; að Þ ¼ pa
ssa
rssa þ 1� pa

ssa

� �X
s0 6¼sa

pss0 rss0 :

The interpretation is the action value corresponds to the conditional action

value of recommendation a plus the probability of nonacceptance of the recom-

mendation times the unconditional action value for all the other states s0 6¼ sa.
5. pssa ¼ 1 (total acceptance of the “recommendation” in the control group):

qπ s; að Þ ¼ pa
ssa
rssa þ 1� pa

ssa

� � 1
k

X
s0 6¼sa

rss0 ,
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where k is the number of all the other states s0 6¼ sa. This is the most complicated

case. The above equation follows from the elementary limit value consideration

with the equation pss0 ¼ 1�pssa
k 8s0 6¼ sa:

lim
pssa!1

1�pa
ssa

1�pssa

X
s0 6¼sa

1�pssa
k

rss0 ¼ lim
pssa!1

1�pa
ssa

1�pssa

1�pssa
k

X
s0 6¼sa

rss0 ¼ 1�pa
ssa

� �1
k

X
s0 6¼sa

rss0 :

Of course, the distribution of the unconditional probabilities pss0 may also be

modeled differently (which may lead to a different result), but this is the most

natural approach. The interpretation is since in the recommendation-free case, the

transition always leads to sa, the distribution of the pss0 is unknown if, in the

recommendation case, the transition leads to s0 6¼ sa. Therefore, the pss0 are

assumed to be equal. Hence, the action value corresponds to the conditional action

value of recommendation a plus the probability of nonacceptance of the recom-

mendation times the average reward over the other states s0 6¼ sa.

The approach described for estimation of the transition probabilities in (3.5)

can now be applied similarly for a positive discount rate γ (3.6), so that in the

result we again obtain an equation similar to (5.6), albeit of course more

complex:

qπ s; að Þ ¼ pa
ssa

pa
ssa

þ γ
X
a0

π sa; a
0ð Þqπ sa; a

0ð Þ
" #

þ c s; að Þ
X
s0 6¼sa

pa
ss0 r a

ss0 þ γ
X
a0

π s0; a0ð Þqπ s0; a0ð Þ
" #

: ð5:9Þ

This is then solved in realtime once again using ADP. Concerning a corresponding

TD algorithm, it is not easy to derive because of the nonlinearity of (5.8) with respect

to pssa . We leave this as an open problem. Nevertheless, we will also consider the

TD-Version in the course of this book, especially in Chaps. 6 and 10.

5.2.3 Estimation of Transition Probabilities

The conditional transition probabilities pa
ssa

may be computed from the transactions

according to Algorithm 4.1 or, in case that multiple recommendations have been

issued, Algorithm 4.2.

Computation of the unconditional transition probabilities pss0 has not yet been
addressed. It may be calculated either from sessions in the control group (the topic
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of measuring success and control groups is addressed in Chap. 11). Since no

recommendations are issued here, Algorithm 4.1 may straightforwardly be used

to determine the pss0.
Control groups, however, are not always available. Furthermore, the approach is

prone to inconsistencies. Hence, we shall jointly estimate both the conditional as

well as the unconditional probabilities invoking our central Assumption 5.2.

5.2.3.1 One Recommendation

We shall first consider the case of one recommendation a issued in state s and

introduce the following notation for the internally used probabilities:

p
a½ �
ss0 ¼

pss0 , s0 6¼ sa
pa
ss0 , s0 ¼ sa

�
:

For a fix pssa Assumption 5.2 with (5.3) included stipulates the following 1–1

mapping between our internal probabilities and the conditional ones:

pa
ss0 ¼ Fpssa

p
a½ �
ss0

� �
¼ c s; að Þpss0 , s0 6¼ sa

pa
ss0 , s0 ¼ sa

�
¼

1� pa
ssa

1� pssa
pss0 , s0 6¼ sa

pa
ss0 , s0 ¼ sa

8><
>:

: ð5:10Þ

(The special cases pa
ssa

¼ 1 and pssa ¼ 1will not be addressed here, since they are

cumbersome to deal with and do not figure decisively in the basic approach.)

Introducing the vectors p[a] ¼ ( pss0
[a])s0, p

a ¼ ( pass0)s0 and letting m be the number

of successor states s0, (5.10) defines the vector function Fpssa
¼ F1

pssa
. . .Fm

pssa

� �T
:

pa ¼ Fpssa
p a½ �
� �

: ð5:11Þ

Since in practice, however, we can update only pa, we also need the inverse

p a½ � ¼ F�1
pssa

pað Þ: ð5:12Þ

which is equally easy to compute. Equipped with this mapping, we proceed in

essentially the same fashion as Algorithm 4.1 from Sect. 4.2.

We store only the internal probabilities jp[a], where j is again the update step, in

our rule base. After the recommendation a has been issued, we first compute the

expected conditional probabilities jpa ¼ Fjpssa
jp a½ �� �

. The unconditional probability

of the issued recommendation is kept fix, since we cannot update it anyway, as the

recommendation has been issued! The conditional probabilities jpa are now com-

puted by virtue of Algorithm 4.1 according to accepted or rejected recommendation,
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and we obtain the updated conditional probabilities jþ1pa. To the latter, we apply the

inverse mapping jþ1p a½ � ¼ F�1
jpssa

jþ1pa
� �

and obtain the current internal probabilities
jþ1p[a]. Subsequently, we carry over jpssa unchanged to the next update.

Algorithm 5.1: Update of the internal from conditional probabilities for one

recommendation

Input: vector of internal probabilities jp[a] and fixed probability jpssa , delivered

recommendation a, index of product transition l, step size αj
Output: updated vector of internal probabilities jþ1p[a] and jþ1pssa

1: procedure UPDATE_P_DP_SINGLE(jp a½ � , jpssa , a, l, αj)
2: j

p
a:¼ Fjpssa (

j
p
[a]) ⊳ conversion into conditional probabilities

3: jþ1pa:¼ UPDATE_P_

SINGLE( jpa, l, αj ) ⊳ update of conditional probabilities

4: jþ1p a½ � :¼ Fjpssa�1 jþ1p
� �

⊳ conversion into internal probabilities

5: jþ1pssa :¼ jpssa ⊳ unchanged take-over of the fixed

component

6: return (jþ1
p
[a], jþ1pssa )

7: end procedure

5.2.3.2 Multiple Recommendations

We shall now attend to the case of multiple recommendations. Let again

a ¼ a1, . . . , akð Þ be the k issued recommendations and Sa be the set of states

corresponding to the former; see Fig. 5.2. Let further SC
a ¼ SA sð Þ=Sa be the comple-

mentary set of all not-recommended successor states, i.e., s0 =2 Sa . We denote the fixed

sa2

sa5

sa3

s

a5

a4

a3

a2

a1

sa1

sa4

s'∈Sa

s'∉Sa

Fig. 5.2 Example of a

product with two

recommendations

a ¼ a1; a2ð Þ and a total

of five following products
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set of unconditional probabilities assigned to the recommendations as

Πa ¼ pss0f gs0∈Sa
.

Firstly, we again introduce our internal probabilities:

p
a½ �
ss0 ¼

pss0 , s0 =2 Sa
p
as0
ss0 , s0∈ Sa

�
,

i.e., p
a½ �
ss0 corresponds to p

½a�
ss0 , where the grouping is now over a multitude of issued

recommendations. For the special case of one recommendation Sa ¼ saf g, the two
coincide.

The question, which also figures in the simulations described in Sect. 5.4, is:

How can we calculate the transition probabilities of multiple recommendations pass0
from those of single recommendations pa

ssa
and pss0?

According to Sect. 4.2, we may calculatepass0 either following the linear approach
(4.3). Alternatively, we may resort to the nonlinear approach (4.5).

Linear Approach

In conjunction with the linear approach (4.3), we generalize (5.10) and again obtain

the 1–1 mapping between the internal and conditional probabilities:

pass0 ¼ FΠa
p
a½ �
ss0

� �
¼ 1

k

Xk
i¼1

Fsai
p
ai½ �
ss0

� �
¼

1

k

Xk
i¼1

c s;aið Þpss0 , s0 =2Sa

1

k
p
as0
ss0 þ

Xk

i¼1,ai 6¼as0

c s;aið Þpss0
0
@

1
A, s0∈Sa

8>>>>><
>>>>>:

¼

1

k

Xk
i¼1

1� paissai
1� pssai

pss0 , s0 =2 Sa

1

k
p
as0
ss0 þ

Xk

i¼1, ai 6¼as0

1� paissai
1� pssai

pss0

0
@

1
A, s0∈Sa

8>>>>><
>>>>>:

: ð5:13Þ

As for the one-recommendation case, we change over to the vectors p a½ � ¼
p
a½ �
ss0

� �
s0
and pa ¼ pass0

� �
s0 and introduce the vector function FΠa

¼ F1
Πa

. . .Fm
Πa

� �T

through

pa ¼ FΠa
p a½ �
� �

ð5:14Þ
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and its inverse through

p a½ � ¼ F�1
Πa

pa
� �

: ð5:15Þ

The inverse mapping requires the solution of an equation system which is not

difficult to compute. Although (5.14) is formally nonlinear with respect to p a½ �, in
reality the solution can be done in a quite similar way. In fact, first we consider all

recommended successor products s0∈Sa and calculate their corresponding condi-

tional probabilities p
as0
ss0
. This requires the solution of a linear equation system with

Saj j unknowns. Then we turn to the remaining, not-recommended successor states

s0 =2 Sa and directly calculate their unconditional probabilities pss0.
That way, we end up at Algorithm 5.2 for multiple recommendations which is

quite similar to Algorithm 5.1 of single recommendations.

Algorithm 5.2: Update of the internal from conditional probabilities for

multiple recommendations, linear mapping

Input: vector of internal probabilities jp a½ � and fixed probabilities jΠa , delivered

recommendations a ¼ a1, . . . , akð Þ, index of product transition l, step size αj
Output: updated vector of internal probabilities jþ1p a½ � and jþ1Πa

1: procedure UPDATE_P_DP_MULTI_LIN(jp a½ � , jΠa , a , l, αj)

2: jpa ¼ FjΠa

jp a½ �� �
⊳ conversion into conditional

probabilities

3: jþ1pa :¼ UPDATE_P_

SINGLE(jpa , l, αj) ⊳ update of conditional probabilities

4: jþ1p a½ � :¼ F�1
jΠa

jþ1pa
� �

⊳ conversion into internal probabilities

5: jþ1Πa :¼ jΠa ⊳ unchanged take-over of the fixed

component

6: return (jþ1p a½ � , jþ1Πa )

7: end procedure

We now turn to the action-value function. For complexity reasons we cannot

check all combinations of single recommendations in order to determine the greedy

policy. We need a more efficient approach.

At this, we plug in (4.3) into (3.5) and rewrite the action-value function for

multiple recommendations:

qπ s;að Þ ¼
X
s0

pa
ss0 rss0 ¼

X
s0

1

k

Xk
i¼1

pai
ss0

 !
rss0 ¼ 1

k

Xk
i¼1

X
s0

pai
ss0
rss0 ¼ 1

k

Xk
i¼1

qπ s;aið Þ:

This nice result tells us that in order to find the highest action value of

k recommendations, we just need to select the k recommendations of the highest single

action values. The same holds for the full action-value function (3.6).
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Nonlinear Approach

We remind the reader, though, that according to (4.5), pa
ss0 can only be applied to

s0∈Sa , i.e., to the successor states corresponding to the recommendations. Yet we

need pa
ss0 for all admissible subsequent states s0.

To this end, we extend Assumption 5.2 to all of the k issued recommendations

and generalize (5.3) to

pa
ss0 ¼ c s; að Þpss0 , s0 =2 Sa : ð5:16Þ

While being able to calculate the transition probabilities to each of the issued

recommended states pa
ss0 , s

0∈Sa according to (4.4), we use (5.16) for the remaining

successor states. The scaling factor c s; að Þ is determined similarly to c(s, a) as
described in Sect. 5.2:

X
s0∈Sa

pa
ss0 þ c s; að Þ

X
s0=2Sa

pss0 ¼ 1

together with
X
s0

pss0 ¼ 1 yields

c s; að Þ ¼
1�

X
s0∈Sa

pa
ss0

1�
X
s0∈Sa

pss0
: ð5:17Þ

We are now in a position to generalize Assumption 5.2 to the case of a given

multiple recommendation a and to compute its corresponding transition probabil-

ities pa
ss0 from the single recommendation probabilities p

að Þ
ss0
.

Thus, we have gathered all of the tools necessary to estimate the transition

probabilities from multiple recommendations.

Using the transformation Fs0 from (4.5), we may calculate the joint probabilities

pa
ss0 , s0∈Sa from the single probabilities of the issued recommendations p

as0
ss0 , s

0∈Sa
(equivalent notation: palssal

, l ¼ 1, . . . , k ) and thereupon define the intermediate

probabilities p
af g
ss0 :

p
af g

ss0 ¼ pss0 , s0=2Sa
pass0 , s0∈Sa

�
¼

pss0 , s0=2Sa
Fs0 pa1ssa1

; . . . ; pakssak

� �
, s0∈Sa

(
, ð5:18Þ

which enables to introduce the vector function GSa in terms of the vectors p a½ �

¼ p
a½ �
ss0

� �
s0
and p af g ¼ p

af g
ss0

� �
s0
:
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p af g ¼ GSa p a½ �
� �

ð5:19Þ

and its inverse

p a½ � ¼ G�1
Sa

p af g� �
:

The inverse G�1
Sa

is not quite easy to compute, since it involves the inversion of

the vector function for multiple recommendations F�1 described in Sect. 4.2,

though along with a suitable approach thereto.

For the fixed set of unconditional probabilities assigned to the recommendations

Πa , we again obtain the following 1–1 correspondence FΠa
between the interme-

diate and conditional probabilities:

pass0 ¼ FΠa
p

af g
ss0

� �
¼ c s; að Þpss0 , s0 =2 Sa

pa
ss0 , s0∈ Sa

�
: ð5:20Þ

Here, c s; að Þ is defined in compliance with (5.16) and calculated through (5.17).

Again, we change over to the vectors p af g ¼ p
af g

ss0

� �
s0

and pa ¼ pa
ss0

� �
s0

and

introduce the vector function FΠa
¼ F1

Πa
. . .Fm

Πa

� �T
through

pa ¼ FΠa
p af g� � ð5:21Þ

and its inverse through

p af g ¼ F�1
Πa

pa
� �

:

Thus, we are in a position to state Algorithm 5.3 for the calculation of

the transition probabilities from multiple recommendations similarly to

Algorithm 5.1.

Again, we start with the internal probabilities jp a½ � in the jth update step. After the
multiple recommendation a has been issued, we first need to compute the predicted

multiple probabilities jpa
ss0 , s0∈Sa from the single probabilities jp

as0
ss0 , s0∈Sa of the

recommendations. This is the core of the operation jp af g ¼ jGSa p a½ �� �
which pro-

duces the conditional probabilities. Now we have to convert the unconditional

probabilities into the conditional ones, which is in turn the core of the operation
jpa ¼ FΠa

jp af g� �
. Here, we keep the unconditional probability of the issued recom-

mendations jΠa ¼ jpss0
� 	

s0∈Sa
fixed.
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Thus, we have completed the conversion into the conditional probabilities jpa

which we again update with respect to the accepted and rejected recommendations

according to Algorithm 4.1 to obtain the updated conditional probabilities jþ1pa.

Using the inverse mappings F�1
jΠa

and G�1
Sa
, we reconvert them into our internal

single probabilities jþ1p[a]. We then carry the unconditional probabilities of the

recommendations jþ1Πa over unchanged to the next update step.

Algorithm 5.3: Update of the internal from conditional probabilities for

multiple recommendations

Input: vector of internal probabilities jp a½ � and fixed probabilities jΠa , delivered

recommendations a ¼ a1, . . . , akð Þ, index of product transition l, step size αj
Output: updated vector of internal probabilities jþ1p a½ � and jþ1Πa

1: procedure UPDATE_P_DP_MULTI(jp a½ � , jΠa , a , l, αj)

2: jp af g ¼ GSa
jp a½ �� �

⊳ conversion into intermediate

probabilities

3: jpa ¼ FjΠa

jp af g� �
⊳ conversion into conditional probabilities

4: jþ1pa :¼ UPDATE_P_

SINGLE(jpa , l, αj) ⊳ update of conditional probabilities

5: jþ1p af g ¼ F�1
jΠa

jþ1pa
� �

⊳ conversion into intermediate probabilities

6: jþ1p a½ � ¼ G�1
Sa

jþ1p af g� �
⊳ conversion into internal probabilities

7: jþ1Πa :¼ jΠa ⊳ unchanged take-over of the fixed

component

8: return (jþ1p a½ � , jþ1Πa )

9: end procedure

A closer look at Algorithm 5.3 reveals that it may be arranged in a different way by

updating the conditional recommendation probabilities in a bundle by means of

Algorithm 4.2 and updating the unconditional (non-fixed) recommendations

separately.

Indeed, since the unconditional probabilities of the recommended products s0∈ Sa
are kept fix, i.e., jþ1Πa ¼ jΠa , also their sum

X
s0∈Sa

pss0 does not change, and due to

X
s0=2Sa

pss0 ¼ 1�
X
s0∈Sa

pss0 also the sum of all unconditional probabilities of the

non-recommended products is constant. Thus, if one of the recommendations is

accepted, all unconditional probabilities remain unchanged. Only if no recommen-

dation is accepted, the unconditional probabilities of the non-recommended products

will change (but not their sum).

In order to formulate the algorithm, let us denote all parts of vectors

corresponding to the recommended products by index c and to the

non-recommended products by index u. Especially, we denote p
a½ �
c ¼ p

a½ �
ss0

� �
s0∈Sa
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¼ p
as0
ss0

� �
s0∈Sa

and p a½ �
u ¼ p

a½ �
ss0

� �
s0=2Sa

¼ pss0ð Þs0=2Sa . Similar from the transition index

l, we derive the indexes lc ¼ l, sl∈Sa
�1, sl =2 Sa

�
and lu ¼ l, sl =2 Sa

�1, sl ∈ Sa

�
.

Then we can reformulate Algorithm 5.3 in a more compact way (and computa-

tional cheaper) as Algorithm 5.4.

Thus, we first update the conditional probabilities of the recommended products.

Only in case that no recommendation has been accepted, the unconditional prob-

abilities of all non-recommended products are updated. Strictly speaking Step

4 requires additional scaling since the update of the unconditional probabilities of

the non-recommended products by Algorithm 4.1 may change their sum
X
s0=2Sa

pss0 .

However, this is an easy task. We just need to store the sum before and after the

update and then to multiply all updated probabilities by the corresponding factor.

Algorithm 5.4: Update of the internal from conditional probabilities for

multiple recommendations, Version 2

Input: vector of internal probabilities jp a½ � and fixed probabilities jΠa , delivered

recommendations a ¼ a1, . . . , akð Þ, index of product transition l, step size αj
Output: updated vector of internal probabilities jþ1p a½ � and jþ1Πa

1: procedure UPDATE_P_DP_MULTI2(jp a½ � , jΠa , a , l, αj)

2 jþ1p
a½ �
c :¼ UPDATE_P_MULTI

(jp
a½ �
c , a , lc, αj) ⊳ update of recommendation probabilities

3: if lc ¼ �1 then

4: jþ1p a½ �
u :¼ UPDATE_P_SINGLE

(jp a½ �
u , lu, αj) ⊳ update of non-recomm. probabilities

5: else

6: jþ1p a½ �
u :¼ jp a½ �

u ⊳ unchanged take-over of non-recomm. probabilities

7: end if

8: jþ1Πa :¼ jΠa ⊳ unchanged take-over of the fixed component

9: return (jþ1p a½ � , jþ1Πa )

10: end procedure

Although Algorithms 5.3 and 5.4 deliver in principal the same result, they

represent different perspectives on the update of conditional and unconditional

probabilities. While Algorithm 5.3 updates both probability types by one algorithm,

Algorithm 5.4 separates this calculation and allows calculating conditional and

unconditional probabilities by different update algorithms. Even in case of the same

update rule (3.8), as used in Algorithm 5.4, this may result in different counters for

the coefficients αj and lead to different results. We will not further deepen this

special topic here.
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We conclude this section with the formulation of the action-value function for

multiple recommendations. From (5.16) it follows that (5.6) takes the form

qπ s; að Þ ¼
X
s0∈Sa

pa
ss0 rss0 þ c s; að Þ

X
s0 6¼sa

pss0 rss0 :

Due to the nonlinearity of c s; að Þ, this means that we would need to consider all

possible combinations of recommendations a in order to find the highest action

value. This would result into an enormous complexity that cannot be handled for

real-life problems. For the moment, we use the simplest approach by selecting the

k best single recommendations, like in the linear case. This approach, however, only

for the simplified DP-Version (5.26) works exactly. (The simplified DP-Version

will be introduced in the next section.)

So although we are able to correctly determine all transition probabilities for

multiple recommendations and to use them accurately in the simulations (Sect. 5.4),

we still lack a computationally efficient approach to calculate the best multiple

recommendations. Of course, this should be a subject for future studies. Special

optimization techniques shall be able to solve this problem.

Comparison of Linear and Nonlinear Approaches

Summing up, the linear approach seems to be favorable to the nonlinear one

because it is easier to implement and does not leave any principal problems open.

5.3 Combination of Conditional and Unconditional

Approaches

In this section, we want to present a first approach how to deal with uncertain data.

So far, we have always assumed that all estimated probabilities p
ðaÞ
ss0 , i.e., p

a
ss0 and

pss0, are equally reliable. However, in most applications for a state s, new transitions

s ! s0 (usually represented as rules) are dynamically added during the process of

learning. For example, if s is a long-standing product of a web shop and recently a

new product s00 was included into the assortment of the shop, then we may

dynamically add the transition probabilities p
ðaÞ
ss00 to the existing ones.

Let jp
ðaÞ
ss0 represent the estimated probabilities p

ðaÞ
ss0 after j update steps. Then the

described dynamic approach means that different target states s0 may have different

counter values j. Obviously, for a state s1 with a large counter j1 in general, the

corresponding transition probabilities j1p
að Þ
ss1 can be considered as more reliable than

j2p
að Þ
ss2 for a state s2 with a small counter j2.

In order to calculate (5.8) meaningfully, the transition probabilities p
ðaÞ
ss0 must be

statistically stable, at least to some extent. In other words, adding transition
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probabilities p
ðaÞ
ss00 of a very new product s00 may deteriorate our whole approach

(5.8). To overcome this problem we will present some first ideas here.

At this, we replace np
ðaÞ
ss0 with the “stabilized” probabilities

nep að Þ
ss0 :¼ np

að Þ
ss0 , if n � nmin

0, if n < nmin

�
, ð5:22Þ

where nmin is a threshold value for the minimum statistical mass (usually 20 or

more) and instead of (5.8) now calculate

eqπ s; að Þ ¼ ep a
ssa
rssa þ

1� ep a
ssa

1� epssa
X
s0 6¼sa

epss0 rss0 : ð5:23Þ

There remains a problem at (5.23) however because of the fact that for new

transitions the conditional action valueep a
ssa
rssa initially is 0 or small. That means that

its recommendations are scarcely delivered and ep a
ssa
rssa can scarcely grow (unless

eqπ s; að Þ increases via its unconditional action value). We then have a vicious circle.

In order to escape this, we modify (5.22) for the conditional probabilities pass0
as follows:

np̂ a
ss0 :¼

npass0 , if n � nmin

sC
mpss0 , if n < nmin

�
, ð5:24Þ

where sC ∈ [1, ∞) is a fixed scaling factor. Here the n refers to the counter of the

conditional probability (i.e., for delivery of a), whereas on the other hand m is the

counter for the unconditional probability! In this way we replace (5.23) with

the final estimation

q̂ π s; að Þ ¼ p̂ a
ssa
rssa þ

1� p̂ a
ssa

1� epssa
X
s0 6¼sa

epss0 rss0 : ð5:25Þ

We now come to the interpretation of (5.25). Since the unconditional probabil-

ities pss0 are continually updated, even without delivery of s0, these have real

chances of being delivered as recommendations, and the conditional probability

counter increases. As soon as it reaches the threshold nmin, the initial auxiliary

probability p̂ a
ssa

is replaced by the conditional probability pass0 .

The scaling factor sC should be motivated in the broader sense. If sC ¼ 1 is set,

there is the risk that the new recommendations are often not sufficiently strong to be

shown. (Generally pa
ssa

> pssa is the case, i.e., the probability of the transition to a

product sa is generally higher if it is also recommended.) It follows from this that in

general sC > 1 should be selected, so that the transition probabilities pssa have a real

chance of being delivered.
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The selection sC > 1 is also useful in respect of the delivery of competing initial

recommendations. For this we initially assume sC ¼ 1. As long as np̂ a
ss0 is in the

initialization phase, i.e., n < nmin, under the mostly valid (and not crucial) assump-

tion epss0 ¼ pss0 , 8s0 6¼ sa (i.e., the other unconditional probabilities are stable),

(5.25) takes the form

q̂ π s; að Þ ¼ pssa rssa þ 1
X
s0 6¼sa

pss0 rss0 ¼
X
s0

pss0 rss0 ¼ q0 s; að Þ,

and thus q̂ π s; að Þ is the same for all recommendations in the initial phase.

On the other hand, the introduction of the scaling factor sC > 1 yields the desired

behavior:

q̂ π s; að Þ > q̂ π s; bð Þ , pssarssa > pssbrssb :

Thus the method for the initial recommendations works similarly to that of the

P-Version. For methodological purposes we therefore introduce a simplified

version of (5.25):

q̂ s
π s; að Þ ¼ p̂ a

ssa
rssa : ð5:26Þ

This therefore combines the P-Version for unconditional and conditional prob-

abilities. As long as n < nmin, it corresponds largely to the P-Version for the

corresponding recommendation, i.e.,

q̂ s
π s; að Þ ¼ sCpssa rssa ,

and for sC ¼ 1 it is actually identical:

q̂ s
π s; að Þ ¼ pssa rssa ¼ qP s; að Þ:

As soon as the threshold value nmin is reached, it changes into a P-Version

operating on the basis of conditional probability:

q̂ s
π s; að Þ ¼ pa

ssa
rssa :

The transition from unconditional to conditional probabilities in (5.25) or (5.26)

makes sense in terms of content too: as long as the statistical mass is small, one

should not operate with the complex conditional probabilities. Therefore, the

unconditional probabilities are used, whose stability increases more quickly – and

without requiring the delivery of recommendations. If then the necessary statistical

mass is reached, we change over to the qualitatively more demanding conditional

probabilities. In this way we achieve a continuous transition from the P- to the

DP-Version.
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The question of the best value of sC is difficult and a subject of forthcoming

investigations and will not be addressed further here.

In closing let us turn our attention to a further special problem in the conditional

version. If a rule is no longer applied for recommendations after exceeding the

threshold value nmin (because in the meantime other rules have become preferred),

it has – at least in the simplified version (5.26) – in general little chance to be

applied again, since the conditional probability pass0 is no longer being updated. This
holds even if its potential acceptance has increased again.

In order to get around this, we introduce a special explorative delivery mode for

the DP algorithm. For this, similarly to the ε -greedy policy, a percentage rate εDP is
specified, in which instead of being delivered according to the action-value function

q̂ π s; að Þ, the recommendations are delivered in descending order according to the

following criterion:

Θ s; að Þ ¼ pssa � pa
ssa

� �
rssa ¼ �Δpara: ð5:27Þ

Thus, the idea is that the difference between the unconditional probability pssa
and the conditional probabilitypa

ssa
is a good indicator for whether a rule has become

more attractive again. For if the difference increases, the user will be more inclined

toward product sa even without a recommendation, and the necessity of its delivery

increases.

Let us emphasize that the empirical approach of this section just presents some

very first and simple approaches to handle the crucial problem of statistical stability

of the DP-Version. Surely, much more advanced instruments can be developed.

Despite this, in Chaps. 6, 7, 8, 9, and 10 we will develop mathematically

more demanding methods to increase the stability of our RL approach for

recommendations.

That concludes our trip around the basic RL methods for our RE framework.

Let us now consider their experimental evaluation.

5.4 Experimental Results

In this section we will present experimental results for the approaches of Sects. 5.2

and 5.3. Therefore, we will first verify the central Assumption 5.2 experimentally.

After that we extend the simulation of Sect. 4.4 in such a way that we first model the

environment, i.e., the conditional transition probabilities and rewards. Then, for the

actual simulation, we will use the environment model in order to generate an

arbitrary number of virtual sessions for testing the recommendation algorithms

under conditions close to reality. At the end of this section, we will use the extended

simulation for testing the algorithms introduced in this chapter.
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5.4.1 Verification of the Environment Model

We consider the following example.

Example 5.2 We use the data of an online furniture shop We start with the off-line

test method of Sect. 4.4. The shop contains approximately 1,900 products. We use

the data of one day as training set; it contains 9,736 sessions with 31,349 trans-

actions. The test set consists of the data of the following day; it has 7,430 sessions

with 24,161 transactions. Up to removing multiple clicks, we did not change

the data.

We want to check the plausibility of Assumption 5.2. In the shop of our test

data, no control sessions exist, and all sessions get recommendations of the

prudsys RDE. In order to check the influence of the recommendations on the

browsing behavior of the shop visitors as good as possible, the RDE varies

the recommendations strongly. This was achieved by applying the softmax policy

(Sect. 3.3), where the control parameter τ was adjusted to select approximately

50 % of all recommendations as “greedy,” i.e., corresponding to the strongest

action values, and the remaining 50 % explorative. There are always 4 recommen-

dations displayed for each product.

We use the training data set to determine both the conditional transition

probabilities pa
ssa

and the unconditional ones pssa by means of the adaptive algorithms

5.1 and 5.2.

We now consider all product views s that actually received at least one recom-

mendation a and where at least one rule s ! sa exists that was learned on the

training set. We call this set of product views recommendation relevant.
We now follow the notation of Sect. 5.3. Let n be the number of updates of

conditional probabilities npass0 and m the number of updates of unconditional

probabilities mpss0 of the rule s ! s0 on the training data. We define

kmin ¼ min n;mð Þ ð5:28Þ

as minimum of both updates. The higher kmin, the better the conditional probability
npass0 can be compared with the unconditional mpss0 because for s the recommenda-

tion a was sufficiently often delivered (high n) and at the same time also sufficiently

often not delivered (high m).
We want to compare the probability types pa

ssa
¼ npassa and pssa ¼ mpssa depending

on kmin in order to see how the recommendation of a increases the transition to sa. So
we calculate the mean values of the transition probabilities over all product recom-

mendation pairs s; að Þkmin
whose update number is not smaller than kmin, i.e.,

p a ¼
1

s; að Þkmin



 


X
s;að Þkmin

npassa , p ¼ 1

s; að Þkmin



 


X
s;að Þkmin

mpssa

and their coefficient:
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rsC ¼ p a

p
:

We use Algorithm 5.1. Since we display multiple recommendations, we calcu-

late the conditional probabilities pa
ssa

additionally by Algorithm 5.2 and denote their

calculated conditional probabilities by p a . The result is shown in Table 5.3.

The coefficients rsC are graphically represented in Fig. 5.3. The main behavior

looks good: the coefficients are always larger than 1, so displaying recommendations

increases the corresponding transition probabilities, and they are not unrealistically

large. The graph does not follow any special pattern what is expected, too, since its

variations shall be distributed randomly. The only trend we might induce is a

slight increase when kmin reached a number with critical statistical volume between

20 and 30.

Table 5.3 Averaged

transition probabilities

for different kmin

kmin p p a p a rsC

1 0.007 0.011 0.013 1.49

2 0.012 0.017 0.022 1.49

5 0.021 0.028 0.030 1.31

10 0.024 0.029 0.033 1.21

20 0.024 0.034 0.042 1.40

50 0.024 0.042 0.051 1.78

0,00
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0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00
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tio

Update step min(n, m)

rsC

Fig. 5.3 Averaged ratio rsC of conditional to unconditional transition probabilities for different

minimum update steps kmin
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As we see the special treatment of multiple recommendations does not seem to

have great impact. Of course, the relation passa > pa
ssa

holds but the difference is

relatively small.

Now we will compare our both Assumptions 5.1 and 5.2 regarding their prediction

quality of product views (clicks): for each recommendation-relevant product view,

we first recommend the products s‘ having the highest unconditional probabilities

pss0 ¼ mpss0. We use Algorithm 4.1 but applied to all product transitions (instead

recommendations only). This corresponds to Assumption 5.1 and the P-Version.

For Assumption 5.2 of the DP-Version, we secondly recommend the products of

the highest probabilities pass0 according to (5.3). Since we have multiple recommen-

dations in the transaction data, we need the probabilities pa
ss0 instead of just pass0 .

Their computation was done by Algorithm 5.2. In order to estimate the efficiency of

our approach, we will include the unconditional probabilities pss0 calculated by

Algorithm 5.2 in the comparison which we will denote by p
af g

ss0
in order to avoid

confusion with unconditional probabilities pss0 of Assumption 5.1.

The comparison of the prediction methods is again provided for different kmin,

by imposing the requirement that at least one of the recommendations must satisfy

kmin. The number of these valid product views is denoted by ns. For kmin ¼ 0 we

obtain all recommendation-relevant product views, ns ¼ 15,235. With increasing

kmin this number is correspondingly decreasing. Furthermore, we test one and three

recommendations. The result is given in Table 5.4.

As we can see, pass0 exhibits comparable prediction rates to pss0. At the first sight
this may look like a sad result. However, a deeper analysis leads to a more

optimistic interpretation. First we emphasize that our aim is not to make good

predictions but to find good recommendations. This means that even if our model

does not possess the highest prediction quality, as far as it is applicable in principle,

the separation into unconditional and conditional probabilities and their right

treatment provide an increased return. We will see this impressively in the exper-

iment of the next section where the P-Version exhibits a slightly higher prediction

quality than the DP-Version but leads to a much lower return. Having said all this,

of course, we do not question the need of good predictions. They are integral for

good recommendations.

Table 5.4 Prediction qualities for different prediction methods

kmin ns

Rate for pss0 Rate for p
af g
ss0 Rate for pass0

1 rec 3 recs 1 rec 3 recs 1 rec 3 recs

0 15,235 8.72 18.32 7.11 15.01 8.79 19.02

1 13,088 8.90 18.70 7.47 15.61 8.31 17.47

2 10,316 8.82 19.02 7.58 16.51 7.97 17.43

5 6,891 9.26 20.24 7.92 17.21 8.84 18.53

10 4,498 9.20 19.83 8.09 17.23 8.62 17.96

20 1,877 8.95 20.78 9.85 19.82 10.12 20.03

50 172 7.56 23.84 10.47 20.93 10.47 24.42
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Second we observe that with increasing kmin the prediction quality of pass0
improves, and for higher kmin it even outperforms pss0. This is because Assumption

5.2 requires a more complex treatment of the data, including a partition of the

transactions and their different handling for the two probability types. On the

contrary, Assumption 5.1 makes use of all data for unified learning, and hence its

algorithms achieve good prediction results even for small statistical volumes. The

higher the statistical mass, however, algorithms based on Assumption 5.2 increas-

ingly benefit from their structural advantage and finally outperform the simple ones.

Of course, this only applies if Assumption 5.2 is actually realistic! But Table 5.4

seems to confirm that and that’s another good news. Finally, we emphasize that

Assumption 5.1 used in conjunction with simple update schemas like Algorithm

4.1, though quite simple, exhibits a good overall prediction rate that is really hard to

top. We will see this, for example, in Sect. 8.4.4 where we will continue this

discussion. ■
So first experience supports Assumption 5.2. The presented results are also

confirmed by similar tests on other data sets. Nevertheless, it is too early to speak

about a full improvement. Yet our methodology may be subject to another critical

objection: despite all random variations by the softmax policy, our recommenda-

tions are still the result of previous analyses and thus not fully statistically inde-

pendent. This raises the question whether the presented results are indeed based on

the effect of recommendations rather than their analytical selection.

Luckily the effect can be studied by comparison with the control group.

We remember that in the control group no recommendations of the RE algorithm

are displayed. In the transaction log files described in Sect. 4.4 (column

itemsAction), the RDE also stores the products that it would recommend if it

would be allowed to do that. Since recommendation and control sessions are always

mixed in time, these recommendations represent that current one of the RE algo-

rithm. By treating these would-like recommendations in the same way as “real”

recommendations, we can repeat all tests and compare them for both recommen-

dation and control group.

Example 5.3 We again used data from a real-world web shop; this time it was a

fashion shop. We have analyzed data from two days with (in total) about 12,500

different products and 1.6 Mio. transactions. The procedure was exactly like that of

Example 5.2 but now separately for the recommendation and the control group.

Although the recommendations have been less explorative than that of Example 5.2,

we obtained similar results.

Figure 5.4 shows the quotient of conditional and unconditional probabilities for

both groups in the same setting as Fig. 5.3.

Not surprising the control group coefficient rsC_ctrl is about 1, whereas the one of
the recommendation group is higher, between 2 and 3. As in Fig. 5.3 it clearly

increases at kmin ¼ 20 but then only slightly. The recommendation coefficient rsC
is about twice as high as that of Example 5.2 – this also corresponds to reality

(recommendations in the fashion shop are more accepted) and confirmed by click

statistics. ■
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We summarize that first tests indicate the correctness of Assumption 5.2.

However, more advanced instruments, like factorizations presented in Chaps. 8,

9, and 10, are required to increase its effectiveness.

5.4.2 Extension of the Simulation

We first estimate the model of the environment from the transaction data. This

model later will enable us to create an arbitrary number of virtual sessions.

Therefore we subsequently process the transaction data described in Sect. 4.4

and calculate the transition probabilities pass0 using the Algorithm 5.2. For our

environment model we also need the transition rewards rass0 that we estimate by

(3.8) in conjunction with Assumption 4.2. To get results of the form of Table 4.2

which includes baskets and orders, we follow a more granular approach, and for all

transitions s ! s0 we estimate the probabilities that product s0 will be afterward

added to the basket as well as the average number of finally ordered units. This

enables us to simulate additionally the numbers of baskets and orders as well as the

revenue instead the click number only.

In order to generate virtual sessions, we need to know when a session terminates.

Here the absorbing state sA comes to the aid. As soon as we reach the absorbing

state according to the transition probability passA , we terminate the session. There

only remains the question which products to select at the beginning of the sessions.

For this we introduce the generating state sG which can be viewed as counterpart to
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1,00

1,50

2,00

2,50

3,00

0 10 20 30 40 50 60
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rsC
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Fig. 5.4 Average probability ratios rsC and rsC_ctrl for recommendation and control groups
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the absorbing state sA. In some sense it is placed before the beginning of each

session, and the corresponding transition probability psGs specifies the probability

that product s will be selected as first product of the session (Fig. 5.5).

From a technical point of view, the transitions from the generating and into the

absorbing state can be comfortably stored as rules s ! s0 in the same way as for all

other product transitions. Thus, the rules sG ! s represent the transition from the

generating state into state s and the rules s ! sA the transition from state s into the

absorbing state.

The flow diagram of the extended simulation is depicted in Fig. 5.6b, whereas

Fig. 5.6a shows the basic simulation of Sect. 4.4 for comparison.

In the first phase of the extended simulation, we go through the historical

transaction data and estimate the transition probabilities and -rewards which form

the model of the environment. In contrast to the simulation of Sect. 4.4, here we do

not estimate the unconditional probabilities pss0 but the complete pass0 which incorpo-

rate the influence of (multiple) recommendations.

This is very important because it allows us to run the actual simulation in the

second phase under quite realistic conditions. At the beginning of each session, we

calculate the initial (visited) product by virtue of the generating node. This product is

passed to the RE algorithm which learns and at the same time delivers recommen-

dations. Based on the current product and the recommendations, the simulation

environment calculates the next product and decides whether the product will be

added to the basket and ordered at the end of the session. This information (including

the basket event), in turn, is passed to the RE algorithm which learns again and

returns new recommendations, etc. As soon as the transition in the absorbing state

takes place, the session terminates. Before the termination, when indicated products

marked for purchase are ordered, this information is also transferred to the RE

algorithm as tracking event. Then the next session starts. After the specified number

of virtual sessions has been reached, the simulation terminates.

An important aspect of the analysis of the extended simulation is that, unlike as in

the first simulation of Sect. 4.4, the prediction rates do no longer play the central role.

Instead, now the main characteristics are the cumulated values, i.e., the cumulated

reward over all sessions and the cumulated numbers of clicks, baskets, orders, and, last

not least, the cumulated revenue. In the next section we present the results of the

extended simulation for the P- and DP-Version introduced in Sects. 5.1 and 5.2 using

an artificial and a real-life data set, respectively. At this, we will state the values of the

cumulated rewards only, since it is obvious that they are correlated – depending on

their definition – to the shop characteristics like clicks and baskets.

sG sA

a1

s1 s2 s3 sn−1 sn

a2 a3 an−2 an−1

Fig. 5.5 Sequence of products and multiple recommendations as states and actions extended by

generating node sG
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5.4.3 Experimental Results

Example 5.4 We start our virtual simulation with an artificial example before we

turn to a real-life data set.

To do so, we consider a small shop with only 6 products 1–6. We use the

reward 1 for clicks and 1 + pr if the product was added to the basket, where pr is
the price of the product. The product prices of our mini shop are listed in

Table 5.5.

Suppose there have been the following 4 sessions (star indicates that the product

has been added to the basket after it was viewed):

Action-value 
function

Action-value 
function

Model of
environment

Static
model of

environment

Transaction
data

Simulation

RE
algorithm

q(s, a)

pss' , rss'

Transaction
data

Simulation
phase 1

'' , ss
a
ss rp

Simulation
phase 2

RE
algorithm

q(s,a)

'' , ss
a
ss rp

Model of
environment

a b

Fig. 5.6 Diagram of both simulation types of Sects. 4.4 and 5.4.2
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• 1 ! 5* ! 4 ! 3 ! 4* ! 5 ! 4 ! 2* ! 4 ! 2 ! 5 ! 6*

• 6 ! 1* ! 4

• 6 ! 4*

• 5 ! 2 ! 1

We further suppose that during the sessions no recommendations have been

displayed. Then we can easily calculate the unconditional transition probabilities.

They are shown in Fig. 5.7 When we look at the graph Γ(P) induced by these

transition probabilitiesP, we see that it is strongly connected and thus P is irreducible.

We next establish 3 different functions to derive the conditional probabilities

from the unconditional ones:

(a) pa
ssa

¼ ffiffiffiffiffiffiffi
pssa

p
(b) pa

ssa
¼ pssa

(c) pa
ssa

¼ pssa=2

Due to Assumption 5.2 all probabilities pass0 are completely defined.

For this simple example, we now run the simulation using the DP-Version. First

we verify the estimation of the transition probabilities proposed in Sect. 5.2.3.

Table 5.5 Products of test

shop with their prices
Product ID Price

1 12.00

2 10.00

3 4.00

4 140.00

5 15.00

6 4.50

0.33
s2

0.33

0.33 0.33

0.33

0.33

0.33 0.330.250.17
1.0

0.25

0.33

0.25

0.33

0.50.17sG sA

0.25

s1 s3 s5 s6s4

0.5

0.33

Fig. 5.7 Transition probabilities for the test shop
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We separately consider the matrices of the conditional probabilities Pc :¼ p
as0
ss0

� 	
s∈S, s0∈A sð Þ and the unconditional ones Pu :¼ {pss0}s ∈ S,s0 ∈ A(s). Let the symbol

tilde represent the probabilities estimated by the algorithms of Sect. 5.2.3. Then we

use the Frobenius norm of the differences matrices Δα :¼ Pα � ePα, α∈ c; uf g to

estimate the error. The Frobenius norm of a matrix A is defined as

Ak k2F:¼
Xm, n

i¼1, j¼1

aij


 

2, A∈Rm�n: ð5:29Þ

Table 5.6 contains the errors kΔαkF for the function of case a) for one and two

recommendations depending on the number of sessions. We compare the linear

Algorithm 5.2 with the nonlinear Algorithm 5.3.

The result confirms that for one recommendation both algorithms work equally

well. However, for two recommendations the linear algorithm fails completely, and

the nonlinear works only for the conditional probabilities. The reason for this

behavior is that the unconditional probabilities are not estimated correctly.

Since the linear Algorithm 5.2 is based on a joined estimation of conditional and

unconditional probabilities, this also leads to wrong estimates of the conditional

probabilities. In contrast, the nonlinear Algorithms 5.3 and 5.4 both estimate the

conditional probabilities independent on the unconditional ones.

What is the reason for the wrong calculation of unconditional probabilities? We

suffer from a special case here. If the number of recommendations k is equal to the

number of successor states m, the unconditional probabilities cannot change because
the fixed component includes all unconditional probabilitiesΠa ¼ pss0f gs0∈Sa

. More-

over, the same applies to the case where the k ¼ m-1. This follows from the relationX
s0=2Sa

pss0 ¼ 1�
X
s0∈Sa

pss0 , where the right-hand side is fixed, and the fact that the

“free” set SC
a ¼ s0 =2Saf g consists of one element only. Notice also that this problem

is truly a special case and far from reality since usually the number of successor states

available is quite high, so that m � k.
To overcome this problem, we just need to omit the recommendations from time

to time. In our test, each 10th request did not issue recommendations, i.e., then

k ¼ 0 applied. The result is shown in Table 5.7. Now the algorithms work correctly.

Table 5.6 Frobenius error norms for simulations over virtual sessions

#sessions

1 recommendation 2 recommendations

Linear Nonlinear Linear Nonlinear

kΔckF kΔukF kΔckF kΔukF kΔckF kΔukF kΔckF kΔukF
10 1.032 1.642 1.215 1.428 0.579 1.748 1.086 1.950

100 0.505 0.522 0.654 0.781 0.852 1.763 0.240 1.744

1,000 0.233 0.299 0.231 0.256 0.711 1.820 0.102 1.763

10,000 0.057 0.171 0.072 0.093 1.126 1.723 0.040 1.752

100,000 0.021 0.054 0.045 0.088 0.963 1.800 0.020 1.720

1,000,000 0.005 0.012 0.015 0.022 0.579 1.748 0.082 1.679
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Next now compare the P-Version (Sect. 5.1) with the complete DP-Version

(Sect. 5.2) for this example using the cumulated rewards over all sessions. We use

only one recommendation and Algorithm 5.1 in the DP-Version.

Table 5.8 shows the results for 100,000 sessions depending on the three cases

a)–c) and for different discount rates γ.
Case (b) is clear: the conditional probabilities are identical to the unconditional

ones, and so recommendations are without effect. Provided the conditional proba-

bilities are larger than their unconditional counterparts, namely, in case (a), what

means that delivery of recommendations increases the probability of the transition

into the recommended state, both P-Version and DP-Version perform equally well.

Also the chain optimization turns out to be effective.

More complex is case (c). It may look a bit academic, because here on the

contrary the delivery of recommendations decreases their transition probability, but

is important for the understanding of the methods. Here the DP-Version performs

much better than the P-Version. As regards content this is clear because the

P-Version in some sense suffers from a kind of Russell’s paradox: it recommends

products with highestpssarssa , but by recommending them on the contrary, they were

accepted less frequently! The chain optimization makes the situation even worse,

because it calculates the expected rewards more accurately, and in doing so it

further worsens the recommendations! All this is certainly rooted in the fact that for

case c) Assumption 5.1 concerning the P-Version is not only simply violated but

turned into its complete opposite. At the same time we see that the DP-Version

handles the problem correctly.

Table 5.7 Frobenius error norms for simulations over virtual sessions with sometimes

recommendations left

#sessions

2 recommendations

Linear Nonlinear

kΔckF kΔukF kΔckF kΔukF
10 1.458 1.044 1.095 1.382

100 1.073 0.667 0.189 0.616

1,000 0.508 0.240 0.051 0.151

10,000 0.172 0.102 0.029 0.069

100,000 0.041 0.016 0.004 0.017

1,000,000 0.006 0.001 0.002 0.086

Table 5.8 Cumulated rewards for P- and DP-Versions for simulations over virtual sessions

γ

pa
ssa

¼ ffiffiffiffiffiffiffi
pssa

p
pa
ssa

¼ pssa pa
ssa

¼ pssa=2

P DP P DP P DP

0.0 17,258,161 18,439,767 8,671,018 8,671,018 5,909,776 7,591,168

0.5 25,511,885 25,348,836 8,671,018 8,671,018 4,485,351 8,937,920

1.0 23,418,997 25,710,600 8,671,018 8,671,018 4,853,128 8,957,431

5.4 Experimental Results 89



In reality the connection between conditional and unconditional probabilities is,

of course, more complex and constitutes a qualitative mixture of all three cases

a)–c). Fortunately, the case a), where the conditional probability is higher than the

unconditional one, dominates as we have also seen in Sect. 5.4.1. This explains why

the P-Version in most practical applications works very well. ■

Example 5.5 Now we return to the data set of Example 5.2 and run a virtual

simulation with 100,000 sessions. We use 3 recommendations and the estimation of

the transition probabilities pass0 was performed by Algorithm 5.3.

We now again compare the P-Version with the DP-Version for different discount

rates. Additionally, we test the combined P-DP-Version with the threshold value

nmin ¼ 50. In all versions, the ADP Algorithm 3.3 was applied, in which the full

calculation of the state-value function in line 9 was provided for each 1,000th session.

Table 5.9 shows the results.

From the results we see that the DP-Version clearly outperforms P-Version. Also

the chain optimization works well, for the DP-Version better than for the P-Version.

In contrast, the results of the P-DP-Version do not indicate a clear improvement

compared to the DP-Version. ■

5.5 Summary

This chapter was mainly devoted to the question of estimating transition probabilities

taking into account the effect of recommendations. It turned out that this is an

extremely complex problem. The central result was a simple empirical assumption

that allows reducing the complexity of the estimation in a way that is suitable to most

practical problems. The discussion of this approach gave a deeper insight into

essential principles of recommendation engines. Based on this assumption we pro-

posed methods to estimate the transition probabilities and provided some first

experimental results. Although the results look promising, more advanced techniques

are highly desirable. This will be the central topic of the next chapters.

Table 5.9 Cumulated rewards for P-, DP-, and P-DP-Versions for simulations over virtual

sessions

γ P-Version DP-Version P-DP-Version (nmin ¼ 50)

0.0 443,005.74 536,764.94 540,197.18

0.5 435,934.75 584,838.17 585,926.50

1.0 450,942.64 608,496.66 601,278.30
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Chapter 6

Up the Down Staircase: Hierarchical

Reinforcement Learning

Abstract We address the question of how hierarchical, or multigrid, methods may

figure in dynamic programming and reinforcement learning for recommendation

engines.

After providing a general introduction, we approach the framework of hierar-

chical methods from both the historical analytical and algebraic viewpoints; we

proceed to devising and justifying approaches to apply hierarchical methods to both

the model-based as well as the model-free case. In regard to the latter, we set out

from the multigrid reinforcement learning algorithms introduced by Ziv in [Ziv04]

and extend these methods to finite-horizon problems.

Back in Chap. 4 we established that reinforcement learning methods usually con-

verge only slowly. The introduction of hierarchical concepts is necessary in order to

solve this problem. Instead of trying to solve the Bellman equation (3.6) directly,

using the GPI method on enormous quantities of states and actions, we must split the

problem into a hierarchy of subtasks and then solve them in succession.

For many years, the development of hierarchical solution methods has been one

of the central fields of research for RL. Here we commonly distinguish between

temporal approaches, that is, the aggregation of actions over a sequence of steps,

and spatial approaches, that is, the aggregation over states. There exist a number of

spatial approaches [AR02, Diet00, MRLG05, PR98, SPS99]. However, they do not

seem to be suitable for our recommendation engine approach.

But state aggregations do. We remember that the Bellman equation can be

regarded as a discrete counterpart of a differential equation. Therefore, it is

evident that the multilevel methods developed in the course of numerical anal-

ysis – which are used especially for differential equations – can be applied to

provide a solution to the Bellman equation. This approach was first developed by

the Israeli information technologist Omer Ziv in his remarkable doctoral thesis

[Ziv04], in which at the same time he proved fundamental convergence state-

ments. We can develop these approaches for recommendation engines further, in

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_6, © Springer International Publishing Switzerland 2013

91

http://dx.doi.org/10.1007/978-3-319-01321-3_4
http://dx.doi.org/10.1007/978-3-319-01321-3_3


particular by using the isomorphism (4.1) between states and actions in REs and

so further extend the concept of the hierarchical splitting of states to actions.

6.1 Introduction

We will approach the problem of hierarchical methods from two sides: firstly from

the historical – analytical – viewpoint, then from the algebraic viewpoint. We

deliberately omit most of the mathematical infrastructure, which in parts is exceed-

ingly complex, and attempt to explain the underlying ideas in an understandable

(and sometimes slightly simplified) fashion.

6.1.1 Analytical Approach

So far we have only ever considered the state-value and action-value functions v(s)
and q(s, a) in tabular form. However, we are dealing with functions, and so in RL we

often have to resort to approximation methods such as linear and polynomial func-

tions or, for instance, neural networks in order to represent them using only a few

coefficients. We therefore start now from the actual functions.

Since most useful function spaces V are infinite dimensional, we will instead

consider finite-dimensional subspaces Vn � V, where n is their dimension. In most

cases this is the central assumption for being able to efficiently find a numerical

solution of the associated operator equation.

We can represent a finite-dimensional function fn ∈ Vn as follows:

f n xð Þ ¼
Xn
i¼1

ciϕi xð Þ, ð6:1Þ

where ϕi are the basis functions and ci are their coefficients. By inserting the

proposition (6.1) into the operator equation, for instance, the Bellman equation

(3.7), we can reduce the determination of the function f ∈ V to the determination of

the coefficients ci of our approximated function fn ∈ Vn. (We are omitting now

subtleties such as the use of test functions in variation formulations.)

Now as a rule there are several bases for a function space Vn. Let us consider in

addition to the basis Φn ¼ [ϕ1, ϕ2, . . ., ϕn] another basis Ψn ¼ [ψ1, ψ2, . . ., ψn]

in Vn. Then every function fn ∈ Vn also over the basis Ψn can be represented by

coefficients di:

f n xð Þ ¼
Xn
i¼1

ciϕi xð Þ ¼
Xn
i¼1

diψ i xð Þ:
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The matrix Tij

��di ¼
Xn
j¼1

Tijcj thereby defines the basis transformation of Φn into

Ψn and its inverse T�1
ij the basis transformation from Ψn into Φn. Now we can state

one of the most fundamental findings of numerical analysis during the 1990s:

Basis principle: The selection of the correct basis is of central importance to

the solution of many tasks in numerical analysis. A basis can also be selected

virtually by transforming a problem into the dual basis, solving it there (at least

approximately) and transforming it back again.

