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Preface

In recent years, advances in hardware technology have lead to an increase
in the capability to store and record personal data about consumers and indi-
viduals. This has lead to concerns that the personal data may be misused for
a variety of purposes. In order to alleviate these concerns, a number of tech-
niques have recently been proposed in order to perform the data mining tasks in
a privacy-preserving way. These techniques for performing privacy-preserving
data mining are drawn from a wide array of related topics such as data mining,
cryptography and information hiding. The material in this book is designed
to be drawn from the different topics so as to provide a good overview of the
important topics in the field.

While a large number of research papers are now available in this field, many
of the topics have been studied by different communities with different styles.
At this stage, it becomes important to organize the topics in such a way that
the relative importance of different research areas is recognized. Furthermore,
the field of privacy-preserving data mining has been explored independently
by the cryptography, database and statistical disclosure control communities.
In some cases, the parallel lines of work are quite similar, but the communities
are not sufficiently integrated for the provision of a broader perspective. This
book will contain chapters from researchers of all three communities and will
therefore try to provide a balanced perspective of the work done in this field.

This book will be structured as an edited book from prominent researchers
in the field. Each chapter will contain a survey which contains the key research
content on the topic, and the future directions of research in the field. Emphasis
will be placed on making each chapter self-sufficient. While the chapters will
be written by different researchers, the topics and content is organized in such
a way so as to present the most important models, algorithms, and applications
in the privacy field in a structured and concise way. In addition, attention is
paid in drawing chapters from researchers working in different areas in order
to provide different points of view. Given the lack of structurally organized in-
formation on the topic of privacy, the book will provide insights which are not
easily accessible otherwise. A few chapters in the book are not surveys, since
the corresponding topics fall in the emerging category, and enough material is
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not available to create a survey. In such cases, the individual results have been
included to give a flavor of the emerging research in the field. It is expected
that the book will be a great help to researchers and graduate students inter-
ested in the topic. While the privacy field clearly falls in the emerging category
because of its recency, it is now beginning to reach a maturation and popularity
point, where the development of an overview book on the topic becomes both
possible and necessary. It is hoped that this book will provide a reference to
students, researchers and practitioners in both introducing the topic of privacy-
preserving data mining and understanding the practical and algorithmic aspects
of the area.
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Abstract The field of privacy has seen rapid advances in recent years because of the in-
creases in the ability to store data. In particular, recent advances in the data
mining field have lead to increased concerns about privacy. While the topic
of privacy has been traditionally studied in the context of cryptography and
information-hiding, recent emphasis on data mining has lead to renewed interest
in the field. In this chapter, we will introduce the topic of privacy-preserving data
mining and provide an overview of the different topics covered in this book.

Keywords: Privacy-preserving data mining, privacy, randomization, k-anonymity.

1.1 Introduction

The problem of privacy-preserving data mining has become more impor-
tant in recent years because of the increasing ability to store personal data
about users, and the increasing sophistication of data mining algorithms to
leverage this information. A number of techniques such as randomization and
k-anonymity [1, 4, 16] have been suggested in recent years in order to per-
form privacy-preserving data mining. Furthermore, the problem has been dis-
cussed in multiple communities such as the database community, the statistical
disclosure control community and the cryptography community. In some cases,
the different communities have explored parallel lines of work which are quite
similar. This book will try to explore different topics from the perspective of
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different communities, and will try to give a fused idea of the work in different
communities.

The key directions in the field of privacy-preserving data mining are as fol-
lows:

Privacy-Preserving Data Publishing: These techniques tend to study
different transformation methods associated with privacy. These tech-
niques include methods such as randomization [1], k-anonymity [16, 7],
and l-diversity [11]. Another related issue is how the perturbed data can
be used in conjunction with classical data mining methods such as as-
sociation rule mining [15]. Other related problems include that of deter-
mining privacy-preserving methods to keep the underlying data useful
(utility-based methods), or the problem of studying the different defi-
nitions of privacy, and how they compare in terms of effectiveness in
different scenarios.

Changing the results of Data Mining Applications to preserve pri-
vacy: In many cases, the results of data mining applications such as
association rule or classification rule mining can compromise the pri-
vacy of the data. This has spawned a field of privacy in which the results
of data mining algorithms such as association rule mining are modified
in order to preserve the privacy of the data. A classic example of such
techniques are association rule hiding methods, in which some of the
association rules are suppressed in order to preserve privacy.

Query Auditing: Such methods are akin to the previous case of modify-
ing the results of data mining algorithms. Here, we are either modifying
or restricting the results of queries. Methods for perturbing the output of
queries are discussed in [8], whereas techniques for restricting queries
are discussed in [9, 13].

Cryptographic Methods for Distributed Privacy: In many cases, the
data may be distributed across multiple sites, and the owners of the data
across these different sites may wish to compute a common function. In
such cases, a variety of cryptographic protocols may be used in order
to communicate among the different sites, so that secure function com-
putation is possible without revealing sensitive information. A survey of
such methods may be found in [14].

Theoretical Challenges in High Dimensionality: Real data sets are
usually extremely high dimensional, and this makes the process of
privacy-preservation extremely difficult both from a computational and
effectiveness point of view. In [12], it has been shown that optimal
k-anonymization is NP-hard. Furthermore, the technique is not even ef-
fective with increasing dimensionality, since the data can typically be
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combined with either public or background information to reveal the
identity of the underlying record owners. A variety of methods for ad-
versarial attacks in the high dimensional case are discussed in [5, 6].

This book will attempt to cover the different topics from the point of view of
different communities in the field. This chapter will provide an overview of the
different privacy-preserving algorithms covered in this book. We will discuss
the challenges associated with each kind of problem, and discuss an overview
of the material in the corresponding chapter.

1.2 Privacy-Preserving Data Mining Algorithms

In this section, we will discuss the key stream mining problems and will
discuss the challenges associated with each problem. We will also discuss an
overview of the material covered in each chapter of this book. The broad topics
covered in this book are as follows:

General Survey. In chapter 2, we provide a broad survey of privacy-
preserving data-mining methods. We provide an overview of the different
techniques and how they relate to one another. The individual topics will be
covered in sufficient detail to provide the reader with a good reference point.
The idea is to provide an overview of the field for a new reader from the per-
spective of the data mining community. However, more detailed discussions
are deferred to future chapters which contain descriptions of different data
mining algorithms.

Statistical Methods for Disclosure Control. The topic of privacy-preserv-
ing data mining has often been studied extensively by the data mining com-
munity without sufficient attention to the work done by the conventional work
done by the statistical disclosure control community. In chapter 3, detailed
methods for statistical disclosure control have been presented along with some
of the relationships to the parallel work done in the database and data mining
community. This includes methods such as k-anonymity, swapping, random-
ization, micro-aggregation and synthetic data generation. The idea is to give the
readers an overview of the common themes in privacy-preserving data mining
by different communities.

Measures of Anonymity. There are a very large number of definitions of
anonymity in the privacy-preserving data mining field. This is partially because
of the varying goals of different privacy-preserving data mining algorithms.
For example, methods such as k-anonymity, l-diversity and t-closeness are all
designed to prevent identification, though the final goal is to preserve the un-
derlying sensitive information. Each of these methods is designed to prevent
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disclosure of sensitive information in a different way. Chapter 4 is a survey of
different measures of anonymity. The chapter tries to define privacy from the
perspective of anonymity measures and classifies such measures. The chap-
ter also compares and contrasts different measures, and discusses the relative
advantages of different measures. This chapter thus provides an overview and
perspective of the different ways in which privacy could be defined, and what
the relative advantages of each method might be.

The k-anonymity Method. An important method for privacy de-identification
is the method of k-anonymity [16]. The motivating factor behind the k-
anonymity technique is that many attributes in the data can often be consid-
ered pseudo-identifiers which can be used in conjunction with public records
in order to uniquely identify the records. For example, if the identifications
from the records are removed, attributes such as the birth date and zip-code an
be used in order to uniquely identify the identities of the underlying records.
The idea in k-anonymity is to reduce the granularity of representation of the
data in such a way that a given record cannot be distinguished from at least
(k − 1) other records. In chapter 5, the k-anonymity method is discussed in
detail. A number of important algorithms for k-anonymity are discussed in the
same chapter.

The Randomization Method. The randomization technique uses data dis-
tortion methods in order to create private representations of the records [1, 4].
In most cases, the individual records cannot be recovered, but only aggregate
distributions can be recovered. These aggregate distributions can be used for
data mining purposes. Two kinds of perturbation are possible with the random-
ization method:

Additive Perturbation: In this case, randomized noise is added to the
data records. The overall data distributions can be recovered from the
randomized records. Data mining and management algorithms re de-
signed to work with these data distributions. A detailed discussion of
these methods is provided in chapter 6.

Multiplicative Perturbation: In this case, the random projection or ran-
dom rotation techniques are used in order to perturb the records. A de-
tailed discussion of these methods is provided in chapter 7.

In addition, these chapters deal with the issue of adversarial attacks and vul-
nerabilities of these methods.

Quantification of Privacy. A key issue in measuring the security of dif-
ferent privacy-preservation methods is the way in which the underlying pri-
vacy is quantified. The idea in privacy quantification is to measure the risk of
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disclosure for a given level of perturbation. In chapter 8, the issue of quantifi-
cation of privacy is closely examined. The chapter also examines the issue of
utility, and its natural tradeoff with privacy quantification. A discussion of the
relative advantages of different kinds of methods is presented.

Utility Based Privacy-Preserving Data Mining. Most privacy-preserving
data mining methods apply a transformation which reduces the effectiveness
of the underlying data when it is applied to data mining methods or algo-
rithms. In fact, there is a natural tradeoff between privacy and accuracy, though
this tradeoff is affected by the particular algorithm which is used for privacy-
preservation. A key issue is to maintain maximum utility of the data with-
out compromising the underlying privacy constraints. In chapter 9, a broad
overview of the different utility based methods for privacy-preserving data
mining is presented. The issue of designing utility based algorithms to work
effectively with certain kinds of data mining problems is addressed.

Mining Association Rules under Privacy Constraints. Since association
rule mining is one of the important problems in data mining, we have devoted
a number of chapters to this problem. There are two aspects to the privacy-
preserving association rule mining problem:

When the input to the data is perturbed, it is a challenging problem to
accurately determine the association rules on the perturbed data. Chapter
10 discusses the problem of association rule mining on the perturbed
data.

A different issue is that of output association rule privacy. In this case,
we try to ensure that none of the association rules in the output result
in leakage of sensitive data. This problem is referred to as association
rule hiding [17] by the database community, and that of contingency
table privacy-preservation by the statistical community. The problem
of output association rule privacy is briefly discussed in chapter 10. A
detailed survey of association rule hiding from the perspective of the
database community is discussed in chapter 11, and a discussion from
the perspective of the statistical community is discussed in chapter 12.

Cryptographic Methods for Information Sharing and Privacy. In many
cases, multiple parties may wish to share aggregate private data, without leak-
ing any sensitive information at their end [14]. For example, different super-
stores with sensitive sales data may wish to coordinate among themselves in
knowing aggregate trends without leaking the trends of their individual stores.
This requires secure and cryptographic protocols for sharing the information
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across the different parties. The data may be distributed in two ways across
different sites:

Horizontal Partitioning: In this case, the different sites may have dif-
ferent sets of records containing the same attributes.

Vertical Partitioning: In this case, the different sites may have different
attributes of the same sets of records.

Clearly, the challenges for the horizontal and vertical partitioning case are quite
different. In chapters 13 and 14, a variety of cryptographic protocols for hor-
izontally and vertically partitioned data are discussed. The different kinds of
cryptographic methods are introduced in chapter 13. Methods for horizontally
partitioned data are discussed in chapter 13, whereas methods for vertically
partitioned data are discussed in chapter 14.

Privacy Attacks. It is useful to examine the different ways in which one can
make adversarial attacks on privacy-transformed data. This helps in designing
more effective privacy-transformation methods. Some examples of methods
which can be used in order to attack the privacy of the underlying data include
SVD-based methods, spectral filtering methods and background knowledge
attacks. In chapter 15, a detailed description of different kinds of attacks on
data perturbation methods is provided.

Query Auditing and Inference Control. Many private databases are open
to querying. This can compromise the security of the results, when the adver-
sary can use different kinds of queries in order to undermine the security of
the data. For example, a combination of range queries can be used in order to
narrow down the possibilities for that record. Therefore, the results over mul-
tiple queries can be combined in order to uniquely identify a record, or at least
reduce the uncertainty in identifying it. There are two primary methods for
preventing this kind of attack:

Query Output Perturbation: In this case, we add noise to the output of
the query result in order to preserve privacy [8]. A detailed description
of such methods is provided in chapter 16.

Query Auditing: In this case, we choose to deny a subset of the queries,
so that the particular combination of queries cannot be used in order to
violate the privacy [9, 13]. A detailed survey of query auditing methods
have been provided in chapter 17.

Privacy and the Dimensionality Curse. In recent years, it has been
observed that many privacy-preservation methods such as k-anonymity and
randomization are not very effective in the high dimensional case [5, 6]. In
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chapter 18, we have provided a detailed description of the effects of the dimen-
sionality curse on different kinds of privacy-preserving data mining algorithm.
It is clear from the discussion in the chapter that most privacy methods are not
very effective in the high dimensional case.

Personalized Privacy Preservation. In many applications, different sub-
jects have different requirements for privacy. For example, a brokerage cus-
tomer with a very large account would likely have a much higher level of
privacy-protection than a customer with a lower level of privacy protection.
In such case, it is necessary to personalize the privacy-protection algorithm.
In personalized privacy-preservation, we construct anonymizations of the data
such that different records have a different level of privacy. Two examples
of personalized privacy-preservation methods are discussed in [3, 18]. The
method in [3] uses condensation approach for personalized anonymization,
while the method in [18] uses a more conventional generalization approach
for anonymization. In chapter 19, a number of algorithms for personalized
anonymity are examined.

Privacy-Preservation of Data Streams. A new topic in the area of privacy-
preserving data mining is that of data streams, in which data grows rapidly at
an unlimited rate. In such cases, the problem of privacy-preservation is quite
challenging since the data is being released incrementally. In addition, the fast
nature of data streams obviates the possibility of using the past history of the
data. We note that both the topics of data streams and privacy-preserving data
mining are relatively new, and there has not been much work on combining
the two topics. Some work has been done on performing randomization of
data streams [10], and other work deals with the issue of condensation based
anonymization [2] of data streams. Both of these methods are discussed in
Chapters 2 and 5, which are surveys on privacy and randomization respectively.
Nevertheless, the literature on the stream topic remains sparse. Therefore, in
chapter 20, we have added a chapter which specifically deals with the issue of
privacy-preserving classification of data streams. While this chapter is unlike
other chapters in the sense that it is not a survey, we have included it in order to
provide a flavor of the emerging techniques in this important area of research.

1.3 Conclusions and Summary

In this chapter, we introduced the problem of privacy-preserving data min-
ing and discussed the broad areas of research in the field. The broad areas of
privacy are as follows:

Privacy-preserving data publishing: This corresponds to sanitizing the
data, so that its privacy remains preserved.



8 Privacy-Preserving Data Mining: Models and Algorithms

Privacy-Preserving Applications: This corresponds to designing data
management and mining algorithms in such a way that the privacy re-
mains preserved. Some examples include association rule mining, clas-
sification, and query processing.

Utility Issues: Since the perturbed data may often be used for mining
and management purposes, its utility needs to be preserved. Therefore,
the data mining and privacy transformation techniques need to be de-
signed effectively, so to to preserve the utility of the results.

Distributed Privacy, cryptography and adversarial collaboration:
This corresponds to secure communication protocols between trusted
parties, so that information can be shared effectively without revealing
sensitive information about particular parties.

We also discussed a broad overview of the different topics discussed in this
book. In the remaining chapters, the surveys will provide a comprehensive
treatment of the topics in each category.
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Abstract In recent years, privacy-preserving data mining has been studied extensively, be-
cause of the wide proliferation of sensitive information on the internet. A num-
ber of algorithmic techniques have been designed for privacy-preserving data
mining. In this paper, we provide a review of the state-of-the-art methods for
privacy. We discuss methods for randomization, k-anonymization, and distrib-
uted privacy-preserving data mining. We also discuss cases in which the out-
put of data mining applications needs to be sanitized for privacy-preservation
purposes. We discuss the computational and theoretical limits associated with
privacy-preservation over high dimensional data sets.
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2.1 Introduction

In recent years, data mining has been viewed as a threat to privacy because
of the widespread proliferation of electronic data maintained by corporations.
This has lead to increased concerns about the privacy of the underlying data.
In recent years, a number of techniques have been proposed for modifying or
transforming the data in such a way so as to preserve privacy. A survey on
some of the techniques used for privacy-preserving data mining may be found
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in [123]. In this chapter, we will study an overview of the state-of-the-art in
privacy-preserving data mining.

Privacy-preserving data mining finds numerous applications in surveillance
which are naturally supposed to be “privacy-violating” applications. The key
is to design methods [113] which continue to be effective, without compro-
mising security. In [113], a number of techniques have been discussed for bio-
surveillance, facial de-dentification, and identity theft. More detailed discus-
sions on some of these sssues may be found in [96, 114–116].

Most methods for privacy computations use some form of transformation
on the data in order to perform the privacy preservation. Typically, such meth-
ods reduce the granularity of representation in order to reduce the privacy. This
reduction in granularity results in some loss of effectiveness of data manage-
ment or mining algorithms. This is the natural trade-off between information
loss and privacy. Some examples of such techniques are as follows:

The randomization method: The randomization method is a technique
for privacy-preserving data mining in which noise is added to the data
in order to mask the attribute values of records [2, 5]. The noise added
is sufficiently large so that individual record values cannot be recov-
ered. Therefore, techniques are designed to derive aggregate distribu-
tions from the perturbed records. Subsequently, data mining techniques
can be developed in order to work with these aggregate distributions.
We will describe the randomization technique in greater detail in a later
section.

The k-anonymity model and l-diversity: The k-anonymity model was
developed because of the possibility of indirect identification of records
from public databases. This is because combinations of record attributes
can be used to exactly identify individual records. In the k-anonymity
method, we reduce the granularity of data representation with the use
of techniques such as generalization and suppression. This granularity
is reduced sufficiently that any given record maps onto at least k other
records in the data. The l-diversity model was designed to handle some
weaknesses in the k-anonymity model since protecting identities to the
level of k-individuals is not the same as protecting the corresponding
sensitive values, especially when there is homogeneity of sensitive val-
ues within a group. To do so, the concept of intra-group diversity of
sensitive values is promoted within the anonymization scheme [83].

Distributed privacy preservation: In many cases, individual entities may
wish to derive aggregate results from data sets which are partitioned
across these entities. Such partitioning may be horizontal (when the
records are distributed across multiple entities) or vertical (when the
attributes are distributed across multiple entities). While the individual
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entities may not desire to share their entire data sets, they may consent
to limited information sharing with the use of a variety of protocols. The
overall effect of such methods is to maintain privacy for each individual
entity, while deriving aggregate results over the entire data.

Downgrading Application Effectiveness: In many cases, even though the
data may not be available, the output of applications such as association
rule mining, classification or query processing may result in violations
of privacy. This has lead to research in downgrading the effectiveness
of applications by either data or application modifications. Some exam-
ples of such techniques include association rule hiding [124], classifier
downgrading [92], and query auditing [1].

In this paper, we will provide a broad overview of the different techniques for
privacy-preserving data mining. We will provide a review of the major algo-
rithms available for each method, and the variations on the different techniques.
We will also discuss a number of combinations of different concepts such as
k-anonymous mining over vertically- or horizontally-partitioned data. We will
also discuss a number of unique challenges associated with privacy-preserving
data mining in the high dimensional case.

This paper is organized as follows. In section 2, we will introduce the ran-
domization method for privacy preserving data mining. In section 3, we will
discuss the k-anonymization method along with its different variations. In
section 4, we will discuss issues in distributed privacy-preserving data mining.
In section 5, we will discuss a number of techniques for privacy which arise
in the context of sensitive output of a variety of data mining and data man-
agement applications. In section 6, we will discuss some unique challenges
associated with privacy in the high dimensional case. A number of applica-
tions of privacy-preserving models and algorithms are discussed in Section 7.
Section 8 contains the conclusions and discussions.

2.2 The Randomization Method

In this section, we will discuss the randomization method for privacy-
preserving data mining. The randomization method has been traditionally used
in the context of distorting data by probability distribution for methods such
as surveys which have an evasive answer bias because of privacy concerns
[74, 129]. This technique has also been extended to the problem of privacy-
preserving data mining [2].

The method of randomization can be described as follows. Consider a set
of data records denoted by X = {x1 . . . xN}. For record xi ∈ X, we add
a noise component which is drawn from the probability distribution fY (y).
These noise components are drawn independently, and are denoted y1 . . . yN .
Thus, the new set of distorted records are denoted by x1 + y1 . . . xN + yN . We



14 Privacy-Preserving Data Mining: Models and Algorithms

denote this new set of records by z1 . . . zN . In general, it is assumed that the
variance of the added noise is large enough, so that the original record values
cannot be easily guessed from the distorted data. Thus, the original records
cannot be recovered, but the distribution of the original records can be recov-
ered.

Thus, if X be the random variable denoting the data distribution for the
original record, Y be the random variable describing the noise distribution,
and Z be the random variable denoting the final record, we have:

Z = X + Y

X = Z − Y

Now, we note thatN instantiations of the probability distribution Z are known,
whereas the distribution Y is known publicly. For a large enough number of
values of N , the distribution Z can be approximated closely by using a vari-
ety of methods such as kernel density estimation. By subtracting Y from the
approximated distribution of Z , it is possible to approximate the original prob-
ability distribution X. In practice, one can combine the process of approxima-
tion of Z with subtraction of the distribution Y from Z by using a variety of
iterative methods such as those discussed in [2, 5]. Such iterative methods typi-
cally have a higher accuracy than the sequential solution of first approximating
Z and then subtracting Y from it. In particular, the EM method proposed in [5]
shows a number of optimal properties in approximating the distribution of X.

We note that at the end of the process, we only have a distribution contain-
ing the behavior of X. Individual records are not available. Furthermore, the
distributions are available only along individual dimensions. Therefore, new
data mining algorithms need to be designed to work with the uni-variate dis-
tributions rather than the individual records. This can sometimes be a chal-
lenge, since many data mining algorithms are inherently dependent on sta-
tistics which can only be extracted from either the individual records or the
multi-variate probability distributions associated with the records. While the
approach can certainly be extended to multi-variate distributions, density es-
timation becomes inherently more challenging [112] with increasing dimen-
sionalities. For even modest dimensionalities such as 7 to 10, the process of
density estimation becomes increasingly inaccurate, and falls prey to the curse
of dimensionality.

One key advantage of the randomization method is that it is relatively sim-
ple, and does not require knowledge of the distribution of other records in
the data. This is not true of other methods such as k-anonymity which re-
quire the knowledge of other records in the data. Therefore, the randomization
method can be implemented at data collection time, and does not require the
use of a trusted server containing all the original records in order to perform the
anonymization process. While this is a strength of the randomization method,
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it also leads to some weaknesses, since it treats all records equally irrespective
of their local density. Therefore, outlier records are more susceptible to adver-
sarial attacks as compared to records in more dense regions in the data [10]. In
order to guard against this, one may need to be needlessly more aggressive in
adding noise to all the records in the data. This reduces the utility of the data
for mining purposes.

The randomization method has been extended to a variety of data mining
problems. In [2], it was discussed how to use the approach for classification. A
number of other techniques [143, 145] have also been proposed which seem to
work well over a variety of different classifiers. Techniques have also been pro-
posed for privacy-preserving methods of improving the effectiveness of classi-
fiers. For example, the work in [51] proposes methods for privacy-preserving
boosting of classifiers. Methods for privacy-preserving mining of association
rules have been proposed in [47, 107]. The problem of association rules is
especially challenging because of the discrete nature of the attributes corre-
sponding to presence or absence of items. In order to deal with this issue, the
randomization technique needs to be modified slightly. Instead of adding quan-
titative noise, random items are dropped or included with a certain probability.
The perturbed transactions are then used for aggregate association rule mining.
This technique has shown to be extremely effective in [47]. The randomization
approach has also been extended to other applications such as OLAP [3], and
SVD based collaborative filtering [103].

2.2.1 Privacy Quantification

The quantity used to measure privacy should indicate how closely the orig-
inal value of an attribute can be estimated. The work in [2] uses a measure
that defines privacy as follows: If the original value can be estimated with c%
confidence to lie in the interval [α1, α2], then the interval width (α2 − α1)
defines the amount of privacy at c% confidence level. For example, if the per-
turbing additive is uniformly distributed in an interval of width 2α, then α is
the amount of privacy at confidence level 50% and 2α is the amount of privacy
at confidence level 100%. However, this simple method of determining privacy
can be subtly incomplete in some situations. This can be best explained by the
following example.

Example 2.1 Consider an attribute X with the density function fX(x) given
by:

fX(x) = 0.5 0 ≤ x ≤ 1
0.5 4 ≤ x ≤ 5
0 otherwise
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Assume that the perturbing additive Y is distributed uniformly between
[−1, 1]. Then according to the measure proposed in [2], the amount of privacy
is 2 at confidence level 100%.

However, after performing the perturbation and subsequent reconstruction,
the density function fX(x) will be approximately revealed. Let us assume for
a moment that a large amount of data is available, so that the distribution
function is revealed to a high degree of accuracy. Since the (distribution of
the) perturbing additive is publically known, the two pieces of information can
be combined to determine that if Z ∈ [−1, 2], then X ∈ [0, 1]; whereas if
Z ∈ [3, 6] then X ∈ [4, 5].

Thus, in each case, the value ofX can be localized to an interval of length 1.
This means that the actual amount of privacy offered by the perturbing additive
Y is at most 1 at confidence level 100%. We use the qualifier ‘at most’ since
X can often be localized to an interval of length less than one. For example, if
the value of Z happens to be −0.5, then the value of X can be localized to an
even smaller interval of [0, 0.5].

This example illustrates that the method suggested in [2] does not take into
account the distribution of original data. In other words, the (aggregate) re-
construction of the attribute value also provides a certain level of knowledge
which can be used to guess a data value to a higher level of accuracy. To accu-
rately quantify privacy, we need a method which takes such side-information
into account.

A key privacy measure [5] is based on the differential entropy of a random
variable. The differential entropy h(A) of a random variable A is defined as
follows:

h(A) = −
∫

ΩA

fA(a) log2 fA(a) da (2.1)

where ΩA is the domain of A. It is well-known that h(A) is a measure of
uncertainty inherent in the value of A [111]. It can be easily seen that for a
random variable U distributed uniformly between 0 and a, h(U) = log2(a).
For a = 1, h(U) = 0.

In [5], it was proposed that 2h(A) is a measure of privacy inherent in the
random variable A. This value is denoted by Π(A). Thus, a random variable U
distributed uniformly between 0 and a has privacy Π(U) = 2log2(a) = a. For a
general random variable A, Π(A) denote the length of the interval, over which
a uniformly distributed random variable has the same uncertainty as A.

Given a random variable B, the conditional differential entropy of A is de-
fined as follows:

h(A|B) = −
∫

ΩA,B

fA,B(a, b) log2 fA|B=b(a) da db (2.2)
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Thus, the average conditional privacy ofA givenB is Π(A|B) = 2h(A|B). This
motivates the following metric P(A|B) for the conditional privacy loss of A,
given B:

P(A|B) = 1−Π(A|B)/Π(A) = 1− 2h(A|B)/2h(A) = 1− 2−I(A;B).

where I(A;B) = h(A)− h(A|B) = h(B)− h(B|A). I(A;B) is also known
as the mutual information between the random variables A and B. Clearly,
P(A|B) is the fraction of privacy of A which is lost by revealing B.

As an illustration, let us reconsider Example 2.1 given above. In this case,
the differential entropy of X is given by:

h(X) = −
∫

ΩX

fX(x) log2 fX(x) dx

= −
∫ 1

0
0.5 log2 0.5 dx−

∫ 5

4
0.5 log2 0.5 dx

= 1

Thus the privacy ofX, Π(X) = 21 = 2. In other words,X has as much privacy
as a random variable distributed uniformly in an interval of length 2. The den-
sity function of the perturbed value Z is given by fZ(z) =

∫∞
−∞ fX(ν)fY (z −

ν) dν.
Using fZ(z), we can compute the differential entropy h(Z) of Z . It turns

out that h(Z) = 9/4. Therefore, we have:

I(X;Z) = h(Z)− h(Z|X) = 9/4 − h(Y ) = 9/4 − 1 = 5/4

Here, the second equality h(Z|X) = h(Y ) follows from the fact that X and
Y are independent and Z = X + Y . Thus, the fraction of privacy loss in this
case is P(X|Z) = 1 − 2−5/4 = 0.5796. Therefore, after revealing Z , X has
privacy Π(X|Z) = Π(X) × (1 − P(X|Z)) = 2× (1.0 − 0.5796) = 0.8408.
This value is less than 1, since X can be localized to an interval of length less
than one for many values of Z .

The problem of privacy quantification has been studied quite extensively in
the literature, and a variety of metrics have been proposed to quantify privacy.
A number of quantification issues in the measurement of privacy breaches has
been discussed in [46, 48]. In [19], the problem of privacy-preservation has
been studied from the broader context of the tradeoff between the privacy and
the information loss. We note that the quantification of privacy alone is not suf-
ficient without quantifying the utility of the data created by the randomization
process. A framework has been proposed to explore this tradeoff for a variety
of different privacy transformation algorithms.
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2.2.2 Adversarial Attacks on Randomization

In the earlier section on privacy quantification, we illustrated an example in
which the reconstructed distribution on the data can be used in order to reduce
the privacy of the underlying data record. In general, a systematic approach
can be used to do this in multi-dimensional data sets with the use of spectral
filtering or PCA based techniques [54, 66]. The broad idea in techniques such
as PCA [54] is that the correlation structure in the original data can be esti-
mated fairly accurately (in larger data sets) even after noise addition. Once the
broad correlation structure in the data has been determined, one can then try
to remove the noise in the data in such a way that it fits the aggregate corre-
lation structure of the data. It has been shown that such techniques can reduce
the privacy of the perturbation process significantly since the noise removal
results in values which are fairly close to their original values [54, 66]. Some
other discussions on limiting breaches of privacy in the randomization method
may be found in [46].

A second kind of adversarial attack is with the use of public information.
Consider a record X = (x1 . . . xd), which is perturbed to Z = (z1 . . . zd).
Then, since the distribution of the perturbations is known, we can try to use a
maximum likelihood fit of the potential perturbation of Z to a public record.
Consider the publicly public record W = (w1 . . . wd). Then, the potential per-
turbation of Z with respect toW is given by (Z−W ) = (z1−w1 . . . zd−wd).
Each of these values (zi − wi) should fit the distribution fY (y). The corre-
sponding log-likelihood fit is given by −

∑d
i=1 log(fy(zi − wi)). The higher

the log-likelihood fit, the greater the probability that the record W corresponds
to X. If it is known that the public data set always includes X, then the max-
imum likelihood fit can provide a high degree of certainty in identifying the
correct record, especially in cases where d is large. We will discuss this issue
in greater detail in a later section.

2.2.3 Randomization Methods for Data Streams

The randomization approach is particularly well suited to privacy-preserving
data mining of streams, since the noise added to a given record is independent
of the rest of the data. However, streams provide a particularly vulnerable target
for adversarial attacks with the use of PCA based techniques [54] because
of the large volume of the data available for analysis. In [78], an interesting
technique for randomization has been proposed which uses the auto-correlations
in different time series while deciding the noise to be added to any particular
value. It has been shown in [78] that such an approach is more robust since
the noise correlates with the stream behavior, and it is more difficult to create
effective adversarial attacks with the use of correlation analysis techniques.
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2.2.4 Multiplicative Perturbations

The most common method of randomization is that of additive perturba-
tions. However, multiplicative perturbations can also be used to good effect for
privacy-preserving data mining. Many of these techniques derive their roots in
the work of [61] which shows how to use multi-dimensional projections in or-
der to reduce the dimensionality of the data. This technique preserves the inter-
record distances approximately, and therefore the transformed records can be
used in conjunction with a variety of data mining applications. In particular, the
approach is discussed in detail in [97, 98], in which it is shown how to use the
method for privacy-preserving clustering. The technique can also be applied
to the problem of classification as discussed in [28]. Multiplicative perturba-
tions can also be used for distributed privacy-preserving data mining. Details
can be found in [81]. A number of techniques for multiplicative perturbation
in the context of masking census data may be found in [70]. A variation on
this theme may be implemented with the use of distance preserving fourier
transforms, which work effectively for a variety of cases [91].

As in the case of additive perturbations, multiplicative perturbations are not
entirely safe from adversarial attacks. In general, if the attacker has no prior
knowledge of the data, then it is relatively difficult to attack the privacy of the
transformation. However, with some prior knowledge, two kinds of attacks are
possible [82]:

Known Input-Output Attack: In this case, the attacker knows some
linearly independent collection of records, and their corresponding per-
turbed version. In such cases, linear algebra techniques can be used to
reverse-engineer the nature of the privacy preserving transformation.

Known Sample Attack: In this case, the attacker has a collection of
independent data samples from the same distribution from which the
original data was drawn. In such cases, principal component analysis
techniques can be used in order to reconstruct the behavior of the original
data.

2.2.5 Data Swapping

We note that noise addition or multiplication is not the only technique which
can be used to perturb the data. A related method is that of data swapping, in
which the values across different records are swapped in order to perform the
privacy-preservation [49]. One advantage of this technique is that the lower
order marginal totals of the data are completely preserved and are not per-
turbed at all. Therefore certain kinds of aggregate computations can be exactly
performed without violating the privacy of the data. We note that this tech-
nique does not follow the general principle in randomization which allows the
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value of a record to be perturbed independent;y of the other records. There-
fore, this technique can be used in combination with other frameworks such
as k-anonymity, as long as the swapping process is designed to preserve the
definitions of privacy for that model.

2.3 Group Based Anonymization

The randomization method is a simple technique which can be easily im-
plemented at data collection time, because the noise added to a given record is
independent of the behavior of other data records. This is also a weakness be-
cause outlier records can often be difficult to mask. Clearly, in cases in which
the privacy-preservation does not need to be performed at data-collection time,
it is desirable to have a technique in which the level of inaccuracy depends
upon the behavior of the locality of that given record. Another key weakness
of the randomization framework is that it does not consider the possibility that
publicly available records can be used to identify the identity of the owners of
that record. In [10], it has been shown that the use of publicly available records
can lead to the privacy getting heavily compromised in high-dimensional cases.
This is especially true of outlier records which can be easily distinguished from
other records in their locality. Therefore, a broad approach to many privacy
transformations is to construct groups of anonymous records which are trans-
formed in a group-specific way.

2.3.1 The k -Anonymity Framework

In many applications, the data records are made available by simply remov-
ing key identifiers such as the name and social-security numbers from personal
records. However, other kinds of attributes (known as pseudo-identifiers) can
be used in order to accurately identify the records. Foe example, attributes such
as age, zip-code and sex are available in public records such as census rolls.
When these attributes are also available in a given data set, they can be used
to infer the identity of the corresponding individual. A combination of these
attributes can be very powerful, since they can be used to narrow down the
possibilities to a small number of individuals.

In k-anonymity techniques [110], we reduce the granularity of representa-
tion of these pseudo-identifiers with the use of techniques such as general-
ization and suppression. In the method of generalization, the attribute values
are generalized to a range in order to reduce the granularity of representation.
For example, the date of birth could be generalized to a range such as year of
birth, so as to reduce the risk of identification. In the method of suppression,
the value of the attribute is removed completely. It is clear that such methods
reduce the risk of identification with the use of public records, while reducing
the accuracy of applications on the transformed data.
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In order to reduce the risk of identification, the k-anonymity approach re-
quires that every tuple in the table be indistinguishability related to no fewer
than k respondents. This can be formalized as follows:

Definition 2.2 Each release of the data must be such that every combina-
tion of values of quasi-identifiers can be indistinguishably matched to at least
k respondents.

The first algorithm for k-anonymity was proposed in [110]. The approach uses
domain generalization hierarchies of the quasi-identifiers in order to build
k-anonymous tables. The concept of k-minimal generalization has been pro-
posed in [110] in order to limit the level of generalization for maintaining as
much data precision as possible for a given level of anonymity. Subsequently,
the topic of k-anonymity has been widely researched. A good overview and
survey of the corresponding algorithms may be found in [31].

We note that the problem of optimal anonymization is inherently a difficult
one. In [89], it has been shown that the problem of optimal k-anonymization is
NP-hard. Nevertheless, the problem can be solved quite effectively by the use
of a number of heuristic methods. A method proposed by Bayardo and Agrawal
[18] is the k-Optimize algorithm which can often obtain effective solutions.

The approach assumes an ordering among the quasi-identifier attributes. The
values of the attributes are discretized into intervals (quantitative attributes) or
grouped into different sets of values (categorical attributes). Each such group-
ing is an item. For a given attribute, the corresponding items are also ordered.
An index is created using these attribute-interval pairs (or items) and a set
enumeration tree is constructed on these attribute-interval pairs. This set enu-
meration tree is a systematic enumeration of all possible generalizations with
the use of these groupings. The root of the node is the null node, and every
successive level of the tree is constructed by appending one item which is lex-
icographically larger than all the items at that node of the tree. We note that
the number of possible nodes in the tree increases exponentially with the data
dimensionality. Therefore, it is not possible to build the entire tree even for
modest values of n. However, the k-Optimize algorithm can use a number of
pruning strategies to good effect. In particular, a node of the tree can be pruned
when it is determined that no descendent of it could be optimal. This can be
done by computing a bound on the quality of all descendents of that node,
and comparing it to the quality of the current best solution obtained during the
traversal process. A branch and bound technique can be used to successively
improve the quality of the solution during the traversal process. Eventually, it
is possible to terminate the algorithm at a maximum computational time, and
use the current solution at that point, which is often quite good, but may not be
optimal.
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In [75], the Incognito method has been proposed for computing a k-minimal
generalization with the use of bottom-up aggregation along domain generaliza-
tion hierarchies. The Incognito method uses a bottom-up breadth-first search of
the domain generalization hierarchy, in which it generates all the possible mini-
mal k-anonymous tables for a given private table. First, it checks k-anonymity
for each single attribute, and removes all those generalizations which do not
satisfy k-anonymity. Then, it computes generalizations in pairs, again pruning
those pairs which do not satisfy the k-anonymity constraints. In general, the
Incognito algorithm computes (i + 1)-dimensional generalization candidates
from the i-dimensional generalizations, and removes all those those generaliza-
tions which do not satisfy the k-anonymity constraint. This approach is contin-
ued until, no further candidates can be constructed, or all possible dimensions
have been exhausted. We note that the methods in [76, 75] use a more gen-
eral model for k-anonymity than that in [110]. This is because the method in
[110] assumes that the value generalization hierarchy is a tree, whereas that in
[76, 75] assumes that it is a graph.

Two interesting methods for top-down specialization and bottom-up gener-
alization for k-anonymity have been proposed in [50, 125]. In [50], a top-down
heuristic is designed, which starts with a general solution, and then special-
izes some attributes of the current solution so as to increase the information,
but reduce the anonymity. The reduction in anonymity is always controlled,
so that k-anonymity is never violated. At the same time each step of the spe-
cialization is controlled by a goodness metric which takes into account both
the gain in information and the loss in anonymity. A complementary method
to top down specialization is that of bottom up generalization, for which an
interesting method is proposed in [125].

We note that generalization and suppression are not the only transformation
techniques for implementing k-anonymity. For example in [38] it is discussed
how to use micro-aggregation in which clusters of records are constructed. For
each cluster, its representative value is the average value along each dimen-
sion in the cluster. A similar method for achieving anonymity via clustering
is proposed in [15]. The work in [15] also provides constant factor approxi-
mation algorithms to design the clustering. In [8], a related method has been
independently proposed for condensation based privacy-preserving data min-
ing. This technique generates pseudo-data from clustered groups of k-records.
The process of pseudo-data generation uses principal component analysis of
the behavior of the records within a group. It has been shown in [8], that the
approach can be effectively used for the problem of classification. We note
that the use of pseudo-data provides an additional layer of protection, since it
is difficult to perform adversarial attacks on synthetic data. At the same time,
the aggregate behavior of the data is preserved, and this can be useful for a
variety of data mining problems.
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Since the problem of k-anonymization is essentially a search over a space
of possible multi-dimensional solutions, standard heuristic search techniques
such as genetic algorithms or simulated annealing can be effectively used. Such
a technique has been proposed in [130] in which a simulated annealing algo-
rithm is used in order to generate k-anonymous representations of the data. An-
other technique proposed in [59] uses genetic algorithms in order to construct
k-anonymous representations of the data. Both of these techniques require high
computational times, and provide no guarantees on the quality of the solutions
found.

The only known techniques which provide guarantees on the quality of
the solution are approximation algorithms [13, 14, 89], in which the solu-
tion found is guaranteed to be within a certain factor of the cost of the opti-
mal solution. An approximation algorithm for k-anonymity was proposed in
[89], and it provides an O(k · logk) optimal solution. A number of techniques
have also been proposed in [13, 14], which provide O(k)-approximations to
the optimal cost k-anonymous solutions. In [100], a large improvement was
proposed over these different methods. The technique in [100] proposes an
O(log(k))-approximation algorithm. This is significantly better than compet-
ing algorithms. Furthermore, the work in [100] also proposes a O(β · log(k))
approximation algorithm, where the parameter β can be gracefully adjusted
based on running time constraints. Thus, this approach not only provides an
approximation algorithm, but also gracefully explores the tradeoff between ac-
curacy and running time.

In many cases, associations between pseudo-identifiers and sensitive at-
tributes can be protected by using multiple views, such that the pseudo-
identifiers and sensitive attributes occur in different views of the table. Thus,
only a small subset of the selected views may be made available. It may be
possible to achieve k-anonymity because of the lossy nature of the join across
the two views. In the event that the join is not lossy enough, it may result in a
violation of k-anonymity. In [140], the problem of violation of k-anonymity
using multiple views has been studied. It has been shown that the problem
is NP-hard in general. It has been shown in [140] that a polynomial time
algorithm is possible if functional dependencies exist between the different
views.

An interesting analysis of the safety of k-anonymization methods has been
discussed in [73]. It tries to model the effectiveness of a k-anonymous rep-
resentation, given that the attacker has some prior knowledge about the data
such as a sample of the original data. Clearly, the more similar the sample data
is to the true data, the greater the risk. The technique in [73] uses this fact to
construct a model in which it calculates the expected number of items iden-
tified. This kind of technique can be useful in situations where it is desirable
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to determine whether or not anonymization should be used as the technique of
choice for a particular situation.

2.3.2 Personalized Privacy-Preservation

Not all individuals or entities are equally concerned about their privacy. For
example, a corporation may have very different constraints on the privacy of its
records as compared to an individual. This leads to the natural problem that we
may wish to treat the records in a given data set very differently for anonymiza-
tion purposes. From a technical point of view, this means that the value of k
for anonymization is not fixed but may vary with the record. A condensation-
based approach [9] has been proposed for privacy-preserving data mining in
the presence of variable constraints on the privacy of the data records. This
technique constructs groups of non-homogeneous size from the data, such that
it is guaranteed that each record lies in a group whose size is at least equal to
its anonymity level. Subsequently, pseudo-data is generated from each group
so as to create a synthetic data set with the same aggregate distribution as the
original data.

Another interesting model of personalized anonymity is discussed in [132]
in which a person can specify the level of privacy for his or her sensitive values.
This technique assumes that an individual can specify a node of the domain
generalization hierarchy in order to decide the level of anonymity that he can
work with. This approach has the advantage that it allows for direct protection
of the sensitive values of individuals than a vanilla k-anonymity method which
is susceptible to different kinds of attacks.

2.3.3 Utility Based Privacy Preservation

The process of privacy-preservation leads to loss of information for data
mining purposes. This loss of information can also be considered a loss of
utility for data mining purposes. Since some negative results [7] on the curse
of dimensionality suggest that a lot of attributes may need to be suppressed
in order to preserve anonymity, it is extremely important to do this carefully
in order to preserve utility. We note that many anonymization methods [18,
50, 83, 126] use cost measures in order to measure the information loss from
the anonymization process. examples of such utility measures include gener-
alization height [18], size of anonymized group [83], discernability measures
of attribute values [18], and privacy information loss ratio[126]. In addition, a
number of metrics such as the classification metric [59] explicitly try to per-
form the privacy-preservation in such a way so as to tailor the results with use
for specific applications such as classification.

The problem of utility-based privacy-preserving data mining was first stud-
ied formally in [69]. The broad idea in [69] is to ameliorate the curse of
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dimensionality by separately publishing marginal tables containing attributes
which have utility, but are also problematic for privacy-preservation purposes.
The generalizations performed on the marginal tables and the original tables in
fact do not need to be the same. It has been shown that this broad approach can
preserve considerable utility of the data set without violating privacy.

A method for utility-based data mining using local recoding was proposed in
[135]. The approach is based on the fact that different attributes have different
utility from an application point of view. Most anonymization methods are
global, in which a particular tuple value is mapped to the same generalized
value globally. In local recoding, the data space is partitioned into a number of
regions, and the mapping of the tuple to the generalizes value is local to that
region. Clearly, this kind of approach has greater flexibility, since it can tailor
the generalization process to a particular region of the data set. In [135], it has
been shown that this method can perform quite effectively because of its local
recoding strategy.

Another indirect approach to utility based anonymization is to make the
privacy-preservation algorithms more aware of the workload [77]. Typically,
data recipients may request only a subset of the data in many cases, and the
union of these different requested parts of the data set is referred to as the
workload. Clearly, a workload in which some records are used more frequently
than others tends to suggest a different anonymization than one which is based
on the entire data set. In [77], an effective and efficient algorithm has been
proposed for workload aware anonymization.

Another direction for utility based privacy-preserving data mining is to
anonymize the data in such a way that it remains useful for particular kinds
of data mining or database applications. In such cases, the utility measure is
often affected by the underlying application at hand. For example, in [50],
a method has been proposed for k-anonymization using an information-loss
metric as the utility measure. Such an approach is useful for the problem of
classification. In [72], a method has been proposed for anonymization, so that
the accuracy of the underlying queries is preserved.

2.3.4 Sequential Releases

Privacy-preserving data mining poses unique problems for dynamic appli-
cations such as data streams because in such cases, the data is released sequen-
tially. In other cases, different views of the table may be released sequentially.
Once a data block is released, it is no longer possible to go back and increase
the level of generalization. On the other hand, new releases may sharpen an
attacker’s view of the data and may make the overall data set more susceptible
to attack. For example, when different views of the data are released sequen-
tially, then one may use a join on the two releases [127] in order to sharpen the
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ability to distinguish particular records in the data. A technique discussed in
[127] relies on lossy joins in order to cripple an attack based on global quasi-
identifiers. The intuition behind this approach is that if the join is lossy enough,
it will reduce the confidence of the attacker in relating the release from previ-
ous views to the current release. Thus, the inability to link successive releases
is key in preventing further discovery of the identity of records.

While the work in [127] explores the issue of sequential releases from the
point of view of adding additional attributes, the work in [134] discusses the
same issue when records are added to or deleted from the original data. A
new generalization principle called m-invariance is proposed, which effec-
tively limits the risk of privacy-disclosure in re-publication. Another method
for handling sequential updates to the data set is discussed in [101]. The broad
idea in this approach is to progressively and consistently increase the gen-
eralization granularity, so that the released data satisfies the k-anonymity re-
quirement both with respect to the current table, as well as with respect to the
previous releases.

2.3.5 The l -diversity Method

The k-anonymity is an attractive technique because of the simplicity of the
definition and the numerous algorithms available to perform the anonymiza-
tion. Nevertheless the technique is susceptible to many kinds of attacks espe-
cially when background knowledge is available to the attacker. Some kinds of
such attacks are as follows:

Homogeneity Attack: In this attack, all the values for a sensitive at-
tribute within a group of k records are the same. Therefore, even though
the data is k-anonymized, the value of the sensitive attribute for that
group of k records can be predicted exactly.

Background Knowledge Attack: In this attack, the adversary can use
an association between one or more quasi-identifier attributes with the
sensitive attribute in order to narrow down possible values of the sensi-
tive field further. An example given in [83] is one in which background
knowledge of low incidence of heart attacks among Japanese could be
used to narrow down information for the sensitive field of what disease
a patient might have. A detailed discussion of the effects of background
knowledge on privacy may be found in [88].

Clearly, while k-anonymity is effective in preventing identification of a record,
it may not always be effective in preventing inference of the sensitive val-
ues of the attributes of that record. Therefore, the technique of l-diversity was
proposed which not only maintains the minimum group size of k, but also
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focusses on maintaining the diversity of the sensitive attributes. Therefore, the
l-diversity model [83] for privacy is defined as follows:

Definition 2.3 Let a q∗-block be a set of tuples such that its non-sensitive
values generalize to q∗. A q∗-block is l-diverse if it contains l “well repre-
sented” values for the sensitive attribute S. A table is l-diverse, if every q∗-
block in it is l-diverse.

A number of different instantiations for the l-diversity definition are discussed
in [83]. We note that when there are multiple sensitive attributes, then the l-
diversity problem becomes especially challenging because of the curse of di-
mensionality. Methods have been proposed in [83] for constructing l-diverse
tables from the data set, though the technique remains susceptible to the curse
of dimensionality [7]. Other methods for creating l-diverse tables are discussed
in [133], in which a simple and efficient method for constructing the l-diverse
representation is proposed.

2.3.6 The t-closeness Model

The t-closeness model is a further enhancement on the concept of l-diversity.
One characteristic of the l-diversity model is that it treats all values of a given
attribute in a similar way irrespective of its distribution in the data. This is
rarely the case for real data sets, since the attribute values may be very skewed.
This may make it more difficult to create feasible l-diverse representations.
Often, an adversary may use background knowledge of the global distribution
in order to make inferences about sensitive values in the data. Furthermore, not
all values of an attribute are equally sensitive. For example, an attribute corre-
sponding to a disease may be more sensitive when the value is positive, rather
than when it is negative. In [79], a t-closeness model was proposed which
uses the property that the distance between the distribution of the sensitive
attribute within an anonymized group should not be different from the global
distribution by more than a threshold t. The Earth Mover distance metric is
used in order to quantify the distance between the two distributions. Further-
more, the t-closeness approach tends to be more effective than many other
privacy-preserving data mining methods for the case of numeric attributes.

2.3.7 Models for Text, Binary and String Data

Most of the work on privacy-preserving data mining is focussed on numer-
ical or categorical data. However, specific data domains such as strings, text,
or market basket data may share specific properties with some of these general
data domains, but may be different enough to require their own set of tech-
niques for privacy-preservation. Some examples are as follows:
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Text and Market Basket Data: While these can be considered a case of
text and market basket data, they are typically too high dimensional to
work effectively with standard k-anonymization techniques. However,
these kinds of data sets have the special property that they are extremely
sparse. The sparsity property implies that only a few of the attributes are
non-zero, and most of the attributes take on zero values. In [11], tech-
niques have been proposed to construct anonymization methods which
take advantage of this sparsity. In particular sketch based methods have
been used to construct anonymized representations of the data. Varia-
tions are proposed to construct anonymizations which may be used at
data collection time.

String Data: String Data is considered challenging because of the vari-
ations in the lengths of strings across different records. Typically meth-
ods for k-anonymity are attribute specific, and therefore constructions
of anonymizations for variable length records are quite difficult. In [12],
a condensation based method has been proposed for anonymization of
string data. This technique creates clusters from the different strings, and
then generates synthetic data which has the same aggregate properties as
the individual clusters. Since each cluster contains at least k-records,
the anonymized data is guaranteed to at least satisfy the definitions of
k-anonymity.

2.4 Distributed Privacy-Preserving Data Mining

The key goal in most distributed methods for privacy-preserving data min-
ing is to allow computation of useful aggregate statistics over the entire data
set without compromising the privacy of the individual data sets within the dif-
ferent participants. Thus, the participants may wish to collaborate in obtaining
aggregate results, but may not fully trust each other in terms of the distribution
of their own data sets. For this purpose, the data sets may either be horizontally
partitioned or be vertically partitioned. In horizontally partitioned data sets,
the individual records are spread out across multiple entities, each of which
have the same set of attributes. In vertical partitioning, the individual entities
may have different attributes (or views) of the same set of records. Both kinds
of partitioning pose different challenges to the problem of distributed privacy-
preserving data mining.

The problem of distributed privacy-preserving data mining overlaps closely
with a field in cryptography for determining secure multi-party computations.
A broad overview of the intersection between the fields of cryptography and
privacy-preserving data mining may be found in [102]. The broad approach
to cryptographic methods tends to compute functions over inputs provided by
multiple recipients without actually sharing the inputs with one another. For
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example, in a 2-party setting, Alice and Bob may have two inputs x and y
respectively, and may wish to both compute the function f(x, y) without re-
vealing x or y to each other. This problem can also be generalized across k
parties by designing the k argument function h(x1 . . . xk). Many data mining
algorithms may be viewed in the context of repetitive computations of many
such primitive functions such as the scalar dot product, secure sum etc. In order
to compute the function f(x, y) or h(x1 . . . , xk), a protocol will have to de-
signed for exchanging information in such a way that the function is computed
without compromising privacy. We note that the robustness of the protocol de-
pends upon the level of trust one is willing to place on the two participants
Alice and Bob. This is because the protocol may be subjected to various kinds
of adversarial behavior:

Semi-honest Adversaries: In this case, the participants Alice and Bob
are curious and attempt to learn from the information received by them
during the protocol, but do not deviate from the protocol themselves. In
many situations, this may be considered a realistic model of adversarial
behavior.

Malicious Adversaries: In this case, Alice and Bob may vary from the
protocol, and may send sophisticated inputs to one another to learn from
the information received from each other.

A key building-block for many kinds of secure function evaluations is the 1
out of 2 oblivious-transfer protocol. This protocol was proposed in [45, 105]
and involves two parties: a sender, and a receiver. The sender’s input is a pair
(x0, x1), and the receiver’s input is a bit value σ ∈ {0, 1}. At the end of the
process, the receiver learns xσ only, and the sender learns nothing. A number
of simple solutions can be designed for this task. In one solution [45, 53], the
receiver generates two random public keys, K0 and K1, but the receiver knows
only the decryption key for Kσ. The receiver sends these keys to the sender,
who encrypts x0 with K0, x1 with K1, and sends the encrypted data back to
the receiver. At this point, the receiver can only decrypt xσ, since this is the
only input for which they have the decryption key. We note that this is a semi-
honest solution, since the intermediate steps require an assumption of trust.
For example, it is assumed that when the receiver sends two keys to the sender,
they indeed know the decryption key to only one of them. In order to deal with
the case of malicious adversaries, one must ensure that the sender chooses
the public keys according to the protocol. An efficient method for doing so is
described in [94]. In [94], generalizations of the 1 out of 2 oblivious transfer
protocol to the 1 out N case and k out of N case are described.

Since the oblivious transfer protocol is used as a building block for secure
multi-party computation, it may be repeated many times over a given function
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evaluation. Therefore, the computational effectiveness of the approach is im-
portant. Efficient methods for both semi-honest and malicious adversaries are
discussed in [94]. More complex problems in this domain include the com-
putation of probabilistic functions over a number of multi-party inputs [137].
Such powerful techniques can be used in order to abstract out the primitives
from a number of computationally intensive data mining problems. Many of
the above techniques have been described for the 2-party case, though generic
solutions also exist for the multiparty case. Some important solutions for the
multiparty case may be found in [25].

The oblivious transfer protocol can be used in order to compute several data
mining primitives related to vector distances in multi-dimensional space. A
classic problem which is often used as a primitive for many other problems is
that of computing the scalar dot-product in a distributed environment [58]. A
fairly general set of methods in this direction are described in [39]. Many of
these techniques work by sending changed or encrypted versions of the inputs
to one another in order to compute the function with the different alternative
versions followed by an oblivious transfer protocol to retrieve the correct value
of the final output. A systematic framework is described in [39] to transform
normal data mining problems to secure multi-party computation problems. The
problems discussed in [39] include those of clustering, classification, associ-
ation rule mining, data summarization, and generalization. A second set of
methods for distributed privacy-preserving data mining is discussed in [32] in
which the secure multi-party computation of a number of important data min-
ing primitives is discussed. These methods include the secure sum, the secure
set union, the secure size of set intersection and the scalar product. These tech-
niques can be used as data mining primitives for secure multi-party computa-
tion over a variety of horizontally and vertically partitioned data sets. Next, we
will discuss algorithms for secure multi-party computation over horizontally
partitioned data sets.

2.4.1 Distributed Algorithms over Horizontally
Partitioned Data Sets

In horizontally partitioned data sets, different sites contain different sets
of records with the same (or highly overlapping) set of attributes which are
used for mining purposes. Many of these techniques use specialized versions
of the general methods discussed in [32, 39] for various problems. The work
in [80] discusses the construction of a popular decision tree induction method
called ID3 with the use of approximations of the best splitting attributes.
Subsequently, a variety of classifiers have been generalized to the problem
of horizontally-partitioned privacy preserving mining including the Naive
Bayes Classifier [65], and the SVM Classifier with nonlinear kernels [141].
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An extreme solution for the horizontally partitioned case is discussed in [139],
in which privacy-preserving classification is performed in a fully distributed
setting, where each customer has private access to only their own record. A
host of other data mining applications have been generalized to the problem
of horizontally partitioned data sets. These include the applications of asso-
ciation rule mining [64], clustering [57, 62, 63] and collaborative filtering
[104]. Methods for cooperative statistical analysis using secure multi-party
computation methods are discussed in [40, 41].

A related problem is that of information retrieval and document indexing in
a network of content providers. This problem arises in the context of multi-
ple providers which may need to cooperate with one another in sharing their
content, but may essentially be business competitors. In [17], it has been dis-
cussed how an adversary may use the output of search engines and content
providers in order to reconstruct the documents. Therefore, the level of trust
required grows with the number of content providers. A solution to this prob-
lem [17] constructs a centralized privacy-preserving index in conjunction with
a distributed access control mechanism. The privacy-preserving index main-
tains strong privacy guarantees even in the face of colluding adversaries, and
even if the entire index is made public.

2.4.2 Distributed Algorithms over Vertically Partitioned
Data

For the vertically partitioned case, many primitive operations such as com-
puting the scalar product or the secure set size intersection can be useful in
computing the results of data mining algorithms. For example, the methods in
[58] discuss how to use to scalar dot product computation for frequent itemset
counting. The process of counting can also be achieved by using the secure
size of set intersection as described in [32]. Another method for association
rule mining discussed in [119] uses the secure scalar product over the vertical
bit representation of itemset inclusion in transactions, in order to compute the
frequency of the corresponding itemsets. This key step is applied repeatedly
within the framework of a roll up procedure of itemset counting. It has been
shown in [119] that this approach is quite effective in practice.

The approach of vertically partitioned mining has been extended to a variety
of data mining applications such as decision trees [122], SVM Classification
[142], Naive Bayes Classifier [121], and k-means clustering [120]. A num-
ber of theoretical results on the ability to learn different kinds of functions in
vertically partitioned databases with the use of cryptographic approaches are
discussed in [42].
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2.4.3 Distributed Algorithms for k -Anonymity

In many cases, it is important to maintain k-anonymity across different dis-
tributed parties. In [60], a k-anonymous protocol for data which is vertically
partitioned across two parties is described. The broad idea is for the two parties
to agree on the quasi-identifier to generalize to the same value before release.
A similar approach is discussed in [128], in which the two parties agree on how
the generalization is to be performed before release.

In [144], an approach has been discussed for the case of horizontally par-
titioned data. The work in [144] discusses an extreme case in which each site
is a customer which owns exactly one tuple from the data. It is assumed that
the data record has both sensitive attributes and quasi-identifier attributes. The
solution uses encryption on the sensitive attributes. The sensitive values can be
decrypted only if therefore are at least k records with the same values on the
quasi-identifiers. Thus, k-anonymity is maintained.

The issue of k-anonymity is also important in the context of hiding iden-
tification in the context of distributed location based services [20, 52]. In this
case, k-anonymity of the user-identity is maintained even when the location in-
formation is released. Such location information is often released when a user
may send a message at any point from a given location.

A similar issue arises in the context of communication protocols in which
the anonymity of senders (or receivers) may need to be protected. A message is
said to be sender k-anonymous, if it is guaranteed that an attacker can at most
narrow down the identity of the sender to k individuals. Similarly, a message
is said to be receiver k-anonymous, if it is guaranteed that an attacker can at
most narrow down the identity of the receiver to k individuals. A number of
such techniques have been discussed in [56, 135, 138].

2.5 Privacy-Preservation of Application Results

In many cases, the output of applications can be used by an adversary in or-
der to make significant inferences about the behavior of the underlying data. In
this section, we will discuss a number of miscellaneous methods for privacy-
preserving data mining which tend to preserve the privacy of the end results of
applications such as association rule mining and query processing. This prob-
lem is related to that of disclosure control [1] in statistical databases, though
advances in data mining methods provide increasingly sophisticated methods
for adversaries to make inferences about the behavior of the underlying data. In
cases, where the commercial data needs to be shared, the association rules may
represent sensitive information for target-marketing purposes, which needs to
be protected from inference.

In this section, we will discuss the issue of disclosure control for a num-
ber of applications such as association rule mining, classification, and query
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processing. The key goal here is to prevent adversaries from making infer-
ences from the end results of data mining and management applications. A
broad discussion of the security and privacy implications of data mining are
presented in [33]. We will discuss each of the applications below:

2.5.1 Association Rule Hiding

Recent years have seen tremendous advances in the ability to perform asso-
ciation rule mining effectively. Such rules often encode important target mar-
keting information about a business. Some of the earliest work on the chal-
lenges of association rule mining for database security may be found in [16].
Two broad approaches are used for association rule hiding:

Distortion: In distortion [99], the entry for a given transaction is mod-
ified to a different value. Since, we are typically dealing with binary
transactional data sets, the entry value is flipped.

Blocking: In blocking [108], the entry is not modified, but is left in-
complete. Thus, unknown entry values are used to prevent discovery of
association rules.

We note that both the distortion and blocking processes have a number of side
effects on the non-sensitive rules in the data. Some of the non-sensitive rules
may be lost along with sensitive rules, and new ghost rules may be created
because of the distortion or blocking process. Such side effects are undesirable
since they reduce the utility of the data for mining purposes.

A formal proof of the NP-hardness of the distortion method for hiding as-
sociation rule mining may be found in [16]. In [16], techniques are proposed
for changing some of the 1-values to 0-values so that the support of the corre-
sponding sensitive rules is appropriately lowered. The utility of the approach
was defined by the number of non-sensitive rules whose support was also low-
ered by using such an approach. This approach was extended in [34] in which
both support and confidence of the appropriate rules could be lowered. In this
case, 0-values in the transactional database could also change to 1-values. In
many cases, this resulted in spurious association rules (or ghost rules) which
was an undesirable side effect of the process. A complete description of the
various methods for data distortion for association rule hiding may be found in
[124]. Another interesting piece of work which balances privacy and disclosure
concerns of sanitized rules may be found in [99].

The broad idea of blocking was proposed in [23]. The attractiveness of the
blocking approach is that it maintains the truthfulness of the underlying data,
since it replaces a value with an unknown (often represented by ‘?’) rather
than a false value. Some interesting algorithms for using blocking for associa-
tion rule hiding are presented in [109]. The work has been further extended in
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[108] with a discussion of the effectiveness of reconstructing the hidden rules.
Another interesting set of techniques for association rule hiding with limited
side effects is discussed in [131]. The objective of this method is to reduce the
loss of non-sensitive rules, or the creation of ghost rules during the rule hiding
process.

In [6], it has been discussed how blocking techniques for hiding association
rules can be used to prevent discovery of sensitive entries in the data set by
an adversary. In this case, certain entries in the data are classified as sensitive,
and only rules which disclose such entries are hidden. An efficient depth-first
association mining algorithm is proposed for this task [6]. It has been shown
that the methods can effectively reduce the disclosure of sensitive entries with
the use of such a hiding process.

2.5.2 Downgrading Classifier Effectiveness

An important privacy-sensitive application is that of classification, in which
the results of a classification application may be sensitive information for the
owner of a data set. Therefore the issue is to modify the data in such a way
that the accuracy of the classification process is reduced, while retaining the
utility of the data for other kinds of applications. A number of techniques have
been discussed in [24, 92] in reducing the classifier effectiveness in context of
classification rule and decision tree applications. The notion of parsimonious
downgrading is proposed [24] in the context of blocking out inference chan-
nels for classification purposes while mining the effect to the overall utility. A
system called Rational Downgrader [92] was designed with the use of these
principles.

The methods for association rule hiding can also be generalized to rule based
classifiers. This is because rule based classifiers often use association rule min-
ing methods as subroutines, so that the rules with the class labels in their con-
sequent are used for classification purposes. For a classifier downgrading ap-
proach, such rules are sensitive rules, whereas all other rules (with non-class
attributes in the consequent) are non-sensitive rules. An example of a method
for rule based classifier downgradation is discussed in [95] in which it has been
shown how to effectively hide classification rules for a data set.

2.5.3 Query Auditing and Inference Control

Many sensitive databases are not available for public access, but may have
a public interface through which aggregate querying is allowed. This leads
to the natural danger that a smart adversary may pose a sequence of queries
through which he or she may infer sensitive facts about the data. The nature
of this inference may correspond to full disclosure, in which an adversary may
determine the exact values of the data attributes. A second notion is that of
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partial disclosure in which the adversary may be able to narrow down the
values to a range, but may not be able to guess the exact value. Most work on
query auditing generally concentrates on the full disclosure setting.

Two broad approaches are designed in order to reduce the likelihood of sen-
sitive data discovery:

Query Auditing: In query auditing, we deny one or more queries from
a sequence of queries. The queries to be denied are chosen such that the
sensitivity of the underlying data is preserved. Some examples of query
auditing methods include [37, 68, 93, 106].

Query Inference Control: In this case, we perturb the underlying data
or the query result itself. The perturbation is engineered in such a way,
so as to preserve the privacy of the underlying data. Examples of meth-
ods which use perturbation of the underlying data include [3, 26, 90].
Examples of methods which perturb the query result include [22, 36,
42–44].

An overview of classical methods for query auding may be found in [1]. The
query auditing problem has an online version, in which we do not know the se-
quence of queries in advance, and an offline version, in which we do know this
sequence in advance. Clearly, the offline version is open to better optimization
from an auditing point of view.

The problem of query auditing was first studied in [37, 106]. This approach
works for the online version of the query auditing problem. In these works, the
sum query is studied, and privacy is protected by using restrictions on sizes and
pairwise overlaps of the allowable queries. Let us assume that the query size
is restricted to be at most k, and the number of common elements in pairwise
query sets is at most m. Then, if q be the number of elements that the attacker
already knows from background knowledge, it was shown that [37, 106] that
the maximum number of queries allowed is (2 · k − (q + 1))/m. We note
that if N be the total number of data elements, the above expression is always
bounded above by 2·N . If for some constant c, we choose k = N/c andm = 1,
the approach can only support a constant number of queries, after which all
queries would have to be denied by the auditor. Clearly, this is undesirable from
an application point of view. Therefore, a considerable amount of research has
been devoted to increasing the number of queries which can be answered by
the auditor without compromising privacy.

In [67], the problem of sum auditing on sub-cubes of the data cube are stud-
ied, where a query expression is constructed using a string of 0, 1, and *. The
elements to be summed up are determined by using matches to the query string
pattern. In [71], the problem of auditing a database of boolean values is studied
for the case of sum and max queries. In [21], and approach for query auditing
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is discussed which is actually a combination of the approach of denying some
queries and modifying queries in order to achieve privacy.

In [68], the authors show that denials to queries depending upon the answer
to the current query can leak information. The authors introduce the notion of
simulatable auditing for auditing sum and max queries. In [93], the authors
devise methods for auditing max queries and bags of max and min queries
under the partial and full disclosure settings. The authors also examine the
notion of utility in the context of auditing, and obtain results for sum queries
in the full disclosure setting.

A number of techniques have also been proposed for the offline version
of the auditing problem. In [29], a number of variations of the offline audit-
ing problem have been studied. In the offline auditing problem, we are given
a sequence of queries which have been truthfully answered, and we need to
determine if privacy has been breached. In [29], effective algorithms were pro-
posed for the sum, max, and max and min versions of the problems. On the
other hand, the sum and max version of the problem was shown to be NP-hard.
In [4], an offline auditing framework was proposed for determining whether a
database adheres to its disclosure properties. The key idea is to create an audit
expression which specifies sensitive table entries.

A number of techniques have also been proposed for sanitizing or random-
izing the data for query auditing purposes. These are fairly general models of
privacy, since they preserve the privacy of the data even when the entire data-
base is available. The standard methods for perturbation [2, 5] or k-anonymity
[110] can always be used, and it is always guaranteed that an adversary may
not derive anything more from the queries than they can from the base data.
Thus, since a k-anonymity model guarantees a certain level of privacy even
when the entire database is made available, it will continue to do so under any
sequence of queries. In [26], a number of interesting methods are discussed
for measuring the effectiveness of sanitization schemes in terms of balancing
privacy and utility.

Instead of sanitizing the base data, it is possible to use summary constructs
on the data, and respond to queries using only the information encoded in
the summary constructs. Such an approach preserves privacy, as long as the
summary constructs do not reveal sensitive information about the underly-
ing records. A histogram based approach to data sanitization has been dis-
cussed in [26, 27]. In this technique the data is recursively partitioned into
multi-dimensional cells. The final output is the exact description of the cuts
along with the population of each cell. Clearly, this kind of description can
be used for approximate query answering with the use of standard histogram
query processing methods. In [55], a method has been proposed for privacy-
preserving indexing of multi-dimensional data by using bucketizing of the un-
derlying attribute values in conjunction with encryption of identification keys.
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We note that a choice of larger bucket sizes provides greater privacy but less
accuracy. Similarly, optimizing the bucket sizes for accuracy can lead to reduc-
tions in privacy. This tradeoff has been studied in [55], and it has been shown
that reasonable query precision can be maintained at the expense of partial
disclosure.

In the class of methods which use summarization structures for inference
control, an interesting method was proposed by Mishra and Sandler in [90],
which uses pseudo-random sketches for privacy-preservation. In this technique
sketches are constructed from the data, and the sketch representations are used
to respond to user queries. In [90], it has been shown that the scheme preserves
privacy effectively, while continuing to be useful from a utility point of view.

Finally, an important class of query inference control methods changes the
results of queries in order to preserve privacy. A classical method for aggre-
gate queries such as the sum or relative frequency is that of random sampling
[35]. In this technique, a random sample of the data is used to compute such
aggregate functions. The random sampling approach makes it impossible for
the questioner to precisely control the formation of query sets. The advantage
of using a random sample is that the results of large queries are quite robust
(in terms of relative error), but the privacy of individual records are preserved
because of high absolute error.

Another method for query inference control is by adding noise to the results
of queries. Clearly, the noise should be sufficient that an adversary cannot use
small changes in the query arguments in order to infer facts about the base
data. In [44], an interesting technique has been presented in which the result
of a query is perturbed by an amount which depends upon the underlying sen-
sitivity of the query function. This sensitivity of the query function is defined
approximately by the change in the response to the query by changing one ar-
gument to the function. An important theoretical result [22, 36, 42, 43] shows
that a surprisingly small amount of noise needs to be added to the result of a
query, provided that the number of queries is sublinear in the number of data-
base rows. With increasing sizes of databases today, this result provides fairly
strong guarantees on privacy. Such queries together with their slightly noisy
responses are referred to as the SuLQ primitive.

2.6 Limitations of Privacy: The Curse of Dimensionality

Many privacy-preserving data-mining methods are inherently limited by
the curse of dimensionality in the presence of public information. For exam-
ple, the technique in [7] analyzes the k-anonymity method in the presence
of increasing dimensionality. The curse of dimensionality becomes especially
important when adversaries may have considerable background information,
as a result of which the boundary between pseudo-identifiers and sensitive
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attributes may become blurred. This is generally true, since adversaries may
be familiar with the subject of interest and may have greater information about
them than what is publicly available. This is also the motivation for techniques
such as l-diversity [83] in which background knowledge can be used to make
further privacy attacks. The work in [7] concludes that in order to maintain
privacy, a large number of the attributes may need to be suppressed. Thus,
the data loses its utility for the purpose of data mining algorithms. The broad
intuition behind the result in [7] is that when attributes are generalized into
wide ranges, the combination of a large number of generalized attributes is so
sparsely populated, that even two anonymity becomes increasingly unlikely.
While the method of l-diversity has not been formally analyzed, some obser-
vations made in [83] seem to suggest that the method becomes increasingly
infeasible to implement effectively with increasing dimensionality.

The method of randomization has also been analyzed in [10]. This pa-
per makes a first analysis of the ability to re-identify data records with the
use of maximum likelihood estimates. Consider a d-dimensional record
X = (x1 . . . xd), which is perturbed to Z = (z1 . . . zd). For a given pub-
lic record W = (w1 . . . wd), we would like to find the probability that it could
have been perturbed to Z using the perturbing distribution fY (y). If this were
true, then the set of values given by (Z −W ) = (z1 −w1 . . . zd −wd) should
be all drawn from the distribution fY (y). The corresponding log-likelihood
fit is given by −

∑d
i=1 log(fy(zi − wi)). The higher the log-likelihood fit, the

greater the probability that the record W corresponds to X. In order to achieve
greater anonymity, we would like the perturbations to be large enough, so that
some of the spurious records in the data have greater log-likelihood fit to Z
than the true record X. It has been shown in [10], that this probability reduces
rapidly with increasing dimensionality for different kinds of perturbing distri-
butions. Thus, the randomization technique also seems to be susceptible to the
curse of high dimensionality.

We note that the problem of high dimensionality seems to be a fundamental
one for privacy preservation, and it is unlikely that more effective methods can
be found in order to preserve privacy when background information about a
large number of features is available to even a subset of selected individuals.
Indirect examples of such violations occur with the use of trail identifications
[84, 85], where information from multiple sources can be compiled to create a
high dimensional feature representation which violates privacy.

2.7 Applications of Privacy-Preserving Data Mining

The problem of privacy-preserving data mining has numerous applications
in homeland security, medical database mining, and customer transaction
analysis. Some of these applications such as those involving bio-terrorism
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and medical database mining may intersect in scope. In this section, we will
discuss a number of different applications of privacy-preserving data mining
methods.

2.7.1 Medical Databases: The Scrub and Datafly Systems

The scrub system [118] was designed for de-identification of clinical notes
and letters which typically occurs in the form of textual data. Clinical notes
and letters are typically in the form of text which contain references to pa-
tients, family members, addresses, phone numbers or providers. Traditional
techniques simply use a global search and replace procedure in order to pro-
vide privacy. However clinical notes often contain cryptic references in the
form of abbreviations which may only be understood either by other providers
or members of the same institution. Therefore traditional methods can iden-
tify no more than 30-60% of the identifying information in the data [118]. The
Scrub system uses numerous detection algorithms which compete in parallel
to determine when a block of text corresponds to a name, address or a phone
number. The Scrub System uses local knowledge sources which compete with
one another based on the certainty of their findings. It has been shown in [118]
that such a system is able to remove more than 99% of the identifying infor-
mation from the data.

The Datafly System [117] was one of the earliest practical applications of
privacy-preserving transformations. This system was designed to prevent iden-
tification of the subjects of medical records which may be stored in multi-
dimensional format. The multi-dimensional information may include directly
identifying information such as the social security number, or indirectly iden-
tifying information such as age, sex or zip-code. The system was designed in
response to the concern that the process of removing only directly identify-
ing attributes such as social security numbers was not sufficient to guarantee
privacy. While the work has a similar motive as the k-anonymity approach of
preventing record identification, it does not formally use a k-anonymity model
in order to prevent identification through linkage attacks. The approach works
by setting a minimum bin size for each field. The anonymity level is defined in
Datafly with respect to this bin size. The values in the records are thus gener-
alized to the ambiguity level of a bin size as opposed to exact values. Directly,
identifying attributes such as the social-security-number, name, or zip-code
are removed from the data. Furthermore, outlier values are suppressed from
the data in order to prevent identification. Typically, the user of Datafly will set
the anonymity level depending upon the profile of the data recipient in ques-
tion. The overall anonymity level is defined between 0 and 1, which defines
the minimum bin size for each field. An anonymity level of 0 results in Datafly
providing the original data, whereas an anonymity level of 1 results in the
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maximum level of generalization of the underlying data. Thus, these two val-
ues provide two extreme values of trust and distrust. We note that these values
are set depending upon the recipient of the data. When the records are released
to the public, it is desirable to set of higher level of anonymity in order to
ensure the maximum amount of protection. The generalizations in the datafly
system are typically done independently at the individual attribute level, since
the bins are defined independently for different attributes. The Datafly system
is one of the earliest systems for anonymization, and is quite simple in its ap-
proach to anonymization. A lot of work in the anonymity field has been done
since the creation of the Datafly system, and there is considerable scope for
enhancement of the Datafly system with the use of these models.

2.7.2 Bioterrorism Applications

In typical bioterrorism applications, we would like to analyze medical data
for privacy-preserving data mining purposes. Often a biological agent such as
anthrax produces symptoms which are similar to other common respiratory
diseases such as the cough, cold and the flu. In the absence of prior knowl-
edge of such an attack, health care providers may diagnose a patient affected
by an anthrax attack of have symptoms from one of the more common res-
piratory diseases. The key is to quickly identify a true anthrax attack from a
normal outbreak of a common respiratory disease, In many cases, an unusual
number of such cases in a given locality may indicate a bio-terrorism attack.
Therefore, in order to identify such attacks it is necessary to track incidences
of these common diseases as well. Therefore, the corresponding data would
need to be reported to public health agencies. However, the common respira-
tory diseases are not reportable diseases by law. The solution proposed in [114]
is that of “selective revelation” which initially allows only limited access to the
data. However, in the event of suspicious activity, it allows a “drill-down” into
the underlying data. This provides more identifiable information in accordance
with public health law.

2.7.3 Homeland Security Applications

A number of applications for homeland security are inherently intrusive be-
cause of the very nature of surveillance. In [113], a broad overview is provided
on how privacy-preserving techniques may be used in order to deploy these
applications effectively without violating user privacy. Some examples of such
applications are as follows:

Credential Validation Problem: In this problem, we are trying to match
the subject of the credential to the person presenting the credential. For
example, the theft of social security numbers presents a serious threat
to homeland security. In the credential validation approach [113], an
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attempt is made to exploit the semantics associated with the social se-
curity number to determine whether the person presenting the SSN cre-
dential truly owns it.

Identity Theft: A related technology [115] is to use a more active ap-
proach to avoid identity theft. The identity angel system [115], crawls
through cyberspace, and determines people who are at risk from iden-
tity theft. This information can be used to notify appropriate parties. We
note that both the above approaches to prevention of identity theft are
relatively non-invasive and therefore do not violate privacy.

Web Camera Surveillance: One possible method for surveillance is
with the use of publicly available webcams [113, 116], which can be
used to detect unusual activity. We note that this is a much more invasive
approach than the previously discussed techniques because of person-
specific information being captured in the webcams. The approach can
be made more privacy-sensitive by extracting only facial count informa-
tion from the images and using these in order to detect unusual activity.
It has been hypothesized in [116] that unusual activity can be detected
only in terms of facial count rather than using more specific informa-
tion about particular individuals. In effect, this kind of approach uses a
domain-specific downgrading of the information available in the web-
cams in order to make the approach privacy-sensitive.

Video-Surveillance: In the context of sharing video-surveillance data, a
major threat is the use of facial recognition software, which can match
the facial images in videos to the facial images in a driver license data-
base. While a straightforward solution is to completely black out each
face, the result is of limited new, since all facial information has been
wiped out. A more balanced approach [96] is to use selective downgrad-
ing of the facial information, so that it scientifically limits the ability of
facial recognition software to reliably identify faces, while maintaining
facial details in images. The algorithm is referred to as k-Same, and the
key is to identify faces which are somewhat similar, and then construct
new faces which construct combinations of features from these similar
faces. Thus, the identity of the underlying individual is anonymized to
a certain extent, but the video continues to remain useful. Thus, this ap-
proach has the flavor of a k-anonymity approach, except that it creates
new synthesized data for the application at hand.

The Watch List Problem: The motivation behind this problem [113] is
that the government typically has a list of known terrorists or suspected
entities which it wishes to track from the population. The aim is to view
transactional data such as store purchases, hospital admissions, airplane
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manifests, hotel registrations or school attendance records in order to
identify or track these entities. This is a difficult problem because the
transactional data is private, and the privacy of subjects who do not ap-
pear in the watch list need to be protected. Therefore, the transactional
behavior of non-suspicious subjects may not be identified or revealed.
Furthermore, the problem is even more difficult if we assume that the
watch list cannot be revealed to the data holders. The second assumption
is a result of the fact that members on the watch list may only be sus-
pected entities and should have some level of protection from identifica-
tion as suspected terrorists to the general public. The watch list problem
is currently an open problem [113].

2.7.4 Genomic Privacy

Recent years have seen tremendous advances in the science of DNA se-
quencing and forensic analysis with the use of DNA. As result, the databases
of collected DNA are growing very fast in the both the medical and law en-
forcement communities. DNA data is considered extremely sensitive, since it
contains almost uniquely identifying information about an individual.

As in the case of multi-dimensional data, simple removal of directly iden-
tifying data such as social security number is not sufficient to prevent re-
identification. In [86], it has been shown that a software called CleanGene
can determine the identifiability of DNA entries independent of any other de-
mographic or other identifiable information. The software relies on publicly
available medical data and knowledge of particular diseases in order to as-
sign identifications to DNA entries. It was shown in [86] that 98-100% of the
individuals are identifiable using this approach. The identification is done by
taking the DNA sequence of an individual and then constructing a genetic pro-
file corresponding to the sex, genetic diseases, the location where the DNA
was collected etc. This genetic profile has been shown in [86] to be quite effec-
tive in identifying the individual to a much smaller group. One way to protect
the anonymity of such sequences is with the use of generalization lattices [87]
which are constructed in such a way that an entry in the modified database
cannot be distinguished from at least (k − 1) other entities. Another approach
discussed in [11] constructs synthetic data which preserves the aggregate char-
acteristics of the original data, but preserves the privacy of the original records.
Another method for compromising the privacy of genomic data is that of trail
re-identification, in which the uniqueness of patient visit patterns [84, 85] is
exploited in order to make identifications. The premise of this work is that pa-
tients often visit and leave behind genomic data at various distributed locations
and hospitals. The hospitals usually separate out the clinical data from the ge-
nomic data and make the genomic data available for research purposes. While
the data is seemingly anonymous, the visit location pattern of the patients is
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encoded in the site from which the data is released. It has been shown in
[84, 85] that this information may be combined with publicly available data
in order to perform unique re-identifications. Some broad ideas for protecting
the privacy in such scenarios are discussed in [85].

2.8 Summary

In this paper, we presented a survey of the broad areas of privacy-preserving
data mining and the underlying algorithms. We discussed a variety of data
modification techniques such as randomization and k-anonymity based tech-
niques. We discussed methods for distributed privacy-preserving mining, and
the methods for handling horizontally and vertically partitioned data. We dis-
cussed the issue of downgrading the effectiveness of data mining and data
management applications such as association rule mining, classification, and
query processing. We discussed some fundamental limitations of the problem
of privacy-preservation in the presence of increased amounts of public infor-
mation and background knowledge. Finally, we discussed a number of diverse
application domains for which privacy-preserving data mining methods are
useful.
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Abstract Inference control in databases, also known as Statistical Disclosure Control
(SDC), is about protecting data so they can be published without revealing
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3.1 Introduction

Inference control in statistical databases, also known as Statistical Disclo-
sure Control (SDC) or Statistical Disclosure Limitation (SDL), seeks to protect
statistical data in such a way that they can be publicly released and mined with-
out giving away private information that can be linked to specific individuals
or entities. There are several areas of application of SDC techniques, which
include but are not limited to the following:

Official statistics. Most countries have legislation which compels na-
tional statistical agencies to guarantee statistical confidentiality when
they release data collected from citizens or companies. This justifies the
research on SDC undertaken by several countries, among them the Eu-
ropean Union (e.g. the CASC project[8]) and the United States.

Health information. This is one of the most sensitive areas regarding pri-
vacy. For example, in the U. S., the Privacy Rule of the Health Insurance
Portability and Accountability Act (HIPAA,[43]) requires the strict reg-
ulation of protected health information for use in medical research. In
most western countries, the situation is similar.

E-commerce. Electronic commerce results in the automated collection
of large amounts of consumer data. This wealth of information is very
useful to companies, which are often interested in sharing it with their
subsidiaries or partners. Such consumer information transfer should not
result in public profiling of individuals and is subject to strict regulation;
see [28] for regulations in the European Union and [77] for regulations
in the U.S.

The protection provided by SDC techniques normally entails some degree
of data modification, which is an intermediate option between no modification
(maximum utility, but no disclosure protection) and data encryption (maximum
protection but no utility for the user without clearance).

The challenge for SDC is to modify data in such a way that sufficient pro-
tection is provided while keeping at a minimum the information loss, i.e. the
loss of the accuracy sought by database users. In the years that have elapsed
since the excellent survey by [3], the state of the art in SDC has evolved so that
now at least three subdisciplines are clearly differentiated:

Tabular data protection This is the oldest and best established part of
SDC, because tabular data have been the traditional output of na-
tional statistical offices. The goal here is to publish static aggregate
information, i.e. tables, in such a way that no confidential information
on specific individuals among those to which the table refers can be
inferred. See [79] for a conceptual survey and [36] for a software survey.
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Dynamic databases The scenario here is a database to which the user can sub-
mit statistical queries (sums, averages, etc.). The aggregate information
obtained by a user as a result of successive queries should not allow him
to infer information on specific individuals. Since the 80s, this has been
known to be a difficult problem, subject to the tracker attack [69]. One
possible strategy is to perturb the answers to queries; solutions based
on perturbation can be found in [26], [54] and [76]. If perturbation is
not acceptable and exact answers are needed, it may become necessary
to refuse answers to certain queries; solutions based on query restriction
can be found in [9] and [38]. Finally, a third strategy is to provide correct
(unperturbed) interval answers, as done in [37] and [35].

Microdata protection This subdiscipline is about protecting static individual
data, also called microdata. It is only recently that data collectors (sta-
tistical agencies and the like) have been persuaded to publish microdata.
Therefore, microdata protection is the youngest subdiscipline and is ex-
periencing continuous evolution in the last years.

Good general works on SDC are [79, 45]. This survey will cover the current
state of the art in SDC methods for microdata, the most common data used for
data mining. First, the main existing methods will be described. Then, we will
discuss several information loss and disclosure risk measures and will analyze
several approaches to combining them when assessing the performance of the
various methods. The comparison metrics being presented should be used as
a benchmark for future developments in this area. Open research issues and
directions will be suggested at the end of this chapter.

Plan of This Chapter

Section 3.2 introduces a classification of microdata protection methods.
Section 3.3 reviews perturbative masking methods. Section 3.4 reviews non-
perturbative masking methods. Section 3.5 reviews methods for synthetic mi-
crodata generation. Section 3.6 discusses approaches to trade off information
loss for disclosure risk and analyzes their strengths and limitations. Conclusions
and directions for future research are summarized in Section 3.7.

3.2 A classification of Microdata Protection Methods

A microdata set V can be viewed as a file with n records, where each record
contains m attributes on an individual respondent. The attributes can be classi-
fied in four categories which are not necessarily disjoint:

Identifiers. These are attributes that unambiguously identify the respon-
dent. Examples are the passport number, social security number, name-
surname, etc.
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Quasi-identifiers or key attributes. These are attributes which identify
the respondent with some degree of ambiguity. (Nonetheless, a com-
bination of quasi-identifiers may provide unambiguous identification.)
Examples are address, gender, age, telephone number, etc.

Confidential outcome attributes. These are attributes which contain sen-
sitive information on the respondent. Examples are salary, religion, po-
litical affiliation, health condition, etc.

Non-confidential outcome attributes. Those attributes which do not fall
in any of the categories above.

Since the purpose of SDC is to prevent confidential information from being
linked to specific respondents, we will assume in what follows that original
microdata sets to be protected have been pre-processed to remove from them
all identifiers.

The purpose of microdata SDC mentioned in the previous section can be
stated more formally by saying that, given an original microdata set V, the
goal is to release a protected microdata set V′ in such a way that:

1 Disclosure risk (i.e. the risk that a user or an intruder can use V′ to
determine confidential attributes on a specific individual among those in
V) is low.

2 User analyses (regressions, means, etc.) on V′ and on V yield the same
or at least similar results.

Microdata protection methods can generate the protected microdata set V′

either by masking original data, i.e. generating V′ a modified version of
the original microdata set V;

or by generating synthetic data V′ that preserve some statistical proper-
ties of the original data V.

Masking methods can in turn be divided in two categories depending on
their effect on the original data [79]:

Perturbative. The microdata set is distorted before publication. In this
way, unique combinations of scores in the original dataset may disap-
pear and new unique combinations may appear in the perturbed dataset;
such confusion is beneficial for preserving statistical confidentiality. The
perturbation method used should be such that statistics computed on the
perturbed dataset do not differ significantly from the statistics that would
be obtained on the original dataset.

Non-perturbative. Non-perturbative methods do not alter data; rather,
they produce partial suppressions or reductions of detail in the original
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dataset. Global recoding, local suppression and sampling are examples
of non-perturbative masking.

At a first glance, synthetic data seem to have the philosophical advantage
of circumventing the re-identification problem: since published records are in-
vented and do not derive from any original record, some authors claim that
no individual having supplied original data can complain from having been
re-identified. At a closer look, some authors (e.g., [80] and [63]) claim that
even synthetic data might contain some records that allow for re-identification
of confidential information. In short, synthetic data overfitted to original data
might lead to disclosure just as original data would. On the other hand, a clear
problem of synthetic data is data utility: only the statistical properties explic-
itly selected by the data protector are preserved, which leads to the question
whether the data protector should not directly publish the statistics he wants
preserved rather than a synthetic microdata set. We will return to these issues
in Section 3.5.

So far in this section, we have classified microdata protection methods by
their operating principle. If we consider the type of data on which they can be
used, a different dichotomic classification applies:

Continuous. An attribute is considered continuous if it is numerical and
arithmetic operations can be performed with it. Examples are income
and age. Note that a numerical attribute does not necessarily have an
infinite range, as is the case for age. When designing methods to protect
continuous data, one has the advantage that arithmetic operations are
possible, and the drawback that every combination of numerical values
in the original dataset is likely to be unique, which leads to disclosure if
no action is taken.

Categorical. An attribute is considered categorical when it takes values
over a finite set and standard arithmetic operations do not make sense.
Ordinal and nominal scales can be distinguished among categorical at-
tributes. In ordinal scales the order between values is relevant, whereas
in nominal scales it is not. In the former case, max and min operations
are meaningful while in the latter case only pairwise comparison is pos-
sible. The instruction level is an example of ordinal attribute, whereas
eye color is an example of nominal attribute. In fact, all quasi-identifiers
in a microdata set are normally categorical nominal. When designing
methods to protect categorical data, the inability to perform arithmetic
operations is certainly inconvenient, but the finiteness of the value range
is one property that can be successfully exploited.
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3.3 Perturbative Masking Methods

Perturbative methods allow for the release of the entire microdata set, al-
though perturbed values rather than exact values are released. Not all pertur-
bative methods are designed for continuous data; this distinction is addressed
further below for each method.

Most perturbative methods reviewed below (including additive noise, rank
swapping, microaggregation and post-randomization) are special cases of ma-
trix masking. If the original microdata set is X, then the masked microdata set
Z is computed as

Z = AXB + C

where A is a record-transforming mask, B is an attribute-transforming mask
and C is a displacing mask (noise)[27].

Table 3.1 lists the perturbative methods described below. For each method,
the table indicates whether it is suitable for continuous and/or categorical data.

3.3.1 Additive Noise

The noise additions algorithms in the literature are:

Masking by uncorrelated noise addition. The vector of observations xj
for the j-th attribute of the original dataset Xj is replaced by a vector

zj = xj + εj

where εj is a vector of normally distributed errors drawn from a random
variable εj ∼ N(0, σ2

εj
), such that Cov(εt, εl) = 0 for all t �= l. This

does not preserve variances nor correlations.

