
1 Introduction

This book introduces into using R for data mining. It presents many examples of various
data mining functionalities in R and three case studies of real-world applications. The
supposed audience of this book are postgraduate students, researchers, and data miners
who are interested in using R to do their data mining research and projects. We assume
that readers already have a basic idea of data mining and also have some basic experience
with R. We hope that this book will encourage more and more people to use R to do
data mining work in their research and applications.

This chapter introduces basic concepts and techniques for data mining, including
a data mining process and popular data mining techniques. It also presents R and its
packages, functions, and task views for data mining. At last, some datasets used in this
book are described.

1.1 Data Mining

Data mining is the process to discover interesting knowledge from large amounts of data
(Han and Kamber, 2000). It is an interdisciplinary field with contributions from many
areas, such as statistics, machine learning, information retrieval, pattern recognition,
and bioinformatics. Data mining is widely used in many domains, such as retail, finance,
telecommunication, and social media.

The main techniques for data mining include classification and prediction, cluster-
ing, outlier detection, association rules, sequence analysis, time series analysis, and text
mining, and also some new techniques such as social network analysis and sentiment
analysis. Detailed introduction of data mining techniques can be found in text books
on data mining (Han and Kamber, 2000; Hand et al., 2001; Witten and Frank, 2005).
In real-world applications, a data mining process can be broken into six major phases:
business understanding, data understanding, data preparation, modeling, evaluation,
and deployment, as defined by the CRISP-DM (Cross Industry Standard Process for
Data Mining).1 This book focuses on the modeling phase, with data exploration and
model evaluation involved in some chapters. Readers who want more information on
data mining are referred to online resources in Chapter 15.

1 http://www.crisp-dm.org/.

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00001-5
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.crisp-dm.org/
http://dx.doi.org/10.1016/B978-0-12-396963-7.00001-5

2 R and Data Mining

1.2 R

R2 (R Development Core Team, 2012) is a free software environment for statistical
computing and graphics. It provides a wide variety of statistical and graphical tech-
niques. R can be extended easily via packages. There are around 4000 packages avail-
able in the CRAN package repository,3 as on August 1, 2012. More details about R are
available in An Introduction to R4 (Venables et al., 2012) and R Language Definition5

(R Development Core Team, 2010b) at the CRAN website. R is widely used in both
academia and industry.

To help users to find out which R packages to use, the CRAN Task Views6 are a
good guidance. They provide collections of packages for different tasks. Some task
views related to data mining are:

• Machine Learning and Statistical Learning;

• Cluster Analysis and Finite Mixture Models;

• Time Series Analysis;

• Multivariate Statistics; and

• Analysis of Spatial Data.

Another guide to R for data mining is an R Reference Card for Data Mining
(see p. 221), which provides a comprehensive indexing of R packages and functions
for data mining, categorized by their functionalities. Its latest version is available at
http://www.rdatamining.com/docs.

Readers who want more information on R are referred to online resources in
Chapter 15.

1.3 Datasets

The datasets used in this book are briefly described in this section.

1.3.1 The Iris Dataset

The iris dataset has been used for classification in many research publications. It
consists of 50 samples from each of three classes of iris flowers (Frank and Asuncion,
2010). One class is linearly separable from the other two, while the latter are not linearly
separable from each other. There are five attributes in the dataset:

2 http://www.r-project.org/.
3 http://cran.r-project.org/.
4 http://cran.r-project.org/doc/manuals/R-intro.pdf.
5 http://cran.r-project.org/doc/manuals/R-lang.pdf.
6 http://cran.r-project.org/web/views/.

http://www.rdatamining.com/docs
http://www.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/web/views/

Introduction 3

• sepal length in cm,

• sepal width in cm,

• petal length in cm,

• petal width in cm, and

• class: Iris Setosa, Iris Versicolour, and Iris Virginica.

> str(iris)

‘data.frame’: 150 obs.of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 …

$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 …

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 …

$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 …

$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1

1 1 1 1 1 …

1.3.2 The Bodyfat Dataset

Bodyfat is a dataset available in package mboost (Hothorn et al., 2012). It has 71 rows,
and each row contains information of one person. It contains the following 10 numeric
columns:

• age: age in years.

• DEXfat: body fat measured by DXA, response variable.

• waistcirc: waist circumference.

• hipcirc: hip circumference.

• elbowbreadth: breadth of the elbow.

• kneebreadth: breadth of the knee.

• anthro3a: sum of logarithm of three anthropometric measurements.

• anthro3b: sum of logarithm of three anthropometric measurements.

• anthro3c: sum of logarithm of three anthropometric measurements.

• anthro4: sum of logarithm of three anthropometric measurements.

4 R and Data Mining

The value of DEXfat is to be predicted by the other variables:

> data("bodyfat", package = "mboost")

> str(bodyfat)

‘data.frame’: 71 obs. of 10 variables:

$ age: num 57 65 59 58 60 61 56 60 58 62 …

$ DEXfat: num 41.7 43.3 35.4 22.8 36.4 …

$ waistcirc: num 100 99.5 96 72 89.5 83.5 81 89 80 79 …

$ hipcirc: num 112 116.5 108.5 96.5 100.5 …

$ elbowbreadth: num 7.1 6.5 6.2 6.1 7.1 6.5 6.9 6.2 6.4 7 …

$ kneebreadth: num 9.4 8.9 8.9 9.2 10 8.8 8.9 8.5 8.8 8.8 …

$ anthro3a: num 4.42 4.63 4.12 4.03 4.24 3.55 4.14 4.04 3.91 3.66

…

$ anthro3b: num 4.95 5.01 4.74 4.48 4.68 4.06 4.52 4.7 4.32 4.21

…

$ anthro3c: num 4.5 4.48 4.6 3.91 4.15 3.64 4.31 4.47 3.47 3.6 …

$ anthro4: num 6.13 6.37 5.82 5.66 5.91 5.14 5.69 5.7 5.49 5.25 …

2 Data Import and Export

This chapter shows how to import foreign data into R and export R objects to other
formats. At first, examples are given to demonstrate saving R objects to and loading
them from .Rdata files. After that, it demonstrates importing data from and exporting
data to .CSV files, SAS databases, ODBC databases, and EXCEL files. For more details
on data import and export, please refer to R Data Import/Export1 (R Development Core
Team, 2010a).

2.1 Save and Load R Data

Data in R can be saved as .Rdata files with function save(). After that, they can
then be loaded into R with load(). In the code below, function rm() removes object
a from R:

> a <- 1:10

> save(a, file="./data/dumData.Rdata")

> rm(a)

> load("./data/dumData.Rdata")

> print(a)

[1] 1 2 3 4 5 6 7 8 9 10

2.2 Import from and Export to .CSV Files

The example below creates a dataframe df1 and saves it as a .CSV file with
write.csv(). And then, the dataframe is loaded from file to df2 with read.csv():

> var1 <- 1:5

> var2 <- (1:5) / 10

1 http://cran.r-project.org/doc/manuals/R-data.pdf.

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00002-7
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://cran.r-project.org/doc/manuals/R-data.pdf
http://dx.doi.org/10.1016/B978-0-12-396963-7.00002-7

6 R and Data Mining

> var3 <- c("R", "and", "Data Mining", "Examples", "Case

Studies")

> df1 <- data.frame(var1, var2, var3)

> names(df1) <- c("VariableInt", "VariableReal", "VariableChar")

> write.csv(df1, "./data/dummmyData.csv", row.names = FALSE)

> df2 <- read.csv("./data/dummmyData.csv")

> print(df2)

VariableInt VariableReal VariableChar

1 1 0.1 R

2 2 0.2 and

3 3 0.3 Data Mining

4 4 0.4 Examples

5 5 0.5 Case Studies

2.3 Import Data from SAS

Package foreign (R-core, 2012) provides function read.ssd() for importing SAS
datasets (.sas7bdat files) into R. However, the following points are essential to make
importing successful:

• SAS must be available on your computer, and read.ssd() will call SAS to read
SAS datasets and import them into R.

• The file name of a SAS dataset has to be no longer than eight characters. Otherwise,
the importing would fail. There is no such limit when importing from a .CSV file.

• During importing, variable names longer than eight characters are truncated to eight
characters, which often makes it difficult to know the meanings of variables. One
way to get around this issue is to import variable names separately from a .CSV

file, which keeps full names of variables.

An empty .CSVfile with variable names can be generated with the following method:

1. Create an empty SAS table dumVariables from dumData as follows:

data work.dumVariables;

set work.dumData(obs=0);

run;

Data Import and Export 7

2. Export table dumVariables as a .CSV file.

The example below demonstrates importing data from a SAS dataset. Assume that
there is a SAS data file dumData.sas7bdat and a .CSV file dumVariables.csv in
folder "Current working directory/data":

> library(foreign) # for importing SAS data

> # the path of SAS on your computer

> sashome <- "C:/Program Files/SAS/SASFoundation/9.2"

> filepath <- "./data"

> # filename should be no more than 8 characters, without

extension

> fileName <- "dumData"

> # read data from a SAS dataset

> a <- read.ssd(file.path(filepath), fileName,

sascmd=file.path(sashome, "sas.exe"))

> print(a)

VARIABLE VARIABL2 VARIABL3
1 1 0.1 R

2 2 0.2 and

3 3 0.3 Data Mining

4 4 0.4 Examples

5 5 0.5 Case Studies

Note that the variable names above are truncated. The full names can be imported
from a .CSV file with the following code:

> # read variable names from a .CSV file

> variableFileName <- "dumVariables.csv"

> myNames <- read.csv(paste(filepath, variableFileName, sep="/"))

> names(a) <- names(myNames)

> print(a)

8 R and Data Mining

VariableInt VariableReal VariableChar

1 1 0.1 R

2 2 0.2 and

3 3 0.3 Data Mining

4 4 0.4 Examples

5 5 0.5 Case Studies

Although one can export a SAS dataset to a .CSV file and then import data from
it, there are problems when there are special formats in the data, such as a value of
“$100,000” for a numeric variable. In this case, it would be better to import from a
.sas7bdat file. However, variable names may need to be imported into R separately
as above.

Another way to import data from a SAS dataset is to use function read.xport()

to read a file in SAS Transport (XPORT) format.

2.4 Import/Export via ODBC

Package RODBC provides connection to ODBC databases (Ripley and from 1999 to
Oct 2002 Michael Lapsley, 2012).

2.4.1 Read from Databases

Below is an example of reading from an ODBC database. Function odbcConnect()

sets up a connection to database, sqlQuery() sends an SQL query to the database,
and odbcClose() closes the connection:

> library(RODBC)

> connection <- odbcConnect(dsn="servername",uid="userid",

pwd="******")

> query <- "SELECT * FROM lib.table WHERE …"

> # or read query from file

> # query <- readChar("data/myQuery.sql", nchars=99999)

> myData <- sqlQuery(connection, query, errors=TRUE)

> odbcClose(connection)

There are also sqlSave() and sqlUpdate() for writing or updating a table in an
ODBC database.

Data Import and Export 9

2.4.2 Output to and Input from EXCEL Files

An example of writing data to and reading data from EXCEL files is shown below:

> library(RODBC)

> filename <- "data/dummmyData.xls"

> xlsFile <- odbcConnectExcel(filename, readOnly = FALSE)

> sqlSave(xlsFile, a, rownames = FALSE)

> b <- sqlFetch(xlsFile, "a")

> odbcClose(xlsFile)

Note that there might be a limit of 65,536 rows to write to an EXCEL file.

3 Data Exploration

This chapter shows examples on data exploration with R. It starts with inspecting the
dimensionality, structure, and data of an R object, followed by basic statistics and
various charts like pie charts and histograms. Exploration of multiple variables is then
demonstrated, including grouped distribution, grouped boxplots, scattered plot, and
pairs plot. After that, examples are given on level plot, contour plot, and 3D plot. It
also shows how to save charts into files of various formats.

3.1 Have a Look at Data

The iris data is used in this chapter for demonstration of data exploration with R.
See Section 1.3.1 for details of the iris data.

We first check the size and structure of data. The dimension and names of data can be
obtained respectively with dim() and names(). Functions str() and attributes()

return the structure and attributes of data.

> dim(iris)

[1] 150 5

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

"Species"

> str(iris)

’data.frame’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 …

$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 …

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 …

$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 …

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1

1 1 1 1 1 1 1 …

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00003-9
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00003-9

12 R and Data Mining

> attributes(iris)

$names

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

"Species"

$row.names

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

[91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

[127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

[145] 145 146 147 148 149 150

$class

[1] "data.frame"

Next, we have a look at the first five rows of data. The first or last rows of data can
be retrieved with head() or tail().

> iris[1:5,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

> head(iris)

Data Exploration 13

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

> tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

145 6.7 3.3 5.7 2.5 virginica

146 6.7 3.0 5.2 2.3 virginica

147 6.3 2.5 5.0 1.9 virginica

148 6.5 3.0 5.2 2.0 virginica

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

We can also retrieve the values of a single column. For example, the first 10 values
of Sepal.Length can be fetched with either of the codes below.

> iris[1:10, "Sepal.Length"]

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

> iris$Sepal.Length[1:10]

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

3.2 Explore Individual Variables

Distribution of every numeric variable can be checked with function summary(), which
returns the minimum, maximum, mean, median, and the first (25%) and third (75%)
quartiles. For factors (or categorical variables), it shows the frequency of every level.

14 R and Data Mining

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min.:4.300 Min.:2.000 Min.:1.000 Min.:0.100 setosa:50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median:5.800 Median:3.000 Median:4.350 Median:1.300 virginica:50

Mean:5.843 Mean:3.057 Mean:3.758 Mean:1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max.:7.900 Max.:4.400 Max.:6.900 Max.:2.500

The mean, median, and range can also be obtained with functions with mean(),
median(), and range(). Quartiles and percentiles are supported by function
quantile() as below.

> quantile(iris$Sepal.Length)

0% 25% 50% 75% 100%

4.3 5.1 5.8 6.4 7.9

> quantile(iris$Sepal.Length, c(.1,.3,.65))

10% 30% 65%

4.80 5.27 6.20

Then we check the variance of Sepal.Length with var() and its distribution with
histogram and density using functionshist() anddensity() (see Figures 3.1 and 3.2).

> var(iris$Sepal.Length)

[1] 0.6856935

> hist(iris$Sepal.Length)

Data Exploration 15

Histogram of iris$Sepal.Length

iris$Sepal.Length

Fr
eq

ue
nc

y

4 5 6 7 8

0

5

 1

0

 1
5

 2

0

 2
5

 3

0

Figure 3.1 Histogram.

> plot(density(iris$Sepal.Length))

4 5 6 7 8

0.
0

 0
.1

0.

2

 0

.3

 0
.4

density.default(x = iris$Sepal.Length)

N = 150 Bandwidth = 0.2736

D
en

si
ty

Figure 3.2 Density.

The frequency of factors can be calculated with function table() and then plotted
as a pie chart with pie() or a bar chart with barplot() (see Figures 3.3 and 3.4).

> table(iris$Species)

setosa versicolor virginica

50 50 50

16 R and Data Mining

> pie(table(iris$Species))

setosa

versicolor

virginica

Figure 3.3 Pie chart.

> barplot(table(iris$Species))

setosa versicolor virginica

0

10

 2
0

 3
0

 4
0

 5
0

Figure 3.4 Bar chart.

3.3 Explore Multiple Variables

After checking the distributions of individual variables, we then investigate the relation-
ships between two variables. Below we calculate covariance and correlation between
variables with cov() and cor().

> cov(iris$Sepal.Length, iris$Petal.Length)

[1] 1.274315

> cov(iris[,1:4])

Data Exploration 17

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.6856935 −0.0424340 1.2743154 0.5162707

Sepal.Width −0.0424340 0.1899794 −0.3296564 −0.1216394
Petal.Length 1.2743154 −0.3296564 3.1162779 1.2956094

Petal.Width 0.5162707 −0.1216394 1.2956094 0.5810063

> cor(iris$Sepal.Length, iris$Petal.Length)

[1] 0.8717538

> cor(iris[,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 −0.1175698 0.8717538 0.8179411

Sepal.Width −0.1175698 1.0000000 −0.4284401 −0.3661259
Petal.Length 0.8717538 −0.4284401 1.0000000 0.9628654

Petal.Width 0.8179411 −0.3661259 0.9628654 1.0000000

Next, we compute the stats of Sepal.Length of every Specieswith aggregate().

> aggregate(Sepal.Length ˜ Species, summary, data=iris)

Species Sepal.Length.Min. Sepal.Length.1st Qu. Sepal.Length.Median

1 setosa 4.300 4.800 5.000

2 versicolor 4.900 5.600 5.900

3 virginica 4.900 6.225 6.500

Sepal.Length.Mean Sepal.Length.3rd Qu. Sepal.Length.Max.

1 5.006 5.200 5.800

2 5.936 6.300 7.000

3 6.588 6.900 7.900

We then use function boxplot() to plot a box plot, also known as box-and-whisker
plot, to show the median, first and third quartiles of a distribution (i.e. the 50%, 25%,
and 75% points in cumulative distribution), and outliers. The bar in the middle is the
median. The box shows the interquartile range (IQR), which is the range between the
75% and 25% observation (see Figure 3.5).

18 R and Data Mining

> boxplot(Sepal.Length˜Species, data=iris)

●

setosa versicolor virginica

4.
5

 5
.0

 5

.5

6.
0

 6
.5

 7

.0

7.
5

 8
.0

Figure 3.5 Boxplot.

A scatter plot can be drawn for two numeric variables with plot() as below. Using
function with(), we do not need to add “iris$” before variable names. In the code
below, the colors (col) and symbols (pch) of points are set to Species (see Figure 3.6).

> with(iris, plot(Sepal.Length, Sepal.Width, col=Species,

pch=as.numeric(Species)))

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

 2

.5

3.

0

 3
.5

 4
.0

Sepal.Length

S
ep

al
.W

id
th

Figure 3.6 Scatter plot.

When there are many points, some of them may overlap. We can use jitter() to
add a small amount of noise to the data before plotting (see Figure 3.7).

> plot(jitter(iris$Sepal.Length), jitter(iris$Sepal.Width))

Data Exploration 19

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

 2

.5

3.

0

 3
.5

 4
.0

 4

.5

jitter(iris$Sepal.Length)

jit
te

r(i
ris

$S
ep

al
.W

id
th

)

Figure 3.7 Scatter plot with jitter.

A matrix of scatter plots can be produced with function pairs() (see Figure 3.8).

> pairs(iris)

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

6.
0

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Sepal.Length

Petal.Length

1
3

5
7

0.
5

1.
5

2.
5

Petal.Width

4.5 6.0 7.5 1 3 5 7 1.0 2.0 3.0

1.
0

2.
0

3.
0

Species

Figure 3.8 A matrix of scatter plots.

20 R and Data Mining

3.4 More Explorations

This section presents some fancy graphs, including 3D plots, level plots, contour plots,
interactive plots, and parallel coordinates.

A 3D scatter plot can be produced with package scatterplot3d (Ligges and Mächler,
2003) (see Figure 3.9).

> library(scatterplot3d)

> scatterplot3d(iris$Petal.Width, iris$Sepal.Length,

iris$Sepal.Width)

0.0 0.5 1.0 1.5 2.0 2.5

2.
0

 2
.5

3.

0

3.
5

 4
.0

4.

5

4
5

6
7

8

iris$Petal.Width

iri
s$

Se
pa

l.L
en

gt
h

iri
s$

Se
pa

l.W
id

th

Figure 3.9 3D scatter plot.

Package rgl (Adler and Murdoch, 2012) supports interactive 3D scatter plot with
plot3d().

> library(rgl)

> plot3d(iris$Petal.Width, iris$Sepal.Length, iris$Sepal.Width)

A heat map presents a 2D display of a data matrix, which can be generated with
heatmap() in R. With the code below, we calculate the similarity between different
flowers in the iris data with dist() and then plot it with a heat map (see Figure 3.10).

> distMatrix <- as.matrix(dist(iris[,1:4]))

> heatmap(distMatrix)

Data Exploration 21

42 23 14 9 43 39 4 13 2 46 36 7 48 3 16 34 15 45 6 19 21 32 24 25 27 44 17 33 37 49 11 22 47 20 26 31 30 35 10 38 5 41 12 50 28 40 8 29 18 1 11
9

10
6

12
3

13
2

11
8

13
1

10
8

11
0

13
6

13
0

10
3

12
6

10
1

14
4

12
1

14
5 61 99 94 58 65 80 81 82 63 83 93 68 60 70 90 54 10
7 85 56 67 62 72 91 89 97 96 10
0 95 52 76 66 57 55 59 88 69 98 75 86 79 74 92 64 10
9

13
7

10
5

12
5

14
1

14
6

14
2

14
0

11
3

10
4

13
8

11
7

11
6

14
9

12
9

13
3

11
5

13
5

11
2

11
1

14
8 78 53 51 87 77 84 15
0

14
7

12
4

13
4

12
7

12
8

13
9 71 73 12
0

12
2

11
4

10
2

14
3

422314943394132463674831634154561921322425274417333749112247202631303510385411250284082918111910612313211813110811013613010312610114412114561999458658081826383936860709054107855667627291899796100955276665755598869987586797492641091371051251411461421401131041381171161491291331151351121111487853518777841501471241341271281397173120122114102143

Figure 3.10 Heat map.

A level plot can be produced with function levelplot() in package lattice
(Sarkar, 2008) (see Figure 3.11). Function grey.colors() creates a vector of gamma-
corrected gray colors. A similar function is rainbow(), which creates a vector of
contiguous colors.

> library(lattice)

> levelplot(Petal.Width˜Sepal.Length∗Sepal.Width, iris, cuts=9,

+ col.regions=grey.colors(10)[10:1])

22 R and Data Mining

Sepal.Length

Se
pa

l.W
id

th

2.0

2.5

3.0

3.5

4.0

5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

Figure 3.11 Level plot.

Contour plots can be plotted with contour() and filled.contour() in package
graphics, and with contourplot() in package lattice (see Figure 3.12).

> filled.contour(volcano, color=terrain.colors, asp=1

+ plot.axes=contour(volcano, add=T))

100

120

140

160

180

 100

 1
00

 100

 1
10

 110

 110

 110

 120

 1
30

 140
 150 160

 160

 170

 180

 190

 100

 1
00

 100

 1
10

 110

 110

 110

 120

 1
30

 140

 150
 160

 160

 170

 180

 190

Figure 3.12 Contour.

Another way to illustrate a numeric matrix is a 3D surface plot shown as below,
which is generated with function persp() (see Figure 3.13).

Data Exploration 23

> persp(volcano, theta=25, phi=30, expand=0.5,

col=“lightblue”)

volcano

Y
Z

Figure 3.13 3D surface.

Parallel coordinates provide nice visualization of multiple dimensional data. A par-
allel coordinates plot can be produced with parcoord() in package MASS, and with
parallelplot() in package lattice (see Figures 3.14 and 3.15).

> library(MASS)

> parcoord(iris[1:4], col=iris$Species)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Figure 3.14 Parallel coordinates.

> library(lattice)

> parallelplot(˜iris[1:4] / Species, data=iris)

24 R and Data Mining

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Min Max

setosa versicolor

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width
virginica

Figure 3.15 Parallel coordinates with package lattice.

Package ggplot2 (Wickham, 2009) supports complex graphics, which are very useful
for exploring data. A simple example is given below (see Figure 3.16). More examples
on that package can be found at http://had.co.nz/ggplot2/.

> library(ggplot2)

> qplot(Sepal.Length, Sepal.Width, data=iris, facets=Species ˜.)

2.0

2.5

3.0

3.5

4.0

2.0

2.5

3.0

3.5

4.0

2.0

2.5

3.0

3.5

4.0

setosa
versicolor

virginica

5 6 7
Sepal.Length

S
ep

al
.W

id
th

Figure 3.16 Scatter plot with package ggplot2.

http://had.co.nz/ggplot2/

Data Exploration 25

3.5 Save Charts into Files

If there are many graphs produced in data exploration, a good practice is to save them
into files. R provides a variety of functions for that purpose. Below are examples of
saving charts into PDF and PS files respectively withpdf() and postscript(). Picture
files of BMP, JPEG, PNG, and TIFF formats can be generated respectively with bmp(),
jpeg(), png(), and tiff(). Note that the files (or graphics devices) need to be closed
with graphics.off() or dev.off() after plotting.

> # save as a PDF file

> pdf(“myPlot.pdf”)

> x <- 1:50

> plot(x, log(x))

> graphics.off()

> #

> # save as a postscript file

> postscript("myPlot2.ps")

> x <- −20:20

> plot(x, xˆ2)

> graphics.off()

4 Decision Trees and Random Forest

This chapter shows how to build predictive models with packages party, rpart and
randomForest. It starts with building decision trees with package party and using the
built tree for classification, followed by another way to build decision trees with package
rpart. After that, it presents an example on training a random forest model with package
randomForest.

4.1 Decision Trees with Package party

This section shows how to build a decision tree for the iris data with function ctree()
in package party (Hothorn et al., 2010). Details of the data can be found in Section
1.3.1. Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width are used to
predict the Species of flowers. In the package, function ctree() builds a decision
tree, and predict() makes prediction for new data.

Before modeling, the iris data is split below into two subsets: training (70%)
and test (30%). The random seed is set to a fixed value below to make the results
reproducible.

> str(iris)

’data.frame’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 …

$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 …

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 …

$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 …

$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1

1 1 1 1 1 …

> set.seed(1234)

> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00004-0
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00004-0

28 R and Data Mining

> trainData <- iris[ind==1,]

> testData <- iris[ind==2,]

We then load package party, build a decision tree, and check the prediction
result. Function ctree() provides some parameters, such as MinSplit, MinBusket,
MaxSurrogate, and MaxDepth, to control the training of decision trees. Below we use
default settings to build a decision tree. Examples of setting the above parameters are
available in Chapter 13. In the code below, myFormula specifies that Species is the
target variable and all other variables are independent variables.

> library(party)

> myFormula <- Species ˜ Sepal.Length + Sepal.Width +

Petal.Length + Petal.Width

> iris_ctree <- ctree(myFormula, data=trainData)

> # check the prediction

> table(predict(iris_ctree), trainData$Species)

setosa versicolor virginica

setosa 40 0 0

versicolor 0 37 3

virginica 0 1 31

After that, we can have a look at the built tree by printing the rules and plotting
the tree.

> print(iris_ctree)

Conditional inference tree with 4 terminal nodes

Response: Species

Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

Number of observations: 112

1) Petal.Length <= 1.9; criterion = 1, statistic = 104.643

2)* weights = 40

Decision Trees and Random Forest 29

1) Petal.Length > 1.9

3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939

4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397

5)* weights = 21

4) Petal.Length > 4.4

6)* weights = 19

3) Petal.Width > 1.7

7)* weights = 32

> plot(iris_ctree)

Petal.Length
p < 0.001

1

≤ 1.9 > 1.9

Node 2 (n = 40)

setosa versicolor virginica
0

0.2

0.4

0.6

0.8

1

Petal.Width
p < 0.001

3

≤ 1.7 > 1.7

Petal.Length
p = 0.026

4

≤ 4.4 > 4.4

Node 5 (n = 21)

setosa versicolor virginica
0

0.2

0.4

0.6

0.8

1

Node 6 (n = 19)

setosa versicolor virginica
0

0.2

0.4

0.6

0.8

1

Node 7 (n = 32)

setosa versicolor virginica
0

0.2

0.4

0.6

0.8

1

Figure 4.1 Decision tree.

> plot(iris_ctree, type="simple")

30 R and Data Mining

Petal.Length
p < 0.001

1

≤ 1.9 > 1.9

n = 40
y = (1, 0, 0)

2
Petal.Width
p < 0.001

3

≤ 1.7 > 1.7

Petal.Length
p = 0.026

4

≤ 4.4 > 4.4

n = 21
y = (0, 1, 0)

5
n = 19

y = (0, 0.842, 0.158)

6

n = 32
y = (0, 0.031, 0.969)

7

Figure 4.2 Decision tree (simple style).

In the above Figure 4.1, the barplot for each leaf node shows the probabilities of
an instance falling into the three species. In Figure 4.2, they are shown as “y” in leaf
nodes. For example, node 2 is labeled with “n = 40, y = (1, 0, 0),” which means that it
contains 40 training instances and all of them belong to the first class “setosa.”

After that, the built tree needs to be tested with test data.

> # predict on test data

> testPred <- predict(iris_ctree, newdata = testData)

> table(testPred, testData$Species)

testPred setosa versicolor virginica

setosa 10 0 0

versicolor 0 12 2

virginica 0 0 14

The current version of ctree() (i.e. version 0.9-9995) does not handle missing
values well, in that an instance with a missing value may sometimes go to the left
sub-tree and sometimes to the right. This might be caused by surrogate rules.

Decision Trees and Random Forest 31

Another issue is that, when a variable exists in training data and is fed into ctree()

but does not appear in the built decision tree, the test data must also have that variable
to make prediction. Otherwise, a call to predict() would fail. Moreover, if the value
levels of a categorical variable in test data are different from that in train data, it would
also fail to make prediction on the test data. One way to get around the above issue
is, after building a decision tree, to call ctree() to build a new decision tree with
data containing only those variables existing in the first tree, and to explicitly set the
levels of categorical variables in test data to the levels of the corresponding variables
in training data. An example on that can be found in Section 13.7.

4.2 Decision Trees with Package rpart

Package rpart (Therneau et al., 2010) is used in this section to build a decision tree on
the bodyfat data (see Section 1.3.2 for details of the data). Function rpart() is used
to build a decision tree, and the tree with the minimum prediction error is selected.
After that, it is applied to new data to make prediction with function predict().

At first, we load the bodyfat data and have a look at it.

> data("bodyfat", package = "mboost")

> dim(bodyfat)

[1] 71 10

> attributes(bodyfat)

$names

[1] "age" "DEXfat" "waistcirc" "hipcirc" "elbowbreadth"

[6] "kneebreadth" "anthro3a” "anthro3b" "anthro3c" "anthro4"

$row.names

[1] "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58"

[13] "59" "60" "61" "62" "63" "64" "65" "66" "67" "68" "69" "70"

[25] "71" "72" "73" "74" "75" "76" "77" "78" "79" "80" "81" "82"

[37] "83" "84" "85" "86" "87" "88" "89" "90" "91" "92" "93" "94"

[49] "95" "96" "97" "98" "99" "100""101""102""103""104""105""106"

[61] "107""108""109""110""111""112""113""114""115""116""117"

32 R and Data Mining

$class

[1] "data.frame"

> bodyfat[1:5,]

age DEXfat waistcirc hipcirc elbowbreadth kneebreadth anthro3a

47 57 41.68 100.0 112.0 7.1 9.4 4.42

48 65 43.29 99.5 116.5 6.5 8.9 4.63

49 59 35.41 96.0 108.5 6.2 8.9 4.12

50 58 22.79 72.0 96.5 6.1 9.2 4.03

51 60 36.42 89.5 100.5 7.1 10.0 4.24

anthro3b anthro3c anthro4

4.95 4.50 6.13

5.01 4.48 6.37

4.74 4.60 5.82

4.48 3.91 5.66

4.68 4.15 5.91

Next, the data is split into training and test subsets, and a decision tree is built on
the training data.

> set.seed(1234)

> ind <- sample(2, nrow(bodyfat), replace = TRUE, prob = c(0.7,

0.3))

> bodyfat.train <- bodyfat[ind==1,]

> bodyfat.test <- bodyfat[ind==2,]

> # train a decision tree

> library(rpart)

> myFormula <- DEXfat ˜age + waistcirc + hipcirc + elbowbreadth +

kneebreadth

> bodyfat_rpart <- rpart(myFormula, data = bodyfat.train,

+ control = rpart.control(minsplit = 10))

> attributes(bodyfat_rpart)

Decision Trees and Random Forest 33

$names

[1] "frame" "where" "call" "terms" "cptable" "splits"

[7] "method" "parms" "control" "functions" "y" "ordered"

$class

[1] "rpart"

> print(bodyfat_rpart$cptable)

CP nsplit rel error xerror xstd

1 0.67272638 0 1.00000000 1.0194546 0.18724382

2 0.09390665 1 0.32727362 0.4415438 0.10853044

3 0.06037503 2 0.23336696 0.4271241 0.09362895

4 0.03420446 3 0.17299193 0.3842206 0.09030539

5 0.01708278 4 0.13878747 0.3038187 0.07295556

6 0.01695763 5 0.12170469 0.2739808 0.06599642

7 0.01007079 6 0.10474706 0.2693702 0.06613618

8 0.01000000 7 0.09467627 0.2695358 0.06620732

> print(bodyfat_rpart)

n = 56

node), split, n, deviance, yval

* denotes terminal node

1) root 56 7265.0290000 30.94589

2) waistcirc< 88.4 31 960.5381000 22.55645

4) hipcirc< 96.25 14 222.2648000 18.41143

8) age< 60.5 9 66.8809600 16.19222 *

9) age>=60.5 5 31.2769200 22.40600 *

5) hipcirc>=96.25 17 299.6470000 25.97000

10) waistcirc< 77.75 6 30.7345500 22.32500 *

11) waistcirc>=77.75 11 145.7148000 27.95818

22) hipcirc< 99.5 3 0.2568667 23.74667 *

23) hipcirc>=99.5 8 72.2933500 29.53750 *

34 R and Data Mining

3) waistcirc>=88.4 25 1417.1140000 41.34880

6) waistcirc< 104.75 18 330.5792000 38.09111

12) hipcirc< 109.9 9 68.9996200 34.37556 *

13) hipcirc>=109.9 9 13.0832000 41.80667 *

7) waistcirc>=104.75 7 404.3004000 49.72571 *

The build tree can be plotted with the code below (see Figure 4.3).

> plot(bodyfat_rpart)

> text(bodyfat_rpart, use.n=T)

|
waistcirc< 88.4

hipcirc< 96.25

age< 60.5 waistcirc< 77.75

hipcirc< 99.5

waistcirc< 104.8

hipcirc< 109.916.19
n=9

22.41
n=5 22.33

n=6 23.75
n=3

29.54
n=8

34.38
n=9

41.81
n=9

49.73
n=7

Figure 4.3 Decision tree with package rpart.

Then we select the tree with the minimum prediction error (see Figure 4.4).

> opt <- which.min(bodyfat_rpart$cptable[,"xerror"])

> cp <- bodyfat_rpart$cptable[opt, "CP"]

> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)

> print(bodyfat_prune)

n = 56

node), split, n, deviance, yval

* denotes terminal node

Decision Trees and Random Forest 35

1) root 56 7265.02900 30.94589

2) waistcirc< 88.4 31 960.53810 22.55645

4) hipcirc< 96.25 14 222.26480 18.41143

8) age< 60.5 9 66.88096 16.19222 *

9) age>=60.5 5 31.27692 22.40600 *

5) hipcirc>=96.25 17 299.64700 25.97000

10) waistcirc< 77.75 6 30.73455 22.32500 *

11) waistcirc>=77.75 11 145.71480 27.95818 *

3) waistcirc>=88.4 25 1417.11400 41.34880

6) waistcirc< 104.75 18 330.57920 38.09111

12) hipcirc< 109.9 9 68.99962 34.37556 *

13) hipcirc>=109.9 9 13.08320 41.80667 *

7) waistcirc>=104.75 7 404.30040 49.72571 *

> plot(bodyfat_prune)

> text(bodyfat_prune, use.n=T)

|
waistcirc< 88.4

hipcirc< 96.25

age< 60.5 waistcirc< 77.75

waistcirc< 104.8

hipcirc< 109.9
16.19
n=9

22.41
n=5

22.33
n=6

27.96
n=11 34.38

n=9
41.81
n=9

49.73
n=7

Figure 4.4 Selected decision tree.

36 R and Data Mining

After that, the selected tree is used to make prediction and the predicted values are
compared with actual labels. In the code below, function abline() draws a diago-
nal line. The predictions of a good model are expected to be equal or very close to
their actual values, that is, most points should be on or close to the diagonal line (see
Figure 4.5).

> DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat.test)

> xlim <- range(bodyfat$DEXfat)

> plot(DEXfat_pred ˜ DEXfat, data=bodyfat.test, xlab="Observed",

+ ylab="Predicted", ylim=xlim, xlim=xlim)

> abline(a=0, b=1)

10 20 30 40 50 60

10
20

30
40

50
60

Observed

Pr
ed

ic
te

d

Figure 4.5 Prediction result.

4.3 Random Forest

Package randomForest (Liaw and Wiener, 2002) is used below to build a predictive
model for the iris data (see Section 1.3.1 for details of the data). There are two limita-
tions with function randomForest(). First, it cannot handle data with missing values,
and users have to impute data before feeding them into the function. Second, there is
a limit of 32 to the maximum number of levels of each categorical attribute. Attributes
with more than 32 levels have to be transformed first before using randomForest().

Decision Trees and Random Forest 37

An alternative way to build a random forest is to use function cforest() from
package party, which is not limited to the above maximum levels. However, generally
speaking, categorical variables with more levels will make it require more memory and
take longer time to build a random forest.

Again, the iris data is first split into two subsets: training (70%) and test (30%).

> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))

> trainData <- iris[ind==1,]

> testData <- iris[ind==2,]

Then we load package randomForest and train a random forest. In the code below,
the formula is set to "Species ∼.", which means to predict Species with all other
variables in the data.

> library(randomForest)

> rf <- randomForest(Species ˜ ., data=trainData, ntree=100,

proximity=TRUE)

> table(predict(rf), trainData$Species)

setosa versicolor virginica

setosa 36 0 0

versicolor 0 31 2

virginica 0 1 34

> print(rf)

Call:

randomForest(formula = Species ˜ ., data = trainData,

ntree = 100, proximity = TRUE)

Type of random forest: classification

Number of trees: 100

No. of variables tried at each split: 2

OOB estimate of error rate: 2.88%

38 R and Data Mining

Confusion matrix:

setosa versicolor virginica class.error

setosa 36 0 0 0.00000000

versicolor 0 31 1 0.03125000

virginica 0 2 34 0.05555556

> attributes(rf)

$names

[1] "call" "type" "predicted" "err.rate"

[5] "confusion" "votes" "oob.times" "classes"

[9] "importance" "importanceSD" "localImportance" "proximity"

[13] "ntree" "mtry" "forest" "y"

[17] "test" "inbag" "terms"

$class

[1] "randomForest.formula" "randomForest"

After that, we plot the error rates with various number of trees (see Figure 4.6).

> plot(rf)

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

rf

trees

E
rr
or

Figure 4.6 Error rate of random forest.

Decision Trees and Random Forest 39

The importance of variables can be obtained with functions importance() and
varImpPlot() (see Figure 4.7).

> importance(rf)

MeanDecreaseGini

Sepal.Length 6.913882

Sepal.Width 1.282567

Petal.Length 26.267151

Petal.Width 34.163836

> varImpPlot(rf)

Sepal.Width

Sepal.Length

Petal.Length

Petal.Width

0 5 10 15 20 25 30 35

rf

MeanDecreaseGini

Figure 4.7 Variable importance.