In a word, you have to have the correct basis! But there is also a body of opinion

that states that the critical point is the correct selection of the function space by

which the functions are specified. What role does the basis then play? The reality in

theory and practice teaches us however that different tasks can be solved in

different bases with greater or lesser efficiency. And there’s more: In most cases

the function space is already specified by the practical requirements. The basis is

thus central.

In some cases the operator equation is formulated in a suitable basis from the

start. This applies in particular if the formulation in the basis is efficient (e.g., in the

case of sparse grids described below). Most cases however are processed using a

dual basis: the problem is formulated in the basisΦn that is the most efficient for the

formulation and is solved in the basis Ψn that is the most efficient for the solution.

The idea of changing the basis is illustrated in Fig. 6.1.

In this connection we should also mention that the idea of basis transformation is

extraordinarily powerful and in a general sense goes well beyond approximation

theory and even beyond mathematics. So, for instance, the transfer of data to a data

warehouse can also be interpreted (in a generalized way) as a basis transformation.

While the data in the operative systems is in most cases held in relational form, it is

transferred to a data warehouse by ETL processes, where it is stored in

multidimensional form. The data is thus in principle the same, but while in the

relational form of the operative systems it is better suited to updating and extension,

the multidimensional form in the data warehouse is better suited to analysis.

Problem in basis Solution in basis

−1Basis transformation Tij

Basis transformation TijFig. 6.1 Using the dual

basis over basis

transformation
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In practice of approximation theory, two types of bases are of special impor-

tance: the nodal basis and the multi-scale basis. The nodal basis has a local support

and is easy to use in practice. It can well approximate jumping functions (“well”

means it requires few coefficients), but poorly however smooth functions. An

example of a nodal basis in the one-dimensional case is shown in Fig. 6.2a for

the linear case, where this basis is also called the Courant hat function. In its

assigned node this takes the value 1 and declines linearly to the two adjacent

nodes. Apart from this it is constantly 0. The Courant hat function can easily be

calculated and is often used in finite element method (FEM) approaches.

The multi-scale basis has in most cases a global support and employs basis

functions of different “frequencies.” It is usually less easy to use. In contrast to the

nodal bases, multi-scale bases well approximate smooth functions but poorly

however jumping functions. A classic example is the Fourier basis. An example

of a multi-scale basis in the same linear function space as in Fig. 6.2a is shown in

Fig. 6.2b. This type of basis is also called a multilevel basis, since its nodes are

distributed hierarchically in different levels. In the example, the basis function

nodes ψ1, ψ3, and ψ5 form the coarse grid and are called coarse grid functions. The

basis function nodes ψ2 and ψ4 form the fine grid and are called fine grid functions

(in our example they correspond to the basis functions ϕ2 and ϕ4 of the nodal basis).

Of course also more than two levels can be used. (Note: In contrast to the Fourier

basis, in the multilevel basis the support of the functions is global only to a certain

degree, and in fact the multilevel basis considered here exhibits poorer approxima-

tion properties for smooth functions than does the Fourier basis. We use it however

in the interests of a better illustration, since its function space is effectively identical

to that of the nodal basis under consideration.)

5φ4φ3φ2φ1φ

5ψ4ψ3ψ2ψ1ψ

xmin

xmin

xmax

xmax

a

b

Fig. 6.2 Nodal basis (a) and multilevel basis (b) at the interval [xmin, xmax]. For the nodal basis

the function ϕ2 is shown in bold; for the multilevel basis the function ψ3 is in bold
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In summary one can say, in the language of signal processing, that nodal bases

localize well in time and multi-scales bases localize well in frequency. Now we

want to combine the two approaches – nodal basis and multi-scales basis. (We will

come to this later.) The Heisenberg uncertainty principle applies here: the product

of time and frequency resolutions is always greater than a natural constant. Using

Δt as the time interval and Δf as the frequency interval, we have:

Δ t � Δ f >
π

4
: ð6:2Þ

If the time resolution increases, of necessity the frequency resolution decreases,

and vice versa. This is a fundamental relationship inmulti-scale approximation theory.

In practice, nodal bases are mostly used to formulate problems: for instance, in

signal processing, sounds (1D) or images (2D) can immediately be recorded

electronically in the nodal basis. Nodal bases are also preferred for solution of

differential equations in the field of FEM, because of their flexibility for modeling.

In practice however most of the cases we are dealing with are for the most part

smooth functions (speech in signal processing, images in image processing, defor-

mations or flows in differential equations, models in data mining, etc.). In most

cases these can be better approximated in a multi-scale basis.

The result of this is to use the most efficient method as shown in Fig. 6.1.

The problem is formulated in a nodal basis Φn, then a basis transformation is

applied to convert the function (or the error) into a multi-scale basis Ψn; the

problem is solved there and by means of the inverse basis transformation converted

back into the nodal basis Φn.

Examples 6.1 We now give a few examples of the use of basis transformations into

multi-scale bases:

• Data compression: The signals (sounds, images, etc.) are converted by basis

transformations such as Fourier or wavelet transformation (called encoding) into

the multi-scale basis. There they can be represented efficiently, that is, with few

coefficients di and thus efficiently stored and transmitted. As soon as they are

required again, the inverse basis transformation (decoding) is performed, and the

signals are once again available in the practical nodal basis.

• Signal processing: Process as described in data compression. In addition the

signals can be better analyzed and smoothed in the multi-scale basis. For

instance, for smoothing, the coefficients di of the high-frequency basis functions
can simply be set to 0.

• Solution of differential and integral equations: The operator equation is formu-

lated in the nodal basis, after which a basis transformation is applied to convert it

to the multi-scale basis. For most important differential and integral equations,

it can be shown that the solution by means of iteration methods in the space

of good multi-scale bases is asymptotically optimal. After the efficient solution

in the space of the multi-scale basis, the solution is transformed back to the

nodal basis. ■
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Let us remain a little longer with the last case of the efficient solution of

differential equations and go into a little more detail, since this will help us for

the Bellman equation.

Let us consider the original approach, the multigrid method. It was initially

developed by the Soviet mathematicians Fedorenko [Fed64] and Bakhvalov

[Bakh66], and main contributions are made by Achi Brandt [Bra77] and Wolfgang

Hackbusch [Ha85].

After the discretization of the differential equation has been performed, the FEM

approach leads via nodal bases to the solution of the equation system

Kx ¼ f , ð6:3Þ
where K is what we call the stiffness matrix, f is the load vector, and x is the solution
vector for our coefficients ci in the nodal basis. Let IT be a simple iteration method

like Richardson or Gauss-Seidel. For the solution of (6.3), it requires a lot of

iterations and is therefore very slow.

Then the solution approach of multigrid is as follows: at every iteration step i,we
start with the current solution vector xi, perform some iteration steps ν1 with the

simple iteration method IT, and obtain the new approximation xif (relaxation). Now

it can be shown that in the new approximation xif , the high-frequency components of

the error are significantly reduced, but the low-frequency components hardly at all.

Therefore, we calculate the residuum:

y if ¼ Kxif � f

and project it onto the coarse grid using what we call restrictor I
g
f : yig ¼ I

g
f y

i
f . Now

we solve the equation system for the coarse grid:

Kgw
i
g ¼ y ig,

where Kg is the coarse grid matrix. The coarse grid matrix can be calculated either

by directly discretizing (6.3) on the coarse grid or by application of the restrictor Ig
f

and interpolator Ig
f as a Galerkin operator

Kg ¼ I
g
f KI

f
g :

We project the calculated correction vector wi
g by use of the interpolator Ig

f back

again on to the fine grid wi
f ¼ Ig

fwi
g to obtain the new approximation:

x̂ iþ1 ¼ x if þ wi
f :

Using x̂ iþ1 as start vector, we again run some iteration steps ν2 by our simple

iteration method IT and obtain the new iterate xiþ1. After this the iteration starts all

over again.

Instead of using only two grids, we can recursively repeat the whole method

over several grids – that is, perform a multigrid method. The procedure for four
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levels is shown schematically in Fig. 6.3. We are running up the down staircase,

which is also the title of this chapter in acknowledgment of the well-known

American film.

The multigrid method we discussed is summarized in Algorithm 6.1. At this, the

simple iteration method IT is called with the current start vector and the right-hand

side as arguments, that is,

ex :¼ IT ex, yð Þ

approximately calculates K�1y, where ex is the start vector, and assigns the result

to ex.
Notice that the terms “restrictor” and “interpolator” for the inter-level operators

Igf and Ig
f are rather unusual in multilevel approximation theory. In general, we speak

about restriction and interpolation (or prolongation). Most important terms are

restriction operator, interpolation operator (or prolongator), restriction matrix,
and interpolation matrix. However, to keep the notation short, we will stick to

restrictor and interpolator.

Algorithm 6.1: Multigrid V-cycle

Input: coefficient matrix K∈Rn�n, right-hand side f ∈Rn, interpolators Illþ1,

restrictors Ilþ1
l for all levels l ¼ 0, . . ., lmax � 1, number of pre-smoothing steps

ν1 and post-smoothing steps ν2, initial guess x0∈Rn

Output: approximate solution ex∈Rn von (6.3)

1: procedure VCYCLE(yl,l )
2: for k ¼ 1, . . ., ν1 do
3: xl :¼ IT(xl, Klxl � yl) ⊲ pre-smoothing

4: end for

5: yl+1 :¼ Ilþ1
l (Klxl � yl) ⊲ computing the residual

6: if l + 1 < lmax then

(continued)

Solve Solve

Relax Relax Relax

Restrict

Restrict

Restrict

Restrict

Restrict

Restrict
Interpol.

Interpol.

Interpol.

Interpol.

Interpol.

Interpol.

l = 0

l = 1

l = 2

l = 3

Fig. 6.3 Multigrid method (V cycle) for four levels by two iteration steps
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Algorithm 6.1: (continued)

7: xl+1 :¼ VCYCLE(yl+1,l ) ⊲ recursive calls at coarser grid

8: else

9: xl+1 :¼ (Kl+1)� 1yl+1 ⊲ direct solver on the coarsest grid

10: end if

11: xl :¼ xl + Illþ1x
l+1 ⊲ coarse grid correction

12: for k ¼ 1, . . ., ν2 do
13: xl :¼ IT(xl, Klxl � yl) ⊲ post-smoothing

14: end for

15: return xl

16: end procedure

17: return VCYCLE( f,0) ⊲ initial call

We do not wish here to explore the complicated refinements and numerous

variants of the multigrid approach, much less the mathematical proof of its opti-

mality. What is critical is the fundamental idea:

Multigrid approach: If for an operator equation the high-frequency error

components can be quickly reduced by classic iteration methods, the use of

the multigrid methods in the concrete and multi-scale methods in general leads

to the efficient solution of the operator equation. This applies particularly to

wide classes of differential and integral equations.

Now the multigrid approach is not a basis transformation (since the multigrid

hierarchy, which represents a generating system, is not unique in relation to the

coefficient splitting and thus is not a basis), but it is possible to find multi-scale

bases which work equally well. For this, what we call wavelets play a central role.

Wavelets have a long history; modern wavelet theory is largely based on Stéphane

Mallat multiresolution analysis [Ma99] and the work of Ingrid Daubechies

[Dau92].

Wavelets are a combination of nodal and global multi-scale bases: they use

multiple levels, but always a quasi-local support. Themultilevel basis in Fig. 6.2b is
essentially a wavelet basis (more precisely, a bi-orthogonal wavelet basis), although

classic wavelets are orthogonalized and hence more complicated.

Although the uncertainty principle (6.2) still applies for wavelets of course, in

many respects they constitute an optimal compromise between a nodal and global

multi-scale basis: they are asymptotically optimal for the smoothing and compres-

sion of smooth signals and for solving differential and integral equations. In

addition, using special anisotropic grids which we call sparse grids, it is possible
for the first time to approximate high-dimensional smooth functions efficiently. By

this means, for instance, differential equations in a 20-dimensional space can be

solved (Fig. 6.4).
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We will describe sparse grids in detail in Chap. 7 and summarize once again the

advantages of wavelets. Wavelets are (asymptotically) optimal:

• For the signal processing and compression of smooth signals

• For the solution of the central classes of differential and integral equations

• For the approximation of multidimensional smooth functions

In a certain sense they represent the optimal compromise between particles

(nodal basis) and waves (multi-scale basis): by this means for the first time we

can optimally solve multidimensional operator equations and optimally transmit,

smooth, and analyze their solution functions. Speaking philosophically, the revo-

lutionary wave-particle dualism of quantum physics (Chap. 1) has its approxima-

tion theory counterpart here. Therefore, multi-scale bases and wavelets represent

one of the hottest research topics in numerical analysis. For that reason we want to

use this groundbreaking approach for RL too.

6.1.2 Algebraic Approach

After so much euphoria on the topic of hierarchical bases and wavelets, we now

encounter the first problems. In the case of the recommendation engine, in accor-

dance with the modeling in Chap. 4, our states and actions are inherently discrete.

Therefore, we cannot directly change over to a continuous state-value and action-

value function v(s) and q(s, a). We know however that the Bellman equation (3.6) is

the discrete counterpart to the Hamilton-Jacobi-Bellman differential equation. The

question then arises of whether despite this the multilevel approach is useful here.

The answer is provided by access via algebraic multigrid methods (AMG).

These constitute the algebraic counterpart to the analytical multigrid method

Fig. 6.4 (a) Sparse grid and function in 2D, (b) sparse grid in 3D [Zu00]
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introduced above. It was initiated in 1982 by Achi Brandt, Steve McCormick, and

John Ruge [BMR82] and especially improved by Stüben [TOS01].

The historical starting point was the recognition that FEM equations in technical

practice are often solved for objects with complex structures (house roofs, cars,

airplanes, etc.). Thus, it is difficult to define a hierarchy on the FEM grids. Now

however it has been established, in particular for discretized differential equations

(6.3) under consideration of their eigenvalue properties of the stiffness matrix K,
that algebraic smooth error vectors arise. That means that while local errors are

quickly reduced by iteration methods, the smooth error components reduce only

relatively slowly. However, according to our multigrid approach, multilevel

methods are outstandingly suitable for solution of these problems.

In contrast to the analytical multigrid, the proofs of the convergence speed are

often incomplete in the algebraic case. In practice however AMG has proven itself

very powerful in most cases.

In what follows, we shall provide a brief, but mathematically sound introduction

to algebraic multigrid methods. To this end, we need to stipulate an algebraic notion

of a grid and specify what is meant by an algebraically smooth error vector.

Consider a system of linear equations of the form

Ax ¼ b, ð6:4Þ

where A is a non-singular real N�N-matrix and b is a real vector of length n, and let
(M, N) be a splitting of A, that is, A ¼ M–N and M is non-singular. It can easily be

verified that the sequence of iterates generated by the update rule

x :¼ xþM�1 b� Axð Þ: ð6:5Þ

converges to the solution of (6.4) for all initial guesses if and only if the spectral
radius, that is, the largest modulus of the eigenvalues, of the iteration matrix

S :¼ M�1N is strictly smaller than 1. Moreover, the spectral radius of S coincides

with the asymptotic rate of convergence (with respect to any norm).

Hence, if the spectral radius of S is close to 1, the method will exhibit slow

convergence. In the above introduced setting where (6.4) is a finite differences

discretization of a Poissonian boundary value problem, it holds that the spectral

radius of the discretized system converges to 1 as the number of grid points

increases. Hence, both the cost of one iteration and the number of iterations required

to achieve a prescribed accuracy growwith the number of grid points. Expressing the

error in terms of a basis of eigenvectors of the iteration matrix, one observes that

the coefficients converge to 0 at an asymptotic rate given by the magnitude of

the corresponding eigenvalue. In the PDE setting, this is the algebraic explanation

for slow convergence of smooth errors. In the case where A is a discretization of a

Laplacian differential operator, eigenvectors of the iterationmatrix corresponding to

eigenvalues close to 1 are geometrically smooth, whereas those corresponding to

small eigenvalues are oscillatory. In a purely algebraic setting where there is no

underlying differential equation, we retain this geometric intuition as a metaphor
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and refer to error vectors that are dominated by contributions in directions of

eigenvectors of the iteration matrix that correspond to small-magnitude eigenvalues

as (algebraically) smooth. Similarly to the PDE setting, we would like to eliminate

these smooth error components by means of a correction step on an algebraic coarse

grid, the notion of which shall be specified subsequently.

In compliance with the notation introduced in foregoing chapters, we shall

denote the set of the first n natural numbers by n. Each element of this set is an

index corresponding to an entry in of a vector of length n. With the graph-theoretic

framework introduced in Sect. 3.9.2 in mind, we also refer to such an index as a

node. So, a reasonable approach to mimicking the multi-scale framework in the

continuous setting consists in considering a set of nodes, that is, a subset of n, as an
(algebraic) grid. The fine grid, then, is simply the set n itself, and a coarse grid is a

suitably chosen subset m of n such that the number m of nodes therein is consid-

erably smaller than n. Given a coarse grid m, we construct, by means of a method

yet to be specified, a restriction operator enabling to restrict a given residual

r :¼ b� Ax

to the coarse grid and an interpolation operator allowing us to prolong the coarse

grid correction to the fine grid. If we denote these operators by R and L, respec-
tively, the algebraic version of the coarse grid correction step in the V-cycle

(Algorithm 6.1) becomes

x :¼ xþ Lex,

where ex is the solution of the coarse grid equation

RALex ¼ Rr: ð6:6Þ
Combining the above equations, summarize the coarse grid correction step in a

single assignment:

x :¼ xþ L RALð Þ�1R b� Axð Þ: ð6:7Þ
To provide some evidence for the soundness of the approach, we shall, for now,

assume that A be symmetric and positive definite and R ¼ LT. As it turns out, this
case is easy to handle mathematically. The crucial fact is that a symmetric positive

definite matrix induces the so-called energetic inner product h�, �iA given by

x; yh iA :¼ xTAy:

The catch consists in carrying out the error analysis in terms of the thereby

induced norm

xk kA :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x; xh iA

q
:
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Let e :¼ x � A�1b denote the error vector of the current iterate before the coarse
grid correction. Equation (6.7) reveals that the error vector immediately after the

coarse grid correction is given by

e
0 ¼ I � L LTAL

� ��1
RA

� �
e:

But I � L(LTAL)�1RA) is the orthogonal projector along the range of L in terms

of the energetic inner product. Hence, the following relation holds:

e
0�� ��

A
¼ min

z
e� Lzk kA, ð6:8Þ

that is, the coarse grid correction is the best approximation to the smooth error

vector in terms of the energetic inner product. In particular, this implies that

e
0�� ��

A
� ek kA,

that is, the coarse grid correction can never increase the error, no matter which

coarse grid and interpolation operator have been chosen. Furthermore, Eq. (6.8)

gives a decisive hint as to how to establish the prolongation operator: to eliminate

smooth error components, the range of L should be a good approximation to the

space spanned by smooth eigenvectors of the iteration matrix S. In the geometric

setting with a regular grid, this may be achieved by coarsening the grid and using,

for example, piecewise linear interpolation.

In the algebraic setting, however, there remains the question of the construction

of a suitable grid hierarchy and corresponding inter-level operators. Interestingly,

by means of what we call coarsening, an interpolator can be extracted automatically

from the Eq. (6.3) (and from this by the inverse the restrictor and by the Galerkin

operator the stiffness matrix on the coarse grid). This might again sound like Baron

Münchhausen, but we do exactly the same thing when solving most operator

equations: their structure is analyzed in the preprocessing and the best solution

method derived from it.

Apart from this, it is also possible to establish a grid hierarchy and inter-level

operators intellectually by exploiting certain structural properties arising from the

underlying model. We shall do so to devise AMG schemes dedicated to RL in the

next section.

Sadly enough, the coefficient matrices arising from RL for recommendation

matrices are typically not symmetric, let alone positive definite. As it lacks a notion

of an energetic inner product, the nonsymmetric case defies amathematical analysis as

profound and simple as the above-outlined. Moreover, eigenvalues of nonsymmetric

iterationmatricesmay be complex, there need not be a basis of eigenvectors, and, even

if, this basis is generally not orthogonal in terms of any sensible inner product.

Nevertheless, if we can guarantee that the matrix of the coarse Eq. (6.6) be

non-singular, the AMG scheme is at least well defined. Moreover, it is supported by

numerical evidence, and, as we shall see in the next section, results on convergence

rates, though not as neat as those for the symmetric case, may be obtained.
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A step toward understanding convergence properties of the method in the

nonsymmetric case is the insight that the operator (I � L(RTAL)�1RA) transforming

the error vector before to that after the coarse grid projection, that is,

e
0 ¼ I � L RTAL

� ��1
RA

� �
e,

though not orthogonal in general, is always a projector (i.e., its square equals itself)

along the range of the interpolation operator. Moreover, it can be shown that there is

always an inner product in which the correction operator is an orthogonal projector

(Proposition 3.6.2 in [Pap10]). The iteration matrices corresponding to standard

splittings, however, are no contractions with respect to such an inner product in

general. Hence, it is in some cases easier to analyze the asymptotic convergence

rate of applying the V-cycle procedure in an iterative fashion.

For the sake of completeness, we should mention that it is possible to circumvent

the nonsymmetric case by applying an AMG procedure to the equivalent system

ATAx ¼ ATb,

which has a symmetric and positive definite coefficient matrix if A is non-singular.

This approach, however, brings along difficulties of its own. First, the condition of the

symmetrized matrix ATA is square of that of A, which renders the solution consider-
ably more sensitive to perturbations in the data. Furthermore, many structural

features of A, such as sparsity, are not inherited by the symmetrized system. There-

fore, the symmetrized approach turns out to be unsatisfactory in most situations.

With this we come to the last point of this introduction to hierarchical methods for

acceleration of convergence: multilevel splitting can be used in different ways:

directly, as multigrid or as preconditioners, additively and multiplicatively, etc. It

is beyond the scope of this study to present them all individually. We refer here in

particular to the Abstract Schwarz Theory [Os94], which gives unified access via

basis transformations to virtually all multilevel methods – including sparse grids. In

the next sections we will concentrate primarily on the algebraic construction of the

grid hierarchy, from which a wide variety of hierarchical approaches can be derived.

6.2 Multilevel Methods for Reinforcement Learning

We now come to the application of multilevel methods for RL. We consider the

Bellman equation in the form (3.15). Let us now define (leaving out the policy

notation)

A ¼ I � γPπ ð6:9Þ
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b ¼ rπ ð6:10Þ

so that Eq. (3.15) takes the standard form (6.4):

Av ¼ b:

Now Ziv investigated the use of classic iteration methods such as the Richardson

method for the solution of (6.4) with the operator (6.9) and the right-hand side

(6.10). Using the eigenvalue properties of the transition probability matrix Pπ, it

was established by this means that algebraic smooth error vectors do arise. As was

mentioned at the start, multilevel methods are outstandingly suitable for the solu-

tion of these problems. Of course everything we have described carries over to the

case of action-value functions (3.17).

Furthermore. in [Ziv04] and [Pap10], the use of multilevel methods is investi-

gated not only for the problems of dynamic programming (i.e., model based) but

also for model-free methods, in particular for temporal-difference learning. For the

latter, two multilevel methods are proposed, the first a multiplicative variant and the

second an additive variant. The multiplicative variant is less convincing, and it

cannot be fully proven to converge. In the following we will investigate the

multigrid method for the model-based case and then move to Ziv’s additive

preconditioner for the model-free case.

6.2.1 Interpolation and Restriction Based on State
Aggregation

We consider a hierarchy with the levels 0, . . ., L, where 0 is the finest grid which

represents the current state values from S and L the coarsest grid. An interpolator

Illþ1 from level lþ1 to level l shall be given. For the restriction Ilþ1
l of level lþ1 to

the level l in general, the transpose or pseudo-inverse of Illþ1 is used.

In [Ziv04] and [Pap10] the construction of the interpolator Illþ1 was considered

on an algebraic basis in the course of the algebraic multigrid. In particular the state
aggregation was considered according to [BC89] that we will also apply. For this

purpose the state space S is split into K disjoint groups Gβ, β ¼ 1, . . ., m. The
definition of the interpolator is

I llþ1

� �
iβ
¼ 1, i∈Gβ

0, else

	
ð6:11Þ

and the restrictor is defined as its pseudo-inverse according to Moore-Penrose:

Ilþ1
l ¼ I llþ1

� �T
I llþ1

h i�1

I llþ1

� �T
: ð6:12Þ
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Because of the simple structure of the interpolator (6.11), the Moore-Penrose

pseudo-inverse simplifies to:

Ilþ1
l ¼ Gβ

�� ���1
� �

β∈m
I llþ1

� �T
, ð6:13Þ

that is, it equals to the transpose of the interpolator weighted by the reciprocal

numbers of the states that merge in the corresponding aggregate.

Example 6.2 The state aggregation shall be illustrated by means of a simple

example. For this let us consider an RE which delivers recommendations for just

3 products. We now obtain a level hierarchy with 3 nodes on the fine grid and

2 nodes on the coarse grid (Fig. 6.5).

The states are designated on the fine grid as x and on the coarse grid as y. This

gives us the interpolator I01 and restrictor I10 as follows:

I01y ¼
x1
x2
x3

2
4

3
5 ¼

1

1

0

0

0

1

2
4

3
5 y1

y2


 �
, I10x ¼

y1
y2


 �
¼

1

2

1

2
0

0 0 1

2
4

3
5

x1
x2
x3

2
4

3
5:

Obviously we can rewrite the restrictor I10 in the simple form (6.13):

I10 ¼
1

2

1

2
0

0 0 1

2
4

3
5 ¼

1

2
0

0 1

2
4

3
5 1 1 0

0 0 1


 �
¼ Gβ

�� ���1
� �

β∈ 1;2f g
I01
� �T

: ■

Level 0

Level 1

x1 x2 x3

1y 2y

Fig. 6.5 Interpolation operator for state aggregations. The dashed line would remove the unique-

ness of the assignment and is not permitted
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In [Ziv04] and [Pap10] the specification of the aggregate groups Gβ was

performed using AMG methods in combination with RL-specific extensions.

In contrast to this general algebraic case, in most cases product master data is

available for recommendation engines, including their assignment to categories.

This should be used for the construction of the hierarchies, since it contains

important additional information. Thus, there are two sources for specification of

hierarchies for REs:

1. Product hierarchies such as shop taxonomy or product groups

2. Product attributes such as manufacturer, brand, or color

The use of 1. seems obvious; however, in most cases it requires comprehensive

preprocessing so that the pseudo-inverse (6.12) can be calculated. In the case of 2.,

this is automatically guaranteed, since every product can be assigned only to one

parent state. Notice that only two-grid hierarchies can be constructed from 2., but in

most cases this is sufficient.

6.2.2 The Model-Based Case: AMG

In the following, we shall investigate and discuss the algebraic multigrid method for

solving the Bellman equation (3.15) or (3.17), respectively. The approach was

proposed by Bertsekas and Castanon in [BC89]. Without loss of generality, we

shall hold back on the 2-level method, that is, l ¼ 0 is the fine grid and l ¼ 1 the

coarse grid.

Let L ¼ I01 be the aggregation prolongator according to (6.11). Moreover, let

R be the restriction operator given by

R :¼ LTWL�1
� ��1

LTW, W :¼ diag wð Þ, ð6:14Þ

(of which (6.12) is the special case where W ¼ I), where w∈Rn is (component-

wise) positive and sums to 1. The matrix R is also referred to as theMoore-Penrose
inverse of L with respect to the w-weighted inner product.

We now consider the 2-level-mutligrid procedure according toAlgorithm 6.1with

a single smoothing step, that is, ν1 ¼ ν2 ¼ 1, by means of the Richardson iteration

x :¼ IT x, yð Þ :¼ xþ y� Ax:

As we carry out only one smoothing step and y is taken to be the residualAx� ŷ,
the smoothing simplifies to

x :¼ xþ Ax� ŷð Þ � Ax ¼ x� ŷ :
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Of course, this does no longer hold for multiple smoothing steps. For two

smoothing steps, we would obtain

x :¼ x� ŷð Þ þ Ax� ŷð Þ � A x� ŷð Þ ¼ x� 2ŷ þ Aŷ :

The resulting multigrid method is summarized in Algorithm 6.2. Hereupon, the

upper index 1 has been omitted for the sake of readability.

Algorithm 6.2: Multigrid V-cycle

Input: matrix A, right-hand side b, prolongator L, restrictor R, initial iterate

x :¼ x0∈Rn

Output: approximate solution ex∈Rn of (6.4)

1: procedure VCYCLE( y)
2: x :¼ x � y ⊲ pre-smoothing

3: y1 :¼ R(Ax � y) ⊲ computing the residual

4: x1 :¼ (A1)�1y1 ⊲ direct solver on the coarse grid

5: x :¼ x + Lx1 ⊲ coarse grid correction

6: x :¼ x � y ⊲ post-smoothing

7: return x
8: end procedure

9: return VCYCLE(b) ⊲ initial call

The following rather technical convergence result has been established in

[Pap10].

Theorem 6.1 (Theorem 3.7.1 in [Pap11]) Let

eP∈Rn�n, epij :¼ αq βð Þ
j , i, j∈Gβ

0, else

	
ð6:15Þ

for 0 � α � 1, and

q
βð Þ
j � 0, j∈Gβ,

X
j∈Gβ

q
βð Þ
j ¼ 1, β∈m:

Moreover, we define

A :¼ I � γP,

Q :¼ I � A,

K :¼ I � L RALð Þ�1RA,

ε :¼ P� eP�� ���
1,

ε̂ :¼ αI � RPLk k�1, and

c :¼ min
β, j

q
βð Þ
j :
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Let ε̂ < γ�1 1� αγð Þ . Then the asymptotic convergence rate of Algorithm 6.2
satisfies

ρ KQð Þ � KQk k�1 � 2 1� αγcð Þγ þ γ2

1� αγ
εþ γ2 Ak k�1ε̂

1� γ αþ ε̂ð Þ��1� αγ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:δ

:

If the stronger condition ε < γ�1(1 � αγ) holds, we obtain

δ � γ2 Ak k�1ε

1� γ αþ εð Þ��1� αγ
� � :

Proof Let

eA :¼ I � γeP, eK :¼ I � L ReAL
� ��1

ReA, eQ :¼ I � eA:

In the following, we shall establish an expression for KQ in terms of eK and eQ.

To this end, notice that we have for some B∈Rm�m and δA∈Rn�n,

K ¼ I � L ReAL
� ��1

þ BRA

¼ I � L ReAL
� ��1

RA� LBR|ffl{zffl}
¼: B

A

¼ I � L ReAL
� ��1

ReA � L ReAL
� ��1

RδA� BA

¼ eK �11� αγLRδA� B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}A:
¼: δK

Moreover, we have

KQ ¼ eK eQ|{z}
¼ O

þeKδQþ δKQ

where δQ :¼ Q� eQ, and the identity eK eQ ¼ O follows from the fact that, as an

immediate consequence of the definition of eP, eK is an oblique projector along the

range of eP (cf. Lemma 3.2.7 in [Pap11]). Combining the above expressions, we

obtain

KQ ¼ eKδQ|ffl{zffl}
¼: E 1ð Þ

� LR

1� αγ
δQQ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼: E 2ð Þ

þ BAQ|ffl{zffl}
¼: E 3ð Þ

:
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The remainder of the proof is by bounding the additive terms on the right-hand

side of the above equation separately:

E 1ð Þ�� ���
1 � I � L ReAL

� ��1

ReA
����

����
�

1
δQk k�1

� 1þ Lk k�1 ReAL
� ��1

����
����
�

1
Rk k�1 eA

���
���
�

1

 �
γε

¼ 1þ Ak k�1
1� αγ

0
@

1
Aγε:

Moreover, row stochasticity of eP implies that (cf. Eq. (3.2.4) in [Pap11])

I � γeP�� ���
1 ¼ max

i∈n
1� γepiij j þ γ

X
j∈ n\ i

epij
0
@

1
A

¼ max
i∈n

�
1� γepiij j þ γ 1� epiið Þ�

¼ 1þ γ 1� 2min
i∈n

epii
 �

,

which, by definition of eA, gives rise to

eA
���

���
�

1
¼ max

k∈m
Ink � αγ1 q kð Þ

� �T
����

����
�

1
¼ 1þ 1� 2cð Þαγ

E 1ð Þ�� ���
1� 2 1� αγcð Þ

1� αγ
γε:

As for E(2), we obtain

E 2ð Þ�� ���
1 � LRk k�1

1� αy
δQk k�1 Qk k�1 ¼ 1

1� αγ
γεγ:

Finally, we bound kE(3)k�∞ as follows: the assumption that ε̂ < γ�1 1� αγð Þ
yields

RδALk k�1 � δAk k�1 � γε̂ � 1� αγ ¼ 1

ReAL
� ��1

����
����
�

1

:

Hence, RAL and ReAL satisfy the hypothesis of Theorem 2.7.2 in [GVL96,

pp. 80–86], and we may apply the perturbation provided therein to establish
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Bk k�1 �

κ1 ReAL
� � δAk k�1

ReAL
���

���
�

1

1� κ1 ReAL
� � δAk k�1

ReAL
���

���
�

1

ReAL
� ��1

����
����
�

1

¼

RδALk k�1
ReAL

���
���
�

1

1�
RδALk k�1
ReAL

���
���
�

1

ReAL
� ��1

����
����
�

1

¼ RδALk k�1
ReAL

���
���
�

1
� RδALk k�1

1

1� αγ

¼ RδALk k�1
1� αγ � RδALk k�1

1

1� αγ

� γε̂

1� αγ � γε̂

1

1� αγ
,

where we invoked upon the identity

κ1 ReAL
� �

¼ κ1 1� αγð ÞIð Þ ¼ 1:

Hence, we obtain

E 3ð Þ�� ���
1 � LBRk k�1 Ak k�1 Qk k�1 � γ2ε̂

1� αþ ε̂ð Þγ��1� γ
� � Ak k�1:

If the stronger condition ε < γ�1(1 � αγ) holds, we attain the stronger bound

E 3ð Þ�� ���
1 � γ2ε

1� αþ εð Þγ��1� γ
� � Ak k�1

from essentially the same calculation. □
The message of this result is as follows: the closer the transition probability

matrix is to a block-diagonal matrix composed of rank-1-blocks corresponding to

the classes of the partition, the faster converges the AMG procedure. With regard to

recommendation engines, we may conclude that the method is sensibly applicable

if a major part of the transitions is between products in the same class. Furthermore,

the behavior within the classes should be almost memoryless, that is, the transition

to a product within a class hardly depends on the previous product.
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Example 6.3 For a shop with 9 products (n ¼ 9) and using 3 partitions (β ¼ 3)

with 2, 4, and 3 products, respectively, the matrix eP has the following structure:

eP ¼

a a
b b


 �
0 0

0

c c c c
d d d d
e e e e
f f f f

2
664

3
775 0

0 0

g g g
h h h
i i i

2
4

3
5

2
6666666666664

3
7777777777775

: ■

Obviously, the first assumption is realistic, since, in a typical shop, most

transitions take place within product categories, provided that the latter have been

chosen sensibly. The second assumption, however, is violated in most practical

situations.

An alternative approach with favorable convergence properties in more general

situations is iterative aggregation-disaggregation (IAD). This method is obtained

by replacing the Richardson sweep by a so-called additive algebraic Schwarz

sweep. Having its origins in the field of partial differential equations, the latter is

a domain decomposition-based procedure which can also be applied to systems of

linear equations of the form (6.4). In this context, one speaks of algebraic Schwarz
methods. We shall now provide a brief outline of the algebraic Schwarz sweep

(details may be found in [Pap10]).

For each set in the partition, we restrict the residual and the corresponding

matrix coefficients to the indices therein and add the solution of the thus obtained

system to the corresponding entries of the current iterate. It may easily be verified

that the algebraic Schwarz sweep yields the exact solution in case of a block-

diagonal system. Due to continuity, we may conclude that – if applied in an

iterative fashion – the method exhibits swift convergence if the system is almost

block-diagonal.

From a practical point of view, this complies with the above-described situa-

tion where the major part of the state transitions takes place within the sets of the

partition. Hence, we may expect the method to exhibit rapid convergence in a

larger class of practical situations even without a coarse grid correction. Sadly

enough, practical experience in [Pap10] reveal that even in cases where the

second condition of the above is not satisfied, the aggregation method with a

Richardson step outperforms the IAD method with respect to computation time,

although the number of iterations is larger by 1 up to 2 orders of magnitude. This

is due to the fairly greater computational intensity of the algebraic Schwarz

sweep, which requires the solution of a multitude of smaller systems of linear

equations, whereas the Richardson step consists of only one matrix–vector

multiplication.
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6.2.3 Model-Free Case: TD with Additive Preconditioner

We would now like to deploy the multilevel approach to accelerate the TD

(λ)-method. To this end, we invoke the approach of a so-called preconditioner,

which we shall present in the following.

We consider the inter-level operators Illþ1, I
lþ1
l as described in Sect. 6.2.1.

Moreover, let Iml be the prolongator from level l to level m defined as

I ml ¼ I mm�1I
m�1
m�2 . . . I

l�1
l , ð6:16Þ

and Ill is stipulated to be the identity matrix. Let a preconditioner C�1
t be given by

C�1
t ¼

XL
l¼0

βl, tI
0
l I

l
0: ð6:17Þ

It is summarized in Algorithm 6.3.

Algorithm 6.3: BPX preconditioner (Ziv)

Input: residual y, number of grids L, interpolator Illþ1, restrictor I
lþ1
l , coefficient

vectors βl

Output: new guess x∈Rn

1: procedure BPX( y)
2: x0 :¼ y
3: for k ¼ 1, . . ., L do

4: xl :¼ Ill�1 x
l�1 ⊲ restriction

5: end for

6: for k ¼ 0, . . ., L do

7: xl :¼ βlx
l ⊲ scaling

8: end for

9: for k ¼ L, . . ., 1 do

10: xl�1 :¼ Il�1
l xl ⊲ interpolation

11: end for

12: return x0

13: end procedure

The preconditioner of Ziv (6.17) can be viewed as an algebraic counterpart to the

BPX preconditioner [BPX90] well known in numerical analysis.

Then the preconditioned TD(λ)-method (for simplicity we avoid the iteration

indexes)

w :¼ wþ αtC
�1
t ztdt ð6:18Þ

converges almost surely to the same solution as the TD(λ)-method (3.20).

The proof of convergence is essentially based on the subsequent theorem from

[Ziv04], a further generalization of which has been devised in [Pap10].
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Theorem 6.2 Let the prerequisites for convergence of TD(λ) of Theorem 3.2 be
satisfied. Moreover, let B�1 be a symmetric and positive definite (spd) N�N-matrix.
Then the preconditioned TD(λ)-method

w :¼ wþ αtB
�1ztdt ð6:19Þ

converges as well.

Since C�1
t is an spd N � N-matrix, the hierarchically preconditioned TD(λ)

converges.

The preconditioned TD(λ) algorithm (6.18), however, operates in terms of action

values. Hence, the inter-level operators are needed for state-action pairs (s, a) rather
than for single states. Yet how can we define hierarchies of actions? Since in the

recommendation approach the spaces S and A are isomorphic (4.1), actions may be

treated in the same way as states, and the same inter-level operators may be used

for the former.

While the states in S correspond to products that are endowed with recommen-

dations, the actions A correspond to the recommended products. Thus, similarly to

(6.11), the following definition of the prolongator Î l
lþ1 suggests itself:

Î l
lþ1

� �
ijβγ

¼ 1, i∈Gβ ∧ j∈Hγ ið Þ
0, else:

	
: ð6:20Þ

Here, the aggregations Hγ (i), γ ¼ 1, . . ., mi refer to A(si), that is, all actions
executable in state si. Thus, the prolongation matrix is a block-diagonal matrix,

where the blocks correspond to states and the block values to the actions.

Subsequently, we shall address a modification of the prolongator Î l
lþ1. This

weighted prolongator is defined as follows:

Î
l

lþ1

 �

ijβγ

¼ A sið Þj j A aj
� ��� ��, i∈Gβ ∧ j∈Hγ ið Þ
0, else

	
: ð6:21Þ

Here, |A(si)| denotes the number of all actions in state si, that is, all rules for the
corresponding product, and |A(aj)| the number of actions in the state associated with aj,
that is, the ruleswith the associated product for a conclusion. Thisweighted prolongator

thus prefers rules with “strong” prerequisite or subsequent products, respectively.

In general, one can derive multiple hierarchies from the product specifications,

for example, by means of shop hierarchies, commodity groups, and product attri-

butes. Consequently, a corresponding preconditioner Ĉ �1
i can be derived for each

hierarchy according to (6.17). This gives rise to the question of whether

preconditioners can also be applied in a combined fashion. Indeed, this is possible,

for example, with respect to the preconditioner Ĉ �1
a :

Ĉ �1
a ¼ Ĉ �1

1 þ Ĉ �1
2 þ . . .þ Ĉ �1

n , ð6:22Þ
where n denotes the number of all used hierarchies. Since all of the preconditioners

Ĉ �1
i are spd, so is Ĉ �1

a , and convergence of preconditioned TD(λ) follows from
Theorem 6.2.
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Example 6.4 We consider the state space of Example 6.1 with the corresponding

iterator I01 and restrictor I10. This gives the following preconditioner for the state-

value function:

C�1x ¼
ex1
ex2
ex3

2
4

3
5 ¼

1þ 1

2

1

2
0

1

2
1þ 1

2
0

0 0 1þ 1

2
666664

3
777775

x1
x2
x3

2
4

3
5:

The example of the state aggregations should now be extended to include the

associated actions, where initially all states are permissible as actions in all states.

The result is shown in Fig. 6.6. For ease of reading, the actions are shown as x at

level 0 and y at level 1, where the lower index represents the start nodes and the

upper index the target nodes. For instance, x21 is the recommendation of product

2 for product 1 at level 0.

Note that on the finest grid – that is, the product level – the reflexive relation xii is
practically meaningless, since a product cannot recommend itself. At levels > 0

these actions are meaningful, however, since they are a measure of the strength of

product recommendations within the same group relative to one another.

1
3x

2
3x1

2x

3
1x2

2x
3
2x2

1x

3
3x

Level 0

Level 1

1x 2x 3x

1y 2y

1
1y

2
2y

2
1y

1
2y

1
1x

Fig. 6.6 Interpolation operator for state-action aggregations
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The following interpolation and restriction matrix applies to the example under

consideration:

Î 01ŷ ¼

x11
x21
x31

2
4

3
5

x12
x22
x32

2
4

3
5

x13
x23
x33

2
4

3
5

2
6666666666664

3
7777777777775

¼

1

1

0

0

0

1

2
4

3
5 0

1

1

0

0

0

1

2
4

3
5 0

0

1

1

0

0

0

1

2
4

3
5

2
6666666666664

3
7777777777775

y11
y21


 �

y12
y22


 �

2
664

3
775, Î 10x̂ ¼

y11
y21


 �

y12
y22


 �

2
664

3
775

¼

1

4

1

4
0

0 0
1

2

2
6664

3
7775

1

4

1

4
0

0 0
1

2

2
6664

3
7775 0

0 0

1

2

1

2
0

0 0 1

2
4

3
5

2
66666666664

3
77777777775

x11
x21
x31

2
4

3
5

x12
x22
x32

2
4

3
5

x13
x23
x33

2
4

3
5

2
6666666666664

3
7777777777775

,

where the preconditioner Ĉ �1 is derived as follows:

Ĉ�1x̂ ¼

ex11
ex21
ex31

2
4

3
5

ex12
ex22
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:

For simplicity’s sake all scaling factors βl,t were set to a constant 1. We should

now take a brief look at the method of operation of the preconditioner. Thus, an

update via the action x21 leads to an update of the actions x
2
1 themselves and also x12 in

accordance with:

ex21 ¼ 1þ 1

4

 �
x21, ex12 ¼

1

4
x21:
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This results from the reflexive coarse grid action y11 of the group y1 on itself.

Of course the reflexive update for x21 is especially strong here.

An update via the action x31 leads to an update of the actions x31 themselves

and also x32:

ex31 ¼ 1þ 1

2

 �
x31, ex32 ¼

1

2
x31:

It is the coarse grid action y21 of the group y1 on y2 that is responsible for this. ■
Figure 6.7 illustrates the general logic of the updates using the example of the

action (s0, a0).
An update of the rule (s0, a0) therefore leads not only to the update of the rule

itself but also to the update of all rules in the same state group G of the initial

product s0 into the same action group H of the recommended product a0.
From a technical point of view, there is another positive aspect: when the

preconditioner Ĉ �1 updates an action value for the state-action pair (s, a), even
though for (s, a) still no rule exists, it can be generated automatically. In this way

the hierarchical preconditioner automatically generates new recommendations for

products without recommendations (due to a lack or too little transaction history).

We will also stress the subject into the next section.

6.3 Learning on Category Level

So far we have considered the hierarchical RL only under the aspect of the

acceleration of convergence. However, as we mentioned at the end of the last

section, it can also be used for a further task: raising the recommendation coverage.

1s
0s

a0

a1

a2

a3

2s

4s

3s

(s3 ,a3)

),( 14 as

(s2 , a0)

(s0 , a0)
(s0 , a1)

s0 and associated states: G

a0 and associated
actions: H

Fig. 6.7 Illustration

of the update logic of

the preconditioner Ĉ �1
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Let us start with the information from Ziv [Ziv04]. A matrix Al possesses a

Markov chain (MC) interpretation if it can be written as

Al ¼ Il � γPl ð6:23Þ

where Il is the unit matrix of level l and Pl the matrix of the associated transition

probabilities. Furthermore, we declare that the MC interpretation is retained
under the precondition that Al possesses an MC interpretation and the Galerkin

operator Al+1 ¼ Ilþ1
l AlI

N
lþ1 also possesses an MC interpretation. Providing the MC

interpretation is retained, the coarse grid problem can also be considered as an

MDP on a reduced state space. This permits the policy search at a reduced

resolutionNj¼1.

Now Ziv was able to prove that the state aggregations (6.11) and (6.12) retain the

MC interpretation. The proof can be converted directly to our state-action aggre-

gation (6.20). Alternatively we can also apply the learning simultaneously on the

coarse grid l + 1 and obtain Al+1 directly. In this way everything that is described in

Chaps. 4 and 5 is directly transferred to the category level. In particular we obtain

explicitly in addition to the product rules s ! s0 the associated category rules

cl ! cl
0, which can also be saved in this form.

We can use the category rules to generate recommendations for products for

which there is insufficient statistical mass. This follows the logic of the introduction

of statistical, that is, averaged, characteristics: having convinced ourselves of the

impossibility of obtaining good forecasts for the variable Y, we proceed from the

failed prediction C ! Y (C are the conditions) to the coarser prediction C ! SY
with a statistical characteristic SY. This stems from the natural pragmatic idea of

“predict anything rather than nothing at all,” in the hope that the prediction C ! SY
will prove stable and also in a certain sense useful.

So if we cannot generate stable product rules (or too few of them) s ! s0 for the
product s (for instance, because s is a new product or so far has scarcely been

visited), we move across to its parent category or categories csl and use the strongest
of those rules csl ! c0l. After this we break the recommended categories c0l down
into their products, for instance, by selecting the category top sellers, thereby

obtaining our recommendations s ! s0. Generally the quality of these category

recommendations is lower than of the pure product recommendations, but the

conclusion stated above applies: most of the category recommendations are quite

good, and they permit us to generate recommendations for virtually all long-tail

products.

The use of these hierarchical recommendations together with the hierarchical

preconditioners described above has been supported, for example, by the prudsys

RDE for years and has proved to be very successful both for small web shops

and also for shops that carry a vast range of products. In addition the use of

hierarchical policies can be extended significantly, and this is the subject of current

research [The12].

6.3 Learning on Category Level 117

http://dx.doi.org/10.1007/978-3-319-01321-3_4
http://dx.doi.org/10.1007/978-3-319-01321-3_5


6.4 Summary

As we have seen so far, hierarchical methods are extremely important in many

scientific areas. We have described that especially multilevel methods, which

originate from numerical analysis, are in principle well suited to speed up the

reinforcement learning. However, their application to RL is quite difficult. We

used some specifics of recommendation engines to make the multilevel approach

more applicable in this field. However, more research is required here.

We now come to the outlook for the future. We have the choice between the use

of predefined hierarchies (as in the analytical case) or automatically generated

hierarchies (coarsening, as in the algebraic case). Currently we are working with

predefined hierarchies. Now these are hierarchies such as shop taxonomies or

product groups specified by the shop or category manager and not primarily

intended for the use in hierarchical preconditioners. Thus, they do not prove optimal

for this. (In practice, they are usually subjected to a comprehensive preprocessing.)

However, classic coarsening is also not the best possible method either, since of

course the existing category information should be exploited for the hierarchies. It

is therefore useful to employ a combination of the coarsening procedure, having

regard to the product attributes and hierarchies. This work is in progress.
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Chapter 7

Breaking Dimensions: Adaptive Scoring

with Sparse Grids

Abstract We introduce the concept of a sparse grid and show how this powerful

approach to function space discretization may be employed to tackle high-

dimensional machine learning problems of regression and classification. In partic-

ular, we address the issue of incremental computation of sparse grid regression

coefficients so as to meet the requirements of realtime data mining. Conclusively,

we present experimental results on real-world data sets.

7.1 Introduction

In this chapter, we shall use hierarchical methods as introduced in the previous

chapter to devise a powerful method for scoring – sparse grids. We first demonstrate

how scoring can be used for calculating high-quality recommendations, although

only for a limited number of products. Then we will introduce the sparse grid

method and develop an adaptive sparse grid version. Finally, we present some

numerical results.

We follow the approach of the papers [GG01a, GGT01] which describe sparse

grids for classification. We develop an incremental sparse grid approach, i.e.,

incremental learning from new data points. Although sparse grids are quite

complex, it turns out that extending them for this type of adaptivity is straightfor-

ward. This chapter addresses the mathematical inclined reader and requires solid

knowledge of numerical analysis. Since it is not directly connected to the following

chapters, it can also be skipped.

We start by mentioning that the term “scoring” is very general. Throughout this

chapter we identify scoring with supervised learning which represents the common

scoring domain.

In supervised learning we consider the given set of already classified data

(training set)

S ¼ xi; yið Þ∈Rd �R
� �M

i¼1
,

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_7, © Springer International Publishing Switzerland 2013
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where xi represents the data points in the attribute space and yi the target attribute.
Assume now that these data have been obtained by sampling of an unknown

function f which belongs to some function space V defined over Rd. The sampling

process was disturbed by noise. The aim is now to recover the function f from the

given data as faithfully as possible. We distinguish between classification, where
the target values yi are from a discrete set of classes, e.g., from {�1, +1} for binary

classification, and regression where yi are from a continuous spectrum. In what

follows we mainly focus on classification having in mind that sparse grids can be

used for regression, too [Gar06, Gar11]. In classification the function f is also called
classifier.

Scoring is increasingly used for personalization and may also be applied to

recommendations. An advantage of scoring is that we can include many attributes

characterizing the user behavior in xi. This may be user-centric attributes like age

and gender, transactional attributes like number of clicks or revenue, and many

other attribute types like time, channel, or even weather. The disadvantage of

scoring is the limited number of single attribute values it can handle in general.

This renders a direct application of scoring for recommendations of many products

virtually impossible.

There are different approaches to scoring-based recommendations. The most

simple is to use the recommendations as target attribute, i.e., each recommended

product corresponds to a target class. A more sophisticated approach is to use the

success of the session (revenue or in case of classification indicator of orders in the

session) as target attribute and the recommendation as a special set of control
attributes. Thus, in each recommendation step, we select the control attributes to

maximize f (x). (Note that depending on the function class of the classifier f, this
may result in a complex optimization problem. But this is not the main task of

scoring and hence will not be considered here.)

Example 7.1 Consider a small web shop. Suppose we need to select one of the

three on-site banners at each category and product page. Therefore, the banners

represent the control attribute and thus the recommendations. We further assume

that in each step of the session (product or category page view), a user is charac-

terized by four attributes: age, gender, number of clicks in current session, and how

many products are already in her/his basket. The target attribute is 0 if no order was

placed within the session and 1 if something was ordered.

Table 7.1 shows three sample sessions. In the first step of session A, the user is
considered to be unknown and hence his/her user-specific attributes age and gender

have missing values (represented by character “?”). In the first step, the banner b1
was recommended to his/her. We know from history that he/she has bought nothing

in this session, so the target attribute is 0 in all steps of the session. The second step

is very similar to the first one except that banner b3 was recommended. In the third

step, he/she added a product to his/her basket. In the fourth step, he/she signed in to

the shop and now his/her age and gender are considered to be known.

Session B represents a registered user, who was already recognized at the

beginning of the session, e.g., by a cookie. This user finally placed an order.
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The third session C represents an unknown user who clicked only once and then

left the shop.

Based on such historic data, by means of a classification technique, we now can

construct a classifier f that assigns a target value y to each attribute vector x∈R5

(the four input attributes and the control attribute), i.e., y ¼ f (x). The higher the y,
the higher is the probability that an order will be placed inside the session. Since

the input attributes are fixed, we maximize f in each step with respect to the

control attribute.

To illustrate this procedure, consider a session step of a 56-year-old woman who

has already done 3 clicks and added two products to the basket, i.e., x ¼ (56, f, 3, 2,
xc), where xc represents the value of the control attribute. Let f (x) be 0.6 for xc ¼ b1,
0.34 for xc ¼ b2, and 0.85 for xc ¼ b3. Then we would select banner b3 as

recommendation.

Thus, in each step of the session, we use the current values of the input attributes

and find the optimal value of the control attribute. The corresponding banner is

recommended.

The construction of the classifier, i.e., the learning, is performed either offline on

historic data stored in the form of Table 7.1 or online, after each session terminated

(e.g., by a timeout mechanism). ■
Although Example 7.1 is very simple, it reveals the power of the scoring

approach for recommendations. Unlike basket analysis or collaborative filtering

(which will be studied in the next chapter), it considers the recommendation task as

control problem taking into account the effect of recommendations. As mentioned

before, it also allows to include many different attributes into prediction. Scoring is

used to calculate banner recommendations, special offers during the checkout

process, and even for personalized navigation. Of course, it also bears some

disadvantages: the control-theoretic approach is very limited and so is the ability

to handle large numbers of recommendation items.

There exist many algorithms for classification and regression. Widely used

approaches are nearest neighbor methods, decision tree induction, rule learning,

and memory-based reasoning. There are also classification methods based on

Table 7.1 Example of training set of three banner recommendations for classification

ID attribute Input attributes Control attribute Target attribute

Session Age Gender Clicks Basket Banner Ordered

A ? ? 1 0 b1 0

A ? ? 2 0 b3 0

A ? ? 3 1 b2 0

A 24 f 4 1 b2 0

B 19 m 1 0 b3 1

B 19 m 2 0 b2 1

B 19 m 3 1 b2 1

B 19 m 4 2 b3 1

C ? ? 1 0 b2 0
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adaptive multivariate regression splines, neural networks, support vector machines,

and regularization networks. Interestingly, the latter techniques can be interpreted

in the framework of regularization networks [GJP95]. With these techniques, it is

possible to treat quite high-dimensional problems, but the amount of data is limited

due to complexity reasons. This situation is reversed in many practical applications

such as those of recommendations presented here where the dimension of the

resulting problem is moderate but the amount of data is usually huge. Thus, there

is a strong need for methods which can be applied in this situation as well.