Masking by correlated noise addition. Correlated noise addition also
preserves means and additionally allows preservation of correlation co-
efficients. The difference with the previous method is that the covariance

Table 3.1. Perturbative methods vs data types. “X” denotes applicable and “(X)” denotes ap-
plicable with some adaptation

Method Continuous data Categorical data
Additive noise X
Microaggregation X (X)
Rank swapping X X
Rounding X
Resampling X
PRAM X
MASSC X



A Survey of Inference Control Methods for Privacy-Preserving Data Mining 59

matrix of the errors is now proportional to the covariance matrix of the
original data, i.e. ε ∼ N(0,Σε), where Σε = αΣ.

Masking by noise addition and linear transformation. In [49], a method
is proposed that ensures by additional transformations that the sample
covariance matrix of the masked attributes is an unbiased estimator for
the covariance matrix of the original attributes.

Masking by noise addition and nonlinear transformation. An algorithm
combining simple additive noise and nonlinear transformation is pro-
posed in [72]. The advantages of this proposal are that it can be ap-
plied to discrete attributes and that univariate distributions are preserved.
Unfortunately, as justified in [6], the application of this method is very
time-consuming and requires expert knowledge on the data set and the
algorithm.

For more details on specific algorithms, the reader can check [5]. In practice,
only simple noise addition (two first variants) or noise addition with linear
transformation are used. When using linear transformations, a decision has to
be made whether to reveal them to the data user to allow for bias adjustment in
the case of subpopulations.

With the exception of the not very practical method of [72], additive noise
is not suitable to protect categorical data. On the other hand, it is well suited
for continuous data for the following reasons:

It makes no assumptions on the range of possible values for Vi (which
may be infinite).

The noise being added is typically continuous and with mean zero, which
suits well continuous original data.

No exact matching is possible with external files. Depending on the
amount of noise added, approximate (interval) matching might be
possible.

3.3.2 Microaggregation

Microaggregation is a family of SDC techniques for continous microdata.
The rationale behind microaggregation is that confidentiality rules in use al-
low publication of microdata sets if records correspond to groups of k or more
individuals, where no individual dominates (i.e. contributes too much to) the
group and k is a threshold value. Strict application of such confidentiality rules
leads to replacing individual values with values computed on small aggregates
(microaggregates) prior to publication. This is the basic principle of microag-
gregation.
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To obtain microaggregates in a microdata set with n records, these are com-
bined to form g groups of size at least k. For each attribute, the average value
over each group is computed and is used to replace each of the original aver-
aged values. Groups are formed using a criterion of maximal similarity. Once
the procedure has been completed, the resulting (modified) records can be pub-
lished.

The optimal k-partition (from the information loss point of view) is defined
to be the one that maximizes within-group homogeneity; the higher the within-
group homogeneity, the lower the information loss, since microaggregation
replaces values in a group by the group centroid. The sum of squares criterion
is common to measure homogeneity in clustering. The within-groups sum of
squares SSE is defined as

SSE =
g∑
i=1

ni∑
j=1

(xij − x̄i)′(xij − x̄i)

The lower SSE, the higher the within group homogeneity. Thus, in terms of
sums of squares, the optimal k-partition is the one that minimizes SSE.

For a microdata set consisting of p attributes, these can be microaggregated
together or partitioned into several groups of attributes. Also the way to form
groups may vary. Several taxonomies are possible to classify the microaggre-
gation algorithms in the literature: i) fixed group size [15, 44, 23] vs variable
group size [15, 51, 18, 68, 50, 20]; ii) exact optimal (only for the univariate
case, [41, 55]) vs heuristic microaggregation; iii) continuous vs categorical
microaggregation [75].

To illustrate, we next give a heuristic algorithm called MDAV (Maximum
Distance to Average Vector,[23]) for multivariate fixed group size microaggre-
gation on unprojected continuous data. We designed and implemented MDAV
for the µ-Argus package [44].

Algorithm 3.1 (MDAV)

1 Compute the average record x̄ of all records in the dataset. Consider
the most distant record xr to the average record x̄ (using the squared
Euclidean distance).

2 Find the most distant record xs from the record xr considered in the
previous step.

3 Form two groups around xr and xs, respectively. One group contains xr
and the k− 1 records closest to xr. The other group contains xs and the
k − 1 records closest to xs.
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4 If there are at least 3k records which do not belong to any of the two
groups formed in Step 3, go to Step 1 taking as new dataset the previous
dataset minus the groups formed in the last instance of Step 3.

5 If there are between 3k−1 and 2k records which do not belong to any of
the two groups formed in Step 3: a) compute the average record x̄ of the
remaining records; b) find the most distant record xr from x̄; c) form a
group containing xr and the k−1 records closest to xr; d) form another
group containing the rest of records. Exit the Algorithm.

6 If there are less than 2k records which do not belong to the groups
formed in Step 3, form a new group with those records and exit the Al-
gorithm.

The above algorithm can be applied independently to each group of at-
tributes resulting from partitioning the set of attributes in the dataset.

3.3.3 Data Wapping and Rank Swapping

Data swapping was originally presented as an SDC method for databases
containing only categorical attributes [11]. The basic idea behind the method is
to transform a database by exchanging values of confidential attributes among
individual records. Records are exchanged in such a way that low-order fre-
quency counts or marginals are maintained.

Even though the original procedure was not very used in practice (see [32]),
its basic idea had a clear influence in subsequent methods. In [59] and [58]
data swapping was introduced to protect continuous and categorical microdata,
respectively. Another variant of data swapping for microdata is rank swapping,
which will be described next in some detail.

Although originally described only for ordinal attributes [40], rank swap-
ping can also be used for any numerical attribute [53]. First, values of an
attribute Xi are ranked in ascending order, then each ranked value of Xi is
swapped with another ranked value randomly chosen within a restricted range
(e.g. the rank of two swapped values cannot differ by more than p% of the total
number of records, where p is an input parameter). This algorithm is indepen-
dently used on each original attribute in the original data set.

It is reasonable to expect that multivariate statistics computed from data
swapped with this algorithm will be less distorted than those computed after
an unconstrained swap. In earlier empirical work by these authors on continu-
ous microdata protection [21], rank swapping has been identified as a particu-
larly well-performing method in terms of the tradeoff between disclosure risk
and information loss (see Example 3.4 below). Consequently, it is one of the
techniques that have been implemented in the µ−Argus package [44].
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Table 3.2. Example of rank swapping. Left, original file; right, rankswapped file

1 K 3.7 4.4 1 H 3.0 4.8
2 L 3.8 3.4 2 L 4.5 3.2
3 N 3.0 4.8 3 M 3.7 4.4
4 M 4.5 5.0 4 N 5.0 6.0
5 L 5.0 6.0 5 L 4.5 5.0
6 H 6.0 7.5 6 F 6.7 9.5
7 H 4.5 10.0 7 K 3.8 11.0
8 F 6.7 11.0 8 H 6.0 10.0
9 D 8.0 9.5 9 C 10.0 7.5
10 C 10.0 3.2 10 D 8.0 3.4

Example 3.2 In Table 3.2, we can see an original microdata set on the left
and its rankswapped version on the right. There are four attributes and ten
records in the original dataset; the second attribute is alphanumeric, and the
standard alphabetic order has been used to rank it. A value of p = 10% has
been used for all attributes. �

3.3.4 Rounding

Rounding methods replace original values of attributes with rounded val-
ues. For a given attribute Xi, rounded values are chosen among a set of round-
ing points defining a rounding set (often the multiples of a given base value).
In a multivariate original dataset, rounding is usually performed one attribute
at a time (univariate rounding); however, multivariate rounding is also possi-
ble [79, 10]. The operating principle of rounding makes it suitable for contin-
uous data.

3.3.5 Resampling

Originally proposed for protecting tabular data [42, 17], resampling can also
be used for microdata. Take t independent samples S1, · · · , St of the values
of an original attribute Xi. Sort all samples using the same ranking criterion.
Build the masked attribute Zi as x̄1, · · · , x̄n, where n is the number of records
and x̄j is the average of the j-th ranked values in S1, · · · , St.

3.3.6 PRAM

The Post-RAndomization Method (PRAM, [39]) is a probabilistic, pertur-
bative method for disclosure protection of categorical attributes in microdata
files. In the masked file, the scores on some categorical attributes for cer-
tain records in the original file are changed to a different score according to
a prescribed probability mechanism, namely a Markov matrix. The Markov
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approach makes PRAM very general, because it encompasses noise addition,
data suppression and data recoding.

PRAM information loss and disclosure risk largely depend on the choice of
the Markov matrix and are still (open) research topics [14].

The PRAM matrix contains a row for each possible value of each attribute
to be protected. This rules out using the method for continuous data.

3.3.7 MASSC

MASSC [71] is a masking method whose acronym summarizes its four
steps: Micro Agglomeration, Substitution, Subsampling and Calibration. We
briefly recall the purpose of those four steps:

1 Micro agglomeration is applied to partition the original dataset into risk
strata (groups of records which are at a similar risk of disclosure). These
strata are formed using the key attributes, i.e. the quasi-identifiers in the
records. The idea is that those records with rarer combinations of key
attributes are at a higher risk.

2 Optimal probabilistic substitution is then used to perturb the original
data.

3 Optimal probabilistic subsampling is used to suppress some attributes or
even entire records.

4 Optimal sampling weight calibration is used to preserve estimates for
outcome attributes in the treated database whose accuracy is critical for
the intended data use.

MASSC in interesting in that, to the best of our knowledge, it is the first at-
tempt at designing a perturbative masking method in such a way that disclosure
risk can be analytically quantified. Its main shortcoming is that its disclosure
model simplifies reality by considering only disclosure resulting from linkage
of key attributes with external sources. Since key attributes are typically cate-
gorical, the risk of disclosure can be analyzed by looking at the probability that
a sample unique is a population unique; however, doing so ignores the fact that
continuous outcome attributes can also be used for respondent re-identification
via record linkage. As an example, if respondents are companies and turnover
is one outcome attribute, everyone in a certain industrial sector knows which
is the company with largest turnover. Thus, in practice, MASSC is a method
only suited when continuous attributes are not present.

3.4 Non-perturbative Masking Methods

Non-perturbative methods do not rely on distortion of the original data but
on partial suppressions or reductions of detail. Some of the methods are usable
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Table 3.3. Non-perturbative methods vs data types

Method Continuous data Categorical data
Sampling X
Global recoding X X
Top and bottom coding X X
Local suppression X

on both categorical and continuous data, but others are not suitable for contin-
uous data. Table 3.3 lists the non-perturbative methods described below. For
each method, the table indicates whether it is suitable for continuous and/or
categorical data.

3.4.1 Sampling

Instead of publishing the original microdata file, what is published is a sam-
ple S of the original set of records [79].

Sampling methods are suitable for categorical microdata, but for continuous
microdata they should probably be combined with other masking methods. The
reason is that sampling alone leaves a continuous attribute Vi unperturbed for
all records in S. Thus, if attribute Vi is present in an external administrative
public file, unique matches with the published sample are very likely: indeed,
given a continuous attribute Vi and two respondents o1 and o2, it is highly
unlikely that Vi will take the same value for both o1 and o2 unless o1 = o2
(this is true even if Vi has been truncated to represent it digitally).

If, for a continuous identifying attribute, the score of a respondent is only
approximately known by an attacker (as assumed in [78]), it might still make
sense to use sampling methods to protect that attribute. However, assumptions
on restricted attacker resources are perilous and may prove definitely too opti-
mistic if good quality external administrative files are at hand.

3.4.2 Global Recoding

This method is also sometimes known as generalization [67, 66]. For a cate-
gorical attribute Vi, several categories are combined to form new (less specific)
categories, thus resulting in a new V ′

i with |D(V ′
i )| < |D(Vi)| where | · | is

the cardinality operator. For a continuous attribute, global recoding means re-
placing Vi by another attribute V ′

i which is a discretized version of Vi. In other
words, a potentially infinite range D(Vi) is mapped onto a finite range D(V ′

i ).
This is the technique used in the µ-Argus SDC package [44].

This technique is more appropriate for categorical microdata, where it helps
disguise records with strange combinations of categorical attributes. Global
recoding is used heavily by statistical offices.
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Example 3.3 If there is a record with “Marital status = Widow/er” and
“Age = 17”, global recoding could be applied to “Marital status” to create a
broader category “Widow/er or divorced”, so that the probability of the above
record being unique would diminish. Global recoding can also be used on a
continuous attribute, but the inherent discretization leads very often to an unaf-
fordable loss of information. Also, arithmetical operations that were straight-
forward on the original Vi are no longer easy or intuitive on the discretized V ′

i .
�

3.4.3 Top and Bottom Coding

Top and bottom coding is a special case of global recoding which can be
used on attributes that can be ranked, that is, continuous or categorical ordinal.
The idea is that top values (those above a certain threshold) are lumped together
to form a new category. The same is done for bottom values (those below a
certain threshold). See [44].

3.4.4 Local Suppression

Certain values of individual attributes are suppressed with the aim of in-
creasing the set of records agreeing on a combination of key values. Ways to
combine local suppression and global recoding are discussed in [16] and im-
plemented in the µ-Argus SDC package [44].

If a continuous attribute Vi is part of a set of key attributes, then each com-
bination of key values is probably unique. Since it does not make sense to
systematically suppress the values of Vi, we conclude that local suppression is
rather oriented to categorical attributes.

3.5 Synthetic Microdata Generation

Publication of synthetic — i.e. simulated — data was proposed long ago as
a way to guard against statistical disclosure. The idea is to randomly generate
data with the constraint that certain statistics or internal relationships of the
original dataset should be preserved.

We next review some approaches in the literature to synthetic data gener-
ation and then proceed to discuss the global pros and cons of using synthetic
data.

3.5.1 Synthetic Data by Multiple Imputation

More than twenty years ago, it was suggested in [65] to create an entirely
synthetic dataset based on the original survey data and multiple imputation.
Rubin’s proposal was more completely developed in [57]. A simulation study
of it was given in [60]. In [64] inference on synthetic data is discussed and
in [63] an application is given.
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We next sketch the operation of the original proposal by Rubin. Consider an
original microdata setX of size n records drawn from a much larger population
of N individuals, where there are background attributes A, non-confidential
attributes B and confidential attributes C . Background attributes are observed
and available for allN individuals in the population, whereas B and C are only
available for the n records in the sample X. The first step is to construct from
X a multiply-imputed population of N individuals. This population consists
of the n records in X and M (the number of multiple imputations, typically
between 3 and 10) matrices of (B,C) data for the N − n non-sampled indi-
viduals. The variability in the imputed values ensures, theoretically, that valid
inferences can be obtained on the multiply-imputed population. A model for
predicting (B,C) from A is used to multiply-impute (B,C) in the popula-
tion. The choice of the model is a nontrivial matter. Once the multiply-imputed
population is available, a sample Z of n′ records can be drawn from it whose
structure looks like the one a sample of n′ records drawn from the original
population. This can be done M times to create M replicates of (B,C) values.
The result are M multiply-imputed synthetic datasets. To make sure no orig-
inal data are in the synthetic datasets, it is wise to draw the samples from the
multiply-imputed population excluding the n original records from it.

3.5.2 Synthetic Data by Bootstrap

Long ago, [30] proposed generating synthetic microdata by using bootstrap
methods. Later, in [31] this approach was used for categorical data.

The bootstrap approach bears some similarity to the data distortion by
probability distribution and the multiple-imputation methods described above.
Given an original microdata set X with p attributes, the data protector com-
putes its empirical p-variate cumulative distribution function (c.d.f.) F . Now,
rather than distorting the original data to obtain masked data (as done by
the masking methods in Sections 3.3 and 3.4), the data protector alters (or
“smoothes”) the c.d.f. F to derive a similar c.d.f. F ′. Finally, F ′ is sampled to
obtain a synthetic microdata set Z .

3.5.3 Synthetic Data by Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) appears in the literature as another
method for generating multivariate synthetic datasets. In [46], the LHS up-
dated technique of [33] was improved, but the proposed scheme is still time-
intensive even for a moderate number of records. In [12], LHS is used along
with a rank correlation refinement to reproduce both the univariate (i.e. mean
and covariance) and multivariate structure (in the sense of rank correlation)
of the original dataset. In a nutshell, LHS-based methods rely on iterative
refinement, are time-intensive and their running time does not only depend on
the number of values to be reproduced, but on the starting values as well.
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3.5.4 Partially Synthetic Data by Cholesky Decomposition

Generating plausible synthetic values for all attributes in a database may be
difficult in practice. Thus, several authors have considered mixing actual and
synthetic data.

In [7], a non-iterative method for generating continuous synthetic microdata
is proposed. It consists of three methods sketched next. Informally, suppose
two sets of attributes X and Y , where the former are the confidential out-
come attributes and the latter are quasi-identifier attributes. Then X are taken
as independent and Y as dependent attributes. Conditional on the specific con-
fidential attributes xi, the quasi-identifier attributes Yi are assumed to follow
a multivariate normal distribution with covariance matrix Σ = {σjk} and a
mean vector xiB, where B is a matrix of regression coefficients.

Method A computes a multiple regression of Y on X and fitted Y ′
A at-

tributes. Finally, attributes X and Y ′
A are released in place of X and Y .

If a user fits a multiple regression model to (y′A, x), she will get estimates
B̂A and Σ̂A which, in general, are different from the estimates B̂ and Σ̂ ob-
tained when fitting the model to the original data (y, x). IPSO Method B mod-
ifies y′A into y′B in such a way that the estimate B̂B obtained by multiple linear
regression from (y′B, x) satisfies B̂B = B̂.

A more ambitious goal is to come up with a data matrix y′C such that, when
a multivariate multiple regression model is fitted to (y′C , x), both sufficient
statistics B̂ and Σ̂ obtained on the original data (y, x) are preserved. This is
achieved by IPSO Method C.

3.5.5 Other Partially Synthetic and Hybrid Microdata
Approaches

The multiple imputation approach described in [65] for creating entirely
synthetic microdata can be extended for partially synthetic microdata. As a
result multiply-imputed, partially synthetic datasets are obtained that contain
a mix of actual and imputed (synthetic) values. The idea is to multiply-
impute confidential values and release non-confidential values without per-
turbation. This approach was first applied to protect the Survey of Consumer
Finances [47, 48]. In Abowd and Woodcock [1, 2], this technique was adopted
to protect longitudinal linked data, that is, microdata that contain observations
from two or more related time periods (successive years, etc.). Methods for
valid inference on this kind of partial synthetic data were developed in [61] and
a non-parametric method was presented in [62] to generate multiply-imputed,
partially synthetic data.

Closely related to multiply imputed, partially synthetic microdata is model-
based disclosure protection [34, 56]. In this approach, a set of confidential
continuous outcome attributes is regressed on a disjoint set of non-confidential
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attributes; then the fitted values are released for the confidential attributes in-
stead of the original values.

A different approach called hybrid masking was proposed in [13]. The idea
is to compute masked data as a combination of original and synthetic data.
Such a combination allows better control than purely synthetic data over the
individual characteristics of masked records. For hybrid masking to be feasible,
a rule must be used to pair one original data record with one synthetic data
record. An option suggested in [13] is to go through all original data records
and pair each original record with the nearest synthetic record according to
some distance. Once records have been paired, [13] suggest two possible ways
for combining one original record X with one synthetic record Xs: additive
combination and multiplicative combination. Additive combination yields

Z = αX + (1− α)Xs

and multiplicative combination yields

Z = Xα ·X(1−α)
s

where α is an input parameter in [0, 1] and Z is the hybrid record. [13] present
empirical results comparing the hybrid approach with rank swapping and mi-
croaggregation masking (the synthetic component of hybrid data is generated
using Latin Hypercube Sampling [12]).

Another approach to combining original and synthetic microdata is pro-
posed in [70]. The idea here is to first mask an original dataset using a masking
method (see Sections 3.3 and 3.4 above). Then a hill-climbing optimization
heuristic is run which seeks to modify the masked data to preserve the first
and second-order moments of the original dataset as much as possible without
increasing the disclosure risk with respect to the initial masked data. The opti-
mization heuristic can be modified to preserve higher-order moments, but this
significantly increases computation. Also, the optimization heuristic can take
as initial dataset a random dataset instead of a masked dataset; in this case, the
output dataset is purely synthetic.

3.5.6 Pros and Cons of Synthetic Microdata

As pointed out in Section 3.2, synthetic data are appealing in that, at a first
glance, they seem to circumvent the re-identification problem: since published
records are invented and do not derive from any original record, it might be
concluded that no individual can complain from having been re-identified. At
a closer look this advantage is less clear. If, by chance, a published synthetic
record matches a particular citizen’s non-confidential attributes (age, marital
status, place of residence, etc.) and confidential attributes (salary, mortgage,
etc.), re-identification using the non-confidential attributes is easy and that cit-
izen may feel that his confidential attributes have been unduly revealed. In that
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case, the citizen is unlikely to be happy with or even understand the explanation
that the record was synthetically generated.

On the other hand, limited data utility is another problem of synthetic data.
Only the statistical properties explicitly captured by the model used by the data
protector are preserved. A logical question at this point is why not directly
publish the statistics one wants to preserve rather than release a synthetic mi-
crodata set.

One possible justification for synthetic microdata would be if valid analy-
ses could be obtained on a number of subdomains, i.e. similar results were ob-
tained in a number of subsets of the original dataset and the corresponding sub-
sets of the synthetic dataset. Partially synthetic or hybrid microdata are more
likely to succeed in staying useful for subdomain analysis. However, when us-
ing partially synthetic or hybrid microdata, we lose the attractive feature of
purely synthetic data that the number of records in the protected (synthetic)
dataset is independent from the number of records in the original dataset.

3.6 Trading off Information Loss and Disclosure Risk

Sections 3.2 through 3.5 have presented a plethora of methods to protect
microdata. To complicate things further, most of such methods are parametric
(e.g., in microaggregation, one parameter is the minimum number of records in
a cluster), so the user must go through two choices rather than one: a primary
choice to select a method and a secondary choice to select parameters for the
method to be used. To help reducing the embarras du choix, some guidelines
are needed.

3.6.1 Score Construction

The mission of SDC to modify data in such a way that sufficient protection
is provided at minimum information loss suggests that a good SDC method is
one achieving a good tradeoff between disclosure risk and information loss.

Following this idea, [21] proposed a score for method performance rating
based on the average of information loss and disclosure risk measures. For
each method M and parameterization P , the following score is computed:

Score(V,V′) =
IL(V,V′) +DR(V,V′)

2

where IL is an information loss measure, DR is a disclosure risk measure
and V′ is the protected dataset obtained after applying method M with para-
meterization P to an original dataset V.

In [21] and [19] IL and DR were computed using a weighted combination
of several information loss and disclosure risk measures. With the resulting
score, a ranking of masking methods (and their parameterizations) was ob-
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tained. In [81] the line of the above two papers was followed to rank a different
set of methods using a slightly different score.

To illustrate how a score can be constructed, we next describe the particular
score used in [21].

Example 3.4 LetX andX ′ be matrices representing original and protected
datasets, respectively, where all attributes are numerical. Let V and R be the
covariance matrix and the correlation matrix of X, respectively; let X̄ be the
vector of attribute averages for X and let S be the diagonal of V . Define V ′,
R′, X̄ ′, and S′ analogously from X ′. The Information Loss (IL) is computed
by averaging the mean variations of X−X ′, X̄− X̄ ′, V −V ′, S−S′, and the
mean absolute error of R − R′ and multiplying the resulting average by 100.
Thus, we obtain the following expression for information loss:

IL = 100
5

(∑p
j=1

∑n
i=1

|xij−x′ij |
|xij |

np +
∑p

j=1

|x̄j−x̄′j |
|x̄j |

p +
∑p

j=1

∑
1≤i≤j

|vij−v′ij |
|vij |

p(p+1)
2

+
∑p

j=1

|vjj−v′jj |
|vjj |

p +
∑p

j=1

∑
1≤i≤j |rij−r′ij |
p(p−1)

2

)

The expression of the overall score is obtained by combining information
loss and information risk as follows:

Score =
IL+ (0.5DLD+0.5PLD)+ID

2

2

Here, DLD (Distance Linkage Disclosure risk) is the percentage of correctly
linked records using distance-based record linkage [19], PLD (Probabilistic
Linkage Record Disclosure risk) is the percentage of correctly linked records
using probabilistic linkage [29], ID (Interval Disclosure) is the percentage of
original records falling in the intervals around their corresponding masked
values and IL is the information loss measure defined above.

Based on the above score, [21] found that, for the benchmark datasets and
the intruder’s external information they used, two good performers among the
set of methods and parameterizations they tried were: i) rankswapping with pa-
rameter p around 15 (see description above); ii) multivariate microaggregation
on unprojected data taking groups of three attributes at a time (Algorithm 3.1
with partitioning of the set of attributes). �

Using a score permits to regard the selection of a masking method and its
parameters as an optimization problem. This idea was first used in the above-
mentioned contribution [70]. In that paper, a masking method was applied to
the original data file and then a post-masking optimization procedure was ap-
plied to decrease the score obtained.
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On the negative side, no specific score weighting can do justice to all meth-
ods. Thus, when ranking methods, the values of all measures of information
loss and disclosure risk should be supplied along with the overall score.

3.6.2 R-U Maps

A tool which may be enlightening when trying to construct a score or, more
generally, optimize the tradeoff between information loss and disclosure risk
is a graphical representation of pairs of measures (disclosure risk, information
loss) or their equivalents (disclosure risk, data utility). Such maps are called
R-U confidentiality maps [24, 25]. Here, R stands for disclosure risk and U for
data utility. According to [25], “in its most basic form, an R-U confidentiality
map is the set of paired values (R,U), of disclosure risk and data utility that
correspond to various strategies for data release” (e.g., variations on a parame-
ter). Such (R,U) pairs are typically plotted in a two-dimensional graph, so that
the user can easily grasp the influence of a particular method and/or parameter
choice.

3.6.3 k-anonymity

A different approach to facing the conflict between information loss and
disclosure risk is suggested by Samarati and Sweeney [67, 66, 73, 74]. A pro-
tected dataset is said to satisfy k-anonymity for k > 1 if, for each combination
of quasi-identifier values (e.g. address, age, gender, etc.), at least k records ex-
ist in the dataset sharing that combination. Now if, for a given k, k-anonymity
is assumed to be enough protection, one can concentrate on minimizing in-
formation loss with the only constraint that k-anonymity should be satisfied.
This is a clean way of solving the tension between data protection and data
utility. Since k-anonymity is usually achieved via generalization (equivalent
to global recoding, as said above) and local suppression, minimizing informa-
tion loss usually translates to reducing the number and/or the magnitude of
suppressions.
k-anonymity bears some resemblance to the underlying principle of mi-

croaggregation and is a useful concept because quasi-identifiers are usually
categorical or can be categorized, i.e. they take values in a finite (and ideally re-
duced) range. However, re-identification is not necessarily based on categorical
quasi-identifiers: sometimes, numerical outcome attributes —which are contin-
uous and often cannot be categorized— give enough clues for re-identification
(see discussion on the MASSC method above). Microaggregation was sug-
gested in [23] as a possible way to achieve k-anonymity for numerical, ordinal
and nominal attributes. A similar idea called data condensation had also been
independently proposed by [4] to achieve k-anonymity for the specific case of
numerical attributes.
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Another connection between k-anonymity and microaggregation is the NP-
hardness of solving them optimally. Satisfying k-anonymity with minimal data
modification has been shown to be NP-hard in [52], which is parallel to the NP-
hardness of optimal multivariate microaggregation proven in [55].

3.7 Conclusions and Research Directions

Inference control methods for privacy-preserving data mining are a hot re-
search topic progressing very fast. There are still many open issues, some of
which can be hopefully solved with further research and some which are likely
to stay open due to the inherent nature of SDC.

We first list some of the issues that we feel can be and should be settled in
the near future:

Identifying a comprehensive listing of data uses (e.g. regression models,
association rules, etc.) that would allow the definition of data use-
specific information loss measures broadly accepted by the commu-
nity; those new measures could complement and/or replace the generic
measures currently used. Work in this line has been started in Europe in
2006 under the CENEX SDC project sponsored by Eurostat.

Devising disclosure risk assessment procedures which are as universally
applicable as record linkage while being less greedy in computational
terms.

Identifying the external data sources that intruders can typically access
in order to attempt re-identification for each domain of application. This
would help data protectors figuring out in more realistic terms which are
the disclosure scenarios they should protect data against.

Creating one or several benchmarks to assess the performance of SDC
methods. Benchmark creation is currently hampered by the confidential-
ity of the original datasets to be protected. Data protectors should agree
on a collection of non-confidential original-looking data sets (financial
datasets, population datasets, etc.) which can be used by anybody to
compare the performance of SDC methods. The benchmark should also
incorporate state-of-the-art disclosure risk assessment methods, which
requires continuous update and maintenance.

There are other issues which, in our view, are less likely to be resolved in
the near future, due to the very nature of SDC methods. As pointed out in [22],
if an intruder knows the SDC algorithm used to create a protected data set, he
can mount algorithm-specific re-identification attacks which can disclose more
confidential information than conventional data mining attacks. Keeping secret
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the SDC algorithm used would seem a solution, but in many cases the protected
dataset itself gives some clues on the SDC algorithm used to produce it. Such is
the case for a rounded, microaggregated or partially suppressed microdata set.
Thus, it is unclear to what extent the SDC algorithm used can be kept secret.

Other data security areas where slightly distorted data are sent to a recipient
who is legitimate but untrusted also share the same concerns about the secrecy
of protection algorithms in use. This is the case of watermarking. Teaming up
with those areas sharing similar problems is probably one clever line of action
for SDC.
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Abstract To design a privacy-preserving data publishing system, we must first quantify
the very notion of privacy, or information loss. In the past few years, there has
been a proliferation of measures of privacy, some based on statistical considera-
tions, others based on Bayesian or information-theoretic notions of information,
and even others designed around the limitations of bounded adversaries. In this
chapter, we review the various approaches to capturing privacy. We will find
that although one can define privacy from different standpoints, there are many
structural similarities in the way different approaches have evolved. It will also
become clear that the notions of privacy and utility (the useful information one
can extract from published data) are intertwined in ways that are yet to be fully
resolved.
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4.1 Introduction

In this chapter, we survey the various approaches that have been proposed to
measure privacy (and the loss of privacy). Since most privacy concerns (espe-
cially those related to health-care information [44]) are raised in the context of
legal concerns, it is instructive to view privacy from a legal perspective, rather
than from purely technical considerations.

It is beyond the scope of this survey1 to review the legal interpretations of
privacy [11]. However, one essay on privacy that appears directly relevant (and
has inspired at least one paper surveyed here) is the view of privacy in terms of
access that others have to us and our information, presented by Ruth Gavison
[23]. In her view, a general definition of privacy must be one that is measurable,
of value, and actionable. The first property needs no explanation; the second
means that the entity being considered private must be valuable, and the third
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property argues that from a legal perspective, only those losses of privacy are
interesting that can be prosecuted.

This survey, and much of the research on privacy, concerns itself with the
measuring of privacy. The second property is implicit in most discussion of
measures of privacy: authors propose basic data items that are valuable and
must be protected (fields in a record, background knowledge about a distrib-
ution, and so on). The third aspect of privacy is of a legal nature and is not
directly relevant to our discussion here.

4.1.1 What is Privacy?

To measure privacy, we must define it. This, in essence, is the hardest part
of the problem of measuring privacy, and is the reason for the plethora of
proposed measures. Once again, we turn to Gavison for some insight. In her
paper, she argues that there are three inter-related kinds of privacy: secrecy,
anonymity, and solitude. Secrecy concerns information that others may gather
about us. Anonymity addresses how much “in the public gaze” we are, and
solitude measures the degree to which others have physical access to us. From
the perspective of protecting information, solitude relates to the physical pro-
tection of data, and is again beyond the purview of this article. Secrecy and
anonymity are useful ways of thinking about privacy, and we will see that mea-
sures of privacy preservation can be viewed as falling mostly into one of these
two categories.

If we think of privacy as secrecy (of our information), then a loss of privacy
is leakage of that information. This can measured through various means: the
probability of a data item being accessed, the change in knowledge of an ad-
versary upon seeing the data, and so on. If we think in terms of anonymity, then
privacy leakage is measured in terms of the size of the blurring accompanying
the release of data: the more the blurring, the more anonymous the data.

Privacy versus Utility. It would seem that the most effective way to pre-
serve privacy of information would be to encrypt it. Users wishing to access
the data could be given keys, and this would summarily solve all privacy is-
sues. Unfortunately, this approach does not work in a data publishing scenario,
which is the primary setting for much work on privacy preservation.

The key notion here is one of utility: the goal of privacy preservation mea-
sures is to secure access to confidential information while at the same time
releasing aggregate information to the public. One common example used is
that of the U.S. Census. The U.S Census wishes to publish survey data from
the census so that demographers and other public policy experts can analyze
trends in the general population. On the other hand, they wish to avoid releas-
ing information that could be used to infer facts about specific individuals; the
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case of the AOL search query release [34] indicates the dangers of releasing
data without adequately anonymizing it.

It is this idea of utility that makes cryptographic approaches to privacy
preservation problematic. As Dwork points out in her overview of differen-
tial privacy [16], a typical cryptographic scenario involves two communicating
parties and an adversary attempting to eavesdrop. In the scenarios we consider,
the adversary is the same as the recipient of the message, making security guar-
antees much harder to prove.

Privacy and utility are fundamentally in tension with each other. We can
achieve perfect privacy by not releasing any data, but this solution has no util-
ity. Thus, any discussion of privacy measures is incomplete without a corre-
sponding discussion of utility measures. Traditionally, the two concepts have
been measured using different yardsticks, and we are now beginning to see
attempts to unify the two notions along a common axis of measurement.

A Note on Terminology. Various terms have been used in the literate to
describe privacy and privacy loss. Anonymization is a popular term, often used
to describe methods like k-anonymity and its successors. Information loss is
used by some of the information-theoretic methods, and privacy leakage is
another common expression describing the loss of privacy. We will use these
terms interchangeably.

4.1.2 Data Anonymization Methods

The measures of anonymity we discuss here are usually defined with respect
to a particular data anonymization method. There are three primary methods
in use today, random perturbation, generalization and suppression. In what
follows, we discuss these methods.

Perhaps the most natural way of anonymizing numerical data is to perturb it.
Rather than reporting a value x for an attribute, we report the value x̃ = x+ r,
where r is a random value drawn from an appropriate (usually bias-free) dis-
tribution. One must be careful with this approach however; if the value r is
chosen independently each time x is queried, then simple averaging will elim-
inate its effect. Since introducing bias would affect any statistical analysis one
might wish to perform on the data, a preferred method is to fix the perturbations
in advance.

If the attribute x has a domain other than R, then perturbation is more com-
plex. As long as the data lies in a continuous metric space (like R

d for in-
stance), then a perturbation is well defined. If the data is categorical however,
other methods, such as deleting items and inserting other, randomly chosen
items, must be employed. We will see more of such methods below.

It is often useful to distinguish between two kinds of perturbation. Input
perturbation is the process of perturbing the source data itself, and returning
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correct answers to queries on this perturbed data. Output perturbation on the
other hand perturbs the answers sent to a query, rather than modifying the input
itself.

The other method for anonymizing data is generalization, which is often
used in conjunction with suppression. Suppose the data domain possesses a
natural hierarchical structure. For example, ZIP codes can be thought of as the
leaves of a hierarchy, where 8411∗ is the parent of 84117, and 84∗ is an ances-
tor of 8411∗, and so on. In the presence of such a hierarchy, attributes can be
generalized by replacing their values with that of their (common) parent. Again
returning to the ZIP code example, ZIP codes of the form 84117, 84118, 84120
might all be replaced by the generic ZIP 841∗. The degree of perturbation can
then be measured in terms of the height of the resulting generalization above
the leaf values.

Data suppression, very simply, is the omission of data. For example, a set
of database tuples might all have ZIP code fields of the form 84117 or 84118,
with the exception of a few tuples that have a ZIP code field value of 90210.
In this case, the outlier tuples can be suppressed in order to construct valid
and compact generalization. Another way of performing data suppression is to
replace a field with a generic identifier for that field. In the above example, the
ZIP code field value of 90210 might be replaced by a null value ⊥ZIP.

Another method of data anonymization that was proposed by Zhang et al.
[50] is to permute the data. Given a table consisting of sensitive and identifying
attributes, their approach is to permute the projection of the table consisting of
the sensitive attributes; the purpose of doing this is to retain the aggregate prop-
erties of the table, while destroying the link between identifying and sensitive
attributes that could lead to a privacy leakage.

4.1.3 A Classification of Methods

Broadly speaking, methods for measuring privacy can be divided into three
distinct categories. Early work on statistical databases measured privacy in
terms of the variance of key perturbed variables: the larger the variance, the
better the privacy of the perturbed data. We refer to these approaches as statis-
tical methods.

Much of the more recent work on privacy measures starts with the obser-
vation that statistical methods are unable to quantify the idea of background
information that an adversary may possess. As a consequence, researchers
have employed tools from information theory and Bayesian analysis to quan-
tify more precisely notions of information transfer and loss. We will describe
these methods under the general heading of probabilistic methods.

Almost in parallel with the development of probabilistic methods, some re-
searchers have attacked the problem of privacy from a computational angle.
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In short, rather than relying on statistical or probabilistic estimates for the
amount of information leaked, these measures start from the idea of a resource-
bounded adversary, and measure privacy in terms of the amount of information
accessible by such an adversary. This approach is reminiscent of cryptographic
approaches, but for the reasons outlined above is substantially more difficult.

An Important Omission: Secure Multiparty Computation. One impor-
tant technique for preserving data privacy is the approach from cryptography
called secure multi-party computation (SMC). The simplest version of this
framework is the so-called ‘Millionaires Problem’ [49]:

Two millionaires wish to know who is richer; however, they do not want to
find out inadvertently any additional information about each others wealth. How
can they carry out such a conversation?

In general, an SMC scenario is described by N clients, each of whom owns
some private data, and a public function f(x1, . . . xN ) that needs to be com-
puted from the shared data without any of the clients revealing their private
information.

Notice that in an SMC setting, the clients are trusted, and do not trust the
central server to preserve their information (otherwise they could merely trans-
mit the required data to the server). In all the privacy-preservation settings we
will consider in this article, it is the server that is trusted, and queries to the
server emanate from untrusted clients. We will not address SMC-based pri-
vacy methods further.

4.2 Statistical Measures of Anonymity

4.2.1 Query Restriction

Query restriction was one of the first methods for preserving anonymity in
data [22, 25, 21, 40]. For a database of size N , and a fixed parameter k, all
queries that returned either fewer than k or more than N − k records were
rejected. Query restriction anticipates k-anonymity, in that the method for pre-
serving anonymity is by returning a large set of records for any query. Contrast
this with data suppression; rather than deleting records, the procedure deletes
queries.

It was pointed out later [13, 12, 41, 10, 41] that query restriction could be
subverted by requesting a specific sequence of queries, and then combining
them using simple Boolean operators, in a construction referred to as a tracker.
Thus, this mechanism is not very effective.

4.2.2 Anonymity via Variance

Here, we start with randomly perturbed data x̃ = x + r, as described in
Section 4.1.2. Intuitively, the larger the perturbation, the more blurred, and thus
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more protected the value is. Thus, we can measure anonymity by measuring the
variance of the perturbed data. The larger the variance, the better the guarantee
of anonymity, and thus one proposal by Duncan et al. [15] is to lower bound
the variance for estimators of sensitive attributes. An alternative approach, used
by Agrawal and Srikant [3], is to fix a confidence level and measure the length
of the interval of values of the estimator that yields this confidence bound; the
longer the interval, the more successful the anonymization.

Under this model, utility can be measured in a variety of ways. The Dun-
can et al. paper measures utility by combining the perturbation scheme with
a query restriction method, and measuring the fraction of queries that are
permitted after perturbation. Obviously, the larger the perturbation (measured
by the variance σ2), the larger the fraction of queries that return sets of high
cardinality. This presents a natural tradeoff between privacy (increased by
increasing σ2) and utility (increased by increasing the fraction of permitted
queries).

The paper by Agrawal and Srikant implicitly measures utility in terms of
how hard it is to reconstruct the original data distribution. They use many iter-
ations of a Bayesian update procedure to perform this reconstruction; however
the reconstruction itself provides no guarantees (in terms of distance to the true
data distribution).

4.2.3 Anonymity via Multiplicity

Perturbation-based privacy works by changing the values of data items. In
generalization-based privacy, the idea is to “blur” the data via generalization.
The hope here is that the blurred data set will continue to provide the statistical
utility that the original data provided, while preventing access to individual
tuples.

The measure of privacy here is a combinatorial variant of the length-of-
interval measure used in [3]. A database is said to be k-anonymous [42] if
there is no query that can extract fewer than k records from it. This is achieved
by aggregating tuples along a generalization hierarchy: for example, by aggre-
gating zip codes upto to the first three digits, and so on. k-anonymity was first
defined in the context of record linkage: can tuples from multiple databases
be joined together to infer private information inaccessible from the individual
sources?

The k-anonymity requirement means such access cannot happen, since no
query returns fewer than k records, and so cannot be used to isolate a single
tuple containing the private information. As a method for blocking record link-
age, k-anonymity is effective, and much research has gone into optimizing the
computations, investigating the intrinsic hardness of computing it, and gener-
alizing it to multiple dimensions.
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4.3 Probabilistic Measures of Anonymity

Upto this point, an information leak has been defined as the revealing of
specific data in a tuple. Often though, information can be leaked even if the
adversary does not gain access to a specific data item. Such attacks usually
rely on knowing aggregate information about the (perturbed) source database,
as well as the method of perturbation used when modifying the data.

Suppose we attempt to anonymize an attribute X by perturbing it with a
random value chosen uniformly from the interval [−1, 1]2. Fixing a confidence
level of 100%, and using the measure of privacy from [3], we infer that the
privacy achieved by this perturbation is 2 (the length of the interval [−1, 1]).
Suppose however that a distribution on the values of X is revealed: namely, X
takes a value in the range [0, 1] with probability 1/2, and a value in the range
[4, 5] with probability 1/2. In this case, no matter what the actual value ofX is,
an adversary can infer from the perturbed value X̃ which of the two intervals
of length 1 the true value of X really lies in, reducing the effective privacy to
at most 1.

Incorporating background information changes the focus of anonymity mea-
surements. Rather than measuring the likelihood of some data being released,
we now have to measure a far more nebulous quantity: the “amount of new
information learned by an adversary” relative to the background. In order to do
this, we need more precise notions of information leakage than the variance of
a perturbed value.

This analysis applies irrespective of whether we do anonymization based on
random perturbation or generalization. We first consider measures of anonymi-
zation that are based on perturbation schemes, following this with an exami-
nation of measures based on generalization. In both settings, the measures are
probabilistic: they compute functions of distributions defined on the data.

4.3.1 Measures Based on Random Perturbation

Using Mutual Information The paper by Agrawal and Aggarwal [2] pro-
poses the use of mutual information to measure leaked information. We can
use the entropy H(A) to encode the amount of uncertainty (and therefore the
degree of privacy) in a random variable A. H(A|B), the conditional entropy
of A given B, can be interpreted as the amount of privacy “left” in A after B is
revealed. Since entropy is usually expressed in terms of bits of information, we
will use the expression 2H(A) to represent the measure of privacy in A. Using
this measure, the fraction of privacy leaked by an adversary who knows B can
be written as

P(A|B) = 1− 2H(A|B)/2H(A) = 1− 2−I(A;B)
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where I(A;B) = H(A) − H(A|B) is the mutual information between the
random variables A and B.

They also develop a notion of utility measured by the statistical distance be-
tween the source distribution of data and the perturbed distribution. They also
demonstrate an EM-based method for reconstructing the maximum likelihood
estimate of the source distribution, and show that it converges to the correct
answer (they do not address the issue of rate of convergence).

Handling Categorical Values The above schemes rely on the source data be-
ing numerical. For data mining applications, the relevant source data is usually
categorical, consisting of collections of transactions, each transaction defined
as a set of items. For example, in the typical market-basket setting, a transac-
tion consists of a set of items purchased by a customer.

Such sets are typically represented by binary characteristic vectors. The el-
ementary datum that requires anonymity is membership: does item i belong
to transaction t? The questions requiring utility, on the other hand, are of the
form, “which patterns have reasonable support and confidence”? In such a set-
ting, the only possible perturbation is to flip an item’s membership in a trans-
action, but not so often as to change the answers to questions about patterns in
any significant way.

There are two ways of measuring privacy in this setting. The approach taken
by Evfimievski et al. [20] is to evaluate whether an anonymization scheme
leaves clues for an adversary with high probability. Specifically, the define a
privacy breach one in which the probability of some property of the input data
is high, conditioned on the output perturbed data having certain properties.

Definition 4.3.1 An itemsetA causes a privacy breach of level ρ if for some
item a ∈ A and some i ∈ 1 . . . N we have P[a ∈ ti|A ⊆ t′i] ≥ ρ.

Here, the event “A ⊆ ti” is leaking information about the event “a ∈ ti”.
Note that this measure is absolute, regardless of what the prior probability
of a ∈ ti might have been. The perturbation method is based on randomly
sampling some items of the transaction ti to keep, and buffering with elements
a �∈ ti at random.

The second approach, taken by Rizvi and Haritsa [38], is to measure privacy
in terms of the probability of correctly reconstructing the original bit, given a
perturbed bit. This can be calculated using Bayes’ Theorem, and is parame-
trized by the probability of flipping a bit (which they set to a constant p). Pri-
vacy is then achieved by setting p to a value that minimizes the reconstruction
probability; the authors show that a wide range of values for p yields acceptable
privacy thresholds.
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Both papers then frame utility as the problem of reconstructing itemset fre-
quencies accurately. [20] establishes a tradeoff between utility more precisely,
in terms of the probabilities p[l→ l′] = P[#(t′ ∩A) = l′|#(t ∩A) = l].

For privacy, we have to ensure that (for example) if we fix an element a ∈ t,
then the set of tuples t that do contain a are not overly represented in the
modified itemset. Specifically, in terms of an average over the size of tuple sets
returned, we obtain a condition on the p[l → l′]. In essence, the probabilities
p[l → l′] encode the tradeoff between utility (or ease of reconstruction) and
privacy.

Measuring Transfer of Information Both the above papers have the same
weakness that plagued the original statistics-based anonymization works: they
ignore the problem of the background knowledge attack. A related, and yet
subtlely different problem is that ignoring the source data distribution may
yield meaningless results. For example, suppose the probability of an item oc-
curring any particular transaction is very high. Then the probability of recon-
structing its value correctly is also high, but this would not ordinarily be viewed
as a leak of information. A more informative approach would be to measure
the level of “surprise”: namely whether the probability P [a ∈ ti] increases (or
decreases) dramatically, conditioned on seeing the event A ⊆ t′i.

Notice that this idea is the motivation for [2]; in their paper, the mutual
information I(A;B) measures the transfer of information between the source
and anonymized data. Evfimievski et al. [19], in a followup to [20], develop
a slightly different notion of information transfer, motivated by the idea that
mutual information is an “averaged” measure and that for privacy preservation,
worst-case bounds are more relevant.

Formally, information leakage is measured by estimating the change in
probability of a property from source to distorted data. For example, given
a property Q(X) of the data, they say that there is a privacy breach after
perturbing the data by function R(X) if for some y,

P[Q(X)] ≤ ρ1,P[Q(X)|R(X) = y] ≥ ρ2

where ρ1 � ρ2.
However, ensuring that this property holds is computationally intensive. The

authors show that a sufficient condition for guaranteeing no (ρ1, ρ2) privacy
breach is to bound the difference in probability between two different xi be-
ing mapped to a particular y. Formally, they propose perturbation schemes
such that

p[x1 → y]
p[x2 → y]

≤ γ
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Intuitively, this means that if we look back from y, there is no easy way of
telling whether the source was x1 or x2. The formal relation to (ρ1, ρ2)-privacy
is established via this intuition.

Formally, we can rewrite

I(X;Y ) =
∑
y

p(y)KL(p(X|Y = y)|p(X))

The function KL(p(X|Y = y)|p(X)) measures the transfer distance; it asks
how different the induced distribution p(X|Y = y) is from the source distri-
bution p(X). The more the difference is, the less the privacy breach is. The
authors propose replacing the averaging in the above expression by a max,
yielding a modified notion

Iw(X;Y ) = max
y
p(y)KL(p(X|Y = y)|p(X))

They then show that a (ρ1, ρ2)-privacy breach yields a lower bound on the
worst-case mutual information Iw(X;Y ), which is what we would expect.

More general perturbation schemes All of the above described perturba-
tion schemes are local: perturbations are applied independently to data items.
Kargupta et al. [27] showed that the lack of correlation between perturbations
can be used to attack such a privacy-preserving mechanism. Their key idea is a
spectral filtering method based on computing principal components of the data
transformation matrix.

Their results suggest that for more effective privacy preservation, one should
consider more general perturbation schemes. It is not hard to see that a nat-
ural generalization of these perturbation schemes is a Markov-chain based ap-
proach, where an item x is perturbed to item y based on a transition probability
p(y|x). FRAPP [4] is one such scheme based on this idea. The authors show
that they can express the notion of a (ρ1, ρ2)-privacy breach in terms of prop-
erties of the Markov transition matrix. Moreover, they can express the utility
of this scheme in terms of the condition number of the transition matrix.

4.3.2 Measures Based on Generalization

It is possible to mount a ‘background knowledge’ attack on k-anonymity.
For example, it is possible that all the k records returned from a particular
query share the same value of some attribute. Knowing that the desired tuple
is one of the k tuples, we have thus extracted a value from this tuple without
needing to isolate it.

The first approach to address this problem was the work on �-diversity [32].
Here, the authors start with the now-familiar idea that the privacy measure
should capture the change in the adversary’s world-view upon seeing the data.
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However, they execute this idea with an approach that is absolute. They require
that the distribution of sensitive values in an aggregate have high entropy (at
least log �). This subsumes k-anonymity, since we can think of the probability
of leakage of a single tuple in k-anonymity as 1/k, and so the “entropy” of the
aggregate is log k. Starting with this idea, they introduce variants of �-diversity
that are more relaxed about disclosure, or allow one to distinguish between
positive and negative disclosure, or even allow for multi-attribute disclosure
measurement.

Concurrently published, the work on p-sensitive-k-anonymity [43] attempts
to do the same thing, but in a more limited way, by requiring at least p dis-
tinct sensitive values in each generalization block, instead of using entropy.
A variant of this idea was proposed by Wong et al. [47]; in their scheme,
termed (α, k)-anonymity, the additional constraint imposed on the generaliza-
tion is that the fractional frequency of each value in a generalization is no more
than α. Note that this approach automatically lower bounds the entropy of the
generalization by log(1/α).

Machanavajjhala et al. [32] make the point that it is difficult to model
the adversary’s background knowledge; they use this argument to justify the
�-diversity measure. One way to address this problem is to assume that the
adversary has access to global statistics of the sensitive attribute in question. In
this case, the goal is to make the sensitive attribute “blend in”; its distribution
in the generalization should mimic its distribution in the source data.

This is the approach taken by Li, Li and the author [31]. They define a mea-
sure called t-closeness that requires that the “distance” between the distribution
of a sensitive attribute in the generalized and original tables is at most t.

A natural distance measure to use would be the KL-distance from the gener-
alized to the source distribution. However, for numerical attributes, the notion
of closeness must incorporate the notion of a metric on the attribute. For ex-
ample, suppose that a salary field in a table is generalized to have three distinct
values (20000, 21000, 22000). One might reasonably argue that this general-
ization leaks more information than a generalization that has the three distinct
values (20000, 50000, 80000).

Computing the distance between two distributions where the underlying do-
mains inhabit a metric space can be performed using the metric known as the
earth-mover distance [39], or the Monge-Kantorovich transportation distance
[24]. Formally, suppose we have two distributions p, q defined over the ele-
ments X of a metric space (X, d). Then the earth-mover distance between
p and q is

dE(p, q) = inf
P [x′|x]

∑
x,x′

d(x, x′)P [x′|x]p(x)

subject to the constraint
∑

x P [x′|x]p(x) = q(x′).
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Intuitively, this distance is defined as the value that minimizes the trans-
portation cost of transforming one distribution to the other, where transporta-
tion cost is measured in terms of the distance in the underlying metric space.
Note that since any underlying metric can be used, this approach can be used
to integrate numerical and categorical attributes, by imposing any suitable
metric (based on domain generalization or other methods) on the categorical
attributes.

The idea of extending the notion of diversity to numerical attributes was also
considered by Zhang et al. [50]. In this paper, the notion of distance for nu-
merical attributes is extended in a different way: the goal for the k-anonymous
blocks is that the “diameter” of the range of sensitive attributes is larger than
a parameter e. Such a generalization is said to be (k, e)-anonymous. Note that
this condition makes utility difficult. If we relate this to the �-diversity condi-
tion of having at least � distinct values, this represents a natural generalization
of the approach. As stated however, the approach appears to require defining
a total order on the domain of the attribute; this would prevent it from being
used for higher dimensional attributes sets.

Another interesting feature of the Zhang et al. method is that it considers
the down-stream problem of answering aggregate queries on an anonymized
database, and argues that rather than performing generalization, it might be
better to perform a permutation of the data. They show that this permutation-
based anonymization can answer aggregate queries more accurately than
generalization-based anonymization.

Anonymizing Inferences. In all of the above measures, the data being
protected is an attribute of a record, or some distributional characteristic of
the data. Another approach to anonymization is to protect the possible infer-
ences that can be made from the data; this is akin to the approach taken by
Evfimievski et al. [19, 20] for perturbation-based privacy. Wang et al. [45]
investigate this idea in the context of generalization and suppression. A pri-
vacy template is an inference on the data, coupled with a confidence bound,
and the requirement is that in the anonymized data, this inference not be valid
with a confidence larger than the provided bound. In their paper, they present
a scheme based on data suppression (equivalent to using a unit height gen-
eralization hierarchy) to ensure that a given set of privacy templates can be
preserved.

Clustering as k-anonymity. Viewing attributes as elements of metric space
and defining privacy accordingly has not been studied extensively. However,
from the perspective of generalization, many papers ( [7, 30, 35]) have pointed
out that generalization along a domain generalization hierarchy is only one way
of aggregating data. In fact, if we endow the attribute space with a metric, then
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the process of generalization can be viewed in general as a clustering problem
on this metric space, where the appropriate measure of anonymity is applied to
each cluster, rather than to each generalized group.

Such an approach has the advantage of placing different kinds of attributes
on an equal footing. When anonymizing categorical attributes, generaliza-
tion proceeds along a generalization hierarchy, which can be interpreted as
defining a tree metric. Numerical attributes are generalized along ranges, and
t-closeness works with attributes in a general metric space. By lifting all such
attributes to a general metric space, generalization can happen in a uniform
manner, measured in terms of the diameters of the clusters.

Strictly speaking, these methods do not introduce a new notion of privacy;
however, they do extend the applicability of generalization-based privacy mea-
sures like k-anonymity and its successors.

Measuring utility in generalization-based anonymity The original k-
anonymity work defines the utility of a generalized table as follows. Each cell
is the result of generalizing an attribute up a certain number of levels in a
generalization hierarchy. In normalized form, the “height” of a generalization
ranges from 0 if the original value is used, to 1 if a completely generalized
value is used (in the scheme proposed, a value of 1 corresponds to value
suppression, since that is the top level of all hierarchies). The precision of a
generalization scheme is then 1 - the average height of a generalization (mea-
sured over all cells). The precision is 1 if there is no generalization and is 0 if
all values are generalized.

Bayardo and Agrawal ( [5]) define a different utility measure for k-
anonymity. In their view, a tuple that inhabits a generalized equivalence class
E of size |E| = j, j > k incurs a “cost” of j. A tuple that is suppressed
entirely incurs a cost of D, where D is the size of the entire database. Thus,
the cost incurred by an anonymization is given by

C =
∑
|E|≥k

|E|2 +
∑
|E|<k

|D||E|

This measure is known as the discernability metric. One can also compute the
average size of a generalized class as a measure of utility [32].

Another cost measure proposed by Iyengar [26] is a misclassification metric:
As above, consider the equivalence class produced by an anonymization, and
charge one unit of cost for each tuple in a minority class with respect to the
collection of classes. Ignore all suppressed tuples. Again, averaging this over
all tuples returns the total penalty.

Once again, when we introduce a metric structure on numeric attributes,
utility has to be measured differently. Zhang et al. [50] propose measuring
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utility by ensuring that the range of sensitive values in each group is as small
as possible, subject to the privacy constraints.

4.3.3 Utility vs Privacy

The problems of utility and anonymity ask the same kind of question: “how
much information does the anonymized data distribution reveal about the
source?”. For an attribute to be anonymized, we wish this quantity to be small,
but for a useful attribute, we want this quantity to be large !

Most of the schemes for ensuring data anonymity focus their effort on defin-
ing measures of anonymity, while using ad hoc measures of utility. A more bal-
anced treatment of the two notions would use similar measures for utility and
anonymity, or quantify the tradeoff that must exist between the two. In the next
section, we will see how this can be performed in the context of computational
approaches to anonymization.

However, even in the probabilistic context, some principled approaches
to utility measurement have been developed. One paper that attempts this in
the context of generalization-based anonymization is the work by Kifer and
Gehrke [28]. In this paper, after performing a standard anonymization, they
publish carefully chosen marginals of the source data. From these marginals,
they then construct a consistent maximum entropy distribution, and measure
utility as the KL-distance between this distribution and the source. The re-
mainder of the paper is devoted to methods for constructing good marginals,
and reconstructing the maximum entropy extension.

Switching to perturbation-based methods, the paper by Rastogi et al. [37]
provides strong tradeoffs between privacy and utility. In this work, the authors
define a measure of utility in terms of the discrepancy between the value of
a counting query returned by an estimator, and the true value of the counting
query. Privacy is measured using the framework of Evfimievski et al. [19], in
terms of the conditional probability of a tuple being present in the anonymized
data, relative to the prior probability of tuple being present in the source. One
of the main results in their paper is an impossibility result limiting the tradeoff
between these measures of privacy and utility.

4.4 Computational Measures of Anonymity

We now turn to measures of anonymity that are defined computationally:
privacy statements are phrased in terms of the power of an adversary, rather
than the amount of background knowledge they possess. Such an approach is
attractive for a variety of reasons: measuring privacy in terms of a distance be-
tween distributions does not tell us what kinds of attacks a resource-bounded
adversary can mount: in this sense, privacy measures that rely on distributional
distances are overly conservative. On the other hand, it is difficult to define
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precisely what kind of background knowledge an adversary has, and in the
absence of such information, any privacy scheme based on background infor-
mation attacks is susceptible to information leakage.

The first study of anonymity in the presence of computationally bounded
adversaries was carried out by Dinur and Nissim [14]. In their framework,
a database consists of a sequence of bits (this is without loss of generality),
and a query q consists of a subset of bit positions, with the output aq being
the number of 1s in the subset. Such a query can be thought of as abstracting
standard aggregation queries. The anonymization procedure is represented by
an algorithm that returns the (possibly modified) answer ãq to query q. The
utility of the anonymization is measured by a parameter E : an anonymization
is said to be within E perturbation if |aq − ãq| ≤ E , for all q.

An adversary is a Turing machine that can reconstruct a constant fraction
of the bits in the database with high probability, using only invocations of
the query algorithm. This reconstruction can be measured by the Hamming
distance between the reconstructed database and the original database; the ad-
versary succeeds if this distance is at most εn.

Rather than define privacy, the authors define “non-privacy”: they say a data-
base is t(n)-non-private if for all ε > 0, there is some adversary running in time
t(n) that can succeed with high probability.

In this model, adversaries are surprisingly strong. The authors show that
even with almost-linear perturbation, an adversary permitted to run in expo-
nential time can break privacy. Restricting the adversary to run in polynomial
time helps, but only slightly; any perturbation E = o

√
n is not enough to pre-

serve privacy, and this is tight.
Feasibility results are hard to prove in this model: as the authors point out,

an adversary, with one query, can distinguish between the databases 1n and
0n if it has background knowledge that these are the only two choices. A per-
turbation of n/2 would be needed to hide the database contents. One way of
circumventing this is to assume that the database itself is generated from some
distribution, and that the adversary is required to reveal the value of a specific
bit (say, the ith bit) after making an arbitrary number of queries, and after being
given all bits of the database except the ith bit.

In this setting, privacy is defined as the condition that the adversary’s re-
construction probability is at most 1/2 + δ. In this setting, they show that a√
T (n)-perturbed database is private against all adversaries that run in time

T (n).

Measuring Anonymity Via Information Transfer As before, in the case
of probabilistic methods, we can reformulate the anonymity question in terms
of information transfer; how much does the probability of a bit being 1 (or 0)
change upon anonymization ?
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Dwork and Nissim [18] explore this idea in the context of computation-
ally bounded adversaries. Starting with a database d represented as a Boolean
matrix and drawn from a distribution D, we can define the prior probability
pij0 = P [dij = 1]. Once an adversary asks T queries to the anonymized
database as above, and all other values of the database are provided, we can
now define the posterior probability pijT of dij taking the value 1. The change
in belief can be quantified by the expression ∆ = |c(pijT ) − c(pij0 )|, where
c(x) = log(x/(1 − x)) is a monotonically increasing function of x.

This is the simplified version of their formulation. In general, we can replace
the event dij = 1 by the more general f(di1, di2, . . . dik) = 1, where f is
some k-ary Boolean function. All the above definitions translate to this more
general setting. We can now define (δ, T (n))-privacy as the condition that for
all distributions over databases, all functions f , and all adversaries making T
queries, the probability that the maximum change of belief is more than δ is
negligibly small.

As with [14], the authors show a natural tradeoff between the degree of
perturbation needed, and the level of privacy achieved. Specifically, the au-
thors show that a previously proposed algorithm SuLQ [6] achieves (δ, T (n))
privacy with a perturbation E = O(

√
T (n)/δ). They then go on to show that

under such conditions, it is possible to perform efficient and accurate data min-
ing on the anonymized database to estimate probabilities of the form P [β|α],
where α, β are two attributes.

Indistinguishability Although the above measures of privacy develop pre-
cise notions of information transfer with respect to a bounded adversary, they
still require some notion of a distribution on the input databases, as well as
a specific protocol followed by an adversary. To abstract the ideas underlying
privacy further, Dwork et al. [17] formulate a definition of privacy inspired
by Dalenius [16]: A database is private if anything learnable from it can be
learned in the absence of the database.

In order to do this, they distinguish between non-interactive privacy mech-
anisms, where the data publisher anonymizes the data and publishes it (input
perturbation), and interactive mechanisms, in which the output to queries are
perturbed (output perturbation). Dwork [16] shows that in a non-interactive
setting, it is impossible to achieve privacy under this definition; in other words,
it is always possible to design an adversary and an auxiliary information gener-
ator such that the adversary, combining the anonymized data and the auxiliary
information, can effect a privacy breach far more often than an adversary lack-
ing access to the database can.

In the interactive setting, we can think of the interaction between the data-
base and the adversary as a transcript. The idea of indistinguishability is that
if two databases are very similar, then their transcripts with respect to an ad-
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versary should also be similar. Intuitively, this means that if an individual adds
their data to a database (causing a small change), the nominal loss in privacy
is very small.

The main consequence of this formulation is that it is possible to design per-
turbation schemes that depend only on the query functions and the error terms,
and are independent of the database. Informally, the amount of perturbation
required depends on the sensitivity of the query functions: the more the func-
tion can change when one input is perturbed slightly, the more perturbation the
database must incur. The details of these procedures are quite technical: the
reader is referred to [16, 17] for more details.

4.4.1 Anonymity via Isolation

Another approach to anonymization is taken by [8, 9]. The underlying prin-
ciple here is isolation: a record is private if it cannot be singled out from its
neighbors. Formally, they define an adversary as an algorithm that takes an
anonymized database and some auxiliary information, and outputs a single
point q. The adversary succeeds if a small ball around q does not contain too
many points of the database. In this sense, the adversary has isolated some
points of the database3.

Under this definition of a privacy breach, they then develop methods for
anonymizing a database. Like the papers above, they use a differential model
of privacy: an anonymization is successful if the adversary, combining the
anonymization with auxiliary information, can do no better at isolation than
a weaker adversary with no access to the anonymized data.

One technical problem with the idea of isolation, which the authors
acknowledge, is that it can be attacked in the same way that methods like
k-anonymity are attacked. If the anonymization causes many points with sim-
ilar characteristics to cluster together, then even though the adversary cannot
isolate a single point, it can determine some special characteristics of the data
from the clustering that might not have otherwise been inferred.

4.5 Conclusions and New Directions

The evolution of measures of privacy, irrespective of the specific method
of perturbation or class of measure, has proceeded along a standard path. The
earliest measures are absolute in nature, defining an intuitive notion of privacy
in terms of a measure of obfuscation. Further development occurs when the
notion of background information is brought in, and this culminates in the idea
of a change in adversarial information before and after the anonymized data is
presented.

From the perspective of theoretical rigor, computational approaches to pri-
vacy are the most attractive. They rely on few to no modelling assumptions
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about adversaries, and their cryptographic flavor reinforces our belief in their
overall reliability as measures of privacy. Although the actual privacy preserva-
tion methods proposed in this space are fairly simple, they do work from very
simple models of the underlying database, and one question that so far remains
unanswered is the degree to which these methods can be made practically ef-
fective when dealing with the intricacies of actual databases.

The most extensive attention has been paid to the probabilistic approaches
to privacy measurements. k-anonymity and its successors have inspired nu-
merous works that study not only variants of the basic measures, but systems
for managing privacy, extensions to higher dimensional spaces, as well as
better methods for publishing data tables. The challenge in dealing with meth-
ods deriving from k-anonymity is the veritable alphabet soup of approaches
that have been proposed, all varying subtlety in the nature of the assumptions
used. The work by Wong et al. [46] illustrates the subtleties of modelling
background information; their m-confidentiality measure attempts to model
adversaries who exploit the desire of k-anonymizing schemes to generate
a minimal anonymization. This kind of background information is very hard
to formalize and argue rigorously about, even when we consider the general
framework for analyzing background information proposed by Martin et al.
[33].

4.5.1 New Directions

There are two recent directions in the area of privacy preservation measures
that are quite interesting and merit further study. The first addresses the prob-
lem noted earlier: the imbalance in the study of utility versus privacy. The
computational approaches to privacy preservation, starting with the work of
Dinur and Nissim [14], provide formal tradeoffs between utility and privacy,
for bounded adversaries. The work of Kifer et al. [28] on injecting utility into
privacy-preservation allows for a more general measure of utility as a distance
between distributions, and Rastogi et al. [37] examine the tradeoff between
privacy and utility rigorously in the perturbation framework.

With a few exceptions, all of the above measures of privacy are global: they
assume a worst-case (or average-case) measure of privacy over the entire input,
or prove privacy guarantees that are independent of the specific instance of a
database being anonymized. It is therefore natural to consider personalized
privacy, where the privacy guarantee need only be accurate with respect to
the specific instance being considered, or can be tuned depending on auxiliary
inputs.

The technique for anonymizing inferences developed in [45] can be viewed
as such a scheme: the set of inferences needing protection are supplied as
part of the input, and other inferences need not be protected. In the context
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of k-anonymity, Xiao and Tao [48] propose a technique that takes as input user
preferences about the level of generalization they desire for their sensitive at-
tributes, and adapts the k-anonymity method to satisfy these preferences. The
work on worst-case background information modelling by Martin et al. [33]
assumes that the specific background knowledge possessed by an adversary
is an input to the privacy-preservation algorithm. Recent work by Nissim et
al. [36] revisits the indistinguishability measure [17] (which is oblivious of
the specific database instance) by designing an instance-based property of the
query function that they use to anonymize a given database.

Notes
1. ...and the expertise of the author!
2. This example is taken from [2].
3. This bears a strong resemblance to k-anonymity, but is more general.
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Abstract Data mining technology has attracted significant interest as a means of identify-
ing patterns and trends from large collections of data. It is however evident that
the collection and analysis of data that include personal information may violate
the privacy of the individuals to whom information refers. Privacy protection in
data mining is then becoming a crucial issue that has captured the attention of
many researchers.

In this chapter, we first describe the concept of k-anonymity and illustrate
different approaches for its enforcement. We then discuss how the privacy re-
quirements characterized by k-anonymity can be violated in data mining and
introduce possible approaches to ensure the satisfaction of k-anonymity in data
mining.

Keywords: k-anonymity, data mining, privacy.

5.1 Introduction

The amount of data being collected every day by private and public organi-
zations is quickly increasing. In such a scenario, data mining techniques are be-
coming more and more important for assisting decision making processes and,
more generally, to extract hidden knowledge from massive data collections in
the form of patterns, models, and trends that hold in the data collections. While
not explicitly containing the original actual data, data mining results could po-
tentially be exploited to infer information - contained in the original data - and
not intended for release, then potentially breaching the privacy of the parties to
whom the data refer. Effective application of data mining can take place only if
proper guarantees are given that the privacy of the underlying data is not com-
promised. The concept of privacy preserving data mining has been proposed
in response to these privacy concerns [6]. Privacy preserving data mining aims
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at providing a trade-off between sharing information for data mining analy-
sis, on the one side, and protecting information to preserve the privacy of the
involved parties on the other side. Several privacy preserving data mining ap-
proaches have been proposed, which usually protect data by modifying them
to mask or erase the original sensitive data that should not be revealed [4, 6,
13]. These approaches typically are based on the concepts of: loss of privacy,
measuring the capacity of estimating the original data from the modified data,
and loss of information, measuring the loss of accuracy in the data. In gen-
eral, the more the privacy of the respondents to which the data refer, the less
accurate the result obtained by the miner and vice versa. The main goal of
these approaches is therefore to provide a trade-off between privacy and accu-
racy. Other approaches to privacy preserving data mining exploit cryptographic
techniques for preventing information leakage [20, 30]. The main problem of
cryptography-based techniques is, however, that they are usually computation-
ally expensive.

Privacy preserving data mining techniques clearly depend on the defini-
tion of privacy, which captures what information is sensitive in the original
data and should therefore be protected from either direct or indirect (via in-
ference) disclosure. In this chapter, we consider a specific aspect of privacy
that has been receiving considerable attention recently, and that is captured by
the notion of k-anonymity [11, 26, 27]. k-anonymity is a property that models
the protection of released data against possible re-identification of the respon-
dents to which the data refer. Intuitively, k-anonymity states that each release
of data must be such that every combination of values of released attributes
that are also externally available and therefore exploitable for linking can be
indistinctly matched to at least k respondents. k-anonymous data mining has
been recently introduced as an approach to ensuring privacy-preservation when
releasing data mining results. Very few, preliminary, attempts have been pre-
sented looking at different aspects in guaranteeing k-anonymity in data mining.
We discuss possible threats to k-anonymity posed by data mining and sketch
possible approaches to their counteracting, also briefly illustrating some pre-
liminary results existing in the current literature. After recalling the concept of
k-anonymity (Section 5.2) and some proposals for its enforcement
(Section 5.3), we discuss possible threats to k-anonymity to which data min-
ing results are exposed (Section 5.4). We then illustrate (Section 5.5) possi-
ble approaches combining k-anonymity and data mining, distinguishing them
depending on whether k-anonymity is enforced directly on the private data
(before mining) or on the mined data themselves (either as a post-mining
sanitization process or by the mining process itself). For each of the two ap-
proaches (Section 5.6 and 5.7, respectively) we discuss possible ways to cap-
ture k-anonymity violations to the aim, on the one side, of defining when mined
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results respect k-anonymity of the original data and, on the other side, of identi-
fying possible protection techniques for enforcing such a definition of privacy.

5.2 k-Anonymity

k-anonymity [11, 26, 27] is a property that captures the protection of re-
leased data against possible re-identification of the respondents to whom the
released data refer. Consider a private table PT, where data have been de-
identified by removing explicit identifiers (e.g., SSN and Name). However,
values of other released attributes, such as ZIP, Date of birth, Mari-
tal status, and Sex can also appear in some external tables jointly with
the individual respondents’ identities. If some combinations of values for these
attributes are such that their occurrence is unique or rare, then parties observ-
ing the data can determine the identity of the respondent to which the data refer
or reduce the uncertainty over a limited set of respondents. k-anonymity de-
mands that every tuple in the private table being released be indistinguishably
related to no fewer than k respondents. Since it seems impossible, or highly
impractical and limiting, to make assumptions on which data are known to a
potential attacker and can be used to (re-)identify respondents, k-anonymity
takes a safe approach requiring that, in the released table itself, the respon-
dents be indistinguishable (within a given set of individuals) with respect to
the set of attributes, called quasi-identifier, that can be exploited for linking.
In other words, k-anonymity requires that if a combination of values of quasi-
identifying attributes appears in the table, then it appears with at least k occur-
rences.

To illustrate, consider a private table reporting, among other attributes, the
marital status, the sex, the working hours of individuals, and whether they
suffer from hypertension. Assume attributes Marital status, Sex, and
Hours are the attributes jointly constituting the quasi-identifier. Figure 5.1 is
a simplified representation of the projection of the private table over the quasi-
identifier. The representation has been simplified by collapsing tuples with the
same quasi-identifying values into a single tuple. The numbers at the right hand
side of the table report, for each tuple, the number of actual occurrences, also
specifying how many of these occurrences have values Y and N, respectively,
for attribute Hypertension. For simplicity, in the following we use such a
simplified table as our table PT.

The private table PT in Figure 5.1 guarantees k-anonymity only for k ≤ 2.
In fact, the table has only two occurrences of divorced (fe)males working 35
hours. If such a situation is satisfied in a particular correlated external table
as well, the uncertainty of the identity of such respondents can be reduced to
two specific individuals. In other words, a data recipient can infer that any
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Marital status Sex Hours #tuples (Hyp. values)

divorced M 35 2 (0Y, 2N)
divorced M 40 17 (16Y, 1N)
divorced F 35 2 (0Y, 2N)
married M 35 10 (8Y, 2N)
married F 50 9 (2Y, 7N)
single M 40 26 (6Y, 20N)

Figure 5.1. Simplified representation of a private table

information appearing in the table for such divorced (fe)males working 35
hours, actually pertains to one of two specific individuals.

It is worth pointing out a simple but important observation (to which we
will come back later in the chapter): if a tuple has k occurrences, then any
of its sub-tuples must have at least k-occurrences. In other words, the exis-
tence of k occurrences of any sub-tuple is a necessary (not sufficient) condi-
tion for having k occurrences of a super-tuple. For instance, with reference
to our example, k-anonymity over quasi-identifier {Marital status, Sex,
Hours} requires that each value of the individual attributes, as well as of any
sub-tuple corresponding to a combination of them, appears with at least k oc-
currences. This observation will be exploited later in the chapter to assess the
non satisfaction of a k-anonymity constraint for a table based on the fact that
a sub-tuple of the quasi-identifier appears with less than k occurrences. Again
with reference to our example, the observation that there are only two tuples
referring to divorced females allows us to assert that the table will certainly not
satisfy k-anonymity for k > 2 (since the two occurrences will remain at most
two when adding attribute Hours).

Two main techniques have been proposed for enforcing k-anonymity on a
private table: generalization and suppression, both enjoying the property of
preserving the truthfulness of the data.

Generalization consists in replacing attribute values with a generalized ver-
sion of them. Generalization is based on a domain generalization hierarchy and
a corresponding value generalization hierarchy on the values in the domains.
Typically, the domain generalization hierarchy is a total order and the corre-
sponding value generalization hierarchy a tree, where the parent/child relation-
ship represents the direct generalization/specialization relationship. Figure 5.2
illustrates an example of possible domain and value generalization hierarchies
for the quasi-identifying attributes of our example.

Generalization can be applied at the level of single cell (substituting the cell
value with a generalized version of it) or at the level of attribute (generalizing
all the cells in the corresponding column). It is easy to see how generaliza-
tion can enforce k-anonymity: values that were different in the private table
can be generalized to a same value, whose number of occurrences would be
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M1 = {been married, never married}

M0 = {married,divorced, single}
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Figure 5.2. An example of domain and value generalization hierarchies

the sum of the number of occurrences of the values that have been general-
ized to it. The same reasoning extends to tuples. Figure 5.11(d) reports the
result of a generalization over attribute Sex on the table in Figure 5.1, which
resulted, in particular, in divorced people working 35 hours to be collapsed
to the same tuple {divorced, any sex, 35}, with 4 occurrences. The ta-
ble in Figure 5.11(d) satisfies k-anonymity for any k ≤ 4 (since there are no
less than 4 respondents for each combination of values of quasi-identifying at-
tributes). Note that 4-anonymity could be guaranteed also by only generalizing
(to any sex) the sex value of divorced people (males and females) working 35
hours while leaving the other tuples unaltered, since for all the other tuples not
satisfying this condition there are already at least 4 occurrences in the private
table. This cell generalization approach has the advantage of avoiding general-
izing all values in a column when generalizing only a subset of them suffices
to guarantee k-anonymity. It has, however, the disadvantage of not preserving
the homogeneity of the values appearing in the same column.

Suppression consists in protecting sensitive information by removing it.
Suppression, which can be applied at the level of single cell, entire tuple, or
entire column, allows reducing the amount of generalization to be enforced to
achieve k-anonymity. Intuitively, if a limited number of outliers would force
a large amount of generalization to satisfy a k-anonymity constraint, then
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Suppression
Generalization Tuple Attribute Cell None

Attribute AG TS AG AS ≡ AG AG CS AG ≡ AG AS
Cell CG TS CG AS CG CS ≡ CG CG ≡ CG CS

not applicable not applicable
None TS AS CS

not interesting

Figure 5.3. Classification of k-anonymity techniques [11]

such outliers can be removed from the table thus allowing satisfaction of k-
anonymity with less generalization (and therefore reducing the loss of infor-
mation).

Figure 5.3 summarizes the different combinations of generalization and sup-
pression at different granularity levels (including combinations where one of
the two techniques is not adopted), which correspond to different approaches
and solutions to the k-anonymity problem [11]. It is interesting to note that
the application of generalization and suppression at the same granularity level
is equivalent to the application of generalization only (AG ≡AG AS and
CG ≡CG CS), since suppression can be modeled as a generalization to the
top element in the value generalization hierarchy. Combinations CG TS (cell
generalization, tuple suppression) and CG AS (cell generalization, attribute
suppression) are not applicable since the application of generalization at the
cell level implies the application of suppression at that level too.

5.3 Algorithms for Enforcing k-Anonymity

The application of generalization and suppression to a private table PT
produces less precise (more general) and less complete (some values are sup-
pressed) tables that provide protection of the respondents’ identities. It is im-
portant to maintain under control, and minimize, the information loss (in terms
of loss of precision and completeness) caused by generalization and suppres-
sion. Different definitions of minimality have been proposed in the literature
and the problem of finding minimal k-anonymous tables, with attribute gener-
alization and tuple suppression, has been proved to be computationally hard [2,
3, 22].

Within a given definition of minimality, more generalized tables, all ensur-
ing minimal information loss, may exist. While existing approaches typically
aim at returning any of such solutions, different criteria could be devised ac-
cording to which a solution should be preferred over the others. This aspect
is particularly important in data mining, where there is the need to maximize
the usefulness of the data with respect to the goal of the data mining process
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(see Section 5.6). We now describe some algorithms proposed in literature for
producing k-anonymous tables.

Samarati’s Algorithms. The first algorithm for AG TS (i.e., generalization
over quasi-identifier attributes and tuple suppression) was proposed in con-
junction with the definition of k-anonymity [26]. Since the algorithm operates
on a set of attributes, the definition of domain generalization hierarchy is ex-
tended to refer to tuples of domains. The domain generalization hierarchy of
a domain tuple is a lattice, where each vertex represents a generalized table
that is obtained by generalizing the involved attributes according to the corre-
sponding domain tuple and by suppressing a certain number of tuples to fulfill
the k-anonymity constraint. Figure 5.4 illustrates an example of domain gen-
eralization hierarchy obtained by considering Marital status and Sex as
quasi-identifying attributes, that is, by considering the domain tuple 〈M0, S0〉.
Each path in the hierarchy corresponds to a generalization strategy according
to which the original private table PT can be generalized. The main goal of
the algorithm is to find a k-minimal generalization that suppresses less tuples.
Therefore, given a threshold MaxSup specifying the maximum number of tu-
ples that can be suppressed, the algorithm has to compute a generalization that
satisfies k-anonymity within the MaxSup constraint. Since going up in the hi-
erarchy the number of tuples that must be removed to guarantee k-anonymity
decreases, the algorithm performs a binary search on the hierarchy. Let h be
the height of the hierarchy. The algorithm first evaluates all the solutions at
height �h/2�. If there is at least a k-anonymous table that satisfies the MaxSup
threshold, the algorithm checks solutions at height �h/4�; otherwise it evalu-
ates solutions at height �3h/4�, and so on, until it finds the lowest height where
there is a solution that satisfies the k-anonymity constraint. As an example,
consider the private table in Figure 5.1 with QI={Marital status, Sex},
the domain and value generalization hierarchies in Figure 5.2, and the gener-
alization hierarchy in Figure 5.4. Suppose also that k = 4 and MaxSup= 1.
The algorithm first evaluates solutions at height �3/2�, that is, 〈M0, S1〉 and

〈M2, S1〉

〈M1, S1〉

��					
〈M2, S0〉

��






〈M0, S1〉

��

〈M1, S0〉

�������������

〈M0, S0〉
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��






Figure 5.4. Generalization hierarchy for QI={Marital status, Sex}
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〈M1, S0〉. Since both the solutions are 4-anonymous within the MaxSup con-
straint, the algorithm evaluates solutions at height �3/4�, that is, 〈M0, S0〉.
Solution 〈M0, S0〉 corresponds to the original table that is not 4-anonymous
and violates the MaxSup constraint since 4-anonymity requires to suppress
the two tuples 〈divorced, F〉. Consequently, the two solutions 〈M0, S1〉 and
〈M1, S0〉 are considered as minimal.

Bayardo-Agrawal’s Algorithm. Bayardo and Agrawal [10] proposed an-
other algorithm for AG TS, called k-Optimize. Given a private table PT, and
an ordered set QI={A1, . . . , An} of quasi-identifying attributes, k-Optimize as-
sumes that each attribute Ai ∈ QI is defined over a totally ordered domain Di.
An attribute generalization of A on D consists in partitioning D into a set of
ordered intervals {I1, . . . , Im} such that

⋃m
i=1 Ii = D and ∀vi ∈ Ii, ∀vj ∈ Ij

if i < j, then vi < vj . The approach associates an integer, called index, with
each interval in any domain of the quasi-identifying attributes. The index as-
signment reflects the total order relationship over intervals in the domains and
among quasi-identifier attributes. As an example, consider the private table in
Figure 5.1 where the quasi-identifying attributes are Marital status and
Sex. Suppose that the order between the quasi-identifying attributes is Mar-
ital status followed by Sex, and the order among values inside each at-
tribute domain is married, divorced, single for Marital status,
and F, M for Sex. Figure 5.5 represents the index assignment obtained when
no generalization is applied, that is, when each attribute value represents an
interval.

A generalization is represented through the union of generalized sets for
each attribute domain. Since the least value from each attribute domain must
appear in any valid generalization for the attribute domain, it can be omit-
ted. With respect to our example in Figure 5.5, the least values are 1 (Mari-
tal status=married) and 4 (Sex=F). As an example, consider now the
index list {3, 5}. After adding the least values, we obtain the generalizer sets
{1,3} for attribute Marital status and {4, 5} for attribute Sex, which
in turn correspond to the following intervals of domain values: 〈[married or
divorced], [single]〉 and 〈[F], [M]〉. The empty set { } represents the general-
ization where, for each domain, all values in the domain are generalized to the
most general value. In our example, { } corresponds to index values {1} for

Marital status Sex
〈[married] [divorced] [single]〉 〈[F] [M]〉

1 2 3 4 5

Figure 5.5. Index assignment to attributes Marital status and Sex
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Figure 5.6. An example of set enumeration tree over set I = {1, 2, 3} of indexes

Marital status and {4} for Sex, which in turn correspond to 〈[married
or divorced or single]〉 and 〈[F or M]〉 generalized domain values.

The k-Optimize algorithm builds a set enumeration tree over the set I of
index values, which is a tree representing all possible subsets of I , without du-
plications. The children of a node n correspond to the sets that can be formed
by appending a single element of I to n, with the restriction that this single
element must follow every element already in n according to the total order
previously defined. Figure 5.6 illustrates an example of set enumeration tree
over I = {1, 2, 3}. Since each node in the tree represents how to generalize
the original table PT, the visit of the set enumeration tree is equivalent to the
evaluation of each possible solution to the k-anonymity problem. At each node
n in the tree, the algorithm computes the cost (as determined by some cost
metric) associated with the table that can be obtained by applying the general-
ization represented by n. This cost is then compared against the best cost found
until that point. If the cost is lower than the best cost found until that point, it
becomes the new best cost and node n is retained. Since a complete visit of the
tree may however be impractical (the tree contains 2|I| nodes), k-Optimize pro-
poses an heuristic pruning strategy. Intuitively, a node n can be pruned when
the cost associated with its descendants cannot be optimal. To this purpose,
the algorithm computes a lower bound on the cost that can be obtained by any
node in the subtree rooted at n. If this lower bound is greater than the current
best cost, node n is pruned. Note that k-Optimize can also be exploited as an
heuristic algorithm, by stopping in advance the visit of the tree.

Incognito. Incognito, proposed by LeFevre, DeWitt and
Ramakrishnan [18], is an algorithm for AG TS based on the observation
that k-anonymity with respect to any subset of QI is a necessary (not suffi-
cient) condition for k-anonymity with respect to QI. Consequently, given a
generalization hierarchy over QI, the generalizations that are not k-anonymous
with respect to a subset QI′ of QI can be discarded along with all their
descendants in the hierarchy.

Exploiting this observation, at each iteration i, for i = 1, . . . , |QI |, Incog-
nito builds the generalization hierarchies for all subsets of the quasi-identifying
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Figure 5.7. Sub-hierarchies computed by Incognito for the table in Figure 5.1

attributes of size i. It then visits each node of the hierarchies discarding the
generalizations that do not satisfy k-anonymity with respect to the considered
set of attributes. Note that if a node of a generalization hierarchy satisfies
k-anonymity, also all its generalizations satisfy k-anonymity and therefore
they are not checked in the subsequent visits of the hierarchy. The algo-
rithm then constructs the generalization hierarchies for all subsets of the quasi-
identifying attributes of size i + 1 by considering only the generalizations of
size i that satisfy the k-anonymity constraint at iteration i. Incognito terminates
when the whole set of attributes in QI has been considered.

As an example, consider the table PT in Figure 5.1 and suppose that QI
= {Marital status, Sex} and k = 12. The first iteration of Incognito
finds that the original table is 12-anonymous with respect to M0, and S1. Note
that since PT is 12-anonymous with respect to M0, the table is 12-anonymous
also with respect to M1 and M2 and therefore they are not checked. The al-
gorithm then builds the generalization hierarchy on the 〈Marital status,
Sex〉 pair by considering only the generalizations M0, M1, M2 and S1 that are
12-anonymous. The algorithm finds that the table is 12-anonymous with re-
spect to 〈M0, S1〉. Consequently, all generalizations of 〈M0, S1〉 (i.e., 〈M1, S1〉
and 〈M2, S1〉) are 12-anonymous and the search terminates. Figure 5.7 illus-
trates on the left-hand side the complete domain generalization hierarchies and
on the right-hand side the sub-hierarchies computed by Incognito at each iter-
ation.

Mondrian. The Mondrian algorithm, proposed by LeFevre, DeWitt and Ra-
makrishnan [19], is based on the multidimensional global recoding technique.
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A private table PT is represented as a set of points in a multidimensional space,
where each attribute represents one dimension. To the aim of computing a k-
anonymous table, the multidimensional space is partitioned in regions that have
to contain at least k points. All points in a given region are then generalized to
the same value for QI. Note that tuples in different regions can be generalized
in different ways. It is proved that any multidimensional space partition con-
tains at most 2d(k − 1) + m points, where d = |QI| and m is the maximum
number of tuples with the same quasi-identifier value in PT.

Since the computation of a multidimensional partitioning that minimizes
information loss is a NP-hard problem, the authors propose a greedy algorithm
that works as follows. Given a space region r, at each iteration the algorithm
chooses a dimension d (if such a dimension exists) and splits the region at
the median value x of d: all points such that d > x will belong to one of the
resulting regions, while all points with d ≤ x will belong to the other region.
Note that this splitting operation is allowed only if there are more than k points
within any region. The algorithm terminates when there are no more splitting
operations allowed. The tuples within a given region are then generalized to a
unique tuple of summary statistics for the considered region. For each quasi-
identifying attribute, a summary statistic may simply be a static value (e.g., the
average value) or the pair of maximum and minimum values for the attribute
in the region. As an example, consider the private table PT in Figure 5.1 and
suppose that QI = {Marital status, Sex} and k = 10. Figure 5.8(a)
illustrates the two dimensional representation of the table for the Mari-
tal status and Sex quasi-identifying attributes, where the number asso-
ciated with each point corresponds to the occurrences of the quasi-identifier
value in PT. Suppose to perform a split operation on the Marital status
dimension. The resulting two regions illustrated in Figure 5.8(b) are 10-
anonymous. The bottom region can be further partitioned along the Sex
dimension, as represented in Figure 5.8(c). Another splitting operation along
the Marital status dimension can be performed on the region containing
the points that correspond to the quasi-identifying values 〈married, M〉 and
〈divorced, M〉. Figure 5.8(d) illustrates the final solution.

The experimental results [19] show that the Mondrian multidimensional
method obtains good solutions for the k-anonymity problem, also compared
with k-Optimize and Incognito.

Approximation Algorithms. Since the majority of the exact algorithms
proposed in literature have computational time exponential in the number of
the attributes composing the quasi-identifier, approximation algorithms have
been also proposed. Approximation algorithms for CS and CG have been
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Figure 5.8. Spatial representation (a) and possible partitioning (b)-(d) of the table in Figure 5.1

presented, both for general and specific values of k (e.g., 1.5-approximation1

for 2-anonymity, and 2-approximation for 3-anonymity [3]).
The first approximation algorithm for CS was proposed by Meyerson and

Williams [22] and guarantees a O(k log(k))-approximation. The best-known
approximation algorithm for CS is described in [2] and guarantees a O(k)-
approximate solution. The algorithm constructs a complete weighted graph
from the original private table PT. Each vertex in the graph corresponds to a
tuple in PT, and the edges are weighted with the number of different attribute
values between the two tuples represented by extreme vertices. The algorithm
then constructs, starting from the graph, a forest composed of trees containing
at least k vertices, which represents the clustering for k-anonymization. Some
cells in the vertices are suppressed to obtain that all the tuples in the same tree
have the same quasi-identifier value. The cost of a vertex is evaluated as the
number of cells suppressed, and the cost of a tree is the sum of the weights of

1In a minimization framework, a p-approximation algorithm guarantees that the cost C of its solution
is such that C/C∗ ≤ p, where C∗ is the cost of an optimal solution [17].
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its vertices. The cost of the final solution is equal to the sum of the costs of its
trees. In constructing the forest, the algorithm limits the maximum number of
vertices in a tree to be 3k−3. Partitions with more than 3k−3 elements are de-
composed, without increasing the total solution cost. The construction of trees
with no more than 3k − 3 vertices guarantees a O(k)-approximate solution.

An approximation algorithm for CG is described in [3] as a direct exten-
sion of the approximation algorithm for CS presented in [2]. For taking into
account the generalization hierarchies, each edge has a weight that is computed
as follows. Given two tuples i and j and an attribute a, the generalization cost
hi,j(a) associated with a is the lowest level of the value generalization hierar-
chy of a such that tuples i and j have the same generalized value for a. The
weight w(e) of the edge e = (i, j) is therefore w(e) = Σahi,j(a)/la, where la
is the number of levels in the value generalization hierarchy of a. The solution
of this algorithm is guaranteed to be a O(k)-approximation.

Besides algorithms that compute k-anonymized tables for any value of k,
ad-hoc algorithms for specific values of k have also been proposed. For in-
stance, to find better results for Boolean attributes, in the case where k = 2 or
k = 3, an ad-hoc approach has been provided in [3]. The algorithm for k = 2
exploits the minimum-weight [1, 2]-factor built on the graph constructed for
the 2-anonymity. The [1, 2]-factor for graph G is a spanning subgraph of G
built using only vertices with no more than 2 outgoing edges. Such a subgraph
is a vertex-disjoint collection of edges and pairs of adjacent vertices and can
be computed in polynomial time. Each component in the subgraph is treated
as a cluster, and a 2-anonymized table is obtained by suppressing each cell,
for which the vectors in the cluster differ in value. This procedure is a 1.5-
approximation algorithm. The approximation algorithm for k = 3 is similar
and guarantees a 2-approximation solution.