Finally, the built random forest is tested on test data, and the result is checked with
functions table() and margin() (see Figure 4.8). The margin of a data point is the
proportion of votes for the correct class minus maximum proportion of votes for other
classes. Generally speaking, positive margin means correct classification.

> irisPred <- predict(rf, newdata=testData)

> table(irisPred, testData$Species)

40 R and Data Mining

irisPred setosa versicolor virginica

setosa 14 0 0

versicolor 0 17 3

virginica 0 1 11

> plot(margin(rf, testData$Species))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

x

Figure 4.8 Margin of predictions.

5 Regression

Regression is to build a function of independent variables (also known as predictors)
to predict a dependent variable (also called response). For example, banks assess the
risk of home-loan applicants based on their age, income, expenses, occupation, number
of dependents, total credit limit, etc.

This chapter introduces basic concepts and presents examples of various regression
techniques. At first, it shows an example on building a linear regression model to predict
CPI data. After that, it introduces logistic regression. The generalized linear model
(GLM) is then presented, followed by a brief introduction of non-linear regression.

A collection of some helpful R functions for regression analysis is available as a
reference card on R Functions for Regression Analysis.1

5.1 Linear Regression

Linear regression is to predict response with a linear function of predictors as follows:

y = c0 + c1x1 + c2x2 + · · · + ck xk,

where x1, x2, · · · , xk are predictors and y is the response to predict.
Linear regression is demonstrated below with function lm() on the Australian CPI

(Consumer Price Index) data, which are quarterly CPIs from 2008 to 2010.2

At first, the data is created and plotted. In the code below, an x-axis is added manually
with function axis(), where las = 3 makes text vertical (see Figure 5.1).

> year <- rep(2008:2010, each = 4)

> quarter <- rep(1:4, 3)

> cpi <- c(162.2, 164.6, 166.5, 166.0,

+ 166.2, 167.0, 168.6, 169.5,

+ 171.0, 172.1, 173.3, 174.0)

> plot(cpi, xaxt="n", ylab="CPI", xlab="")

1 http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
2From Australian Bureau of Statistics http://www.abs.gov.au

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00005-2
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
http://www.abs.gov.au
http://dx.doi.org/10.1016/B978-0-12-396963-7.00005-2

42 R and Data Mining

> # draw x-axis

> axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
16

2
16

4
16

6
16

8
17

0
17

2
17

4

C
PI

20
08

Q
1

20
08

Q
2

20
08

Q
3

20
08

Q
4

20
09

Q
1

20
09

Q
2

20
09

Q
3

20
09

Q
4

20
10

Q
1

20
10

Q
2

20
10

Q
3

20
10

Q
4

Figure 5.1 Australian CPIs in year 2008 to 2010.

We then check the correlation between CPI and the other variables, year and
quarter.

> cor(year,cpi)

[1] 0.9096316

> cor(quarter,cpi)

[1] 0.3738028

Then a linear regression model is built with function lm() on the above data, using
year and quarter as predictors and CPI as response.

> fit <- lm(cpi˜ year + quarter)

> fit

Regression 43

Call:

lm(formula = cpi˜ year + quarter)

Coefficients:

(Intercept) year quarter

-7644.488 3.888 1.167

With the above linear model, CPI is calculated as

cpi = c0 + c1 ∗ year + c2 ∗ quarter,

where c0, c1, and c2 are coefficients from model fit. Therefore, the CPIs in 2011 can

be calculated as follows. An easier way for this is using function predict(), which
will be demonstrated at the end of this subsection.

> (cpi2011 <- fit$coefficients[[1]] + fit$coefficients[[2]]*2011 +

+ fit$coefficients[[3]]*(1:4))

[1] 174.4417 175.6083 176.7750 177.9417

More details of the model can be obtained with the code below.

> attributes(fit)

$names

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

$class

[1] "lm"

> fit$coefficients

(Intercept) year quarter

−7644.487500 3.887500 1.166667

44 R and Data Mining

The differences between observed values and fitted values can be obtained with
function residuals().

> # differences between observed values and fitted values

> residuals(fit)

1 2 3 4 5 6

−0.57916667 0.65416667 1.38750000 −0.27916667 −0.46666667 −0.83333333
7 8 9 10 11 12

−0.40000000 −0.66666667 0.44583333 0.37916667 0.41250000 −0.05416667

> summary(fit)

Call:

lm(formula = cpi˜ year + quarter)

Residuals:

Min 1Q Median 3Q Max

−0.8333 −0.4948 −0.1667 0.4208 1.3875

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7644.4875 518.6543 -14.739 1.31e-07 ***

year 3.8875 0.2582 15.058 1.09e-07 ***

quarter 1.1667 0.1885 6.188 0.000161 ***

———

Signif. codes: 0 ś*** š 0.001 ś**š 0.01 ś*š 0.05 ś.š 0.1śš1

Residual standard error: 0.7302 on 9 degrees of freedom

Multiple R-squared: 0.9672, Adjusted R-squared: 0.9599

F-statistic: 132.5 on 2 and 9 DF, p-value: 2.108e-07

Regression 45

We then plot the fitted model with the following code (see Figure 5.2).

> plot(fit)

164 166 168 170 172 174

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

3

6

8

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
0

1
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

3

6
8

164 166 168 170 172 174

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
3

6
8

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−1
0

1
2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
0.5

0.5

1

Residuals vs Leverage

3

18

Figure 5.2 Prediction with linear regression model.

We can also plot the model in a 3D plot as below, where function scatterplot3d()
creates a 3D scatter plot and plane3d() draws the fitted plane. Parameter lab specifies
the number of tickmarks on the x- and y-axes (see Figure 5.3).

> library(scatterplot3d)

> s3d <- scatterplot3d(year, quarter, cpi, highlight.3d=T,

type="h", lab=c(2,3))

46 R and Data Mining

> s3d$plane3d(fit)

2008 2009 2010

16
0

16
5

17
0

17
5

1

2

3

4

year

qu
ar

te
r

cp
i

Figure 5.3 A 3D plot of the fitted model.

With the model, the CPIs in year 2011 can be predicted as follows, and the predicted
values are shown as red triangles in Figure 5.4.

> data2011 <- data.frame(year=2011, quarter=1:4)

> cpi2011 <- predict(fit, newdata=data2011)

> style <- c(rep(1,12), rep(2,4))

> plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="",

pch = style, col = style)

> axis(1, at=1:16, las=3,

+ labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2",

"2011Q3", "2011Q4"))

Regression 47

16
5

17
0

17
5

C
P

I

20
08

Q
1

20
08

Q
2

20
08

Q
3

20
08

Q
4

20
09

Q
1

20
09

Q
2

20
09

Q
3

20
09

Q
4

20
10

Q
1

20
10

Q
2

20
10

Q
3

20
10

Q
4

20
11

Q
1

20
11

Q
2

20
11

Q
3

20
11

Q
4

Figure 5.4 Prediction of CPIs in 2011 with linear regression model.

5.2 Logistic Regression

Logistic regression is used to predict the probability of occurrence of an event by fitting
data to a logistic curve. A logistic regression model is built as the following equation:

logi t (y) = c0 + c1x1 + c2x2 + · · · + ck xk,

where x1, x2, · · · , xk are predictors, y is a response to predict, and logi t (y) = ln
(

y
1−y

)
.

The above equation can also be written as

y = 1

1 + e−(c0+c1x1+c2x2+···+ck xk)
.

Logistic regression can be built with function glm() by setting family to
binomial(link="logit").

48 R and Data Mining

Detailed introductions on logistic regression can be found at the following links.

• R Data Analysis Examples—Logit Regression
http://www.ats.ucla.edu/stat/r/dae/logit.htm

• Logistic Regression (with R)
http://nlp.stanford.edu/˜manning/courses/ling289/logistic.pdf

5.3 Generalized Linear Regression

The generalized linear model (GLM) generalizes linear regression by allowing the
linear model to be related to the response variable via a link function and allowing the
magnitude of the variance of each measurement to be a function of its predicted value. It
unifies various other statistical models, including linear regression, logistic regression,
and Poisson regression. Function glm() is used to fit generalized linear models,
specified by giving a symbolic description of the linear predictor and a description of
the error distribution.

A generalized linear model is built below with glm() on the bodyfat data (see 1.3.2
for details of the data).

> data("bodyfat", package = "mboost")

> myFormula <- DEXfat ˜age + waistcirc + hipcirc + elbowbreadth +

kneebreadth

> bodyfat.glm <- glm(myFormula, family = gaussian("log"),

data = bodyfat)

> summary(bodyfat.glm)

Call:

glm(formula = myFormula, family = gaussian("log"), data = bodyfat)

Deviance Residuals:

Min 1Q Median 3Q Max

-11.5688 -3.0065 0.1266 2.8310 10.0966

http://www.ats.ucla.edu/stat/r/dae/logit.htm
http://nlp.stanford.edu/manning/courses/ling289/logistic.pdf

Regression 49

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.734293 0.308949 2.377 0.02042 *

age 0.002129 0.001446 1.473 0.14560

waistcirc 0.010489 0.002479 4.231 7.44e-05 ***

hipcirc 0.009702 0.003231 3.003 0.00379 **

elbowbreadth 0.002355 0.045686 0.052 0.95905

kneebreadth 0.063188 0.028193 2.241 0.02843 *

—

Signif. codes: 0 ś***š 0.001 ś**š 0.01 ś*š 0.05 ś.š 0.1 ś š 1

(Dispersion parameter for gaussian family taken to be 20.31433)

Null deviance: 8536.0 on 70 degrees of freedom

Residual deviance: 1320.4 on 65 degrees of freedom

AIC: 423.02

Number of Fisher Scoring iterations: 5

> pred <- predict(bodyfat.glm, type="response")

In the code above, type indicates the type of prediction required. The default is
on the scale of the linear predictors, and the alternative "response" is on the scale
of the response variable. We then plot the predicted result with the code below (see
Figure 5.5).

> plot(bodyfat$DEXfat, pred, xlab="Observed Values",

ylab="Predicted Values")

> abline(a=0, b=1)

50 R and Data Mining

10 20 30 40 50 60

20
30

40
50

Observed Values

Pr
ed

ic
te

d
Va

lu
es

Figure 5.5 Prediction with generalized linear regression model.

In the above code, if family = gaussian("identity") is used, the built model
would be similar to linear regression. One can also make it a logistic regression by
setting family to binomial("logit").

5.4 Non-Linear Regression

While linear regression is to find the line that comes closest to data, non-linear regression
is to fit a curve through data. Function nls() provides non-linear regression. Examples
of nls() can be found by running "?nls" under R.

6 Clustering

This chapter presents examples of various clustering techniques in R, including k-means
clustering, k-medoids clustering, hierarchical clustering, and density-based clustering.
The first two sections demonstrate how to use the k-means and k-medoids algorithms
to cluster the iris data. The third section shows an example on hierarchical clustering
on the same data. The last section describes the idea of density-based clustering and the
DBSCAN algorithm, and shows how to cluster with DBSCAN and then label new data
with the clustering model. For readers who are not familiar with clustering, introductions
of various clustering techniques can be found in Zhao et al. (2009a) and Jain et al. (1999).

6.1 The k-Means Clustering

This section shows k-means clustering of iris data (see Section 1.3.1 for details of
the data). At first, we remove species from the data to cluster. After that, we apply
function kmeans() to iris2, and store the clustering result in kmeans.result. The
cluster number is set to 3 in the code below.

> iris2 <- iris

> iris2$Species <- NULL

> (kmeans.result <- kmeans(iris2, 3))

K-means clustering with 3 clusters of sizes 38, 50, 62

Cluster means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 6.850000 3.073684 5.742105 2.071053

2 5.006000 3.428000 1.462000 0.246000

3 5.901613 2.748387 4.393548 1.433871

Clustering vector:

[1] 2

[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 3

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00006-4
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00006-4

52 R and Data Mining

[75] 3 3 3 1 3 1 3 1 1 1 1 3 1 1 1 1

[112] 1 1 3 3 1 1 1 1 3 1 3 1 3 1 1 3 3 1 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1

[149] 1 3

Within cluster sum of squares by cluster:

[1] 23.87947 15.15100 39.82097

(between_SS / total_SS = 88.4%)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size"

The clustering result is then compared with the class label (Species) to check
whether similar objects are grouped together.

> table(iris$Species, kmeans.result$cluster)

1 2 3

setosa 0 50 0

versicolor 2 0 48

virginica 36 0 14

The above result shows that cluster “setosa” can be easily separated from the other
clusters, and that clusters “versicolor” and “virginica” are to a small degree overlapped
with each other.

Next, the clusters and their centers are plotted (see Figure 6.1). Note that there are
four dimensions in the data and that only the first two dimensions are used to draw the
plot below. Some black points close to the green center (asterisk) are actually closer
to the black center in the four-dimensional space. We also need to be aware that the
results of k-means clustering may vary from run to run, due to random selection of
initial cluster centers.

> plot(iris2[c("Sepal.Length", "Sepal.Width")],

col = kmeans.result$cluster

> # plot cluster centers

> points(kmeans.result$centers[,c("Sepal.Length",

"Sepal.Width")], col=1:3, pch=8, cex=2)

Clustering 53

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Figure 6.1 Results of k-means clustering.

More examples of k-means clustering can be found in Section 7.3 and Section 10.8.1.

6.2 The k-Medoids Clustering

This section shows k-medoids clustering with functions pam() and pamk(). The k-
medoids clustering is very similar to k-means, and the major difference between them
is that: while a cluster is represented with its center in the k-means algorithm, it is rep-
resented with the object closest to the center of the cluster in the k-medoids clustering.
The k-medoids clustering is more robust than k-means in presence of outliers. PAM
(Partitioning Around Medoids) is a classic algorithm for k-medoids clustering. While
the PAM algorithm is inefficient for clustering large data, the CLARA algorithm is an
enhanced technique of PAM by drawing multiple samples of data, applying PAM on
each sample and then returning the best clustering. It performs better than PAM on
larger data. Functions pam() and clara() in package cluster (Maechler et al., 2012)
are respectively implementations of PAM and CLARA in R. For both algorithms, a
user has to specify k, the number of clusters to find. As an enhanced version of pam(),
function pamk() in package fpc (Hennig, 2010) does not require a user to choose k.
Instead, it calls the functionpam()orclara() to perform a partitioning around medoids
clustering with the number of clusters estimated by optimum average silhouette width.

With the code below, we demonstrate how to find clusters with pam() and pamk().

> library(fpc)

54 R and Data Mining

> pamk.result <- pamk(iris2)

> # number of clusters

> pamk.result$nc

[1] 2

> # check clustering against actual species

> table(pamk.result$pamobject$clustering, iris$Species)

setosa versicolor virginica

1 50 1 0

2 0 49 50

> layout(matrix(c(1,2),1,2)) # 2 graphs per page

> plot(pamk.result$pamobject)

> layout(matrix(1)) # change back to one graph per page

−3 −2 −1 0 1 2 3 4

−2
−1

0
1

2
3

clusplot(pam(x = sdata, k = k))

Component 1
These two components explain 95.81

% of the point variability.

C
om

po
ne

nt
 2

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = sdata, k = k)

Average silhouette width : 0.69

n = 150 2 clusters Cj
j : nj | avei∈Cj si

1 : 51 | 0.81

2 : 99 | 0.62

Figure 6.2 Clustering with the k-medoids algorithm—I.

In the above example, pamk() produces two clusters: one is “setosa”, and the other
is a mixture of “versicolor” and “virginica”. In Figure 6.2, the left-side chart is a
two-dimensional “clusplot” (clustering plot) of the two clusters and the lines show the
distance between clusters. The right one shows their silhouettes. In the silhouette, a
large si (almost 1) suggests that the corresponding observations are very well clustered,
a small si (around 0) means that the observation lies between two clusters, and obser-
vations with a negative si are probably placed in the wrong cluster. Since the average
Si are respectively 0.81 and 0.62 in the above silhouette, the identified two clusters are
well clustered.

Clustering 55

Next, we try pam() with k = 3.

> pam.result <- pam(iris2, 3)

> table(pam.result$clustering, iris$Species)

setosa versicolor virginica

1 50 0 0

2 0 48 14

3 0 2 36

> layout(matrix(c(1,2),1,2)) # 2 graphs per page

> plot(pam.result)

> layout(matrix(1)) # change back to one graph per page

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

clusplot(pam(x = iris2, k = 3))

Component 1
These two components explain 95.81 %

 of the point variability.

C
om

po
ne

nt
 2

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris2, k = 3)

Average silhouette width : 0.55

n = 150 3 clusters Cj
j : nj | avei∈Cj si

1 : 50 | 0.80

2 : 62 | 0.42

3 : 38 | 0.45

Silhouette width si

Figure 6.3 Clustering with the k-medoids algorithm—II.

With the above result produced with pam() (see Figure 6.3), there are three clusters:
(1) cluster 1 is species “setosa” and is well separated from the other two; (2) cluster
2 is mainly composed of “versicolor”, plus some cases from “virginica”; and (3) the
majority of cluster 3 are “virginica”, with two cases from “versicolor”.

It is hard to say which one is better out of the above two clusterings produced
respectively with pamk() and pam(). It depends on the target problem and domain
knowledge and experience. In this example, the result of pam() seems better, because
it identifies three clusters, corresponding to three species. Therefore, the heuristic way
to identify the number of clusters in pamk() does not necessarily produce the best
result. Note that we cheated by setting k = 3 when using pam(), which is already
known to us as the number of species.

More examples of k-medoids clustering can be found in Section 10.8.2.

56 R and Data Mining

6.3 Hierarchical Clustering

This section demonstrates hierarchical clustering with hclust() on iris data (see
Section 1.3.1 for details of the data).

We first draw a sample of 40 records from the iris data, so that the clustering plot
will not be overcrowded. Same as before, variable Species is removed from the data.
After that, we apply hierarchical clustering to the data.

> idx <- sample(1:dim(iris)[1], 40)

> irisSample <- iris[idx,]

> irisSample$Species <- NULL

> hc <- hclust(dist(irisSample), method="ave")

> plot(hc, hang = -1, labels=iris$Species[idx])

> # cut tree into 3 clusters

> rect.hclust(hc, k=3)

> groups <- cutree(hc, k=3)

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

0
1

2
3

4

Cluster Dendrogram

hclust (*, "average")
dist(irisSample)

H
ei

gh
t

Figure 6.4 Cluster dendrogram.

Clustering 57

Similar to the above clustering of k-means, Figure 6.4 also shows that cluster “setosa”
can be easily separated from the other two clusters, and that clusters “versicolor” and
“virginica” are to a small degree overlapped with each other.

More examples of hierarchical clustering can be found in Section 8.4 and
Section 10.7.

6.4 Density-Based Clustering

The DBSCAN algorithm (Ester et al., 1996) from package fpc (Hennig, 2010) provides
a density-based clustering for numeric data. The idea of density-based clustering is to
group objects into one cluster if they are connected to one another by densely populated
area. There are two key parameters in DBSCAN:

• eps: reachability distance, which defines the size of neighborhood; and

• MinPts: minimum number of points.

If the number of points in the neighborhood of point α is no less than MinPts, then α

is a dense point. All the points in its neighborhood are density-reachable from α and
are put into the same cluster as α.

The strengths of density-based clustering are that it can discover clusters with various
shapes and sizes and is insensitive to noise. As a comparison, the k-means algorithm
tends to find clusters with sphere shape and with similar sizes.

Below is an example of density-based clustering of the iris data.

> library(fpc)

> iris2 <- iris[-5] # remove class tags

> ds <- dbscan(iris2, eps=0.42, MinPts=5)

> # compare clusters with original class labels

> table(ds$cluster, iris$Species)

setosa versicolor virginica

0 2 10 17

1 48 0 0

2 0 37 0

3 0 3 33

58 R and Data Mining

In the above table, “1” to “3” in the first column are three identified clusters, while
“0” stands for noises or outliers, i.e. objects that are not assigned to any clusters. The
noises are shown as black circles in Figure 6.5.

> plot(ds, iris2)

Sepal.Length

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length
1

2
3

4
5

6
7

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.Width

Figure 6.5 Density-based clustering—I.

The clusters are shown below in a scatter plot using the first and fourth columns of
the data (see Figure 6.6).

> plot(ds, iris2[c(1,4)])

Clustering 59

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
5

1.
0

1.
5

2.
0

2.
5

Sepal.Length

Pe
ta

l.W
id

th

Figure 6.6 Density-based clustering—II.

Another way to show the clusters is using function plotcluster() in package fpc.
Note that the data are projected to distinguish classes (see Figure 6.7.)

> plotcluster(iris2, ds$cluster)

1

1

1
1

1

1
1

1
1

1

1
1

1

1

1

1
1

1
1

1

1

10
1

1
1

1

11
1
1

1
1

1

1

111 11

1

0

1

1

1

11
11

1

2

2

2
22

2

2

0

2

2

0

2

0

2

0

2

2

2

02

3

2

3

2

2
2

2

22

0 2
2

2 3

2

0

2

0

2

2

2

2
2
0

22
2

2

0

2

0

3

3

3

3

0

0

0

0

0

3

3

3
3

0

3

3
0

0
0

33

0

3

3

0

3
3 3

0

0

0

3

3

0

0

3

3

3 3

3
3

3

3

3

3

3

3

3

3

−2
−1

0
1

2
3

−8 −6 −4 −2 0 2
dc 1

dc
 2

Figure 6.7 Density-based clustering—III.

60 R and Data Mining

The clustering model can be used to label new data, based on the similarity between
new data and the clusters. The following example draws a sample of 10 objects from
iris and adds small noises to them to make a new dataset for labeling. The random
noises are generated with a uniform distribution using function runif().

> # create a new dataset for labeling

> set.seed(435)

> idx <- sample(1:nrow(iris), 10)

> newData <- iris[idx, -5]

> newData <- newData + matrix(runif(10∗4. min=0, max=0.2),

nrow=10, ncol=4)

> # label new data

> myPred <- predict(ds, iris2, newData)

> # plot result

> plot(iris2[c(1,4)], col=1+ds$cluster)

> points(newData[c(1,4)], pch="ast", col=1+myPred, cex=3)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
5

1.
0

1.
5

2.
0

2.
5

Sepal.Length

Pe
ta
l.W
id
th

Figure 6.8 Prediction with clustering model.

Clustering 61

> # check cluster labels

> table(myPred, iris$Species[idx])

mypred setosa versicolor virginica

0 0 0 1

1 3 0 0

2 0 3 0

3 0 1 2

As we can see from the above result, out of the 10 new unlabeled data, 8(= 3 + 3 + 2)
are assigned with correct class labels. The new data are shown as asterisk("*") and the
colors stand for cluster labels in Figure 6.8.

7 Outlier Detection

This chapter presents examples of outlier detection with R. At first, it demonstrates
univariate outlier detection. After that, an example of outlier detection with LOF (Local
Outlier Factor) is given, followed by examples on outlier detection by clustering. At
last, it demonstrates outlier detection from time series data.

7.1 Univariate Outlier Detection

This section shows an example of univariate outlier detection and demonstrates how
to apply it to multivariate data. In the example, univariate outlier detection is done
with function boxplot.stats(), which returns the statistics for producing boxplots.
In the result returned by the above function, one component is out, which gives a list of
outliers. More specifically, it lists data points lying beyond the extremes of the whiskers.
An argument of coef can be used to control how far the whiskers extend out from the
box of a boxplot. More details on that can be obtained by running ?boxplot.stats

in R. Figure 7.1 shows a boxplot, where the four circles are outliers.

> set.seed(3147)

> x <- rnorm(100)

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

−3.3150 −0.4837 0.1867 0.1098 0.7120 2.6860

> # outliers

> boxplot.stats(x)$out

[1] −3.315391 2.685922 −3.055717 2.571203

> boxplot(x)

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00007-6
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00007-6

64 R and Data Mining

−3
−2

−1
0

1
2

Figure 7.1 Univariate outlier detection with boxplot.

The above univariate outlier detection can be used to find outliers in multivariate
data in a simple ensemble way. In the example below, we first generate a dataframe
df, which has two columns, x and y. After that, outliers are detected separately from
x and y. We then take outliers as those data which are outliers for both columns. In
Figure 7.2, outliers are labeled with “+” in red..

> y <- rnorm(100)

> df <- data.frame(x, y)

> rm(x, y)

> head(df)

x y

1 −3.31539150 0.7619774

2 −0.04765067 −0.6404403
3 0.69720806 0.7645655

4 0.35979073 0.3131930

5 0.18644193 0.1709528

6 0.27493834 −0.8441813

> attach(df)

> # find the index of outliers from x

>(a <- which(x %in% boxplot.stats(x)$out))

Outlier Detection 65

[1] 1 33 64 74

> # find the index of outliers from y

>(b <- which(y %in% boxplot.stats(y)$out))

[1] 24 25 49 64 74

> detach(df)

> # outliers in both x and y

>(outlier.list1 <- intersect(a,b))

[1] 64 74

> plot(df)

> points(df[outlier.list1,], col="red", pch="+", cex=2.5)

−3 −2 −1 0 1 2

−3
−2

−1
0

1
2

x

y

+

+

Figure 7.2 Outlier detection—I.

Similarly, we can also take outliers as those data which are outliers in either x or y.
In Figure 7.3, outliers are labeled with “x” in blue.

> # outliers in either x or y

>(outlier.list2 <- union(a,b))

[1] 1 33 64 74 24 25 49

> plot(df)

66 R and Data Mining

> points(df[outlier.list2,], col="blue", pch="x", cex=2)

−3 −2 −1 0 1 2

−3
−2

−1
0

1
2

x

y

x
x

x

xx

x

x

Figure 7.3 Outlier detection—II.

When there are three or more variables in an application, a final list of outliers
might be produced with majority voting of outliers detected from individual variables.
Domain knowledge should be involved when choosing the optimal way to ensemble
in real-world applications.

7.2 Outlier Detection with LOF

LOF (Local Outlier Factor) is an algorithm for identifying density-based local outliers
(Breunig et al., 2000). With LOF, the local density of a point is compared with that of
its neighbors. If the former is significantly lower than the latter (with an LOF value
greater than one), the point is in a sparser region than its neighbors, which suggests it
be an outlier. A shortcoming of LOF is that it works on numeric data only.

Function lofactor() calculates local outlier factors using the LOF algorithm, and
it is available in packages DMwR (Torgo, 2010) and dprep. An example of outlier detec-
tion with LOF is given below, where k is the number of neighbors used for calculating
local outlier factors. Figure 7.4 shows a density plot of outlier scores.

> library(DMwR)

> # remove "Species", which is a categorical column

> iris2 <- iris[,1:4]

> outlier.scores <- lofactor(iris2, k=5)

Outlier Detection 67

> plot(density(outlier.scores))

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

density.default(x = outlier.scores)

N = 150 Bandwidth = 0.05627

D
en

si
ty

Figure 7.4 Density of outlier factors.

> # pick top 5 as outliers

> outliers <- order(outlier.scores, decreasing=T)[1:5]

> # who are outliers

> print(outliers)

[1] 42 107 23 110 63

> print(iris2[outliers,])

Sepal.Length Sepal.Width Petal.Length Petal.Width

42 4.5 2.3 1.3 0.3

107 4.9 2.5 4.5 1.7

23 4.6 3.6 1.0 0.2

110 7.2 3.6 6.1 2.5

63 6.0 2.2 4.0 1.0

Next, we show outliers with a biplot of the first two principal components (see
Figure 7.5).

68 R and Data Mining

> n <- nrow(iris2)

> labels <- 1:n

> labels[-outliers] <- "."

> biplot(prcomp(iris2), cex=.8, xlabs=labels)

−0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

PC1

PC
2

23

42

63

107

110

−20 −10 0 10 20

−2
0

−1
0

0
10

20

Sepal.LengthSepal.Width

Petal.LengthPetal.Width

Figure 7.5 Outliers in a biplot of first two principal components.

In the above code, prcomp()performs a principal component analysis, and biplot()

plots the data with its first two principal components. In Figure 7.5, the x- and y-axes
are respectively the first and second principal components, the arrows show the original
columns (variables), and the five outliers are labeled with their row numbers.

We can also show outliers with a pairs plot as below, where outliers are labeled with
“+” in red (see Figure 7.6).

> pch <- rep(".", n)

> pch[outliers] <- "+"

> col <- rep("black", n)

> col[outliers] <- "red"

> pairs(iris2, pch=pch, col=col)

Outlier Detection 69

Sepal.Length

2.0 3.0 4.0

++

+

+

+

++

+

+

+

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

++

+

+

+

2.
0

3.
0

4.
0

+

+ +
+

+
Sepal.Width

+

+ +
+

+ +

+ +
+

+

++

+
+

+

++

+
+

+

Petal.Length

1
2

3
4

5
6

7

++

+
+

+

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

++

+

+

+

++

+

+

+

1 2 3 4 5 6 7

++

+

+

+

Petal.Width

Figure 7.6 Outliers in a matrix of scatter plots.

Package Rlof (Hu et al., 2011) provides function lof(), a parallel implementation of
the LOF algorithm. Its usage is similar to lofactor(), but lof() has two additional
features of supporting multiple values of k and several choices of distance metrics.
Below is an example of lof(). After computing outlier scores, outliers can be detected
by selecting the top ones. Note that the current version of package Rlof (v1.0.0) works
under Mac OS X, but does not work under Windows, because it depends on package
multicore for parallel computing.

> library(Rlof)

> outlier.scores <- lof(iris2, k=5)

> # try with different number of neighbors (k = 5,6,7,8,9 and 10)

> outlier.scores <- lof(iris2, k=c(5:10))

70 R and Data Mining

7.3 Outlier Detection by Clustering

Another way to detect outliers is clustering. By grouping data into clusters, those data
not assigned to any clusters are taken as outliers. For example, with density-based
clustering such as DBSCAN (Ester et al., 1996), objects are grouped into one cluster
if they are connected to one another by densely populated area. Therefore, objects not
assigned to any clusters are isolated from other objects and are taken as outliers. An
example of DBSCAN can be found in Section 6.4 Density-based Clustering.

We can also detect outliers with the k-means algorithm. With k-means, the data are
partitioned into k groups by assigning them to the closest cluster centers. After that, we
can calculate the distance (or dissimilarity) between each object and its cluster center,
and pick those with largest distances as outliers. An example of outlier detection with
k-means from the iris data (see Section 1.3.1 for details of the data) is given below.

> # remove species from the data to cluster

> iris2 <- iris[,1:4]

> kmeans.result <- kmeans(iris2, centers=3)

> # cluster centers

> kmeans.result$centers

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000

2 6.850000 3.073684 5.742105 2.071053

3 5.901613 2.748387 4.393548 1.433871

> # cluster IDs

> kmeans.result$cluster

[1] 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 2 3

[75] 3 3 3 2 3 2 3 2 2 2 2 3 2 2 2 2

[112] 2 2 3 3 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2

[149] 2 3

> # calculate distances between objects and cluster centers

> centers <- kmeans.result$centers[kmeans.result$cluster,]

> distances <- sqrt(rowSums((iris2 - centers)ˆ2))

> # pick top 5 largest distances

Outlier Detection 71

> outliers <- order(distances, decreasing=T)[1:5]

> # who are outliers

> print(outliers)

[1] 99 58 94 61 119

> print(iris2[outliers,])

Sepal.Length Sepal.Width Petal.Length Petal.Width

99 5.1 2.5 3.0 1.1

58 4.9 2.4 3.3 1.0

94 5.0 2.3 3.3 1.0

61 5.0 2.0 3.5 1.0

119 7.7 2.6 6.9 2.3

> # plot clusters

> plot(iris2[,c("Sepal.Length", "Sepal.Width")], pch="o",

+ col=kmeans.result$cluster, cex=0.3)

> # plot cluster centers

> points(kmeans.result$centers[,c("Sepal.Length",

"Sepal.Width")], col=1:3, pch=8, cex=1.5)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

Se
pa

l.W
id

th

+++

+

+

Figure 7.7 Outliers with k-means clustering.

72 R and Data Mining

> # plot outliers

> points(iris2[outliers, c("Sepal.Length", "Sepal.Width")],

pch="+", col=4, cex=1.5)

In the above figure, cluster centers are labeled with asterisks and outliers with “+”
(see Figure 7.7).

7.4 Outlier Detection from Time Series

This section presents an example of outlier detection from time series data. In
this example, the time series data are first decomposed with robust regression
using function stl() and then outliers are identified. An introduction of STL
(Seasonal-trend decomposition based on Loess) (Cleveland et al., 1990) is available at
http://cs.wellesley.edu/∼cs315/Papers/stl%20statistical%20model.pdf.
More examples of time series decomposition can be found in Section 8.2.

> # use robust fitting

> f <- stl(AirPassengers, "periodic", robust=TRUE)

>(outliers <- which(f$weights<1e-8))

[1] 79 91 92 102 103 104 114 115 116 126 127 128 138 139 140

> # set layout

> op <- par(mar=c(0, 4, 0, 3), oma=c(5, 0, 4, 0), mfcol=c(4, 1))

> plot(f, set.pars=NULL)

> sts <- f$time.series

> # plot outliers

> points(time(sts)[outliers], 0.8*sts[,"remainder"][outliers],

pch="x", col="red")

> par(op) # reset layout

http://cs.wellesley.edu/{\sim }cs315/Papers/stl%20statistical%20model.pdf

Outlier Detection 73

10
0

30
0

50
0

da
ta

−4
0

0
20

40

se
as

on
al

15
0

25
0

35
0

45
0

tre
nd

0
50

10
0

1950 1952 1954 1956 1958 1960

re
m

ai
nd

er

time

x x
x x

xx
x

xx

x

xx

x

x
x

Figure 7.8 Outliers in time series data.

In the above figure, outliers are labeled with “x” in red (see Figure 7.8).

7.5 Discussions

The LOF algorithm is good at detecting local outliers, but it works on numeric data only.
Package Rlof relies on the multicore package, which does not work under Windows.
A fast and scalable outlier detection strategy for categorical data is the Attribute Value
Frequency (AVF) algorithm (Koufakou et al., 2007).

Some other R packages for outlier detection are:

• Package extremevalues (van der Loo, 2010): univariate outlier detection;

• Package mvoutlier (Filzmoser and Gschwandtner, 2012): multivariate outlier detec-
tion based on robust methods; and

• Package outliers (Komsta, 2011): tests for outliers.

8 Time Series Analysis and Mining

This chapter presents examples on time series decomposition, forecasting, clustering,
and classification. The first section introduces briefly time series data in R. The second
section shows an example on decomposing time series into trend, seasonal, and ran-
dom components. The third section presents how to build an autoregressive integrated
moving average (ARIMA) model in R and use it to predict future values. The fourth
section introduces Dynamic Time Warping (DTW) and hierarchical clustering of time
series data with Euclidean distance and with DTW distance. The fifth section shows
three examples on time series classification: one with original data, the other with DWT
(Discrete Wavelet Transform) transformed data, and another with k-NN classification.
The chapter ends with discussions and further readings.

8.1 Time Series Data in R

Class ts represents data which has been sampled at equispaced points in time. A
frequency of seven indicates that a time series is composed of weekly data, and 12
and 4 are used, respectively, for monthly and quarterly series. An example below
shows the construction of a time series with 30 values (1–30). Frequency=12 and
start=c(2011,3) specify that it is a monthly series starting from March 2011.
> a <- ts(1:30, frequency=12, start=c(2011,3))

> print(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2011 1 2 3 4 5 6 7 8 9 10

2012 11 12 13 14 15 16 17 18 19 20 21 22

2013 23 24 25 26 27 28 29 30

> str(a)

Time-Series [1:30] from 2011 to 2014: 1 2 3 4 5 6 7 8 9 10 …

> attributes(a)

$tsp

[1] 2011.167 2013.583 12.000

$class

[1] "ts"

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00008-8
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00008-8

76 R and Data Mining

8.2 Time Series Decomposition

Time Series Decomposition is to decompose a time series into trend, seasonal, cyclical,
and irregular components. The trend component stands for long-term trend, the seasonal
component is seasonal variation, the cyclical component is repeated but non-periodic
fluctuations, and the residuals are irregular component.

A time series of AirPassengers is used below as an example to demonstrate time
series decomposition. It is composed of monthly totals of Box & Jenkins international
airline passengers from 1949 to 1960. It has 144(=12*12) values (see Figure 8.1).

> plot(AirPassengers)

Time

A
ir

P
as

se
ng

er
s

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

Figure 8.1 A time series of AirPassengers.

Function decompose() is applied below to AirPassengers to break it into various
components (see Figures 8.2 and 8.3).

> # decompose time series

> apts <- ts(AirPassengers, frequency=12)

> f <- decompose(apts)

> # seasonal figures

> f$figure

[1] −24.748737 −36.188131 −2.241162 −8.036616 −4.506313 35.402778

[7] 63.830808 62.823232 16.520202 −20.642677 -53.593434 -28.619949

> plot(f$figure, type="b", xaxt="n", xlab="")

> # get names of 12 months in English words

> monthNames <- months(ISOdate(2011,1:12,1))

> # label x-axis with month names

> # las is set to 2 for vertical label orientation

> axis(1, at=1:12, labels=monthNames, las=2)

Time Series Analysis and Mining 77

−4
0

−2
0

0
20

40
60

f$
fig

ur
e

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch
A

pr
il

M
ay

Ju
ne Ju
ly

Au
gu

st
S

ep
te

m
be

r
O

ct
ob

er
N

ov
em

be
r

D
ec

em
be

r

Figure 8.2 Seasonal component.

> plot(f)

10
0

30
0

50
0

ob
se

rv
ed

15
0

25
0

35
0

45
0

tre
nd

−4
0

0
40

se
as

on
al

−4
0

0
20

60

2 4 6 8 10 12

ra
nd

om

Time

Decomposition of additive time series

Figure 8.3 Time series decomposition.

In Figure 8.3, the first chart is the original time series. The second is trend of the
data, the third shows seasonal factors, and the last chart is the remaining components
after removing trend and seasonal factors.

Some other functions for time series decomposition are stl() in package stats
(R Development Core Team, 2012), decomp() in package timsac (The Institute of
Statistical Mathematics, 2012), and tsr() in package ast.

78 R and Data Mining

8.3 Time Series Forecasting

Time series forecasting is to forecast future events based on historical data. One example
is to predict the opening price of a stock based on its past performance. Two popular
models for time series forecasting are autoregressive moving average (ARMA) and
autoregressive integrated moving average (ARIMA).

Here is an example to fit an ARIMA model to a univariate time series and then use
it for forecasting.

> fit <- arima(AirPassengers, order=c(1,0,0), list(order=c(2,1,0),

period=12))

> fore <- predict(fit, n.ahead=24)

> # error bounds at 95% confidence level

> U <- fore$pred +2*fore$se

> L <- fore$pred - 2*fore$se

> ts.plot(AirPassengers, fore$pred, U, L, col=c(1,2,4,4),

lty=c(1,1,2,2))

> legend("topleft", c("Actual", "Forecast",

"Error Bounds(95% Confidence)"), col=c(1,2,4), lty=c(1,1,2))

Figure 8.4 Time series forecast.