We will see that sparse grids can cope with the complexity of the problem,

at least to some extent. Moreover, sparse grids are perfectly suited for data

adaptivity and show many other advantages. They represent a very modern

approach to scoring.

7.2 The Sparse Grid Approach

Classification of data can be interpreted as traditional scattered data approximation

problem with certain additional regularization terms. In contrast to conventional

scattered data approximation applications, we now encounter quite high-

dimensional spaces. To this end, the approach of regularization networks [GJP95]

gives a good framework. The approach allows a direct description of the most

popular neural networks, and it also allows for an equivalent description of support

vector machines and n-term approximation schemes [EPP00, Gir98].

We start with the scoring problem for a given data set S described at the

beginning of this chapter. This is clearly an ill-posed problem since there are

infinitely many solutions possible. To get a well-posed, uniquely solvable problem,

we have to assume further knowledge on f. To this end, regularization theory

[TA77, Wah90] imposes an additional smoothness constraint on the solution of

the approximation problem, and the regularization network approach considers the

variation problem

min
f ∈ V

R fð Þ

with

R fð Þ ¼ 1

M

XM
i¼1

C f xið Þ, yið Þ þ λΦ fð Þ: ð7:1Þ

Here, C(.,.) denotes an error cost function which measures the interpolation error,

andΦ( f ) is a smoothness functional which must be well defined for f ∈ V. The first
term enforces closeness of f to the data, the second term enforces smoothness of f,
and the regularization parameter λ balances between these two terms. Typical

examples are

122 7 Breaking Dimensions: Adaptive Scoring with Sparse Grids



C x; yð Þ ¼ x� yj j or C x; yð Þ ¼ x� yð Þ2,

and

Φ fð Þ ¼ Pfk k22 with Pf ¼ ∇f or Pf ¼ Δf ,

with∇ denoting the gradient andΔ the Laplace operator. The value λ can be chosen
according to cross-validation techniques or to some other principle. Note that we

find exactly this type of formulation in the case d ¼ 2, 3 in many scattered data

approximation methods (see [ADT95, HL92]), where the regularization term is

usually physically motivated.

Now, we assume that we have a basis of V given by {φj(x)}j¼1
∞ . Let also

the constant function be in the span of the functions φj. We then can express a

function f ∈ V as

f xð Þ ¼
X1
j¼1

αjφj xð Þ

with associated degrees of freedom αj. In the case of a regularization term of the type

Φ fð Þ ¼
X1
j¼1

α2j
λj

where {λj}j¼1
∞ is a decreasing positive sequence, it is easy to show that independent

of the function C, the solution of the variational problem (7.1) has always the form

f xð Þ ¼
XM
j¼1

αjK x; xj
� �

:

Here, K is the symmetric kernel function

K x; yð Þ ¼
X1
j¼1

λjφj xð Þφj yð Þ

which can be interpreted as the kernel of a Reproducing Kernel Hilbert Space
(RKHS). In other words, if certain functions K(x,xj) are used in an approximation

scheme which are centered in the location of the data points xj, then the approxi-

mation solution is a finite series and involves only M terms. Many approximation

schemes like radial basis functions, additive models, several types of neural net-

works, and support vector machines (SVMs) can be derived by a specific choice of

the regularization operator (see [EPP00, GJP93, GJP95]).
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7.2.1 Discretization

We take the ansatz (6.1) of Sect. 6.1.1 (using a slightly different notation) and

restrict the problem to a finite-dimensional subspace VN ∈ V. The function f is then
replaced by

f N xð Þ ¼
XN
j¼1

αjφj xð Þ: ð7:2Þ

Here the ansatz functions {φj}
N
j¼1 should span VN and preferably should form a

basis for VN. The coefficients {αj}Nj¼1 denote the degrees of freedom. Note that the

restriction to a suitably chosen finite-dimensional subspace involves some additional

regularization (regularization by discretization) which depends on the choice of VN.

In the remainder of this chapter, we restrict ourselves to the choice

C f N xið Þ, yið Þ ¼ f N xið Þ � yið Þ2

and

Φ f Nð Þ ¼ Pf Nk k2L2 ð7:3Þ

for some given linear operator P. This way we obtain from the minimization

problem a feasible linear system. We thus have to minimize

R f Nð Þ ¼ 1

M

XM
i¼1

f N xiðð Þ, yiÞ2 þ λ Pf Nk k2L2 , ð7:4Þ

with fN in the finite-dimensional space VN. We plug (7.2) into (7.4) and obtain after

differentiation with respect to αk, k ¼ 1, . . ., N

0 ¼ ∂R f Nð Þ
∂αk

¼ 2

M

XM
i¼1

XN
j¼1

αjφj xið Þ � yi

 !
� φk xið Þ þ 2λ

XN
j¼1

αj Pφj,Pφk

� �
L2
: ð7:5Þ

This is equivalent to k ¼ 1, . . ., N

XN
j¼1

αj Mλ Pφj,Pφk

� �
L2
þ
XM
i¼1

yiφj xið Þ � φk xið Þ
" #

¼
XM
i¼1

yiφk xið Þ: ð7:6Þ

In matrix notation we end up with the linear system

λCþ B � BT
� �

α ¼ By: ð7:7Þ
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Here C is the N � N matrix with the entries Cj,k ¼ M � Pφj,Pφk

� �
L2
,

j, k ¼ 1, . . . ,N, and B is a rectangular N � M matrix with entries Bj,i ¼ φj(xi),

i ¼ 1, . . ., M, j ¼ 1, . . ., N. The vector y contains the data labels yi and has length

M. The unknown vector α contains the degrees of freedom αj and has length N.
Depending on the regularization operator, we obtain different minimization

problems in VN. For example, if we use the gradient Φ f Nð Þ ¼ ∇f Nk k2L2 in the

regularization expression in (7.1), we obtain a Poisson problem with an additional

term which resembles the interpolation problem. The natural boundary conditions

for such a partial differential equation are Neumann conditions. The discretization

(7.2) gives us then the linear system (7.7) where C corresponds to a discrete

Laplacian. To obtain the classifier fN, we now have to solve this system.

7.2.2 Grid-Based Discrete Approximation

Up to now we have not yet been specific what finite-dimensional subspace VN and

what type of basis functions {φj}j¼1
N we want to use. In contrast to conventional

data mining approaches like radial basis approaches or SVMs, which work with

ansatz functions associated to data points, we now use a certain grid in the attribute

space to determine the classifier with the help of these grid points. This is similar to

the numerical treatment of partial differential equations.

For reasons of simplicity, here and in the reminder of this chapter, we restrict

ourselves to the case xi ¼ [0,1]d. This situation can always be reached by

proper rescaling of the data space. A conventional finite element discretization

would now employ an equidistant grid Ωn with mesh size hn ¼ 2�n for each

coordinate direction, where n is the refinement level. In the following we

always use the gradient P ¼ ∇ in the regularization expression (7.3). Let

j denote the multi-index ( j1, . . . , jd) ∈ Nd. We now use piecewise d-linear,
i.e., linear in each dimension, so-called hat functions (see also Fig. 6.2a) as

test and trial functions φn,j(x) on grid Ωn. Each basis function ϕn,j(x) is thereby

1 at grid point j and 0 at all other points of grid Ωn. A finite element method on

grid Ωn now would give

f N xð Þ ¼ð Þf n xð Þ ¼
X2n

j1

. . .
X2n

jd

αn, jϕn, j xð Þ:

And the variational procedure (7.4), (7.5), and (7.6) would result in the discrete

linear system

λCn þ Bn � BT
n

� �
αn ¼ Bny ð7:8Þ

with the discrete (2n + 1)d � (2n + 1)d Laplacian
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Cnð Þj,k ¼ M: ∇ϕn, j,∇ϕn,k

� �
,

j1, kt ¼ 0, . . . , 2n, t ¼ 1, . . . d, the (2n + 1)d � M -matrix

Bnð Þj, i ¼ ϕn, j xð Þ,

jt ¼ 0, . . . 2 lt , t ¼ 1, . . . , d, i ¼ 0, . . . , M, and the unknown vector (αn)j, jt ¼ 0,

. . . , 2n, t ¼ 1, . . . , d. Note that fn lives in the space

Vn :¼ span ϕn, j, jt ¼ 0, . . . , 2d, t ¼ 1, . . . , d
n o

:

The discrete problem (7.8) might in principle be treated by an appropriate solver

like the conjugate gradient method, a multigrid method or some other suitable

efficient iterative method. However, the direct application of a finite element

discretization and the solution of the resulting linear system by an appropriate

solver are clearly not possible for a d-dimensional problem if d is larger than

four. The number of grid points is of the order O(h�d
n ) ¼ O(2nd), and in the best

case, the number of operations is of the same order. Here we encounter the so-called

curse of dimensionality: the complexity of the problem grows exponentially with d.
At least for d > 4 and a reasonable value of n, the arising system cannot be stored

and solved on even the largest parallel computers today.

7.2.3 Sparse Grid Space

However, there is a special discretization technique using so-called sparse grids

which allow to cope with the complexity of the problem, at least to some extent.

This method has been originally developed for the solution of partial differential

equations [GSZ92, Zen91] especially by the group of Christoph Zenger and is now

used successfully also for integral equations, interpolation and approximation,

eigenvalue problems, and integration problems. In the information-based complex-

ity community, it is also known as “hyperbolic cross points,” and the idea can even

be traced back to the Russian mathematician Alexey Smolyak [Smo63]. The

application of sparse grids for classification and regression, described here, is a

result of a long-standing cooperation of the prudsys AG (Michael Thess) with the

University of Bonn (Jochen Garcke and Michael Griebel); see [GGT01].

For a d-dimensional problem, the sparse grid approach employs only

O(h�1
n (log(h�1

n ))d�1) grid points in the discretization process. It can be shown that

an accuracy of O(h2n log(h�1
n )d�1) can be achieved pointwise or with respect to the

L2- or L∞ -norm provided that the solution is sufficiently smooth. Thus, in compar-

ison to conventional full grid methods, which needO(h�d
n ) for an accuracy ofO(h2n),

the sparse grid method can be employed also for high-dimensional problems. The

curse of dimensionality of full grid methods affects sparse grids much less.

126 7 Breaking Dimensions: Adaptive Scoring with Sparse Grids



Now, with the multi-index l ¼ (l1, . . .,ld) ∈ Nd, we consider the family of

standard regular grids

Ωl, l ∈ Nd
� � ð7:9Þ

on Ω with mesh size hl :¼ jl1 ; . . . ; jld
� �

:¼ 2�l1 ; . . . ; 2�ld
� �

. That is, Ωl is equidis-

tant with respect to each coordinate direction, but, in general, has different mesh

sizes in the different coordinate directions. The grid points contained in a gridΩl are

the points

xl, j :¼ xl1, j; . . . ; xld
� � ð7:10Þ

withhl :¼ hl1 ; . . . ; hldð Þ :¼ 2�l1 ; . . . ; 2�ld
� �

. On each gridΩl, we define the space V1

of piecewise d-linear functions

Vl :¼ span ϕ1, j, jt ¼ 0, . . . , 2lt , t ¼ 1, . . . , d
n o

ð7:11Þ

which is spanned by the usual d-dimensional piecewise d-linear hat functions

ϕ1, j xð Þ :¼
Yd
t¼1

ϕlt, jt
xtð Þ: ð7:12Þ

Here, the one-dimensional functions ϕlt, jt
xið Þ with support xlt, jt � hlt , xlt, jt þ hlt

� 	
¼ jt � 1ð Þhlt , jt þ 1ð Þhlt½ � (e.g., restricted to [0,1]) can be created from a unique

one-dimensional mother function ϕ(x)

ϕ xð Þ :¼ 1� xj j x ∈ �� 1, 1 ,½
0 otherwise



ð7:13Þ

by dilatation and translation, i.e.,

ϕlt, jt
xtð Þ :¼ ϕ

xt � jt � hlt
hlt

� �
: ð7:14Þ

In the previous definition and in the following, the multi-index l ∈ Nd indicates

the level of a grid or a space or a function, respectively, whereas the multi-index

j ∈ Nd denotes the location of a given grid point xl,j or of the respective basis

function ϕ1,j(x), respectively.

Now, we can define the difference spaces

W1 ¼ V1=
[d
t¼1

V1�et , ð7:15Þ

where e1 denotes the tth unit vector. To complete this definition, we formally set

V1 ¼ 0 if lt ¼ �1 for at least one t ∈ {1, . . ., d}. In other words, W1 consists of
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the functions in V1 which are not in any V1�et . These hierarchical difference spaces

allow us the definition of a multilevel subspace splitting, i.e., the definition of the

space Vn as a direct sum of subspaces,

Vn :¼
Mn
l1

. . .
Mn
ld

W l1;...;ldð Þ ¼
M
1j j1�n

W1: ð7:16Þ

Here and in the following, let � denote the corresponding element-wise

relation, and let lj j1 :¼ maxl�lt�dlt and |l|1 :¼ ∑ t¼1
d lt denote the discrete L∞-

and the discrete L1 -norm of l, respectively. As it can be easily seen from (7.11)

and (7.15), the introduction of index sets I1,

I1 :¼ j1; . . . ; jdð Þ∈ Nd, jt ¼ 1, . . . , 2lt �1, jt odd, t ¼ 1, . . . , d, if lt > 0,
jt ¼ 0, t ¼ 1, . . . , d, if lt ¼ 0,


 
 

ð7:17Þ

leads to

Wl ¼ span ϕ1, j, j∈ I1

n o
: ð7:18Þ

Therefore, the family of functions

ϕ1, j, j∈ I1

n on

0
ð7:19Þ

is just a hierarchical basis [Fab9, Ys86] of Vn that generalizes the one-dimensional

hierarchical basis of [Fab9] to the d-dimensional case by means of a tensor-product

approach. Note that the support of all basis functions ϕ1,j(x) in (7.18) spanning W1

is mutually disjoint.

Now, any function f ∈ Vn can be splitted accordingly by

f xð Þ ¼
X
1�n

f 1 xð Þ, f 1∈W1 ¼ ϕ1, j xð Þ, and f 1 xð Þ ¼
X
j∈ I1

α1, j:ϕ1, j xð Þ, ð7:20Þ

where α1, j ∈R are the coefficient values of the hierarchical product basis

representation.

It is the hierarchical representation which now allows to consider the following

subspace V
ðsÞ
n of Vn which is obtained by replacing jlj∞ � n by jlj1 � n + d � 1

(now with lt > 0) in (7.16):

V sð Þ
n :¼

M
lj j�nþd�1

W1: ð7:21Þ
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Again, any function f ∈ V
ðsÞ
n can be splitted accordingly by

f sð Þ
n xð Þ

X
lj j1�nþd�1

X
j∈ I1

αl, jϕl, j xð Þ: ð7:22Þ

Definition 7.1 The grids corresponding to the approximation spaces V
ðsÞ
n are called

sparse grids.

Sparse grids have been studied in detail, e.g., in [Bun92, GMZ92, Zen91]. An

example of a sparse grid for the two-dimensional case is given in Fig. 7.1b.

Now, a straightforward calculation shows that the dimension of the sparse grid

space V
ðsÞ
n is of the order O(nd�12n). For the interpolation problem, as well as for the

approximation problem stemming from second-order elliptic PDEs, it was proven

that the sparse grid solution f
ðsÞ
n is almost as accurate as the full grid function fn, i.e.,

the discretization error satisfies

f � f sð Þ
n

�� ��
Lp

¼ O h2n log h�1
n

� �d�1
� �

,

provided that a slightly stronger smoothness requirement on f holds than for the full
grid approach. Here, we need the seminorm

fj j1 :¼ ∂2d
fYd

t¼1
∂x2t

������

������
1

ð7:23Þ

be bounded.

Fig. 7.1 The grids of the subspacesW1 (a) and the corresponding sparse grid (b) for level 4 in two

dimensions
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The idea is now to carry this discretization method and its advantages with

respect to the degrees of freedom over to the minimization problem (7.1).

The minimization procedure (7.4), (7.5), and (7.6) with the discrete function

f
ðsÞ
n in V

ðsÞ
n

f sð Þ
n xð Þ ¼

X
lj j1�nþd�1

X
j∈ I1

α sð Þ
l, j ϕl, j xð Þ:

would result in the discrete system

λC sð Þ
n þ B sð Þ

n : B sð Þ
n

� �T� �
α sð Þ
n ¼ B sð Þ

n y ð7:24Þ

with

C sð Þ
n

� �
1;jð Þ, r;kð Þ

¼ M � ∇ϕn, 1;jð Þ,∇ϕn, r;kð Þ
� �

and B sð Þ
n

� �
1;jð Þ, i

¼ ϕn, 1;jð Þ xið Þ,

jlj1 � n + d � 1, j ∈ I1, jrj1 � n + d � 1. k ∈ Ir, i ¼ 1, . . ., M, and the unknown

vector (αðsÞn )(r,k), jrj1 � n + d � 1, k ∈ Ir. The discrete problem (7.24) might in

principle be treated by an appropriate iterative solver. Note that now the size of the

problem is just of the orderO(nd�12n). Here, the explicit assembly of the matrices C
ðsÞ
n

and B
ðsÞ
n should be avoided. These matrices are more densely populated than the

corresponding full grid matrices, and this would add further terms of complexity.

Instead only the actionon thesematrices onvectors, i.e., amatrix–vectormultiplication,

should be performed in an iterative method like the conjugate gradient method or a

multigridmethod. For example, forC
ðsÞ
n this is possible in a number of operationswhich

is proportional to theunknownonly; see [Bun92].However, the implementationof such

a program is quite cumbersome and difficult. It also should be possible to avoid the

assembly of B
ðsÞ
n and B

ðsÞ
n � (BðsÞ

n )T and to program the respective matrix–vector multi-

plications inO(nd�12n, M) operations. But this is complicated aswell. Furthermore, the

on-the-fly calculation of the action of these matrices scales with M which should be

avoided for largeM.

There also exists another variant of a solver working on the sparse grid, the

so-called combination technique [GSZ92], which makes use of multivariate extrap-

olation. In the following, we apply this method to the minimization problem (7.1).

It is much simpler to use than the Galerkin approach (7.24), it avoids the matrix

assembly problem mentioned above, and it can be parallelized in a natural and

straightforward way.
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7.2.4 The Sparse Grid Combination Technique

For the sparse grid combination technique, we proceed as follows: we discretize

and solve the problem on a certain sequence of grids Ωl with uniform mesh sizes

ht ¼ 2�lt in the tth coordinate direction. These grids may possess different mesh

sizes for different coordinate directions. To this end, we consider all grids Ωl with

l1 þ � � � þ ld ¼ nþ d � 1ð Þ � q, q ¼ 0, . . . , d � 1, lt > 0: ð7:25Þ

In contrast to the definition (7.21), for reasons of efficiency, we now restrict the

level indices to lt > 0. For the two-dimensional case, the grids needed in the

combination formula of level 4 are shown in Fig. 7.2. The finite element approach

with piecewise d-linear test and trial functions φl,j(x) on grid Ωl now would give

f l xð Þ ¼
X2l1

j1

. . .
X2ld

jd

αl, jϕl, j xð Þ

and the variational procedure (7.4), (7.5), and (7.6) would result in the discrete

system

Fig. 7.2 Combination technique for level 4 in two dimensions
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λCl þ Bl � BT
l

� �
αl ¼ Bly ð7:26Þ

with the matrices

Clð Þj,k ¼ M � ∇ϕl, j,∇ϕl,k

� �
and Blð Þj, i ¼ ϕl, j xið Þ,

jt, kt ¼ 0, . . . , 2lt , t ¼ 1, . . . , d, i ¼ 1, . . . ,M, and the unknown vector αlð Þj, jt ¼
0, . . . , 2lt , t ¼ 1, . . . , d. We then solve these problems by a feasible method.

To this end we use here a diagonally preconditioned conjugate gradient algorithm.

But also an appropriate multigrid method with partial semi-coarsening can be

applied. The discrete solutions fl are contained in the spaces Vl (see (7.11))

of piecewise d-linear functions on grid Ωl.

Note that all these problems are substantially reduced in size in comparison to

(7.8). Instead of one problem with the size dim(Vn) ¼ O(h�d
n ) ¼ O(2nd), we now

have to deal with O(dnd�1) problems of size dim(Vl) ¼ O(h�1
n ) ¼ O(2n).

Moreover, all these problems can be solved independently which allows for

a straightforward parallelization on a coarse grain level; see [Gri92]. Also there

is a simple but effective static load balancing strategy available.

Finally, we linearly combine the results fl(x) ¼ ∑jαl,jϕl,j(x) ∈ Vl from the

different grids Ωl as follows:

f cð Þ
n xð Þ :¼

Xd�1

q¼0

�1ð Þq d � 1

q

� � X
lj j1¼nþ d�1ð Þ�q

f 1 xð Þ: ð7:27Þ

The resulting function f
ðcÞ
n lives in the above-defined sparse grid space V

ðsÞ
n (but

now with lt > 0 in (7.21)).

The combination technique can be interpreted as a certain multivariate extrap-

olation method which works on a sparse grid space; for details see [GSZ92]. The

combination solution f
ðcÞ
n is in general not equal to the Galerkin solution f

ðsÞ
n , but its

accuracy is usually of the same order; see [GSZ92]. To this end, a series expansion

of the error is necessary. Its existence was shown for PDE-model problems in

[BGRZ94].

Note that the summation of the discrete functions from different spaces Vl in

(7.27) involves d-linear interpolation which resembles just the transformation to a

representation in the hierarchical basis (7.19). However, we never explicitly assem-

ble the function f
ðcÞ
n but rather keep the solutions fl on the different grids Ωl which

arise in the combination formula. Now, any linear operation F on f
ðcÞ
n can easily be

expressed by means of the combination formula (7.27) acting directly on the

functions fl, i.e.,

F f cð Þ
n

� �
¼
Xd�1

q¼0

�1ð Þd d � 1

d

� � X
lj j¼nþ d�1ð Þ�q

F f lð Þ: ð7:28Þ
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Therefore, if we now want to evaluate a newly given set of data points exif geMi¼1

(the test or evaluation set) by

eyi :¼ f cð Þ
n exið Þ, i ¼ 1, . . . , eM,

we just form the combination of the associated values for fl according to (7.30).

The learning on the training data is summarized in Algorithm 7.1. It consists of

assembling the matrices Cl and Bl for the different grids Ωl and solving the

corresponding discrete systems (7.26). The main results are the coefficient vectors

αl for the grids. In the next section of adaptive learning, we will also need the

matrices Cl and Bl.

Algorithm 7.1: Computation of sparse grid classifier

Input: training data set {(xi,yi)}
M
i¼1, regularization parameter λ

Output: coefficients αl (matrices Cl and Bl)

for q ¼ 0, . . . , d � 1 do

for l1 ¼ 1, . . . , n � q do

for l2 ¼ 1, . . . , n � q � (l1 � 1) do

. . .
for ld�1 ¼ 1, . . . , n � q � (l1 � 1) � . . . � (ld�2 � 1) do

ld ¼ n � q � (l1 � 1) � . . . � (ld�2 � 1) � (ld�1 � 1)

assemble matrices Cl and Bl

solve the linear system (λCl + Bl � BT
l )αl ¼ Bly

end for

. . .
end for

end for

end for

Algorithm 7.2 shows the application of the classifier (represented by the

coefficients αl) to the test data set exif geMi¼1 as described above.

Algorithm 7.2: Evaluation of sparse grid classifier

Input: test data set exif geMi¼1, coefficients αl

Output: set of score values eyif geMi¼1

eyi ¼ 0, i ¼ 1, . . . , eM
for q ¼ 0, . . ., d � 1 do

for l1 ¼ 1, . . ., n � q do

for l2 ¼ 1, . . ., n � q � (l1 � 1) do

. . .

(continued)
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Algorithm 7.2: (continued)

for ld�1 ¼ 1, . . . , n � q � (l1 � 1) � . . . � (ld�2 � 1) do

ld ¼ n � q � (l1 � 1) � . . . � (ld�2 � 1) � (ld�1 � 1)

eyi :¼ eyi þ �1ð Þd d � 1

d

� �
f l exið Þ, i ¼ 1, . . . , eM

end for

. . .
end for

end for

end for

The combination technique is only one of the various methods to solve problems

on sparse grids. Note that there exist also finite difference and Galerkin finite

element approaches which work directly in the hierarchical product basis on the

sparse grid. But the combination technique is conceptually much simpler and easier

to implement. Moreover, it allows to reuse standard solvers for its different sub-

problems and is straightforwardly parallelizable.

7.2.5 Adaptive Sparse Grids

We will now develop an adaptive version of Algorithm 7.1. Note that there are

different types of adaptivity of sparse grids. Here we are interested in data adap-

tivity, i.e., adaptivity with respect to new data points.

We consider the initial data set S ¼ {(xi,yi)}
M
i¼1 and apply Algorithm 7.1 to it. As

a result we obtain the solution coefficients αl of (7.26) as well as the matrices Cl and

Bl. Suppose now that we get new data points Ŝ ¼ xi; yið Þf gM̂i¼1 from the same

distribution. We are looking for an efficient procedure to find α l that solves (7.26)

for all M ¼ M þ M̂ data points of S ¼ S [ Ŝ , and the solution shall be based on αl
and may use Cl and Bl.

We rewrite the system (7.26) as

λMC
0
l þ Bl � BT

l

� �
αl ¼ Bly ð7:29Þ

with the matrices

C
0
l

� �
j,k

¼ ∇ϕl, j,∇ϕl,k

� �
and Blð Þj, i ¼ ϕl, j xið Þ:

Obviously, now the Laplacian C0
l does not depend on the data points {xi}

M
i¼1 at

all. Thus, we are looking for the solution of

λMC
0
l þ B l � B T

l

� �
α l ¼ B ly ð7:30Þ
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in terms of that of (7.29). Concerning the matrix Bl, it is obtained by just adding the

new entries of the basis functions in the data points exif geMi¼1 to Bl. Notice also that the

number of unknown of (7.29) only depends on the grid points of the sparse grid and

does not change for an increasing number of data points.

Of course, after adding the new data points of Ŝ , we need to solve the complete

equation system (7.30) in order to determine α l. However, as stated before, (7.29)

has the same dimensionality as (7.30), and provided that Ŝ is not very large, the

system (7.30) is very close to (7.29). So we can use αl as initial iterate in

the iteration method of (7.30), and the solution will require, in general, only a

few iterations.

Notice that there are different ways to assemble and solve the system (7.26); we

did not discuss them in detail here. In general, we assemble Gl ¼ Bl � BT
l and use it

for multiplication with αl instead of multiplying with BT
l and Bl directly. Since the

dimension of Gl only depends on the number of grid points and, unlike as for Bl, not

on the number of data points M, it is especially suited for our adaptive approach.

Therefore, we use G l ¼ B l � B T
l that can be incrementally calculated from Gl. In

the same way, we define h1 ¼ B1y and also h 1 can be easily calculated from hl.
Thus, we rewrite (7.30) as

λMC
0
l þ G l

� �
α l ¼ h l: ð7:31Þ

This way we arrive at the adaptive sparse grid Algorithm 7.3.

Algorithm 7.3: Adaptive computation of sparse grid classifier

Input: new training data set xi; yið Þf gM̂i¼1, λ, coefficients αl, vectors hl, matrices

C0
l and Gl

Output: updated coefficients α l, updated vectors h l and matrices G l

for q ¼ 0, . . . , d � 1 do

for l1 ¼ 1, . . . , n � q do

for l2 ¼ 1, . . . , n � q � (l1 � 1) do

. . .
for ld�1 ¼ 1, . . . , n � q � (l1 � 1) � . . . � (ld�2 � 1) do

ld ¼ n � q � (l1 � 1) � . . . � (ld�2 � 1) � (ld�1 � 1)

update matrix G l from Gl and vector h l from hl
solve the linear system λMC

0
l þ G l

� �
α l ¼ h l starting with αl

end for

. . .
end for

end for

end for
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For practical applications, we can start with Algorithm 7.1 on historic data S and
then apply Algorithm 7.3 on new data points ŝ . This is again a nice example of

combining offline and online learning.

7.2.6 Further Sparse Grid Versions

There are many different versions and modifications of the sparse grid approach.

We want to explain some of them which may be relevant for scoring and reinforce-

ment learning.

7.2.6.1 Simplicial Basis Functions

So far we only mentioned d-linear basis functions based on a tensor-product

approach. But on the grids of the combination technique, linear basis functions

based on simplicial discretization are also possible. Here, the so-called Kuhn

triangulation for each rectangular block is used [Kuh60]. Now the summation of

the discrete functions for the different spaces Vl in (7.27) only involves linear

interpolation.

The theoretical properties of this variant of the sparse grid technique still have

to be investigated in more detail. However, the results warrant its use. There are,

if at all, just slightly worse results with linear basis functions than with d-linear
basis functions, and we believe that this new approach results in the same approx-

imation order.

Since in the new variant of the combination technique, the overlap of supports,

i.e., the regions where two basis functions are both nonzero, is greatly reduced due

to the use of a simplicial discretization, the complexities scale significantly better.

By using simplicial basis functions, sparse grid classification can be performed with

up to 20–22 dimensions on a conventional PC. For details about the simplicial basis

functions for sparse grids, we refer to [GG01a].

7.2.6.2 Anisotropic Sparse Grids

Up to now we treated all attributes of the classification problem the same, i.e., we

used the same mesh refinement level for all attributes. Obviously attributes have

different properties, different number of distinct values, and different variances.

For example, to discretize the range of a binary attribute, one does not need more

than two grid points.

We can generalize our approach to account for such situations as well. We use

different mesh sizes for each dimension along the lines of [GG98]. This results

in a so-called anisotropic sparse grid. Now different refinement level nj for each
dimension i, j ¼ 1, . . . , d can be given instead of only the same refinement level
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n for the different dimensions. This extension of our approach can result in less

computing time and better approximation results, depending on the actual data sets.

For details, see [GG01a].

7.2.6.3 Dimension-Adaptive Sparse Grids

The combination technique presented so far can be used for a maximum of 20–25

dimensions. In order to advance into higher dimensions, the dimension-adaptive

combination technique has been proposed [Gar11]. Based on error estimators, it

automatically performs an adaptive refinement of an index set that represents the

grids. Technically, problems with up to 100 dimensions can be handled by this

technique. However, the development of the error estimator is difficult and a topic

of current research.

7.2.6.4 Other Operator Equations

So far we have studied the minimization problem (7.4) using the gradient in the

regularization expression, i.e.,

R f Nð Þ ¼ 1

M

XM
i¼1

f N xiðð Þ, yiÞ2 þ λ ∇f Nk k2L2 : ð7:32Þ

Of course, we can use many other operators P. For example, in [Pfl10] a much

simpler functional has been used, exploiting the inherent smoothness of the hierar-

chical basis which is known to be spectrally close to the Laplacian. In fact, the

Euclidean norm of the coefficient vector was used as regularization operator.

Now the minimization problem reads

R f Nð Þ ¼ 1

M

XM
i¼1

f N xiðð Þ, yiÞ2 þ λ
XN
i¼1

α2i ð7:33Þ

and results in the linear system

λMI þ B � BT
� �

α ¼ By: ð7:34Þ

An advantage of the simple formulation (7.33) is that direct sparse grid

discretization can be employed easily. Unlike as for the combination technique,

where we can use dimension adaptivity only, for the direct sparse grid

discretization, we can use spatial (local) adaptivity in a straightforward way. This

allows to apply sparse grid classification of (7.33) also for very high dimensions. In

[Pfl10] this sparse grid classification delivered good results for many high-

dimensional data sets like character recognition in 64 dimensions and even a
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music data set in 166 dimensions. However, the prediction quality of formulation

(7.33) is somewhat lower compared to our more complex one (7.32).

Moreover, sparse grids are not restricted to regularization network problems

(7.1) at all! In fact they can be used to a wide family of high-dimensional

differential and integral equations. Of course, the function f needs to be smooth.

This usually applies to most scoring problems. But even the non-smooth case can be

handled, depending on the problem, using adaptive sparse grids. Also the concept of

adaptive sparse grids can be generalized (see [Heg03]), arriving at the following

core ideas: grids that are sparse, hierarchically organized, and adaptively refined.

This results in a very powerful approximation approach which, however, requires

much further research. At this, one of the most complex problems is the develop-

ment of error estimation techniques required for grid refinement; see [Gar12b].

7.2.6.5 Sparse Grids for Regression in Reinforcement Learning

As stated in Sect. 6.1.1 and used in Chap. 10, for the representation of the state-

value function v and action-value function q in reinforcement learning, often

regression models are used which can handle large state spaces S and can also

serve for regularization. Here, sparse grids are a good candidate, especially because

they can solve complex operator equations on large data volumes and are well

suited for adaptivity. For the continuous counterpart of the Bellman equation, the

Hamilton-Bellman-Jacobi equation, promising results have been obtained recently

[BGGK12].

7.3 Experimental Results

We now apply our approach to different data sets. Both synthetic and real data from

practical data mining applications are used. All the data sets are rescaled to [0,1]d.

To evaluate our method, we give the correctness rates on testing data sets, if

available, or the tenfold cross-validation results otherwise. For a critical discussion

on the evaluation of the quality of classification algorithms, see [Diet98, Sal97].

The results are mostly based on the offline Algorithm 7.1 since the adaptive

Algorithm 7.3 yields the same results. The equivalence of the results of both offline

and online algorithms will be demonstrated in the last example.

7.3.1 Two-Dimensional Problems

Example 7.2 The first example is the spiral data set proposed by Alexis Wieland of

MITRE Corp [Wie88]. Here, 194 data points describe two intertwined spirals; see

Fig. 7.3. This is surely an artificial problem which does not appear in practical
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applications. However, it serves as a hard test case for new data mining algorithms.

It is known that neural networks can have severe problems with this data set and

some neural networks cannot separate the two spirals at all. In Table 7.2 we give the

correctness rate achieved with the leave-one-out cross-validation method, i.e., a

194-fold cross-validation. For the sparse grids, use the tensor-product basis func-

tions as described in this chapter.

The best testing correctness was achieved on level 6 with 89.69 % in comparison

to 77.20 % in [Sin98].

In Fig. 7.3 we show the corresponding results obtained with our sparse grid

combination method for levels 5 and 7. With level 7 the two spirals are clearly

detected and resolved. Note that here 1,281 grid points are contained in the

sparse grid. ■

Example 7.3 This data set Ripley, taken from [Rip94], consists of 250 training data

and 1,000 test points. It is shown in Fig. 6.4a. The data set was generated synthet-

ically and is known to exhibit 8 % error. Thus no better testing correctness than

92 % can be expected. As before, we use tensor-product basis functions.

Since we now have training and test data, we proceed as follows: first, we use

the training set to determine the best regularization parameter λ. The best test

correctness rate and the corresponding λ are given for different levels n in the

Fig. 7.3 Spiral data set, sparse grid with levels 5 (left) and 7 (right)

Table 7.2 Leave-one-out cross-validation results for the spiral data set

Level λ Training correctness (%) Testing correctness (%)

4 0.00001 95.31 87.63

5 0.001 94.36 87.11

6 0.00075 100.00 89.69

7 0.00075 100.00 88.14

8 0.0005 100.00 87.63
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first two columns of Table 7.3. With this λ, we then compute the sparse grid

classifier from the 250 training data. Column 3 of Table 7.3 gives the result of

this classifier on the (previously unknown) test data set. We see that our method

works well. Already level 5 is sufficient to obtain results of 90.0 %. We also see

that there is not much need to use any higher levels. The reason is surely the

relative simplicity of the data. Just a few hyperplanes should be enough to

separate the classes quite properly. This is achieved with the sparse grid already

for a small number n.
Additionally, we give in Table 7.3 the testing correctness which is achieved for

the best possible λ. To this end we compute for all (discrete) values of λ the sparse
grid classifier from the 250 data points and evaluate them on the test set. We then

pick the best result. We clearly see that there is not much of a difference. This

indicates that our approach to determine the value of λ from the training set by

cross-validation works well. Note that a testing correctness of 90.6 % was achieved

with neural networks in [Rip94]. ■

7.3.2 High-Dimensional Problems

Example 7.4 The 10-dimensional data set ndcHArd consists of two million

instances synthetically generated and was first used in [MM01]. Here, the main

observations concern the run time.

In Table 7.4 we give the results using the combination technique with simplicial

basis functions as described in Sect. 7.2.6. More than 50 % of the run time is spent

for the assembly of the data matrix. The time needed for the data matrix scales

linearly with the number of data points. The total run time seems to scale even

better than linearly. Already at level 1, we get 84.9 % testing correctness, and no

improvement with level 2 is achieved. Notice that with support vector machines,

correctness rates of 69.5 % were reported in [FM01].

Table 7.3 Results for the Ripley data set

Level

Tenfold Best

Tenfold testing (%) λ On test data (%) λ Testing (%)

1 84.8 0.01005 89.8 0.00370 90.3

2 85.2 0.000001 90.4 0.00041 90.9

3 88.4 0.00166 90.6 0.00370 91.2

4 87.6 0.00248 90.6 0.01500 91.2

5 87.6 0.01005 90.9 0.00673 91.1

6 86.4 0.00673 90.8 0.00673 90.8

7 86.4 0.00075 88.5 0.00673 91.0

8 88.0 0.00166 89.7 0.00673 91.0

9 88.4 0.00203 90.9 0.00823 91.0

10 88.4 0.00166 90.6 0.00452 91.1
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Example 7.5 Now we will compare the results of the offline Algorithm 7.1 with

that of Algorithm 7.3, its adaptive counterpart. We use a data set suitable for

scoring-based recommendations as they have been described in the introduction,

especially in Example 7.1. The data is from a large web shop and each data

point represents a certain transaction in a web session, such as a click, basket

event, or order. The data is from 1 day. There are 15 attributes from three data

sources:

• Session specific: number of clicks and basket products in current session

• User specific: gender, customer value, etc. (only for recognized users)

• External from host: step in checkout process, availability of products, etc.

As in Example 7.1, the target attribute is 0 if no order was placed within the

session and 1 if something was ordered. The task is to find a good classification

function that predicts at each step of a web session if the user will finally place an

order.

Thus, the data set has 15 dimensions. The number of data points is 177,907. For

simplicity, we use the training set as test set, too. As in the previous example, we

again apply simplicial basis functions which are computationally cheaper the

tensor-product ones. By using the offline Algorithm 7.1, for level 1 we obtain a

training correctness of 67.90 % and the run time is 283 s. Now we apply the

adaptive Algorithm 7.3 to the same problem. For a block size M̂ ¼ 10,000, the

results are shown in Table 7.5.

Table 7.4 Results for the ndcHArd data set

Number

of points

Training

correctness (%)

Training

correctness (%)

Total

time [s]

Data matrix

time [s]

Number

of iterations

Level 1 20,000 86.2 84.2 6.3 0.9 45

200,000 85.1 84.8 16.2 8.7 51

2 million 84.9 84.9 114.9 84.9 53

Level 2 20,000 85.1 83.8 134.6 10.3 566

200,000 84.5 84.2 252.3 98.2 625

2 million 84.3 84.2 1,332.2 966.6 668

Table 7.5 Results for the web shop data set with a block size of 10,000 data points

Blocks Correctness (%) Total time [s] Blocks Correctness (%) Total time [s]

1 44.79 12.05 10 62.94 96.22

2 53.61 20.52 11 63.32 106.82

3 57.53 29.06 12 63.54 117.51

4 59.29 38.33 13 63.59 128.61

5 60.71 47.50 14 63.88 139.98

6 61.60 56.76 15 64.15 151.32

7 61.97 66.13 16 64.29 163.04

8 62.36 75.83 17 64.51 174.88

9 62.72 85.78 18 64.67 184.72
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The classification rate of the resulting classifier applied to the full data set if

67.91 % and thus almost the same as that obtained by the offline algorithm.

Concerning the total time of 185 s, the adaptive version is even faster than the

offline one. However, when we further reduce the block size, the situation is

changing. For the block size M̂ ¼ 1,000, the run time of the adaptive version

increases to 443 s suffering from the overhead of each update.

7.4 Summary

In this chapter we have studied sparse grid approximation for scoring, i.e., classi-

fication and regression. We first demonstrated how scoring can be efficiently used

for generating recommendations.

We discussed shortcomings of current classification methods. We then intro-

duced sparse grids and demonstrated how they can overcome many of these

problems. Especially, sparse grids scale linearly with the number of data points

and thus can handle huge data sets. Data adaptivity can directly be applied to sparse

grid algorithms. Another advantage is that sparse grid classifiers can be interpreted

and manipulated in a spectral sense as it is known from signal processing. More-

over, sparse grids can in general be applied to wide classes of operator equations. In

summary, sparse grids represent a new quality of data analysis based on hierarchi-

cal decomposition of the attribute space.

On the other hand, sparse grids are very complex in theory and application.

There exist many versions of sparse grid techniques. Much further research is

required to extend the classical concepts of the numerical analysis of PDEs to the

high-dimensional case in order to use them for sparse grids.
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Chapter 8

Decomposition in Transition: Adaptive

Matrix Factorization

Abstract We introduce SVD/PCA-based matrix factorization frameworks and

present applications to prediction-based recommendation. Furthermore, we devise

incremental algorithms that enable to compute the considered factorizations adap-

tively in a realtime setting. Besides SVD and PCA-based frameworks, we discuss

more sophisticated approaches like non-negative matrix factorization and Lanczos-

based methods and assess their effectiveness by means of experiments on real-

world data. Moreover, we address a compressive sensing-based approach to

Netflix-like matrix completion problems and conclude the chapter by proposing a

remedy to complexity issues in computing large elements of the low-rank matrices,

which, as we shall see, is a recurring problem related to factorization-based

prediction methods.

In conventional modeling, the states correspond to the products being viewed. As

we saw in Chap. 5, this assumption essentially complies with the Markov property

of most RE applications. It would of course be better, though, to gather more

information in each state. This applies mainly to previous transactions, but other

dimensions such as user, price, and channels with their various attributes may also

be useful. Thus, we will drop the considered Markov property and describe the

corresponding procedure in this chapter.

This is where the realtime approach described in this book coincides with the

complex analysis models on which most RE researchers are currently working

(Chap. 2). While we have so far concentrated only on the simplest analysis scenario,

namely, product rules in the form s ! s0, albeit in a modern realtime analytical

context, the latest analytical approaches can already achieve good predictions,

sometimes using multiple dimensions, but only in a static analysis context. So the

obvious solution is to combine the two approaches. In principle it makes no

difference which route is followed: expanding RL to include more extensive state

definitions or adding control functions to conventional approaches. Given the

general focus of this book, we will concentrate on the first route: expanding the

definition of states in RL.

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,
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Rather than only considering states of single products pi where si ¼ {pi}, as
before, the simplest approach is to switch to short product sequences of

l previous products (or, more precisely, product views) in the episode and to

include these as equally valid states sj ¼ {pj, pj�1, . . ., pj�lþ1} in the state space

S. Because of its complexity, this approach, which can also be found in the

literature (for RL in [SHB05]), is of course very limited and can only reasonably

be used for small values of l (usually 2 or 3). At most it represents a small

expansion of the existing approach, but it does not solve the crux of the problem.

Probably the most promising route is to factorize the action-value and state-

value functions and in the model-based case additionally the transition probabilities

or rewards. This tensor factorization not only allows a theoretically unlimited

number of new dimensions to be included but also makes it possible to regularize

transition probabilities in particular. We proceed as follows: in this chapter we will

introduce the tensor factorization, especially in its adaptive form, and combine it

with reinforcement learning in Chap. 10.

8.1 Matrix Factorizations in Data Mining and Beyond

In classical data mining, approaches based on matrix factorization are ubiquitous.

Typically, they arise as mathematical core problems in collaborative filtering
(CF). A classical application of CF to recommendation engineering is the

prediction of product ratings by users. Unlike in classical CF, we shall use

sessions instead of users (from a mathematical point of view, this does not

make any difference) for consistency reasons in the following. Like RL, CF is

behavioristic in the sense that no background information with respect to neither

of users nor products is involved.

Instead, we associate with each session a list assigning to each product the

rating given by the user. These ratings may be explicit, e.g., users may be

prompted to rate each visited product on a scale from 1 to 5, or, more com-

monly, implicit (as before in this book). As for the latter, one may, for instance,

endow each type of customer transaction with a score value, say, 1 for a click,

5 for an “add to cart” or “add to wish list,” and 10 for actually buying the

product. We consider this list as a signal or, simply, a vector. Inspired by noise

reduction and deconvolution techniques in signal processing, most CF

approaches are based on the assumption that the thus arising data are noise-

afflicted observations of intrinsically low-dimensional signals generated by some

unknown source. How shall we proceed to formalize the situation statistically?

The decisive obstacle is the mathematical treatment of the unknown values.

Basically, this may be surmounted in two different manners: the ostensibly more

sophisticated approach consists in modeling the unknown ratings as hidden

variables, which need to be estimated along with the underlying source. Putting

it in terms of signal processing, this gives rise to a problem related to the

reconstruction of a partially observed signal. Dealing with hidden variables in
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statistical models, however, entails some major computational impediments,

including intractable integrals and non-convex optimization, making a realtime

implementation very difficult. The alternative approach consists in treating all

variables as observed by assigning the value 0 to the unknown ratings. Although

this may appear somewhat helter-skelter at the first glance, it may be rationalized

by considering not visiting a product as a transaction corresponding to the lowest

possible rating. Assuming, furthermore, that many of the zero entries are due to

noise rather than intrinsic, we may put the approach on a sound footing. We will

return to this discussion in Sect. 8.5.

Now we consider a matrix of rewards A ∈ Rnp�ns with ns being the current

number of sessions and np the number of different products over all sessions

observed so far. Neither the order of sessions nor the order of products within the

sessions is taken into account.

Example 8.1 As an example, we consider a web shop with 3 products and 4

sessions, i.e., np ¼ 3 and ns ¼ 4. The session values are displayed in Table 8.1.

In terms of the reward assignment described above, this means, e.g., for session

2, product 1 has been clicked, whereas products 2 and 3 have moreover been added

to the basket. In session 3, product 1 has been purchased, product 2 has been

clicked, and product 3 has been skipped. ■
Mathematically, the matrix factorization problems arising in CF are of the form

min
X∈C1�Rnp�r, Y∈C2�Rr�ns

f A;XYð Þ: ð8:1Þ

The rank r is usually chosen to be considerably smaller than np. The function

f is referred to as the cost function of the factorization and, more often than not,

is chosen to be a metric. It stipulates a notion of quality of a factorization.

The sets C1, C2 determine the parameter space. In terms of our signal processing

metaphor, the factor X characterizes the source, which is restricted to be a

low-dimensional subspace, and the columns Y are the intrinsic low-dimensional

parameter vectors determining the signals given by the corresponding columns

of A.
To put it even simpler, we approximate the matrix A by the product of two

smaller matrices X and Y. The cost function stipulates a notion of “closeness,” i.e.,

distance, of two matrices. Since the rank r is typically much smaller than np and ns,
the representation in terms of X and Y is much more compact than an explicit

representation of the entries of A.

Table 8.1 Example of a

session matrix of a web shop
Session 1 Session 2 Session 3 Session 4

Product 1 0 1 10 5

Product 2 1 5 1 1

Product 3 0 5 0 1

8.1 Matrix Factorizations in Data Mining and Beyond 145



Example 8.2 Let us consider the following factorization for Example 8.1

with r ¼ 1:

1

0:2
0:1

0
@

1
A

|fflfflfflffl{zfflfflfflffl}
X

0:23 2:76 9:65 5:17ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Y

¼
0:23 2:76 9:65 5:17
0:05 0:55 1:93 1:03
0:02 0:28 0:97 0:52

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
eA

�
0 1 10 5

1 5 1 1

0 5 0 1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

While the initial matrix A consists of 12 elements, the factors X and Y taken

together contain only 7 elements. Now we have to assess whether our rank-1

approximation XY ¼ eA is a sufficiently good approximation to A. If not, we may

increase the rank r, which, of course, entails an increase of complexity of the factors.

It is obvious, however, that for large np and ns and a moderate rank, the factorized

representation is by orders of magnitude more compact than the explicit one. ■

In terms of CF, a commonly encountered intuitive interpretation is as follows:

the matrix Ymaps the sessions to their virtual profiles, the number of which is given

by the rank r, and the matrix X maps profiles to their products of reference.

It is also noteworthy that optimal factors are almost never unique, even if their

product is. This is only a minor difficulty since we are eventually interested in the

latter and may choose among the corresponding optimal factors arbitrarily.

Please note that the framework stipulated by (8.1) is of profound generality.

It encompasses a vast majority of commonly deployed factorization models.

In particular, we stress that the computational complexity of a factorization (8.1)

depends crucially on the choice of f and C1, C2. For example, the factorization

model related to PCA, which we shall focus on in what follows, may be reduced to a

rather “simple” algebraic problem capable of being solved optimally by algorithms

of polynomially bounded complexity. On the other hand, it is possible to state the

well-known clustering or vector quantization problem in terms of the above frame-

work. This problem, however, is NP-hard.

As opposed to the control theoretic varieties discussed in the foregoing chapters,

REs based on CF are “naı̈ve-old fashioned.” Why, you may ask yourself, after so

keenly campaigning for the latter, do we suddenly address so unsophisticated and

outdated approach? The reasons for doing so are as follows:

• In recent research, we have found a way to perform PCA-based CF in a realtime

adaptive fashion. Since this book is intended to be about adaptive rather than

only about the smaller class of control theoretic recommendation systems, this

fits well into the framework.

• We are currently working on higher-order (i.e., tensor) generalization of

PCA-based CF. This enables to deploy CF in a less behavioristic fashion.
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It turns out that the adaptive algorithms for the matrix case carry over rather

smoothly to the higher-order setting.

• Most importantly, our research in Chap. 10 will focus on a combination of

adaptive CF and RL. Specifically, we are heading to apply (tensor) CF to the

transition probability matrices (or tensors) of Markov decision processes as a

means of approximation and regularization to render model-based methods

tractable for large state spaces.

In what follows, the above points will be discussed in more detail.

8.2 Collaborative Filtering

Let us, for the sake of completeness, first address classical collaborative filtering.

The first ever CF system was the Information Tapestry Project by Xerox PARC in

the early 1990s [GNBT92]. In the further development, the research group

GroupLens played an important part.

In classical CF, an identical “decomposition” of the matrix is carried out in (8.1),

that is, X is taken to be A itself and Y to be the identity matrix. Thus, the “low-

dimensional” subspace is given by the data space. Intuitively, there is no decom-

position whatsoever – all sessions are stored as they are.

Having clarified the factorization, we shall briefly address how it is used for

computation. Let N(p) be the set of all sessions t with the considered product p (i.e.,
p has been clicked at least once). Then the predicted reward value âps of a product
p not observed in the session is computed as follows:

âps ¼ bps þ

X
t∈N pð Þ

sst apt � bpt
� �

X
t∈N pð Þ

sst
,

where bps is the baseline prediction for aps (e.g., the mean value of the rewards of all

products in the session) and sst a measure of similarity between the sessions s and t.
Frequently employed measures of similarity are the cosine measure and the

Pearson correlation; see below.
What does this formula mean? For the prediction of product âps, we choose all

previously observed sessions that contain product p and compute the weighted

mean of their rewards for the product p, where the weights are given by the

similarities to the session s. That is, if a session u is closer to session s than another

session t, then the reward aps makes a greater contribution than the reward apt.
In practice, the described CF approach yields fairly good results, since, in

particular, it takes the entire history of sessions into account. An essential draw-

back, however, is the poor scaling with respect to computing time, as well as

memory space. Indeed, we have to keep the entire matrix A in memory, and the
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computation of each possible recommendation requires the computation of all

similarities to all sessions in N(s, p). Hence, classical CF can be employed for

small problems only. Due to the lack of generalization, the quality of the

predictions, too, is amendable.

We finish the short introduction to CF with some technical remarks. Instead of

considering similarities of sessions, we can also look for similarity of products. Let

N(s) be the set of all products q of a given session s. Now the predicted reward value

âsp of a product p not observed in the session is computed as follows:

âsp ¼ bsp þ

X
q∈N sð Þ

spq asq � bsq
� �

X
q∈N sð Þ

spq
,

where bsp is the baseline prediction for asp (e.g., the mean value of the rewards of

the product over all sessions) and spq a measure of similarity between the products

p and q using the same similarity measures.

By only considering similarity of products spq for recommendations, especially

applying the cosine similarity measure, we arrive at the popular item-to-item
collaborative filtering [LSY03]. That is, for a product p, we simply recommend

the products q of maximum similarity values spq. This simple static type of

recommendations has proved to be very robust and useful in practice (see also

discussion in Sect. 1.6).

As we already mentioned, different similarity measures can be used for spq; they
can all be viewed as variants on the inner product. The cosine measure between two

vectors x and y of length n is defined as

cos x; yð Þ ¼ < x, y >

xk k � yk k ¼

Xn
i¼1

xi � yi
ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

y2i

s :

For similarity of products spq, x can be considered as binary vector of the

occurrence of product p over all n sessions and, similarly, y as binary vector of

the occurrence of product q. Thus, we can identify x with p and y with q. This leads
to an interesting observation.

Since the components xi and yi are binary values, i.e., 0 or 1, by introducing the

support supp xð Þ ¼
Xn
i¼1

xi, we can rewrite the cosine measure as

cos x; yð Þ2 ¼ supp x ^ yð Þ � supp x ^ yð Þ
supp xð Þ � supp yð Þ ¼ supp x ^ yð Þ

supp xð Þ � supp y ^ xð Þ
supp yð Þ ¼ epxy epyx:

148 8 Decomposition in Transition: Adaptive Matrix Factorization

http://dx.doi.org/10.1007/978-3-319-01321-3_1


Here epxy is the confidence from x to y, i.e., it corresponds to our transition

probability pxy but without attention of the sequential order. This yields

cos x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
epxy epyx

q
,

and the cosine measure can be interpreted as nonsequential counterpart to the

transition probabilities. In other words, the transition probabilities in both directions

between p and q are multiplied.

For factorization, we later will need the following relation. In order to calcu-

late the cosine measure similarities between all np products of our transaction

matrix A, we introduce the matrix A by normalizing A along all ns columns ai.