5.4 k-Anonymity Threats from Data Mining

Data mining techniques allow the extraction of information from large col-
lections of data. Data mined information, even if not explicitly including the
original data, is built on them and can therefore allow inferences on origi-
nal data to be withdrawn, possibly putting privacy constraints imposed on the
original data at risk. This observation holds also for k-anonymity. The desire
to ensure k-anonymity of the data in the collection may therefore require to
impose restrictions on the possible output of the data mining process. In this
section, we discuss possible threats to k-anonymity that can arise from per-
forming mining on a collection of data maintained in a private table PT subject
to k-anonymity constraints.

We discuss the problems for the two main classes of data mining techniques,
namely association rule mining and classification mining.

k
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5.4.1 Association Rules

The classical association rule mining operates on a set of transactions, each
composed of a set of items, and produce association rules of the form X →
Y , where X and Y are sets of items. Intuitively, rule X → Y expresses the
fact that transactions that contain items X tend to also contain items Y . Each
rule has a support and a confidence, in the form of percentage. The support
expresses the percentage of transactions that contain both X and Y , while the
confidence expresses the percentage of transactions, among those containing
X, that also contain Y. Since the goal is to find common patterns, typically
only those rules that have support and confidence greater than some predefined
thresholds are considered of interest [5, 28, 31].

Translating association rule mining over a private table PT on which k-
anonymity should be enforced, we consider the values appearing in the table
as items, and the tuples reporting respondents’ information as transactions.
For simplicity, we assume here that the domains of the attributes are disjoint.
Also, we assume support and confidence to be expressed in absolute values
(in contrast to percentage). The reason for this assumption, which is consistent
with the approaches in the literature, is that k-anonymity itself is expressed in
terms of absolute numbers. Note, however, that this does not imply that the
release itself will be made in terms of absolute values.

Association rule mining over a private table PT allows then the extrac-
tion of rules expressing combination of values common to different respon-
dents. For instance, with reference to the private table in Figure 5.1, rule
{divorced} → {M}with support 19, and confidence 19

21 states that 19 tuples in
the table refer to divorced males, and among the 21 tuples referring to divorced
people 19 of them are male. If the quasi-identifier of table PT contains both at-
tributes Marital status and Sex, it is easy to see that such a rule violates
any k-anonymity for k > 19, since it reflects the existence of 19 respondents
who are divorced male (being Marital status and Sex included in the
quasi-identifier, this implies that no more than 19 indistinguishable tuples can
exist for divorced male respondents). Less trivially, the rule above violates also
k-anonymity for any k > 2, since it reflects the existence of 2 respondents who
are divorced and not male; again, being Marital status and Sex included
in the quasi-identifier, this implies that no more than 2 indistinguishable tuples
can exist for non male divorced respondents.

5.4.2 Classification Mining

In classification mining, a set of database tuples, acting as a training sam-
ple, are analyzed to produce a model of the data that can be used as a predictive
classification method for classifying new data into classes. Goal of the classi-
fication process is to build a model that can be used to further classify tuples
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being inserted and that represents a descriptive understanding of the table con-
tent [25].

One of the most popular classification mining techniques is represented by
decision trees, defined as follows. Each internal node of a decision tree is as-
sociated with an attribute on which the classification is defined (excluding the
classifying attributes, which in our example is Hypertension). Each out-
going edge is associated with a split condition representing how the data in the
training sample are partitioned at that tree node. The form of a split condition
depends on the type of the attribute. For instance, for a numerical attribute A,
the split condition may be of the form A ≤ v, where v is a possible value for
A. Each node contains information about the number of samples at that node
and how they are distributed among the different class values.

As an example, the private table PT in Figure 5.1 can be used as a learning
set to build a decision tree for predicting if people are likely to suffer from
hypertension problems, based on their marital status, if they are male, and on
their working hours, if they are female. A possible decision tree for such a
case performing the classification based on some values appearing in quasi-
identifier attributes is illustrates in Figure 5.9. The quasi-identifier attributes
correspond to internal (splitting) nodes in the tree, edges are labeled with (a
subset of) attribute values instead of reporting the complete split condition,
and nodes simply contain the number of respondents classified by the node
values, distinguishing between people suffering (Y) and not suffering (N) of
hypertension.

While the decision tree does not directly release the data of the private ta-
ble, it indeed allows inferences on them. For instance, Figure 5.9 reports the
existence of 2 females working 35 hours (node reachable from path 〈F,35〉).
Again, since Sex and Hours belong to the quasi-identifier, this information
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Figure 5.9. An example of decision tree
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reflects the existence of no more than two respondents for such occurrences of
values, thus violating k-anonymity for any k > 2. Like for association rules,
threats can also be possible by combining classifications given by different
nodes along the same path. For instance, considering the decision tree in Fig-
ure 5.9, the combined release of the nodes reachable from paths 〈F〉 (with 11
occurrences) and 〈F, 50〉 (with 9 occurrences) allows to infer that there are 2
female respondents in PT who do not work 50 hours per week.

5.5 k-Anonymity in Data Mining

Section 5.4 has illustrated how data mining results can compromise the k-
anonymity of a private table, even if the table itself is not released. Since proper
privacy guarantees are a must for enabling information sharing, it is then im-
portant to devise solutions ensuring that data mining does not open the door to
possible privacy violations. With particular reference to k-anonymity, we must
ensure that k-anonymity for the original table PT be not violated.

There are two possible approaches to guarantee k-anonymity in data mining.

Anonymize-and-Mine: anonymize the private table PT and perform min-
ing on its k-anonymous version.

Mine-and-Anonymize: perform mining on the private table PT and
anonymize the result. This approach can be performed by executing the
two steps independently or in combination.

Figure 5.10 provides a graphical illustration of these approaches, reporting,
for the Mine-and-Anonymize approach, the two different cases: one step or two
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Figure 5.10. Different approaches for combining k-anonymity and data mining
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steps. In the figure, boxes represent data, while arcs represent processes pro-
ducing data from data. The different data boxes are: PT, the private table; PTk,
an anonymized version of PT; MD, a result of a data mining process (without
any consideration of k-anonymity constraints); and MDk, a result of a data
mining process that respects the k-anonymity constraint for the private table
PT. Dashed lines for boxes and arcs denote data and processes, respectively,
reserved to the data holder, while continuous lines denote data and processes
that can be viewed and executed by other parties (as their visibility and execu-
tion does not violate the k-anonymity for PT).

Let us then discuss the two approaches more in details and their trade-offs
between applicability and efficiency of the process on the one side, and utility
of data on the other side.

Anonymize-and-Mine (AM) This approach consists in applying a k-
anonymity algorithm on the original private table PT and releasing
then a table PTk that is a k-anonymized version of PT. Data mining
is performed, by the data holder or even external parties, on PTk. The
advantage of such an approach is that it allows the decoupling of data
protection from mining, giving a double benefit. First, it guarantees that
data mining is safe: since data mining is executed on PTk (and not on
PT), by definition the data mining results cannot violate k-anonymity
for PT. Second, it allows data mining to be executed by others than
the data holder, enabling different data mining processes and different
uses of the data. This is convenient, for example, when the data holder
may not know a priori how the recipient may analyze and classify the
data. Moreover, the recipient may have application-specific data min-
ing algorithms and she may want to directly define parameters (e.g.,
accuracy and interpretability) and decide the mining method only af-
ter examining the data. On the other hand, the possible disadvantages
of performing mining on anonymized data is that mining operates on
less specialized and complete data, therefore usefulness and significance
of the mining results can be compromised. Since classical k-anonymity
approaches aim at satisfying k-anonymity minimizing information loss
(i.e., minimizing the amount of generalization and suppression adopted),
a k-anonymity algorithm may produce a result that is not suited for min-
ing purposes. As a result, classical k-anonymity algorithms may hide
information that is highly useful for data mining purposes. Particular
care must then be taken in the k-anonymization process to ensure maxi-
mal utility of the k-anonymous table PTk with respect to the goals of the
data mining process that has to be executed. In particular, the aim of k-
anonymity algorithms operating on data intended for data mining should
not be the mere minimization of information loss, but the optimization
of a measure suitable for data mining purposes. A further limitation of
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the Anonymize-and-Mine approach is that it is not applicable when the
input data can be accessed only once (e.g., when the data source is a
stream). Also, it may be overall less efficient, since the anonymization
process may be quite expensive with respect to the mining one, espe-
cially in case of sparse and large databases [1]. Therefore, performing
k-anonymity before data mining is likely to be more expensive than do-
ing the contrary.

Mine-and-Anonymize (MA) This approach consists in mining original non-
k-anonymous data, performing data mining on the original table PT,
and then applying an anonymization process on the data mining result.
Data mining can then be performed by the data holder only, and only the
sanitized data mining results (MDk) are released to other parties. The
definition of k-anonymity must then be adapted to the output of the data
mining phase. Intuitively, no inference should be possible on the mined
data allowing violating k-anonymity for the original table PT. This does
not mean that the table PT must be k-anonymous, but that if it was not,
it should not be known and the effect of its non being k-anonymous be
not visible in the mined results. In the Mine-and-Anonymize approach,
k-anonymity constraints can be taken into consideration after data min-
ing is complete (two-step Mine-and-Anonymize) or within the mining
process itself (one-step Mine-and-Anonymize). In two-step Mine-and-
Anonymize the result needs to be sanitized removing from MD all data
that would compromise k-anonymity for PT. In one-step Mine-and-
Anonymize the data mining algorithm needs to be modified so to en-
sure that only results that would not compromise k-anonymity for PT
are computed (MDk). The two possible implementations (one step vs
two steps) provide different trade-offs between applicability and effi-
ciency: two-step Mine-and-Anonymize does not require any modifica-
tion to the mining process and therefore can use any data mining tool
available (provided that results are then anonymized); one-step Mine-
and-Anonymize requires instead to redesign data mining algorithms and
tools to directly enforce k-anonymity, combining the two steps can how-
ever result in a more efficient process giving then performance advan-
tages. Summarizing, the main drawback of Mine-and-Anonymize is that
it requires mining to be executed only by the data holder (or parties au-
thorized to access the private table PT). This may therefore impact ap-
plicability. The main advantages are efficiency of the mining process
and quality of the results: performing mining before, or together with,
anonymization can in fact result more efficient and allow to keep data
distortion under control to the goal of maximizing the usefulness of the
data.
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5.6 Anonymize-and-Mine

The main objective of classical k-anonymity techniques is the minimiza-
tion of information loss. Since a private table may have more than one mini-
mal k-anonymous generalization, different preference criteria can be applied in
choosing a minimal generalization, such as minimum absolute distance, min-
imum relative distance, maximum distribution, or minimum suppression [26].
In fact, the strategies behind heuristics for k-anonymization can be typically
based on preference criteria or even user policies (e.g., the discourage of the
generalization of some given attributes).

In the context of data mining, the main goal is retaining useful information
for data mining, while determining a k-anonymization that protects the respon-
dents against linking attacks. However, it is necessary to define k-anonymity
algorithms that guarantee data usefulness for subsequent mining operations. A
possible solution to this problem is the use of existing k-anonymizing algo-
rithms, choosing the maximization of the usefulness of the data for classifica-
tion as a preference criteria.

Recently, two approaches that anonymize data before mining have been pre-
sented for classification (e.g., decision trees): a top-down [16] and a bottom-
up [29] technique. These two techniques aim at releasing a k-anonymous table
T (A1, . . . , Am, class) for modeling classification of attribute class consider-
ing the quasi-identifier QI = {A1, . . . , Am}. k-anonymity is achieved with cell
generalization and cell suppression (CG ), that is, different cells of the same
attribute may have values belonging to different generalized domains. The aim
of preserving anonymity for classification is then to satisfy the k-anonymity
constraint while preserving the classification structure in the data.

The top-down approach starts from a table containing the most general val-
ues for all attributes and tries to refine (i.e., specialize) some values. For in-
stance, the table in Figure 5.11(a) represents a completely generalized table for
the table in Figure 5.1. The bottom-up approach starts from a private table and
tries to generalize the attributes until the k-anonymity constraint is satisfied.

In the top-down technique a refinement is performed only if it has some
suitable properties for guaranteeing both anonymity and good classification.
For this purpose, a selection criterion is described for guiding the top-down
refinement process to heuristically maximize the classification goal. The re-
finement has two opposite effects: it increases the information of the table for
classification and it decreases its anonymity. The algorithm is guided by the
functions InfoGain(v) and AnonyLoss(v) measuring the information gain and
the anonymity loss, respectively, where v is the attribute value (cell) candidate
for refinement. A good candidate v is such that InfoGain(v) is large, and Anony-
Loss(v) is small. Thus, the selection criterion for choosing the candidate v to
be refined maximizes function Score(v) = InfoGain(v)

AnonyLoss(v)+1 . Function Score(v)
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is computed for each value v of the attributes in the table. The value with the
highest score is then specialized to its children in the value generalization hi-
erarchy.

An attribute value v, candidate for specialization, is considered useful to
obtain a good classification if the frequencies of the class values are not uni-
formly distributed for the specialized values of v. The entropy of a value in a
table measures the dominance of the majority: the more dominating the major-
ity value in the class is, the smaller the entropy is. InfoGain(v) then measures
the reduction of entropy after refining v (for a formal definition of InfoGain(v)
see [16]). A good candidate is a value v that reduces the entropy of the table.
For instance, with reference to the private table in Figure 5.1 and its gener-
alized version in Figure 5.11(a), InfoGain(any marital status) is high
since for been married we have 14 N and 26 Y, with a difference of 12,
and for never married we have 20 N and 6 Y, with a difference of 14 (see

Marital status Sex Hours #tuples (Hyp. values)

any marital status any sex [1,100) 66 (32Y, 34N)

(a) Step 1: the most general table

Marital status Sex Hours #tuples (Hyp. values)

been married any sex [1,100) 40 (26Y, 14N)
never married any sex [1,100) 26 (6Y, 20N)

(b) Step 2

Marital status Sex Hours #tuples (Hyp. values)

divorced any sex [1,100) 21 (16Y, 5N)
married any sex [1,100) 19 (10Y, 9N)
never married any sex [1,100) 26 (6Y, 20N)

(c) Step 3

Marital status Sex Hours #tuples (Hyp. values)

divorced any sex 35 4 (0Y, 4N)
divorced any sex 40 17 (16Y, 1N)
married any sex 35 10 (8Y, 2N)
married any sex 50 9 (2Y, 7N)
single any sex 40 26 (6Y, 20N)

(d) Final table (after 7 steps)

Figure 5.11. An example of top-down anonymization for the private table in Figure 5.1
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Figure 5.11(b)). On the contrary, InfoGain([1, 100)) is low since for [0, 40)
we have 8 Y and 6 N, with a difference of 2, and for [40, 100) we have 24 Y
and 28 N, with a difference of 2. Thus Marital status is more useful for
classification than Hours.

Let us define the anonymity degree of a table as the maximum k for which
the table is k-anonymous. The loss of anonymity, defined as AnonyLoss(v), is
the difference between the degrees of anonymity of the table before and after
refining v. For instance, the degrees of the tables in Figures 5.11(b) and 5.11(c)
are 26 (tuples containing: never married, any sex, [1,100)) and 19
(tuples containing: married, any sex, [1,100)), respectively. Since the
table in Figure 5.11(c) is obtained by refining the value been married of
the table in Figure 5.11(b), AnonyLoss(been married) is 7.

The algorithm terminates when any further refinement would violate the k-
anonymity constraint.

Example 5.1 Consider the private table in Figure 5.1, and the value gener-
alization hierarchies in Figure 5.2. Let us suppose QI = {Marital status,
Sex, Hours} and k = 4. The algorithm starts from the most generalized table
in Figure 5.11(a), and computes the scores: Score(any marital status),
Score(any sex), and Score([1, 100)).

Since the maximum score corresponds to value any marital status, this
value is refined, producing the table in Figure 5.11(b). The remaining ta-
bles computed by the algorithm are shown in Figures 5.11(c), and 5.11(d).
Figure 5.11(d) illustrates the final table since the only possible refinement
(any sex to M and F) violates 4-anonymity. Note that the final table is 4-
anonymous with respect to QI = {Marital status, Sex, Hours}.

The bottom-up approach is the dual of the top-down approach. Starting from
the private table, the objective of the bottom-up approach is to generalize the
values in the table to determine a k-anonymous table preserving good qualities
for classification and minimizing information loss. The effect of generalization
is thus measured by a function involving anonymity gain (instead of anonymity
loss) and information loss.

Note that, since these methods compute a minimal k-anonymous table suit-
able for classification with respect to class and QI, the computed table PTk
is optimized only if classification is performed using the entire set QI. Other-
wise, the obtained table PTk could be too general. For instance, consider the
table in Figure 5.1, the table in Figure 5.11(d) is a 4-anonymization for it con-
sidering QI = {Marital status, Sex, Hours}. If classification is to
be done with respect to a subset QI′ = {Marital status, Sex} of QI,
such a table would be too general. As a matter of fact, a 4-anonymization for
PT with respect to QI′ can be obtained from PT by simply generalizing di-
vorced and married to been married. This latter generalization would
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generalize only 40 cells, instead of the 66 cells (M and F to any sex) gener-
alized in the table in Figure 5.11(d).

5.7 Mine-and-Anonymize

The Mine-and-Anonymize approach performs mining on the original ta-
ble PT. Anonymity constraints must therefore be enforced with respect to the
mined results to be returned. Regardless of whether the approach is executed
in one or two steps (see Section 5.5), the problem to be solved is to translate k-
anonymity constraints for PT over the mined results. Intuitively, the mined re-
sults should not allow anybody to infer the existence of sets of quasi-identifier
values that have less than k occurrences in the private table PT. Let us then
discuss what this implies for association rules and for decision trees.

5.7.1 Enforcing k-Anonymity on Association Rules

To discuss k-anonymity for association rules it is useful to distinguish the
two different phases of association rule mining:

1 find all combinations of items whose support (i.e., the number of joint
occurrences in the records) is greater than a minimum threshold σ (fre-
quent itemsets mining);

2 use the frequent itemsets to generate the desired rules.

The consideration of these two phases conveniently allows expressing k-
anonymity constraints with respect to observable itemsets instead of associa-
tion rules. Intuitively, k-anonymity for PT is satisfied if the observable itemsets
do not allow inferring (the existence of) sets of quasi-identifier values that have
less than k occurrences in the private table. It is trivial to see that any itemset
X that includes only values on quasi-identifier attributes and with a support
lower than k is clearly unsafe. In fact, the information given by the itemset
corresponds to stating that there are less than k respondents with occurrences
of values as in X, thus violating k-anonymity. Besides trivial itemsets such as
this, also the combination of itemsets with support greater than or equal to k
can breach k-anonymity.

As an example, consider the private table in Figure 5.1, where the quasi-
identifier is {Marital status, Sex, Hours} and suppose 3-anonymity
must be guaranteed. All itemsets with support lower than 3 clearly violate the
constraint. For instance, itemset {divorced, F} with support 2, which holds
in the table, cannot be released. Figure 5.12 illustrates some examples of item-
sets with support greater than or equal to 19 (assuming lower supports are not
of interest). While one may think that releasing these itemsets guarantees any
k-anonymity for k ≤ 19, it is not so. Indeed, the combination of the two item-
sets {divorced, M}, with support 19, and {divorced}, with support 21,
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Itemset Support

{∅} 66
{M} 55
{M, 40} 43
{single, M, 40} 26
{divorced} 21
{divorced, M} 19
{married} 19

Figure 5.12. Frequent itemsets extracted from the table in Figure 5.1

clearly violates it. In fact, from their combination we can infer the existence of
two tuples in the private table for which the condition ‘Marital status =
divorced ∧ ¬(Sex = M)’ is satisfied. Being Marital status and Sex
included in the quasi-identifier, this implies that no more than 2 indistinguish-
able tuples can exist for divorced non male respondents, thus violating k-
anonymity for k > 2. In particular, since Sex can assume only two values, the
two itemsets above imply the existence of (not released) itemset {divorced,
F} with support 2. Note that, although both itemsets ({divorced}, 21) and
({divorced, M}, 19) cannot be released, there is no reason to suppress both,
since each of them individually taken is safe.

The consideration of inferences such as those, and of possible solutions for
suppressing itemsets to block the inferences while maximizing the utility of the
released information, bring some resembling with the primary and secondary
suppression operations in statistical data release [12]. It is also important to
note that suppression is not the only option that can be applied to sanitize a
set of itemsets so that no unsafe inferences violating k-anonymity are possible.
Alternative approaches can be investigated, including adapting classical sta-
tistical protection strategies [12, 14]. For instance, itemsets can be combined,
essentially providing a result that is equivalent to operating on generalized (in
contrast to specific) data. Another possible approach consists in introducing
noise in the result, for example, modifying the support of itemsets in such a
way that their combination never allows inferring itemsets (or patterns of them)
with support lower than the specified k.

A first investigation of translating the k-anonymity property of a private
table on itemsets has been carried out in [7–9] with reference to private ta-
bles where all attributes are defined on binary domains. The identification
of unsafe itemsets bases on the concept of pattern, which is a boolean for-
mula of items, and on the following observation. Let X and X ∪ {Ai} be
two itemsets. The support of pattern X ∧ ¬Ai can be obtained by subtract-
ing the support of itemset X ∪ {Ai} from the support of X. By generalizing
this observation, we can conclude that given two itemsets X = {Ax1 . . . Axn}
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and Y = {Ax1 . . . Axn , Ay1 . . . Aym}, with X ⊂ Y , the support of pattern
Ax1 ∧ . . . ∧Axn ∧ ¬Ay1 ∧ . . . ∧ ¬Aym (i.e., the number of tuples in the table
containing X but not Y − X) can be inferred from the support of X, Y , and
all itemsets Z such that X ⊂ Z ⊂ Y . This observation allows stating that a
set of itemsets satisfies k-anonymity only if all itemsets, as well as the patterns
derivable from them, have support greater than or equal to k.

As an example, consider the private table PT in Figure 5.13(a), where
all attributes can assume two distinct values. This table can be trans-
formed into the binary table T in Figure 5.13(b), where A corresponds to
‘Marital status = been married’, B corresponds to ‘Sex = M’, and
C corresponds to ‘Hours = [40,100)’. Figure 5.14 reports the lattice of all
itemsets derivable from T together with their support. Assume that all item-
sets with support greater than or equal to the threshold σ = 40, represented in
Figure 5.15(a), are of interest, and that k = 10. The itemsets in Figure 5.15(a)
present two inference channels. The first inference is obtained through itemsets
X1 = {C} with support 52, and Y1 = {BC} with support 43. According to

Marital status Sex Hours #tuples

been married M [1-40) 12
been married M [40-100) 17
been married F [1-40) 2
been married F [40-100) 9
never married M [40-100) 26

(a) PT

A B C #tuples

1 1 0 12
1 1 1 17
1 0 0 2
1 0 1 9
0 1 1 26

(b) T

Figure 5.13. An example of binary table
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Figure 5.14. Itemsets extracted from the table in Figure 5.13(b)



k-Anonymous Data Mining: A Survey 129

BC

��
��
��
�

43

A

��
��

��
40 B 55 C

��
��
��
�

52

∅ 66

(a)

BC

��
��
��
�

43

A

��
��

��
40 B 55 C

��
��
��
�

62

∅ 86

(b)

Figure 5.15. Itemsets with support at least equal to 40 (a) and corresponding anonymized
itemsets (b)

the observation previously mentioned, since X1 ⊂ Y1, we can infer that pattern
C ∧ ¬B has support 52 − 43 = 9. The second inference channel is obtained
through itemsets X2 ={∅} with support 66, Y2 = {BC} with support 43, and
all itemsets Z such that X2 ⊂ Z ⊂ Y2, that is, itemsets {B} with support 55,
and {C} with support 52. The support of pattern ¬B ∧ ¬C can then be ob-
tained by applying again the observation previously mentioned. Indeed, from
{BC} and {B} we infer pattern B∧¬C with support 55−43 = 12, and from
{BC} and {C} we infer pattern ¬B ∧ C with support 52 − 43 = 9. Since
the support of itemset {∅} corresponds to the total number of tuples in the bi-
nary table, the support of ¬B ∧ ¬C is computed by subtracting the support of
B ∧ ¬C (12), ¬B ∧ C (9), and B ∧ C (43) from the support of {∅}, that is,
66−12−9−43 = 2. The result is that release of the itemsets in Figure 5.15(a)
would not satisfy k-anonymity for any k > 2.

In [9] the authors present an algorithm for detecting inference channels
that is based on a classical data mining solution for concisely representing
all frequent itemsets (closed itemsets [24]) and on the definition of maximal
inference channels. In the same work, the authors propose to block possi-
ble inference channels violating k-anonymity by modifying the support of in-
volved itemsets. In particular, an inference channel due to a pair of itemsets
X = {Ax1 . . . Axn} and Y = {Ax1 . . . Axn , Ay1 . . . Aym} is blocked by in-
creasing the support of X by k. In addition, to avoid contradictions among the
released itemsets, also the support of all subsets of X is increased by k. For in-
stance, with respect to the previous two inference channels, since k is equal to
10, the support of itemset {C} is increased by 10 and the support of {∅} is in-
creased by 20, because {∅} is involved in the two channels. Figure 5.15(b)
illustrates the resulting anonymized itemsets. Another possible strategy for
blocking channels consists in decreasing the support of the involved itemsets
to zero. Note that this corresponds basically to removing some tuples in the
original table.
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5.7.2 Enforcing k-Anonymity on Decision Trees

Like for association rules, a decision tree satisfies k-anonymity for the pri-
vate table PT from which the tree has been built if no information in the tree
allows inferring quasi-identifier values that have less than k occurrences in
the private table PT. Again, like for association rules, k-anonymity breaches
can be caused by individual pieces of information or by combination of appar-
ently anonymous information. In the following, we briefly discuss the problem
distinguishing two cases depending on whether the decision tree reports fre-
quencies information for the internal nodes also or for the leaves only.

Let us first consider the case where the tree reports frequencies informa-
tion for all the nodes in the tree. An example of such a tree is reported in
Figure 5.9. With a reasoning similar to that followed for itemsets, given a k,
all nodes with a number of occurrences lower than k are unsafe as they breach
k-anonymity. For instance, the fourth leaf (reachable through path 〈F,35〉)
is unsafe for any k-anonymity higher than 2. Again, with a reasoning simi-
lar to that followed for itemsets, also combinations of nodes that allow infer-
ring patterns of tuples containing quasi-identifying attributes with a number of
occurrences lower than k breach k-anonymity for the given k. For instance,
nodes corresponding to paths 〈F〉 and to 〈F,50〉, which taken individually
would appear to satisfy any k-anonymity constraint for k ≤ 9, considered
in combination would violate any k-anonymity for k > 2 since their com-
bination allows inferring that there are no more than two tuples in the table
referring to females working a number of hours different from 50. It is inter-
esting to draw a relationship between decision trees and itemsets. In particular,
any node in the tree corresponds to an itemset dictated by the path to reach
the node. For instance, with reference to the tree in Figure 5.9, the nodes corre-
spond to itemsets: {}, {M}, {M,married}, {M,divorced}, {M,single},
{F}, {F,35}, {F,40}, {F,50}, where the support of each itemset is the sum
of the Ys and Ns in the corresponding node. This observation can be exploited
for translating approaches for sanitizing itemsets for the sanitization of deci-
sion trees (or viceversa). With respect to blocking inference channels, different
approaches can be used to anonymize decision trees, including suppression of
unsafe nodes as well as other nodes as needed to block combinations breaching
anonymity (secondary suppression). To illustrate, suppose that 3-anonymity is
to be guaranteed. Figure 5.16 reports a 3-anonymized version of the tree in
Figure 5.9. Here, besides suppressing node 〈F,35〉, its sibling 〈F,50〉 has
been suppressed to block the inference channel described above.

Let us now consider the case where the tree reports frequencies information
only for the leaf nodes. Again, there is an analogy with the itemset problem
with the additional consideration that, in this case, itemsets are such that none
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Figure 5.16. 3-anonymous version of the tree of Figure 5.9

of them is a subset of another one. It is therefore quite interesting to note that
the set of patterns of tuples identified by the tree nodes directly corresponds
to a generalized version of the private table PT, where some values are sup-
pressed (CG ). This property derives from the fact that, in this case, every tuple
in PT satisfies exactly one pattern (path to a leaf). To illustrate, consider the de-
cision tree in Figure 5.17, obtained from the tree in Figure 5.9 by suppressing
occurrences in non-leaf nodes. Each leaf in the tree corresponds to a general-
ized tuple reporting the value given by the path (for attributes appearing in the
path). The number of occurrences of such a generalized tuple is reported in the
leaf. If a quasi-identifier attribute does not appear along the path, then its value
is set to ∗. As a particular case, if every path in the tree contains all the quasi-
identifier attributes and puts conditions on specific values, the generalization
coincides with the private table PT. For instance, Figure 5.18 reports the table
containing tuple patterns that can be derived from the tree in Figure 5.17, and
which corresponds to a generalization of the original private table PT in Fig-
ure 5.1. The relationship between trees and generalized tables is very important
as it allows us to express the protection enjoyed of a decision tree in terms of
the generalized table corresponding to it, with the advantage of possibly ex-
ploiting classical k-anonymization approaches referred to the private table. In
particular, this observation allows us to identify as unsafe all and only those
nodes corresponding to tuples whose number of occurrences is lower than k.
In other words, in this case (unlike for the case where frequencies of internal
nodes values are reported) there is no risk that combination of nodes, each with
occurrences higher than or equal to k, can breach k-anonymity.

Again, different strategies can be applied to protect decision trees in this
case, including exploiting the correspondence just withdrawn, translating on
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Figure 5.17. Suppression of occurrences in non-leaf nodes in the tree in Figure 5.9

Marital status Sex Hours #tuples (Hyp. values)

divorced M ∗ 19 (16Y, 3N)
∗ F 35 2 (0Y, 2N)

married M ∗ 10 (8Y, 2N)
∗ F 50 9 (2Y, 7N)

single M ∗ 26 (6Y, 20N)

Figure 5.18. Table inferred from the decision tree in Figure 5.17
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Figure 5.19. 11-anonymous version of the tree in Figure 5.17

the tree the generalization and suppression operations that could be executed
on the private table. To illustrate, consider the tree in Figure 5.17, the cor-
responding generalized table is in Figure 5.18, which clearly violates any k-
anonymity for k > 2. Figure 5.19 illustrates a sanitized version of the tree for
guaranteeing 11-anonymity obtained by suppressing the splitting node Hours
and combining nodes 〈M,married〉 and 〈M,divorced〉 into a single node.
Note how the two operations have a correspondence with reference to the start-
ing table in Figure 5.18 with an attribute generalization over Hours and a cell
generalization over Marital status, respectively. Figure 5.20 illustrates
the table corresponding to the tree in Figure 5.19.

The problem of sanitizing decision trees has been studied in the literature
by Friedman et al. [15, 16], who proposed a method for directly building a
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Marital status Sex Hours #tuples (Hyp. values)

been married M ∗ 29 (24Y, 5N)
∗ F ∗ 11 (2Y, 9N)

single M ∗ 26 (6Y, 20N)

Figure 5.20. Table inferred from the decision tree in Figure 5.19

k-anonymous decision tree from a private table PT. The proposed algorithm
is basically an improvement of the classical decision tree building algorithm,
combining mining and anonymization in a single process. At initialization
time, the decision tree is composed of a unique root node, representing all
the tuples in PT. At each step, the algorithm inserts a new splitting node in
the tree, by choosing the attribute in the quasi-identifier that is more useful for
classification purposes, and updates the tree accordingly. If the tree obtained is
non-k-anonymous, then the node insertion is rolled back. The algorithm stops
when no node can be inserted without violating k-anonymity, or when the clas-
sification obtained is considered satisfactory.

5.8 Conclusions

A main challenge in data mining is to enable the legitimate usage and shar-
ing of mined information while at the same time guaranteeing proper pro-
tection of the original sensitive data. In this chapter, we have discussed how
k-anonymity can be combined with data mining for protecting the identity
of the respondents to whom the data being mined refer. We have described
the possible threats to k-anonymity that can arise from performing mining
on a collection of data and characterized two main approaches to combine k-
anonymity in data mining. We have also discussed different methods that can
be used for detecting k-anonymity violations and consequently eliminate them
in association rule mining and classification mining.
k-anonymous data mining is however a recent research area and many is-

sues are still to be investigated such as: the combination of k-anonymity with
other possible data mining techniques; the investigation of new approaches for
detecting and blocking k-anonymity violations; and the extension of current
approaches to protect the released data mining results against attribute, in con-
trast to identity, disclosure [21].
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Abstract A well known method for privacy-preserving data mining is that of random-
ization. In randomization, we add noise to the data so that the behavior of the
individual records is masked. However, the aggregate behavior of the data dis-
tribution can be reconstructed by subtracting out the noise from the data. The
reconstructed distribution is often sufficient for a variety of data mining tasks
such as classification. In this chapter, we will provide a survey of the random-
ization method for privacy-preserving data mining.

Keywords: Randomization, privacy quantification, perturbation.

6.1 Introduction

In the randomization method, we add noise to the data in order to mask the
values of the records. The noise added is sufficiently large so that the individ-
ual values of the records can no longer be recovered. However, the probabil-
ity distribution of the aggregate data can be recovered and subsequently used
for privacy-preservation purposes. The earliest work on randomization may be
found in [16, 12], in which it has been used in order to eliminate evasive an-
swer bias. In [3] it has been shown how the reconstructed distributions may be
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used for data mining. The specific problem which has been discussed in [3] is
that of classification, though the approach can be easily extended to a variety
of other problems such as association rule mining [8, 24].

The method of randomization can be described as follows. Consider a set
of data records denoted by X = {x1 . . . xN}. For record xi ∈ X, we add
a noise component which is drawn from the probability distribution fY (y).
These noise components are drawn independently, and are denoted y1 . . . yN .
Thus, the new set of distorted records are denoted by x1 + y1 . . . xN + yN .
We denote this new set of records by z1 . . . zN . In general, it is assumed that
the variance of the added noise is large enough, so that the original record
values cannot be easily guessed from the distorted data. Thus, the original
records cannot be recovered, but the distribution of the original records can
be recovered. We note that the addition of X and Y creates a new distribu-
tion Z . We know N instantiations of this new distribution, and can therefore
estimate it approximately. Furthermore, since the distribution of Y is publicly
known, we can estimate the distribution obtained by subtracting Y from Z .
In a later section, we will discuss more accurate strategies for distribution es-
timation. Furthermore, the above-mentioned technique is an additive strategy
for randomization. In the multiplicative strategy, it is possible to multiply the
records with random vectors in order yo provide the final representation of the
data. Thus, this approach uses a random projection kind of approach in or-
der to perform the privacy-preserving transformation. The resulting data can
be be re-constructed within a certain variance depending upon the number of
components of the multiplicative perturbation.

We note that methods such as randomization add or multiply the noise to the
records in a data-independent way. In other methods such as k-anonymity [25],
the overall behavior of the records is leveraged in the anonymization process.
This is very useful from a practical point of view, since it means that the ran-
domization can be performed at data-collection time. Thus, a trusted server is
not required (as in k-anonymization) in order to perform the transformations
on the records. This is a key advantage of randomization methods, though it
comes at the expense that there are no guarantees against re-identification of
the data in the presence of public information. Another key property of the
randomization method is that the original records are not used after the trans-
formation. Rather, the data mining algorithms use aggregate distributions of
the data in order to perform the mining process.

This paper is organized as follows. In the next section, we will discuss a
number of reconstruction methods for randomization. We will also discuss the
issue of optimaility and utility of randomization methods. In section 3, we
will discuss a number of applications of randomization. We will show how the
approach can be used for a number of applications such as classification and
association rule mining. In section 4, we will discuss issues surrounding the
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quantification of privacy-preserving data mining algorithms. In section 5, we
will discuss a number of adversarial attacks on the randomization method. In
section 6, we discuss applications of the randomization method to the case of
time series data. In section 7, we discuss the method of multiplicative pertur-
bations and its applications to a variety of data mining algorithms. The conclu-
sions and summary are presented in section 8.

6.2 Reconstruction Methods for Randomization

In this section, we will discuss reconstruction algorithms for the randomiza-
tion method. We note that the perturbed data distribution Z can be obtained by
adding the distributions of the original data X and that of the perturbation Y .
Therefore, we have:

Z = X + Y

X = Z − Y
We note that only the distribution of Y is known explicit. The distribution
of X is unknown, and N instantiations of the probability distribution Z are
known. These N instantiations can be used to construct an estimate of the
probability distribution Z . When the value of N is large, this estimate can
be quite accurate. Once Z is known, we can subtract Y from it in order to
obtain the probability distribution of X. For modest values of N , the errors
in the estimation of Z can be quite large, and these errors may get magnified
on subtraction of Y . Therefore, a more indirect method is desirable in order to
estimate the probability distribution of X.

A pair of closely related iterative methods have been discussed in [3, 5]
for approximation of the corresponding probability distributions. The method
in [3] uses the Bayes rule for distribution approximation, whereas that in [5]
uses the EM method for distribution approximation. In this section, we will
describe both methods. First, we will discuss the method in [3] for distribution
reconstruction.

6.2.1 The Bayes Reconstruction Method

Let f ′ and F ′ be the estimated density functions and cumulative density
functions with the use of the reconstructed distributions. The, we can use the
bayes formula in order to derive an estimate for f ′, using the first observed
value z1:

F ′(a) =
∫ a

−∞
fX1(w|X1 + Y1 = z1)dw (6.1)

We can expand the above expression using the Bayes rule (in conjunction with
the independence of the random variables Y and X) in order to construct the
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following expression for F ′(a).

F ′(a) =

∫ a
−∞ fX(z1 − w) · fX(w)dw∫∞
−∞ fX(z1 − w) · fX(w)dw

(6.2)

We note that the above expression for F ′(a) was derived using a single ob-
servation z1. In practice, the average distribution of multiple observations
z1 . . . zN can be used in order to construct the estimated cumulative distrib-
ution F ′(a). Thus, we can construct the estimated distribution as follows:

F ′(a) = (1/N) ·
N∑
i=1

∫ a
−∞ fX(zi −w) · fX(w)dw∫∞
−∞ fX(zi −w) · fX(w)dw

(6.3)

The corresponding density distribution can be obtained by differentiating
F ′(a). This differentiation results in the removal of the integral sign from the
numerator, and the corresponding instantiation of w to a. Therefore, we have:

f ′(a) = (1/N) ·
N∑
i=1

fX(zi − a) · fX(a)∫∞
−∞ fX(zi − w) · fX(w)dw

(6.4)

We note that it is tricky to compute f(·) using the above equation, since we do
not know the distribution for f on the right hand side. This suggests an iterative
method for computing the distribution f . We start of by setting f as the uniform
distribution, and iteratively update it using the equation above. The algorithm
for computing f(a) for a particular value of a is described as follows:

Set f to be the uniform distribution;
repeat
Update f(a) = (1/N) ·

∑N
i=1

fX(zi−a)·fX(a)∫∞
−∞ fX(zi−w)·fX(w)dw

until convergence

We note that we cannot compute the value of f(a) over all possible (infinite
number of) values of a in a continuous domain. Therefore, we partition the
domain of X into a number of intervals [l1, u1] . . . [ln, un], and assume that the
function is uniform over each interval. For each interval [li, ui], the value of a
in the above equation is picked to be (li + ui)/2. Thus, in each iteration, we
use n different values of a corresponding to each of the intervals. We note that
the density functions on the right hand sides can be computed using the mean
values over the corresponding intervals.

We note that the algorithm is terminated when the distribution does not
change significantly over successive steps of the algorithm. A χ2 test was used
to compare the two distributions. The implementation in [3] terminated the al-
gorithm when the difference between successive estimates was given by 1% of
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the threshold of the χ2 test. While this algorithm is known to perform effec-
tively in practice, the work in [3] does not prove this algorithm to be a provably
convergent solution. In [5], an Expectation Maximization (EM) algorithm has
been proposed which converges to a provably optimal solution. It is also shown
in [5] that the Bayes algorithm of [3] is actually an approximation of the Ex-
pectation Maximization algorithm proposed in [5]. This is one of the reasons
why the Bayes method proposed in [3] is so robust in practice.

6.2.2 The EM Reconstruction Method

In this subsection, we will discuss the EM algorithm for distribution recon-
struction. Since the function fX(x) is defined over a continuous domain, we
need to parameterize and discretize it for the purpose of any numerical estima-
tion method. We assume that the data domain ΩX can be discretized into K
intervals Ω1 . . .ΩK , where ∪ki=1Ωi = ΩX . Let mi = m(Ωi) be the length of
the interval Ωi. We assume that fX(x) is constant over Ωi and the correspond-
ing density function value is equal to θi. Thus, such a form will restrict fX(x)
to a class parameterized by the finite set of parameters Θ = {θ1, θ2, . . . , θK}.
In order to explicitly denote the parametric dependence of the density function
on Θ we will use the notation fX;Θ(x) for the density function of X. There-
fore, we have fX;Θ(x) =

∑K
i=1 θiIΩi(x). Here IΩi(x) = 1 if x ∈ Ωi and 0

otherwise. Since fX;Θ(x) is a density, it follows that
∑K

i=1 θim(Ωi) = 1. By
choosing K large enough, density functions of the form discussed above can
approximate any density function with arbitrary precision.

After this parameterization, the algorithm will proceed to estimate Θ, and
thereby determine f̂X;Θ(x). Let Θ̂ = {θ̂1, θ̂2, . . . , θ̂K} be the estimate of these
parameters produced by the reconstruction algorithm.

Given a set of observations Z = z, we would ideally like to find the
maximum-likelihood (ML) estimate Θ̂ML = argmaxΘ ln fZ;Θ(z). The ML
estimate has many attractive properties such as consistency, asymptotic unbi-
asedness, and asymptotic minimum variance among unbiased estimates. How-
ever, it is not always be possible to find Θ̂ML directly, and this turns out to be
the case with the fZ;Θ(z) given above.

In order to achieve this goal, we will derive a reconstruction algorithm which
fits into the broad framework of Expectation Maximization (EM) algorithms.
The algorithm proceeds as if a more comprehensive set of data, say D = d is
observable and maximizes ln fD;Θ(d) over all values of Θ (M-step). Since d
is in fact unavailable, it replaces ln fD;Θ(d) by its conditional expected value
given Z = z and the current estimate of Θ (E-Step). The D is chosen to make
E-step and M-step easy to compute.

In this paper, we propose the use of X = x as the more comprehensive set
of data. As shown in the next section, this choice results in a computationally
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efficient algorithm. More formally, we define a Q function as follows:

Q(Θ, Θ̂) = E
[
ln fX;Θ(X)

∣∣∣ Z = z; Θ̂
]

(6.5)

Thus, Q(Θ, Θ̂) is the expected value of ln fX;Θ(X) computed with respect
f
X|Z=z;Θ̂

, the density of X given Z = z and parameter vector Θ̂. After the

initialization of Θ to a nominal value Θ0, the EM algorithm will iterate over
the following two steps:

1 E-step: Compute Q(Θ,Θk).

2 M-step: Update Θk+1 = argmaxΘQ(Θ,Θk).

The above discussion provides the general framework of EM algorithms;
the actual details of the E-step and M-steps require a derivation which is prob-
lem specific. Similarly, the precise convergence properties of an EM algorithm
are rather sensitive to the problem and its corresponding derivation. In the next
subsection, we will derive the EM algorithm for the reconstruction problem
and show that the resulting EM-algorithm has desirable convergence proper-
ties. The values of Q(Θ, Θ̂) during the E-step and the M-step of the recon-
struction algorithm are discussed in [5].

Theorem 6.1 The value ofQ(Θ, Θ̂) during the E-step of the reconstruction
algorithm is given by: Q(Θ, Θ̂) =

∑K
i=1 ψi(z; Θ̂) ln θi, where ψi(z; Θ̂) =

θ̂i
∑N

j=1
Pr(Y ∈zj−Ωi)
f

Z;Θ̂
(zj)

.

In the next proposition, we calculate the value of Θ that maximizes
Q(Θ, Θ̂).

Theorem 6.2 The value of Θ which maximizes Q(Θ, Θ̂) during the M-step

of the reconstruction algorithm is given by: θi = ψi(z;Θ̂)
miN

, where ψi(z; Θ̂) =

θ̂i
∑N

j=1
Pr(Y ∈zj−Ωi)
f

Z;Θ̂
(zj)

.

Now, we are in a position to describe the EM algorithm for the reconstruc-
tion problem.
1. Initialize θ0

i = 1
K , i = 1, 2, . . . ,K; k = 0;

2. Update Θ as follows: θ(k+1)
i = ψi(z;Θk)

miN
;

3. k = k + 1;
4. If not termination-criterion then return to Step 2.

One key observation is that the EM algorithm is actually a refined version of
the Bayes method discussed in [3]. The key difference between the two meth-
ods is in how the approximation of the values within an interval is treated.
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While the Bayes method uses the crude estimate of the midpoint of the in-
terval, the EM algorithm is more refined about it. While the Bayes method
has not been shown to provably converge, it has been known to always em-
pirically converge. On the other hand, our argument below shows that the EM
algorithm does converge to a provably optimal solution. The close relationship
between the two methods is the reason that the Bayes method is always known
to empirically converge to an approximately optimal solution. The termination
criterion for this method is based on how much Θk has changed since the last
iteration. It has been shown in [5] that the EM algorithm converges to the true
distribution of the random variable X. We summarize the result as follows:

Theorem 6.3 The EM sequence {Θ(k)} for the reconstruction algorithm
converges to the unique Maximum Likelihood Estimate Θ̂ML.

The above results lead to the following desirable property of the EM Algo-
rithm.

Observation 6.2.1 When there is a very large number of data observa-
tions, then the EM algorithm provides zero information loss.

This is because as the number of observations increases, Θ̂ML ⇒ Θ. There-
fore, the original and estimated distribution become the same (subject to the
discretization needed for any numerical estimation algorithm), resulting in zero
information loss.

6.2.3 Utility and Optimality of Randomization Models

We note that the use of different perturbing distributions results in a differ-
ent level of effectiveness of the randomization scheme. A key issue is how the
randomization may be performed in order to optimize the tradeoff between pri-
vacy and accuracy. Clearly, the provision of a higher level of accuracy for the
same privacy level is desirable from the point of view of maintaining greater
utility of the randomized data. In order to achieve this goal, the work in [30] de-
fines a randomization scheme in which the noise added to a given observation
depends upon the value of the underlying data record as well as a user-defined
parameter. Thus, in this case, the noise is conditional on the value of the record
itself. This is a more general and flexible model for the randomization process.
We note that this approach still does not depend upon the behavior of the other
records, and can therefore be performed at data collection time. Methods are
defined in [30] in order to perform reconstruction of the data with the use of
this kind of randomization. The reconstruction methods proposed in [30] are
designed with the use of kernel estimators or iterative EM methods. In [30]
a number of information loss and interval metrics are used to quantify the
tradeoff between privacy and optimality. The approach explores the issue of
optimizing the information loss within a privacy constraint, or optimizing the
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privacy within an information loss constraint. A number of simulations have
been presented in [30] to illustrate the effectiveness of the approach.

6.3 Applications of Randomization

The randomization method has been extended to a variety of data mining
problems. In [3], it was discussed how to use the approach for classification.
A number of other techniques [29, 30] have also been proposed which seem to
work well over a variety of different classifiers. Techniques have also been pro-
posed for privacy-preserving methods of improving the effectiveness of classi-
fiers. For example, the work in [10] proposes methods for privacy-preserving
boosting of classifiers. Methods for privacy-preserving mining of association
rules have been proposed in [8, 24]. The problem of association rules is espe-
cially challenging because of the discrete nature of the attributes corresponding
to presence or absence of items. In order to deal with this issue, the random-
ization technique needs to be modified slightly. Instead of adding quantitative
noise, random items are dropped or included with a certain probability. The
perturbed transactions are then used for aggregate association rule mining.
This technique has shown to be extremely effective in [8]. The randomiza-
tion approach has also been extended to other applications such as OLAP [4],
and SVD based collaborative filtering [22]. We will discuss details of many of
these techniques below.

We note that a variety of other randomization schemes exist for privacy-
preserving data mining. The above-mentioned scheme uses a single perturbing
distribution in order to perform the randomization over the entire data. The
randomization scheme can be tailored much more effectively by using mixture
models [30] in order to perform the privacy-preservation. The work in [30]
shows that this approach has a number of optimality properties in terms of the
quality of the perturbation.

6.3.1 Privacy-Preserving Classification
with Randomization

A number of methods have been proposed for privacy-preserving classifica-
tion with randomization. In [3], a method has been discussed for decision tree
classification with the use of the aggregate distributions reconstructed from the
randomized distribution. The key idea is to construct the distributions sepa-
rately for the different classes. Then, the splitting condition for the decision
tree uses the relative presence of the different classes which is derived from
the aggregate distributions. It has been shown in [3] that such an approach can
be used in order to design very effective classifiers.

Since the probabilistic behavior is encoded in aggregate data distributions,
it can be used to construct a naive Bayes classifier. In such a classifier [29], the
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approach of randomized response with partial hiding is used in order to per-
form the classification. It has been shown in [29] that this approach is effective
both empirically and analytically.

6.3.2 Privacy-Preserving OLAP

In [4], a randomization algorithm for distributed privacy-preserving OLAP
is discussed. In this approach, each client independently perturbs their data
before sending it to a centralized server. The technique uses local perturbation
techniques in which the perturbation added to an element depends upon its
initial value. A variety of reconstruction techniques are discussed in order to
respond to different kinds of queries. The key in such queries is to develop
effective algorithms for estimating counts of different subcubes in the data.
Such queries are typical in most OLAP applications. The approach has been
shown in [4] to satisfy a number of privacy-breach guarantees.

The method in [4] uses an interesting technique called retention replace-
ment perturbation. In retention replacement perturbation, each element from
column j is retained with probability pj , or replaced with an element from the
selected pdf. It has been shown in [4] that approximate probabilistic recon-
structability is possible when a least a certain number of rows are present in
the data. Methods have also been devised in [4] to express the estimated query
results on the perturbed table as a function of the query results on the perturbed
table. Methods are devised in [4] to reconstruct the original distributed, single
column aggregates, and multiple column aggregates.

Techniques have also been devised on [4] for perturbation of categorical
data sets. In this case, the retention-replacement approach needs to be modi-
fied appropriately. In this case, the replacement approach is to use a random
element to replace an element which is not retained.

6.3.3 Collaborative Filtering

A variety of collaborative filtering techniques have been discussed in
[22, 23]. The collaborative filtering problem is used in the context of electronic
commerce when users choose to leave quantitative feedback (or ratings) about
the products which they may like. In the collaborative filtering problem, we
wish to make predictions of ratings of products for a particular user with the
use of ratings of users with similar profiles. Such ratings are useful for making
recommendations that the user may like. In [23], a correlation based collabo-
rative filtering technique with randomization was proposed. In [22], an SVD
based collaborative filtering method was proposed using randomized pertur-
bation techniques. Since the collaborative filtering technique is inherently one
in which ratings from multiple users are incorporated, we use a client-server
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mechanism in order to perform the perturbation. The broad approach of SVD-
based collaborative filtering technique is as follows:

The server decides on the nature (eg. uniform or Gaussian) of the per-
turbing distribution along with the corresponding parameters. These pa-
rameters are transmitted to each user.

Each user computes the mean and z-number for their ratings. The entries
which are not rated are substituted with the mean for the corresponding
ratings and a z-number of 0.

Each user then adds random number to all the ratings, and sends the
disguised ratings to the server.

The server receives the ratings from the different users and uses SVD on
the disguised matrix in order to make predictions.

6.4 The Privacy-Information Loss Tradeoff

The quantity used to measure privacy should indicate how closely the orig-
inal value of an attribute can be estimated. The work in [3] uses a measure
that defines privacy as follows: If the original value can be estimated with c%
confidence to lie in the interval [α1, α2], then the interval width (α2 − α1)
defines the amount of privacy at c% confidence level. For example, if the per-
turbing additive is uniformly distributed in an interval of width 2α, then α is
the amount of privacy at confidence level 50% and 2α is the amount of privacy
at confidence level 100%. However, this simple method of determining privacy
can be subtly incomplete in some situations. This can be best explained by the
following example.

Example 6.4 Consider an attribute X with the density function fX(x)
given by:

fX(x) = 0.5 0 ≤ x ≤ 1
0.5 4 ≤ x ≤ 5
0 otherwise

Assume that the perturbing additive Y is distributed uniformly between
[−1, 1]. Then according to the measure proposed in [3], the amount of privacy
is 2 at confidence level 100%.

However, after performing the perturbation and subsequent reconstruction,
the density function fX(x) will be approximately revealed. Let us assume for
a moment that a large amount of data is available, so that the distribution
function is revealed to a high degree of accuracy. Since the (distribution of
the) perturbing additive is publicly known, the two pieces of information can
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be combined to determine that if Z ∈ [−1, 2], then X ∈ [0, 1]; whereas if
Z ∈ [3, 6] then X ∈ [4, 5].

Thus, in each case, the value ofX can be localized to an interval of length 1.
This means that the actual amount of privacy offered by the perturbing additive
Y is at most 1 at confidence level 100%. We use the qualifier ‘at most’ since
X can often be localized to an interval of length less than one. For example, if
the value of Z happens to be −0.5, then the value of X can be localized to an
even smaller interval of [0, 0.5].

This example illustrates that the method suggested in [3] does not take into
account the distribution of original data. In other words, the (aggregate) re-
construction of the attribute value also provides a certain level of knowledge
which can be used to guess a data value to a higher level of accuracy. To accu-
rately quantify privacy, we need a method which takes such side-information
into account.

A key privacy measure [5] is based on the differential entropy of a random
variable. The differential entropy h(A) of a random variable A is defined as
follows:

h(A) = −
∫

ΩA

fA(a) log2 fA(a) da (6.6)

where ΩA is the domain of A. It is well-known that h(A) is a measure of
uncertainty inherent in the value of A [111]. It can be easily seen that for a
random variable U distributed uniformly between 0 and a, h(U) = log2(a).
For a = 1, h(U) = 0.

In [5], it was proposed that 2h(A) is a measure of privacy inherent in the
random variable A. This value is denoted by Π(A). Thus, a random variable U
distributed uniformly between 0 and a has privacy Π(U) = 2log2(a) = a. For a
general random variable A, Π(A) denote the length of the interval, over which
a uniformly distributed random variable has the same uncertainty as A.

Given a random variable B, the conditional differential entropy of A is
defined as follows:

h(A|B) = −
∫

ΩA,B

fA,B(a, b) log2 fA|B=b(a) da db (6.7)

Thus, the average conditional privacy ofA givenB is Π(A|B) = 2h(A|B). This
motivates the following metric P(A|B) for the conditional privacy loss of A,
given B:

P(A|B) = 1−Π(A|B)/Π(A) = 1− 2h(A|B)/2h(A) = 1− 2−I(A;B).

where I(A;B) = h(A)− h(A|B) = h(B)− h(B|A). I(A;B) is also known
as the mutual information between the random variables A and B. Clearly,
P(A|B) is the fraction of privacy of A which is lost by revealing B.
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As an illustration, let us reconsider Example 6.4 given above. In this case,
the differential entropy of X is given by:

h(X) = −
∫

ΩX

fX(x) log2 fX(x) dx =

= −
∫ 1

0
0.5 log2 0.5 dx−

∫ 5

4
0.5 log2 0.5 dx = 1

Thus the privacy ofX, Π(X) = 21 = 2. In other words,X has as much privacy
as a random variable distributed uniformly in an interval of length 2. The den-
sity function of the perturbed value Z is given by fZ(z) =

∫∞
−∞ fX(ν)fY (z −

ν) dν.
Using fZ(z), we can compute the differential entropy h(Z) of Z . It turns

out that h(Z) = 9/4. Therefore, we have:

I(X;Z) = h(Z)− h(Z|X) = 9/4 − h(Y ) = 9/4 − 1 = 5/4

Here, the second equality h(Z|X) = h(Y ) follows from the fact that X and
Y are independent and Z = X + Y . Thus, the fraction of privacy loss in this
case is P(X|Z) = 1 − 2−5/4 = 0.5796. Therefore, after revealing Z , X has
privacy Π(X|Z) = Π(X) × (1 − P(X|Z)) = 2× (1.0 − 0.5796) = 0.8408.
This value is less than 1, since X can be localized to an interval of length less
than one for many values of Z . Given the perturbed values z1, z2, . . . , zN , it
is (in general) not possible to reconstruct the original density function fX(x)
with an arbitrary precision. The greater the variance of the perturbation, the
lower the precision in estimating fX(x). This constitutes the classic tradeoff
between privacy and information loss. We refer the lack of precision in esti-
mating fX(x) as information loss. Clearly, the lack of precision is estimating
the true distribution will degrade the accuracy of the application that such a dis-
tribution is used for. The work in [3] uses an application dependent approach
to measure the information loss. For example, for a classification problem, the
inaccuracy in distribution reconstruction is measured by examining the effects
on the mis-classification rate. The work in [5] uses a more direct approach to
measure the information loss.

Let f̂X(x) denote the density function ofX as estimated by a reconstruction
algorithm.

We propose the metric I(fX , f̂X) to measure the information loss incurred
by a reconstruction algorithm in estimating fX(x):

I(fX , f̂X) =
1
2
E

[∫
ΩX

∣∣∣fX(x)− f̂X(x)
∣∣∣ dx
]

(6.8)

Thus the proposed metric equals half the expected value of L1-norm between
the original distribution fX(x) and its estimate f̂X(x). Note that information
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In this case, the estimated distribution is
somewhat shifted from the original distribution.
Information Loss is the amount of mismatch
between the two curves in terms of area.
This is equal to half the sum of the areas of A, B, C and D.
and is also equal to 1 - Area shared by both curves.

Figure 6.1. Illustration of the Information Loss Metric

loss I(fX , f̂X) lies between 0 and 1; I(fX , f̂X) = 1 implies perfect recon-
struction of fX(x) and I(fX , f̂X) = 0 implies that there is no overlap between
fX(x) and its estimate f̂X(x) (see Figure 6.1). The proposed metric is univer-
sal in the sense that it can be applied to any reconstruction algorithm since it
depends only on the original density fX(x), and its estimate f̂X(x). We advo-
cate the use of a universal metric since it is independent of the particular data
mining task at hand, and therefore facilitates absolute comparisons between
disparate reconstruction algorithms.

6.5 Vulnerabilities of the Randomization Method

In the earlier section on privacy quantification, we illustrated an example in
which the reconstructed distribution on the data can be used in order to reduce
the privacy of the underlying data record. In general, a systematic approach
can be used to do this in multi-dimensional data sets with the use of spec-
tral filtering or PCA based techniques [11, 14]. The broad idea in techniques
such as PCA [11] is that the correlation structure in the original data can be
estimated fairly accurately (in larger data sets) even after noise addition. This
is because the noise is added to each dimension independently, and it does
not affect the expected covariance between different pairs of attributes. Only
the variance of the attributes is affected, and the change in variance can be esti-
mated accurately from the public information about the perturbing distribution.
To understand this point, consider the case when the noise variable Y1 is added
to the first column X1, and the noise variable Y2 is added to the second column
X2. Then, we have:

covariance((X1 + Y1) · (X2 + Y2)) = covariance(X1 ·X2)
variance((X1 + Y1)) = variance(X1) + variance(Y1)

Both results can be derived by expanding the expressions and using the fact
that the covariance between either of {X1,X2} with either of {Y1, Y2} is zero
and that covariance(Y1, Y2) = 0. This is because it is assumed that the noise
is added independently to each dimension. Therefore, the covariance of Y1

and Y2 with each other or the original data columns is zero. Furthermore, the
variances of Y1 and Y2 are known, since the corresponding distributions are
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publicly known. This means that the covariance matrix of the perturbed data
can be used to derive the covariance matrix of the original data by simply mod-
ifying the diagonal entries. Once the covariance matrix of the original data has
been estimated, one can then try to remove the noise in the data in such a way
that it fits the aggregate correlation structure of the data. For example, the data
is expected to be distributed along the eigenvectors of this covariance matrix,
so that the variance along these eigenvectors are given by the corresponding
eigenvalues. Since real data usually shows considerable skew in the eigenvalue
structure, it is often the case that the entire data set of a few hundred dimen-
sions can be captured on a plane containing less than 20 to 30 eigenvectors. In
such cases, it is apparent that the data points which deviate significantly from
this much lower dimensional plane need to be projected back onto it in order
to derive the original data. It has been shown in [11] that such an approach can
reconstruct the data quite accurately. Furthermore, we note that the accuracy
of this kind of approach increases with the size of the data set, and the relation-
ship of the intrinsic dimensionality to the full dimensionality of the data set.
A related method in [14] uses spectral filtering in order to reconstruct the data
accurately. It has been shown that such techniques can reduce the privacy of
the perturbation process significantly since the noise removal results in values
which are fairly close to their original values [11, 14]. The approach is particu-
larly effective in cases where the data is embedded in a much lower intrinsic di-
mensionality as compared to its true dimensionality. It has been shown in [11]
that the addition of noise along the eigenvectors of the data is safer from the
point of view of privacy-preservation. This is because the discrepancy between
the behavior of individual randomized points with the correlation structure of
the data may no longer be used for reconstruction. Some other discussions on
limiting breaches of privacy in the randomization method may be found in [7].

A second kind of adversarial attack is with the use of public informa-
tion [1]. While the PCA-approach is good for value-reconstruction, it does
not say much about identification of the subject of a record. Both value-
reconstruction and subject-identification are required in adversarial attacks.
For this purpose, it is possible to use public data in order to try to deter-
mine the identity of the subject. Consider a record X = (x1 . . . xd), which
is perturbed to Z = (z1 . . . zd). Then, since the distribution of the pertur-
bations is known, we can try to use a maximum likelihood fit of the poten-
tial perturbation of Z to a public record. Consider the publicly public record
W = (w1 . . . wd). Then, the potential perturbation of Z with respect to W is
given by (Z −W ) = (z1 − w1 . . . zd − wd). Each of these values (zi − wi)
should fit the distribution fY (y). The corresponding log-likelihood fit is given
by −

∑d
i=1 log(fy(zi − wi)). The higher the log-likelihood fit, the greater the

probability that the record W corresponds to X. If it is known that the public
data set always includes X, then the maximum likelihood fit can provide a high
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degree of certainty in identifying the correct record, especially in cases where
d is large. Another result in [10] suggests that the use of different perturbing
distributions can have significant effects on the privacy of the underlying data.
For example, the use of uniform perturbations is experimentally shown to be
more effective in the low dimensional case. However, for the high dimensional
case, gaussian perturbations are more effective. The work in [10] characterizes
the amount of perturbation required for a particular dimensionality with each
kind of perturbing distribution. For the case of gaussian distributions, the stan-
dard deviation of the perturbation needs to increases with the square-root of the
implicit dimensionality, and for the case of uniform distributions, the standard
deviation of the perturbation increases at least linearly with the implicit dimen-
sionality. In either case, both kinds of perturbations tend to become ineffective
with increasing dimensionality.

6.6 Randomization of Time Series Data Streams

The randomization approach is particularly well suited to privacy-
preserving data mining of streams, since the noise added to a given record
is independent of the rest of the data. However, streams provide a particularly
vulnerable target for adversarial attacks with the use of PCA based techniques
[11] because of the large volume of the data available for analysis. In addi-
tion, there are typically auto-correlations among the different components of
a series. Such auto-correlations can also be used for reconstruction purposes.
In [28], an interesting technique for randomization has been proposed which
uses the correlations and auto-correlations in different time series while decid-
ing the noise to be added to any particular value. The key idea for the case
of correlated noise is to use a similar idea as in [11] in order to use princi-
pal component analysis to determine the directions in which the second order
correlations are zero. These principal components are the eigenvectors of the
covariance matrix for the data. Then, the noise is added along these princi-
pal components (or eigenvectors) rather than the original space. This ensures
that it is extremely difficult to reconstruct the data using correlation analysis.
This approach is effective for the case of correlations across multiple streams,
but not auto-correlations within a single stream. In the case of dynamic auto-
correlations, we are dealing with the case when there are correlations within
a single stream at different local time instants. Such correlations can also be
removed by treating a window of the stream at one time, and performing the
principal components analysis on all the components of the window. Thus, we
are using essentially the same idea, except that we are using multiple time in-
stants of the sane stream to construct the co-variance matrix. The ideas can
in fact be combined when there are both correlations and auto-correlations by
using multiple time-instants from all streams, in order to create one covariance
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matrix. This will also capture correlations between different streams at slightly
displaced time instants. Such situations are are referred to as lag correlations,
and are quite common in data streams when slight changes in one stream pre-
cede changes in another because of the same cause.

In many cases, the directions of correlations may change over time. If a
static approach is used for randomization, then the changes in the correlation
structure will result in a risk of the data becoming exposed over time, when
the principal components have changed sufficiently. Therefore, the technique
in [28] is designed to dynamically adjust the directions of correlation as more
and more points from the data stream are received. It has been shown in [28]
that such an approach is more robust since the noise correlates with the stream
behavior, and it is more difficult to create effective adversarial attacks with the
use of correlation analysis techniques.

6.7 Multiplicative Noise for Randomization

The most common method of randomization is that of additive perturba-
tions. However, multiplicative perturbations can also be used to good effect for
privacy-preserving data mining. Many of these techniques derive their roots in
the work of [13] which shows how to use multi-dimensional projections in or-
der to reduce the dimensionality of the data. This technique preserves the inter-
record distances approximately, and therefore the transformed records can be
used in conjunction with a variety of distance-intensive data mining applica-
tions. In particular, the approach is discussed in detail in [20, 21], in which it is
shown how to use the method for privacy-preserving clustering. The technique
can also be applied to the problem of classification as discussed in [28]. We
note that both clustering and classification are locality specific problems, and
are therefore particularly well suited to the multiplicative perturbation tech-
nique. One key difference between the use of additive and multiplicative per-
turbations is that in the former case, we can reconstruct only aggregate distri-
butions, whereas in the latter case more record-specific information (eg. dis-
tances) are preserved. Therefore, the latter technique is often more friendly to
different kinds of data mining techniques.

Multiplicative perturbations can also be used for distributed privacy-
preserving data mining. Details can be found in [17]. In [17], a number of key
assumptions have also been discussed, which ensure that privacy is preserved.
These assumptions discuss the level of privacy when the attacker knows par-
tial characateristics about the algorithm used to perform the transformation, or
other statistics associated with the transformation. The effects of using special
kinds of data (eg. boolean data) are also discussed.

A number of techniques for multiplicative perturbation in the context of
masking census data may be found in [15]. A variation on this theme may



A Survey of Randomization Methods for Privacy-Preserving Data Mining 153

be implemented with the use of distance preserving fourier transforms, which
work effectively for a variety of cases [19].

6.7.1 Vulnerabilities of Multiplicative Randomization

As in the case of additive perturbations, multiplicative perturbations are not
entirely safe from adversarial attacks. In general, if the attacker has no prior
knowledge of the data, then it is relatively difficult to attack the privacy of the
transformation. However, with some prior knowledge, two kinds of attacks are
possible [18]:

Known Input-Output Attack: In this case, the attacker knows some
linearly independent collection of records, and their corresponding per-
turbed version. In such cases, linear algebra techniques can be used
to reverse-engineer the nature of the privacy preserving transformation.
The number of records required depends upon the dimensionality of the
data and the available records. The probability of a privacy breach with
a given sample size is characterized in [18].

Known Sample Attack: In this case, the attacker has a collection of
independent data samples from the same distribution from which the
original data was drawn. In such cases, principal component analysis
techniques can be used in order to reconstruct the behavior of the original
data. Then, one can try to determine how the current random projection
of the data relates to this principal component analysis. This can provide
an approximate idea of the corresponding geometric transformation.

One observation is that both the above mentioned techniques require much
more samples (or background knowledge) to work effectively in the high di-
mensional case. Thus, random projection techniques should generally be used
for the case of high dimensional data, and only a smaller number of projections
should be retained in order to preserve privacy. Thus, as with the additive per-
turbation technique, the multiplicative technique is not completely secure from
attacks. A key research direction is to use a combination of additive and mul-
tiplicative perturbation techniques in order to construct more robust privacy-
preservation techniques.

6.7.2 Sketch Based Randomization

A closely related case to the use of multiplicative perturbations is the use
of sketch-based randomization. In sketch based randomization [2], we use
sketches in order to construct the randomization from the data set. We note
that sketches are a special case of multiplicative perturbation techniques in the
sense that the individual components of the multiplicative vector are drawn
from {−1,+1}. Sketches are particularly useful for the case of sparse data
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such as text or binary data in which most components are zero and only a few
components are non-zero. Furthermore, sketches are designed in such a way
that many aggregate properties such as the dot product can be estimate very
accurately from a small number of constant components. Since text and mar-
ket basket data are both high-dimensional, the use of random projections is
particularly effective from the point of view of adversarial attacks. In [11], it
as been shown how the method of sketches can be used in order to perform
effective privacy-preserving data mining of text and market basket data.

It is possible to use sketches to create a scheme which is similar to random-
ization in the sense that the transformation of a given record can be performed
at data collection time. It is possible to control the anonymization in such a
way so that the absolute variance of the randomization scheme is preserved. If
desired, it is also possible to use sketches to add noise so that records cannot
be distinguished easily from their k-nearest neighbors. This is a similar model
to the k-anonymity model, but comes at the expense of using a trusted server
for anonymization.

6.8 Conclusions and Summary

In this chapter, we discussed the randomization method for privacy-
preserving data mining. We discussed a number of different algorithms for
randomization, such as the Bayes method and the EM reconstruction tech-
nique. The EM-reconstruction algorithm also exhibits a number of optimality
properties with respect to its convergence to the maximum likelihood estimate
of the data distribution. We also discussed a number of variants of the pertur-
bation technique such as the method of multiplicative perturbations. A number
of applications of the randomization method were discussed over a variety of
data mining problems.
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Abstract The major challenge of data perturbation is to achieve the desired balance be-
tween the level of privacy guarantee and the level of data utility. Data privacy
and data utility are commonly considered as a pair of conflicting requirements
in privacy-preserving data mining systems and applications. Multiplicative per-
turbation algorithms aim at improving data privacy while maintaining the de-
sired level of data utility by selectively preserving the mining task and model
specific information during the data perturbation process. By preserving the task
and model specific information, a set of “transformation-invariant data mining
models” can be applied to the perturbed data directly, achieving the required
model accuracy. Often a multiplicative perturbation algorithm may find multiple
data transformations that preserve the required data utility. Thus the next major
challenge is to find a good transformation that provides a satisfactory level of
privacy guarantee. In this chapter, we review three representative multiplicative
perturbation methods: rotation perturbation, projection perturbation, and geo-
metric perturbation, and discuss the technical issues and research challenges.
We first describe the mining task and model specific information for a class of
data mining models, and the transformations that can (approximately) preserve
the information. Then we discuss the design of appropriate privacy evaluation
models for multiplicative perturbations, and give an overview of how we use the
privacy evaluation model to measure the level of privacy guarantee in the context
of different types of attacks.

Keywords: Multiplicative perturbation, random projection, sketches.
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7.1 Introduction

Data perturbation refers to a data transformation process typically per-
formed by the data owners before publishing their data. The goal of perform-
ing such data transformation is two-fold. On one hand, the data owners want to
change the data in a certain way in order to disguise the sensitive information
contained in the published datasets, and on the other hand, the data owners
want the transformation to best preserve those domain-specific data properties
that are critical for building meaningful data mining models, thus maintaining
mining task specific data utility of the published datasets.

Data perturbation techniques are one of the most popular models for pri-
vacy preserving data mining. It is especially useful for applications where data
owners want to participate in cooperative mining but at the same time want to
prevent the leakage of privacy-sensitive information in their published datasets.
Typical examples include publishing micro data for research purpose or out-
sourcing the data to the third party data mining service providers. Several per-
turbation techniques have been proposed to date [4–1, 8, 3, 13, 14, 26, 35],
among which the most popular one is the randomization approach that focuses
on single-dimensional perturbation and assumes independency between data
columns [4, 13]. Only recently, the data management community has shown
some development on multi-dimensional data perturbation techniques, such as
the condensation approach using k-nearest neighbor (kNN) method [1], the
multi-dimensional K-anonymization using kd-tree [24], and the multiplica-
tive data perturbation techniques [31, 8, 28, 9]. Compared to single-column-
based data perturbation techniques that assume data columns to be independent
and focus on developing single-dimensional perturbation techniques, multi-
dimensional data perturbation aims at perturbing the data while preserving the
multi-dimensional information with respect to inter-column dependency and
distribution.

In this chapter, we will discuss multiplicative data perturbations. This cate-
gory includes three types of particular perturbation techniques: Rotation Per-
turbation, Projection Perturbation, and Geometric Perturbation. Comparing to
other multi-dimensional data perturbation methods, these perturbations exhibit
unique properties for privacy preserving data classification and data cluster-
ing. They all preserve (or approximately preserve) distance or inner product,
which are important to many classification and clustering models. As a result,
the classification and clustering mining models based on the perturbed data
through multiplicative data perturbation show similar accuracy to those based
on the original data. The main challenge for multiplicative data perturbations
thus is how to maximize the desired data privacy. In contrast, many other data
perturbation techniques focus on seeking for the better trade-off between the
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level of data utility and accuracy preserved and the level of data privacy guar-
anteed.

7.1.1 Data Privacy vs. Data Utility

Perturbation techniques are often evaluated with two basic metrics: level of
privacy guarantee and level of model-specific data utility preserved, which is
often measured by the loss of accuracy for data classification and data clus-
tering. An ultimate goal for all data perturbation algorithms is to optimize the
data transformation process by maximizing both data privacy and data utility
achieved. However, the two metrics are typically representing two conflicting
goals in many existing perturbation techniques [4, 3, 12–1].

Data privacy is commonly measured by the difficulty level in estimating the
original data from the perturbed data. Given a data perturbation technique, the
higher level of difficulty in which the original values can be estimated from
the perturbed data, the higher level of data privacy this technique supports. In
[4], the variance of the added random noise is used as the level of difficulty for
estimating the original values as traditionally used in statistical data distortion
[23]. However, recent research [12, 3] reveals that variance of the noise is not
an effective indicator for random noise addition. In addition, [22] shows that
the level of data privacy guaranteed is also bounded to the types of special
attacks that can reconstruct the original data from the perturbed data and noise
distribution. k-Anonymization is another popular way of measuring the level
of privacy, originally proposed for relational databases [34], by enabling the
effective estimation of the original data record to a k-record group, assuming
that each record in the k-record group is equally protected. However, recent
study [29] shows that the privacy evaluation of k-Anonymized records is far
more complicated than this simple k-anonymization assumption.

Data utility typically refers to the amount of mining-task/model specific crit-
ical information preserved about the dataset after perturbation. Different data
mining tasks, such as classification mining task vs. association rule mining, or
different models for the same task, such as decision tree model vs. k-Nearest-
Neighbor (kNN) classifier for classification, typically utilize different sets of
data properties about the dataset. For example, the task of building decision
trees primarily concerns the column distribution. Hence, the quality of pre-
serving column distribution should be the key data utility to be maintained
in perturbation techniques for decision tree model, as shown in the random-
ization approach [4]. In comparison, the kNN model relies heavily on the
distance relationship, which is quite different from the column distribution.
Furthermore, such task/model-specific information is often multidimensional.
Many classification models typically concern the multidimensional informa-
tion rather than single column distribution. Multi-dimensional perturbation
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techniques with the focus on preserving the model-specific multidimensional
information will be more effective for these models.

It is also interesting to note that the data privacy metric and the data utility
metric are often contradictory rather than complimentary in many existing data
perturbation techniques [4, 3, 12–1]. Typically data perturbation algorithms
that aim at maximizing the level of data privacy often have to bear with higher
information loss. The intrinsic correlation between the data privacy and the
data utility raises a number of important issues regarding how to find a right
balance between the two measures.

In summary, we identify three important design principles for multiplicative
data perturbations. First, preserving the mining task and model-specific data
properties is critical for providing better quality guarantee on both privacy and
model accuracy. Second, it is beneficial if data perturbation can effectively pre-
serve the task/model-specific data utility information, and avoid the need for
developing special mining algorithms that can use the perturbed data as ran-
dom noise addition requires. Third and most importantly, if one can develop a
data perturbation technique that does not induce any lost of mining-task/model
specific data utility, this will enable us to focus on optimizing perturbation
algorithms by maximizing the level of data privacy against attacks, which ulti-
mately leads to better overall quality of both data privacy and data utility.

7.1.2 Outline

In the remaining of the chapter we will first give the definition of multi-
plicative perturbation in Section 7.2. Specifically, we categorize multiplicative
perturbations into three categories: rotation perturbation, projection perturba-
tion, and geometric perturbation. Rotation perturbation is often criticized not
resilient to attacks, while geometric perturbation is a direct enhancement to
rotation perturbation by adding more components, such as translation pertur-
bation and noise addition, to the original rotation perturbation. Both rotation
perturbation and geometric Perturbation keep the dimensionality of dataset un-
changed, while projection perturbation reduces the dimensionality, and thus
incurs more errors in distance or inner product calculation.

One of the unique features that distinguish multiplicative perturbations from
other perturbations is that it provides high guarantee on data utility in terms of
data classification and clustering. Since many data mining models utilize dis-
tance or inner product, as long as such information is preserved, models trained
on perturbed data will have similar accuracy to those trained on the original
data. In Section 7.3, we define transformation-invariant classifiers and cluster-
ing models, the representative models to which multiplicative perturbations are
applied.
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Evaluation of privacy guarantee for perturbations is an important component
in the analysis of multiplicative perturbation. In Section 7.4, we review a set
of privacy metrics specifically designed for multiplicative perturbations. We
argue that in multidimensional perturbation, the values of multiple columns
should be perturbed together and the evaluation metrics should be unified for
all columns. We also describe a general framework for privacy evaluation of
multiplicative data perturbation by incorporating attack analysis.

We argue that attack analysis is a necessary step in order to accurately eval-
uate the privacy guarantee of any particular perturbation. In Section 7.5, we
review a selection of known attacks to multiplicative perturbations based on
different levels of attack’s knowledge about the original dataset. By incorpo-
rating attack analysis under the general framework of privacy evaluation, a ran-
domized perturbation optimization is developed and described in Section 7.5.5.

7.2 Definition of Multiplicative Perturbation

We will first describe the notations used in this chapter, and then describe
three categories of multiplicative perturbations and their basic characteristics.

7.2.1 Notations

In privacy-preserving data mining, either a portion of or the entire data set will
be perturbed and then exported. For example, in classification, the training data
is exported and the testing data might be exported, too, while in clustering, the
entire data for clustering is exported. Suppose that X is the exported dataset
consisting of N data rows (records) and d columns (attributes, or dimensions).
For presentation convenience, we use Xd×N , X = [x1 . . .xN ], to denote the
dataset, where a column xi (1 ≤ i ≤ N ) is a data tuple, representing a vector
in the real space R

d. In classification, each of such data tuples xi also belongs
to a predefined class, which is indicated by the class label attribute yi. The
class label can be nominal (or continuous for regression), and is public, i.e.,
privacy-insensitive.

For clear presentation, we can also consider X is a sample dataset from the
d-dimension random vector X = [X1,X2, . . . ,Xd]T . As a convention, we
use bold lower case to represent vectors, bold upper case to represent random
variables, and upper case to represent matrices or datasets.

7.2.2 Rotation Perturbation

This category does not cover traditional “rotations” only, but literally, it in-
cludes all orthonormal perturbations. A rotation perturbation is defined as
following G(X):

G(X) = RX
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The matrix Rd×d is an orthonormal matrix [32], which has following proper-
ties. Let RT represent the transpose of R, rij represent the (i, j) element of
R, and I be the identity matrix. The rows and columns of R are orthonormal,
i.e., for any column j,

∑d
i=1 r

2
ij = 1, and for any two columns j and k, j �= k,∑d

i=1 rijrik = 0. A similar property is held for rows. This definition infers that

RTR = RRT = I

It also implies that by changing the order of the rows or columns of an orthog-
onal matrix, the resulting matrix is still orthogonal. A random orthonormal
matrix can be efficiently generated following the Haar distribution [33].

A key feature of rotation transformation is that it preserve the Euclidean dis-
tance of multi-dimensional points during the transformation. Let xT represent
the transpose of vector x, and ‖x‖ = xTx represent the length of a vector x.
By the definition of rotation matrix, we have

‖Rx‖ = ‖x‖

Similarly, inner product is also invariant to rotation. Let 〈x,y〉 = xTy repre-
sent the inner product of x and y. We have

〈Rx, Ry〉 = xTRTRy = 〈x,y〉

In general, rotation also preserves the geometric shapes such as hyperplane
and hyper curved surface in the multidimensional space [7]. We observed that
since many classifiers look for geometric decision boundary, such as hyper-
plane and hyper surface, rotation transformation will preserve the most critical
information for many classification models.

There are two ways to apply rotation perturbation. We can either apply it to
the whole dataset X [8], or group columns to pairs and apply different rotation
perturbations to different pairs of columns [31].

7.2.3 Projection Perturbation

Projection perturbation refers to the technique of projecting a set of data points
from a high-dimensional space to a randomly chosen lower-dimensional sub-
space. Let Pk×d be a projection matrix.

G(X) = PX

Why can it also be used for perturbation? The rationale is based on the
Johnson-Lindenstrauss Lemma [21].

Theorem 1 For any 0 < ε < 1 and any integer n, let k be a positive integer
such that k ≥ 4 lnn

ε2/2−ε3/3 . Then, for any set S of n data points in d dimensional
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space R
d, there is a map f : R

d → R
k such that, for all x ∈ S,

(1− ε)‖x− x‖2 ≤ ‖f(x)− f(x)‖2 ≤ (1 + ε)‖x− x‖2

where ‖ · ‖ denotes the vector 2-norm.

This lemma shows that any set of n points in d-dimensional Euclidean space
could be embedded into a O( logn

ε2 ) -dimensional space, such that the pair-wise
distance of any two points are maintained with small error. With large n (large
dataset) and small ε (high accuracy in distance preservation), the ideal dimen-
sionality might be large and may not be practical for the perturbation purpose.
Furthermore, although this lemma implies that we can always find one good
projection that approximately preserves distances for a particular dataset, the
geometric decision boundary might still be distorted and thus the model ac-
curacy is reduced. Due to the different distributions of dataset and particular
properties of data mining models, it is challenging to develop an algorithm that
can find random projections that preserves model accuracy well for any given
dataset.

In paper [28] a method is used to generate random projection matrix. The
process can be briefly described as follows. Let P be the projection matrix.
Each entry ri,j of P is independent and identically chosen from some distrib-
ution with mean zero and variance σ2. A row-wise projection is defined as

G(X) =
1√
kσ
PX

Let x and y be two points in the original space, and u and v be their projec-
tions. The statistical properties of inner product under projection perturbation
can be shown as follows.

E[utv − xty] = 0

and

V ar[utv − xty] =
1
k
(
∑
i

x2
i

∑
i

y2
i + (

∑
i

xiyi)2)

Since x and y are not normalized by rows, but by columns in practice, with
large dimensionality d and relatively small k, the variance is substantial. Simi-
larly, the conclusion can be extended to the distance relationship. Therefore,
projection perturbation does not strictly guarantee the preservation of dis-
tance/inner product as rotation or geometric perturbation does, which may sig-
nificantly downgrade the model accuracy.
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7.2.4 Sketch-based Approach

Sketch-based approach is primarily proposed to perturb high-dimensional
sparse data [2], such as the datasets in text mining and market basket mining.
A sketch of the original record x = (x1, . . . , xd) is defined by a r dimensional
vector s = (s1, . . . , sr), r � d, where

sj =
d∑
i=1

xirij

The random variable rij is drawn from {-1,+1} with a mean of 0, and is gen-
erated from a pseudo-random number generator [5], which produces 4-wise
independent values for the variable rij .

Note that the sketch based approach defers from projection perturbation
with the following two features. First, the number of components for each
sketch, i.e., r, can vary across different records, and is carefully controlled so
as to provide a uniform measure of privacy guarantee across different records.
Second, for each record, rij is different − there is no fixed projection matrix
across records.

The sketch based approach has a few statistical properties that enable ap-
proximate calculation of dot product of the original data records with their
sketches. Let s and t with the same number of components r, be the sketches
of the original records x and y, respectively. The expected dot product x and
y is given by the following.

E[〈x,y〉] = 〈s, t〉/r

and the variance of the above estimation is determined by the few non-zeros
entries in the sparse original vectors

V ar(〈s, t〉/r) = (
d∑
i=1

d∑
l=1

x2
i y

2
l − (

d∑
i=1

xiyi)2)/r (7.1)

On the other side, the original value xk in the vector x can also be esti-
mated by privacy attackers, the precision of which is determined by its variance
(
∑d

i=1 x
2
i−x2

k)/r, k = 1 . . . d. The larger the variance is, the better the original
value is protected. Therefore, by decreasing r the level of privacy guarantee is
possibly increased. However, the precision of dot-product estimation (Eq. 7.1)
is decreased. This typical tradeoff has to be carefully controlled in practice [2].

7.2.5 Geometric Perturbation

Geometric perturbation is an enhancement to rotation perturbation by incor-
porating additional components such as random translation perturbation and
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noise addition to the basic form of multiplicative perturbation Y = R×X. We
show that by adding random translation perturbation and noise addition, Geo-
metric perturbation exhibits more robustness in countering attacks than simple
rotation based perturbation [9]. Let td×1 represent a random vector. We define
a translation matrix as follows.

Definition 1 Ψ is a translation matrix if Ψ = [t, t, . . . , t]d×n, i.e., Ψd×n =
td×11TN×1.

where 1N×1 is the vector of N ’1’s. Let ∆d×N be a random noise matrix,
where each element is Independently and Identically Distributed (iid) variable
εij , e.g., a Gaussian noise N(0, σ2).

The definition of geometric perturbation is given by a function G(X),

G(X) = RX + Ψ + ∆

Clearly, translation perturbation does not change distance, as for any pair of
points x and y, ‖(x+t)−(y+t)‖ = ‖x−y‖. Comparing with rotation pertur-
bation, it protects the rotation center from attacks and adds additional difficulty
to ICA-based attacks. However, translation perturbation does not preserve in-
ner product.

In [9], it shows that by adding an appropriate level of noise ∆, one can effec-
tively prevent knowledgeable attackers from distance-based data reconstruc-
tion, since noise addition perturbs distances, which protects perturbation from
distance-inference attacks. For example, the experiments in [9] shows that a
Gaussian noise N(0, σ2) is effective to counter the distance-inference attacks.
Although noise addition prevents from fully preserving distance information,
a low intensity noise will not change class boundary or cluster membership
much.

In addition, the noise component is optional − if the data owner makes sure
that the original data records are secure and no people except the data owner
knows any record in the original dataset, the noise component can be removed
from geometric perturbation.

7.3 Transformation Invariant Data Mining Models

By using multiplicative perturbation algorithms, we can mine the the perturbed
data directly with a set of existing “transformation-invariant data mining mod-
els”, instead of developing new data mining algorithms to mine the perturbed
data [4]. In this section, we will define the concept of transformation-invariant
mining models with the example of “transformation-invariant classifiers”, and
then we extend our discussion to the transformation-invariant models in data
classification and data clustering.



166 Privacy-Preserving Data Mining: Models and Algorithms

7.3.1 Definition of Transformation Invariant Models

Generally speaking, a transformation invariant model, if trained or mined on
the transformed data, performs as good as the model based on the original data.
We take the classification problem as an example. A classification problem is
also a function approximation problem − classifiers are the functions learned
from the training data [16]. In the following discussion, we use functions to
represent classifiers. Let f̂X represent a classifier f̂ trained with dataset X
and f̂X(Y ) be the classification result on the dataset Y . Let T (X) be any
transformation function, which transforms the dataset X to another dataset
XT . We use Err(f̂X(Y )) to denote the error rate of classifier f̂X on testing
data Y and let ε be some small real number, |ε| < 1.

Definition 2 A classifier f̂ is invariant to a transformation T if and only if
Err(f̂X(Y )) = Err(f̂T (X)(T (Y )))+ε for any training dataset X and testing
dataset Y .

With the strict condition f̂X(Y ) ≡ f̂T (X)(T (Y )), we get the Proposition 2.

Proposition 2 In particular, if f̂X(Y ) ≡ f̂T (X)(T (Y )) is satisfied for any
training dataset X and testing dataset Y , the classifier is invariant to the trans-
formation T (X).

For instance, if a classifier f̂ is invariant to rotation transformation, we call it
rotation-invariant classifier. Similar definition applies to translation-invariant
classifier.

In subsequent sections, we will list some examples of transformation invari-
ant models for classification and clustering. Some detailed proofs can be found
in [7].

7.3.2 Transformation-Invariant Classification Models

kNN Classifiers and Kernel Methods
A k-Nearest-Neighbor (kNN) classifier determines the class label of a point
by looking at the labels of its k nearest neighbors in the training dataset and
classifies the point to the class that most of its neighbors belong to. Since the
distances between any points are not changed with rotation and translation
transformation, the k nearest neighbors are not changed and thus the classifi-
cation result is not changed either.

Since kNN classifier is a special case of kernel methods, we can also ex-
tend our conclusion to kernel methods. Here, we refer kernel methods to the
traditional local methods [16]. In general, since the kernels are dependent on
the local points, the locality of which is evaluated by distance, transformations
that preserve distance will make kernel methods invariant.
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Support Vector Machines
Support Vector Machine (SVM) classifier also utilizes kernel functions in train-
ing and classification. However, it has an explicit training procedure, which
differentiates itself from the traditional kernel methods we just discussed. We
can use a two-step procedure to prove that a SVM classifier is invariant to a
transformation. 1) Training with the transformed dataset generates the same
set of model parameters; 2) the classification function with the model parame-
ters is also invariant to the transformation. The detailed proof will involve the
quadratic optimization procedure for SVM. We have demonstrated that SVM
classifiers with typical kernels are invariant to rotation transformation [7]. It
turns out that if a transformation makes the kernel invariant, then the SVM
classifier is also invariant to the transformation.

There are the three popular choices for the kernels discussed in the SVM
literature [10, 16].

d-th degree polynomial: K(x,x′) = (1 + 〈x,x′〉)d,
radial basis: K(x,x′) = exp(−‖x− x′‖/c),

neural network: K(x,x′) = tanh(κ1〈x,x′〉+ κ2)

Apparently, all of the three are invariant to rotation transformation. Since trans-
lation does not preserve inner product, it is not straightforward to prove that
SVMs with polynomial and neural network kernels are invariant to translation
perturbation. However, experiments [9] showed that these classifiers are also
invariant to translation perturbation.
Linear Classifiers
Linear classification models are popular methods due to their simplicity. In
linear classification models, the classification boundary is modeled as a hy-
perplane, which is clearly a geometric concept. It is easy to understand that
distance-preserving transformations, such as rotation and translation, will still
make the classes separated if they are originally separated. There is also a de-
tailed proof showing that a typical linear classifier, perceptron, is invariant to
rotation transformation [7].

7.3.3 Transformation-Invariant Clustering Models

Most clustering models are based on Euclidean distance such as the popular
k-means algorithm [16]. Many are focused on the density property, which is
derived from Euclidean distance, such as DBSCAN [11], DENCLUE [17] and
OPTICS [6]. All of these clustering models are invariant to Euclidean-distance-
preserving transformations, such as rotation and translation.

There are other clustering models, which employ different distance metrics
[19], such as linkage based clustering and cosine-distance based clustering. As
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long as we can find a transformation preserving the particular distance metric,
the corresponding clustering model will be invariant to this transformation.

7.4 Privacy Evaluation for Multiplicative Perturbation

The goal of data perturbation is twofold: preserving the accuracy of spe-
cific data mining models (data utility), and preserving the privacy of original
data (data privacy). The discussion about transformation-invariant data mining
models has shown that multiplicative perturbations can theoretically guarantee
zero-loss of accuracy for a number of data mining models. The challenge is to
find one that maximizes the privacy guarantee in terms of potential attacks.

We dedicate this section to discuss how good a multiplicative perturbation
is in terms of preserving privacy under a set of privacy attacks. We first de-
fine a multi-column (or multidimensional) privacy measure for evaluating the
privacy quality of a multiplicative perturbation over a given dataset. Then, we
introduce a framework of privacy evaluation, which can incorporate different
attack analysis into the evaluation of privacy guarantee. We show that using
this framework, we can employ certain optimization methods (Section 7.5.5)
to find a good perturbation among a bunch of randomly generated perturba-
tions, which is locally optimal for the given dataset.