In the above figure, the red solid line shows the forecasted values, and the blue dotted
lines are error bounds at a confidence level of 95% (see Figure 8.4).

8.4 Time Series Clustering

Time series clustering is to partition time series data into groups based on similarity
or distance, so that time series in the same cluster are similar to each other. There are
various measures of distance or dissimilarity, such as Euclidean distance, Manhattan

Time Series Analysis and Mining 79

distance, Maximum norm, Hamming distance, the angle between two vectors (inner
product), and Dynamic Time Warping (DTW) distance.

8.4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) finds optimal alignment between two time series
(Keogh and Pazzani, 2001) (see Figure 8.5) and an implement of it in R is package dtw
(Giorgino, 2009). In that package, function dtw (x, y, …) computes dynamic time
warp and finds optimal alignment between two time series x and y, and dtwDist(mx,

my=mx, …) or dist(mx, my=mx, method="DTW", …) calculates the distances
between time series mx and my.

> library(dtw)

> idx <- seq(0, 2*pi, len=100)

> a <- sin(idx) + runif(100)/10

> b <- cos(idx)

> align <- dtw(a, b, step=asymmetricP1, keep=T)

> dtwPlotTwoWay(align)

Figure 8.5 Alignment with dynamic time warping.

8.4.2 Synthetic Control Chart Time Series Data

The synthetic control chart time series1 is used in the examples in the following sections.
The dataset contains 600 examples of control charts synthetically generated by the
process in Alcock and Manolopoulos (1999). Each control chart is a time series with
60 values, and there are six classes (see Figure 8.6):

• 1–100: Normal;

• 101–200: Cyclic;

• 201–300: Increasing trend;

1 http://kdd.ics.uci.edu/databases/synthetic_control/
synthetic_control.html

http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html
http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html

80 R and Data Mining

• 301–400: Decreasing trend;

• 401–500: Upward shift; and

• 501–600: Downward shift.

Firstly, the data is read into R with read.table(). Parameter sep is set to "" (no
space between double quotation marks), which is used when the separator is white
space, i.e. one or more spaces, tabs, newlines, or carriage returns.

> sc <- read.table("./data/synthetic_control.data", header=F,

sep="")

> # show one sample from each class

> idx <- c(1,101,201,301,401,501)

> sample1 <- t(sc[idx,])

> plot.ts(sample1, main="")

1
10

1
24

26
28

30
32

34
36

15
25

35
45

25
30

35
40

45

0 10 20 30 40 50 60

20
1

Time

30
1

40
1

0
10

20
30

25
30

35
40

45
10

15
20

25
30

35

0 10 20 30 40 50 60

50
1

Time

Figure 8.6 Six classes in synthetic control chart time series.

8.4.3 Hierarchical Clustering with Euclidean Distance

At first, we select ten cases randomly from each class. Otherwise, there will be too
many cases and the plot of hierarchical clustering will be over crowded.

> set.seed(6218)

> n <- 10

> s <- sample(1:100, n)

Time Series Analysis and Mining 81

> idx <- c(s, 100+s, 200+s, 300+s, 400+s, 500+s)

> sample2 <- sc[idx,]

> observedLabels <- rep(1:6, each=n)

> # hierarchical clustering with Euclidean distance

> hc <- hclust(dist(sample2), method="average")

> plot(hc, labels=observedLabels, main="")

> # cut tree to get 6 clusters

> rect.hclust(hc, k=6)

Figure 8.7 Hierarchical clustering with euclidean distance.

> memb <- cutree(hc, k=6)

> table(observedLabels, memb)

memb

observedLabels 1 2 3 4 5 6

1 10 0 0 0 0 0

2 1 6 2 1 0 0

3 0 0 0 0 10 0

4 0 0 0 0 0 10

5 0 0 0 0 10 0

6 0 0 0 0 0 10

82 R and Data Mining

The clustering result in Figure 8.7 shows that, increasing trend (class 3) and upward
shift (class 5) are not well separated, and decreasing trend (class 4) and downward shift
(class 6) are also mixed.

8.4.4 Hierarchical Clustering with DTW Distance

Next, we try hierarchical clustering with the DTW distance.

> library(dtw)

> distMatrix <- dist(sample2, method="DTW")

> hc <- hclust(distMatrix, method="average")

> plot(hc, labels=observedLabels, main="")

> # cut tree to get 6 clusters

> rect.hclust(hc, k=6)

Figure 8.8 Hierarchical clustering with DTW distance.

> memb <- cutree(hc, k=6)

> table(observedLabels, memb)

Time Series Analysis and Mining 83

memb

observedLabels 1 2 3 4 5 6

1 10 0 0 0 0 0

2 0 7 3 0 0 0

3 0 0 0 10 0 0

4 0 0 0 0 7 3

5 2 0 0 8 0 0

6 0 0 0 0 0 10

By comparing Figure 8.8 with Figure 8.7, we can see that the DTW distance are
better than the Euclidean distance for measuring the similarity between time series.

8.5 Time Series Classification

Time series classification is to build a classification model based on labeled time series
and then use the model to predict the label of unlabeled time series. New features
extracted from time series may help to improve the performance of classification mod-
els. Techniques for feature extraction include Singular Value Decomposition (SVD),
Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), Piecewise
Aggregate Approximation (PAA), Perpetually Important Points (PIP), Piecewise Lin-
ear Representation, and Symbolic Representation.

8.5.1 Classification with Original Data

We usectree() from package party (Hothorn et al., 2010) to demonstrate classification
of time series with the original data. The class labels are changed into categorical values
before feeding the data into ctree(), so that we won’t get class labels as a real number
like 1.35. The built decision tree is shown in Figure 8.9.

> classId <- rep(as.character(1:6), each=100)

> newSc <- data.frame(cbind(classId, sc))

> library(party)

> ct <- ctree(classId ˜ ., data=newSc,

+ controls =ctree_control(minsplit=30, minbucket=10,

maxdepth=5))

> pClassId <- predict(ct)

84 R and Data Mining

> table(classId, pClassId)

pClassId

classId 1 2 3 4 5 6

1 97 0 0 0 0 3

2 1 93 2 0 0 4

3 0 0 96 0 4 0

4 0 0 0 100 0 0

5 4 0 10 0 86 0

6 0 0 0 87 0 13

> # accuracy

> (sum(classId==pClassId)) / nrow(sc)

[1] 0.8083333

> plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))

V59

1

≤ 46 > 46

V59

2

≤ 36 > 36

V59

3

≤ 24 > 24

V54

4

≤ 27 > 27

V19

5

≤ 35 > 35

Node 6 (n = 187)

14
0

0.2
0.4
0.6
0.8

1
Node 7 (n = 10)

14
0

0.2
0.4
0.6
0.8

1
Node 8 (n = 21)

14
0

0.2
0.4
0.6
0.8

1

V4

9

≤ 36 > 36

V51

10

≤ 25 > 25

Node 11 (n = 10)

14
0

0.2
0.4
0.6
0.8

1
Node 12 (n = 102)

14
0

0.2
0.4
0.6
0.8

1
Node 13 (n = 41)

14
0

0.2
0.4
0.6
0.8

1

V54

14

≤ 32 > 32

Node 15 (n = 31)

14
0

0.2
0.4
0.6
0.8

1

V19

16

≤ 36 > 36

V15

17

≤ 36 > 36

Node 18 (n = 59)

14
0

0.2
0.4
0.6
0.8

1
Node 19 (n = 10)

14
0

0.2
0.4
0.6
0.8

1
Node 20 (n = 13)

14
0

0.2
0.4
0.6
0.8

1

V20

21

≤ 33 > 33

V41

22

≤ 42 > 42

Node 23 (n = 10)

14
0

0.2
0.4
0.6
0.8

1

V57

24

≤ 49 > 49

Node 25 (n = 21)

14
0

0.2
0.4
0.6
0.8

1
Node 26 (n = 10)

14
0

0.2
0.4
0.6
0.8

1

V39

27

≤ 39 > 39

Node 28 (n = 10)

14
0

0.2
0.4
0.6
0.8

1

V15

29

≤ 31 > 31

Node 30 (n = 10)

14
0

0.2
0.4
0.6
0.8

1
Node 31 (n = 55)

14
0

0.2
0.4
0.6
0.8

1

Figure 8.9 Decision tree.

8.5.2 Classification with Extracted Features

Next, we use DWT (Discrete Wavelet Transform) (Burrus et al., 1998) to extract fea-
tures from time series and then build a classification model. Wavelet transform provides
a multi-resolution representation using wavelets. An example of Haar Wavelet Trans-
form, the simplest DWT, is available at http://dmr.ath.cx/gfx/haar/. Another
popular feature extraction technique is Discrete Fourier Transform (DFT) (Agrawal
et al., 1993).

An example on extracting DWT (with Haar filter) coefficients is shown below.
Package wavelets (Aldrich, 2010) are used for discrete wavelet transform. In the

http://dmr.ath.cx/gfx/haar/

Time Series Analysis and Mining 85

package, function dwt(X, filter, n.levels, …) computes the discrete wavelet
transform coefficients, where X is a univariate or multivariate time series, filter indi-
cates which wavelet filter to use, and n.levels specifies the level of decomposition.
It returns an object of class dwt, whose slot W contains wavelet coefficients and V con-
tains scaling coefficients. The original time series can be reconstructed via an inverse
discrete wavelet transform with function idwt() in the same package. The produced
model is shown in Figure 8.10.

> library(wavelets)

> wtData <- NULL

> for(i in 1:nrow(sc)) {

+ a <- t(sc[i,])

+ wt <- dwt(a, filter="haar", boundary="periodic")

+ wtData <- rbind(wtData, unlist(c(wt@W, wt@V[[wt@level]])))

+ }

> wtData <- as.data.frame(wtData)

> wtSc <- data.frame(cbind(classId, wtData))

> # build a decision tree with DWT coefficients

> ct <- ctree(classId ˜ ., data=wtSc,

controls =ctree_control(minsplit=30, minbucket=10, maxdepth=5))

> pClassId <- predict(ct)

> table(classId, pClassId)

pClassId

classId 1 2 3 4 5 6

1 97 3 0 0 0 0

2 1 99 0 0 0 0

3 0 0 81 0 19 0

4 0 0 0 63 0 37

5 0 0 16 0 84 0

6 0 0 0 1 0 99

>(sum(classId==pClassId))/ nrow(wtSc)

[1] 0.8716667

86 R and Data Mining

> plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))

V57

1

≤ 117 > 117

W43

2

≤ −4 > −4

W5

3

≤ −9 > −9

W42

4

≤ −10 > −10

Node 5 (n = 10)

1 3 5
0

0.2
0.4
0.6
0.8

1
Node 6 (n = 54)

1 3 5
0

0.2
0.4
0.6
0.8

1
Node 7 (n = 10)

1 3 5
0

0.2
0.4
0.6
0.8

1

W31

8

≤ −1 > −1

Node 9 (n = 49)

1 3 5
0

0.2
0.4
0.6
0.8

1
Node 10 (n = 46)

1 3 5
0

0.2
0.4
0.6
0.8

1

V57

11

≤ 140 > 140

Node 12 (n = 31)

1 3 5
0

0.2
0.4
0.6
0.8

1

V57

13

≤ 178 > 178

W22

14

≤ −6 > −6

Node 15 (n = 80)

1 3 5
0

0.2
0.4
0.6
0.8

1

W31

16

≤ −9 > −9

Node 17 (n = 10)

1 3 5
0

0.2
0.4
0.6
0.8

1
Node 18 (n = 98)

1 3 5
0

0.2
0.4
0.6
0.8

1

W31

19

≤ −15 > −15

Node 20 (n = 12)

1 3 5
0

0.2
0.4
0.6
0.8

1

W43

21

≤ 3 > 3

Node 22 (n = 103)

1 3 5
0

0.2
0.4
0.6
0.8

1
Node 23 (n = 97)

1 3 5
0

0.2
0.4
0.6
0.8

1

Figure 8.10 Decision tree with DWT.

8.5.3 k-NN Classification

The k-NN classification can also be used for time series classification. It finds out the k
nearest neighbors of a new instance and then labels it by majority voting. However, the
time complexity of a naive way to find k nearest neighbors is O(n2), where n is the size
of data. Therefore, an efficient indexing structure is needed for large datasets. Package
RANN supports fast nearest neighbor search with a time complexity of O(n log n) using
Arya and Mount’s ANN library (v1.1.1).2 Below is an example of k-NN classification
of time series without indexing.

> k <- 20

> # create a new time series by adding noise to time series 501

> newTS <- sc[501,] + runif(100)*15

> distances <- dist(newTS, sc, method="DTW")

> s <- sort(as.vector(distances), index.return=TRUE)

> # class IDs of k nearest neighbors

> table(classId[s$ix[1:k]])

4 6

3 17

2 http://www.cs.umd.edu/˜mount/ANN/

http://www.cs.umd.edu/mount/ANN/

Time Series Analysis and Mining 87

For the 20 nearest neighbors of the new time series, three of them are of class 4,
and 17 are of class 6. With majority voting, that is, taking the more frequent label as
winner, the label of the new time series is set to class 6.

8.6 Discussions

There are many R functions and packages available for time series decomposition and
forecasting. However, there are no R functions or packages specially for time series
classification and clustering. There are a lot of research publications on techniques
specially for classifying/clustering time series data, but there are no R implementations
for them (as far as I know).

To do time series classification, one is suggested to extract and build features first,
and then apply existing classification techniques, such as SVM, k-NN, neural networks,
regression, and decision trees, to the feature set.

For time series clustering, one needs to work out his/her own distance or similarity
metrics, and then use existing clustering techniques, such as k-means or hierarchical
clustering, to find clusters.

8.7 Further Readings

An introduction of R functions and packages for time series is available as CRAN
Task View: Time Series Analysis at http://cran.r-project.org/web/views/

TimeSeries.html.
R code examples for time series can be found in slides Time Series Analysis and

Mining with R at http://www.rdatamining.com/docs.
Some further readings on time series representation, similarity, clustering, and clas-

sification are Agrawal et al. (1993), Burrus et al. (1998), Chan and Fu (1999), Chan
and Yu (2003), Keogh and Pazzani (1998), Keogh et al. (2000), Keogh and Pazzani
(2000), Mörchen (2003), 1998, Vlachos et al. (2003), Wu et al. (2000), Zhao and Zhang
(2006).

http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html
http://www.rdatamining.com/docs

9 Association Rules

This chapter presents examples of association rule mining with R. It starts with basic
concepts of association rules, and then demonstrates association rules mining with R.
After that, it presents examples of pruning redundant rules and interpreting and visu-
alizing association rules. The chapter concludes with discussions and recommended
readings.

9.1 Basics of Association Rules

Association rules are rules presenting association or correlation between itemsets. An
association rule is in the form of A ⇒ B, where A and B are two disjoint itemsets,
referred to respectively, as the lhs (left-hand side) and rhs (right-hand side) of the
rule. The three most widely used measures for selecting interesting rules are support,
confidence, and lift. Support is the percentage of cases in the data that contains both
A and B, confidence is the percentage of cases containing A that also contain B, and
lift is the ratio of confidence to the percentage of cases containing B. The formulae to
calculate them are:

support(A ⇒ B) = P(A ∪ B), (9.1)

confidence(A ⇒ B) = P(B|A), (9.2)

= P(A ∪ B)

P(A)
, (9.3)

lift(A ⇒ B) = confidence(A ⇒ B)

P(B)
, (9.4)

= P(A ∪ B)

P(A)P(B)
, (9.5)

where P(A) is the percentage (or probability) of cases containing A.
In addition to support, confidence, and lift, there are many other interestingness

measures, such as chi-square, conviction, gini, and leverage. An introduction to over
20 measures can be found in Tan et al.’s work (Tan et al., 2002).

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00009-X
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00009-X

90 R and Data Mining

9.2 The Titanic Dataset

The Titanic dataset in the datasets package is a four-dimensional table with sum-
marized information on the fate of passengers on the Titanic according to social
class, sex, age, and survival. To make it suitable for association rule mining, we
reconstruct the raw data as titanic.raw, where each row represents a person.
The reconstructed raw data can also be downloaded as file “titanic.raw.rdata” at
http://www.rdatamining.com/data.

> str(Titanic)

table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 …

− attr(*, "dimnames")=List of 4

..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"

..$ Sex : chr [1:2] "Male" "Female"

..$ Age : chr [1:2] "Child" "Adult"

..$ Survived: chr [1:2] "No" "Yes"

> df <- as.data.frame(Titanic)

> head(df)

Class Sex Age Survived Freq

1 1st Male Child No 0

2 2nd Male Child No 0

3 3rd Male Child No 35

4 Crew Male Child No 0

5 1st Female Child No 0

6 2nd Female Child No 0

> titanic.raw <- NULL

> for(i in 1:4) {

+ titanic.raw <- cbind(titanic.raw, rep(as.character(df[,i]),

df$Freq))

+}

> titanic.raw <- as.data.frame(titanic.raw)

> names(titanic.raw) <- names(df)[1:4]

http://www.rdatamining.com/data

Association Rules 91

> dim(titanic.raw)

[1] 2201 4

> str(titanic.raw)

‘data.frame’:2201 obs. of 4 variables:

$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 …

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 …

$ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 …

$ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 …

> head(titanic.raw)

Class Sex Age Survived

1 3rd Male Child No

2 3rd Male Child No

3 3rd Male Child No

4 3rd Male Child No

5 3rd Male Child No

6 3rd Male Child No

> summary(titanic.raw)

Class Sex Age Survived

1st :325 Female:470 Adult:2092 No :1490

2nd :285 Male :1731 Child:109 Yes:711

3rd :706

Crew:885

Now we have a dataset where each row stands for a person, and it can be used for
association rule mining.

The raw Titanic dataset can also be downloaded from http://www.cs.toronto.

edu/delve/data/titanic/desc.html. The data is file “Dataset.data” in the com-
pressed archive “titanic.tar.gz”. It can be read into R with the code below.

http://www.cs.toronto.edu/delve/data/titanic/desc.html

92 R and Data Mining

> # have a look at the 1st 5 lines

> readLines("./data/Dataset.data", n=5)

[1] "1st adult male yes" "1st adult male yes" "1st adult male

yes"

[4] "1st adult male yes" "1st adult male yes"

> # read it into R

> titanic <- read.table("./data/Dataset.data", header=F)

> names(titanic) <- c("Class", "Sex", "Age", "Survived")

9.3 Association Rule Mining

A classic algorithm for association rule mining is APRIORI (Agrawal and Srikant,
1994). It is a level-wise, breadth-first algorithm which counts transactions to find fre-
quent itemsets and then derive association rules from them. An implementation of it
is function apriori() in package arules (Hahsler et al., 2011). Another algorithm for
association rule mining is the ECLAT algorithm (Zaki, 2000), which finds frequent
itemsets with equivalence classes, depth-first search and set intersection instead of
counting. It is implemented as function eclat() in the same package.

Below we demonstrate association rule mining with apriori(). With the function,
the default settings are: (1) supp=0.1, which is the minimum support of rules; (2)
conf=0.8, which is the minimum confidence of rules; and (3) maxlen=10, which is
the maximum length of rules.

> library(arules)

> # find association rules with default settings

> rules.all <- apriori(titanic.raw)

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.8 0.1 1 none FALSE TRUE 0.1 1 10 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Association Rules 93

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances … [0 item(s)] done [0.00s].

set transactions … [10 item(s), 2201 transaction(s)] done [0.00s].

sorting and recoding items … [9 item(s)] done [0.00s].

creating transaction tree … done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing … [27 rule(s)] done [0.00s].

creating S4 object … done [0.00s].

> rules.all

set of 27 rules

> inspect(rules.all)

lhs rhs support confidence lift

1 {} => {Age=Adult} 0.9504771 0.9504771 1.0000000

2 {Class=2nd} => {Age=Adult} 0.1185825 0.9157895 0.9635051

3 {Class=1st} => {Age=Adult} 0.1449341 0.9815385 1.0326798

4 {Sex=Female} => {Age=Adult} 0.1930940 0.9042553 0.9513700

5 {Class=3rd} => {Age=Adult} 0.2848705 0.8881020 0.9343750

6 {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312 0.9677574

7 {Class=Crew} => {Sex=Male} 0.3916402 0.9740113 1.2384742

8 {Class=Crew} => {Age=Adult} 0.4020900 1.0000000 1.0521033

9 {Survived=No} => {Sex=Male} 0.6197183 0.9154362 1.1639949

10 {Survived=No} => {Age=Adult} 0.6533394 0.9651007 1.0153856

11 {Sex=Male} => {Age=Adult} 0.7573830 0.9630272 1.0132040

12 {Sex=Female,

Survived=Yes} => {Age=Adult} 0.1435711 0.9186047 0.9664669

13 {Class=3rd,

Sex=Male} => {Survived=No} 0.1917310 0.8274510 1.2222950

94 R and Data Mining

14 {Class=3rd,

Survived=No} => {Age=Adult} 0.2162653 0.9015152 0.9484870

15 {Class=3rd,

Sex=Male} => {Age=Adult} 0.2099046 0.9058824 0.9530818

16 {Sex=Male,

Survived=Yes} => {Age=Adult} 0.1535666 0.9209809 0.9689670

17 {Class=Crew,

Survived=No} => {Sex=Male} 0.3044071 0.9955423 1.2658514

18 {Class=Crew,

Survived=No} => {Age=Adult} 0.3057701 1.0000000 1.0521033

19 {Class=Crew,

Sex=Male} => {Age=Adult} 0.3916402 1.0000000 1.0521033

20 {Class=Crew,

Age=Adult} => {Sex=Male} 0.3916402 0.9740113 1.2384742

21 {Sex=Male,

Survived=No} => {Age=Adult} 0.6038164 0.9743402 1.0251065

22 {Age=Adult,

Survived=No} => {Sex=Male} 0.6038164 0.9242003 1.1751385

23 {Class=3rd,

Sex=Male,

Survived=No} => {Age=Adult} 0.1758292 0.9170616 0.9648435

24 {Class=3rd,

Age=Adult,

Survived=No} => {Sex=Male} 0.1758292 0.8130252 1.0337773

25 {Class=3rd,

Sex=Male,

Age=Adult} => {Survived=No} 0.1758292 0.8376623 1.2373791

26 {Class=Crew,

Sex=Male,

Survived=No} => {Age=Adult} 0.3044071 1.0000000 1.0521033

Association Rules 95

27 {Class=Crew,

Age=Adult,

Survived=No} => {Sex=Male} 0.3044071 0.9955423 1.2658514

As a common phenomenon for association rule mining, many rules generated above
are uninteresting. Suppose that we are interested in only rules with rhs indicating
survival, so we set rhs=c("Survived=No", "Survived=Yes") in appearance to
make sure that only “Survived=No” and “Survived=Yes” will appear in the rhs of
rules. All other items can appear in the lhs, as set with default="lhs". In the above
result rules.all, we can also see that the left-hand side (lhs) of the first rule is empty.
To exclude such rules, we set minlen to 2 in the code below. Moreover, the details of
progress are suppressed with verbose=F. After association rule mining, rules are sorted
by lift to make high-lift rules appear first.

> # rules with rhs containing "Survived" only

> rules <- apriori(titanic.raw, control = list(verbose=F),

+ parameter = list(minlen=2, supp=0.005, conf=0.8),

+ appearance = list(rhs=c("Survived=No", "Survived=Yes"),

+ default="lhs"))

> quality(rules) <- round(quality(rules), digits=3)

> rules.sorted <- sort(rules, by="lift")

> inspect(rules.sorted)

lhs rhs support confidence lift

1 {Class=2nd,

Age=Child} => {Survived=Yes} 0.011 1.000 3.096

2 {Class=2nd,

Sex=Female,

Age=Child} => {Survived=Yes} 0.006 1.000 3.096

3 {Class=1st,

Sex=Female} => {Survived=Yes} 0.064 0.972 3.010

4 {Class=1st,

Sex=Female,

Age=Adult} => {Survived=Yes} 0.064 0.972 3.010

96 R and Data Mining

5 {Class=2nd,

Sex=Female} => {Survived=Yes} 0.042 0.877 2.716

6 {Class=Crew,

Sex=Female} => {Survived=Yes} 0.009 0.870 2.692

7 {Class=Crew,

Sex=Female,

Age=Adult} => {Survived=Yes} 0.009 0.870 2.692

8 {Class=2nd,

Sex=Female,

Age=Adult} => {Survived=Yes} 0.036 0.860 2.663

9 {Class=2nd,

Sex=Male,

Age=Adult} => {Survived=No} 0.070 0.917 1.354

10 {Class=2nd,

Sex=Male} => {Survived=No} 0.070 0.860 1.271

11 {Class=3rd,

Sex=Male,

Age=Adult} => {Survived=No} 0.176 0.838 1.237

12 {Class=3rd,

Sex=Male} => {Survived=No} 0.192 0.827 1.222

When other settings are unchanged, with a lower minimum support, more rules
will be produced, and the associations between itemsets shown in the rules will be
more likely to be by chance. In the above code, the minimum support is set to 0.005,
so each rule is supported at least by 12(=ceiling (0.005 * 2201)) cases, which is
acceptable for a population of 2201.

Support, confidence, and lift are three common measures for selecting interesting
association rules. Besides them, there are many other interestingness measures, such
as chi-square, conviction, gini, and leverage (Tan et al., 2002). More than 20 measures
can be calculated with function interestMeasure() in the arules package.

9.4 Removing Redundancy

Some rules generated in the previous section (see rules.sorted, p. 95) provide little
or no extra information when some other rules are in the result. For example, the above

Association Rules 97

rule 2 provides no extra knowledge in addition to rule 1, since rule 1 tells us that all
2nd-class children survived. Generally speaking, when a rule (such as rule 2) is a super
rule of another rule (such as rule 1) and the former has the same or a lower lift, the
former rule (rule 2) is considered to be redundant. Other redundant rules in the above
result are rules 4, 7, and 8, compared, respectively, with rules 3, 6, and 5.

Below we prune redundant rules. Note that the rules have already been sorted
descendingly by lift.

> # find redundant rules

> subset.matrix <- is.subset(rules.sorted, rules.sorted)

> subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA

> redundant <- colSums(subset.matrix, na.rm=T) >= 1

> which(redundant)

[1] 2 4 7 8

> # remove redundant rules

> rules.pruned <- rules.sorted[!redundant]

> inspect(rules.pruned)

lhs rhs support confidence lift

1 {Class=2nd,

Age=Child} => {Survived=Yes} 0.011 1.000 3.096

2 {Class=1st,

Sex=Female} => {Survived=Yes} 0.064 0.972 3.010

3 {Class=2nd,

Sex=Female} => {Survived=Yes} 0.042 0.877 2.716

4 {Class=Crew,

Sex=Female} => {Survived=Yes} 0.009 0.870 2.692

5 {Class=2nd,

Sex=Male,

Age=Adult} => {Survived=No} 0.070 0.917 1.354

6 {Class=2nd,

Sex=Male} => {Survived=No} 0.070 0.860 1.271

98 R and Data Mining

7 {Class=3rd,

Sex=Male,

Age=Adult} => {Survived=No} 0.176 0.838 1.237

8 {Class=3rd,

Sex=Male} => {Survived=No} 0.192 0.827 1.222

In the code above, function is.subset(r1, r2) checks whether r1 is a subset of r2
(i.e. whether r2 is a superset of r1). Function lower.tri() returns a logical matrix
with TURE in lower triangle. From the above results, we can see that rules 2, 4, 7, and
8 (before redundancy removal) are successfully pruned.

9.5 Interpreting Rules

While it is easy to find high-lift rules from data, it is not an easy job to understand
the identified rules. It is not uncommon that the association rules are misinterpreted
to find their business meanings. For instance, in the above rule list rules.pruned,
the first rule "{Class=2nd, Age=Child} => {Survived=Yes}" has a confidence of
one and a lift of three and there are no rules on children of the 1st or 3rd classes.
Therefore, it might be interpreted by users as children of the 2nd class had a higher
survival rate than other children. This is wrong! The rule states only that all children
of class 2 survived, but provides no information at all to compare the survival rates
of different classes. To investigate the above issue, we run the code below to find
rules whose rhs is "Survived=Yes" and lhs contains "Class=1st", "Class=2nd",
"Class=3rd", "Age=Child", and "Age=Adult" only, and which contains no other
items (default="none"). We use lower thresholds for both support and confidence
than before to find all rules for children of different classes.

> rules <- apriori(titanic.raw,

+ parameter = list(minlen=3, supp=0.002, conf=0.2),

+ appearance = list(rhs=c("Survived=Yes"),

+ lhs=c("Class=1st", "Class=2nd",

"Class=3rd",

+ "Age=Child", "Age=Adult"),

+ default="none"),

+ control = list(verbose=F))

Association Rules 99

> rules.sorted <- sort(rules, by="confidence")

> inspect(rules.sorted)

lhs rhs support confidence lift

1 {Class=2nd,

Age=Child} => {Survived=Yes} 0.010904134 1.0000000 3.0956399

2 {Class=1st,

Age=Child} => {Survived=Yes} 0.002726034 1.0000000 3.0956399

3 {Class=1st,

Age=Adult} => {Survived=Yes} 0.089504771 0.6175549 1.9117275

4 {Class=2nd,

Age=Adult} => {Survived=Yes} 0.042707860 0.3601533 1.1149048

5 {Class=3rd,

Age=Child} => {Survived=Yes} 0.012267151 0.3417722 1.0580035

6 {Class=3rd,

Age=Adult} => {Survived=Yes} 0.068605179 0.2408293 0.7455209

In the above result, the first two rules show that children of the 1st class are of the
same survival rate as children of the 2nd class and that all of them survived. The rule
of 1st-class children did not appear before, simply because its support was below the
threshold specified in Section 9.3. Rule 5 presents a sad fact that children of class 3
had a low survival rate of 34%, which is comparable with that of 2nd-class adults (see
rule 4) and much lower than 1st-class adults (see rule 3).

9.6 Visualizing Association Rules

Next we show some ways to visualize association rules, including scatter plot, balloon
plot, graph, and parallel coordinates plot. More examples on visualizing association
rules can be found in the vignettes of package arulesViz (Hahsler and Chelluboina,
2012) on CRAN at http://cran.r-project.org/web/packages/arulesViz/

vignettes/arulesViz.pdf.

> library(arulesViz)

> plot(rules.all) (see Figure 9.1)
> plot(rules.all, method=“grouped") (see Figure 9.2)

http://cran.r-project.org/web/packages/arulesViz/vignettes/arulesViz.pdf
http://cran.r-project.org/web/packages/arulesViz/vignettes/arulesViz.pdf

100 R and Data Mining

Scatter plot for 27 rules

0.95

1

1.05

1.1

1.15

1.2

1.25

lift0.2 0.4 0.6 0.8

0.85

0.9

0.95

1

support

co
nf

id
en

ce

Figure 9.1 A scatter plot of association rules.

Grouped matrix for 27 rules
size: support

color: lift

1
(C

la
ss

=C
re

w
 +

2)
1

(C
la

ss
=C

re
w

 +
1)

1
(C

la
ss

=3
rd

 +
2)

1
(A

ge
=A

du
lt

+1
)

2
(C

la
ss

=C
re

w
 +

1)
2

(C
la

ss
=C

re
w

 +
0)

2
(S

ur
vi

ve
d=

N
o

+0
)

2
(C

la
ss

=3
rd

 +
1)

2
(C

la
ss

=C
re

w
 +

2)
1

(C
la

ss
=3

rd
 +

2)
1

(C
la

ss
=1

st
 +

0)
1

(S
ex

=M
al

e
+1

)
1

(S
ex

=M
al

e
+0

)
1

(C
la

ss
=1

st
 +

−1
)

1
(S

ex
=M

al
e

+1
)

1
(S

ur
vi

ve
d=

Ye
s

+0
)

1
(S

ex
=F

em
al

e
+1

)
2

(C
la

ss
=2

nd
 +

3)
2

(C
la

ss
=3

rd
 +

2)
1

(C
la

ss
=3

rd
 +

0)

{Age=Adult}

{Survived=No}

{Sex=Male}

LH
S

RHS

Figure 9.2 A balloon plot of association rules.

Association Rules 101

Graph for 27 rules

{}

{Age=Adult,Survived=No}

{Age=Adult}

{Class=1st}

{Class=2nd}

{Class=3rd,Age=Adult,Survived=No

{Class=3rd,Sex=Male,Age=Adult}

{Class=3rd,Sex=Male,Survived=No}

{Class=3rd,Sex=Male}

{Class=3rd,Survived=No}

{Class=3rd}

{Class=Crew,Age=Adult,Survived

{Class=Crew,Age=Adult

ss=Crew,Sex=Male,Survived=No}

{Class=Crew,Sex=Male}

{Class=Crew,Survived=No}

{Class=Crew}

{Sex=Female,Survived=Yes}

{Sex=Female}

{Sex=Male,Survived=No}

{Sex=Male,Survived=Yes}

{Sex=Male}

{Survived=No}

{Survived=Yes}

width: support (0.119 − 0.95)
color: lift (0.934 − 1.266)

Figure 9.3 A graph of association rules.

> plot(rules.all, method=“graph") (see Figure 9.3)
> plot(rules.all, method=“graph", control=list(type=“items")) (see

Figure 9.4)
> plot(rules.all, method=“paracoord", control=list(reorder=TRUE))

(see Figure 9.5)

102 R and Data Mining

Graph for 27 rules

Class=1st

Class=2nd

Class=3rd

Class=Crew

Sex=Female

Sex=Male

Age=Adult

Survived=No

Survived=Yes

size: support (0.119 − 0.95)
color: lift (0.934 − 1.266)

Figure 9.4 A graph of items.

Parallel coordinates plot for 27 rules

3 2 1 rhs

Class=Crew

Class=1st

Sex=Female

Sex=Male

Class=2nd

Survived=Yes

Class=3rd

Survived=No

Age=Adult

Position

Figure 9.5 A parallel coordinates plot of association rules.

Association Rules 103

9.7 Discussions and Further Readings

In this chapter, we have demonstrated association rule mining with package arules
(Hahsler et al., 2011). More examples on that package can be found in Hahsler et
al.’s work (Hahsler et al., 2005). Two other packages related to association rules are
arulesSequences and arulesNBMiner. Package arulesSequences provides functions for
mining sequential patterns (Buchta et al., 2012). Package arulesNBMiner implements
an algorithm for mining negative binomial (NB) frequent itemsets and NB-precise rules
(Hahsler, 2012).

More techniques on post-mining of association rules, such as selecting interesting
association rules, visualization of association rules, and using association rules for
classification, can be found in Zhao et al.’s work (Zhao, 2009b).

10 Text Mining

This chapter presents examples of text mining with R. Twitter1 text of @RDataMining
is used as the data to analyze. It starts with extracting text from Twitter. The extracted
text is then transformed to build a document-term matrix. After that, frequent words
and associations are found from the matrix. A word cloud is used to present important
words in documents. In the end, words and tweets are clustered to find groups of
words and also groups of tweets. In this chapter, “tweet” and “document” will be used
interchangeably, so are “word” and “term.”

There are three important packages used in the examples: twitteR, tm, and wordcloud.
Package twitteR (Gentry, 2012) provides access to Twitter data, tm (Feinerer, 2012)
provides functions for text mining, and wordcloud (Fellows, 2012) visualizes the result
with a word cloud.2

10.1 Retrieving Text from Twitter

Twitter text is used in this chapter to demonstrate text mining. Tweets are extracted
from Twitter with the code below using userTimeline() in package twitteR (Gentry,
2012). Package twitteR depends on package RCurl (Lang, 2012a), which is available at
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/. Another way to
retrieve text from Twitter is using package XML (Lang, 2012b), and an example of that
is given at http://heuristically.wordpress.com/2011/04/08/text-data-

mining-twitter-r/.
For readers who have no access to Twitter, the tweets data can be downloaded as

file “rdmTweets.RData” at http://www.rdatamining.com/data. Then readers can
skip this section and proceed directly to Section 10.2.

> library(twitteR)

> # retrieve the first 200 tweets (or all tweets if fewer than

200) from the user timeline of @rdatammining

> rdmTweets <- userTimeline("rdatamining", n=200)

> (nDocs <- length(rdmTweets))

1 http://www.twitter.com.
2 http://en.wikipedia.org/wiki/Word_cloud.

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00010-6
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
http://www.rdatamining.com/data
http://www.twitter.com
http://en.wikipedia.org/wiki/Word_cloud
http://dx.doi.org/10.1016/B978-0-12-396963-7.00010-6

106 R and Data Mining

[1] 154

Next, we have a look at the five tweets numbered 11 to 15.

> rdmTweets[11:15]

With the above code, each tweet is printed in one single line, which may exceed the
boundary of paper. Therefore, the following code is used in this book to print the five
tweets by wrapping the text to fit the width of paper. The same method is used to print
tweets in other codes in this chapter.

> for (i in 11:15) {

+ cat(paste ("[[", i, "]] ", sep=""))

+ writeLines(strwrap(rdmTweets[[i]]$getText(), width=73))

+ }

[[11]] Slides on massive data, shared and distributed

memory,and concurrent programming: bigmemory and foreach

http://t.co/a6bQzxj5

[[12]] The R Reference Card for Data Mining is updated with

functions & packages for handling big data & parallel computing.

http://t.co/FHoVZCyk

[[13]] Post-doc on Optimizing a Cloud for Data Mining primitives,
INRIA, France http://t.co/cA28STPO

[[14]] Chief Scientist - Data Intensive Analytics, Pacific
Northwest National Laboratory (PNNL), US http://t.co/0Gdzq1Nt
http://t.co/0Gdzq1Nt

[[15]] Top 10 in Data Mining http://t.co/7kAuNvuf

10.2 Transforming Text

The tweets are first converted to a data frame and then to a corpus, which is a collection
of text documents. After that, the corpus can be processed with functions provided in
package tm (Feinerer, 2012).

> # convert tweets to a data frame

> df <- do.call("rbind", lapply(rdmTweets, as.data.frame))

> dim(df)

[1] 154 10

http://t.co/FHoVZCyk
http://t.co/cA28STPO
http://t.co/0Gdzq1Nt
http://t.co/7kAuNvuf

Text Mining 107

> library(tm)

> # build a corpus, and specify the source to be character

vectors

> myCorpus <- Corpus(VectorSource(df$text))

After that, the corpus needs a couple of transformations, including changing letters to
lower case, and removing punctuations, numbers, and stop words. The general English
stop-word list is tailored here by adding “available” and “via” and removing “r” and
“big” (for big data). Hyperlinks are also removed in the example below.