Thus, A ¼ a1
�� . . . ��ans

� �
and

A ¼ a1
a1k k

�� . . . �� ans
ansk k

	 

:

Now the similarity matrix S ∈ Rnpxnp between all products can be simply

expressed as

S ¼ A A
T
:

8.3 PCA-Based Collaborative Filtering

8.3.1 The Problem and Its Statistical Rationale

In what follows, we shall introduce the factorization problem underlying

PCA-based CF along with a rather intuitive geometric rationale for the procedure.

Subsequently, we shall provide a statistical interpretation of the approach. The

latter is rather technical and may safely be skipped by a less mathematically

inclined reader.

Before plunging into the matter, we need to stipulate some basic mathematical

concepts. We assume that the reader brings along basic knowledge of linear algebra

at the level of an undergraduate introductory class.

The fundamental notion is that of a linear submanifold. Informally, a linear

submanifold of Rnp is a shifted subspace. Specifically, it is a set

M :¼ bþ X ¼ bþ x
�� x ∈X

� �
,

where Χ denotes a subspace of Rnp of dimension d. Given a basis x1, x2, . . . , xd of
V, a vector x ∈ Rnp lies in M if and only if

x ¼ bþ y1x1 þ . . . þ ydxd
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for some real coefficients y1, y2, . . . , yd. In matrix notation, this corresponds to

x ¼ bþ Xy ¼ X; b½ � yT ; 1
� �T

,

where X :¼ [x1, x2, . . . , xd], y :¼ [y1, y2, . . . , yd]
T. A linear manifold is thus

completely characterized by the matrix [X, b].
We endow Rnp with the canonical inner product <�,�>, which is defined as

< p, q >:¼
Xnp
i¼1

piqi, p, q ∈ Rnp

and which induces the norm

xk k :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< x, x >

p
, x ∈Rnp :

Introducing a norm, which, in turn, induces a metric, gives rise to a criterion to

distinguish the quality of an approximation to a given vector.

In particular, the problem of finding the best approximation to v ∈ Rnp

min
m∈M

m� vk k

has a unique optimizer given by

m̂ :¼ bþ PX v� bð Þ,
where PX ∈ Rnp�np denotes the orthogonal projector onto X. This projector is

given by

PX ¼ XXþ, ð8:2Þ

where

Xþ :¼ XTX
� ��1

XT ð8:3Þ

denotes the Moore-Penrose pseudo-inverse of X, which has already been used in

(6.12). If it holds that

XTX ¼ I: ð8:4Þ

the orthogonal projector (8.2) simplifies to

PX ¼ XXT : ð8:5Þ

As we have already seen in Chap. 6, the orthogonal projector plays a crucial

part for many subspace decompositions and will be frequently encountered in

what follows.

Geometrically, Principal Component Analysis is a linear dimensionality reduc-

tion tool. Given a set of high-dimensional data, the goal is to project the data

orthogonally onto a linear manifold with a prescribed dimension, which is illus-

trated by Fig. 8.1.
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This manifold is chosen such that the mean-squared error resulting from the

projection is minimal among all possible choices. Mathematically, the problem

may be stated as follows:

min
X∈Rnp�d, b∈Rnp , y1, ..., yns∈Rd

Xns
j¼1

aj � Xyj � b
 2, ð8:6Þ

where a1, . . . , ans ∈ Rnp denote the given data. A straightforward argument

reveals that b is always given by the centroid of the data, i.e., b :¼ n�1
s

Xns

j¼1
aj.

Hence, assuming without loss of generality that the data are mean centered (which

may always be achieved by replacing our data by aj � b̂ , j ¼ 1, . . . , nsÞ, the
translation b may always be taken to be 0. We may thus restrict ourselves to the

problem of finding the best approximating subspace to a set of mean-centered data:

min
X∈Rnp�d, y1, ..., yns∈Rd

Xns
j¼1

aj � Xyj
 2: ð8:7Þ

The Frobenius norm is defined as

Ak k2F :¼
Xm, n

i¼1, j¼1

aij
�� ��2, A ∈ Rm�n:

Summarizing our data and intrinsic variables in matrices,

A :¼ a1; . . . ; ans½ �, Y :¼ y1; . . . ; yns
� �

,

we may cast (8.7) equivalently as the matrix factorization problem

min
X∈Rnp�d,Y∈Rd�ns

A� XYk k2F: ð8:8Þ

Recalling the general framework stipulated in (8.1), (8.8) may be stated in terms

of the former by assigning f E;Fð Þ :¼ E� Fk k2F, C1 :¼ Rnp�d, C2 :¼ Rd�ns :

u1

u4

u2

u3

x

y

z

w

1

1

1 2

2

2

Fig. 8.1 The best

approximating

one-dimensional subspace

(solid line) to a set of data

residing in R3. Projections

are indicated by dotted lines
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Readers familiar with optimization theory will notice that the objective of (8.8),

although convex in each of the decision variables X and Y, is non-convex. There-
fore, a global solution by means of optimization algorithms is hard, if not impos-

sible. As foreshadowed in the introduction, however, (8.8) is equivalent to a well-

studied algebraic problem, namely, that of a spectral decomposition.

Proposition 8.1 Let A ∈Rn�n be symmetric, i.e., A ¼ AT. Then there is a unique
real sequence λ1 � . . . � λn such that

A ¼ UΛUT , ð8:9Þ
where Λij :¼ δijλi and U is unitary (i.e., UTU ¼ UUT ¼ I). The values λi are called
eigenvalues or spectrum of A, the corresponding columns of U eigenvectors, and
the factorization (8.9) eigenvalue or spectral decomposition of A.

(Proofs as well as more detailed renditions of this result may be found in any

textbook on linear algebra. See, e.g., Chap. 1 of [HJ85].)

Given a matrix A ∈Rm�n, the corresponding Gram matrix is defined as

G :¼ ATA:

Since

xTGx ¼ xTATAx ¼ Axk k2 � 0,

G is positive semidefinite, which, as is well known in linear algebra, implies that its

spectrum is nonnegative. The same holds for the covariance matrix

C :¼ AAT :

Moreover, both the Gram as well as the covariance matrices are symmetric.

Now let a spectral decomposition of G be given by

G ¼ VΛVT , ð8:10Þ

and define

Z :¼ AV:

Then we obtain

ZTZ ¼ VTATAV ¼ Λ:

Since Λ is a diagonal matrix of the eigenvalues of G, we may write

Z ¼ US, i:e: AV ¼ US ð8:11Þ

for some unitary U ∈Rm�m and S ∈Rm�n defined as
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Sij :¼ δijsj, ð8:12Þ

where

sj :¼
ffiffiffiffi
λj

p
, j ¼ 1, . . . , n

are the singular values of A. We have thus derived the well-known singular value
decomposition (SVD).

Proposition 8.2 (cf. Lemma 7.3.1 in [HJ85]) Let A ∈Rm�n. Then there is a unique
sequence s1 � . . . � sm such that

A ¼ USVT , ð8:13Þ

where S is as defined in (8.12), for some unitary matrices U ∈ Rm�m, V ∈ Rn�n.

The values sj are referred to as singular values of A, the columns of U as left, and
those of V as right singular vectors of A.

Example 8.3 For our Example 8.1 of a web shop with matrix

A ¼
0 1 10 5

1 5 1 1

0 5 0 1

0
@

1
A,

we approximately obtain the following SVD:

S ¼
11:49 0 0 0

0 6:88 0 0

0 0 0:77 0

0
@

1
A,U ¼

1 0:3 0:1
0:2 �0:7 �0:7
0:1 �0:7 0:7

0
@

1
A,

V ¼
0:02 �0:1 �0:91 �0:39
0:24 �0:96 0:07 0:09
0:84 0:24 0:02 �0:06
0:45 �0:02 0:41 �0:94

0
BB@

1
CCA:

■

Labeling the left and right singular vectors asU ¼: [u1, . . . , um], V ¼: [v1, . . . , vn],
we obtain a polyadic representation

A ¼
Xr
j¼1

sjujv
T
j ,

where r :¼ max
k

sk > 0. It may easily be verified that r ¼ rank A, i.e., equal the

minimum number terms in a polyadic representation of A or, equivalently, the

dimension of the range of A. It is thus also obvious that {u1, . . . , ur} is an
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orthogonal basis for the range of A, and {ur+1, . . . , um} for the orthogonal comple-

ment thereof. Likewise, {vr+1, . . . , vn} span the null space of A, and the remaining

right singular vectors its orthogonal complement.

With regard to the solution of (8.8), the decisive tool is the truncated singular
value decomposition. It can be shown that the rank-k matrices

Ak :¼
Xk
j¼1

sjujv
T
j ¼ u1; . . . ; uk½ � δijsj

� �
v1; . . . ; vk½ �T ¼: UkSkV

T
k , k ¼ 1, . . . , r

ð8:14Þ
provide optimal rank-k approximations to our matrix A in terms of k � kF. In fact,

the subsequent stronger result obtains.

Theorem 8.1 (cf. Theorem 7.4.51 and Example 7.4.52 in [HJ85]) Let k � k be
a unitarily invariant norm, i.e., kAk ¼ kQATk for any A and unitary Q,T. Then
we have

min
B∈Rm�n, rank B¼k

A� Bk k ¼ A� Akk k:

In particular, this holds for k � kF and k � k	2, i.e., the matrix norm induced by the
Euclidean norm.

As an immediate consequence, this insight provides us with a solution of the

approximation problem at hand.

Corollary 8.1 An optimal solution of (8.8) is given by X :¼ Ud and Y :¼ SdV
T
d .

The (truncated) SVD is illustrated by Fig. 8.2.

Example 8.4 For our web shop example 8.1, we obtain for a rank-1 approximation

immediately from our SVD

X ¼
1

0:2
0:1

0
@

1
A,Y ¼ 11:49ð Þ

0:02
0:24
0:84
0:45

0
BB@

1
CCA

T

¼ 0:23 2:76 9:65 5:17ð Þ,

which coincides with the factorization in Example 8.2.

n

n
=

m m m

n m n

A U S

TV

Fig. 8.2 Illustration of the singular value decomposition of a matrix A. The dotted lines indicate
the borders of the submatrices corresponding to a truncated SVD under the assumption that A be

rank deficient. Please note that all entries of S other than those indicated by the diagonal solid line
are zero
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We obtain for a rank-2 approximation

X ¼
1 0:3
0:2 �0:7
0:1 �0:7

0
@

1
A,

Y ¼ 11:49 0

0 6:88

� � 0:02 �0:1
0:24 �0:96
0:84 �0:02
0:45 �0:02

0
BB@

1
CCA

T

¼ 0:23 2:76 9:65 5:17
�0:69 �6:6 1:65 �0:14

� �

and

Ak ¼ XY ¼
0:02 0:78 10:14 5:13
0:53 5:17 0:78 1:13
0:51 4:9 �0:19 0:62

0
@

1
A

already provides a fairly good approximation to A. ■
This terrific result tells us that the computation of a solution of (8.8) may be

reduced to computing a truncated singular value decomposition of A. It should be

clear from the above derivation that this problem, in turn, may be essentially solved

by computing a truncated spectral decomposition of the Gram matrix ATA. Calcu-
lation of spectral decompositions of symmetric and positive definite matrices,

fortunately, is a well-understood domain of numerical linear algebra. In particular,

this problem may be solved within polynomially bounded time in terms of dimen-

sionality and desired accuracy.

The bad news is that the complexity of state-of-the-art solvers increases with the

number of columns of A. Hence, these methods are not suitable for realtime

computation.

8.3.2 Incremental Computation of the Singular
Value Decomposition

In what follows, we shall present an approach to incremental computation of the

SVD. In a nutshell, we shall address the following question: given a matrix A and a

vector a, how can we express the SVD of [A,a] in terms of that of A? The

subsequent lemma, which summarizes the reasoning of Brand [Bra06, Bra03,

Bra02, GE94], is crucial.

Lemma 8.1 Let A ∈ Rm�n, a ∈Rm. Furthermore, let A ¼ UrSrV
T
r , where r �

rank A, be a full-rank truncated SVD. Let U :¼ Ur, S :¼ Sr, and V :¼ Vr. Then we
have
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A; a½ � ¼ U;
a⊥
a⊥k k

	 

S UTa
0T a⊥k k
	 


VT 0

0T 1

	 

ð8:15Þ

where a⊥ :¼ (I � UUT)a.
The proof is by a straightforward evaluation of the right-hand side of (8.15).

Without loss of generality, we shall henceforth assume that a 6¼ 0. The

simplest case obtains if UTa ¼ 0, that is, a lives in the orthogonal complement

of the range of A. Then, up to a permutation, (8.15) is already an SVD of [A,a]
and we are done. Now let us assume that UTa 6¼ 0. For the sake of simplicity,

we may safely neglect the case where a⊥ ¼ 0 since a slight and obvious

modification of the subsequent argumentation will do the trick. Under this

assumption, both of the matrices

eU :¼ U;
a⊥
a⊥k k

	 

, eV :¼ VT 0

0T 1

	 


have orthogonal columns. Hence, if we are given a full-rank truncated SVD

eS :¼ S UTa
0T a⊥k k
	 


¼ U S V
T

then the matrices Û :¼ eUU and V̂ :¼ eVV have orthogonal columns. Thus, the

desired full-rank truncated SVD is given by

A; a½ � ¼ Û S V̂ T

and we are done. Therefore, it all comes down to computing a full-rank

truncated SVD of eS. Unfortunately, the efficient computation of an SVD of eS
is left open in Brand’s papers. We therefore outline the approach devised by

Paprotny [Pap09].

Fortunately, it turns out that the special structure of this matrix may be exploited

for efficient computation: we have

eSeST ¼ SST 0

0T 0

	 

þ zzT ,

where

z :¼ UTa
a⊥k k

	 

:

Hence, eSeST is a rank-1 modification of a diagonal matrix. Again, the computation

of a spectral decomposition of matrices of this type is well understood in numerical

linear algebra. A sophisticated approach presented in [GE94] relies crucially on the

solution of a so-called secular equation. One of the most fundamental insights of
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finite-dimensional spectral theory is that the eigenvalues of a matrix A are,

respecting multiplicities, precisely the roots of the characteristic polynomial

χB λð Þ :¼ det A� λIð Þ:
It turns out that the characteristic polynomial of a rank-1 modification of a

diagonal matrix has a closed-form representation.

Proposition 8.3 Let Λ :¼ diag(λ1, . . .,λn) be a real diagonal matrix and x ∈ Rn.

Then the characteristic polynomial of Λ + xxT is given by

det Λþ xxT � λI
� � ¼ det Λ� λIð Þ 1þ xT Λ� λIð Þ�1x

� �

¼
Yn
i¼1

λi � λð Þ
 !

1þ
Xn
i¼1

x2i
λi � λ

 !
:

A proof may be found in, e.g., [GE94].

For the sake of simplicity, our discussion is restricted to the case where:

1. λ1, . . ., λn are distinct.
2. The spectra of Λ and Λ + xxT are disjoint.

For a more general treatment, please consult [BNS78].

If the second of the above conditions holds, then eλ is an eigenvalue of Λ + xxT if
and only if

1þ xT Λ� eλI
� ��1

x ¼ 0: ð8:16Þ

Hence, the eigenvalues of the rank-1 modification may be obtained by solving

the secular equation (8.16). To do so, we may exploit the following insight.

Proposition 8.4 (cf. [GE94]) The eigenvalueseλ1 � . . . � eλn of Λ + xxT satisfy the
interlacing property

eλi � λi � eλi�1, i ¼ 2, . . . , n:

By virtue of this observation, we are given intervals in which precisely one

eigenvalue is located. How should we proceed to solve (8.16)? The most straight-

forward way consists in deploying a bisection method. Since Proposition 8.4 pro-

vides suitable initializations, such a method is guaranteed to converge. The rate,

however, is only q-linear. A method exhibiting q-quadratic convergence is

Newton–Raphson. Unfortunately, we are not in a position to guarantee convergence

thereof because it may “leap” over the singularities and thus out of the search

intervals in an early stage. A more sophisticated method, again, has been proposed

in [BNS78]: the rational function on the right-hand side of (8.16) is iteratively

approximated by low-degree rational functions the roots of which are available in
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closed form. The method can be shown to converge locally q-quadratically if the

initialization overestimates the sought-after root. To obtain such an initial estimate,

one may perform a few steps of bisection.

The naı̈ve way to compute the corresponding eigenvectors is by solving the

sequence of null space problems

Λþ xxT � eλ
� �

ui ¼ 0, uik k ¼ 1, i ¼ 1, . . . , d:

Since the computed eigenvalues are inexact, this method is numerically unsta-

ble. In particular, it may lead to severe loss of orthogonality. A more sophisticated

alternative is based on the following result, which is due to Löwner.

Proposition 8.5 [GE94] Let λ1, . . . , λn, d1, . . . , dn ∈ R satisfy the interlacing
property

λiþ1 > diþ1 > λi, i ∈ n�1:

Furthermore, let D :¼ diag(d1, . . . , dn). Then λ1, . . . , λn are the eigenvalues of

Dþ bbT

for all b ∈ Rn satisfying

bj
�� �� ¼

Yn
k¼1

�
λk � dj

�. Yn

k¼1, k 6¼j

dk � dj
� �

, j ∈ n:

We proceed by considering the approximate eigenvalues as exact eigenvalues of

a slightly perturbed problem. The above result enables to compute the eigenvectors

thereof analytically.

For a detailed description of the entire procedure, we refer the reader to [Pap09].

The main SVD procedure is summarized in Algorithm 8.1. We leave out the

calculation of the SVD of eS since it is quite complex and there exist different

approaches, one of which was presented here.

Algorithm 8.1: SVD update

Input: matrices U and V of left and right singular vectors of A, matrix S of

singular values, new vector a

Output: updated matrices Û and V̂ of left and right singular vectors, matrix of

singular values S of [A,a]

1: Calculate SVD of eS :¼ S UTa
0T a⊥k k
	 


¼ U SV
T

2: Calculate Û :¼ U;
a⊥
a⊥k k

	 

U and V̂ :¼ VT 0

0T 1

	 

V
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Now experience has shown that the update algorithm 8.1 in general can also be

applied successfully for truncated SVDs of any rank r including small ones.

However, unlike as for the truncated full-rank SVD presented there, the resulting

SVD may not be optimal, i.e., it may lead to decompositions different from (8.14).

8.3.3 Computing Recommendations

There remains the question how to compute the recommendations via the truncated

singular value decomposition (8.14). Let Ak ¼ UkSkV
T
k be the rank-k SVD of the

previous session data and a ∈Rm be the current session vector, i.e., the vector

containing the rewards of the products of the current session.

One way is to proceed as follows. In each step of the session, we add the current

session vector a ∈Rm to the (fixed) SVD Ak ¼ UkSkV
T
k and execute one incremental

step of the singular value decomposition as described in the previous section, i.e.,

eA :¼ Ak; a½ � � eUk
eSkeV T

k ¼ A
0
k; ak

h i
¼: eAk: ð8:17Þ

Now we use the updated session vector ak ∈Rm and recommend the products

of the row numbers with the largest entries of ak, provided they are not already

included in a. After the termination of the current session, we set Ak :¼ [A0
k, ak].

Then we proceed in the same way with the next session vector.

Thus, in each step we conduct a low-rank approximation of the whole data

matrix and use its generalization for prediction in the current session – by means of

the last column. For the special case of a full-rank SVD, i.e., k ¼ rank A, we would
always obtain ak ¼ a and would not be able to provide a meaningful prediction.

The described procedure essential complies with the typical approach used in

literature about factorization for recommendations, although there learning and

evaluation are mostly carried out separately, i.e., offline. At this, the transactions

of each session (in literature mostly users) are subdivided into two disjoined

training and test sets such that for each session vector, it holds that a ¼ atrain +
atest. This way the data matrix A is split into a training matrix Atrain and a test matrix

Atest. Next a factorization is applied to Atrain and thereafter evaluated on Atest. The

adaptive behavior of our incremental SVD, in contrast, allows the more flexible

procedure described above, which, however, is still computational intensive. Thus,

we are looking for further alternatives.

The aforementioned “classical” offline approach has in practice the additional

disadvantage that it can only be applied to existing users (in our case even session!)

which already have a transaction history. To overcome this problem, the following

approach is pursued, especially in older literature. First, for a the feature vector,

f ak ¼ S�1
k UT

k a

is computed. Now in the feature space, we are searching for that feature vector f bk
which is closest to f ak and recommend the highest-rewarded products of its
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associated session vector b. This approach basically corresponds to classical

CF, with the only difference that for the storage and evaluation of user profiles

instead of the m-dimensional initial space of our products, now the synthesized

k-dimensional feature space is used. This reduces complexity on the one hand, and

at the same time a generalization of profiles with the associated increase of quality

takes place. Nevertheless, this approach is still complicated and mathematically

difficult to handle.

A better approach is based on projections. Therefore we first want to compute

the incremental ansatz (8.17) in a more efficient way. It can be shown that the

following holds:

UkU
T
k AVkV

T
k ¼ UkSkV

T
k ¼ Ak: ð8:18Þ

Because of the elementary relations VT
k Vk ¼ I and UT

kUk ¼ I, it follows from

(8.5) and (8.4) that both VkV
T
k as well as UkU

T
k are orthoprojectors into the space of

their corresponding singular vector bases. Consequently, the rank-k SVD can be

represented as a concatenated projection into the spaces of left and right singular

vector bases.

The projection (8.18) can be accomplished even easier.

Proposition 8.6 The following properties hold:

Ak ¼ AVkV
T
k ¼ UkU

T
k A

Proof For Ak ¼ AVkV
T
k , we just need to replace AVk by UkSk according to (8.11):

AVkV
T
k ¼ UkSkV

T
k ¼ Ak:

The deduction of Ak ¼ UkU
T
k A is again based on (8.11), in conjunction with

(8.10) for the decomposition of the Gram matrix by the right singular values, which

constitute its eigenvectors:

UkU
T
k A ¼ UkS

�1
k V T

k A
TA ¼ UkS

�1
k V T

k VS
2V ¼ UkSkV

T
k ¼ Ak □

From Proposition 8.6, it follows that by means of the right-projection approx-
imation, Ak can be computed solely via the right singular values:

Ak ¼ AVkV
T
k : ð8:19Þ

Similarly, we can apply the left-projection approximation to compute Ak only

via the left singular values:

Ak ¼ UkU
T
k A: ð8:20Þ
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Beyond its simplicity the left-projection approximation has another advantage.

Since the orthoprojector UkU
T
k is multiplied from left, due to

A
0
k; ak

h i
¼ eAk ¼ eUk

eU T
k
eA ¼ eUk

eU T
k Ak; a½ � ¼ eUk

eU T
k Ak, eUk

eU T
k a

h i
:

the property

ak ¼ eUk
eU T
k a,

holds. This means that for the calculation of the updated session vector ak, only the

current session vector a is required. Thus, we can use this approach for arbitrary

session vectors without updating the left singular vector eUk each time for a. This
enables us to use an existing rank-k SVD without updating, i.e., without learning,

for the prediction of new sessions.

Therefore, we now generally want to apply left-projection approximation for

SVD-based calculation of recommendations. We get

ak ¼ UkU
T
k a ð8:21Þ

and thus recommend the highest-rewarded products of the session vector ak. It is
so easy!

We will give a descriptive interpretation: the transposed left singular vector

matrix UT
k provides a mapping into the k-dimensional feature space resulting in a

profile vector of our session. Then it is mapped by Uk back into the product space.

For the special case of a full-rank SVD, i.e., k ¼ rank A, the left singular vector

matrix Uk ¼ U is unitary, and thus we get again

ak ¼ UUTa ¼ a,

what, of course, would be little helpful. The essence behind the projection approach

is that we map our session vector by a low-rank approximation onto its “generalized

profile” and then assign “characteristic rewards” to this profile. Hence, this proce-

dure corresponds to the previous one but is much easier.

In a nutshell, (8.21) allows the direct computation of recommendations for

arbitrary sessions. It is noteworthy that here the matrices of the singular values Sk
and right singular vectors Vk are not required at all! This makes our approach in

every aspect more computational efficient than the truncated SVD.

Finally we mention that the truncated SVD also gives rise to a nice factorized

version of the item-to-item collaborative filtering described in Sect. 8.2. Thus, we

are looking for a factorized version S k of the similarity matrix S ¼ A A
T
over all

products.

Obviously, it is obtained by S k ¼ A kA
T
k where A k is the rank-k SVD Ak ¼

UkSkV
T
k normalized along all of its columns. Introducing the factor matrix Lk :¼

UkSk, we can express the inner products AkA
T
k through Lk as AkA

T
k ¼ UkSkV

T
k VkSkU

T
k
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¼ (UkSk)(UkSk)
T ¼ LkL

T
k . Again, normalizing Lk along its columns leads to L k, and

we can calculate S k very easy without requiring the right singular vectors Vk:

S k ¼ L kL
T
k :

Here, for the full-rank SVD, we arrive at the original ITI-CF similarity matrix S .
The efficient computation of maximum values of a low-rank matrix is described in

Sect. 8.6.

Example 8.5 For the assessment of the prediction quality, we use the methodology

of Sect. 4.4 with one difference: a product is counted as correctly predicted not only

when it directly follows a recommendation but also if it appears in the remaining

course of the session. This follows the logic of the prediction method because for

transactions within a session, their sequential order is ignored.

The transaction log file used contains 695,154 transactions. For the test all

sessions with less than 3 transactions have been removed, and only products of

the core shop have been considered (because the products of the remaining assort-

ment only rarely occur in the transactions). This resulted in 23,461 remaining

sessions. The number of different products is 558. We use the following mapping:

click� 1, basket� 10, order� 20

for a reward function.

In Table 8.2 the results of the simulation with adaptive singular value decom-

position of Algorithm 8.1 for variable ranks on the described data of one day are

summarized.

From Table 8.2 it follows that rank 16 delivers the best prediction quality

concerning the orders, whereas baskets and clicks are slightly better predicted by

a model with rank 18.

Figure 8.3, which is a graphical interpretation of Table 8.2, clearly shows the

expected graphs of under- and over-fitting. If the rank is too small, the model does

not approximate the data good enough, and this results in a lower prediction rate

(under-fitting); a rank that is too high approximates the noise too exactly and also

reduces the prediction rate (over-fitting).

The results may suggest good chances for the application of the method in REs

although we will see later that reality is more complex. ■

Table 8.2 Comparison of

prediction qualities: adaptive

SVD with variable rank

Rank Clicks (%) Baskets (%) Buys (%)

5 6.3 11.14 12.07

10 7.59 12.1 14.22

14 8.07 13.72 15.35

15 8.09 13.37 15.39

16 7.98 13.72 15.44

18 8.38 13.78 15.33

20 7.67 13.06 15.28

25 7.78 12.63 14.77
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8.4 More Matrix Factorizations

8.4.1 Lanczos Methods

Lanczos methods are projection methods and are types of Krylov space methods.

Although they are not adaptive, we shall yet address them in more detail, as they

are, arguably, the most efficient solvers for eigen- and singular value decomposi-

tions and, apart from that, may provide an alternative to the projection approxima-

tions from Sect. 8.3.3, which is even more efficiently computable. Furthermore, the

Lanczos process may be deployed for efficient computation of an initial rank-k

SVD on historical data, which may then serve as a starting point for our adaptive

SVD. There is a vast amount of Lanczos-type methods. We shall restrict ourselves

to the symmetric Lanczos algorithm.

As we have shown in Sect. 8.3.1, for an arbitrary matrix A, we may establish the

Gramian matrix G ¼ ATA, which is symmetric and positive semidefinite, so as to

compute an SVD (8.13) of A through an eigenvalue decomposition (EVD, i.e.,

spectral decomposition (8.9)) of G by means of (8.11) and (8.12). This, of course,

similarly applies to the truncated SVD (8.14). Thus, we need an efficient method for

the computation of a truncated EVD of symmetric positive semidefinite matrices at

the core. This requirement is best met by the symmetric Lanczos algorithm, as it is

especially suitable for large eigenvalues, which are needed for the truncated SVD.

Let G ∈ S
¼o
n�n be a symmetric positive definite matrix of order n. Then we

seek after an optimizer of

max
X∈Rn�k,XTX¼I

tr XTGX
� �

: ð8:22Þ

It is well known that Vk is an optimizer of (8.22) if and only if ranVk, i.e., the
range or image of Vk is an invariant subspace of G with respect to its k-largest
eigenvalues. Thus, we solve (8.22) to determine a matrix the columns of which are

eigenvectors of G corresponding to its k-largest eigenvalues. This matrix coincides
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with the desired matrix Vk of right singular vectors. As described at the outset, given

this matrix, the corresponding matrices of singular values Sk and left singular

vectors Uk may easily be established.

A Galerkin method yields an approximate solution of (8.22) by imposing the

additional constraint ranX � Q � Rn for a suitable subspace Q satisfying k � dim

Q ¼ l << n. It can be shown that this amounts to solving

max
Y∈Rl�n,YTY¼I

tr YTQTGQY
� � ð8:23Þ

for some Q satisfying ran Q ¼ Q, QTQ ¼ I.
A Krylov space method recursively computes nested orthogonal bases

Q1, . . . , Ql of subspaces Q1 � . . . � Ql yet to be specified and a sequence of

approximate solutions Xl, k � l � n of (8.22) given by Xl :¼ QlYl, where Yl is an
optimizer of (8.23) for Q ¼ Ql. For an initial vector q1, the subspaces are

established as follows:

Ql :¼ Kl G; q1ð Þ, l ∈ 1; . . . ; nf g,

where

Kl G; q1ð Þ ¼ range q1,Gq1,G
2q1, . . . ,G

l�1q1
� �

is called lth Krylov space of G and q1. The Lanczos process is a recursive procedure
for the computation of the basis vectors ql, which are also referred to as Lanczos
vectors.

Algorithm 8.2 Lanczos process

Input: G, q1, l

Output: q1, . . . , ql+1, αi0s, βi0s
1: β1 :¼ 0, q0 ¼ 0

2: for i ¼ 1, . . . , l do
3: wi :¼ Gqi � βiqi�1

4: αi :¼ hw1,qii
5: wi :¼ wi � αiqi
6: βi+1 :¼ kwk2
7: if βi+1 ¼ 0 then

8: stop

9: end if

10: qi+1 :¼ wi/βi+1
11: end for
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With Ql :¼ q1; . . . ; ql½ � ∈Rn�l, it may easily be shown that

QT
l GQl ¼ Tl ¼

α1 β2
β2 α2 β3

⋱ ⋱ ⋱
βl�1 αl�1 βl

βl αl

2
66664

3
77775
: ð8:24Þ

An eigenvalue of Tl is called Ritz value, and, for a corresponding eigenvector yl,
xl :¼ Qlyl is called Ritz vector. With l increasing, more and more Ritz values and

vectors converge to eigenvalues and vectors of G. Thus, the eigenvectors yl yield
the desired solution of (8.23), i.e., Yl :¼ [y1, . . . , yl], from which we obtain the

approximate solution of (8.22). Due to the simplicity of the tri-diagonal matrix Tl,
the eigenproblem (8.23) may be solved efficiently, e.g., by simple subspace itera-

tion procedures.

Although the demonstrated Lanczos method looks fairly simple, it bears several

difficulties. These include the problem of orthogonality. In practice (i.e., finite

precision arithmetic), the theoretical orthogonality of the computed Lanczos

vectors ql is lost at an early stage due to inevitable rounding errors. Hence, many

approaches to re-orthogonalization of Lanczos vectors have emerged. The easiest

approach consists in orthogonalizing each newly obtained vector with respect to the

previous basis. This is accomplished by adding the following line immediately

below line 5 of the pseudo-code:

wi :¼ wi �
Xi�1

j¼1
< wi, qj > qj:

This additional step of complete re-orthogonalization increases the computa-

tional load by O(l2n), but ensures that all Lanczos vectors be numerically mutually

orthogonal and thus all subsequent processes be stable. Since, with regard to our

factorization, we are interested only in the k � n largest eigenvalues, l is not too
large in practice (at most some 100). Hence, complete re-orthogonalization does not

cause any trouble at all.

Another difficulty of the Lanczos method is that it may not find all eigenvalues,

even if the computation is carried out in exact arithmetic. This problem occurs

predominantly for small eigenvalues. To remedy this problem as well, many

elaborate approaches have been developed. With respect to large eigenvalues,

however, which we are predominantly interested in, the Lanczos process works in

a fairly stable fashion. Altogether, we see that for our application, it is not necessary

to put much effort into stabilization.

Thus, we may use the Lanczos method to compute the truncated SVD, which, in

turn, provides the right- or left-projection approximation (8.19) or (8.20), respec-

tively, for determining the recommendations.

Even more, in [CS09], Chen and Saad have shown how the Lanczos method may

be used for an even easier computation of the projections (8.19) and (8.20). To this
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end, we resort to the matrix of Lanczos vectors Qk and consider their left-projection

approximation

AL
k ¼ QkQ

T
k A:

Correspondingly, if using the covariance (rather than the Gramian) matrix C ¼
AAT and its matrix of Lanczos vectorsQ k, we obtain the associated right-projection

approximation

A
L

k ¼ AQ kQ
T

k :

Now Chen and Saad were able to show that for arbitrary vectors b ∈Rm, the

matrix–vector operations sk :¼ AL
kb and tk :¼ A

L
k b provide good approximations to

Akb, since their sequences {si} and {ti} exhibit rapid convergence to Ab in terms of

the leading left singular directions of A. As the goal of data compression consists

precisely in preservation of accuracy with respect to these directions, the Lanczos

projection provides a good alternative to singular value projection.

As for computation of the updated session vector through left-projection approx-

imation by means of Lanczos vectors, we thus obtain

ak ¼ QkQ
T
k a: ð8:25Þ

Compared with its counterpart for singular vectors (8.21), (8.25) is even easier

to compute, since we may abstain from a Ritz step, i.e., the solution of the

eigenproblem (8.24), outright. As we shall see in numerical tests, the practical

results, too, of approximation by means of Lanczos vector projection are hardly

worse than those of singular vector projection.

8.4.2 RE-Specific Requirements

As regards usage for reinforcement learning, of course, the factorization of transi-

tion probabilities p
að Þ
ss0

is of particular interest. Here, we shall ignore the actions a by

considering either only the unconditional probabilitiespss0 or, according to Assump-

tion 5.2, only the conditional probabilities of a transition to the recommended

product pa
ssa
. For the sake of simplicity, we shall identify the two cases with pss0 .

The reason is that matrix factorization makes sense only for two indices s and

s0. The case of an additional factorization with respect to the actions a, that is, pa
ss0 ,

will be treated later in the scope of tensor factorization.

Thus, we would like to factorize the matrix of transition probabilities

P ¼ Pss0
� �

s, s0∈S
.
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Theorem 8.1 states that the truncated SVD provides the best matrix factorization

with respect to quality of approximation. In general, however, this goes along with a

loss of stochasticity of the matrix of transition probabilities eP :¼ Pk.

Hence, we require, on one hand, that the factorized transition probabilities

satisfy

0 � epss0 � 1, 8s, s0 ∈ S: ð8:26Þ
On the other hand, the truncated SVD also violates the row sum condition (3.2).

Thus, we furthermore require
X
s0
epss0 ¼ 1 8s ∈ S: ð8:27Þ

It is possible to impose the conditions (8.26) and (8.27) by subsequent normal-

ization of the factorization (8.14). Although this may look somewhat artificial at the

first glance, one must take into account that violation of stochasticity by a rank-k
approximation has no deeply rooted causes with respect to content. And the

truncated SVD is still the best approximation.

An alternative remedy consists in using specific nonnegative matrix factoriza-

tions, which we shall consider in the next section.

8.4.3 Nonnegative Matrix Factorizations

In a nonnegative matrix factorization (NMF), we consider the problem (8.1) for a

nonnegative matrix A and require that the factor matrices X, Y, as well, be nonneg-
ative. With regard to the Frobenius norm, we obtain the following problem

statement:

min
X∈Rm�k, Y∈Rk�n

A� XYk k2F,X,Y � 0: ð8:28Þ

As compared with the SVD-based approach, this gives rise to certain advantages

for nonnegative A. Most importantly, the matrices X,Y have a clear interpretation –

as opposed to the SVD. If we consider the columns of the left factor X as basis

vectors, i.e.,

X ¼ x1 . . .j jxk½ �,
then the columns of A,

A ¼ a1 . . .j jam½ �,
are approximately expressed in terms of the basis BX :¼ {x1, . . . , xk}:

aj � x1y1j þ . . .þ xkykj, 1 � j � n:
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Due to nonnegativity of X,Y, large xij’s indicate that the jth basis vector

essentially represents the value of the ith element of aj. Correspondingly, large
values of yij’s indicate a major contribution of the ith basis vector to the element aj.

As compared with SVD, of course, we need to trade off the advantages against

the disadvantages: NMF typically exhibits a worse rank-k approximation than SVD.

Moreover – as opposed to SVD – the approximation is not unique. While the left

singular vectors of SVD are mutually orthogonal, this does not hold for the basis

vectors xi of NMF in general.

A major drawback is the lack of efficient computational methods for NMF that

are suitable for high-dimensional problems. While there are technically mature

standard procedures for SVD computation, like the Lanczos method, as well as

adaptive procedures like that of Brand’s, and their convergence is proven, methods

for NMF are still in their infancy and poorly understood.

Even though the problem (8.28) is convex in each of X and Y, it is not convex in

both variables taken together, which renders determining a globally optimal

solution difficult. For most existing algorithms, convergence to a locally optimal

solution has been shown at best.

Most NMF optimization procedures follow the EM (expectation-maximization)
principle in alternatingly fixing one of the variables and obtaining a new iterate by

optimizing with respect to the other variable.

A typical procedure is the ALS algorithm (alternating least squares), which is

considered to be an important practical tool for computation of an NMF. It should

be noted that we may introduce a column normalization immediately after step 6, so

as to ensure that the column sums up to 1. With regard to the case of a factorization

of transition probabilities discussed in the previous section, we thus automatically

fulfill the conditions (8.26) and (8.27). Hence stochasticity of the factorized matrix

is preserved.

Algorithm 8.3 ALS

Input: positive matrix A ∈Rm�n

Output: positive factor matrices X ∈Rm�k, Y ∈Rk�n

1: initialize X with small random values

2: repeat

3: Y :¼ (XTX)�1XTA ¼ X+A
4: Y :¼ [Y]+
5: X :¼ AYT(YYT)�1 ¼ AY+

6: X :¼ [X]+
7: until convergence

Despite its good practical performance, we cannot guarantee even local conver-

gence of ALS. There is a vast variety of further algorithms for NMF. At present,

researchers are working flat out to make these methods suitable for high-

dimensional problems. The results, however, are still hard to assess.
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8.4.4 Experimental Results

In the following, we shall apply the above-described factorization procedures to

predict product transitions and evaluate the results. To be able to employ the

nonadaptive procedures from this chapter, we divide each of the data sets into a

training and a test set.

We shall first address factorization of the transition probabilities P. To this end,

we first compute the matrix P from the training data. Then, we factorize it and

subsequently use the factorized matrix Pk to predict the considered products of the

test set. To do so, we traverse all sessions of the test set step by step and recommend

for each considered product s the product with the highest transition probability in

Pk, i.e., arg max
s0

pkð Þss0, which we compare with the immediate successor product.

Correspondingly, we also recommend the three strongest products to inquire the

case of multiple recommendations. This so corresponds to the Markov approach

from the previous chapters.

Example 8.6 We consider the shop from Example 8.5, while taking all transactions

and its entire product assortment (2671 products) into account. The training and test

set both consist of 134,832 sessions.

For the factorization, we use each of the three methods presented in this section:

the truncated SVD (8.14), computed by means of the Lanczos Algorithm 8.2 with

Ritz projections; the Lanczos vector projection (LVP), i.e., Algorithm 8.2 with left-

projection approximation (8.25); and the NMF according to the ALS Algorithm 8.3.

The latter has always been carried out with 100 iterations.

The result is displayed in Table 8.3. Here, k denotes the rank, p1 and p3 are

the rates of correct prediction for 1 and 3 recommendations, respectively, eF :¼
kP � PkkF the Frobenius norm of the approximation error, and t the computing time

(in seconds). The last row contains the results for usage of the complete matrix P.
The result is rather disappointing and may be summarized as follows: none of

the three approaches to factorization of transition probabilities is really sensible.

A ridiculously high rank is necessary to achieve a quality of prediction that is

comparable with that attained when using the nonfactorized matrix P.

Table 8.3 Comparison of prediction qualities and error norms of SVD, LVP, and NMF with

variable rank

SVD LVP NMF

k p1 p3 eF t p1 p3 eF t p1 p3 eF t

2 1.98 4.47 4.64 41 0.77 2.59 4.73 0 1.88 4.28 4.64 1

5 2.51 5.61 4.50 48 2.43 5.31 4.59 0 2.22 6.37 4.51 2

50 5.35 9.55 3.44 199 5.14 9.54 3.74 1 5.14 8.56 3.52 26

100 5.75 10.06 2.73 378 5.69 10.00 3.13 2 5.50 9.22 2.98 64

200 6.27 10.69 1.88 757 6.12 10.49 2.19 7 6.09 10.31 2.36 185

500 6.35 10.32 0.74 5168 6.35 10.35 0.75 38 6.35 10.51 2.53 752

558 (full) 6.37 10.33 0
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Further results are the factorization is at least a useful tool for generating new

recommendations. Indeed, the better results of three recommendations as compared

to one recommendation simply result from the low-rank approximation’s generating

more recommendations. Moreover, the SVD turns out to be the best procedure, with

respect to not only approximation error but also quality of prediction. The expecta-

tion that the nonnegativity inherent to NMF give rise to better prediction results turns

out to be false. The deterioration of approximation quality of NMF with increasing

rank (at a constant number of iterations) also reveals that the number of iterations of

ALS must increase with a growing problem size, which results in bad scaling

properties of the method, as the iteration steps themselves are computationally

expensive. At the end of the day, LVP turns out to be the best choice, since it

exhibits considerably better scaling properties – at an only slightly large approxima-

tion error. ■

Example 8.7 Next, we would like to return to computing recommendations

according to the profile-based approach from this chapter, in particular from

Example 8.1, hence based upon all transactions of the session before the prediction.

We shall, however, again, restrict ourselves to prediction of product transitions –

consequently, all clicks are endowed with the reward 1, the remainder with 0.

Thus, the training data act as the matrix A. We use the Lanczos vector projection,

which has turned out to be very efficient in Example 8.6. Thus, we use Algorithm

8.2 to compute the Lanczos vectors Qk from A and the left-projection approxima-

tion (8.25) to compute recommendations for the test data set.

We use the same data set as in Example 8.6. We again compute one or three

recommendations, respectively, and evaluate their prediction rate. Here, we

evaluate the recommendations with respect to the immediately following product,

i.e., in analogy to Example 8.6, and, additionally, with respect to the entire

remainder of the session, in analogy to Example 8.5. The result is displayed in

Table 8.4.

The prediction rates of direct product acceptance may be compared to those from

Table 8.3. Although we see that the low-rank approximation works in principle

(with an optimal rank of approximately 50), the prediction rates are so low that the

approach turns out to be practically irrelevant. This is simply due to the fact that few

sessions are sufficiently long for the prediction to work well. With respect to the

entire remainder of the session, the results are, according to nature, better, but still

poor. The reason for the poor prediction rate as compared to Example 8.5 is that

Table 8.4 Comparison of

prediction rates of an LVP

with variable rank with

respect to the directly

succeeding product and the

remainder of the session

Immediate Remainder of the session

k p1 p3 p1 p3

1 0.001 0.003 0.47 0.76

5 0.55 2.05 1.28 2.50

50 0.61 2.07 1.48 2.98

100 0.60 1.89 1.40 2.62

200 0.67 1.51 1.37 2.20

500 0.64 1.32 1.34 1.79
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therein, all short sessions have been removed and fewer products (namely, those of

the core assortment) are considered. ■
Despite the disappointing results, the question arises of whether the two

approaches to factorization, i.e., the Markov chain-based approach and collaborative

filtering according to the two previous examples, may be combined in a meaningful

way. This, indeed, is possible and will be studied in the course of the chapter in

connection with tensor factorization.

Another way is to use techniques different from matrix factorization, like

hierarchical decompositions, in order to exploit the structure of the probability

matrix and develop corresponding representations based on a small number of

parameters. Interesting combinations of both approaches are hierarchical matrices
(H-matrices) introduced by Wolfgang Hackbusch which rely on local low-rank

approximations, i.e., blocks of the matrix are represented in factorized formats.

H-matrices are a very powerful technique for matrix compression and a topic of

current research. Since it is not a direct factorization technique, we will no further

delve into this topic but refer to the literature [Beb08, GH03, Ha99, HK00].

However, there is still another interesting aspect of matrix factorization important

for recommendation engines – incomplete data. This brings us to the task of

exact matrix completion that has become recently very popular because of some

outstanding and surprising results that have been achieved. Motivated by the revolu-

tionary work on compressed sensing [CRT06, Don06], a signal processing technique
for efficiently reconstructing a signal, some of its pioneers, especially Emmanuel

Candes, Benjamin Recht, and Terence Tao, have leveraged basic ideas to the problem

of exact matrix completion. The matrix completion problem will be discussed in the

next section.

8.5 Back to Netflix: Matrix Completion

In many practical applications, one would like to recover a matrix from a sample of

its entries. In case of recommendation engines, the best known example is the

Netflix price. Users are given the opportunity to rate movies, but users typically rate

only very few movies so that there are very few scattered observed entries of the

data matrix. Yet one would like to complete the matrix so that Netflix might

recommend titles that any particular user is likely to be willing to order. In the

Netflix competition, for each of the users under consideration, a part of her/his ratings

was provided in the training set. For evaluation, the remaining movies the user has

rated were provided, and the task was to guess her/his actual ratings. The Netflix

price was awarded to the recommendation solution of highest prediction rate on the

test set. So the Netflix competition constitutes a classical matrix completion problem.

In mathematical terms, the matrix completion problem may be formulated as

follows: we again consider a data matrixA ∈Rm�nwhich we would like to know as

precisely as possible. Unfortunately, the only information about A is a sampled set
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of entries Aij, (i, j) ∈ Ω, where Ω is a subset of the complete set of entries m� n.
Clearly, this problem is ill posed in order to guess the missing entries without

making any assumptions about the matrix A.
Now we suppose that the unknown matrix A has low rank. In [CR08], Emmanuel

Candes and Benjamin Recht showed that this assumption radically changes the

problem, making the search for solutions meaningful. We follow the guidelines of

[CR08, CT10].

For simplicity, assume that the rank-r matrix A is n � n. Next, we define the

orthogonal projection PΩ : Rn�n ! Rn�n onto the subspace of matrices vanishing

outside of Ω as

PΩ Xð Þij ¼
Xij, i; jð Þ ∈Ω,
0, otherwise,

�
ð8:29Þ

so that the information about A is given by PΩ(A). We want to recover the data

matrix by solving the optimization problem

minimize rank Xð Þ
subject to PΩ Xð Þ ¼ PΩ

�
A
� , ð8:30Þ

which is, in principle, possible if there is only one low-rank matrix with the given

entries. Unfortunately, (8.30) is difficult to solve as rank minimization is in general

an NP-hard problem for which no known algorithms are capable of solving prob-

lems in practical time for (roughly) n � 10.

Candes and Recht proved in [CR08] that, first, the matrix completion problem is

not as ill posed as previously thought and, second, that exact matrix completion is

possible by convex programming. At this, they proposed to replace (8.30) by

solving the nuclear norm problem

minimize Xk k	
subject to PΩ Xð Þ ¼ PΩ

�
A
� , ð8:31Þ

where the nuclear norm kXk* of a matrix X is defined as sum of its singular values:

Xk k	 :¼
X
i

si Xð Þ: ð8:32Þ

Candes and Recht proved that if Ω is sampled uniformly at random among all

subset of cardinality p and A obeys a low coherence condition than with large

probability, the unique solution to (8.31) is exactly A, provided that the number of

samples is

p � Cn
6=5rlogn: ð8:33Þ

In [CT10] the estimate (8.33) is further improved toward the limit nr log n.

172 8 Decomposition in Transition: Adaptive Matrix Factorization



Why is the transition to formulation (8.31) so important? Whereas the rank

function in (8.30) counts the number of nonvanishing singular values, the nuclear

norm sums their amplitude and, in some sense, is to the rank functional what the

convex l1 norm is to the counting l0 norm in the area of sparse signal recovery. The

main point here is that the nuclear norm is a convex function and can be optimized

efficiently via semidefinite programming.

When the matrix variable X is symmetric and positive semidefinite, the nuclear

norm of X is the sum of the (nonnegative) eigenvalues and thus equal to the trace of

X. Hence, for positive semidefinite unknown, (8.31) would simply minimize the

trace over the constraint set

minimize trace Xð Þ
subject to PΩ Xð Þ ¼ PΩ

�
A
�

X
0
,

which is a semidefinite program. Recall that an n � n matrix A is called positive
semidefinite, denoted by A
0, if

xTAx � 0

for all vectors x of length n. For an introduction to semidefinite programming, see,

e.g., [VB96].

For a general matrix A which may be not positive semidefinite and even not

symmetric, the nuclear norm heuristic (8.31) can be formulated in terms of

semidefinite programming as being equivalent to

minimize
1

2
trace W1ð Þ þ trace W2ð Þð Þ

subject to PΩ Xð Þ ¼ PΩ
�
A
�

W1 X
XT W2

	 


0

ð8:34Þ

with additional optimization variables W1 and W2. To outline the analogy

(strongly simplified; for details, see [RFP10]), we consider the singular value

decomposition of X

X ¼ USVT

and of the block matrix

W1 X
XT W2

	 

¼ U

V

	 

S UT VT
� �

leading to W1 ¼ USUT and W2 ¼ VSVT. Since the left and right singular vector

matrices are unitary, the traces of W1 and W2 are equal to the nuclear norm of X.
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By defining the two factor matrices L ¼ US1/2 and R ¼ VS1/2, we easily observe

that trace(W1) + trace(W2) ¼ kLk2F + kRk2F and finally arrive at the optimization

problem

minimize
1

2
Lk k2F þ Rk k2F

� �

subject to PΩ LRT
� � ¼ PΩ

�
A
� : ð8:35Þ

(Please consult [CR08] for a proof of equivalence of (8.34) an (8.35).)

Since in most practical applications data is noisy, we will allow some approx-

imation error on the observed entries, replacing (8.35) by the less rigid

formulation

minimize
1

2
Lk k2F þ Rk k2F

� �

subject to PΩ LRT
� �� PΩ Að Þ 2

F
� σ

ð8:36Þ

for a small positive σ. Thus, in Lagrangian form, we arrive at � the formulation

minimize λ
1

2
Lk k2F þ Rk k2F

� �
þ PΩ LRT

� �� PΩ Að Þ 2
F
, ð8:37Þ

where λ is the regularization parameter that controls the noise in the data.

Formulation (8.37) is also called maximum-margin matrix factorization (MMMF)

and goes back to Nathan Srebro in 2005 [RS05]. Related work was also done by the

group of Trevor Hastie [MHT10].

Problem (8.37) can be solved, e.g., by using a simple gradient descent method.

Interestingly, the first SVD solution submitted to Netflix (by Simon Funk

[Fun06], in 2006) used exactly this approach and achieved considerable progress.

The final price was a mixture of hundreds of models with the SVD playing a

crucial role.

After all, one may ask: what is the difference of the SVD (8.37) to the truncated

SVD (8.14) that we have considered before? This brings us back to the introductory

discussion in Sect. 8.1 about unknown values. The answer is that in (8.37), we

assume only the entries Aij, (i,j) ∈ Ω to be known. In contrast, in our previous

formulation, we consider all entries Aij, (i,j) =2 Ω to be zero. The Netflix competi-

tion, where all entries of A on a test set (of actual ratings of the users) had to be

predicted, is obviously a classic matrix completion problem and hence (8.37) is the

certainly the right approach.

In case of matrix factorization for an actual recommendation task, like that of a

user or session matrix in Example 8.1, or even the probability matrix P, the
discussion is more complex. In fact, we may view all non-visited entries of the

matrix to be zero since the user didn’t show any interest in them. This justifies our
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previous approach. But, on the contrary, we may also argue that there is too little

statistical volume and the user cannot view all products that he/she is potentially

interested in, simply because there are too many of them. This would suggest the

matrix completion approach. So there are pros and cons for both assumptions.

Example 8.8 We next repeat the test of Example 8.6 with the factorization

according to formulation (8.37). Instead of a gradient descent algorithm, we used

an ALS algorithm as described in [ZWSP08] which is more robust.

The results are contained in Table 8.5 whose structure basically corresponds to

that of Table 8.3. Instead of the time, we have included the error norm eΩ which

corresponds to the Frobenius norm eF but is calculated only on the given entries

(i,j) ∈ Ω. Thus, eΩ is equal to the root-mean-square error (RMSE) multiplied by

the square root of the number of entries
ffiffiffiffiffiffiffi
Ωj jp

. Additionally, we compare different

values of the regularization parameter λ.
From Table 8.5 we see that for increasing rank the RMSE is strongly declining,

and we capture the given probabilities on Ω almost perfectly. A rank of 50–100 is

already sufficient to bring the RMSE close to zero, and higher ranks also do not

improve the prediction rate significantly. Unlike in Table 8.3, where we needed

almost full rank to zero the approximation error, this is because here we just have to

approximate the unknown entries.

In contrast to Table 8.3, the overall error eF is slowly decreasing and remains

very high. This is again because we do not approximate the zero values outside Ω.
The prediction rate is comparable to Table 8.3. This indicates that for the proba-

bility matrix P, the approach to consider all non-visited entries to be zero is equally
reasonable like assuming them to be unknown. ■

The result of Example 8.8 does not mean that the matrix completion approach

is outright useless for the recommendation engine task. In fact, it could be, e.g.,

used to complete the matrix of transactions or transitions before it is further

processed.

Table 8.5 Comparison of prediction qualities and error norms for different regularization param-

eter values and with variable rank

λ ¼ 0.1 λ ¼ 0.01 λ ¼ 0.001

k p1 p3 eF eΩ p1 p3 eF eΩ p1 p3 eF eΩ

2 1.18 2.11 13.22 3.62 0.20 1.22 34.52 3.29 0.02 0.32 55.98 3.28

5 2.66 4.83 11.78 3.33 0.96 3.66 29.77 2.93 2.05 3.66 41.52 2.89

50 5.74 9.16 8.13 1.94 5.77 8.21 20.47 0.63 5.41 7.84 27.02 0.55

100 6.13 9.75 7.32 1.80 6.29 9.84 17.62 0.28 6.15 9.12 21.82 0.12

200 6.09 9.86 7.11 1.79 6.32 10.02 16.64 0.28 6.32 9.93 18.06 0.12
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8.6 A Note on Efficient Computation of Large Elements

of Low-Rank Matrices

All of the above-described factorization-based approaches to recommendation

leave us with the computational burden of determining the largest entries of each

column (or row) of a huge low-rank matrix. Interestingly enough, the authors did

not found any publications about this fundamental problem!