7.4.1 A Conceptual Multidimensional Privacy Evaluation
Model

In practice, different columns (or dimensions, or attributes) may have differ-
ent privacy concern. Therefore, we advocate that the general-purpose privacy
metric Φ defined for an entire dataset should be based on column privacy
metric, rather than point-based privacy metrics, such distance-based metrics.
A conceptual privacy model is defined as Φ = Φ(p,w), where p denotes the
column privacy metric vector p = [p1, p2, . . . , pd] of a given dataset X, and
w = (w1, w2, . . . , wd) denote privacy weights associated to the d columns
respectively. The column privacy pi itself is defined by a function, which we
will discuss later. In summary, the model suggests that the column-wise pri-
vacy metric should be calculated first and then use Φ to generate a composite
metric. We will first describe some basic designs to the components in function
Φ. Then, we dedicate another subsection to the concrete design of the function
for generating p.

The first design idea is to take the column importance into unification of dif-
ferent column privacy. Intuitively, the more important the column is, the higher
level of privacy guarantee will be required for the perturbed data column. Since
w is used to denote the importance of columns in terms of preserving privacy,
we use pi/wi to represent the weighted column privacy of column i.
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The second concept is the minimum privacy guarantee and the average pri-
vacy guarantee among all columns. Normally, when we measure the privacy
guarantee of a multidimensional perturbation, we need to pay more attention
to the column that has the lowest weighted column privacy, because such a
column could become the weakest link of privacy protection. Hence, the first
composition function is the minimum privacy guarantee.

Φ1 =
d

min
i=1
{pi/wi}

Similarly, the average privacy guarantee of the multi-column perturbation is
defined by Φ2 = 1

d

∑d
i=1 pi/wi, which could be another interesting measure.

Note that these two functions assume that pi should be comparable crossing
columns, which is one of the important requirement in the following discus-
sion.

7.4.2 Variance of Difference as Column Privacy Metric

After defining the conceptual privacy model, we move to the design of
column-wise privacy metric. Intuitively, for a data perturbation approach, the
quality of preserved privacy can be understood as the difficulty level of esti-
mating the original data from the perturbed data. Therefore, how statistically
different the estimated data is from the original data could be an intuitive mea-
sure. We use a variance-of-difference (VoD) based approach, which has a sim-
ilar form to the naive variance-based evaluation [4], but with very different
semantics.

Let the difference between the original column data and the estimated data
be a random variable Di. Without any knowledge about the original data, the
mean and variance of the difference present the quality of the estimation. The
perfect estimation will have zero mean and variance. Since the mean of differ-
ence, i.e., the bias of estimation, can be easily removed if the attacker knows
the original distribution of column, we use only the variance of the difference
(VoD) as the primary metric to determine the level of difficulty in estimating
the original data.
V oD is formally defined as follows. Let Xi be a random variable represent-

ing the column i, X′
i be the estimated result1 of Xi, and Di be Di = X′

i−Xi.
Let E[Di] and V ar(Di) denote the mean and the variance of D respectively.
Then V oD for column i is V ar(Di). Let an estimate of certain value, say xi, be
x′i, σ =

√
V ar(Di), and c denote confidence parameter depending on both the

distribution of Di and the corresponding confidence level. The corresponding

1It would not be appropriate to use only the perturbed data for privacy estimation, if we consider the
potential attacks.
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original value xi in Xi is located in the range defined below:

[x′i −E[Di]− cσ, x′i − E[Di] + cσ]

By removing the effect of E[Di], the width of the estimation range, 2cσ,
presents the quality of estimating the original value, which proportionally re-
flects the level of privacy guarantee. The smaller range means better estima-
tion, i.e., a lower level of privacy guarantee. For simplicity, we often use σ to
represent the privacy level.
V oD only defines the privacy guarantee for a single column. However, we

usually need to evaluate the privacy level of all perturbed columns together
if a multiplicative perturbation is applied. The single-column V oD does not
work across different columns since different column value ranges may result
in very different V oDs. For example, the V oD of age may be much smaller
than V oD of salary. Therefore, a same amount of V oD is not equally effective
for columns with different value ranges. One straightforward method to unify
the different value ranges is via normalization over the original dataset and
the perturbed dataset. Normalization can be done with various ways, such as
max/min normalization or standardized normalization [30]. After normaliza-
tion, the level of privacy guarantee for each column should be approximately
comparable. Note that normalization after V oD calculation, such as relative
variance V oDi/V ar(Xi) is not appropriate, since small V ar(Xi) will inap-
propriately increase the value.

7.4.3 Incorporating Attack Evaluation

Privacy evaluation has to consider the resilience to attacks as well. The V oD
evaluation has a unique advantage in incorporating attack analysis in privacy
evaluation. In general, let X be the normalized original dataset, P be the per-
turbed dataset, and O be the estimated/observed dataset through “attack simu-
lation”. We can calculate V oD(Xi,Oi) for the column i in terms of different
attacks. For example, the attacks to rotation perturbation can be evaluated by
following steps. Details will be discussed shortly.

1 Naive Estimation: O ≡ P ;

2 ICA-based Reconstruction: Independent Component Analysis (ICA) is
used to estimate R. Let R̂ be the estimate of R, and the estimated data
R̂−1P aligned with the known column statistics to get the dataset O;

3 Distance-based Inference: knowing a set of special points in X that can
be mapped to certain set of points in P , so that the mapping helps to get
the estimated rotation R̂, and then O = R̂−1P .
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7.4.4 Other Metrics

Other metrics include distance-based risk of privacy breach, which was used
to evaluate the level of privacy breach when a few pairs of original data points
and their maps in perturbed data are known [27]. Assume x̂ is the estimate of
an original point x. An ε-privacy breach occurs if

‖x̂− x‖ ≤ ε‖x‖

This roughly represents that, if the estimate is within an arbitrarily small local
area around the original point, then the risk of privacy breach is high. How-
ever, even though the estimated point is distant from the original point, the
estimation can still be effective − large distance may only be determined by
the difference between a few columns, while other columns may be very simi-
lar. That is the reason why we should consider column-wise privacy metrics.

7.5 Attack Resilient Multiplicative Perturbations

Attack analysis is the essential component in privacy evaluation of multi-
plicative perturbation. The previous section has set up an evaluation model
that can conveniently incorporate attack analysis through “attack simulation”.
Namely, privacy attacks to multiplicative perturbations are the methods for es-
timating original points (or values of particular columns) from the perturbed
data, with certain level of additional knowledge about the original data. As
the perturbed data goes public, the level of effectiveness is solely determined
by the additional knowledge the attacker may have. In the following sections,
we describe some potential inference attacks to multiplicative perturbations,
primarily focused on rotation perturbation.

These attacks are organized according to the different levels of knowledge
that an attacker may have. We hope that, from this section the interested read-
ers will have more ideas about the attacks to general multiplicative perturba-
tions and are able to apply appropriate tools to counter attacks. Most content
of this section can be found in the paper [9], and we will just present the basic
ideas here.

7.5.1 Naive Estimation to Rotation Perturbation

When the attacker knows no additional information, we call attacks under
such circumstance as naive estimation, which simply estimates the original
data from perturbed data. In this case, an appropriate rotation perturbation is
enough to achieve high level of privacy guarantee. With the V oD metric over
the normalized data, we can formally analyze the privacy guarantee provided
by the rotation perturbed data. Let X be the normalized dataset, X ′ be the
rotation of X, and Id be the d-dimensional identity matrix. VoD of column i
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can be evaluated by

Cov(X′ −X)(i,i) = Cov(RX−X)(i,i) (7.2)

= ((R − Id)Cov(X)(R − Id)T )(i,i)

Let rij represent the element (i, j) in the matrix R, and cij be the element
(i, j) in the covariance matrix of X. The VoD for ith column is computed as
follows.

Cov(X′ −X)(i,i) =
d∑
j=1

d∑
k=1

rijrikckj − 2
d∑
j=1

rijcij + cii (7.3)

When the random rotation matrix is generated following the Haar distribu-
tion, a considerable number of matrix entries are approximately independent
normal distribution N(0, 1/d) [20]. For simplicity and easy understanding, we
assume that all entries in random rotation matrix approximately follow inde-
pendent normal distribution N(0, 1/d). Therefore, random rotations will make
V oDi changing around the mean value cii as shown in the following equation.

E[V oDi] ∼
d∑
j=1

d∑
k=1

E[rij ]E[rik]ckj − 2
d∑
j=1

E[rij ]cij + cii = cii

It means that the original column variance could substantially influence the
result of random rotation. However, the expectation of VoDs is not the only
factor determining the final privacy guarantee. We should also look at the vari-
ance of VoDs. If the variance of V oDs is considerably large, we still get great
chance to find a rotation with high VoDs in a set of sample random rotations,
and the larger the V ar(V oDi) is, the more likely the randomly generated ro-
tation matrices can provide a high privacy level. With the approximately inde-
pendency assumption, we have

V ar(V oDi) ∼
d∑
i=1

d∑
j=1

V ar(rij)V ar(rik)c2ij

+4
d∑
j=1

V ar(rij)c2ij

∼ O(1/d2
d∑
i=1

d∑
j=1

c2ij + 4/d
d∑
j=1

c2ij).

The above result shows that V ar(V oDi) seems approximately related to the
average of the squared covariance entries, with more influence from the row
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i of covariance matrix. Therefore, by looking at the covariance matrix of the
original dataset and estimate the V ar(V oDi), we can estimate the chance of
finding a random rotation that can give high privacy guarantee.

Rotation Center. The basic rotation perturbation uses the origin as the ro-
tation center. Therefore, the points around the origin will be still close to the
origin after the perturbation, which leads to weaker privacy protection over
these points. The attack to rotation center can be regarded as another kind of
naive estimation. This problem is addressed by random translation perturba-
tion, which hides the rotation center. More sophisticated attacks to the combi-
nation of rotation and translation would have to utilize the ICA technique with
sufficient additional knowledge, which will be described shortly.

7.5.2 ICA-Based Attacks

In this section, we introduce a high-level attack based on data reconstruc-
tion. The basic method for reconstructing X from the perturbed data RX
would be Independent Component Analysis (ICA) technique, derived from the
research of signal processing [18].

The ICA technique can be applied to estimate the independent components
(the row vectors in our definition) of the original dataset X from the perturbed
data, if the following conditions are satisfied:

1 The source row vectors are independent;

2 All source row vectors should be non-Gaussian with possible exception
of one row;

3 The number of observed row vectors must be at least as large as the
independent source row vectors.

4 The transformation matrix R must be of full column rank.

For rotation matrices, the 3rd and 4th conditions are always satisfied. How-
ever, the first two conditions although practical for signal processing, are of-
ten not satisfied in data classification or clustering. Furthermore, there are a
few more difficulties in applying direct ICA-based attack. First of all, even
ICA can be done successfully, the order of the original independent compo-
nents cannot be preserved or determined through only ICA [18]. Formally, any
permutation matrix P and its inverse P−1 can be substituted in the model to
give X ′ = RP−1PX. ICA could possibly give the estimate for some permu-
tated source PX. Thus, we cannot identify the particular column without more
knowledge about the original data. Second, even if the ordering of columns can
be identified, ICA reconstruction does not guarantee to preserve the variance
of the original signal − the estimated signal is often scaled up but we do not
know how much the scaling is unless we know the original value range of the
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column. Therefore, without knowing the basic statistics of original columns,
ICA-attack is not effective.

However, such basic column statistics are not impossible to get in some
cases. Now, we assume that attackers know the basic statistics, including the
column max/min values and the probability density function (PDF), or empir-
ical PDF of each column. An enhanced ICA-based attack can be described as
follows.

1 Run ICA algorithm to get a reconstructed dataset;

2 For each pair of (Oi, Xj), where Oi is a reconstructed column and Xi

is an original column, scale Oi with the max/min values of Xj ;

3 Compare the PDFs of the scaled Oi and Xj to find the closest match
among all possible combinations.

Note the the PDFs should be aligned before comparison. [9] gives one
method to align it.

The above procedure describes how to use ICA and additional knowledge
about the original dataset to precisely reconstruct the original dataset. Note if
the four conditions for effective ICA are exactly satisfied and the basic statis-
tics and PDFs are all known distinct from each other, the basic rotation per-
turbation will be totally broken by the enhanced ICA-based attack. In practice,
we can test if the first two conditions for effective ICA are satisfied to decide
whether we can safely use rotation perturbation, when the column distribu-
tional information is released. If ICA-based attacks can be effectively done, it
is also trivial to reveal an additional translation perturbation, which is used to
protect the rotation center.

If the first and second conditions are not satisfied, as for most datasets in data
classification and clustering, precise ICA reconstruction cannot be achieved.
Under this circumstance, different rotation perturbations may result in differ-
ent levels of privacy guarantee and the goal is to find one perturbation that is
resilient to the enhanced ICA-based attacks.

For projection perturbation [28], the third condition of effective ICA is not
satisfied either. Although overcomplete ICA is available for this particular case
[25], it is generally ineffective to break projection perturbation with ICA-based
attacks. The major concern of projection perturbation is to find one that pre-
serves the utility of perturbed data.

7.5.3 Distance-Inference Attacks

In the previous sections, we have discussed naive estimation and ICA-
based attacks. In the following discussion, we assume that, besides the in-
formation necessary to perform the discussed attacks, the attacker manages
to get more knowledge about the original dataset. We assume two scenarios:
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1) s/he also knows at least d + 1 linearly independent original data records,
X = {x1,x2, . . . ,xd+1}; or 2) s/he can only get less then d linearly indepen-
dent points. S/he then tries to find the mapping between these points and their
images in the perturbed dataset, denoted by O = {o1,o2, . . . ,od+1}, to break
rotation perturbation and possible also translation perturbation.

For both scenarios, it is possible to find the images of the known points in
the perturbed data. Particularly, if a few original points are highly distinguish-
able, such as “outliers”, their images in the perturbed data can be correctly
identified with high probability for low-dimensional small datasets (< 4 di-
mensions). With considerable cost, it is not impossible for higher dimensional
and larger datasets by simple exhaustive search, although the probability to get
the exact images is relatively low. For scenario 1), with the known mapping,
the rotation R and translation t can be precisely calculated if the incomplete
geometric perturbation G(X) = RX + Ψ is applied. Therefore, the threat will
be substantial to any other data point in the original dataset.

rotation

*
*

* *
**

*

*

*
*

* ***
* *

mapping

Figure 7.1. Using known points and distance relationship to infer
the rotation matrix

For scenario 2), if we assume the exact images of the known original points
are identified, there is a comprehensive discussion about the potential privacy
breach to rotation perturbation [27]. For rotation perturbation, i.e., O = RX
between the known points X and their images O, if X consists of less than d
points, there are numerous estimates of R, denoted by R̂, satisfying the rela-
tionship between X and O. The weakest points, except the known points X,
are those around X. Paper [27] gives some estimation to the risk of privacy
breach for certain point x if a set of points X and their image O are known.
The definition is based on ε-privacy breach (Section 7.4.1). The probability of
ε -privacy breach, ρ(x, ε), for any x in the original dataset can be estimated as
follows. Let d(x,X) be the distance between x and X.

ρ(x, ε) =
2
π

arcsin(
ε‖x‖

2d(x,X)
), if ε‖x‖ < 2d(x,X); 1 otherwise.
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Note that ε-privacy breach is not sufficient to column-wise privacy evaluation.
Thus, the above definition may not be sufficient as well.

In order to protect from distance-inference attack for both scenarios, an ad-
ditional noise component ∆ is introduced to form the complete version of geo-
metric perturbation G(X) = RX + Ψ + ∆, where ∆ = [δ1, δ2, . . . , δN ], and
δi is a d-dimensional Gaussian random vector. The ∆ component reduces the
probability of getting exact images and the precision of estimation to R and Ψ,
which significantly increases the resilience to distance-inference attacks.

Assume the attacker still knows enough pairs of independent (point, image).
Now, with the additional noise component, the most effective way to estimate
the rotation/translation component is linear regression. The steps include 1) fil-
tering out the translation component first; 2) applying linear regression to esti-
mateR; 3) plugging the estimate R̂ back to estimate the translation component;
4) estimating the original data with R̂ and Ψ̂. There is a detailed procedure in
[9]. We can simulate the procedure to estimate the resilience of a perturbation.

Note that the additional noise component also implies that we have to sac-
rifice some model accuracy for gaining the stronger privacy protection. An
empirical study has been performed on a bunch of datasets to evaluate the rela-
tionship between noise intensity, resilience to attacks and model accuracy [9].
In general, a low-intense noise component will be enough to reduce the risk
of being attacked, while still preserving model accuracy. However, the noise
component is required only when the data owner is sure that a small part of the
original data is released.

7.5.4 Attacks with More Prior Knowledge

There are also extreme cases that may not happen in practice, which assume
the attacker knows a considerable amount of original data points and these
points form a sample set that the higher-order statistical properties of the orig-
inal dataset, like the covariance matrix, are approximately estimated from the
sample set. By using the sample statistics and the sample points, the attacker
can have more effective attacks.

Note that, in general, if the attacker has known so much information about
the original data, its privacy may already be breached. It should not be advised
to publish more original data. Further discussion about perturbations will make
less sense. However, the techniques developed in these attacks, such as PCA-
based attack [27] and AK-ICA attack [15] might be eventually utilized in other
aspects to enhance multiplicative perturbations in the future. We will not give
detailed description about these attacks due to the space limitation. Instead,
they will be covered by another dedicated chapter.
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7.5.5 Finding Attack-Resilient Perturbations

We have discussed the unified privacy metric for evaluating the quality of a
random geometric perturbation. Some known inference attacks have been an-
alyzed under the framework of multi-column privacy evaluation, which allows
us to design an algorithm to choose a good geometric perturbation in terms
of these attacks − if the attacker knows considerable amount of original data,
it is advised not to release the perturbed dataset, however. A deterministic al-
gorithm in optimizing the perturbation may also provide extra clue to privacy
attackers. Therefore, it is also expected to have certain level of randomization
in the perturbation optimization.

A randomized perturbation-optimization algorithm for geometric perturba-
tion was proposed in [9]. We briefly describe it as follows. Algorithm 1 is
a hill-climbing method, which runs in a given number of iterations to find a
geometric perturbation that maximizes the minimum privacy guarantee as pos-
sible. Initially, a random translation is selected, which needs not optimization
at all. In each iteration, the algorithm randomly generates a rotation matrix.
Local maximization of VoD [9] is applied to find a better rotation matrix in
terms of naive estimation, which is then tested by the ICA reconstruction with
the algorithm described in section 7.5.2. The rotation matrix is accepted as the
currently best perturbation if it provides higher minimum privacy guarantee
than the previous perturbations. After the iterations, if necessary, a noise com-
ponent is appended to the perturbation, so that the distance-inference attack
cannot reduce the privacy guarantee to a safety level φ, e.g., φ = 0.2. Algo-
rithm 1 outputs the rotation matrix Rt, the random translation matrix Ψ, the
noise level σ2, and the corresponding privacy guarantee (we use minimum pri-
vacy guarantee in the following algorithm) in terms of the known attacks. If the
final privacy guarantee is lower than the expected threshold, the data owner can
select not to release the data. This algorithm provides a framework, in which
any discovered attacks can be simulated and evaluated.

7.6 Conclusion

We have reviewed the multiplicative perturbation method as an alterna-
tive method to privacy preserving data mining. The design of this category
of perturbation algorithms is based on an important principle: by developing
perturbation algorithms that can always preserve the mining task and model
specific data utility, one can focus on finding a perturbation that can provide
higher level of privacy guarantee. We described three representative multiplica-
tive perturbation methods − rotation perturbation, projection perturbation, and
geometric perturbation. All aim at preserving the distance relationship in the
original data, thus achieving good data utility for a set of classification and
clustering models. Another important advantage of using these multiplicative
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Algorithm 1 Finding a resilient perturbation (Xd×N , w, m)
Input: Xd×N :the original dataset, w: weights for attributes in privacy evaluation, m: the number of
iterations.
Output:Rt: the selected rotation matrix, Ψ: the random translation, σ2: the noise level, p: privacy quality
calculate the covariance matrix C of X;
p = 0, and randomly generate the translation Ψ;
for Each iteration do

randomly generate a rotation matrix R;
swapping the rows of R to get R′, which maximizes min1≤i≤d{ 1

wi
(Cov(R′X −X)(i,i)};

p0 = the privacy guarantee of R′, p1 = 0;
if p0 > p then

generate X̂ with ICA;
{(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}

∑d
i=1 ∆PDF (Xi, O(i))

p1 = min1≤k≤d
1

wk
V oD(Xk , O(k))

end if
if p < min(p0, p1) then
p = min(p0, p1), Rt = R′;

end if
end for
p2 = the privacy guarantee to the distance-inference attack with the perturbation G(X) = RtX+Ψ+∆.
Tune the noise level σ2 , so that p2 ≥ p if p < φ or p2 > φ if p < φ .

perturbation methods is the fact that we are not required to re-design the exist-
ing data mining algorithms in order to perform data mining over the perturbed
data.

Privacy evaluation and attack analysis are the major challenging issues for
multiplicative perturbations. We reviewed the multi-column variance of dif-
ference (VoD) based evaluation method and the distance-based method. Since
column distribution information has high probability to be released publicly,
in principle it is necessary to evaluate privacy guarantee based on columns.
Although this chapter does not intend to enumerate all possible attacks, as we
know, attack analysis to multiplicative perturbation is still a very active area,
we describe several types of attacks and organize the discussion according to
the level of knowledge that the attacker may have about the original data. We
also outlined some techniques developed to date for addressing these attacks.
Based on attack analysis and the VoD-based evaluation method, we show how
to find the perturbations that locally optimize the level of privacy guarantee in
terms of various attacks.
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[31] OLIVEIRA, S. R. M., AND ZAÏANE, O. R. Privacy preservation when
sharing data for clustering. In Proceedings of the International Workshop
on Secure Data Management in a Connected World (Toronto, Canada,
August 2004), pp. 67–82.

[32] SADUN, L. Applied Linear Algebra: the Decoupling Principle. Prentice
Hall, 2001.

[33] STEWART, G. The efficient generation of random orthogonal matrices
with an application to condition estimation. SIAM Journal on Numerical
Analysis 17 (1980).

[34] SWEENEY, L. k-anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, 5
(2002).

[35] VAIDYA, J., AND CLIFTON, C. Privacy preserving k-means cluster-
ing over vertically partitioned data. Proc. of ACM SIGKDD Conference
(2003).



Chapter 8

A Survey of Quantification of Privacy Preserving
Data Mining Algorithms

Elisa Bertino
Department of Computer Science
Purdue University

bertino@cs.purdue.edu

Dan Lin
Department of Computer Science
Purdue University

lindan@cs.purdue.edu

Wei Jiang
Department of Computer Science
Purdue University

wjiang@cs.purdue.edu

Abstract The aim of privacy preserving data mining (PPDM) algorithms is to extract rel-
evant knowledge from large amounts of data while protecting at the same time
sensitive information. An important aspect in the design of such algorithms is
the identification of suitable evaluation criteria and the development of related
benchmarks. Recent research in the area has devoted much effort to determine
a trade-off between the right to privacy and the need of knowledge discovery. It
is often the case that no privacy preserving algorithm exists that outperforms all
the others on all possible criteria. Therefore, it is crucial to provide a compre-
hensive view on a set of metrics related to existing privacy preserving algorithms
so that we can gain insights on how to design more effective measurement and
PPDM algorithms. In this chapter, we review and summarize existing criteria
and metrics in evaluating privacy preserving techniques.
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8.1 Introduction

Privacy is one of the most important properties that an information system
must satisfy. For this reason, several efforts have been devoted to incorporat-
ing privacy preserving techniques with data mining algorithms in order to pre-
vent the disclosure of sensitive information during the knowledge discovery.
The existing privacy preserving data mining techniques can be classified ac-
cording to the following five different dimensions [32]: (i) data distribution
(centralized or distributed); (ii) the modification applied to the data (encryp-
tion, perturbation, generalization, and so on) in order to sanitize them; (iii) the
data mining algorithm which the privacy preservation technique is designed
for; (iv) the data type (single data items or complex data correlations) that
needs to be protected from disclosure; (v) the approach adopted for preserving
privacy (heuristic or cryptography-based approaches). While heuristic-based
techniques are mainly conceived for centralized datasets, cryptography-based
algorithms are designed for protecting privacy in a distributed scenario by us-
ing encryption techniques. Heuristic-based algorithms recently proposed aim
at hiding sensitive raw data by applying perturbation techniques based on prob-
ability distributions. Moreover, several heuristic-based approaches for hiding
both raw and aggregated data through a hiding technique (k-anonymization,
adding noises, data swapping, generalization and sampling) have been devel-
oped, first, in the context of association rule mining and classification and,
more recently, for clustering techniques.

Given the number of different privacy preserving data mining (PPDM) tech-
niques that have been developed in these years, there is an emerging need
of moving toward standardization in this new research area, as discussed by
Oliveira and Zaiane [23]. One step toward this essential process is to provide
a quantification approach for PPDM algorithms to make it possible to evaluate
and compare such algorithms. However, due to the variety of characteristics of
PPDM algorithms, it is often the case that no privacy preserving algorithm ex-
ists that outperforms all the others on all possible criteria. Rather, an algorithm
may perform better than another one on specific criteria like privacy level, data
quality. Therefore, it is important to provide users with a comprehensive set of
privacy preserving related metrics which will enable them to select the most
appropriate privacy preserving technique for the data at hand, with respect to
some specific parameters they are interested in optimizing [6].

For a better understanding of PPDM related metrics, we next identify a
proper set of criteria and the related benchmarks for evaluating PPDM algo-
rithms. We then adopt these criteria to categorize the metrics. First, we need
to be clear with respect to the concept of “privacy” and the general goals of
a PPDM algorithm. In our society the privacy term is overloaded, and can,
in general, assume a wide range of different meanings. For example, in the
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context of the HIPAA1 Privacy Rule, privacy means the individual’s ability to
control who has the access to personal health care information. From the orga-
nizations point of view, privacy involves the definition of policies stating which
information is collected, how it is used, and how customers are informed and
involved in this process. Moreover, there are many other definitions of privacy
that are generally related with the particular environment in which the privacy
has to be guaranteed. What we need is a more generic definition, that can be in-
stantiated to different environments and situations. From a philosophical point
of view, Schoeman [26] and Walters [33] identify three possible definitions of
privacy:

Privacy as the right of a person to determine which personal information
about himself/herself may be communicated to others.

Privacy as the control over access to information about oneself.

Privacy as limited access to a person and to all the features related to the
person.

In three definitions, what is interesting from our point of view is the concept
of “Controlled Information Release”. From this idea, we argue that a definition
of privacy that is more related with our target could be the following: “The
right of an individual to be secure from unauthorized disclosure of information
about oneself that is contained in an electronic repository”. Performing a final
tuning of the definition, we consider privacy as “The right of an entity to be se-
cure from unauthorized disclosure of sensible information that are contained
in an electronic repository or that can be derived as aggregate and complex
information from data stored in an electronic repository”. The last generaliza-
tion is due to the fact that the concept of individual privacy does not even exist.
As in [23] we consider two main scenarios.

The first is the case of a Medical Database where there is the need to pro-
vide information about diseases while preserving the patient identity. Another
scenario is the classical “Market Basket” database, where the transactions re-
lated to different client purchases are stored and from which it is possible to
extract some information in form of association rules like “If a client buys a
product X, he/she will purchase also Z with y% probability”. The first is an
example where individual privacy has to be ensured by protecting from unau-
thorized disclosure sensitive information in form of specific data items related
to specific individuals. The second one, instead, emphasizes how not only the
raw data contained into a database must be protected, but also, in some cases,
the high level information that can be derived from non sensible raw data need

1Health Insurance Portability and Accountability Act
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to protected. Such a scenario justifies the final generalization of our privacy
definition. In the light of these considerations, it is, now, easy to define which
are the main goals a PPDM algorithm should enforce:

1 A PPDM algorithm should have to prevent the discovery of sensible in-
formation.

2 It should be resistant to the various data mining techniques.

3 It should not compromise the access and the use of non sensitive data.

4 It should not have an exponential computational complexity.

Correspondingly, we identify the following set of criteria based on which a
PPDM algorithm can be evaluated.

- Privacy level offered by a privacy preserving technique, which indicates
how closely the sensitive information, that has been hidden, can still be
estimated.

- Hiding failure, that is, the portion of sensitive information that is not
hidden by the application of a privacy preservation technique;

- Data quality after the application of a privacy preserving technique, con-
sidered both as the quality of data themselves and the quality of the data
mining results after the hiding strategy is applied;

- Complexity, that is, the ability of a privacy preserving algorithm to exe-
cute with good performance in terms of all the resources implied by the
algorithm.

For the rest of the chapter, we first present details of each criteria through
analyzing existing PPDM techniques. Then we discuss how to select proper
metric under a specified condition. Finally, we summarize this chapter and
outline future research directions.

8.2 Metrics for Quantifying Privacy Level

Before presenting different metrics related to privacy level, we need to take
into account two aspects: (i) sensitive or private information can be contained
in the original dataset; and (ii) private information that can be discovered from
data mining results. We refer to the first one as data privacy and the latter as
result privacy.

8.2.1 Data Privacy

In general, the quantification used to measure data privacy is the degree
of uncertainty, according to which original private data can be inferred. The
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higher the degree of uncertainty achieved by a PPDM algorithm, the better
the data privacy is protected by this PPDM algorithm. For various types of
PPDM algorithms, the degree of uncertainty is estimated in different ways.
According to the adopted techniques, PPDM algorithms can be classified into
two main categories: heuristic-based approaches and cryptography-based ap-
proaches. Heuristic-based approaches mainly include four sub-categories: ad-
ditive noise, multiplicative noise, k-anonymization, and statistical disclosure
control based approaches. In what follows, we survey representative works of
each category of PPDM algorithms and review the metrics used by them.

Additive-Noise-based Perturbation Techniques. The basic idea of the
additive-noise-based perturbation technique is to add random noise to the ac-
tual data. In [2], Agrawal and Srikant uses an additive-noise-based technique to
perturb data. They then estimate the probability distribution of original numeric
data values in order to build a decision tree classifier from perturbed training
data. They introduce a quantitative measure to evaluate the amount of privacy
offered by a method and evaluate the proposed method against this measure.
The privacy is measured by evaluating how closely the original values of a
modified attribute can be determined. In particular, if the perturbed value of an
attribute can be estimated, with a confidence c, to belong to an interval [a, b],
then the privacy is estimated by (b−a) with confidence c. However, this metric
does not work well because it does not take into account the distribution of the
original data along with the perturbed data. Therefore, a metric that considers
all the informative content of data available to the user is needed. Agrawal and
Aggarwal [1] address this problem by introducing a new privacy metric based
on the concept of information entropy. More specifically, they propose an Ex-
pectation Maximization (EM) based algorithm for distribution reconstruction,
which converges to the maximum likelihood estimate of the original distrib-
ution on the perturbed data. The measurement of privacy given by them con-
siders the fact that both the perturbed individual record and the reconstructed
distribution are available to the user as well as the perturbing distribution, as
it is specified in [10]. This metric defines the average conditional privacy of
an attribute A given other information, modeled with a random variable B,
as 2h(A|B), where h(A|B) is the conditional differential entropy of A given
B representing a measure of uncertainty inherent in the value of A, given the
value of B.

Another additive-noise-based perturbation technique is by Rivzi and Haritsa
[24]. They propose a distortion method to pre-process the data before execut-
ing the mining process. Their privacy measure deals with the probability with
which the user’s distorted entries can be reconstructed. Their goal is to en-
sure privacy at the level of individual entries in each customer tuple. In other
words, the authors estimate the probability that a given 1 or 0 in the true matrix
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representing the transactional database can be reconstructed, even if for many
applications the 1’s and 0’s values do not need the same level of privacy.

Evfimievski et al. [11] propose a framework for mining association rules
from transactions consisting of categorical items, where the data has been ran-
domized to preserve privacy of individual transactions, while ensuring at the
same time that only true associations are mined. They also provide a formal
definition of privacy breaches and a class of randomization operators that are
much more effective in limiting breaches than uniform randomization. Accord-
ing to Definition 4 from [11], an itemset A results in a privacy breach of level
ρ if the probability that an item in A belongs to a non randomized transaction,
given that A is included in a randomized transaction, is greater than or equal
to ρ. In some scenarios, being confident that an item not present in the original
transaction may also be considered a privacy breach. In order to evaluate the
privacy breaches, the approach taken by Evfimievski et al. is to count the oc-
currences of an itemset in a randomized transaction and in its sub-items in the
corresponding non randomized transaction. Out of all sub-items of an itemset,
the item causing the worst privacy breach is chosen. Then, for each combina-
tion of transaction size and itemset size, the worst and the average value of this
breach level are computed over all frequent itemsets. The itemset size giving
the worst value for each of these two values is selected.

Finally, we introduce a universal measure of data privacy level, proposed by
Bertino et al. in [6]. The measure is developed based on [1]. The basic concept
used by this measure is information entropy, which is defined by Shannon [27]:
let X be a random variable which takes on a finite set of values according to a
probability distribution p(x). Then, the entropy of this probability distribution
is defined as follows:

h(X) = −
∑

p(x) log2(p(x)) (8.1)

or, in the continuous case:

h(X) = −
∫
f(x) log2(f(x))dx (8.2)

where f(x) denotes the density function of the continuous random variable
x. Information entropy is a measure of how much “choice” is involved in the
selection of an event or how uncertain we are of its outcome. It can be used
for quantifying the amount of information associated with a set of data. The
concept of “information associated with data” can be useful in the evaluation
of the privacy achieved by a PPDM algorithm. Because the entropy represents
the information content of a datum, the entropy after data sanitization should
be higher than the entropy before the sanitization. Moreover the entropy can be
assumed as the evaluation of the uncertain forecast level of an event which in
our context is evaluation of the right value of a datum. Consequently, the level
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of privacy inherent in an attribute X, given some information modeled by Y ,
is defined as follows:

Π(X|Y ) = 2−
∫
fX,Y (x,y) log2 fX|Y =y(x))dxdy (8.3)

The privacy level defined in equation 8.3 is very general. In order to use it
in the different PPDM contexts, it needs to be refined in relation with some
characteristics like the type of transactions, the type of aggregation and PPDM
methods. In [6], an example of instantiating the entropy concept to evaluate the
privacy level in the context of “association rules” is presented.

However, it is worth noting that the value of the privacy level depends not
only on the PPDM algorithm used, but also on the knowledge that an attacker
has about the data before the use of data mining techniques and the relevance
of this knowledge in the data reconstruction operation. This problem is under-
lined, for example, in [29, 30]. In [6], this aspect is not considered, but it is
possible to introduce assumptions on attacker knowledge by properly model-
ing Y .

Multiplicative-Noise-based Perturbation Techniques. According to [16],
additive random noise can be filtered out using certain signal processing tech-
niques with very high accuracy. To avoid this problem, random projection-
based multiplicative perturbation techniques has been proposed in [19]. Instead
of adding some random values to the actual data, random matrices are used to
project the set of original data points to a randomly chosen lower-dimensional
space. However, the transformed data still preserves much statistical aggregates
regarding the original dataset so that certain data mining tasks (e.g., computing
inner product matrix, linear classification, K-means clustering and computing
Euclidean distance) can be performed on the transformed data in a distributed
environment (data are either vertically partitioned or horizontally partitioned)
with small errors.

In addition, this approach provides a high degree of privacy regarding the
original data. As analyzed in the paper, even if the random matrix (i.e., the
multiplicative noise) is disclosed, it is impossible to find the exact values of
the original dataset, but finding approximation of the original data is possible.
The variance of the approximated data is used as privacy measure.

Oliveira and Zaiane [22] also adopt a multiplicative-noise-based perturba-
tion technique to perform a clustering analysis while ensuring at the same time
privacy preservation. They have introduced a family of geometric data trans-
formation methods where they apply a noise vector to distort confidential nu-
merical attributes. The privacy ensured by such techniques is measured as the
variance difference between the actual and the perturbed values. This measure
is given by V ar(X −Y ), where X represents a single original attribute and Y



190 Privacy-Preserving Data Mining: Models and Algorithms

the distorted attribute. This measure can be made scale invariant with respect
to the variance of X by expressing security as Sec = V ar(X − Y )/V ar(X).

k-Anonymization Techniques. The concept of k-anonymization is intro-
duced by Samarati and Sweeney in [25, 28]. A database is k-anonymous with
respect to quasi-identifier attributes (a set of attributes that can be used with
certain external information to identify a specific individual) if there exist at
least k transactions in the database having the same values according to the
quasi-identifier attributes. In practice, in order to protect sensitive dataset T ,
before releasing T to the public, T is converted into a new dataset T ∗ that
guarantees the k-anonymity property for a sensible attribute by performing
some value generalizations on quasi-identifier attributes. Therefore, the degree
of uncertainty of the sensitive attribute is at least 1/k.

Statistical-Disclosure-Control-based Techniques. In the context of sta-
tistical disclosure control, a large number of methods have been developed to
preserve individual privacy when releasing aggregated statistics on data. To
anonymize the released statistics from those data items such as person, house-
hold and business, which can be used to identify an individual, not only fea-
tures described by the statistics but also related information publicly available
need to be considered [35]. In [7] a description of the most relevant perturba-
tion methods proposed so far is presented. Among these methods specifically
designed for continuous data, the following masking techniques are described:
additive noise, data distortion by probability distribution, resampling, microag-
gregation, rank swapping, etc. For categorical data both perturbative and non-
perturbative methods are presented. The top-coding and bottom-coding tech-
niques are both applied to ordinal categorical variables; they recode, respec-
tively, the first/last p values of a variable into a new category. The global-
recoding technique, instead, recodes the p lowest frequency categories into a
single one.

The privacy level of such method is assessed by using the disclosure risk,
that is, the risk that a piece of information be linked to a specific individual.
There are several approaches to measure the disclosure risk. One approach is
based on the computation of the distance-based record linkage. An intruder is
assumed to try to link the masked dataset with the external dataset using the
key variables. The distance between records in the original and the masked
datasets is computed. A record in the masked dataset is labelled as “linked”
or “linked to 2nd nearest” if the nearest or 2nd nearest record in the original
dataset turns out to be the corresponding original record. Then the disclosure
risk is computed as the percentage of “linked” and “linked to 2nd nearest”. The
second approach is based on the computation of the probabilistic record link-
age. The linear sum assignment model is used to ‘pair’ records in the original
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file and the masked file. The percentage of correctly paired records is a measure
of disclosure risk. Another approach computes rank intervals for the records in
the masked dataset. The proportion of original values that fall into the interval
centered around their corresponding masked value is a measure of disclosure
risk.

Cryptography-based Techniques. The cryptography-based technique usu-
ally guarantees very high level of data privacy. In [14], Kantarcioglu and
Clifton address the problem of secure mining of association rules over hori-
zontally partitioned data, using cryptographic techniques to minimize the in-
formation shared. Their solution is based on the assumption that each party first
encrypts its own itemsets using commutative encryption, then the already en-
crypted itemsets of every other party. Later on, an initiating party transmits its
frequency count, plus a random value, to its neighbor, which adds its frequency
count and passes it on to other parties. Finally, a secure comparison takes place
between the final and initiating parties to determine if the final result is greater
than the threshold plus the random value.

Another cryptography-based approach is described in [31]. Such approach
addresses the problem of association rule mining in vertically partitioned data.
In other words, its aim is to determine the item frequency when transactions are
split across different sites, without revealing the contents of individual transac-
tions. The security of the protocol for computing the scalar product is analyzed.

Though cryptography-based techniques can well protect data privacy, they
may not be considered good with respect to other metrics like efficiency that
will be discussed in later sections.

8.2.2 Result Privacy

So far, we have seen privacy metrics related to the data mining process.
Many data mining tasks produce aggregate results, such as Bayesian classifiers.
Although it is possible to protect sensitive data when a classifier is constructed,
can this classifier be used to infer sensitive data values? In other words, do data
mining results violate privacy? This issue has been analyzed and a framework
is proposed in [15] to test if a classifier C creates an inference channel that
could be adopted to infer sensitive data values.

The framework considers three types of data: public data (P), accessible to
every one including the adversary; private/sensitive data (S), must be protected
and unknown to the adversary; unknown data (U), not known to the adversary,
but the release of this data might cause privacy violation. The framework as-
sumes that S depends only on P and U, and the adversary has at most t data
samples of the form (pi, si). The approach to determine whether an inference
channel exists is comprised of two steps. First, a classifier C1 is built on the t
data samples. To evaluate the impact of C , another classifier C2 is built based
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on the same t data samples plus the classifier C . If the accuracy of C2 is sig-
nificantly better than C1, we can say that C provides an inference channel for
S.

Classifier accuracy is measured based on Bayesian classification error. Sup-
pose we have a dataset {x1, . . . , xn}, and we want to classify xi into m classes
labelled as {1, . . . ,m}. Given a classifier C:

C : xi → C(xi) ∈ {1, . . . ,m}, i = 1, . . . , n

The classifier accuracy for C is defined as:

m∑
j=1

Pr(C(xi) �= j|z = j)Pr(z = j)

where z is the actual class label of xi. Since cryptography-based PPDM tech-
niques usually produce the same results as those mined from the original
dataset, analyzing privacy implications from the mining results is particular
important to this class of techniques.

8.3 Metrics for Quantifying Hiding Failure

The percentage of sensitive information that is still discovered, after the
data has been sanitized, gives an estimate of the hiding failure parameter. Most
of the developed privacy preserving algorithms are designed with the goal of
obtaining zero hiding failure. Thus, they hide all the patterns considered sen-
sitive. However, it is well known that the more sensitive information we hide,
the more non-sensitive information we miss. Thus, some PPDM algorithms
have been recently developed which allow one to choose the amount of sen-
sitive data that should be hidden in order to find a balance between privacy
and knowledge discovery. For example, in [21], Oliveira and Zaiane define the
hiding failure (HF) as the percentage of restrictive patterns that are discovered
from the sanitized database. It is measured as follows:

HF =
#RP (D′)
#RP (D)

(8.4)

where #RP (D) and #RP (D′) denote the number of restrictive patterns dis-
covered from the original data base D and the sanitized database D′ respec-
tively. Ideally, HF should be 0. In their framework, they give a specification of
a disclosure threshold φ, representing the percentage of sensitive transactions
that are not sanitized, which allows one to find a balance between the hiding
failure and the number of misses. Note that φ does not control the hiding failure
directly, but indirectly by controlling the proportion of sensitive transactions to
be sanitized for each restrictive pattern.
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Moreover, as pointed out in [32], it is important not to forget that intruders
and data terrorists will try to compromise information by using various data
mining algorithms. Therefore, a PPDM algorithm developed against a particu-
lar data mining techniques that assures privacy of information, may not attain
similar protection against all possible data mining algorithms. In order to pro-
vide for a complete evaluation of a PPDM algorithm, we need to measure its
hiding failure against data mining techniques which are different from the tech-
nique that the PPDM algorithm has been designed for. The evaluation needs
the consideration of a class of data mining algorithms which are significant for
our test. Alternatively, a formal framework can be developed that upon testing
of a PPDM algorithm against pre-selected data sets, we can transitively prove
privacy assurance for the whole class of PPDM algorithms.

8.4 Metrics for Quantifying Data Quality

The main feature of the most PPDM algorithms is that they usually modify
the database through insertion of false information or through the blocking of
data values in order to hide sensitive information. Such perturbation techniques
cause the decrease of the data quality. It is obvious that the more the changes
are made to the database, the less the database reflects the domain of interest.
Therefore, data quality metrics are very important in the evaluation of PPDM
techniques. Since the data is often sold for making profit, or shared with others
in the hope of leading to innovation, data quality should have an acceptable
level according also to the intended data usage. If data quality is too degraded,
the released database is useless for the purpose of knowledge extraction.

In existing works, several data quality metrics have been proposed that are
either generic or data-use-specific. However, currently, there is no metric that
is widely accepted by the research community. Here we try to identify a set of
possible measures that can be used to evaluate different aspects of data quality.
In evaluating the data quality after the privacy preserving process, it can be
useful to assess both the quality of the data resulting from the PPDM process
and the quality of the data mining results. The quality of the data themselves
can be considered as a general measure evaluating the state of the individual
items contained in the database after the enforcement of a privacy preserving
technique. The quality of the data mining results evaluates the alteration in the
information that is extracted from the database after the privacy preservation
process, on the basis of the intended data use.

8.4.1 Quality of the Data
Resulting from the PPDM Process

The main problem with data quality is that its evaluation is relative [18], in
that it usually depends on the context in which data are used. In particular, there
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are some aspects related to data quality evaluation that are heavily related not
only with the PPDM algorithm, but also with the structure of the database, and
with the meaning and relevance of the information stored in the database with
respect to a well defined context. In the scientific literature data quality is gen-
erally considered a multi-dimensional concept that in certain contexts involves
both objective and subjective parameters [3, 34]. Among the various possible
parameters, the following ones are usually considered the most relevant:

- Accuracy: it measures the proximity of a sanitized value to the original
value.

- Completeness: it evaluates the degree of missed data in the sanitized
database.

- Consistency: it is related to the internal constraints, that is, the relation-
ships that must hold among different fields of a data item or among data
items in a database.

Accuracy. The accuracy is closely related to the information loss result-
ing from the hiding strategy: the less is the information loss, the better is the
data quality. This measure largely depends on the specific class of PPDM al-
gorithms. In what follows, we discuss how different approaches measure the
accuracy.

As for heuristic-based techniques, we distinguish the following cases based
on the modification technique that is performed for the hiding process. If the
algorithm adopts a perturbation or a blocking technique to hide both raw and
aggregated data, the information loss can be measured in terms of the dissimi-
larity between the original dataset D and the sanitized one D′. In [21], Oliveira
and Zaiane propose three different methods to measure the dissimilarity be-
tween the original and sanitized databases. The first method is based on the
difference between the frequency histograms of the original and the sanitized
databases. The second method is based on computing the difference between
the sizes of the sanitized database and the original one. The third method is
based on a comparison between the contents of two databases. A more de-
tailed analysis on the definition of dissimilarity is presented by Bertino et al.
in [6]. They suggest to use the following formula in the case of transactional
dataset perturbation:

Diss(D,D′) =
∑n

i=1 |fD(i)− fD′(i)|∑n
i=1 fD(i)

(8.5)

where i is a data item in the original database D and fD(i) is its frequency
within the database, whereas i’ is the given data item after the application of
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a privacy preservation technique and fD′(i) is its new frequency within the
transformed database D′. As we can see, the information loss is defined as the
ratio between the sum of the absolute errors made in computing the frequen-
cies of the items from a sanitized database and the sum of all the frequencies of
items in the original database. The formula 8.5 can also be used for the PPDM
algorithms which adopt a blocking technique for inserting into the dataset un-
certainty about some sensitive data items or their correlations. The frequency
of the item i belonging to the sanitized dataset D′ is then given by the mean
value between the minimum frequency of the data item i, computed by consid-
ering all the blocking values associated with it equal to zero, and the maximum
frequency, obtained by considering all the question marks equal to one.

In case of data swapping, the information loss caused by an heuristic-based
algorithm can be evaluated by a parameter measuring the data confusion in-
troduced by the value swappings. If there is no correlation among the different
database records, the data confusion can be estimated by the percentage of
value replacements executed in order to hide specific information.

For the multiplicative-noise-based approaches [19], the quality of the per-
turbed data depends on the size of the random projection matrix. In general, the
error bound of the inner product matrix produce by this perturbation technique
is 0 on average and the variance is bounded by the inverse of the dimensionality
of the reduced space. In other words, when the dimensionality of the random
projection matrix is close to that of the original data, the result of computing the
inner product matrix based on the transformed or projected data is also close to
the actual value. Since inner product is closely related to many distance-based
metrics (e.g., Euclidean distance, cosine angle of two vectors, correlation coef-
ficient of two vectors, etc), the analysis on error bound has direct impact on the
mining results if these data mining tasks adopt certain distance-based metrics.

If the data modification consists of aggregating some data values, the infor-
mation loss is given by the loss of detail in the data. Intuitively, in this case, in
order to perform the hiding operation, the PPDM algorithms use some type of
“Generalization or Aggregation Scheme” that can be ideally modeled as a tree
scheme. Each cell modification applied during the sanitization phase using the
Generalization tree introduces a data perturbation that reduces the general ac-
curacy of the database. As in the case of the k-anonymity algorithm presented
in [28], we can use the following formula. Given a database T with NA fields
and N transactions, if we identify as generalization scheme a domain general-
ization hierarchy GT with a depth h, it is possible to measure the information
loss (IL) of a sanitized database T ∗ as:

IL(T ∗) =

∑i=NA
i=1

∑i=N
j=1

h
|GTAi|

|T | ∗ |NA|
(8.6)
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where h
|GTAi| represent the detail loss for each cell sanitized. For hiding tech-

niques based on sampling approach, the quality is obviously related to the size
of the considered sample and, more generally, on its features.

There are some other precision metrics specifically designed for k-
anonymization approaches. One of the earliest data quality metrics is based
on the height of generalization hierarchies [25]. The height is the number of
times the original data value has been generalized. This metric assumes that a
generalization on the data represents an information loss on the original data
value. Therefore, data should be generalized as fewer steps as possible to pre-
serve maximum utility. However, this metric does not take into account that
not every generalization steps are equal in the sense of information loss.

Later, Iyengar [13] proposes a general loss metric (LM ). Suppose T is a data
table with n attributes. The LM metric is thought as the average information
loss of all data cells of a given dataset, defined as follows:

LM(T ∗) =

∑n
i=1

∑|T |
j=1

f(T ∗[i][j])−1
g(Ai)−1

|T | · n (8.7)

In equation 8.7, T ∗ is the anonymized table of T , f is a function that given
a data cell value T ∗[i][j], returns the number of distinct values that can be
generalized to T ∗[i][j], and g is a function that given an attribute Ai, returns
the number of distinct values of Ai.

The next metric, classification metric (CM ), is introduced by Iyengar [13]
to optimize a k-anonymous dataset for training a classifier. It is defined as the
sum of the individual penalties for each row in the table normalized by the total
number of rows N .

CM(T ∗) =
∑

all rows penalty(row r)
N

(8.8)

The penalty value of row r is 1, i.e., row r is penalized, if it is suppressed or if
its class label is not the majority class label of its group. Otherwise, the penalty
value of row r is 0. This metric is particularly useful when we want to build a
classifier over anonymous data.

Another interesting metric is the discernibility metric(DM ) proposed by
Bayado and Agrawal [4]. This discernibility metric assigns a penalty to each
tuple based on how many tuples in the transformed dataset are indistinguish-
able from it. Let t be a tuple from the original table T , and let GT ∗(t) be the
set of tuples in an anonymized table T ∗ indistinguishable from t or the set of
tuples in T∗ equivalent to the anonymized value of t. Then DM is defined as
follows:

DM(T ∗) =
∑
t∈T
|GT ∗(t)| (8.9)
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Note that if a tuple t has been suppressed, the size of GT ∗(t) is the same as
the size of T ∗. In many situation, suppressions are considered to be most ex-
pensive in the sense of information loss. Thus, to maximize data utility, tuple
suppression should be avoided whenever possible.

For any given metric M , if M(T ) > M(T ′), we say T has a higher infor-
mation loss, or is less precise, than b. In other words, data quality of T is worse
than that of T ′. Is this true for all metrics? What is a good metric? It is not easy
to answer these kinds of questions. As shown in [20], CM works better than
LM in classification application. In addition, LM is better for association rule
mining. It is apparent that to judge how good a particular metric is, we need to
associate our judgement with specific applications (e.g., classification, mining
association rules).

The CM metric and the information gain privacy loss ratio [5, 28] are more
interesting measure of utility because it considers the possible application for
the data. Nevertheless, it is unclear what to do if we want to build classifiers on
various attributes. In addition, these two metrics only work well if the data are
intended to be used for building classifiers. Is there a utility metric that works
well for various applications? Having this in mind, Kifer [17] proposes a utility
measure related to Kullback-Leibler divergence. In theory, using this measure,
better anonymous datasets (for different applications) can be produced. Re-
searchers have measured the utility of the resulting anonymous datasets. Pre-
liminary results show that this metric works well in practical applications.

For the statistical-based perturbation techniques which aim to hide the val-
ues of a confidential attribute, the information loss is basically the lack of pre-
cision in estimating the original distribution function of the given attribute.
As defined in [1], the information loss incurred during the reconstruction of
estimating the density function fX(x) of the attribute X, is measured by com-
puting the following value:

I(fX , f̂X) =
1
2
E

[∫
ΩX

∣∣∣fX(x)− f̂X(x)
∣∣∣ dx
]

(8.10)

that is, half of the expected value of L1 norm between fX(x) and f̂X(x), which
are the density distributions respectively before and after the application of the
privacy preserving technique.

When considering the cryptography-based techniques which are typically
employed in distributed environments, we can observe that they do not use any
kind of perturbation techniques for the purpose of privacy preserving. Instead,
they use the cryptographic techniques to assure data privacy at each site by
limiting the information shared by all the sites. Therefore, the quality of data
stored at each site is not compromised at all.
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Completeness and Consistency. While the accuracy is a relatively general
parameter in that it can be measured without strong assumptions on the dataset
analyzed, the completeness is not so general. For example, in some PPDM
strategies, e.g. blocking, the completeness evaluation is not significant. On the
other hand, the consistency requires to determine all the relationships that are
relevant for a given dataset.

In [5], Bertino et al. propose a set of evaluation parameters including the
completeness and consistency evaluation. Unlike other techniques, their ap-
proach takes into account two more important aspects: relevance of data and
structure of database. They provide a formal description that can be used to
magnify the aggregate information of interest for a target database and the rel-
evance of data quality properties of each aggregate information and for each
attribute involved in the aggregate information. Specifically, the completeness
lack (denoted as CML) is measured as follows:

CML =
n∑
i=0

(DMG.Ni.CV ×DMG.Ni.CW ) (8.11)

In equation 8.11, DMG is an oriented graph where each node Ni is an at-
tribute class. CV is the completeness value and CW is the consistency value.
The consistency lack (denoted as CSL) is given by the number of constraint
violations occurred in all the sanitized transaction multiplied by the weight
associated with every constraints.

CSL =
n∑
i=0

(DMG.SCi.csv ×DMG.SCi.cw)

+
m∑
j=0

(DMG.CCj .csv ×DMG.CCj.cw) (8.12)

In equation 8.11, csv indicates the number of violations, cw is the weight of
the constraint, SCi describes a simple constraint class, and CCj describes a
complex constraint class.

8.4.2 Quality of the Data Mining Results

In some situations, it can be useful and also more relevant to evaluate the
quality of the data mining results after the sanitization process. This kind of
metric is strictly related to the use the data are intended for. Data can be ana-
lyzed in order to mine information in terms of associations among single data
items or to classify existing data with the goal of finding an accurate clas-
sification of new data items, and so on. Based on the intended data use, the
information loss is measured with a specific metric, depending each time on
the particular type of knowledge model one aims to extract.
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If the intended data usage is data clustering, the information loss can be mea-
sured by the percentage of legitimate data points that are not well-classified af-
ter the sanitization process. As in [22], a misclassification error ME is defined
to measure the information loss.

ME =
1
N

k∑
i=1

(|Clusteri(D)| − |Clusteri(D′)|) (8.13)

where N represents the number of points in the original dataset, k is the num-
ber of clusters under analysis, and |Clusteri(D)| and |Clusteri(D′)| repre-
sent the number of legitimate data points of the ith cluster in the original dataset
D and the sanitized dataset D′ respectively. Since a privacy preserving tech-
nique usually modify data for the sanitization purpose, the parameters involved
in the clustering analysis is almost inevitably affected. In order to achieve high
clustering quality, it is very important to keep the clustering results as consis-
tent as possible before and after the application of a data hiding technique.

When quantifying information loss in the context of the other data usages,
it is useful to distinguish between: lost information representing the percent-
age of non-sensitive patterns (i.e., association, classification rules) which are
hidden as side-effect of the hiding process; and the artifactual information
representing the percentage of artifactual patterns created by the adopted pri-
vacy preserving technique. For example, in [21], Oliveira and Zaiane define
two metrics misses cost and artifactual pattern which are corresponding to
lost information and artifactual information respectively. In particular, misses
cost measures the percentage of non-restrictive patterns that are hidden after
the sanitization process. This happens when some non-restrictive patterns lose
support in the database due to the sanitization process. The misses cost (MC)
is computed as follows:

MC =
# ∼ RP (D)−# ∼ RP (D′)

# ∼ RP (D)
(8.14)

where # ∼ RP (D) and # ∼ RP (D′) denote the number of non-restrictive
patterns discovered from the original database D and the sanitized database D′

respectively. In the best case, MC should be 0%. Notice that there is a com-
promise between the misses cost and the hiding failure in their approach. The
more restrictive patterns they hide, the more legitimate patterns they miss. The
other metric, artifactual pattern (AP), is measured in terms of the percentage
of the discovered patterns that are artifacts. The formula is:

AP =
|P ′| − |P

⋂
P ′|

P ′ (8.15)

where |X| denotes the cardinality of X. According to their experiments, their
approach does not have any artifactual patterns, i.e., AP is always 0.
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In case of association rules, the lost information can be modeled as the set of
non-sensitive rules that are accidentally hidden, referred to as lost rules,
by the privacy preservation technique, the artifactual information, instead, rep-
resents the set of new rules, also known as ghost rules, that can be ex-
tracted from the database after the application of a sanitization technique.

Similarly, if the aim of the mining task is data classification, e.g. by means
of decision trees inductions, both the lost and artifactual information can be
quantified by means of the corresponding lost and ghost association rules de-
rived by the classification tree. These measures allow one to evaluate the high
level information that are extracted from a database in form of the widely-used
inference rules before and after the application of a PPDM algorithm.

It is worth noting that for most cryptography-based PPDM algorithms, the
data mining results are the same as that produced from unsanitized data.

8.5 Complexity Metrics

The complexity metric measures the efficiency and scalability of a PPDM
algorithm. Efficiency indicates whether the algorithm can be executed with
good performance, which is generally assessed in terms of space and time.
Space requirements are assessed according to the amount of memory that must
be allocated in order to implement the given algorithm.

For the evaluation of time requirements, there are several approaches. The
first approach is to evaluate the CPU time. For example, in [21], they first keep
constant both the size of the database and the set of restrictive patterns, and
then increase the size of the input data to measure the CPU time taken by their
algorithm. An alternative approach would be to evaluate the time requirements
in terms of the computational cost. In this case, it is obvious that an algorithm
having a polynomial complexity is more efficient than another one with expo-
nential complexity. Sometimes, the time requirements can even be evaluated
by counting the average number of operations executed by a PPDM algorithm.
As in [14], the performance is measured in terms of the number of encryption
and decryption operations required by the specific algorithm. The last two mea-
sures, i.e. the computational cost and the average number of operations, do not
provide an absolute measure, but they can be considered in order to perform a
fast comparison among different algorithms.

In case of distributed algorithms, especially the cryptography-based algo-
rithms (e.g. [14, 31]), the time requirements can be evaluated in terms of com-
munication cost during the exchange of information among secure processing.
Specifically, in [14], the communication cost is expressed as the number of
messages exchanged among the sites, that are required by the protocol for se-
curely counting the frequency of each rule.
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Scalability is another important aspect to assess the performance of a PPDM
algorithm. In particular, scalability describes the efficiency trends when data
sizes increase. Such parameter concerns the increase of both performance and
storage requirements as well as the costs of the communications required by a
distributed technique with the increase of data sizes.

Due to the continuous advances in hardware technology, large amounts of
data can now be easily stored. Databases along with data warehouses today
store and manage amounts of data which are increasingly large. For this rea-
son, a PPDM algorithm has to be designed and implemented with the capability
of handling huge datasets that may still keep growing. The less fast is the de-
crease in the efficiency of a PPDM algorithm for increasing data dimensions,
the better is its scalability. Therefore, the scalability measure is very important
in determining practical PPDM techniques.

8.6 How to Select a Proper Metric

In previous section, we have discussed various types of metrics. An im-
portant question here is “which one among the presented metrics is the most
relevant for a given privacy preserving technique?”.

Dwork and Nissim [9] make some interesting observations about this ques-
tion. In particular, according to them in the case of statistical databases privacy
is paramount, whereas in the case of distributed databases for which the privacy
is ensured by using a secure multiparty computation technique functionality is
of primary importance. Since a real database usually contains a large number
of records, the performance guaranteed by a PPDM algorithm, in terms of time
and communication requirements, is a not negligible factor, as well as its trend
when increasing database size. The data quality guaranteed by a PPDM algo-
rithm is, on the other hand, very important when ensuring privacy protection
without damaging the data usability from the authorized users.

From the above observations, we can see that a trade-off metric may help
us to state a unique value measuring the effectiveness of a PPDM algorithm.
In [7], the score of a masking method provides a measure of the trade-off be-
tween disclosure risk and information loss. It is defined as an average between
the ranks of disclosure risk and information loss measures, giving the same
importance to both metrics. In [8], a R-U confidentiality map is described that
traces the impact on disclosure risk R and data utility U of changes in the
parameters of a disclosure limitation method which adopts an additive noise
technique. We believe that an index assigning the same importance to both the
data quality and the degree of privacy ensured by a PPDM algorithm is quite
restrictive, because in some contexts one of these parameters can be more rel-
evant than the other. Moreover, in our opinion the other parameters, even less
relevant ones, should be also taken into account. The efficiency and scalability
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measures, for instance, could be discriminating factors in choosing among a
set of PPDM algorithms that ensure similar degrees of privacy and data utility.
A weighted mean could be, thus, a good measure for evaluating by means of a
unique value the quality of a PPDM algorithm.

8.7 Conclusion and Research Directions

In this chapter, we have surveyed different approaches used in evaluating the
effectiveness of privacy preserving data mining algorithms. A set of criteria is
identified, which are privacy level, hiding failure, data quality and complexity.
As none of the existing PPDM algorithms can outperform all the others with
respect to all the criteria, we discussed the importance of certain metrics for
each specific type of PPDM algorithms, and also pointed out the goal of a
good metric.

There are several future research directions along the way of quantifying a
PPDM algorithm and its underneath application or data mining task. One is
to develop a comprehensive framework according to which various PPDM al-
gorithms can be evaluated and compared. It is also important to design good
metrics that can better reflect the properties of a PPDM algorithm, and to de-
velop benchmark databases for testing all types of PPDM algorithms.
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Abstract As a serious concern in data publishing and analysis, privacy preserving data
processing has received a lot of attention. Privacy preservation often leads to
information loss. Consequently, we want to minimize utility loss as long as the
privacy is preserved. In this chapter, we survey the utility-based privacy preser-
vation methods systematically. We first briefly discuss the privacy models and
utility measures, and then review four recently proposed methods for utility-
based privacy preservation.

We first introduce the utility-based anonymization method for maximiz-
ing the quality of the anonymized data in query answering and discernability.
Then we introduce the top-down specialization (TDS) method and the progres-
sive disclosure algorithm (PDA) for privacy preservation in classification prob-
lems. Last, we introduce the anonymized marginal method, which publishes the
anonymized projection of a table to increase the utility and satisfy the privacy
requirement.

Keywords: Privacy preservation, data utility, utility-based privacy preservation,
k-anonymity, sensitive inference, l-diversity.
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9.1 Introduction

Advanced analysis on data sets containing information about individuals
poses a serious threat to individual privacy. Various methods have been pro-
posed to tackle the privacy preservation problem in data analysis, such as
anonymization and perturbation. The major goal is to protect some sensitive
individual information (privacy) from being identified by the published data.
For example, in k-anonymization, certain individual information is generalized
or suppressed so that any individual in a released data set is indistinguishable
from other k − 1 individuals.

A natural consequence of privacy preservation is the information loss. For
example, after the k-anonymization, the information describing an individual
should be the same as at least other k − 1 individuals. The loss of the spe-
cific information about certain individuals may affect the data quality. In the
extreme case, the data may become totally useless.

Example 9.1 (Utility loss in privacy preservation) Table 9.1a
is a data set used for customer analysis. Among the listed attributes, {Age, Ed-
ucation, Zip Code} can be used to uniquely identify an individual. Such a set
of attributes is called a quasi-identifier. Annual Income is a sensitive attribute.
Target Customer is the class label of customers.

In order to protect the annual income information for individuals, sup-
pose 2-anonymity is required so that any individual is indistinguishable from
another one on the quasi-identifier. Table 9.2b and 9.3c are both valid 2-
anonymizations of 9.1a. The tuples sharing the same quasi-identifier have the
same gId. However, Table 9.2b provides more accurate results than Table 9.3c
in answering the following two queries.
Q1: “How many customers under age 29 are there in the data set?”
Q2 : “Is an individual with age = 25, Education = Bachelor, Zip Code =
53712 a target customer?”

According to Table 9.2b, the answers of Q1 and Q2 are “2” and “Y”, re-
spectively. But according to Table 9.3c, the answer to Q1 is an interval [0, 4],
because 29 falls in the age range of tuple t1, t2, t4, and t6. The answer toQ2
is Y and N with 50% probability each.

From this example, we make two observations. First, different anonymiza-
tion may lead to different information loss. Table 9.2b and 9.3c are in the same
anonymization level, but Table 9.2b provides more accurate answers to the
queries. Therefore, it is crucial to minimize the information loss in privacy
preservation.

Second, the data utility depends on the applications using the data. In the
above example, Q1 is an aggregate query, thus the data is more useful if the
attribute values are more accurate. Q2 is a classification query, so the utility
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Table 9.1a. The original table

tId Age Education Zip Code Annual Income Target Customer

t1 24 Bachelor 53711 40k Y
t2 25 Bachelor 53712 50k Y
t3 30 Master 53713 50k N
t4 30 Master 53714 80k N
t5 32 Master 53715 50k N
t6 32 Doctorate 53716 100k N

Table 9.2b. A 2-anonymized table with better utility

gId tId Age Education Zip Code Annual Income Target Customer

g1 t1 [24-25] Bachelor [53711-53712] 40k Y
g1 t2 [24-25] Bachelor [53711-53712] 50k Y
g2 t3 30 Master [53713-53714] 50k N
g2 t4 30 Master [53713-53714] 80k N
g3 t5 32 GradSchool [53715-53716] 50k N
g3 t6 32 GradSchool [53715-53716] 100k N

Table 9.3c. A 2-anonymized table with poorer utility

gId tId Age Education Zip Code Annual Income Target Customer

g1 t1 [24-30] ANY [53711-53714] 40k Y
g2 t2 [25-32] ANY [53712-53716] 50k Y
g3 t3 [30-32] Master [53713-53715] 50k N
g1 t4 [24-30] ANY [53711-53714] 80k N
g3 t5 [30-32] Master [53713-53715] 50k N
g2 t6 [25-32] ANY [53712-53716] 100k N

of data depends on how much the classification model is preserved in the
anonymized data. In a word, utility is the quality of data for the intended use.

9.1.1 What is Utility-based Privacy Preservation?

The utility-based privacy preservation has two goals: protecting the private
information and preserving the data utility as much as possible. Privacy preser-
vation is a hard requirement, that is, it must be satisfied, and utility is the mea-
sure to be optimized. While privacy preservation has been extensively studied,
the research of utility-based privacy preservation has just started. The chal-
lenges include:
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Utility measure. One key issue in the utility-based privacy preservation is
how to model the data utility in different applications. A good utility measure
should capture the intrinsic factors that affect the quality of data for the specific
application.

Balance between utility and privacy. In some situation, preserving utility
and privacy are not conflicting. But more often than not, hiding the privacy
information may have to sacrifice some utility. How do we trade off between
the two goals?

Efficiency and scalability. The traditional privacy preservation is already
computational challenging. For example, even simple restriction of optimized
k-anonymity is NP-hard [3]. How do we develop efficient algorithms if utility
is involved? Moreover, real data sets often contains millions of high dimen-
sional tuples, highly scalable algorithms are needed.

Ability to deal with different types of attributes. Real life data often in-
volve different types of attributes, such as numerical, categorical, binary or
mixtures of these data types. The utility-based privacy preserving methods
should be able to deal with attributes of different types.

9.2 Types of Utility-based Privacy Preservation Methods

In this section, we introduce some common privacy models and recently
proposed data utility measures.

9.2.1 Privacy Models

Various privacy models have been proposed in literature. This section intro-
duces some of the privacy models that are often used as well as the correspond-
ing privacy preserving methods.

K-Anonymity. K-anonymity is a privacy model developed for the linking
attack [18]. Given a table T with attributes (A1, . . . , An), a quasi-identifier is
a minimal set of attributes (Ai1 , . . . , Ail) (1 ≤ i1 < . . . < il ≤ n) in T that
can be joined with external information to re-identify individual records. Note
that there may be more than one quasi-identifer in a table.

A table T is said k-anonymous given a parameter k and the quasi-identifer
QI = (Ai1 , . . . , Ail) if for each tuple t ∈ T , there exist at least another (k−1)
tuples t1, . . . , tk−1 such that those k tuples have the same projection on the
quasi-identifier. Tuple t and all other tuples indistinguishable from t on the
quasi-identifier form an equivalence class.
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Given a table T with the quasi-identifier and a parameter k, the problem of
k-anonymization is to compute a view T ′ that has the same attributes as T such
that T ′ is k-anonymous and as close to T as possible according to some quality
metric.

Data suppression and value generalization are often used for anonymization.
Suppression is masking the attribute value with a special value in the domain.
Generalization is replacing a specific value with a more generalized one. For
example, the actual age of an individual can be replaced by an interval, or
the city of an individual can be replaced by the corresponding province. Cer-
tain quality measures are often used in the anonymization, such as the average
equivalence class size. Theoretical analysis shows that the problem of opti-
mal anonymization under many quality models is NP-hard [1, 14, 3]. Various
k-anonymization methods are proposed [19, 20, 29, 12, 11].

One of the most important advantages of k-anonymity is that no additional
noise or artificial perturbation is added into the original data. All the tuples in
an anonymized data remains trustful.

l-Diversity. l-diversity [13] is based on the observation that if the sensi-
tive values in one equivalence class lacks diversity, then no matter how large
the equivalence class is, attacker may still guess the sensitive value of an indi-
vidual with high probability. For example, Table 9.3c is a 2-anonymous table.
Particularly, t3 and t5 are generalized into the same equivalence class. How-
ever, since their annual income is the same, an attacker can easily conclude
that the annual income of t3 is 50k although the 2-anonymity is preserved. Ta-
ble 9.2b has better diversity in the sensitive attribute. t3 and t4 are in the same
equivalence class and their annual income is different. Therefore, the attacker
only have a 50% opportunity to know the real annual income of t3.
l-diversity model addresses the above problem. By intuition, a table is

l-diverse if each equivalence class contains at least l “well represented”
sensitive values, that is, at least l most frequent values have very similar
frequencies. Consider a table T = (A1, . . . , An, S) and constant c and l,
where (A1, . . . , An) is a quasi-identifier and S is a sensitive attribute. Sup-
pose an equivalence class EC contains value s1, . . . , sm with frequency
f(s1), . . . , f(sm) (appearing in the frequency non-ascending order) on sen-
sitive attribute S, EC satisfies (c, l)-diversity with respect to S if

f(s1) < c
m∑
i=l

f(si)

l-diversity complements k-anonymity by requiring certain diversity on the
sensitive attributes. It is a more practical privacy model.
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Sensitive Inference. Sensitive inference [23] comes from the statistical
analysis and data mining ability. The privacy inference occurs when the sen-
sitive value can be determined from a set of other non-sensitive values with
high confidence. The inference can be achieved by data mining abilities, such
as association rule mining and classification.

Given a table T = (M1, . . . ,Mm, S1, . . . , Sn). Si (1 ≤ i ≤ n) is called
a sensitive attribute. Certain values in the sensitive attributes are not acces-
sible. Mj (1 ≤ j ≤ m) is called a non-sensitive attribute and contains the
non-sensitive information. Mj’s and Si’s are disjoint. A sensitive inference
is a rule {mi1 , . . . ,mil} → sj with high confidence, where mi1, . . . ,mil
are attribute values on non-sensitive attributes Mi1 , . . . ,Mil , respectively, and
sj is an inaccessible sensitive value on Sj . For example, suppose in Ta-
ble 9.1a AnnualIncome is a sensitive attribute and the values lower than
60k in this attribute is confidential and should not be disclosed. However, rule
Master → 50k can be derived from Table 9.1a with confidence 66.7%. There-
fore, although 50k is not disclosed, an attacker can guess the value from the
non-sensitive value Master with high probability.

Data suppression can be used in eliminating the sensitive inference. The
intuition is to mask some non-sensitive information causing the inference, so
that the confidence of the inference rule decreases to below certain threshold.

[2] deals with the sensitive inference caused by association mining. The
objective is to hide a minimal set of entries so that the sensitive fields cannot
be disclosed by the sensitive inferences. Other work on eliminating sensitive
inference includes [15, 22].

Other Related Work. Another privacy model Anatomy is proposed in [26],
which publishes the quasi-identifer and the sensitive information into two sep-
arate tables. Equivalence classes are formed without generalizing the values
in the quasi-identifier. The advantage is that more information in the quasi-
identifier is preserved. [25] proposes a privacy model m-invariance in a dy-
namic context, that is, a sequential releasing of table with any sequence of
insertion and deletions. The main objective is to make each tuple indistinguish-
able during its lifetime in the publication. In order to prevent the attacker from
linking different versions of the released tables together to obtain the sensi-
tive information, certain “invariance” (in terms of having the similar sensitive
values) in each equivalence class is required.

9.2.2 Utility Measures

In the context of privacy preservation, the data utility is both relative and
specific. First, we do not consider the absolute utility of a data set, instead,
we measure how much utility is preserved in the published data after pri-
vacy preservation compared to the original data. Second, different applications
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require different information in a data set. We cannot find a measure to quantify
the amount of information contained in the data for all different applications.
Therefore, the utility measure should be designed under the context of certain
applications.

Query Answering Accuracy. One common use of the published data is
query answering, such as the aggregate queries including SUM, COUNT and
AVERAGE. The data quality in query answering depends on how far away each
attribute value is from the original one after applying the privacy preserving
methods. For example, if generalization is used in privacy preservation, then
a specific value is replaced by a more general one in the published data. In-
tuitively, in order to maximize the query answering accuracy, the generalized
value in the published data should be as close to the original value as possible.
A quantitative measure is proposed in [28, 27]. It uses the normalized interval
size to measure the utility loss for numeric attributes, and the normalized num-
ber of descendants in the generalization hierarchy to measure the utility loss
for categorical attributes. More details will be discussed in Section 9.3.

Classification Accuracy. In classification analysis, the published data are
often used to train a classifier. Thus, the data quality depends on how well
the class structure is preserved. More specifically, we want to minimize the
uncertainty of classification within a group of tuples indistinguishable from
each other. [5, 6] propose a utility score that measures the entropy change
during the anonymization. Ideally, the entropy of an equivalence class with
respect to class label distribution should be minimized in the published data.
Other utility measures for classification are proposed in [7, 24].

Distribution Similarity. Distribution is a fundamental characteristic of a
data set. Many data analysis try to make certain conclusions about the data
distribution. Therefore, how well the published data preserve the distribution
of the original data is crucial for those applications. [8] develops a utility model
which measures the difference between the distribution of the original data and
that of the anonymized data.

Other Utility Measures. Other utility measures include generalization
height [17], which measures the total number of generalization steps applied
on the original data set. The idea behind is that, since the generalization steps
cause information loss, the number of generalization steps represents the total
amount of information loss. [3] considers the discernability of the anonymized
data. It tries to minimize the average equivalence class size, because the more
tuples are in the same group, the less specific information is preserved for those
tuples.



214 Privacy-Preserving Data Mining: Models and Algorithms

9.2.3 Summary of the Utility-Based Privacy Preserving
Methods

In this chapter, we introduce four utility-based privacy preservation meth-
ods. They are the utility-based anonymization method [28], the top-down spe-
cialization (TDS) method [5], the progressive Disclosure Algorithm (PDA) [23]
and the anonymized marginal method [8]. The privacy models and utility mea-
sures used in the four methods are summarized in Table 9.4.

Table 9.4. Summary of utility-based privacy preserving methods

Method Privacy model Utility measure

Utility-based anonymization k-Anonymity Query answering accuracy
TDS k-Anonymity Classification accuracy
PDA Sensitive Inference Classification accuracy
Anonymized marginal k-Anonymity & l-Diversity Distribution similarity

The utility-based anonymization method will be discussed in Section 9.3.
The top-down specialization (TDS) method and the progressive Disclosure Al-
gorithm (PDA) both deal with data used in classification problems, and will
be discussed in Section 9.4. Section 9.5 introduces the anonymized marginal
method. Section 9.6 concludes this chapter.

9.3 Utility-Based Anonymization Using Local Recoding

The utility-based anonymization method proposed in [28] aims at improv-
ing the query answering accuracy on anonymized tables. The utility measure
proposed captures two aspects. First, the less generalized attribute value gives
more accurate answers in query answering on the anonymized table. For ex-
ample, Table 9.2b and 9.3c are both 2-anonymous, but the age attribute is less
generalized in Table 9.2b. If we perform the aggregate query on this attribute,
Table 9.2b gives more accurate answers. Second, different attributes may have
different utility in data analysis. For example, in Table 9.1a, suppose that the
information about annual income is more related to age and education than
the other attributes, in order to preserve the correlation among the data in
anonymization, it is better to generalize other attributes which are not so re-
lated to annual income, such as “Zip Code”.

Based on the above observations, the weighted normalized certainty penalty
is proposed to measure the utility of attributes in the anonymization. For a
numeric attribute value, the normalized certainty penalty (NCP) measures its
normalized interval size after generalization; for a categorical attribute value,
NCP measures its normalized number of descendants in the hierarchy tree after
generalization. A weight is assigned to each attribute to reflect its utility in the
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analysis on the anonymized data. Given a table and the anonymity requirement,
such as k-anonymity, the utility-based anonymization aims at computing a k-
anonymous table that minimizes the weighted normalized certainty penalty.

In order to tackle the problem, two algorithms are proposed. The bottom-up
method iteratively groups the tuples with similar attribute values together until
each group has at least k tuples. The top-down method works in the opposite
way. It put all tuples into one group at the beginning, and then iteratively par-
titions the tuples in a group into two groups, trying to maximize the difference
of attribute values between the two groups. The partitioning stops when further
splitting violates the k-anonymity.

To give some details, first we introduce the local recoding method in the
anonymization. Then, we define the utility measure, weighted normalized cer-
tainty penalty, formally. The bottom-up method and top-down method are in-
troduced last.

9.3.1 Global Recoding and Local Recoding

Two methods have been proposed for anonymization: global recoding and
local recoding. Global recoding maps a given value in a single domain to an-
other one globally, while local recoding maps a given tuple to some recoded
tuple. Clearly, global recoding can be regarded as a specific type of local re-
coding.

Table 9.5a. 3-anonymous table by global recoding

gId tId Age Education Zip Code Annual Income Target Customer

g1 t1 [24-32] ANY [53711-53713] 40k Y
g1 t2 [24-32] ANY [53711-53713] 50k Y
g1 t3 [24-32] ANY [53711-53713] 50k N
g2 t4 [24-32] ANY [53714-53716] 80k N
g2 t5 [24-32] ANY [53714-53716] 50k N
g2 t6 [24-32] ANY [53714-53716] 100k N

Table 9.6b. 3-anonymous table by local recoding

gId tId Age Education Zip Code Annual Income Target Customer

g1 t1 [24-30] ANY [53711-53713] 40k Y
g1 t2 [24-30] ANY [53711-53713] 50k Y
g1 t3 [24-30] ANY [53711-53713] 50k N
g2 t4 [30-32] GradSchool [53714-53716] 80k N
g2 t5 [30-32] GradSchool [53714-53716] 50k N
g2 t6 [30-32] GradSchool [53714-53716] 100k N
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Example 9.2 (Global recoding v.s. local recoding) Consider
Table 9.1a. Attribute {Age, Education, Zip Code} is a quasi-identifer.
Table 9.5a and 9.6b are 3-anonymous tables by global recoding and local re-
coding, respectively. t3 and t4 have the same attribute values on Age(30) and
Education(Master). In global recoding, 30 is mapped to interval [24 − 32]
globally, while Master is mapped to the most generalized value ANY . In
local recoding, the value 30 and Master in t3 is mapped to [24 − 30] and
ANY , respectively; but the same values 30 and Master in t4 are mapped to
[30 − 32] and GradSchool, respectively. After the global recoding, the only
knowledge about Age and Education in Table 9.5a is the full range [24 − 32]
in the domain and the most generalized value ANY , respectively; while
Table 9.6b shows more specific information about Age and Education.

From the above example, we can see that the local recoding may lead to less
information loss than the global recoding.

9.3.2 Utility Measure

The information loss caused by the anonymization can be measured by how
well the generalized tuples approximate the original ones. After the generaliza-
tion, some attribute values of a tuple are generalized to an interval. The interval
size reflects the accuracy loss in query answering. Therefore, we use the sum of
interval size on all attributes of the generalized tuples to measure the certainty
loss. The total certainty loss of the anonymized table is the sum of certainty
loss of all the tuples.

Utility Measure for Numerical Attributes. Consider table T with quasi-
identifier (A1, . . . , An). Suppose a tuple t = (x1, . . . , xn) is generalized to
tuple t′ = ([y1, z1], . . . , [yn, zn]) such that yi ≤ xi ≤ zi (1 ≤ i ≤ n). Then,
we define the normalized certainty penalty (NCP) of tuple t on attribute Ai as

NCPAi(t) =
zi − yi
|Ai|

, where |Ai| = max
t∈T

t.Ai −min
t∈T

t.Ai

Utility Measure for Categorical Attributes. The generalization on a cat-
egorical attribute often follows a hierarchy tree, which specifies the attribute
values with different granularity. Suppose a tuple t has value v on categori-
cal attribute Ai, v is generalized to a set of values v1, . . . , vm. We find the
common ancestor of v1, . . . , vm, denoted by ancestor(v1, . . . , vm) in the hi-
erarchy tree, and use the size of ancestor(v1, . . . , vm), that is, the number of
leaf nodes that are descendants of ancestor(v1, . . . , vm), to measure the gen-
eralization quantitatively. That is

NCPAi(t) = |ancestor(v1,...,vm)|
|Ai|
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where |Ai| is the number of distinct values on Ai in the most specific level.
Intuitively, for a numeric attribute Ai, NCPAi(t) measures how much t is

generalized on attribute Ai in terms of the generalized interval size; for a cat-
egorical attribute Ai, NCPAi(t) measures how much t is generalized on Ai in
terms of the number of distinct values the generalized value covers. Consider
both the numeric and categorical attributes, we define the weighted normalized
certainly penalty of a tuple t as

NCP (t) =
n∑
i=1

(wi ·NCPAi(t)), where
n∑
i=1

wi = 1

Moreover, the weighted normalized certainly penalty of a table T is de-
fined as

NCP (T ) =
∑
t∈T

NCP (t)

Since in many data analysis applications, different attributes may have dif-
ferent utility, we assign each attribute a weight to reflect the different impor-
tance of the attribute. Therefore, NCP (t) is the weighted sum of the normal-
ized certainty penalty on all attributes. The certainty penalty on the whole table
is the sum of penalty on all the tuples.

Example 9.3 (Weighted normalized certainty penalty)

Consider Table 9.1a and the corresponding 3-anonymous Table 9.6b. Suppose
the weights of attributes Age, Education and Zip Code are 0.5, 0.4 and 0.1,
respectively. Then, we have

NCPAge(t1) = 30−24
32−24 = 6

8 = 0.75
NCPEdu(t1) = 3

3 = 1
NCPZipCode(t1) = 53713−53711

53716−53711 = 2
5 = 0.4

NCP (t1) = WAge ×NCPAge(t1) +WEdu ×NCPEdu(t1) +WZipCode

×NCPZipCode(t1) = 0.5× 0.75 + 0.4× 1 + 0.1× 0.4 = 0.815

9.3.3 Anonymization Methods

As shown in [3], optimal k-anonymization under simple restrictions is NP-
hard. As a generalization, the utility-based anonymization is also NP-hard. Two
heuristic local recoding algorithms are proposed to solve the problem.

The Bottom-up Method. The bottom-up method puts a tuple in a group
at the beginning, and then iteratively merges the small groups into larger ones.
In each iteration, a group whose population is less than k is combined with
another group such that the combined group has the minimal utility loss. The



218 Privacy-Preserving Data Mining: Models and Algorithms

iteration terminates when each group has at least k tuples. Each group forms
an equivalence class. The algorithm is illustrated using the following example.

Example 9.4 (The bottom-up method) Consider Table 9.1a. The 2-
anonymization using the bottom-up method works as follows.

First, each tuple forms a group. For each group whose size is smaller than 2,
merge it with another group which minimizes the certainty penalty. For exam-
ple, since |g1| = |{t1}| < 2, we calculate the certainty penalty NCP (g1, gi)
for 2 ≤ i ≤ 6 and find that merging g1 with g2 minimizes NCP (g1, gi). Sim-
ilarly, g3 is merged with g4, and g5 is merged with g6. The final anonymized
table is shown in Table 9.2b.

The Top-down Method. The top-down method first treats the whole ta-
ble as an equivalence class (group). The utility of the table is minimal since
all tuples are generalized to the same. It then recursively partitions a group
into two groups if each subset contains at least k tuples and the utility is im-
proved. The algorithm stops when further partitioning leads to the violation of
the k-anonymity.

Example 9.5 (The top-down method) Consider the 2-anonymiza-
tion of Table 9.1a. The top-down method iteratively partitions the tuples into
two groups Gu and Gv , trying to minimize the certainty penalty. It first finds
a pair of tuples (as the seeds) that maximize the normalized certainty penalty.
t1 and t6 are the tuples. Thus, t1 and t6 are added into Gu and Gv , respec-
tively. Then, we assign all the other tuples to one of the two groups. For each
tuple t, we calculate NCP (Gu, t) and NCP (Gv , t), and assign t to the group
with the smaller NCP value. For example, t2 is assigned into Gu because
NCP (Gu, t2) is smaller than NCP (Gv, t2).

After all tuples are assigned, we have Gu = {t1, t2} and Gv =
{t3, t4, t5, t6}. Since |Gu| = 2, we only partition Gv in the next iteration.
Similarly, the seeds found in the next iteration are t3 and t6. Gv is partitioned
into {t3, t4} and {t5, t6}. The final anonymized table is shown in Table 9.2b.

Finding the seeds u, v with the maximum NCP (u, v) requires O(|T |2).
A heuristic method can be used to accelerate the computation. It randomly
picks a tuple t1 and scans the table once to find another tuple t2 maximizing
NCP (t1, t2). Then, by another scan, it finds the third tuple t3 that maximizes
NCP (t2, t3). The process is repeated several times until NCP (ti, ti+1) does
not increase significantly. Then we use ti and ti+1 as the seeds.

During the top-down partition, some groups may have fewer than k tuples,
we adjust such a group by combining it with another group which minimizes
the certainty penalty.

The bottom-up method and the top-down method both provide satisfactory
results. The top-down method is faster than the bottom-up method. This is
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because the top-down method recursively partitions the search space for lo-
cal tuples. Moreover, the heuristic method for finding seeds also reduces the
computational cost.

9.3.4 Summary and Discussion

The advantage of the utility-based anonymization method is two fold. First,
it increases the accuracy of query answering on anonymized tables. The utility-
based anonymization groups similar tuples together, and applies the local re-
coding to tuples in the same group. As a result, the generalized tuples are often
in small ranges and similar to the original values. Thus, the answers to the
queries are also bound in a small range around the exact answer. Second, it
naturally increases the discernability of the anonymized table. The weighted
normalized certainty penalty on a table is non-decreasing if the average size of
equivalence classes increases. This is because all tuples in a group are gener-
alized to the same in the anonymized table. The more tuples are in the same
equivalence class, the more likely they are generalized to larger ranges. Al-
though discernability penalty is not explicitly incorporated in the utility mea-
sure, the size of the equivalence class is kept small.

9.4 The Utility-based Privacy Preserving Methods in
Classification Problems

In classification analysis, the published data are often used to train classi-
fiers. As discussed in Section 9.2, the data quality depends on how well the
class structure is preserved. In this section, we discuss two utility-based pri-
vacy preservation methods which try to preserve the privacy and retain the
data utility for classification as much as possible.

The top-down specialization (TDS) method is based on the k-anonymity pri-
vacy model. The objective is to generalize tuples in a table, such that tuples in
the same equivalence class are as pure as possible with respect to class labels.
The progressive disclosure algorithm (PDA) is based on the sensitive inference
privacy model. In order to eliminate sensitive inferences, it suppresses some at-
tribute values so that the confidence of each inference rule is controlled lower
than a user defined threshold.

The two methods share the same spirit in algorithm frameworks and data
utility measures. First, both algorithms take a top-down approach. They hide
all the specific information at the beginning, and progressively release the more
specific information as long as the privacy requirement is not violated and
the data utility in classification is increased. The operation of releasing more
specific information is called specialization in TDS and disclosure in PDA.
Second, TDS and PDA both measure the data utility in classification as infor-
mation gain per unit of privacy loss. The intuition is that, in a specialization
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or disclosure, one goal is to maximize the information gain. At the same time,
we should also satisfy the privacy requirement. If a specialization or disclo-
sure improves the information utility greatly but sacrifices privacy fast, it is
undesirable.

The critical difference between TDS and PDA is how to measure the in-
formation gain and the privacy loss. Since TDS is based on the k-anonymity
model, in a specialization, the information gain is measured by the entropy
reduction on the affected equivalence classes, and the privacy loss is defined
as the reduction of the smallest equivalence class size. The reason is that, if
an equivalence class size decreases, so does the anonymity (that is, how indis-
tinguishable a tuple is from others) of tuples in the equivalence class. On the
other hand, PDA is based on the sensitive inference model. After disclosing an
attribute value, the information gain is defined as the entropy reduction on the
tuples involving the disclosed value, and the privacy loss is defined as the av-
erage confidence increase of sensitive inference rules. This is because a higher
confidence leads to a higher probability to guess the sensitive data successfully.

9.4.1 The Top-Down Specialization Method

The top-down specialization method anonymizes a table in the way that the
tuples in the same equivalence class are as pure as possible in their class la-
bels. The objective is to minimize the uncertainty of classifying tuples within
an equivalence class, and thus to improve the classification accuracy. As shown
in Example 9.1, Table 9.2b is a better anonymization than Table 9.3c in classi-
fication applications, because it provides better classification accuracy.

To give more details, we first introduce the specialization method, and then
discuss how to evaluate a specialization. An example is given to illustrate the
algorithm.

The Specialization Method. In order to specify the hierarchical structure of
values with different granularity in an attribute, a user-specified taxonomy tree
is given on each categorical attribute. A leaf node in a taxonomy tree represents
a most specific value in the original table and its parent node represents a more
generalized value. The root of a taxonomy tree represents the most generalized
value on the corresponding attribute. For continuous attributes, a generalized
value is represented as an interval. The algorithm dynamically grows a taxon-
omy tree for each continuous attribute at runtime. It starts from the full range
of the domain on an attribute, and iteratively splits the interval into two sub
intervals that maximize the information gain. Figure 9.1 shows a taxonomy
tree on categorical attribute Education in Table 9.7a and Figure 9.2 shows a
taxonomy tree on continuous attribute Age in the same table.

A specialization v → children(v) on attribute A replaces value v with one
of the values in children(v). children(v) contains all the children values of
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ANY

Bachelor GradSchool

DoctorateMaster

Figure 9.1. A taxonomy tree on categori-
cal attribute Education

[24−24] [25−32]

[25−25] [30−32]

[24−32]

Figure 9.2. A taxonomy tree on continu-
ous attribute Age

v in the taxonomy tree of A. After the specialization, the equivalence classes
containing value v are partitioned into subgroups according to children(v).
Thus, the specialization reduces the anonymity of the tuples containing v. A
specialization is valid (with respect to T ) if the anonymity of table T after
the specialization does not violate the anonymity requirement. Moreover, a
specialization on v is beneficial (with respect to T ) if more than one class is
involved in the records containing v. The intuition behind is the follows. One
objective of specializations is to increase the utility for classification. The infor-
mation utility is achieved by partitioning a group of records with mixed classes
into subgroups that have “purer” classes. Therefore, if the records containing v
only involve one class, then there is no potential for the specialization on v to
increase the information for classification. A specialization is performed only
if it is both valid and beneficial.

Utility Score. In order to measure the benefits of a specialization quantita-
tively, a utility score is defined as

Score(v) =

{
InfoGain(v)
AnonyLoss(v) if AnonyLoss(v) �= 0
InfoGain(v) otherwise

where InfoGain(v) is the information gain in the specialization and
AnonyLoss(v) measures the privacy loss in the specialization, which will be
defined as follows.