> # convert to lower case

> myCorpus <- tm_map(myCorpus, tolower)

> # remove punctuation

> myCorpus <- tm_map(myCorpus, removePunctuation)

> # remove numbers

> myCorpus <- tm_map(myCorpus, removeNumbers)

> # remove URLs

> removeURL <- function(x) gsub("http[[:alnum:]]*", "", x)

> myCorpus <- tm_map(myCorpus, removeURL)

> # add two extra stop words: "available" and "via"

> myStopwords <- c(stopwords(‘english’), "available", "via")

> # remove "r" and "big" from stopwords

> myStopwords <- setdiff(myStopwords, c("r", "big"))

> # remove stopwords from corpus

> myCorpus <- tm_map(myCorpus, removeWords, myStopwords)

In the above code, tm_map() is an interface to apply transformations (map-
pings) to corpora. A list of available transformations can be obtained with
getTransformations(), and the mostly used ones are as.PlainTextDocument(),
removeNumbers(), removePunctuation(), removeWords(), stemDocument(), and
stripWhitespace(). A function removeURL() is defined above to remove hyperlinks,
where pattern "http[[:alnum:]]*" matches strings starting with “http” and then fol-
lowed by any number of alphabetic characters and digits. Strings matching this pattern
are removed with gsub(). The above pattern is specified as an regular expression, and
details about that can be found by running ?regex in R.

108 R and Data Mining

10.3 Stemming Words

In many applications, words need to be stemmed to retrieve their radicals, so that various
forms derived from a stem would be taken as the same when counting word frequency.
For instance, words “update”, “updated”, and “updating” would all be stemmed to
“updat”. Word stemming can be done with the snowball stemmer, which requires
packages Snowball, RWeka, rJava, and RWekajars. After that, we can complete the
stems to their original forms, i.e. “update” for the above example, so that the words
would look normal. This can be achieved with function stemCompletion().

> # keep a copy of corpus to use later as a dictionary for stem

completion

> myCorpusCopy <- myCorpus

> # stem words

> myCorpus <- tm_map(myCorpus, stemDocument)

> # inspect documents (tweets) numbered 11 to 15

> # inspect(myCorpus[11:15])

> # The code below is used for to make text fit for paper width

> for (i in 11:15) {

+ cat(paste("[[", i, "]] ", sep=""))

+ writeLines(strwrap(myCorpus[[i]], width=73))

+ }

[[11]] slide massiv data share distribut memoryand concurr

program bigmemori foreach

[[12]] r refer card data mine updat function packag handl big

data parallel comput

[[13]] postdoc optim cloud data mine primit inria franc

[[14]] chief scientist data intens analyt pacif northwest nation

laboratori pnnl

[[15]] top data mine

After that, we use stemCompletion() to complete the stems with the unstemmed
corpus myCorpusCopy as a dictionary. With the default setting, it takes the most
frequent match in dictionary as completion.

Text Mining 109

> # stem completion

> myCorpus <- tm_map(myCorpus, stemCompletion,

dictionary=myCorpusCopy)

Then we have a look at the documents numbered 11 to 15 in the built corpus.

> inspect(myCorpus[11:15])

[[11]] slides massive data share distributed memoryand concurrent

programming foreach

[[12]] r reference card data miners updated functions package

handling big data parallel computing

[[13]] postdoctoral optimizing cloud data miners primitives inria

france

[[14]] chief scientist data intensive analytics pacific northwest

national pnnl

[[15]] top data miners

As we can see from the above results, there are something unexpected in the above
stemming and completion.

1. In both the stemmed corpus and the completed one, “memoryand” is derived from
“…memory, and …” in the original tweet 11.

2. In tweet 11, word “bigmemory” is stemmed to “bigmemori”, and then is removed
during stem completion.

3. Word “mining” in tweets 12, 13, & 15 is first stemmed to “mine” and then com-
pleted to “miners”.

4. “Laboratory” in tweet 14 is stemmed to “laboratori” and then also disappears after
completion.

In the above issues, point 1 is caused by the missing of a space after the comma. It
can be easily fixed by replacing comma with space before removing punctuation marks
in Section 10.2. For points 2 & 4, we have not figured out why it happened like that.
Fortunately, the words involved in points 1, 2, & 4 are not important in @RDataMining
tweets and ignoring them would not bring any harm to this demonstration of text mining.

Below we focus on point 3, where word “mining” is first stemmed to “mine” and
then completed to “miners”, instead of “mining”, although there are many instances
of “mining” in the tweets, compared to only two instances of “miners”. There might
be a solution for the above problem by changing the parameters and/or dictionaries
for stemming and completion, but we failed to find one due to limitation of time and
efforts. Instead, we chose a simple way to get around of that by replacing “miners”
with “mining”, since the latter has many more cases than the former in the corpus. The
code for the replacement is given below.

110 R and Data Mining

> # count frequency of "mining"

> miningCases <- tm_map(myCorpusCopy, grep, pattern="\\<mining")

> sum(unlist(miningCases))

[1] 47

> # count frequency of "miners"

> minerCases <- tm_map(myCorpusCopy, grep, pattern="\\<miners")

> sum(unlist(minerCases))

[1] 2

> # replace "miners" with "mining"

> myCorpus <- tm_map(myCorpus, gsub, pattern="miners",

replacement="mining")

In the first call of function tm_map() in the above code, grep() is applied to every
document (tweet) with argument “pattern="\\<mining"”. The pattern matches words
starting with “mining”, where “\<" matches the empty string at the beginning of a
word. This ensures that text “rdatamining” would not contribute to the above counting
of “mining”.

10.4 Building a Term-Document Matrix

A term-document matrix represents the relationship between terms and documents,
where each row stands for a term and each column for a document, and an entry
is the number of occurrences of the term in the document. Alternatively, one can
also build a document-term matrix by swapping row and column. In this section,
we build a term-document matrix from the above processed corpus with function
TermDocumentMatrix(). With its default setting, terms with less than three char-
acters are discarded. To keep “r” in the matrix, we set the range of wordLengths in the
example below.

> myTdm <- TermDocumentMatrix(myCorpus,

control=list(wordLengths=c(1,Inf)))

> myTdm

A term-document matrix (444 terms, 154 documents)

Non-/sparse entries : 1085/67291

Sparsity : 98%

Maximal term length : 27

Weighting : term frequency (tf)

Text Mining 111

As we can see from the above result, the term-document matrix is composed of 444
terms and 154 documents. It is very sparse, with 98% of the entries being zero. We then
have a look at the first six terms starting with “r” and tweets numbered 101 to 110.

> idx <- which(dimnames(myTdm)$Terms == "r")

> inspect(myTdm[idx+(0:5),101:110])

A term-document matrix (6 terms, 10 documents)

Non-/sparse entries : 9/51

Sparsity : 85%

Maximal term length : 12

Weighting : term frequency (tf)

Docs

Terms 101 102 103 104 105 106 107 108 109 110

r 1 1 0 0 2 0 0 1 1 1

ramachandran 0 0 0 0 0 0 0 0 0 0

random 0 0 0 0 0 0 0 0 0 0

ranked 0 0 0 0 0 0 0 0 1 0

rapidminer 1 0 0 0 0 0 0 0 0 0

rdatamining 0 0 0 0 0 0 0 1 0 0

Note that the parameter to control word length used to be minWordLength prior to
version 0.5-7 of package tm. The code to set the minimum word length for old versions
of tm is below.

> myTdm <- TermDocumentMatrix(myCorpus,

control=list(minWordLength=1))

The list of terms can be retrieved with rownames(myTdm). Based on the above
matrix, many data mining tasks can be done, for example, clustering, classification and
association analysis.

When there are too many terms, the size of a term-document matrix can be reduced
by selecting terms that appear in a minimum number of documents, or filtering terms
with TF-IDF (term frequency-inverse document frequency) (Wu et al., 2008).

10.5 Frequent Terms and Associations

We have a look at the popular words and the association between words. Note that there
are 154 tweets in total.

112 R and Data Mining

> # inspect frequent words

> findFreqTerms(myTdm, lowfreq=10)

[1] "analysis" "computing" "data" "examples" "introduction"

[6] "mining" "network" "package" "positions" "postdoctoral"

[11] "r" "research" "slides" "social" "tutorial"
[16] "users"

In the code above, findFreqTerms() finds frequent terms with frequency no less
than ten. Note that they are ordered alphabetically, instead of by frequency or popularity.

To show the top frequent words visually, we next make a barplot for them. From the
term-document matrix, we can derive the frequency of terms with rowSums(). Then
we select terms that appears in ten or more documents and shown them with a barplot
using package ggplot2 (Wickham, 2009). In the code below, geom="bar" specifies a
barplot and coord_flip() swaps x- and y-axis. The barplot in Figure 10.1 clearly
shows that the three most frequent words are “r,” “data” and “mining.”

> termFrequency <- rowSums(as.matrix(myTdm))

> termFrequency <- subset(termFrequency, termFrequency>=10)

> library(ggplot2)

> qplot(names(termFrequency), termFrequency, geom="bar",

xlab="Terms") + coord_flip()

analysis
computing

data
examples

introduction
mining

network
package
positions

postdoctoral
r

research
slides
social

tutorial
users

0 20 40 60 80

termFrequency

Te
rm

s

Figure 10.1 Frequent terms.

Text Mining 113

Alternatively, the above plot can also be drawn with barplot() as below, where
las sets the direction of x-axis labels to be vertical.

> barplot(termFrequency, las=2)

We can also find what are highly associated with a word with functionfindAssocs().
Below we try to find terms associated with “r” (or “mining”) with correlation no less
than 0.25, and the words are ordered by their correlation with “r” (or “mining”).

> # which words are associated with "r"?

> findAssocs(myTdm, ’r’, 0.25)

r users canberra cran list examples

1.00 0.32 0.26 0.26 0.26 0.25

> # which words are associated with "mining"?

> findAssocs(myTdm, ’mining’, 0.25)

mining data mahout recommendation sets

1.00 0.55 0.39 0.39 0.39

supports frequent itemset card functions

0.39 0.35 0.34 0.29 0.29

reference text

0.29 0.26

10.6 Word Cloud

After building a term-document matrix, we can show the importance of words with a
word cloud (also known as a tag cloud), which can be easily produced with package
wordcloud (Fellows, 2012). In the code below, we first convert the term-document
matrix to a normal matrix, and then calculate word frequencies. After that, we use
wordcloud() to make a plot for it. With wordcloud(), the first two parameters give a
list of words and their frequencies. Words with frequency below three are not plotted,
as specified by min.freq=3. By setting random.order=F, frequent words are plotted
first, which makes them appear in the center of cloud. We also set the colors to gray
levels based on frequency. A colorful cloud can be generated by setting colors with
rainbow().

> library(wordcloud)

> m <- as.matrix(myTdm)

> # calculate the frequency of words and sort it descendingly by

frequency

114 R and Data Mining

> wordFreq <- sort(rowSums(m), decreasing=TRUE)

> # word cloud

> set.seed (375) # to make it reproducible

> grayLevels <- gray((wordFreq+10) / (max(wordFreq)+10))

> wordcloud(words=names(wordFreq), freq=wordFreq, min.freq=3,

random.order=F, colors=grayLevels)

r
data

mining
analysis

package
usersexamples
network

tutorial

slides

re
se

ar
ch

social

positions
postdoctoral

computing

in
tro

du
ct

io
n

applicationscode
clustering
parallel

series

time

graphics

pdf

statistics

talk

text

free

learn

advanced

australiacard

de
te

ct
io

n

functions

in
fo

rm
at

io
n

lecture

modelling

rdatamining

reference

sc
ie

nt
is

t

spatial

techniques
toolsuniversity

analyst

book

cl
as

si
fic

at
io

n

datasets

distributed

ex
pe

rie
nc

e fast

frequent

job

join

outlier

performance

programming
snowfall

tried

twitter

vacancy

website
wwwrdataminingcom

access

analytics
answers

association

bi
g

charts

china

co
m

m
en

ts

databases

details

documents

followed

itemset

melbourne

notes

poll

presentations

processing

pu
bl

is
he

d

recent
short

technology

views
visits

visualizing

Figure 10.2 Word cloud.

The word cloud in Figure 10.2 clearly shows again that “r,” “data” and “mining” are
the top three words, which validates that the @RDataMining tweets present information
on R and data mining. Some other important words are “analysis,” “examples,” “slides,”
“tutorial” and “package,” which shows that it focuses on documents and examples on
analysis and R packages. Another set of frequent words, “research,” “postdoctoral” and
“positions,” are from tweets about vacancies on post-doctoral and research positions.
There are also some tweets on the topic of social network analysis, as indicated by
words “network” and “social” in the cloud.

10.7 Clustering Words

We then try to find clusters of words with hierarchical clustering. Sparse terms are
removed, so that the plot of clustering will not be crowded with words. Then the

Text Mining 115

distances between terms are calculated with dist() after scaling. After that, the terms
are clustered with hclust() and the dendrogram is cut into 10 clusters. The agglomer-
ation method is set to ward, which denotes the increase in variance when two clusters
are merged. Some other options are single linkage, complete linkage, average linkage,
median and centroid. Details about different agglomeration methods can be found in
data mining text books (Han and Kamber, 2000; Hand et al., 2001; Witten and Frank,
2005).

> # remove sparse terms

> myTdm2 <- removeSparseTerms(myTdm, sparse=0.95)

> m2 <- as.matrix(myTdm2)

> # cluster terms

> distMatrix <- dist(scale(m2))

> fit <- hclust(distMatrix, method="ward")

> plot(fit)

> # cut tree into 10 clusters

> rect.hclust(fit, k=10)

an
al

ys
is

ne
tw

or
k

so
ci

al

po
si

tio
ns

po
st

do
ct

or
al

re
se

ar
ch

se
rie

s

tim
e

pa
ck

ag
e

co
m

pu
tin

g

pa
ra

lle
l co

de

ex
am

pl
es

tu
to

ria
l

sl
id

es

ap
pl

ic
at

io
ns

in
tro

du
ct

io
n

us
er

s

r

da
ta

m
in

in
g

0
10

20
30

40
50

Cluster Dendrogram

hclust (*, "ward")
distMatrix

H
ei

gh
t

Figure 10.3 Clustering of words.

> (groups <- cutree(fit, k=10))

116 R and Data Mining

analysis applications code computing data examples

1 2 3 4 5 3

introduction mining network package parallel positions

2 6 1 7 4 8

postdoctoral r research series slides social

8 9 8 10 2 1

time tutorial users

10 2 2

In the above dendrogram (see Figure 10.3), we can see the topics in the tweets.
Words “analysis,” “network” and “social” are clustered into one group, because there
are a couple of tweets on social network analysis. The second cluster from left com-
prises “positions,” “postdoctoral” and “research,” and they are clustered into one group
because of tweets on vacancies of research and postdoctoral positions. We can also
see cluster on time series, R packages, parallel computing, R codes and examples, and
tutorial and slides. The rightmost three clusters consists of “r,” “data” and “mining,”
which are the keywords of @RDataMining tweets.

10.8 Clustering Tweets

Tweets are clustered below with the k-means and the k-medoids algorithms.

10.8.1 Clustering Tweets with the k-Means Algorithm

We first try k-means clustering, which takes the values in the matrix as numeric. We
transpose the term-document matrix to a document-term one. The tweets are then
clustered with kmeans() with the number of clusters set to eight. After that, we check
the popular words in every cluster and also the cluster centers. Note that a fixed random
seed is set with set.seed() before running kmeans(), so that the clustering result can
be reproduced. It is for the convenience of book writing, and it is unnecessary for
readers to set a random seed in their code.

> # transpose the matrix to cluster documents (tweets)

> m3 <- t(m2)

> # set a fixed random seed

> set.seed(122)

> # k-means clustering of tweets

> k <- 8

Text Mining 117

> kmeansResult <- kmeans(m3, k)

> # cluster centers

> round(kmeansResult$centers, digits=3)

analysis applications code computing data examples introduction mining

1 0.040 0.040 0.240 0.000 0.040 0.320 0.040 0.120

2 0.000 0.158 0.053 0.053 1.526 0.105 0.053 1.158

3 0.857 0.000 0.000 0.000 0.000 0.071 0.143 0.071

4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

5 0.037 0.074 0.019 0.019 0.426 0.037 0.093 0.407

6 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000

7 0.533 0.000 0.067 0.000 0.333 0.200 0.067 0.200

8 0.000 0.111 0.000 0.000 0.556 0.000 0.000 0.111

network package parallel positions postdoctoral r research series slides

1 0.080 0.080 0.000 0.000 0.000 1.320 0.000 0.040 0.000

2 0.000 0.368 0.053 0.000 0.000 0.947 0.053 0.000 0.053

3 1.000 0.071 0.000 0.143 0.143 0.214 0.071 0.000 0.071

4 0.000 0.125 0.750 0.000 0.000 1.000 0.000 0.000 0.125

5 0.000 0.000 0.000 0.093 0.093 0.000 0.000 0.019 0.074

6 0.000 1.200 0.100 0.000 0.000 0.600 0.100 0.000 0.100

7 0.067 0.000 0.000 0.000 0.000 1.000 0.000 0.400 0.533

8 0.000 0.000 0.000 0.444 0.444 0.000 1.333 0.000 0.000

social time tutorial users

1 0.000 0.040 0.200 0.160

2 0.000 0.000 0.000 0.158

3 0.786 0.000 0.286 0.071

4 0.000 0.000 0.125 0.250

5 0.000 0.019 0.111 0.019

6 0.000 0.000 0.100 0.100

7 0.000 0.400 0.000 0.400

8 0.111 0.000 0.000 0.000

118 R and Data Mining

To make it easy to find what the clusters are about, we then check the top three
words in every cluster.

> for (i in 1:k) {

+ cat(paste("cluster ", i, ": ", sep=""))

+ s <- sort(kmeansResult$centers[i,], decreasing=T)

+ cat(names(s)[1:3], "\ n")

+ # print the tweets of every cluster

+ # print(rdmTweets[which(kmeansResult$cluster==i)])

+ }

cluster 1: r examples code

cluster 2: data mining r

cluster 3: network analysis social

cluster 4: computing r parallel

cluster 5: data mining tutorial

cluster 6: package r examples

cluster 7: r analysis slides

cluster 8: research data positions

From the above top words and centers of clusters, we can see that the clusters are
of different topics. For instance, cluster 1 focuses on R codes and examples, cluster 2
on data mining with R, cluster 4 on parallel computing in R, cluster 6 on R packages
and cluster 7 on slides of time series analysis with R. We can also see that, all clusters,
except for cluster 3, 5, & 8, focus on R. Cluster 3, 5, & 8 are about general information
on data mining and are not limited to R. Cluster 3 is on social network analysis, cluster
5 on data mining tutorials, and cluster 8 on positions for data mining research.

10.8.2 Clustering Tweets with the k-Medoids Algorithm

We then try k-medoids clustering with the Partitioning Around Medoids (PAM) algo-
rithm, which uses medoids (representative objects) instead of means to represent clus-
ters. It is more robust to noise and outliers than k-means clustering, and provides a
display of the silhouette plot to show the quality of clustering. In the example below,
we use function pamk() from package fpc (Hennig, 2010), which calls the function
pam() with the number of clusters estimated by optimum average silhouette.

> library(fpc)

> # partitioning around medoids with estimation of number of

clusters

Text Mining 119

> pamResult <- pamk(m3, metric="manhattan")

> # number of clusters identified

> (k <- pamResult$nc)

[1] 9

> pamResult <- pamResult$pamobject

> # print cluster medoids

> for (i in 1:k) {

+ cat(paste("cluster", i, ": "))

+ cat(colnames(pamResult$medoids)

[which(pamResult$medoids[i,]==1)], "\n")

+ # print tweets in cluster i

+ # print(rdmTweets[pamResult$clustering==i])

+ }

cluster 1: data positions research

cluster 2: computing parallel r

cluster 3: mining package r

cluster 4: data mining

cluster 5: analysis network social tutorial

cluster 6: r

cluster 7:

cluster 8: examples r

cluster 9: analysis mining series time users

> # plot clustering result

> layout(matrix(c(1,2),2,1)) # set to two graphs per page

> plot(pamResult, color=F, labels=4, lines=0, cex=.8, col.clus=1,

+ col.p=pamResult$clustering)

> layout(matrix(1)) # change back to one graph per page

120 R and Data Mining

−2 0 2 4 6

−6
−4

−2
0

2
4

clusplot(pam(x = sdata, k = k, metric = "manhattan"))

Component 1

C
om

po
ne

nt
 2

These two components explain 24.81 % of the point variability.

1

2
3

4
5

6

7

8

9

Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = sdata, k = k, metric = "manhattan")

Average silhouette width : 0.29

n = 154 9 clusters Cj

j : nj | avei∈Cj si
1 : 8 | 0.32
2 : 8 | 0.54
3 : 9 | 0.26

4 : 35 | 0.29

5 : 14 | 0.32

6 : 30 | 0.26

7 : 32 | 0.35

8 : 15 | −0.03
9 : 3 | 0.46

●

●
●

●

●

●

Figure 10.4 Clusters of tweets.

Text Mining 121

In Figure 10.4, the first chart is a 2D “clusplot” (clustering plot) of the k clusters,
and the second one shows their silhouettes. With the silhouette, a large si (almost 1)
suggests that the corresponding observations are very well clustered, a small si (around
0) means that the observation lies between two clusters, and observations with a negative
si are probably placed in the wrong cluster. The average silhouette width is 0.29, which
suggests that the clusters are not well separated from one another.

The above results and Figure 10.4 show that there are nine clusters of tweets. Clusters
1, 2, 3, 5, and 9 are well separated groups, with each of them focusing on a specific topic.
Cluster 7 is composed of tweets not fitted well into other clusters, and it overlaps all other
clusters. There is also a big overlap between cluster 6 and 8, which is understandable
from their medoids. Some observations in cluster 8 are of negative silhouette width,
which means that they may fit better in other clusters than cluster 8.

To improve the clustering quality, we have also tried to set the range of cluster
numbers krange=2:8 when calling pamk(), and in the new clustering result, there are
eight clusters, with the observations in the above cluster 8 assigned to other clusters,
mostly to cluster 6. The results are not shown in this book, and readers can try it with
the code below.

> pamResult2 <- pamk(m3, krange=2:8, metric="manhattan")

10.9 Packages, Further Readings, and Discussions

In addition to frequent terms, associations and clustering demonstrated in this chapter,
some other possible analysis on the above Twitter text is graph mining and social
network analysis. For example, a graph of words can be derived from a document-term
matrix, and then we can use techniques for graph mining to find links between words
and groups of words. A graph of tweets (documents) can also be generated and analyzed
in a similar way. It can also be presented and analyzed as a bipartite graph with two
disjoint sets of vertices, that is, words and tweets. We will demonstrate social network
analysis on the Twitter data in Chapter 11 Social Network Analysis.

Some R packages for text mining are listed below.

• Package tm (Feinerer, 2012): A framework for text mining applications within R.

• Package tm.plugin.mail (Feinerer, 2010): Text Mining E-Mail Plug-In. A plug-in
for the tm text mining framework providing mail handling functionality.

• package textcat (Hornik et al., 2012) provides n-Gram Based Text Categorization.

• lda (Chang, 2011) fits topic models with LDA (latent Dirichlet allocation)

• topicmodels (Grün and Hornik, 2011) fits topic models with LDA and CTM (cor-
related topics model)

For more information and examples on text mining with R, some online resources are:

• Introduction to the tm Package – Text Mining in R
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

122 R and Data Mining

• Text Mining Infrastructure in R (Feinerer, 2008)
http://www.jstatsoft.org/v25/i05

• Text Mining Handbook
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf

• Distributed Text Mining in R http://epub.wu.ac.at/3034/

• Text mining with Twitter and R
http://heuristically.wordpress.com/2011/04/08/

text-data-mining-twitter-r/

http://www.jstatsoft.org/v25/i05
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf
http://epub.wu.ac.at/3034/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/

11 Social Network Analysis

This chapter presents examples of social network analysis with R, specifically, with
package igraph (Csardi and Nepusz, 2006). The data to analyze is Twitter text data used
in Chapter 10 Text Mining. Putting it in a general scenario of social networks, the terms
can be taken as people and the tweets as groups on LinkedIn,1 and the term-document
matrix can then be taken as the group membership of people.

In this chapter, we first build a network of terms based on their co-occurrence in the
same tweets, and then build a network of tweets based on the terms shared by them. At
last, we build a two-mode network composed of both terms and tweets. We also demon-
strate some tricks to plot nice network graphs. Some codes in this chapter are based on
the examples at http://www.stanford.edu/∼messing/Affiliation%20Data.
html.

11.1 Network of Terms

In this section, we will build a network of terms based on their co-occurrence in tweets.
At first, a term-document matrix, termDocMatrix, is loaded into R, which is actually
a copy of m2, an R object from Chapter 10 Text Mining (see page 115). After that, it is
transformed into a term-term adjacency matrix, based on which a graph is built. Then we
plot the graph to show the relationship between frequent terms, and also make the graph
more readable by setting colors, font sizes, and transparency of vertices and edges.

> # load termDocMatrix

> load("./data/termDocMatrix.rdata")

> # inspect part of the matrix

> termDocMatrix[5:10,1:20]

Docs
Terms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
data 1 1 0 0 2 0 0 0 0 0 1 2 1 1 1 0 1 0 0 0
Examples 0
introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
mining 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
network 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
package 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 http://www.linkedin.com

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00011-8
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.stanford.edu/{\sim }messing/Affiliation%20Data.html
http://www.linkedin.com
http://dx.doi.org/10.1016/B978-0-12-396963-7.00011-8

124 R and Data Mining

> # change it to a Boolean matrix

> termDocMatrix[termDocMatrix>=1] <- 1

> # transform into a term-term adjacency matrix

> termMatrix <- termDocMatrix %*% t(termDocMatrix)

> # inspect terms numbered 5 to 10

> termMatrix[5:10,5:10]

Terms
Terms data examples introduction mining network package
data 53 5 2 34 0 7
Examples 5 17 2 5 2 2
introduction 2 2 10 2 2 0
mining 34 5 2 47 1 5
network 0 2 2 1 17 1
package 7 2 0 5 1 21

In the above code, %*% is an operator for the product of two matrices, and t()

transposes a matrix. Now we have built a term-term adjacency matrix, where the rows
and columns represent terms, and every entry is the number of concurrences of two
terms. Next we can build a graph with graph.adjacency() from package igraph.

> library(igraph)

> # build a graph from the above matrix

> g <- graph.adjacency(termMatrix, weighted=T, mode="undirected")

> # remove loops

> g <- simplify(g)

> # set labels and degrees of vertices

> V(g)$label <- V(g)$name

> V(g)$degree <- degree(g)

After that, we plot the network with layout.fruchterman.reingold (see
Figure 11.1).

> # set seed to make the layout reproducible

> set.seed(3952)

> layout1 <- layout.fruchterman.reingold(g)

> plot(g, layout=layout1)

Social Network Analysis 125

analysis

applications

code

computing

data
examples

introduction

mining

network

package

parallel

positions

postdoctoral

r

research

series

slides

social

time

tutorial

users

Figure 11.1 A network of terms—I.

In the above code, the layout is kept as layout1, so that we can plot the graph in
the same layout later.

A different layout can be generated with the first line of code below. The second line
produces an interactive plot, which allows us to manually rearrange the layout. Details
about other layout options can be obtained by running ?igraph::layout in R.

> plot(g, layout=layout.kamada.kawai)

> tkplot(g, layout=layout.kamada.kawai)

We can also save the network graph into a.PDF file with the code below.

> pdf("term-network.pdf")

> plot(g, layout=layout.fruchterman.reingold)

> dev.off()

Next, we set the label size of vertices based on their degrees, to make important terms
stand out. Similarly, we also set the width and transparency of edges based on their

126 R and Data Mining

weights. This is useful in applications where graphs are crowded with many vertices
and edges. In the code below, the vertices and edges are accessed with V() and E().
Function rgb(red, green, blue, alpha) defines a color, with an alpha trans-
parency. With the same layout as Figure 11.1, we plot the graph again (see Figure 11.2).

> V(g)$label.cex <- 2.2 * V(g)$degree / max(V(g)$degree)+ .2

> V(g)$label.color <- rgb(0, 0,.2,.8)

> V(g)$frame.color <- NA

> egam <- (log(E(g)$weight)+.4) / max(log(E(g)$weight)+.4)

> E(g)$color <- rgb(.5,.5, 0, egam)

> E(g)$width <- egam

> # plot the graph in layout1

> plot(g, layout=layout1)

analysis

applications

code

computing

data
examples

introduction

mining

network

package

parallel

positions

postdoctoral

r

research

series

slides

social

time

tutorial

users

Figure 11.2 A network of terms—II.

Social Network Analysis 127

11.2 Network of Tweets

Similar to the previous section, we can also build a graph of tweets based on the number
of terms that they have in common. Because most tweets contain one or more words
from “r”, “data”, and “mining”, most tweets are connected with others and the graph
of tweets is very crowded. To simplify the graph and find relationship between tweets
beyond the above three keywords, we remove the three words before building a graph.

> # remove "r", "data" and "mining"

> idx <- which(dimnames(termDocMatrix)$Terms %in% c("r", "data",

"mining"))

> M <- termDocMatrix[-idx,]

> # build a tweet-tweet adjacency matrix

> tweetMatrix <- t(M) %*% M

> library(igraph)

> g <- graph.adjacency(tweetMatrix, weighted=T,

mode="undirected")

> V(g)$degree <- degree(g)

> g <- simplify(g)

> # set labels of vertices to tweet IDs

> V(g)$label <- V(g)$name

> V(g)$label.cex <- 1

> V(g)$label.color <- rgb(.4, 0, 0,.7)

> V(g)$size <- 2

> V(g)$frame.color <- NA

Next, we have a look at the distribution of degree of vertices and the result is shown
in Figure 11.3. We can see that there are around 40 isolated vertices (with a degree of
zero). Note that most of them are caused by the removal of the three keywords, “r”,
“data”, and “mining”.

> barplot(table(V(g)$degree))

128 R and Data Mining

0 9 10 11 12 13 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 39 40 41 42 43 44 45 50 53 55 56 71

0
10

20
30

Figure 11.3 Distribution of degree.

With the code below, we set vertex colors based on degree, and set labels of isolated
vertices to tweet IDs and the first 20 characters of every tweet. The labels of other
vertices are set to tweet IDs only, so that the graph will not be overcrowded with labels.
We also set the color and width of edges based on their weights. The produced graph
is shown in Figure 11.4.

> idx <- V(g)$degree == 0

> V(g)$label.color[idx] <- rgb(0, 0, .3, .7)

> # load twitter text

> library(twitteR)

> load(file = "data/rdmTweets.RData")

> # convert tweets to a data frame

> df <- do.call("rbind", lapply(rdmTweets, as.data.frame))

> # set labels to the IDs and the first 20 characters of tweets

> V(g)$label[idx] <- paste(V(g)$name[idx], substr(df$text[idx],

1, 20), sep=": ")

> egam <- (log(E(g)$weight)+.2) / max(log(E(g)$weight)+.2)

> E(g)$color <- rgb(.5, .5, 0, egam)

Social Network Analysis 129

> E(g)$width <- egam

> set.seed(3152)

> layout2 <- layout.fruchterman.reingold(g)

> plot(g, layout=layout2)

1

2

3

45

67
8

9

10

11

12

13

14: Chief Scientist − Da

15: Top 10 in Data Minin

16

17

18
19 20

21
22

23

24

25

26
27

28

29
30

31

32

33

34: Lecturer in Statisti

35

36: Several functions fo

37

38

3940

41

42

43

44
45

46

47

48: Join our discussion

49: My edited book title50: Vacancy of Data Mini

51: Sub−domains (group &

52

5354

55

56

57

58
59

60

61

62

63

64

65: Data Mining Job Open

66: A prize of $3,000,00

67: Statistics with R: a

68: A nice short article

69

70: Data Mining Job Open71
72: A vacancy of Bioinfo

73
74

75 76

77

78
7980

81: @MMiiina It is worki

82

83

84

85: OpenData + R + Googl

86: Frequent Itemset Min

87: A C++ Frequent Items

88
89

90: An overview of data

91: fastcluster: fast hi

9293

94

95: Resources to help yo

96

97

98

99: I created group RDat

100

101102103

104

105

106: Mahout: mining large

107

108

109: R ranked no. 1 in a

110

111: ACM SIGKDD Innovatio

112

113: Learn R Toolkit −− Q

114

115: @emilopezcano thanks

116 117

118

119

120: Distributed Text Min

121

122

123
124

125

126

127
128

129 130

131

132: Free PDF book: Minin

133: Data Mining Lecture

134: A Complete Guide to

135: Visits to RDataMinin

136

137

138: Text Data Mining wit

139

140

141

142

143: A recent poll shows

144: What is clustering?

145

146

147: RStudio − a free IDE

148: Comments are enabled

149

150: There are more than

151: R Reference Card for

152

153154

Figure 11.4 A network of tweets—I.

The vertices in crescent are isolated from all others, and next we remove them from
graph with function delete.vertices() and re-plot the graph (see Figure 11.5).

> g2 <- delete.vertices(g,V(g)[degree(g)==0])

> plot(g2, layout=layout.fruchterman.reingold)

130 R and Data Mining

1

2

3

4
5

6

7

8

910

11

12

13

16

17

18
19

20

21

22

23

24 2526
27

28

29

30

31

32

33

35
37

38

39 40

41

42

43

44
45

46

47

52

53

54

55

56

57

58

59

60

61

62

63

64

69

71

73
74

75 76

77

78

79

80

82

83
84

88

89

92

93

94
96

97

98

100

101

102

103

104

105

107

108

110

112

114

116

117

118

119

121

122

123

124

125

126

127

128

129

130

131

136

137
139

140

141
142

145

146

149

152

153

154

Figure 11.5 A network of tweets—II.

Similarly, we can also remove edges with low degrees to simplify the graph. Below
with function delete.edges(), we remove edges which have weight of one. After
removing edges, some vertices become isolated and are also removed. The produced
graph is shown in Figure 11.6.

> g3 <- delete.edges(g, E(g)[E(g)$weight <= 1])

> g3 <- delete.vertices(g3, V(g3)[degree(g3) == 0])

> plot(g3, layout=layout.fruchterman.reingold)

Social Network Analysis 131

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

3

4

5

6

7

8

9

12

16

18

19

20

21
22

23

24

26

27

29

30

31

33

37

38

44

45

52

53

58

59

60

69

71

73

79
80

92

94

96

100

101

102
105

107

108

112

114

116

119
121

122

126

127

128

129

136

139

153

154

Figure 11.6 A network of tweets—III.

In Figure 11.6, there are some groups (or cliques) of tweets. Let’s have a look at the
group in the middle left of the figure.
> df$text[c(7,12,6,9,8,3,4)]

[7] State of the Art in Parallel Computing with R

http://t.co/zmClglqi

[12] The R Reference Card for Data Mining is updated with

functions & packages for handling big data & parallel computing.
http://t.co/FHoVZCyk

[6] Parallel Computing with R using snow and snowfall

http://t.co/nxp8EZpv

[9] R with High Performance Computing: Parallel processing and

large memory http://t.co/XZ3ZZBRF

http://t.co/zmClglqi
http://t.co/FHoVZCyk
http://t.co/nxp8EZpv
http://t.co/XZ3ZZBRF

132 R and Data Mining

[8] Slides on Parallel Computing in R http://t.co/AdDVxbOY

[3] Easier Parallel Computing in R with snowfall and sfCluster

http://t.co/BPcinvzK

[4] Tutorial: Parallel computing using R package snowfall

http://t.co/CHBCyr76

We can see that tweets 7, 12, 6, 9, 8, 3, 4 are on parallel computing with R. We can
also see some other groups below:

• Tweets 4, 33, 94, 29, 18, and 92: tutorials for R;

• Tweets 4, 5, 154, and 71: R packages;

• Tweets 126, 128, 108, 136, 127, 116, 114, and 96: time series analysis;

• Tweets 112, 129, 119, 105, 108, and 136: R code examples; and

• Tweets 27, 24, 22,153, 79, 69, 31, 80, 21, 29, 16, 20, 18, 19, and 30: social network
analysis.

Tweet 4 lies between multiple groups, because it contains keywords “parallel comput-
ing”, “tutorial”, and “package”.

11.3 Two-Mode Network

In this section, we will build a two-mode network, which is composed of two types of
vertices: tweets and terms. At first, we generate a graphgdirectly fromtermDocMatrix.
After that, different colors and sizes are assigned to term vertices and tweet ver-
tices. We also set the width and color of edges. The graph is then plotted with
layout.fruchterman.reingold (see Figure 11.7).

> # create a graph

> g <- graph.incidence(termDocMatrix, mode=c("all"))

> # get index for term vertices and tweet vertices

> nTerms <- nrow(M)

> nDocs <- ncol(M)

> idx.terms <- 1:nTerms

> idx.docs <- (nTerms+1):(nTerms+nDocs)

> # set colors and sizes for vertices

> V(g)$degree <- degree(g)

> V(g)$color[idx.terms] <- rgb(0, 1, 0,.5)

> V(g)$size[idx.terms] <- 6

> V(g)$color[idx.docs] <- rgb(1, 0, 0,.4)

> V(g)$size[idx.docs] <- 4

> V(g)$frame.color <- NA

> # set vertex labels and their colors and sizes

> V(g)$label <- V(g)$name

http://t.co/AdDVxbOY
http://t.co/BPcinvzK
http://t.co/CHBCyr76

Social Network Analysis 133

> V(g)$label.color <- rgb(0, 0, 0, 0.5)

> V(g)$label.cex <- 1.4*V(g)$degree/max(V(g)$degree) + 1

> # set edge width and color

> E(g)$width <-.3

> E(g)$color <- rgb(.5, .5, 0, .3)

> set.seed(958)

> plot(g, layout=layout.fruchterman.reingold)

analysis

applications

code

computing

data
examples

introduction

mining

network

package

parallel

positions

postdoctoral

r

research

series

slides

social

time

tutorial

users

12

3

4
5

6

7

8

910

11

12

13

14

15

16

17

18
19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82
83

84

85

86

87

88

89

90

91

92
93

94

95

96

97

98

99

100

101
102

103

104

105
106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129
130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Figure 11.7 A two-mode network of terms and tweets—I.

Figure 11.7 shows that most tweets are around two centers, “r” and “data mining”.
Next, let’s have a look at which tweets are about “r”. In the code below, nei("r")
returns all vertices which are neighbors of vertex “r”.

> V(g)[nei("r")]

134 R and Data Mining

Vertex sequence:

[1] "3" "4" "5" "6" "7" "8" "9" "10" "12" "19" "21" "22"
[13] "25" "28" "30" "33" "35" "36" "41" "42" "55" "64" "67" "68"
[25] "73" "74" "75" "77" "78" "82" "84" "85" "91" "92" "94" "95"
[37] "100" "101" "102" "105" "108" "109" "110" "112" "113" "114" "117" "118"
[49] "119" "120" "121" "122" "126" "128" "129" "131" "136" "137" "138" "140"
[61] "141" "142" "143" "145" "146" "147" "149" "151" "152" "154"

An alternative way is using function neighborhood() as below.