A naı̈ve approach would involve computing an explicit representation of the

matrix entries, which incurs O(mn) floating point operations as well as a storage

complexity of mn, and then running a sorting algorithm for each column (or row),

which takes at least another m operations for each row. This amounts to an overall

quadratic complexity, which renders the naı̈ve approach unsuitable for realtime

recommendation applications, where m and n, commonly denoting numbers of

products in a shop or numbers of customers or sessions, respectively, are

notoriously huge.

Hence, if we are to deploy factorization-based prediction in a realtime RE, we

must think of a more efficient method, or even settle for a heuristic algorithm. So

how is this to be attained?

Apparently, to achieve a subquadratic complexity, we must somehow manage to

avoid computing all of the matrix elements to begin with. In an analytical applica-

tion, where the columns are discretized versions of continuous functions with a

certain structure, the complexity issue might simply be remedied by computing

only a few entries of each column and then using an interpolation method along

with a continuous optimization procedure so as to obtain a fair estimate of the

largest entries. Since in our setting, though, there is no continuous framework

whatsoever, an interpolation-based remedy is not an option.

Let us consider a low-rank matrix A :¼ XTY, where X and Y are matrices of

dimensionality r � m and r � n, respectively. Each of the entries aij of A is given

by the inner product xTi yj of the corresponding columns of X and Y. Let us consider
one single column

a :¼ xTy ¼ xTi y
� �

i ∈ 1;...;mf g

of A, where y denotes the corresponding column of Y and indices have been omitted

for the sake of simplicity. Inspired by the interpolation approach, we would like to

estimate the largest entries of a without computing all of the inner products. Since

there are no structural clues like continuity at hand, we are left to our own devices to

discover some exploitable structure. Yet for the whole thing to pay off, the cost of

the discovery process must not exceed its benefits.

In the following, we shall describe a tentative remedy that is based on recur-

sively clustering the columns of X. The so-called k-means clustering, sometimes

referred to as vector quantization in signal processing and related communities,

splits a set of m vectors into k disjoint clusters such that
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min
C1, ...,Ck,C1, ...,Ck

Xk
l¼1

X
i∈Cl

xi � clj jj j22 ð8:38Þ

where C1, . . . , Ck  {1, . . . , m} denote the clusters and c1, . . . , ck ∈r the

cluster centers to be minimized. It is straightforward to verify that if we are given

clusters and keep them fixed in the optimization, corresponding optimal cluster

centers are given by the centroids of the clusters. Conversely, given cluster centers

cl, l ∈ {1, . . . , k}, corresponding optimal cluster may be obtained by assigning

each xi, i ∈ {1, . . . , m}, to its nearest neighbor among the cl. Hence, either the
clusters or the centers may be eliminated from the objective, giving rise to an

equivalent problem. A major drawback is that since (8.38) is not convex, we must

settle for a local optimization. Yet, as described above, given a specific choice of

either clusters or centers, the resulting partial optimization problem is straightfor-

ward to solve. This insight provides us with a fairly easy local optimization method

based on alternating partial optimization.

Interestingly enough, (8.38) may be equivalently rewritten as the matrix factor-

ization problem

min
C∈r�k,B∈m�k

X�CBT
 2

F
s � t �bij∈ 0;1f g,

Xk
s¼1

bis¼18i∈8 1; . . . ;mf g, j∈ 1; . . . ;kf g:

ð8:39Þ

(By virtue of the Moore-Penrose inverse of B, it also becomes clear why partially

optimal cluster centers are given by the centroids of the clusters.)

Not only does this enable to express the entire procedure in terms of linear

algebra, but also, for the generic case that the desired number of clusters be smaller

than the rank of X, does it provide us with a clue as to how to find a reasonable

initial guess by virtue of relaxation: omitting the constraints yields

min
C∈r�l,B∈m�l

kX � CBTk2F, ð8:40Þ

which is nothing but an ordinary low-rank factorization problem that may be solved

by means of SVD.

Now, given an optimizer eC, eB of (8.40), how are we to construct an initial guess

C0, B0 for (8.39)? A straightforward way that bears the advantage of circumventing

normalization issues consists of taking B0 to a feasible matrix that best approxi-

mates eB, which is obtained by taking each row of B0 to be zero everywhere except

for the element at which the corresponding row of eB attains its largest value (the

nongeneric case of a draw is handled by picking one of the possibilities at random),

where we assign the value 1.

Herein, the circumstance that in many of the application previously described in

this chapter, X has orthonormal rows comes in particularly handy since this spares
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us from computing an SVD of X in order to solve (8.40): we may simply take BT to

be composed of the first k rows of X and C to be composed of the first k column unit

vectors. In other words, the desired initial guess is available right away through

“rounding” X itself to a feasible solution.

For more details about the connection of k-means and SVD and nonnegative

matrix factorization, we refer to the work of Chris Ding [DHS05, DLJ10].

But how exactly may clustering figure in estimating the largest entries of a

low-rank matrix? The procedure we would like to propose here is as follows: the

column set of X is to be divided into k clusters, and each of the clusters is to be

k-clustered itself, and so on in a recursive fashion until we arrive at a partitioning

each set of which contains fewer than k elements. For simplicity’s sake, let us take

k :¼ 2. Imagine the recursive cluster centers to be arranged in a tree to which an

auxiliary root node connected to the two top-level cluster centers has been added.

Starting at the root, we proceed by computing the inner product of y and the cluster
centers corresponding to the children of the current node and move on to the child

node where the inner product is largest. Applying this criterion recursively, we

arrive at a leaf node that corresponds to a specific column x of X. Arguably, xTy

should be fairly close to the greatest xTi y, i ∈ {1, . . .,m}. Having deleted the node

pertaining to x from our tree, we apply the same procedure to obtain an estimate of

the second largest entry of a and repeat this procedure until we have gathered a

sufficient amount of large elements.

Please note that, apart from the computational cost of clustering, which needs to

be carried out only once, though, estimating the largest entry of a in the above-

described fashion would require only O(logk m) rather than O(m) operations, which
makes it an appealing candidate.

By means of linear algebra, it is even possible to assess the quality of our

estimates by providing error bounds and provide a rigorous framework for the

above procedure.

Lemma 8.1 Let (V,h�,�i) be an inner product space. Then, for all c, v, w ∈ V,

c;wh i � wk k c� vk k � v;wh i � c;wh i þ wk k c� vk k,

where :k k :¼ ffiffiffiffiffiffiffiffiffi�; �h ip
, i.e., the norm induced by the inner product.

Proof The statement is an immediate consequence of the Cauchy-Schwarz

inequality: it holds that

v;wh i � c;wh ij j ¼ v� c,wh ij j � v� ck k wk k,

which, together with the simple fact that

� v;wh i � c;wh ij j � v;wh i � c;wh i � v;wh i � c;wh ij j,

yields the desired result. □
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Proposition 8.7 Let (V,h�,�i) be an inner product space and S  V. Then, for
all c, w ∈ V,

c;wh i � wk kmin
v∈S

v� ck k � max
v∈S

v;wh i � c;wh i þ wk kmax
v∈S

v� ck k

Proof Taking maximums on both sides of the rightmost inequality of the above

Lemma yields

max
v∈S

v;wh i � max
v∈S

c;wh i þ wk k v� ck kð Þ
� max

v∈S
c;wh i þmax

v∈S
wk k v� ck kð Þ

¼ c;wh i þ wk kmax
v∈S

v� ck k:

Similarly, by taking maximums in the left inequality, we obtain

max
v∈S

v;wh i � max
v∈S

c;wh i þ wk k v� ck kð Þ
� max

v∈S
c;wh i þmin

v∈S
wk k v� ck kð Þ

¼ c;wh i þ wk kmin
v∈S

v� ck k: □

This result equips us with a means to enclose the exact maximum inner product

between a vector in the considered cluster and a given vector, while the only

information that is required is the inner product between the given vector and the

cluster center and the maximum distance from the cluster center. The latter,

emerging as a side product of the foregoing clustering procedure, may safely be

regarded as readily available.

By virtue of our bound, we may retrofit our branching heuristic into a full-blown

branch-and-bound procedure which computes the exact result, though forfeiting a

large degree of efficiency. To balance the tradeoff between fast computation and

accuracy, we introduce a parameter h ∈ [0;1] to relax the bound.

Let T denote the refinement tree obtained from recursive k-means clustering of

the xi, and let children(.) denote the functions that map a node of T to the set of its

children. We define for t ∈ T

uh tð Þ :¼ ct; yh i þ h yk kmax
i∈Ct

xi � ctk k, lh tð Þ :¼ ct; yh i � h yk kmin
i∈Ct

xi � ctk k,

where Ct, ct denote the cluster and cluster center corresponding to t, respectively.
Moreover, in the below-described algorithm, select_node(�) denotes some function

which judiciously picks the next node to be refined from a list of candidate nodes (one

may, e.g., choose the node t with the greatest upper bound uh(t) among all nodes in

the list).
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Algorithm 8.4 Branch-and-bound method for estimating argmaxi∈m vi;wh i
Input: refinement tree T (obtained from recursive k-means clustering), relaxa-

tion parameter h ∈ [0;1]

Output: list (approximate) maximizers and the corresponding value

1: L :¼ {root(T )} ⊲ initialize list of candidate nodes with the root of the

refinement tree

2: repeat

3: t1 :¼ select_node (L) ⊲ select node to be branched

4: t1, . . . , tk :¼ children(t)
5: L :¼ L\{t}
6: for i ¼ 1, . . . , k do
7: if uh(ti) � maxs∈Llh(s) then
8: L :¼ L [ {ti}
9: if lh(ti) � maxs∈Llh(s) then

10: for s ∈ L do

11: if uh(s) < lh(ti) then
12: L :¼ L\{s} ⊲ discard node if necessary

13: end if

14: end for

15: end if

16: end if

17: end for

18: until maxs∈Llh(s) ¼ maxs∈Luh(s) ^ L contains a leaf node of T
19: return L, maxs∈Llh(s)

If h is taken to be zero, this procedure comes down to the heuristic method

outlined in the beginning of this section, whereas h ¼ 1 gives rise to an exact

though by far less efficient procedure. To attain a satisfactory compromise between

accuracy and efficiency, the parameter h must be adjusted from experience with

respect to the nature of the inputs under consideration.

Since it would exceed the scope of this chapter, we leave a final assessment of

the effectiveness of the above-devised procedure for future research. In first appli-

cations it proved to be very effective, where h was about 0.95.

8.7 Summary

We have seen that matrix factorization is a potentially valuable instrument of

approximation with regard to devising recommendation engines. It offers different

advantages. It may reduce the complexity of data representation (with respect to

models of the environment or the cost function) and thus render the practical

usability of the data feasible in the first place. Moreover, it allows for a
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regularization with a resulting increase of quality by removing noise from the data.

It is also possible to develop incremental factorization models such as the Brand’s

incremental SVD.

At the same time, the difficulties related to factorization for recommendation

engines have clearly emerged. First, it has unequivocally turned out that the

SVD-based factorization of the matrix of transition probabilities is effective with

respect to neither of data compression nor increase of prediction rates. The only

advantage consists in the opportunity of generating new recommendations by virtue

of the low-rank approximation. A factorization of transactions over the sessions has

turned out to be sensible, especially with regard to an increase of the prediction rate,

but the yield was rather poor and, moreover, required longer sessions, which rarely

occur in practice.

Modified formulations did not seem to help very much. Especially the nonneg-

ative matrix factorization and the one based on Lanczos vectors did (in line with

theory) lead to even worse prediction results than the SVD. Whereas the Lanczos

vector calculation is at least cheaper than the SVD, for the NMF no comparable

standard algorithms exist. In practice, here the ALS turns out to be most powerful.

We also studied and validated the matrix completion approach, which considers all

non-observed transitions to be unknown instead of zero. However, practical results

turned out to be even worse.

All in all, we must conclude that the direct matrix factorization barely gives rise

to a significant improvement of the prediction rate of the recommendation models –

a circumstance which (as applied to prediction methods in general) has already

become clear in the Netflix contest mentioned in Chap. 2.

Of course, this does not imply that devising better factorization models with

regard to prediction rate is impossible in principle. One way is to incorporate

additional RE-related assumptions into the factorization model. Another way is to

include further dimensions into the factorization. This will be studied in the next

chapter.
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Chapter 9

Decomposition in Transition II:

Adaptive Tensor Factorization

Abstract We consider generalizations of the previously described SVD-based

factorization methods to a tensor framework and discuss applications to recommen-

dation. In particular, we generalize the previously introduced incremental SVD

algorithm to higher dimensions. Furthermore, we briefly address other tensor factor-

ization frameworks like CANDECOMP/PARAFAC as well as hierarchical SVD and

Tensor-Train-Decomposition.

9.1 Beyond Behaviorism: Tensor-PCA-Based CF

9.1.1 What Is a Tensor?

Historically, the concept of a tensor originated in differential geometry as a calculus

for dealing with multilinear forms on manifolds. In recent years, thought, tensor-

based approaches have made their way into numerical analysis of partial differen-

tial equations to model highly multivariate functions and, more importantly, into

data mining as formal frameworks for multimodal data. We shall address the latter

in more detail in the subsequent section after introducing the basic notions and

notations related to the concept in the following.

If we conceive of a matrix as a two-dimensional array, then, in a nutshell, a tensor

is a generalized matrix in that it may be thought of as a d-dimensional array, where

d may be an arbitrary natural number. A more formal version of this definition

suffices for the purpose pursued herein.

Definition 9.1 A (real) d-mode tensor of dimensionality (n1, . . . , nd) ∈ Nd is a

sequence of real numbers indexed by the set n1 � . . .� nd . We denote the set of

d-mode tensors of dimensionality (n1, . . . , nd) ∈ Nd by Rn1, ...,nd .

Multi-indexes are somewhat cumbersome to deal with. Thus, to achieve a clear

representation, we introduce the following notation.

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_9, © Springer International Publishing Switzerland 2013
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Notation 9.1 Multi-indexes are denoted by bold small letters, i.e., (i1, . . . , id) ∈ Nd

is denoted by i. Furthermore, the multi-index set n1 � . . .� nd , induced by

n ¼ (n1, . . . , nd), is denoted by n . Given multi-indexes m ¼ m1; . . . ;md1ð Þ, n ¼
n1; . . . ; nd2ð Þ, their concatenation is denoted by

m; nð Þ :¼ m1, . . .md1 , n1, . . . , nd2ð Þ:

We state the following fundamental operations with tensors:

1. Addition/subtraction

Rm �Rm ! Rm,

aið Þi∈m; bj
� �

j∈m

� �
� aið Þ � �bj

�
:¼ ai � bj
� �

i∈m:

2. Contraction

Let p ¼ ( p, q), n ¼ (1, . . . , mp�1, mp + 1,. . ., mq�1, mq+1, . . . , md)

Rm ! Rn

a i;kð Þ
� �

i;kð Þ∈ n;pð Þ

� �
� aið Þ :¼

X
k∈p

a i;kð Þ

0
@

1
A

i∈n

:

3. Inner product

Rm �Rm ! R,

aið Þi∈m; bj
� �

j∈m

� �
� aið Þ; bj

� �� 	
:¼
X
i∈m

aibi:

4. Outer product (tensor product)

Rm �Rn ! R m;nð Þ,
aið Þi∈m; bj

� �
j∈n

� �
� aið Þ � �bj

�
:¼ aibj
� �

i;jð Þ∈ m;nð Þ :

5. Contracted product (multilinear product)

Let m∈Nd1, n∈Nd2,p∈Nδ:

�δ : R
m;pð Þ �R n;pð Þ ! Rðm,nÞ,

ai,kð Þ i;kð Þ∈ m;pð Þ ; b j;kð Þ
� �

j;kð Þ∈ n;pð Þ

� �
� a i;kð Þ
� ��δ b j;kð Þ

� �
:¼

X
k∈p

a i;kð Þb j;kð Þ

0
@

1
A

i;jð Þ∈ m;nð Þ

:
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6. Multilinear p-mode product with a matrix

Special case of 5 for δ ¼ 1 and matrix b

�p : R
m1;...;mp�1;mp;mpþ1;...;mdð Þ �R n;mpð Þ ! R m1;...;mp�1;mp;mp�1;...;mdð Þ,

aið Þi∈m; bjk
� �

j;kð Þ∈ n;mp

� �
 !

� aið Þ�p bjk
� �

:¼
Xmp

ip

ai1...ip...id bjip

 !

i;jð Þ∈ m;nð Þ
:

Furthermore, we endow the vector space Rn (w.r.t. the previously defined sum

and scalar multiplication) with the Euclidean inner product

A;Bh i :¼
X
i∈n

aibi

and the thus induced (generalized) Frobenius norm

Ak k2F :¼ A;Ah i:

Definition 9.2 Let A ∈ Rn, k ∈ d. We define n(k) :¼ (n1,. . ., nk � 1,nk+1, . . . , nd).

Furthermore, let υ : n kð Þ ! n kð Þ








 be 1–1, i.e., an enumeration. Then the matrix A(k)

with entries

a
kð Þ
ikυ i kð Þð Þ :¼ ai, i ∈ n

is referred to as k-mode matricization of A.

As regards the scope of this chapter, the choice of enumeration is inconsequen-

tial if deployed consistently. Hence, in what follows, we shall consider the k-mode

matricization of a given tensor as a uniquely defined object.

Example 9.1 Let A∈R 2;2;2ð Þ with entries

a 1;1;1ð Þ ¼ �1, a 1;2;1ð Þ ¼ 1, a 1;1;2ð Þ ¼ 0, a 1;2;2ð Þ ¼ 0,

a 2;1;1ð Þ ¼ 1, a 2;2;1ð Þ ¼ 1, a 2;1;2ð Þ ¼ 0, a 2;2;2ð Þ ¼ 0:

A graphical rendition of this tensor is provided by Fig. 9.1.

-1

1

1

1

0

0

0

0

Fig. 9.1 Illustration

of a tensor A∈R 2;2;2ð Þ
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Then its matricizations are given by

A 1ð Þ ¼ �1 1 0 0

1 1 0 0

� �
,

A 2ð Þ ¼ �1 1 0 0

1 1 0 0

� �
,

and

A 3ð Þ ¼ �1 1 1 1

0 0 0 0

� �
: ■

9.1.2 And Why We Should Care

In classical data mining, matrices are deployed to model weighted binary relations,

such as the session-product relation in the framework presented in Sect. 8.1. Tensor

algebra provides a means to model higher-order relations. The latter, e.g., arise in

context-aware models: with regard to user-rating prediction, it is natural to expect

that certain extrinsic circumstances of the situation in which a user is prompted for a

rating affect the latter. As an illustration, consider the following datasets described

by [KABO10]:

[The first dataset] contains 1464 ratings by 84 users for 192movies. . . . [The users] were asked
to fill out a questionnaire on movies using a rating scale ranging from 1 . . . to 13 . . . . They
were also queried on additional information about the context of the movie-watching expe-

rience[:] . . . companion, day of the week, if it was on the opening weekend, season, and year

seen. . . .
[The second dataset] contains food rating data from 212 users on 20 foodmenus. . . . The users
were asked to rate the food menu while being in different levels of hunger. Moreover, some

ratings were done when really experiencing the situation (i.e., participants were hungry and

ordered the menu) and some while imagining the situation. For example, in the virtual

situation participants could be full, but should have provided a rating for a food menu

imagining that they are hungry.

The above-outlined datasets are established upon relations of genuinely high order.

Beyond that, it is also possible to construct higher-order relations by combining

lower-order ones. For example, users may endow products in a shop with tags and

provide (implicit or explicit) ratings for both products and tags. This gives rise to

two weighted relations, which may be combined as follows: if a particular user

u endows the product p with a rating score Sp which is tagged with t, which, in turn,
has been given a score of st by the user u, then the triplet (u,s,t) is assigned with the
value sp � st. In a similar fashion, one might take background information on users

and products into account, which leads to relations of arbitrary order.

The above examples give rise to the question of whether the previously

developed framework of PCA-based CF may be extended to the tensor case in a
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meaningful way. This entails a considerable amount of mathematical as well as

engineering-related issues that will be tackled in the following.

Furthermore, we shall be interested in applying tensorial factorization models as

a means of regularized estimation of transition probability functions of Markov

decision processes so as to tackle large state space arising from state augmentation.

9.1.3 PCA for Tensorial Data: Tucker Tensor
and Higher-Order SVD

Definition 9.3 A d-mode n-dimensional Tucker tensor of (Tucker) rank t � n is a

tensor

A ¼ C�1U1�2 . . .�dUd, ð9:1Þ

where C ∈ Rt denotes the core tensor and Uk ∈ R nk ;tkð Þ, k ∈ d the mode factors.

Remark 9.1 A Tucker tensor is completely determined by its core tensor and the

mode factors. Therefore, with a slight abuse of language, we shall henceforth

identify a Tucker tensor (9.1) with the tuple (U1, . . .,Ud, C).
Thus, for each component ai1, ... , id of A decomposition, (9.1) reads as

ai1, ... , id ¼
Xt1
j1¼1

. . .
Xtd
jd¼1

cj1, ... , jd u
1
i1, j1

. . . ud
i1d , jd

,

where cj1, ... , jd are the components of the core tensor C and uki;j are the elements of

the factor Uk.

In utmost generality, tensor factorization problems in terms of the Tucker format

may be stated as instances of the framework

min
U1∈C1, ... ,Ud∈Cd,C∈C0

f A,C�1U1�2 . . .�dUdð Þ, ð9:2Þ

where the cost function f stipulates a notion of approximation quality and con-

straints, e.g., nonnegativity or orthonormality, are encoded in the sets C0, . . ., Cd.

Please note that the matrix factorization framework (8.1) coincides with the special

case of (9.2) where d ¼ 2.

Definition 9.4 Let A∈Rn und t � n. Then a Tucker tensor

At ¼ C�1U1�2 . . .�dUd,
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where

C :¼ A�1U
T
1 �2 . . .�dU

T
d

and Ui, i ∈ d, is a matrix of left singular vectors corresponding to the ti largest

singular values in an SVD of A(i) and is referred to as truncated higher-order

singular value decomposition (HOSVD) of rank-t. The ik th k-mode singular

value of A is defined as

s
kð Þ
ik :¼ cið Þ

i kð Þ∈n kð Þ
 

F
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i kð Þ∈n kð Þ

c2i :

s

As in thematrix case, we shall refer to the factorization corresponding to the rank-n

truncated HOSVD of an n-dimensional tensor simply as anHOSVD thereof. Similarly

to Fig. 8.2, a graphical representation of the (truncated) HOSVD is given in Fig. 9.2.

Definition 9.4 immediately leads to Algorithm 9.1 of a truncated HOSVD.

Algorithm 9.1 Truncated HOSVD

Input: tensor A∈Rn, truncation rank t � n

Output: factor matrices Uk ∈R nk ;tkð Þ, k ¼ 1, . . . , d, core tensor C∈Rt

1: for k ¼ 1, . . . , d

2: calculate matrix Uk ∈R nk ;tkð Þ of principal left singular vectors of

matricization A(k)

3: end for

4: C :¼ A � 1U
T
1 � 2 . . . � dU

T
d

Example 9.2 Consider the tensor A from the previous Example 9.1. As one easily

verifies, it holds that

A 1ð Þ A 1ð Þ
� �T

¼ 2 0

0 2

� �
,

n3

n2

n2

n1

U3

U2

n3

n2

n1
n1

A = U1

n3

n2

n1

C

n3

Fig. 9.2 Illustration of the HOSVD for a 3-mode tensor A. The dotted lines indicate the

boundaries of the submatrices or tensors, respectively, corresponding to a truncated HOSVD
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A 2ð Þ A 2ð Þ
� �T

¼ 2 0

0 2

� �
,

and

A 3ð Þ A 3ð Þ
� �T

¼ 4 0

0 0

� �
:

Hence, U1 ¼ U2 ¼ U3 ¼ I. Since there are multiple eigenvalues in the first two

modes, there is no unique (1,1,2) truncated HOSVD. Instead, any of the subspaces

spanned by e1 or e2 are 1-dimensional principal subspaces of both of thematricizations

A(1) and A(2). Assigning eU1 :¼ eU2 :¼ e1 yields a core tensor C
11 with entries

c 1;1;1ð Þ ¼ �1, c 1;1;2ð Þ ¼ 0:

The remaining three choices give rise to always the same core tensor Ĉ with

entries

ĉ 1;1;1ð Þ ¼ 1, ĉ 1;1;2ð Þ ¼ 0:

The respectively induced rank-(1,1,2) approximations to A are given by

eA 1ð Þ
11 ¼ �1 0 0 0

0 0 0 0

� �
,

eA 1ð Þ
12 ¼ 0 1 0 0

0 0 0 0

� �
,

eA 1ð Þ
21 ¼ 0 0 0 0

1 0 0 0

� �
,

and

eA 1ð Þ
22 ¼ 0 0 0 0

0 1 0 0

� �
:

In each case, the approximation error is the same. ■
The following properties of the HOSVD have been worked out.

Theorem 9.1 (Theorem 2 in [DLDMV00]) The core tensor of a (rank-n) HOSVD
of A∈Rn satisfies:
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1. Subtensors of order d – 1 are mutually orthogonal, i.e.,

cið Þ
i kð Þ∈n kð Þ ; cj

� �
j kð Þ∈n kð Þ i / δik jk8k ∈ d, ik, jk ∈ nk :

D

3. The k-mode singular values are ordered, i.e.,

s
kð Þ
ikþ1 � s

kð Þ
ik
8k ∈ d, ik < nk:

The subsequent bound is an improvement over that in Property 10 in

[DLDMV00] by a factor of 1
d through a slight modification of the proof therein.

Proposition 9.1 A rank-t truncated HOSVD At of A∈Rn satisfies

A� Atk k2F � 1

d

X
k∈d

X
tk<ik�nk

s
kð Þ
ik

� �2
:

Proof

A� Atk k2F ¼
X
t<i�n

c2i

¼ 1

d

X
k∈d

X
t<i�n

c2i

� 1

d

X
k∈d

X
tk<ik�nk

X
i kð Þ∈n kð Þ

c2i

¼ 1

d

X
k∈d

X
tk<ik�nk

s
kð Þ
ik

� �2
: □

As opposed to the matrix case, the rank-t truncated HOSVD does not provide an
optimal rank-t approximation. Nevertheless, it appears to be a promising candidate

for a tensor generalization of PCA-based CF because:

1. Certain properties of the matrix case are preserved.

2. The quality of approximation may be estimated.

3. The computation of the HOSVD reduces to the computation of matrix SVDs.

4. In particular, this permits incremental computation.

5. The projection approach to the prediction of unknown values may be carried

over in a straightforward fashion.

A major drawback, however, is the exponential dependency of computational

complexity on the number of modes. Therefore, it is suitable for applications with a

moderate number of modes only. To conclude this section, we point out that a

mode-scalable generalization of the SVD will be introduced in Sect. 9.3.
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9.1.4 . . . And How to Compute It Adaptively

The tensor generalization of the SVD updating problem discussed in Sect. 8.2 is as

follows: how can an HOSVD of a tensor eA∈Rn with entries

eai ¼ ai, i � n� ed
b
i dð Þ , id ¼ nd

�

where A ¼ aið Þ∈Rn�ed ,B∈Rn dð Þ
, and (ek)z :¼ δzk be expressed in terms of an

HOSVD of A? We refer to the d–1-mode subtensor B of eA as a slice.

Establishing a new tensor by adding a slice to a given one generalizes the previously

discussed situation in which a new matrix is established by adding a column.

To extend the adaptive framework presented in Sect. 8.3.2, we need to observe

the resulting changes in the mode matricizations, which are graphically illustrated

by Fig. 9.3. Let us first consider the case where k 6¼ d and assume that the multi-

index enumeration chosen for the matricization eA kð Þ satisfies

id � jd ) υ ið Þ � υ jð Þ 8i, j∈n:

(This may, e.g., be achieved by using a lexicographic ordering.) Then the kth
mode matricization is of the form

eA kð Þ ¼ A kð ÞB kð Þ
h i

,

whereA(k), B(k) are kthmodematricizations of the tensorsA, Bwith respect to a suitably

chosen enumeration. Hence, if α denotes the number of columns of B(k), we may

obtain an SVD of eA kð Þ, given an SVD of A(k), which is assumed to be available from

previous computations, by applying the procedure presented in Sect. 8.3.2 α times.

3-mode

2-mode

1-modeFig. 9.3 Matricization of

a 3-mode tensor after

adding a matrix “to the

right,” i.e., in mode

2 (d ¼ 2)
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Let us now turn to the “troublemaker mode,” i.e., the frontal mode, k ¼ d. In this
case, a matricization is of the form

eA dð Þ ¼ A dð Þ

B dð Þ

� �
:

Here, applying the procedure to eA dð Þ
� �T

and assigning the appropriate matrix

of right singular values toUdmay do the trick. Please note, however, that avoiding

any explicit representation of a matrix of right singular vectors of a matrix to

which columns are appended is critical as regards realtime scalability of the

procedure. Therefore, we shall develop a method to compute the projection of

the added slide onto the range of the considered matrix of singular vectors in the

following. Let

eA dð Þ
� �T

¼: eA ¼ eU S z
0T c

� �

|fflfflfflfflffl{zfflfflfflfflffl}
¼:eS

eVT

be a decomposition according to (8.15).

Moreover, letU S V
T
be a truncated SVD of eS, Û :¼ eUU , and V̂ :¼ eVV . Then

Û S V̂ T is a truncated SVD of eA. We shall seek after eAV̂ V̂ Ten, i.e., the projection of

the last column of eA onto the principal subspace spanned by V̂ , where en denotes
the vector of all zeros except for the last entry, which is 1. Since

SV
T
en ¼ U

TeSen ¼ U
T z

c

� �

and eVTen ¼ en by equation (8.15), we obtain

eAV̂ V̂ Ten ¼ eUU U
T z

c

� �
, ð9:3Þ

which avoids the “column scaling.”

The entire update procedure is summarized in Algorithm 9.2.

Algorithm 9.2 HOSVD update

Input:matricesUk∈R nk ;tkð Þ of principal left singular vectors of A(k), k ¼ 1, . . . ,

d � 1, matrix U of principal left singular vectors of (A(d ))T, new slice B∈Rn dð Þ

(continued)
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Algorithm 9.2 HOSVD update (continued)

Output: matrices Uk∈R nk ;tkð Þ of principal left singular vectors of [A(k)B(k)], k ¼
1, . . . , d � 1, matrix U of principal right singular vectors of eA dð Þ

� �T
¼: eA ¼

A dð Þ� �T
B dð Þ� �Th i

, updated slice B according to updated HOSVD

1: UpdateUk, k ¼ 1, . . . , d � 1 according to the above-described incremental

SVD (Algorithm 8.1)

2: A :¼ (A(d ))T, b :¼ (B(d ))T

3: eA :¼ A b½ 	
4: z :¼ UTb, c :¼ kb � Uzk2
5: Compute eU and U

6: Û :¼ eUU

7: b :¼ Û U
z
c

� �

8: B(d ) :¼ bT

9: for k ¼ 1, . . . , d � 1

10: B(k) :¼ UkU
T
k B

(k)

11: end for

We shall briefly explain Algorithm 9.2. It crucially relies on the decomposition

(9.4). First, we update the frontal mode B � UdU
T
d , i.e., by virtue of

eA dð Þ
� �T

V̂ V̂ Ten. The latter is then projected along the other modes by means of

(9.5). This relies on the insight that, for the left-projection, we only need the new

slice B to compute its approximation. Unfortunately, this does not hold for the right-

projection, which is needed in the frontal mode, and we must approximate the entire

tensor (even if only adaptively), to obtain the updated slice. This renders the

application to computing recommendations more complicated; we shall discuss

this in more detail in the next section.

Another drawback is the fact that due to the large number of rows, steps 5 and

6 are computationally expensive and, thus, the procedure scales poorly.

9.1.5 Computing Recommendations

To compute recommendations, we might initially proceed along the lines of the

outset of Sect. 8.3.3 by adding the updated slice of the current session B to the

previous tensor A in each step of the session and carrying out the incremental

learning step according to Algorithm 9.2. The latter provides the approximated slice

Bt, which we deploy to forecast the current session. When the session terminates,

we compute the HOSVD of eA, i.e., we carry out a complete learning step.
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Similarly, we may divide into a training and a test set along the sessions, approx-

imate the training set by means of offline learning (recommendable by means of the

online HOSVD from Algorithm 9.2), and use the approximation to forecast the

remaining session entries in the test set.

Of course, we would prefer the efficient way of left-projection approximations,

similarly to Sect. 8.3.3. First, we have, correspondingly to (8.18) according to

Definition 9.4,

At ¼ A�1U1U
T
1 �2 . . .�d�1Ud�1U

T
d�1 � UdU

T
d , ð9:4Þ

i.e., the approximated matrix is the multilinear product of the projections of A on the

spaces of the singular vector bases of its n-matricizations. Thus, the question is: can

we generalize the left-projection approximation (8.20) to the d-dimensional case for

the slice B, i.e.,

Bt ¼ B�1U1U
T
1 �2 . . .�d�1Ud�1U

T
d�1? ð9:5Þ

Besides the formal analogy, this conjecture is supported by the fact that, in the

HOSVD Algorithm 9.2, too, the projection (9.5) is carried out at the end. Of course,

the answer is negative (since, otherwise, the frontal mode in Algorithm 9.2 would

be redundant).

Sadly enough, the left-projection approximation is not exact for n > 2, i.e., not

consistent with (9.4), since it holds in some cases that

At 6¼ A�1U1U
T
1 �2 . . .�d�1Ud�1U

T
d�1:

One may easily convince oneself of this by a straightforward evaluation of an

example. Only for the special case that the SVD corresponding to the frontal mode

A(d ) is of full rank does (9.5) hold unrestrictedly. This does not mean that (9.5) is

outright useless for the high-dimensional case; in practice, it often yields suffi-

ciently good results, as we shall see later. But caution is advised.

Example 9.3 In the two-dimensional case, the “slice” B corresponds to a vector,

e.g., the products (dimension 1) within a session (dimension 2), and we obtain

according to (9.5)

Bt ¼ U1U
T
1 B,

which complies with the SVD case (8.20).

In the following, we shall present experimental results for a real-world data set

and compare those to the predictions obtained from a three-dimensional tensor

factorization. To this end, we consider the transaction data of a mail-order

company. The considered data set encompasses 3,016 products and consists of

25,000 transactions from some 800 sessions. We split the data set into a training

set of 20,000 transactions, from which we learn the initial factorization model, and

the actual test set of 5,000 transactions.
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The products correspond to the first, and the sessions to the second dimension.

We deploy the adaptive SVD Algorithm 8.1 and compare the (absolute) prediction

rates (i.e., numbers of correctly predicted products) with respect to the test set. To

do so, we establish the vector a over all products, whereupon we assign the value

1 to the hitherto visited products and 0 to the remaining ones. By virtue of the

projection procedure (8.21), we compute the vector ak and recommend the product

with the largest value therein. Upon termination of each session, we carry out an

incremental SVD step, i.e., compute the new rank-k SVD.
The result is displayed in Table 9.1.

Rank 500 yields the highest prediction rate, namely, 152
5000

� 100% 
 3%. ■

Example 9.4 Let us now turn to the three-dimensional case. The selected product

may, for instance, act as the first dimension, the time of transaction as dimension

2, and, again, the session as dimension 3. A new slice thus corresponds to the matrix

of the hitherto occurred rewards for the selected products and the times of their being

invoked. Then we may write (9.5) as follows (provided that one insists on using it

despite its lack of correctness):

Bt ¼ U1U
T
1 BU2U

T
2 :

Thus, or by virtue of Algorithm 9.2, respectively, we obtain a matrix of scores

over products and times. For the moment of the next prediction, we insert its time

and recommend in the corresponding column again the products with the entries of

the highest scores.

In the following, we consider the experimental results for the data set from the

previous Example 9.3. For technical reasons, though, we use product variations rather

than times as a new dimension.

We shall explain this in more detail. The retailer organizes the product by a

master-variation scheme. Thereupon, the master describes the product and the varia-

tion its varieties, which, in this case, are given by colors. A possiblemastermight, e.g.,

be “Nike T-Shirt Air Jordan T-56” and the available colors “white,” “blue,” and “red.”

Hence, the master does not exist physically, but only the pairs (master, variation).

Table 9.1 Comparison of

prediction rates (absolute):

adaptive SVD with

variable rank

k p1

10 26

50 105

100 132

200 142

300 145

400 140

500 152

600 148

700 148

800 145
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The considered data set thus comprises 3,016 masters (i.e., products) and 596 var-

iations (i.e., colors). So, we would like the variation to act as another dimension. All in

all, we incorporate the master (dimension 1), the variation (dimension 2), and the

session (dimension 3). The factorization according to Algorithm 9.2 is carried out

on the training data, and we use the projection procedure (9.5) for the evaluation.

Thus, the employed method is consistent with that in the previous example with an

initial training set of 20,000 observations and a test set of 5,000 observations for the

actual evaluation.

Hence, on each product view, the slice B is formed as a matrix over all masters

and variations, whereupon we assign the value 1 to the hitherto considered prod-

ucts, i.e., their (master, variation) pairs, and 0 to the rest. We compute the updated

slice Bt by means of the projection procedure (9.5) and recommend the (master,

variation) pair with the highest value therein. After each session, we carry out an

incremental learning step with respect to all modes except the frontal one. This

corresponds to step 1 of Algorithm 9.2.

The result is displayed in Table 9.2 and in Fig. 9.4.

Table 9.2 Comparison of prediction rates (absolute): adaptive HOSVD with variable ranks

Rank w.r.t. the variation mode

Rank w.r.t. the master mode 10 100 200 300

10 48 56 56 55

100 104 120 121 126

200 122 139 136 138

300 136 156 151 149

400 141 146 142 145

160

140

120

100

80

60

40
400

350
300 300

250 250
200 200

150 150

Rang bzgi.des Variation-ModesRang bzgi.des Master-Modes

P
ro

gn
os

gü
te

100 100
50 50

0 0

Fig. 9.4 Illustration of the prediction rates (absolute): adaptive HOSVD with variable ranks
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Obviously, the method works out. Moreover, the result is somewhat better

than that of the two-dimensional case in Table 9.1. The improvement is hitherto

modest, though.

We shall now consider the complete HOSVD Algorithm 9.2 for evaluation. This

is consistent with the just-described approach of a projection procedure, however,

including the frontal mode. For the latter, we employ the somewhat awkward online

procedure (Algorithm 9.2).

To do so, we must carry out steps 2–7 of Algorithm 9.2 for the frontal mode d after
each product view leading to an update of the slice B, which, in particular, includes

the incremental update step 5, and delete the updated matrix U afterward. Then we

apply the projection procedure (9.5) to the thus updated slice B(d ), which is consistent

with steps 8–10. We save U not until termination of the session. Hence, the actual

“learning” takes place not until the end of the session.

The prediction rate of the complete HOSVD, along with that of the foregoing

procedures, is summarized in Table 9.3. For the HOSVD, we need 3 ranks, namely,

one for each of the dimensions of the masters, the variations, and the sessions. Sadly

enough, due to the high computational complexity of Algorithm 9.2, the compar-

ison is feasible for low ranks only. We use 10 for each dimension.

The result suggests that the complete HOSVD works well in principle and

furthermore yields better results than the projection method. This, however, is a

statement under reservation: technically, we would have to carry out the entire

comparison of prediction rates over varying ranks. ■

Example 9.5 We now consider the transition probabilities as a function of the

sessions. The first dimension is thus the considered product (s), the second one is

the destination of the transition (s0), and the third one is the session (u) itself.

Hence, the first two dimensions span the transition probabilities for each session. A

new slice therefore represents the matrix Pu ¼ pu, ss0
� �

s, s0∈S
of the transition

probabilities that have hitherto occurred in the session. By applying the factoriza-

tion, we obtain the matrix ePu of all estimated transition probabilities for the current

session. ■

Example 9.6 Eventually, we may also consider the transition probabilities as a

function of the recommendation a. This corresponds to the approach from

Example 9.5 with the recommendation a in lieu of the session u. Here, however,
all dimensions have the same cardinality and the third dimension does not grow

dynamically. Therefore, the adaptive approach makes no sense with respect to

content (though, possibly as a technology for offline learning). We thus factorize

Table 9.3 Comparison of

prediction rates (absolute):

various SVDs with

variable rank

Approach k (or t) p1

Mode 2 10 26

Mode 3/projection 10/10 48

Mode 3/HOSVD 10/10/10 96
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the transition probabilities P ¼ pa
ss0

� �
s, s0 ,a∈S

and obtain the approximate transition

probabilities, which we may use instead of the original P, hoping that the former

turn out to be more stable. ■
Numerous further applications of tensor factorization to recommendation

engines are conceivable.

9.2 More Tensor Factorizations

Despite its power, the HOSVD is quite complex. Hence, the question arises

of whether there are simpler and less computationally intensive decompositions.

Indeed, this is possible in many cases and we shall address some important factor-

izations in the following.

9.2.1 CANDECOMP/PARAFAC

If we simplify the core tensor C of a Tucker tensor to a diagonal tensor with

ci ¼ 1, i1 ¼ . . . ¼ id,
0, else

�
,

we obtain the canonical decomposition (CANDECOMP) instead of (9.1). It is also

known as Parallel Factor Analysis (PARAFAC), so we call it CANDECOMP/

PARAFAC (CP).

Definition 9.5 An n-dimensional d-mode CP-tensor of (canonical) rank-t is

a tensor

A ¼ U1�1 . . .�dU
d, ð9:6Þ

where Uk ∈R nk ;tð Þ, k∈ d are the mode factors.

Remark 9.2 A CP-tensor is completely determined by its mode factors. For nota-

tional reason that should become clear in the following, we shall henceforth place

the mode index in an upper right position, i.e., Uk as opposed to Uk.

By decomposing the mode factors along the rank index into vectors

uk
j ¼ Uk

i, j

� �
i∈nk

, we may write the CP-tensor as follows:

A ¼ U1�1 . . .�dU
d ¼

Xt
j¼1

u1j ∘ . . . ∘u
d
j : ð9:7Þ
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Here, the symbol “∘” represents the outer vector product, i.e., each element of a

tensor A ¼ v1 ∘ . . . ∘ vd with vectors vk ¼ vki
� �

i∈nk
, which is called a CP rank-1-

tensor, is the product of its corresponding vector elements

ai1, ..., id ¼ v1i1v
2
i2
. . . vdid :

Thus, we may write (9.7) component-wise:

ai1, ...id ¼
Xt
j¼1

u1i1, j� � �ud
id , j

:

Therefore, (9.7) tells us that each CP-tensor may be represented by a sum of

rank-1 tensors (Fig. 9.5).

For d ¼ 2, the HOSVD, i.e., the “classical” SVD, coincides with a

CP-decomposition, since the “core tensor” Sk in (8.14) is a diagonal matrix. Though

it is not the identity matrix, we may multiply the diagonal values into the matrices

of singular vectors, for example, into Vk.

Example 9.7 The rank-2 approximation from Example 8.4 may be written as a sum

of two rank-1 tensors:

Ak ¼XY¼
1 0:3
0:2 �0:7
0:1 �0:7

0
@

1
A 0:23 2:76 9:65 5:17

�0:69 �6:6 1:65 �0:14

� �
,

¼
1

0:2
0:1

0
@

1
A

|fflfflfflffl{zfflfflfflffl}
u1
1

0:23 2:76 9:65 5:17ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u2
1ð ÞT

þ
0:3
�0:7
�0:7

0
@

1
A

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u1
1

�0:69 �6:6 1:65 �0:14ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u2
2ð ÞT

¼ u11∘u
2
1

þu12∘u
2
2: ■

nu3

++… ++

1u3

1u2

1
u1

n2
n3

n3

n2

n1

n1
A

ku2

k
u1

n2
n3

n1 ku3

=

nu2

n
u1

n2
n3

1
n

Fig. 9.5 Illustration of the CP-decomposition for a 3-mode tensor A. The dashed lines indicate the
boundaries of a rank-k factorization
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We have not yet addressed computation of the CP-decomposition. Obviously,

we can no longer apply the hitherto used adaptive HOSVD, since it is based on

the Tucker decomposition (9.1). We shall address the topic in more detail in

Sect. 9.2.3.

9.2.2 RE-Specific Factorizations

Besides CANDECOMP/PARAFAC, of course, numerous factorizations are possi-

ble. With regard to recommendation engines, methods of nonnegative tensor

factorization, corresponding to the NMF from Sect. 8.4.3, are of special interest.

In the context of reinforcement learning, we are especially interested in factorizing

the transition probabilities.

As for this, an interesting approachmay be found in [RFST10]. Therein, sequences

of baskets belonging to different users are analyzed with the goal of recommending

products that are most likely to be purchased to an identified user. To this end, the

transition probabilities are factorized.

We now retrofit the approach in such a way that sequences of products instead of

sequences of baskets and sessions instead of users be considered. This is consistent

with our Example 9.5. Hence, we seek after a factorization of the transition

probability tensor Pu, ss0 , which corresponds to our previously considered matrix

Pss0 of transition probabilities from s to s’ for the session u. The proposed factor-

ization is of the form

A ¼
Xtu, s
k¼1

vu, sk ∘vs,uk þ
Xts, s0

k¼1

vs, s
0

k ∘vs
0, s
k þ

Xtu, s0

k¼1

vu, s
0

k ∘vs
0,u
k : ð9:8Þ

The factorizationmodels the pair-wise interaction between the single tensor modes

u, s, s0. Therefore, we are dealing with a special case of the CP-decomposition (9.7),

where the rank-1 tensors are now established from 2 rather than 3 vectors.

Writing (9.8) element-wise,

au, ss0 ¼
Xtu, s
k¼1

vu, su,kv
s,u
s,k þ

Xts, s0

k¼1

vs, s
0

s,k v
s
0
, s

s0,k
þ
Xtu, s0

k¼1

vu, s
0

u,k v
s
0
,u

s0,k

and considering the difference between two probabilities with respect to s’, i.e.,
au, ss0 � au, ss00 , we notice that the latter is invariant with respect to the first term.

Hence, if one is interested only in the ordering of the values au, ss0 , s
0∈ S, it suffices to

consider

200 9 Decomposition in Transition II: Adaptive Tensor Factorization

http://dx.doi.org/10.1007/978-3-319-01321-3_8


eau, ss0 :¼
Xts, s0

k¼1

vs, s
0

s,k v
s
0
, s

s,k þ
Xtu, s0

k¼1

vu, s
0

u,k v
s
0
,u

s0 ,k
, s

0
∈ S: ð9:9Þ

Intuitively, this may be put as

eau, ss0 ¼ eaMC
u, ss0 þ ea CF

u, ss0 : ð9:10Þ

Here, the first term MC corresponds to a Markov transition, as considered in

Chaps. 3, 4, 5 and 6, and the second one, CF, to the approach of PCA-based

collaborative filtering, which has been presented in the previous chapter by means

of Example 8.1. Thus, this factorization unifies both approaches in a simple

manner. Since the parameters of both modes are learned jointly, the approach is by

no means trivial.

Even though the approach appears simple, it brings along a fair amount of difficul-

ties. First, the question of approximation error arises, since, as a matter of fact, the

approach brings about a great deal of simplification with arguable plausibility.

Furthermore, the factorized “probabilities” are, of course, no longer stochastic and

thus not probabilities. Granted, the authors of [RFST10] perform an additional trans-

formation by a sigmoid function such that

0 � au, ss0 � 1, 8s, s0∈ S

holds. But even then the row sum condition (3.2) is violated. With regard to the

goals of [RFST10], this is not an issue, since the recommendations are derived

directly from the probabilities and, therefore, only an ordering of these needs to be

ensured. For our purposes of RL, we may not ignore this condition, but must again

demand:

X
s0

au, ss0 ¼ 1 8u∈U∧ 8s∈ S:

Hence, we need to incorporate these conditions in the solution procedure. Sadly

enough, this doesn’t make the computation of the factorization, which is compli-

cated enough in itself, any easier. Apart from that, another difficulty, though not

related to the factorization itself, comes into play: allowing the transition probabil-

ities to depend on the session violates Assumption 4.1 of the Markov property. In

Chap. 10, we shall develop a in this respect correct approach, which models the

transition probabilities as functions of the course of the session and yet satisfies the

(generalized) Markov property.
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9.2.3 Problems of Tensor Factorizations

There exist many other tensor decomposition methods. However, the main problem is

that for most of them, unlike as for the Tucker decomposition, no efficient standard

algorithms to calculate the decomposition exist. So these algorithms need to be

developed.

To this end, we shall denote the sought-after decomposition of a given tensor

A by AΘ with Θ denoting the sought-after tensor components, e.g., the factors

U of the CP-decomposition. Thus, the task consists in determining an optimizer

Θ of

min
Θ

f A;AΘð Þ,

mostly in the form

min
Θ

A� AΘk kF:

Iterative procedures appear suitable for the solution of this optimization, since

they are optimal with respect to memory usage with regard to extremely sparsely

populated tensors. Their convergence rates, however, are critical.

In current literature, endless varieties of gradient descent methods (stochastic,

partitioned, prioritized, etc.) are often proposed. Mostly, a case for them is their easy

implementation. These procedures are then praised as “rapid” and “robust”; estimates

of their convergence rates are generously forgone. Of course, the exact opposite of

the promised holds true: gradient descent procedures heavily depend on the problem

and parameters and often converge rather slowly. Granted, they may now and then be

“fine-tuned” to the solution of a particular high-dimensional problem instance, but

they fail at solving other, even tiny, problems with the same parameter assignment.

All in all, there is no satisfactory guaranteed upper bound on the number of iterations

(and thus on the computational complexity) for any general class of problem

instances. Thus, gradient descent methods are suitable for certain experiments, but

not for practical deployment.

To ensure the necessary convergence rate, more sophisticated iteration procedures

are required, e.g., projection methods. This may be seen very clearly in the field of

matrices, where Krylov-subspace procedures are employed predominantly. For sym-

metric matrices, this mainly comes to the conjugate gradient (CG) method, mostly in

connection with a preconditioner (PCG), which may arguably be considered as the

default procedure of numerical analysis. For nonsymmetric matrices, especially for

the SVD, one mostly resorts to the Lanczos method, which has been presented in

Sect. 8.4.1. Devising robust Lanczos procedures, though, is difficult and cannot be

immediately carried over to other formulations, as it requires orthogonality of the

bases. Yet there are orthogonalized approaches to the higher-order case but mostly,

again, for the Tucker case. An example is the High-Order Orthogonal Iteration
[KB09].
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Most of the current procedures for computing tensor factorization are EM-like

(comparable to ALS from Sect. 8.4.3). Therein, in each step a part of the tensor

coefficients is kept fix, such that the resulting optimization problem with respect to

the “free” variables is convex and thus can be solved easily. After solving the latter,

the just-obtained coefficients are fixed in turn, and previously fixed coefficients are

computed anew. The method terminates as soon as the error has fallen below a

prescribed bound, or other technical termination criteria are satisfied (e.g., a

maximum number of iterations has been reached). Methods of this type mostly

turn out to be robust in practice, but often their convergence cannot be ensured. For

canonical decompositions ALS in general converges slowly (unlike as for the

Tucker decomposition where ALS mostly works efficiently).

Additionally, for non-Tucker decompositions, there may be a problem with the

stability of ranks. For example, small perturbations can considerably decrease the

canonical rank [DSL08]. Thus, in general CP decompositions are not an optimal choice.

All this brings us back to the Tucker decomposition again. The method for

computing the HOSVD presented in Sect. 9.1.3 and its adaptive version from

Sect. 9.1.4 reduce the HOSVD to a singular value decomposition of matrices.

Despite all complexity, the latter has been studied comprehensively and is numer-

ically controllable. Therefore, the presented procedure may be considered robust.

First, let us estimate the complexity of the Tucker decomposition (9.1) in more

detail. For simplicity, for now and in the following, we consider all mode ranks of

the Tucker rank-t to be equal, i.e., tk ¼ t, k∈ d, and now refer to t as Tucker rank.
Similarly, for complexity estimates we will assume that all mode sizes are equal:

nk ¼ n, k∈ d. Then the number of parameters of (9.1) is O(dnt + td). This is

acceptable for moderate dimensions, like 3 or 4, granted rank-t is not too high. So

if we have an efficient algorithm that can handle large mode sizes (unlike the

truncated SVD applied to all k-mode matricizations), it can be applied to large

problems. In fact, such algorithms are available, e.g., the cross-approximation

[OST08].

Nevertheless, for larger dimensions the classical Tucker decomposition (9.1) is

definitely not suitable because of the complexity O(td) of the core tensor. This

problem is solved by the introduction of hierarchical SVD-based decompositions

that will be discussed in the next section. Here, once again, the power of hierarchi-

cal approaches, which we already addressed in Chap. 6, shows up.

9.3 Hierarchical Tensor Factorization

9.3.1 Hierarchical Singular Value Decomposition

The H-SVD, where “H” stands for “hierarchical,” is being discussed in current

research [Gra10, HK09]. The main idea behind hierarchical Tucker decompositions

is simple: in order to reduce the complexity of the core tensorC,we use a hierarchical
split of the set of dimension indices and observe a dyadic decomposition. Let us
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suppose that we subdivide our index set into two subsets where the first k form the first

subset and the others the second. Then we arrive at the canonic dyadic decomposition

of the core tensor

ci1, ..., ik ;ikþ1, ..., id ¼
Xt
s¼1

ci1, ..., ik , scikþ1, ..., id , s: ð9:11Þ

This reduces the d-dimensional core tensor to the new tensors of dimensions

k + 1 and d–k + 1. The resulting Tucker tensor is

ai1, ..., id ¼
Xt
j1¼1

� � �
Xt
jd¼1

Xt
s¼1

ci1, ..., ik , scikþ1, ..., id , su
1
i1, j1

� � �ud
id , jd

By successively applying decompositions (9.11), we arrive at a hierarchical

Tucker decomposition. If we construct the tree such that the index sets of all leafs

contain one index only (Fig. 9.6), for the resulting Tucker decomposition, the

dependence on d is linear!

Now it is possible to prove that for hierarchical decompositions like the

H-SVD, important properties of the Tucker decomposition are retained

[Gra10]. This includes the availability of standard computation algorithms, effi-

cient truncation, and stability. We will study this in more detail in the next section

which is devoted to an important type of hierarchical Tucker decompositions – the

tensor train.