InfoGain(v). Given value v, all tuples containing v are denoted byRv. The
entropy of Rv with respect to the class distribution measures the randomness
of classes in the tuples, which is defined as

H(Rv) = −
∑
c∈cls

freq(Rv, c)
|Rv|

× log2
freq(Rv, c)
|Rv|

where cls is the set of class labels involved in Rv.
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The information gain of a specialization on value v measures the reduction
of entropy in the specialization, which is defined as

InfoGain(v) = H(Rv)−
∑

c∈children(v)

|Rc|
|Rv |

H(Rc)

AnonyLoss(v). Given a table T and a quasi-identifier QI =
(Ai1 , . . . , Ail), the tuples sharing the same values on QI form equivalence
classes. The size of an equivalence class indicates the anonymity of tuples
in the class, that is, how indistinguishable the tuples are from others. The
anonymity of quasi-identifier QI , denoted by A(QI), is defined as the min-
imal equivalence class size on QI .

Then, how to measure the anonymity loss in a specialization? Suppose ta-
ble T is specialized on value v in attribute Ai, since the equivalence classes
involving Ai may be partitioned into subgroups in the specialization on v, the
anonymity of the quasi-identifiers containing Ai may decrease. We use the av-
erage anonymity reduction of all the quasi-identifiers containing Ai to measure
the anonymity loss of the specialization on v. It is defined as

AnonyLoss(v) = AV GAi∈QIj{A(QIj)−Av(QIj)}

where A(QIj) is the anonymity of quasi-identifier QIj before the specializa-
tion, and Av(QIj) is the anonymity of QIj after the specialization.

The calculation of utility score is illustrated in the following example.

Example 9.6 (Utility score) Consider Table 9.7a and the taxonomy
tree on categorical attribute Education in Figure 9.1. After the specialization
on ANY , all the tuples in Table 9.7a are partitioned into two groups, one
contains value Bachelor and the other one contains GradSchool. We have

H(RANY ) = −2
6 × log2

2
6 −

4
6 × log2

4
6 = 0.9149

H(RBachelor) = −1× log2 1− 0× log2 0 = 0
H(RGradSchool) = −0× log2 0− 1× log2 1 = 0
InfoGain(ANY ) = H(RANY )− ( |RBachelor |

|RANY | ×H(RBachelor)

+ |RGradSchool|
|RANY | ×H(RGradSchool))

= 0.9149 − (2
6 × 0 + 4

6 × 0) = 0.9149
AnonyLoss(ANY ) = 6− 2 = 4
Score(ANY ) = InfoGain(ANY )

AnonyLoss(ANY ) = 0.9149
4 = 0.2287

Consider continuous attribute Age in Table 9.7a. Since no taxonomy tree is
specified on Age, we grow an “optimal” taxonomy tree by iteratively splitting
the intervals on Age at the values that maximize the information gain. For
example, the distinct values on Age include 24, 25, 30, and 32, therefore, the
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Table 9.7a. The original table

tId Age Education Zip Code TargetCustomer

1 24 Bachelor 53711 Y
2 25 Bachelor 53713 Y
3 25 Master 53715 N
4 30 Master 53712 N
5 32 Master 53714 N
6 32 Doctorate 53716 N

Table 9.8b. The anonymized table

gId tId Age Education Zip Code TargetCustomer

1 1 [24-32] Bachelor [53711-53716] Y
1 2 [24-32] Bachelor [53711-53716] Y
2 3 [24-32] GradSchool [53711-53716] N
2 4 [24-32] GradSchool [53711-53716] N
2 5 [24-32] GradSchool [53711-53716] N
2 6 [24-32] GradSchool [53711-53716] N

possible splitting values are 24, 25, and 30. The corresponding split intervals
are [24 − 24]&[25 − 32], [24 − 25]&[30 − 32], and [24 − 30]&[32 − 32],
respectively. R[v1,v2] denotes the tuples containing values in [v1, v2] on Age.
We have

InfoGain(24) = H(R[24−32])− (1
6 ×H(R[24−24]) + 5

6 ×H(R[25−32]))
= 0.9149 − (1

6 × 0 + 5
6 × 0.7219) = 0.3133

InfoGain(25) = H(R[24−32])− (3
6 ×H(R[24−25]) + 3

6 ×H(R[30−32]))
= 0.9149 − (3

6 × 0.9149 + 3
6 × 0) = 0.4575

InfoGain(30) = H(R[24−32])− (4
6 ×H(R[24−30]) + 2

6 ×H(R(32−32]))
= 0.9149 − (4

6 × 1 + 2
6 × 0) = 0.2482

Since InfoGain(24) is the maximum, the full range [24 − 32] on Age is
first split into [24 − 24] and [25 − 32]. Similarly, [25 − 32] is split into [25 −
25] and [30− 32]. Since there is only one class involved in R[30−32], that is, no
specialization on [30 − 32] is beneficial, we do not split it further. The grown
taxonomy tree on Age is shown in Figure 9.2.

The Algorithm. The top-down specialization method starts at the root of the
taxonomy tree on each attribute. That is, all tuples in a table are generalized to
the same on quasi-identifiers. In each iteration, it considers all the possible spe-
cializations on the current generalized level. The scores of the valid and ben-
eficial specializations are calculated and the specialization with the maximum
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score is executed. The iteration terminates when there is no valid and beneficial
specialization. The following example illustrates the algorithm.

Example 9.7 (The top-down specialization method) Consider
Table 9.7a, where {Age, Education, Zip Code} is a quasi-identifier and
TargetCustomer is a class label. There are two classes in the table: {t|t ∈
T, t.TargetCustomer = Y } and {t|t ∈ T, t.TargetCustomer = N}.
Suppose 2-anonymity is required, the Top-Down Specialization method works
as follows.

At first, all tuples are generalized to ([24 − 32], ANY, [53711 − 53716])
on the quasi-identifier. Then, the scores of all valid and beneficial special-
izations are calculated. Since Score(ANY ) on attribute Education is the
maximum, the table is specialized on value ANY . The tuples are parti-
tioned into two groups: t1 and t2 form an equivalence class with values
([24−32], Bachelor, [53711−53716]) on the quasi-identifier; t3, t4, t5 and t6
form another equivalence class with values ([24−32], GradSchool, [53711−
53716]) on the quasi-identifier. Each equivalence class contains only one class.
Therefore, there is no more beneficial specialization. The final 2-anonymized
table is shown in Table 9.8b.

9.4.2 The Progressive Disclosure Algorithm

The progressive disclosure algorithm suppresses some attribute values in
a table so that the confidence of sensitive inferences is reduced to a user de-
fined threshold or below, and the data utility in classification is retained as
much as possible. For example, consider Table 9.9a used for classification.
Suppose TargetCustomer is a class label and AnnualIncome is a sensitive at-
tribute. Particularly, the values “≤ 50k” and “> 100k” should not be dis-
closed. There are two inference rules {[20− 30], Bachelor} → “ ≤ 50k” and
{Doctorate, Lawyer} → “ > 100k” with high confidence. Table 9.10b is
a suppressed table where the confidence of each inference rule is reduced to
50% or below. But the table remains useful for classification. That is, given a
tuple t′ with the same values on attribute Age, Education, and Job as any tuple
t in the original table, t′ receives the same class label as t with a high proba-
bility according to Table 9.10b. This is because the class label in Table 9.9a is
highly related to attribute Job. As long as the values on Job are disclosed, the
classification accuracy is guaranteed.

To give more details about the method, we first introduce how to define
the privacy requirement using privacy templates, and then discuss the utility
measure. Last, we use an example to illustrate the algorithm.

Privacy Template. To make a table free from sensitive infer-
ences, it is required that the confidence of each inference rule is low.
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Table 9.9a. The original table

tId Age Education Job AnnualIncome TargetCustomer

1 [20-30] Bachelor Engineer ≤ 50k Y
2 [20-30] Bachelor Artist ≤ 50k N
3 [20-30] Bachelor Lawyer ≤ 50k Y
4 [20-30] Bachelor Artist [50k − 100k] N
5 [20-30] Master Artist [50k − 100k] N
6 [31-40] Master Engineer [50k − 100k] Y
7 [20-30] Doctorate Lawyer > 100k N
8 [31-40] Doctorate Lawyer > 100k Y
9 [31-40] Doctorate Lawyer [50k − 100k] Y

10 [20-30] Doctorate Engineer [50k − 100k] N

Table 9.10b. The suppressed table

tId Age Education Job AnnualIncome TargetCustomer

1 [20-30] ⊥Edu Engineer ≤ 50k Y
2 [20-30] ⊥Edu Artist ≤ 50k N
3 [20-30] ⊥Edu Lawyer ≤ 50k Y
4 [20-30] ⊥Edu Artist [50k − 100k] N
5 [20-30] Master Artist [50k − 100k] N
6 ⊥Age Master Engineer [50k − 100k] Y
7 [20-30] ⊥Edu Lawyer > 100k N
8 ⊥Age ⊥Edu Lawyer > 100k Y
9 ⊥Age ⊥Edu Lawyer [50k − 100k] Y

10 [20-30] ⊥Edu Engineer [50k − 100k] N

Templates can be used to specify such a requirement. Consider table T =
(M1, . . . ,Mm,Π1, . . . ,Πn,Θ), where Mj (1 ≤ j ≤ m) is a non-sensitive
attribute, Πi (1 ≤ i ≤ n) is a sensitive attribute, and Θ is a class label at-
tribute. A template is defined as 〈IC → πi, h〉, where πi is a sensitive attribute
value from sensitive attribute Πi, IC is a set of attributes not containing Πi

and called inference channel, and h is a confidence threshold. An inference is
an instance of 〈IC → πi, h〉, which has the form ic → πi, where ic con-
tains values from attributes in IC . The confidence of inference ic → πi,
denoted by conf(ic → πi), is the percentage of tuples containing both ic

and πi among the tuples containing ic. That is, conf(ic → πi) = |Ric,πi
|

|Ric| ,
where Rv denotes the tuples containing value v. The confidence of a template
is defined as the maximum confidence of all the inferences of the template.
That is, Conf(IC → πi) = max conf(ic→ πi). Table T satisfies template
〈IC → πi, h〉 if Conf(IC → πi) ≤ h. T satisfies a set of templates if T
satisfies each template in the set.
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Progressive Disclosure and Utility Measure. As discussed in Section 9.2,
suppression is an efficient method for eliminating sensitive inferences. Con-
sider table T = (M1, . . . ,Mm,Π1, . . . ,ΠN ,Θ). Mj (1 ≤ j ≤ m) is a non-
sensitive attribute and Πi (1 ≤ i ≤ n) is a sensitive attribute. Θ is a class
label. The suppression of a value on attribute Mj is to replace all occurrences
of this value by a special value ⊥j . For each template 〈IC → πi, h〉 not sat-
isfied in T , some values in the inference channel IC should be suppressed so
that Conf(IC → πi) is reduced to not greater than h.

Disclosure is the opposite operation of suppression. Given a suppressed ta-
ble T , Supj denotes all values suppressed on attribute Mj . A disclosure of
value v ∈ Supj replaces the special value ⊥j with v in all the tuples that cur-
rently contain ⊥j but originally contain v. A disclosure is valid if it does not
lead to a template violation. Moreover, a disclosure on attribute Mj is benefi-
cial, that is, it increases the information utility for classification, if more than
one class is involved in the tuples containing ⊥j . The following utility score
measures the benefit of a disclosure quantitatively.

For each suppressed attribute value v , Score(v) is defined as

Score(v) =
InfoGain(v)

PrivLoss(v) + 1

where InfoGain(v) is the information gain in disclosing value v and
PrivLoss(v) is the privacy loss in disclosing value v, which are defined as
follows.

InfoGain(v). Given a set of tuples S and the class labels cls involved in
S, the entropy is defined as

H(S) = −
∑
c∈cls

freq(S, c)
|S| × log2

freq(S, c)
|S|

where freq(S, c) is the number of tuples containing class c in S.
Given value v on attribute Mj , the tuples containing v is denoted by Rv.

Suppose R⊥j
is the set of tuples having suppressed value on Mj before dis-

closing v, the information gain of disclosing v is

InfoGain(v) = H(R⊥j
)− (

|Rv|
|R⊥j

|H(Rv) +
|R⊥j

−Rv|
|R⊥j

| H(R⊥j
−Rv))

PrivLoss(v). Given value v on attribute Mj , the privacy loss PrivLoss(v)
is defined as the average confidence increase of inferences.

PrivLoss(v) = AV GMj∈IC{Conf ′(IC → πi)− Conf(IC → πi)}
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where Conf(IC → πi) and Conf ′(IC → πi) are the confidence before and
after disclosing v.

Example 9.8 (Utility score) Consider Table 9.9a. Suppose the pri-
vacy templates are

〈{Age,Education} → “ ≤ 50k”, 50%〉
〈{Education, Job} → “ > 100k”, 50%〉

Suppose at first all the values on attribute Job is suppressed to⊥Job. The score
of disclosing value Engineer on Job is calculated as follows.

H(R⊥Job
) = − 5

10 × log2
5
10 −

5
10 × log2

5
10 = 1

H(REngineer) = −2
3 × log2

2
3 −

1
3 × log2

1
3 = 0.9149

H(R⊥Job
−REngineer) = −3

7 × log2
3
7 −

4
7 × log2

4
7 = 0.9852

InfoGain(Engineer) = H(R⊥Job
)− ( 3

10 ×H(REngineer) + 7
10×

H(R⊥Job
−REngineer)) = 0.03589

Before disclosing Engineer:
Conf({Education, Job} →> 100k)
= conf({⊥Education,⊥Job} →> 100k) = 0.2

After disclosing Engineer:
conf({⊥Education, Engineer} →> 100k) = 0
conf({⊥Education,⊥Job} →> 100k) = 0.286
Conf ′({Education, Job} →> 100k) = max{0, 0.286} = 0.286
PrivLoss(Engineer) = 0.286 − 0.2 = 0.086
Score(Engineer) = 0.03589

0.086+1 = 0.033

The Algorithm. The Progressive Disclosure Algorithm first suppresses all
non-sensitive attribute values in a table and then iteratively discloses the at-
tribute values that are helpful for classification without violating privacy tem-
plates. In each iteration, the score of each suppressed value is calculated and
the one with the maximum score is disclosed. The iteration terminates when
there is no valid and beneficial disclosure. The algorithm is illustrated using
the following example.

Example 9.9 (The Progressive disclosure algorithm)

Consider the following templates on Table 9.9a.

(1) 〈{Age,Education} → “ ≤ 50k”, 50%〉
(2) 〈{Education, Job} → “ > 100k”, 50%〉

At first, the values on attribute Age, Education, and Job are suppressed to
⊥Age, ⊥Education, and ⊥Job, respectively. The candidate disclosing values
include [20 − 30], [31 − 40], Bachelor, Master, Doctorate, Engineer,
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Artist, and Lawyer. In order to find the most beneficial disclosure, the score
of each value is calculated. SinceArtist has the maximum score, it is disclosed
in this iteration. At the next iteration, the scores of the rest candidates are
updated, and the one with the maximum score, [20 − 30], is disclosed. All the
valid and beneficial disclosures are executed similarly in the rest iterations.
The finally published table is shown in Table 9.10b. Note that in the finally
published table, Bachelor and Doctorate are suppressed because disclosing
them violates the privacy templates; [31−40] is suppressed because disclosing
it is not beneficial.

9.4.3 Summary and Discussion

The top-down specialization (TDS) method and the progressive disclosure
algorithm (PDA) are based on the observation that the goals of privacy preser-
vation and classification modeling may not be always conflicting. Privacy
preservation is to hide the sensitive individual (specific) information, while
classification modeling draws the general structure of the data. TDS and PDA
try to achieve the “win-win” goal that the specific information hidden for pri-
vacy preservation is the information misleading or not useful for classification.
Therefore, the quality of the classification model built on the table after using
TDS or PDA may be even better than that built on the original table.

9.5 Anonymized Marginal: Injecting Utility into
Anonymized Data Sets

One drawback of the anonymization method is that after the generalization
on quasi-identifiers, the distribution of the more specific data is lost. For ex-
ample, consider Table 9.11a and the corresponding 2-anonymous Table 9.12b.
After the anonymization, all the values on attribute Age are generalized to the
full range in the domain without any specific distribution information. How-
ever, if we publish Table 9.13a in addition to Table 9.12b, more information
about Age is published and the 2-anonymity is still guaranteed. Table 9.13a is
called a marginal on Age.

On the other hand, not all marginals preserve privacy. For example, Ta-
ble 9.14b satisfies 2-anonymity itself, but if an attacker knows an individual
living in 53715 with Doctorate degree is in the original table, he/she may link
the information from Table 9.12b and 9.14b together and conclude that the
annual income of the individual is 80k.

Based on the above observation, [8] models the utility of anonymized tables
as how much they preserve the distribution of the original table. It then pro-
poses to publish more than one anonymized tables to better approximate the
original distribution.
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Table 9.11a. The original table

tId Age Education Zip Code AnnualIncome

1 27 Bachelor 53711 40k
2 28 Bachelor 53713 50k
3 27 Master 53715 50k
4 28 Doctorate 53716 80k
5 30 Master 53714 50k
6 30 Doctorate 53712 100k

Table 9.12b. The anonymized table

gId tId Age Education Zip Code AnnualIncome

1 1 [27-30] Bachelor [53711-53713] 40k
1 2 [27-30] Bachelor [53711-53713] 50k
2 3 [27-30] GradSchool [53715-53716] 40k
2 4 [27-30] GradSchool [53715-53716] 80k
3 5 [27-30] GradSchool [53712-53714] 50k
3 6 [27-30] GradSchool [53712-53714] 100k

Table 9.13a. Age Marginal

Age Count

27 2
28 2
30 2

Table 9.14b. (Education, AnnualIncome)
Marginal

Education AnnualIncome Count

Bachelor 40k 1
Bachelor 50k 1
Master 50k 2

Doctorate 80k 1
Doctorate 100k 1

Now the problem becomes, which additional anonymized tables should be
published and how to check the privacy if more than one anonymized table are
released. First of all, we introduce the concept of anonymized marginal and
the utility measure to evaluate the quality of a set of anonymized marginals.

9.5.1 Anonymized Marginal

Consider a table T = (A1, . . . , An). {Ai1 , . . . , Aim} (1 ≤ i1 < . . . <
im ≤ n) is a set of attributes in T . A marginal table TAi1

,...,Aim
can be created

by the following SQL statement. (Attribute Count is the number of tuples in
TAi1

,...,Aim
sharing the same values on Ai1 , . . . , Aim).
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CREATE TABLE TAi1
,...,Aim

AS (SELECT Ai1 , . . . , Aim ,COUNT(∗)AS Count
FROM T
GROUP BY Ai1 , . . . , Aim)

The marginal table indicates the distribution of the tuples from T in domain
D(Ai1)×. . .×D(Aim), whereD(Ai) is the domain of attributeAi. A marginal
is anonymized if some of its attribute values are generalized.

9.5.2 Utility Measure

Distribution is an intrinsic characteristic of a data set. Many data analysis
discover the patterns from data distribution, such as classification which dis-
covers the class distribution in a data set. Therefore, whether the distribution of
a data set is preserved after anonymization is crucial for the utility of data. In
this spirit, a utility measure is defined as the difference between the distribution
of the original data and that of the anonymized data.

Empirical distribution of the original table. Consider a table T =
(A1, . . . , Am). In the probabilistic view, the tuples in T can be considered as
an i.i.d. (identically and independently distributed) sample generated from an
underlying distribution F . Reversely, F can be estimated using the empirical
distribution F̂T of T . Given any instance x = (x1, . . . , xm) in the domain of
T , the empirical probability p̂T (x) is the posteriori probability of x in table T .
In other words, p̂T (x) is the proportion of tuples in T having the same attribute
values as x, that is, p̂T (x) = |{t|t∈T,t.Ai=xi, 1≤i≤m}|

|T | .

Maximum entropy probability distribution of anonymized marginals.
Similarly, the anonymized marginals of T can be viewed as a set of constraints
on the underlying distribution. For example, Age Marginal in Table 9.13a in-
dicates that 33.3% of the tuples in Table 9.11a have age 27, 28 and 30, respec-
tively.

Given a set of constraints, the maximum entropy probability distribution is
the distribution that maximizes the entropy among all the probability distri-
butions satisfying the constraints. It is often used to estimate the underlying
distribution given some constraints. The intuition is that, by maximizing the
entropy, the prior knowledge about the distribution is minimized.

Consider a table T = (A1, . . . , Am) and a set of marginals M =
{M1, . . . ,Mn}, each marginal Mi = (Ai1 , . . . , Aik , Count) (1 ≤ i1 < . . . <
ik ≤ m) contains the projection of T on attribute {Ai1 , . . . , Aik} and the
count of tuples. A distribution F satisfies Mi if for any instance t in Mi, the
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probability in F satisfies
∑

ΠAi1
,...,Aik

x=t

p(x) =
t.Count

|T |

where x is an instance from the domain of T and ΠAi1
,...,Aik

x = t means
that the projection of x on Ai1 , . . . , Aik is the same as t. The above equation
means that the projection of distribution F on Ai1 , . . . , Aik is the same as the
empirical distribution of Mi. F satisfies a set of marginals M if F satisfies
each marginal Mi in M . The maximum entropy probability distribution F̂M
is the distribution with the maximum entropy in all the distributions satisfying
M .

Kullback-Leibler divergence (KL-divergence). Suppose the empirical
distribution of a table T is F̂1 and the maximum entropy probability distrib-
ution of the anonymized marginals M is F̂2, the Kullback-Leibler divergence
(KL-divergence) [9] is used to measure the difference between the two distrib-
utions. (Note that KL-divergence is not a metric.)

DKL(F̂1, F̂2) =
∑
i

p
(1)
i log

p
(1)
i

p
(2)
i

= H(F̂1, F̂2)−H(F̂1)

where p(1)
i and p(2)

i are the probabilities of an instance from distribution F̂1

and F̂2, respectively. H(F̂1) is the entropy of F̂1, which measures how much
effort it needs to identify an instance from distribution F̂1. H(F̂1, F̂2) is the
cross-entropy of F̂1 and F̂2, which measures the effort needed to identify an
instance from distribution F̂1 and F̂2. A smaller KL-divergence indicates that
the two distributions are more similar. KL-divergence is non-negative and it is
minimized when F̂1 = F̂2. Given a table T , the entropy H(F̂1) is constant.
Therefore, minimizing DKL(F̂1, F̂2) is mathematically equivalent to minimiz-
ing H(F̂1, F̂2).

Therefore, the utility of a set of anonymized marginals M = {M1, . . . ,Mn}
can be measured by the KL-divergence between F̂M and F̂T . A smaller KL-
divergence value indicates better utility of M .

9.5.3 Injecting Utility Using Anonymized Marginals

Based on the above utility measure, ideally, we want to search all the pos-
sible sets of anonymized marginals and find the one with the minimum KL-
divergence. There are two challenges.

Calculating the KL-divergence is computational challenging. First, gen-
erating all the possible sets of marginals needs exhaustive search. Second,
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finding the optimal k-anonymization for a single marginal is already NP-
hard [3]. Third, given a set of constraints, calculating the maximum entropy
probability distribution requires iterative algorithms [4, 16], which may be
time-consuming.

Since there is a close-form algorithm [10] to compute the maximum en-
tropy probability distribution on decomposable tables, the anonymized mar-
ginal method restricts the search to only including decomposable marginals.
The concept of decomposable marginals is derived from the decomposable
graphical model [10]. If a set of marginals are decomposable, then they are
conditionally independent. Instead of giving the formal definition, we use the
following example to illustrate the decomposable marginals and how to calcu-
late the maximum entropy probability on decomposable marginals.

A

B

C

D

Figure 9.3. Interactive graph

B

C

DA

B

C

Figure 9.4. A decomposition

Example 9.10 (Decomposable Marginal) Consider a set of mar-
ginals M1 = (A,B,C,Count) and M2 = (B,C,D,Count). We create an
interactive graph (Figure 9.3) for them by generating a vertex for each at-
tribute. An edge between two vertices is created if the corresponding attributes
are in the same marginal. M1 and M2 are decomposable because they satisfies
the following two conditions:
(1) in the corresponding interactive graph, clique BC separates A and D (the
two components after the decomposition are shown in Figure 9.4);
(2) each maximal clique in the interactive graph is covered by a marginal.

An example of non-decomposable marginals is M1 = (A,B,C,Count),
M2 = (B,D,Count) and M3 = (C,D,Count). They have the same interac-
tive graph as shown in Figure 9.3, but the maximal clique BCD is not covered
by any marginal. Therefore, they are not decomposable marginals.

A set of decomposable marginals can be viewed as a set of condition-
ally independent relations. For example, attributes A and D in marginals
M1 = (A,B,C,Count) and M2 = (B,C,D,Count) are independent given
attributes BC . The calculation of the maximum entropy probability distribu-
tion for decomposable marginals is illustrated in the following example.

Example 9.11 (Maximum entropy probability) Consider mar-
ginals M1 = (A,B,Count), and M2 = (B,C,Count) of table
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T = (A,B,C). M1 and M2 are decomposable and B separates A and
C . Therefore, attribute A and C are independent given B.

If M1 and M2 are ordinary marginals: The attribute values in ordinary
marginals are not generalized. For any instance x = (a, b, c) in the domain of
T , the maximum entropy probability of x is

p(x) = p(a, b, c)
= p(a, c|b) · p(b)
= p(a|b) · p(c|b) · p(b)
= p(a,b)·p(b,c)

p(b)

where p(a, b) is the proportion of tuples in M1 having value a and b on at-
tribute A and B, respectively.

If M1 and M2 are anonymized marginals: Some attribute values in
anonymized marginals are generalized. For any instance x = (a, b, c) in the
domain of T , suppose a′, b′, c′ are the corresponding generalized values in M1

and M2. The maximum entropy probability of x is:

p(x) = p(a, b, c) = p(a′,b′)·p(b′,c′)
p(b′) · 1

|Ra′ |·|Rb′ |·|Rc′ |

where p(a′, b′) is the fraction of tuples having value a′ and b′ on attribute A
and B in M1, respectively. Ra′ is the set of tuples having value a′ on A in M1.

Since finding all the possible decomposable marginals requires exhaustive
search, a search algorithm like genetic algorithm or random walk is needed.

Guarantee the privacy. Another challenge is that given a set of marginals
{M1, . . . ,Mn}, how to check whether the information obtained from combin-
ing {M1, . . . ,Mn} satisfies k-anonymity and l-diversity?

The theoretical results in [8] show that in order to check k-anonymity of a
set of decomposable marginals {M1, . . . ,Mn}, we only need to check whether
each marginal Mi satisfies k-anonymity. But checking whether {M1, . . . ,Mn}
satisfies l-diversity is more difficult. We have to join all the marginals together
and test whether the joined table satisfies l-diversity.

Several propositions help reduce the computation. First, if there is one
marginal that violates l-diversity, then the whole set of marginals violate l-
diversity. Second, only the marginals containing sensitive attributes need to be
joined together to check for l-diversity. Third, if a subset of marginals do not
satisfy l-diversity, then the whole set of marginals do not satisfy l-diversity.

9.5.4 Summary and Discussion

Anonymized marginal is very effective in improving the utility of the
anonymized data. However, searching all the possible decomposable marginals
for the optimal solution requires a lot of computation. A simpler yet effective
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method is, given table T , first compute an traditional k-anonymous table T ′,
and then create a set of anonymous marginals M containing single attribute
from T . Experimental results [8] show that publishing T ′ together withM still
dramatically decreases the KL-divergence.

9.6 Summary

Utility-based privacy preserving methods are attracting more and more at-
tention. However, the concept of utility is not new in privacy preservation prob-
lems. Utility is often used as one of the criteria for the privacy preserving meth-
ods [21] and measures the information loss after using the privacy preservation
technique on data sets.

Then, what makes the utility-based privacy preservation methods special?
Traditional privacy preserving methods often do not make explicit assumptions
about the applications where the data are used. Therefore, the utility measure
is often very general and thus not so effective. For example, traditionally, in the
sensitive inference privacy model, the utility is often considered maximal if the
number of suppressed entries is minimized. It is true only for certain applica-
tions. As a comparison, the utility-based privacy preservation methods target
at a class of applications based on the same data utility. Therefore, the devel-
oped methods are effective in reducing the information loss for the intended
applications while preserving privacy as well.

In addition to the four methods discussed in this chapter, there are many
applications which utilize some special functions of data. How to extend the
utility-based privacy preserving methods to various applications is highly inter-
esting. For example, in the data set where ranking queries are usually issued,
the utility of data should be measured as how much the dominance relation-
ship among tuples is preserved. None of the existing models can handle this
problem. Moreover, the utility-based privacy preserving methods can also be
extended to other types of data, such as stream data where the temporal char-
acteristics are considered more important in analysis.
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Abstract Data mining services require accurate input data for their results to be mean-
ingful, but privacy concerns may impel users to provide spurious information.
In this chapter, we study whether users can be encouraged to provide correct
information by ensuring that the mining process cannot, with any reasonable de-
gree of certainty, violate their privacy. Our analysis is in the context of extracting
association rules from large historical databases, a popular mining process that
identifies interesting correlations between database attributes. We analyze the
various schemes that have been proposed for this purpose with regard to a vari-
ety of parameters including the degree of trust, privacy metric, model accuracy
and mining efficiency.

Keywords: Privacy, data Mining, association rules.

10.1 Introduction

The knowledge models produced through data mining techniques are only
as good as the accuracy of their input data. One source of data inaccuracy is
when users deliberately provide wrong information. This is especially com-
mon with regard to customers who are asked to provide personal information
on Web forms to e-commerce service providers. The compulsion for doing so
may be the (perhaps well-founded) worry that the requested information may
be misused by the service provider to harass the customer. As a case in point,
consider a pharmaceutical company that asks clients to disclose the diseases
they have suffered from in order to investigate the correlations in their occur-
rences – for example, “Adult females with malarial infections are also prone
to contract tuberculosis”. While the company may be acquiring the data solely
for genuine data mining purposes that would eventually reflect itself in better
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service to the client, at the same time the client might worry that if her med-
ical records are either inadvertently or deliberately disclosed, it may adversely
affect her future employment opportunities.

In this chapter, we study whether customers can be encouraged to provide
correct information by ensuring that the mining process cannot, with any rea-
sonable degree of certainty, violate their privacy, but at the same time produce
sufficiently accurate mining results. The difficulty in achieving these goals is
that privacy and accuracy are typically contradictory in nature, with the con-
sequence that improving one usually incurs a cost in the other [3]. A related
issue is the degree of trust that needs to be placed by the users in third-party
intermediaries. And finally, from a practical viability perspective, the time and
resource overheads imposed on the data mining process due to supporting the
privacy requirements.

Our study is carried out in the context of extracting association rules from
large historical databases [7], an extremely popular mining process that identi-
fies interesting correlations between database attributes, such as the one de-
scribed in the pharmaceutical example. By the end of the chapter, we will
attempt to show that the state-of-the-art is such that it is indeed possible to
simultaneously achieve all the desirable objectives (i.e. privacy, accuracy, and
efficiency) for association rule mining.

In the above discussion, and for the most part in this chapter, the focus is
on maintaining the confidentiality of the input user data. However, it is also
conceivable to think of the complementary aspect of maintaining output se-
crecy, that is, the privacy of sensitive association rules that are an outcome of
the mining process – a summary discussion on these techniques is included in
our coverage of the literature.

10.2 Problem Framework

In this section, we describe the framework of the privacy mining problem in
the context of association rules.

10.2.1 Database Model

We assume that the original (true) database U consists of N records, with
each record having M categorical attributes. Note that boolean data is a spe-
cial case of this class, and further, that continuous-valued attributes can be
converted into categorical attributes by partitioning the domain of the attribute
into fixed length intervals.

The domain of attribute j is denoted by SjU , resulting in the domain SU of

a record in U being given by SU =
∏M

j=1
SjU . We map the domain SU to

the index set IU = {1, . . . , |SU |}, thereby modeling the database as a set of N
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values from IU . If we denote the ith record of U as Ui, thenU = {Ui}Ni=1, Ui ∈
IU .

To make this concrete, consider a database U with 3 categorical attributes
Age, Sex and Education having the following category values:

Age Child, Adult, Senior
Sex Male, Female

Education Elementary, Graduate

For this schema, M = 3, S1
U={Child, Adult, Senior}, S2

U={Male, Female},
S3
U={Elementary, Graduate}, SU = S1

U × S2
U × S3

U , |SU | = 12. The domain
SU is indexed by the index set IU = {1, ..., 12}, and hence the set of records

U U

Child Male Elementary
Child Male Graduate
Child Female Graduate
Senior Male Elementary

maps
to

1
2
4
9

10.2.2 Mining Objective

The goal of the data-miner is to compute association rules on the above
database. Denoting the set of attributes in the U database by C , an association
rule is a (statistical) implication of the form Cx =⇒ Cy, where Cx, Cy ⊂ C
and Cx ∩ Cy = φ. A rule Cx =⇒ Cy is said to have a support (or fre-
quency) factor s iff at least s% of the transactions in U satisfy Cx ∪ Cy. A
rule Cx =⇒ Cy is satisfied in U with a confidence factor c iff at least c% of
the transactions in U that satisfy Cx also satisfy Cy. Both support and confi-
dence are fractions in the interval [0,1]. The support is a measure of statistical
significance, whereas confidence is a measure of the strength of the rule.

A rule is said to be “interesting” if its support and confidence are greater than
user-defined thresholds supmin and conmin, respectively, and the objective of
the mining process is to find all such interesting rules. It has been shown in
[7] that achieving this goal is effectively equivalent to generating all subsets
of C that have support greater than supmin – these subsets are called frequent
itemsets. Therefore, the mining objective is, in essence, to efficiently discover
all frequent itemsets that are present in the database.

10.2.3 Privacy Mechanisms

We now move on to considering the various mechanisms through which
privacy of the user data could be provided. One approach to address this prob-
lem is for the service providers to assure the users that the databases obtained
from their information would be anonymized through the variety of techniques
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proposed in the statistical database literature [1, 38], before being supplied
to the data miners. For example, the swapping of values between different
customer records, as proposed in [17]. Depending on the service provider to
guarantee privacy can be referred to as a “B2B (business-to-business)” privacy
environment.

However, in today’s world, most users are (perhaps justifiably) cynical about
such assurances, and it is therefore imperative to demonstrably provide privacy
at the point of data collection itself, that is, at the user site. This is referred to
as the “B2C (business-to-customer)” privacy environment [47]. Note that in
this environment, any technique that requires knowledge of other user records
becomes infeasible, and therefore the B2B approaches cannot be applied here.

The bulk of the work in privacy-preserving data mining of association rules
has addressed the B2C environment (e.g. [2, 9, 19, 34]), where the user’s true
data has to be anonymized at the source itself. Note that the anonymization
process has to be implemented by a program which could be supplied either
by the service provider or, more likely, by an independent trusted third-party
vendor. Further, this program has to be verifiably secure – therefore, it must
be simple in construction, eliminating the possibility of the true data being
surreptitiously supplied to the service provider. In a nutshell, the goal of these
techniques is to ensure the privacy of the raw local data at the source, but, at the
same time, to support accurate reconstruction of the global data mining models
at the destination.

Within the above framework, the general approach has been to adopt a
data perturbation strategy, wherein each individual user’s true data is altered
in some manner before forwarding to the service provider. Here, there are
two possibilities: statistical distortion, which has been the predominant tech-
nique, and algebraic distortion, proposed in [47]. In the statistical approach,
a common randomizing algorithm is employed at all user sites, and this al-
gorithm is disclosed to the eventual data miner. For example, in the MASK
technique [34], targeted towards “market-basket” type of sparse boolean data-
bases, each bit in the true user transaction vector is independently flipped with
a parametrized probability.

While there is only one-way communication from users to the service
provider in the statistical approach, the algebraic scheme, in marked contrast,
requires two-way communication between the data miner and the user. Here,
the data miner supplies a user-specific perturbation vector, and the user then
returns the perturbed data after applying this vector on the true data, discretiz-
ing the output and adding some noise. The vector is dependent on the current
contents of the perturbed database available with the miner and, for large en-
terprises, the data collection process itself could become a bottleneck in the
efficient running of the system.



Mining Association Rules under Privacy Constraints 243

Within the statistical approach, there are two further possibilities: (a) A sim-
ple independent attribute perturbation, wherein the value of each attribute in
the user record is perturbed independently of the rest; or (b) A more gener-
alized dependent attribute perturbation, where the perturbation of each at-
tribute may be affected by the perturbations of the other attributes in the
record. Most of the statistical perturbation techniques in the literature, in-
cluding [18, 19, 34], fall into the independent attribute perturbation category.
Notice, however, that this is in a sense antithetical to the original goal of as-
sociation rule mining, which is to identify correlations across attributes. This
limitation is addressed in [10], which employs a dependent attribute perturba-
tion model, with each attribute in the user’s data vector being perturbed based
on its own value as well as the perturbed values of the earlier attributes.

Another model of privacy-preserving data mining is the k-anonymity model
[35, 2], where each record value is replaced with a corresponding generalized
value. Specifically, each perturbed record cannot be distinguished from at least
k other records in the data. However, this falls into the B2C model since the
intermediate database-forming-server can learn or recover precise records.

10.2.4 Privacy Metric

Independent of the specific scheme used to achieve privacy, the end result is
that the miner receives as input the perturbed database V and the perturbation
technique T used to produce this database. From these inputs, the miner at-
tempts to reconstruct the original distribution of the true database U , and mine
this reconstructed database to obtain the association rules. Given this frame-
work, the general notion of privacy in the association rule mining literature is
the level of certainity with which the data miner can reconstruct the true data
values of users. The certainity can be evaluated at various levels:

Average Privacy. This metric measures the reconstruction probability of a
random value in the database.

Worst-case Privacy. This metric measures the maximum reconstruction
probability across all the values in the database.

Re-interrogated Privacy. A common system environment is where the
miner does not have access to the perturbed database after the completion of the
mining process. But it is also possible to have situations wherein the miner can
use the mining output (i.e. the association rules) to subsequently re-interrogate
the perturbed database, possibly resulting in reduced privacy.

Amplification Privacy. A particularly strong notion of privacy, called “am-
plification”, was presented in [18], which guarantees strict limits on privacy
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breaches of individual user information, independent of the distribution of the
true data. Here, the property of a data record Ui is denoted by Q(Ui). For ex-
ample, consider the following record from the example dataset U discussed
earlier:

Age Sex Education
Child Male Elementary

Sample properties of the record include
Q1(Ui) ≡ “Age = Child and Sex = Male”, and
Q2(Ui) ≡ “Age = Child or Adult”.

In this context, the prior probability of a property of a customer’s private in-
formation is the likelihood of the property in the absence of any knowledge
about the customer’s private information. On the other hand, the posterior
probability is the likelihood of the property given the perturbed information
from the customer and the knowledge of the prior probabilities through recon-
struction from the perturbed database. In order to preserve the privacy of some
property of a customer’s private information, the posterior probability of that
property should not be unduly different to that of the prior probability of the
property for the customer. This notion of privacy is quantified in [18] through
the following results, where ρ1 and ρ2 denote the prior and posterior probabil-
ities, respectively:

Privacy Breach: An upward ρ1-to-ρ2 privacy breach exists with respect to
property Q if ∃v ∈ SV such that

P [Q(Ui)] ≤ ρ1 and P [Q(Ui)|R(Ui) = v] ≥ ρ2.

Conversely, a downward ρ2-to-ρ1 privacy breach exists with respect to
property Q if ∃v ∈ SV such that

P [Q(Ui)] ≥ ρ2 and P [Q(Ui)|R(Ui) = v] ≤ ρ1.

Amplification: Let the perturbed database be V = {V1, . . . , VN}, with do-
main SV , and corresponding index set IV . For example, given the sample
database U discussed above, and assuming that each attribute is distorted
to produce a value within its original domain, the distortion may result in

V V

5
7
2

12

which
maps

to

Adult Male Elementary
Adult Female Elementary
Child Male Graduate
Senior Female Graduate

Let the probability of an original customer record Ui = u, u ∈ IU being
perturbed to a record Vi = v, v ∈ IV be p(u→ v), and let A denote the
matrix of these transition probabilities, with Avu = p(u→ v).
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With the above notation,a randomization operator R(u)

∀u1, u2 ∈ SU :
p[u1 → v]
p[u2 → v]

≤ γ

where γ ≥ 1 and ∃u : p[u → v] > 0. Operator R(u) is at most
γ-amplifying if it is at most γ-amplifying for all qualifying v ∈ SV .

Breach Prevention: LetR be a randomization operator, v ∈ SV be a random-
ized value such that ∃u : p[u → v] > 0, and ρ1, ρ2 (0 < ρ1 < ρ2 < 1)
be two probabilities as per the above privacy breach definition. Then,
if R is at most γ-amplifying for v, revealing “R(u) = v” will cause
neither upward (ρ1-to-ρ2) nor downward (ρ2-to-ρ1) privacy breaches
with respect to any property if the following condition is satisfied:

ρ2(1− ρ1)
ρ1(1− ρ2)

> γ

If this situation holds, R is said to support (ρ1, ρ2) privacy guarantees.

10.2.5 Accuracy Metric

For association rule mining on a perturbed database, two kinds of errors
can occur: Firstly, there may be support errors, where a correctly-identified
frequent itemset may be associated with an incorrect support value. Secondly,
there may be identity errors, wherein either a genuine frequent itemset is mis-
takenly classified as rare, or the converse, where a rare itemset is claimed to be
frequent.

The Support Error (µ) metric reflects the average relative error (in per-
cent) of the reconstructed support values for those itemsets that are correctly
identified to be frequent. Denoting the number of frequent itemsets by |F |, the
reconstructed support by ŝup and the actual support by sup, the support error
is computed over all frequent itemsets as

µ =
1
| F |Σf∈F

| ŝupf − supf |
supf

∗ 100

The Identity Error (σ) metric, on the other hand, reflects the percentage er-
ror in identifying frequent itemsets and has two components: σ+, indicating
the percentage of false positives, and σ− indicating the percentage of false
negatives. Denoting the reconstructed set of frequent itemsets with R and the
correct set of frequent itemsets with F , these metrics are computed as

σ+ = |R−F |
|F | ∗ 100 σ− = |F−R|

|F | * 100

Note that in some papers (e.g. [47]), the accuracy metrics are taken to be the
worst-case, rather than average-case, versions of the above errors.
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10.3 Evolution of the Literature

From the database perspective, the field of privacy-preserving data mining
was catalyzed by the pioneering work of [9]. In that work, developing privacy-
preserving data classifiers by adding noise to the record values was proposed
and analyzed. This approach was extended in [3] and [26] to address a variety
of subtle privacy loopholes.

Concurrently, the research community also began to look into extending
privacy-preserving techniques to alternative mining patterns such as associ-
ation rules, clustering, etc. For association rules, two streams of literature
emerged, as mentioned earlier, one looking at providing input data privacy,
and the other considering the protection of sensitive output rules. An important
point to note here is that unlike the privacy-preserving classifier approaches
that were based on adding a noise component to continuous-valued data, the
privacy-preserving techniques in association-rule mining are based on proba-
bilistic mapping from the domain space to the range space, over categorical
atttributes.

With regard to input data privacy, the early papers include [34, 19], which
proposed the MASK algorithm and the Cut-and-Paste operators, respectively.

MASK. In MASK [34], a simple probabilistic distortion of user data, em-
ploying random numbers generated from a pre-defined distribution function,
was proposed and evaluated in the context of sparse boolean databases, such
as those found in “market-baskets”. The distortion technique was simply to flip
each 0 or 1 bit with a parametrized probability p, or to retain as is with the com-
plementary probability 1−p, and the privacy metric used was average privacy.
Through a theoretical and empirical analysis, it was shown that the p parameter
could be carefully tuned to simultaneously achieve acceptable average privacy
and good accuracy.

However, it was also found that mining the distorted database could be or-
ders of magnitude more time-consuming as compared to mining the original
database. This issue was addressed in a followup work [12] which showed
that by generalizing the distortion process to perform symbol-specific dis-
tortion (i.e. different flipping probabilities for different values), appropriately
chooosing these distortion parameters, and applying a variety of set-theoretic
optimizations in the reconstruction process, runtime efficiencies that are well
within an order of magnitude of undistorted mining can be achieved.

Cut-and-Paste Operator. The notion of a privacy breach was introduced
in [19] as the following: The presence of an itemset I in the randomized trans-
action causes a privacy breach of level ρ if it is possible to infer, for some
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transaction in the true database, that the probability of some item i occuring in
it exceeds rho.

With regard to this worst-case privacy metric, a set of randomizing privacy
operators were presented and analyzed in [19]. The starting point was Uniform
Randomization, where each existing item in the true transaction is, with proba-
bility p, replaced with a new item not present in the original transaction. (Note
that this means that the number of items in the randomized transaction is al-
ways equal to the number in the original transaction, and is therefore different
from MASK where the number of items in the randomized transaction is usu-
ally significantly more than its source since the flipping is done on both the 1’s
and the 0’s in the transaction bit vector.) It was then pointed out that a basic
deficiency of the uniform randomization approach is that while it might, with
a suitable choice of p, be capable of providing acceptable average privacy, its
worst case privacy could be significantly weaker.

To address this issue, an alternative select-a-size (SaS) randomization oper-
ator was proposed, which is composed of the following steps, employed on a
per-transaction basis:

Step 1: For customer transaction ti of length m, a random integer j from
[1,m] is first chosen with probability pm[j].

Step 2: Then, j items are uniformly and randomly selected from the true trans-
action and inserted into the randomized transaction.

Step 3: Finally, a uniformly and randomly chosen fraction ρm of the remain-
ing items in the database that are not present in the true transaction (i.e.
C− items in ti), are inserted into the randomized transaction.

In short, the final randomized transaction is composed of a subset of true items
from the original transaction and additional false items from the complemen-
tary set of items in the database.

A variant of the SaS operator studied in detail in [19] is the cut-and-paste
(C&P) operator. Here, an additional parameter is a cutoff integer, Km, with
the integer j being chosen from [1,Km], rather than from [1,m]. If it turns out
that j > m, then j is set to m (which means that the entire original transaction
is copied to the randomized transaction). Apart from the cutoff threshold, an-
other difference between C&P and SaS is that the subsequent ρm randomized
insertion (Step 3 above) is carried out on (a) the items that are not present in
the true transaction (as in SaS), and (b) additionally, on the remaining items in
the true transaction that were not selected for inclusion in Step 2.

An issue in the C&P operator is the optimal selection of the ρm and Km pa-
rameters, and combinatorial formulae for determining their values are given
in [19]. Through a detailed set of experiments on real-life datasets, it was
shown that even with a challenging privacy requirement of not permitting any
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breaches with ρ > 50%, mining a C&P-randomized database was able to cor-
rectly identify around 80 to 90% of the “short” frequent itemsets, that is fre-
quent itemsets of lengths upto 3. The issue of how to safely randomize and
mine long transactions was left as an open problem, since directly using C&P
in such environments could result in unacceptably poor accuracy.

The above work was significantly extended in [18] through, as discussed
in Section 10.2.4, the formulation of strict amplification-based privacy metrics
and delineating a methodology for limiting the associated privacy breaches.

Distributed Databases. Maintaining input data privacy was also consid-
ered in [41, 25] in the context of databases that are distributed across a number
of sites with each site only willing to share data mining results, but not the
source data. While [41] considered data that is vertically partitioned (i.e., each
site hosts a disjoint subset of the matrix columns), the complementary situa-
tion where the data is horizontally partitioned (i.e., each site hosts a disjoint
subset of the matrix rows) is addressed in [25]. The solution technique in [41]
requires generating and computing a large set of independent linear equations
– in fact, the number of equations and the number of terms in each equation
is proportional to the cardinality of the database. It may therefore prove to
be expensive for market-basket databases which typically contain millions of
customer transactions. In [25], on the other hand, the problem is modeled as
a secure multi-party computation [23] and an algorithm that minimizes the in-
formation shared without incurring much overhead on the mining process is
presented. Note that in these formulations, a pre-existing true database at each
site is assumed, i.e. a B2B model.

Algebraic Distortion. Then, in [47], an algebraic-distortion mechanism was
presented that unlike the statistical approach of the prior literature, requires
two-way communication between the miner and the users. If Vc is the current
perturbed database, then Ek is computed by the miner, which corresponds to
the eigenvectors corresponding to the largest k eigenvalues of VcTVc, where
Vc
T is the transpose of Vc. The choice of k makes a tradeoff between privacy

and accuracy – large values of k give more accuracy and less privacy, while
small values provide higher privacy and less accuracy. Ek is supplied to the
user, who then uses it on her true transaction vector, discretizes the output, and
then adds a noise component.

Their privacy metric is rather different, in that they evaluate the level of
privacy by measuring the probability of an “unwanted” item to be included
in the perturbed transaction. The definition of unwanted here is that it is an
item that does not contribute to association rule mining in the sense that it
does not appear in any frequent itemset. An implication is that privacy esti-
mates can be conditional on the choices of association rule mining parameters
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(supmin, conmin). This may encourage the miner to experiment with a variety
of values in order to maximize the breach of privacy.

Output Rule Privacy. We now turn our attention to the issue of maintaining
the privacy of output rules. That is, we would like to alter the original database
in a manner such that only the association rules deemed to be sensitive by
the owner of the data source cannot be identified through the mining process.
The proposed solutions involve either falsifying some of the entries in the true
database or replacing them with null values. Note that, by definition, these
techniques require a completely materialized true database as the starting point,
in contrast to the B2C techniques for input data privacy.

In [13], the process of transforming the database to hide sensitive rules is
termed as “sanitization”, and in practical terms, this requires reducing either
the support or the confidence of the sensitive rules to below the supmin or
conmin thresholds. Specifically, using R to refer to the set of all rules, and S to
refer to the set of sensitive rules, the goal is to hide all the S rules by reducing
the supports or confidences, and simultaneously minimize the number of rules
in R − S that may also become hidden as a side-effect of the sanitization
process. (Note that the objective is only to maintain the visibility of rules in
R − S, allowing the specific supports or confidences obtained by the miner
for the R − S rules to be altered if required. That is, it would be perfectly
acceptable for the database to be sanitized such that a rule with high support
or confidence in R − S became a rule that was just above the threshold in the
sanitized database.)

The sanitization can be achieved in different ways: 1) By changing the val-
ues of individual entries in the database; or, 2) By removing entire transactions
from the database. It was shown in the initial work of [13], which only con-
sidere the lowering of support values, that, irrespective of the sanitization ap-
proach, finding the optimal (w.r.t. minimizing the impact onR−S) sanitization
is an NP-Hard problem (through reduction from the Hitting Set problem [21]).
A greedy heuristic technique was suggested, where the S set is ordered in de-
creasing order of support, and then each element is hidden in the ordered set
is hidden in an iterative fashion. The hiding is done by performing a greedy
search through the ancestors of the itemset, selecting at each level the parent
with the maximum support and setting the selected parent as the new item-
set that needs to be hidden. At the end of the process, a frequent item has
been selected. The algorithm searches through the common list of transactions
that support both the selected item and the initial frequent itemset to be hid-
den in order to identify the transaction that affects the minimum number of 2-
itemsets. After this transaction is identified, then the selected frequent item is
removed from the identified transaction. The effects of this database alteration
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are propagated to the other itemset elements, and the process repeats until the
itemset is hidden.

The above work was extended in [15] to achieve hiding by also using the the
confidence criterion. Unlike the purely support-based hiding approach where
only 1’s are converted to 0’s, hiding through the confidence criterion can be
achieved by converting 0’s into 1’s. However, an associated danger is that
there can now be false positives, that is, infrequent rules may be incorrectly
promoted into the frequent category. A detailed treatment of this issue is pre-
sented in [44].

An alternative approach for output rule privacy proposed in [37, 36] is to
use the concept of “data blocking”, wherein some values in the database are
replaced with NULLs signifying unknowns. In this framework, the notions of
itemset support and confidence are converted into intervals, with the actual
support and confidence lying within these intervals. For example, the mini-
mum support of itemset Cx is the percentage of transactions that have 1’s for
this itemset, while the maximum possible support is the percentage of trans-
actions that contain either 1 or NULL for this itemset. Greedy algorithms for
implementing the hiding are presented, and a discussion of their effectiveness
is provided in [36]. More recently, decision-theoretic approaches based on data
blocking are presented in [30, 22], which also utilize the “border theory” of
frequent itemsets [40] – however, these approaches can be computationally
demanding.

The rule-hiding techniques have limitations in that (a) they crucially depend
on the data miner processing the database only with the specified supports and
confidence levels – this may be hard to ensure in practice; (b) they may in-
troduce significant false positives and false negatives in the non-sensitive set
of rules; (c) they may introduce significant changes in the supports and confi-
dences of the non-sensitive set of rules; and (c) in the case of data blocking, it
may be sometimes possible to infer the hidden rules by assigning values to the
null attributes.

Frameworks. A common trend in the input data privacy literature was to
propose specific perturbation techniques, which are then analyzed for their pri-
vacy and accuracy properties. Recently, in [10], the problem was approached
from a different perspective, wherein a generalized matrix-theoretic framework
that facilitates a systematic approach to the design of random perturbation
schemes for privacy-preserving mining was proposed. This framework sup-
ports amplification-based privacy, and its execution and memory overheads are
comparable to that of classical mining on the true database. The distinguishing
feature of FRAPP is its quantitative characterization of the sources of error in
the random data perturbation and model reconstruction processes.
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In fact, although it uses dependent attribute perturbation, it is fully de-
composable into the perturbation of individual attributes, and hence has the
same run-time complexity as any independent perturbation method. Through
the framework, many of the earlier techniques are cast as special instances of
the FRAPP perturbation matrix. More importantly, it was shown that through
appropriate choices of matrix elements, new perturbation techniques can be
constructed that provide highly accurate mining results even under strict
amplification-based [18] privacy guarantees. In fact, a perturbation matrix with
provably minimal condition number1, was identified, substantially improving
the accuracy under the given constraints. Finally, an efficient integration of this
optimal matrix with the association mining process was outlined.

10.4 The FRAPP Framework

In the remainder of this chapter, we present, as a representative example,
the salient details of FRAPP and discuss how it simultaneously provides strong
privacy, high accuracy and good efficiency, in a B2C privacy-preserving envi-
ronment of mining association rules.

As mentioned earlier, let the probability of an original customer record Ui =
u, u ∈ IU being perturbed to a record Vi = v, v ∈ IV be p(u → v), and let
A denote the matrix of these transition probabilities, with Avu = p(u → v).
This random process maps to a Markov process, and the perturbation matrix A
should therefore satisfy the following properties [39]:

Avu ≥ 0 and
∑
v∈IV

Avu = 1 ∀u ∈ IU , v ∈ IV (10.1)

Due to the constraints imposed by Equation 10.1, the domain of A is a subset
of R|SV |×|SU |. This domain is further restricted by the choice of perturbation
method. For example, for the MASK technique [34], all the entries of matrix
A are decided by the choice of a single parameter, namely, the flipping proba-
bility.

We now explore the preferred choices of A to simultaneously achieve pri-
vacy guarantees and high accuracy, without restricting ab initio to a particular
perturbation method.

From the previously-mentioned results of [18], the following condition on
the perturbation matrix A in order to support (ρ1, ρ2) privacy can be derived:

Avu1

Avu2

≤ γ < ρ2(1− ρ1)
ρ1(1− ρ2)

∀u1, u2 ∈ IU ,∀v ∈ IV (10.2)

1In the class of symmetric positive-definite matrices (refer Section 10.4.2.1).
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That is, the choice of perturbation matrix A should follow the restriction that
the ratio of any two matrix entries (in a row) should not be more than γ.

10.4.1 Reconstruction Model

We now analyze how the distribution of the original database is recon-
structed from the perturbed database. As per the perturbation model, a client Ci
with data record Ui = u, u ∈ IU generates record Vi = v, v ∈ IV with prob-
ability p[u → v]. This event of generation of v can be viewed as a Bernoulli
trial with success probability p[u→ v]. If the outcome of the ith Bernoulli trial
is denoted by the random variable Y i

v , the total number of successes Yv in N
trials is given by the sum of the N Bernoulli random variables:

Yv =
N∑
i=1

Y i
v (10.3)

That is, the total number of records with value v in the perturbed database is
given by Yv.

Note that Yv is the sum of N independent but non-identical Bernoulli trials.
The trials are non-identical because the probability of success varies from trial
i to trial j, depending on the values of Ui and Uj , respectively. The distribu-
tion of such a random variable Yv is known as the Poisson-Binomial distribu-
tion [45].

From Equation 10.3, the expectation of Yv is given by

E(Yv) =
N∑
i=1

E(Y i
v ) =

N∑
i=1

P (Y i
v = 1) (10.4)

UsingXu to denote the number of records with value u in the original database,
and noting that P (Y i

v = 1) = p[u→ v] = Avu for Ui = u, results in

E(Yv) =
∑
u∈IU

AvuXu (10.5)

Let X = [X1X2 · · ·X|SU |]T , Y = [Y1Y2 · · ·Y|SV |]T . Then, the following ex-
pression is obtained from Equation 10.5:

E(Y ) = AX (10.6)

At first glance, it may appear that X, the distribution of records in the orig-
inal database (and the objective of the reconstruction exercise), can be directly
obtained from the above equation. However, an immediate difficulty is that that
the data miner does not possess E(Y ), but only a specific instance of Y , with
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which she has to approximate E(Y ).2 Therefore, the following approximation
to Equation 10.6 is resorted to:

Y = AX̂ (10.7)

where X is estimated as X̂. This is a system of |SV | equations in |SU | un-
knowns, and for the system to be uniquely solvable, a necessary condition is
that the space of the perturbed database is a superset of the original database
(i.e. |SV | ≥ |SU |). Further, if the inverse of matrixA exists, the solution of this
system of equations is given by

X̂ = A−1Y (10.8)

providing the desired estimate of the distribution of records in the original
database. Note that this estimation is unbiased because E(X̂) = A−1E(Y ) =
X.

10.4.2 Estimation Error

To analyze the error in the above estimation process, the following well-
known theorem from linear algebra applies [39]:

Theorem 10.1 Given an equation of the form Ax = b and that the mea-
surement of b is in-exact, the relative error in the solution x = A−1b satisfies

‖ δx ‖
‖ x ‖ ≤ c

‖ δb ‖
‖ b ‖

where c is the condition number of matrix A.

For a positive-definite matrix, c = λmax/λmin, where λmax and λmin
are the maximum and minimum eigen-values of matrix A, respectively. In-
formally, the condition number is a measure of the sensitivity of a matrix to
numerical operations. Matrices with condition numbers near one are said to
be well-conditioned, i.e. stable, whereas those with condition numbers much
greater than one (e.g. 105 for a 5 ∗ 5 Hilbert matrix [39]) are said to be ill-
conditioned, i.e. highly sensitive.

Equations 10.6 and 10.8, coupled with Theorem 10.1, result in

‖ X̂ −X ‖
‖ X ‖ ≤ c‖ Y − E(Y ) ‖

‖ E(Y ) ‖ (10.9)

2If multiple distorted versions are provided, then E(Y ) is approximated by the observed average of
these versions.
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which means that the error in estimation arises from two sources: First, the
sensitivity of the problem, indicated by the condition number of matrix A; and
second, the deviation of Y from its mean, i.e. the deviation of perturbed data-
base counts from their expected values, indicated by the variance of Y . In the
remainder of this sub-section, we determine how to reduce this error by (a) ap-
propriate choice of perturbation matrix to minimize the condition number, and
(b) identifying the minimum size of the database required to (probabilistically)
bound the deviation within a desired threshold.

10.4.2.1 Minimizing the Condition Number. The perturbation tech-
niques proposed in the literature primarily differ in their choices for perturba-
tion matrix A. For example:

MASK [34] uses a matrix A with

Avu = pk(1− p)Mb−k (10.10)

where Mb is the number of boolean attributes when each categorical
attribute j is converted into | SjU | boolean attributes, (1 − p) is the
bit flipping probability for each boolean attribute, and k is the number
of attributes with matching bits between the perturbed value v and the
original value u.

The cut-and-paste (C&P) randomization operator [19] employs a matrix
A with

Avu =

M∑
z=0

pM [z]

·
min{z,lu,lv}∑

q=max{0,z+lu−M,lu+lv−Mb}

luCq
M−luCz−q

MCz

· Mb−luClv−qρ
(lv−q)(1 − ρ)(Mb−lu−lv+q)

(10.11)

where

pM [z] =

min{K,z}∑
w=0

M−wCz−wρ(z−w)(1 − ρ)(M−z)

·
{

1 − M/(K + 1) if w = M & w < K
1/(K + 1) o.w.

Here lu and lv are the number of 1 bits in the original record u and
its corresponding perturbed record v, respectively, while K and ρ are
operator parameters.
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To enforce strict privacy guarantees, the choice of listed parameters for the
above methods are bounded by the constraints, given in Equations 10.1 and
10.2, on the values of the elements of the perturbation matrix A. It turns out
that for practical values of privacy requirements, the resulting matrix A for
these previous schemes is extremely ill-conditioned – in fact, the condition
numbers in our experiments were of the order of 105 and 107 for MASK and
C&P, respectively.

Such ill-conditioned matrices make the reconstruction very sensitive to the
variance in the distribution of the perturbed database. Thus, it is important to
carefully choose the matrix A such that it is well-conditioned (i.e has a low
condition number). If a distortion method is decided ab initio, as in the earlier
techniques, then there is little room for making specific choices of perturbation
matrix A. Therefore, the opposite approach of first designing matrices of the
required type, and then devising perturbation methods that are compatible with
these matrices, is taken.

Choosing a suitable matrix starts from the intuition that for γ = ∞, the
obvious matrix choice is the unity matrix, which both satisfies the constraints
on matrix A (Equations 10.1 and 10.2), and has the lowest possible condition
number, namely, 1. Hence, for a given γ, the following matrix can be chosen:

Aij =
{
γx if i = j
x o.w.

where x =
1

γ + (|SU | − 1)
(10.12)

which is of the form

x

⎡
⎢⎢⎢⎣
γ 1 1 . . .
1 γ 1 . . .
1 1 γ . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦

It is easy to see that the above matrix, which incidentally is symmetric and
Toeplitz [39], also satisfies the conditions given by Equations 10.1 and 10.2.

Further, its condition number can be algebraically computed to be 1 +
| SU |
γ − 1

.

At an intuitive level, this matrix implies that the probability of a record u re-
maining as u after perturbation is γ times the probability of its being distorted
to some v �= u. This matrix is termed as the “Gamma-Diagonal matrix” in
[10].

At this point, an obvious question is whether it is possible to design matri-
ces that have even lower condition number than the gamma-diagonal matrix. In
[11], it is proven that the gamma-diagonal matrix has the lowest possible condi-
tion number among the class of symmetric perturbation matrices satisfying the
constraints of the problem, that is, it is an optimal choice (albeit non-unique).
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10.4.2.2 Database Size and Mining Accuracy. An analysis of the de-
pendence of deviations of itemset counts in the perturbed database from their
expected values, with respect to the size of the database, is carried out in [11].
Based on the analysis, which is based on an application of Hoeffding’s Gen-
eral Bound [31], the following threshold on the database size, N , required for
obtaining a desired accuracy, ∆, with a confidence of at least ε, is derived:

⇒ N ≥ ln(2/(1 − ε))/(2∆2) (10.13)

That is, the miner must collect data from at least the number of customers given
by the above bound. For example, with ∆ = 0.001 and ε = 0.95, this turns
out to be N ≥ 2× 106, which is well within the norm for typical e-commerce
environments. Further, note that these acceptable values are obtained with the
comparatively loose Hoeffding Bound, and that in practice the minimum data
requirements could be still lower.

10.4.3 Randomizing the Perturbation Matrix

The estimation models discussed thus far implicitly assumed the perturba-
tion matrix A to be deterministic. However, it appears intuitive that if the per-
turbation matrix parameters were themselves randomized, so that each client
uses a perturbation matrix not specifically known to the miner, the privacy of
the client will be further increased. Of course, it may also happen that the re-
construction accuracy suffers in this process.

This trade-off is evaluated in [10] by replacing the deterministic matrix A
with a randomized matrix Ã, where each entry Ãvu is a random variable with
E(Ãvu) = Avu. The values taken by the random variables for a client Ci
provide the specific parameter settings for her perturbation matrix.

The experimental results in [10] indicate that the trade-off turns out such
that the two opposing effects almost cancel each other out, making the error
only marginally worse than the deterministic case.

10.4.4 Efficient Perturbation

Having discussed the privacy and accuracy issues of the FRAPP approach,
we now turn our attention to the efficient implementation of the perturbation
algorithm described in Section 10.4. This requires generating, for each Ui = u,
a discrete distribution with PMF P (v) = Avu and CDF F (v) =

∑
i≤v Aiu, de-

fined over v = 1, . . . , | SV |. To achieve this, the following algorithm whose
complexity is proportional to the sum of the cardinalities of the attribute do-
mains, is presented in [11]:

Specifically, the perturbation of record Ui = u can be written as P (Vi;Ui =
u)
= P (Vi1, . . . , ViM ;u)
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= P (Vi1;u) · P (Vi2|Vi1;u) · · ·P (ViM |Vi1, . . . , Vi(M−1);u)
where Vij denotes the jth attribute of record Vi. For the perturbation matrix A,
this works out to be

P (Vi1 = a;u) =
∑

{v|v(1)=a}
Avu

P (Vi2 = b|Vi1 = a;u) =
P (Vi2 = b, Vi1 = a;u)

P (Vi1 = a;u)

=

∑
{v|v(1)=a and v(2)=b} Avu

P (Vi1 = a;u)
. . . and so on

where v(i) denotes the value of the ith attribute for the record with value v.
When A is chosen to be the gamma-diagonal matrix, and nj is used to rep-

resent
∏j
k=1 | SkU |, the following expressions for the above probabilities are

obtained after some simple algebraic manipulations:

P (Vi1 = b;Ui1 = b) = (γ +
nM
n1
− 1)x

P (Vi1 = b;Ui1 �= b) =
nM
n1

x (10.14)

and for the jth attribute

P (Vij = b|Vi1, . . . , Vi(j−1);Uij = b)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(γ+
nM
nj

−1)x
∏j−1

k=1 pk
if ∀k < j, Vik = Uik

(
nM
nj

)x
∏j−1

k=1 pk
o.w.

P (Vij = b|Vi1, . . . , Vi(j−1);Uij �= b) =
(

nM
nj

)x
∏j−1

k=1 pk

(10.15)

where pk is the probability that Vik takes value a, given that a is the outcome
of the random process performed for the kth attribute, i.e. pk = P (Vik =
a|Vi1, . . . , Vi(k−1);Ui).

The above perturbation algorithm takes M steps, one for each attribute. For
the first attribute, the probability distribution of the perturbed value depends
only on the original value for the attribute and is given by Equation 10.13. For
any subsequent column j, to achieve the desired random perturbation, both its
original value and the perturbed values of the previous j− 1 columns are used
as inputs, and the perturbed value for j is then generated as per the discrete
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distribution given in Equation 10.15. This is an example of dependent column
perturbation, in contrast to the independent column perturbations used in most
of the literature.

Finally, to assess the complexity of the algorithm, it is easy to see that the
maximum number of iterations for generating the jth discrete distribution is
|SjU |, and hence the maximum number of iterations for generating a perturbed
record is

∑
j |S

j
U |.

10.4.5 Integration with Association Rule Mining

The core computation in association rule mining is to identify “frequent
itemsets”, that is, all those itemsets whose support (i.e. frequency) in the data-
base is in excess of a user-specified threshold supmin. Equation 10.8 can be
directly used to estimate the support of itemsets containing all M categorical
attributes. However, in order to incorporate the reconstruction procedure into
bottom-up association rule mining algorithms such as Apriori [8], we need to
also be able to estimate the supports of itemsets consisting of only a subset of
attributes – this procedure is described next.

Let C denote the set of all attributes in the database, and Cs be a subset
of these attributes. Each of the attributes j ∈ Cs can assume one of the |SjU |
values. Thus, the number of itemsets over attributes in Cs is given by ICs =∏
j∈Cs

|SjU |. Let L,H denote itemsets over this subset of attributes.
A user record supports an itemset L if the attributes in Cs take the values

given by the itemset L. Let the support cardinality of any itemset L in the
original and distorted databases be denoted by supUL and supVL , respectively.
Then,

supVL =
1
N

∑
v supportsL

Yv

where Yv denotes the number of records in V with value v (refer Sec-
tion 10.4.1). From Equation 10.7, it is known that

Yv =
∑
u∈IU

AvuX̂u

and therefore, using the fact that A is symmetric,

supVL =
1
N

∑
v supportsL

∑
u

AvuX̂u

=
1
N

∑
u

X̂u

∑
v supportsL

Avu

=
1
N

∑
H

∑
u supportsH

X̂u

∑
v supportsL

Avu
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If for all u which support a given itemset H,
∑

v supportsLAvu = AHL, then the
above equation can be written as:

supVL =
1
N

∑
H
AHL

∑
u supportsH

X̂u

=
∑
H
AHL ŝupUH

The next step is to identify the matrix A for the gamma-diagonal matrix.
Using the above formula forAHL, theA corresponding to itemsets over subset
Cs is obtained as

AHL =

{
γx+ ( ICICs

− 1)x ifH = L
IC
ICs

x o.w.
(10.16)

i.e. the probability of an itemset remaining the same after perturbation is
γ + IC/ICs − 1

IC/ICs

times the probability of its being distorted to any other item-

set.
Using the above ICs × ICs matrix, the supports of itemsets over any subset

Cs of attributes can be estimated. A legitimate concern here might be that
the matrix inversion could be time-consuming if ICs is large. Fortunately, the
inverse for this matrix has a simple closed-form expression, as explained in
[11], that can be directly used in the reconstruction process, greatly reducing
both space and time resources.

Thus, FRAPP can efficiently reconstruct the counts of itemsets over any sub-
set of attributes without requiring to construct all the counts, and the scheme
can be implemented efficiently on bottom-up association rule mining algo-
rithms such as Apriori [8]. Further, it is trivially easy to incorporate FRAPP
even in incremental association rule mining algorithms such as DELTA [32]
which operate periodically on changing historical databases, and use the re-
sults of previous mining operations to minimize the amount of work done dur-
ing each new mining operation.

10.5 Sample Results

We move on, in this section, to presenting sample quantitative results on the
privacy, accuracy and efficiency levels that can be supported for association
rule mining.

The results are obtained on the CENSUS dataset, derived from a real-
world census database available at the UCI repository [51]. Three categorical
(native-country, sex, race) attributes and three continuous (age,
fnlwgt, hours-per-week) attributes from the census database are used
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in the experiment, with the continuous attributes partitioned into discrete in-
tervals to convert them into categorical attributes. The specific categories used
for these six attributes are listed in Table 10.1. (The reason only a subset of the
attributes in the original database is considered is that it has been established
in several sociological studies[14, 46] that users typically expect privacy on
only a few of the database fields – usually sensitive attributes such as health,
income, etc.)

Table 10.1. CENSUS Dataset

Attribute Categories
race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
sex Female, Male

native-country United-States, Other
age [15 − 35), [35 − 55), [55 − 75),≥ 75

fnlwgt [0 − 1e5], [1e5 − 2e5), [1e5 − 3e5), [3e5 − 4e5),≥ 4e5
hours-per-week [0 − 20), [20 − 40), [40 − 60), [60 − 80),≥ 80

The association rule mining accuracy on the CENSUS dataset is evaluated
for a user-specified minimum support of supmin = 2%. Table 10.2 gives the
number of frequent itemsets in the dataset for this support threshold, as a func-
tion of the itemset length.

Performance Metrics. The performance of the system is measured with re-
gard to the accuracy that can be provided for a given privacy requirement spec-
ified by the user. The (ρ1, ρ2) amplification-based strict privacy measure from
[18] is the privacy metric, and the results are presented for a (5, 50) setting.
ρ1 = 5 is representative of the fact that users typically want to hide uncommon
values which set them apart from the rest, while ρ2 = 50 indicates that the user
can still plausibly deny any value attributed to him or her since it is equivalent
to a random coin-toss attribution.

To quantify data mining accuracy, the Support Error and Identity Error met-
rics presented earlier in Section 10.2.5 are utilized.

Table 10.2. Frequent Itemsets for supmin = 0.02

Data Itemset Length
Set 1 2 3 4 5 6 7
CENSUS 19 102 203 165 64 10 –
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Figure 10.1. CENSUS (γ = 19)

Perturbation Algorithms. The experimental results are presented for
FRAPP and representative prior techniques. For all the perturbation mecha-
nisms, mining on the distorted database was accomplished using the Apriori
[8] algorithm, with an additional support reconstruction phase at the end of
each pass to recover the original supports from the perturbed database supports
computed during the pass [12, 34].

Specifically, the perturbation mechanisms evaluated here are the follow-
ing: (a) DET-GD: A deterministic gamma-diagonal perturbation matrix A
(Section 10.4.2.1) is used for perturbation and reconstruction; (b) RAN-GD:
A uniformly-distributed randomized gamma-diagonal perturbation matrix Ã
(Section 10.4.3) is used for perturbation and reconstruction; (c) MASK: This
is the MASK scheme [34] with flipping parameter p set to 0.439, and the cate-
gorical attributes mapped to boolean attributes by making each value of the
category an attribute; and (d) C&P: This is the Cut-and-Paste perturbation
scheme [19], with algorithmic parameters K and ξ set to 3 and 0.494, respec-
tively.

Results. For the CENSUS dataset, the support (µ) and identity (σ−, σ+) er-
rors of the four perturbation mechanisms (DET-GD, RAN-GD, MASK, C&P)
for γ = 19 are shown in Figure 10.1, as a function of the length of the frequent
itemsets. Note that the support error (µ) graphs are plotted on a log-scale.

In these figures, we first note that DET-GD performs, on an absolute scale,
extremely well, the error being of the order of 10 percent for the longer item-
sets. Further, its performance is visibly better than that of MASK and C&P. In
fact, as the length of the frequent itemset increases, the performance of both
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MASK and C&P degrade drastically. Specifically, MASK is not able to find
any itemsets of length above 4 while C&P cannot identify itemsets beyond
length 3.

The second point to note is that the accuracy of RAN-GD, although em-
ploying a randomized matrix, is only marginally lower than that of DET-GD.
In return, it provides a substantial increase in the privacy – its worst case (deter-
minable) privacy breach is only 33% as compared to 50% with DET-GD [11].

The primary reason for DET-GD and RAN-GD’s good performance is the
low condition numbers of their perturbation matrices. This is quantitatively
shown in Figure 10.2, which plots these condition numbers on a log-scale (the
condition numbers of DET-GD and RAN-GD are identical in this graph be-
cause E(Ã) = A). Note that the condition numbers are not only low but also
independent of the frequent itemset length.

In marked contrast, the condition numbers for MASK and C&P increase
exponentially with increasing itemset length, resulting in drastic degradation
in accuracy. Thus, the choice of a gamma-diagonal matrix indicates highly
promising results for discovery of long patterns.

Finally, with regard to actual mining response times also, FRAPP takes
about the same time as Apriori for the complete mining process on the original
and perturbed databases, respectively. This is because, as mentioned before,
the reconstruction component shows up only in between mining passes and
involves very simple computations. Further, the initial pre-processing step of
perturbation of the large datasets took only a very modest amount of time even
on vanilla PC hardware. Specifically, on a P-IV 2.0GHz PC with 1 GB RAM
and 40 GB hard disk, perturbing 2.5 million records of CENSUS took only
about a minute.
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10.6 Closing Remarks

We studied in this chapter supporting privacy concerns in the association
rule mining process. These concerns can arise with regard to the input data
provided by users or with regard to the association rules arising from the min-
ing process. We described the various kinds of privacy metrics and outlined
an evolution of the rich body of related literature. Finally, using the FRAPP
framework as a representative example, we quantitatively demonstrated how
the state-of-the-art has reached a level whereby it is indeed feasible to simul-
taneously achieve the conflicting goals of strong privacy, high accuracy, and
good efficiency in association rule mining.

Looking into the future, with regard to input data privacy, the ideal trans-
formation technique would be one that allowed the randomized database to be
directly mined to obtain the rules without involving any explicit reconstruc-
tion process. On the other hand, for output rule privacy, the ideal technique
would be one that while hiding the sensitive rules, would minimize not just the
number of affected rules in the non-sensitive set, but also the impact on their
support and confidence values. As the ultimate holy grail, we look forward to
the development of database transformation techniques that will be uniformly
robust towards any kind of data mining activity.
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Abstract Data and knowledge hiding are two research directions that investigate how the
privacy of raw data, or information, can be maintained either before or after
the course of mining the data. By focusing on the knowledge hiding thread, we
present a taxonomy and a survey of recent approaches that have been applied to
the association rule hiding problem. Association rule hiding refers to the process
of modifying the original database in such a way that certain sensitive associ-
ation rules disappear without seriously affecting the data and the non-sensitive
rules. We also provide a thorough comparison of the presented approaches, and
we touch upon hiding approaches used for other data mining tasks. A detailed
presentation of metrics used to evaluate the performance of those approaches
is also given. Finally, we conclude our study by enumerating interesting future
directions in this research body.

Keywords: Privacy preserving data mining, knowledge hiding, frequent itemset hiding, as-
sociation rule hiding.

11.1 Introduction

Privacy preserving data mining is a new research area that investigates the
side-effects of data mining methods that originate from the penetration into
the privacy of individuals and organizations. From a general point of view,
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we may classify privacy issues related to the application of data mining, into
two broad categories. The first is related to the data per se and is known as
data hiding, while the second concerns the information, or else the knowledge,
that a data mining method may discover after having analyzed the data, and is
known as knowledge hiding. Data hiding tries to remove confidential or private
information from the data before its disclosure. Knowledge hiding, on the other
hand, is concerned with the sanitization of confidential knowledge from the
data.

In this expository study we present an overview in a specific class of meth-
ods in the knowledge hiding area, known as frequent itemset and association
rule hiding. Other classes of methods, under the same area, include classifi-
cation rule hiding, clustering model hiding, sequence hiding and so on and so
forth. “Association rule hiding” (a term used for brevity instead of the longer
title “frequent itemset and association rule hiding”) has been mentioned for the
first time in 1999 in a workshop paper by Atallah et al. [5]. The authors in [5],
tried to apply general ideas regarding the implications of data mining in secu-
rity and privacy of information – first presented by Clifton and Marks in [9]
– to the association rule mining [3] framework. Clifton and Marks following
the suggestions of D.E. O’Leary [24] – who was the very first to point out the
security and privacy breaches that originate from data mining algorithms – in-
dicated the need to consider different data mining approaches under the prism
of preserving the privacy of information. Along these lines, they proposed a
number of solutions like fuzzification of the source database, limiting access
to the source database, as well as releasing of samples instead of the entire
database.

The following scenario exemplifies the necessity of applying association
rule hiding algorithms to protect sensitive knowledge. Let us suppose that we
are negotiating with Dedtrees Paper Company, as purchasing directors of Big-
Mart, a large supermarket chain. They offer their products in reduced prices,
provided that we agree to give them access to our database of customer pur-
chases. We accept the deal and Dedtrees starts mining our data. By using an
association rule mining tool, they find that people who purchase skim milk
also purchase Green Paper. Dedtrees now runs a coupon marketing campaign
offering a 50 cents discount on skim milk with every purchase of a Dedtrees
product. The campaign cuts heavily into the sales of Green Paper, which in-
creases the prices to us, based on the lower sales. During our next negotiation
with Dedtrees, we find out that with reduced competition they are unwilling
to offer to us a low price. Finally, we start losing business to our competitors,
who were able to negotiate a better deal with Green Paper. In other words, the
aforementioned scenario indicates that BigMart should sanitize competitive in-
formation (and other important corporate secrets of course) before delivering
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their database to Dedtrees, so that Dedtrees does not monopolize the paper
market.

We should emphasize here that the association rule hiding problem can be
considered as a variation of the well known database inference control [12]
problem in statistical and multilevel databases. The primary goal, in the data-
base inference control, is to protect access to sensitive information that can be
obtained through non-sensitive data and inference rules. In association rule hid-
ing we consider that it is not the data but the sensitive rules that create a breach
to privacy. Given a set of sensitive association rules, which are specified by the
security administrator, the task of the association rule hiding algorithms is to
sanitize the data so that the association rule mining algorithms, that will be ap-
plied to this data, (i) will be incapable of discovering the sensitive rules under
certain parameter settings, and (ii) will be able to mine all the non-sensitive
rules. Another problem has been investigated recently, which even though it
is not targeted to addressing privacy issues per se, it does give a special solu-
tion to the association rule hiding problem. The problem is known as inverse
frequent itemset mining [20].

11.2 Terminology and Preliminaries

Association rule mining is the process involving the discovery of sets of
items (a.k.a. itemsets) that frequently co-occur in a transactional database so
as to produce association rules that hold for the data. Each association rule is
defined as an implication of the formA⇒ B, whereA,B are frequent itemsets
in the transactional database, such that A ∩ B = ∅. The itemset A ∪ B that
lead to the generation of an association rule is known as the generating itemset
and consists of two parts, the Left Hand Side (LHS), which is the part on the
left of the arrow of the rule (here A), and the Right Hand Side (RHS), which
is the part on the right of the arrow of the rule (here B). Two metrics, support
and confidence, are incorporated in the task of association rule mining to drive
the generation of association rules and expose only the ones that are expected
to be interesting to the owner of the data. The reader can refer to the work
of Agrawal et al. [2, 3] for a detailed overview of the association rule mining
process and a set of computationally efficient algorithms for the production of
the association rules. The theory of border is also important in our discussion.
For a better understanding of the concepts underlying the border theory, the
reader is encouraged to refer to the work of Mannila and Toivonen [18]. The
need to revise the border so as to hide certain sensitive association rules is
paramount to a subset of the presented algorithms. A presentation of the theory
of border revision is given in the work of Moustakides and Verykios [21], while
efficient algorithms for the computation of the borders can be found in [18, 13].



270 Privacy-Preserving Data Mining: Models and Algorithms

Knowledge hiding, in the context of association rule mining, aims at san-
itizing the original dataset in a way that at least one of the following goals
is accomplished: (i) no rule that is considered as sensitive from the owner’s
perspective, can be revealed from the sanitized dataset when this is mined at
pre-specified thresholds of confidence and support (or at any value higher than
these thresholds), (ii) all the non-sensitive rules can be successfully mined in
the sanitized database at pre-specified thresholds of confidence and support (or
higher), and (iii) no rule that was not found in the original dataset can be found
at the sanitized database when mining this database at pre-specified thresholds
of confidence and support (or higher). The first goal requires sensitive rules to
disappear. The second goal simply states that there should be no lost rules in
the sanitized dataset. The third goal says that no false rules should be produced
as a side-effect of the sanitization process. Generally speaking, in the typical
case hiding scenario, the sanitization process has to be accomplished in a way
that minimally affects the original dataset, preserves the general patterns and
trends, and achieves to conceal the sensitive knowledge.

11.3 Taxonomy of Association Rule Hiding Algorithms

In this section, we present a taxonomy of frequent itemset and association
rule hiding algorithms after having reviewed a large collection of indepen-
dent works in the area. In order to be able to classify the various algorithms,
we propose a set of orthogonal dimensions based on which we will present
the existing approaches. As a first dimension, we consider whether the hiding
algorithm uses the support or the confidence of the rule to drive the hiding
process. In this way we separate the hiding algorithms into support-based and
confidence-based. The second dimension in the classification is related to the
modification in the raw data that is caused by the hiding algorithm. The two
forms of the modification comprise the distortion and the blocking of the orig-
inal values. Distortion is the process of replacing 1’s by 0’s and 0’s by 1’s,
while blocking refers to replacing original values by question marks. The third
dimension, refers to whether a single rule or a set of rules can be hidden during
an iteration of the hiding algorithms. Based on this criterion we differentiate
hiding algorithms into single rule and multiple rule schemes. The fourth di-
mension has to do with the nature of the hiding algorithm, which can be either
heuristic or exact. Heuristic techniques rely on optimizing certain sub-goals
in the hiding process, while they do not guarantee optimality. The formula-
tion of the association rule hiding problem presented in Section 11.2 implies
that there are two specific sub-goals that need to be attained by every asso-
ciation rule hiding algorithm. The first sub-goal, which is basically the most
important, is to try to hide as many sensitive rules as possible. The second
sub-goal is to manage to hide the sensitive rules by minimizing the possible
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side-effects. As side-effects in the hiding process, we consider (a) the number
of data items affected by the hiding process, (b) the number of non-sensitive
rules which were accidentally hidden during the hiding process, and (c) the
number of rules which were created by the hiding process. Different hiding al-
gorithms give different priorities to the satisfaction of the sub-goals presented,
producing in this way a list of hiding primitives. Exact techniques, on the other
hand, rely on formulating the association rule hiding problem in such a way,
that a solution can be found that satisfies all the sub-goals. Of course, there is
a possibility that an exact approach fails to give a solution, and for this reason,
some of the sub-goals need to be relaxed. However, this relaxation process is
still part of the exact approach, which makes it different from the heuristic ap-
proaches. The fifth and final dimension determines whether a hiding algorithm
preprocesses the user specified sensitive rules so that a minimal set of sensitive
rules are given as input to the hiding technique. For the time being, there is
only one technique which has been proposed to serve this task. This technique
makes use of the border of the frequent itemsets, and it modifies it appropri-
ately by recomputing it, in such a way, that a minimal set of sensitive rules
joins the newly computed negative border. The algorithm is then driven by the
negative and positive border for hiding the rules.

11.4 Classes of Association Rule Algorithms

Association rule hiding algorithms can be divided into three distinct classes,
namely heuristic approaches, border-based approaches and exact approaches.
The first class of approaches involves efficient, fast algorithms that selectively
sanitize a set of transactions from the database to hide the sensitive knowledge.
Due to their efficiency and scalability, the heuristic approaches have been the
focus of attention for the vast majority of researchers in the knowledge hid-
ing field. However, there are several circumstances in which they suffer from
undesirable side-effects that lead them to suboptimal solutions.

The second set of approaches considers the task of sensitive rule hiding
through modification of the original borders in the lattice of the frequent and
the infrequent patterns in the dataset. In these schemes, the sensitive knowledge
is hidden by enforcing the revised borders (which accommodate the hiding of
the sensitive itemsets) in the sanitized database. The algorithms in this class
differ both in the borders that they track and use for the hiding strategy, and in
the methodology that they follow to enforce the revised borders in the sanitized
dataset.

Finally, the third class of approaches contains non-heuristic algorithms
which conceive the hiding process as a constraint satisfaction problem that they
solve by using integer or linear programming. The main difference of these
approaches, compared to the previous ones, is the fact that the sanitization
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process guarantees optimality in the hiding solution, provided that an optimal
solution exists. On the other hand, these approaches are usually several orders
of magnitude slower than the heuristic ones, especially due to the runtime of
the integer/linear programming solver.

11.4.1 Heuristic Approaches

In this section, we review support-based and confidence-based heuristic ap-
proaches, which are based on either distortion or blocking of the original val-
ues. Between these two categories of approaches, the distortion-based are the
ones commonly adopted by the overwhelming majority of researchers.

Support-based and Confidence-based Distortion Schemes. Atallah et al.
[5] were the first to propose an algorithm for the hiding of sensitive associ-
ation rules through the reduction in the support of their generating itemsets.
The authors propose the construction of a lattice-like graph in the database.
Through this graph, the hiding of a large itemset, related to the existence of
a sensitive rule, is achieved by a greedy iterative traversal of its immediate
subsets, selection of the subset that has the maximum support among all can-
didates (therefore is less probable to be hidden) and setting of this itemset as
the new candidate to be hidden. By iteratively following these steps, the algo-
rithm identifies the 1-itemset ancestor of the initial sensitive itemset, having the
highest support. Then, by identifying the supporting transactions for both the
initial candidate and the currently identified 1-itemset, the algorithm removes
the 1-itemset from the supporting transaction which affects the least number
of 2-itemsets. In sequel, the algorithm propagates the results of this action to
the affected itemsets in the graph. When hiding a set of sensitive rules, the al-
gorithm first sorts the corresponding large itemsets based on their support and
then proceeds to hide them in a one-by-one fashion, using the methodology
presented above. One of the most significant contributions of this work is the
proof regarding the NP-hardness of finding an optimal sanitization of a dataset.
On the negative side, the proposed approach is not interested in the extent of
the loss of support for a large itemset, as long as it remains frequent in the
sanitized outcome.

Dasseni et al. [11] generalize the problem in the sense that they consider the
hiding of both sensitive frequent itemsets and sensitive rules. The authors pro-
pose three single rule heuristic hiding approaches that are based on the reduc-
tion of either the support or the confidence of the sensitive rules, but not both.
In all three approaches, the goal is to hide the sensitive rules while minimally
affecting the support of the non-sensitive itemsets. The first two strategies re-
duce the confidence of the sensitive rule either (i) by increasing the support
of the rule antecedent, through transactions that partially support it, until the
rule confidence decreases below the minimum confidence threshold, or (ii) by
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decreasing the frequency of the rule consequent through transactions that sup-
port the rule, until the rule confidence is below the minimum threshold. The
third strategy decreases the frequency of a sensitive rule, by decreasing the
support of either the antecedent or the rule consequent, until either the confi-
dence or the support lies below the minimum threshold. A basic drawback of
the proposed schemes is the strong assumption that all the items appearing in a
sensitive rule do not appear in any other sensitive rule. Under this assumption,
hiding of the rules one at a time or altogether makes no difference. Moreover,
since this work aims at hiding all the sensitive knowledge appearing in the
dataset, it fails to avoid undesired side-effects such as lost and false rules.

Verykios et al. [37] extend the work of Dasseni et al. [11] by improving and
evaluating the algorithms for their performance under different sizes of input
datasets and different sets of sensitive rules. Moreover, the authors propose
two heuristic algorithms that incorporate the third strategy presented earlier.
The first of these algorithms protects the sensitive knowledge by hiding the
item having the maximum support from the minimum length transaction. The
hiding of the generating itemsets of the sensitive rules is performed in a de-
creasing order of size and support and in a one-by-one fashion. Similarly to
the first algorithm, the second algorithm first sorts the generating itemsets with
respect to their size and support, and then hides them in a round-robin fashion
as follows. First, for each generating itemset, a random ordering of its items
and of its supporting transactions is attained. Then, the algorithm proceeds to
remove the items from the corresponding transactions in a round-robin fash-
ion, until the support of the sensitive itemset drops below the minimum support
threshold. The intuition behind hiding in a round-robin fashion is fairness and
the proposed algorithm (although rather naı̈ve) serves as a baseline for con-
ducting a series of experiments.

Oliveira and Zaı̈ane [25] were the first to introduce multiple rule hiding
approaches. The proposed algorithms are efficient and require two scans of
the database, regardless of the number of sensitive itemsets to hide. During
the first scan, an index file is created to speed up the process of finding the
sensitive transactions and to allow for an efficient retrieval of the data. In
the second scan, the algorithms sanitize the database by selectively remov-
ing the least amount of individual items that accommodate the hiding of the
sensitive knowledge. An interesting novelty of this work is the fact that the
proposed methodology takes into account not only the impact of the sanitiza-
tion on hiding the sensitive patterns, but also the impact related to the hiding
of non-sensitive knowledge. Three item restriction-based (MinFIA, MaxFIA,
and IGA) algorithms are proposed that selectively remove items from sensi-
tive transactions. The first algorithm, MinFIA, proceeds as follows. For each
restrictive pattern it identifies the supporting transactions and the item hav-
ing the smallest support in the pattern (called victim item). Then, by using
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a user-supplied disclosure threshold, it first sorts the identified transactions in
ascending order of degree of conflict and then selects the number of transac-
tions (among them) that need to be sanitized. Finally, from each selected trans-
action the algorithm removes the victim item. The MaxFIA algorithm proceeds
exactly as the MinFIA with the only difference of selecting as the victim item
the one that has the maximum support in the sensitive rule. Finally, IGA aims
at clustering the restricted patterns into groups that share the same itemsets.
By identifying overlapping clusters, the algorithm proceeds to hide the corre-
sponding sensitive patterns at once (based on the sensitive itemsets they share)
and consequently reduces the impact on the released dataset.