> V(g)[neighborhood(g, order=1, "r")[[1]]]

We can also have a further look at which tweets contain all three terms: “r”, “data”,
and “mining”.

> (rdmVertices <- V(g)[nei("r") & nei("data") & nei("mining")])

Vertex sequence:

[1] "12" "35" "36" "42" "55" "78" "117" "119" "138" "143" "149" "151"
[13] "152" "154"

> df$text[as.numeric(rdmVertices$label)]

[12] The R Reference Card for Data Mining is updated with

functions & packages for handling big data & parallel computing.
http://t.co/FHoVZCyk

[35] Call for reviewers: Data Mining Applications with R. Pls

contact me if you have experience on the topic. See details at

http://t.co/rcYIXfnp

[36] Several functions for evaluating performance of

classification models added to R Reference Card for Data Mining:

http://t.co/FHoVZCyk

[42] Call for chapters: Data Mining Applications with R, an

edited book to be published by Elsevier. Proposal due 30 April.

http://t.co/HPaBSbRa

[55] Some R functions and packages for outlier detection

have been added to R Reference Card for Data Mining at

http://t.co/FHoVZCyk.

[78] Access large amounts of Twitter data for data mining

and other tasks within R via the twitteR package.

http://t.co/ApbAbnxs

[117] My document, R and Data Mining—Examples and Case Studies,

is scheduled to be published by Elsevier in mid 2012.

http://t.co/BcqwQ1n

[119] Lecture Notes on data mining course at CMU, some of which

contain R code examples. http://t.co/7YY73OW

[138] Text Data Mining with Twitter and R. http://t.co/a50ySNq

http://t.co/FHoVZCyk
http://t.co/rcYIXfnp
http://t.co/FHoVZCyk
http://t.co/HPaBSbRa
http://t.co/FHoVZCyk
http://t.co/ApbAbnxs
http://t.co/BcqwQ1n
http://t.co/7YY73OW
http://t.co/a50ySNq

Social Network Analysis 135

[143] A recent poll shows that R is the 2nd popular tool used

for data mining. See Poll: Data Mining/Analytic Tools Used

http://t.co/ghpbQXq

To make it short, only the first 10 tweets are displayed in the above result. In the
above code, df is a data frame which keeps tweets of RDataMining, and details of it
can be found in Section 10.2.

Next, we remove “r”, “data”, and “mining” to show the relationship between tweets
with other words. Isolated vertices are also deleted from graph.

> idx <- which(V(g)$name %in% c("r", "data", "mining"))

> g2 <- delete.vertices(g, V(g)[idx-1])

> g2 <- delete.vertices(g2, V(g2)[degree(g2)==0])

> set.seed(209)

> plot(g2, layout=layout.fruchterman.reingold)

analysis

applications

code

computing

examples
introduction

network

package

parallel

positions

postdoctoral

research

series

slides

social

time

tutorial

users

1

2

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3031

32
33

35

37

38

39

40

41

42

43

44

45

46

47

52

53

54

55

56

57

58

5960

61

62

63

64

69

71

73

74

75

76

77

78

79

80

82

83

84

88

89

92

93

94

96

97

98

100

101

102

103

104

105

107

108

110

112

114

116

117

118

119

121

122

123
124

125

126

127

128

129

130

131

136

137

139

140

141

142

145

146

149

152

153

154

Figure 11.8 A two-mode network of terms and tweets—II.

http://t.co/ghpbQXq

136 R and Data Mining

From Figure 11.8, we can clearly see groups of tweets and their keywords, such as
time series, social network analysis, parallel computing, and postdoctoral and research
positions, which are similar to the result presented at the end of Section 11.2.

11.4 Discussions and Further Readings

In this chapter, we have demonstrated how to find groups of tweets and some topics in
the tweets with package igraph. Similar analysis can also be achieved with package sna
(Butts, 2010). There are also packages designed for topic modeling, such as packages
lda (Chang, 2011) and topicmodels (Grün and Hornik, 2011).

For readers interested in social network analysis with R, there are some fur-
ther readings. Some examples on social network analysis with the igraph package
(Csardi and Nepusz, 2006) are available as tutorial on Network Analysis with Package
igraph at http://igraph.sourceforge.net/igraphbook/ and R for Social Net-
work Analysis at http://www.stanford.edu/˜messing/RforSNA.html. There is
a detailed introduction to Social Network Analysis with package sna (Butts, 2010) at
http://www.jstatsoft.org/v24/i06/paper. A statnet Tutorial is available at
http://www.jstatsoft.org/v24/i09/paper and more resources on using statnet
(Handcock et al., 2003) for network analysis can be found at http://

csde.washington.edu/statnet/resources.shtml. There is a short tutorial on
package network (Butts, 2012) at http://sites.stat.psu.edu/˜dhunter/

Rnetworks/. Slides on Social network analysis with R sna package can be found
at http://user2010.org/slides/Zhang.pdf. slides on Social Network Analysis
in R can be found at http://files.meetup.com/1406240/sna_in_R.pdf. Some
R codes for community detection are available at http://igraph.wikidot.com/

community-detection-in-r.

http://igraph.sourceforge.net/igraphbook/
http://www.stanford.edu/~messing/RforSNA.html
http://www.jstatsoft.org/v24/i06/paper
http://www.jstatsoft.org/v24/i09/paper
http://csde.washington.edu/statnet/resources.shtml
http://csde.washington.edu/statnet/resources.shtml
http://sites.stat.psu.edu/~dhunter/Rnetworks/
http://sites.stat.psu.edu/~dhunter/Rnetworks/
http://user2010.org/slides/Zhang.pdf
http://files.meetup.com/1406240/sna_in_R.pdf
http://igraph.wikidot.com/community-detection-in-r
http://igraph.wikidot.com/community-detection-in-r

12 Case Study I: Analysis
and Forecasting of House
Price Indices

This chapter presents a case study on analyzing and forecasting of House Price Indices
(HPI). It demonstrates data import from a CSV file, descriptive analysis of HPI time
series data, and decomposition and forecasting of the data. The data used in this study
are Canberra house price trading indices from Residex.1

Note that this study is to demonstrate how to use R to study time series data for
research purpose only. The analysis of property market may involve many other factors
not mentioned in this chapter, such as economic environment, population size, CPI
(Consumer Price Index), and government policy, and the readers should make their
own judgment if interested in property investment.

12.1 Importing HPI Data

The data records the HPIs at the end of every month from January 1990 to January
2011, and the first four lines of data are shown below as examples:

31-Jan-90,1.00763

28-Feb-90,1.01469

31-Mar-90,1.02241

30-Apr-90,1.03062

At first, the data are read from a CSV file with read.csv(), and then names are
assigned to columns of data frame houseIndex. After that, the dates are converted with
function strptime() from character to “POSIXlt” to extract year and month.

> # import data

> filepath <- "./data/"

> filename <- "House-index-canberra.csv"

1 http://www.residex.com.au

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00012-X
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.residex.com.au
http://dx.doi.org/10.1016/B978-0-12-396963-7.00012-X

138 R and Data Mining

> houseIndex <- read.csv(paste(filepath, filename, sep=""),

header=FALSE)

> names(houseIndex) <- c("date", "index")

> n <- nrow(houseIndex)

> # check start date and end date

> cat(paste("HPI from", houseIndex$date[1], "to",

houseIndex$date[n], "\n"))
HPI from 31-Jan-90 to 31-Jan-11

> # extract year and month

> dates <- strptime(houseIndex$date, format="%d-%b-%y")

> houseIndex$year <- dates$year + 1900

> houseIndex$month <- dates$mon + 1

> fromYear <- houseIndex$year[1]

An alternative way for the above format conversion is to use function as.Date()

as follows:

> dates <- as.Date(houseIndex$date, format="%d-%b-%y”)

> houseIndex$year <- as.numeric(format(dates, "%y"))

> houseIndex$month <- as.numeric(format(dates, "%m”))

12.2 Exploration of HPI Data

The data are explored with various plots of HPI and its variations over the years. First,
a chart is drawn below to show the changes of HPI from 1990 to 2011 (see Figure 12.1).

> plot(houseIndex$index, pty=1, type="l", lty="solid", xaxt="n",

xlab="", ylab="Index",

+ main=paste("HPI(Canberra) - Since ", fromYear, sep=""))

> # draw tick-marks at 31 Jan of every year

> nYear <- ceiling(n/12)

> posEveryYear <- 12 * (1:nYear) - 11

> axis(1, labels=houseIndex$date[posEveryYear], las=3,

at=posEveryYear)

Case Study I: Analysis and Forecasting of House Price Indices 139

> # add horizontal reference lines

> abline(h=1:4, col="gray", lty="dotted")

> # draw a vertical reference line every five years

> posEvery5years <- 12 * (5* 1:ceiling(nYear/5) - 4) - 11

> abline(v=posEvery5years, col="gray", lty="dotted")

1

2

3

4

HPI (Canberra) − Since 1990

In
de

x

31
−J

an
−9

0
3 1

−J
an

−9
1

31
−J

an
−9

2
3 1

−J
an

−9
3

31
−J

an
−9

4
31

−J
an

−9
5

31
−J

an
−9

6
31

−J
an

−9
7

3 1
−J

an
−9

8
3 1

−J
an

−9
9

31
−J

an
−0

0
31

−J
an

−0
1

31
−J

an
−0

2
31

−J
an

−0
3

31
−J

an
−0

4
31

−J
an

−0
5

31
−J

an
−0

6
31

−J
an

−0
7

3 1
−J

an
−0

8
3 1

−J
an

−0
9

3 1
−J

an
−1

0
3 1

−J
an

−1
1

Figure 12.1 HPIs in Canberra from Jan. 1990 to Jan. 2011.

Although a reference grid can be added with grid(), the positions of the lines
generated with it are not necessarily aligned with the beginning of every year. Therefore,
in the above example, the positions of reference lines are calculated first and then drawn
with abline().

Let us have a look at the increase of HPI in every month, which is calculated as
delta (see Figure 12.2).

> houseIndex$delta <- houseIndex$index - c(1, houseIndex$index[-n])

> plot(houseIndex$delta, main="Increase in HPI", xaxt="n",

xlab="")

> axis(1, labels=houseIndex$date[posEveryYear], las=3,

at=posEveryYear)

> # add a reference line

> abline(h=0, lty="dotted")

140 R and Data Mining

●

−0
.0

5

 0

.0
0

0.
05

Increase in HPI

ho
us

eI
nd

ex
$d

el
ta

31
−J

an
−9

0
31

−J
an

−9
1

31
−J

an
−9

2
31

−J
an

−9
3

31
−J

an
−9

4
31

−J
an

−9
5

3 1
−J

an
−9

6
31

−J
an

−9
7

31
−J

an
−9

8
3 1

−J
an

−9
9

31
−J

an
−0

0
31

−J
an

−0
1

31
−J

an
−0

2
3 1

−J
an

−0
3

31
−J

an
−0

4
3 1

−J
an

−0
5

3 1
−J

an
−0

6
31

−J
an

−0
7

31
−J

an
−0

8
31

−J
an

−0
9

3 1
−J

an
−1

0
31

−J
an

−1
1

Figure 12.2 Monthly increase of HPI.

It seems from Figure 12.2 that HPI fluctuated more after 2003 than before. However,
it may be simply because of the increase of HPI from one in 1990 to around five
in 2011.

To further check the fluctuation in HPI, we have a look at its ratio of increase per
month. The months with positive increase are drawn as green plus (“+”), while negative
ones as red circles (“o”) (see Figure 12.3).

> # increase ratio in every month

> houseIndex$rate <- houseIndex$index/c(1, houseIndex$index[-n]) - 1

> # percentage of months having positive increases in HPI

> 100 * sum(houseIndex$rate>0)/n

[1] 67.58893

> # use ifelse() to set positive values to green and and negative

ones to red

> plot(houseIndex$rate, xaxt="n", xlab="", ylab="HPI Increase

Rate", col=ifelse(houseIndex$rate>0,"green","red"),

+ pch=ifelse(houseIndex$rate>0,"+","o"))

> axis(1, labels=houseIndex$date[posEveryYear], las=3,

at=posEveryYear)

Case Study I: Analysis and Forecasting of House Price Indices 141

> abline(h=0, lty="dotted")

−0
.0

1
 0

.0
0

 0

.0
1

0.

02

 0
.0

3
H

PI
 In

cr
ea

se
 R

at
e

3 1
−J

an
−9

0
31

−J
an

−9
1

31
−J

an
−9

2
31

−J
an

−9
3

31
−J

an
−9

4
31

−J
an

−9
5

31
−J

an
−9

6
31

−J
an

−9
7

31
−J

an
−9

8
31

−J
an

−9
9

31
−J

an
−0

0
3 1

−J
an

−0
1

31
−J

an
−0

2
3 1

−J
an

−0
3

31
−J

an
−0

4
31

−J
an

−0
5

3 1
−J

an
−0

6
31

−J
an

−0
7

31
−J

an
−0

8
31

−J
an

−0
9

3 1
−J

an
−1

0
31

−J
an

−1
1

Figure 12.3 Monthly increase rate of HPI.

From Figure 12.3, we can see that: (1) there are more increases than decreases; (2)
the increase rates (shown as “+” in green) are generally bigger than decrease rates (“o”
in red); most increase rates are between 0 and 2%, and most decrease rates are between
0 and 1%; and (3) there are two periods with big decreases: 1995–1996 and 2008–2009;
meanwhile, a period having biggest increases is 2002–2003.

Alternatively, we make a table of increase rate, with each row standing for a month
and each column for a year, and then show the monthly increase rates with a grouped
bar chart (see Figure 12.4). In the bar chart, the columns are portrayed as juxtaposed
bars instead of stacked bars by setting "beside=TRUE", and the space between groups
are set with "space=c(0,2)".

> rateMatrix <- xtabs(rate ∼ month + year, data=houseIndex)

> # show the first four years, rounded to 4 decimal places

> round(rateMatrix[,1:4], digits=4)

year
month 1990 1991 1992 1993
1 0.0076 0.0134 −0.0007 0.0172
2 0.0070 0.0219 0.0164 −0.0057
3 0.0076 −0.0043 −0.0050 0.0023
4 0.0080 0.0174 0.0180 −0.0007
5 0.0082 −0.0041 0.0151 −0.0069
6 0.0079 0.0176 −0.0057 −0.0051

142 R and Data Mining

7 0.0052 −0.0025 0.0178 −0.0008
8 0.0053 0.0179 −0.0034 0.0023
9 0.0053 0.0013 0.0180 0.0010
10 0.0055 0.0186 0.0046 −0.0001
11 0.0058 0.0091 0.0055 0.0004
12 0.0061 0.0081 0.0021 0.0136

> # plot a grouped barchart:

> barplot(rateMatrix, beside=TRUE, space=c(0,2),

+ colīfelse(rateMatrix>0,"lightgreen","lightpink"),

+ ylab="HPI Increase Rate", cex.names=1.2)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

H
PI

 In
cr

ea
se

 R
at

e
−0

.0
1

 0
.0

0

 0
.0

1

0.

02

 0
.0

3

Figure 12.4 A bar chart of monthly HPI increase rate.

Figures 12.5, 12.6 and 12.7 show respectively the number of months with HPI
increases over the years and the yearly/monthly average increase rates. Functions
colSums(), colMeans(), and rowMeans() are used to calculate the corresponding
values based on rateMatrix.

> numPositiveMonths <- colSums(rateMatrix > 0)

> barplot(numPositiveMonths, xlab="Year", ylab="Number of Months

with Increased HPI")

> yearlyMean <- colMeans(rateMatrix)

> barplot(yearlyMean, main="Yearly Average Increase Rates of

HPI", col=ifelse(yearlyMean>0,"lightgreen","lightpink"),

xlab="Year")

> monthlyMean <- rowMeans(rateMatrix)

Case Study I: Analysis and Forecasting of House Price Indices 143

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Year

N
um

be
r o

f M
on

th
s

w
ith

 In
cr

ea
se

d
H

PI
0

 2

 4

6

8

10

 1
2

Figure 12.5 Number of months with increased HPI.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Yearly Average Increase Rates of HPI

Year

0.
00

0

 0
.0

05

0.

01
0

 0
.0

15

Figure 12.6 Yearly average increase rates of HPI.

> plot(names(monthlyMean), monthlyMean, type="b", xlab="Month",

+ main="Monthly Average Increase Rates of HPI")

Next, the distribution of increase rate is checked. Function summary() returns the
minimum, maximum, mean, median, and the first (25%) and third quartiles (75%) of
data. A box-and-whisker plot (see Figure 12.8), generated by boxplot(), shows the
median, and the first and third quartiles. The bar in the middle is the median. The box
shows the interquartile range (IQR) , which is the range between the first and third
quartiles.

> summary(houseIndex$rate)

144 R and Data Mining

2 4 6 8 10 12

0.
00

3
0.

00
4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

Monthly Average Increase Rates of HPI

Month

m
on

th
ly

M
ea

n

Figure 12.7 Monthly average increase rates of HPI.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.017710 -0.002896 0.005840 0.006222 0.014210 0.030700

> boxplot(houseIndex$rate, ylab="HPT Increase Rate"

−0
.0

1
 0

.0
0

 0

.0
1

 0

.0
2

 0

.0
3

H
PI

 In
cr

ea
se

 R
at

e

Figure 12.8 Distribution of HPI increase rate.

We then further check the distribution of increase rate for every year (see Figure 12.9)
and also for every month (see Figure 12.10) with grouped boxplots.

> boxplot(rate ˜ year, data=houseIndex, xlab="year", ylab="HPI

Increase Rate")

> boxplot(rate ˜ month, data=houseIndex, xlab="month", ylab="HPI

Increase Rate")

Figure 12.10 shows that April and May are the months when house prices increase
fastest, because in the two months, the median increase rates are high and most increase

Case Study I: Analysis and Forecasting of House Price Indices 145

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

−0
.0

1

 0
.0

0

 0
.0

1

 0
.0

2

 0
.0

3

Year

H
PI

 In
cr

ea
se

 R
at

e

Figure 12.9 Distribution of HPI increase rate per year.

1 2 3 4 5 6 7 8 9 10 11 12

−0
.0

1

0.
00

 0

.0
1

 0

.0
2

0.

03

Month

H
PI

 In
cr

ea
se

 R
at

e

Figure 12.10 Distribution of HPI increase rate per month.

rates are positive. Some other months with high increase rates are June, January, and
December. The increases of house price are low in March, July, and August.

12.3 Trend and Seasonal Components of HPI

After the above data exploration and basic analysis, we decompose the data to find
trend and seasonal factors, and then make a forecast of HPI. For more details about
time series decomposition, please refer to Section 8.2.

The indices are first converted to a time series object with ts() and then are decom-
posed with function stl(). The decomposition below clearly shows an increase trend
of HPI (see the 3rd chart in Figure 12.11).

> hpi <- ts(houseIndex$index, start=c(1990,1), frequency=12)

146 R and Data Mining

> f <- stl(hpi, "per")

> plot(f)

1
 2

 3
 4

da
ta

−0
.0

15
−

0.
00

5
0.

00
5

se
as

on
al

1
 2

 3
 4

 5
tre

nd

−0
.1

0
 0

.0
0

1990 1995 2000 2005 2010

re
m

ai
nd

er

time

Figure 12.11 Decomposition of HPI data.

The code below produces a close look at the seasonal components (see Figure 12.12),
which looks similar to the monthly average increased rates of HPI shown in Figure 12.7.

> # plot seasonal components

> plot(f$time.series[1:12,"seasonal"], type=’b’, xlab="Month",

+ ylab="Seasonal Components")

●

●

●

2 4 6 8 10 12

−0
.0

15
 −

0.
01

0
−0

.0
05

 0
.0

00

0.
00

5

Month

Se
as

on
al

 C
om

po
ne

nt
s

Figure 12.12 Seasonal components of HPI data.

An alternative function for decomposition is decompose() shown as below.

> # an alternative decomposition function

Case Study I: Analysis and Forecasting of House Price Indices 147

> f2 <- decompose(hpi)

> plot(f2)

> # plot seasonal components

> plot(f2$figure, type="b", xlab="Month", ylab="Seasonal

Components")

12.4 HPI Forecasting

In this section, an ARIMA (autoregressive integrated moving average) model is fit to
HPI data and then used for forecasting HPIs in the next 4 years (see Figure 12.13). For
more details about time series forecasting, please refer to Section 8.3.

> startYear <- 1990

> endYear <- 2010

> # to forecast HPIs in the next four years

> nYearAhead <- 4

> fit <- arima(hpi, order=c(2,0,1), seasonal=list(order=c(2,1,0),

period=12))

> fore <- predict(fit, n.ahead=12*nYearAhead)

> # error bounds at 95% confidence level

> U <- fore$pred + 2 * fore$se

> L <- fore$pred - 2 * fore$se

> # plot original and predicted data, as well as error bounds

> ts.plot(hpi, fore$pred, U, L, col=c("black",

"blue","green","red"),

+ lty=c(1,5,2,2), gpars=list(xaxt="n",xlab=""),

+ ylab="Index", main="House Price Trading Index

Forecast(Canberra)")

> # add labels, reference grid and legend

> years <- startYear:(endYear + nYearAhead+1)

> axis(1, labels=paste("Jan ", years, sep=""), las=3, at=years)

148 R and Data Mining

> grid()

> legend("topleft", col=c("black", "blue","green","red"),

lty=c(1,5,2,2), c("Actual Index", "Forecast", "Upper Bound(95%

Confidence)", "Lower Bound(95% Confidence)"))

House Price Trading Index Forecast (Canberra)

In
de

x
1

 2

3

 4

 5

 6

Ja
n

19
90

Ja
n

19
91

Ja
n

19
92

Ja
n

19
93

Ja
n

19
94

Ja
n

19
95

Ja
n

19
96

Ja
n

19
97

Ja
n

19
98

Ja
n

19
99

Ja
n

20
00

Ja
n

20
01

Ja
n

20
02

Ja
n

20
03

Ja
n

20
04

Ja
n

20
05

Ja
n

20
06

Ja
n

20
07

Ja
n

20
08

Ja
n

20
09

Ja
n

20
10

Ja
n

20
11

Ja
n

20
12

Ja
n

20
13

Ja
n

20
14

Ja
n

20
15

Actual Index
Forecast
Upper Bound (95% Confidence)
Lower Bound (95% Confidence)

Figure 12.13 HPI forecasting—I.

To have a closer look at the forecasted CPIs, the forecasted values from 2011 are
drawn below (see Figure 12.14).

> ts.plot(fore$pred, U, L, col=c("blue","green","red"),

lty=c(5,2,2), gpars=list(xaxt="n",xlab=""), ylab="Index",

main="House Price Trading Index Forecast(Canberra)")

> years <- endYear +(1:(nYearAhead+1))

> axis(1, labels=paste("Jan ", years, sep=""), las=3, at=years)

> grid(col = "gray", lty = "dotted")

> legend("topleft", col=c("blue","green","red"), lty=c(5,2,2),

+ c("Forecast", "Upper Bound (95% Confidence)",

+ "Lower Bound (95% Confidence)"))

Case Study I: Analysis and Forecasting of House Price Indices 149

House Price Trading Index Forecast (Canberra)

In
de

x
5.

0
5.

5
6.

0
6.

5
Ja

n
20

11

Ja
n

20
12

Ja
n

20
13

Ja
n

20
14

Ja
n

20
15

Forecast
Upper Bound (95% Confidence)
Lower Bound (95% Confidence)

Figure 12.14 HPI forecasting—II.

12.5 The Estimated Price of a Property

A property was sold at $535,000 in Canberra in September 2009, and what would be
its price two years later? The example below gives the estimated answer: $616,083.

> newHpi <- ts(c(hpi, fore$pred), start=c(1990,1), frequency=12)

> (startDate <- start(newHpi))

[1] 1990 1

> startYear <- startDate[1]

> m <- 9 + (2009-startYear)*12

> n <- 9 + (2011-startYear)*12

> # percentage of increase

> 100 * (newHpi[n]/ newHpi[m] - 1)

[1] 15.15576

> round(535000 * newHpi[n]/ newHpi[m])

[1] 616083

12.6 Discussion

This section presents a simple analysis on HPI data in a single city. The patterns of HPI
may be better studied by comparing the above HPI with HPI data in other cities, such

150 R and Data Mining

as Sydney and Melbourne. One may investigate whether they share similar patterns,
whether there are any relationship between the changes of HPI in different cities,
and whether there are any lags between major increases/decreases in different cities.
Meanwhile, other factors, such as economic environment, population changes, CPI,
and government policies, may also be included for a better forecasting of HPI with a
regression model.

13 Case Study II:
Customer Response Prediction
and Profit Optimization

13.1 Introduction

In this case study, the competition of KDD Cup 19981 is used to demonstrate customer
response prediction and profit maximization with decision trees. The same methodol-
ogy has been applied successfully in a real business application, whose details, unfor-
tunately, cannot be disclosed here due to the concern of customer privacy and business
confidentiality.

The competition of the KDD Cup 1998 is to estimate the return from a direct mailing
in order to maximize donation profits. To improve the efficiency of donation raising, we
use data mining techniques to optimize customer selection. More specifically, decision
trees are built with R to model donation raising based on customer demographics and
promotion history. The objective is to predict the response of customers if contacted
for the purpose of donation raising. By ranking customers based on predicted scores,
the donation amount can be maximized.

The data mining process of this case study is shown in Figure 13.1 and we will
describe these steps in the following sections.

13.2 The Data of KDD Cup 1998

ThecompetitionofKDDCup1998istoestimatethereturnfromadirectmailinginorderto
maximizetheamountofdonation.Thedatasetsareincommadelimitedformat.Thelearn-
ing dataset “cup98LRN.txt” contains 95,412 records and 481 fields, and the validation
dataset “cup98VAL.txt” contains 96,367 records and 479 variables. Each record has a
field CONTROLN, which is a unique record identifier. There are two target variables in
the learning dataset, TARGET_B and TARGET_D. TARGET_B is a binary variable indicating
whetherornottherecordrespondedtomailwhileTARGET_Dcontainsthedonationamount
in dollar. The learning dataset is of the same format as the validation one, except that the
latter does not contain the above two target variables. The data can be downloaded at
http://www.sigkdd.org/kddcup/index.php?section=1998& method=data.

1 http://www.sigkdd.org/kddcup/index.php?section=1998&method=info

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00013-1
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.sigkdd.org/kddcup/index.php?section=1998&method=data
http://www.sigkdd.org/kddcup/index.php?section=1998&method=info
http://dx.doi.org/10.1016/B978-0-12-396963-7.00013-1

152 R and Data Mining

Historical
Data

Data
Preparation

.rdata Sampling

Data
Exploration

Stats &
Charts

New
Data

Test Data

Training
Data

Decision
Trees

Testing

Selected Tree Test Results

Data
Preparation

.rdata Scoring

Scored
Result

Modeling

Figure 13.1 A data mining process.

Below we load the learning data into R and then have a look at it. To save space, we
check only the first 30 variables with the code below.

> cup98 <- read.csv("./data/KDDCup1998/cup98LRN.txt")

> dim(cup98)

[1] 95412 481

> # have a look at the first 30 variables

> str(cup98[,1:30])

’data.frame’: 95412 obs. of 30 variables:

$ ODATEDW: int 8901 9401 9001 8701 8601 9401 8701 9401 8801 9401 …

$ OSOURCE: Factor w/ 896 levels " ","AAA","AAD",..: 343 122 50 128

1 220 255 613 487 549 …

$ TCODE : int 0 1 1 0 0 0 0 0 1 1 …

$ STATE : Factor w/ 57 levels "AA","AE","AK",..: 20 9 33 9 14 4

21 24 18 48 …

$ ZIP : Factor w/ 19938 levels "00801","00802",..: 9940 16858 336

18629 2937 3841 5897 12146 7439 4251 …

$ MAILCODE: Factor w/ 2 levels " ","B": 1 1 1 1 1 1 1 1 1 1 …

$ PVASTATE: Factor w/ 3 levels " ","E","P": 1 1 1 1 1 1 1 1 1 1 …

$ DOB : int 3712 5202 0 2801 2001 0 6001 0 0 3211 …

Case Study II: Customer Response Prediction and Profit Optimization 153

$ NOEXCH : Factor w/ 4 levels " ","0","1","X": 2 2 2 2 2 2 2 2 2

2 …

$ RECINHSE: Factor w/ 2 levels " ","X": 1 1 1 1 2 1 1 1 1 1 …

$ RECP3 : Factor w/ 2 levels " ","X": 1 1 1 1 2 1 1 1 1 1 …

$ RECPGVG: Factor w/ 2 levels " ","X": 1 1 1 1 1 1 1 1 1 1 …

$ RECSWEEP: Factor w/ 2 levels " ","X": 1 1 1 1 1 1 1 1 1 1 …

$ MDMAUD : Factor w/ 28 levels "C1CM","C1LM",..: 28 28 28 28 28

28 28 28 28 28 …

$ DOMAIN : Factor w/ 17 levels " ","C1","C2",..: 12 8 6 6 9 12 12

12 6 11 …

$ CLUSTER: int 36 14 43 44 16 40 40 39 45 35 …

$ AGE : int 60 46 NA 70 78 NA 38 NA NA 65 …

$ AGEFLAG: Factor w/ 3 levels " ","E","I": 1 2 1 2 2 1 2 1 1 3 …

$ HOMEOWNR: Factor w/ 3 levels " ","H","U": 1 2 3 3 2 1 2 3 3 1 …

$ CHILD03: Factor w/ 4 levels " ","B","F","M": 1 1 1 1 1 1 1 1 1

1 …

$ CHILD07: Factor w/ 4 levels " ","B","F","M": 1 1 1 1 1 1 1 1 1

1 …

$ CHILD12: Factor w/ 4 levels " ","B","F","M": 1 1 1 1 1 1 3 1 1

1 …

$ CHILD18: Factor w/ 4 levels " ","B","F","M": 1 4 1 1 1 1 1 1 1

1 …

$ NUMCHLD: int NA 1 NA NA 1 NA 1 NA NA NA …

$ INCOME : int NA 6 3 1 3 NA 4 2 3 NA …

$ GENDER : Factor w/ 7 levels " ","A","C","F",..: 4 6 6 4 4 1 4 4

6 6 …

$ WEALTH1: int NA 9 1 4 2 NA 6 9 2 NA …

$ HIT : int 0 16 2 2 60 0 0 1 0 0 …

$ MBCRAFT: int NA 0 0 0 1 NA NA 0 NA NA …

$ MBGARDEN: int NA 0 0 0 0 NA NA 0 NA NA …

> head(cup98[,1:30])

154 R and Data Mining

ODATEDW OSOURCE TCODE STATE ZIP MAILCODE PVASTATE DOB NOEXCH RECINHSE

1 8901 GRI 0 IL 61081 3712 0

2 9401 BOA 1 CA 91326 5202 0

3 9001 AMH 1 NC 27017 0 0

4 8701 BRY 0 CA 95953 2801 0

5 8601 0 FL 33176 2001 0 X

6 9401 CWR 0 AL 35603 0 0

RECP3 RECPGVG RECSWEEP MDMAUD DOMAIN CLUSTER AGE AGEFLAG HOMEOWNR CHILD03

1 XXXX T2 36 60

2 XXXX S1 14 46 E H

3 XXXX R2 43 NA U

4 XXXX R2 44 70 E U

5 X XXXX S2 16 78 E H

6 XXXX T2 40 NA

CHILD07 CHILD12 CHILD18 NUMCHLD INCOME GENDER WEALTH1 HIT MBCRAFT MBGARDEN

1 NA NA F NA 0 NA NA

2 M 1 6 M 9 16 0 0

3 NA 3 M 1 2 0 0

4 NA 1 F 4 2 0 0

5 1 3 F 2 60 1 0

6 NA NA NA 0 NA NA

> # a summary of the first 10 variables

> summary(cup98[,1:10])

ODATEDW OSOURCE TCODE STATE
Min. :8306 MBC :4539 Min. : 0.00 CA :17343
1st Qu. :8801 SYN :3563 1st Qu. : 0.00 FL :8376
Median :9201 AML :3430 Median : 1.00 TX :7535
Mean :9141 BHG :3324 Mean : 54.22 IL :6420
3rd Qu. :9501 IMP :2986 3rd Qu. : 2.00 MI :5654
Max. :9701 ARG :2409 Max. : 72002.00 NC :4160

(Other):75161 (Other):45924

ZIP MAILCODE PVASTATE DOB NOEXCH RECINHSE

85351 :61 :94013 :93954 Min. : 0 : 7 : 88709

92653 :59 B : 1399 E : 5 1st Qu. : 201 0: 95085 X: 6703

85710 :54 P : 1453 Median :2610 1: 285

95608 :50 Mean :2724 X: 35

60619 :45 3rd Qu. :4601

89117 :45 Max. :9710

(Other) :95098

Case Study II: Customer Response Prediction and Profit Optimization 155

To check all the variables in the data, readers can use the code below. The results
are not included in this book to save space.

> library(Hmisc)

> describe(cup98[,1:28]) # demographics

> describe(cup98[,29:42]) # number of times responded to other

types of mail order offers

> describe(cup98[,43:55]) # overlay data

> describe(cup98[,56:74]) # donor interests

> describe(cup98[,75]) # PEP star RFA status

> describe(cup98[,76:361]) # characteristics of the donors

neighborhood

> describe(cup98[,362:407])# promotion history

> describe(cup98[,408:412])# summary variables of promotion

history

> describe(cup98[,413:456])# giving history

> describe(cup98[,457:469])# summary variables of giving history

> describe(cup98[,470:473])# ID & targets

> describe(cup98[,474:479])# RFA (Recency/Frequency/Donation

Amount)

> describe(cup98[,480:481])# CLUSTER & GEOCODE

Then we check the distribution of the two target variables, TARGET_B and TARGET_D.
A pie chart of TARGET_B is shown in Figure 13.2.

> (response.percentage <- round(100 * prop.table(table(cup98$

TARGET_B)), digits=1))

0 1
94.9 5.1

> mylabels <- paste("TARGET_B=", names(response.percentage), "\n",

+ response.percentage, "%", sep=" ")

> pie(response.percentage, labels=mylabels) (see Figure 13.2)

156 R and Data Mining

TARGET_B=0
94.9%

TARGET_B=1
5.1%

Figure 13.2 Distribution of response.

With the code below, we check positive donations, that is, those records with
TARGET_D greater than zero.

> # data with positive donations

> cup98pos <- cup98[cup98$TARGET_D >0,]

> targetPos <- cup98pos$TARGET_D

> summary(targetPos)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 10.00 13.00 15.62 20.00 200.00

> boxplot(targetPos)(see Figure 13.3)

0
50

10
0

15
0

20
0

Figure 13.3 Box plot of donation amount.

Case Study II: Customer Response Prediction and Profit Optimization 157

Below we check the number of positive donations not in whole dollars, round
the donation amount to whole dollars and then draw a barplot for it. The plot (see
Figure 13.4) shows that most donations are no more than $25 and are multiples of $5.

> # number of positive donations

> length(targetPos)

[1] 4843

> # number of positive donations not in whole dollars

> sum(!(targetPos %in% 1:200))

[1] 21

> targetPos <- round(targetPos)

> barplot(table(targetPos), las=2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 50 51 53 55 60 75 95 10
0

10
1

10
2

15
0

20
0

0

200

400

600

800

Figure 13.4 Barplot of donation amount.

Based on the distribution shown in the above barplot, we discretize TARGET_D to
make a new variable TARGET_D2. Function cut() is used for discretization, where
right=F indicates that the intervals are open on the right and closed on the left.

> cup98$TARGET_D2 <- cut(cup98$TARGET_D, right=F,

breaks=c(0, 0.1, 10, 15, 20, 25, 30, 50, max(cup98$TARGET_D)))

> table(cup98$TARGET_D2)

[0,0.1) [0.1,10) [10,15) [15,20) [20,25) [25,30) [30,50) [50,200)

90569 1132 1378 806 745 435 233 110

> cup98pos$TARGET_D2 <- cut(cup98pos$TARGET_D, right=F,

breaks=c(0, 0.1, 10, 15, 20, 25, 30, 50, max(cup98pos$TARGET_D)))

158 R and Data Mining

Variable RFA_2R (recency code for RFA_2) is removed, because all records have
the same value of “L” in that field. Around 99.7% of records has a value of “0” in field
NOEXCH, so it is also removed.

> table(cup98$RFA_2R)

L
95412

> round(100 * prop.table(table(cup98$NOEXCH)), digits=3)

0 1 X
0.007 99.657 0.299 0.037

We also excluded characteristics of the donors neighborhood, and variables from
the promotion history file and the giving history file. However, the summary variables
from the two history files are kept.

After the above inspection and exploration, the following variables are selected.

• Demographics:

– ODATEDW: origin date. Date of donor’s first gift in YYMM format (Year/Month);

– OSOURCE: origin source. Code indicating which mailing list the donor was orig-
inally acquired from;

– STATE: state abbreviation;

– ZIP: zipcode;

– PVASTATE: indicates whether the donor lives in a state served by the organiza-
tion’s chapter;

– DOB: date of birth (YYMM, Year/Month format.);

– RECINHSE: in house file flag;

– MDMAUD: the major donor matrix code. The codes describe frequency and amount
of giving for donors who have given a $100+ gift at any time in their giving
history. First byte: recency of giving; 2nd byte: frequency of giving; 3rd byte:
amount of giving; 4th byte: blank/meaningless/filler.

– DOMAIN: domain/cluster code. 1st byte = urbanicity level of the donor’s neigh-
borhood; 2nd byte = socio-economic status of the neighborhood.

– CLUSTER: code indicating which cluster group the donor falls into. Each cluster
is unique in terms of socio-economic status, urbanicity, ethnicity, and a variety
of other demographic characteristics.

Case Study II: Customer Response Prediction and Profit Optimization 159

– AGE: overlay age;

– HOMEOWNR: home owner flag;

– CHILD03, CHILD07, CHILD12, CHILD18: presence of children age 0–3, 4–7,
8–12, and 13–18;

– NUMCHLD: number of children;

– INCOME: household income;

– GENDER: gender;

– WEALTH1: wealth rating;

– HIT: number of mail order responses;

– Donor interests: COLLECT1, VETERANS, BIBLE, CATLG, HOMEE, PETS,

CDPLAY, STEREO, PCOWNERS, PHOTO, CRAFTS, FISHER, GARDENIN,

BOATS, WALKER, KIDSTUFF, CARDS, PLATES;

• History information:

– PEPSTRFL: PEP star RFA status;

– summary variables of promotion history: CARDPROM, MAXADATE, NUMPROM,

CARDPM12, NUMPRM12:

– summary variables of giving history: RAMNTALL, NGIFTALL, CARDGIFT,

MINRAMNT, MAXRAMNT, LASTGIFT, LASTDATE, FISTDATE, TIMELAG,

AVGGIFT;

• ID & targets:

– ID: CONTROLN;

– Targets: TARGET_D, TARGET_D2, TARGET_B;

• Others:

– Presence of published home phone number: HPHONE_D;

– RFA (Recency/Frequency/Donation Amount): RFA_2F, RFA_2A, MDMAUD_R,

MDMAUD_F, MDMAUD_A; and

– Others codes: CLUSTER2, GEOCODE2.