9.3.2 Tensor-Train Decomposition

A hierarchical decomposition of the index set defined by a binary three where each

split is done into a node corresponding to a single index and into a node of remaining

{1,…,5}

{1,2}

{3,4,5}

{3}

{4,5}

{5}

{4}

{1,…,5}

{1}

{2,…,5}

{2}

{3,4,5}

{3}

{4,5}

{4}

{5}
a b

Fig. 9.6 Two examples of hierarchical decompositions of the index set for d ¼ 5
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nodes, like in Fig. 9.6b, defines a tensor-train (TT) decomposition. It has the

following form:

ai1, ..., id ¼
Xt1
α1¼1

� � �
Xtd

αd�1¼1

gi1
1 1;α1ð Þg

i2
2 α1;α2ð Þ . . . g

id�1

d�1 αd�2;αd�1ð Þg
id
d αd�1;1ð Þ: ð9:12Þ

Here we again allow the ranks tk to be different for each mode. For the TT

decomposition, we call the ranks tk compression ranks.
In matrix form, (9.12) can be represented as a product of matrices

ai1, ..., id ¼ Gi1
1G

i2
2 . . .G

id�1

d�1G
id
d , ð9:13Þ

where Gik
k is a matrix of size tk�1 � tk. Note that the first matrix Gi1

1 is a row of

dimension 1 � t1 and the last matrixGid
d is a column of dimension td � 1. Thus, the

product of the d matrices is a 1 x 1 matrix, i.e., a number.

For equal mode sizes, nk ¼ n, k∈ d, we have dn matrices Gik
k and the number of

parameters of (9.13) is bounded by (d � 2)nt2 + 2nt, where t ¼ maxk tk, and thus

the dependence on d is linear.

The following algorithm TT-SVD calculates a TT decomposition based on

truncated SVDs over all modes and can be considered as counterpart to the

truncated HOSVD algorithm 9.1.

Algorithm 9.3 TT-SVD

Input: tensor A∈Rn, truncation rank t � n

Output: cores G1, . . ., Gd of TT approximation

1: temporary tensor B :¼ A, t0 :¼ 1, N0 :¼
Qd

k¼1nk
2: for k ¼ 1,. . .,d � 1

3: calculate the dimension Nk ¼ Nk�1

tk�1nk

3: unfold B into the dimensions B ¼ B∈Rtk�1nk�Nk

4: compute rank-tk truncated SVD B 
 USV of B

5: reshape U such that Gk :¼ U∈Rtk�1�nk�tk

6: B :¼ SVT

7: end for

8: Gd :¼ B

Moreover, Algorithm 9.3 can be extended for automatic selection of truncation

ranks. At this, we first introduce a bound δ. Now in step 4 of Algorithm 9.3, we

determine the minimal rank tk such that

B ¼ USV þ E, Ek kF � δ: ð9:14Þ

Then the following theorem holds.
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Theorem 9.2 (Theorem 2.2 in [Os11]) For each tensor A∈Rn, the TT-SVD with
(9.14) computes a tensor T in the TT format with compression ranks tk such that:

A� Tk kF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd�1

k¼1

ε2k ,

vuut

where εk ¼ kEkkF of all unfoldings Ak ¼ Rk + Ek as in step 4 of the TT algorithm.
From Theorem 9.2 the following corollary can de deduced [Os11].

Corollary 9.1 Given a tensor A ∈ Rn and rank bounds tk, the best approximation
to A in the Frobenius norm with TT-ranks bounded by tk (denoted by T*) always
exists, and the TT-approximation T computed by the TT-SVD algorithm is
quasi-optimal:

A� Tk kF �
ffiffiffiffiffiffiffiffiffiffiffi
d � 1

p
A� T�k kF:

Thus from Theorem 9.2, it immediately follows that for a prescribed relative

accuracy ε of the TT-SVD algorithm, we just need to select

δ ¼ εffiffiffiffiffiffiffiffiffiffiffi
d � 1

p Ak kF:

This is a very nice (and constructive!) result. Remember that the truncated

HOSVD is in general not the optimal Tucker decomposition, although it usually

shows good approximation properties. In contrast, the TT-SVD provides us with the

(quasi-) optimal TT decomposition.

The tensor-train decomposition also possesses many other advantages; see [Os11,

OT09]. Unlike the canonical decomposition, it has stable ranks. Basic tensor opera-

tions (Sect. 9.1.1) can be efficiently implemented. Here, efficient recompression

procedures play an important role since many basic linear algebra operations with

TT-tensors (addition, matrix-by-vector product, etc.) yield increased ranks.

Recompression (or rounding) describes the rank reduction if a tensor is already

given in TT format but with suboptimal ranks tk (i.e., too large). Ivan Oseledets,

who is – along with Eugene Tyrtyshnikov – one of the pioneers in the TT area,

developed a general TT recompression algorithm with linear complexity in d and n.
Of course, the TT-SVD algorithm is not suited for large mode sizes, for the same

reason as the HOSVD: the unfolding matrices are usually too large. But, like in the

3D-Tucker case, other techniques can be used. In fact, recall that due to the com-

plexity bound (d � 2)nt2 + 2nt, the TT format is linear in both d and n. So provided
the compression ranks are not too high, it can be efficiently used to approximate high-

dimensional problems of high mode sizes. The development of efficient algorithms

for the TT approximation is currently under way. Beside ALS, again the cross-

approximation technique [OT10] is very powerful. In order to determine optimal

compression ranks, the DMRG scheme looks promising [SO11].
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9.4 Summary

We have generalized the factorization concept, introduced in the last chapter for

matrices, to the case of higher dimensions – tensors. We were also able to develop

an incremental tensor factorization approach, the incremental HOSVD, based on

the incremental SVD. First, experimental results indicate that the tensor factoriza-

tion is useful for our RE approach.

The main challenge of tensor factorization is complexity. This is a highly demand-

ing task, which certainly will keep researchers occupied for many years to come. For

the Tucker model, namely, for the HOSVD, there are some in principle efficient

algorithms along with crisp convergence propositions. In particular, this applies to the

Lanczos method as well as Brand’s incremental SVD. Yet, these methods are

complex as regards implementation and computationally intensive in the high-

dimensional case. Moreover, the Tucker model itself suffers from the curse of

dimensionality since its complexity is exponentially growing with the number of

dimensions d.
Thus, simpler factorization models, first of all the canonical decomposition, look

quite appealing at the first sight. The complexity of the canonical decomposition

grows only linearly with d. However, here we face other problems. Unlike the

Tucker decomposition, it is not stable concerning the rank and no general algo-

rithms for its efficient computation exist.

This turns the attention of researchers back to the Tucker decomposition and

SVD-type approaches. In fact, here hierarchical decompositions seem to be the

solution. Especially the tensor-train decomposition has emerged as efficient instru-

ment to break the curse of dimensionality. It is relatively simple. Like the canonical

decomposition, the number of parameters is linear in d. At the same time it shares

positive properties with Tucker: TT decompositions have stable ranks. They can be

computed based on SVD procedures, rank reduction can be provided efficiently,

etc. So the main problem is the development of algorithms to efficiently calculate

TT decompositions. This development is being carried out fiercely at present, and a

couple of interesting methods have already emerged in the field.

This also applies to many other tensor decomposition algorithms. Many of them,

however, are fairly empirical, lacking theoretically valid estimates of convergence

rates, alas, even a proof of convergence at all. Hence, it is still difficult to assess the

practical eligibility of these recent methods.

In spite of all of the above-outlined difficulties, the meaning of tensor factori-

zation as an approximation tool of future recommendation engines is obvious. This

very field is currently undergoing a turbulent development. We shall therefore

return to tensor factorization at some point in the next chapter, so as to make an

attempt at combining it with reinforcement learning.
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Chapter 10

The Big Picture: Toward a Synthesis of RL

and Adaptive Tensor Factorization

Abstract We explore the subject of uniting the control-theoretic with the

factorization-based approach to recommendation, arguing that tensor factorization

may be employed to vanquish combinatorial complexity impediments related to

more sophisticated MDP models that take a history of previous states rather than

one single state into account. Specifically, we introduce a tensor representation

of transition probabilities of Markov-k-processes and devise a Tucker-based

approximation architecture that relies crucially on the notion of an aggregation

basis described in Chap. 6. As our method requires a partitioning of the set of state

transition histories, we are left with the challenge of how to determine a suitable

partitioning, for which we propose a genetic algorithm.

In this research-oriented chapter, we shall study a refinement of the concept of a

Markov decision process which enables a recommendation engine to incorporate

sequences of previously visited products rather than making decision exclusively

upon the current state. As foreshadowed in Chap. 8, more sophisticated models of

this kind entail some complexity issues. Therefore, so as to vanquish the latter,

we shall introduce a tensor factorization-based approximation framework. The

reasoning provided in this chapter is thus a step toward a unification of classical

(factorization based) data mining on one hand and the novel control-theoretic

framework on the other hand. We should stress, however, that the approach

presented in the following is currently still in its infancy and a subject of ongoing

research. Hence, a major part of the subsequent elaborations are still based upon

speculation rather than scientific rigor.

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_10, © Springer International Publishing Switzerland 2013
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10.1 Markov-k-Processes and Augmented State Spaces

The notion of a k-Markov decision process (k-MDP) is a generalization of that of an

MDP. The generalized framework enables to formulate control problems which

involve environments where transition probabilities, rewards, and policies depend

on the sequence of the kmost recently visited states rather than only the current one.

We shall refer to this assumption as the generalized Markov property.

Assumption 10.1 (Generalized Markov property): In each state, the choice of

the optimal action depends exclusively on the k most recently visited states.

Hence, given state and action spaces S and A, the dynamics are characterized by

transition probabilities of the form

pa
s1, ..., sk , s

0 , s1, . . . , sk, s
0
∈ S, a∈A,

which translates into plain English as “The probability of a transition to state s0

given action a, current state sk and previous states s1, . . ., sk�1.” Similarly, policies

and the reward function are of the form

r a
s1, ..., sk , s

0

and

π s1; . . . ; sk; að Þ,

respectively. It is worth stressing that by assigning k :¼ 1, we recover the classical

MDP framework.

It comes as a bit of a surprise that in some theoretical sense, there is no

distinction between the classical and the k-MDP case. Given a k-MDP, it is always

possible to devise an equivalent MDP by means of a construction which we shall

refer to as state space augmentation. (The precise meaning of the term equivalent
will become clear in the course of the subsequent discussion.)

Given the state space S of some k-MDP M, we define the corresponding

augmented state space of order k by

eS :¼ [k
j¼1

sj:

Upon this state space, we model an MDP eM :¼ eS;A; ep;er
� �

as follows: for

s :¼ (s1, . . ., sl), let
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s� :¼ s2; . . . ; slð Þ:

Then the transition probabilities of eM are stipulated as

ep a
s s0 ;s0ð Þ :¼

pa
s, s0 , s

0 ¼ s�,
0, otherwise,

a∈A

�
:

Similarly, the rewards are taken to be

er a
s s

0 ;s0ð Þ :¼
rs, s0 , s

0 ¼ s�,
0, otherwise,

a∈A

�
:

Now let sj
� �

j∈N
� S be a trajectory of M and define

g : SN ! eSN : sj
� �

j∈N
� sj�kþ1; . . . ; sj

� �� �
j∈N

,

where we made use of the convention

sj�kþ1; . . . ; sj
� �

:¼ s1; . . . ; sj
� �

, j� k þ 1 < 1:

Conversely, consider

h : eSN ! SN : sj; sj
� �� �

j∈N
� sj
� �

j∈N
:

Then we have h ∘ g ¼ id, i.e., the identical mapping, and all trajectories of eS
not contained in h(SN) have vanishing probability. Furthermore, any trajectory of

M has the same probability and reward sequence as its image under h.
By virtue of this result, it is straightforward to verify that the state-value function

v of a given policy π satisfies the Bellman equation

vπs1, ..., sl ¼
X
a∈A

π s1; . . . ; slð Þ
X

pa
s1, ..., sls

0 r a
s1, ..., sls

0 þ γvs2, ..., sls0 s
0

� �j k
ð10:1Þ

Also by means of state space augmentation, we may devise a k-MDP generaliza-

tion of temporal-difference learning. Given a transition from state s to s0 given the

history s ¼ (s1, . . ., sl�1), the update rule reads as

v :¼ vþ αzd vð Þ, ð10:2Þ
Where

d vð Þ :¼ r s;sð Þ, s0 � v s;sð Þ � γv
s�;s

0ð Þ
� �

, z :¼ λγzþ e s;sð Þ: ð10:3Þ
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10.2 Breaking the Curse of Dimensionality: A Tensor

View on Augmented State Spaces

Unfortunately, the complexity of k-MDP models with k > 1 renders a direct

computational treatment intractable. Specifically, the dimensionality of the

corresponding Bellman equations grows exponentially with k. Hence, we need to

settle for an approximate solution based on a suitably reduced model. We shall

introduce a tensor-based model reduction framework for k-MDPs in what follows.

To this end, define

Ŝ :¼ [k�1

j¼1
Sj,

and

p̂ ∈Rŝ�s�s, p̂ a
Sss0 :¼ p̂ a

s1;...;slð Þss0 :¼ p̂ a
s1, ..., sl, s, s

0 , l < k, s1, . . . , sl, s, s
0
∈S:

This rendition endows us with a three-mode tensor view of the transition

probabilities. In precisely the same fashion, we introduce a tensor view r̂ on the

rewards. Consider the following Tucker-style factorization model (we shall omit

modes corresponding to actions in the following):

p̂ sss0 � U�1C ¼
X
β∈m

usβcss0β, ð10:4Þ

where U∈Rŝ�m,C∈Rm�s�s with m � Ŝ
		 		. See Fig. 10.1 for a graphical repre-

sentation of this model.

We shall focus on the case where U is taken to be an aggregation

prolongator, i.e.,

usβ ¼ Θs∈Gβ , s∈ Ŝ , β∈m ð10:5Þ

for some partition Gβ

� �
β∈m

of Ŝ (see also Sect. 6.2.1). How are we supposed to pick

the partition and the core tensor C? Basically, we have to meet three requirements:

1 1

+…+
N

N

N C1

N
N

N P̂

»

U1

1

N

N

N Cm

Um

1

Fig. 10.1 Illustration of the factorization model of the augmented state spaces for k ¼ 2 and

l ¼ 1. Here, we denote Uβ ¼ usβ
� �

s∈Ŝ
, cβ ¼ css0 β

� �
s, s0∈S

:
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1. Complexity: m ¼ O(kq) for some q ∈ N, i.e., m should increase at most

polynomially with the order k.

2. Approximation: p̂ sss0 �
X

β∈m
usβcss0β


 �

sss0

����
���� should be small with respect to

an appropriate norm k 	 k.
3. Consistency: Each slice obtained by fixing the index corresponding to the first

mode should be a row-stochastic matrix.

In a nutshell, fulfilling the above requirements amounts to reducing complexity

under preservation of as much information as possible.

Let us consider the case where (the matricization of) the core tensor is

taken to be

C 1ð Þ :¼ UþP̂ 1ð Þ,

where U+ denotes the Moore-Penrose pseudo-inverse (MPP) of U with respect to

the canonical inner product, i.e.,

Uþ :¼ UTU
� ��1

UT ¼ Gβ

		 		�1
� �

β∈m
UT : ð10:6Þ

The complexity requirement may be controlled by a suitable choice of the

partition. As regards approximation, it follows from the definition of the MPP

that the factorization is a minimizer of

P̂ � U�1C
�� ��

F
¼ min

C∈Rm�s�s
P̂ � U�1C
�� ��

F
:

Finally, consistency follows from the fact that each 1 slice ofU �1 C is a convex

combination of row-stochastic matrices.

Besides its fulfilling our requirements, a crucial case for this factorization

approach can be made in virtue of its intuitive interpretation. Specifically, the

second identity in equation (10.6) reveals that the factorization is an algebraic

representation of replacing each slice by the centroid of the slices of P̂ in the

corresponding class of the partition. This is the procedure of vector quantization

that we already had used in Sect. 8.6.

Thus, in case we already know the transition probabilities P̂, we can apply the k-

means algorithm to find the best partition Gβ

� �
β∈m

for a given partition number m.

Here, k ¼ m is used in the k-means algorithm, and the slices of P̂ are treated as

vectors, i.e., vectorization is applied to the slice matrices in a similar way as

matricization to tensors.

Example 10.1 In the following, we shall illustrate the proposed factorization by

means of a simple example. For the sake of simplicity, we shall ignore the actions
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and identify the states with their indices. To this end, we consider the following

3 sessions with altogether 3 products (for simplicity, we forgo the absorbing state):

• 1 ! 3 ! 2 ! 3

• 2 ! 1 ! 2 ! 3 ! 1

• 1 ! 1 ! 2 ! 2 ! 3 ! 3 ! 1 ! 1

This yields the following global matrix of transition probabilities for k ¼ 1:

p ¼

2

5

2

5

1

5

1

5

1

5

3

5

1

2

1

4

1

4

2
666666664

3
777777775

Subsequently, we consider k ¼ 2, i.e., the transition probability does not only

depend on the current product, but also on its predecessor. Then we obtain the

following tensor of transition probabilities P̂ :

p̂ 1ð Þ ¼
0 1 0

0 0 1

0 1 0

2
4

3
5, p̂ 2ð Þ ¼

0 0 0

0 0 1
1

2
0

1

2

2
664

3
775, p̂ 3ð Þ ¼

1 0 0

0 0 1

0 0 1

2
4

3
5

where p̂ ið Þ ¼ p̂ ið Þss0
� �

s, s0∈S
denotes the matrix of transition probabilities if i has

been visited previously. Let us, e.g., consider the entry with index (3,1) of p̂ 2ð Þ, i.e.,
p̂ 2ð Þ3,1 ¼ 1

2
: after 2 had been visited, a transition to 3 occurred altogether twice.

Then, from there, there was one transition to 1 (and one transition to 3). Thus, the

probability of a transition from 3 to 1 given that 2 has been considered previously is

precisely 0.5.

We now choose the following partition of the state space S ¼ {1,2,3}, m ¼ 2:

G1 ¼ 1; 2f g,G2 ¼ 3f g

and thus obtain the corresponding aggregation prolongator and its pseudo-inverse

U ¼
1 0

1 0

0 1

2
4

3
5, Uþ ¼

1

2

1

2
0

0 0 1

2
4

3
5

We now determine the core tensor C, whereat we matricify P̂ :
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C 1ð Þ ¼ Uþp̂ 1ð Þ ¼
1

2

1

2
0

0 0 1

2
4

3
5

0 1 0 0 0 1 0 1 0

0 1 0 0 0 1
1

2
0

1

2

1 0 0 0 0 1 0 0 1

2
664

3
775

C 1ð Þ ¼ 0 1 0 0 0 1
1

4

1

2

1

4

1 0 0 0 0 1 0 0 1

2
4

3
5

In matricified form, our Tucker tensor eP then turns out to be

eP 1ð Þ ¼ U�1Cð Þ 1ð Þ ¼
1 0

1 0

0 1

2
4

3
5 0 1 0 0 0 1

1

4

1

2

1

4

1 0 0 0 0 1 0 0 1

2
4

3
5

eP 1ð Þ ¼

0 1 0 0 0 1
1

4

1

2

1

4

0 1 0 0 0 1
1

4

1

2

1

4

1 0 0 0 0 1 0 0 1

2
666664

3
777775

Hence, the resulting transition probabilities are

eP 1ð Þ ¼ eP 2ð Þ ¼
0 1 0

0 0 1
1

4

1

2

1

4

2
664

3
775, eP 3ð Þ ¼

1 0 0

0 0 1

0 0 1

2
4

3
5

As compared to P̂ , we see that the latter is approximated very well. Indeed, eP ið Þ
and P̂ ið Þ for i ¼ 1,2 deviate from each other only in the last row, and for i ¼ 3 they

are even identical. The Frobenius error of our approximation turns out to be

P̂ � eP�� ��
F
¼

ffiffiffi
3

4

r
� 0:87:

Similarly, we may also choose a different partition. For example, we obtain for

G1 ¼ {1,3}, G2 ¼ {2}

eP 1ð Þ ¼ eP 3ð Þ ¼

1

2

1

2
0

0 0 1

0
1

2

1

2

2
666664

3
777775
, eP 2ð Þ ¼

0 1 0

0 0 1
1

2
0

1

2

2
664

3
775

and the approximation error is higher,
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P̂ � eP�� ��
F
� 1:58:

The k-means algorithm (k ¼ 2) applied to this problem automatically finds the

first partition G1 ¼ {1,2}, G2 ¼ {3} which is in fact the best one.

If we, by the way, use the global transition probabilities P for all i, i.e., eP ið Þ ¼ P,

this results, as expected, in a higher approximation error of approximately 2.07. ■

10.3 Estimation of Factorized Transition Probabilities

In what follows, we shall present a procedure to estimate the factorized transition

probabilities in an adaptive online fashion, that is, a method doing without any

representation of an estimate of the full transition probability tensor.

To this end, recall the update rule for the transition probabilities of a classical

MDP presented in Chap. 3. In virtue of state space augmentation, this rule and the

corresponding convergence result carry over to the k-MDP case as follows:

P sss0 :¼ 1� t�1
� �

P sss0 þ t�1:

In tensor notation, the update rule reads as

P :¼ 1� t�1
� �

P þ t�1es � es � es0 ,

where

eið Þj ¼
1, i ¼ j,
0, i 6¼ j:

�

Matricifying with respect to the first mode and pre-multiplying with U+ eventu-

ally gives rise to the update rule

C :¼ 1� t�1
� �

C�1 þ t�1
eβ sð Þ
Gβ sð Þ

� es � es0 , ð10:7Þ

where β(s) denotes the unique index β∈m satisfying s ∈ Gβ, for the core tensor. In

index notation, this corresponds to

Css0β sð Þ :¼ 1� t�1
� �

Css0β sð Þ þ t�1: ð10:8Þ

Convergence of the update rule follows immediately from convergence of that

for P and partial continuity of the multilinear product.

Besides its computational use, the update rule also reveals another interesting

property of the factorization model: for the trivial partition, that is, the partition
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consisting of only one set, the update rule coincides with that for a classical MDP.

Hence, our factorizationmodel incorporates the casewhere a k-MDP is approximated

by a 1-MDP model. This bears an epistemic value with regard to the assessment of

the quality of 1-MDP models in environments that actually satisfy a GMA with

k > 1. Specifically, with regard to recommendation environments, which, arguably,

may be assumed to be more accurately represented by a k-MDP, this insight

may enable us to assess the quality of the classical MDP models discussed in

foregoing chapters. For example, we may obtain bounds on the modeling error

entailed by employing a classical MDP model from bounds on the approximation

error of the factorized representation. Admittedly, we are as yet in no position to

produce such error bounds here. Hence, we leave the topic for future research.

10.4 Factored Representation and Computation

of the State Values

10.4.1 A Model-Based Approach

In the following, we shall be interested in approximations of the form

vss �
X
β∈m

usβθsβ ¼ θsβ ð10:9Þ

to the state-value function. Here, U denotes an aggregation prolongator as

introduced in Equation (10.5). In order to solve the Bellman equation (10.1)

approximately, we devise the least squares approach

min
θ

X
s∈Ŝ , s∈S

θsβ sð Þ � γ
X
s0∈S

css0β sð Þθs0β s�sð Þ � bss

 !2

, ð10:10Þ

which is obtained by inserting the factorized representations (10.9) and (10.4), with

U taken to be the aggregation prolongator defined in (10.5), for v and P̂ in the least

squares version of (10.1),

min
v

X
s∈Ŝ , s∈S

vss � γ
X
s0∈S

psss0 v s�sð Þs0

 !2

:

As regards practical computation in a recommendation framework, one may

proceed as follows: first, the core tensor C is estimated from observation by means

of the updating procedure (10.7). Eventually, Equation (10.10) may be solved by

means of numerical linear algebra.
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10.4.2 Model-Free Computation in Virtue of TD (λ)
with Function Approximation

We shall be interested in a model-free stochastic iteration scheme for computing an

approximation of the form (10.9) which does not rely on a factored representation

of the transition probabilities. Though of less practical significance, we shall first

attend to discounted problems without terminal state for the sake of simplicity.

Recall the function space framework (6.1). It is possible to consider the factor-

ization of the state-value function (10.9) as a linear function approximation in terms

of the basis

ϕαβ : eS ! R,ϕαβ s; sð Þ ¼ usβδαs ¼ δβ sð Þ¼β,α¼s

for α∈ S, β∈m. In this view, the coefficient corresponding to ϕαβ is given by θαβ.
Extensions of the temporal-difference learning algorithms presented in Chap. 3

working with an approximate representation in terms of a linear architecture

v � Φ θ ¼
X
j

ϕjθj

are presented and discussed in [BT96, TVR97]. Further generalizations incorpo-

rating the multigrid framework introduced in Chap. 6 are extensively studied in

[Pap11, Ziv04, ZS05]. A model-free update rule, which we state in terms of the

state-value rather than the action-value function of the given policy for the sake of

simplicity, corresponding to (10.2) is given by

θ :¼ θ þ αΦTzd Φ θð Þ, ð10:11Þ
where d(	), z are as stipulated in (10.3).

A mathematically inclined reader may be interested in the following convergence

result:

Theorem 10.1 [BT96, TVR97] Let Φ have linearly independent columns and
λ ∈ [0,1]. Furthermore, let Aλ :¼ (I � γλP)�1(I � γP). Then, under the same
assumptions as for ordinary TD(λ), the sequence of iterates generated by the update
rule (10.11) converges a.s. to

θλ :¼ ΦTDAλΦ
� ��1ΦTDAλA

�1
0 Φb:

Moreover, it holds that θ1:¼argminθ||v-Φθ||D, and

Φθλ � vk kD
Φθ1 � vk kD


 1� λγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γð Þ 1þ γ � 2γλð Þp

where k 	 kD denotes the norm corresponding to the inner product induced by the
multiplication operator of the steady-state probabilities of the Markov chain.
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Let us now return to the special case where the transfer tensor U is taken to be an

aggregation prolongator. Intuitively, the following proposition, which, once stated,

is obvious, tells us that refining the underlying partition results in refining the

corresponding function space. Specifically, we say that a partition G0 is a refinement

of a partition G if each element of G0 is a subset of some element of G. In other

words, G0 is obtained from subdividing elements of G into smaller sets.

Proposition 10.1 Let G,G0 be partitions with corresponding aggregation

prolongators U,U0. If G0 is a refinement of G, then the range of U is contained in

that of U0.

Proof All we have to show is that each column of U may be written as some

linear combination of columns of U0. To this end, consider β ∈ G and let β01, . . .,
β0l ∈ G0 satisfy

β ¼ β
0
1[ . . .[β0

l:

This together with the fact that β01, . . ., β0l are disjoint yields

Uβ ¼ U
0
β
0
1
þ . . .þ U

0
β
0
l
: □

In particular, this result ensures that refining a partition cannot cause any

deterioration of the approximation. Yet another straightforward calculation yields

the following crucial and, at the same time, rather astonishing insight.

Proposition 10.2 Approximate TD(λ) for k-MDPs with the approximation archi-
tecture induced by the Tucker model with transfer tensor taken to be the aggrega-
tion prolongator corresponding to the partition with only one element is equivalent
to classical TD(λ) for 1-MDPs applied to a k-MDP.

Proof The update rule of the algorithm for 1-MDPs as applied to a k-MDP in the

above notation is given by

z :¼ λγzþ es, v :¼ vþ αzd v
� �

wherein v : S ! R denotes the current iterate for the approximate 1-MDP state-

value function, and the temporal difference

d v
� �

:¼ r � vs � γvs0
� �

,

with r signifying the most recently incurred reward, whereas, in the basis function

view, the considered approximate algorithm for a k-MDP may be stated as

z :¼ γλzþ e s;sð Þ,θ :¼ θ þ αΦTzd Φθð Þ,

in which θ, Φ are as specified above, and the temporal difference
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d Φθð Þ :¼ r � Φθð Þ s; sð Þ � γ Φθð Þ s�; s
0

� �� �
¼ r � e s;sð Þ � γe s�;s0ð Þ

� �
Φθ:

We shall show that, when applied simultaneously to the same k-MDP, the

iterates satisfy

v ¼ θ

for all iterations. To this end, we point out that the following simplification holds in

the here addressed special case m ¼ 1:

Φθ ¼
X
α, β

ϕαβθαβ ¼
X
α

ϕα1θα1 ¼
X
α

δα¼sθα1

which implies, with an inconsequential abuse of notation in the last equality,

Φθð Þ s; s
0

� �
¼ eTs;sð ÞΦθ ¼ θs1 ¼: θs8 s; sð Þ∈eS:

Hence,

d Φθð Þ ¼ r � e s;sð Þ � γe
s�;s0ð Þ

� �
Φθ ¼ r � e s;sð ÞΦθ � γe s�;s0ð ÞΦθ

� �

¼ r � θs � γθs0
� �

Now it only remains to show that

ΦTz ¼ z

for all iterations, which we carry out by induction: both z and z are initialized

as vectors of all zeros. Therefore, the sought-after statement holds for the first

iteration. To conclude the induction, we argue as follows: let z�, z� denote the

previous values of z, z, i.e.,

z ¼ γλz� þ e s;sð Þ, z ¼ γλz� þ es:

Since by induction assumption,

ΦTz� ¼ z�,

we obtain

ΦTz ¼ ΦT γλz� þ e s;sð Þ
� � ¼ γλΦTz� þΦTe s;sð Þ ¼ γλz� þ es ¼ z,

which yields the desired result. □
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In some sense, this result tells us that we have been doing a special case of the

tensor factorization approach all along. Together with Proposition 10.1, moreover, it

ensures that, at least mathematically, assuming anMDP of order k and approximating

the state-value function according to the aggregation-based tensor model with an

arbitrary partition is no worse than simply assuming order 1. Hence, the above

introduced approach is consistent with what we have been doing all along.

10.5 Clustering Sequences of Products

At the end of the day, it all comes down to a judicious choice of the partition

underlying the aggregation prolongator deployed in the factorization. At the first

glance, choosing an error-minimizing partition with a prescribed number of classes

seems most reasonable. As is well known among computer scientists, however, the

arising optimization problem is equivalent to the clustering problem mentioned in

the introductory part of the previous chapter, and thus NP-hard. Of course, we can

use the k-means algorithm as proposed in Sect. 10.2, also in conjunction with an

SVD or NMF to find a good initial guess. Nevertheless, we must keep in mind that,

with regard to an application to recommendation engines, an explicit representation

of the transition probabilities is typically neither available nor favorable. This

situation leaves us with basically two options, the first of which consists in devising

an adaptive online method and the second in an a priori choice of the partition based

on additional knowledge about the situation described by the model rather than

purely mathematical reasoning.

10.5.1 An Adaptive Approach

As it is subject of forthcoming research, the question of how to obtain a partition

that minimizes the approximation error has as yet been left open. Nevertheless, we

shall outline some ideas and outlooks that we consider promising.

A possible adaptive method may be based upon a genetic algorithm (GA). GA,

introduced by Holland [Hol92], is a biologically inspired search heuristic framework

for discrete optimization. Specifically, these schemes mimic a natural evolution

process consisting of selection, crossover, and mutation on a population of elements

of the search space. In the selection step, a subset of the population the elements of

which maximize some fitness function, which, more often than not, coincides with the

objective function, is picked. The crossover step consists in crossing elements of the

selected subset so as to obtain a new generation of individuals each of which unites

properties of different fittest individuals of the previous generation. In the last step of

an iteration of a GA, each individual is exposed to mutation, which, mathematically,

amounts to perturbing each individual slightly with respect to a suitably chosen

metric. More details and references concerning genetic algorithms may be found in

[Zim06].
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To devise a GA for computing a partition of the set Ŝ such that the approximation

error of the corresponding factorization be minimized, we consider a partition of

cardinality m as a function Ŝ ! m. The fitness function is taken to be some norm

of the residual of an equivalent transformation of the Bellman equation evaluated at

an approximate solution in terms of the corresponding aggregation. Of course, there

is no way to evaluate such a residual directly in a model-free framework. It is,

however, possible to estimate the residual in virtue of the temporal differences.

As of the crossover step, we propose the common approach of interleaving

function values at random elements. More precisely, to cross two partitions

f,g, we randomly pick a bit vector b∈ 0; 1f gŜ according to a distribution which

favors vectors with approximately equal numbers of entries with value 0 and 1.

The crossing h of f,g is then determined as

h sð Þ :¼ f sð Þ, b sð Þ ¼ 1,

g sð Þ, b sð Þ ¼ 0:

�

The mutation may be performed with respect to the Hamming metric

dH f ; gð Þ :¼ s
		 f sð Þ 6¼ g sð Þ� �		 		

which is well known in the information and coding community. Specifically, for

each individual f, we pick a random element of the metric ball

g : Ŝ ! m dH f ; gð Þ 
 εj� �

for some small positive integer ε stipulated beforehand.

10.5.2 Switching Between Aggregation Bases

In the course of an adaptive computation of the partition underlying the aggregation

prolongator, the computation of the state-value function needs to be restarted for

each newly obtained partition. This gives rise to the question of whether the last

iterate with respect to the previous aggregation may somehow be exploited to

obtain a reasonable initial guess for the restarted iteration.

Given two partitions Gβ

� �
β∈m

, eGβ

n o
β∈m

of eS with corresponding aggregation

prolongators U, eU and a core matrix (tensor) eΘ∈RS�m, what can be considered a

faithful representation of eΘU in terms of U? We resort to a least squares approach

min
Θ

UeΘT � eU eΘT
���

���
F

ð10:12Þ
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The optimizer is given by

Θ�ð ÞT ¼ Uþ eU eΘT

Due to the special structure of U, it is possible to represent Θ* in a simple closed

form. To this end, recall that

UTU ¼ Gβ

		 		δαβ
� �

α,β∈m

Moreover, we obtain

UTU ¼ Gβ \ eGeβ
			

			δαβ
� �

β,β∈m

which gives rise to

Θsβ ¼
X

eβ∈m

Gβ \ eGeβ
			

			
Gβ

		 		 Θ
seβ :

With some minor effort, this observation may be extended to the case of a

weighted Frobenius norm in the optimization (10.12).

As regards the procedure outlined in the previous section, the above-derived least

squares framework may be deployed to obtain initial iterates for the individuals in

each new generation of the GA procedure. Here, it appears reasonable to take the

factors eU , eΘ to those of the most recent iterate of one of the parents of the considered

individual.

10.6 How It All Fits Together

We are now going to discuss how the approaches described so far in this book all fit

together. Almost all of them deal with the problem of complexity: hierarchical

methods to speed up convergence, factorization, and tensors as well as special

empirical assumptions to reduce the complexity of the recommendation model.

We consider the most general task, the k-MDP of Sect. 10.1, and include

multiple recommendations. As we stated in Sect. 4.2, multiple recommendations

can be interpreted as single actions, and thus all considerations of Sect. 10.1 remain

valid. However, the problem of multiple recommendations is their increased

complexity.

We proceed similar to Sect. 10.2 and include the space of multiple

recommendations

A :¼ [m
j¼1

Sj,
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defined in the same way as in Sect. 4.2 (except that here m denotes the number of

recommendations instead of k which now is the number of preceding states). Then

we arrive at our complete probability space:

P∈Rŝ�s�s�A ,Pa
sss0 :¼ P

a1, ...amð Þ
s1;...;slð Þss0 , l < k, s1, . . . sl, s, s

0
, a1, . . . am∈S ð10:13Þ

The problem is the high dimensionality of P. For l ¼ k�1 the dimension is

k + m + 2. The same applies to the reward spaceR∈Rŝ�s�s�A; even with Assump-

tion 4.2 we get R∈Rŝ�s�s. The action-value function also belongs to Rŝ�s�s and

the state-value function to Rŝ�s.

Let us focus on the most complex quantity, the transition probability (10.13).

The best way would be an approximation through a tensor of dimension k + m + 2.

The general tensor approach is described in Chap. 9. Unfortunately, this is an

extremely difficult task because of the complexity of the decomposition algorithms

and also the prediction quality of the model. Thus, we may look for a more specific

approach. Therefore, we can use separate models for the approximation in the state

and action dimensions. Thus, we seek an approximation in the state space and then

add the approximation in the action space.

For the state space we can use tensor approximations as in Chap. 9 or the specific

one presented in Sect. 10.2. If this is still too difficult, we ignore the previous states,

i.e., we consider k ¼ 1. In this case P is a matrix. So we can either apply the matrix

factorization of Chap. 8 to P or calculate it directly.

To bring in the actions, we proceed as in Sect. 5.2 using the empirical Assump-

tion 5.2. In case of multiple recommendations, we additionally need the framework

of Sect. 4.2 which is based on Assumption 4.3. The combination of both for

calculating transition probabilities has been demonstrated in Sect. 5.2.3. Similar

considerations can be undertaken for the other quantities like transition rewards,

action-value function, and state-value function.

Finally, the hierarchical methods presented in Chap. 6 allow to increase the

convergence speed.

This way we have developed a complete tool set to handle reinforcement

learning for recommendations. The different approaches can be combined in

numerous ways. Of course, many of them still need to be refined, and also the

question of their best combinations remains to be open. The answer, again, depends

on the properties of the different approaches.

10.7 Summary

In this chapter, we have proposed a particular way to combine the factorization-based

approach to recommendation with the control-theoretic one. We stress that this is

only one specific manner in which the two paradigms may interact with each other,

and there are certainly numerous fundamentally different possible connections.
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In particular, we have pointed out a possible way to circumvent the complexity

issues related to the more sophisticated yet more realistic model of a k-MDP. A case

for this particular approach has been made by showing it to be consistent with the

classical approach of assuming a 1-MDP. Yet, it is too early to assess the actual

practical value of the approach, and there are still a lot of difficulties as regards

implementation to overcome. Mathematically, we still lack deep results on approx-

imation quality as well as numerical experience. With regard to recommendation

engineering, we still need to confirm that assuming a k-MDP rather than a classical

MDP actually results in a significant improvement and, if so, how to choose the

order k, which trades off between accuracy and simplicity. Furthermore, we need to

ensure that the above-presented factorization approach provides a satisfactory

approximation and figure out a way to choose the underlying partition suitably, for

example, by virtue of the above-outlined genetic algorithm framework, the practical

effectiveness of which, too, still needs to be evaluated.

Further, we have described how the approaches presented in the previous

chapters are related to our generalized k-MDP formulation.

With regard to future research, apart from the reasoning presented in this

chapter, it might be interesting to state the two approaches, i.e., the factorization-

based and the control-theoretic, within a unified framework. Such a framework may

then enable to discover more possible ways to connect the two approaches.
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Chapter 11

What Cannot Be Measured Cannot Be

Controlled: Gauging Success with A/B Tests

Abstract The robust measurement of the efficiency of recommendation algorithms

is an extremely important factor in the development of recommendation engines. We

provide some useful methodical remarks on this topic in this chapter, even though it is

not directly connected to the problem of adaptive learning. We further propose a

straightforward algorithm to calculate confidence intervals for REs. At the end, we

discuss Simpson’s paradox which illustrates the importance of constant environment

conditions for testing.

The use of A/B tests to assess the efficiency of recommendation algorithms is on

the increase. Here a proportion of all episodes (generally web sessions) is

randomly assigned to the recommendation algorithm group (referred to as the

“recommendation group”), and the remaining episodes serve as a control

group. Depending on the specific objectives, the control group may be empty

(i.e., displaying no recommendations) or may be assigned to a different recom-

mendation algorithm. In the group assignment of episodes, there is normally a

fixed ratio between the number of episodes in each group, e.g., 50:50 or 90:10. We

call this ratio the episode quotient q.
Along with the reward r, other relevant statistical characteristics can be

measured in each group. In the case of web shops, these could be the number of

clicks, shopping baskets, orders, purchased products, and in particular sales.

Multiplying these figures by the episode quotient then gives the percentage

efficiency of the recommendation algorithm as compared with the control group

for all indicators.

The use of A/B tests to determine recommendation quality is widely accepted

and meets generally recognized statistical and scientific standards. However, their

correct implementation and evaluation require compliance with certain criteria,

which we will look at more closely below.
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11.1 Same Environments in Both Groups

If the test is to be meaningful, it must not be influenced by any factors other than the

recommendation algorithm itself. If a different recommendation algorithm is used

in the control group, it is usually satisfied (but not always). It is usually more

difficult if no recommendations are displayed in the control group, in other words

if we are testing against an empty set.

In a web shop, the free space in the control group is sometimes used to display

additional information or services, for example. This influences the outcome of the

test, because we are no longer then measuring the use of the recommendation

algorithm but rather testing the recommendation algorithm against the additional

information or service, which is not the intention. If the recommendations are

displayed below the product view, for example, but before the detailed product

description, the recommendations may reduce the usability of the shop. Our test is

then assessing the recommendation algorithm against detailed product information.

In a test against an empty control group, the recommendation display will of

course inevitably change the appearance of the product detail view. But this change

should be kept as minimal as possible. At the same time, however, the recommenda-

tions must be displayed prominently; otherwise, they could be ignored. For instance,

recommendations could simply be displayed underneath the existing product detail

view. Then the appearance of the page would scarcely change, but at the same time

the recommendations could be overlooked. So there is clearly an element of conflict

between the two requirements, but an effort should be made to find a reasonable

compromise. One common solution is to display recommendations on the far right of

the page, away from the product information. In this way, the page appearance is

virtually unchanged, but the recommendations are well positioned.

The struggle to achieve maximum constancy of environmental conditions is

one of the key factors differentiating science from scholasticism. It is frequently

underestimated (and in A/B tests often complicated), for which reason we would

like to spend a little more time on it. The following passage comes from the Soviet

winner of the Nobel Prize for chemistry, Nikolay Semyonov, who reflected on the

difficulty of biological evaluations [Sem81]:

It is sometimes said that in biology, because of the complexity, state and individuality of an

organism, experimental conditions cannot be set with the same degree of precision as in

physics or chemistry, and that as a consequence the results obtained may vary.

Such differences do of course arise in experiments on living creatures, and in particular

on human beings. For example, a drug can help some people and harm others suffering

from the same illness.

However, the statistical result over a large number of people will show the same

distribution.

The causes of this distribution help us to identify the precise physiological character-

istics of a certain type of person which determine whether a drug is beneficial or harmful.

The claim that consistent experimental results cannot be obtained objectively in biology

is wrong. Otherwise medicine or agronomy would be impossible.

With a large enough data set, the differences between different organisms of the

same species can be seen in the statistical distribution, the mean of which is the same
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(under constant experimental conditions of course). It is true that setting experimental

conditions is more difficult in biology than it is in physics or chemistry.

This means that in biological experiments, more attention has to be paid to this problem,

not less.

It would be wrong to think that we do not also encounter great difficulties in physics and

particularly in chemistry, but we devote the time and effort to overcome them. The work

involved in standardizing experimental conditions in itself delivers important scientific results.

That is why the need to standardize experimental conditions is a difficult but necessary

task in science.

These comments apply in their entirety to the complex field of retail, in which

REs are mostly used.

11.2 No Loss of Performance Through Recommendations

This is a very important special case relating to the previous point of constancy of

environment. It concerns applications with a high recommendation rate, mostly

web shops but also sometimes call centers or supermarkets.

In many cases, the complete content in the recommendation group is not delivered

until the product recommendations have been fully calculated and integrated. This is

particularly true in cases where the recommendation engine is integrated on the server

side. In such cases, the content delivery in the recommendation group can tend to be

slower than in the control group, and this has a negative influence on user behavior.

Caution is advised when manually assessing the time delay. In web shops in partic-

ular, it is difficult to estimate accurately. It should always be measured over a number

of sessions.

For that reason, an asynchronous delivery of recommendations is generally

preferable. Client-side integration via IFrame or Ajax is usually available for web

shops. The recommendations are then completely separate from the web shop and are

loaded when the product detail view is opened. If asynchronous integration is not an

option, it is essential tomeasure the response times for both groups automatically over

large numbers of episodes, and the test should only proceed if the delays in the

recommendation group are negligible or irrelevant.

11.3 Assessing the Statistical Stability of the Results

The results of the A/B test can vary widely. It is not unusual to see a 10 % increase

in sales 1 day, followed by an 8 % fall the next. So the question is: When are the

results reliable? Clearly, the higher the statistical mass and, in particular, the longer

the test (under comparable environmental conditions), the more credible the results.

But when do we reach the point at which we can say: “Now I am convinced that this

increased sales figure is correct”?
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The answer lies in confidence intervals, which take the form [xu, x0] for the
desired indicator and which apply for a specified percentage. For example, a 95 %

confidence interval [�1.5, 3.5 %] for the sales increase means that for the period in

question, the true value can be expected with 95 % probability in the range between

�1.5 % and 3.5 %. This is since the measured value lies with a probability of 95 %

in the expected range of the sample. Notice that the simpler formulation that the

true value lies with 95 % probability in the confidence interval is mathematically

not correct. However, colloquially, it describes the meaning of the confidence

interval well.

So rather than simply stating a value of 1.0 % increased sales, its 95 % confi-

dence interval [�1.5, 3.5 %] is given too. As the statistical set increases, the

confidence interval narrows and closes in on the indicator.

Determining the confidence interval for the increased sales due to a recommen-

dation engine is by no means straightforward. The method was developed by

the mathematicians Holm Sieber and Toni Volkmer in [SV10], and we will present

it briefly.

W.l.o.g. we suppose the session quotient q ¼ 1. Furthermore, let X A be the

average revenue per session of group A and X B the revenue of group B. Then the

increase in revenue of group B is calculated as

d ¼ X B

X A

�1: ð11:1Þ

This value typically has a very high variation, so it is insufficient to state just the

mean value in order to make reliable conclusions. Thus, we will present a way to

calculate the confidence interval for d.
The revenue increase d is a random variable. This follows from the random

character of the revenue of one session.

Let XA be the revenue of a session in group A, and XB the revenue of a session

group B, and the numbers of the corresponding sessions are nA and nB. In sessions

without order, the revenue is simply 0. We can assume that the revenue satisfies an

unknown but stationary distribution. The expected value and variance are unknown

but can be estimated from a sample.

By applying the central limit theorem, we can first describe the distributions of

X A and X B: Both are approximately normally distributed:

X A � N EXA,
D2XA

nA

� �
,

X B � N EXB,
D2XB

nB

� �
:
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The target quantity (11.1) d thus is the quotient of two normal distributions. As

for the treatment thereof, a paper of Robert Geary [Gea30] turns out to be helpful.

It considers the expression

z ¼ bþ y

aþ x
, ð11:2Þ

where x and y are normally distributed with expected values 0, standard deviations

α, β, and correlation r. Under these assumptions, the expression

t ¼ az� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2z2 � 2rαβzþ β2

p ð11:3Þ

is standard normally distributed N(0,1) if a + x is in general nonnegative. This

assumption is easily satisfied in our case because we consider revenues.

We may apply this insight to our task at hand. From (11.1), it readily follows that

d þ 1 ¼ z ¼ X B

X A

: ð11:4Þ

With

a ¼ EXA,

b ¼ EXB,

α2 ¼ D2XA

nA
,

β2 ¼ D2XB

nB
,

r ¼ 0,

we obtain (11.2).

By virtue of (11.4), we may derive the desired confidence interval for d. Due to
(11.3), t is normally distributed. Let UP be the p-quantile of the standard normal

distribution for probability p. Then

P UP � t � U 1�pð Þ
� � ¼ 1� 2p:

The problem is symmetric and therefore it holds that

t2 � U2
p:
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Taking u2 ¼ U2
p, we got the following approach for the solution of the inequality:

u2 ¼ t2

u2 ¼ a2z2 � 2abzþ b2

α2z2 þ β2

0 ¼ a2z2 � 2abzþ b2 � u2α2z2 � u2β2

α2z2 þ β2

0 ¼ z2 a2 � u2α2ð Þ � z 2abð Þ þ b2 � u2β2
� �

0 ¼ z2 � z
2ab

a2 � u2α2
þ b2 � u2β2

a2 � u2α2
:

The solution formula for quadratic equations

zu,o ¼ � v

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4
� w

r
ð11:5Þ

with

v ¼ � 2ab

a2 � u2α2
,w ¼ � b2 � u2β2

a2 � u2α2
, ð11:6Þ

leads to the desired confidence interval:

zu � d þ 1 � zo

zu � 1 � d � zo � 1: ð11:7Þ
We now turn to the implementation. First, we need to determine the values

a, b, α, β. Here EXA is “value per visit” of the control group and EXB the similar

value for the recommendation group. For the calculation of the confidence interval

for the average order revenue, similarly “avg. order value” has to be used.

A confidence interval “CRO” can also be determined.

The variance D2XA of the control group and D
2XB of the recommendation group

can be calculated via the quadratic sums of the order revenues:

D2XA ¼ EX2
A � EXAð Þ2

D2XB ¼ EX2
B � EXBð Þ2

�
:

The values nA and nB depend on the target quantity “visits” or “orders.”

The quantile of the normal distribution Up, and hence u, depends on the desired

confidence level and is a constant:

• 90 % confidence interval: Up ¼ U0,95 ¼ 1.6449

• 95 % confidence interval: Up ¼ U0,975 ¼ 1.9600

• 99 % confidence interval: Up ¼ U0,995 ¼ 2.5758

Therewith, using (11.6), we can compute p, q, and by (11.5) and (11.7), we get

the desired interval.
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As skeptical as many companies have been about A/B (and multivariate) testing

at the very beginning, the more optimistic many of them increasingly became. As a

result, skepticism sometimes has been replaced by an exaggerated belief in the

prospects of such testing.

Many arguments seem to support the virtually unlimited power of testing. If I can

systematically test where to place best which banner, which button, which navigation

element, and which picture and in what color and size, didn’t the magical testing tool

automatically lead me to the optimal shop? Do we need shop managers, editors, and

designers anymore?

Of course, it is not so easy. The reason is complexity, because similar ideas have

already been developed some centuries ago. So Jonathan Swift ironically wrote in

Gulliver’s Travels about the flying island of Laputa, a kingdom devoted to the arts

of music and mathematics:

He then led me to the frame, about the sides, whereof all his pupils stood in ranks. It was

twenty feet square, placed in the middle of the room. The superfices was composed of

several bits of wood, about the bigness of a die, but some larger than others. They were all

linked together by slender wires. These bits of wood were covered, on every square, with

paper pasted on them; and on these papers were written all the words of their language, in

their several moods, tenses, and declensions; but without any order. The professor then

desired me “to observe; for he was going to set his engine at work.” The pupils, at his

command, took each of them hold of an iron handle, whereof there were forty fixed round

the edges of the frame; and giving them a sudden turn, the whole disposition of the words

was entirely changed. He then commanded six-and-thirty of the lads, to read the several

lines softly, as they appeared upon the frame; and where they found three or four words

together that might make part of a sentence, they dictated to the four remaining boys, who

were scribes. This work was repeated three or four times, and at every turn, the engine was

so contrived, that the words shifted into new places, as the square bits of wood moved

upside down.

Six hours a day the young students were employed in this labour; and the professor

showed me several volumes in large folio, already collected, of broken sentences, which he

intended to piece together, and out of those rich materials, to give the world a complete

body of all arts and sciences. . .

In fact, calculation of confidence intervals as described in this section quickly

reveals that in general large data volumes are required to obtain reliable results.

Moreover, during the tests, conditions like the assortment or product prices in the

shop or purchasing behavior of the customers can change. So A/B testing is an

important instrument to compare and verify algorithms, but it shall be used on a high

level and cannot replace systematic development of recommendations and content.

11.4 Observing Simpson’s Paradox

Let us conclude by looking at a curious effect known as Simpson’s paradox. This

phenomenon is well known in statistics and was first investigated in 1951 by Edward

Hugh Simpson. In the area of A/B tests for recommendation engines, it is manifested

by a variation in qualitative results when switching to cumulative indicators.
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Example 11.1 We can illustrate Simpson’s paradox using a simple example of a

2-day A/B test in a web shop (Table 11.1):

Although in percentage terms the results for the recommendation group are worse

than those for the control group on both days, the first group appears to emerge at the

end as the clear winner, with +10 %. The reason for this is that the session quotient

q differed on each day: on day 1, it was q ¼ 10:20 ¼ 0.5, but on the second day it

was q ¼ 20:10 ¼ 2.0. ■
The superficial reason for the paradox is the fact that the individual results are

weighted differently in the overall result. In essence, the paradox usually indicates

that certain influencing factors have not been taken into consideration. In our case, it

is due to the different session quotients, and the solution is to keep them constant. This

underlines once again the need to maintain maximum constancy of all environmental

conditions, as we mentioned in point 1.

11.5 Summary

The robust measurement of the efficiency of recommendation algorithms is an

extremely important factor in the development of REs.We provided somemethodical

remarks on this topic in this chapter, even though it is not directly connected to the

problem of adaptive learning. We have further proposed a straightforward algorithm

to calculate confidence intervals for REs.

Table 11.1 Simpson’s paradox based on the example of a 2-day A/B test

Recommendation group Control group

Period Sessions Sales volume Sessions Sales volume Sales increase

1 Day 10 500 20 2,000 �50 %

2 Day 20 3,900 10 2,000 �2.5 %

Total 30 4,400 30 4,000 +10 %
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Chapter 12

Building a Recommendation Engine:

The XELOPES Library

Abstract In this chapter we provide some ideas of implementing the adaptive

algorithms described in this book based on the prudsys XELOPES library for

BI. We start with the abstract CWM standard and then consider its application to

data mining. Next we move to realtime data mining where the central idea is the

introduction of agents. The agent framework is further specified for reinforcement

learning, and based on RLwe next propose a framework for adaptive recommendation

engines. At the end, we briefly discuss the application of XELOPES for real recom-

mendation engines.

The prudsys XELOPES is a business intelligence (BI) library with focus on

realtime analytics. Especially, it contains all main algorithms of Chaps. 3, 4, 5, 6,

7, 8, and 9. XELOPES is a commercial library, but there exists an open source

version of restricted functionality that can be downloaded from http://www.

prudsys.com/xelopes. Besides basic algorithms, the open source version provides

the complete infrastructure for realtime analytics of XELOPES. No matter if the

reader wants to use XELOPES or not, this chapter may provide some useful

information about realtime analytics implementations.

In this chapter, we give a short introduction to XELOPES. In Sect. 12.1, we

first describe the infrastructure of the library including classical data mining, i.e.,

offline learning. Section 12.2 is devoted to realtime analytical approach of

XELOPES, the online learning. At this, we first present the agent framework

of the library. Based on this framework, the packages of reinforcement learning

and RL-based recommendations are presented. In Sect. 12.3, we finally present

the prudsys RDE as a comprehensive example of how to use XELOPES to build

a recommendation engine.
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12.1 The XELOPES Library

12.1.1 The Main Design Principles

12.1.1.1 Basis Transformations

XELOPES uses a radical concept to solve analysis tasks: basis transformations!

The main task of XELOPES is to provide appropriate bases and efficient basis

transformations in order to solve data analysis problems efficiently.