A more efficient approach than the one in [25] and the works of [11, 33, 34]
was proposed by Oliveira and Zaı̈ane [26]. The proposed algorithm, called
SWA, is an efficient, scalable, one-scan heuristic which aims at providing a
balance between the needs for privacy and knowledge discovery in associa-
tion rule hiding. It achieves to hide multiple rules in only one pass through the
dataset, regardless of its size or the number of sensitive rules that need to be
protected. The algorithm proceeds in five steps that are applied to every group
of K transactions (thus formulating a window of size K) read from the original
database. Firstly, the non-sensitive transactions are separated from the sensitive
ones and copied directly to the sanitized database. For each sensitive rule, the
item having the highest frequency is selected and the supporting transactions
are identified. Then, a disclosure threshold, potentially different for each sen-
sitive rule, is used to capture the severity characterizing the release of the rule.
Based on this threshold, SWA computes the number of supporting transactions
that need to be sanitized for each rule and then sorts them in ascending order
of size. For each selected transaction, the corresponding item is removed and
then the transaction is copied to the sanitized dataset. The authors present a
set of computational tests to demonstrate that SWA outperforms state-of-the-
art approaches in terms of concealing all the sensitive rules, while maintaining
high data utility of the released dataset.

Amiri [4] proposes three effective, multiple rule hiding heuristics that out-
perform SWA by offering higher data utility and lower distortion, at the
expense of computational cost. Although similar in the philosophy to the pre-
vious approaches, the proposed schemes do a better job in modelling the over-
all objective of a rule hiding algorithm. The first approach, called Aggregate
approach, computes the union of the supporting transactions for all sensitive
itemsets. Among them, the transaction that supports the most sensitive and the
least non-sensitive itemsets is selected and expelled from the database. The
same process is repeated until all the sensitive itemsets are hidden. Similarly
to this approach, the Disaggregate approach aims at removing individual items
from transactions, rather than removing the entire transaction. It achieves that
by computing the union of all transactions supporting sensitive itemsets and
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then, for each transaction and supporting item, by calculating the number of
sensitive and non-sensitive itemsets that will be affected if this item is removed
from the transaction. Finally, it chooses to remove the item from the transac-
tion that will affect the most sensitive and the least non-sensitive itemsets. The
third approach, called Hybrid, is a combination of the previous two, since it
uses the Aggregate approach to identify the sensitive transactions and the Dis-
aggregate approach to selectively delete items of these transactions, until the
sensitive knowledge is hidden.

Wu et al. [41] propose a sophisticated methodology that removes the as-
sumption of [11], regarding the disjoint relation among the items of the various
sensitive rules. By using set theory, the authors formalize a set of constraints
related to the possible side-effects of the hiding process and allow item modi-
fications to enforce these constraints. However, the existing correlation among
the rules can make impossible the hiding of the sensitive knowledge, without
the violation of any constraints. For this reason, the user is permitted to specify
which of the constraints she considers more significant and relaxes the rest. A
drawback of the approach is the simultaneous relaxation (without the users’
consent) of the constraint regarding the hiding of all the sensitive itemsets.
To accommodate for rule hiding, the new scheme defines a class of allowable
modifications that are represented as templates and are selected in a one-by-one
fashion. A template contains the item to be modified, the applied operation, the
items to be preserved or removed from the transaction and coverage informa-
tion regarding the number of rules that are affected. Based on this information
the algorithm can select and apply only the templates that are considered as
beneficial based on the fact that they involve the least side-effects.

Pontikakis et al. [31] propose two distortion-based heuristics to selectively
hide the sensitive rules. On the positive side, the proposed schemes use effec-
tive data structures for the representation of the rules and effectively priori-
tize the selection of transactions for sanitization. However, in both algorithms
the proposed hiding process may introduce a number of side-effects, either by
generating rules which were previously unknown, or by eliminating existing
non-sensitive rules. The first algorithm, called Priority-based Distortion Algo-
rithm (PDA), reduces the confidence of a rule by reversing 1’s to 0’s in items
belonging in its consequent. On the other hand, the second algorithm, called
Weight-based Sorting Distortion Algorithm (WDA), concentrates on the opti-
mization of the hiding process in an attempt to achieve the least side-effects
and the minimum complexity. This is achieved through the use of priority val-
ues assigned to transactions based on weights. Regarding performance, the
proposed schemes tend to produce hiding solutions of comparable or slightly
higher quality than the algorithms in [34] by generally introducing less side-
effects. However, both algorithms are computationally demanding, with PDA
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requiring typically twice the time of the schemes in [34] to perform the hiding
process.

Support-based and Confidence-based Blocking Schemes. Saygin et al.
[33, 34] are the first to propose the use of unknowns (represented as question
marks in the database) instead of transforming 1’s to 0’s and the opposite, for
the hiding of sensitive association rules. As demonstrated in [33], the use of
unknowns provides a safer alternative especially in critical real life applications
where the distinction between “false” and “unknown” is vital. In their work, the
authors introduce three simple heuristic approaches. The first approach, relies
on the reduction in the support of the generating itemsets of the rule, while the
other two rely on the reduction of the rule confidence of the rule, below the
minimum thresholds. The definitions of both the support and the confidence
measures are extended to capture the notion of an interval instead of being crisp
values, while the algorithms consider both 0 and 1 values to use for hiding (in
some proportion) so that it is difficult for an adversary to conclude upon the
value hidden behind a question mark. A universal safety margin is applied to
capture how much below the minimum thresholds should the new support and
confidence of a sensitive rule lie, in order to consider that the rule is safely
hidden. An important contribution of this work, apart from the methodology
itself, is a discussion regarding the effect of the algorithms towards hiding of
the sensitive knowledge, the possibility of reconstruction of the hidden patterns
by an adversary and the importance of choosing an adequate safety margin
when hiding the sensitive rules.

Wang and Jafari [39] propose two modification schemes that incorporate
unknowns and aim at the hiding of predictive association rules, i.e. rules con-
taining the sensitive items on their LHS. Both algorithms rely on the distortion
of a portion of the database transactions to lower the confidence of the asso-
ciation rules. Compared to the work of Saygin et al. [33, 34], the algorithms
presented in [39] require a reduced number of database scans and exhibit an
efficient pruning strategy. However, by construction, they are assigned the task
of hiding all the rules containing the sensitive items on their LHS, while the
algorithms in the work of Saygin et al. can hide any specific rule. The first
strategy, called ISL, decreases the confidence of a rule by increasing the sup-
port of the itemset in its LHS. The second approach, called DSR, reduces the
confidence of the rule by decreasing the support of the itemset in its RHS. Both
algorithms experience the item ordering effect under which, based on the or-
der that the sensitive items are hidden, the produced sanitized databases are
different. Moreover, the DSR algorithm seems to be more effective when the
sensitive items have high support.

Pontikakis et al. [30] argue that the main disadvantage of a blocking al-
gorithm is the fact that the dataset, apart from the blocked values (a.k.a.
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unknowns), is not distorted. Thus, an adversary can disclose the hidden rules
by identifying those generating itemsets that contain question marks and lead
to rules with a maximum confidence that lies above the minimum confidence
threshold. If the number of these rules is small then the probability of iden-
tifying the sensitive ones among them becomes high. To avoid this issue, the
authors propose a blocking algorithm that purposely creates rules that were not
existent in the original dataset (a.k.a. ghost rules) and their generating item-
sets contain unknowns. Thus, the identification of the sensitive rules becomes
harder since the adversary is unable to tell which of the rules that have a maxi-
mum confidence above the minimum threshold are the sensitive and which are
the ghost ones. However, the introduction of ghost rules leads to a decrement
in the data quality of the sanitized outcome. To balance the trade-off between
privacy and data loss the proposed algorithm incorporates a safety margin that
corresponds to the extend of sanitization that is performed in the dataset. The
higher the safety margin the better the protection of the sensitive rules and the
worse the data quality of the resulting dataset.

11.4.2 Border-based Approaches

In this section, we review two border-based approaches for the hiding of
sensitive rules. The work of Sun and Yu [35] was the first to introduce the
process of border revision for the hiding of the sensitive association rules. In
their work, the authors propose a heuristic approach that uses the notion of
the border (further analyzed in [18]) of the non-sensitive frequent itemsets to
track the impact of altering transactions in the database. The proposed scheme,
first computes the positive and the negative borders in the lattice of all itemsets
and then focuses on preserving the quality of the computed borders during the
hiding process. The quality of the borders directly affects the quality of the san-
itized database that is produced, which can be maintained by greedily selecting
those modifications that lead to minimal side-effects. In the proposed heuris-
tic, a weight is assigned to each element of the expected positive border (which
is the original positive border after it has been shaped up with the removal of
the sensitive itemsets) in an attempt to quantify its vulnerability of being af-
fected by item deletion. These weights are dynamically computed (during the
sanitization process) as a function of the current support of the corresponding
itemsets in the database. To reduce the support of a sensitive itemset from the
negative border, the algorithm calculates the impact of the possible item dele-
tions by computing the sum of the weights of the positive border elements that
will be affected. Then, it proceeds to delete the candidate item that will have
the minimal impact on the positive border.

Moustakides and Verykios [21] follow a similar approach to [35] by propos-
ing two heuristics that use the revised positive and negative borders, produced
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by the removal of the sensitive itemsets and their supersets from the old fre-
quent itemset lattice. The proposed algorithms try to remove from the database
all the sensitive itemsets that belong to the revised negative border, while main-
taining frequent all the itemsets of the revised positive border. For every item of
a sensitive itemset, the algorithms list the set of positive border itemsets which
depend on it. Then, from among all minimum border itemsets, the one with the
highest support is selected as it is the one with the maximum distance away
from the border. This itemset, called the max-min itemset, determines the item
through which the hiding of the sensitive itemset will incur. The proposed al-
gorithms try to modify this item in such a way that the support of the max-min
itemset is minimally affected. When hiding multiple itemsets, the algorithms
perform the sanitization in a one-by-one fashion, starting from the itemsets that
have lower supports. Finally, the second algorithm improves the first one and,
through experimental evaluation, is shown to provide better hiding solutions
than [35], in the majority of the tested settings.

11.4.3 Exact Approaches

In this section, we review two exact approaches for the hiding of sensitive
association rules. Exact approaches are typically capable of providing superior
solutions compared to the ones of the heuristic schemes, at a high computa-
tional cost. They achieve this by formulating the sanitization process as a con-
straint satisfaction problem and by solving it using an integer/linear program-
ming solver. Thus, the sanitization of the dataset is performed as an atomic op-
eration which avoids the local minima experienced by the heuristic approaches.

Menon et al. [19] propose a scheme that consists of an exact and a heuris-
tic part for the hiding of sensitive frequent patterns. The exact part formulates
a Constraint Satisfaction Problem (CSP) with the objective of identifying the
minimum number of transactions that need to be sanitized for the proper hid-
ing of all the sensitive knowledge. To avoid the NP-hardness issue, the authors
reduce the problem size considering only the sensitive itemsets, requesting that
their support remains below the minimum support threshold. The optimization
process is driven by a criterion function that is inspired by the measure of ac-
curacy [17]. Moreover, the constraints imposed in the CSP formulation capture
the number of supporting transactions that need to be sanitized for the hiding
of each sensitive itemset. An integer programming solver is then applied to
identify the best solution of the CSP and to derive the objective. In turn, this
objective is provided as input to a heuristic sanitization algorithm that is as-
signed the task of identifying the actual transactions within the database and
performing their sanitization. An important contribution of the authors, apart
from the algorithm itself, is a discussion over the possibility of parallelization
of the exact part. As demonstrated, based on the underlying properties of the
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dataset to be sanitized, it is possible for the produced CSP to be decomposed
into parts that are solved independently. Bearing in mind the exponential com-
plexity involving the solution of a CSP, this process can drastically reduce the
required computational time for the hiding of the sensitive knowledge.

Gkoulalas and Verykios [13] propose an exact approach for the hiding of
sensitive rules that uses the itemsets belonging in the revised positive and the
revised negative borders to identify the candidate itemsets for sanitization.
Through a set of theorems, involving existing relations among itemsets, the
authors achieve to further reduce the set of candidates to a small fraction of its
original size. The hiding process is then performed by formulating a CSP in
which the status (frequent vs infrequent) of each of the itemsets in the reduced
set is controlled through a set of constraints. By using a process of constraints
degree reduction, all the participating constraints in the CSP become linear and
have no coefficients. Moreover, all the variables involved in the CSP are of bi-
nary nature. These facts allow for an efficient solution of the CSP, by using
binary integer programming, which is typically faster compared to the use of
integer or linear programming (w.r.t. same problem sizes). The provided solu-
tion is proved to lead to an exact (without any side-effects) hiding of the sensi-
tive patterns. A heuristic approach that relaxes the initial CSP to allow for the
identification of a good solution, is applied only when the initial CSP is infea-
sible and therefore an exact solution cannot be attained. An important property
of the proposed scheme is the fact that although the problem formulation leads
to a CSP with a size that is typically larger than the one of [19], the hiding
algorithm achieves good efficiency. We feel that this can be attributed both to
the binary nature of the variables and to the linear (and without coefficients)
constraints involved in the formulation of the CSP.

11.5 Other Hiding Approaches

Association rule hiding algorithms aim at protecting sensitive knowledge
depicted in the form of frequent patterns and the related association rules. How-
ever, sensitive knowledge may appear in various forms directly related to the
applied data mining algorithm that achieved to expose it. As a consequence, a
set of hiding approaches have been devised recently to allow for the safeguard-
ing of sensitive knowledge exposed by data mining tasks such as clustering,
classification and sequence mining. In what follows, we briefly cover some
state-of-the-art research work involving the hiding of sensitive knowledge de-
picted in one of the aforementioned formats.

Classification rule hiding algorithms consider a set of classification rules
as sensitive and proceed to protect them by using either suppression-based or
reconstruction-based techniques. The suppression-based techniques aim at re-
ducing the confidence of a sensitive classification rule (measured in terms of
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the owner’s belief regarding the rule’s holding given the data), by distorting
some attributes in the dataset belonging to transactions related to its existence.
Chang and Moskowitz [7], were the first to address the inference problem
caused by the downgrading of the data in the context of decision rules. Through
a blocking technique, called parsimonious downgrading, the authors block the
inference channels that lead to the identification of the sensitive rules by se-
lectively sanitizing transactions so that missing values appear in the released
dataset. This has as an immediate consequence the lowering of the confidence
for the holding of the sensitive rules. Wang et al. [38] propose a heuristic ap-
proach that achieves to fully eliminate all the sensitive inferences, while effec-
tively handling overlapping rules. The algorithm identifies the set of attributes
that influence the existence of each sensitive rule the most and removes them
from those supporting transactions that affect the non-sensitive rules the least.
On the other hand, reconstruction-based approaches, inspired by the work in
[32, 8] and introduced by Natwichai et al. [22], target at reconstructing the
dataset by using only supporting transactions of the non-sensitive rules. These
approaches are advantageous over the heuristic data modification approaches,
since they hardly introduce any side-effects [36]. They first perform a rule-
based classification of the original dataset to enable the owner of the data to
identify the sensitive rules. Then, they proceed to construct a decision tree that
is constituted only on non-sensitive rules approved by the data owner. The con-
structed dataset remains similar to the original one, except from the sensitive
part, while the difference between the two datasets is proved to reduce as the
number of rules increases. In [23] the authors achieve to further improve the
quality of the reconstructed dataset. This is accomplished by extracting addi-
tional characteristic information from the original dataset with regard to the
classification issue and by improving the decision tree building process. Fur-
thermore, with the aid of information gain, the usability of the released dataset
is substantially ameliorated even in the case of hiding many sensitive rules with
high discernability in records classification.

The field of privacy preserving clustering collects techniques that aim at pro-
tecting the underlying attribute values and thus assure the privacy of individuals
when sharing data for clustering. Achieving privacy preservation when sharing
data for clustering is a challenging problem since the privacy requirements
should be met, while the clustering results remain valid. The various method-
ologies can be separated into two broad categories; the transformation-based
approaches and the protocol-based approaches. The transformation-based ap-
proaches are directly related to the distortion-based approaches of association
rule hiding. They operate by performing a data transformation of the original
dataset that maintains the similarity among the various pairs of attributes and
they are usually independent of the clustering algorithm that is used. In the
transformed space, the similarity between the distorted attribute pairs can still



A Survey of Association Rule Hiding Methods for Privacy 281

provide accurate results that allow for the correct clustering of the various ob-
jects. Some interesting approaches in this category involve the work of Oliveira
and Zaı̈ane [27, 28]. On the other hand, protocol-based approaches assume a
distributed scenario where a set of data owners want to share their data for clus-
tering, without compromising the privacy of their data by revealing any secrets.
The algorithms of this category make an assumption regarding the partitioning
of the data among the interested parties and are typically the privacy-aware ver-
sions of commonly used clustering algorithms, such as K-means. The proposed
protocols control the information that is communicated among the data own-
ers and guarantee that no sensitive knowledge can be learned from the model.
Approaches in this category include the work of Jha et al. [16] and the work
of Jagannathan et al. [15]. A somewhat different kind of approach that targets
on density-based clustering is presented in [10]. The authors propose a kernel-
based distributed clustering algorithm that uses an approximation of density
estimation in an attempt to harden the reconstruction process for the original
dataset. Each site computes a local density estimate for the data it holds and
transmits it to a trusted third party. In sequel, the trusted party builds a global
density estimate and returns it to the peers. By making use of this estimate, the
sites can locally execute density-based clustering. Finally, the work of Ínan and
Saygin [14] extends the protocol-based approaches to capture the clustering of
spatio-temporal data. The proposed protocol is in compliance with a series of
trajectory comparison functions and allows for secure similarity computations
through the use of a trusted third party.

The hiding of sensitive sequences is one of the most recent research direc-
tions in privacy preserving data mining, particularly due to the close relation
that exists between sequences and trajectories. The given problem has the same
underlying properties as the rule hiding one in the sense that a set of sensitive
sequential patterns need to be hidden from a database while causing the least
side-effects on their non-sensitive counterparts. The work of Abul et al. [1] is
the first to concentrate on the NP-hardness issue involving the optimal hiding
of sequences and to provide a heuristic, polynomial time algorithm that carries
out the sanitization task. The proposed algorithm enables the incorporation of a
disclosure threshold and can effectively hide sequences based on the minimum
gap, the maximum gap and the maximum window of their events.

11.6 Metrics and Performance Analysis

In this section, we present two categories of measures related to the per-
formance of a hiding algorithm. The first category consists of measures that
can either be optimized by a hiding scheme in the course of its execution, or
be adopted to allow for a fair comparison among different hiding schemes un-
der a unified framework. The measures belonging in this category are called
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internal and were proposed by Oliveira et al. [29]. They are classified as either
data sharing-based or pattern sharing-based. The data sharing-based measures
quantify the extend of side-effects regarding sensitive association rules that
failed to be hidden, legitimate rules that were accidentally missed, and artifac-
tual association rules that were created by the sanitization process. On the other
hand, the pattern sharing-based measures quantify the extend of side-effects
regarding non-sensitive association rules that were lost or sensitive rules that
were improperly hidden and can be easily be recovered through the use of in-
ference channels. Furthermore, we proceed to present another set of metrics,
which measure external parameters such as the behavior of the algorithm when
applied to large datasets, its computational speed, and so on and so forth. The
measures of this category are called external and were proposed by Bertino et
al. [6].

The proposed data-sharing based measures are the following:

Hiding Failure (HF) This measure quantifies the percentage of the sensitive
patterns that remain exposed in the sanitized dataset. It is defined as the
fraction of the restrictive association rules that appear in the sanitized
database divided by the ones that appeared in the original dataset. For-
mally,

HF =
|RP (D′)|
|RP (D)|

where RP (D′) corresponds to the sensitive rules discovered in the sani-
tized dataset D′, RP (D) to the sensitive rules appearing in the original
dataset D and |X| is the size of set X. Ideally, the hiding failure should
be 0%.

Misses Cost (MC) This measure quantifies the percentage of the non-
restrictive patterns that are hidden as a side-effect of the sanitization
process. It is computed as follows:

MC =
|R̃P (D)| − |R̃P (D′)|

|R̃P (D)|

where R̃P (D) is the set of all non-sensitive rules in the original data-
base D and R̃P (D′) is the set of all non-sensitive rules in the sanitized
database D′. As one can notice, there exists a compromise between the
misses cost and the hiding failure, since the more sensitive association
rules one needs to hide, the more legitimate association rules is expected
to miss.
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Artifactual Patterns (AF) This measure quantifies the percentage of the dis-
covered patterns that are artifacts. It is computed as follows:

AP =
|P ′| − |P ∩ P ′|

|P ′|

where P is the set of association rules discovered in the original database
D and P ′ is the set of association rules discovered in D′.

Dissimilarity (Diss) The measure of dissimilarity quantifies the difference be-
tween the original and the sanitized datasets by comparing their his-
tograms, where the horizontal axis contains the items in the dataset and
the vertical axis corresponds to their frequencies. It is calculated as fol-
lows:

Diss(D,D′) =
1∑n

i=1 fD(i)
×

n∑
i=1

[fD(i)− fD′(i)]

where fX(i) represents the frequency of the i−th item in the dataset X,
and n is the number of distinct items in the original dataset D.

The proposed pattern-sharing based metrics are the following:

Side-Effect Factor (SEF) Similarly to the measure of misses cost, the side-
effect factor is used to quantify the amount of non-sensitive association
rules that are removed as an effect of the sanitization process. It is de-
fined as follows:

SEF =
|P | − (|P ′|+ |RP (D)|)

|P | − |RP |

Recovery Factor (RF) This measure expresses the possibility of an adversary
to recover a sensitive rule based on the non-sensitive ones. The recovery
factor of a pattern takes into account the existence of its subsets. If all the
subsets of a sensitive rule can be recovered from the sanitized dataset,
then the recovery of the rule itself is possible, thus it is assigned an RF
value of 1; otherwise RF = 0. However, this measure is not certain since,
for instance, an adversary may not learn an itemset despite knowing its
subsets.

Bertino et al. [6] propose a set of measures that are directly related to the
performance of a hiding algorithm as far as external parameters are concerned.
These “process performance” measures are clustered into four categories, as
follows:
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Efficiency This category consists of measures that quantify the ability of a
privacy preserving algorithm to efficiently use the available resources
and execute with good performance. Efficiency is measured in terms of
CPU-time, space requirements (related to the memory usage and the re-
quired storage capacity) and communication requirements.

Scalability This category consists of measures that evaluate how effectively
the privacy preserving technique handles increasing sizes of the data
from which information needs to be mined and privacy needs to be en-
sured. Scalability is measured based on the decrease in the performance
of the algorithm or the increase of the storage requirements along with
the communications cost (if in a distributed setting), when the algorithm
is provided with larger datasets.

Data Quality The data quality of a privacy preservation algorithm depends on
two parameters. There are the quality of the dataset after the sanitization
process, and the quality of the data mining results when applied to this
dataset, compared to the ones attained when using the original dataset.
Among the various possible measures for the quantification of the data
quality, the most preferable are: (i) accuracy, which measures the prox-
imity of a sanitized value to the original one and is closely related to the
information loss resulting from the hiding strategy, (ii) completeness,
which is used to evaluate the degree of missed data in the sanitized data-
base and (iii) consistency, which is related to the relationships that must
continue to hold among the different fields of a data item or among data
items in a sanitized database.

Privacy Level This category consists of measures that estimate the degree of
uncertainty according to which, the protected information can still be
predicted. Measures, such as the information entropy, the level of privacy
and the J-measure [6], are some among the possible metrics that one can
apply to quantify the privacy level attained by a hiding scheme.

11.7 Discussion and Future Trends

There is a plethora of open issues related to the association rule hiding prob-
lem that are still under investigation. First of all, the emergence of sophisticated
exact hiding approaches of very high complexity, especially for very large data-
bases, causes the consideration of efficient parallel approaches to be employed
for the solution of this problem. The parallel approaches will allow for a de-
composition of the constraints satisfaction problem into numerous components
that can be solved independently. The overall solution is then attained as a
function of the objectives of the individual solutions.
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Regarding the use of unknowns in blocking algorithms, a lot more research
work is in need to provide hiding solutions that take advantage of the capa-
bilities offered by their use. We feel that the use of unknowns in several real
life scenarios is much more preferable than the use of conventional distortion
techniques. This is true because distortion techniques fail to provide a distinc-
tion between the real values in the dataset and the ones that were distorted by
the hiding algorithm in order to allow for its proper sanitization. Therefore,
it is our belief that research in association rule hiding should target towards
providing sophisticated and efficient solutions that make use of unknowns.

A different research direction concerns the use of database reconstruction
approaches. Prominent research efforts towards this direction include the work
of several researchers in the field of inverse frequent itemset mining [20, 40].
On going work considers yet another solution which is to append to the original
database a synthetically generated database part so that the sensitive knowledge
is hidden in the combined database which is disclosed to the public.

Other interesting future trends include, but are certainly not limited to, (i)
the extension of the border revision idea to cover the direct hiding of associ-
ation rules, instead of their indirect hiding through their generating itemsets,
(ii) the introduction of techniques for correlation rule hiding, which is a more
general problem than the one of association rule hiding, (iii) the provision and
unification of more advanced measures for the comparison of the different hid-
ing strategies, and (iv) the inception of spatio-temporal privacy preserving rule
hiding methodologies that will prohibit the leakage of sensitive rules related
to sensitive spatial and/or temporal information. The hiding of spatio-temporal
patterns is currently a hot research issue since it imposes much greater chal-
lenges than the traditional knowledge hiding approaches.

11.8 Conclusions

Privacy preserving data mining is a new body of research focusing on the
implications originating from the application of data mining algorithms to large
public databases. In this study, we have delved into the deep waters of knowl-
edge hiding, which is primarily concerned with the privacy of knowledge that
is hidden in large databases. More specifically, we have surveyed a research di-
rection that investigates how sensitive association rules can escape the scrutiny
of malevolent data miners by modifying certain values in the database. We have
also presented a thorough analysis and comparison of the surveyed approaches,
as well as a classification of association rule hiding algorithms to facilitate the
organization in our presentation. Before we conclude our study we have pro-
vided a synopsis of other related hiding approaches and we have introduced a
set of metrics for the evaluation of the association rule hiding algorithms. Our
study indicates that the state-of-the-art has greatly advanced from the inception
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of this research area till now. There is also a fertile ground of on-going work
that guarantees even more substantial achievements in the days to come. There
is definitely a lot more work that is needed before this area can be considered
as mature. Moreover, we strongly believe that the emergence in the association
rule hiding area will come into play in the evolution of other related fields in
data mining and will cause new waves of research study. At that point, we will
be certain that our expectations regarding the destiny of this field will have
been fulfilled.
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[14] A. Ìnan and Y. Saygin. Privacy preserving spatio-temporal clustering
on horizontally partitioned data. In Proceedings of the 8th International
Conference on Data Warehousing and Knowledge Discovery (DaWaK
2006), pages 459–468, 2006.

[15] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A new privacy-
preserving distributed k-clustering algorithm. In Proceedings of the 2006
SIAM International Conference on Data Mining (SDM 2006), 2006.

[16] S. Jha, L. Kruger, and P. McDaniel. Privacy preserving clustering. In
Proceedings of the 10th European Symposium on Research in Computer
Security (ESORICS 2005), pages 397–417, 2005.

[17] G. Lee, C.-Y. Chang, and A. L. P. Chen. Hiding sensitive patterns in as-
sociation rules mining. In 28th Annual International Computer Software
and Applications Conference (COMPSAC 2004), pages 424–429, 2004.

[18] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–
258, 1997.

[19] S. Menon, S. Sarkar, and S. Mukherjee. Maximizing accuracy of shared
databases when concealing sensitive patterns. Information Systems Re-
search, 16(3):256–270, 2005.

[20] T. Mielikainen. On inverse frequent set mining. In W. Du and C. W.
Clifton, editors, Proceedings of the 2nd Workshop on Privacy Preserving
Data Mining, pages 18–23, 2003.

[21] G. V. Moustakides and V. S. Verykios. A max-min approach for hiding
frequent itemsets. In Workshops Proceedings of the 6th IEEE Interna-
tional Conference on Data Mining (ICDM 2006), pages 502–506, 2006.

[22] J. Natwichai, X. Li, and M. Orlowska. Hiding classification rules for data
sharing with privacy preservation. In Proceedings of the 7th International



288 Privacy-Preserving Data Mining: Models and Algorithms

Conference on Data Warehousing and Knowledge Discovery (DaWaK
2005), pages 468–477, 2005.

[23] J. Natwichai, X. Li, and M. Orlowska. A reconstruction-based algorithm
for classiciation rules hiding. In Proceedings of the 17th Australasian
Database Conference (ADC 2006), pages 49–58, 2006.

[24] D. E. O’Leary. Knowledge discovery as a threat to database security. In
Proceedings of the 1st International Conference on Knowledge Discovery
in Databases, pages 507–516, 1991.

[25] S. R. M. Oliveira and O. R. Zaı̈ane. Privacy preserving frequent itemset
mining. In Proceedings of the 2002 IEEE International Conference on
Privacy, Security and Data Mining (CRPITS 2002), pages 43–54, 2002.

[26] S. R. M. Oliveira and O. R. Zaı̈ane. Protecting sensitive knowledge by
data sanitization. In Proceedings of the Third IEEE International Con-
ference on Data Mining (ICDM 2003), pages 211–218, 2003.

[27] S. R. M. Oliveira and O. R. Zaı̈ane. Achieving privacy preservation when
sharing data for clustering. In Proceedings of the 2004 SIAM Interna-
tional Conference on Data Mining (SDM 2004), 2004.

[28] S. R. M. Oliveira and O. R. Zaı̈ane. Privacy-preserving clustering by ob-
ject similarity-based representation and dimensionality reduction trans-
formation. In Proceedings of the Second IEEE International Conference
on Data Mining (ICDM 2004), pages 21–30, 2004.

[29] S. R. M. Oliveira and O. R. Zaiane. A unified framework for protecting
sensitive association rules in business collaboration. International Jour-
nal of Business Intelligence and Data Mining, 1(3):247–287, 2006.

[30] E. Pontikakis, Y. Theodoridis, A. Tsitsonis, L. Chang, and V. S. Verykios.
A quantitative and qualitative analysis of blocking in association rule hid-
ing. In Proceedings of the 2004 ACM Workshop on Privacy in the Elec-
tronic Society (WPES 2004), pages 29–30, 2004.

[31] E. D. Pontikakis, A. A. Tsitsonis, and V. S. Verykios. An experimental
study of distortion-based techniques for association rule hiding. In Pro-
ceedings of the 18th Conference on Database Security (DBSEC 2004),
pages 325–339, 2004.

[32] S. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule
mining. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002), 2002.

[33] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent dis-
covery of association rules. ACM SIGMOD Record, 30(4):45–54, 2001.

[34] Y. Saygin, V. S. Verykios, and A. K. Elmagarmid. Privacy preserv-
ing association rule mining. In Proceedings of the 2002 International



A Survey of Association Rule Hiding Methods for Privacy 289

Workshop on Research Issues in Data Engineering: Engineering
E-Commerce/E-Business Systems (RIDE 2002), pages 151–163, 2002.

[35] X. Sun and P. S. Yu. A border-based approach for hiding sensitive fre-
quent itemsets. In Proceedings of the Fifth IEEE International Confer-
ence on Data Mining (ICDM 2005), pages 426–433, 2005.

[36] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and
Y. Theodoridis. State-of-the-art in privacy preserving data mining. ACM
SIGMOD Record, 33(1):50–57, 2004.

[37] V. S. Verykios, A. K. Emagarmid, E. Bertino, Y. Saygin, and E. Dasseni.
Association rule hiding. IEEE Transactions on Knowledge and Data En-
gineering, 16(4):434–447, 2004.

[38] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based privacy preser-
vation in classification problems. In Proceedings of the Fifth IEEE In-
ternational Conference on Data Mining (ICDM 2005), pages 466–473,
2005.

[39] S.-L. Wang and A. Jafari. Using unknowns for hiding sensitive predictive
association rules. In Proceedings of the 2005 IEEE International Confer-
ence on Information Reuse and Integration (IRI 2005), pages 223–228,
2005.

[40] X. Wu, Y. Wu, Y. Wang, and Y. Li. Privacy aware market basket data
set generation: A feasible approach for inverse frequent set mining. In
Proceedings of the 2005 SIAM International Conference on Data Mining
(SDM 2005), 2005.

[41] Y.-H. Wu, C.-M. Chiang, and A. L. P. Chen. Hiding sensitive association
rules with limited side effects. IEEE Transactions on Knowledge and
Data Engineering, 19(1):29–42, 2007.



Chapter 12

A Survey of Statistical Approaches to Preserving
Confidentiality of Contingency Table Entries

Stephen E. Fienberg
Department of Statistics, Machine Learning Department, and Cylab,
Carnegie Mellon University
Pittsburgh PA 15213-3890, U.S.A.

fienberg@stat.cmu.edu

Aleksandra B. Slavkovic
Department of Statistics
Pennsylvania State University
University Park PA 16802, U.S.A.

sesa@stat.psu.edu

Abstract In the statistical literature, there has been considerable development of methods
of data releases for multivariate categorical data sets, where the releases come
in the form of marginal and conditional tables corresponding to subsets of the
categorical variables. In this chapter we provide an overview of this methodol-
ogy and we relate it to the literature on the release of association rules which can
be viewed as conditional tables. We illustrate this with two examples. A related
problem, ”association rule hiding” is often independently studied in the database
community.

Keywords: Algebraic geometry, association rules, conditional tables, contingency tables,
disclosure limitation, marginal tables, privacy preservation.

12.1 Introduction

The cross-classification of individuals or other units according to multiple
categorical variables produces multi-way tables of counts, better known as con-
tingency tables. There is an extensive statistical literature on the analysis of
such tables, e.g., see [1], [4], [15], and [25]. When the number of variables is
large, the cells of the resulting contingency tables often contain a substantial
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number of small counts. These pose potential problems of disclosure risk. One
strategy for protecting the confidentiality of the entries in such circumstances
has been the release of subsets of the data in the form of marginal and condi-
tional tables. In this chapter we provide a survey of the literature that explains
the effectiveness of this strategy both for the protection of confidentiality and
utility in connection with log-linear and logit model methods.

The search for association rules in datamining focuses on the detection of
relationships or “associations” between specific values of categorical variables
in large data sets, i.e., multi-way contingency table. This search requires work-
ing with observed conditional distributions for an outcome variable or feature
given one or more explanatory variables. Thus the search for association rules
requires the construction of marginal and then conditional tables from the full
contingency table, i.e., datamining for association rules in effect involve the ef-
ficient construction and storage of marginal and conditional tables, e.g., see [2]
and [27]. Different datamining methods use these marginal and conditional ta-
bles in different ways. Some approach the problem by focusing solely on low-
dimensional marginal tables while others utilize the full power of log-linear
and logit models and use higher-dimensional marginal tables. The methods we
describe here are relevant to both approaches.

Our methods described here relate to “association rule hiding” problem
studied by the privacy-preserving data mining and database community. In this
volume, Verykios et al. [39] give a survey of association rule hiding methods.
They do not describe any related statistical disclosure limitation methods. What
they refer to as ”data hiding” in SDL literature is labeled usually as data mask-
ing. They point out that in general the sensitivity of the rules is determined
by security administrator, while the focus is on efficiency and algorithmic ap-
proaches for hiding of the rules rather than the usability. Our methodology of-
fers a way for detecting a sensitivity of a rule based on the data utility relevant
for valid statistical analysis.

12.2 The Statistical Approach Privacy Protection

Statisticians have approached this search problem in the following fashion.
Supose we have k-way cross-classification of counts arising from a sample
of size n from a large population of size N , e.g., the size of the US adult
population, or that from California. We want to report as much information
from this table as possible without releasing data that would allow an intruder
to identify one or more individuals with substantial probability. For the release
to be useful, an analyst needs to be able to use what is released to reach some
statistical conclusions that she would have tried to reach with the full k-way
array.
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Statisticians often define usefulness in this case in terms of fitting and inter-
preting the parameters in a log-linear model. The relevant quantities for doing
this are marginal totals that correspond to the highest order interaction terms—
these are the “best” data summaries, or minimal sufficient statistics for the
mdel. The difficulty is: which log-linear model? To understand this we must
do some form of model search, e.g., based on a search of model space and us-
ing some criterion like the Bayesian Information Criterion (BIC), e.g., see the
paper by [26]. Releasing just those minimal sufficient margins that correspond
to the model which minimizes BIC does not let the analyst check the fit of the
model relative to others so we may wish to release even more i.e., higher-order
margins that include these. When we fit the model we begin with the presence
of certain interaction terms and we estimate their value along with asymptotic
standard errors. The latter typical involve functions that are sums of inverses
of the values in the minimal sufficient margins. This is extremely important
since BIC and other criteria pick models where the asymptotic variance of the
discarded terms are the same order of magnitude as the estimates. The implica-
tion is that for “good” log-linear models the minimal sufficient margins tend to
have substantial sized counts typically on the order of 10 or more, and some-
times 100 or more! They will almost never have zeros in them, because that
yields special estimability and fit problems and they will rarely include very
small counts.

To check on privacy protection, we ask whether the information in the
marginal and conditional tables used in the construction of association rules
discloses confidential data about individuals or units represented in the full
multi-way contingency table. Much of the statistical focus has tended to be on
identification of small cell counts, e.g., “1” and “2.” The first order of business
is to assess the contribution from sampling. Roughly speaking, the probabil-
ity that an individual record that is unique in the sample is also unique in the
population from which the sample was drawn equals the sampling fraction,
n/N , e.g., see [18]. Thus for a sample of size 2,000 drawn from a population
of 200,000,000 adults the sampling fraction is 2,000/200,000,000 or 0.00001.
The bottom line therefore is that sampling protects, just not absolutely or even
in the formal sense that computer scientists have suggested, e.g., see [13]. Thus
we go further and look directly at the table and compute several quantities, such
as upper and lower bounds for the cell counts in the k-way table, or the number
of possible tables satisfying the marginal or possibly marginal and conditional
constraints, or we might look at the distribution over these possible tables to
assure themselves that the probabilities don’t lump up on just a few of the val-
ues between the bounds, e.g., see [9]. We provide some details in the remainder
of the chapter.
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12.3 Datamining Algorithms, Association Rules,
and Disclosure Limitation

Association rules are often described using a market-basket metaphor that
assumes that there are a large number of products that can be purchased by the
customer, either in a single transaction, or over time in a sequence of transac-
tions. Customers fill their basket with only a fraction of what is on display—
i.e., with a sample. Association rules can be extracted from a database of trans-
actions, to determine which products are frequently purchased together. For
example, one might find that A =“purchases of diapers” typically coincide
with B =“purchases of dog food” in the same basket. We then evaluate the
usefulness of the rule using some form of statistical summary such as “sup-
port” and “confidence”. For example,

Rule form: A⇒ B [support, confidence]

Example: buys(x, “diapers”)⇒ buys(x, “dog food”) [0.55%, 68%]

More generally, we have k-tuples based on k possible product types and
the transactions or market baskets produce counts for a k-way contingency
table with attributes corresponding to the presence or absence of the prod-
uct types. Our new goal is to discover association rules involving the vari-
ables that make up this contingency table. For an association rule of the form:
{A,B,C, . . . } ⇒ {E,F,G, . . .}, we define:

Confidence (accuracy) of A⇒ B: P (B|A) = (# of transactions containing
both A and B) / (# of transactions containing A).

Support (coverage) of A⇒ B: P (A,B) = (# of transactions containing both
A and B) / (total # of transactions)

There are many other possible criteria for assessing the usefulness of rules,
e.g., [38] uses a variation on support and confidence while [29] and [30] use
chi-square statistics for independence and conditional independence computed
on the marginal tables.

Machine learning approaches often attempt to treat every possible combi-
nation of attribute values as a separate class, learn rules using the rest of at-
tributes as input and then evaluate them for “support” and “confidence”. This
essentially involves examining all possible marginal tables corresponding to
the attributes. The problem is that this approach tends to be computationally
intractable, i.e., there are too many classes and consequently, too many rules.
Alternatively criteria involve looking for rules that exceed pre-defined support
(minimum support) and have high confidence. If we include among the objects
of interest the negations of the items, or in statistical terms all of the categories
of the variables, then in fact we are simply relying on full marginal and con-
ditional tables for empirical evaluation and rule search. We reiterate this key



Preserving Privacy for Contingency Tables 295

point: Support is a marginal table, and confidence is a conditional table, both
corresponding to a subset of variables making up the full table.

There is a major issue about what we mean by “the release of association
rules.” Many of the authors in the datamining literature have taken this notion
to simply mean announcing or releasing the form of the rule, i.e., the vari-
ables involved. We believe that this is essentially a vacuous approach, since
using the association rule requires the data that allow one to make predictions.
To us, releasing a rule means releasing the data on which it is based, i.e., the
corresponding conditional and/or marginal table. The more complex the rules
and the more rules the greater the risk of disclosure of individual information
and thus the violation of confidentiality promised to and the privacy of those
whose data are represented in the table. The real differences between between
the machine learning literature on association rules and the statistical literature
on contingency tables is how they deal with the marginal and conditional ta-
bles, and what is reported or shared with others. We address the latter point in
the next section.

Fienberg and Slavkovic [20] describe results based on release of exact mar-
ginals and conditionals that can help us determine which rules to hide in order
to preserve privacy but to allow sufficient information for statistical inference;
in this paper we highlight some of those results. In the computer science litera-
ture there are a number of alternative approaches, e.g., perturbing the full data
array as proposed by [14], [28], and [23].

12.4 Estimation and Disclosure Limitation for Multi-way
Contingency Tables

There is a separate literature on privacy and confidentiality in categorical
statistical data bases that approaches a number of the issues raised directly or
indirectly in the datamining literature but with a different and heavier emphasis
on the tradeoff between preserving confidentiality and assuring utility of the
released data in the sense of allowing for proper statistical inferences.

For the present purposes we can group the approaches in the statistical
literature into perturbational and aggregation or collapsing. For continuous
data, aggregation methods go under names such as micro-aggregation and
k-anonymity. For categorical data, aggregation typically involve combining
categories of variables with more than two values, but a special example of
collapsing involves summing over variables to produce marginal tables. Thus
instead of reporting the full muti-way contingency table we might report mul-
tiple collapsed versions of it. The release of multiple sets of marginal totals has
the virtue of allowing statistical inferences about the relationships among the
variables in the original table using log-linear model methods. Barak et al. [3]
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present a novel approach to contingency tables using perturbation and aggre-
gation ideas.

Notation and Definitions. Let X = (X1,X2, ...,Xk) be a discrete random
vector with probability function

p(x) = P (X = x) = P (X1 = x1, ...,Xk = xk)

where x = (x1, ..., xk). Each Xi is defined on a finite set of integers [di] =
{1, 2, ..., di}, di ≥ 1, i = 1, ..., k, with D = [d1] × ... × [dk]. A k-way con-
tingency table of counts, n = n(i), i ∈ D, is a k-way dimensional array of
non-negative integers such that each cell entry n(i) = #{X = i} represents
the number of times the configuration i is observed in a series of independent
realizations of X1, ...,Xk . The data of interest are counts in a k-way contin-
gency table, d1 × d2 × · · · × dk. Defined in this way, a table of counts is a
point in a simplex of dimension equal to D − 1, i.e., the number of cells−1.
The values of Xi are lattice points in a convex polytope. Parameter sets lie in a
related simplex. This sets up a link between contingency tables and algebraic
geometry and allows us to use tools from algebraic geometry to describe the
space of tables all satisfying some constraints or a model.

Consider disjoint subsets A and B of K = {1, ..., k}. The marginal table
XA with probabilities is defined as p(xA) =

∑
K\A p(xK), or equivalently

xA = (xj : j ∈ A). For example, if A = {1, 4}, then xA = (x1, x4). We
define a conditional table XA|B with conditional probability values as a multi-

conditional array p(xA|xB) = p(xAB)
p(xB) (e.g., Table 12.1).

Suppose that that we observe an arbitrary set of conditional and marginal
tables, T . We define the fiber Ft as a set of all k-way non-negative integer
tables that satisfy the constraints T = t . Consider a sublattice Lt of Z

D that
depends on a collection T and a finite subset Bt (e.g., a Markov basis is the
smallest such subset) of Lt.

Each element of Bt, z, can be thought of as a contingency table with values
in Z

D, and each is called a move that satisfies At(n+z) = Atn, where At is a
matrix that defines the constraints T = t imposed on table n. The most impor-
tant property of Markov bases, for our purposes, is that they connect all tables
satisfying the same set of constraints; thus they can be used for data swaps
and for building a connected Markov chain. Helpful references for tools on
algebraic statistics, including the calculation and use of Markov and Gröbner
bases, are [6], [34], and [31].

Log-linear Models. Consider an I×J×K table of observed counts {nijk},
with corresponding estimated expected values, {mijk} under a multinomial
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sampling model. The saturated log-linear model for {mijk} takes the form

logmijk = u+ u1(i) + u2(j) + u3(k) + u12(ij)

+u13(ik) + u23(jk) + u123(ijk), (12.1)

where each subscripted u-term sums to zero over any subscript, e.g.,

∑
i

u123(ijk) =
∑
j

u123(ijk) =
∑
k

u123(ijk) = 0.

We get unsaturated models from (12.1) by setting sets of u-terms equal to zero,
e.g., if we set

u123 = 0 for all i, j, k, (12.2)

we have the model of no second-order interaction. A logit model involves con-
ditioning on a marginal total and for all practical purposes can be thought of
as equivalent for the present purposes to the corresponding log-linear model
which includes the u-terms that correspond to the marginal conditioned upon.
These ideas and the definition of log-linear models generalize naturally from 3
to k dimensions.

Estimation and Assessing Goodness-of-Fit. We have the following key
features associated with inference for log-linear models:

The relevant statistical models focus on simultaneous interactions
among sets of variables that define the contingency table.

Special subsets of these models include the family of conditional inde-
pendence models and the family of graphical models, which involve si-
multaneous occurrence of conditional independencies. For more details
on graphical models in statistics see [25], and in machine learning see
[22].

The minimal sufficient statistics (i.e., sufficient data summaries) for a
log-linear model are the marginal totals corresponding to the highest-
order interaction terms in the model. For example, for the no second-
order interaction model for three-way tables in equation (12.2) above,
the minimal sufficient statistics are the three sets of two-way marginal to-
tals, {nij+}, {ni+k} and {n+jk} corresponding to {u12(ij)}, {u13(ik)},
and {u23(jk)}, respectively.

The maximum likelihood estimates for the expected cell values are
found by setting the minimal sufficient statistics equal to their expec-
tations. For example, for the no-second-order interaction model for
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three-way tables in equation (12.2) above:

m̂ij+ = nij+ for all i, j,

m̂i+k = ni+k for all i, k,

m̂+jk = n+jk for all j, k.

Maximum likelihood estimates for expected cell values under logit mod-
els are the same as corresponding log-linear models which include terms
associated with the fixed margins that the logit model conditions upon,
e.g., see the discussion in [4] and [15].

Decomposable log-linear models are graphical models for which the
maximum likelihood estimates have an explicit closed-form expression.
They correspond to triangulated graphs. See [25].

Standard methods of goodness-of-fit allow the user to assess how well
the model and its minimal sufficient statistical margins can explain or re-
construct the original cell counts. These include goodness-of-fit criteria
such as likelihood ratio statistics for separate models or for comparing
nested models, and penalized criteria such as the BIC, e.g., see Madigan
and Raftery [26]. In particular, the likelihood ratio test for comparing
a pair of nested log-linear models is expressible in terms of the mini-
mal sufficient marginals of the more complex model, a result implicit in
formulae in [4] and [25], and made explicit in [16].

Disclosure Limitation and Bounds on Cell Counts. To check on the dis-
closure limitation provided by releasing only a subset of marginal totals one
can consider the information in the margins for the construction of bounds for
the individual cell entries. Consider an I × J table with entries {nij} and row
margins {ni+} and column margins {n+j}. Then it is well-known that

min{ni+, n+j} ≥ nij ≥ max{0, ni+ + n+j − n++}, (12.3)

and that these bounds, also known as Fréchet bounds, are sharp. Now consider
the situation where instead of releasing a full k-way contingency table, we re-
lease a set of lower-dimensional marginal totals from it. Any contingency table
with non-negative integer entries and fixed marginal totals is a lattice point in
the convex polytope defined by the linear system of equations induced by the
released marginals. The constraints given by the values in the released mar-
ginals induce upper and lower bounds on the interior cells of the initial table.
In principle, we can obtain these bounds by solving the corresponding linear
programming (LP) problem, but in general this is an NP-hard problem. Do-
bra and Fienberg [7, 8] have derived explicit formulas for several interesting
sets of margins corresponding to special subsets of graphical log-linear models
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and they have proposed strategies for using these methods to find sets of mar-
gins that would not allow an intruder to make sharp inferences about the entries
in the original table. In particular, [7] provide simple and explicit bounds for-
mulas that are generalizations of equation (12.3) when the margins correspond
to the minimal sufficient statistics of decomposable log-linear models.

It is important to recognize that as the number and size of the released mar-
gins grow, we tighten the bounds on the cells in the table (based on in increas-
ing amount of information available) and the tightening takes on subtly com-
plex forms because of the interlocking structure of the margins. Slavkovic [31]
explored the form of linear and integer programming (IP) bounds for given
conditionals. We illustrate the bounds approach in the present paper and de-
scribe some extensions to it involving combinations of margins and condition-
als.

A major theme in the literature on disclosure limitation deals with the trade
off between disclosure risk and data utility. See especially [36], and selected
papers in [10]. Duncan with a variety of coauthors has stressed a graphical rep-
resentation for this trade-off which they call the R-U map, e.g., see [12] for a
discussion in the context of categorical data. Trottini and Fienberg [35] take
the trade-off formalism several steps further and embeds it in a fully Bayesian
decision-theoretic framework. Following [16] we adopt a somewhat more in-
formal assessment process by considering maximal releases of marginal and
conditional tables subject to limited disclosure risk in terms of bounds on cell
entries in the table.

Releasing Marginal and Conditional Tables. Because data from both
marginal and conditional tables are potentially of interest in assessing and re-
porting association rules, we need to understand how they differ in terms of
the information they convey about the entries in multi-way contingency tables.
For example, we want to do is check to see whether or not sets of marginal
and conditional distributions for a contingency table are sufficient to uniquely
identify the existing joint distribution. If so, we might as well release the full
table!

The joint distribution for any two-way table is uniquely identified by any
of the following sets of distributions: (1) P (X1|X2) and P (X2|X1), (2)
P (X1|X2) and P (X2), or (3) P (X2|X1) and P (X1). Cell entries are allowed
to be zero as long as we do not condition on an event of zero probability. Some-
times the sets P (X1|X2), P (X1) and P (X2|X1), P (X2) uniquely identify the
joint distribution. The following result, due to [33] and [31], describes this
situation and a generalization for a k-way table.

Theorem 12.1 (Slavkovic(2004)) Consider a k-way table and a collection
T = {pA|B, pA}, where A,B ⊂ K. If given matrices with conditional
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probability values have a full rank, and dA ≥ dB , then T uniquely identifies
marginal table pAB.

Trivially, for bivariate tables, the joint probability distribution is the support,
and thus along with the knowledge of sample size n, an association rule will
reveal all cell counts. The above results also imply that releasing the confidence
of a rule along with some marginal information, again will identify all entries
in a table, although we are concerned primarily with the identification of cells
with small counts.

Often, there are multiple realizations of the joint distribution for X, i.e.,
there is more than one table that satisfies the constraints imposed by them.
Slavkovic [33], and [31] describe the calculation of bounds given an arbitrary
collection of marginals and conditionals. They use LP and IP and discuss po-
tential inadequacies in treating conditional constraints via LP. These results
rely on the fact that any k-way table satisfying a set of compatible marginals
and/or conditionals is a point in a convex polytope defined by a system of linear
equations induced by released conditionals and marginals.

If a cell count is small and the upper bound is close to the lower bound,
the intruder knows with a high degree of certainty that there is only a small
number of individuals possessing the characteristics corresponding to the cell.
This may pose a risk of disclosure of the identity of these individuals. For
example, equation (12.3) gives the bounds when all that is released are the
two one-way marginals in a two-way table. When a single marginal or a single
conditional is given, the cell’s probability is bounded below by zero and above
by a corresponding marginal or a conditional value. This translates into bounds
for cell counts as long as we have the knowledge of sample size n which is
implicitly given by releasing the observed margins, while it must be provided
as an additional piece of information for the released conditional probabilites.

When the conditions of Theorem 12.1 are not satisfied, we can obtain
bounds for cell entries, and in some two-way cases there are closed form solu-
tions. These bounds are sharp for a set of low dimensional tables with nicely
rounded conditional probability values. For higher dimensions linear approxi-
mations of the bounds could be very far off from the true solution for the table
of counts, and thus these bounds may mask the true disclosure risk. To cal-
culate sharp IP bounds, we need either nicely rounded conditional probability
values, which rarely occur in practice, or we need the observed cell counts.
The latter implies that in practice the database owner is the only one which can
produce the ”true” bounds in the case of the conditionals; see [32].

Using the tools of computational commutative algebra such as Gröbner and
Markov bases in statistics, we can find feasible solutions to the constrained
maximization/minimization problem. Some advantages of this approach are
that (1) we obtain sharp bounds when the linear or integer program approach
fails, and (2) we can use it to describe all possible tables satisfying given
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costraints. In particular, a set of minimal Markov bases (moves) allows us to
build a connected Markov chain and perform a random walk over the space of
tables of counts that have the same fixed marginals and/or conditionals. This
will allow us to either enumerate or sample from the space of tables via Se-
quential Importance Sampling (SIS) or Markov Chain Monte Carlo sampling.
Some disadvantages of algebraic approach are that (1) calculation of Markov
bases can be computationally infeasible for k-way tables, and (2) for condition-
als, Markov bases are extremely sensitive to rounding of cell probabilities. A
technical description of calculation and structure of Markov bases given fixed
conditionals for two-way tables can be found in [31]. The reported results in
the examples below rely on use of this methodology.

In a two-way case, we only deal with so called full conditionals because
they involve all variables in the data base. Theorem 1.1 also describes the re-
lationship between a conditional and a marginal table that involves a subset of
variables from the data base. In other words, it describes a relationship between
confidence and support for a rule that involves a subset of characteristics from
a data base. Related theorems, their heuristics and constructions are illustrated
in [31], and [20] who also further elaborate on relationships between a Markov
basis set and the confidence and support, and implications for privacy. Here we
focus on some of the consequences of these theorems relevant to establishing
bounds on cells for evaluating potential disclosure.

One result implies that given the full conditional and the sample size n, the
value of the moves can be used to determine if we have a unique solution.
Other results imply that, for the same sample size n, the number of solutions
for a fixed small conditional, pA|B, is greater than or equal to the number of
solutions we obtain by fixing the marginXAB . This in turn should lead to wider
bounds on some of the cell entries. We can study a specific subsets of Markov
basis and determine if we are in the situation where the bounds given the small
conditionals are the same as given its corresponding marginal. In a number of
examples that we have examined to date, however, we have obtained the exact
same bounds. This observation has led us to consider a set of conditions and
heuristics that we can use in practice to determine when the bounds on cells
given these two sets of released information are the same.

To evaluate the effect of releasing an association rule has on disclosure, we
want to evaluate both confidence and support of the rule. The results of this
section imply that it is sufficient to evaluate the support.

12.5 Two Illustrative Examples

12.5.1 Example 1: Data from a Randomized Clinical Trial

Koch et al. [24] report the data in Table 12.1 on the results of a random-
ized clinical trial on the effectiveness of an analgesic drug for patients of two
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different statuses and from two different centers. We use a shorthand notation
to describe variables and marginals from the full tables, denoting Status as [S],
Center as [C], Treatment as [T] with levels Active = 1 and Placebo = 2, and
Response as [R] with levels Poor = 1, |hboxModerate = 2, Excellent = 3.
Given that individuals in the clinical trial form a “population,” confidentiality
questions focus on the potential harm associated with the release of informa-
tion on the four cells with counts of “3” in this table, corresponding to two sets
of three individuals in ‘Center 1,’ and two sets of three individuals in ‘Cen-
ter 2.’ In [19, 20] we analyzed these data with a focus on the links between
the uniqueness and bounds results to association rules. Here we add to these
earlier analyses and findings.

We are interested in the effect of the treatment on the response, controlling
for the other two variables. More specifically, we are interested in answering:
Which association rules are safe to release and provide enough information for
an analyst to make proper inferences about the question of interest. We could
be interested in evaluating the following association rules: T ⇒ R, CS ⇒ R,
CST ⇒ R, and CS ⇒ T. In particular, the analyst needs the margins, or
support, to go with a “good” log-linear model that fits the data well.

First, consider an association rule, CST ⇒ R. Support is the joint marginal
distribution of [CRST ] and confidence [R|CST ] is a table with conditional
probability values (see Table 12.1). It is trivial to see that release of the support
of this rule results in full disclosure since it is the full four-way table. These
probabilities along with the sample size n uniquely identify all cell counts.

If we just release the confidence associated with this rule we can explore an
important inferential question of treatment effect by using the empirical condi-
tional probability values from a full conditional distribution of [R|CST ]. If we
also have the 3-way margin [CST ], we can clearly reconstruct the full 4-way
table! Given [R|CST ] with sample size n, there are 7,703,002 tables all having

Table 12.1. Results of clinical trial for the effectiveness of an analgesic drug. Source: Koch
et al. [24]. The second panel contains observed counts, and the third panel has corresponding
observed conditional probability values for [R|CST ].

R 1 2 3 1 2 3
C S T
1 1 1 3 20 5 0.107 0.714 0.179
1 1 2 11 14 8 0.333 0.424 0.242
1 2 1 3 14 12 0.103 0.483 0.414
1 2 2 6 13 5 0.250 0.542 0.208
2 1 1 12 12 0 0.500 0.500 0
2 1 2 11 10 0 0.524 0.476 0
2 2 1 3 9 4 0.188 0.563 0.250
2 2 2 6 9 3 0.333 0.500 0.167
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the same conditional probability values. We give LP relaxation bounds in Ta-
ble 12.2. The tightest bound for the count of “3” is [1, 16.48] in cell (1,2,1,1).
We supplement these bounds by sharp integer bounds which in this case can be
calculated only by using observed counts (see [32]). These bounds are much
sharper than the LP bounds, with some cell counts being uniquely identified
such as the above mentioned cell (1,2,1,1). Thus both the LP bounds and the
number of possible tables can be misleading in evaluating the disclosure risk.
More generally, [31] shows that with knowledge of the sample size n full con-
ditionals are too risky to be released, and clearly in this example the release
of confidence [R|CST ] is not safe! Fienberg and Slavkovic [20] demonstrate
that we could potentially approximate “safely” the knowledge of the release of
this association rule by treating the data in Table 12.1 as if they come from a
two-way 8× 3 table and compute the Fréchet bounds for margins [CST ] and
[R] (c.f., Table 1.5 in [20]).

We note that this single conditional release reveals the zero counts in the
table unlike the release of margins, where we needed 3 3-way margins to learn
the position of zeros. While the disclosure of zero in this example does not
have much impact on an overall confidentiality risk, for larger and sparser k-
way tables the presence of a large fraction of 0 cells that are identified as such
may substantially increase the risk of disclosure of sensitive non-zero cells by
constraining them even more than the constraints that come directly from the
marginals.

Because this is a randomized clinical trial, in order to perform mean-
ingful statistical analysis, we need to include the three-way margin for the
three explanatory variables, i.e., [CST ]. Most model search procedures would
narrow the focus to two models, Model 1: [CST ] [CSR], or Model 2:
[CST ][CSR][RT ], both of which fit the data well. Model 1 is a special case
of Model 2 and the likelihood ratio test for the difference between them takes
the value ∆G2 = 5.4 with 2 degrees of freedom, a value that is not significant

Table 12.2. Second panel has LP relaxation bounds, and third panel has sharp IP bounds for
cell entries in Table 1.1 given [R|CST ] conditional probability values

R 1 2 3 1 2 3
C S T
1 1 1 [1,17.03] [6.67,113.55] [1.7,28.4] [3,6] [20,40] [5,10]
1 1 2 [1.4,51.26] [1.75,65.23] [1,37.28] [11,11] [14,14] [8,8]
1 2 1 [1,16.48] [4.67,76.91] [4,65.92] [3, 3] [14,14] [12,12]
1 2 2 [1.2, 38.61] [2.60,83.66] [1,32.18] [6,12] [13,26] [5,10]
2 1 1 [1.10,79.44] [1,72.26] 0 [1,18] [1,18] [0]
2 1 2 [1.10,79.48] [1,72.26] 0 [11,11] [10,10] [0]
2 2 1 [1,29.06] [3,87.17] [1,38.74] [3,9] [9,27] [4,12]
2 2 2 [2,51.89] [3,77.83] [1,25.94] [2,12] [3,18] [1,6]
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at the 0.10 level when compared with a chi-squared distribution with 2 degrees
of freedom. Thus one might reasonably conclude that the effect of the treat-
ment on the response is explained through the interactive effect of Center and
Status.

Note that we need three sets of marginal totals to make this inference:
[CST ], [CSR], and [RT ]. We can think of these marginal tables as supports
of the following association rules: CS ⇒ T , CS ⇒ R, and T ⇒ R. Thus we
want to evaluate the release of these marginals in combination with appropri-
ate confidences, that is conditional tables such as [T |CS], [R|CS] and [R|T ].
By applying theorems mentioned in Section 3, we can draw a number of in-
teresting conclusions. For example, bounds on cells given only the confidence
[R|T ] will be as wide or wider than given only the rule’s support [RT ]. The
same observation holds for the other association rules we are considering in
this example. This result implies that for each rule it should be sufficient to
evaluate only its support to determine if the release is safe.

Sometimes, however, we only have partial information on a rule, such as its
confidence, and want to evaluate those along with other data summaries. For
example, if we release [R|T ] and [R], Theorem 1.1, tells us that we have [RT ].
On the other hand, theoretically, [R|CS] and [R] will not uniquely identify
[CRS] because the number of levels in [R] is not greater than in [CS] which is
four. The number of tables for [CRS] is 31,081,397,760,000, and for [R|CS]
is 31,081,579,235,840. The LP relaxation bounds for releasing the conditional
[R|CS] instead of the margin [CRS] are much wider, see Table 12.3. For ex-
ample, the upper LP bound for (1,1,1,1) cell for [R|CS] is 37.42 while for
[CRS] is 14. Based on these bounds, we could mistakenly conclude that it
is safer to release the conditional, i.e., the confidence of the rule. The sharp
bounds for [R|CS] in place of [CRS] are the same even though they produce
a larger space of possible tables; however, the latter can have potential impli-
cations for estimating distributions over the space of solutions.

Table 12.3. Sharp upper and lower bounds for cell entries in Table 12.1 given the [CSR]
margin, and LP relaxation bounds given [R|CS] conditional probability values

R 1 2 3 1 2 3
C S T
1 1 1 [0,14] [0,34] [0,13] [1,37.42] [1,92.31] [1,34.68]
1 1 2 [0,14] [0,34] [0,13] [1,37.42] [1,74.73] [1,34.68]
1 2 1 [0,9] [0,27] [1,17] [1,27.84] [0,57.10] [0,53.47]
1 2 2 [0,9] [0,27] [0,17] [1,27.84] [1,85.51] [1,53.48]
2 1 1 [0,23] [0,22] [0,0] [1,32.22] [1,78.36] 0
2 1 2 [0,23] [0,22] [0,0] [1,75.04] [1,11.23] 0
2 2 1 [0,9] [0,18] [0,7] [1,43.40] [1,87.81] [1,33.54]
2 2 2 [0,9] [2,18] [0,7] [1,43.40] [1,87.81] [1,33.54]
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In our example, releasing the three association rules turns out to be safe
based on an examination of the bounds given the rule’s supports (c.f., [20],
Table 1.7). As before, all of the upper bounds are reasonably far from the lower
bounds except for the (2,1,2,3) cell where the upper and lower bounds are now
0, and perhaps the (2,2,1,3) and (2,2,2,3) cells where the bounds are [0,7]. If
we released the [CST ], [CSR], and [RT ] margins an intruder would be far
from certain what entries belonged in the four cells that actually contain the
count of “3.”

12.5.2 Example 2: Data from the 1993 U.S. Current
Population Survey

Table 12.4 describes data extracted from the 1993 Current Population Sur-
vey. Versions of these data have been used previously to illustrate several other
approaches to confidentiality protection. The resulting 8-way table contains
2880 cells and is based on 48,842 cases; 1185 cells approximately 41%, con-
tain 0 count cells. This is an example of a sparse table, too often present in
practice, which poses significant problems in the model fitting and estimation.
Almost all lower level margins (e.g., 2-way margins) contain 0 counts. Thus the
existence of maximum likelihood estimates is an issue. These zeros propagate
into the corresponding conditional tables.

Table 12.4. Description of variables in CPS data extract

Variable Label Categories
Age (in years) A < 25, 25 − 55, > 55
Employer Type (Empolyment) B Gov, Pvt, SE, Other
Education C <HS, HS, Bach, Bach+, Coll
Marital status (Marital) D Married, Other
Race E White, Non-White
Sex F Male, Female
Hours Worked (HrsWorked) G < 40, 40, > 40
Annual Salary (Salary) H < $50K, $50K+

From disclosure risk perspective we are interested in protecting cells with
small counts such as “1” and “2”. There are 361 cells with count of 1 and 186
with count of 2. Our task is to reduce a potential disclosure risk for at least
19% of our sample, while still providing sufficient information for a “valid”
statistical analysis.

To alleviate estimation problems, we recoded variables B and G from 5 and
2 categories respectively to 2 categories each yielding a reduced 8-way table
with 768 cells. This table is still sparse. There are 193 zero count cells, or about
25% of the cells. About 16% of cells have high potential disclosure risk; there
are 73 cells with counts of 1 and 53 with counts of 2. For this table we find two
reasonable log-liner models
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Model 1: [ABCFG][ACDFG][ACDGH][ADEFG],

Model 2: [ACDGH][ABFG][ABCG][ADFG][BEFG][DEFG],

with goodness-of-fit statistics G2 = 1870.64 with 600 degrees of freedom and
G2 = 2058.91 with 634 degrees of freedom, respectively.

Model 1 is a decomposable graphical log-linear model whose minimal suf-
ficient statistics are the released margins. We first evaluate if these five-way
marginal tables are safe to release by analyzing number of cells with small
counts. Most of the cell counts are large and do not seem to present an imme-
diate disclosure risk. Two of the margins are potentially problematic. Marginal
table [ABCFG] has 1 cell with count of “5” in (1,4,2,1,2) cell, while the mar-
gin [ACDGH] has a low count of “4” and two cells with count of “8”; e.g.,
see Table 12.5. Even without out any further analysis, most agencies would
not release such margins. Because we are fitting a decomposable models this
initial exploratory analysis reveals that there will be at least one cell with a
tight sharp upper bound of size “4”. Bellow we investigate if these margins are
indeed safe to release accounting for the log-linear model we can fit and the
estimates they provide for the reduced and full eight-way tables.

Table 12.5. Marginal table [ACDGH] from 8-way CPS table

A 1 2 3
C 1 2 1 2 1 2

D G H
1 1 1 198 139 943 567 2357 2225

2 11 19 240 715 1009 3781
2 1 246 144 765 294 3092 2018

2 8 14 274 480 1040 2465
2 1 1 2327 2558 835 524 2794 3735

2 8 14 51 105 114 770
2 1 1411 1316 617 359 3738 3953

2 4 15 32 68 78 372

Model 1 is easy to fit and evaluate: it is decomposable and there are closed-
form solutions for bounds given the margins. Almost all lower bounds are 0.
As expected from the analysis above, the smallest upper bound is 4 counts.
There are 16 such cells, of which 4 contain counts of “1” and rest contain “0”.
The next smallest upper bound is 5, for 7 “0” cell counts and for 1 cell with a
count of “5”. The 5 cells with counts of “1” have the highest risk of disclosure.
The next set of cells with a considerably high disclosure risk are cells with an
upper bound of size 8. There are 32 such cells (23 contain counts of “0”, 4
contain counts of “1”, 3 contain counts of “2”, and 2 contain counts of “3”).
If we focus on count cells of “1” and “2”, with the release of this model we
directly identified 12 out of 126 sensitive cells.
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Table 12.6. Summary of difference between upper and lower bounds for small cell counts in
the full 8-way CPS table under Model 1 and under Model 2

Model 1 Model 2
Bound diff. 0 1 2 3 4 5 0 1 2 3 4 5
Cell count
0 226 112 66 52 69 62 192 94 58 40 36 26
1 - 12 15 14 13 20 - 10 8 6 2 10
2 - - 1 3 8 4 - - 2 2 4 4
3 - - - 1 4 2 - - - 0 0 0

If we fit the same model to the full 8-way table with 2,880 cells, there are
660 cells with difference in bounds less than equal to 5, with all lower bounds
being 0. Most of these are “0” cell counts; however, a high disclosure risk exists
for 74 cells with count of “1”, 16 cells with cell count equal “2”, and 7 cells
with counts of “3”; see the summary in Table 12.6. Thus releasing the margins
corresponding to Model 1 poses a substantial risk of disclosure.

Model 2 is non-decomposable log-linear model and it requires an iterative
algorithm for parameter estimation and extensive calculation for bounds. This
model has 5 marginals as sufficient statistics. The 5-way margin [ACDGH] is
still problematic; however, the 4 4-way margins all appear to be safe to release
with the smallest count of size “46” appearing in cell (1,4,1,1) of the margin
[ABFG].

We focus our discussion only on cells with small counts, as we did for the
Model 1. Since Model 2 is non-decomposable, no closed-form solutions exist
for cell bounds, and we must rely on LP and IP which sometimes may not
produce sharp bounds. In this case this was not an issue. For the reduced 8-way
table, all lower bounds are 0 and the minimum upper bound again is 4. There
are 16 cells with upper bound of 4, of which four cells have count “1”, and the
rest are “0”. The next smallest upper bound is 8, and there are 5 such cells with
counts of “1”, 4 cells with counts of “2”, and 3 cells with counts of “3”. With
these margins, in comparison to the released margins under Model 1, we have
eliminated the effect of the margin [ABCFG], and reduced a disclosure risk
for a subset of small cell counts; however, we did not reduced the disclosure
risk for the small cell counts with the highest disclosure risk. For the full 8-
way table, we compare the distribution of small cell bounds for the small cell
counts under the two models; see Table 12.6. There are no cells with counts of
“3” that have very tight bounds. For the cells with counts of “2”, the number
of tight bounds have not substantially decreased (e.g., 16 under Model 1 vs.
12 under Model 2), but there has been a significant decrease in the number of
tight bounds for the cells with count of “1” (e.g., from 74 under Model 1 to 36
under Model 2).
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In theory we could enumerate the number of possible tables utilizing alge-
braic techniques and software such as LattE [5], MCMC, or SIS. Due to large
dimension of the solution polytope for this example, however, LattE is cur-
rently unable the execute the computation because the space of possible tables
is extremely large. We have also been unable to fine-tune the SIS procedure
to obtain a reasonable estimate except “infinity”. While it is possible to find a
Markov basis corresponding to the second log-linear model, utilizing those for
calculating bounds and or sampling from the space of tables is also currently
computationally infeasible. But the practicality of such calculations is likely to
change with increased computer power and memory.

Based on Model 1, variables B and H are conditionally independent given
the remaining 6 variables. Thus we can collapse the 8-way table to a 6-way
table and carry out a disclosure risk analysis on it. The collapsed table has only
96 cells, and there is only one small cell count of size “2” that would raise
an immediate privacy concern. Furthermore, we have collapsed over the two
“most” sensitive and most interesting variables for statistical analysis: Type of
Employer and Income. We do not pursue this analysis here but, if other vari-
ables are of interest, we could again focus on search for the best decompos-
able model. With various search algorithms and criteria, out of 32,768 possible
decomposable models all searches converge to [ACFG][ADEFG], a model
with a likelihood ratio chi-square ofG2 = 144.036 and 36 degrees of freedom.

In this case, we could simply provide the margins of the above model to
the user to construct association rules provided that they do not provide pre-
cise information on three sensitive cells. Numerous association rules can be
derived from the given margins. Some interesting rules, for example could be
AFG ⇒ C , and AFG ⇒ DE. As we did in in the clinical trial example, we
can evaluate how safe the release of these rules are by determining the bounds
on the cells given the marginal and conditional constraints, that is the rules’
support and confidence.

12.6 Conclusions

The literature on datamining for association rules has focused on extracting
rules with high predictive utility, measured by criteria such as support and con-
fidence. For categorical data bases, coming in the form of multi-way contin-
gency tables, these rules and criteria essentially are extracting marginal tables
and linked conditionals. Some authors have recognized the relevance of log-
linear and related models for this type of datamining activity, e.g., see [11],
and [37], but few have addressed the issue of preserving the privacy of in-
dividuals represented in the data base being mined, with no links to date to
ideas from log-linear and related models. In this chapter we have provided
an overview of the totally separate statistical literature focused on protecting
against disclosure limitation in contingency tables, while providing marginal
and conditional tables for analysis and reporting.
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From the perspective of privacy preservation the methods described in this
chapter for bounds on cell counts provide an alternative approach to that found
in most of the machine learning literature. These methods stress the link be-
tween the ensemble of data to be released, i.e., margins and conditionals, and
their ability to characterize the data base through the use of log-linear and
related statistical models and assessments of goodness-of-fit. Measures of pri-
vacy preservation based on bounds and other statistically related quantities may
suggest that “the best association rules” may not be releasable without possibly
compromising confidentiality.

New to this enterprise, and especially new to datamining are the tools from
computational algebraic geometry. We have attempted to illustrate their ap-
plicability here largely through the examples. For more details we refer the
interested reader to [6], [17], [31], and papers in a special 2006 issue of the
Journal of Symbolic Computation devoted to problems at the interface of sta-
tistics and algebraic geometry.

Machine learning has made major progress in the efficient extraction of
association rules from large data bases. The statistical literature has focused
more heavily on understanding the utility of the the extracted information
and on related methodologies for assessing disclosure limitation or privacy
preservation. Our goal in reviewing the points of convergence in these two
literatures has been to stimulate a fusion of the different methodologies and
computational tools. Barak et al. [3] adds the element of perturbation to our
toolkit and we hope to compare their methods with those described in this
paper in the near future.
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Abstract
Data mining can extract important knowledge from large data collections, but

sometimes these collections are split among various parties. Data warehousing,
bringing data from multiple sources under a single authority, increases risk of
privacy violations. Furthermore, privacy concerns may prevent the parties from
directly sharing even some meta-data.

Distributed data mining and processing provide a means to address this is-
sue, particularly if queries are processed in a way that avoids the disclosure of
any information beyond the final result. This chapter describes methods to mine
horizontally partitioned data without violating privacy and discusses how to use
the data mining results in a privacy-preserving way. The methods described here
incorporate cryptographic techniques to minimize the information shared, while
adding as little as possible overhead to the mining and processing task.

Keywords: Privacy, distributed data mining, horizontally partitioned data and homomorphic
encryption.

13.1 Introduction

Data mining technology has emerged as a means of identifying patterns and
trends from large quantities of data. Recently, there has been growing concern
over the privacy implications of data mining. Some of this is public perception:
The “Data Mining Moratorium Act of 2003” introduced in the U.S. Senate [8]
was based on a fear of government searches of private data for individual in-
formation, rather than what the technical community views as Data Mining.
However, concerns remain. While data mining is generally aimed at producing
general models rather than learning about specific individuals, the process of
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data mining creates integrated data warehouses that pose real privacy issues.
Data that is of limited sensitivity by itself becomes highly sensitive when inte-
grated, and gathering the data under a single roof greatly increases the opportu-
nity for misuse. Even though some of the distributed data mining tasks protect
individual data privacy, they still require that each site reveals some partial
information about the local data. What if even this information is sensitive?

For example, suppose the Centers for Disease Control (CDC), a public
agency, would like to mine health records to try to find ways to reduce the
proliferation of antibiotic resistant bacteria. Insurance companies have data on
patient diseases and prescriptions. CDC may try to mine association rules of
the form X ⇒ Y such that the Pr(X&Y ) and Pr(Y |X) are above some cer-
tain thresholds. Mining this data for association rules would allow the discov-
ery of rules such as Augmentin&Summer ⇒ Infection&Fall, i.e., people
taking Augmentin in the summer seem to have recurring infections.

The problem is that insurance companies will be concerned about sharing
this data. Not only must the privacy of patient records be maintained, but in-
surers will be unwilling to release rules pertaining only to them. Imagine a rule
indicating a high rate of complications with a particular medical procedure. If
this rule doesn’t hold globally, the insurer would like to know this; they can
then try to pinpoint the problem with their policies and improve patient care.
If the fact that the insurer’s data supports this rule is revealed (say, under a
Freedom of Information Act request to the CDC), the insurer could be exposed
to significant public relations or liability problems. This potential risk could
exceed their own perception of the benefit of participating in the CDC study.

One solution to this problem is to avoid disclosing data beyond its source,
while still constructing data mining models equivalent to those that would have
been learned on an integrated data set. Since we prove that data is not disclosed
beyond its original source, the opportunity for misuse is not increased by the
process of data mining.

The definition of privacy followed in this line of research is conceptually
simple: no site should learn anything new from the process of data mining.
Specifically, anything learned during the data mining process must be derivable
given one’s own data and the final result. In other words, nothing is learned
about any other site’s data that isn’t inherently obvious from the data mining
result. The approach followed in this research has been to select a type of data
mining model to be learned and develop a protocol to learn the model while
meeting this definition of privacy.

In addition to the type of data mining model to be learned, the different
types of data distribution result in a need for different protocols. For example,
the first paper in this area proposed a solution for learning decision trees on
horizontally partitioned data: each site has complete information on a distinct
set of entities, and an integrated dataset consists of the union of these datasets.
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In contrast, vertically partitioned data has different types of information at each
site; each has partial information on the same set of entities. In this case an in-
tegrated dataset would be produced by joining the data from the sites. While
[25] showed how to generate ID3 decision trees on horizontally partitioned
data, a completely new method was needed for vertically partitioned data [6].
(We will not further discuss the vertically partitioned data case in this chapter.
Please see Vaidya’s chapter in this book for the discussion of vertically par-
titioned data case) This chapter presents solutions such that the parties learn
(almost) nothing beyond the global results. We assume homogeneous data-
bases and horizontally partitioned data: All sites have the same schema, but
each site has information on different entities. Given solutions are relatively
efficient and proved to preserve privacy under some reasonable assumptions.
Specifically, in section 13.2, we briefly discuss the necessary cryptographic de-
finitions and tools. In section 13.3, we summarize how the basic cryptographic
tools could be used to create privacy-preserving sub-protocols. Later on, in sec-
tion 13.4, we outline how the privacy-preserving distributed data mining pro-
tocols are created using these few sub-protocols. In section 13.6, we discuss
how to extend current algorithms to withstand different adversarial models. In
section 13.8, we give an overview of other privacy issues related to data min-
ing results. Finally, in section 13.9, we conclude with possible future research
directions.

13.2 Basic Cryptographic Techniques for
Privacy-Preserving Distributed Data Mining

Privacy-preserving distributed data mining algorithms require collaboration
between parties to compute the results, while provably preventing the disclo-
sure of any information except the data mining results. To achieve this goal, we
will use tools from secure multiparty computation (SMC) domain. The concept
of privacy in this approach is based on a solid body of theoretical work. First,
we briefly discuss the basic ideas from SMC domain. Then, we describe a use-
ful variant of public-key cryptography system called homomorphic encryption.

Privacy Definitions and Proof Techniques

Secure Multiparty Computation (SMC) originated with Yao’s Millionaires’
problem [33]. The basic problem is that two millionaires would like to know
who is richer, with neither revealing their net worth. Abstractly, the problem is
to simply compare two numbers, each held by one party, without either party
revealing its number to the other. Yao[33] presented a generic circuit evaluation
based solution for this problem as well as generalizing it to any efficiently
computable function restricted to two parties.
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The SMC literature defines two basic adversarial models:

Semi-Honest: Semi-honest (or Honest but Curious) adversaries follow the
protocol faithfully, but can try to infer the secret information of the other
parties from the data they see during the execution of the protocol.

Malicious: Malicious adversaries may do anything to infer secret information.
They can abort the protocol at any time, send spurious messages, spoof
messages, collude with other (malicious) parties, etc.

While the semi-honest model may seem questionable for privacy (if a party
can be trusted to follow the protocol, why don’t we trust them with the data?),
we believe that it meets several practical needs for early adoption of the tech-
nology. Consider the case where credit card companies jointly build data min-
ing models for credit card fraud detection. In many cases the parties involved
already have authorization to see the data (e.g., the theft of credit card infor-
mation from CardSystems [30] involved data that CardSystems was expected
to see during processing). The problem is that storing the data brings with it
a responsibility (and cost) of protecting that data; CardSystems was supposed
to delete the information once the processing was complete. If parties could
develop the desired models without seeing the data, then they are saved the re-
sponsibility (and cost) of protecting it. Also the simplicity and efficiency possi-
ble with semi-honest protocols will help speed adoption so that trusted parties
are saved the expense of protecting data other than their own. As the technol-
ogy gains acceptance, malicious protocols will become viable for uses where
the parties are not mutually trusted. (Please see section 13.6 for the discussion
of malicious parties)

In either adversarial model, there exist formal definitions of privacy [13]. In-
formally, the definition of privacy is based on equivalence to having a trusted
third party perform the computation. This is the gold standard of secure mul-
tiparty computation. Imagine that each of the data sources gives their input
to a (hypothetical) trusted third party. This party, acting in complete isolation,
computes the results and reveals them. After revealing the results, the trusted
party forgets everything it has seen. A secure multiparty computation approx-
imates this standard: no party learns more than it would in the trusted third
party approach.

One fact is immediately obvious: no matter how secure the computation,
some information about the inputs may be revealed. This is a result of the com-
puted function itself. For example, if one party’s net worth is $100,000, and the
other party is richer, one has a lower bound on their net worth. This is captured
in the formal SMC definitions: any information that can be inferred from one’s
own data and the result can be revealed by the protocol. Thus, there are two
kinds of information leaks; the information leak from the function computed ir-
respective of the process used to compute the function and the information leak
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from the specific process of computing the function. Whatever is leaked from
the function itself is unavoidable as long as the function has to be computed
(We discuss the privacy issues related to data mining results in section 13.8).
In secure computation the second kind of leak is provably prevented. There is
no information leak whatsoever due to the process. Some algorithms improve
efficiency by trading off some security (leak a small amount of information).
Even if this is allowed, the SMC style of proof provides a tight bound on the in-
formation leaked; allowing one to determine if the algorithm satisfies a privacy
policy.

This leads to the primary proof technique used to demonstrate the security
of privacy-preserving distributed data mining: a simulation argument. Given
only its own input and the result, a party must be able to simulate what it sees
during execution of the protocol.

One key point is the restriction of the simulator to polynomial time algo-
rithms, and that the views only need to be computationally indistinguishable.
Algorithms meeting this definition need not be proven against an adversary
capable of trying an exponential number of possibilities in a reasonable time
frame. While some protocols do not require this restriction, most make use of
cryptographic techniques that are only secure against polynomial time adver-
saries. This is adequate in practice (as with cryptography); security parameters
can be set to ensure that the computing resources to break the protocol in any
reasonable time do not exist.

While the Yao’s generic circuit evaluation method has been proven secure
by the above definition, it poses significant computational problems. Given the
size and computational cost of data mining problems, representing algorithms
as a boolean circuit results in unrealistically large circuits. The challenge of
privacy-preserving distributed data mining is to develop algorithms that have
reasonable computation and communication costs on real-world problems, and
prove their security with respect to the above definition.

The composition theorem [13] is another very useful theorem from the SMC
literature.

Theorem 13.2.1 Composition Theorem for the semi-honest model.
Suppose that g is privately reducible to f and that there exists a protocol for

privately computing f . Then there exists a protocol for privately computing g.

Informally, the theorem states that if a protocol is shown to be secure except
for several invocations of sub-protocols, and if the sub-protocols themselves
are proven to be secure, then the entire protocol is secure. The immediate con-
sequence is that, with care, we can combine secure sub-protocols to produce
new secure protocols. Also, if many algorithms depend on a few common
sub-protocols, efficient implementation of these sub-protocols significantly
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improves the overall efficiency. The following section shows that many privacy
preserving data mining algorithms can be developed using few sub-protocols.

Homomorphic Encryption

As mentioned above, most of the protocols devised for privacy-preserving
distributed data mining could be implemented using few sub-protocols. For
the ease of exposition, we describe those sub-protocols using homomorphic
encryption techniques.

In a nutshell, we can describe the homomorphic encryption as follows: Let
Epk(.) denote the encryption function with public key pk and Dpr(.) denote
the decryption function with private key pr. A secure public key cryptosystem
is called homomorphic if it satisfies the following requirements: (1) Given the
encryption of m1 and m2, Epk(m1) and Epk(m2), there exists an efficient
algorithm to compute the public key encryption ofm1+m2, denoted Epk(m1+
m2) := Epk(m1) +h Epk(m2). (2) Given a constant k and the encryption of
m1, Epk(m1), there exists an efficient algorithm to compute the public key
encryption of k ·m1, denoted Epk(k ·m1) := k ×h Epk(m1). Please refer to
[29] for more details.

13.3 Common Secure Sub-protocols Used
in Privacy-Preserving Distributed Data Mining

We will briefly describe the common secure sub-protocols used in Privacy-
preserving Distributed Data Mining. For each sub-protocol, if possible, we
describe a version that only uses homomorphic encryption. Unless otherwise
stated, all the sub-protocols are secure in the semi-honest model with no collu-
sion, and all the arithmetic operations are defined in some large enough finite
field.

In later sections, we will show how different algorithms could be imple-
mented using these secure sub-protocols. Since these common building blocks
are quite general, using theorem 13.2.1, they can be combined to create new
privacy preserving algorithms in the future.

Secure Sum

Secure Sum securely calculates the sum of values from individual sites. As-
sume that each site i has some value vi and all sites want to securely compute
v =

∑m
l=1 vl where v is known to be in the range [0..n]. Homomorphic en-

cryption could be used to calculate secure sum as follows:
1: Site 1 creates a homomorphic encryption public and private key pair, and

sends the public key to all sites
2: Site 1 sets s1 = Epk(v1)
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3: Each site i where m ≥ i > 1, gets si−1 from site i− 1 and computes si =
si−1 +h Epk(vi) using additive property of the homomorphic encryption

4: Site m sends sm to site 1
5: Site 1 sends Dpr(sm) to all parties

The above protocol is secure because any party other than site 1 cannot decrypt
the si values. It also correctly calculates the summation because sm = sm−1+h

Epk(vm) = Epk(
∑m

l=1 vl) and Dpr(sm) = v.
Assuming three or more parties and no collusion, a more efficient method

can be found in [19].

Secure Comparison / Yao’s Millionaire Problem

Assume that two sites, each having one value, want to compare the two
values without revealing anything else other than the comparison result. Secure
Comparison methods can be used to solve the above problem. To the best of
our knowledge, secure circuit evaluation based approaches still provide the
best performance [33].

Dot Product Protocol

Securely computing the dot product of two vectors is another important sub-
protocol required in many privacy-preserving data mining tasks. Many secure
dot product protocols have been proposed in the past [5, 31, 14, 12]. Among
those proposed techniques, the method of Goethals et al. [12] is quite simple
and provably secure. We now briefly describe it here.

The problem is defined as follows: Alice has a n-dimensional vector �X =
(x1, . . . , xn) while Bob has a n-dimensional vector �Y = (y1, . . . , yn). At the
end of the protocol, Alice should get ra = �X · �Y + rb where rb is a random
number chosen from uniform distribution that is known only to Bob, and �X ·
�Y =

∑n
i=1 xi · yi. The key idea behind the protocol is to use a homomorphic

encryption system described in section 13.2. Using such a system, it is quite
simple to build a dot product protocol. If Alice encrypts her vector and sends
in encrypted form to Bob, using the additive homomorphic property, Bob can
compute the dot product. The specific details are given below:
Require: Alice has input vector �X = {x1, . . . , xn}
Require: Bob has input vector �Y = {y1, . . . , yn}
Require: Alice and Bob get outputs rA, rB respectively such that rA + rB =

�X · �Y
1: Alice generates a homomorphic private and public key pair.
2: Alice sends public key to Bob.
3: for i = 1 . . . n do
4: Alice sends to Bob ci = Epk(xi).
5: end for
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6: Bob computes wi = (ci ×h yi)
7: Bob computes w = w1 +h w2 +h . . .+h wn
8: Bob generates a random plaintext rB .
9: Bob sends to Alice w′ = w +h Epk(−rB).

10: Alice computes rA = Dpr(w′) = �X · �Y − rB.

Oblivious Evaluation of Polynomials

Another important sub-protocol required in privacy-preserving data mining
is the secure polynomial evaluation protocol. Consider the case where Alice
has a polynomial P of degree k over some finite field F . Bob has an element
x ∈ F and also knows k. Alice would like to let Bob compute the value P (x)
in such a way that Alice does not learn x and Bob does not gain any addi-
tional information about P (except P (x)). This problem was first investigated
by [28]. Subsequently, there have been more protocols improving the commu-
nication and computation efficiency [2] as well as extending the problem to
floating point numbers [1].

We now briefly describe the protocol used for oblivious polynomial eval-
uation that uses the secure dot product above. Given a dot product proto-
col, we can easily create a protocol for polynomial evaluation as follows: Let
P (y) =

∑k
i=0 aiy

i be Alice’s input and x be Bob’s input, using secure dot
product, Bob can evaluate the P (x) as follows

Alice forms Bob forms

�U =

⎡
⎢⎢⎢⎣
a0

a1
...
ak

⎤
⎥⎥⎥⎦ �V =

⎡
⎢⎢⎢⎣

1
x
...
xk

⎤
⎥⎥⎥⎦

Alice and Bob engage in secure dot product so that (only) Bob gets r = �U.�V

Clearly r =
∑k

i=0 aix
i = P (x). Using theorem 13.2.1, it can be shown that

if the dot product protocol is secure, then the above protocol is also secure.

Privately computing ln x

For entropy measures used in data mining, we need to be able to privately
compute lnx, where x = x1+x2 with x1 known to Alice and x2 known to Bob.
Thus, Alice should get y1 and Bob should get y2 such that y1 + y2 = lnx =
ln(x1 + x2). One of the key results presented in [26] was a cryptographic
protocol for this computation. We now describe the protocol in brief: Note
that lnx is Real while general cryptographic tools work over finite fields. We
multiply the lnx with a known constant to make it integral.
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The basic idea behind computing random shares of ln(x1 + x2) is to use
the Taylor approximation for lnx. Remember that the Taylor approximation
gives us:

ln(1 + ε) =
∞∑
i=1

(−1)i−1εi

i

= ε− ε2

2
+
ε3

3
− ε4

4
+ . . . for − 1 < ε < 1

For an input x, let n = �log2 x�. Then 2n represents the closest power of 2
less than x. Therefore, x = x1 + x2 = 2n(1 + ε) where −1/2 ≤ ε ≤ 1/2.
Consequently,

ln(x) = ln(2n(1 + ε))
= ln 2n + ln(1 + ε)

≈ ln 2n +
∑
i=1...k

(−1)i−1εi/i

= ln 2n + T (ε)

where T (ε) is a polynomial of degree k. This error is exponentially small in k.
There are two phases to the protocol. Phase 1 finds an appropriate n and

ε. Let N be a predetermined (public) upper-bound on the value of n. First,
Yao’s circuit evaluation is applied to the following small circuit which takes
x1 and x2 as input and outputs random shares of ε2N and 2Nn ln 2. Note that
ε2n = x − 2n, where n can be determined by simply looking at the two most
significant bits of x, and ε2N is obtained simply by shifting the result byN−n
bits to the left. Thus, the circuit outputs random α1 and α2 such that α1 +α2 =
ε2N , and also outputs random β1 and β2 such that β1 + β2 = 2Nn ln 2. This
circuit can be easily constructed. Random shares are obtained by having one
of the parties input random values α1, β1 ∈ F into the circuit and having the
circuit output α2 = ε2N − α1 and β2 = 2Nn ln 2− β1 to the other party.

Phase 2 of the protocol involves computing shares of the Taylor series ap-
proximation, T (ε). This is done as follows: Alice chooses a random w1 ∈ F
and defines a polynomial Q(x) such that w1 + Q(α2) = T (ε). Thus Q(·) is
defined as

Q(x) = lcm(2, . . . , k)
k∑
i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1

Alice and Bob then execute a secure polynomial evaluation defined above with
Alice inputting Q(·) and Bob inputting α2, in which Bob obtains w2 = Q(α2).
Alice and Bob define u1 = lcm(2, . . . , k)β1+w1 and u2 = lcm(2, . . . , k)β2+
w2. We have that u1 + u2 ≈ 2N lcm(2, . . . , k) ln x. Further details on the
protocol, as well as the proof of security, can be found in [26].
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Secure Intersection

Secure Intersection methods are useful in data mining to find common rules,
frequent itemsets etc., without revealing the owner of the item. Many algo-
rithms have been developed for calculating Secure Set Intersection. For exam-
ple, [32] provides an efficient solution.