> varSet <- c(

+ # demographics

160 R and Data Mining

+ "ODATEDW", "OSOURCE", "STATE", "ZIP", "PVASTATE", "DOB",

"RECINHSE", "MDMAUD", "DOMAIN", "CLUSTER", "AGE", "HOMEOWNR",

"CHILD03", "CHILD07", "CHILD12", "CHILD18", "NUMCHLD",

"INCOME", "GENDER", "WEALTH1", "HIT",

+ # donor interests

+ "COLLECT1", "VETERANS", "BIBLE", "CATLG", "HOMEE", "PETS",

"CDPLAY", "STEREO", "PCOWNERS", "PHOTO", "CRAFTS", "FISHER",

"GARDENIN", "BOATS", "WALKER", "KIDSTUFF", "CARDS", "PLATES",

+ # PEP star RFA status

+ "PEPSTRFL",

+ # summary variables of promotion history

+ "CARDPROM", "MAXADATE", "NUMPROM", "CARDPM12", "NUMPRM12",

+ # summary variables of giving history

+ "RAMNTALL", "NGIFTALL", "CARDGIFT", "MINRAMNT", "MAXRAMNT",

"LASTGIFT", "LASTDATE", "FISTDATE", "TIMELAG", "AVGGIFT",

+ # ID & targets

+ "CONTROLN", "TARGET_B", "TARGET_D", "TARGET_D2", "HPHONE_D",

+ # RFA (Recency/Frequency/Donation Amount)

+ "RFA_2F", "RFA_2A", "MDMAUD_R", "MDMAUD_F", "MDMAUD_A",

+ #others

+ "CLUSTER2", "GEOCODE2")

> cup98 <- cup98[, varSet]

13.3 Data Exploration

Generally speaking, data need to be explored in three steps. The first step is to check the
distribution of individual variables. This is to know the distribution of values of each
variable and check for missing values and outliers, so that we can know whether the
variables need any transformations and whether they should be included in or excluded
from modeling. The second step is to check the relationship between targets (depen-
dent variables) and predictors (independent variables), which can be used for feature
selection. The third step is to check the relationship among predictors themselves, so
that redundant variables can be removed.

Case Study II: Customer Response Prediction and Profit Optimization 161

We first have a look at summary status of the data and the distribution of numeric
variables. The code below can be easily changed to output plots of all variables to a
PDF file. Examples of results are shown in Figures 13.5 and 13.6.

> # select numeric variables

> idx.num <- which(sapply(cup98, is.numeric))

> layout(matrix(c(1,2),1,2)) # 2 graphs per page

> # histograms of numeric variables

> myHist <- function(x) {

+ hist(cup98[,x], main=NULL, xlab=x)

+ }

> sapply(names(idx.num[4:5]), myHist)

AGE NUMCHLD
breaks Numeric,21 Numeric,13
counts Integer,20 Integer,12
intensities Numeric,20 Numeric,12
density Numeric,20 Numeric,12
mids Numeric,20 Numeric,12
xname "cup98[, x]" "cup98[, x]"
equidist TRUE TRUE

> layout(matrix(1)) # change back to one graph per page

AGE

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
20

00
40

00
60

00

NUMCHLD

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
20

00
40

00
60

00
80

00

Figure 13.5 Histograms of numeric variables.

> # run code below to generate histograms for all numeric

variables

162 R and Data Mining

> # sapply(names(idx.num), myHist)

> layout(matrix(c(1,2),1,2)) # 2 graphs per page

> boxplot(cup98$HIT)

> cup98$HIT[cup98$HIT>200]

[1] 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240

[20] 240 240 240 240 240 241 240 240 240 240 241 240 240 240 240 240 240 240 240

[39] 240 240 240 240 240 240 240 240 240 240 240 240 240 240 241 241 240 240 240

[58] 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240

> boxplot(cup98$HIT[cup98$HIT<200])

> layout(matrix(1)) # change back to one graph per page

Figure 13.6 Boxplot of HIT.

The left plot in Figure 13.6 shows that there are some values separated from the
majority of HIT. A further checking shows that they are all of values 240 or 241. In
a real application, this issue should be discussed with domain experts. They might be
normal and therefore should be kept in training data. On the other hand, they could be
outliers and those records should be excluded from modeling. An alternative is to fill
them by data imputation, instead of removing those records. A naive way for imputation
is replacing the values with the mean or median of HIT in all records. In this exercise,
the data are not imputed.

We then check the distribution of donation in various age groups. Figure 13.7 shows
that people aged 30 to 60 are of higher median donation amount than others. It makes
sense because they are the working force.

Case Study II: Customer Response Prediction and Profit Optimization 163

> AGE2 <- cut(cup98pos$AGE, right=F, breaks=seq(0, 100, by=5))

> boxplot(cup98pos$TARGET_D ∼ AGE2, ylim=c(0,40), las=3)

[0
,5

)
[5

,1
0)

[1
0,

15
)

[1
5,

20
)

[2
0,

25
)

[2
5,

30
)

[3
0,

35
)

[3
5,

40
)

[4
0,

45
)

[4
5,

50
)

[5
0,

55
)

[5
5,

60
)

[6
0,

65
)

[6
5,

70
)

[7
0,

75
)

[7
5,

80
)

[8
0,

85
)

[8
5,

90
)

[9
0,

95
)

[9
5,

10
0)

0
10

20
30

40

Figure 13.7 Distribution of donation in various age groups.

Below we check the distribution of donation amount for different genders. The
results in Figure 13.8 show that the donation amount from joint account (“J”) is less
than male (“M”) or female (“F”).

> attach(cup98pos)

> layout(matrix(c(1,2),1,2)) # 2 graphs per page

> boxplot(TARGET_D GENDER, ylim=c(0,80))

> # density plot

> plot(density(TARGET_D[GENDER=="F"]), xlim=c(0,60), col=1, lty=1)

> lines(density(TARGET_D[GENDER=="M"]), col=2, lty=2)

> lines(density(TARGET_D[GENDER=="J"]), col=3, lty=3)

> legend("topright", c("Female", "Male", "Joint account"),

col=1:3, lty=1:3)

> layout(matrix(1)) # change back to one graph per page

> detach(cup98pos)

164 R and Data Mining

A C F J M U

0
20

40
60

80

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

density.default(x = TARGET_D[GENDER == "F"])

N = 2609 Bandwidth = 1.393

D
en

si
ty

Female
Male
Joint account

Figure 13.8 Distribution of donation in various age groups.

After that, we check the correlation between the target variable and other numeric
variables with function cor(). By setting use to pairwise.complete.obs, the cor-
relation between each pair of variables is computed using all complete pairs of obser-
vations on those variables, so that the resulting values will not be NA when there are
missing values in the data.

> correlation <- cor(cup98$TARGET_D, cup98[,idx.num],

use="pairwise.complete.obs")

> correlation <- abs(correlation)

> (correlation <- correlation[,order(correlation, decreasing=T)])

TARGET_D TARGET_B LASTGIFT RAMNTALL AVGGIFT MAXRAMNT

1.0000000000 0.7742323755 0.0616784458 0.0448101061 0.0442990841 0.0392237509

INCOME CLUSTER2 NUMPRM12 WEALTH1 MINRAMNT LASTDATE

0.0320627023 0.0290870830 0.0251337775 0.0248673117 0.0201578686 0.0188471021

NUMPROM CLUSTER CARDPM12 NUMCHLD CONTROLN CARDPROM

0.0173371740 0.0171274879 0.0163577542 0.0149204899 0.0133664439 0.0113023931

FISTDATE ODATEDW HIT CARDGIFT NGIFTALL MAXADATE

0.0075324932 0.0069484311 0.0066483728 0.0064498822 0.0048990126 0.0044963520

TIMELAG DOB HPHONE_D AGE RFA_2F

0.0036115917 0.0027541472 0.0024315898 0.0022823598 0.0009047682

> # save to a CSV file, with important variables at the top

> write.csv(correlation, "absolute_correlation.csv")

We also check the correlation between every pair of numeric variables and the scatter
plot of every pair of variables.

> cor(cup98[,idx.num])

> pairs(cup98)

Case Study II: Customer Response Prediction and Profit Optimization 165

We then plotted scatter plots of numeric variables, with points colored based on
target variables. Function jitter() is used below to introduce a small amount of
noise, which is useful when there are many overlapping points. A scatter plot of AGE
and HIT is shown in Figure 13.9.

> color <- ifelse(cup98$TARGET_D>0, "blue", "black")

> pch <- ifelse(cup98$TARGET_D>0, "+", ".")

> plot(jitter (cup98$AGE), jitter(cup98$HIT), pch=pch, col=color,

cex=0.7, ylim=c(0,70), xlab="AGE", ylab="HIT")

> legend("topleft", c("TARGET_D>0", "TARGET_D=0"), col=c("blue",

"black"), pch=c("+", "."))

0 20 40 60 80 100

0
10

20
30

40
50

60
70

AGE

H
IT

+ TARGET_D>0
TARGET_D=0

Figure 13.9 Scatter plot.

For categorical variables, we checked their association with chi-square test below
(see Figure 13.10).

> myChisqTest <- function(x) {

+ t1 <- table(cup98pos[,x], cup98pos$TARGET_D2)

+ plot(t1, main=x, las=1)

+ print(x)

+ print(chisq.test(t1))

+ }

> myChisqTest("GENDER") (see Figure 13.10)

166 R and Data Mining

[1] "GENDER"

Pearson’s Chi-squared test

data: t1

X-squared=NaN, df=42, p-value=NA

GENDER

AC F J M U
[0,0.1)

[0.1,10)

[10,15)

[15,20)

[20,25)

[25,30)

[30,50)
[50,200)

Figure 13.10 Mosaic plots of categorical variables.

> # run the code below to do chi-square test for all categorical

variables

> # idx.cat <- which(sapply(cup98pos, is.factor))

> # sapply(names(idx.cat), myChisqTest)

13.4 Training Decision Trees

In this section, we build decision trees using R, with the ctree() function in pack-
age party (Hothorn et al. [2010]). There are a few parameters, MinSplit, MinBusket,
MaxSurrogate, and MaxDepth, to control the training of decision trees. MinSplit is
the minimum number of instances in a node in order to be considered for splitting,
MinBusket sets the minimum number of instances in a terminal node, MaxSurrogate
stands for the number of surrogate splits to evaluate, and MaxDepth controls the max-
imum depth of the tree.

With the code below, we set the sizes of training data (70%) and test data (30%),
and the parameters for training decision trees. The MinSplit or MinBusket can be set
to be of the same scale as 1/100 of training data. This parameter and others should be

Case Study II: Customer Response Prediction and Profit Optimization 167

set based on business problem, domain expert’s experience, data, the reasonable time
to run an algorithm, and the expected size of trees.

> nRec <- dim(cup98)[1]

> trainSize <- round(nRec * 0.7)

> testSize <- nRec - trainSize

> # ctree parameters

> MinSplit <- 1000

> MinBucket <- 400

> MaxSurrogate <- 4

> MaxDepth <- 10

>(strParameters <- paste(MinSplit, MinBucket, MaxSurrogate,

MaxDepth, sep="-"))

[1] "1000–400–4–10"

> LoopNum <- 9

> # The cost for each contact is $0.68.

> cost <- 0.68

> varSet2 <- c("AGE", "AVGGIFT", "CARDGIFT", "CARDPM12",

"CARDPROM", "CLUSTER2", "DOMAIN", "GENDER", "GEOCODE2", "HIT",

"HOMEOWNR", "HPHONE_D", "INCOME", "LASTGIFT", "MAXRAMNT",

"MDMAUD_F", "MDMAUD_R", "MINRAMNT", "NGIFTALL", "NUMPRM12",

"PCOWNERS", "PEPSTRFL", "PETS", "RAMNTALL", "RECINHSE",

"RFA_2A", "RFA_2F", "STATE", "TIMELAG")

> cup98 <- cup98[, c("TARGET_D", varSet2)]

> library(party) # for ctree

The data are partitioned with random sampling into training and test sets. With
a single run, the built tree and tested result can be to some degree dependent on the
partitioning of data. Therefore, for each set of parameters, we run partitioning, training,
and testing for nine times and then use the average result to compare trees built with
different parameters. In the code below, with function pdf(), we set the width and
height of the graphics region and the point size to make a large tree fit nicely in an A4
paper. Function cumsum() calculates cumulative sum of a sequence of numbers.

> pdf(paste("evaluation-tree-", strParameters, ".pdf", sep=""),

+ width=12, height=9, paper="a4r", pointsize=6)

> cat(date(), "\n")
> cat(" trainSize=", trainSize, ", testSize=", testSize, "\n")

168 R and Data Mining

> cat(" MinSplit=", MinSplit, ", MinBucket=", MinBucket,

+ ", MaxSurrogate=", MaxSurrogate, ", MaxDepth=", MaxDepth, "\n\n")
> # run for multiple times and get the average result

> allTotalDonation <- matrix(0, nrow=testSize, ncol=LoopNum)

> allAvgDonation <- matrix(0, nrow=testSize, ncol=LoopNum)

> allDonationPercentile <- matrix (0, nrow=testSize, ncol=LoopNum)

> for (loopCnt in 1:LoopNum)

+ cat(date(), ": iteration = ", loopCnt, "\n")
+

+ # split into training data and testing data

+ trainIdx <- sample(1:nRec, trainSize)

+ trainData <- cup98[trainIdx,]

+ testData <- cup98[-trainIdx,]

+

+ # train a decision tree

+ myCtree <- ctree(TARGET_D ., data=trainData,

controls=ctree_control(minsplit=MinSplit, minbucket=MinBucket,

maxsurrogate=MaxSurrogate, maxdepth=MaxDepth))

+ # size of ctree

+ print(object.size(myCtree), units="auto")

+ save(myCtree, file=paste("cup98-ctree-", strParameters, "-run-",

+ loopCnt, ".rdata", sep=""))

+

+ figTitle <- paste("Tree", loopCnt)

+ plot(myCtree, main=figTitle, type="simple",

ip_args=list(pval=FALSE), ep_args=list(digits=0,abbreviate=TRUE),

tp_args=list(digits=2))

+ #print(myCtree)

+

+ # test

+ pred <- predict(myCtree, newdata=testData)

+ plot(pred, testData$TARGET_D)

Case Study II: Customer Response Prediction and Profit Optimization 169

+ print(sum(testData$TARGET_D[pred > cost] - cost))

+ # quick sort is "unstable" for tie values, so it is used

here to introduce a bit random for tie values

+ s1 <- sort(pred, decreasing=TRUE, method = "quick",

index.return=TRUE)

+ totalDonation <- cumsum(testData$TARGET_D[s1$ix])#

cumulative sum

+ avgDonation <- totalDonation / (1:testSize)

+ donationPercentile <- 100 * totalDonation /

sum(testData$TARGET_D)

+ allTotalDonation[,loopCnt] <- totalDonation

+ allAvgDonation[,loopCnt] <- avgDonation

+ allDonationPercentile[,loopCnt] <- donationPercentile

+ plot(totalDonation, type="l")

+ grid()

+ }

> graphics.off()

> cat(date(), ": Loop completed.\n\n\n"
> fnlTotalDonation <- rowMeans(allTotalDonation)

LASTGIFT

1

≤ 30 > 30

RAMNTALL

2

≤ 238 > 238

INCOME

3

≤ 4 > 4

n = 27816
y = 0.63

4

STATE

5

{AA, AE, C, G, I, K, MD, MO, N, O, S, W}{AK, AL, AP, AR, AZ, CO, CT, DC, DE, F, G, H, IA, IL, IN, K, L, MA, ME, MI, MN, MS, MT, ND, NE, NH, NJ, NM, NV, NY, OH, OK, P, S, TN, TX, U, VA, VI, VT, WA, WI}

STATE

6

{AA, AE, C, G, I, MD, MO, O}{K, N, S, W}

STATE

7

{AA, AE, G, MD, MO}{C, I, O}

n = 778
y = 1.21

8

LASTGIFT

9

≤ 11 > 11

n = 2089
y = 0.65

10
n = 5550
y = 1.13

11

n = 1818
y = 0.86

12

PEPSTRFL

13

X

AVGGIFT

14

≤ 13 > 13

n = 7218
y = 0.67

15
n = 1466
y = 1.51

16

CLUSTER2

17

≤ 21 > 21

HIT

18

≤ 0 > 0

n = 3055
y = 0.63

19
n = 2298
y = 0.9

20

n = 6639
y = 0.48

21

CARDPM12

22

≤ 7 > 7

MINRAMNT

23

≤ 6 > 6

n = 2426
y = 0.91

24
n = 536
y = 1.55

25

n = 431
y = 2.48

26

GENDER

27

{, A, J, M} {F, U}

HIT

28

≤ 5 > 5

n = 1820
y = 1.48

29
n = 403
y = 3.33

30

MAXRAMNT

31

≤ 49 > 49

STATE

32

{A, CA, CO, CT, I, K, M, N, S}{AK, AP, AR, AZ, F, G, H, IA, ID, IL, K, L, MA, MD, MN, MO, MS, MT, NC, ND, NE, NM, NY, OK, OR, R, S

n = 587
y = 1.57

33
n = 856
y = 0.35

34

n = 1002
y = 1.78

35

Figure 13.11 A decision tree.

170 R and Data Mining

> fnlAvgDonation <- rowMeans(allAvgDonation)

> fnlDonationPercentile <- rowMeans(allDonationPercentile)

> rm(trainData, testData, pred)

> # save results into a CSV file

> results <- data.frame(cbind(allTotalDonation,fnlTotalDonation))

> names(results) <- c(paste("run",1:LoopNum), "Average")

> write.csv(results, paste("evaluation-TotalDonation-",

strParameters, ".csv", sep=""))

One of the built decision trees is shown in Figure 13.11.

13.5 Model Evaluation

With a decision tree model, the customers are ranked in descending order based on the
predicted amount that they would donate. We plot the result of every run with the code
below and the results are shown in Figures 13.12 and 13.13. In the figures the black solid
line illustrates the average performance of all nine runs, while the other lines are the
performance of individual runs. The two figures show that run 7 produced the best result.

With the code below, we draw a point for every ten points to reduce the size of files
to save the charts. This is achieved with idx.pos.

> result <- read.csv("evaluation-TotalDonation-1000–400–4–10.csv")

> head(result)

X run.1 run.2 run.3 run.4 run.5 run.6 run.7 run.8 run.9 run.10 Average

1 1 0 0 0 0 0 0 0 0 18 0 1.8

2 2 0 0 0 0 0 0 0 0 18 0 1.8

3 3 0 0 0 0 0 0 0 0 18 0 1.8

4 4 0 0 0 0 0 0 0 0 18 10 2.8

5 5 0 0 0 0 0 0 0 0 18 10 2.8

6 6 0 0 0 50 0 0 0 0 18 10 7.8

> result[,2:12] <- result[,2:12] - cost * (1:testSize)

> # to reduce size of the file to save this chart

> idx.pos <- c(seq(1, nrow (result), by=10), nrow(result))

> plot(result[idx.pos,12], type="l", lty=1, col=1, ylim=c(0,4500),

+ xlab="Number of Mails", ylab="Amount of Donations ($)")

> for (fCnt in 1:LoopNum) {

Case Study II: Customer Response Prediction and Profit Optimization 171

+ lines (result[idx.pos,fCnt+1], pty=".", type="l",

lty=1+fCnt, col=1+fCnt)

+}

> legend("bottomright", col=1:(LoopNum+1), lty=1:(LoopNum+1),

+ legend=c("Average", paste("Run",1:LoopNum)))

0 500 1000 1500 2000 2500

0
10

00
20

00
30

00
40

00

Number of Mails

Am
ou

nt
 o

f D
on

at
io

ns
 ($

)

Average
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9

Figure 13.12 Total donation collected (1000–400–4–10).

> donationPercentile <- sapply(2:12, function(i)

+ 100 * result[,i] / result[testSize,i])

> percentile <- 100 * (1:testSize)/testSize

> plot(percentile[idx.pos], donationPercentile[idx.pos,11],

pty=".", type="l", lty=1, col=1, ylim=c(0,170), xlab="Contact

Percentile (%)", ylab="Donation Percentile (%)")

> grid(col = "gray", lty = "dotted")

> for (fCnt in 1:LoopNum) {

+ lines(percentile[idx.pos], donationPercentile[idx.pos,fCnt],

pty=".", type="l", lty=1+fCnt, col=1+fCnt)

+}

172 R and Data Mining

> legend("bottomright", col=1:(LoopNum+1), lty=1:(LoopNum+1),

+ legend=c("Average", paste("Run",1:LoopNum))) (see Figure 13.13)

0 20 40 60 80 100

0
50

10
0

15
0

Contact Percentile (%)

D
on

at
io

n
Pe

rc
en

til
e

(%
)

Average
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9

Figure 13.13 Total donation collected (9 runs).

Below we plot the evaluation result in a plot with double y-axis shown in Figure 13.14.
It shows average result of the above nine runs, where the red solid line shows the per-
centage of donation amount collected and the blue dotted line shows the average dona-
tion amount by the customers contacted. The average donation amount per customer
contacted is high in the left of the chart and then decreases when more customers are
contacted. Therefore, the model is effective in capturing in its top-ranked list of the
customers who would make big donations.

> avgDonation <- sapply(2:12, function(i) result[,i] /

(1:testSize))

> yTitle = c("Total Donation Amount Percentile (%)",

+ "Average Donation Amount per Contact ($)")

> par(mar=c(5,4,4,5)+.1)

> plot(percentile[idx.pos], donationPercentile[idx.pos,7],

pty=".", type="l", lty="solid", col="red", ylab=yTitle[1],

xlab="Contact Percentile (%)")

Case Study II: Customer Response Prediction and Profit Optimization 173

> grid(col = "gray", lty = "dotted")

> par(new=TRUE)

> plot(percentile[idx.pos], avgDonation[idx.pos,7], type="l",

lty="dashed", col="blue", xaxt="n", yaxt="n", xlab="", ylab="",

ylim=c(0,max (avgDonation[,7])))

> axis(4)

> mtext(yTitle[2], side=4, line=2)

> legend("right", col=c("red","blue"), lty=c("solid","dashed"),

+ legend=yTitle)

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Contact Percentile (%)

To
ta

l D
on

at
io

n
Am

ou
nt

 P
er

ce
nt

ile
 (%

)

0.
0

0.
5

1.
0

1.
5

2.
0

Av
er

ag
e

D
on

at
io

n
Am

ou
nt

 p
er

 C
on

ta
ct

 ($
)

Total Donation Amount Percentile (%)
Average Donation Amount per Contact ($)

Figure 13.14 Average result of nine runs.

13.6 Selecting the Best Tree

We tested the decision trees generated with ctree() with six sets of different parame-
ters. The average results of running each setting nine times are given in Figures 13.15
and 13.16. The labels in the legend show the values of MinSplit, MinBusket,
MaxSurrogate, and MaxDepth used in the six sets of parameters. For example,
with the first setting “1000–400–4–5”, MinSplit is set to 1000, MinBusket is 400,

174 R and Data Mining

MaxSurrogate is 4, and MaxDepth is 5. Three different values are tested for MinSplit,
which are 1000, 700, and 200. The corresponding values for MinBusket are 400, 200,
and 50. The MaxDepth is also tried with four values: 5, 6, 8, and 10. The MaxSurrogate
is set to 4 in all experiments.

Results are shown in Figures 13.15 and 13.16, where the horizontal axis repre-
sents the percentage of (ranked) customers contacted and the vertical axis shows the
amount of donations that could be collected. A model is expected to collect more dona-
tions with the same number of contacts. The two figures are generated with the code
below.

> # compare results got with different parameters

> parameters <- c("1000–400–4–5", "1000–400–4–6", "1000–400–4–8",

"1000–400–4–10")

> #parameters <- c("1000–400–4–10", "700–200–4–10", "200–50–4–10")

> paraNum <- length(parameters)

> percentile <- 100 * (1:testSize)/testSize

> # 1st result

> results <- read.csv(paste("evaluation-TotalDonation-",

parameters[1], ".csv", sep=""))

> avgResult <- results$Average - cost * (1:testSize)

> plot(percentile, avgResult, pty=1, type="l", lty=1, col=1,

+ ylab="Amount of Donation", xlab="Contact Percentile (%)",

+ main="Parameters: MinSplit, MinBucket, MaxSurrogate,

MaxDepth")

>grid(col = "gray", lty = "dotted")

> # other results

> for (i in 2:paraNum) {

+ results <- read.csv(paste("evaluation-TotalDonation-",

parameters[i], ".csv", sep=""))

+ avgResult <- results$Average - cost * (1:testSize)

+ lines(percentile, avgResult, type="l", lty=i, col=i)

+}

> legend("bottomright", col=1:paraNum, lty=1:paraNum,

legend=parameters)

Case Study II: Customer Response Prediction and Profit Optimization 175

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00
25

00
30

00

Parameters: MinSplit, MinBucket, MaxSurrogate, MaxDepth

Contact Percentile (%)

Am
ou

nt
 o

f D
on

at
io

n

1000−400−4−5
1000−400−4−6
1000−400−4−8
1000−400−4−10

Figure 13.15 Comparison of different parameter settings—I.

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00
25

00
30

00

Parameters: MinSplit, MinBucket, MaxSurrogate, MaxDepth

Contact Percentile (%)

Am
ou

nt
 o

f D
on

at
io

n

1000−400−4−10
700−200−4−10
200−50−4−10

Figure 13.16 Comparison of different parameter settings—II.

Figure 13.15 shows that results with depth 8 and 10 are better than depth 5 and 6.
Figure 13.16 shows that the three different sets of minimum bucket size and minimum
split size have very similar results. We choose “1000–400–4–10” to produce the final
model, because it is less likely to overfit than other models with smaller minimum
bucket sizes and split sizes.

176 R and Data Mining

13.7 Scoring

Now we have trained a couple of decision trees with the learning dataset “cup98LRN.txt”
and have selected the best one from them. Next, we will use the selected tree to score the
validation dataset “cup98VAL.txt”. People with a predicted donation amount greater
than 0.68, the cost of contact, would be mailed for donation purpose. The evaluation
criterion is the total amount of donations deducted by the total cost of mail.

Before scoring, we need to make sure that the data to score are of the same format as
the training data used to build the model, which is essential for the prediction function
to work. With the code below, we load the scoring data into R and set its factor levels
to those in the training data. Unknown or new values in categorical variables in scoring
data were set to NA (missing value).

> cup98val <- read.csv("./data/KDDCup1998/cup98VAL.txt")

> cup98val <- cup98val[, c("CONTROLN", varSet2)]

> trainNames <- names(cup98)

> scoreNames <- names(cup98val)

> # check if any variables not in scoring data

> idx <- which(trainNames %in% scoreNames)

> print(trainNames[-idx])

[1] "TARGET_D"

> # check and set levels in factors in scoring data

> scoreData <- cup98val

> vars <- intersect(trainNames, scoreNames)

> for (i in 1:length (vars)) {

+ varname <- vars[i]

+ trainLevels <- levels(cup98[,varname])

+ scoreLevels <- levels(scoreData[,varname])

+ if (is.factor(cup98[,varname]) & setequal(trainLevels,

scoreLevels)==F) {

+ cat("Warning: new values found in score data, and they

will be changed to NA!\n")

+ cat(varname, "\n")

Case Study II: Customer Response Prediction and Profit Optimization 177

+ #cat("train: ", length(trainLevels), ", ", trainLevels,

"\n")

+ #cat("score: ", length (scoreLevels), ", ",

scoreLevels, "\n\n")

+ scoreData[,varname] <- factor(scoreData[,varname],

levels=trainLevels)

+ }

+}

Warning: new values found in score data, and they will be changed

to NA!

GENDER

Warning: new values found in score data, and they will be changed

to NA!

STATE

> rm(cup98val)

After preparing the data to score, we then make predictions for them.

> # loading the selected model

> load("cup98-ctree-1000–400–4–10-run-7.Rdata")

> # predicting

> pred <- predict(myCtree, newdata=scoreData)

> pred <- round(pred, digits=3)

> #table(pred, useNA="ifany")

> result <- data.frame(scoreData$CONTROLN, pred)

> names(result) <- c("CONTROLN", "pred")

> valTarget <- read.csv("./data/KDDCup1998/valtargt.txt")

> merged <- merge(result, valTarget, by="CONTROLN")

> # donation profit if mail all people

> sum(valTarget$TARGET_D - cost)

[1] 10560.08

178 R and Data Mining

> # donation profit if mail those predicted to donate more than

mail cost

> idx <- (merged$pred > cost)

> sum(merged$TARGET_D[idx] - cost)

[1] 13087.33

The above result shows that the model would produce a profit of $13,087, which
would make it ranked no. 7 in the competition of KDD CUP 1998.

> # ranking customers

> merged <- merged[order (merged$pred, decreasing=T),]

> x <- 100 * (1:nrow (merged)) / nrow(merged)

> y <- cumsum(merged$TARGET_D) - cost*(1:nrow (valTarget))

> # to reduce size of the file to save this chart

> idx.pos <- c(seq(1, length (x), by=10), length(x))

> plot(x[idx.pos], y[idx.pos], type="l", xlab="Contact Percentile

(%)", ylab="Amount of Donation")

> grid() (see Figure 13.17)

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00
0

Contact Percentile (%)

Am
ou

nt
 o

f D
on

at
io

n 0
0

0
0

Figure 13.17 Validation result.

Case Study II: Customer Response Prediction and Profit Optimization 179

13.8 Discussions and Conclusions

This chapter presents a case study on profit optimization with decision trees. It clearly
describes the process and data mining techniques, and provides R code examples, which
readers can follow and apply in their own projects.

The aim of this chapter is to demonstrate how to build decision trees for real-world
applications, and the built model is not the best model, even when compared with the
models built for the KDD Cup in 1998. The readers are suggested to try the following
methods to build better models.

The first method is to use a two-stage model, which was adopted by the gold winner of
the KDD Cup 1998. With a two-stage model, the first model is to predict the probability
of donation, the second model is to predict the conditional donation amount, and the
product of the above two prediction produces an unconditional prediction of donation
amount. More details about the method can be found at http://www.kdnuggets.com/
meetings/kdd98/gain-kddcup98-release.html.

One might also try to make the data balanced. As shown in Figure 13.2, the per-
centage of people with donations is only 5.1% and the majority have not made any
donations. The data can be made balanced by downsampling non-donated cases and/or
oversampling donated ones, which might make it easier to build a predictive model and
might produce better models.

Another method to try is derive new variables based on dates and historical donations.
In this case study, no date variables or historical donations were used for modeling.
Actually, some potentially useful information can be extracted from them, such as the
number of days since last donation, and the number/amount of donations in the last
one/two/three years. New derived variables may help to improve the performance of
predictive models.

In this case study, some categorical variables with many levels were not included in
the modeling process, because they would make the algorithms consume much more
RAM and take much longer to run. However, they can be grouped to reduce the number
of levels, especially for those infrequent levels, such as states and zipcodes with very
small population.

One can also impute data by removing outliers and filling missing values, which
were not covered in this case study.

http://www.kdnuggets.com/meetings/kdd98/gain-kddcup98-release.html

14 Case Study III: Predictive
Modeling of Big Data with
Limited Memory

This chapter shows a case study on building a predictive model with limited memory.
Because the training dataset was large and not easy to build decision trees within R,
multiple subsets were drawn from it by random sampling, and a decision tree was built
for each subset. After that, the variables appearing in any one of the built trees were
used for variable selection from the original training dataset to reduce data size. In the
scoring process, the scoring dataset was also split into subsets, so that the scoring could
be done with limited memory. R codes for printing rules in plain English and in SAS
format are also presented in this chapter.

14.1 Introduction

In this case study, we still tackle the problem of the KDD Cup 1998, which has been
used in Chapter 13. The same methodology has been applied successfully in a real-
world business application. However, the details of that application cannot be disclosed
due to customer privacy and business confidentiality. Therefore, the data of the KDD
Cup 1998 is used here to demonstrate the methodology for predictive modeling of big
data with limited memory.

The data are in comma delimited format. The learning dataset “cup98LRN.txt”
contains 95,412 records and 481 fields, and the validation dataset “cup98VAL.txt”
contains 96,367 records and 479 variables. They contain many categorical variables,
some of which have many value levels. A detailed description of the KDD Cup 98
datasets can be found in Section 13.2.

In this case study, we change the objective to predicting the likelihood that people
make donations, that is, the target variable is set to TARGET_B, a binary variable indicat-
ing whether or not the record responded to mail. Note that in Chapter 13, TARGET_D, the
donation amount in dollar, was used as the target variable. This change is to demonstrate
how to predict probability, instead of a dollar amount.

The experiments in this chapter were conducted on a PC running Windows XP
Professional SP3, with an Intel dual Core i5 3.1GHz CPU and 4 GB RAM. Although
many PCs are much more powerful and have more RAM than the above one, the
methodology presented in this chapter should be helpful when analyzing big data.

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00014-3
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396963-7.00014-3

182 R and Data Mining

14.2 Methodology

In the data of this case study, there are two classes: target customers and non-target
customers, labeled respectively as 1 and 0. It is similar with risk modeling of customers.

The technique of decision trees is used in this case study, because decision trees
are easy to understand by business people and management, and the rules are simple
and easy to be accepted and implemented by business, as compared to SVM or neural
networks. They support mixed type data with both categorical and numerical variables,
and can also handle missing values. Specifically, function ctree() in package party
is used to build trees.

It took too long to train a model with large data, especially with some categorical
variables having many value levels. An option is to use a small sample to train models.
We took a different way by using as many training data as possible. To make it work,
we draw 20 random samples of training data, and built 20 decision trees, one tree
for each sample. There are around 20–30 variables in each tree, and many trees share
similar set of variables. Then we collected all variables appearing in those trees, and got
around 60 variables. After that, we used all original training data for training without
any sampling, but with the above 60 variables only. In this way, all training cases were
used to build a final model, but with only those attributes having appeared in the 20
trees built on sampled data.

14.3 Data and Variables

With the code below, the training data are loaded into R, and a set of variables are
selected.

> cup98 <- read.csv("./data/KDDCup1998/cup98LRN.txt")

> dim(cup98)

[1] 95412 481

> n.missing <- rowSums(is.na (cup98))

> sum(n.missing > 0)

[1] 95412

> varSet <- c(

+ # demographics

+ "ODATEDW", "OSOURCE", "STATE", "ZIP", "PVASTATE", "DOB",

"RECINHSE", "MDMAUD", "DOMAIN", "CLUSTER", "AGE", "HOMEOWNR",

"CHILD03", "CHILD07", "CHILD12", "CHILD18", "NUMCHLD",

"INCOME", "GENDER", "WEALTH1", "HIT",

+ # donor interests

Case Study III: Predictive Modeling of Big Data with Limited Memory 183

+ "COLLECT1", "VETERANS", "BIBLE", "CATLG", "HOMEE", "PETS",

"CDPLAY", "STEREO", "PCOWNERS", "PHOTO", "CRAFTS", "FISHER",

"GARDENIN", "BOATS", "WALKER", "KIDSTUFF", "CARDS", "PLATES",

+ # PEP star RFA status

+ "PEPSTRFL",

+ # summary variables of promotion history

+ "CARDPROM", "MAXADATE", "NUMPROM", "CARDPM12", "NUMPRM12",

+ # summary variables of giving history

+ "RAMNTALL", "NGIFTALL", "CARDGIFT", "MINRAMNT", "MAXRAMNT",

"LASTGIFT", "LASTDATE", "FISTDATE", "TIMELAG", "AVGGIFT",

+ # ID & targets

+ "CONTROLN", "TARGET_B", "TARGET_D", "HPHONE_D",

+ # RFA (Recency/Frequency/Donation Amount)

+ "RFA_2F", "RFA_2A", "MDMAUD_R", "MDMAUD_F", "MDMAUD_A",

+ #others

+ "CLUSTER2", "GEOCODE2")

> # remove ID & TARGET_D

> vars <- setdiff(varSet, c("CONTROLN", "TARGET_D"))

> cup98 <- cup98[,vars]

14.4 Random Forest

We first try to build random forests with two R packages, randomForest and party.
Package randomForest cannot handle missing values or categorical variables with

more than 32 levels. Unfortunately, all records in the learning data have one or more
missing values. Even in the data with variables in varSet only, there are about 93%
of the records containing one or more missing values. It is a common situation in real-
world data that most records have missing values. There are often categorical variables
with more than 32 levels, such as country, ZIP code, occupation, and manufacturer.
Some of them can be grouped into fewer categories, such as occupation. The levels
of others can be reduced by putting levels with few records into groups, such as small
countries and manufacturers.

> library(randomForest)

> rf <- randomForest(TARGET_B ˜ ., data=cup98)

184 R and Data Mining

Below we check data for missing values and categorical variables with over ten
levels.

> # check missing values

> n.missing <- rowSums(is.na(cup98))

> (tab.missing <- table(n.missing))

n.missing
0 1 2 3 4 5 6 7
6782 36864 23841 13684 11716 2483 41 1

> # percentage of records without missing values

> round(tab.missing["0"]/ nrow(cup98), digits=2)

0
0.07

> # check levels of categorical variables

> idx.cat <- which(sapply(cup98, is.factor))

> all.levels <- sapply(names(idx.cat), function(x)

nlevels(cup98[,x]))

> all.levels[all.levels > 10]

OSOURCE STATE ZIP MDMAUD DOMAIN
896 57 19938 28 17

Below we split the data into training and test subsets.

> trainPercentage <- 80

> testPercentage <- 20

> ind <- sample(2, nrow(cup98), replace=TRUE,

+ prob=c(trainPercentage, testPercentage))

> trainData <- cup98[ind==1,]

> testData <- cup98[ind==2,]

We then try random forest with cforest() in package party as below. With 80%
training data, it took about 2 minutes to build one tree and would take around 1.5 hours
to build a random forest of 50 trees.

> # cforest

> library(party)

> (time1 <- Sys.time())

Case Study III: Predictive Modeling of Big Data with Limited Memory 185

> cf <- cforest(TARGET_B˜., data=trainData,

+ control = cforest_unbiased(mtry = 2, ntree = 50))

> (time2 <- Sys.time())

> time2 - time1

> print(object.size(cf), units = "Mb")

> myPrediction <- predict(cf, newdata=testData)

> (time3 <- Sys.time())

> time3 - time2

14.5 Memory Issue

In the rest of this chapter, we will build decision trees with function ctree() in package
party.

> memory.limit(4095)

[1] 4095

> library(party)

> ct <- ctree(TARGET_B ˜ ., data=trainData)

In the above code, memory.limit() sets the limit of memory (in MB) available to
R. Another function memory.size() reports the current or maximum memory used by
R. A useful function to check what memory is used for memory.profile(). Function
object.size() returns the size of memory used by an R object. Details on memory
allocation in R can be found by running ?memory.size.