The term basis is used in a wider sense than of a mathematical basis only. Basis

transformations are applied on the following three levels:

1. Basis transformations of data: For analysis tasks, data is often required to be

presented in different formats, i.e., in different bases. There exist different bases

of training and application data, transactional and non-transactional formats,

dense and sparse formats, etc.

2. Basis transformations inside analysis algorithms: Most analysis algorithms can

be described and implemented in terms of basis transformation methods; we

discussed this in Sect. 6.1.

3. Basis transformations into CWM basis: The CWM standard (see below) which is

used as fundament of XELOPES is a basis itself! Thus, the data that usually

exists in many proprietary data storage formats can be represented in the unified

CWM format.

Basis transformations consist of two parts:

1. Find an appropriate basis for a problem.

2. Find an efficient basis transformation into the new basis.

Both problems are usually not easy to solve. However, the most important step is

to understand that such a basis transformation is actually necessary. This requires

separating the basis from the data (more specifically, the coordinates of the data

instances). Most systems in data mining simply forgo such separation. In contrast,

XELOPES clearly distinguishes between basis and the data itself. This separation is

done on all three levels mentioned. It is absolutely fundamental for understanding

XELOPES.

12.1.1.2 Modular Concept: CWM

CWM (Common Warehouse Metamodel) is the fundament of XELOPES. The

primary objective of the CWM is to define a metamodel of a generic data ware-

house architecture. In combination with MOF-related standards like XMI and JMI,

CWM allows to exchange metadata between BI applications of different vendors

and types. In particular, metadata between data warehouses can be exchanged.
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One may ask: Why are we interested in a data warehouse-related standard like

CWM? Isn’t the realtime analytical approach promoted in this book the complete

antipode to data warehousing? This is definitely true. However, CWM is useful

because it can describe highly complex metadata of almost all types of data storage.

We have emphasized before that basis transformations are extremely important, not

just in modern mathematics but – in a wider sense – in many other areas such as

computer science. Similar to realtime analytics, which is becoming a key concept

for data analysis, we believe that basis transformations will become central for data

processing, including storage, comparison, and exchange of data. For this reason,

it was selected for XELOPES. To put it simply, we believe that comprehensive

metadata handling is of central importance for business intelligence. Therefore,

we will introduce CWM here although it is not directly related to realtime analytics.

CWM is one of the most abstract IT standards at all. Like in cubism Braque and

Picasso tried to decompose all images into a small set of geometric forms (most

notably cubes), CWM breaks down the IT structure of whole enterprises into

smallest atoms of a minimum number (UML-like classes) (Fig. 12.1).

We will give a short introduction into the fascinating world of CWM only. For a

comprehensive description of data warehouse principles, we refer to [In96,

Kim96]. Our introduction to CWM is based on [PCTM02, PCTM03] which

explains the standard in all details.

As we already mentioned, CWM is a quite complex standard and requires knowl-

edge from other OMG standards likeMOF, XMI, UML, andMDA. Especially, CWM

is described in terms of the MOF (Meta-Object Facility) meta-metamodel. MOF, in

turn, leverages concepts from UML (UnifiedModeling Language) for the description

of metamodels. Therefore, CWM uses UML for description and modeling and is

platform independent.

Fig. 12.1 Cubism as

example of decomposition

of structures in small

building blocks

(Pablo Picasso, Les

Demoiselles d’Avignon,

1907)
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Overview

CWM provides a framework for representing metadata about data sources, data

targets, transformations, analysis, and the process and operations that create and

manage warehouse data and provide lineage information about its use. The primary

objective of the CWM is to define a metamodel of a generic data warehouse

architecture. Thus, the CWM defines formal rules for modeling instances of data

warehouses.

The CWM is split up into a set of packages. This should aid comprehension of

the metamodel, by splitting it up into smaller units, and also allow users and

implementers to ignore packages that are not relevant for their needs.

The CWM has a layered structure (Fig. 12.2):

• Foundation layer: The foundation consists of the UML-based object model and

the CWM Foundation, which supports additional concepts and structures that are

shared by other packages. Additionally, the Software Deployment package sup-

ports the deployment information for the data sources and targets in the next layer.

• Resource layer: The Relational, Record, Multidimensional, and XML packages

support the definition of various types of data sources and data targets. Often, an

Object-Oriented package is included into the Resource layer. It refers to the

object model which is reused to model object-oriented data resources.

• Analysis layer: The Transformation, OLAP, Data Mining, Information Visual-
ization, and Business Nomenclature packages define the transformations and

analytical processing that take place on these data sources.

• Warehouse Management layer: Finally, the Warehouse Process package sup-
ports scheduling information, and the Warehouse Operation package is used to

record operational details such as the results of transformation runs.

The CWM is designed to maximize the reuse of object model (a subset of UML)

and the sharing of common modeling constructs where possible. The most prom-

inent example is that CWM reuses object model for representing object-oriented data

resources as noticed above. In addition, where applicable, key elements of the
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Fig. 12.2 CWM packages
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metamodels for other types of data resources all subclass from the same model

elements in object model.

CWM uses UML in three different critical roles:

• UML is used as the MOF-equivalent meta-metamodel. UML, or the part that

corresponds to the MOF model, UML notation, and OCL (Object Constraint

Language) are used as the modeling language, graphical notation, and constraint

language, respectively, for defining and representing CWM.

• UML is used as the foundation metamodel. UML, specifically a subset as

represented by the object model packages, is used as the foundation of CWM

from which other metamodels inherit classes and associations.

• UML is used as the object-oriented metamodel. UML, specifically the object

model package, is relied on for representing object-oriented data sources.

In order to illustrate this, we give a brief introduction to the object model which

is fundamental for CWM and hence also for XELOPES.

Object Model

The object model layer contains packages that define fundamental metamodel con-

cepts, relationships, and constraints required by all other CWM packages. The Object

Model is essentially a subset of UML. Most of its classes and associations directly

correspond to UML classes and associations.

The Object Model consists of the following packages:

• Core package: Contains classes and associations that form the core of the CWM

Object Model, used by all other CWM packages including other Object Model

packages.

• Behavioral package: Contains classes and associations that describe the behav-

ior of CWM objects and provide a foundation for describing the invocations of

defined behaviors.

• Relationships package: Contains classes and associations that describe the

relationships between CWM objects.

• Instance package: Contains classes and associations that represent instances of

CWM classifiers.

We focus on the Core package which is most important. The class diagram of

Core is shown in Fig. 12.3.

Core does not depend on other packages. The initial class of Core is Element.
In CWM, every class in every package is a subclass of the Element class. Element
has no attributes and no methods. Its only function is to represent the root of the

tree of all CWM classes. The class ModelElement extends Element, and, with the

exception of a few support classes, all CWM classes are also subclasses of

ModelElement. ModelElement provides some basic attributes like name for all

of its subclasses.
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We cite [PCTM03]:

At its heart, the Core package provides for the description of things that have structure.

Structured things include familiar computer system objects like relational database tables,

records in a file, and members of Online Analytical Processing (OLAP) cube dimensions. In

UML terms, the individual items of a thing’s structure are called features and are

represented by the StructuralFeature class. For example, the features of a relational table

are the columns in the table; for a record, they are an ordered list of the record’s fields.

CWM allows for nonstructural features as well; they are described by the Behavioral
package. The Attribute class represents structural features that can have an initial value.

Features are owned by Classifiers through a composite association. A classifier is a

thing that has a structure; for example, both records and relational tables are types of

classifiers. The notion of classifier is very similar to the idea of type used in modern

programming languages. Integer and character are simple, frequently encountered pro-

gramming language types; they are classifiers in CWM, but they have no features.

Address, in contrast, is a compound type (classifier) whose features might consist of

street, city, state, and zip code. In the same way, a relational table is a classifier whose

features are its columns, and a record is a classifier whose features are its fields. Note that

StructuralFeatures are owned by one classifier and are related on another classifier. The

former is the StructuralFaeture’s owner, and the latter is its type. A StructuralFeature
cannot have the same classifier as both its owner and its type.

The class named Class represents classifiers that can have multiple instances. So,

Tables are really instances of Class because they can contain multiple data rows. In contrast,

the DataType class represents classifiers that have only one instance; integer and character
are instances of DataType.

Although Namespaces have no attributes, they are critically important because they

ensure that individual objects can be uniquely identified by their names. Consequently,

Fig. 12.3 Class diagram of CWM Core package
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nearly every model element in a CWM description will be owned by some namespace.
Normally, the only model elements that are not owned by namespaces are those

representing top-level namespaces (that is, namespaces not owned by other namespaces).

The composite association between Namespace and ModelElement allows namespaces to

own model elements, and hence, other namespaces. This association is one of the primary

structuring mechanisms within the CWM. This association enables model elements to be

organized in hierarchical, or tree-like, arrangements in which the parent namespace is said

to contain, or own, its child ModelElement regardless of their ultimate type. Element

ownership is reused extensively throughout the CWM to indicate ownership relationships

between classes of every level.

Because of the package structure of CWM, model elements must be able to reference

objects in other packages. This is achieved by the Package subclass ofNamespace. Packages,
because they are namespaces, allow model elements of arbitrary types to be collected into

hierarchies. However, because a model element can be owned by, at most, one namespace, we

cannot use this mechanism to pull in model elements owned by different namespaces. Instead,

the Package class provides the notion of importing model elements from other packages.

Resource Packages

Next, we give a short example of how elements of the Object Model (more specific,

of the Core package) can be efficiently reused in metamodels of the Resource

packages. Figure 12.4 shows the equivalence.

The first column of the diagram contains the names of the resource packages.

The second column contains the names of the classes of the resource packages

corresponding to Core’s class Package. Similarly, the third column is formed by the

class names corresponding to Core’s class Classifier. The fourth column contains

the class names corresponding to Core’s class Feature.
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Fig. 12.4 Classifier equivalence (from [PCTM03])
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For instance, the Relational resource package, describing relational databases,

uses schemas (package) to structure the tables (classifiers). Every table (classifier),

in turn, contains a number of columns (features).

The diagram depicts that Package, Schema, and RecordFile are equal. In fact,

Schema and RecordFile extend Core’s Package. The diagram also depicts that

Classifier, Table, RecordDef, Dimension, and ElementFile are equal. Again, Table,
RecordDef, Dimension, and ElementFile all extend Core’s Classifier. Finally, the
diagram depicts that Feature, Column, Field, DimensionedObject, and (XML)

Attribute are equal. In fact, Column, Field, DimensionedObject, and (XML) Attribute
all extend Core’s Feature.

We have included this section in order to show how effective different applica-

tion types can be unified and modeled by elements of CWM. This approach is

widely used in XELOPES.

CWM and XELOPES

XELOPES is built on and compatible to the CWM standard 1.0. The Data Mining
package of CWM is the central class extended by XELOPES. Moreover, meanwhile

XELOPES actively uses almost all CWM packages except for the Warehouse
Management layer.

In the next section, we focus on the functional description of XELOPES, and we

will systematically develop the XELOPES foundation. At this, we will briefly

explain which packages of CWM are used and which CWM classes are extended.

This is important because the structure of XELOPES is highly influenced by

the CWM.

We finally mention that the ordinary user of XELOPES does not need to know

much about CWM. In contrast, for users who extend XELOPES, it is helpful.

12.1.1.3 Business Intelligence Standards

XELOPES supports different standards from Business Intelligence. Beyond CWM,

these are JDM (Java Data Mining) [JDM] and JOLAP (Java OLAP) [JOLAP] and,

most importantly, PMML (Predictive Model Markup Language). PMML is a

standard for vendor-independent XML exchange of data mining models

[PMML]. PMML is supported by the core of XELOPES, and all of its models

can be exported into/imported from PMML. This applies not only to data mining

models but also to all agents, including that of recommendation engines. For this

purpose, the PMML standard was extended by prudsys for agents. A PMML file

contains all information required to apply an analysis model/agent like metadata of

the input, transformations, and the model itself. This makes this format very

compact and easy to use. We will not go into further detail here, since it is quite

technical. We just point out the PMML is used for serialization of all models and

agents of XELOPES.
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12.1.2 The Building Blocks of the Library

12.1.2.1 The Basis: MiningDataSpecification and MiningAttributes

The class MiningDataSpecification represents the basis of a space. Thus, this is the

most important class of XELOPES. Often, this class is simply referred to as

metadata of the mining what is the equivalent of calling it the basis.

The basis vectors ofMiningDataSpecification are theMiningAttributes representing
the attributes. Therefore,MiningDataSpecification extends the CWM class Class, and
MiningAttribute extends the CWM class Attribute (Fig. 12.3).

There are two basic types of mining attributes extending the abstract class

MiningAttribute: NumericAttribute for numeric attributes like age, income, and

time and CategoricalAttribute for categorical attributes like names, IDs, and types.

The elements of a numeric attribute are real numbers. The elements of a categorical

attribute are the categories which are represented by the Category class.

Example 12.1
// Create category ’knife’:
Category catKnife ¼ new Category("knife"); ■

The categories of a categorical attribute are stored in an array of Categorical
Attribute. Unlike as for the straightforward NumericAttribute, the mathematical

nature of the CategoricalAttribute is rather ambivalent: it can be interpreted as

one or a set of multiple numeric attributes. In the last case (e.g., binning),

CategoricalAttribute represents a basis itself, with the Category-s as basis

vectors. Thus, the set of categories is also called the basis or the metadata of

the categorical attribute. Each category of a categorical attribute can be mapped

to a unique real number (usually an integer) which is called the key of this

category. This establishes a mutually unique mapping between the categories and
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a set of real numbers and allows reducing the handling of categories to that of

real values.

Example 12.2
// Create categorical attribute ’cutlery’:
CategoricalAttribute cutlery ¼ new CategoricalAttribute
("cutlery");

// Add categories:
Category catFork ¼ new Category("fork"); // new fork
category

cutlery.addCategory( catKnife ); //from previous example
cutlery.addCategory( catFork );
cutlery.addCategory( new Category("spoon") );

// Show key-value relationship:
double keyKnife ¼ cutlery.getKey( catKnife );
Category catKnife2 ¼ cutlery.getCategory( keyKnife );

// catKnife ¼¼ catKnife2 ■

XELOPES actively supports three storage types of categorical attributes:

• Static category set (default): All categories are known a priori. Examples are sex

(female, male) or colors (red, green, blue).

• Dynamic category set: During the data processing, new categories may appear

and are added to the basis (option unboundedCategories). Examples are item or

category names.

• Dynamic category set with one category: During the data processing, only the

current category is stored (option unstoredCategories, implies unboundedCa-
tegories). Examples are transaction IDs and customer names.

Of course, the proper use of the storage types for the given examples can also

differ. We emphasize that the support of the unboundedCategories and unstored-
Categories types is really complicated – especially in the field of basis transforma-

tions – but very valuable since it allows to handle large and live data sources.

Categorical attributes with a defined order of categories are modeled by the class

OrdinalAttribute which extends CategoricalAttribute.
Further, the categories of a categorical attribute can be organized into a hierar-

chy (also referred to as taxonomy). This is, e.g., required for many basket analysis

algorithms or, in an extended form, for multilevel methods as in Chap. 6. Hierar-

chies of categories are modeled by the class CategoryHierarchy and can be

assigned to a categorical attribute. CategoryHierarchy uses the method

addRelationship to add a new edge to the hierarchy graph, and many methods

allow running calculations on the graph.
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Example 12.3
// Create category hierarchy:
CategoryHierarchy cah ¼ new CategoryHierarchy();

// Parent category for sharp cutlery:
Category catSharp ¼ new Category("sharp");

// Relations:
cah.addRelationship(catSharp, catKnife); // knife is sharp
cah.addRelationship(catSharp, catFork); // fork is sharp

// Assign hierarchy to cutlery:
cutlery.setTaxonomy(cah); ■

We conclude with an example of MiningDataSpecification.

Example 12.4
// Create object of metadata ’meal’:
MiningDataSpecification meal ¼ new MiningDataSpecification
("meal");

// Create numeric attribute ’calories’ and add to metadata:
NumericAttribute calories ¼ new NumericAttribute
("calories");

meal.addMiningAttribute( calories );

// Create numeric attribute ’numberOfGuests’ and add to
metadata:

NumericAttribute numberOfGuests ¼ new NumericAttribute();
numberOfGuests.setName( "number of guests" );
meal.addMiningAttribute( numberOfGuests );

// Add previous categorical attribute ’cutlery’ to metadata:
meal.addMiningAttribute( cutlery ); ■

12.1.2.2 The Coordinates: MiningVector

After we have modeled the basis of the attribute space byMiningDataSpecification,
we will now model the coordinates of a vector. This is done through the class

MiningVector.
MiningVector contains a reference metaData (of the class MiningDataSpeci-

fication) to its basis and an array of real values which stores the coordinates of the

vector.MiningVector extends the CWM classObject of the CWM resource package

Instance since it represents an instance of the data described by MiningDataSpeci-
fication (Fig. 12.6).
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Example 12.5 Example of a mining vector for the meal basis of the previous

section:

// Create and fill value vector:
double[] mealValues ¼ new double[3];
mealValues[0] ¼ 33000; // calory number
mealValues[1] ¼ 5; // 5 guests
mealValues[2] ¼ cutlery.getKey( new Category("spoon") );

// spoon

// Create mining vector object with values:
MiningVector mealVector ¼ new MiningVector( mealValues );

// Add ’meal’ metadata to mining vector:
mealVector.setMetaData( meal );

// Show (double) values of mining vector:
for (int i ¼ 0; i < mealVector.getValues().length; i++)

System.out.println("value["+i+"] ¼ " + mealVector.
getValue(i)); ■

For sparse vectors, i.e., vectors which mainly contain zero coordinate values, the

class MiningSparseVector could be used which extends MiningVector. It stores
sparse vectors more efficiently by means of an additional array of indexes of the

nonzero coordinate values. For binary sparse vectors, i.e., sparse vectors where the

nonzero values are always one, the class MiningBinarySparseVector should be

utilized which in turn extends MiningSparseVector.

12.1.2.3 The Data Matrix: MiningInputStream

So far we have defined the classMiningVector that models a data vector. In order to

model a whole data matrix, we use the abstractMiningInputStream class.MiningIn-
putStream is a virtual collection of mining vectors. Like each of its mining vectors,

MiningInputStream contains a referencemetaData to the basis of the attribute space.
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Notice that MiningInputStream implements the interface MiningVectorSet
which is the most general container of mining vectors. MiningVectorSet contains
only the method getMetaData to access the basis of the attribute space. MiningIn-
putStream as container of countable sets of mining vectors is the most important

implementation of MiningVectorSet. However, some applications like reinforce-

ment learning (Sect. 12.2.2) require access to uncountable sets of mining vectors

such as all points of a domain or all unit vectors starting from one point. In this case,

the representation of the mining vector set requires a more abstract level such as by

functions of the boundary or geometric objects. We will return to this topic in

Sect. 12.2.2; at this point, we mention thatMiningInputStream is sufficient for data

mining applications.

MiningInputStream contains a graded spectrum of data access methods

depending on its implementation. In the simplest case, the data matrix can be

traversed only once using a cursor-based approach using the method next. If the
reset method is supported, the cursor can be set at the initial position. This access

type is often supported by files and databases. In a more comfortable case, the cursor

can be moved arbitrary using the move method (e.g., for databases supporting

JDBC 2.0). Even more comfortable is the direct access to the data array of the

data matrix, if the matrix fits into memory (e.g., class MiningStoredData).
The read method returns the mining vector at the current cursor position. Each

full implementation of MiningInputStream must at least support the next and read
methods. In addition,MiningInputStream may implement the interfaceMiningOut-
putStream to write data to the data source. Each mining input stream is reflective:

the method getSupportedStream returns all data access (and update) methods

supported by the current implementation.

The mining input stream concept is a direct consequence of the fact that almost

each data mining algorithm requires a data matrix as input. In the language of

CWM, we would say: the logical model of data mining is of the Classifier type.
Thus, MiningInputStream extends the CWM class Class.

The physical model describes the physical data source that is used for mining,

like a text file or a database. For the data mining process, the physical model must

be mapped to the logical one.

The physical model describes the physical data source that is used for mining,

like a text file or a database. For the data mining process, the physical model must

be mapped to the logical one Fig. 12.7.

In XELOPES, this mapping is done by subclassing: different types of physical

data sources can be accessed through different mining input stream classes that

extend MiningInputStream. Important stream classes of XELOPES are listed in

Table 12.1. Often, it is useful to write own resource classes which extendMiningIn-
putStream or one of its subclasses.

Notice that the last three streams are composed streams which take an arbitrary

mining input stream as input and apply a transformation and multidimensional

selection/ordering to the stream, respectively.
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Example 12.6 Example of access to a CSV file using the corresponding mining

input stream:

// Open CSV file ’iris.dat’:
MiningCsvStream inputStream ¼ new MiningCsvStream("csv/

iris.dat");
inputStream.open();

// Get metadata of Iris:
MiningDataSpecificationmetaData¼inputStream.getMetaData();

// Read all data vectors of Iris:
while( inputStream.next() ) {

MiningVector mv ¼ inputStream.read();
// . . . //

}

inputStream.close(); ■

Table 12.1 Important resource streams

Resource stream Super class Description

MiningArrayStream MiningInputStream Access to data stored in array

MiningStoredData MiningInputStream Access to data stored in vector

MiningIteratorStream MiningInputStream Access to iterator objects

MiningSqlStream MiningInputStream Access to data stored in database

MiningFileStream MiningInputStream Access to data stored in a file

MiningCsvStream MiningFileStream Access to data in CSV file

MiningExcelStream MiningFileStream Access to data in Excel file

LogFileStream MiningFileStream Access to data in web server log file

MiningFilterStream MiningInputStream Access to transformed stream

MultidimensionalStream MiningInputStream Access to multidimensional stream

MultidimensionalSqlStream MultidimensionalStream Access to multidimens. SQL stream
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We mention that each mining input stream contains a method getLogicalModel
which returns its logical model, i.e., the metadata, and a method getPhysicalModel
which returns its physical model in terms of a CWM resource packages. The

physical models for some typical resource streams are listed in Table 12.2. The last

column contains the CWM class that is returned as physical model.

In summary, the mining input stream concept makes XELOPES independent of

physical data sources. Each mining algorithm takes a MiningInputStream as input,

probably requests the supported data access methods, and accesses the stream data

through the (supported) standard access methods. The physical stream model, i.e.,

the subclass of MiningInputStream passed to the algorithm, is in general not

required to be known by a XELOPES mining algorithm.

12.1.2.4 Transformations

We have introduced the basis and vector classes of the attribute space. Next, the

transformations of bases and vectors will be discussed. Transformations are a

central part of XELOPES Fig. 12.8.

There are two basic types of transformations supported:

• Transformations of mining vectors

• Transformations of mining input streams

Table 12.2 Examples of resource streams and their CWM representations

Resource stream CWM package of physical model Class of package

MiningArrayStream Object-oriented (i.e., Core) Package

MiningFileStream Record RecordFile

MiningSqlStream Relational Catalog

MultidimensionalStream Multidimensional Schema
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Transformations of Mining Vectors

The first type is transformations of mining vectors which implement the

MiningTransformer interface. It has a simple structure which clearly reflects the

XELOPES approach to basis transformations:

public interface MiningTransformer
{

public MiningDataSpecification transform( MiningData
SpecificationmetaData ) throws MiningException;

public MiningVector transform( MiningVector vector )
throws MiningException;

}

The first transform method transforms basis A into a basis B. The second

transform method transforms the coordinates of a vector in basis A into the

coordinates of the transformed vector in basis B.
We mention three important special cases of vector transformations: if A and

B are bases of the same space and the vector is not transformed (but just its

coordinates), this is called a pure basis transformation. Basis transformations are

discussed below. If the bases are equal, i.e., A ¼ B (first transform method is

identity), and the vector is transformed, this is called a pure vector transformation.
Further, basis B could be the basis of another space, and then we have a space
transformation. Often, these types of transformations are mixed.

Back to MiningTransformer, its main advantage is the clear separation of basis

and coordinate transformations. This has large practical consequences.

Mining Filter Stream

An example of the advantages of separating the basis from the coordinate trans-

formation is the MiningFilterStream which applies transformations dynamically

to a mining input stream. MiningFilterStream is itself a special type of a mining

input stream. Its constructor takes an arbitrary mining input stream object

miningInputStream and a mining transformer object miningTransformer as

arguments. Then, in the getMetaData and read methods of MiningFilterStream,
the transformations of miningTransformer are applied to the metadata and mining

vectors of miningInputStream. The work of MiningFilterStream is illustrated in

Fig. 12.9.

The other stream methods ofMiningFilterStream are simply passed tominingIn-
putStream. MiningFilterStream is universal and easy to use. It can be applied to

streams of almost unbounded size. The disadvantage is the lower access speed since

each call of read runs a transformation.
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We have seen that MiningTransformer transforms one mining vector into

another. Hence, this transformation type transforms attribute values and represents

a vector transformation in the attribute space.

Transformations of Mining Input Streams

The transformations of mining input streams are the more general ones and

implement the MiningStreamTransformer interface. The MiningStream-
Transformer interface consists of one method transform which takes a source
mining input stream as input and a target mining output stream as output of the

transformation. Obviously, this type of transformation covers almost any type of

transformations of mining input streams. We call this type of transformations

stream transformations (Fig. 12.10).
Regarding mining input streams, both types of transformations result in the

following transformation types:

• Static transformations: Here a stream transformation object (that hence imple-

ments the MiningStreamTransformer interface) converts the source stream into

the target stream only once, and then the transformed data is available in the

target mining input stream.

• Dynamic transformations: Here a vector transformation object (that hence

implements the MiningTransformer interface) is used in MiningFilterStream
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Fig. 12.10 Scheme of static transformations (MiningStreamTransformer)
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to run the transformation any time when the read method is called (see previous

section).

Both types of transformations have advantages and disadvantages: in case of

static transformations, the transformation is done only once, and then the target

stream contains the complete transformed data. The disadvantage of this approach

is that we need two streams to be supported (and usually about twice of memory

amount). This means that static transformations are optimal in speed but

non-optimal in memory consumption.

For dynamic transformations via mining filter streams, we do not need additional

memory, but any time when we access the data from the stream using the read
method, the transformation of the current vector is carried out again. Hence,

dynamic transformations are non-optimal in time but optimal in memory. The static

and dynamic transformations represent the classic dilemma that increased speed

requires increased memory, and vice versa.

There are many vector transformations implemented into XELOPES based on an

extensive CWM framework. For general stream transformations, if they are not

based on vector transformations, there is no further framework provided in

XELOPES.

Basis Transformations

Basis transformations are very important but also somewhat abstract. Luckily for

most applications, the XELOPES user does not have to care about basis trans-

formations because they are automatically executed internally. However, since

basis transformations are an important part of this book, we will go more into detail.

For basis transformations, we need to transform metadata (basis) and mining

vectors (coordinates) of the application data with respect to the metadata of the

mining model, i.e., the metadata of the training data set.

The required basis transformation is addressed by the classMetaDataOperations
which is a singleton class owned by the metadata class MiningDataSpecification.
Thus, eachMiningDataSpecification object owns an objectMetaDataOperations to
transform another MiningDataSpecification and appendant mining vectors into its

own basis. In addition, MiningDataSpecification contains methods like equals,
subset, and superset for comparison with another MiningDataSpecification object.

In the same way, each CategoricalAttribute owns a singleton class Categorica-
lAttributeOperations for basis transformations (because here the categories are

referred to as basis of the categorical attribute) from another categorical attribute

into the current one and for comparisons. Moreover, even categorical attributes of

unboundedCategories type are supported by adaptive basis transformation. This is

very important because it allows to apply basis transformations, e.g., to categorical

attributes of live mining input streams which continuously deliver new categories.

An example is the application of a mining model to a large customer database

where customers are continuously added during the application process.
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The basis transformations of categorical attributes can be embedded into the

basis transformation of MiningDataSpecification for all categorical attributes

included. This results in comfortable nested basis transformation. Caching is used

for all metadata and categorical attribute basis transformations. The resulting nested

caching ensures the high speed required for basis transformations.

Example 12.7 Again we consider the basis meal from Example 12.4 and demon-

strate the basis transformation from a second basis meal2 into meal.

// --–––––- Create new metadata ’meal2’ -–––––––-
// Create ’cutlery2’ attribute with one new category and new
order:

CategoricalAttribute cutlery2 ¼ new CategoricalAttribute
("cutlery");

cutlery2.addCategory( new Category("spoon") );
cutlery2.addCategory( new Category("knife") );
cutlery2.addCategory( new Category("skewer") );
cutlery2.addCategory( new Category("fork") );

// Create new numeric attribute ’price’:
NumericAttribute price ¼ new NumericAttribute("price");

// Create new metadata ’meal2’:
MiningDataSpecification meal2 ¼ new MiningDataSpecification

("meal2");
meal2.addMiningAttribute( cutlery2 );
meal2.addMiningAttribute( numberOfGuests );
meal2.addMiningAttribute( price );
meal2.addMiningAttribute( calories );

// -–––––- Get basis trafo object of ’meal’ -––––––
MetaDataOperations mealOp ¼ meal.getMetaDataOp();
mealOp.setUsageType(
MetaDataOperations.USE_ATT_NAMES_AND_TYPES_AND_

CATEGORIES);

// -–––––- Compare bases ’meal’ and ’meal2’ -––––––
System.out.println("’meal’ ¼¼ ’meal2’: " +

mealOp.equals(meal2) ); // false
System.out.println("’meal’ subset ’meal2’: " +

mealOp.subset(meal2) ); // true
System.out.println("’meal’ superset ’meal2’: " +

mealOp.superset(meal2) ); // false

// -––––- Transforms basis of ’meal2’ into ’meal’ -–––-
MiningDataSpecification transMeal2 ¼ mealOp.transform

(meal2);
System.out.println("transformed ’meal2’: " + transMeal2);
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// transMeal2 ¼ (calories, numberOfGuests, cutlery) with
// cutlery ¼ (knife, fork, spoon, skewer) !skewer is added

// -––- Transforms meal vector from ’meal2’ into ’meal’ -––
// Create meal ’soup’ for spoons, 2 persons, 57$, 19 kcal:
double[] soupArr ¼ {0, 2, 57, 19000};
MiningVector soup ¼ new MiningVector(soupArr);
soup.setMetaData(meal2);

// Transform ’soup’ from ’meal2’ into ’meal’ basis:
MiningVector transSoup ¼ mealOp.transform(soup);
System.out.println("transformed ’soup’: " + transSoup);

// transSoup ¼ (19000, 2, 2(¼spoon))

12.1.3 The Data Mining Framework

12.1.3.1 Models

The abstract class MiningModel represents the data mining model which is mainly

the mining function. The central method of MiningModel is applyModelFunction
which takes a mining vector as argument and returns the function value. Thus,
applyModelFunction is used to apply the mining model to data. There exists a

second application method applyModel which is more general and returns objects

(e.g., a mining vector for SV clustering, an item set for an association rule model, or

a node for a decision tree model).

Each class representing a type of data mining models extendsMiningModel. For
instance, AssociationRulesMiningModel extendsMiningModel for association rules
and contains the implementations (applyModel for rules and PMML export/import

of rules). For a special association rule model, AssociationRuleMiningModel may

be further subclassed. For instance, for flat association rules, it may be useful to

introduce a new class FlatRulesMiningModel which extends AssociationRulesMi-
ningModel.XELOPES already contains a wide hierarchy of all basic classes of data

mining models including the main implementations like the apply methods and

PMML serialization. If the user requires a special model, he/she can extend one of

the existing models.

Because of the wide variety of data mining models and algorithms, a two-level

system of their classification is used.

The function level defines the basic types of mining models like Clustering and

Regression. The mining models of XELOPES are organized in packages whose

names correspond to the functions. For instance, all classification models are

contained in the package Classification which contains further subpackages for

special classification models.
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The algorithm level represents special algorithm types of the functions. Many

algorithm types are predefined in CWM, and many have been added for XELOPES.

An example is the decisionTree algorithm which belongs to the function Classifi-
cation and represents a decision tree.

12.1.3.2 Algorithms

The abstract class MiningAlgorithm represents the data mining algorithm that

constructs a MiningModel.
Thus, MiningAlgorithm takes a mining input stream of the training data as input

and returns the mining model of the mining function as output. The training

parameters are passed through the mining settings on model-type level and mining

algorithm specification on algorithm level. Through a callback mechanism, the

training process can be monitored and controlled. The complete dataflow is shown

in Fig. 12.11.

The central method of MiningAlgorithm is buildModel which runs the mining

algorithm and returns the mining model created by the algorithm. Internally,

buildModel calls the protected runAlgorithm method of the actual training process.

The buildModelWithAutomation method generates a mining model using tech-

niques for automatic parameter tuning, allowing to build mining models fully

automatically.

MiningAlgorithms owns a verify method which checks all parameters of the

algorithm class for correctness and completeness.

Settings

MiningSettings

MiningAlgorithm
Specification

MiningAlgorithm

MiningListener
MiningEvent

EventListenerList

MiningModelMiningInputStream

Output

Callback

Input

Fig. 12.11 Main interfaces of MiningAlgorithm

12.1 The XELOPES Library 255



12.1.3.3 Mining Settings

MiningSettings contains the general parameters of a mining model independent

of the specific mining algorithm that has created the model. For instance, an

association rule settings class must contain the minimum support and confidence

parameters because they are required for each association rule model. In con-

trast, parameters like the decomposition size, which is required for specific

association rule decomposition algorithms, are contained in the algorithm-

specific parameter class MiningAlgorithmSpecification that will be described in

the next section.

MiningSettings has a reference to its mining model. The most important variable

of MiningSettings is dataSpecification of the class MiningDataSpecification. It
contains the metadata of the training data used to build the model and is referred

to as the metadata of the mining model.
MiningSettings contains a verifySettings method which checks all parameters of

the settings class for correctness and completeness.

Similar to MiningModel, each class representing a type of data mining settings

extends MiningSettings. For the example at the beginning of this section, the

settings of association rule models are contained in the class AssociationRule-
Settings which extends MiningSettings. Of course, this is the settings class associ-
ated with AssociationRuleMiningModel mentioned in the previous section.

Along with all mining models, XELOPES provides their associated settings

classes containing all basic parameters of the respective models.

MiningSettings contains the same variables function and algorithm for storing

the function and algorithm type of the mining model. Their values are identical to

those of the associated mining model.

12.1.3.4 Mining Algorithm Specification

The algorithm-specific class MiningAlgorithmSpecification contains the function

and algorithm, the name, the class path, the version, and an array of specific

parameters of a mining algorithm. This array contains the specific parameters

defined by the MiningAlgorithmParameter class. Every parameter is described

by its name, type, value, description, and setter method and contains the refer-

ence to its associated MiningAlgorithmSpecification object.

In most XELOPES distributions, the complete information ofMiningAlgorithm-
Specification for all algorithms and parameters is stored in the configuration file

algorithms.xml.

Example 12.8 Example of the section of the fast sequential algorithm Sequential of
algorithms.xml:

<AlgorithmSpecification name¼"Sequential"
function¼"Sequential"
algorithm¼"sequenceAnalysis"
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classname¼"com.prudsys.pdm.Models.Sequential.Algo-
rithms.Seq.SequentialCycle"

version¼"1.0">
<AlgorithmParameter name¼"minimumItemSize"

type¼"int"
value¼"1"
method¼"setM_minItemSize"
description¼"Minimum size for large items" />

<AlgorithmParameter name¼"maximumItemSize"
type¼"int"
value¼"-1"
method¼"setM_maxItemSize"
description¼"Maximum size for large items" />

</AlgorithmSpecification> ■

Algorithm Types

Similar to MiningModel and MiningSettings, each class representing a type of data

mining algorithms extends MiningAlgorithm. For example, the general class of

association rule algorithms is AssociationRulesAlgorithm which extends

MiningAlgorithm. Again, this is the algorithm class associated with AssociationRu-
lesMiningModel and AssociationRulesSettings mentioned in before.

Along with all mining models and their mining settings, XELOPES provides the

associated algorithm classes containing the basic implementations.

Example 12.9 We give an example of the whole data mining process for sparse

grid classification (Chap. 7). First, we build the sparse grid model. The training data

is contained in a CSV file whose path is specified in TRAIN_FILE. The target

attribute is supposed to be the last one. We apply (0,1) normalization to all numeric

attributes before we build the model. The resulting sparse grid model is written to

the PMML file SparseGridsModel.xml.
The Java code is given below:

// Open data source and get metadata:
MiningInputStream inputData ¼ new MiningCsvStream

( TRAIN_FILE );
inputData.open();
MiningDataSpecification metaData ¼ inputData.getMetaData

();

// Get target attribute (last one):
MiningAttribute targetAttribute ¼
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metaData.getMiningAttribute( metaData.getAttribu-
tesNumber ()-1 );

// (0,+1) Normalization of all attributes:
LinearNormalStream lns ¼ new LinearNormalStream

( inputData);
lns.setLowerBound(0);
lns.setUpperBound(+1);
lns.setExcludedAttributeName(targetAttribute.getName());

// Create transformation object:
MiningTransformationActivity mta ¼ new MiningTransforma-
tionActivity();
mta.addTransformationStep( lns.createMiningTransforma-
tionStep() );

// Create MiningSettings object:
SparseGridsSettings miningSettings ¼ new SparseGrids-

Settings();
miningSettings.setDataSpecification( metaData )
miningSettings.setTarget( targetAttribute );

// SG settings:
miningSettings.setSgType(SparseGridsSettings.SG_TENSOR_

PRODUCT_BASIS_TYPE);
miningSettings.setCoarseGrid(true);
miningSettings.setLevel(4);
miningSettings.setLambda(0.1);
miningSettings.verifySettings();

// Get default mining algorithm specification from ’algo-
rithms.xml’:

MiningAlgorithmSpecification miningAlgorithmSpecification
¼
MiningAlgorithmSpecification.getMiningAlgorithmSpeci-

fication( "Sparse Grids" );

// Get class name from algorithms specification:
String className ¼ miningAlgorithmSpecification.

getClassname();

// Set and display mining parameters:
miningAlgorithmSpecification.setMAPValue("debug", "1" );
GeneralUtils.displayMiningAlgSpecParameters(miningAl-

gorithmSpecification );

// Create algorithm object with default values:
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MiningAlgorithm algorithm¼ GeneralUtils.createMiningAl-
gorithmInstance(className);

// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setOuterMiningTransform( mta );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgor-

ithmSpecification );
algorithm.verify();

// Build the mining model:
MiningModel model ¼ algorithm.buildModel();
System.out.println("calc. time[s]: " + algorithm.

getTimeSpentToBuildModel());

// Write to PMML:
FileWriter writer ¼ new FileWriter("data/pmml/

SparseGridsModel.xml");
model.writePmml(writer);

We now apply the sparse grid model of the PMML classifier SparseGridsModel.
xml, created before, to a CSV file TEST_FILE and calculate the classification

rate. Before applying the classifier, the normalization taken from the model is

carried out:

// Read SG model from PMML file:
SparseGridsMiningModel model ¼ new SparseGridsMiningModel

();
FileReader reader ¼ new FileReader("data/pmml/

SparseGridsModel.xml");
model.readPmml(reader);
MiningAttribute modelTargetAttribute ¼ ((Supervised

MiningSettings)
model.getMiningSettings()).getTarget();

System.out.println("-––-> PMML model read successfully");

// Open data source and transform into model format:
MiningInputStream inputData0 ¼ new MiningCsvStream(

TEST_FILE );
MiningInputStream inputData ¼ model.transformIntoMo-

delFormat(inputData0);

// Get input metadata:
MiningDataSpecification inputMetaData ¼ inputData.

getMetaData();
CategoricalAttribute inputTargetAttribute ¼

(CategoricalAttribute)
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inputMetaData.getMiningAttribute( modelTargetAttribute.
getName() );

// Classification:
int nall ¼ 0;
int nwrong ¼ 0;
while ( inputData.next() ) {

// Make prediction:
MiningVector vector ¼ inputData.read();
double predicted ¼ model.applyModelFunction(vector);
Category predCateg ¼ modelTargetAttribute.getCategory

(predicted);
double real ¼ vector.getValue(inputTargetAttribute);
Category realCateg ¼ inputTargetAttribute.getCategory

(real);

// Compare;
if (! predCateg.equals(tarCateg) )

nwrong ¼ nwrong + 1;
nall ¼ nall + 1;

};

System.out.println("classification rate ¼ " + (100.0 –
wrong*100.0/nall) ); ■

12.1.4 The Mathematics Package

XELOPES is equipped with a useful package Math of basic mathematical

operations. It is only a utility package for the XELOPES analysis algorithms

and does not claim to be a complete mathematical library. Nevertheless, espe-

cially for numerical linear algebra, it contains some remarkable implementations

of general interest.

The Math package contains the following subpackages:

• Algebra: vectors, matrices, tensors, and important solver and factorizations

• Analysis: functions, derivatives, etc.
• Approximation: basic approximation methods

• Optimization: basic optimization methods

• Tools: useful tools

In the following, we want to delve into the package Algebra. It has three

subpackages:
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• Core: data structures for vectors, matrices, tensors

• Solver: solvers
• Factorizations: factorizations

The background is that the LAPACK and BLAS libraries, which are the de

facto standard in numerical linear algebra software (e.g., MATLAB is based on

LAPACK), cannot be easily adapted for Java. This problem is rooted in the

strong typing of Java: otherwise an advantage, here it inadequately blows up the

number of methods of the algebraic libraries. Whereas in FORTRAN or C a

scalar value may be passed to a method the same way as an array, Java does not

allow this and requires a separate method for all possible combinations of data

types. In the result, the number of methods grows exponentially with the number

of arguments.

There are two ways to fix this problem. LAPACK/BLAS can be automati-

cally converted from FORTRAN/C into Java using special converters. The

advantage of this approach is that compatibility is retained and so existing

implementations of algorithms, which use LAPACK/BLAS, automatically can

be converted into Java. The price to be paid is the confusing form of the

generated Java code which renders a manual usage of the emerged Java

BLAS virtually impossible.

For the second approach, we abstain from the BLAS compatibility and create a

library instead which offers a functionality similar to LAPACK and BLAS but

exploits the advantages of Java. First of all, this is object orientation. For the

XELOPES library, we used the second way. Unfortunately, here only few suitable

implementations exist, and so most had to be newly developed. Although

XELOPES includes only parts of the LAPACK/BLAS functionality, the imple-

mentation is very clear and sufficient for most applications.

12.1.4.1 Core

Vector

For vectors, the Core package offers BLAS level-1-like classes VBAS for the core

vector operations, VBASJ for Java-specific extensions, and VGEN for general

extensions like index calculations and displaying vectors. We will not go into

further details here.

Matrix

As starting point for matrices, the extremely lean JAMA (Java Matrix Package)

library was used. It mainly consists of the classMatrix, representing a dense matrix,

as well as a handful classes of basic decompositions and solvers (Cholesky, LU,

QR, eigenvalues, SVD located in the Solvers and Factorizations subpackages).

Despite of its minimalistic implementation, JAMA is quite powerful. Roughly
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speaking, it represents BLAS levels 2 and 3 (matrix operations) plus main

LAPACK functionality (especially decompositions). Thus, we included JAMA

into the Algebra package and extended the Matrix class for further requirements.

Example 12.10 We consider two matrices A and B which are defined as follows:

A ¼ 1 4

3 �5

� �
, B ¼ 1 2 �3

0 0 1

� �
:

Now we demonstrate the generation and operations on A and B.

// Create A and B:
Matrix A ¼ new Matrix( new double[ ][] {{1.,4.},{3.,-5.}} );
MatrixB¼newMatrix(newdouble[][]{{1.,2.,-3},{0.,0.,1.}});

// Transpose B. BT ¼ B^T:
Matrix BT ¼ B.transpose();

// Scalar multiplication. A2 ¼ 2*A:
Matrix A2 ¼ A.times(2);

// Matrix multiplication. C ¼ A*B:
Matrix C ¼ A.times(B);

// Matrix addition. D ¼ B + C:
Matrix D ¼ B.plus(C);

// Frobenius norm:
double nF ¼ A.normF();

// Concatination of operations. E ¼ (B + 2*A*B + C)^T:
Matrix E ¼ B.plus( A.times(B).times(2) ).plus(C).trans-

pose(); ■

Since JAMA only supports dense matrices, it was extended for sparse matrices.

Therefore, the abstract class SparseMatrix was designed, and a number of

implementations of this class had been added. The corresponding class diagram is

depicted in Fig. 12.12.

The different implementations of SparseMatrix use different storage techniques
and are optimized for different applications.

So the classes SparseMatrixCompRow and SparseMatrixCompRowStatic are

based on the format Compressed Row Storage (CRS). Here all nonzero elements

(NZE) are stored in one array, and a second array contains the corresponding

column indexes, while a third array contains the pointers to the rows. The CRS

format is especially suited for fast matrix–vector multiplications. At the same time,

it is relatively static because inserting and deleting of NZEs in general require all

arrays to be reordered.
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The class SparseMatrixRowBased uses the storage format Direct Row Storage
(DRS), where the matrix is stored as array of arrays whose last contains the NZEs

with their column indexes for each row. The DRS format is more dynamic than the

CRS format concerning changes of its structure but executes slower matrix–vector

multiplications. The class SparseMatrixHash is entirely based on a hash and thus

can be manipulated very easy and fast, but the execution of most operations is

slower compared to the CRS and DRS formats.

The Matrix class and all of its SparseMatrix implementations can be easily

converted into each other by special constructors and conversion methods. In this

way at the beginning of blocks of algebraic operations, the sparse matrices can be

converted into the format that is most efficient for these operations.

Example 12.11 We return to Example 12.10 and introduce a further matrix

F ¼
0 2 4

0 0 0

3 11 2

0 0 1

0
BB@

1
CCA

that we will use for demonstration of sparse matrices. First, we store F in CRS

format and convert it into a matrix G in DRS format that we use for further

calculations:

// Create F as CRS:
double[] values ¼ {2,4,3,11,2,1};
int[] columnIndexes ¼ {1,2,0,1,2,2};
int[] rowPointer ¼ {0,2,2,5,6};
SparseMatrixCompRowStatic F ¼

new SparseMatrixCompRowStatic(4, 3, values,
columnIndexes, rowPointer);

Matrix

SparseMatrix
(abstract)

SparseMatrix
CompRow

SparseMatrix
CompRowStatic

SparseMatrix
RowBased

SparseMatrix
Hash

Fig. 12.12 Class hierarchy of matrices
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// Create G as DRS from F:
SparseMatrixRowBased G ¼ new SparseMatrixRowBased(F);

// Matrix multiplication. H ¼ G*B^T:
Matrix H ¼ G.times( B.transpose() );

// Vector multiplication. w ¼ G*v:
double[] v ¼ {1, 2, 0};
double[] w ¼ G.mult(v);

// Convert G to full matrix I:
Matrix I ¼ G.toMatrix(); ■

Tensor

The abstract class Tensor is the root of all tensor implementations. The tensor class

hierarchy is shown in Fig. 12.13. The factorization part will be explained later.

In general, the tensor implementations are built upon a column-based structure.

That is, content is stored in columns rather than rows.

For working with a dense tensor, the class StaticTensor shall be used. In this

case, the tensor is stored in a one-dimensional double array. The indexes of the

array are linearized tensor entries. As depicted in Fig. 12.13, there exists also a

sparse version of tensors – the class SparseTensor. This class uses a hash map

to store nonzero. Thus, the linearized indexes form the keys, and the values are

the corresponding tensor entries. The class FunctionTensor is a wrapper for a

high-dimensional function which is provided through the TensorFunction
interface. The tensor classes implement a set of central operations of Tensor
(Sect. 9.1.1):

Tensor
(abstract)

StaticTensor SparseTensor Tucker (abstract)

HigherOrderSVD
CondecompParafac

Decomposition

FunctionTensor

TensorTrain

Fig. 12.13 Class hierarchies of tensors. The classes in the gray boxes belong to the Factorizations

subpackage
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• Addition/subtraction

• Contraction

• Inner product

• Outer (tensor) product

• Contracted (multilinear) product

• n-Mode multiplication

• Matricization

We first give an example of the initialization of a sparse tensor Fig. 12.14.

Example 12.12 In order to initialize the Levi-Civita symbol, which can be

interpreted as sparse tensor, the following steps are performed:

int[] dimension ¼ { 3, 3, 3 };
SparseTensor tensor ¼ new SparseTensor( dimension );
tensor.setEntry( 5, -1 );
tensor.setEntry( 7, 1 );
tensor.setEntry( 11, 1 );
tensor.setEntry( 15, -1 );
tensor.setEntry( 19, -1 );
tensor.setEntry( 21, 1 );

or, using a hash map,

HashMap<Integer, Double> entries ¼ new HashMap<Integer,
Double>;

entries.put( 5, -1 );
entries.put( 7, 1 );
entries.put( 11, 1 );
entries.put( 15, -1 );
entries.put( 19, -1 );
entries.put( 21, 1 );

int[] dimension ¼ { 3, 3, 3 };
SparseTensor tensor ¼ new SparseTensor( entries, dimension

); ■

Fig. 12.14 The Levi-Civita

symbol
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After the tensors have been defined, we can perform operations on them. This is

illustrated in the next example.

Example 12.13 Suppose we have created two static tensor objects t1 and t2. We

demonstrate some tensor operations, then create the corresponding sparse tensors,

and use them again for tensor operations:

// Element-wise multiplication T1 x T1:
Tensor tt1 ¼ t1.mult( t1 );

// Tensor multiplication T1 x T2:
Tensor t12 ¼ t1.tensorMult( t2 );

// N-mode multiplication T1 x T2 (N ¼ 1):
Tensor tn12 ¼ t1.nModeMult( t2.toMatrix(), 1 );

// Inner product T1 x T2:
Tensor ti12 ¼ t1.innerProduct( t2, 0, 0 );

// Matricization of T1 (n-mode ¼ 1):
Matrix m1 ¼ t1.matrice( 1 );

// Create the sparse tensors:
SparseTensor sp1 ¼ new SparseTensor( t1 );
SparseTensor sp2 ¼ new SparseTensor( t2 );

// SparseTensor1 + SparseTensor2:
SparseTensor sp12 ¼ sp1.plus( sp1 );

// N-mode multiplication SparseTensor1 x T2 (N ¼ 1):
SparseTensor spn12 ¼ sp1.nModeMult( t2.toMatrix(), 1 ); ■

12.1.4.2 Factorizations

The package Factorizations contains two subpackages:

• Matrix: matrix factorizations (Sects. 8.3 and 8.4)

• Tensor: tensor factorizations (Sects. 9.1, 9.2, and 9.3)

Matrix Factorizations

The matrix factorization package contains basic decompositions from JAMA for

dense matrices, namely, Cholesky, LU, QR, eigenvalues, and SVD. Further decom-

positions are for sparse matrices of large dimensions. These include Lanczos for

eigenvalues, SVD and Lanczos vectors, the adaptive SVD of Sect. 8.3, an SVD

based on a gradient descent method as of Sect. 8.5, different ALS versions,
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nonnegative matrix factorizations (ALS, multiplicative, SVD based), and a cross-

approximation algorithm.

Example 12.14 We demonstrate the use of a truncated SVD for a small,

sparse 3 � 3 matrix:

// Create sparse 3x3 matrix SA:
double[][] valsA ¼ {{1.,2.,-3},{0.,1.,1.}, {1.,0.,1.}};
Matrix A ¼ new Matrix(valsA);
SparseMatrixCompRowStatic AS ¼ new SparseMatrixCom-

pRowStatic(A);
E.print(2, 2);

// Perform Lansczos SVD, truncate for rank 2:
int rank ¼ 2;
LanczosSVD svd ¼ new LanczosSVD(SA, rank, true);

// Get right singular vector:
Matrix rvec ¼ svd.getV();
rvec.print(2, 2);

// Get singular values:
double[] sv ¼ svd.getSingularValues();
VGEN.DDisplay("svec:", sv);

// Get left singular vector:
Matrix lvec ¼ svd.getU();
lvec.print(2, 2); ■

Tensor Factorizations

The Tucker class (Definition 9.3) contains general methods of Tucker decomposi-

tion, and the classes CandecompParafacDecomposition (Definition 9.5),

HigherOrderSVD (Definition 9.4), and TensorTrain are the specific factorization

models. HigherOrderSVD additionally contains the adaptive HOSVD Algorithm

9.2. Algorithms for offline calculations of decompositions are located in the

subpackage Algorithms. In order to calculate a tensor decomposition, e.g., the

classes CPDecompositionAlgorithm, StandardHosvdAlgorithm/TruncatedHosv-
dAlgorithm (Lanczos algorithm), and TuckerCross3DAlgorithm can be applied.

They contain a method buildModel(Tensor t) to calculate the decomposition.

Example 12.15 We demonstrate the use of a truncated HOSVD for a 3 � 4 � 3

tensor.

// Create 3x4x3 tensor t1 and sparse tensor sp1:
int[] dims ¼ { 3, 4, 3 };
StaticTensor t1 ¼ new StaticTensor( dims );
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t1.setRandomIntegerEntries( 0, 1 ); // fill tensor with ran-
dom entries

SparseTensor sp1 ¼ new SparseTensor( t1 );

// Perform HOSVD, truncate for specified ranks:
TruncatedHosvdAlgorithm truncSVD ¼ new TruncatedHosv-

dAlgorithm();
int[] ranks ¼ { 2, 3, 3 };
HigherOrderSVD hosvd ¼ truncSVD.buildModel( sp1, ranks );

// Get core tensor:
Tensor core ¼ hosvd.getCore();
core.print(2, 2);

// Get mode factors:
for ( int i ¼ 1; i < t1.getOrder() + 1; i++ )
{

Matrix U ¼ hosvd.getMatrices()[i - 1];
U.print(2, 2);

}
For the same example, we demonstrate the incremental HOSVD. Suppose we

add one slice to the existing tensor and update the model, then we need to add the

following code to the previous one:

// Add slice on mode 3:
SparseMatrixHash slNew ¼ new SparseMatrixHash( sp1.

getDimensions()[0],
sp1.getDimensions()[1] );

setRandomIntegerEntries( slNew, 0, 1, 0.2 ); // fill matrix
with random entries

int nMode ¼ 3;

// Update HOVSM:
hosvd.update( sp1, slNew, nMode );

// Add slice to sparse tensor:
sp1.addSlice( slNew, nMode );

// Compare results (updated HOSVD and sparse tensor in
Frobenius norm):

Tensor spEnd ¼ hosvd.getCore()
.nModeMult( hosvd.getMatrices()[0], 1 )
.nModeMult( hosvd.getMatrices()[1], 2 )
.nModeMult( hosvd.getMatrices()[2], 3 );

double normF ¼ spEnd.minus( sp1 ).getFNorm();
System.out.printf("F-Norm of the difference: " + normF); ■
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12.2 The Realtime Analytics Framework of XELOPES

Neither the CWM nor the PMML standard supports realtime analytics functions. So

it was newly specified in XELOPES extending the existing framework. We first

give an introduction to the agent framework of XELOPES which is more general

than reinforcement learning only. Based on this, we then explain the reinforcement

package and finally the recommendation package which in turn extends the RL.