Here we describe a secure set intersection protocol that uses secure polyno-
mial evaluation. [23, 9] Let us assume that Alice has set X = {x1, . . . , xn}
and Bob has set Y = {y1, . . . , yn}. Our goal is to securely calculate X ∩ Y .
By representing set X as a polynomial and using polynomial evaluation, Alice
and Bob can calculate X ∩ Y securely. The specific details are given below:
Require: Alice has input set X = {x1, . . . , xn}
Require: Bob has input set Y = {y1, . . . , yn}
Require: Alice and Bob learn X ∩ Y

1: Alice generates a homomorphic private and public key pair
2: Alice sends public key to Bob
3: Alice creates a polynomial P (z) =

∑n
i=0 aiz

i such that P (xi) = 0 for all
xi (This is possible using interpolation)

4: for i = 1 . . . n do
5: Alice sends to Bob ci = Epk(ai)
6: end for
7: for i = 1 . . . n do
8: Using ci values, and random non-zero ri, Bob computes wi = Epk(ri ·

P (yi) + yi) (This is possible due to homomorphic encryption)
9: end for

10: Bob permutes wi values and send it to Alice
11: Alice decrypts all wi values and outputs Dpr(wi) as an element of X ∩ Y

if Dpr(wi) ∈ X
Note that above protocol works, because if yi ∈ X ∩ Y then P (yi) = 0,

and if P (yi) = 0, then Dpr(wi) = yi. On the other hand, if yi �∈ X ∩ Y then
P (yi) �= 0, and then Dpr(wi) will be some random number based on ri. See
[9] for further details.

Secure Set Union

Secure union methods are useful in data mining to allow each party to give
its rules,decision trees etc. without revealing the owner of the item. Union of
items can be easily evaluated using SMC methods if the domain of the items is
small. Each party creates a binary vector (where the ith entry is 1 if the ith item
is present locally). At this point, a simple circuit that or’s the corresponding
vectors can be built and securely evaluated using general secure multi-party
circuit evaluation protocols. However, in data mining, the domain of the items
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are usually very large, potentially infinite. This problem can be overcome using
approaches based on commutative encryption [20].

13.4 Privacy-preserving Distributed Data Mining on
Horizontally Partitioned Data

In this section, we will give an overview of how different sub-protocols
described in section 13.3 could be used to create various privacy-preserving
distributed data mining algorithms on horizontally partitioned data (PPDDM).
In each of the discussed PPDDM algorithms general data mining functionality
is reduced to a computation of secure sub-protocols. Figure 13.1 shows the
correspondence between algorithms and constituent secure sub-protocols.

In all the algorithms described below, we assume that the data is horizon-
tally partitioned. This assumption implies that different sites collect the same
set of information about different entities. For example, different credit card
companies may collect credit card transactions of different individuals. In rela-
tional terms, with horizontal partitioning, the relation to be mined is the union
of the relations at the sites. Also, at the end of this section, we briefly discuss
the relationship between the privacy-preserving algorithms developed for hor-
izontally and vertically partitioned data.

•Secure Sum

•Secure Comparison

•Secure Dot Product

•Secure Union

•Secure Logarithm

•Secure Poly. Evaluation

•Association Rule Mining

•Decision Trees

•EM Clustering

•K-NN Classification

•Naïve Bayes Classifier

•Support Vector Machine

Data Mining on Horizontally
Partitioned DataSpecific Secure Tools

Figure 13.1. Relationship between Secure Sub-protocols and Privacy Preserving Distributed
Data Mining on Horizontally Partitioned Data
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ID3 Decision Tree Mining

In the first work on privacy-preserving distributed data mining on horizon-
tally partitioned data [25], the goal is to securely build an ID3 decision tree
where the training set is horizontally distributed between two parties. The basic
idea is that finding the attribute that maximizes information gain is equivalent
to finding the attribute that minimizes the conditional entropy. The conditional
entropy for an attribute for two parties can be written as a sum of the expression
of the form (v1 + v2)× log(v1 + v2). The authors use the secure log algorithm,
secure polynomial evaluation, and secure comparison sub-protocols to securely
calculate the expression (v1 + v2) × log(v1 + v2) and show how to use this
function for building the ID3 securely.

Association Rule Mining

The goal of privacy-preserving association rule mining is to compute rules
of the form X ⇒ Y (e.g Diaper implies Beer) that has a global support and
confidence over some certain threshold. It is proven in [20] that this could
be achieved using secure set union, secure summation and secure comparison
sub-protocols.

The algorithm described in [20] has two phases. The first phase uses secure
set union to get the union of candidate association rules. In the second phase,
secure summation and secure comparison are used to filter the candidate items
that are not supported globally.

Naive Bayes Classification

The Naive Bayes classifier is a highly practical Bayesian learning method
that applies to learning tasks where each instance x is described by a conjunc-
tion of attribute values and the target function f(x) can take on any value from
some finite set C [27].

In Naive Bayes classification, in order to classify an instance represented as
a tuple of attribute values < a1, a2, . . . , an >, we need to estimate the con-
ditional probabilities P (ai|cj) for all cj ∈ C using the training set. The prior
probabilities P (cj) for all cj ∈ C also need to be fixed in some fashion (typi-
cally by simply counting the frequencies from the training set). The probabili-
ties for differing hypotheses (classes) can also be computed by normalizing the
values received for each hypothesis (class).

It is shown in [18] that computing P (ai|cj) could be securely reduced to

computing a function of the form
∑n

i=1 xi∑n
i=1 yi

where xi, yi values are known by

site i. At the same time,
∑n

i=1 xi∑n
i=1 yi

could be securely calculated using secure

summation and secure ln(x) protocol.
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k-NN Classification

k-NN classification predicts the class value of an instance using the k near-
est examples based in the training data. Various distance metrics are used to
determine the k nearest examples. [11]

In [21], a privacy preserving k-nn algorithm is suggested under the assump-
tion that the instance that needs to be classified is public. The approach given
in [21] makes use of an untrusted, non-colluding party that is not allowed to
learn anything about any of the data, but is trusted not to collude with other
parties to reveal private information.

The basic idea is that each site finds its own k-nearest neighbors, (this is
possible since the instance that needs to be classified is public and the data
is horizontally partitioned) and encrypts the class with the public key of the
site that sent the instance for classification (querying site). The parties securely
compare their k-nearest neighbors with those of all other sites – except that the
comparison gives each site a random share of the result, so no party learns the
result of the comparison. The results from all sites are combined, scrambled,
and given to the untrusted, non-colluding site. This site combines the random
shares to get the comparison result for each pair, enabling it to sort and select
the global k-nearest neighbors (but without learning the source or values of the
items). The querying site and the untrusted, non-colluding site then engage in
a protocol to find the class value.

Support Vector Machine Classification

Support Vector Machine (SVM) classification is an another important classi-
fication technique. In [34], a privacy-preserving solution for horizontally parti-
tioned case is given using secure dot product sub-protocol. The solution given
in [34] uses the observation that to build the SVM, only the kernel matrix
K is needed. To calculate the Kernel matrix K, the gram matrix G where
Gij = xi · xj is needed to be computed securely for all training instance pairs
xi, xj . Clearly Gij could be calculated using the secure dot-product protocol.

k-means and EM Clustering

Clustering is a well studied data mining technique that tries to group similar
instances in a given data set into clusters to minimize some objective function.
In k-means clustering, the goal is to partition data into k clusters. Usually, k
initial cluster centers are chosen, and then the cluster centroids are updated
using an iterative method. In [15], it is shown that k-means clustering could
be achieved on arbitrarily partitioned data using secure dot product, secure
summation and secure comparison. Similarly, in [24], secure clustering using
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the expectation maximization method is given for horizontally partitioned data
using secure summation protocol.

13.5 Comparison to Vertically Partitioned Data Model

The privacy preserving algorithms developed for vertically partitioned data
also uses the common sub-protocols discussed above. To illustrate the differ-
ence between the vertically partitioned and horizontally partitioned data model,
let us revisit the association rule mining on both data models. In both data mod-
els, to mine association rules, we need to check whether the global support of
an itemset X (e.g. the global support of an itemset that contains beer and dia-
per) is bigger than some certain threshold. In the horizontally partitioned data
model, a transaction database DB is assumed to be partitioned among n sites
(namely S1, S2, . . . , Sn) where DB = DB1 ∪DB2 ∪ · · · ∪DBn and DBi re-
sides at site Si (1 ≤ i ≤ n). The itemset X has local support count of X.supi
at site Si if X.supi of the transactions contains X. The global support count
of X is given as X.sup =

∑n
i=1X.supi. An itemset X is globally supported

if X.sup ≥ s × (
∑n

i=1 |DBi|). To check whether an itemset X is globally
supported or not, we can check the following equivalent condition:

X.sup ≥ s ∗ (
n∑
i=1

|DBi|)

n∑
i=1

X.supi ≥ s ∗ (
n∑
i=1

|DBi|)

n∑
i=1

(X.supi − s ∗ |DBi|) ≥ 0

Clearly, in the horizontally partitioned data case, we can check whether an
itemset X is globally supported or not by using a secure sum protocol that
involves at most n values (i.e. the sum of the values (X.supi − s ∗ |DBi|) for
1 ≤ i ≤ n where n is the number of sites) and a secure comparison protocol.

In the case of vertically partitioned data [31], a transaction database DB is
assumed to be partitioned among n sites where DB = DB1 �� DB2 �� · · · ��
DBn. In other words, information about each transaction is distributed among
multiple sites. In [31], it is shown that to compute whether an itemsetX is glob-
ally supported or not, we need to compute a dot product that involves all the
transactions. This means that if the original DB has m transactions, we need to
run secure dot product algorithm with vector sizesm to compute a single global
support. In practice, the total number of transactions (i.e. m) is much larger
than the total number of possible sites (i.e. n). Due to these reasons, privately
mining association rules over vertically partitioned data is much more expen-
sive then privately mining association rules over horizontally partitioned data.
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Similar phenomenon emerges in other types of privacy preserving distributed
data mining algorithms. Usually, privacy-preserving algorithms running on the
vertically partitioned data require secure dot product protocol executions over
large vectors. On the other hand, for the horizontally partitioned data, it may be
possible to aggregate local information (e.g. local support count of an itemset
in the association rule mining) for efficient distributed processing. The above
observation implies that for horizontally partitioned data, we may need to re-
strict the number of sites participating in the protocol execution for efficiency
purposes. However, for the vertically partitioned data, we may need to control
both the number of sites participating in the protocol and the total size of the
data.

13.6 Extension to Malicious Parties

Most of the work described in the previous sections deals only with semi-
honest adversaries, which are assumed to follow the prescribed protocol but
try to infer private information using the messages they receive during the
protocol. Although the semi-honest model is reasonable in some cases, it is
unrealistic to assume that adversaries will always follow the protocols exactly.
In particular, malicious adversaries could deviate arbitrarily from their pre-
scribed protocols. Secure protocols that are developed against malicious ad-
versaries require utilization of expensive techniques. Clearly, protocols that
can withstand malicious adversaries provide more security. However, there is
an obvious trade-off: protocols that are secure against malicious adversaries
are generally more expensive than those secure only against semi-honest ad-
versaries. In this section, we give a brief overview of how to make commonly
used sub-protocols secure against malicious adversaries. Again, our exposi-
tion is based on the homomorphic encryption. First, we discuss few additional
cryptographic tools needed to devise protocols secure against malicious par-
ties. Later on, we discuss how these tools could be used to improve secure dot
product protocol.

Threshold Homomorphic Encryption

From SMC literature, we know that any semi-honest protocol could be trans-
formed into a protocol that is secure against malicious adversaries [13]. Zero
Knowledge proofs are the key ingredients in such transformations. Using zero
knowledge proofs, each party could prove that it follows the prescribed proto-
col without revealing any information. For the sake of completeness, here we
describe the zero knowledge proofs needed to extend homomorphic encryption
based semi-honest sub-protocols. The implementation details of those proto-
cols for Paillier encryption can be found in [4, 3].
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Threshold Decryption (two-party case): Given the common public key
pk, the private key pr corresponding to pk is divided into two pieces
pr0 and pr1. There exists an efficient, secure protocol Dpri(Epk(a))
that outputs the random share of the decryption result si along with
the non-interactive zero knowledge proof POD(pri, Epk(a), si) show-
ing that pri is used correctly. Those shares can be combined to calculate
the decryption result. Also any single share of the private key pri cannot
be used to decrypt the ciphertext alone. In other words si does not reveal
anything about the final decryption result. We also need a special version
of a threshold decryption such that only one party learns the decryption
result. Such a protocol could be easily implemented exploiting the fact
that for any given Epk(a), the party that needs to learn the decryption re-
sult could generate Epk(r1) and then both parties could jointly decrypt
Epk(a) +h Epk(r1). Since only one party knows r1, only that party can
learn the correct decryption result.

Proving that you know a plaintext: A party Pi can compute the zero
knowledge proof POK(ea) if he knows an element a in the domain of
valid plaintexts such that Dpr(ea) = a.

Proving that multiplication is correct: Assume that party Pi is given
an encryption Epk(a), chooses a constant c, and calculates Epk(a.c).
Later on, Pi can give zero knowledge proof POMC(ea, ec, ea.c) such
that Dpr(ea) = Dpr(a) and Dpr(ea.c) = Dpr(ec).Dpr(ea).

Converting Secure Dot protocol in the Semi-Honest Model to Malicious
Model. If we look at the dot product protocol in the semi-honest model
carefully, we need to make sure that the Bob does the multiplications correctly
and all the encryptions sent to Alice are valid. These could be easily achieved
using the zero knowledge protocols described above. Alice sends the encrypted
values along with the associated proofs of correct encryption to Bob. For each
multiplication, Bob generates the zero knowledge proof of correct multiplica-
tion and sends those to Alice. Later on, Alice can check those proofs to make
sure that the dot product was calculated correctly. Such a generic transforma-
tion (i.e. using zero knowledge proofs) could be applied for other sub-protocols
as well.

In some cases, generic transformation can further be improved in terms of
efficiency by specializing them in the malicious model. As an example,in [17],
the authors provide a more efficient algorithm for secure dot product in the
malicious model.
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13.7 Limitations of the Cryptographic Techniques Used
in Privacy-Preserving Distributed Data Mining

Privacy is not free. Especially, in the case of privacy preserving distributed
data mining, we need to use expensive cryptographic operations. Further more,
protocols that are secure against malicious parties are even more expensive.
These results indicate that we need to carefully set the parameters used in pri-
vacy preserving distributed data mining protocols. 1 For example, if we set the
support threshold for association rules too low, this may cause an explosion in
the number of locally supported itemsets, which in return, require many ex-
pensive cryptographic operations during secure set union phase. Similarly, for
building Naive Bayes models, we need calculate the occurrence probability of
each attribute value given the class attribute. Therefore, using attributes with
large number of discrete values may require much higher computation times.

Although privacy preserving distributed data mining algorithms are devel-
oped to reveal nothing other than the final result, not revealing anything could
be an overkill in some situations. For example, in the privacy-preserving as-
sociation rule mining protocol, we need to run one secure summation and one
secure comparison to securely check whether an itemset is globally supported
or not. If revealing the total support count of an itemset is not a privacy threat,
then we may not need to execute the secure comparison protocol. Therefore,
the privacy requirements should be considered carefully before executing the
privacy preserving distributed data mining protocols.

Compared to noise addition methods used in privacy-preserving data min-
ing, cryptographic techniques for privacy-preserving distributed data mining
do not allow easy trade-off between privacy and accuracy. For instance, in the
noise addition techniques, variance of the noise could be adjusted to increase
privacy while potentially lowering the result accuracy. In contrast, by adjust-
ing the key sizes used in the cryptographic protocols, we can trade off between
privacy and efficiency. As a result, new approaches are needed for privacy-
preserving distributed data mining to trade off between privacy and accuracy
systematically. One way to satisfy this goal is to introduce new “approximate
privacy-preserving distributed data mining” protocols that can cheaply approx-
imate the required data mining result, and allow trades-off between accuracy
of the approximation versus efficiency. We believe that the work of Feigenbau
et al. [7] can provide a good starting point in that direction.

Another limitation with current privacy-preserving data mining protocols is
that each party is only assumed to be either honest, semi-honest or malicious.
We believe that there are many real-world scenarios where parties participating

1As discussed in Section 13.5, for the vertically partitioned data, we need to also carefully choose the
total data used for privacy preserving data mining
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in the protocols are “rational”. In other words, the parties are willing to share
their data to achieve some certain gain and they will cheat only if cheating in-
creases their gain. Such rational adversary assumption could potentially affect
the resulting privacy-preserving distributed data mining protocols. For exam-
ple, in [16], it is shown that if the participating parties are rational, we can
achieve significant cost reductions in the malicious model. Clearly, further
research is needed to explore the effect of rational behavior in privacy pre-
serving distributed data mining.

Finally, all the tools and techniques discussed until this point do not consider
the privacy effect of the data mining results. In the next section, we will explore
this issue in more details.

13.8 Privacy Issues Related to Data Mining Results

In the previous sections, we discussed provably secure distributed data min-
ing protocols that reveal nothing but the resulting data mining model. This
work still leaves a privacy question open: Do the resulting data mining models
inherently violate privacy? This question is important because the full impact
of privacy-preserving data mining will only be realized when we can guarantee
that the resulting models do not violate privacy as well.

Here, in this section, we give an overview of the model developed in [22]
that presents a start on methods and metrics for evaluating the privacy impact
of data mining models. Although the methods discussed in [22] provide results
only for classification, these results give a good cross-section of what needs to
be done, and a demonstration of techniques to analyze the privacy impact.

To make the privacy implications of data mining results clear, consider the
following “medical diagnosis” scenario. Suppose we want to create a “medical
diagnosis” model for public use: a classifier that predicts the likelihood of an
individual getting a terminal illness. Most individuals would consider the clas-
sifier output to be sensitive – for example, when applying for life insurance.
The classifier takes some public information (age, address, cause of death of
ancestors), together with some private information (eating habits, lifestyle),
and gives a probability that the individual will contract the disease at a young
age. Since the classifier requires some information that the insurer is presumed
not to know, can we state that the classifier does not violate privacy?

The answer is not as simple as it seems. Since the classifier uses some public
information as input, it would appear that the insurer could improve an estimate
of the disease probability by repeatedly probing the classifier with the known
public information and “guesses” the unknown information. At first glance,
this appears to be a privacy violation. Surprisingly, given reasonable assump-
tions on the external knowledge available to an adversary, it can be proven that
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the adversary learns nothing new [22]. To analyze similar cases, in [22], the
authors categorize the data by into three classes:

Public Data:(P ) This data is accessible to everyone, including the ad-
versary.

Private/Sensitive Data:(S) It is assumed that this kind of data must be
protected: The values should remain unknown to the adversary.

Unknown Data:(U ) This is the data that is not known to the adversary,
and is not inherently sensitive. However, before disclosing this data to an
adversary (or enabling an adversary to estimate it, such as by publishing
a data mining model) we must show that it does not help the adversary
to discover sensitive data.

Later on, the authors analyze the cases where giving a classifier to an adver-
sary could violate privacy. The most obvious way a classifier can compromise
privacy is by taking Public data and predicting Sensitive values. However, it
turns out that there are many other ways a classifier can be misused to violate
privacy. In [22], the authors have analyzed the following cases:

1 P → S: Classifier that produces sensitive data given public data.

2 PU → S: Classifier taking public and unknown data into sensitive data.

3 PS → P : Classifier taking public and sensitive data into public data.

4 Assuming that the adversary has access to Sensitive data for some indi-
viduals, what is the effect on privacy of giving the following classifiers
to an adversary?

(a) P → S: Can the adversary do better with such a classifier because
of his/her background knowledge?

(b) P → U : Can giving the adversary a predictor for Unknown data
improve its ability to build a classifier for Sensitive data?

The long list of possible privacy violations due to data mining results given
above indicates that we need to be really careful in revealing data mining re-
sults. Recently, in [10], the authors gave a new decision tree learning algorithm
which guarantees that the data mining result does not violate the k-anonymity
of the individuals represented in the training data.Although, current work in
this area resulted in some interesting results, we believe that more research is
needed to understand the privacy implications of data mining results.
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13.9 Conclusion

This chapter presents a survey of efficient solutions for many privacy pre-
serving data mining tasks on horizontally partitioned data. We show that many
privacy preserving distributed data mining protocols on horizontally parti-
tioned data can be efficiently implemented by securely reducing them to few
basic secure building blocks. Also we give an overview of some of the initial
solutions on how to use the data mining results without violating privacy.

We believe that the need for mining of data where access is restricted due to
privacy concerns will increase. Examples include knowledge discovery among
intelligence services of different countries and collaboration among corpora-
tions without revealing trade secrets. Even within a single multi-national com-
pany, privacy laws in different jurisdictions may prevent sharing individual
data. This increasing need for privacy preserving data mining techniques will
require flexible and efficient solutions that could be tailored for individual pri-
vacy needs for different distributed data mining tasks. Current solutions do not
allow users to trade off between efficiency, accuracy, and privacy easily. We
believe that more flexible and more efficient solutions are needed for future
wide-scale adoption of the privacy preserving data mining techniques.
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Abstract The goal of data mining is to extract or “mine” knowledge from large amounts
of data. However, data is often collected by several different sites. Privacy, legal
and commercial concerns restrict centralized access to this data, thus derailing
data mining projects. Recently, there has been growing focus on finding solu-
tions to this problem. Several algorithms have been proposed that do distributed
knowledge discovery, while providing guarantees on the non-disclosure of data.

Vertical partitioning of data is an important data distribution model often
found in real life. Vertical partitioning or heterogeneous distribution implies that
different features of the same set of data are collected by different sites. In this
chapter we survey some of the methods developed in the literature to mine verti-
cally partitioned data without violating privacy and discuss challenges and com-
plexities specific to vertical partitioning.

Keywords: Vertically partitioned data, privacy-preserving data mining.

14.1 Introduction

Today, the collection of data is ubiquitous. With the rapid increase in com-
puting, storage and networking resources, data is not only collected and stored
but also analyzed. Indeed, data is often anonymized and released for public
use. However, this brings the problem of privacy into sharp focus. Our personal
data is supposed to be private. However, as several high profile infractions have
shown, this is not really the case.

This creates a serious problem since it means that data really cannot be
shared without appropriate security. One possibility is to only use local data
and not worry about integrating or using global data. While this would be
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Table 14.1. The Weather Dataset
outlook temperature humidity windy play
sunny hot high false no
sunny hot high true no

overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes

overcast mild high true yes
overcast hot normal false yes

rainy mild high true no

perfect from the security standpoint, it would not be very useful. Therefore,
the key challenge is how to use data without really having complete access to
it? While this may sound counter-intuitive, advances in cryptography show that
it is possible. The challenge is to do this in an efficient manner.

In general data can be distributed in an arbitrary fashion. This means that
different parties may own partial information about different sets of entities.
Table 14.1 shows the famous weather dataset consisting of 14 items and 5
features. Tables 14.2(a)-14.2(b) show an arbitrary partitioning of the dataset
between 2 parties. While this is possible in general, in practice, such arbitrary
partitioning rarely happens. Two special cases of arbitrary partitioning – hor-
izontal partitioning of data and vertical partitioning of data are a lot likelier.
Horizontal partitioning of data means that different sites collect the same fea-
tures of information for different entities. We have already seen in [1] how
privacy-preserving data mining is done over horizontally partitioned data.

Vertically partitioned data means that different sites collect different features
of data for the same set of entities. Integrating the local datasets gives the global
dataset. Tables 14.3(a) and 14.3(b) show a vertical partitioning of the dataset
between 2 parties. This happens in many real life situations. For example, con-
sider a medical research study which wants to compare medical outcomes of
different treatment methods of a particular disease. (E.g., to answer the ques-
tion “will this treatment for this patient be successful or not?”) The insurance
companies must not disclose individual patient data without permission [13],
and details of patient treatment plans are similarly protected data held by hos-
pitals. Similar constraints arise in many applications; European Community
legal restrictions apply to disclosure of any individual data[9].
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Table 14.2. Arbitrary partitioning of data between 2 sites
(a) Site 1

outlook temperature humidity windy play
sunny − − false no

- hot - true no
overcast hot - - -

- mild high false -
rainy - normal - yes
rainy - - true -

- - normal - yes
- mild - - no

sunny cool - - -
rainy - - false -

- - normal true -
overcast - - true yes

- hot normal - yes
rainy - high true no

(b) Site 2

outlook temperature humidity windy play
- hot high - -

sunny - high - -
- hot - false yes

rainy - - - yes
- cool - false -
- cool normal - no

overcast cool - true -
sunny - high false -

- - normal false yes
- mild normal - yes

sunny mild - - yes
- mild high - -

overcast - - false -
- mild - - -

In general, with vertically partitioned data, more data significantly improves
the quality of the models built from the dataset. Overall, the data analysis re-
sults are significantly more real and useful. While this is also the case with
horizontally partitioned data (more data is always good), but it has a more crit-
ical impact with vertically partitioned data. This is because data from different
parties give significantly different additional information about the entities. For
example, consider Figure 14.1 that shows points plotted in a two dimensional
space along with their projections on the X and Y axis. Assume that the data
is vertically partitioned between two parties (one having the X-coordinate for
each point, while the other has the Y-coordinate for each point). Suppose we
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Table 14.3. Vertical partitioning of data between 2 sites
(a) Site 1

outlook temperature
sunny hot
sunny hot

overcast hot
rainy mild
rainy cool
rainy cool

overcast cool
sunny mild
sunny cool
rainy mild
sunny mild

overcast mild
overcast hot

rainy mild

(b) Site 2

humidity windy play
high false no
high true no
high false yes
high false yes

normal false yes
normal true no
normal true yes

high false no
normal false yes
normal false yes
normal true yes

high true yes
normal false yes

high true no
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Figure 14.1. Two dimensional problem that cannot be decomposed into two one-dimensional
problems

wanted to cluster the points. From the two dimensional plot it is obvious that
there are at least three distinct clusters approximately centered around (2,4),
(7,2.5), and (5.5,10.2). However neither site can figure this out on their own.
From the Y-axis, it looks like two clusters centered at approximately 3.8, and
10.5. From the X-axis, the two clusters would be centered around 2, and 6. In
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fact, it is unclear if there should be only two clusters or several. The situation
is equally bad if we want to identify outliers or anomalies. Again, looking at
the two dimensional plot, it is obvious that the points at (1.5,10) and (4.5,4)
are outliers. However, on the basis of the one-dimensional projections, neither
point is identified as an outlier on either the X-axis or the Y-axis. Thus, we
clearly get incorrect results with partial data. The situation only worsens with
higher dimensional data.

The complexity of privacy-preserving data mining is significantly increased
due to the vertical partitioning of data. In contrast to horizontal partitioning
of data, vertical partitioning of data raises several unique questions with re-
spect to the way data is processed, results are obtained and shared. We now
survey different types of privacy-preserving data mining algorithms following
the main data mining tasks of association rule mining, classification, clustering
and outlier detection. We briefly survey the first three while going into more
detail on the fourth. Thus, outlier detection serves as the expository example of
privacy-preserving data mining over vertically partitioned data. In each case,
we also examine some of the complications specific to vertical partitioning of
data and some of the inherent challenges.

14.2 Classification

Classification refers to the problem of categorizing observations into
classes. Predictive modeling uses samples of data for which the class is known
to generate a model for classifying new observations. One issue with classi-
fication for vertically partitioned data is whether the class attribute is shared
by all of the parties or is local to only one of them. Having the class attribute
known to all of the parties simplifies the problem. However, that may not al-
ways be the case. If the class attribute is known to only one party, any process
that needs to count the number of entities having a particular value for an at-
tribute and a particular class will have to be secure. This means that computing
the information gain, etc. needs to be completely secure.

Another issue with classification is how is the classification model shared
between parties? One possibility is to let all of the parties know the devel-
oped model – but often this may reveal too much information. The completely
secure alternative is to keep the created model completely split between the
parties. However, this may have a significant impact on the classification time.
Other alternatives are also possible with differing tradeoffs between security
and cost. We will now see how these have affected the proposed solutions for
classification.
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14.2.1 Naı̈ve Bayes Classification

Naı̈ve Bayes is a simple but highly effective classifier. This combination
of simplicity and effectiveness has lead to its use as a baseline standard by
which other classifiers are measured. Vaidya and Clifton [27] present a privacy-
preserving solution for vertically partitioned data. The Naı̈ve Bayes classifier
applies to learning tasks where each instance x is described by a conjunction of
attribute values and the target function f(x) can take on any value from some
finite set C .

The Bayesian approach to classifying an new instance is to assign the most
probable target value, cMAP , given the attribute values< a1, a2, . . . , an > that
describe the instance.

cMAP = argmax
cj∈C

(P (cj |a1, a2, . . . , an))

The Naı̈ve Bayes classifier makes the simplifying assumption that all at-
tributes are independent. Therefore,

cNB = argmax
cj∈C

(
P (cj)

∏
i

P (ai|cj)
)

(14.1)

where cNB denotes the target value output by the Naı̈ve Bayes classifier.
Therefore, the key problem is to compute these conditional probabilities.

When considering a secure solution, an important question is the location of
the class attribute. There are two possibilities: the class may be known to all
parties or it may be private to some party. This impacts the way the model is
built and the way evaluation of a new instance is done. Both cases are realistic
and model different situations. In the first case, each party can easily estimate
all the required counts for nominal attributes and means and variances for nu-
meric attributes locally, causing no privacy breaches. Prediction is also simple
– each party can independently estimate the probabilities. All parties then se-
curely multiply the probabilities and compare to obtain the predicted class. As
such, we do not further discuss this. The other case is more challenging and is
discussed below.

The method in [27] is fully secure in the sense that even the model built
is split between the participants. Thus, none of the participants knows the ac-
tual model parameters. The only information revealed is when a new instance
is classified – the class of the instance. The downside to this, of course, the
performance drop. A secure protocol has to be run for every classification. If
this performance penalty has to be avoided, the global model must be made
available to all of the parties.

The way to compute the model parameters is somewhat different for nomi-
nal and numeric attributes. For a nominal attribute, the conditional probability
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is given simply by the ratio of number of instances having that attribute value
and that class to the total number of instances having that class. If we encode
presence of the attribute value (viz. class value) in a instance as 1, and absence
as 0, we create boolean vectors such that the scalar product of the vectors gives
the correct result. The scalar product of [11] also randomly splits the results
between the parties. Thus, the numerator and denominator of the ratio are split
between the parties. Now a secure division protocol must be run to compute
splits of the conditional probability. More details can be found in [27].

For a numeric attribute, the process is more complicated. The necessary
parameters are the mean µ and variance σ2 for each class. Again, the necessary
information is split between all of the parties. To compute the mean, each party
needs to sum the attribute values for all appropriate instances having the same
class value. These local sums are added together and the global sum is divided
by the total number of instances having that same class to get the mean for
that class value. This can be done, once again, by carefully constructing the
vectors for each class and using the secure scalar product protocol. The party
owning the class attribute builds a vector of 1/ni and 0 depending on whether
the training entity is in the class or not. The mean for the class is the scalar
product of this vector with the projection of the data onto the attribute. The
scalar product will give shares of the mean. Computing the variance is more
complicated as it requires summing the square of the distances between values
and the mean, without revealing values to the party owning the class attribute or
the classes to the party owning the data attribute or the means to either. Thus, to
compute the variance σ2

y , it is necessary to subtract the appropriate mean from
each value, square the difference and sum all such values together. Finally the
global sum needs to be divided by the global number of instances having the
same class y to give the required variance σ2

y . Homomorphic encryption is
used to get the differences, and secure square computation protocol is used to
get shares of the square. Finally the scalar product is used as earlier to get the
variance.

To evaluate a new instance, the secure ln protocol of [20] is used to get
shares of the conditional probability for each attribute. Finally a secure addition
and comparison circuit is used to determine the class label of the maximal
class. More details can be found in [27].

14.2.2 Bayesian Network Structure Learning

Bayesian Networks relax the attribute independence assumption of the
Naı̈ve Bayes classifier, capturing situations where dependencies between at-
tributes affect the class. A Bayesian Network is a graphical model; the vertices
correspond to attributes, and the edges to probabilistic relationships between
the attributes (Naı̈ve Bayes is thus a Bayesian Network with no edges.) The
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probability of a given class is similar to Equation 14.1, except that the probabil-
ities associated with an attribute are conditional on the parents of that attribute
in the network.

Wright and Yang [31] propose a privacy-preserving protocol for learning
the Bayesian network structure for vertically partitioned data. This protocol is
limited two parties. The basic approach is to emulate the K2 algorithm [6],
which starts with a graph with no edges, then chooses a node and greedily
adds the “parent” edge to that node that most improves a score for the network,
stopping when a threshold for number of parents is reached.

Since the structure of the final network is presumed to be part of the outcome
(and thus not a privacy concern), the only issue is to determine which attribute
most improves the score. This is similar to the decision tree induction protocol
presented below ; the difference is in the score function. Instead of information
gain K2 algorithm uses:

f(i, πi) =
qi∏
j=1

di − 1)!
αij + di − 1)!

di∏
k=1

αijk! (14.2)

(For full details including the notation, please see [31]; our purpose here is not
to give the full algorithm but to show the novel ideas with respect to privacy-
preserving data mining.)

The privacy-preserving solution works by first modifying the scoring func-
tion (taking the natural log of f(i, πi)). While this changes the output, it doesn’t
affect the order; since all that matters is determining which attribute gives the
highest score, the actual value is unimportant and the resulting network is un-
changed. This same technique – transforming scoring functions in ways that
do not alter the final result – has proven beneficial in designing other privacy-
preserving data mining algorithms.

Note that by pushing the logarithm into Equation 14.2, the products turn into
summations. Moreover, taking a page from [21] they approximate a difficult to
compute value (in this case, Stirling’s approximation for factorial.) Ignoring
small factors in the approximation, the formula reduces to a sum of factors,
where each factor is of the form lnx or x lnx (except for a final factor based
on the number of possible values for each attribute, which they consider public
knowledge.) This now reduces to secure summation and the lnx and x lnx
protocols of [21].

14.2.3 Decision Tree Classification

A solution for constructing ID3 on vertically partitioned data was proposed
by Du and Zhan[8]. Their work assumes that the data is vertically partitioned
between two parties. The class of the training data is assumed to be shared,
but some the attributes are private. Thus most of the steps of the ID3 algorithm
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can be evaluated locally. The main problem is computing which site has the
best attribute to split on – each can compute the gain of their own attributes
without reference to the other site. [29] propose a solution that solves a more
general problem – constructing an ID3 decision tree when the training data
is vertically partitioned between many parties (≥ 2) and the class attribute is
known to only a single party. Since each party has knowledge of only some of
the attributes, knowing the structure of the tree (especially, knowledge of an
unknown attribute and its breakpoints for testing) constitutes a violation of the
privacy of the individual parties.

Ideally, to ensure zero leakage of extra information, even the structure of
the tree should be hidden, with an oblivious protocol for classifying a new
instance. However, the cost associated with this is typically unacceptable. A
compromise is to hide the attribute tests used in the tree while still revealing
the basic structure of the tree. A distributed protocol can then be run to to
evaluate a new instance. As in Naı̈ve Bayes, the drawback of this is that all
parties have to be online in order to classify any new instance.

Before we go ahead, we briefly review the ID3 algorithm. The ID3 algo-
rithm is a recursive partitioning algorithm. At start, all the training examples
are at the root. Examples are then partitioned recursively based on selected
attributes. ID3 is a greedy algorithm – in each case the attribute with the high-
est information gain is selected as the partitioning attribute. Partitioning stops
either when all samples for a given node belong to the same class, there are
no remaining attributes, or there are no samples left. In order to construct a
cloaked decision tree, the parties must together figure out all how to solve all
of these problems in a privacy-preserving way.

Determination of the majority class for a node requires a secure protocol
since only one site knows the class. First, each site determines which of its
transactions might reach that node of the tree. The intersection of these sets
with the transactions in a particular class gives the number of transactions that
reach that point in the tree having that particular class. Once this is done for all
classes, the class site can now determine the distribution and majority class, and
return a (leaf) node identifier. The identifier is used to map to the distribution
at the time of classification.

The intersection process itself needs to be secure – this can be done by
using a protocol for securely determining the cardinality of set intersection.
Many protocols for doing so are known [30, 10, 2]. To formalize the whole
process, the notion of a Constraint Set is introduced. As the tree is being built,
each party i keeps track of the values of its attributes used to reach that point
in the tree in a filter Constraintsi. Initially, this is composed of all don’t care
values (‘?’). However, when an attribute Aij at site i is used to partition, entry
j in Constraintsi is set to the appropriate value before recursing to build
the subtree. Now, the majority class (and class distributions) are determined
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by computing for each class
⋂
i=1..k Yi, where Yk includes a constraint on the

class value.
Determining if all transactions have the same class can use the same distrib-

ution count idea described above to get the distribution counts and then check
if all transactions in that node do belong to the same class. Figuring out if all
attributes are used up or all transactions are done is easily done using the se-
cure sum protocol. The main challenge lies in finding the partitioning attribute
– i.e., the attribute with the largest information gain. [29] show that finding the
information gain of a attribute can be done simply by counting transactions. If
the number of transactions reaching a node can be determined, the number in
each class c, and the same two after partitioning with each possible attribute
value a ∈ A, the gain due to A can be computed. The constraint set is once
again used to apply appropriate filters to get the correct count of transactions.

Finding the best attribute is a simple matter of finding out the information
gain due to each attribute and selecting the best one. A naı̈ve efficient imple-
mentation would leak the information gain due to each attribute. If even this
minimal information should not be leaked, the information gain can be split
between the parties, and a sequence of secure comparisons carried out to de-
termine the best attribute. Thus, the entire ID3 tree can be built in a secure
manner using these sub-protocols.

Classifying a new instance again requires a distributed protocol. Given that
the structure of the tree is known, the root site first makes a decision based on
its data. It then looks at the node this decision leads to and tells the site respon-
sible for that node the node and the instance to be classified. This continues
until a leaf is reached, and which point the site that originally held the class
value knows the predicted class of the new instance. While this does lead to
some disclosure of information (knowing the path followed, a site can say if
instances have the same values for data not known to that site), specific values
need not be disclosed.

14.3 Clustering

One question with clustering is how are the clusters shared? Specifically,
is only cluster membership shared or is more information about the clusters
shared, and if so, how? Based on cluster membership, each party can locally
compute its share of the cluster means. However, are the complete cluster
means shared with all of the parties? In this case other parties could easily
learn a lot of information about the other attributes.

[26] proposed the first method for clustering over vertically partitioned
data – a privacy-preserving protocol perform do k-means clustering. Though
all parties know the final assignment of data points to clusters, they retain only
partial information for each cluster. The cluster centers µi are assumed to be



Privacy-Preserving Methods across Vertically Partitioned Data 347

semiprivate information, i.e., each site can learn only the components of µ that
correspond to the attributes it holds. Thus, all information about a site’s at-
tributes (not just individual values) is kept private; if sharing the µ is desired,
an evaluation of privacy/secrecy concerns can be performed after the values
are known.

The basic protocol proposed closely follows the original K-means protocol.
There are two major challenges – figuring out how to assign points to clusters
in each iteration, and figuring out when to stop. Since the means at each itera-
tion are not considered private information, figuring out when to stop is quite
simple. Each party can locally compute the difference between their shares of
the mean, and finally check if the total difference is less than the threshold.
Since all arithmetic takes place in a field, the threshold evaluation at the end
is somewhat non-obvious. Intervals are compared rather than the actual num-
bers. Further details can be found in [26]. The assignment of points to clusters
in each iteration is carried out through a secure protocol utilizing three key
ideas:

1 Disguise the site components of the distance with random values that
cancel out when combined.

2 Compare distances so only the comparison result is learned; no party
knows the distances being compared.

3 Permute the order of clusters so the real meaning of the comparison
results is unknown.

One drawback of the Vaidya and Clifton protocol is that it is not completely
secure since intermediate results are revealed. Essentially, the intermediate
cluster assignment of data points is known to every party for each iteration,
though the final result only specifies the final clusters. However, this compro-
mise is required for efficiency. [15] propose a completely secure protocol for
arbitrarily partitioned data. Their protocol is very similar to the Vaidya and
Clifton protocol with the added complexity of splitting the intermediate clus-
ter centers. Thus, no information is leaked whatsoever.

14.4 Association Rule Mining

[25] first showed how secure association rule mining can be done for verti-
cally partitioned data by extending the apriori algorithm. Vertical partitioning
implies that an itemset could be split between multiple sites. Most steps of
the apriori algorithm can be done locally at each of the sites. The crucial step
involves finding the support count of an itemset. If the support count of an
itemset can be securely computed, one can check if the support is greater than
threshold, and decide whether the itemset is frequent. Using this, association
rules can be easily mined securely.
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The key insight of [25] is that computing the support of an itemset is exactly
the scalar product of the vectors representing the sub-itemsets with different
parties. Thus, the entire secure association rule mining problem can be reduced
to computing the scalar product of two vectors in a privacy-preserving way.
[25] also proposed an algebraic method to compute the scalar product. While
this method is not provably secure, it is quite efficient. A strong point of the
secure association rule mining protocol is that it is not tied to any specific scalar
product protocol. Indeed, there have been a number of secure scalar product
protocols proposed[7, 14, 11, 33, 24], out of which at least two are provably
secure. All of them have differing tradeoffs of security, efficiency, and utility
(some are limited to scalar products over boolean data). Any of these could
be used. [1] shows one possible secure protocol to compute the scalar product
using homomorphic encryption.

While there are now several solutions using scalar product computation,
one alternative solution needs to be mentioned. [30] provide an innovative al-
ternative solution to the association rule mining problem. There are two key
insights provided in this solution. First, if we encode the vectors as sets (with
position numbers as elements), the scalar product is the same as the size of the
intersection set. For example, assume we have vector �X = (1, 0, 0, 1, 1) and
�Y = (0, 1, 0, 1, 0). Then the scalar product �X · �Y =

∑5
i=1 xi ∗ yi. Now, the

corresponding set encodings are XS = (1, 4, 5) and Y S = (2, 4). Once can
see that the size of the intersection set |XS

⋂
Y S| = 1 is exactly the same as

the scalar product. This idea is used to compute the scalar product.
The basic idea is to use commutative encryption to encrypt all of the items

in each party’s set. Commutative encryption is an important tool used in many
cryptographic protocols. An encryption algorithm is commutative if the order
of encryption does not matter. Thus, for any two encryption keys E1 and E2,
and any message m, E1(E2(m)) = E2(E1(m)). The same property applies to de-
cryption as well – thus to decrypt a message encrypted by two keys, it is suffi-
cient to decrypt it one key at a time. The basic idea is for each source to encrypt
its data set with its keys and pass the encrypted data set to the next source. This
source again encrypts the received data using its encryption keys and passes
the encrypted data to the next source until all sources have encrypted the data.
Since we are using commutative encryption, the encrypted values of the set
items across different data sets will be equal if and only if their original values
are equal. Thus, all the intersection of the encrypted values gives the logical
AND of the vectors, and counting the size of the intersection set gives the total
number of 1s (i.e., the scalar product). The encryption prevents any party from
knowing the actual value of any local item. This scalar product method only
works for boolean vectors, but it will still work for the association rule mining
problem. This idea is also used by [2] to compute Set Union, Set Intersection,
Size of Set Union, and Size of Set Intersection. However, their work is limited
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to two parties. [10] also propose techniques using homomorphic encryption
to do private matching and set intersection for two parties which can guard
against malicious adversaries in the random oracle model as well.

While this is a good alternative, the real innovativeness lies in realizing the
fact that once all of the items are encrypted by the keys of all of the parties, all
parties can locally compute all of the frequent itemsets. This implies that the
overall cost of secure association rule mining is simply the cost of completely
encrypting all of the items. If there are k parties, n items and m transactions,
the total cost of association rule mining is O(nmk) since these will be the total
number of encryptions required (the encryption time dominates all other costs).
Note that this is independent of the number of frequent itemsets which can eas-
ily be in the tens of thousands. Thus, the protocol in [30] is extremely efficient
in the global sense and makes privacy-preserving association rule mining really
feasible.

Most of the protocols developed typically assume a semi-honest model,
where the parties involved will honestly follow the protocol but can later try to
infer additional information from whatever data they receive through the proto-
col. One result of this is that parties are not allowed to give spurious input to the
protocol. If a party is allowed to give spurious input, they can probe to deter-
mine the value of a specific item at other parties. For example, if a party gives
the input (0, . . . , 0, 1, 0, . . . , 0), the result of the scalar product (1 or 0) tells
the malicious party if the other party the transaction corresponding to the 1.
Attacks of this type can be termed probing attacks and need to be protected
against. The protocol in [30] can partially protect against such attacks.

14.5 Outlier detection

Outlier / anomaly detection is one of the most common data mining tasks
carried out in practice. Hawkins [12] defines an outlier as an observation which
deviates so much from other observations so as to arouse suspicions that it was
generated by a different mechanism. Outlier detection has been used to find
uncommon sequences in gene data, to find fradulent transactions in credit card
records, fraud discovery in mobile phones, to find intrusions from network
traffic data[3, 19], etc. Indeed even the search for terrorism involves outlier
detection – detecting previously unknown suspicious behavior is a clear out-
lier detection problem. Many of these applications also have privacy concerns,
and organizations must be careful to avoid overstepping the bounds of privacy
legislation[9].

So what does it mean to protect privacy in this context? By definition, outlier
detection means finding outliers. Thus, the output of outlier detection would be
a list of detected outliers. This is highly specific information – anomalous enti-
ties/transactions are highlighted. There is no summarization carried out. Thus,
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implicitly, no information about a true outlier should be protected/concealed.
However, no information about the other entities should be revealed. Indeed,
the process of finding outliers should not reveal any extra information. Privacy-
preserving outlier detection will ensure these concerns are balanced, allowing
us to get the benefits of outlier detection without worrying about legal or pri-
vacy concerns. However, what about false positives? i.e., what about entities
identified as outliers without really being so. While this seems problematic,
a couple of caveats exist. First, no detection technique is fool-proof and false
positives always exist. We merely reduce the privacy leakage and problems.
Secondly, technical solutions exist. All the identifiers can be eliminated to be-
gin with. The outliers detected are hand examined and if sufficient cause exists,
the anonymization is taken away and the real identity is revealed (just as it oc-
curs in real life with a court order).

While there are numerous different definitions of outliers as well as tech-
niques to find them, the first privacy-preserving outlier detection technique
developed was for distance-based outliers. The method developed by Vaidya
and Clifton[28] finds distance-based outliers without any party gaining knowl-
edge beyond learning which items are outliers. Ensuring that data is not dis-
closed maintains privacy, i.e., no privacy is lost beyond that inherently revealed
in knowing the outliers. This is the absolute minimum information that must
be revealed for privacy-preserving outlier detection over vertically partitioned
data.

Before going into specifics, we first briefly review the notion of distance-
based outliers. Knorr and Ng [17] define the notion of a Distance Based outlier
as follows: An object O in a dataset T is a DB(p,dt)-outlier if at least fraction p
of the objects in T lie at distance greater than dt from O. Other distance based
outlier techniques also exist[18, 22]. The advantages of distance based outliers
are that no explicit distribution needs to be defined to determine unusualness,
and that it can be applied to any feature space for which we can define a dis-
tance measure. Euclidean distance is the standard, although the algorithms are
easily extended to general Minkowski distances. There are other non distance
based techniques for finding outliers as well as significant work in statistics
[4], but there is little work on finding them in a privacy-preserving fashion –
thus, this is a rich area for future work.

For Euclidean distance, for vertically partitioned data, the distance dt is
fixed by the local parties deciding on the local distances dti (i.e., dt =∑k

i=1 dti), since no site globally knows all of the attributes. An object X is
an outlier if at least p% of the other objects lie at a distance greater than dt.

The approach of [28] duplicates the results of the outlier detection algorithm
of [17]. The idea is that an object O is an outlier if more than a percentage p of
the objects in the data set are farther than distance dt from O. The basic idea
is that parties compute the portion of the answer they know, then engage in a
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secure sum to compute the total distance. The key is that this total is (randomly)
split between sites, so nobody knows the actual distance. A secure protocol is
used to determine if the actual distance between any two points exceeds the
threshold; again the comparison results are randomly split such that summing
the splits (over a closed field) results in a 1 if the distance exceeds the threshold,
or a 0 otherwise.

For a given object O, each site can now sum all of its shares of comparison
results (again over the closed field). When added to the sum of shares from
other sites, the result is the correct count; all that remains is to compare it with
the percentage threshold p. This addition/comparison is also done with a secure
protocol, revealing only the result: if O is an outlier. The pairwise comparison
of all points may seem excessive, but early termination could disclose informa-
tion about relative positions of points. The asymptotic complexity still equals
that of [17].

Note that a secure solution requires that all operations are carried out mod-
ulo some field. For the algorithms, the field D is used for distances, and F is
used for counts of the number of entities. The field F must be over twice the
number of objects. Limits on D are based on maximum distances; details on
the size are given with each algorithm.

We now present the actual algorithm, followed by the complete proof of
security for the algorithm. This is especially instructive for readers wishing to
develop their own algorithms since the proof of security forms a significantly
important component necessary for trust in the overall solution. A discussion
of the computational and communication complexity of the algorithm rounds
off this section, and affords the opportunity to discuss avenues for future work
in this area.

14.5.1 Algorithm

For each object i, the protocol iterates over every other object j. Since each
party owns some of the attributes, each party can compute the distance be-
tween two objects for those attributes. Thus, each party can compute a share
of the pairwise distance locally; the sum of these shares is the total distance.
However, revealing the distance still reveals too much information, therefore
a secure protocol is used to get shares of the pairwise comparison of distance
and threshold. The key to this protocol is that the 1 or 0 is actually two shares
r′q and r′s returned to the two parties, such that r′q + r′s = 1 (or 0) (mod F ).
Looking at only one share, neither party can learn anything.

Once all points have been compared, the parties individually sum their
shares. Since the shares add to 1 for distances exceeding the distance threshold,
and 0 otherwise, the total sum (mod F ) gives the number of points for which
the distance exceeds the threshold. Explicit computation of this sum would
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still reveal the actual number of points distant. So the parties do not actually
compute this sum; instead all parties pass their (random) shares to a designate
to add, and the designated party and the party holding the point engage in a
secure protocol that reveals only if the sum of the shares exceeds p%. Thus,
the only result of the protocol is to reveal whether the point is an outlier or not.

An interesting side effect of this algorithm is that the parties need not reveal
any information about the attributes they hold, or even the number of attributes.
Each party locally determines the distance threshold for its attributes (or more
precisely, the share of the overall threshold for its attributes). Instead of com-
puting the local pairwise distance, each party computes the difference between
the local pairwise distance and the local threshold. If the sum of these differ-
ences is greater than 0, the pairwise distance exceeds the threshold.

Algorithm 2 gives the full details. In steps 6-10, the sites sum their local dis-
tances (actually the difference between the local distance and the local thresh-
old). The random x added by P1 masks the distance from each party. In steps
11-13, Parties P1 and Pk get shares of the pairwise comparison result. The
comparison is a test if the sum is greater than 0 (since the threshold has al-
ready been subtracted.) These two parties keep a running sum of their shares.
At the end, in step 15 these shares are added and compared with the percentage
threshold.

At several stages in the algorithm, a protocol is required to securely compare
the sum of two numbers, with the output split between the parties holding
those numbers. This can be accomplished using the generic circuit evaluation
technique first proposed by Yao[32].

14.5.2 Security Analysis

The protocol described above can be proven to be secure using the proof
techniques of Secure Multiparty Computation. The idea is that since what a
party sees during the protocol (its shares) are randomly chosen from a uniform
distribution over a field, it learns nothing in isolation. (Of course, collusion
with other parties could reveal information, since the joint distribution of the
shares is not random). The idea of the proof is based on a simulation argument:
If we can define a simulator that uses the algorithm output and a party’s own
data to simulate the messages seen by a party during a real execution of the
protocol, then the real execution isn’t giving away any new information (as
long as the simulator runs in polynomial time).

Since all parties know the number (and identity) of objects in O, they can
set up the loops; the simulator just runs the algorithm to generate most of the
simulation. The only communication is at lines 8, 11, 15, and 16.
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Protocol 2 Finding DB(p,D)-outliers
Require: k parties, P1, . . . , Pk; each holding a subset of the attributes for all

objects O.
Require: dtr : local distance threshold for Pr (e.g., dt2 +mr/m).
Require: Fields D larger than twice the maximum distance value (e.g., for

Euclidean this is actually Distance2), F larger than |O|
1: for all objects oi ∈ O do
2: m′

1 ← m′
k ← 0 (mod F )

3: for all objects oj ∈ O, oj �= oi do
4: P1: Randomly choose a number x from a uniform distribution over

the field D
5: P1: x′ ← x
6: for r ← 1, . . . , k − 1 do
7: At Pr: x′ ← x′ +Distancer(oi, oj)− dtr (mod D) {Distancer

is local distance at Pr}
8: Pr sends x′ to Pr+1

9: end for
10: At Pk: x′ ← x′ +Distancek(oi, oj)− dtk (mod D)
11: P1 and Pk engage in the secure comparison protocol to get m1 and

mk respectively such that the following condition holds: if 0 < x′ +
(−x) (mod D) < |D|/2, then m1 + mk = 1 (mod F ), otherwise
m1 +mk = 0 (mod F )

12: At P1: m′
1 ← m′

1 +m1 (mod F )
13: At Pk: m′

k ← m′
k +mk (mod F )

14: end for
15: P1 and Pk engage in the secure comparison protocol to get temp1 and

tempk respectively such that the following condition holds: if m′
1 +m′

k
(mod F ) > |O| ∗ p%, then temp1 + tempk ← 1 (oi is an outlier),
otherwise temp1 + tempk ← 0

16: P1 and Pk send temp1 and tempk to the party authorized to learn the
result; if temp1 + tempk = 1 then oi is an outlier.

17: end for

Step 8: Each party Ps sees x′ = x +
∑s−1

r=1Distancer(oi, oj), where
x is the random value chosen by P1. Pr(x′ = y) = Pr(x +∑s−1

r=1Distancer(oi, oj) = y) = Pr(x = y −
∑s−1

r=0Distancer(oi, oj)) =
1
|D| . Thus we can simulate the value received by choosing a random value from
a uniform distribution over D.

Steps 11 and 15: Each step is a secure comparison. Assuming this is secure,
the messages in this step can be easily simulated.
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Step 16: This is the final result, and can be easily simulated. temp1 is sim-
ulated by choosing a random value, tempk = result − temp1. By the same
argument on random shares used above, the distribution of simulated values is
indistinguishable from the distribution of the shares.

The simulator clearly runs in polynomial time (the same as the algorithm).
Since each party is able to simulate the view of its execution (i.e., the proba-
bility of any particular value is the same as in a real execution with the same
inputs/results) in polynomial time, the algorithm is secure with respect to the
semi-honest SMC definitions.

Without collusion and assuming a malicious-model secure comparison, a
malicious party is unable to learn anything it could not learn from altering its
input. Step 8 is particularly sensitive to collusion, but can be improved (at cost)
by splitting the sum into shares and performing several such sums (see [16] for
more discussion of collusion-resistant secure sum).

14.5.3 Computation and Communication Analysis

In general we do not discuss the computational/communicational complex-
ity of any of the algorithms in detail. However, in this case the algorithmic
complexity raises interesting issues vis-a-vis security. Therefore we discuss it
below in detail.

Algorithm 2 suffers the drawback of having quadratic computation com-
plexity due to the nested iteration over all objects. Due to the nested iteration,
Algorithm 2 also requires O(n2) secure comparisons (step 11), where n is the
total number of objects. While operation parallelism can be used to reduce the
round complexity of communication, the key practical issue is the computa-
tional complexity of the encryption required for the secure comparison and
scalar product protocols.

This quadratic complexity is troubling since the major focus of new algo-
rithms for outlier detection has been to reduce the complexity, since n2 is
assumed to be inordinately large. However, achieving lower than quadratic
complexity is challenging – at least with the basic algorithm. Failing to com-
pare all pairs of points is likely to reveal information about the relative dis-
tances of the points that are compared. Developing protocols where such reve-
lation can be proven not to disclose information beyond that revealed by simply
knowing the outliers is a challenge. Otherwise, completely novel techniques
must be developed which do not require any pairwise comparison. When there
are three or more parties, assuming no collusion, much more efficient solutions
that reveal some information can be developed. Essentially a much more effi-
cient secure comparison can be used [5] that still reveals nothing to the third
party. While not completely secure, the privacy versus cost tradeoff may be
acceptable in some situations. An alternative (and another approach to future
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work) is demonstrating lower bounds on the complexity of fully secure outlier
detection. However, significant work is required to make any of this happen –
thus opening a rich area for future work.

[23] use very similar techniques to perform privacy-preserving nearest
neighbor search. They further show how this can be used to perform privacy-
preserving LOF outlier detection, SNN clustering and kNN classification.

14.6 Challenges and Research Directions

This chapter presents a survey of efficient solutions for many privacy pre-
serving data mining tasks on vertically partitioned data. Like horizontally par-
titioned data, it can be seen that even for vertically partitioned data, many
privacy-preserving algorithms can be efficiently implemented by combining
specific basic secure building blocks. However, inherently, the main challenge
with techniques dealing with vertically partitioned data lies with efficiency.
Unlike, horizontally partitioned data, it is very difficult to carry out much lo-
cal aggregation beforehand. For example, in a lot of the protocols seen above,
the secure scalar product is a critical component. Utilizing the [11] protocol,
a single scalar product of two vectors of length n will require n encryptions,
n modular exponentiations, n modular multiplications and 1 decryption. The
cost for the encryptions and exponentiations dominate. With the current speed
of encryption/exponentiation, it still takes a significant amount of time to carry
out a single scalar product. For example, the scalar product of two vectors of
length 1000 takes approximately 40s with 512 bit encryption and 270s with
1024 bit encryption. Since data mining is typically done over millions of trans-
actions, this cost significantly balloons up. Therefore we clearly need more ef-
ficient protocols. Indeed, very few of the protocols are actually implemented.
This definitely needs to change to ensure deployment of these algorithms into
real life. The other technical challenge lies with the adversarial model of the
protocols. Almost all of the protocols seen above assume semi-honest partici-
pants – i.e., participants that will follow the protocol exactly but may later try
to find additional information. While this is a good starting model, eventually
we need protocols that would work in the presence of malicious adversaries.

Overall, we believe that the trend towards usage of privacy-preserving algo-
rithms is on the rise. Due to increasing privacy and security concerns as well
as the need to leverage commercial assets, there is a clear need for flexible
and efficient privacy-preserving solutions that could be tailored for individual
privacy needs. Development of such flexible and efficient solutions will be in-
strumental in wide-scale adoption of this technology.
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Abstract We focus primarily on the use of additive and matrix multiplicative data pertur-
bation techniques in privacy preserving data mining (PPDM). We survey a re-
cent body of research aimed at better understanding the vulnerabilities of these
techniques. These researchers assumed the role of an attacker and developed
methods for estimating the original data from the perturbed data and any avail-
able prior knowledge. Finally, we briefly discuss research aimed at attacking
k-anonymization, another data perturbation technique in PPDM.

Keywords: Data perturbation, additive noise, matrix multiplicative noise, attack techniques,
k-anonymity.



360 Privacy-Preserving Data Mining: Models and Algorithms

15.1 Introduction

Data perturbation represents one common approach in privacy preserving
data mining (PPDM). It builds on a longer history in the areas of statisti-
cal disclosure control and statistical databases [1] where the original (private)
dataset is perturbed and the result is released for data analysis. Typically, a
“privacy/accuracy” trade-off is faced. On the one hand, perturbation must not
allow the original data records to be adequately recovered. On the other, it must
allow “patterns” in the original data to be mined. Data perturbation includes a
wide variety of techniques including (but not limited to): additive, multiplica-
tive [24], matrix multiplicative, k-anonymization [38, 41], micro-aggregation
[3, 26], categorical data perturbation [10, 45], data swapping [11], resampling
[27], data shuffling [34] (see [1, 28] for a more complete survey).

In this chapter we mostly focus on two types of data perturbation that apply
to continuous data: additive and matrix multiplicative. Additive data perturba-
tion was originally introduced in statistical disclosure control more that twenty
years ago and was further studied in the PPDM community in the last eight
years. Matrix multiplicative data perturbation were introduced only five years
ago in the PPDM community and is in its early stages of study. In order to better
understand the privacy offered by these techniques, some PPDM researchers
have assumed the role of an attacker and developed techniques for breaching
privacy by estimating the original data from the perturbed data and any avail-
able additional prior knowledge. Their work offers insight into vulnerabilities
of this type of data perturbation. We provide a detailed survey of their work in
an effort to allow the reader to observe common themes and future directions.
Moreover, due to its rapidly growing study, we also provide a brief overview
of attacks on k-anonymization.

This chapter is organized as follows. Section 15.2 describes definitions and
notation used throughout. Section 15.3 discusses additive data perturbation,
its uses and several attack techniques in detail. Section 15.4 describes matrix
multiplicative data perturbation, its uses and several attack techniques in de-
tail. Section 15.5 discusses k-anonymization and recent literature addressing
vulnerabilities of this data perturbation model. Finally, Section 15.6 concludes
the paper with a summary.

15.2 Definitions and Notation

Throughout this chapter, the original dataset is represented as an n×m, real-
valued matrix X, with each column a data record. The data owner perturbs X
to produce an n′ × m data matrix Y , which is then released to the public or
another party for analysis. The attacker uses Y and any other available infor-
mation to produce an estimation of X, denoted by X̂ . Unless otherwise stated,
we will assume that each record of the original dataset arose as an independent
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sample from an n-dimensional random vector X with unknown probability
density function (p.d.f.) (and this assumption is public knowledge). Let ΣX
denote the covariance matrix of X . We will also assume that ΣX has all dis-
tinct and non-zero eigenvalues (more details later) since, as argued in [20, pg.
27], this assumption holds in most practical situations.

Unless otherwise stated, all vectors are column-vectors. Given a matrix A,
AT denotes its transpose and A−1 denotes its inverse (provided one exists). I
denotes the identity matrix with dimensions specified by context. Given vector
x, ||x|| denotes the Euclidean distance of x to the origin i.e. the Euclidean
norm.

15.3 Attacking Additive Data Perturbation

The data owner replaces the original dataset X with

Y = X +R, (15.1)

where R is a noise matrix with each column generated independently from a
n-dimensional random vectorR with mean vector zero. As is commonly done,
we assume throughout that ΣR equals σ2I , i.e., the entries ofRwere generated
independently from some distribution with mean zero and variance σ2 (typical
choices for this distribution include Gaussian and uniform). In this case, R is
sometimes referred to as additive white noise.

While having a long history in the statistical disclosure control and statistical
database fields (see [6] for a comprehensive survey), additive data perturbation
was first revisited to address PPDM problems by Agrawal and Srikant [5]. They
assumed the p.d.f. of R is public. They developed a technique for estimating
the p.d.f. of X from Y and show how a decision tree classifier can then be
constructed. Their distribution recovery technique is further developed in [4,
9].

We describe five different attack techniques against additive perturbation.
The first three attacks filter off the random noise by analyzing the eigenstates
of the data: spectral filtering [22], singular value decomposition (SVD) filter-
ing [17], and principal component analysis (PCA) filtering [18]. They all use
eigen-analysis for filtering out the protected data. The fourth attack is a Bayes
approach based on maximum a posteriori probability (MAP) estimation [18].
The fifth attack shows that if the p.d.f. of X is reconstructed, in some cases,
it can lead to disclosure. We refer to this attack as distribution analysis. Note
that in all five we assume that the attacker knows the p.d.f. of R, and attacker
implicitly knows that the perturbed data records arose as independent samples
from random vector Y = X + R. Next, we describe each of these attacks in
detail.
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15.3.1 Eigen-Analysis and PCA Preliminaries

Before describing eigen-analysis based attacks, we first provide a brief back-
ground of eigen-analysis and PCA. Let X be an n-dimensional random vector.
Generally speaking the eigenvalues of covariance ΣX are the n roots (possible
including repeats) of the degree n polynomial |ΣX − Iλ| where |.| denotes the
matrix determinant. Since ΣX is positive semi-definite, all its eigenvalues are
non-negative and real [13, pg. 295]. If we assume that they are also all distinct
and non-zero, they can be denoted as λ1

X > . . . > λnX > 0. Associated with λjX
is its normalized eigenspace, V

j
X = {v ∈ R

n : ΣX v = vλjX and ||v|| = 1}.
These normalized eigenspaces are pair-wise orthogonal and have dimension
one [13, pg. 295]. Hence each can be written as {vjX ,−v

j
X }where vjX is lexico-

graphically larger than −vjX . Let VX denote the normalized eigenvector matrix
[v1

X · · · vnX ] (which is orthogonal).
As is standard practice in PCA, we assume that X has mean vector zero (if

not, it is replaced by X − E[X ]). The jth principal component (PC) of X is

vjX
TX (or −vjX

TX ). It can be shown that the PCs are pair-wise uncorrelated
and capture the maximum possible variance in the following sense. For each
1 ≤ j ≤ n, there does not exist v ∈ R

n orthogonal to v� for all 1 ≤ � < j such

that V ar(vTX ) > V ar(vjX
TX ). It can further be shown that V ar(vjX

TX ) =
λjX . Therefore, the dimensionality ofX can be reduced by choosing 1 ≤ k ≤ n
and transforming X to X̃ = Ṽ T

X X where ṼX denotes the leftmost k columns
of VX . The amount of “information” preserved is typically quantified by

100
∑k

�=1 λ
�
X∑n

�=1 λ
�
X
.

This is commonly referred to as the percentage of variance captured by X̃ .
If this percentage is large, most of the information is preserved in the sense
that ṼX X̃ is a good approximation to X . Indeed, if the percentage is 100, i.e.,
k = n, then ṼX X̃ = ṼX Ṽ T

X X = X . The properties of left multiplication to
X by ṼX Ṽ T

X have special significance in the eigen-analysis based attacks. We
call this transformation, a projection through the first k PCs.

In practice, one has a collection of data tuples on which dimensionality re-
duction via PCA is desired. If the tuples can all be regarded as independent
samples from X , PCA can be fruitfully carried out on their standard sample
covariance matrix (after subtracting from each the row-mean vector of the
dataset). The eigen-analysis based attacks will make critical use of the pro-
jection of the dataset through its first k PCs.
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Figure 15.1. Wigner’s semi-circle law: a histogram of the eigenvalues of A+A′
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15.3.2 Spectral Filtering

This technique, developed by Kargupta et al. [22], utilizes the fact that the
eigenvalues of a random matrix are distributed in a fairly predictable man-
ner. For example, Wigner’s semi-circle law [47] says that if A is a p × p ma-
trix whose entries were generated independently from a distribution with zero
mean and unit variance, then, for large p, the distribution of the eigenvalues
of A+A′

2
√

2p
has p.d.f. depicted in Figure 15.1; it takes the shape of a semi-circle.

As another example, consider n ×m matrix R whose entries were generated
independently from a distribution with mean zero and variance σ2. For large
m and n, the distribution of the eigenvalues of the sample covariance matrix of
R is similar to the semi-circle law. And, key to the spectral filtering technique,
this result allows bounds on these eigenvalues to be computed.

Kargupta et al. observe that if the jth eigenvalue arising from Y is “large”,
it is a good approximation to the jth eigenvalue arising from X. Therefore, the
projection of Y through its PCs corresponding to these large eigenvalues (say
the first k) is a good approximation to the projection of X through its first k
PCs. As such X̂ is set to the projection of Y through its first k PCs. Results
from matrix perturbation theory and spectral analysis of large random matrices
provide the basis for this observation.
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Lemma 15.1 [40, Corollary 4.9] For any n-dimensional random vectors X
and R (R has mean vector zero) and Y = X + R, it is the case that: for
1 ≤ j ≤ n, λjY ∈ [λjX + λnR, λ

j
X + λ1

R].

Therefore, if λjY ∈ [λnR, λ
1
R], then this eigenvalue is largely affected by

noise (R). Hence, it is not regarded by Kargupta et al. as large and, therefore,
not regarded as a good approximation of λjX . On the other hand, λjY > λ1

R is

regarded as large and, therefore, is regarded as a good approximation of λjX .
So how can the attacker use this threshold criterion given only Y ?

Let Σ̂Y and Σ̂R be the standard sample covariance matrices computed from
Y and R; let λ̂1

Y ≥ . . . ≥ λ̂nY and λ̂1
R ≥ . . . ≥ λ̂nR be the associated eigenval-

ues, respectively. The above criterion can be modified to consider λ̂jY > λ̂1
R

as large. But how should the attacker estimate an upper-bound on λ̂1
R? This

question is answered using a result from large random matrix theory alluded to
in the opening paragraph of this subsection. Intuitively, as R grows large, the
eigenvalues computed from R can be bounded by the attacker. And when m
is large relative to n, these bounds are quite good. Formally stated [21, 39], as
m,n→∞ and m

n → Q ≥ 1,

λ̂maxR = σ2(1 + 1/
√
Q)2 ≥ λ̂1

R ≥ λ̂nR ≥ λ̂minR = σ2(1− 1/
√
Q)2.

As such, λ̂maxR serves as the estimate of an upper-bound on λ̂1
R. Moreover,

for Q large relative to σ2, this bound will be quite good as all eigenvalues of
Σ̂R will be concentrated in a small band. Since the attacker is assumed to know
σ2, then she can compute λ̂maxR and will deem any λ̂jY > λ̂maxR as large.

The spectral filtering algorithm is given in Algorithm 3. The empirical re-
sults show that when the variance of the noise is low and the original data does
not contain many inherent random components, the recovered data can be rea-
sonably close to the original data. However, two important questions remain to
be answered. 1) What are the theoretical bounds on the estimation accuracy? 2)
What are the fundamental factors that determine the quality of the data estima-
tion? The first is touched on in Section 15.3.3 and the second in Section 15.3.4.

15.3.3 SVD Filtering

Guo et al. [17] revisited spectral filtering to address the issue of an optimal
choice of k and to develop bounds on the estimation accuracy. They showed
that when k = min{1 ≤ j ≤ n|λ̂jY < 2σ2} − 1, the estimated data is approx-
imately optimal, i.e., the benefits due to the inclusion of the kth eigenvector
is greater than the information loss due to the noise projected along the kth

eigenvector. They further proposed a singular value decomposition-based data
reconstruction approach, and proved the equivalence of this approach to spec-
tral filtering. A lower bound and upper bound of the estimation error in terms
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Protocol 3 Spectral Filtering

Require: Y , the perturbed data matrix and σ2, the variance of the random
noise.

Ensure: X̂ , an estimate of the original data matrix X.
1: Compute the sample mean of Y and subtract it from every column of Y .
2: Compute the standard sample covariance Σ̂Y of Y , its eigenvalues λ̂1

Y ≥
. . . ≥ λ̂nY , and their associated normalized eigenvectors v̂1

Y , . . . , v̂
n
Y .

3: Compute k = max{1 ≤ j ≤ n|λ̂jY > λ̂maxR }. Let ˜̂
VY denote the matrix

[v̂1
Y · · · v̂kY ].

4: Set X̂ to ˜̂
VY

˜̂
V T
Y Y.

of Frobenius matrix norm were also derived. We refer readers to [14, 17] for
more details.

15.3.4 PCA Filtering

Huang et al. [18] observe that a key factor in determining the accuracy of
spectral filtering is the degree of correlation that exists among the attributes of
X relative to σ2. The higher the degree, the greater the accuracy in estimating
the original data. Indeed, for small k, the higher the degree of correlation, the
more variance will be captured by the first k PCs. The addition of R does not
change this property. The attributes ofR are uncorrelated and thus, the amount
of variance captured by any direction is the same. Therefore, removing the last
n − k PCs of X does not cause much variance loss but will cause 100n−kn
percent of the variance in R to be lost.

Based on this observation, Huang et al. [18] proposed a filtering technique
based on PCA. A major difference with spectral filtering, is that PCA filtering
does not use matrix perturbation theory and spectral analysis to estimate the
dominant PCs of X. Instead PCA filtering takes a more direct approach based
on the fact that

ΣY = ΣX + ΣR = ΣX + σ2I. (15.2)

The first equality is due to the independence of X and R and the second by
assumption. Therefore, the attacker can directly estimate ΣX as Σ̂Y − σ2I ,
then compute the top k PCs of this. The PCA filtering procedure is given in
Algorithm 4.

The original dataset estimate can be written as the sum of two parts: X̂ =
˜̂
VX

˜̂
V T
X Y = ˜̂

VX
˜̂
V T
XX + ˜̂

VX
˜̂
V T
XR. Therefore, the recovery error 1 is determined

1assuming the estimated sample covariance Σ̂X is very close to ΣX
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Protocol 4 PCA Filtering

Require: Y , the perturbed data matrix; σ2, the variance of the random noise;
and 1 ≤ k ≤ n, the number of PCs to keep.

Ensure: X̂ , an estimate of the original data matrix X.
1: Compute the sample mean of Y and subtract it from every column of Y .
2: Compute the standard sample covariance Σ̂Y of Y , and produce Σ̂X =

Σ̂Y − σ2I an estimate of ΣX .
3: Compute the eigenvalues of Σ̂X , λ̂1

X ≥ . . . ≥ λ̂nX . Compute their their

associated normalized eigenvectors, v̂1
X , . . . , v̂

n
X . Let ˜̂

VX denote the matrix
[v̂1
X · · · v̂kX ].

4: Set X̂ to ˜̂
VX

˜̂
V T
X Y.

by the the percentage of variance captured by the first k PCs ofX and the noise.
It can be shown that the mean squared recovery error caused by the noise part
is σ2 k

n . These results echo the empirical results observed in spectral filtering
and suggests an approach for choosing k.

15.3.5 MAP Estimation Attack

Different from eigen-analysis, MAP estimation considers both prior and
posterior knowledge via Bayes’ theorem to estimate original dataset. For each
1 ≤ i ≤ m, the attacker will produce x̂i an estimate of xi using2 yi. Let fX
and fR denote the p.d.f of X and R, respectively. Given x ∈ R

n and y ∈ R
n′

,
let fX|Y=y and fY|X=x denote the p.d.f of X conditioned on Y = y and the
p.d.f of Y conditioned on X = x, respectively. The MAP estimate of xi is3

x̂i = argsup{fX|Y=yi
(x) : x ∈ R

n}
= argsup{fY|X=x(yi)fX (x) : x ∈ R

n}
= argsup{fR(yi − x)fX (x) : x ∈ R

n}. (15.3)

The second equality is due to Bayes’ theorem and the third due to the fact that
Y = X +R and R is independent of X .

Huang et al. [18] considered the case where both fX and fR are multi-
variate normal (and the attacker knows this). The following closed form
expression can then be derived with µX denoting the mean vector of X .

x̂i = (Σ−1
X + (1/σ2)I)−1(Σ−1

X µX + yi/σ
2).

2Due to independence, the attacker will gain nothing more if using all of Y .
3Here argsup{} is based on supAwhich denotes the smallest upper bound on a set A (if A is upper-

bounded, supA always exists.



Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods 367

The assumption that fX is multi-variate normal and known to the attacker is
quite strong. Other cases are worth comment (in each, fR is multi-variate nor-
mal and known to the attacker). When fX is known but not multivariate normal,
it may be difficult to derive a closed-form expression for x̂i. In this case, the at-
tacker can use numerical methods such as Newton’s gradient descent methods.
When fX is not known, the MAP estimate reduces to the maximum likelihood
estimate (MLE) by assuming fX is uniform over some interval. Therefore, fX
can be dropped from (15.3) and x̂i = yi. However, this estimate may suffer
from accuracy problems due to dropping fX .

It is worth noting that the MAP approach has been widely studied in statis-
tical disclosure control. For example, Trottini et al. [44] used this approach to
study the linkage privacy breaches in the scenario where microdata is masked
by both additive and multiplicative noise. In their settings, the attacker tries to
identify the identity (of a person) linked to a specific record, which is different
from the primary focus of this chapter - data record recovery.

15.3.6 Distribution Analysis Attack

Recall that techniques exist for estimating fX from Y . This is quite useful
as fX represents a useful data mining pattern. However, in some cases, this
reconstructed distribution can be used by the attacker to gain extra knowledge
about the private data. For example, assume the each entry of R is uniformly
distributed over [−1, 1] and the observed perturbed data Y = 1. If there is
no additional information, the attacker can determine X ∈ [0, 2]. However, if a
large amount of data is available, the reconstructed distribution will have a high
degree of accuracy. Assume the attacker can perfectly recover fX which is:

fX (x) =

⎧⎨
⎩

0.5, 0 ≤ x ≤ 1;
0.5, 5 ≤ x ≤ 6;
0, otherwise.

Then, the estimate of X given Y = 1 is localized to a smaller interval [0, 1]
instead of [0, 2]. When data has a multi-variate distribution, the attacker can de-
termine intervals I1, I2, . . . , In, which are narrow in one or more dimensions,
and for which the number of data records that fall in the interval is very small.
Such intervals make outliers/minorities more identifiable than they would seem
when merely looking at the perturbed data set. This kind of disclosure leads to
a bigger open problem - when do data mining results cause privacy breach?
Further discussions can be found in [4, 9, 31, 16, 12].

15.3.7 Summary

This section surveyed recent research that investigated the vulnerability
additive data perturbation. The research showed, in many cases, the private
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information can be reasonably well derived from the perturbed data. The pri-
mary attack techniques presented are summarized in Table 15.1.

Table 15.1. Summarization of Attacks on Additive Perturbation

Categories Related Work General Assumptions

Eigen-Analysis [14, 17, 18, 22] the degree of correlation between the original
data attributes is high relative to σ2

MAP Estimation [18] data and noise arose from a
multi-variate normal distribution

Distribution Analysis [4, 9, 16] reconstructed distribution describes
the original data with sufficient accuracy

One possible improvement on additive perturbation is to use colored noise
with similar correlation structure to the original data [23, 43], i.e., R ∼
(0,ΣR), where ΣR = βΣX for β > 0. With this method, the covariance
of the perturbed data is

ΣY = ΣX + βΣX = (1 + β)ΣX .

The correlation coefficients of the perturbed attributes are the same as that of
the original attributes:

ρYi,Yj =
1 + β

1 + β

Cov(Xi,Xj)√
V ar(Xi)V ar(Xj)

= ρXi,Xj .

This kind of perturbation puts noise on the principal components of the original
data, therefore, separating noise from the data using eigen analysis becomes
difficult. However, this approach is not free from problem either. Domingo-
Ferrer et al. [9] pointed out that the reconstructed distribution (using their p-
dimensional reconstruction algorithm, a multivariate generalization of the ap-
proach describe in [5] for the univariate case) may still lead to disclosure in
some cases. The higher the dimensionality, the more likely is the disclosure.

In summary, additive perturbation has its roots in statistical disclosure con-
trol. It offers a simply way to mask private data while allowing aggregate sta-
tistics to be queried; and making more sophisticated privacy preserving data
mining possible. However, recent work from PPDM community has shown this
technique vulnerable to attack in many cases (e.g., high correlations between
many attributes). Therefore, careful attention must be paid when applying this
technique in practice.

Before closing this section, we note that several researchers have proposed
privacy metrics e.g., interval-based [5], entropy-based [4], mixture models
[49]. However, the relationship between these and the recovery accuracy of
the attack techniques is not clear.



Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods 369

15.4 Attacking Matrix Multiplicative Data Perturbation

The data owner replaces the original data X with

Y = MX, (15.4)

where M is an n′ × n matrix chosen to have certain useful properties. If M is
orthogonal (n′ = n and MTM = I) [7, 36, 37], then the perturbation exactly
preserves Euclidean distances, i.e., for any columns x1, x2 in X, their corre-
sponding columns y1, y2 in Y satisfy ||x1−x2||= ||y1−y2||.4 If each entry of
M is generated independently from the same distribution with mean zero and
variance σ2 (n′ not necessarily equal to n) [28, 30], then the perturbation ap-
proximately preserves Euclidean distances on expectation up to constant factor
σ2n′. If M is the product of a discrete cosine transformation matrix and a trun-
cated perturbation matrix [33], then the perturbation approximately preserves
Euclidean distances.

Because matrix multiplicative perturbation preserves Euclidean distance
with either small or no error, it allows many important data mining algorithms
to be applied to the perturbed data and produce results very similar to, or ex-
actly the same as those produced by the original algorithm applied to the orig-
inal data, e.g., hierarchical clustering, k-means clustering. However, the issue
of how well X is hidden is not clear and deserves careful study. Without any
prior knowledge, an attacker can do very little (if anything) to accurately re-
cover X. However, no prior knowledge seems an unreasonable assumption in
many situations. Motivated by this line of reasoning, several researchers have
investigated the vulnerabilities of matrix multiplicative perturbation using var-
ious forms of prior knowledge [8, 15, 28–30]. In the bulk of this section (15.4.1
and 15.4.2), we discuss attack techniques based on two types of prior knowl-
edge.

1 Known input-output (I/O): The attacker knows some small collection
of original data records and the attacker knows the mapping between
these known original data records and their perturbed counterparts in Y .
In other words, the attacker has a set of input-output pairs.

2 Known sample: The attacker has a collection of independent samples
(columns of S) from X (S may or may not overlap with X).

The first two attacks are based on the known I/O prior knowledge assump-
tion. The first one [29] assumes an orthogonal perturbation matrix while the

4Conversely, any function T : R
n → R

n which preserves Euclidean distance (for all x, y ∈ R
n,

||x−y||= ||T (x)−T (y)||) and fixes the origin is equivalent to left-multiplication by an n×n orthogonal
matrix.
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second [28] assumes a randomly generated perturbation matrix. The third at-
tack is based on the known sample prior knowledge assumption and assumes
an orthogonal perturbation matrix. It works by examining certain features of
the original and perturbed data distributions (i.e., the p.d.f. ofX and Y), namely
the eigenvectors of ΣX and ΣY . These features have two important properties:
(i) they are related to each other in a natural way allowing M to be estimated,
and (ii) they can be accurately extracted from S and Y .

Before moving on, we emphasize the fact that the perturbation technique
considered here, matrix multiplicative, is completely different than multiplica-
tive data perturbation mentioned in the introduction. There each element of X
is separately multiplied by a randomly generated number.

15.4.1 Known I/O Attacks

Without loss of generality, the attacker is assumed to knowXp (1 ≤ p < m),
the first p columns of X (of course, the attacker also knows Yp, the first p
columns of Y ). In other words, the attacker knows a set of input/output pairs
(x1, y1), . . ., (xp, yp) where yj = Mxj .

Orthogonal Perturbation Matrix. Liu et al. [29] assumed M is orthogo-
nal. Unlike all other attacks in this chapter, they do not assume that the original
data records arose as independent samples from X . Their attacker uses Yp and
Xp to produce, M̂ , an estimation of M . Then, for any p ≤ i ≤ m, the attacker
will produce x̂i, an estimation of xi as

x̂i = M̂T yi. (15.5)

The rationale for (15.5) is: if M̂ ≈ M , then x̂i ≈ MT yi = MT (Mxi) = xi.
In choosing M̂ , the attacker knows that M must be in M(Xp, Yp), the set of
all n× n, orthogonal matrices, O, such that OXp = Yp. However, with no ad-
ditional information for further narrowing down this space of the possibilities,
the attacker will assume each is equally likely to be M . Therefore, she will
choose M̂ uniformly from M(Xp, Yp).

Given an error tolerance ε > 0, the attacker’s success probability, ρ(xi, ε),
is defined as the probability that the relative Euclidean distance between xi and
x̂i is no larger than ε, i.e., Pr(||x̂i−xi|| ≤ ||xi||ε). Liu et al. developed closed
form expression

ρ(xi, ε) =

{ (
1
π

)
2arcsin

(
||xi||ε

2d(xi,Xp)

)
if ||xi||ε < 2d(xi,Xp);

1 otherwise,
(15.6)

where d(xi,Xp) denotes the Euclidean distance of xi to the space of vectors
spanned by the columns of Xp, i.e., inf{||x − xi||:x is in the column space
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of Xp}. Equation (15.6) illustrates that the sensitivity of a tuple, xi, to breach
depends upon its length relative to its distance to the column space of Xp,

i.e., ||xi||
2d(xi,Xp) . Tuples whose relative length is large are particularly sensitive

to breach. In particular when xi is in the column space of Xp, the attacker’s
success probability equals one. Liu et al. also described how the attacker can
compute ||xi|| and d(xi,Xp) for any p ≤ i ≤ m, and therefore, determine
which tuple is most sensitive to breach.

Chen et al. [8] also discussed a known I/O attack technique. They however
consider a combination of matrix multiplicative and additive perturbation: Y =
MX + R. They considered the case when the number of linearly independent
data tuples (columns in Xp) is no smaller than the data dimensionality, n (rows
in Xp). They pointed out that M̂ , an estimate of M , can be produced using
linear regression, then xi estimated as M̂−1yi.

Random Perturbation Matrix. Liu [28] developed a MAP-based known
I/O attack which works under the assumption that M is an n′×nmatrix whose
entries were generated independently from a normal distribution with mean
zero and variance σ2 (n′ may be ≤ n or > n).5 The larger n′ is, the more
closely preserved are Euclidean distances between data tuples (up to constant
factor σ2n′), but, the better the known I/O attack will work at breaching pri-
vacy. Therefore, a trade-off must be balanced in setting n′.

For simplicity, we assume that the columns of Yp are linearly independent.6

For any p ≤ i ≤ m, the attacker will produce x̂i an estimate of xi. If xi is
linearly dependent on the columns of Xp, the attacker can discover this as yi
will be linearly dependent on the columns of Yp. In this case, the attacker will
set x̂i = Xp(Y T

p Yp)
−1Y T

p yi which equals xi (perfect recovery).7 Henceforth,
we assume xi is linearly independent of the columns of Xp. Therefore, the
attacker will only consider estimates, x̂ ∈ R

n, which are also linearly inde-
pendent of the columns of Xp (for brevity, we write “l.i. x̂” to mean that x̂ is
linearly independent of the columns of Xp). Finally, since the columns of Yp
are assumed to be linearly independent, then it follows that the columns of Xp

are too.
Let M be an n′ × n matrix of random variables each independently and

identically distributed as normal with mean zero and variance σ2. The columns
of Y arose as independent samples from random vector Y =MX . Using the

5They do assume that the original data records arose as independent samples from X .
6This assumption is not essential. It can be eliminated at the cost of a more complicated attack algo-

rithm. However, the fundamental idea remains the same.
7There exists zi ∈ R

p such that Xpzi = xi and Ypzi = yi. Since the columns of Yp

are assumed to be linearly independent, then by [13, pg. 96], the matrix (Y T
p Yp)−1Y T

p exists. Thus,
Xp(Y T

p Yp)−1Y T
p yi =Xp(Y T

p Yp)−1(Y T
p Yp)zi =Xpzi = xi.
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MAP approach, the attacker will choose l.i. x̂ so as to maximize the likelihood
that X equals x̂ given that Y equals yi and MXp equals Yp. This analysis
is based on the following key observation (whose proof follows directly from
manipulating moment-generating functions). For any matrix B, let B denote
the column vector which results from stacking the columns of B.

Theorem 15.2 For any n× q matrix A with linearly independent columns,
MA is distributed as an (qn′)-variate Gaussian with mean vector zero and
covariance matrix

ΣMA = σ2

⎡
⎢⎢⎢⎢⎢⎣

ATA 0 0 · · · 0
0 ATA 0 · · · 0
0 0 ATA · · · 0
...

...
...

. . .
...

0 0 0 · · · ATA

⎤
⎥⎥⎥⎥⎥⎦

Let [Xp, x̂] and [Yp, yi] denote matrices which result from attaching x̂ and
yi as an additional right-most column onto Xp and Yp. Observe that [Xp, x̂]
has linearly independent columns. Let fX|Y=yi,MXp=Yp

denote the p.d.f. of

X conditioned on Y = yi and MXp = Yp; let fM[Xp,x̂]
denote the p.d.f. of

M[Xp, x̂]. Using the MAP approach, the attacker will choose

x̂i = argsup{fX|Y=yi,MXp=Yp
(x̂) : l.i. x̂ ∈ R

n}.

Using Bayes’ rule, it can be shown that

x̂i = argsup{fM[Xp,x̂]
([Yp, yi])fX (x̂) : l.i. x̂ ∈ R

n},

thus, Theorem 15.2 implies

x̂i = argsup{φ([Yp, yi])fX (x̂) : l.i. x̂ ∈ R
n}, (15.7)

where φ is the ((p+ 1)n′)-variate Gaussian distribution with mean vector zero
and covariance matrix ΣM[Xp,x̂]

. For simplicity we assume that the attacker
knows nothing about fX and, following a common practice, uses a uniform
distribution over some interval in place of fX in (15.7).8 Thus,

x̂i = argsup{φ([Yp, yi]) : l.i. x̂ ∈ R
n}. (15.8)

Producing a closed-form expression for x̂i in (15.8) is desirable, but quite
difficult. Instead, the attacker can turn to numerical approaches. Experiments

8A more complicated approach could have the attacker using the fact that the columns of Xp arose as
independent samples from X , and use Xp to inform a better substitution for fX in (15.7).
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were reported in [28] where the attacker used the Matlab implementation9 of
the Nelder-Mead simplex algorithm [35] to solve this optimization problem.
The results show that the accuracy of the attack technique increases with n′ or
the number of known input-output pairs.

15.4.2 Known Sample Attack

The attacker is assumed to know a collection of independent samples
(columns of S) from X (S may or may not overlap with X). Furthermore,
the attacker assumes M is orthogonal.

The approach is based on the observation that the eigenvectors of Y are
equal to those of X left-multiplied by M (up to a factor of ±1). Therefore
by estimating ΣY and ΣX and matching their eigenvectors, the attacker can
produce, M̂ , an estimation of M . Using this, data record xi (1 ≤ i ≤ m) is
estimated as x̂i = M̂T yi.

The following results (proved in [29]) establishes the key match between
the normalized eigenspaces.

Theorem 15.3 The eigenvalues of ΣX and ΣY are the same and for all
1 ≤ j ≤ n, MV

j
X = V

j
Y , where MV

j
X equals {Mv : v ∈ V

j
X }.

Corollary 15.4 Let In be the space of all n×n, matrices with each diago-
nal entry ±1 and each off-diagonal entry 0 (2n matrices in total). There exists
D0 ∈ In such that M = VYD0V

T
X .

First assume that the attacker knows the covariance matrices ΣX and ΣY
and, thus, computes VX and VY . By Corollary 15.4, the attacker can perfectly
recover M if she can choose the right D from In. To do so, the attacker utilizes
S and Y , in particular, the fact that these arose as independent samples from X
and Y = MX . For any D ∈ In, if D = D0, then VYDV T

X S and Y have both
arisen as independent samples from Y . The attacker will estimate M as M̂ =
VYDV T

X , where D was chosen from In so as to maximize the likelihood that
VYDV T

X S and Y arose from the same random vector. To make this choice, the
attacker can use a multi-variate two-sample hypothesis test for equal distribu-
tions [42]. The smaller the p-value, the more convincingly the null hypothesis
(that VYDV T

X S and Y have both arisen as independent samples from Y) can
be rejected. Therefore, D ∈ In is chosen to maximize the p-value.

Finally, the attacker can eliminate the assumption at the start of the previous
paragraph by replacing ΣX and ΣY with estimates computed from S and Y .
Using the standard sample covariance matrices, the pseudo-code for the attack
technique is shown in algorithm 5. A weakness lies in its computation cost,
O(2n(m+ p)2). For high-dimensional data, the technique is infeasible.

9http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fminsearch.html
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Protocol 5 Eigen-Analysis Attack
Require: Y , the perturbed data matrix and S, the sample data matrix.
Ensure: X̂ , an estimate of the original data matrix X.

1: Compute standard, sample covariance matrices of S and Y and V̂X and V̂Y
their normalized eigenvector matrices.

2: Choose D ∈ In so as to maximize the p-value of two-sample hypothesis
test for equal distributions on V̂YDV̂ T

X S and Y .
3: Set M̂ to V̂YDV̂ T

X and X̂ to M̂TY .

It should be noted the eigen-analysis attack does not work if each entry of
M were generated independently from some distribution with mean zero and
variance σ2. In that case, ΣY will equal γI for some constant γ > 0, thereby
killing any useful matching like that in Theorem 15.3.

15.4.3 Other Attacks Based on ICA

Before finishing the section, we briefly describe some attacks based on in-
dependent component analysis (ICA) [19].