When running the above code to build a decision tree with ctree(), we encountered
a problem of memory. On a PC running Windows XP with 4GB RAM, we got an error
message: “Error: cannot allocate vector of size 652.2 Mb”, when the required memory
is larger than 3GB on a 32-bit Windows machine. On a 64-bit Windows machine with
4GB RAM, it ran out of physical memory with the following error message:

Error: cannot allocate vector of size 3.0 Gb

In addition: Warning messages:

1: In as.vector(data):

Reached total allocation of 4095 Mb: see help(memory.size)

...

One way to reduce memory requirement is to group or remove categorical variables
which have many levels. We first tried to use 20% of data for training, which contains
around 19,200 rows and 62 columns. Function ctree() returned an error “reach total
memory allocation” when ZIP was included. After removing ZIP, it ran successfully,

186 R and Data Mining

but took 25 min. We then removed OSOURCE, and it built a decision tree in 5 seconds.
We also tried to feed 80% of data (around 76,000 rows and 60 columns) into ctree()

with both ZIP and OSOURCE removed and it completed in 25 seconds.

14.6 Train Models on Sample Data

To find out which variables are useful for modeling, the process in this section is
repeated ten times to build ten decision trees. The variables appearing in any of the ten
trees were collected and used to build a final model in the next section.

We first split the data into three subsets, training data (30%), test data (20%), and the
rest. The reason for withholding some data as the rest is to reduce the size of training
and test data, so that the training and test can be completed successfully on a machine
with limited memory.

> library(party) # for ctree

> trainPercentage <- 30

> testPercentage <- 20

> restPrecentage <- 100 - trainPercentage - testPercentage

> fileName <- paste("cup98-ctree", trainPercentage,

testPercentage, sep="-")

> vars <- setdiff(varSet, c("TARGET_D", "CONTROLN", "ZIP",

"OSOURCE"))

> # partition the data into training and test datasets

> ind <- sample(3, nrow(cup98), replace=T,

+ prob=c(trainPercentage, testPercentage, restPrecentage))

> trainData <- cup98[ind==1, vars]

> testData <- cup98[ind==2, vars]

After sampling, we check whether the distribution of targets in both training and test
data are the same as that in the original data. If not, stratified sampling might be used.

> # check the percentage of classes

> round(prop.table(table(cup98$TARGET_B)), digits=3)

0 1
0.949 0.051

> round(prop.table(table(trainData$TARGET_B)), digits=3)

0 1
0.949 0.052

Case Study III: Predictive Modeling of Big Data with Limited Memory 187

> round(prop.table(table(testData$TARGET_B)), digits=3)

0 1
0.949 0.051

> # remove raw data to save memory

> rm(cup98, ind)

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 536865 28.7 818163 43.7 741108 39.6
Vcells 2454644 18.8 20467682 156.2 78071440 595.7

> memory.size()

[1] 57.95

After that, we then use function ctree() to build a decision tree with the training
data. To make the examples simple and easy to read, in this chapter, we use default
settings when calling ctree() to train decision trees. For examples on setting the
parameters for decision trees, please refer to Section 13.4. In the code below, function
object.size() returns the size of a data object.

> # build ctree

> myCtree <- NULL

> startTime <- Sys.time()

> myCtree <- ctree(TARGET_B˜., data=trainData)

> Sys.time() - startTime

Time difference of 8.802615 s

> print(object.size(myCtree), units = "Mb")

10.1 Mb

> #print(myCtree)

> memory.size()

[1] 370.7

> # plot the tree and save it in a .PDF file

> pdf(paste(fileName, ".pdf", sep=""), width=12, height=9,

+ paper="a4r", pointsize=6)

> plot(myCtree, type="simple", ip_args=list(pval=F),

ep_args=list(digits=0), main=fileName)

188 R and Data Mining

> graphics.off()

The above process in this section is repeated ten times to build ten trees.

14.7 Build Models with Selected Variables

After building ten decision trees, variables appearing in any of the ten trees are collected
and used for building a final model. At this time, all data are used for learning, with
80% for training and 20% for testing.

> vars.selected <- c("CARDS", "CARDGIFT", "CARDPM12", "CHILD12",

"CLUSTER2", "DOMAIN", "GENDER", "GEOCODE2", "HIT", "HOMEOWNR",

"INCOME", "LASTDATE", "MINRAMNT", "NGIFTALL", "PEPSTRFL",

"RECINHSE", "RFA_2A", "RFA_2F", "STATE", "WALKER")

> trainPercentage <- 80

> testPercentage <- 20

> fileName <- paste("cup98-ctree", trainPercentage,

testPercentage, sep="-")

> vars <- c("TARGET_B", vars.selected)

> # partition the data into training and test subsets

> ind <- sample(2, nrow(cup98), replace=T, prob=c(trainPercentage,

testPercentage))

> trainData <- cup98[ind==1, vars]

> testData <- cup98[ind==2, vars]

> # build a decision tree

> myCtree <- ctree(TARGET_B˜., data=trainData)

> print(object.size(myCtree), units = "Mb")

39.7 Mb

> memory.size()

[1] 1010.44

> print(myCtree)

Conditional inference tree with 21 terminal nodes

Response: TARGET_B

Inputs: CARDS, CARDGIFT, CARDPM12, CHILD12, CLUSTER2, DOMAIN,

GENDER, GEOCODE2, HIT, HOMEOWNR, INCOME, LASTDATE, MINRAMNT,

NGIFTALL, PEPSTRFL, RECINHSE, RFA_2A, RFA_2F, STATE, WALKER

Case Study III: Predictive Modeling of Big Data with Limited Memory 189

Number of observations: 76450

1) RFA_2A == {D, E}; criterion = 1, statistic = 428.147

2) LASTDATE <= 9606; criterion = 1, statistic = 93.226

3) RFA_2F <= 2; criterion = 1, statistic = 87.376

4) INCOME <= 1; criterion = 0.985, statistic = 77.333

5)* weights = 903

4) INCOME > 1

6)* weights = 6543

3) RFA_2F > 2

7) CARDPM12 <= 4; criterion = 1, statistic = 54.972

8)* weights = 1408

7) CARDPM12 > 4

9) PEPSTRFL == {X}; criterion = 1, statistic = 47.597

10) WALKER == {Y}; criterion = 1, statistic = 40.911

11)* weights = 1152

10) WALKER == {}

12)* weights = 8479

9) PEPSTRFL == {}

13)* weights = 3804

2) LASTDATE > 9606

14)* weights = 1000

1) RFA_2A == {F, G}

15) PEPSTRFL == {X}; criterion = 1, statistic = 102.032

16) LASTDATE <= 9607; criterion = 1, statistic = 48.418

17) MINRAMNT <= 12.5; criterion = 1, statistic = 45.804

18) RFA_2F <= 1; criterion = 1, statistic = 51.858

19)* weights = 8121

18) RFA_2F > 1

20) GENDER == { , A, J, M, U}; criterion = 0.998,

statistic = 46.458

21) GENDER == {A, J}; criterion = 0.998,

statistic = 37.321

22)* weights = 38

21) GENDER == { , M, U}

23)* weights = 3591

20) GENDER == {F}

24)* weights = 4428

17) MINRAMNT > 12.5

25) CARDPM12 <= 4; criterion = 0.983,

statistic = 37.436

26) NGIFTALL <= 2; criterion = 0.986,

statistic = 11.874

27)* weights = 9

190 R and Data Mining

26) NGIFTALL > 2

28)* weights = 39

25) CARDPM12 > 4

29)* weights = 605

16) LASTDATE > 9607

30) CARDPM12 <= 10; criterion = 1, statistic = 31.728

31)* weights = 881

30) CARDPM12 > 10

32)* weights = 113

15) PEPSTRFL == {}

33) CARDGIFT <= 5; criterion = 1, statistic = 90.915

34) CLUSTER2 <= 34; criterion = 1, statistic = 91.259

35)* weights = 19613

34) CLUSTER2 > 34

36) RFA_2A == {F}; criterion = 0.966,

statistic = 58.501

37)* weights = 10712

36) RFA_2A == {G}

38)* weights = 3843

33) CARDGIFT > 5

39) RFA_2F <= 2; criterion = 0.974, statistic = 39.703

40)* weights = 951

39) RFA_2F > 2

41)* weights = 217

Then the built tree is saved into a Rdata file and the plot of it is saved into a PDF file.
When a decision tree is big, the nodes and text in its plot may overlap with each other.
A trick to avoid that is to set a big paper size (with width and height) and a small
font (with pointsize). Moreover, the text in the plot can be reduced when plotting
the tree, with ip_args=list(pval=FALSE) to suppress p-values and ep_args=list

(digits=0) to reduce the length of numeric values. A plot of the tree is shown in
Figure 14.1.

> save(myCtree, file = paste (fileName, ".Rdata", sep=""))

> pdf(paste(fileName, ".pdf", sep=""), width=12, height=9,

+ paper="a4r", pointsize=6)

> plot(myCtree, type="simple", ip_args=list(pval=F), ep_args=list

(digits=0), main=fileName)

> plot(myCtree, terminal_panel=node_barplot(myCtree),

ip_args=list(pval=F), ep_args=list(digits=0), main=fileName)

> graphics.off()

Case Study III: Predictive Modeling of Big Data with Limited Memory 191

RFA_2A

1

{D, E} {F, G}

LASTDATE

2

≤ 9606 > 9606

RFA_2F

3

≤ 2 > 2

INCOME

4

≤ 1 > 1

Node 5 (n = 903)

0

0.2

0.4

0.6

0.8

Node 6 (n = 6543)

0

0.2

0.4

0.6

0.8

CARDPM12

7

≤ 4 > 4

Node 8 (n = 1408)

0

0.2

0.4

0.6

0.8

PEPSTRFL

9

X

WALKER

10

Y

Node 11 (n = 1152)

0

0.2

0.4

0.6

0.8

Node 12 (n = 8479)

0

0.2

0.4

0.6

0.8

Node 13 (n = 3804)

0

0.2

0.4

0.6

0.8

Node 14 (n = 1000)

0

0.2

0.4

0.6

0.8

PEPSTRFL

15

X

LASTDATE

16

≤ 9607 > 9607

MINRAMNT

17

≤ 12 > 12

RFA_2F

18

≤ 1 > 1

Node 19 (n = 8121)

0

0.2

0.4

0.6

0.8

GENDER

20

{ , A, J, M, U} F

GENDER

21

{A, J} { , M, U}

Node 22 (n = 38)

0

0.2

0.4

0.6

0.8

Node 23 (n = 3591)

0

0.2

0.4

0.6

0.8

Node 24 (n = 4428)

0

0.2

0.4

0.6

0.8

CARDPM12

25

≤ 4 > 4

NGIFTALL

26

≤ 2 > 2

Node 27 (n = 9)

0

0.2

0.4

0.6

0.8

Node 28 (n = 39)

0

0.2

0.4

0.6

0.8

Node 29 (n = 605)

0

0.2

0.4

0.6

0.8

CARDPM12

30

≤ 10 > 10

Node 31 (n = 881)

0

0.2

0.4

0.6

0.8

Node 32 (n = 113)

0

0.2

0.4

0.6

0.8

CARDGIFT

33

≤ 5 > 5

CLUSTER2

34

≤ 34 > 34

Node 35 (n = 19613)

0

0.2

0.4

0.6

0.8

RFA_2A

36

F G

Node 37 (n = 10712)

0

0.2

0.4

0.6

0.8

Node 38 (n = 3843)

0

0.2

0.4

0.6

0.8

RFA_2F

39

≤ 2 > 2

Node 40 (n = 951)

0

0.2

0.4

0.6

0.8

Node 41 (n = 217)

0

0.2

0.4

0.6

0.8

Figure 14.1 Decision tree.

The built model is then tested with the test data, and the test results are checked (see
Figures 14.2, 14.3 and 14.4).

> rm(trainData)

> myPrediction <- predict(myCtree, newdata=testData)

> # check predicted results

> testResult <- table(myPrediction, testData$TARGET_B)

> percentageOfOne <- round(100 * testResult[,2] / (testResult[,1]

+ testResult[,2]), digits=1)

> testResult <- cbind(testResult, percentageOfOne)

> print(testResult)

0 1 percentageOfOne
0.0223783502472027 884 23 2.5
0.0310077519379845 260 8 3.0
0.0323935772964899 2541 82 3.1
0.0377810635802784 4665 214 4.4
0.0426055904445265 2007 75 3.6
0.0525762355415352 208 10 4.6
0.0535230352303523 1046 54 4.9
0.0557308096740273 841 50 5.6
0.0570074889194559 1587 90 5.4

192 R and Data Mining

0.0573656363130047 845 55 6.1
0.0743801652892562 160 9 5.3
0.0764241066163463 1895 154 7.5
0.0851305334846765 204 10 4.7
0.102564102564103 15 2 11.8
0.105990783410138 45 6 11.8
0.112847222222222 232 28 10.8
0.122159090909091 309 42 12.0
0.135 240 26 9.8
0.184210526315789 8 0 0.0
0.212389380530973 22 8 26.7
0.888888888888889 2 0 0.0

> boxplot(myPrediction ˜ testData$TARGET_B, xlab="TARGET_B",

ylab="Prediction", ylim=c(0,0.25))

0 1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

TARGET_B

Pr
ed

ic
tio

n

Figure 14.2 Test result—I.

> s1 <- sort(myPrediction, decreasing=TRUE, method = "quick",

index.return=TRUE)

> testSize <- nrow(testData)

> TotalNumOfTarget <- sum(testData$TARGET_B)

> NumOfTarget <- rep(0, testSize)

Case Study III: Predictive Modeling of Big Data with Limited Memory 193

> NumOfTarget[1] <- (testData$TARGET_B)[s1$ix[1]]

> for (i in 2:testSize) {

+ NumOfTarget[i] <- NumOfTarget[i-1] + testData$TARGET_B[s1$ix[i]]

+ }

> plot(1:testSize, NumOfTarget, pty=".", type="l", lty="solid",

col="red", ylab="Count Of Responses in Top k", xlab="Top k",

main=fileName)

> grid(col = "gray", lty = "dotted")

0 5000 10000 15000

0
20

0
40

0
60

0
80

0

cup98−ctree−80−20

Top k

C
ou

nt
 O

f R
es

po
ns

es
 in

 T
op

 k

Figure 14.3 Test result—II.

> percentile <- 100 * (1:testSize)/ testSize

> percentileTarget <- 100 * NumOfTarget/ TotalNumOfTarget

> plot(percentile, percentileTarget, pty=".", type="l",

lty="solid", col="red", ylab="Percentage of Predicted Donations

(%)", xlab="Percentage of Pool", main=fileName)

> grid(col = "gray", lty = "dotted")

194 R and Data Mining

0 20 40 60 80 100

0
20

40
60

80
10

0

cup98−ctree−80−20

Percentage of Pool

Pe
rc

en
ta

ge
 o

f P
re

di
ct

ed
 D

on
at

io
ns

 (%
)

Figure 14.4 Test result—III.

14.8 Scoring

When scoring a big data with a big tree, it may run out of memory. To reduce memory
consumption, we split score data into multiple subsets, apply the predictive model to
them separately and then put the scored results together.

> memory.limit(4095)

> # read scoring data and training data

> cup98val <- read.csv("./data/KDDCup1998/cup98VAL.txt")

> cup98 <- read.csv("./data/KDDCup1998/cup98LRN.txt")

> library(party) # for ctree

> treeFileName <- "cup98-ctree-80–20"

> splitNum <- 10

Before scoring, we need to check whether the categorical variables in scoreData

are of the same levels as those in trainData. If not, we need to set factor levels in
scoreData to those in trainData, which is essential for the predict() function to
work. Unknown or new values in categorical variables in scoring data are set to NAs
(i.e., missing values).

Case Study III: Predictive Modeling of Big Data with Limited Memory 195

> # check and set levels of categorical variables

> trainData <- cup98[,vars]

> vars2 <- setdiff(c(vars,"CONTROLN"), "TARGET_B")

> scoreData <- cup98val[,vars2]

> rm(cup98, cup98val)

> trainNames <- names(trainData)

> scoreNames <- names(scoreData)

> #cat("\n checking and setting variable values \n")

> newScoreData <- scoreData

> variableList <- intersect(trainNames, scoreNames)

> for (i in 1:length(variableList)) {

+ varname <- variableList[i]

+ trainLevels <- levels(trainData[,varname])

+ scoreLevels <- levels(newScoreData[,varname])

+ if (is.factor(trainData[,varname]) & setequal(trainLevels,

scoreLevels)==F) {

+ cat("Warning: new values found in score data, and they

will be changed to NA!\n")

+ cat(varname, "\n")

+ cat("train: ", length(trainLevels), ", ", trainLevels,

"\n")

+ cat("score: ", length(scoreLevels), ", ", scoreLevels,

"\n\n")

+ newScoreData[,varname] <- factor(newScoreData[,varname],

+ levels=trainLevels)

+ } #endif

+ }

Warning: new values found in score data, and they will be changed

to NA!

196 R and Data Mining

GENDER
train: 7, A C F J M U
score: 5, F J M U

Warning: new values found in score data, and they will be changed

to NA!

STATE
train: 57, AA AE AK AL AP AR AS AZ CA CO CT DC DE FL GA GU HI

IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND
NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA
VI VT WA WI WV WY

score: 59, AA AE AK AL AP AR ASv AZ CA CO CT DC DE FL GA GU
HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC
ND NE NH NJ NM NV NY OH OK OR PA PR PW RI SC SD TN
TX UT VA VI VT WA WI WV WY

After checking the new data, we then load the model and check memory usage. We
also remove some objects which will no longer be used and do a garbage collection
with function gc().

> # loading model

> load(paste(treeFileName, ".Rdata", sep=""))

> print(object.size(trainData), units = "Mb")

8 Mb

> print(object.size(scoreData), units = "Mb")

8.1 Mb

> print(object.size(newScoreData), units = "Mb")

8.1 Mb

> print(object.size(myCtree), units = "Mb")

39.7 Mb

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 670228 35.8 1073225 57.4 1073225 57.4
Vcells 60433162 461.1 130805779 998.0 130557146 996.1

> memory.size()

[1] 516.73

Case Study III: Predictive Modeling of Big Data with Limited Memory 197

> rm(trainNames, scoreNames)

> rm(variableList)

> rm(trainLevels, scoreLevels)

> rm(trainData, scoreData)

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 670071 35.8 1073225 57.4 1073225 57.4
Vcells 58323258 445.0 130805779 998.0 130557146 996.1

> memory.size()

[1] 500.23

Next, the scoring data are split into multiple subsets and the built tree is applied to
each subset to reduce memory consumption. After scoring, the distribution of scores
is shown in Figure 14.5.

> nScore <- dim(newScoreData)[1]

> (splitSize <- round(nScore/splitNum))

[1] 9637

> myPred <- NULL

> for (i in 1:splitNum) {

+ startPos <- 1 + (i-1)*splitSize

+ if (i==splitNum) {

+ endPos <- nScore

+ }

+ else {

+ endPos <- i * splitSize

+ }

+ print(paste("Predicting:", startPos, "–", endPos))

+ # make prediction

+ tmpPred <- predict(myCtree, newdata = newScoreData

[startPos:endPos,])

198 R and Data Mining

+ myPred <- c(myPred, tmpPred)

+ }

[1] "Predicting: 1 – 9637"

[1] "Predicting: 9638 – 19274"

[1] "Predicting: 19275 – 28911"

[1] "Predicting: 28912 – 38548"

[1] "Predicting: 38549 – 48185"

[1] "Predicting: 48186 – 57822"

[1] "Predicting: 57823 – 67459"

[1] "Predicting: 67460 – 77096"

[1] "Predicting: 77097 – 86733"

[1] "Predicting: 86734 – 96367"

> # cumulative count and percentage

> length(myPred)

[1] 96367

> rankedLevels <- table(round(myPred, digits=4))

> # put highest rank first by reversing the vector

> rankedLevels <- rankedLevels[length(rankedLevels):1]

> levelNum <- length(rankedLevels)

> cumCnt <- rep(0, levelNum)

> cumCnt[1] <- rankedLevels[1]

> for (i in 2:levelNum) {

+ cumCnt[i] <- cumCnt[i-1] + rankedLevels[i]

+}

> cumPercent <- 100 * cumCnt / nScore

> cumPercent <- round(cumPercent, digits=1)

Case Study III: Predictive Modeling of Big Data with Limited Memory 199

> percent <- 100 * rankedLevels / nScore

> percent <- round(percent, digits=1)

> cumRanking <- data.frame(rankedLevels, cumCnt, percent,

cumPercent)

> names(cumRanking) <- c("Frequency", "CumFrequency",

"Percentage", "CumPercentage")

> print(cumRanking)

Frequency CumFrequency Percentage CumPercentage
0.8889 9 9 0.0 0.0
0.2124 141 150 0.1 0.2
0.1842 68 218 0.1 0.2
0.135 1342 1560 1.4 1.6
0.1222 1779 3339 1.8 3.5
0.1128 1369 4708 1.4 4.9
0.106 278 4986 0.3 5.2
0.1026 56 5042 0.1 5.2
0.0851 1138 6180 1.2 6.4
0.0764 10603 16783 11.0 17.4
0.0744 800 17583 0.8 18.2
0.0574 4611 22194 4.8 23.0
0.057 8179 30373 8.5 31.5
0.0557 4759 35132 4.9 36.5
0.0535 5558 40690 5.8 42.2
0.0526 1178 41868 1.2 43.4
0.0426 10191 52059 10.6 54.0
0.0378 24757 76816 25.7 79.7
0.0324 13475 90291 14.0 93.7
0.031 1189 91480 1.2 94.9
0.0224 4887 96367 5.1 100.0

> write.csv(cumRanking, "cup98-cumulative-ranking.csv",

row.names=T)

> pdf(paste("cup98-score-distribution.pdf",sep=""))

> plot(rankedLevels, x=names(rankedLevels), type="h",

xlab="Score", ylab="# of Customers")

> graphics.off()

200 R and Data Mining

0.0 0.2 0.4 0.6 0.8

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Score

of

 C
us

to
m

er
s

Figure 14.5 Distribution of scores.

Next, we use the predicted scores to rank customers and save the result into a
.CSV file.

> s1 <- sort(myPred, decreasing=TRUE, method = "quick",

index.return=T)

> varToOutput <- c("CONTROLN")

> score <- round(myPred[s1$ix], digits=4)

> table(score, useNA="ifany")

score

0.0224 0.031 0.0324 0.0378 0.0426 0.0526 0.0535 0.0557 0.057 0.0574 0.0744

4887 1189 13475 24757 10191 1178 5558 4759 8179 4611 800

0.0764 0.0851 0.1026 0.106 0.1128 0.1222 0.135 0.1842 0.2124 0.8889

10603 1138 56 278 1369 1779 1342 68 141 9

> result <- data.frame(cbind(newScoreData[s1$ix, varToOutput]),

score)

> names(result) <- c(varToOutput, "score")

> write.csv(result, "cup98-predicted-score.csv", row.names=F)

Case Study III: Predictive Modeling of Big Data with Limited Memory 201

Below is an example for saving result into an EXCEL file.

> # output as an EXCEL file

> library(RODBC)

> xlsFile <- odbcConnectExcel("cup98-predicted-score.xls",

readOnly=F)

> sqlSave(xlsFile, result, rownames=F)

> odbcCloseAll()

14.9 Print Rules

This section provides codes for printing rules in the order of their scores. We first
present R code for print rules in text, and then demonstrate how to print the rules for
running in SAS.

14.9.1 Print Rules in Text

At first, we rewrite the print functions for TerminalNode, SplittingNode,
orderedSplit, and nominalSplit, based on the source code in file “Print.R” from
package party.

> # functions for printing rules from ctree

> # based on "Print.R" from package party

> print.TerminalNode <- function(x, rule = NULL, . . .) {

+ n.rules � − n.rules + 1

+ node.ids � − c(node.ids, x$nodeID)

+ n.records � − c(n.records, sum(x$weights))

+ scores � − c(scores, x$prediction)

+ ruleset � − c(ruleset, rule)

+ }

> print.SplittingNode <- function(x, rule = NULL, …) {

+ if (!is.null(rule)) {

+ rule <- paste (rule, "\n")

+ }

202 R and Data Mining

+ rule2 <- print(x$psplit, left = TRUE, rule=rule)

+ print(x$left, rule=rule2)

+ rule3 <- print(x$psplit, left = FALSE, rule=rule)

+ print(x$right, rule=rule3)

+ }

> print.orderedSplit <- function(x, left = TRUE, rule = NULL, …) {

+ if (!is.null (attr (x$splitpoint, "levels"))) {

+ sp <- attr (x$splitpoint, "levels")[x$splitpoint]

+ } else {

+ sp <- x$splitpoint

+ }

+ n.pad <- 20 - nchar (x$variableName)

+ pad <- paste(rep(" ", n.pad), collapse="")

+ if (!is.null(x$toleft)) {

+ left <- as.logical(x$toleft) == left

+ }

+ if (left) {

+ rule2 <- paste(rule, x$variableName, pad, "<= ", sp, sep = "")

+ } else {

+ rule2 <- paste (rule, x$variableName, pad, "> ", sp, sep = "")

+ }

+ rule2

+ }

> print.nominalSplit <- function(x, left = TRUE, rule = NULL, …) {

+ levels <- attr(x$splitpoint, "levels")

+ ### is > 0 for levels available in this node

+ tab <- x$table

Case Study III: Predictive Modeling of Big Data with Limited Memory 203

+ if (left) {

+ lev <- levels[as.logical(x$splitpoint) & (tab > 0)]

+ } else {

+ lev <- levels[!as.logical(x$splitpoint) & (tab > 0)]

+ }

+ txt <- paste("’", paste(lev, collapse="’, ’"), "’", sep="")

+ n.pad <- 20 - nchar(x$variableName)

+ pad <- paste(rep(" ", n.pad), collapse="")

+ rule2 <- paste(rule, x$variableName, pad, txt, sep = "")

+ rule2

+ }

After that, by calling function print(myCtree@tree), the information of the tree
are extracted and written to five global variables:

• n.rules: the number of rules;

• node.ids: the IDs of leaf nodes;

• n.records: the number of records falling in every leaf node;

• scores: the score of every leaf node; and

• ruleset: a set of rules corresponding to every leaf node.

> library(party) # for ctree

> # loading model

> load(paste(treeFileName, ".Rdata", sep=""))

> # extract rules from tree

> n.rules <- 0

> node.ids <- NULL

> n.records <- NULL

> scores <- NULL

> ruleset <- NULL

> print(myCtree@tree)

204 R and Data Mining

> n.rules

[1] 21

Now all information needed for the rules has been extracted and saved in the above
five global variables by calling print(myCtree@tree). The rules are then sorted by
score and printed, together with the percentage and cumulative percentage of records
covered by the rules. In the code below, function cumsum() calculates cumulative sum
of a numeric vector. Only the first five rules are printed to save space.

> # sort by score descendingly

> s1 <- sort(scores, decreasing=T, method="quick",

index.return=T)

> percentage <- 100 * n.records[s1$ix] / sum(myCtree@weights)

> cumPercentage <- round(cumsum(percentage), digits=1)

> percentage <- round(percentage, digits=1)

> # print all rules

> for (i in 1:n.rules) {

+ cat("Rule", i, "\n")

+ cat("Node:", node.ids[s1$ix[i]])

+ cat(", score:", scores[s1$ix[i]])

+ cat(", Percentage: ", percentage[i], ”%", sep="")

+ cat(", Cumulative Percentage: ”%",cumPercentage[i], "%",

sep="")

+ cat(ruleset[s1$ix[i]], "\n\n")

+}

Rule 1

Node: 27, score: 0.8888889, Percentage: 0%, Cumulaive Percentage:

0%

RFA_2A ’F’, ’G’
PEPSTRFL ’X’
LASTDATE <= 9607
MINRAMNT > 12.5
CARDPM12 <= 4
NGIFTALL <= 2

Case Study III: Predictive Modeling of Big Data with Limited Memory 205

Rule 2

Node: 32, score: 0.2123894, Percentage: 0.1%, Cumulaive

Percentage: 0.2%

RFA_2A ’F’, ’G’
PEPSTRFL ’X’
LASTDATE > 9607
CARDPM12 > 10

Rule 3

Node: 22, score: 0.1842105, Percentage: 0%, Cumulaive Percentage:

0.2%

RFA_2A ’F’, ’G’
PEPSTRFL ’X’
LASTDATE <= 9607
MINRAMNT <= 12.5
RFA_2F > 1
GENDER ’ ’, ’A’, ’J’, ’M’, ’U’
GENDER ’A’, ’J’

Rule 4

Node: 14, score: 0.135, Percentage: 1.3%, Cumulaive Percentage:

1.5%

RFA_2A ’D’, ’E’
LASTDATE > 9606

Rule 5

Node: 8, score: 0.1221591, Percentage: 1.8%, Cumulaive

Percentage: 3.4%

RFA_2A ’D’, ’E’
LASTDATE <= 9606
RFA_2F > 2
CARDPM12 <= 4

14.9.2 Print Rules for Scoring with SAS

Similar to Section 14.9.1, this section presents R code for printing rules for scoring
with SAS in its DATA step. Below are four revised print functions.

206 R and Data Mining

> # functions for printing rules in SAS statement for scoring

with a DATA step

> # based on "Print.R" from package party

> print.TerminalNode <- function(x, rule = NULL, …) {

+ rule <- sub(’ +’, ”, rule) # remove leading spaces

+ n.rules � − n.rules + 1

+ node.ids � − c(node.ids, x$nodeID)

+ n.records � − c(n.records, sum(x$weights))

+ scores � − c(scores, x$prediction)

+ ruleset � − c(ruleset, rule)

+ }

> print.SplittingNode <- function(x, rule = NULL, …) {

+ if (!is.null (rule)) {

+ rule <- paste(rule, "\n and")

+ }#endif

+ rule2 <- print(x$psplit, left = TRUE, rule=rule)

+ print(x$left, rule=rule2)

+ rule3 <- print(x$psplit, left = FALSE, rule=rule)

+ print(x$right, rule=rule3)

+}

> print.orderedSplit <- function(x, left = TRUE, rule = NULL, …) {

+ if (!is.null (attr (x$splitpoint, "levels"))) {

+ sp <- attr (x$splitpoint, "levels")[x$splitpoint]

+ } else {

+ sp <- x$splitpoint

+ }

+ if (!is.null(x$toleft)) left <- as.logical(x$toleft) ==

left

Case Study III: Predictive Modeling of Big Data with Limited Memory 207

+ if (left) {

+ rule2 <- paste(rule, " ", x$variableName, " <= ", sp, sep =

"")

+ } else {

+ rule2 <- paste(rule, " ", x$variableName, " > ", sp, sep

= "")

+ }

+ rule2

+}

> print.nominalSplit <- function(x, left = TRUE, rule = NULL, …) {

+ levels <- attr(x$splitpoint, "levels")

+ ### is > 0 for levels available in this node

+ tab <- x$table

+ if (left) {

+ lev <- levels[as.logical(x$splitpoint) & (tab > 0)]

+ } else {

+ lev <- levels[!as.logical(x$splitpoint) & (tab > 0)]

+ }

+ txt <- paste("’", paste(lev, collapse="’, ’"), "’", sep="")

+ rule2 <- paste(rule, " ", x$variableName, " in (", txt,

")", sep = "")

+ rule2

+}

Again, by calling function print(myCtree@tree), the information of the tree
are extracted and written to five global variables: n.rules, node.ids, n.records,
scores, and ruleset.

> library(party) # for ctree

> # loading model

> load(paste(treeFileName, ".Rdata", sep=""))

208 R and Data Mining

> n.rules <- 0

> node.ids <- NULL

> n.records <- NULL

> scores <- NULL

> ruleset <- NULL

> print(myCtree@tree)

> n.rules

[1] 21

The rules are then sorted by score and printed. Only the first five rules are shown
below to save space. The printed rules can be copied and pasted in a SAS DATA step
for scoring new data.

> # sort by score descendingly

> s1 <- sort(scores, decreasing=TRUE, method = "quick",

index.return=TRUE)

> percentage <- 100 * n.records[s1$ix]/ sum (myCtree@weights)

> cumPercentage <- round(cumsum(percentage), digits=1)

> percentage <- round(percentage, digits=1)

> # print all rules

> for (i in 1:n.rules) {

+ cat("/* Rule", i, "\n")

+ cat(" Node:", node.ids[s1$ix[i]])

+ cat(", score:", scores[s1$ix[i]])

+ cat(", Percentage: ”, percentage[i], ”%", sep=” ”)

+ cat(", Cumulative Percentage: ",cumPercentage[i], "% \n*/\n”,
sep=” ”)

+ if(i == 1){

+ cat("IF \n ")

+ } else {

+ cat("ELSE IF \n ")

Case Study III: Predictive Modeling of Big Data with Limited Memory 209

+ }

+ cat(ruleset[s1$ix[i]], "\n")

+ cat("THEN\n score = ", scores[s1$ix[i]], ";\n\n", sep="")

+ }

/* Rule 1

Node: 27, score: 0.8888889, Percentage: 0%, Cumalative

Percentage: 0%

*/

IF

RFA_2A in (’F’, ’G’)

and PEPSTRFL in (’X’)

and LASTDATE <= 9607

and MINRAMNT > 12.5

and CARDPM12 <= 4

and NGIFTALL <= 2

THEN

score = 0.8888889;

/* Rule 2

Node: 32, score: 0.2123894, Percentage: 0.1%, cumalative

percentage: 0.2%

*/

ELSE IF

RFA_2A in (’F’, ’G’)

and PEPSTRFL in (’X’)

and LASTDATE > 9607

and CARDPM12 > 10

THEN

score = 0.2123894;

/* Rule 3

210 R and Data Mining

Node: 22, score: 0.1842105, Percentage: 0%, cumalative

percentage: 0.2%

*/

ELSE IF

RFA_2A in (’F’, ’G’)

and PEPSTRFL in (’X’)

and LASTDATE <= 9607

and MINRAMNT <= 12.5

and RFA_2F > 1

and GENDER in (’ ’, ’A’, ’J’, ’M’, ’U’)

and GENDER in (’A’, ’J’)

THEN

score = 0.1842105;

/* Rule 4

Node: 14, score: 0.135, Percentage: 1.3%, Cumalative Percentage:

1.5%

*/

ELSE IF

RFA_2A in (’D’, ’E’)

and LASTDATE > 9606

THEN

score = 0.135;

/* Rule 5

Node: 8, score: 0.1221591, Percentage: 1.8%, Cumulative

Percentage: 3.4%

*/

ELSE IF

RFA_2A in (’D’, ’E’)

and LASTDATE <= 9606

Case Study III: Predictive Modeling of Big Data with Limited Memory 211

and RFA_2F > 2

and CARDPM12 <= 4

THEN

score = 0.1221591;

14.10 Conclusions and Discussion

This chapter presents a case study on predictive modeling of big data with limited
memory. By building a number of trees on sampled data, useful variables are found
and collected. These variables are then used to build a final model. This methodology
enables modeling of big data with limited amount of memory.

Another way is sampling variables, instead of sampling records. The variables are
sampled each time to build a model. After 10 or 20 models are built, useful variables
can be collected from those models and then used to build a final model. This method is
similar to the idea of random forest where each tree in the forest is built with a random
subset of variables. However, it will use much less memory than random forest.

15 Online Resources

This chapter presents links to online resources on R and data mining, includes books,
documents, tutorials, and slides. A list of links is also available at http://www.rdata
mining.com/resources/onlinedocs.

15.1 R Reference Cards

• R Reference Card, by Tom Short
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

• R Reference Card for Data Mining, by Yanchang Zhao
http://www.rdatamining.com/docs

• R Reference Card, by Jonathan Baron
http://cran.r-project.org/doc/contrib/refcard.pdf

• R Functions for Regression Analysis, by Vito Ricci
http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf

• R Functions for Time Series Analysis, by Vito Ricci
http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf

15.2 R

• Quick-R
http://www.statmethods.net/

• R Tips: lots of tips for R programming
http://pj.freefaculty.org/R/Rtips.html

• R Tutorial
http://www.cyclismo.org/tutorial/R/index.html

• The R Manuals, including an Introduction to R, R Language Definition, R Data
Import/Export, and other R manuals
http://cran.r-project.org/manuals.html

• R You Ready?