12.2.1 The Agent Framework

The agent framework which is implemented for every single agent in XELOPES is

inspired by the agent ansatz of artificial intelligence (see [RN02]). The heart of this

framework is the Agent, an object which interacts with an environment. This agent

consists of sensors to receive stimuli from the environment and actuators to perform

actions inside of the environment and with it response to the received stimuli.

We mention that nearly everything can be explained in terms of such agent

theory. For example, think of a calculator which gets the stimulus “2 + 2” and,

as a result, responses with the action “4.” Despite to this, we will consider the

agent concept for the analysis of systems mainly. In this context, examples

for agents are given through pack robots, interactive English teachers, systems

for medical diagnostics, and many more. To determine how the agent should

respond to a certain stimulus, some rules have to be introduced. Dependent on

the environment, especially the number of different stimuli, this can lead to an

innumerable number of rules that cannot even be stored on the best performing

computers of nowadays.

To help this out, rules are defined which handle more than one stimulus, actions

are chosen also randomly, and reward functions are defined. Randomly chosen

actions are actually necessary for environments which are not fully observable

which implicates that not the whole variety of possible stimuli is known. A reward

function measures the success of an action through a reward which, for instance,

could be a real number and is communicated to the agent. The aim of the agent is to

maximize this reward. Through the corresponding value function, the agent is able

to rate possible choices of actions in response to a stimulus. This allows him to

make a reasonable decision. The storing and applying of the corresponding rules are

described as learning, since these rules are not initially given.

The agent described until now is a so-called stateless agent. In contrast to this,

we can also consider stateful agents. These agents include an additional attribute,

the state. The state of the agent can change as a result of an action. The current state

of the agent is taken into account during the decision process.

The XELOPES Agent package consists of several utilities which provide a unique
access to the realtime applications of the XELOPES. We need to mention that the

environment discussed above, by now, is not modeled in XELOPES but will pre-

sumably be added in a future version. This means stimuli of the environment are only
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covered through new data which is handed to the agent in a so-called learn step.

Furthermore, the agent needs to be triggered to take an action. This is in contrast

to some common agent theories, where an agent decides by himself or herself when

to act.

12.2.1.1 Agent

The class Agent which represents the root of all agent implementations is abstract.

The dataflow is shown in Fig. 12.15. If we compare it with the dataflow of data

mining of Fig. 12.11, we see that the main idea is to join the classes of the

algorithm and the model into one class – the agent. This is because unlike as in

classical data mining an agent does both learning and application, often combined.

As we see, the agent parameters are passed through the agent settings on agent-

type level and agent specification on algorithm level – very similar to mining

settings and mining algorithm specification of the mining process. Additional

information like product-specific master data required in the specific agent appli-

cations can be specified through the environment information which, however, is

mandatory.

EnvironmentInformation is basically a hash map of mining input streams where

the keys are the names of the streams. Thus, each stream represents a table. For

example, there may be a key product for a mining input stream of all product

informations of a web shop and regions for tabular informations about different

regions. The inclusion of EnvironmentInformation into the Agent package is impor-

tant because unlike data mining, which almost always works on a flat table, agents

are often more complex and work on nested schemas. For example, XELOPES

contains business-oriented packages of disposition and price optimization as well as

a reinforcement learning package described in the next section.

Apply

Learn

Environment

Agent

AgentSettings

AgentSpecification

Environment
Information

Learn Data

Apply Data

Action(s)

Settings

Fig. 12.15 Main interfaces of agent
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Before we explain the learning and application method of an agent, we mention

that we distinguish between stateless and stateful agents. A stateless agent, in

contrast to a stateful one, does only store some specific agent parameters

representing the rules, not the input data. This means the agent does not know its

current state and makes its decisions independent of his state. On the contrary, a

stateful agent knows its “history.” In general, stateful agents are easier to imple-

ment and to integrate. However, stateless agents support multithreading environ-

ments. For example, a recommendation agent working in real time is requested by

events of different sessions in a mixed order.

Now we turn to the learning step. If the agent is stateful, the method addData
with a mining vector or a mining input stream as argument is used to add training

data to the agent. Each time addData is called, its data is added to the internal input
data vector of the agent. The method clearData removes all input data from the

vector. The method learn runs the (adaptive) learning based on the input data. There
are two other learn methods with a mining vector or a mining input stream as

argument, respectively. These methods, which can be applied to both stateful and

stateless agents, use only the data passed as argument for learning.

For application, Agent provides two apply methods, both applicable for stateful

and stateless agents. The first takes a mining vector as argument and returns an

action, specified by a generic (of the Agent class). In case of scoring, this may be

a Double or Integer, but an action may also have a more complex object like a

recommendation. The second apply method receives a mining input stream as

argument and returns a list of the generics representing the actions corresponding

to each mining vector of the mining input stream.

To combine learning and application in one step, there exist learnApply
methods. Within these methods, both stateful and stateless agents use the input

miningInputStream/miningVector for learning and application.

By means of this simple set of learning and application methods, a wide variety

of realtime learning scenarios can be covered. Note that depending on the imple-

mentation of a specific agent, not all of these methods must be supported.

Like MiningAlgorithm, also Agent owns a verify method which checks all

parameters of the agent class for correctness and completeness. Similar to

MiningModel, Agent has a variable function to specify its basic agent type but no

variable similar to algorithm because each agent is usually enough specific, and so

clustering of agents on algorithm level does not make sense.

12.2.1.2 Agent Settings

AgentSettings contains the general parameters of an agent and is very similar

in nature to MiningSettings. It also contains a reference to the agent and the

metadata of the learning/application data. Moreover, Agent owns a verifySettings
method which checks all parameters of the settings class for correctness and

completeness.
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Similar to MiningSettings, each class representing a type of agent settings

extends AgentSettings. Along with all agents, XELOPES provides their associated

settings classes containing all basic parameters of the respective agents.

AgentSettings contains the same variable function or stores the function of the

agent. A specific property of agent settings is the methods to request and to define

whether the agent works in a stateless or stateful mode. Of course, not all agents

support both modes.

12.2.1.3 Agent Specification

The agent-specific class AgentSpecification, which is the agent counterpart to

MiningAlgorithmSpecification, contains the function, the name, the class path, the

version, and an array of specific parameters of an agent. This array contains the

specific parameters defined by the AgentParameter class. Every parameter is

described by its name, type, value, description, and setter method and contains

the reference to its associated AgentSpecification object.

In most XELOPES implementations, the complete information of AgentSpe-
cification for all agents and parameters is stored in the configuration file

agents.xml.

Example 12.16 Example of the section of price optimization algorithm

DiscountAgent of agents.xml:

<AgentSpecification name¼"DiscountAgent"
function¼"PriceOptimization"
classname¼"com.prudsys.pdm.Agent.Pricing.Discount.

DiscountAgent"
description¼"Discount Price Optimization Agent."
version¼"1.0">
<AgentParameter name¼"initC"

type¼"double"
value¼"10.0"
method¼"setInitC"
description¼"Initial price elasticity after the first

order."/>
<AgentParameter name¼"debug"

type¼"java.lang.String"
value¼"none"
method¼"setDebug"
description¼"Possible values:none, all, a list of

itemIDs."/>
</AgentSpecification> ■
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Agent Types

Similar to AgentSettings, each class representing a type of agents extends Agent.
For example, the general class of price optimization agents is PricingAgent which
extends Agent. This is the agent class associated with PricingAgentSettings.

Along with all agent settings, XELOPES provides the associated agent classes

containing the basic implementations.

Example 12.17 We give a (simplified) example of price optimization using an

agent which calculates the optimal prices of products. The transaction data is

contained in a CSV file whose path is specified in TRANSACT_FILE. For each
transaction product, the agent calculates the optimal price, and based on the

resulting orders (or not order), the agent learns. The resulting elasticity agent is

written to the PMML file LinElastAgent.xml.

// Open data source and get metadata:
MiningInputStream inputData ¼ new MiningCsvStream(

TRANSACT_FILE );
inputData.open();
MiningDataSpecification metaData ¼ inputData.getMetaData

();

// Create AgentSettings object:
PricingAgentSettings settings ¼ new PricingAgentSettings

();
settings.setInputDataSpecification( metaData );
settings.setUseRoundPrice(true);
settings.setRoundPriceRule(1.2, 0.25, 0.98);
settings.setRoundPriceRule(1.3, 0.25, 0.98);
settings.verifySettings();

// Get agent specification from ’agents.xml’:
AgentSpecification agentSpecification ¼

AgentSpecification.getAgentSpecification(
"LinElastAgent" );

// Set agent parameters:
agentSpecification.setAPValue("explorationRate ", 0.1);
agentSpecification.setAPValue("priceEpsilon", 0.02);
agentSpecification.setAPValue("movingAverageTurno-

verRange", 1.0);

// Create agent object:
PricingAgent agent ¼ (PricingAgent) agentSpecification.

createAgentInstance();

// Create environment object:
EnvironmentInformation env ¼ getPoEnvironment(); // not

shown here
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// Put it all together:
agent.setAgentSettings(settings);
agent.setAgentEnvironmentInformation(env);
agent.verify();

// Apply and learn:
int indItem ¼ metaData.getAttributeIndex("itemID");
int indUnits ¼ metaData.getAttributeIndex("units");
while ( inputData.next() ) {

MiningVector mv ¼ inputData.read();
Category itemID ¼ mv.getValueCategory(indItem);

// Get recommended price:
double price ¼ agent.apply(mv);

// Recommend price for item ID, get units ordered (0 if no
order):

int unitsOrdered ¼ getResponse(itemID, price); // not
shown here

mv.setValue(indUnits, unitsOrdered);

// Learn from response (stateful):
agent.addData(mv);
agent.learn();
// Alternative - Learn from response (stateless):
// agent.learn(mv);

}

// Write to PMML:
FileWriter writer ¼ new FileWriter("data/pmml/

LinElastAgent.xml");
agent.writePmml(writer); ■

Finally, we notice that the Agent package provides a useful wrapper class

MiningModelAgent, which extends Agent, in order to use data mining models/

algorithms as described in Sect. 12.1.3 inside the agent framework. This is of

particular interest for updateable mining models such as naı̈ve Bayes or adaptive

decision trees. At this, to MiningModelAgent, a MiningModel and a suitable

MiningAlgorithm can be assigned and can then be used as an agent.

12.2.2 The Reinforcement Learning Package

In XELOPES, the reinforcement learning package is implemented as subpackage

RL of the Agent package (previous section). The RL package in turn contains the

following subpackages:
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• Core: core and infrastructure

• DP: dynamic programming algorithms of RL

• MC: Monte Carlo algorithms of RL

• TD: temporal-difference learning algorithms of RL

• Approx: function approximation

• MultiLevel: multilevel methods

• Recomm: RL for recommendations

The RL algorithms implement the agent interface described in the previous

section. We now describe the central packages except for the Recomm package

which will be studied in Sect. 12.2.3.

12.2.2.1 Core

State, Action, Reward

The class State extends MiningVector. To avoid philosophical discussions why a

state is a mining vector, we just mention that since it is used as argument of the

state-value function v(s), which in turn is represented by a MiningModel (will be
explained below), it must be a mining vector. The class Action also extends

MiningVector. Figure 12.16 illustrates the motivation: an action is something that

moves one state into another. Since states are mining vectors (coordinate vectors),

actions must be mining vectors (transition vectors), too!

The classes State and Action do not directly extend MiningVector but the class
IndexedMiningVector which is a mining vector with an index, accessible via

getIndex and setIndex methods. The index is useful for discrete state and action

sets S and A(s), respectively. The index, as almost all integer-like RL

implementations in XELOPES, uses long as data type because in RL there may

be a huge number of states, actions, steps, etc., that potentially cannot be stored as

native integers.

The class Reward is mainly a wrapper class for a double value. Due to the fact

that Reward always contains one value only, instead of an array, it does not extend

state 1

state 2

action

Fig. 12.16 Symbolic

vector representation of

state transition by taking an

action
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MiningVector although this might be useful in some conceptual sense as we will

discuss next.

The class StateActionVector, which also extends IndexedMiningVector, repre-
sents a mining vector composed of a state and an action. This class is required to

model action-value functions within the XELOPES framework asMiningModel, as
will be described below. There are also other similar classes that extend IndexedMi-
ningVector and represent compositions of states, actions, and rewards. Further

examples are StateRewardVector (state and reward), SampleVector (state, action,
reward, next state), and SarsaVector (extends SampleVector by additional next

action and thus represents state, action, reward, next state, next action). All these

classes in the end extend MiningVector what is extremely helpful because we can

use them in the same learn and apply methods of the agent.

StateSet, ActionSet, StateActionSet

The class StateSet models the state set S, and ActionSet the actions set A(s) of all
actions available in state s. Both are containers of mining vectors of states and

actions, respectively. The class ActionSet further contains a reference to its state s.
Because the number of valid states and actions may be infinite and even

uncountable, MiningVectorSet is used to store the vectors (Sect. 12.1.2). In case

of discrete problems, a MiningInputStream as subtype of MiningVectorSet is used
to store the vectors; we then call the mining vector set countable what is indicated
by the isCountable method. For countable vector sets, there exist specific methods

like nextState (nextAction) and readState (readAction) which repeat the methods of

MiningInputStream but are more simple to use because explicit-type conversions

(e.g., to State object or long type) can be avoided. Additionally, the methods

addState (addAction) not only add a new state (action) to the set but can automat-

ically update the index of the state (action). Of course, using the getMiningIn-
putStreammethod also the “classic” stream methods can be used to access the states

and actions.

The interface StateActionSet represents a state set S and the action sets A(s) for
all states s of S. The method getStateSet returns the state set, and the method

getActionSet(State s) the action set for the specified state s. Typically,

StateActionSet is implemented by environments and contains all admissible states

and actions.

Example 12.18 The example assumes countable state and action sets and iterates

over all states and corresponding actions of state-action set. We demonstrate

different vector iteration and access methods for the state and action sets which

are similar to mining input streams.

StateActionSet asSet ¼ . . . // reference to state-action set
StateSet states ¼ asSet.getStates();
boolean cnSt ¼ states.isCountable(); // true
for (long i ¼ 0; i < states.getStatesNumber(); i++) {
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State state ¼ states.getState(i);
long is ¼ state.getIndex();
ActionSet as ¼ asSet.getActionSet(state);
boolean cnAs ¼ as.isCountable(); // true
while ( as.nextAction() ) {

Action action ¼ as.readAction();
long ia ¼ action.getIndex();
// . . . use state (or index is) and action (or index ia) . . . //

}
} ■

State-Value Function, Action-Value Function

The classes StateValueFunction and ActionValueFunction are used for the state-

value function v(s) and the action-value function q(s,a), respectively.
We start with the state-value function v(s). In this book, we mainly work with

discrete state and action sets and use a tabular representation of the state-value

function. However, as pointed out in Sect. 6.1.1 and used in Sect. 10.4.2, in many

applications, v(s) is explicitly represented by a function, in most cases constructed

by regression. Thus, we use aMiningModel (Sect. 12.1.3) to store the function. This
means that in principle all data mining models of XELOPES can be used for v(s),
especially the regression models like linear and polynomial regression, regression

trees, neural networks, or even sparse grids. For different reasons, StateValue-
Function does not directly extend MiningModel but uses a variable function of

the class MiningModel to store the function.

To handle the important special case of tabular representations, the RL package

contains a special mining model – TableMiningModel – to store all pairs of

argument and function value {x, f(x)} directly. The class StateValueTable extends
TableMiningModel for state-value functions, i.e., to store all pairs {s, v(s)}.
Depending on whether the number of states is constant or not, it uses an array or

a hash table to store the function values. The StateValueTable is the default mining

model of StateValueFunction, i.e., if no other mining model is passed to

StateValueFunction, this one is used.
We describe the central methods of StateValueFunction. The first

public double getValue(State state) throws
MiningException;

returns the function value of state. Obviously, this method just calls function.
applyModelFunction(state) to invoke the mining function call.

public void setValue(State state, double value) throws
MiningException;
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sets the function value at state to value. It is only supported for StateValueTable
because in general a mining model cannot be changed directly but is the result of the

mining process.

public void updateValue(State state, double value) throws
MiningException;

updates the function value. It adds the new value to the current value of the

function. This method internally combines getValue with setValue and thus is also

limited to models of StateValueTable.

Example 12.19 Consider a simple state-value function with just two states. Using

the default StateValueTable, it can be written as follows:

// Define state-value function (with two states):
StateValueFunction sf ¼ new StateValueFunction(2);
double[] s1 ¼ { 1 };
State st1 ¼ new State(s1, 0); // state index 0
sf.setValue(st1, 0.9);
double[] s2 ¼ { 2 };
State st2 ¼ new State(s2, 1); // state index 1
sf.setValue(st2, 1.9);

// Retrieve function value:
System.out.println(st1 + " -> val1¼" + sf.getValue(st1) );

■

The class ActionValueFunction for action-value functions q(s, a) is similar to

StateValueFunction but uses the state-action pair (s, a) instead of a state s. The
StateActionVector class is the internal representative of the state-action pair.

Consequently, ActionValueFunction also owns a variable function of the class

MiningModel to store the function values. For discrete problems, in further analogy

to StateValueFunction, it provides an extended TableMiningModel, the ActionVa-
lueTable, to store all pairs of argument and function value, i.e., {(s, a), Q(s, a)}.
ActionValueFunction contains similar methods to get, set, and update its function

values like StateValueFunction but with state-action pairs as keys (instead of

states only).

Policies

The abstract class Policy is the base class of the stochastic policy π(s, a) (see

Sect. 3.3).

It owns a variable actionSet to store the corresponding action set A(s). The
values of the actions, called action values, can be defined in different ways, most

importantly by virtue of an ActionValueFunction.
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The main methods of Policy are:

public Action nextAction() throws MiningException;

returns next action following the policy,

public abstract double probability(Action action) throws
MiningException;

returns the probability p(s,a) of an action to be taken.

Different subclasses extend Policy for different types of policies. The most

important policy class is GreedyPolicy, which selects the action(s) of the highest

action value (best action). The class EpsilonGreedyPolicy extendsGreedyPolicy for
an ε-greedy policy. The class SoftmaxPolicy extends Policy for a softmax policy.

Example 12.20 We give an example of an ε-greedy policy. The action set contains
three possible actions. The action values are defined through an action-value

function with the second action having maximum reward. For ε ¼ 0.2, the ε-greedy
policy selects the “greedy” action 2 in 80 % of all calls of nextAction.

// Define action set:
double[] s1 ¼ { 0 };
State st1 ¼ new State(s1, 0); // state index 0
double[] a1 ¼ { 1 };
Action act1 ¼ new Action(a1);
double[] a2 ¼ { 2 };
Action act2 ¼ new Action(a2);
double[] a3 ¼ { 3 };
Action act3 ¼ new Action(a3);
ActionSet as ¼ new ActionSet();
as.setState(st1);
as.addAction(act1); // action index 0, automatically

assigned
as.addAction(act2); // action index 1, automatically

assigned
as.addAction(act3); // action index 2, automatically

assigned

// Define action-value function:
ActionValueFunction qfunction ¼ new ActionValueFunction
();

qfunction.setValue(st1, act1, -1);
qfunction.setValue(st1, act2, 8);
qfunction.setValue(st1, act3, 5);

// Define greedy policy:
EpsilonGreedyPolicy egp ¼ new EpsilonGreedyPolicy();
egp.setActionSet(as);
egp.setActionValueFunction(qfunction);
egp.setEpsilon(0.2);

12.2 The Realtime Analytics Framework of XELOPES 279



// Apply policy 10 times:
for (int i ¼ 0; i < 10; i++)

System.out.println("next action: " + egp.nextAction());
// Result, e.g.:
// next action: action: 2.0 index ¼ 1
// next action: action: 2.0 index ¼ 1
// next action: action: 1.0 index ¼ 0
// next action: action: 2.0 index ¼ 1
// next action: action: 2.0 index ¼ 1
// next action: action: 3.0 index ¼ 2
// next action: action: 2.0 index ¼ 1
. . . ■

Agent, Environment

The central class of the RL package is, of course, RLAgent. It extends the general
Agent from Sect. 12.2.1. The generic of RLAgent is Action because its apply and

learnApply methods return Action objects. Unlike the general agent framework of

XELOPES, the RL package contains a base Environment class. Environment is an
abstract class that extends the EnvironmentInformation (Sect. 12.2.1) and imple-

ments StateActionSet. So the complete interaction of Fig. 3.1 can be modeled by

the RL package.

RLAgent has an associated settings class RLAgentSettings that extends the

general AgentSettings from Sect. 12.2.1. It stores some basic parameters like the

discount rate γ and contains a description of the agent’s metadata.

Further, RLAgent contains variables vfunction for the state-value function,

qfunction for the action-value function, and policy for the policy of the agent (not

all must be used). Further, it has a reference to its Environment. For the case where
the agent knows its environment model (i.e., transition probabilities and -rewards),

the variable envModel of RLAgent can be used. It is of the class EnvironmentModel
which contains interfaces to access the transition probabilities and -rewards.

The RL package also supports simulations in the spirit of Fig. 3.1. The approach

was motivated by the RL implementation of Sutton and Santamaria [StSa96]. To

this end, the following method is contained in Environment:

public abstract StateRewardVector step(Action action)
throws MiningException;

This method will be called once by the simulation instance in each step of the

simulation. step causes the environment to undergo a transition from its current

state to a next state dependent on the action. The method returns the next state and

reward as StateRewardVector object. If action is null, a new episode starts.

The learnApply method of RLAgent, inherited from Agent, with a

StateRewardVector object as argument serves as counterpart to the step method

from the agent side. It takes the next state and reward from the environment and
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returns an action which in turn is passed to the environment. If it receives a terminal

state from the environment, it returns a null action that causes the environment to

start a new episode. In this way, the interaction of Fig. 3.1 is supported by RLAgent
and its associated Environment. The actual simulation is executed by the Simulation
class which finally presents some statistics.

12.2.2.2 RL Algorithm Packages

DP Package

The dynamic programming algorithms are organized in the DP package. It contains

an own environment class DPEnvironment which extends Environment from the

RL Core package. The central method of DPEnvironment is getEnvironmentModel
which returns the model object of the environment which is an instance of

EnvironmentModel.
EnvironmentModel contains two methods getTransProb and getTransRew to

return the transition probabilities pa
ss0 and -rewards r a

ss0 , respectively. Both are

modeled by the interface TransitionFunction which represents the three-

dimensional tensor of transition values from state s to state s0 under action a.
The abstract class DPAgent extends RLAgent, and from its assigned

DPEnvironment, it takes the model of the environment. Since DPAgent learns in
offline mode, it has a similar method as MiningAlgorithm from the data mining

framework to run the learning, buildModel, that solves the Bellman equation (3.7).

Only after this method has been called, the policy of the DPAgent can be used.

The policy of DPAgent is always a greedy policy and hence an instance of

GreedyPolicy class.
The classes PolicyIterationAgent and ValueIterationAgent both extend DPAgent

for the policy iteration and value iteration algorithms explained in Sect. 3.9.4. They
have only few parameters, and in most cases the user has not to care about them.

Example 12.21 We show the example that solves the GridWorld problem of

[SB98]. (Notice that the main implementation amount requires the environment

class GridJumpEnvironment not listed here.)

// Create agent settings:
RLAgentSettings agentSettings ¼ new RLAgentSettings();
agentSettings.setInputDataSpecification(metaData);
agentSettings.setGamma(0.9);
agentSettings.verifySettings();

// Get default agent specification from ’agents.xml’:
AgentSpecification agentSpecification ¼

AgentSpecification.getAgentSpecification( "PolicyItera-
tionAgent" );
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// Set agent parameters:
agentSpecification.setAPValue("maxPolIter", 100);
agentSpecification.setAPValue("maxEvalIter", 200);
agentSpecification.setAPValue("theta", 0.0001);

// Create algorithm object with default values:
DPAgent agent ¼ (DPAgent) agentSpecification.createAgen-

tInstance();

// Put it all together:
agent.setAgentSettings(agentSettings);
agent.verify();

// Create DP environment:
DPEnvironment env ¼ new GridJumpEnvironment();

// Create and init simulation object:
Simulation sim ¼ new Simulation(agent, env);
sim.init(null); // assigns environment to agent

// Build DP model solving Bellman equation:
System.out.println("TRAINING");
agent.buildModel();
System.out.println( agent.getVfunction() ); // optimal

state-value function

// Run simulation:
System.out.println("SIMULATION");
int maxStepsPerTrial ¼ 10;
sim.steps(maxStepsPerTrial);
System.out.println("total time [s]: " + sim.getTimeSpent-

ToRunTrials() ); ■

MC Package

The Monte Carlo algorithms are organized in the MC package. These algorithms

are simple, and the package contains basic implementations of MC algorithms like

OnPolicyMCAgent for the on-policy MC algorithm and OffPolicyMCAgent for the
off-policy MC algorithm. Consult [SB98] for these algorithms and their parameters,

whose names in XELOPES are consistent to the book.

TD Package

The temporal-difference learning algorithms are organized in the TD package.

Examples are the classes SarsaAgent for the Sarsa, on-policy algorithm and

SarsaLambdaAgent for the Sarsa(λ), on-policy algorithm and WatkinsQAgent for
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the Watkins Q-learning, off-policy algorithm and WatkinsQLambdaAgent for the
Watkins Q(λ), and off-policy algorithm. Again the names of all parameters are

consistent to [SB98].

Example 12.22 We give an example of a modified GridWorld example

representing an episodic task (in contrast to our previous GridWorld, which was a

continuing task). This new GridWorld has a terminal state after which the episode

terminates. Here the reward is �1 for all transitions; thus, we want to reach the

terminal state as fast as possible. Like in the previous example, we omit the

implementation of the GridEnvironment but focus on the solution process.

// Create agent settings:
TDAgentSettings agentSettings ¼ new TDAgentSettings();
agentSettings.setInputDataSpecification(metaData);
agentSettings.setGamma(1.0);
agentSettings.setAlpha(0.01);
agentSettings.setLambda(0.9);
agentSettings.verifySettings();

// Get default agent specification from ’agents.xml’:
AgentSpecification agentSpecification ¼

AgentSpecification.getAgentSpecification("SarsaLambda
Agent" );

// Create algorithm object with default values:
RLAgent agent ¼ (RLAgent) agentSpecification.createAgen-

tInstance();

// Put it all together:
agent.setAgentSettings(agentSettings);
agent.verify();

// Create environment:
Environment env ¼ new GridEnvironment();

// Create and init simulation object:
Simulation sim ¼ new Simulation(agent, env);
sim.init(null); // assigns environment to agent

// Run simulation:
int numTrials ¼ 10000;
int maxStepsPerTrial ¼ 100;
sim.setTrialDevisor(1000);
sim.trials(numTrials, maxStepsPerTrial);
System.out.println("total time [s]: " + sim.getTimeSpent

ToRunTrials() ); ■
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12.2.3 The RL-Based Recommendation Package

The package Recomm contains the framework and algorithms for applying RL to

recommendation engines following the approach of this book.

The central class RecommAgent extends RLAgent for RE applications.

Based on the categorization described in Chap. 5, the class PRecommAgent
extends RecommAgent and contains the implementation of the P-Version

(Sect. 5.1). It is extended by DPRecommAgent for the conditional DP algorithm

(Sect. 5.2). In the same way, the class with the historically established name

StandardRecommAgent extends RecommAgent for unconditional TD agents.

TDRecommAgent extends StandardRecommAgent for the conditional TD algo-

rithm. The class hierarchy of the recommendation agents is depicted in Fig. 12.17.

All recommendation agents have a sister settings class as well. The settings

classes are organized in a similar hierarchy as their associated agents. In particular,

the agent settings class of RecommAgent is RecommAgentSettings and extends

RLAgentSettings of the RLAgent. For example, DPRecommAgent has a settings

class DPRecommAgentSettings.
All recommendation agents implement the central Agent method

public Action learnApply(MiningVector learnApplyVector);

It is basically used for learning since we remember that learning for REs is done

with a one-step delay. In order to get the recommendations, the qfunction object of

the RLAgent shall be used in combination with a desired policy.

The learnApply methods of all recommendation agents require an object of

RecommVector as argument and work in a stateless mode. This allows mixed

learning from multiple sessions. RecommVector extends SarsaVector and stores

the tuple (state, action, reward, next state, next action). However, unlike

RecommAgent
(abstract)

StandardRecommAgent PRecommAgent

TDRecommAgent DPRecommAgent

Fig. 12.17 Class hierarchy of recommendation agents
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SarsaVector, it requires a special action object ComposedAction to store

the actions. The reason is that we may have multiple recommendations as action.

ComposedAction extends Action and has a dual function: it represents a unique,

composed action and at the same time stores all the single actions, i.e., the

recommended products. At this, each attribute of ComposedAction represents a

single recommendation. The index of ComposedAction stores the selected action,

i.e., the “recommendation” that actually has been accepted.

RecommVector owns the method

public RecommVector toSelectedRecommVector() throws
MiningException;

which transforms the recommendation vector into a new instance which only

contains the selected actions instead of all recommended ones, i.e., the new

recommendation vector stores the real transitions of the SARSA tuple as in

Fig. 3.7.

Finally, we have the abstract class RecommEnvironment that extends Environ-
ment of the RL package and implements StateBasedActionSet, an interface

reflecting the isomorphism between states and actions (4.1). Further, RecommEn-
vironment contains methods for the mapping between states/actions and their

indexes and a special handling for absorbing states. Additionally, RecommEn-
vironment provides methods to access transition probabilities.

Example 12.23 We consider our small test shop of Example 5.4. To make the case

more realistic, we further assume that in the course of the sessions, recommenda-

tions are displayed. We select the DP Algorithm of Sect. 5.2. In the following, we

describe an implementation of a simple recommendation engine by means of the

Recomm package. We start with the overall execution method:

/** The environment object. */
protected RecommEngineEnvironment recoEnv ¼ null;

/** The recommendation agent. */
protected RecommAgent agent ¼ null;

/**
* Run the recommendation engine example.
*
* @throws MiningException error while example is running
*/

public void run() throws MiningException {

// Create recommendation environment:
recoEnv ¼ new RecommEngineEnvironment();
recoEnv.init(null);

// Create recommendation agent:
agent ¼ createDPRecommAgent();
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// Create initial function values:
createInitialValues();
showValues();

// Do the online learning:
onlineLearning(agent);
showValues();

}

The most complex part is the implementation of RecommEngineEnvironment
which extends RecommEnvironment. Thus, we restrict our attention to the main

elements of this class. Especially, we do not show the implementations of all

methods of RecommEnvironment but just state the internal variables.

/**
* Environment of recommendation engine example. <p>
*
* There are six states S ¼ (1,2,3,4,5,6) and in all
* of these states the same actions may be recommended: A ¼ S.
*/

public class RecommEngineEnvironment extends
RecommEnvironment

{
// -––––––––––––––––––––––––––
// Variables definitions
// -––––––––––––––––––––––––––
/** Set of all states. */
private StateSet states ¼ null;

/** Array of all action sets. */
private ActionSet[] actionsets ¼ null;

// -–––––––- Meta Data States/Actions -––––––- //
/** Item ID attribute of states. */
private CategoricalAttribute itemIDAtt ¼ new Categorica-

lAttribute("itemIDAtt");

/** Meta data of states, i.e. item indexes. */
private MiningDataSpecification metaDataState ¼ null;

/** Item ID attribute of actions. */
protected CategoricalAttribute recoIDAtt ¼ new Categori-

calAttribute("recoIDAtt");

/** Meta data of actions, i.e. rule indexes. */
private MiningDataSpecification metaDataAction ¼ null;

/** Hashtable of step number. */
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private Hashtable<String, Integer> stepHash ¼ new
Hashtable<String, Integer>();

/** Hashtable of DP. */
private Hashtable<String, double[]> dpHash ¼ new

Hashtable<String, double[]>();

// -–––––––––––––––––––––––––-
// Constructor
// -–––––––––––––––––––––––––-
/**
* Empty constructor.
*/

public RecommEngineEnvironment(){
}

// -–––––––––––––––––––––––––-
// Initialization
// -–––––––––––––––––––––––––-
/**
* Init.
*
* @param args array of strings
* @exception MiningException general exception
*/

public void init(String[] args) throws MiningException {

// Create state meta data:
metaDataState ¼ new MiningDataSpecification("itemID");
int nstates ¼ 6;
for (int i ¼ 0; i < nstates; i++)
itemIDAtt.addCategory( new Category( String.valueOf(i

+1) ) );
metaDataState.addMiningAttribute(itemIDAtt);

// Create metadata for actions:
metaDataAction ¼ new MiningDataSpecification

("actions");
int nactions ¼ nstates;
for (int i ¼ 0; i < nactions; i++)
recoIDAtt.addCategory( new Category( String.valueOf(i

+1) ) );
metaDataAction.addMiningAttribute(recoIDAtt);

// Create states and action arrays:
MiningStoredData msd ¼ new MiningStoredData();
msd.setMetaData(metaDataState);
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states ¼ new StateSet(msd);
states.setStaticStates(true);
states.setStaticActionSets(false);
states.setStaticActionSetLength(false);
actionsets ¼ new ActionSet[nstates];

// Fill data:
for (int i ¼ 0; i < nstates; i++) {
// New state:
double[] values ¼ {i};
State state ¼ new State(values);
state.setMetaData(metaDataState);
states.addState(state);

// New action set:
ActionSet actionSet ¼ new ActionSet();
actionSet.setState(state);
actionSet.setStaticActions(false);

actionsets[i] ¼ actionSet;
}

}

// -–––––––––––––––––––––––––-
// Methods to access states and their actions
// -–––––––––––––––––––––––––-
/**
* Returns state set, i.e. all states available in the

environment.
*
* @return state set of the environment
* @exception MiningException state set access error
*/

public StateSet getStates() throws MiningException {

return states;
}

/**
* Returns action set for a specified state.
*
* @param state specified state
* @return action set of specified state
* @throws MiningException action set access error
*/

public ActionSet getActionSet(State state) throws
MiningException {
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return actionsets[ (int) state.getIndex() ];
}

/**
* Returns state specified by its name.
*
* @param stateStr the name of the state
* @return the state
* @throws MiningException
*/

public State getState(String stateStr) throws
MiningException {

//. . . Implementation . . .//
}

/**
* Returns the action specified by the state and action

names.
*
* @param stateStr the state name
* @param actionStr the action name
* @return the action
* @throws MiningException
*/

public Action getAction(String stateStr, String
actionStr)

throws MiningException {

//. . . Implementation . . .//
}

/**
* Adds action specified by the state and action name.
*
* @param stateStr the state name
* @param actionStr the action name
* @return the action added
* @throws MiningException
*/

public Action addAction(String stateStr, String
actionStr)

throws MiningException {

//. . . Implementation . . .//
}
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// -–––––––––––––––––––––––––-
// Methods to associate actions with states
// -–––––––––––––––––––––––––-
/**
* Returns state associated to an action.
*
* @param state the state of the action set
* @param action an action applied to the state
* @return the state associated to the action, null if inva-
lid action

* @exception MiningException state set access error
*/

public State getStateFromAction(State state, Action
action)

throws MiningException {

//. . . Implementation . . .//
}
/**
* Returns state-action pairs associated to an action

state.<p>
*
* Inverse method to getStateFromAction.
*
* @param state the action state
* @return array of all state-action pairs with actions

associated to the state,
* null if not found
* @exception MiningException state set access error
*/

public StateActionVector[] getActionsFromState(State
state)

throws MiningException {

throw new MiningException("not supported");
}

/**
* Returns all state-action pairs from given initial and

target
* set of states.
*
* @param initStates array of initial states
* @param tarStates array of target (i.e. action) states
* @return array of StateActionVectors
* @throws MiningException
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*/
public StateActionVector[] getActionsFromStates(State

[] initStates,
State[] tarStates) throws MiningException {

throw new MiningException("not supported");
}

/**
* Adds a new action for an initial and target state to
* the action set.
*
* @param initState the initial state
* @param tarState the target state
* @return new action from initial to target state
* @throws MiningException
*/

public Action addActionForStates(State initState, State
tarState)

throws MiningException {

//. . . Implementation . . .//
}

// -–––––––––––––––––––––––––-
// Step numbers and transition probabilities
// -–––––––––––––––––––––––––-
/**
* Returns probability step number of (state, action) pair
for DP version

* for conditional and unconditional case.
*
* @param state the state
* @param action the action
* @param cond conditional probability (else

unconditional)
* @return returns step number at specified (state, action)
pair

* @throws MiningException
*/

public int getStepNumberP(State state, Action action,
boolean cond)

throws MiningException {

//. . . Implementation . . .//
}
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/**
* Sets probability step number of (state, action) pair for
DP version

* for conditional and unconditional case.
*
* @param state the state
* @param action the action
* @param the step number at specified (state, action) pair
* @param cond conditional probability (else

unconditional)
* @throws MiningException
*/

public void setStepNumberP(State state, Action action,
int stepNumber,

boolean cond) throws MiningException {

//. . . Implementation . . .//
}

/**
* Returns transition probability for DP version of (state,
action) pair

* for conditional and unconditional case.
*
* @param state the state
* @param action the action
* @param cond conditional probability (else

unconditional)
* @return returns transition probability at specified

(state, action) pair
* @throws MiningException
*/

public double getTransP(State state, Action action, bool-
ean cond)

throws MiningException {

//. . . Implementation . . .//
}

/**
* Sets transition probability for DP version of (state,

action) pair
* for conditional and unconditional case.
*
* @param state the state
* @param action the action
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* @param cond conditional probability (else
unconditional)

* @param transP the transition probability at specified
(state, action) pair

* @throws MiningException
*/

public void setTransP(State state, Action action, boolean
cond, double transP)

throws MiningException {

//. . . Implementation . . .//
}

// -–––––––––––––––––––––––––-
// Other methods
// -–––––––––––––––––––––––––-
. . .

}

Thus, we use the StateSet and ActionSet classes of the RL Core package to store
the products and rules. Of course, in real recommendation engine implementations,

this storage is implemented in a much more sophisticated way supporting large rule

sets based on hash mappings. The transition probabilities p
ðaÞ
n (S, S0) including their

step numbers n are stored by the hash tables dpHash and stepHash, respectively.
Again, we use a very simple implementation here which is also not very fast.

After we have designed the recommendation environment, we need to create the

recommendation agent.

/**
* Create DP recommendation agent.
*
* @return the agent object
* @throws MiningException
*/

private RecommAgent createDPRecommAgent() throws
MiningException {

// Create settingsobject:
DPRecommAgentSettings agentSettings ¼ new DPRecommAgen-

tSettings();
agentSettings.setInputDataSpecification(new MiningDa-

taSpecification("dummy"));
agentSettings.setDpVersionSubtype(PRecommAgen-

tSettings.P_VERSION_SUBTYPE_FULL);
agentSettings.setAlphaType( RecommAgentSettings.

RL_STEP_SIZE_FIXED );
agentSettings.setAlpha( 0.1 );
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agentSettings.setBetaType( RecommAgentSettings.
RL_STEP_SIZE_MEAN );

agentSettings.setBeta( 1.0 );
agentSettings.setControlGroupLearning( false );
agentSettings.setScaleCuDP( 1.1 );
agentSettings.setMinProbCountDP( 1 );
agentSettings.verifySettings();

// Get agent specification:
String agentName ¼ "DPRecommAgent";
AgentSpecification agentSpecification ¼ getAgentSpeci-

fication(agentName);
if( agentSpecification ¼¼ null )
throw new MiningException( "Can’t find application " +

agentName );

// Create agent object:
RecommAgent agent ¼ (RecommAgent) agentSpecification.

createAgentInstance();
// Create action-value function:
ActionValueFunction actionValueFct ¼ new ActionValue-

Function(recoEnv);

// Put it all together:
agent.setAgentSettings(agentSettings);
agent.setEnv(recoEnv);
agent.setQfunction(actionValueFct);
agent.setInnerAgent( createInnerAgent() );
agent.verify();

return agent;
}

After we have created the agent, we can assign initial values to its action-value

functions. In reality, this means that we load the previous rule base after the

recommendation engine has been restarted and continue the online learning.

Now we turn to the online learning and demonstrate the first three steps and the

last step of the first session 1 ! 5* ! 4 ! . . . ! 6* and the transition to the next

session starting with product 6.

/**
* Do the online learning.
*
* @param agent the recommendation agent
* @throws MiningException
*/

private void onlineLearning(RecommAgent agent) throws
MiningException {
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// FIRST SESSION:
// Step 1 (product 1 clicked):
State state ¼ recoEnv.getState("1");
int[] recs ¼ recos(state, 1);
showRecs(state, recs);
learn(state, recs, 1.0);

// Step 2 (product 5 clicked and added to basket):
state ¼ recoEnv.getState("5");
recs ¼ recos(state, -1);
showRecs(state, recs);
learn(state, recs, 1.0 + 15.0);

// Step 3 (product 4 clicked):
state ¼ recoEnv.getState("4");
recs ¼ recos(state, -1);
showRecs(state, recs);
learn(state, recs, 1.0);

// . . . further steps . . . //

// Step 12 (product 6 clicked and added to basket):
state ¼ recoEnv.getState("6");
recs ¼ recos(state, -1);
showRecs(state, recs);
learn(state, recs, 1.0 + 4.5);

// Move to absorbing node in order to terminate first
session:

state ¼ recoEnv.getState("_a_");
learn(state, recs, 0.0);

// SECOND SESSION:
// Step 1 (product 6 clicked):
state ¼ recoEnv.getState("6");
recs ¼ recos(state, 1);
showRecs(state, recs);
learn(state, recs, 1.0);

// . . . further steps and sessions . . . //
}

The method recos calculates the recommendations using an ε-greedy policy:

/**
* Return recommendations for specified state.
*
* @param state the state
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* @param maxNumberOfRecommendations the number of recom-
mendations, -1 if all

* @return the recommendation indexes
* @throws MiningException
*/

private int[] recos(State state, int
maxNumberOfRecommendations)

throws MiningException {

// Create policy:
Policy policy ¼ new EpsilonGreedyPolicy( 0.5 );
ActionSet actionSet ¼ recoEnv.getActionSet(state);
policy.setActionSet(actionSet);
policy.setActionValueFunction( agent.getQfunction() );
policy.setDifferentActions(true);

// Call policy:
Vector<Integer> recItems ¼ new Vector<Integer>();
int nact ¼ (int) actionSet.getActionsNumber();
for (int i ¼ 0; i < nact; i++) {
if (recItems.size() ¼¼ maxNumberOfRecommendations)
break;

Action action ¼ policy.nextAction();
recItems.addElement((int)action.getIndex());

}
int[] recs ¼ new int[ recItems.size() ];
for (int i ¼ 0; i < recItems.size(); i++)
recs[i] ¼ recItems.elementAt(i);

return recs;
}

The method showRecs displays the current recommendations. Finally, the learn
method takes the current state and recommendations and calls the learnApply
method of the agent for the previous step.

// Private session data:
private State state ¼ null;
private int[] recs ¼ null;
private int selRec ¼ -1;
private State nextState ¼ null;
private int[] nextRecs ¼ null;
private int nextSelRec ¼ -1;
/**
* Learns from previous step.
*
* @param cstate the current state
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* @param crecs the current recommendation indexes
* @param crewardValue the current reward value
* @throws MiningException
*/

private void learn(State cstate, int[] crecs, double
crewardValue)

throws MiningException {

String cStateStr ¼ (String) cstate.getValueCategory(0).
getValue();

// Create sample vector:
if (nextState !¼ null) {
String nextStateStr ¼ (String) nextState.getValue-

Category(0).getValue();
Action action ¼ recoEnv.getAction(nextStateStr,

cStateStr);
if (action ¼¼ null) {
// . . . create new rule . . . ///

}
nextSelRec ¼ (int) action.getIndex();
}
if (state !¼ null) {
Action action ¼ new ComposedAction(recs, selRec,

recoEnv.recoIDAtt);
Reward reward ¼ new Reward(crewardValue);
Action nextAction ¼
new ComposedAction(nextRecs, nextSelRec, recoEnv.

recoIDAtt);
RecommVector recommVec ¼
new RecommVector(agent, state, action, reward,

nextState, nextAction);
agent.learnApply(recommVec);

}

// Update values:
boolean absorbing ¼ cStateStr.equals("_a_");
if (absorbing) {
state ¼ null;
recs ¼ null;
nextSelRec ¼ -1;

}
else {
state ¼ nextState;
recs ¼ nextRecs;

}
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selRec ¼ nextSelRec;
nextState ¼ cstate;
nextRecs ¼ crecs;

}

12.3 Application Example of XELOPES: The prudsys RDE

We conclude this chapter by a practical example for the application of the

XELOPES library in recommendation engines. The prudsys Realtime

Decisioning Engine (RDE) is a realtime analytics system developed by prudsys

AG, which follows the principles of realtime analytics described in this book. Its

range of functions extends well beyond that of a standard recommendation

engine.

It comprises the following six modules:

1. RDE | Recommendations: realtime recommendation engine

2. RDE | Newsletter: realtime newsletter personalization

3. RDE | Pricing: realtime price optimization

4. RDE | Assortment Planning: realtime planning

5. RDE | Scoring: realtime scoring

6. RDE | Search: realtime search

This book concentrates primarily on the way in which the RDE | Recommen-
dations module works, specifically on the adaptive learning, and – first of all – on

the reinforcement learning aspect. However, the module also includes many

other algorithms, such as basket and sequence analysis, collaborative filtering,

item-to-item collaborative filtering, singular value decomposition, and tensor

factorization.

It is interesting to note that the concept of realtime learning has now been applied

to many new functions across the other modules (so the “realtime” prefix is more

than just a marketing ploy). For example, the RDE | Scoringmodule allows realtime

scoring as described in Chap. 7. The RDE | Assortment Planningmodule updates its

planning model continuously throughout the day, allowing delivery to be brought

forward by a day, for example. Probably the most impressive module, RDE |
Pricing, which carries out dynamic price optimization, is one of the key inventions

of the prudsys AG. It varies retail product prices in real time (or at periodic

intervals) according to user behavior and demand, with the aim of maximizing

profits. Reinforcement learning is used here, too. For more details, see the separate

pricing module white paper [Lip11].

The switch to real time not only offers an entirely new standard of quality for

analytics (or actions) but also opens up entirely new business scenarios. Welcome

to the RDE realtime world!

The layer model on which the prudsys RDE is based is shown in Fig. 12.18.
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Note the split between analysis algorithms and business logic. All prudsys

analysis algorithms are provided through the XELOPES library.

All data is specified by means of the flexible CWM, allowing the number of

agent methods to be kept to a minimum. The realtime analytics algorithms are then

divided into packages such as recommendations, pricing, and planning, all of which

ultimately derive from the agent class.

The RDE server then runs on the XELOPES library as a container which

implements the business logic. It is possible for multiple instances of recommen-

dation engines to run on a single application server; distributed RE applications are

supported in particular. Configuration and administration are carried out via an

easy-to-use GUI. The RDE offers numerous options for defining business con-

straints and delivers realtime statistics, particularly for A/B testing.

12.4 Summary

The aim of this chapter was to provide some ideas of implementing the adaptive

algorithms described in this book based on the XELOPES library for BI. We started

with the very abstract CWM standard and then considered its application to data

Fig. 12.18 RDE server with modules and XELOPES
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mining. Next, we moved to realtime data mining where the central idea was the

introduction of agents. The agent framework was further specified for reinforce-

ment learning, and based on RL we next proposed a framework for adaptive

recommendation engines. At the end, we briefly discussed the application of

XELOPES for real recommendation engines.
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Chapter 13

Last Words: Conclusion

Abstract We first discuss the requirements of a modern data mining system and

show that the approach presented in this book fulfills most of them. However,

the full realization of this approach is often thwarted by principal problems in

the development of the required mathematical instruments. Especially, most of the

computational methods developed by mathematicians over the last centuries are

designed for engineering problems. We stress the differences to the requirements

for data analysis problems and encourage the development of appropriate frame-

works. Especially, control theory should play an important role here.

We will conclude by briefly summarizing the approaches to developing modern

recommendation engines described in this book and breaking them down into seven

general requirements of a modern data mining system:

1. Autonomous operation: System learns automatically, no manual operation

required.

2. Realtime operation: System learns and decides in real time.

3. Integration into applications: System is embedded directly in applications.

4. Control problem approach: System learns through interaction, “cybernetic”

thinking.

5. Operator description: Mathematical formulation via operator equations.

6. Hierarchical approach: System uses hierarchical methods and architecture.

7. Distributed operating principle: System operates on a decentralized, distributed

basis.

The requirements are interdependent to some extent of course: realtime

operation, for example, requires the ability to work autonomously. And they are

not necessarily all indisputable. But they illustrate key requirements and funda-

mental trends, the use of which will ultimately lead to a new quality of data mining.

Most current data mining systems meet almost none of these requirements.

Rather than operating autonomously, they have to be operated manually, by

A. Paprotny and M. Thess, Realtime Data Mining: Self-Learning Techniques
for Recommendation Engines, Applied and Numerical Harmonic Analysis,

DOI 10.1007/978-3-319-01321-3_13, © Springer International Publishing Switzerland 2013
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statisticians or at least by experts. Rather than learning in real time, they learn from

historical data, much of which is stored in dinosaur applications like data ware-

houses. Rather than being integrated directly into applications, they run as separate

programs with unwieldy GUIs. Rather than understanding the problem as an

interaction of analysis and decision, most of them disregard the decision aspect

completely and concentrate entirely on analysis, as a result of which the question of

their interaction never even arises. Rather than formulating the problem in the

mathematically conventional operator syntax (e.g., as a differential equation), many

of them still use the terminology of neural networks, genetic algorithms, etc. Rather

than breaking down the solution hierarchically, both in terms of content and

mathematically, the often immense problems are approached as a single, gigantic,

data block, in the hope that the method will somehow cut its way through the mass

of data. Rather than carrying out local analyses on a distributed basis and only

joining the results (“taking software to the data”), all data has to be centralized, after

which it is stored in an inflexible and incomplete form in massive data warehouses

(“taking data to the software”).

By contrast, in this book, we made an attempt at devising approaches that satisfy

the above requirements, though not entirely (in particular, we hardly addressed

the last requirement concerning distributedness in its most visionary form) but

in essence at least. This is what we have tried to illustrate in this book. As such, it

is the trailblazer for a completely new way of thinking in data mining.

Many of the ideas presented in this book, especially that of reinforcement

learning, have originated in artificial intelligence research. Being mathematical

computer scientists, we have been aspiring to draw a crisp distinction between

mathematical modeling of a real-world problem on one hand and devising compu-

tational methods for solving the emerging equations on the other hand. This course

of action is still somewhat uncommon in the data mining and artificial intelligence

community, where algorithms are often conceived as models of real-world agents

solving real-world problems rather than methods to solve mathematical problems

that, in turn, represent real-world problems. We believe that our mathematical

approach provides insights as to which technical assumptions these AI methods

are actually based on, under which circumstance their success can be guaranteed,

and what their limitations are. Furthermore, it enables to figure novel and more

efficient implementations that facilitate dealing with large and high-dimensional

data sets and enable realtime operation.

Nevertheless, our approach has shortcomings of its own. Many of the computa-

tional methods devised in this book, especially multigrid methods and tensor

approximation for reinforcement learning, are based on, or, at least, inspired by

frameworks for problems arising in discretization and numerical treatment of

differential equations. The latter setting may be characterized as follows:

1. Continuity: A differential equation is a continuous model of a physical

phenomenon.

2. Physical interpretability: Mathematical structure arises for physical reasons.

3. A priori model: The parameters of the model are available beforehand.
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4. Sparsity: Discretization schemes are designed in such a way that most of the

coefficients of the discrete equations vanish.

5. Patterns: The nonzero coefficients are arranged in a way governed by a predict-

able pattern.

6. Structure inheritance: The discrete system inherits mathematical structure

from the continuous one. (For example, an elliptic differential equation may

be discretized in such a way that the discrete system is also elliptic, i.e., positive

definite.)

Sadly enough, except for sparsity, none of the above holds with respect to the

recommendation setting. First of all, there is no underlying continuous structure at

all, let alone a physical interpretation. The real-world phenomenon and the equation

of its model are genuinely discrete. Apart from this, most parameters of the model,

as, e.g., the transition probabilities, are not known in advance, but have to be

figured out empirically as one goes along. Furthermore, although the coefficient

matrices of the Bellman equations arising in recommendations are typically sparse,

the nonzero coefficients are distributed basically at random. Finally, there is no

structure to be inherited from a continuous model. For example, there is no reason

to assume positive definiteness, a crucial prerequisite of convergence results on

many multigrid-related methods, let alone that the considered Markov chains

be reversible.

All in all, this supports the impression we have gained through years of

research and practical experience in the field of mathematical data analysis: on

one hand, it seems that many approaches from the twentieth-century mathematics

are suitable to be carried over to problems arising in data analysis. On the other

hand, the underlying mathematical theory is designed for settings, the structure of

which differs in many essential respects from that encountered in data analysis-

related problems. Our colleague Mijail Guillemard recently put this as follows:

In hindsight, I recognize that in my years as a PhD-student, I wasted a lot of time immersing

myself in mathematical theories that are not quite suited for the problems the solution of

which I sought after.

Again, in hindsight, it does not come as a surprise that a major part of

state-of-the-art mathematical theory is hardly applicable to data analysis. After

all, until lately, the development of mathematics was predominantly driven by

problems encountered in science and engineering, to which data analysis was

added only recently. As a consequence, data analysis requires outright novel

extensions and generalizations of classical mathematical theories, the development

of which will certainly keep researches occupied for decades to come.

Let us conclude this outlook by a brief philosophical remark: historically,

computers and computational mathematics were primarily designed for solving

numerical problems related to differential equations. The development which took

place in the course of the following decades, however, is an instance of what the

American biologist Stephen Jay Gould refers to as an exaptation: computers were

gradually transformed into general-purpose information processing, storage, and

communication systems and began to figure increasingly in the organization of
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industrialized societies, to such an extent that nowadays, we are said to live in the

information age. Specifically, this refers to both the significance of information

(as opposed to material commodities) as well as the quantity thereof produced,

stored, and communicated every day, which has increased exponentially in the

course of the (say) last five decades. This development has given rise to the outright

novel problems of information science and data analysis such as recommendation.

Ironically, to solve these problems, we need to resort to the very devises which gave

rise to them in the first place.

“Study cybernetics!” 35 years on, Viktor Pekelis’ vision could still become a

reality. In the light of the new popularity of realtime analytics, cybernetic principles

and approaches should see a renaissance – not in the all-encompassing sense of the

1950s, of course, but in a stricter, mathematical context.
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