R and Data Mining. http://dx.doi.org/10.1016/B978-0-12-396963-7.00015-5
© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

http://www.rdatamining.com/resources/onlinedocs
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.rdatamining.com/docs
http://cran.r-project.org/doc/contrib/refcard.pdf
http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf
http://www.statmethods.net/
http://pj.freefaculty.org/R/Rtips.html
http://www.cyclismo.org/tutorial/R/index.html
http://cran.r-project.org/manuals.html
http://dx.doi.org/10.1016/B978-0-12-396963-7.00015-5

214 R and Data Mining

http://pj.freefaculty.org/R/RUReady.pdf

• R for Beginners
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

• Econometrics in R
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.

pdf

• Using R for Data Analysis and Graphics—Introduction, Examples, and
Commentary
http://www.cran.r-project.org/doc/contrib/usingR.pdf

• Lots of R Contributed Documents, including non-English ones
http://cran.r-project.org/other-docs.html

• The R Journal
http://journal.r-project.org/current.html

• Learn R Toolkit
http://processtrends.com/Learn_R_Toolkit.htm

• Resources to help you learn and use R at UCLA
http://www.ats.ucla.edu/stat/r/

• R Tutorial—An R Introduction to Statistics
http://www.r-tutor.com/

• Cookbook for R
http://wiki.stdout.org/rcookbook/

• Slides for a couple of R short courses
http://courses.had.co.nz/

• Tips on memory in R
http://www.matthewckeller.com/html/memory.html

15.3 Data Mining

• Introduction to Data Mining, by Pang-Ning Tan, Michael Steinbach, and Vipin
Kumar
http://www-users.cs.umn.edu/%7Ekumar/dmbook

• Tutorial on Data Mining Algorithms by Ian Witten
http://www.cs.waikato.ac.nz/∼ihw/DataMiningTalk/

http://pj.freefaculty.org/R/RUReady.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://www.cran.r-project.org/doc/contrib/usingR.pdf
http://cran.r-project.org/other-docs.html
http://journal.r-project.org/current.html
http://processtrends.com/Learn_R_Toolkit.htm
http://www.ats.ucla.edu/stat/r/
http://www.r-tutor.com/
http://wiki.stdout.org/rcookbook/
http://courses.had.co.nz/
http://www.matthewckeller.com/html/memory.html
http://www-users.cs.umn.edu/%7Ekumar/dmbook
http://www.cs.waikato.ac.nz/{\sim }ihw/DataMiningTalk/

Online Resources 215

• Mining of Massive Datasets, by Anand Rajaraman and Jeff Ullman
http://infolab.stanford.edu/%7Eullman/mmds.html

• Lecture notes of data mining course, by Cosma Shalizi at CMU
http://www.stat.cmu.edu/%7Ecshalizi/350/

• Introduction to Information Retrieval, by Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schütze at Stanford University
http://nlp.stanford.edu/IR-book/

• Statistical Data Mining Tutorials, by Andrew Moore
http://www.autonlab.org/tutorials/

• Tutorial on Spatial and Spatio-Temporal Data Mining
http://www.inf.ufsc.br/%7Evania/tutorial_icdm.html

• Tutorial on Discovering Multiple Clustering Solutions
http://dme.rwth-aachen.de/en/DMCS

• Time-Critical Decision Making for Business Administration
http://home.ubalt.edu/ntsbarsh/stat-data/Forecast.htm

• A paper on Open-Source Tools for Data Mining
http://eprints.fri.uni-lj.si/893/1/2008-OpenSourceDataMining.pdf

• An overview of data mining tools
http://onlinelibrary.wiley.com/doi/10.1002/widm.24/pdf

• Textbook on Introduction to social network methods
http://www.faculty.ucr.edu/∼hanneman/nettext/

• Information Diffusion In Social Networks: Observing and Influencing Societal
Interests, a tutorial at VLDB’11
http://www.cs.ucsb.edu/∼cbudak/vldb_tutorial.pdf

• Tools for large graph mining: structure and diffusion, a tutorial at WWW2008
http://cs.stanford.edu/people/jure/talks/www08tutorial/

• Graph Mining: Laws, Generators, and Tools
http://www.stanford.edu/group/mmds/slides2008/faloutsos.pdf

• A tutorial on outlier detection techniques at ACM SIGKDD’10
http://www.dbs.ifi.lmu.de/∼zimek/publications/KDD2010/kdd10-
outlier-tutorial.pdf

• A Taste of Sentiment Analysis - 105-page slides in PDF format
http://statmath.wu.ac.at/research/talks/resources/

sentimentanalysis.pdf

http://infolab.stanford.edu/%7Eullman/mmds.html
http://www.stat.cmu.edu/%7Ecshalizi/350/
http://nlp.stanford.edu/IR-book/
http://www.autonlab.org/tutorials/
http://www.inf.ufsc.br/%7Evania/tutorial_icdm.html
http://dme.rwth-aachen.de/en/DMCS
http://home.ubalt.edu/ntsbarsh/stat-data/Forecast.htm
http://eprints.fri.uni-lj.si/893/1/2008-OpenSourceDataMining.pdf
http://onlinelibrary.wiley.com/doi/10.1002/widm.24/pdf
http://www.faculty.ucr.edu/{\sim }hanneman/nettext/
http://www.cs.ucsb.edu/{\sim }cbudak/vldb_tutorial.pdf
http://cs.stanford.edu/people/jure/talks/www08tutorial/
http://www.stanford.edu/group/mmds/slides2008/faloutsos.pdf
http://www.dbs.ifi.lmu.de/{\sim }zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf
\protect \protect \afterassignment \edef 10{10}\afterassignment \edef 12.0pt{11.8pt}\edef {}\let \def \size@update {\baselineskip 12.0pt\relax \baselineskip \baselineskip \normalbaselineskip \baselineskip \setbox \strutbox \hbox {\vrule height.7\baselineskip depth.3\baselineskip width\z@ }\let \size@update \relax }\protect \xdef \LY1/pcr/m/n/8.5 {\LY1/ptm/m/n/10 }\LY1/pcr/m/n/8.5 \size@update \enc@update \protect \relax \protect \edef ptm{pcr}\protect \xdef \LY1/pcr/m/n/8.5 {\LY1/ptm/m/n/10 }\LY1/pcr/m/n/8.5 \size@update \enc@update http://www.dbs.ifi.lmu.de/{\sim }zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf
http://statmath.wu.ac.at/research/talks/resources/sentimentanalysis.pdf
\protect \protect \afterassignment \edef 10{10}\afterassignment \edef 12.0pt{11.8pt}\edef {}\let \def \size@update {\baselineskip 12.0pt\relax \baselineskip \baselineskip \normalbaselineskip \baselineskip \setbox \strutbox \hbox {\vrule height.7\baselineskip depth.3\baselineskip width\z@ }\let \size@update \relax }\protect \xdef \LY1/pcr/m/n/8.5 {\LY1/ptm/m/n/10 }\LY1/pcr/m/n/8.5 \size@update \enc@update \protect \relax \protect \edef ptm{pcr}\protect \xdef \LY1/pcr/m/n/8.5 {\LY1/ptm/m/n/10 }\LY1/pcr/m/n/8.5 \size@update \enc@update http://statmath.wu.ac.at/research/talks/resources/sentimentanalysis.pdf

216 R and Data Mining

15.4 Data Mining with R

• Data Mining with R—Learning by Case Studies
http://www.liaad.up.pt/∼ltorgo/DataMiningWithR/

• Data Mining Algorithms In R
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R

• Statistics with R
http://zoonek2.free.fr/UNIX/48_R/all.html

• Data Mining Desktop Survival Guide
http://www.togaware.com/datamining/survivor/

15.5 Classification/Prediction with R

• An Introduction to Recursive Partitioning Using the RPART Routines
http://www.mayo.edu/hsr/techrpt/61.pdf

• Visualizing classifier performance with package ROCR
http://rocr.bioinf.mpi-sb.mpg.de/ROCR_Talk_Tobias_Sing.ppt

15.6 Time Series Analysis with R

• An R Time Series Tutorial
http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm

• Time Series Analysis with R
http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitr

eihen/sommer03/ts_r_intro.pdf

• Using R (with applications in Time Series Analysis)
http://people.bath.ac.uk/masgs/time%20series/TimeSeriesR2004.pdf

• CRAN Task View: Time Series Analysis
http://cran.r-project.org/web/views/TimeSeries.html

15.7 Association Rule Mining with R

• Introduction to arules: A computational environment for mining association rules
and frequent item sets
http://cran.csiro.au/web/packages/arules/vignettes/arules.pdf

http://www.liaad.up.pt/{\sim }ltorgo/DataMiningWithR/
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R
http://zoonek2.free.fr/UNIX/48_R/all.html
http://www.togaware.com/datamining/survivor/
http://www.mayo.edu/hsr/techrpt/61.pdf
http://rocr.bioinf.mpi-sb.mpg.de/ROCR_Talk_Tobias_Sing.ppt
http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm
http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_intro.pdf
http://people.bath.ac.uk/masgs/time%20series/TimeSeriesR2004.pdf
http://cran.r-project.org/web/views/TimeSeries.html
http://cran.csiro.au/web/packages/arules/vignettes/arules.pdf

Online Resources 217

• Visualizing Association Rules: Introduction to arulesViz
http://cran.csiro.au/web/packages/arulesViz/vignettes/arulesViz.

pdf

• Association Rule Algorithms In R
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/

Frequent_Pattern_Mining

15.8 Spatial Data Analysis with R

• Applied Spatio-temporal Data Analysis with FOSS: R+OSGeo
http://www.geostat-course.org/GeoSciences_AU_2011

• Spatial Regression Analysis in R—A Workbook
http://geodacenter.asu.edu/system/files/rex1.pdf

15.9 Text Mining with R

• Text Mining Infrastructure in R
http://www.jstatsoft.org/v25/i05

• Introduction to the tm Package Text Mining in R
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

• Text Mining Handbook with R code examples
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf

• Distributed Text Mining in R
http://epub.wu.ac.at/3034/

15.10 Social Network Analysis with R

• R for networks: a short tutorial
http://sites.stat.psu.edu/∼dhunter/Rnetworks/

• Social Network Analysis in R
http://files.meetup.com/1406240/sna_in_R.pdf

• A detailed introduction to Social Network Analysis with package sna
http://www.jstatsoft.org/v24/i06/paper

• A statnet Tutorial
http://www.jstatsoft.org/v24/i09/paper

http://cran.csiro.au/web/packages/arulesViz/vignettes/arulesViz.pdf
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining
http://www.geostat-course.org/GeoSciences_AU_2011
http://geodacenter.asu.edu/system/files/rex1.pdf
http://www.jstatsoft.org/v25/i05
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf
http://epub.wu.ac.at/3034/
http://sites.stat.psu.edu/{\sim }dhunter/Rnetworks/
http://files.meetup.com/1406240/sna_in_R.pdf
http://www.jstatsoft.org/v24/i06/paper
http://www.jstatsoft.org/v24/i09/paper

218 R and Data Mining

• Slides on Social network analysis with R
http://user2010.org/slides/Zhang.pdf

• Tutorials on using statnet for network analysis
http://csde.washington.edu/statnet/resources.shtml

15.11 Data Cleansing and Transformation with R

• Tidy Data and Tidy Tools
http://vita.had.co.nz/papers/tidy-data-pres.pdf

• The data.table package in R
http://files.meetup.com/1677477/R_Group_June_2011.pdf

15.12 Big Data and Parallel Computing with R

• State of the Art in Parallel Computing with R
http://www.jstatsoft.org/v31/i01/paper

• Taking R to the Limit, Part I—Parallelization in R
http://www.bytemining.com/2010/07/taking-r-to-the-limit-part-i-

parallelization-in-r/

• Taking R to the Limit, Part II—Large Datasets in R
http://www.bytemining.com/2010/08/taking-r-to-the-limit-part-ii-

large-datasets-in-r/

• Tutorial on MapReduce programming in R with package rmr
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial

• Distributed Data Analysis with Hadoop and R
http://www.infoq.com/presentations/Distributed-Data-Analysis-

with-Hadoop-and-R

• Massive data, shared and distributed memory, and concurrent programming: big-
memory and foreach
http://sites.google.com/site/bigmemoryorg/research/documentation/

bigmemorypresentation.pdf

• High Performance Computing with R
http://igmcs.utk.edu/sites/igmcs/files/Patel-High-Performance-Com

puting-with-R-2011-10-20.pdf

http://user2010.org/slides/Zhang.pdf
http://csde.washington.edu/statnet/resources.shtml
http://vita.had.co.nz/papers/tidy-data-pres.pdf
http://files.meetup.com/1677477/R_Group_June_2011.pdf
http://www.jstatsoft.org/v31/i01/paper
http://www.bytemining.com/2010/07/taking-r-to-the-limit-part-i-parallelization-in-r/
http://www.bytemining.com/2010/08/taking-r-to-the-limit-part-ii-large-datasets-in-r/
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
http://www.infoq.com/presentations/Distributed-Data-Analysis-with-Hadoop-and-R
http://sites.google.com/site/bigmemoryorg/research/documentation/bigmemorypresentation.pdf
http://igmcs.utk.edu/sites/igmcs/files/Patel-High-Performance-Computing-with-R-2011-10-20.pdf

Online Resources 219

• R with High Performance Computing: Parallel processing and large memory
http://files.meetup.com/1781511/HighPerformanceComputingR-

Szczepanski.pdf

• Parallel Computing in R
http://blog.revolutionanalytics.com/downloads/BioC2009%20ParallelR.

pdf

• Parallel Computing with R using snow and snowfall
http://www.ics.uci.edu/∼vqnguyen/talks/ParallelComputingSeminaR.
pdf

• Interacting with Data using the filehash Package for R
http://cran.r-project.org/web/packages/filehash/vignettes/fileh

ash.pdf

• Tutorial: Parallel computing using R package snowfall
http://www.imbi.uni-freiburg.de/parallel/docs/Reisensburg2009_

TutParallelComputing_Knaus_Porzelius.pdf

• Easier Parallel Computing in R with snowfall and sfCluster
http://journal.r-project.org/2009-1/RJournal_2009-1_Knaus+et+al.

pdf

http://files.meetup.com/1781511/HighPerformanceComputingR-Szczepanski.pdf
http://blog.revolutionanalytics.com/downloads/BioC2009%20ParallelR.pdf
http://www.ics.uci.edu/{\sim }vqnguyen/talks/ParallelComputingSeminaR.pdf
http://cran.r-project.org/web/packages/filehash/vignettes/filehash.pdf
http://www.imbi.uni-freiburg.de/parallel/docs/Reisensburg2009_TutParallelComputing_Knaus_Porzelius.pdf
http://journal.r-project.org/2009-1/RJournal_2009-1_Knaus+et+al.pdf

R and Data Mining

R and Data Mining
Examples and Case Studies

Yanchang Zhao

RDataMining.com

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK
OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE

SYDNEY • TOKYO
Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
32 Jamestown Road, London NW17BY, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2013

© 2013 Yanchang Zhao. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@
elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site
at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier
material.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or operation
of any methods, products, instructions or ideas contained in the material herein. Because of
rapid advances in the medical sciences, in particular, independent verification of diagnoses and
drug dosages should be made.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-123-96963-7

For information on all Academic Press publications visit
our website at store.elsevier.com

Printed and bound in USA

13 14 15 16 10 9 8 7 6 5 4 3 2 1

To Yanbo, Michael and Lucas for your love and encouragement

List of Figures

3.1 Histogram 15
3.2 Density 15
3.3 Pie Chart 16
3.4 Bar Chart 16
3.5 Boxplot 18
3.6 Scatter Plot 18
3.7 Scatter Plot with Jitter 19
3.8 A Matrix of Scatter Plots 19
3.9 3D Scatter Plot 20
3.10 Heat Map 21
3.11 Level Plot 22
3.12 Contour 22
3.13 3D Surface 23
3.14 Parallel Coordinates 23
3.15 Parallel Coordinates with Package lattice 24
3.16 Scatter Plot with Package ggplot2 24

4.1 Decision Tree 29
4.2 Decision Tree (Simple Style) 30
4.3 Decision Tree with Package rpart 34
4.4 Selected Decision Tree 35
4.5 Prediction Result 36
4.6 Error Rate of Random Forest 38
4.7 Variable Importance 39
4.8 Margin of Predictions 40

5.1 Australian CPIs in Year 2008 to 2010 42
5.2 Prediction with Linear Regression Model 45
5.3 A 3D Plot of the Fitted Model 46
5.4 Prediction of CPIs in 2011 with Linear Regression Model 47
5.5 Prediction with Generalized Linear Regression Model 50

6.1 Results of k-Means Clustering 53
6.2 Clustering with the k-medoids Algorithm—I 54
6.3 Clustering with the k-medoids Algorithm—II 55
6.4 Cluster Dendrogram 56
6.5 Density-Based Clustering—I 58
6.6 Density-Based Clustering—II 59
6.7 Density-Based Clustering—III 59
6.8 Prediction with Clustering Model 60

xii List of Figures

7.1 Univariate Outlier Detection with Boxplot 64
7.2 Outlier Detection—I 65
7.3 Outlier Detection—II 66
7.4 Density of Outlier Factors 67
7.5 Outliers in a Biplot of First Two Principal Components 68
7.6 Outliers in a Matrix of Scatter Plots 69
7.7 Outliers with k-Means Clustering 71
7.8 Outliers in Time Series Data 73

8.1 A Time Series of AirPassengers 76
8.2 Seasonal Component 77
8.3 Time Series Decomposition 77
8.4 Time Series Forecast 78
8.5 Alignment with Dynamic Time Warping 79
8.6 Six Classes in Synthetic Control Chart Time Series 80
8.7 Hierarchical Clustering with Euclidean Distance 81
8.8 Hierarchical Clustering with DTW Distance 82
8.9 Decision Tree 84
8.10 Decision Tree with DWT 86

9.1 A Scatter Plot of Association Rules 100
9.2 A Balloon Plot of Association Rules 100
9.3 A Graph of Association Rules 101
9.4 A Graph of Items 102
9.5 A Parallel Coordinates Plot of Association Rules 102

10.1 Frequent Terms 112
10.2 Word Cloud 114
10.3 Clustering of Words 115
10.4 Clusters of Tweets 120

11.1 A Network of Terms—I 125
11.2 A Network of Terms—II 126
11.3 Distribution of Degree 128
11.4 A Network of Tweets—I 129
11.5 A Network of Tweets—II 130
11.6 A Network of Tweets—III 131
11.7 A Two-Mode Network of Terms and Tweets—I 133
11.8 A Two-Mode Network of Terms and Tweets—II 135

12.1 HPIs in Canberra from Jan. 1990 to Jan. 2011 139
12.2 Monthly Increase of HPI 140
12.3 Monthly Increase Rate of HPI 141
12.4 A Bar Chart of Monthly HPI Increase Rate 142
12.5 Number of Months with Increased HPI 143
12.6 Yearly Average Increase Rates of HPI 143
12.7 Monthly Average Increase Rates of HPI 144
12.8 Distribution of HPI Increase Rate 144
12.9 Distribution of HPI Increase Rate per Year 145

List of Figures xiii

12.10 Distribution of HPI Increase Rate per Month 145
12.11 Decomposition of HPI Data 146
12.12 Seasonal Components of HPI Data 146
12.13 HPI Forecasting—I 148
12.14 HPI Forecasting—II 149

13.1 A Data Mining Process 152
13.2 Distribution of Response 156
13.3 Box Plot of Donation Amount 156
13.4 Barplot of Donation Amount 157
13.5 Histograms of Numeric Variables 161
13.6 Boxplot of HIT 162
13.7 Distribution of Donation in Various Age Groups 163
13.8 Distribution of Donation in Various Age Groups 164
13.9 Scatter Plot 165
13.10 Mosaic Plots of Categorical Variables 166
13.11 A Decision Tree 169
13.12 Total Donation Collected (1000—400—4—10) 171
13.13 Total Donation Collected (9 runs) 172
13.14 Average Result of Nine Runs 173
13.15 Comparison of Different Parameter Settings—I 175
13.16 Comparison of Different Parameter Settings—II 175
13.17 Validation Result 178

14.1 Decision Tree 191
14.2 Test Result—I 192
14.3 Test Result—II 193
14.4 Test Result—III 194
14.5 Distribution of Scores 200

List of Abbreviations

ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
AVF Attribute value frequency
CLARA Clustering for large applications
CRISP-DM Cross industry standard process for data mining
DBSCAN Density-based spatial clustering of applications with noise
DTW Dynamic time warping
DWT Discrete wavelet transform
GLM Generalized linear model
IQR Interquartile range, i.e., the range between the first and third

quartiles
LOF Local outlier factor
PAM Partitioning around medoids
PCA Principal component analysis
STL Seasonal-trend decomposition based on Loess
TF-IDF Term frequency-inverse document frequency

Bibliography

Adler, D., Murdoch, D., 2012. rgl: 3D visualization device system (OpenGL). R
package version 0.92.879.

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large Data
Bases, Santiago, Chile, pp. 487–499.

Agrawal, R., Faloutsos, C., Swami, A.N., 1993. Efficient similarity search in sequence
databases. In: Lomet, D. (Ed.), Proceedings of the Fourth International Conference
of Foundations of Data Organization and Algorithms (FODO), Chicago, Illinois.
Springer Verlag, pp. 69–84.

Alcock R.J., Manolopoulos Y., 1999. Time-Series Similarity Queries Employing a
Feature-Based Approach. In Proceedings of the 7th Hellenic Conference on Infor-
matics. Ioannina, Greece, August 27–29.

Aldrich, E., 2010. wavelets: A package of funtions for computing wavelet filters,
wavelet transforms and multiresolution analyses.
<http://cran.r-project.org/web/packages/wavelets/index.html>.

Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J., 2000. LOF: identifying density-
based local outliers. In: SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, ACM Press, New York, NY, USA.
pp. 93–104.

Buchta, C., Hahsler, M., and with contributions from Daniel Diaz, 2012. arulesSe-
quences: mining frequent sequences. R package version 0.2-1.

Burrus, C.S., Gopinath, R.A., Guo, H., 1998. Introduction to Wavelets and Wavelet
Transforms: A Primer. Prentice-Hall, Inc.

Butts, C.T., 2010. sna: tools for social network analysis. R package version 2.2-0.
Butts, C.T., Handcock, M.S., Hunter, D.R., 2012. network: classes for relational data,

Irvine, CA. R package version 1.7-1.
Chan, K.-p., Fu, A.W.-c., 1999. Efficient time series matching by wavelets. In: Inter-

nation Conference on Data Engineering (ICDE ’99), Sydney.
Chan, F.K., Fu, A.W., Yu, C., 2003. Harr wavelets for efficient similarity search of

time-series: with and without time warping. IEEE Transactions on Knowledge and
Data Engineering 15 (3), 686–705.

Chang, J., 2011. lda: collapsed Gibbs sampling methods for topic models. R package
version 1.3.1.

Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I., 1990. Stl: a seasonal-
trend decomposition procedure based on loess. Journal of Official Statistics
6 (1), 3–73.

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network
research. InterJournal, Complex Systems, 1695.

http://cran.r-project.org/web/packages/wavelets/index.html

226 Bibliography

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231.

Feinerer, I., 2010. tm.plugin.mail: text mining e-mail plug-in. R package version
0.0-4.

Feinerer, I., 2012. tm: text mining package. R package version 0.5-7.1.
Feinerer, I., Hornik, K., Meyer, D., 2008. Text mining infrastructure in R. Journal of

Statistical Software 25 (5).
Fellows, I., 2012. wordcloud: word clouds. R package version 2.0.
Filzmoser, P., Gschwandtner, M., 2012. mvoutlier: multivariate outlier detection based

on robust methods. R package version 1.9.7.
Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository. School of Infor-

mation and Computer Sciences, University of California, Irvine.
<http://archive.ics.uci.edu/mlurlhttp://archive.ics.uci.edu/ml>.

Gentry, J., 2012. twitteR: R based Twitter client. R package version 0.99.19.
Giorgino, T., 2009. Computing and visualizing dynamic timewarping alignments in

R: the dtw package. Journal of Statistical Software 31 (7), 1–24.
Grün, B., Hornik, K., 2011. Topicmodels: an R package for fitting topic models.

Journal of Statistical Software 40 (13), 1–30.
Hahsler, M., 2012. arulesNBMiner: mining NB-frequent itemsets and NB-precise

rules. R package version 0.1-2.
Hahsler, M., Chelluboina, S., 2012. arulesViz: visualizing association rules and fre-

quent itemsets. R package version 0.1-5.
Hahsler, M., Gruen, B., Hornik, K., 2005. arules—a computational environment for

mining association rules and frequent item sets. Journal of Statistical Software
14 (15).

Hahsler, M., Gruen, B., Hornik, K., 2011. arules: mining association rules and frequent
itemsets. R package version 1.0-8.

Han, J., Kamber, M., 2000. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Hand, D.J., Mannila, H., Smyth, P., 2001. Principles of Data Mining (Adaptive Com-
putation and Machine Learning). The MIT Press.

Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M., 2003. stat-
net: Software Tools for the Statistical Modeling of Network Data, Seattle, WA.
Version 2.0.

Hennig, C., 2010. fpc: flexible procedures for clustering. R package version 2.0-3.
Hornik, K., Rauch, J., Buchta, C., Feinerer, I., 2012. textcat: N-Gram based text

categorization. R package version 0.1-1.
Hothorn, T., Hornik, K., Strobl, C., Zeileis, A., 2010. Party: a laboratory for recursive

partytioning. <http://cran.r-project.org/web/packages/party/>.
Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., Hofner, B., 2012. mboost: model-

based boosting. R package version 2.1-2.
Hu, Y., Murray, W., Shan, Y., 2011. Rlof: R parallel implementation of Local Outlier

Factor (LOF). R package version 1.0.0.
Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Computing

Surveys 31 (3), 264–323.

http://archive.ics.uci.edu/mlurlhttp://archive.ics.uci.edu/ml
http://cran.r-project.org/web/packages/party/

Bibliography 227

Keogh, E.J., Pazzani, M.J., 1998. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. In: KDD
1998, pp. 239–243.

Keogh, E.J., Pazzani, M.J., 2000. A simple dimensionality reduction technique for
fast similarity search in large time series databases. In: PAKDD, pp. 122–133.

Keogh, E.J., Pazzani, M.J., 2001. Derivative dynamic time warping. In: The First
SIAM International Conference on Data Mining (SDM-2001), Chicago, IL, USA.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., 2000. Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowledge and Infor-
mation Systems 3 (3), 263–286.

Komsta, L., 2011. outliers: tests for outliers. R package version 0.14.
Koufakou, A., Ortiz, E.G., Georgiopoulos, M., Anagnostopoulos, G.C., Reynolds,

K.M., 2007. A scalable and efficient outlier detection strategy for categorical data.
In: Proceedings of the 19th IEEE International Conference on Tools with Artificial
Intelligence, vol. 02, ICTAI ’07, Washington, DC, USA. IEEE Computer Society,
pp. 210–217.

Lang, D.T., 2012a. RCurl: general network (HTTP/FTP/…) client interface for R. R
package version 1.91-1.1.

Lang, D.T., 2012b. XML: tools for parsing and generating XML within R and S-Plus.
R package version 3.9-4.1.

Liaw, A., Wiener, M., 2002. Classification and regression by randomforest. R News
2 (3),18–22.

Ligges, U., Mächler, M., 2003. Scatterplot3d—an R package for visualizing multi-
variate data. Journal of Statistical Software 8 (11), 1–20.

Mörchen, F., 2003. Time series feature extraction for data mining using DWT
and DFT. Technical Report, Department of Mathematics and Computer Science,
Philipps-University Marburg.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., 2012. cluster: cluster
analysis basics and extensions. R package version 1.14.2.

R Development Core Team, 2010a. R Data Import/Export. R Foundation for Statistical
Computing, Vienna, Austria. ISBN: 3-900051-10-0.

R Development Core Team, 2010b. R Language Definition. R Foundation for Statis-
tical Computing, Vienna, Austria. ISBN: 3-900051-13-5.

R Development Core Team, 2012. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN:
3-900051-07-0.

R-core, 2012. Foreign: read data stored by Minitab, S, SAS, SPSS, Stata, Systat,
dBase, … R package version 0.8-49.

Rafiei, D., Mendelzon, A.O., 1998. Efficient retrieval of similar time sequences using
DFT. In: Tanaka, K., Ghandeharizadeh, S. (Eds.), FODO, pp. 249–257.

Ripley, B., from 1999 to October 2002 Michael Lapsley, 2012. RODBC: ODBC
database access. R package version 1.3-5.

Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York.
ISBN: 978-0-387-75968-5.

228 Bibliography

Tan, P.-N., Kumar, V., Srivastava, J., 2002. Selecting the right interestingness measure
for association patterns. In: KDD ’02: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM Press,
New York, NY, USA, pp. 32–41.

The Institute of Statistical Mathematics, 2012. timsac: Time series analysis and con-
trol package. R package version 1.2.7.

Therneau, T.M., Atkinson, B., Ripley, B., 2010. rpart: Recursive partitioning. R pack-
age version 3.1-46.

Torgo, L., 2010. Data Mining with R-Learning with Case Studies. Chapman and
Hall/CRC.

van der Loo, M., 2010. Extremevalues, an R package for outlier detection in univariate
data. R package version 2.0.

Venables, W.N., Smith, D.M., R Development Core Team, 2010. An Introduction to
R. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-12-7.

Vlachos, M., Lin, J., Keogh, E., Gunopulos, D., 2003. A wavelet-based anytime
algorithm for k-means clustering of time series. In: Workshop on Clustering High
Dimensionality Data and Its Applications, at the Third SIAM International Con-
ference on Data Mining, San Francisco, CA, USA.

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer,
New York.

Witten, I., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques, second ed. Morgan Kaufmann, San Francisco, CA, USA.

Wu, Y.-l., Agrawal, D., Abbadi, A.E., 2000. A comparison of DFT and DWT based
similarity search in time-series databases. In: Proceedings of the Ninth ACM CIKM
International Conference on Informationand Knowledge Management, McLean,
VA, pp. 488–495.

Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L., 2008. Interpreting TF-IDF term
weights as making relevance decisions. ACM Transactions on Information Systems
26 (3), 13:1–13:37.

Zaki, M.J., 2000. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12 (3), 372–390.

Zhao, Y., Zhang, S., 2006. Generalized dimension-reduction framework for recent-
biased time series analysis. IEEE Transactions on Knowledge and Data Engineering
18 (2), 231–244.

Zhao, Y., Cao, L., Zhang, H., Zhang, C., 2009a. Data Clustering. Handbook of
Research on Innovations in Database Technologies and Applications: Current and
Future Trends. Information Science Reference, pp. 562–572. ISBN: 978-1-60566-
242-8.

Zhao, Y., Zhang, C., Cao, L. (Eds.), 2009b. Post-Mining of Association Rules:
Techniques for Effective Knowledge Extraction. Information Science Reference,
Hershey, PA. ISBN: 978-1-60566-404-0.

General Index

3D surface plot, 22

APRIORI, 92
ARIMA, 78, 147
association rule, 89, 216
AVF, 73

bar chart, 15
big data, 181, 218
box plot, 17, 63

chi-square test, 165
CLARA, 53
classification, 216
clustering, 51, 55, 114, 116
confidence, 89, 92
contour plot, 22
corpus, 106
CRISP-DM, 1

data cleansing, 218
data exploration, 11, 145, 160
data imputation, 162
data mining, 1, 214
data transformation, 218
DBSCAN, 57, 70
decision tree, 27, 166, 186
density-based clustering, 57
discrete wavelet transform, 84
discretization, 157
document-term matrix,

see term-document matrix,
110

DTW, see dynamic time
warping, 79, 82

DWT, see discrete wavelet
transform, 84

dynamic time warping, 79

ECLAT, 92

forecasting, 78, 147

generalized linear model, 48
generalized linear regression, 48

heat map, 20
hierarchical clustering, 56, 80,

82, 114
histogram, 14

IQR, 17, 143

k-means clustering, 51, 71, 116
k-medoids clustering, 53, 118
k-NN classification, 86

level plot, 21
lift, 89, 95
linear regression, 41
local outlier factor, 66
LOF, see local outlier factor, 66
logistic regression, 47

non-linear regression, 50

ODBC, 8
outlier, 58

PAM, 53, 118
parallel computing, 218
parallel coordinates, 23, 99
pie chart, 15
prediction, 216
principal component, 67

230 General Index

R, 2, 213
random forest, 36, 183
redundancy, 96
reference card, 213
regression, 41, 213

SAS, 6, 201
scatter plot, 18
scoring, 176
seasonal component, 76, 145,

146
silhouette, 54, 121
snowball stemmer, 108
social network analysis, 123, 217
spatial data, 217
stemming, see word stemming,

108
STL, 72
support, 89, 92

tag cloud, see word cloud, 113
term-document matrix, 110
text mining, 105, 217
TF-IDF, 111
time series, 72, 75
time series analysis, 213, 216
time series classification, 83
time series clustering, 78
time series decomposition, 76,

145
time series forecasting, 78, 147
Titanic, 90
topic model, 121
topic modeling, 136
Twitter, 105, 123

word cloud, 105, 113
word stemming, 108

Package Index

arules, 92, 96, 103, 216
arulesNBMiner, 103
arulesSequences, 103
arulesViz, 99, 217
ast, 77

bigmemory, 218

cluster, 53

data.table, 218
datasets, 90
DMwR, 66
dprep, 66
dtw, 79

extremevalues, 73

filehash, 219
foreach, 218
foreign, 6
fpc, 53, 57, 59, 118

ggplot2, 24, 112
graphics, 22

igraph, 123, 124, 136

lattice, 21–24
lda, 121, 136

MASS, 23
mboost, 3
multicore, 69, 73
mvoutlier, 73

network, 136

outliers, 73

party, 27, 28, 37, 83, 166,
182–185, 201

randomForest, 27, 36, 37, 183
RANN, 86
RCurl, 105
rgl, 20
rJava, 108
Rlof, 69, 73
rmr, 218
ROCR, 216
RODBC, 8
rpart, 27, 31, 34, 216
RWeka, 108
RWekajars, 108

scatterplot3d, 20
sfCluster, 219
sna, 136, 217
snow, 219
Snowball, 108
snowfall, 219
statnet, 136, 217, 218
stats, 77

textcat, 121
timsac, 77
tm, 105, 106, 111, 121, 217
tm.plugin.mail, 121
topicmodels, 121, 136
twitteR, 105

wavelets, 84
wordcloud, 105, 113

XML, 105

Function Index

abline(), 36, 139
aggregate(), 17
apriori(), 92
as.Date(), 138
as.PlainTextDocument(), 107
attributes(), 11
axis(), 41

barplot(), 15, 113
biplot(), 68
bmp(), 25
boxplot(), 17, 143
boxplot.stats(), 63

cforest(), 37, 184
clara(), 53
colMeans(), 142
colSums(), 142
contour(), 22
contourplot(), 22
coord_flip(), 112
cor(), 16, 164
cov(), 16
ctree(), 27, 28, 30, 31, 83, 166,

173, 182, 185–187
cumsum(), 167, 204
cut(), 157

decomp(), 77
decompose(), 76, 146
delete.edges(), 130
delete.vertices(), 129
density(), 14
dev.off(), 25
dim(), 11
dist(), 20, 115
dtw(), 79

dtwDist(), 79
dwt(), 85

E(), 126
eclat(), 92

filled.contour(), 22
findAssocs(), 113
findFreqTerms(), 112

gc(), 196
getTransformations(), 107
glm(), 47, 48
graph.adjacency(), 124
graphics.off(), 25
grep(), 110
grey.colors(), 21
grid(), 139
gsub(), 107

hclust(), 56, 115
head(), 12
heatmap(), 20
hist(), 14

idwt(), 85
importance(), 39
interestMeasure(), 96
is.subset(), 98

jitter(), 18, 165
jpeg(), 25

kmeans(), 51, 116

levelplot(), 21
lm(), 41, 42
load(), 5

234 Function Index

lof(), 69
lofactor(), 66, 69
lower.tri(), 98

margin(), 39
mean(), 14
median(), 14
memory.limit(), 185
memory.profile(), 185
memory.size(), 185

names(), 11
nei(), 133
neighborhood(), 134
nls(), 50

object.size(), 185, 187
odbcClose(), 8
odbcConnect(), 8

pairs(), 19
pam(), 53–55, 118
pamk(), 53–55, 118, 121
parallelplot(), 23
parcoord(), 23
pdf(), 25, 167
persp(), 22
pie(), 15
plane3d(), 45
plot(), 18
plot3d(), 20
plotcluster(), 59
png(), 25
postscript(), 25
prcomp(), 68
predict(), 27, 31, 43, 194

quantile(), 14

rainbow(), 21, 113
randomForest(), 36
range(), 14
read.csv(), 5, 137
read.ssd(), 6
read.table(), 80
read.xport(), 8

removeNumbers(), 107
removePunctuation(), 107
removeURL(), 107
removeWords(), 107
residuals(), 44
rgb(), 126
rm(), 5
rowMeans(), 142
rownames(), 111
rowSums(), 112
rpart(), 31
runif(), 60

save(), 5
scatterplot3d(), 20, 45
set.seed(), 116
sqlQuery(), 8
sqlSave(), 8
sqlUpdate(), 8
stemCompletion(), 108
stemDocument(), 107
stl(), 72, 77, 145
str(), 11
stripWhitespace(), 107
strptime(), 137
summary(), 13, 143

t(), 124
table(), 15, 39
tail(), 12
TermDocumentMatrix(), 110
tiff(), 25
tm_map(), 107, 110
ts(), 145
tsr(), 77

userTimeline(), 105

V(), 126
var(), 14
varImpPlot(), 39

with(), 18
wordcloud(), 113
write.csv(), 5

	Introduction
	1.1 Data Mining
	1.2 R
	1.3 Datasets
	1.3.1 The Iris Dataset
	1.3.2 The Bodyfat Dataset

	Data Import and Export
	2.1 Save and Load R Data
	2.2 Import from and Export to .CSV Files
	2.3 Import Data from SAS
	2.4 Import/Export via ODBC
	2.4.1 Read from Databases
	2.4.2 Output to and Input from EXCEL Files

	Data Exploration
	3.1 Have a Look at Data
	3.2 Explore Individual Variables
	3.3 Explore Multiple Variables
	3.4 More Explorations
	3.5 Save Charts into Files

	Decision Trees and Random Forest
	4.1 Decision Trees with Package party
	4.2 Decision Trees with Package rpart
	4.3 Random Forest

	Regression
	5.1 Linear Regression
	5.2 Logistic Regression
	5.3 Generalized Linear Regression
	5.4 Non-Linear Regression

	Clustering
	6.1 The k-Means Clustering
	6.2 The k-Medoids Clustering
	6.3 Hierarchical Clustering
	6.4 Density-Based Clustering

	Outlier Detection
	7.1 Univariate Outlier Detection
	7.2 Outlier Detection with LOF
	7.3 Outlier Detection by Clustering
	7.4 Outlier Detection from Time Series
	7.5 Discussions

	Time Series Analysis and Mining
	8.1 Time Series Data in R
	8.2 Time Series Decomposition
	8.3 Time Series Forecasting
	8.4 Time Series Clustering

	Association Rules
	9.1 Basics of Association Rules
	9.2 The Titanic Dataset
	9.3 Association Rule Mining
	9.4 Removing Redundancy
	9.5 Interpreting Rules
	9.6 Visualizing Association Rules
	9.7 Discussions and Further Readings

	Text Mining
	10.1 Retrieving Text from Twitter
	10.2 Transforming Text
	10.3 Stemming Words
	10.4 Building a Term-Document Matrix
	10.5 Frequent Terms and Associations
	10.6 Word Cloud
	10.7 Clustering Words
	10.8 Clustering Tweets
	10.8.1 Clustering Tweets with the k-Means Algorithm
	10.8.2 Clustering Tweets with the k-Medoids Algorithm

	10.9 Packages, Further Readings, and Discussions

	Social Network Analysis
	11.1 Network of Terms
	11.2 Network of Tweets
	11.3 Two-Mode Network
	11.4 Discussions and Further Readings

	Case Study I: Analysis and Forecasting of House Price Indices
	12.1 Importing HPI Data
	12.2 Exploration of HPI Data
	12.3 Trend and Seasonal Components of HPI
	12.4 HPI Forecasting
	12.5 The Estimated Price of a Property
	12.6 Discussion

	Case Study II: Customer Response Prediction and Profit Optimization
	Case Study III: Predictive Modeling of Big Data with Limited Memory
	14.1 Introduction
	14.2 Methodology
	14.3 Data and Variables
	14.4 Random Forest
	14.5 Memory Issue
	14.6 Train Models on Sample Data
	14.7 Build Models with Selected Variables
	14.8 Scoring
	14.9 Print Rules
	14.9.1 Print Rules in Text
	14.9.2 Print Rules for Scoring with SAS

	14.10 Conclusions and Discussion

	Online Resources
	15.1 R Reference Cards
	15.2 R
	15.3 Data Mining
	15.4 Data Mining with R
	15.5 Classification/Prediction with R
	15.6 Time Series Analysis with R
	15.7 Association Rule Mining with R
	15.8 Spatial Data Analysis with R
	15.9 Text Mining with R
	15.10 Social Network Analysis with R
	15.11 Data Cleansing and Transformation with R
	15.12 Big Data and Parallel Computing with R

	Frontmatter�
	Copyright
	Dedication
	List of Figures
	Untitled
	List of Abbreviations
	R Reference Card for Data Mining
	Bibliography
	General Index
	Function Index