ICA Overview. Given an n′-variate random vector V , one common ICA
model posits that this random vector was generated by a linear combination of
independent random variables, i.e., V =AS with S an n-variate random vector
with independent components. Typically, S is further assumed to satisfy the
following additional assumptions: (i) at most one component is distributed as
a Gaussian; (ii) n′ ≥ n; and (iii) A has rank n.

One common scenario in practice: there is a set of unobserved samples (the
columns of n × q matrix S) that arose from S which satisfies (i) - (iii) and
whose components are independent. But observed is n′ × q matrix V whose
columns arose as linear combination of the rows of S. The columns of V can
be thought of as samples that arose from a random vector V which satisfies the
above generative model. There are ICA algorithms whose goal is to recover
S and A up to a row permutation and constant multiple. This ambiguity is
inevitable due to the fact that for any diagonal matrix (with all non-zeros on
the diagonal) D, and permutation matrix P , if A,S is a solution, then so is
(ADP ), (P−1D−1S).

Other Attacks. Liu et al. [30] considered matrix multiplicative data pertur-
bation where M is an n′ × n matrix with each entry generated independently
from the some distribution with mean zero and variance σ2. They discussed
the application of the above ICA approach to estimate X directly from Y :
S = X , V = Y , S = X, V = Y , and A = M . They argued the approach to be
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problematic because the ICA generative model imposes assumptions not likely
to hold in many practical situations: the components of X are independent with
at most one such being Gaussian distributed. Moreover, they pointed out that
the row permutation and constant multiple ambiguity further hampers accurate
recovery of X. A similar observation is made later by Chen et al. [8].

Guo and Wu [15] considered matrix multiplicative perturbation assuming
only thatM is an n×nmatrix (orthogonal or otherwise). Further they assumed
a weaker variant of the known I/O holds: the attacker knows, X̃, a collection of
original data columns from X but does not know to which of the columns in Y
these correspond. They develop an ICA-based attack technique for estimating
the remaining columns in X. To avoid the ICA problems described in the pre-
vious paragraph, they instead applied ICA separately to X̃ and Y producing
representations (AX̃ , SX̃) and (AY , SY ). They argued that these representa-
tions are related in a natural way allowing X to be estimated. Their approach
is similar in spirit to the known sample attack described earlier which related
S and Y through representations derived through eigen-analysis.

15.4.4 Summary

This section discussed the vulnerabilities of matrix multiplicative data per-
turbation to certain attacks based on prior knowledge. The primary attack tech-
niques discussed are summarized in Table 15.2.10

Table 15.2. Summarization of Attacks on Matrix Multiplicative Perturbation

Categories Related Work General Assumptions

Linear algebra/measure theory [29] known I/O, M is orthogonal
MAP Estimation [28] known I/O, M is n′ × n

with entries generated
independently from N (0, σ2),

Eigen-Analysis [29] known sample, M is orthogonal,
ICA [8, 30] M has rank n, the data

attributes are largely independent and
at most one is Gaussian

ICA [15] M is n × n, weak known I/O

Chen et al. [8] discussed a modification of matrix multiplicative data per-
turbation to improve its resilience to attack. They examine the combination of
matrix multiplicative and additive data perturbation. They argue that this ap-
proach offers additional privacy protection, but the utility of the perturbed data

10All the attack techniques, except known I/O with orthogonal M , implicitly assume that the original
data records arose independently from X .
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is negatively affected since additive noise does not preserve Euclidean distance
well.

15.5 Attacking k-Anonymization

Before concluding this chapter, we briefly survey a very recent body of re-
search aimed at analyzing the vulnerabilities of the popular k-anonymity model
[38, 41]. Here, the private data X is perturbed such that each of the resulting
records is identical to at least k − 1 others with respect to a pre-defined set
of attributes called quasi-identifiers. All of the other attributes are called sensi-
tive attributes and these are not modified by the perturbation. This perturbation
can be carried out by judicious value generalization (e.g., zip 95120→ 951**)
or tuple suppression, and it is aimed at preventing linkage attacks through the
quasi-identifiers.

Recently, Machanavajjhala et al. [32] developed a background knowledge
attack on k-anonymity which we call a homogeneity attack. They showed how
a lack of diversity among the sensitive attribute values can be used to establish a
linkage between individuals and sensitive values. To remedy this problem, they
proposed a new privacy definition called l-diversity such that in each equiva-
lence class there are at least l “well-represented” sensitive values. Along the
same line, Wong et al. [48] proposed an (α, k)-anonymization model such that
the relative frequency of the sensitive value in every equivalence class is less
than or equal to α. Li et al. [25] later developed attacks on l-diversity (skew-
ness attack and similarity attack), and argued that l-diversity is neither neces-
sary nor sufficient to prevent attribute disclosure. To cope with these problems,
they proposed an improved framework called t-closeness, which requires the
distribution of a sensitive attribute in any equivalence class to be close to the
distribution of the attribute in the original data set.

Wang et al. [46] considered the privacy breach caused by the attacker’s data
mining capabilities. They presented an approach (that combines association
rule hiding and k-anonymity) to limit the confidence of inferring sensitive prop-
erties about the existing individuals.

Aggarwal [2] also argued the original k-anonymity model to be problematic.
He considered the case of high dimensional data and pointed out that the ex-
ponential number of quasi-identifier combinations can allow precise inference
attacks unless an unacceptably high amount of information loss is suffered.

15.6 Conclusion

This chapter provides a detailed survey of attack techniques on additive and
matrix multiplicative perturbation. It also presents a brief overview of attacks
on k-anonymization. These attacks offer insights into vulnerabilities data per-
turbation techniques under certain circumstances. In summary, the following
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information could lead to disclosure of private information from the perturbed
data.

1. Attribute Correlation: Many real world data has strong correlated at-
tributes, and this correlation can be used to filter off additive white noise. See,
e.g., [14, 17, 18, 22].

2. Known Sample: Sometimes, the attacker has certain background knowl-
edge about the data such as the p.d.f. or a collection of independent samples
which may or may not overlap with the original data. See, e.g., [28, 29, 18].

3. Known Inputs/Outputs: Sometimes, the attacker knows a small set of pri-
vate data and their perturbed counterparts. This correspondence can help the
attacker to estimate other private data. See, e.g., [28, 15, 29].

4. Data Mining Results: The underlying pattern discovered by data mining
also provides a certain level of knowledge which can be used to guess the
private data to a higher level of accuracy. See, e.g., [4, 9, 31, 16, 12, 46].

5. Sample Dependency: Most of the attacks (except the known I/O devel-
oped by [29]) discussed in this chapter assume the data as independent sam-
ples from some unknown distribution. This assumption may not hold true for
all real applications. For certain types of data, such as the time series data, there
exists auto correlation/dependency among the samples. How this dependency
can help the attacker to estimate the original data is still an open problem.

Notes

The contributions of C. Giannella and K. Liu were equal.
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Abstract We describe output perturbation techniques that allow for a provable, rigorous
sense of individual privacy. Examples where the techniques are effective span
from basic statistical computations to sophisticated machine learning algorithms.

Keywords: Private query processing, output perturbation.

16.1 Introduction

Rapidly increasing volumes of sensitive individual information are main-
tained by governments, statistical agencies and private enterprises, the lat-
ter making them increasingly ubiquitous as electronic collection and archiv-
ing evolves. The potential social benefits from analyzing these databases are
enormous. A challenge, however, is to compute and release useful information
about the data while protecting the privacy of individual data contributors. Our
focus is on such analyses.

Applying to intuition, one may claim that statistical analysis and datamining
procedures already answer this challenge. After all, these analyses are aimed
at finding large scale phenomena, hence, applying them to data collections
should not result in a significant leakage of private individual information. This
intuition, however, seems hard to substantiate, as it may so happen that the
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results of several such “harmless looking” analyses may be combined in a way
that would cause privacy breaches.

In this chapter we describe a formal approach, analogous to that taken in
the theoretical research of cryptography. We first present a simple and rather
intuitive privacy definition that allows us to argue about its implications (so as
to hopefully understand what kind of privacy is provided), and then construct
analyses that preserve privacy.

Before we continue, we differentiate our goal from another goal pursued
in the privacy literature, namely the construction of efficient secure multiparty
protocols for datamining tasks1. This is the problem of applying the crypto-
graphic tool of secure multiparty computation to collections of sensitive indi-
vidual information that are distributed among several parties, each of which is
not willing to explicitly share its information with the other parties. Extremely
rich theory exists, starting from the foundational work of [34, 21, 7, 5], showing
that essentially every analysis may be performed such that the parties collab-
oratively compute it over their joint data without any of them learning more
than what is implied by the intended outcome of the analysis. These strong
results follow by generic transformations of insecure computations to secure
computations, that result with only a polynomial overhead.

When applied to large datasets, the generic techniques of creating secure
multiparty protocols are inefficient in practice. Hence, more efficient secure
protocols for specific functionalities are sought after, e.g. protocols where the
total communication is sublinear in the dataset size. A breakthrough result in
this direction is due to Lindel and Pinkas [24]. They showed how to securely
compute an ID3 decision tree when the dataset is vertically split between two
parties. The approach taken in [24] and much of the following research is to
choose one of the existing algorithms/heuristics for a datamining problem, and
implement an efficient secure protocol for it, avoiding using the generic tech-
niques when they do not yield efficient protocols. The privacy guarantee is that
the participating parties would not learn any information beyond what is im-
plied by the outcome of the chosen algorithm/heuristic. This is a very different
notion of privacy from what we seek herein – in general there is no guarantee
that the outcome of the datamining analysis procedure itself preserves individ-
ual privacy. It may leak some information pertaining to individuals, or small
groups, and no matter how secure the implementation is, it would also leak this
information.

In the rest of this chapter we consider a simple formal model – statisti-
cal databases – that serves as an underlying model for our discussion. In
this model we present a privacy definition, capturing the intuition that an

1The term privacy preserving datamining is often used in the literature in connection with both goals.
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individual’s privacy is preserved if the inclusion of her data in the analysis has
a minor effect on the outcome. At first sight it may seem that this definition
is so restrictive that it would prohibit any useful computation, however, this is
not the case – it is possible to construct analyses that yield useful outcome, and
yet preserve privacy in a rigorous sense. Our focus is on the basic techniques
for constructing such statistical and machine learning analyses. We start in Sec-
tion 16.4 with the basic technique of adding noise of magnitude proportional to
a property of the query function called sensitivity, and show the effectiveness of
this idea for simple functions. These simple functions are used in Section 16.5
as the building blocks for more complex functionalities. Section 16.6 includes
a brief overview of more recent techniques that have emerged from the basic
techniques. We conclude with related work and bibliographic notes.

16.2 The Abstract Model – Statistical Databases, Queries,
and Sanitizers

As the underlying model for our discussion of privacy we will consider a
simple abstract model that we will refer to as a statistical database. Roughly
speaking, a statistical database is a centralized database, controlled by a single
trusted party that interacts with users who wish to issue queries to the database.
We note, however, that our definitions and results carry also to many other set-
tings. In particular, settings where the data is distributed among several parties
and settings where the collection of individual data does not physically or for-
mally consist a database.

Definition 16.1 (Statistical Database) A statistical database x of
size n over domain D is an ordered collection of n entries

x = (x1, . . . , xn) ,

where each entry is taken from the domain D.

The definition of statistical databases is very general. In particular, the do-
main D can be points in R

d, text, images, or any other (arbitrarily complex)
set of possible entries. Furthermore, we do not make any assumption regarding
to how the entries xi of the database are selected (i.e. whether the database
entries are sampled from some underlying distribution, whether the entries are
independent of each other, etc.).

As a means of accessing the information stored in a statistical database x we
will assume the existence of an algorithmic mechanism that has access to the
statistical database x. We call this mechanism a sanitizer, emphasizing its goal
of preserving the privacy of the underlying data by only releasing answers from
which the dependency on individual information was “cleared”. Users access
the statistical database by issuing queries to the sanitizer, where a query to
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a database x is any function

f : Dn →R .

For simplicity of exposition, we will only consider real valued functions f , i.e.,

f : Dn → R
d .

We note, however, that the techniques we present in the sequel do generalize
to other metric spaces.

Example 16.2 (Sum Queries) A family of queries, that turns to be ex-
tremely useful, is that of sum queries. These are queries of the form

sumg(x) =
n∑
i=1

g(i, xi) , (16.1)

where g : N × D → [0, 1]. Sum queries allow expressing basic statistical
functions (such as counts, averages etc.) as well as more complicated compu-
tations.

Example 16.3 Consider a database held and maintained by a hospital, con-
taining patient information as depicted below.

# SSN Sex Age Disease Smoking
1 631-35-1210 M 41 Heart Yes
2 051-34-1430 F 32 Cancer No
...
n 615-84-1924 M 37 Viral No

We can view this database as a statistical database, where the domain D
corresponds to the possible values for a record of format

(SSN, Sex,Age,Disease, Smoking) .

Many different queries may be generated by specifically setting the function g
in a sum query. Such queries may e.g. used for comparing the odds of having
cancer of smokers and non-smokers. Let

g1(x)
∆= x.Smoking = Yes

g2(x)
∆= (x.Smoking = Yes) ∧ (x.Disease = Cancer)

g3(x)
∆= (x.Smoking = No) ∧ (x.Disease = Cancer) .

The odds are sumg2(x)/sumg1(x) and sumg3(x)/(n−sumg1(x)) for smokers
and non-smokers respectively.
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Note that unlike a common practice in the privacy literature (see e.g.
[31, 32]), we do not assume a classification of record fields into identifying
and sensitive. An implication of this choice is that all parts of individual infor-
mation is treated as sensitive. This may seem as an over-conservative choice.
However, it saves the need to decide which information is sensitive, and pro-
tects against the risk that harmless looking pieces of information, or the rela-
tionships between them, would eventually be linked to sensitive information
(e.g. using datamining techniques), and hence become sensitive themselves.

Furthermore, we allow queries to directly address individuals in the data-
base. For example, in the definition of sum queries (Equation 16.1) the func-
tion g is explicitly given the record ‘identity’ i, and hence distinct functions
gi(·) = g(i, ·) may be applied to distinct individual records. One implication
of this choice is that in our model privacy is not a derivative of anonymity –
privacy has to be maintained when the attacker is able to separately address in
his query function each of the individual contributors to the database, i.e. even
if anonymity is breached.

A large collection of techniques for constructing sanitizers appear in the
literature, and we refer the reader to the survey in [1] for a classification of
sanitization techniques. Roughly speaking, sanitizers may decide not to answer
some queries, and to modify query results. We will restrict our attention to
sanitizers that preserve privacy by adding noise to query answers, so as to mask
out the effects of individual records, but still leave global trends visible. This
intuitively appealing technique is commonly referred to as output perturbation.

The answer given by the output perturbation sanitizer on a query f is dis-
tributed according to:

San(x, f) = f(x) + Y ,

where Y – often refereed to as noise – is a random variable taken from a
probability distribution N . In general, the noise distribution N may depend
on the query and on the actual values stored in the statistical database, i.e.
N = N (f, x). In most of our discussion, however, we will consider probabil-
ity distributions that depend on the query type, but do not depend on the actual
values stored in the statistical database2.

We will not touch upon questions of how statistical databases and their san-
itizers are actually implemented, but rather on their functionality. A typical
example where the model of statistical database directly applies is the database
of information collected by statistical agencies such as the U.S. Census Bu-
reau. Similarly, collections of individual data records collected and maintained
by health care organizations, financial organizations, search engines, etc. may

2Note that when N is a function of x special care has to be taken as the noise itself may become an
unexpected source of information leakage. See [25] and Section 16.6.1.
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be viewed as statistical databases. As noted above, our results also apply to dis-
tributed setups e.g. by reducing a distributed setup to a centralized setup using
standard cryptographic techniques of Secure Multiparty Computation [34, 21,
7, 5]. Efficient secure multiparty computation protocols may be designed for
specific sanitizers, as in [15].

16.3 Privacy

In an attack on the privacy of a statistical database, an adversarial attacker
that has complete knowledge of the sanitizer algorithm and privacy parameters
communicates with the sanitizer issuing queries f1, f2, . . . and receiving an-
swers a1, a2, . . . where ai is distributed according to San(x, fi). The issue of
attack detection, if at all possible, is beyond the scope of our discussion, and
we assume the sanitizers answers all queries as if it communicates with a legit-
imate user. The attacker may choose the queries adaptively, i.e. the choice of
query fi+1 may depend on the answers a1, . . . , ai to the previous queries. The
definition we present in this section captures the requirement that individual
privacy is preserved even in presence of any such attacker.

Definition 16.4 (Hamming Distance, Neighbor Databases)

The Hamming Distance between two databases of the same size is defined as
the number of entries on which they differ:

distH(x, x′) =
∣∣{i : xi �= x′i

}∣∣ .
Two databases that differ on a single individual entry, i.e. x, x′ such that

distH(x, x′) = 1 are called neighbor databases.

We can now state our privacy definition. It is reminiscent of (and was in-
spired by) the notion of indistinguishability of ciphertexts introduced by Gold-
wasser and Micali [20] in the context of probabilistic encryption. Informally,
a sanitizer is private if no adversary A gains significant knowledge about an
individual entry of the statistical database beyond what A could have learned
by interacting with a similar (neighbor) database where that individual entry
is arbitrarily modified, or removed. This is formalized as a requirement that
for all pairs of neighbor databases x, x′, and all possible sanitizer answers, the
probability that an adversary obtains a specific answer when interacting with
the sanitizer on the database x is within an eε multiplicative factor from the
probability the same answer is obtained on x′, where ε > 0 – the privacy para-
meter – is chosen by the privacy policy.

Definition 16.5 (ε-privacy (ε-differential privacy) [16]) A
sanitizer San is ε-private if for all neighbor statistical databases x, x′ ∈ Dn,
and for all subsets of possible answers T (i.e. subsets of the support of
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San(·)):

Pr[San(x) ∈ T ]
Pr[San(x′) ∈ T ]

≤ eε . (16.2)

The probability is taken over the coin tosses of the sanitizer.

In similarity to the security parameter of cryptographic primitives, the pa-
rameter ε controls the leakage of information about individual entries of the
statistical database. When ε is small, eε ≈ 1 + ε, and hence the requirement is
roughly that for all sets of possible transcripts T the probability of San(x) ∈ T
is about the same as that of San(x′) ∈ T .

An immediate consequence of Definition 16.5 is that the sanitizer San can-
not be deterministic (unless it computes a constant function). Otherwise, there
would exist neighbor databases x, x′ and an answer t in the support of San()
such that San(x′) = t but San(x′) �= t and hence the ratio Pr[San(x) =
t]/Pr[San(x′) = t] is unbounded.

Notation. For simplicity of exposition, we will only consider sanitizers
where San(x) is sampled from a continuous distribution. We will use the no-
tation hSan

x (t) for the probability density function of this distribution and

hSan
x (t|A) for this probability density function conditioned on the event A.

We will usually abuse notation and write hx for hSan
x .

When San(x) is sampled from a continuous distribution hSan
x we can state

an equivalent requirement to Equation 16.2:

hSan
x (t)

hSan
x′ (t)

≤ eε for all possible sanitizer answers t. (16.3)

Note 16.6 Readers familiar with the cryptographic notion of indistinguisha-
bility of ciphertexts might have expected the requirement in Equation 16.2 to
be that the distributions San(x) and San(x′) would be statistically close. In
our setting, however, the difference between these distributions should not be
negligible, as a negligible difference would disallow any utility3. When the dif-
ference ε is not negligible, the requirement of statistical difference ε is insuffi-
cient – it is possible to have two distributions San(x) and San(x′) where with
probability Θ(ε) an attacker receives an answer a ∈R San(x) that is not in the
support of San(x′) (or vice versa), and hence is able to tell these cases apart.
For small ε the multiplicative requirement of Equation 16.2 is more stringent

3This follows by a standard hybrid argument noting that for any two statistical databases x, x′ there
exist m ≤ n+ 1 statistical databases x = x1, x2, . . . , xm = x′ such that xi, xi+1 are neighbor databases
for all 1 ≤ i < m.
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than what we could get with statistical difference ε, in particular, Equation 16.2
trivially implies that the statistical difference between San(x) and San(x′) is
at most eε − 1 ≈ ε, as

Pr[San(x) ∈ T ]− Pr[San(x′) ∈ T ] ≤ (eε − 1)Pr[San(x′) ∈ T ]
≤ (eε − 1) .

There exist equivalent semantic security flavored versions of Definition 16.5,
that are somewhat less intuitive than Definition 16.5. The reader is referred to
[19, 18, 6, 16] for further discussion of these definitions.

16.3.1 Interpreting the Privacy Definition

Before diving into the techniques of constructing output perturbation san-
itizers that respect Definition 16.5, we highlight some of its properties (the
reader is referred to [18, 6, 16, 13] for further details).

Many of the privacy definitions that appear in the literature are strongly
tied with specific sanitization techniques, and specify particular properties of
the sanitization output designed to subvert specific attacks. An example is the
definition of k-anonymity [31, 32] where the information is released in a tab-
ular form so that the identifying information for each individual in the release
equals that of least k-1 other individuals in the release.

In contrast, definition of ε-privacy is not tied with a specific technique or
output format. This is important, as privacy does not rely on the assumption
that a specific sanitization technique is ‘good’. Separating privacy and saniti-
zation techniques allows meaningful comparison of sanitizers even when they
employ different techniques and use different output formats. Moreover, ε-
privacy is not a property of a specific outcome of the sanitization algorithm,
but of the sanitization algorithm itself (intuitively, that no attacker ‘wins’ the
sanitizer in a distinguishing game. No assumptions are made regarding the at-
tacker behavior, except that it accesses the information in x via San(·)).

The Case of Independent Entries. We start with the simple case where the
entries of the statistical database are chosen i.i.d. from some distribution over
the domain4. If this is the case, an ε-private sanitizer preserves the privacy of
an individual entry (wlog x1) in a very strong sense – we can bound the change
in beliefs about x1 for an attacker that is given x2, . . . , xn for free.

More formally, let b : D → {0, 1} be a predicate (i.e. b(x) = 1 if x satisfies
some property, and b(x) = 0 otherwise). The attacker’s a priori belief that

4An assumption of total independence is not realistic, however, it helps to illustrate the kind of privacy
guaranteed by Definition 16.5. We emphasize that Definition 16.5 guarantees meaningful privacy even when
the entries of the statistical database are not chosen independently.
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b(x1) holds is Pr[b(x1) = 1], where the probability is taken over the choice
of x from the domain D. As x1 is independent of x2, . . . , xn, the attacker’s
knowledge of these entries does not affect his beliefs about x1, hence

Pr[b(x1) = 1] = Pr[b(x1) = 1|x2, . . . , xn] .

The attacker’s a posteriori belief that b(x1) holds, given the sanitizer answer a
and the actual values of x2, . . . , xn is

Pr[b(x1) = 1|a, x2, . . . , xn] .

We now show that the attacker’s relative change in Pr[b(x1) = 1] is bounded
by eε. In our calculation we use two substitute values z, z′ ∈ D for x1 that
we now choose: given an answer a (i) z maximizes h(z,x2,...,xn)(a) subject to
b(z) = 1, and (ii) z′ minimizes h(z′,x2,...,xn)(a).

Pr[b(x1) = 1|a, x2, . . . , xn]
Pr[b(x1)]

=
Pr[b(x1) = 1|a, x2, . . . , xn]

Pr[b(x1)|x2, . . . , xn]

=
hx(a|b(x1) = 1, x2, . . . , xn)

hx(a|x2, . . . , xn)

≤
h(z,x2,...,xn)(a)
h(z′,x2,...,xn)(a)

≤ eε .

In this calculation we first used Bayes rule, then our choice of z, z′ and, finally,
the ε-privacy of the sanitizer.

Differential Privacy. Ideally, we would like sanitizers not to reveal any
information about individuals, as is captured by the following citation from
Dalenius: “Access to a statistical database should not enable one to learn
anything about n individual that could not be learned without access” [11].
Dwork and Naor [13] have shown that this ideal cannot be achieved when the
database has utility. I.e. for any sanitizer, and any definition of compromise,
there exists an auxiliary knowledge (information available to the attacker other
than the access to the sanitizer) such that the sanitizer enables the compromise.
That is, without communicating with the sanitizer, the auxiliary knowledge
is useless for the attacker whereas combining it with the information learned
from the sanitizer results in a compromise5. The conclusion is that an absolute
guarantee of privacy (i.e. that what an attacker learns about an individual with

5Interestingly, the argument in [13] exemplifies that even the privacy of an individual whose informa-
tion is not included in the database may be compromised this way!
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access to the database could also be learned without the access) in presence of
arbitrary auxiliary information cannot be achieved.

In contrast, Definition 16.5 succeeds in guaranteeing meaningful privacy
even in the presence of arbitrary auxiliary knowledge. That is because instead
of comparing the attacker’s knowledge with and without access to the sani-
tizer, it compares the attacker’s knowledge when it accesses (via the sanitizer)
databases (i) with the individual’s information and (ii) with the individual’s in-
formation arbitrarily modified, or even removed. This is a fair comparison as
it does not require the sanitizer to protect against those ‘breaches’ that occur,
say, even when the individual’s information is excluded.

A consequence of Definition 16.5 is that even if a participant removed her
data from the database x, no consequence of the computation San(x) would
become significantly more or less likely. For example, Suppose an individual
debates whether she should or should not contribute her true data to the medical
database of Example 16.3. Assuming the database is accessed by insurance
providers via an ε-private sanitizer, her decision may affect the probability of
receiving coverage by a factor of at most eε. Similarly, her decision might
affect the expectancy of her insurance premium by a factor of eε at most.

We note that, by the analysis below of the privacy of small groups
(Lemma 16.8), a similar phenomenon holds for any group of c contributors
(with a degradation in the privacy parameter from ε to cε).

Composition – Single vs. Multiple Queries. In the beginning of this section
we have described an adaptive adversarial attacker that communicates with
the statistical database by issuing a multitude of adaptively chosen queries to
the sanitizer. In contrast, Definition 16.5 deals with only a single query. The
following simple lemma bridges this gap.

Informally, we get that each interaction with an ε-private sanitizer results in
an ε additive decrease in privacy. Hence, to maintain ε′-privacy when q queries
are made it is sufficient that each of the queries would be answered with an ε-
private sanitizer with ε = ε′/q. For simplicity, we prove the following lemma
for non-adaptive queries. A similar argument holds for adaptive queries (see
[16]).

Lemma 16.7 Let Sani be εi-private for i = 1, . . . , q. The sanitizer that an-
swers according to San1, . . . ,Sanq (where the randomness of each sanitizer is
chosen independently of the other sanitizers) is ε′-private for ε′ =

∑
i εi.

Proof: Denote by h(i)
x the probability density function corresponding to the

distribution on Sani(x). The probability density function corresponding to the
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distribution on (San1(x), . . . ,Sanq(x)) is

h̄x(t1, . . . , tq) =
q∏
i=1

h
(i)
x (ti) .

We hence get the desired bound:

h̄x(t1, . . . , tq)
h̄x′(t1, . . . , tq)

=
∏q
i=1 h

(i)
x (ti)∏q

i=1 h
(i)
x′ (ti)

=
q∏
i=1

h
(i)
x (ti)

h
(i)
x′ (ti)

≤ e
∑

i εi = eε
′
.

Privacy of Small Groups. The requirement of Definition 16.5 is made to
neighbor databases, and hence it directly deals with the privacy of individ-
uals. In some cases, individuals guarantees are insufficient — such as when
the attacker is aware of a group of individuals that have identical or similar
information. A sanitizer San that withstands Definition 16.5 provides privacy
also for small groups, where the degradation in the privacy parameter depends
linearly on the group size:

Lemma 16.8 Let San be ε-private and consider databases x, x′ that differ on
c entries. Then

hx(t)
hx′(t)

≤ ecε .

Proof: Assume x, x′ differ on entries i1, . . . , ic. There exists databases

x = x0, x1, . . . , xc = x′

such that xi, xi+1 are neighbor databases for all 0 ≤ i < c. By Equation 16.2,
it follows that

hx(t)
hx′(t)

=
c−1∏
i=0

hxi(t)
hxi+1(t)

≤ ecε .

Hence, reasonable privacy is guaranteed for small groups — for c � 1/ε
the degradation in privacy is approximately linear in the group size as ecε ≈
1 + cε — and privacy disintegrates as the group size c grows.

ε-Privacy as a Lipschitz Condition. A mapping f : M →M ′ between two
spaces M,M ′ a function is said to satisfy the Lipschitz condition (also called
Lipschitz continuous) if there exists a constant L such that for all x, x′ ∈M

distM ′(f(x), f(x′))
distM (x, x′)

≤ L .
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The smallest L for which the above inequality holds is called the Lipschitz
constant of f .

If we view San as a function mapping statistical databases to distributions
over possible answers, then Equation 16.2 can be viewed as a Lipschitz con-
dition on San as follows. Define the following metric over distributions of
possible answers:

dist÷(S1,S2)
∆= max

T

∣∣∣∣ln PrS1 [T ]
PrS2 [T ]

∣∣∣∣ ,
where T runs over all subsets of possible samples from S1,S2. It is easy to see
that dist÷ is indeed a metric6. We can now rewrite Equation 16.2 as a Lipschitz
condition with Lipschitz constant L = ε:

dist÷(San(x),San(x′))
distH(x, x′)

≤ ε .

16.4 The Basic Technique: Calibrating Noise to Sensitivity

We will now see that it is possible to release some global information about
a statistical database while preserving privacy as in Definition 16.5. As our first
example, we will consider sum queries (Equation 16.1).

Intuitively, in order to satisfy Definition 16.5 using the technique of output
perturbation, a large enough noise is needed to be added to the result of com-
puting f(x), so as to mask out the potential difference between f(x) and f(x′)
for all its neighbor databases x′. In the case of sum queries, the difference
between f(x) and f(x′) is bounded by 1. Following this intuition, it should
be possible to guarantee Definition 16.5 while releasing noisy answers to sum
queries, where the noise magnitude is constant (i.e. independent of the data-
base size). We show that this intuition is correct. The consequence is that it is
possible to answer sum queries quite accurately while preserving privacy.

We will use the (one dimensional) Laplace distribution Lap(λ) with zero
mean and variance 2λ2, that has density function

Lap(λ) : h(t) =
1
2λ
e−

|t|
λ .

A property of the Laplace distribution that we will use extensively is that for
all t, t′:

h(t)
h(t′)

=
e

−|t|
λ

e
−|t′|

λ

= e
|t′|−|t|

λ ≤ e
|t−t′|

λ , (16.4)

where the inequality follows by the triangle inequality.

6dist÷(S1,S3) = maxT
∣∣∣ln PrS1 [T ]

PrS2 [T ]
+ ln

PrS2 [T ]

PrS3 [T ]

∣∣∣ ≤ maxT
(∣∣∣ln PrS1 [T ]

PrS2 [T ]

∣∣∣ +
∣∣∣ln PrS2 [T ]

PrS3 [T ]

∣∣∣
)
≤

maxT
∣∣∣ln PrS1 [T ]

PrS2 [T ]

∣∣∣ + maxT
∣∣∣ln PrS2 [T ]

PrS3 [T ]

∣∣∣ = dist÷(S1,S2) + dist÷(S2,S3).
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Our sanitizer answers a sum query fg =
∑

i g(i, xi) where g : N × D →
[0, 1] by computing the exact answer and adding Laplace noise with λ = 1/ε:

San(x, fg) =
∑
i

g(i, xi) + Y where Y ∼ Lap(1/ε) .

We now show that this sanitizer is indeed ε-private, i.e. that Equation 16.3 is
satisfied:

hx(t)
hx′(t)

=
h(t− f(x))
h(t− f(x′))

≤ eε|f(x)−f(x′)| ≤ eε .

The first inequality follows by Equation 16.4 and the second by noting that for
every two statistical databases x, x′ that differ on a single entry (indexed i),

|f(x)− f(x′)| = |g(i, xi)− g(i, x′i)| ≤ 1 .

The technique presented above for the simple case of sum queries may be
generalized to many other queries f , where changing a single entry in x has
limited influence on the value f(x). For simplicity, we will consider query
functions f that map the database to vectors of reals, and will use the �1 norm
on R

d as our distance metric (denoted ‖ · ‖1). We note, however, that all the
results of this section generalize to other metric spaces, with appropriate mod-
ifications.

The main result of this section is that privacy can be preserved by calibrating
the noise magnitude to a combinatorial property of the query f that we call
global sensitivity. This is a measure how an entry xi of a statistical database x
may influence the outcome of the query f :

Definition 16.9 ([16]) For f : Dn → R
d, the global �1 sensitivity of f is

GSf = max
x,x′:distH(x,x′)=1

∥∥f(x)− f(x′)
∥∥

1
. (16.5)

Note that GSf is a property inherent in the query function f , and is in partic-
ular independent of the actual content of the statistical database. The following
theorem states that adding Laplace noise with magnitude proportional to GSf
and inversely proportional to ε ensures ε-privacy:

Theorem 16.10 ([16]) For all f : Dn → R
d such that GSf < ∞ the

following sanitizer is ε-private:

San(x, f) = f(x) + (Y1, . . . , Yd) ,

where Y1, . . . , Yd are random variables drawn i.i.d. from Lap(GSf/ε).
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Proof: The proof closely follows our reasoning for the case of sum queries.
Let h̄() : R

d → R
+ be the joint probability density function of the random

variables Y = Y1, . . . , Yd. By independence, we have that:

h̄(t) = h̄(t1, . . . , td) =
d∏
i=1

h(ti) =
(

1
2λ

)d
·
d∏
i=1

e−|ti|/λ

=
(

1
2λ

)d
· e−‖t‖1/λ ,

and hence we get that (similarly to Equation 16.4):

h̄(t)
h̄(t′)

=
e

−‖t‖1
λ

e
−‖t′‖1

λ

= e
‖t′‖1−‖t‖1

λ ≤ e‖t−t′‖1/λ . (16.6)

To see that Equation 16.3 is satisfied, note that for all x, x′ such that
distH(x, x) = 1 and for all t = (t1, . . . , td):

hx(t)
hx′(t)

=
h̄(t− f(x))
h̄(t− f(x′))

≤ e‖f(x)−f(x′)‖1/λ ≤ eGSf/λ = eε ,

where the first inequality follows from Equation 16.6, the second inequality
from Definition 16.9 and the last equality by substituting λ = GSf/ε.

For an alternative proof, note that the construction in Theorem 16.10 is ac-
tually a composition of two Lipschitz continuous functions:

1 The query function f : Dn → R
d is Lipschitz continuous with Lipschitz

constant GSf , with respect to the metrics distH (overDn) and | ·‖1 (over
R
d).

2 The perturbation function P(z) mapping z ∈ R
d to the probability dis-

tribution z + Lapd(GSf/ε) is Lipschitz continuous with Lipschitz con-
stant ε/GSf , with respect to the metrics | · ‖1 (over R

d) and dist÷ (over
distributions over R

d).

The resulting function San(x) = P(f(x)) is Lipschitz continuous with Lip-
schitz constant bounded by GSf · ε

GSf
= ε.

16.4.1 Applications: Functions with Low Global
Sensitivity

Theorem 16.10 gives a simple but extremely powerful recipe for construct-
ing output perturbation sanitizers. It implies that if a query function f has
low global sensitivity, then it can be released by the sanitizer relatively ac-
curately — with noise magnitude GSf/ε. We start by showing that the global
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sensitivity of many useful functions is indeed low, and hence, for these func-
tions the technique of Theorem 16.10 may be directly applied. In Section 16.5
we extend the applicability of Theorem 16.10 by using these simple function-
alities in constructing more complex ones.

Sum Queries. For sum queries sumg(x) =
∑n

i=1 g(i, xi) where g : N ×
D → [0, 1] we have

GSsum = max
x,x′: distH(x,x′)=1

(
n∑
i=1

(
g(i, xi)− g(i, x′i)

))

= max
x,x′∈D,i∈[n]

(
g(i, x) − g(i, x′)

)
≤ 1 .

As we have already seen above, this amounts to answering the query sumg(x)
with noise magnitude 1/ε, independent of n. This is valuable as sum queries
can be used for computing basic statistics like counts and means.

Mean and Covariance. Assume v : D → R
d is some function mapping el-

ements ofD into column vectors in R
d. Applying v on the entries of a database

x ∈ Dn results in a collection of n vectors

V (x) = {v(xi)}i∈[n] .

The mean and covariance of V are defined as

µV = avg
u∈V

u = avg
i
v(xi) ,

CV = avg
u∈V

uuT − µV µTV = avg
i
v(xi)v(xi)T − µV µTV .

Define meanv : Dn → R
d and covv : Dn → R

d×d to be the functions that on
x ∈ Dn return µV and CV as above.

We consider the case where ‖v(x)‖1 ≤ γ for all x ∈ D (without bound-
ing v(x) a single change to the database can inflict unbounded change on
meanv(x) and covv(x)), and will incorporate this bound into our sensitivity
analysis.

Note that meanv,covv are simply sums, and hence may be expressed in
terms of sum queries. Hence, employing Lemma 16.7, we can compute meanv
by invoking d sum queries with noise parameter ε′ = ε/d, resulting in noise
magnitude proportional to 1/ε′ = d/ε. A similar analysis for covv yields
noise magnitude proportional to d2/ε. However, taking a closer look at these
functionalities allows us to answer these with noise magnitude that is indepen-
dent of d, as we now show.
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In our analysis we change a single entry xj of the database and bound its
effect on µV and CV . Denote by δ the difference v(xj) − v(x′j). By our as-
sumption on v(), we get that

‖δ‖1 ≤ max
x,x′∈D

‖v(x)− v(x′)‖1 ≤ 2γ .

We get that ‖mean(x)− mean(x′)‖1 = 1
n‖δ‖1 ≤ 2γ/n, and hence

GSmean ≤ 2γ/n .

To analyze GScov we treat CV as a vector of dimension d2 and apply the
�1 norm to this vector. We get that a change to a single entry xj can change the
µV µ

T
V term by at most

‖(µV +
1
n
δ)(µV +

1
n
δ)T − µV µTV ‖1 = ‖ 1

n
µV δ

T +
1
n
δµTV +

1
n2
δδT ‖1

= ‖ 1
n
µV δ

T +
1
n
δ(µV +

1
n
δ)T ‖1

≤ 4γ2/n .

The last inequality follows as ‖δ‖1 ≤ 2γ, and both ‖µV ‖1 and ‖µV + 1
nδ‖1

are bounded by γ.
A similar analysis yields a bound on the change in avg i v(xi)v(xi)T :

‖ avg
i
v(x′i)v(x

′
i)
T − avg

i
v(xi)v(xi)T ‖1 =

1
n
‖(xj + δ)(xj + δ)T − xjxTj ‖1

=
1
n
‖xjδT + δ(xj + δ)T ‖1

≤ 4γ2/n .

Where the last inequality follows from ‖δ‖1 ≤ 2γ and ‖v(xj)‖1, ‖v(x′j)‖1 ≤
γ. Combining these two inequalities we get that ‖cov(x)−cov(x′)‖1 ≤ 4γ2+
4γ2 = 8γ2, and hence,

GScov ≤ 8γ2/n .

Histograms. A histogram partitions the domain D into k disjoint bins, and
counts the number of database elements that fall within each bin. The parti-
tioning is according some partitioning function q : D → [k] where q(x) = j is
interpreted as “x belongs to the jth bin”.

histq(x) = (|{i : q(xi) = 1}|, . . . , |{i : q(xi) = k}|) .

As with meanv and covv above, it is possible to compute histq(x) by is-
suing k sum queries and applying Lemma 16.7. This would result in noise



Private Data Analysis via Output Perturbation 399

magnitude k
ε · GSsum = k

ε . A closer look at the histogram function reveals
that the dependency of the noise magnitude on k may be eliminated, as it may
be reduced to 2

ε . To see that, note that changing a database entry xi may result
in changing at most two of the counts (i.e. that of the original bin for xi and
that of the new bin for xi), each by a quantity of one. We hence get that

GShist = 2 .

Subset Sum. This is a simple extension of the histogram function, allowing
summation over disjoint subsets of the database entries. Here, again, q : D →
[k] is a partitioning function, but instead of counting the number of elements
in each bin, we sum over a function g : D → R

d where ‖g(x)‖1 ≤ γ for all
x ∈ D.

subsetsq,g(x) =

⎛
⎝ ∑
q(xi)=1

g(xi), . . . ,
∑

q(xi)=k

g(xi)

⎞
⎠ .

Combining the arguments we used for bounding GSmean and for GShist
we get

GSsubsets = 4γ .

Our last two examples for this section are query families that are not naturally
expressed as sum queries:

Distance to Property. Given a property P ⊆ Dn, the distance of a specific
statistical database x ∈ Dn from P is the Hamming distance between x and
the nearest point in P , i.e.

distanceP (x) = min
x′∈P

distH(x, x′)

Note that distanceP (x) is the minimal number of entries of x that need
to be changed so that the property P holds. changing a single entry of x results
in a change in distanceP (x) of at most 1, and hence

GSdistance = 1 .

Caveat: This result ignores the question whether distanceP is computa-
tionally tractable. An approximation to distanceP may exhibit global sen-
sitivity that is greater than 1.
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Functions with Low Query Complexity. Let f : Dn → R
d be a function

that can be accurately computed by an algorithm that peeks at a small fraction
of the database entries. I.e., there exists a randomized algorithm A such that
for all inputs x:

Pr[‖A(x)− f(x)‖1 ≤ σ] > β =
1 + α

2
and Pr[A reads xj] ≤ α for all 1 ≤ j ≤ n

Assume x, x′ differ on the jth entry. Denote by A−j(x) the distribution on
A(x) conditioned on not reading xj . We get that

Pr[‖A−j(x)− f(x)‖1 ≤ σ] >
β − α
1− α ≥

1
2
.

The same argument holds for x′. As A−j(x) and A−j(x′) are equally distrib-
uted, we get, using the union bound, that

Pr[‖A−j(x)− f(x)‖1 > σ or ‖A−j(x)− f(x′)‖1 > σ] <
1
2

+
1
2

= 1 .

Hence, there exists a point p ∈ R
d in the support of A satisfying

‖p− f(x)‖1 ≤ σ and ‖p − f(x′)‖1 ≤ σ ,

implying ‖f(x) − f(x′)‖1 ≤ 2σ. As the above argument holds for every two
databases that differ on a single entry we get that

GSf ≤ 2σ .

16.5 Constructing Sanitizers for Complex Functionalities

As we have seen above, Theorem 16.10 directly yields output perturbation
sanitizers for functions whose global sensitivity can be analyzed, and turns to
be low. For many functions, however, a direct calculation of global sensitivity
is complicated (sometimes computationally intractable), or yields high global
sensitivity, even when the function is expected to be insensitive for typical
inputs.

Lemma 16.7 suggests a partial remedy to these problems (we discuss other
techniques in Section 16.6). It implies that simple functions, that exhibit low
global sensitivity, may be combined in algorithms computing more complex
functions. Suppose algorithm A is constructed so that it behaves as if its input
is stored in a statistical database, and accesses it at most q times by simulat-
ing ε′-private sanitizers San1, . . . ,Sanq where ε′ = ε/q, then the outcome of
algorithm A is assured to preserve ε-privacy.
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We demonstrate this idea by presenting two types of results. In sections
16.5.1 and 16.5.2 we modify well known machine learning algorithms — k-
means, Singular Value Decomposition and Principle Component Analysis —
so that the resulting algorithms preserve ε-privacy. The input to these algo-
rithms is a collection of n points p1, . . . , pn ∈ R

d, where each point corre-
sponds to an individual’s information. While the original algorithms may ac-
cess their input in a point by point manner, the modified algorithms access
their input via a small number q of insensitive queries The exact answers to
these queries are replaced with noisy answers so that each answer preserves
ε′-privacy. For that, we view the collection of n points as a statistical database,
where each database entry consists a point. (See [6] for the private version of
other machine learning algorithms — the Perceptron Algorithm, and construct-
ing ID3 classification trees.)

The last result of this section is a more general result, translating a large
family of algorithms into their ε-private version, while retaining their accuracy.
A little more specifically, the result in Section 16.5.3 shows a strong connection
between learning and privacy — any learning task that can be performed in the
statistical queries learning model of Kearns [22] can also be performed while
preserving ε-privacy.

Note. In our analysis, we will need to bound the location of the input points,
and will assume they satisfy ‖pi‖1 ≤ γ for all 1 ≤ i ≤ n.

16.5.1 k-Means Clustering

Clustering is the task of partitioning n data points p1, . . . , pn into k dis-
joint sets of ‘similar’ points. One approach to solving this problem is known
as Lloyd’s Algorithm. This algorithm iteratively updates k cluster centers
c1, . . . , ck by moving each center to the mean of the points that are closer to it
than to the other centers.

k-Means Iteration:

Input: points p1, . . . , pn ∈ R
d, and centers c1, . . . , ck ∈ R

d.

1 [Partition the points into k sets]

Sj ← {pi : cj is the closest center to pi}, let sj ← |Sj| .

2 [Move each center to the mean of its associated points]
for 1 ≤ j ≤ k:

Let mj ←
∑
i∈Sj

pi, and set c′j ←
mj

sj
.
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This rule is repeated either for a fixed number of iterations, or until a conver-
gence criteria is satisfied.

At first sight it may seem that the k-Means Iteration cannot be implemented
privately. In particular, unless noise renders it useless, a partitioning of the
points according to their nearest centers would breach privacy. However, an
equivalent computation can be performed without revealing the partitioning.
Using our hist and subsets queries and setting g : R

d → R
d to be the

identity function g(p) ∆= p, and q : R
d → [k] to be the function associating

points to their centers, i.e.,

q(p) ∆= argmin
j∈[k]

(dist(p, cj) ≤ dist(p, ci) for all i ∈ [k]) ,

we can rewrite an equivalent algorithm as:

Modified k-Means Iteration:

Input: points p1, . . . , pn ∈ R
d, and centers c1, . . . , ck ∈ R

d.

1 [Compute the number of points in each of the sets Sj]

(s1, . . . , sk)← histq(p1, . . . , pn) .

2 [Compute the sum of points in each of the sets Sj]

(m1, . . . ,mk)← subsetsq,g(p1, . . . , pn) .

3 [Update each mean]
for 1 ≤ j ≤ k:

c′j ←
mj

sj
.

As our last step, we replace hist and subsets with their noisy version,
adding Laplace noise to each to each coordinate according to our analysis in
the previous section:

sj = sj + ŝj , where ŝj ∼
(
Lap(2/ε′)

)d
, and

mj = mj + m̂j, where m̂j ∼
(
Lap(4γ/ε′)

)d
.

where ε′ = ε/2. Appealing to Lemma 16.7, the outcome of the modified algo-
rithm preserves ε privacy.

We get that, as long as the number of points in each cluster is large, sj
is a good estimate of sj , and hence c′j is very close to c′j of the non private
computation. A little more formally:
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Lemma 16.11 For each 1 ≤ j ≤ k, if sj � 1/ε then with high probability

‖c′j − c′j‖1 = O

(
‖cj‖1 + γd

εsj

)
.

Proof:

‖c′j − cj‖1 = ‖mj

sj
− mj

sj
‖1

= ‖mj + m̂j

sj
− mj

sj
‖1

≤ ‖mj

sj
‖1 ·
∣∣∣∣sj − sjsj

∣∣∣∣+ ‖m̂j‖1 ·
∣∣∣∣ 1sj
∣∣∣∣

= ‖cj‖1 ·
∣∣∣∣sj − sjsj

∣∣∣∣+ ‖m̂j‖1 ·
∣∣∣∣ 1sj
∣∣∣∣ .

From our assumption that sj � 1/ε, we get that with high probability |(sj−
sj)/sj| = O(1/εsj) and |m̂j‖1/|sj | = O(γd/εsj), The lemma follows.

16.5.2 SVD and PCA

Many datamining algorithms treat their data points p1, . . . , pn ∈ R
d as an

d × n matrix A (whose columns correspond to the points), and analyze the
top k eigenvectors of the matrix AAT . This analysis can be performed while
preserving ε-privacy.

Notice that

AAT =
n∑
i=1

pip
T
i .

Hence, an analysis similar to that of cov leads to the following natural algo-
rithm:

SVD:

Input: The matrix A ∈ R
d×n and a parameter 0 < k ≤ n.

1 [Approximate AAT ]

B ←
∑
i

pip
T
i + Y where Y ∼

(
Lap(4γ2)

)d×d
.

2 Compute the top k eigenvectors of B.



404 Privacy-Preserving Data Mining: Models and Algorithms

We omit the noise analysis, but note that eigenvectors are quite robust in the
presence of independent zero-mean noise as is added in the procedure above
(moreover, the noise magnitude does not depend on n). Hence, although B is
not exactly ATA, one expects the eigenvectors computed to be close to those
of ATA.

Principle Component Analysis (PCA) is a related technique [30] where the
top k eigenvectors of the covariance matrix are computed. Again, our analysis
of the noise that should be added to the covariance matrix in order to preserve
ε-privacy yields a natural algorithm for a privacy preserving version of PCA.

16.5.3 Learning in the Statistical Queries Model

Our last example for this section is a generic transformation of algorithms
in the statistical queries learning model [22] to algorithms that access their
data via noisy sum queries, and hence their outcome preserves privacy. In the
statistical query model, a latent probability distribution over the domain D is
assumed, and, instead of accessing samples of this distribution, learning algo-
rithms repeatedly invoke the following computational primitive:

Statistical Query:

Input: A predicate p : D → {0, 1} and an additive accuracy parame-
ter τ .

Output: The expected fraction of samples satisfying p(), to within ad-
ditive error τ .

Conceptually, the framework models drawing a sufficient number of samples
so that the observed count of samples satisfying p is a good estimate of the
actual expectation.

A learning algorithm learns a concept — predicate c out of a concept class
C — if it produces a predicate such that the probability of misclassification un-
der the latent distribution is bounded by some parameter δ. The transformation
from learning algorithms in the statistical learning model to private learning
algorithms is rather straightforward. If the number of samples is large enough,
then we can use noisy sum queries to estimate the probability of p() within the
required accuracy.

Statistical Query Emulation:

Input: p, τ , error probability δ′, allotted privacy parameter ε.

1 [Check if query can be computed accurately enough without breaching
privacy]

Set ε′ ← ln(1/δ′)
τn

; If ε < ε′ then halt.
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2 Answer sump+Y
n where Y ∼ Lap(1/ε′).

3 [Update allotted privacy parameter]

Set ε← ε− ε′ .

Theorem 16.12 Let A be an algorithm that δ-learns a concept class C us-
ing at most q statistical queries of accuracy {τ1, . . . , τq}. If

n ≥ 1
ε

ln
(q
δ

) q∑
i=1

1
τi
,

thenA that accesses Private Statistical Query with error parameter δ′ = δ/q
can 2δ-learn C on n elements while preserving ε-privacy.

Proof: Note in the ith call to Private Statistical Query ε′i = ln(q/δ)
τin

, hence
the procedure never halts as

1
n

ln
(q
δ

) q∑
i=1

1
τi
≤ ε .

To see that the misclassification probability of A grows by at most δ note
that the value of |Y | is distributed according to the exponential distribution, and
satisfies Pr[|Y | > z] = e−z/λ. Hence, the probability that in the ith iteration
|Y | > nτi is bounded by e−nτiε

′
= δ/q. Using the union bound, the probability

that in any of the iterations |Y | > nτi is bounded by δ.
Finally, using Lemma 16.7 we get that the outcome of A preserves

ε-privacy.
The importance of Theorem 16.12 is in its generality. Although it would

probably not yield the most efficient algorithm for specific learning tasks (e.g.
in terms of the number of samples needed), it shows that an important collec-
tion of learning problems can be solved while preserving ε-privacy.

16.6 Beyond the Basics

As we have seen in Section 16.4.1, Theorem 16.10 directly yields simple
output perturbation sanitizers for a variety of functions — those which exhibit
low global sensitivity. However, in some cases Theorem 16.10 cannot be di-
rectly used. E.g. when one is interested in a query f that does not exhibit low
global sensitivity (when compared with the magnitude of f(x)), or the global
sensitivity of f is hard to analyze (or intractable), or when the range of f does
not lend itself to a natural metric. In Section 16.5 we have seen one technique to
get around these shortcomings, by expressing complex functionalities in terms
of simple, insensitive ones, that are easy to analyze.
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We review some of the more recent techniques for creating algorithms that
preserve ε-privacy. The presentation of this section is not self contained as we
only attempt to present the main ideas.

16.6.1 Instance Based Noise and Smooth Sensitivity

The framework of Theorem 16.10 considers the global, i.e. worst-case, sen-
sitivity of the query function f . However, for many interesting functions, the
worst-case sensitivity is high due to instances that do not typically occur in
practice. As an example, consider the median function:

Example 16.13 (Median) Let x1, . . . , xn be real numbers taken from a
bounded interval [0, 1]. The median of x = x1, . . . , xn is its middle ranked ele-
ment. Assuming (for simplicity) that n is odd, and that x1 ≤ x2 ≤ · · · ≤ xn, we
can write: med(x) = xn+1

2
. Although med is usually considered insensitive, it

exhibits high global sensitivity. To see that, consider the case where

x1 = · · · = xn+1
2

= 0 and xn+1
2

+1 = · · · = xn .

Note that med(x1, . . . , xn) = 0, and that by setting xn+1
2

= 1, we get

med(x1, . . . , xn) = 1. Hence, GSmed = 1. Applying Theorem 16.10 hence
results with noise magnitude GSmed/ε that, for small ε, completely destroys
the information.

A first natural attempt at fixing this problem is to consider a local variant of
Equation 16.5, and perturb the query function result with noise poroportional
to it:

LSf (x) = max
x′:distH(x,x′)=1

‖f(x)− f(x′)‖1 .

(Observe that GSf = maxx LS(x).) This attempt fails, as we show now for
the median.

Example 16.13 (Median (cont.)) It is easy to see that given an in-
stance x, the maximum change in med(x) occurs when x1 is set to 1 or when
xn is set to 0. This observation yields an expression for the local sensitivity in
terms of the values next to the median:

LSmed(x) = max
(
xn+1

2
− xn+1

2
−1, xn+1

2
+1 − xn+1

2

)
.

For inputs where a constant fraction of the population is uniformly concen-
trated around the median we get LSmed(x) ∝ 1

n � GSmed.
Releasing med(x) with noise sampled from Lap(LSmed(x)/ε) fails to sat-

isfy Definition 16.5. For instance, the probability of receiving a non-zero an-
swer when x1 = · · · = xn+1

2
+1 = 0 and xn+1

2
+2, . . . , xn > 0 is zero,
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whereas the probability of a non-zero answer on its neighbor database where
xn+1

2
+1 > 0 is one.

This example illustrates that special care has to be taken when adding in-
stance based noise. As the noise is correlated with the instance x, it may it-
self be the cause of information leakage. To prevent this kind of leakage, a
variant of local sensitivity — smooth sensitivity — was defined in [25], such
that adding noise proportional to the smooth sensitivity at x is safe. Unlike lo-
cal sensitivity, smooth sensitivity does not change abruptly as x changes, and
hence an adversary cannot distinguish well the noise distributions on neighbor
databases, as was in the example above.

We will only preset the definition of smooth sensitivity, without getting into
the details of constructing output perturbation sanitizers with instance based
noise7.

Definition 16.14 (Smooth Sensitivity) An ε-smooth upperbound on
LSf is a function satisfying

Sf (x) ≥ LSf (x) for all databases x ; and

Sf (x) ≤ eεSf (x′) for all neighbor databases x, x′ .

Clearly, Sf (x) = GSf is an ε-smooth upperbound on LSf , but the defini-
tion allows for cases where Sf (x) � GSf , and hence a gain with respect to
Theorem 16.10.

It turns out that a minimal ε-smooth upperbound on LSf exists. This func-
tion is called the ε-smooth sensitivity of f and satisfies for every smooth up-
perbound Sf on LSf :

S∗
f (x) ≤ Sf (x) for all x ∈ Dn .

It can be shown that

S∗
f (x) = max

x′∈Dn

(
LSf (x′) · eε·distH(x,x′)

)
. (16.7)

Equation 16.7 implies that low noise may be added at the instance x if the
local sensitivity at its ‘neighborhood’ is low (i.e. LSf (x′) is low for those in-
stances x′ where distH(x, x′) is small), as the influence of far instances decays
exponentially with distH(x, x′).

Computing S∗
f (x) may prove to be tricky, and if an approximation to S∗

f (x)
is used for the noise magnitude, it has to be a smooth upperbound on LSf by
itself. We omit these details, and refer the reader to [25] where it is shown how
to compute S∗

f (x) for queries like median, minimum, and graph problems such
as MST cost and the number of triangles in a graph.

7The technicalities include (i) a relaxation of Definition 16.5 where breaches may occur with negligible
probability, and (ii) conditions on the noise process (in analogy to Equation 16.6).
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16.6.2 The Sample-Aggregate Framework

The sample-aggregate framework of [25] is a generic technique for creat-
ing a ‘smoothed’ version f̄ of a query function f . Assume f(x) is a func-
tion that can be well approximated on random samples taken from x1, . . . , xn.
We abuse notation and write f(S) for the approximation of f(x) where
S ⊂ {x1, . . . , xn} although f is formally defined to take an n-tuple as input.

The function f is evaluated on several random samples, and the results of
these evaluations f(S1), . . . , f(St) are combined using an aggregation func-
tion g:

f̄ = g(f(S1), . . . , f(St)) .

The main observation is that to preserve privacy it is sufficient to add noise
whose magnitude depends on the smooth sensitivity8 of the aggregation func-
tion g. To illustrate why privacy would be preserved, assume (for simplic-
ity) that each entry from x1, . . . , xn appears in exactly one of the samples
S1, . . . , St. As Definition 16.5 is only concerned with neighbor databases, we
only need to care about a change in a single entry xi ∈ Sj . however, a change
in xi may only affect a single of the inputs to g (i.e. f(Sj)). Even if the change
in f(Sj) is significant, it is enough to mask it by adding noise proportional to
the smooth sensitivity of g. (The complete argument is a little more involved.
In particular, xi may appear in several of the subsets.)

The crux of this technique is finding good aggregation functions, i.e. func-
tions g whose outcome (plus the required noise) would faithfully represent
f(S1), . . . , f(St). In particular, when f(S1), . . . , f(St) are well concentrated
(or ‘clustered’), the aggregation g(f(S1), . . . , f(St)) should return a point that
is close to the cluster center, and the noise level should be low. Furthermore,
we would like g, and its smooth sensitivity to be efficiently computable. An
aggregation function satisfying these requirements — the center of attention
— was proposed in [25].

The sample-aggregate technique was applied to Lloyd’s algorithm, and to
the problem of learning the parameters of a mixture of k spherical Gaussian
distributions when the data x consists of polynomially-many (in the dimension
and k) i.i.d. samples from the distribution.

As with the result of Section 16.5.3, an application of sample-aggregate
need not always result in the optimal sanitizer. It serves, however, as a strong
feasibility result that is appealing to our intuition, showing that all functions
that are well approximated on random samples can be computed privately with

8In principle, adding noise proportional to global sensitivity would also work.
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relatively low noise9. Furthermore, aggregation may serve as a strong algorith-
mic tool in the construction of private data analysis algorithms.

16.6.3 A General Sanitization Mechanism

We conclude this short section with another generic technique for construct-
ing ε-private sanitizers, recently put forward by McSherry and Talwar [28]. In
this technique the query function f : Dn → R is replaced with a score (or
output quality) function q : Dn ×R → R. Intuitively, q(x, r) may represent a
query function f(x) by giving high scores to pairs (x, r) such that f(x) = r,
e.g., for real valued functions we may define q(x, r) = −‖f(x)− r‖1.

We can define a property of the function q that is analogous to our definition
of sensitivity:

∆q = max
r

max
x,x′:distH(x,x′)=1

q(x, r)− q(x′, r) .

The ε-private sanitizer then picks an answer r ∈ R with probability propor-
tional to e

ε
2∆q

q(x,r).
This sanitization mechanism improve on the results of Section 16.4 as it

does not require the range R of f to be a metric space. Note, however, that
this generality may come with a price, as sampling the answer r may be a
non-trivial.

16.7 Related Work and Bibliographic Notes

There is a vast body of work on private data analysis, pertaining to research
disciplines as statistics, security, databases and cryptography. Our goal in this
short section is not to review this rich work, but rather to reference that part of
recent work on private data analysis which is most relevant to our presentation.

The recent interest in perturbation techniques for privacy was rekindled in
part due to a work by R. Agrawal and Srikant [6]. They considered a non-
interactive input perturbation model, akin to [33], where individual informa-
tion is sanitized once by adding noise. D. Agrawal and Aggarwal [4], and later
Evfimievski, Gehrke, and Srikant [19] improved on the privacy definition of
[6]. In particular, [19] defined privacy in terms of the change between the a
priori and the a posteriori probability of arbitrary predicates applied to individ-
ual records, and identified a sufficient criteria of the randomization operator
for guaranteeing privacy.

Dinur, Dwork, and Nissim [12, 18] initiated a formal study of privacy in data
analysis, in light of modern cryptographic research. [12] studied the required

9In fact, the feasibility result is stronger: for all instances x where f can be well approximated on
random samples, it is possible to learn f(x) with low noise.
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noise magnitude for output perturbation when an attacker issues subset-sum
queries. Stating the problem as a decoding with noise, they showed that an at-
tacker that makes an exponential number of queries, can reconstruct almost the
entire database, unless noise magnitude is Ω(n); and, similarly, that a polyno-
mial time attacker that makes ≈ n random queries may accurately reconstruct
almost the entire database, unless noise magnitude is ≈ √n. These results
were strengthened by the recent work of Dwork, McSherry, and Talwar [17].
The negative results of [12] guided some of the developments towards the tech-
niques described in this chapter.

The first formal definitions of privacy [19, 12, 18, 8, 6] were well understood
when the database entries were sampled i.i.d. from some distribution, and with-
out attacker access to auxiliary information. Trying to capture the more general
case, led to the notion of ‘informed adversary’ in [6]. The definition presented
herein (Definition 16.5 from [16]) is more intuitive and easier to understand. It
was influenced by the impossibility result of Dwork and Naor [13]. The notion
of differential privacy is due to Dwork and McSherry [13].

The first positive results in the line that led to the techniques presented here
are by Dinur, Dwork, and Nissim [12, 18]. These results dealt with sum queries,
and capitalized on limiting the number queries made to the database to be sub-
linear in its size. Blum et al. [6] have further built on these results, showing
that for many algorithms there exists a version that accesses their inputs via a
limited number of noisy sum queries, and hence preserves privacy. These tech-
niques were generalized from sum queries to arbitrary queries in the framework
of calibrating noise to global sensitivity [16]. This framework resulted in sim-
plified proofs of privacy as well as noise magnitudes that were lower than what
was possible by previous work. The work in [25] introduced the concept of
smooth sensitivity and presented the sample-aggregate framework. The recent
work of [28] presented the general sanitization mechanism.

The area of private data analysis has been very dynamic in the last few
years, yielding many interesting results that are not included in this chapter,
some of which we reference briefly below. Chawla et al. [8, 9] have initiated
a study of non-interactive sanitization under a formal definition of privacy re-
quiring the inability of an adversary to isolate an individual in the database.
Another approach to non-interactive sanitization, based on techniques similar
to those in this writeup was put forward by Dwork and Nissim [18]. Kentha-
padi et al. [23] studied auditing — a technique where the sanitizer may refuse
to answer ‘dangerous’ queries — and have put forward a notion of simulatable
auditing where the decision whether to allow a query does not leak informa-
tion. Dwork et al. [15] presented the first distributed noise generation protocols.
Mishra and Sandler [27] presented pseudorandom sketches. It turns out that in
terms of utility there is a separation between interactive and non-interactive
sanitization. A weak result is implied by the impossibility result of [12] and
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stronger results were presented in [16, 17]. Chaudhuri and Mishra [10] discuss
the privacy of random samples. Barak et al. [4] show how to construct consis-
tent contingency tables. McSherry and Talwar [28] initiate an exploration of
the relationship between privacy and game theory and show that privacy has
implications to mechanism design.
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17.1 Introduction

This chapter is a survey of query auditing techniques for detecting and pre-
venting disclosures in a database containing private data. Informally, auditing
is the process of examining past actions to check whether they were in confor-
mance with official policies. In the context of database systems with specific
data disclosure policies, auditing is the process of examining queries that were
answered in the past to determine whether answers to these queries could have
been used by an individual to ascertain confidential information forbidden by
the disclosure policies. Techniques used for detecting disclosures could poten-
tially also be used or extended to prevent disclosures, and so in addition to the
retroactive auditing mentioned above, researchers have also studied an online



416 Privacy-Preserving Data Mining: Models and Algorithms

variant of the auditing problem wherein the task of an online auditor is to deny
queries that could potentially cause a breach of privacy.

Other common approaches to tackling the disclosure prevention problem
include adding noise to the the data or otherwise perturbing the query results
supplied to the user. However statisticians are generally averse to potential
biases introduced by adding noise. One commonly stated reason is that the data
collection process is already prone to biases and imperfections due to factors
such as too few respondents, the cost of gathering data, and inaccurate answers
provided by respondents. Since important decisions are made based on this
data, they prefer to receive answers without additional noise. It is in this context
that query restriction techniques become relevant in disclosure prevention. The
work on offline (or retroactive) auditing has also similarly focused on the case
where answers supplied to users are exact.

The main focus of this chapter will be on statistical databases with a single
private attribute that only permit aggregate queries such as sum, max, min or
median over this private attribute. An instructive example is a company data-
base with employee salary as a private attribute. Or a set of medical records
with a boolean private attribute indicating whether or not a patient was HIV-
positive. We will first review the most commonly used notion of disclosure in
the statistical database literature called full disclosure and then review algo-
rithms and hardness results for offline auditing that have been developed for
different classes of queries under this definition.

A natural question to ask is whether offline auditors could directly be used
as online auditors as well. The answer to the question, as we shall see, is no
due to the fact that query denials can leak information. Researchers have pro-
posed the paradigm of simulatability to surmount this problem, and developed
simulatable auditors for different classes of queries to prevent full disclosure.
We will review some of them.

The notion of full disclosure is not entirely satisfactory as a measure of dis-
closure, so we will next present a recently proposed measure called partial
disclosure as well as simulatable online auditors that have been proposed for
different classes of queries under this definition. We will conclude the chapter
with a brief survey of results in another auditing scenario where the informa-
tion to be protected is an arbitrary view of the database; and finally end with a
discussion of the limitations of present day auditing techniques.

17.2 Auditing Aggregate Queries

Most work on aggregate queries has focused on the case of a single numer-
ical private attribute that is either real valued (from a bounded or unbounded
range) or boolean. Additionally, most auditing algorithms developed are for
queries of only one kind, with hardness results for auditing combinations of
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queries. Before proceeding further, we will formalize some of the terminology
used in the remainder of this section.

Let X = {x1, . . . , xn} be the set of private attribute values of n individuals
in a database. An aggregate query q = (Q, f) specifies a subset of the records
Q ⊆ {1, . . . , n} and a function f such as sum, max, min or median. The
result, f(Q), is f applied to the subset {xi | i ∈ Q}. We call Q the query set
of q.

17.2.1 Offline Auditing

We now survey some of the results in the offline auditing literature.

Full Disclosure. Given the set of private values X and a set of aggregate
queries Q = {q1, . . . , qt} posed over this data set that were correspondingly
answered {a1, . . . , at}, the goal of an offline auditor is to determine if an indi-
vidual’s private value can be deduced. Traditionally, the definition of disclosure
that has been used is the notion of full disclosure defined below.

Definition 17.1 (Full Disclosure) An element xi ∈ X is fully dis-
closed by a query set Q if it can be uniquely determined, i.e., in all possible
data sets X consistent with the answers a1, . . . , at, to queries q1, . . . , qt, xi is
the same.

As a simple example, if the query set consisted of a single query asking for
the sum of the salaries of all the female employees in the company, and Alice
was the only female employee in the company, then the answer to this query
uniquely determines Alice’s salary.

In general the answers to many different queries can be stitched together
by a user to uniquely determine an individual’s private value. The goal of the
auditor then is to prevent such a full disclosure.

Examples of Offline Auditors. As one example of such an auditor, consider
a set of sum queries posed over X, the elements of which are real-valued from
an unbounded range. To determine if the answers to these queries can be used
to uniquely deduce some private value, the auditor essentially needs to solve
a system of linear equations. It maintains a matrix where the rows correspond
to queries and the columns to private values. Each query is represented by a
vector of 1s and 0s, indexing the private elements that were in the sum query.
The matrix of query vectors is diagonalized via a series of elementary row
operations and column interchanges. If the resulting matrix has a row with
only one 1 and n−1 0s, then some element is uniquely determined. Since only
a linearly independent set of query vectors need to be examined, the matrix is
of size at most n×n, and the diagonalization can be carried out in time O(n3).
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Since finding a maximal set of linearly independent query vectors requires
O(n2|Q|) time, sum queries can be audited in polynomial time.

Theorem 17.2 Let X ∈ R
n be a data set of private values. There is an

algorithm to determine if an xi ∈ X is fully disclosed by a set of sum queries
Q and corresponding answers A that runs in time O(n3 + n2|Q|).

Besides sum queries, offline auditors for exact determination of full disclo-
sure also exist for combinations of max and min queries, median queries and
average queries over real-valued data. Unfortunately, no significant progress
has been made in auditing arbitrary combinations of aggregate queries. For ex-
ample, the following hardness result has been proved via a reduction from set
partition.

Theorem 17.3 There is no polynomial time full-disclosure auditing algo-
rithm for sum and max queries unless P=NP.

The auditing problem has also been examined when the private attribute
is boolean. Surprisingly, full-disclosure auditing of sum queries over boolean
data is coNP-hard. There exists an efficient polynomial time algorithm, how-
ever, in the special case where the queries are 1-dimensional, i.e., for some or-
dering of the elements inX, the query set for each query involves a consecutive
sequence of xi’s. Considering such restrictions of the general auditing problem
is useful in practice, since in reality, users would rarely be able to pose queries
over arbitrary subsets of the data. Rather, they would use conditions over some
attribute or combinations of attributes to select specific records in the data set
to aggregate. For example, a realistic query would ask for the total number of
HIV-positive people in a particular age group. The set of queries asking for the
total number of HIV-positive people in various age groups would form a set of
1-dimensional sum queries over a boolean private attribute. Such assumptions
about the structure of queries can yield even more efficient auditors. For ex-
ample, the sum auditor over real-valued data can be made to run in linear time
over 1-dimensional sum queries.

17.2.2 Online Auditing

In recent years, researchers have also become interested in the online au-
diting problem as a means of preventing data disclosure. Given a sequence
of queries, q1, . . . , qt−1 that have already been posed, corresponding answers
a1, . . . , at−1 that have already been supplied, and a new query qt, the task of an
online auditor is to determine if the new query should be answered as such, or
denied in order to prevent a privacy breach. Here each of the previous answers
ai, is itself either the true answer fi(Qi) to query qi, or a “denial”.

The earliest online auditors prevented disclosures by restricting the size and
overlap of queries that could be answered. For the case of sum queries, for
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instance, it was shown that for queries with query sets of exactly k elements,
each pair of query sets overlapping in at most r elements, any data set can be
compromised in (2k − (l + 1))/r queries by an attacker who knows l values
a priori. For fixed k, r and l, if the auditor denies answers to query (2k − (l +
1))/r and on, then the data set is definitely not compromised, i.e., no private
value can be uniquely determined. Such an auditing scheme is rather limited:
if k = n/c for some constant c and r = 1, then after only a constant number of
distinct queries, the auditor would have to deny all further queries since there
are only about c queries where no two overlap in more than one element. This
motivated a search for auditors that could provide greater utility.

The next natural question is whether offline auditors can directly solve the
online auditing problem. Whenever a new query is posed, the online auditor
checks to see if the answer to this query in combination with all previous query
responses can be used to uniquely determine a private value. If so, the query is
denied, else it is answered exactly. While it would seem that such an approach
should work, in actuality it does not as we demonstrate next.

Example where Denials Leak: Suppose that the underlying data set is
real-valued and that a query is denied only if some value is fully disclosed.
Suppose that the attacker poses the first query sum(x1, x2, x3) and the au-
ditor answers 15. Suppose also that the attacker then poses a second query
max(x1, x2, x3) and the auditor denies the answer. The denial tells the attacker
that if the true answer to the second query were given then some value could
be uniquely determined. Note that max(x1, x2, x3) �< 5 since then the sum
could not be 15. Further, if max(x1, x2, x3) > 5 then the query would not
have been denied since no value could be uniquely determined. Consequently,
max(x1, x2, x3) = 5 and the attacker learns that x1 = x2 = x3 = 5 — a pri-
vacy breach of all three entries. The issue here is that denials reduce the space
of possible consistent solutions, and we have not explicitly accounted for this.

In this example only a few values were compromised. However, it is possible
to construct examples where a large fraction of private values can be uniquely
determined. Intuitively, denials that depend on the answer to the current query
leak information because users can ask why a query was denied, and the reason
is in the data. If the decision to answer or deny a query depends on the actual
data, it reduces the set of possible consistent solutions for the underlying data.

Another naive solution to the leakage problem is to deny whenever the of-
fline algorithm does, and to also randomly deny queries that would normally be
answered. While this solution seems appealing, it has its own problems. Most
importantly, although it may be that denials leak less information, leakage is
not generally prevented. Furthermore, the auditing algorithm would need to
remember which queries were randomly denied, since otherwise an attacker
could repeatedly pose the same query until it was answered. A difficulty then
arises in determining whether two queries are equivalent. The computational
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hardness of this problem depends on the query language, and may be in-
tractable, or even undecidable. As a work around to this problem, the simu-
lation paradigm (used vastly in cryptography) was proposed and is described
next.

Simulatable Auditing. The idea for simulatable auditing came from the
following observation: Query denials have the potential to leak information if
in choosing to deny, the auditor uses information that is unavailable to the at-
tacker (the answer to the newly posed query). A successful attacker capitalizes
on this leakage to infer private values. The requirement of a simulatable audi-
tor then, is that the attacker should be able to simulate or mimic the auditors
decisions to answer or deny a query. In such a scenario, because the attacker
can equivalently determine for himself when his queries will be denied, denials
provably do not leak information. More formally, let Q = {q1, . . . , qt} be any
sequence of queries and A = {a1, . . . , at} be their corresponding answers.
Here each ai is either the exact answer fi(Qi) to query qi on the data set X, or
a denial.

Definition 17.4 (Online Auditor) An online auditor B is a function
of Q,A and X that returns as output either an exact answer to qt or a denial.

Definition 17.5 (Simulatable Auditor) An online auditor B is sim-
ulatable, if there exists another auditor B′ that is a function of only Q and
A \ at and whose output on qt is always equal to that of B.

An attractive property of simulatable auditors is that the auditor’s response
to denied queries does not convey any new information to the attacker (beyond
what is already known given the answers to the previous queries). Hence de-
nied queries need not be taken into account in future decisions that the auditor
makes.

Note that the auditor that restricted the size and overlap of queries was sim-
ulatable since it never actually looked at the answers to queries in choosing
to deny. As another example of a simulatable auditor, the sum auditor over
real-valued data from Section 17.2.1.0 is also simulatable since all that is ex-
amined in making the decision to deny or answer is the matrix of query vectors
and never the actual answers to any of the queries, let alone the answer to the
current query. In contrast to the query-size-and-overlap-restricting auditor, this
auditor has also been shown to provide fairly high utility for large data sets —
in a sequence of random sum queries over a data set, the first denial can be
expected to occur only after a linear number of queries.

A more general sufficient condition for ensuring simulatability is that in
making its decision, with each new query, the auditor should determine if there
is any possible data set, consistent with all past responses, in which the answer
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to the current query would cause some element to be fully disclosed. If so,
the query should be denied, else it can be answered. Since this is a condition
that an attacker could check for himself and predict denials, denials leak no
information. Using this idea, simulatable online auditors have been constructed
for max and min queries.

In the example from the previous section, the query q1 = sum{x1, x2, x3}
would be answered, since no matter the answer, no element from the data set
could be uniquely pinned down. The second query q2 = max{x1, x2, x3}
would always be denied, since there is a possible answer to this query, con-
sistent with the answer to q1 that would cause a private value to be uniquely
determined. Note that if the actual answer to q2 had been greater than 1

3f1(Q1),
q2 would in reality have been safe to answer, and thus we lose some utility due
to the requirement of simulatability.

Partial Disclosure. The notion of full disclosure as a measure of privacy
breach has certain shortcomings. Even if a private value cannot be uniquely
determined, it might still be determined to lie in a tiny interval, or even in a
large interval with a heavily skewed distribution — and some might consider
this to be sufficient disclosure. Researchers proposed a new definition of pri-
vacy to mitigate this issue by modeling the change in an attacker’s confidence
about the values of private data points. In this definition, it is assumed that the
data is drawn from some distribution D on (−∞,∞)n that is known to both
the attacker and the auditor. See Section 17.2.2.0 for some discussion about
this assumption.

Let Q = {q1, . . . , qt} be a sequence of queries on the data set X and let
A = {a1, . . . , at} be the corresponding answers. Here each ai is either the true
answer to query qi on X or a denial. We allow the auditor to be randomized,
i.e., it’s decision to answer or deny a query need not be deterministic.

Definition 17.6 (Randomized Auditor) A randomized auditor is a
randomized function of Q, A, X and D that returns as output either an ex-
act answer to qt on X or a denial.

We say that the sequence of queries and corresponding answers is λ-safe
for an element xi and an interval I ⊆ (−∞,∞) if the attacker’s confidence
that xi ∈ I does not change significantly upon seeing the queries and answers.
Consider for example a private value such as salary: if a sequence of queries
and answers does not change an attacker’s confidence about a private individ-
ual’s salary, then the sequence is safe.

Definition 17.7 (λ-safe) The sequence of queries and answers,
q1, . . . , qt, a1, . . . , at is said to be λ-safe with respect to a data element xi and
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an interval I ⊆ (−∞,∞) if the following Boolean predicate evaluates to 1:

Safeλ,i,I(q1, . . . , qt, a1, . . . , at) ={
1 if 1/(1 + λ) ≤ PrD(xi∈I|q1,...,qt,a1,...,at)

PrD(xi∈I) ≤ (1 + λ)
0 otherwise

Partial disclosure is defined in terms of the following predicate that eval-
uates to 1 if and only if q1, . . . , qt, a1, . . . , at is λ-safe for all entries and all
intervals1:

AllSafeλ(q1, . . . , qt, a1, . . . , at) = (17.1)⎧⎨
⎩

1 if Safeλ,i,I(q1, . . . , qt, a1, . . . , at) = 1, for every i ∈ [n] and
every interval I

0 otherwise

We now turn to the privacy definition. Consider the following (λ, T )-privacy
game between an attacker and an auditor, where in each round t (for up to T
rounds):

1 The attacker (adaptively) poses a query qt = (Qt, ft).

2 The auditor determines whether qt should be answered. The auditor re-
sponds with at = ft(Qt) if qt is allowed and with at = “denied” other-
wise.

3 The attacker wins if AllSafeλ(q1, . . . , qt, a1, . . . , at) = 0.2

Definition 17.8 (Private Randomized Auditor) An auditor is
(λ, δ, T )-private if for any attacker A

Pr[A wins the (λ, T )-privacy game] ≤ δ .

Here the probability is taken over the distribution D that the data comes from
and the coin tosses of the auditor and the attacker.

Since here too, one would like to ensure that denials leak no information, the
condition of simulatability is imposed on auditors that are designed. Consider
Q, A and X as before. Then,

Definition 17.9 (Simulatable Randomized Auditor) A random-
ized auditor B is simulatable, if there exists another auditor B′ that is a ran-
domized function of only Q, A \ at and D such that the output of B′ on qt is
computationally indistinguishable from that of B.

1In reality, the privacy definition only considers all intervals that have a significant prior probability
mass.

2Hereafter, we will refer to the predicates without mentioning the queries and answers for the sake of
clarity.
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Discussion on Privacy Definition. Note that the above definition of privacy
makes the assumption that the distribution from which the data is drawn is
known to the attacker. In reality it need not be. In this scenario, the predicate
AllSafe needs to be evaluated with respect to the attacker’s prior distribution,
since compromise occurs only if there is a substantial change in his beliefs.
However, if the attacker’s distribution can be arbitrarily far from the true data
distribution, there is not much that the auditor can release without causing
partial disclosure of some private value, since it is required to release exact
answers if at all. For example, consider a database that contains height as a
private attribute, and consider an attacker whose prior belief is that all men are
less than a foot tall. If by querying the data, the attacker suddenly learns that
this is not true and there is substantial change in his posterior distribution, the
privacy breach would be massive. In reality, his prior beliefs are so far off the
mark, that there is no aggregate query about the heights that the auditor can
truthfully answer without compromising privacy, not even the average height
of all people in the database.

Instead the data distribution that we assume the auditor and the attacker
share is supposed to represent such common sense facts and it allows for more
useful information to be released. There are many circumstances where such
an assumption is realistic. For example, distributions of attributes such as age
or salary may be known from previous data releases or even published by the
auditor itself.

A General Approach for Constructing Private Randomized Auditors.
A query is thus safe to answer if doing so is not likely to cause a significant
change in the attacker’s confidence that an xi lies in any interval. Also, the
decision to deny must be simulatable. We now describe a general approach that
could be used to construct such simulatable randomized auditors. Figure 17.1
gives a high level picture.

Generate
consistent answer

a’t to qt

repeat

Yes, often

No, most of the time

Deny

Answer
a1, ..., at−1

q1, ..., qt
Do q1, ..., qt
a1, ..., at−1,a

,
t

cause a privacy
breach?

Figure 17.1. Skeleton of a simulatable private randomized auditor
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The basic idea is to have the auditor generate random data sets (of n private
values) consistent with answers to past queries. The data sets are generated
according to the distribution D conditioned on the past answers. The auditor
then checks to see if answering the new query on these random data sets causes
a significant change in the attacker’s confidence about any xi. If the answer is
‘no’ for a sizable fraction of the generated data sets, the query is safe to answer.
Since the true answer to the query is never looked at in this process, the auditors
are simulatable and denials provably do not leak information.

The left circle in Figure 1.1 thus represents the process of generating a pos-
sible answer a′t to the new query according to D conditioned on past answers,
and the right circle represents the evaluation of the predicate AllSafe (Equation
1.1) that checks to see whether privacy is violated for any xi and any interval
I if a′t were revealed in conjunction with all previous answers. For each new
query this procedure is repeated many times, and the decision to deny is based
on the fraction of sampled consistent answers that cause a privacy breach. By
repeating often enough and choosing an appropriate cut-off for denials, it can
be shown using Chernoff bounds, that the above procedure gives us a (λ, δ, T )-
private auditor.

One technicality arises from the fact that the AllSafe predicate needs to
be evaluated with respect to an infinite number of intervals. It can be shown
that requiring the a-priori and posteriori probabilities of a private value to be
close on arbitrarily small intervals would cause no queries to be answered at
all, and therefore existing literature focuses on protecting the privacy of only
intervals that have a significant a-priori probability mass. While there may also
be an infinite number of such intervals, it can be shown that if each xi is drawn
independently according to some distribution H on (−∞,∞), then we only
need to check for privacy with respect to a finite number of non-overlapping
intervals I . Thus far randomized auditors have only been designed for data sets
where the private values are drawn iid from such an underlying distribution.

Randomized Auditor for Sum Queries. We will now briefly describe how
the above generic approach can be tuned to obtain a private randomized auditor
for sum queries (where each query is of the form sum(Qj) for some query set,
Qj).

Prior to describing the solution, we give some intuition. Assume for sim-
plicity that each private value is drawn uniformly at random from the range
[0, 1]. Then the data set X = {x1, . . . , xn} can be any point in the unit cube
[0, 1]n with equal probability. A sum query and its corresponding answer in-
duce a hyperplane. The data sets consistent with one sum query and its answer
are then those points in [0, 1]n that fall on this hyperplane. Each successive
query and answer reduces the space of possible consistent data sets to those
points in [0, 1]n that fall in the intersection of the induced hyperplanes, i.e., the
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consistent data sets lie in a convex polytope. Because the prior distribution is
uniform, the posterior distribution (given the queries and answers) inside the
convex polytope is also uniform. Thus it would suffice to sample data sets uni-
formly at random from this convex polytope to generate the consistent answers
required in the left circle of Figure 1.1. Further we can determine if the answer
to the query in a sampled data set would cause a privacy breach (in the right
circle of Figure 1.1): Suppose that P is the current convex polytope. To de-
termine if a partial disclosure has occurred for a particular individual xi and a
particular interval I ∈ I , consider the definition of privacy breach:

PrD{xi ∈ I|q1, . . . qt, a1, . . . at}
PrD{xi ∈ I}

=
PrD{xi ∈ I|�x ∈ P}

|I|

The probability in the numerator can be estimated by sampling from the convex
polytope P and counting the fraction of the sampled points for which xi lies
inside I . If the fraction above is greater than (1 + λ) or less than 1

1+λ then the
query is unsafe for this sampled data set.

Rather than a uniform prior distribution, we can assume an even more gen-
eral log-concave distribution, since algorithms exist for sampling from it. The
class of log-concave distributions forms a common generalization of uniform
distributions on convex sets and Gaussian distributions. A distribution over a
domain T is said to be log-concave if it has a density function g such that
the logarithm of g is concave on its support. That is, the density function
g : T → R+ is log-concave if it satisfies g(αx + (1 − α)y) ≥ g(x)αg(y)1−α

for every x, y ∈ T and 0 ≤ α ≤ 1. These distributions constitute a broad class
and play an important role in stochastic optimization.

Assume that each element xi is independently drawn according to the same
log-concave distribution H over R. Let D = Hn denote the joint distribu-
tion. Using the properties of log-concave functions, it can be shown that the
joint distribution D is also log-concave and further, the posterior distribution,
D conditioned on ∧tj=1(sum(Qj) = aj) is also log-concave. In addition, there
exist randomized, polynomial-time algorithms for sampling (with a small er-
ror) from a log-concave distribution.

Without going into the technical details, we will sketch how one can adapt
the generic randomized auditor from Section 17.2.2.0 for the problem of audit-
ing sum queries. An algorithm for sampling from a log-concave distribution
can be used to estimate the posterior probabilities required for evaluating the
AllSafe predicate in the right circle of Figure 1.1. This algorithm can also be
used in the left circle of Figure 1.1 for sampling data sets and hence consistent
answers from the posterior distribution D conditioned on previous answers.
The AllSafe predicate is evaluated for a λ′ smaller than λ to accommodate
the sampling algorithm’s inability to sample exactly from the underlying log-
concave distribution.
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Besides sum queries, randomized auditors have also been developed for
max queries where the sampling procedure for uniform priors is much more
efficient, and for combinations of max and min queries. We do not go in to the
details in this chapter, instead we next very briefly discuss auditing in another
scenario when the queries are not aggregate queries.

17.3 Auditing Select-Project-Join Queries

Other than aggregate queries, auditing has also been studied in the context
of select-project-join queries when the information to be kept confidential is
a forbidden view of the database. The secret view itself is also specified via
a select-project-join query. For example the database may consist of a single
relation, Employee(name, department, phone), and the forbidden view may be
of the form πname,phone(Employee). Here π represents the projection of the
table on to the name and phone attributes. The forbidden view thus represents
that the name and phone attributes of the Employee relation, or perhaps some
combination of them, are sensitive and should not be revealed. The task of an
offline auditor then is to determine whether a set of select-project-join queries
answered in the past disclosed any information about the forbidden view, and
the task of an online auditor is to deny queries when their answers could dis-
close information about the forbidden view.

The precise semantics of what the forbidden view represents in terms of
what should be kept private could vary from system to system. For example,
the above forbidden view could represent the requirement that not a single
phone number or name in the database should be disclosed. Alternatively, it
could represent the requirement that it is only the association between the name
and phone number of any individual in the database that should be kept private
and so on. The first ever formal notion of forbidden view privacy suggested in
the literature was the notion of perfect privacy defined below. It assumes an
underlying distribution D that the tuples of the database are drawn from.

Definition 17.10 (Perfect Privacy) Let D be the underlying distrib-
ution according to which tuples of the database are drawn. A set of queries,
Q, are said to respect perfect privacy of a forbidden view V if for any set of
answers to the queries, �a, and any instantiation of the forbidden view, v,

PrD{V = v|Q = �a} = PrD{V = v}

If the distribution D is such that each tuple ti from the (finite) domain of
possible tuples is included in the database with some probability pi, indepen-
dently of other tuples, the condition of checking for perfect privacy of a set of
queries reduces to a purely logical statement. We will introduce some defini-
tions before stating the result.
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Definition 17.11 (Critical Tuple) A tuple t from the finite domain of
possible tuples is critical for a query Q, if there exists a possible instance of
the database, I , where the presence or absence of t makes a difference to the
result of Q, i.e., Q(I − {t}) �= Q(I).

We then get the following characterization of query-view privacy which ap-
plies for queries that follow a set semantics.

Theorem 17.12 A set of queries, Q, violates perfect privacy of a forbidden
view, V , if and only if there exists a tuple in the domain of possible tuples that
is critical to both V and some query in Q.

This useful result implies that for a set of queries to violate perfect privacy
of the forbidden view, some query in the set must violate it. Thus an offline au-
ditor auditing a set of queries to check for violations of perfect privacy needs
to audit each query in turn, and an online auditor interested in maintaining per-
fect privacy of the forbidden view can make its decisions to answer or deny
each new query independently of past queries. Collusion between users is not
a problem. In addition, since tuple criticality and therefore query denials are in-
dependent of the actual database instance, such an online auditor is simulatable
and denials do not leak information.

Unfortunately, checking the condition in Theorem 17.12 is ΠP
2 -complete,

even when the forbidden view and the queries are conjunctive. Auditors have
been developed, however, for particular subclasses of conjunctive queries.
Even so an online auditor that maintains perfect privacy of its forbidden view
would result in a very strict denial policy. For instance, going back to the exam-
ple of the Employee relation, suppose the forbidden view is πphone(Employee),
then even just the query πname(Employee) asking for the names of all employ-
ees would be denied, even though it does not access a single phone number.
This is because every single tuple in the domain of possible tuples would be
critical to both the forbidden view and the query. The idea is that just by re-
vealing information about the size of the relation, the query reveals some infor-
mation about the forbidden view and should be denied. The notion of perfect
privacy of the forbidden view may thus be a little too strong.

Ongoing research aims to relax the notion of privacy of a forbidden view,
thereby permitting auditors that would provide more utility to a user. These
new notions of privacy also permit more efficient auditors that can run in poly-
nomial time for large classes of queries. See Section 17.5 for recommended
reading on this topic.

17.4 Challenges in Auditing

We describe challenges and future directions in auditing where further re-
search is warranted.
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Privacy Definition: There has been a steady evolution of privacy definitions
and notions of compromise over the years starting from full disclosure (Defi-
nition 17.1) to more recent notions of partial disclosure (Definition 17.8) and
perfect privacy (Definition 17.10). But there is certainly room for further im-
provement. One assumption made by the more recent definitions is that there
is one probability distribution D from which the data is generated and which
is known to both the attacker and the auditor. In reality, there are two other
distributions, the attacker’s prior and the auditor’s prior. While it may be rea-
sonable to assume that these three distributions are close, current definitions
and auditors all assume that these three distributions are the same. In the case
of aggregate queries, another problem is that current definitions only consider
the privacy of a single individual to be important, whereas in reality, it may be
important to protect the privacy of groups of individuals such as families. In
the case of select-project-join queries, the notion of perfect privacy is far too
strong causing many seemingly innocuous queries to be deemed suspicious.

Algorithmic Limitations: Online simulatable algorithms for auditing ag-
gregate queries following the general framework suggested in this chapter have
several limitations. They require sampling a data set consistent with a given
set of queries and answers. In practice, this procedure may be computation-
ally prohibitive given the massive size of data sets, although such sampling
algorithms have been steadily improving over the years. In addition, as already
mentioned, it is assumed that both the attacker and auditor know the distribu-
tionD from which the data is generated. Algorithms that could overcome these
sampling requirements would make great improvements.

Section 17.2 largely focused on auditing one kind of query: sum. In reality, a
large variety of queries are posed to data sets. While there has been some inves-
tigation into auditing max, min, median queries, intermingling these queries
has proven to be a greater challenge. For example, under full disclosure, it is
NP-hard to audit intermingled sum and max queries, while polynomial time
algorithms are known for auditing exclusively sum queries and exclusively
max queries. While there are situations in which only one kind of query need
be considered (e.g. when releasing contingency tables sum queries are the only
kind of queries that are answered), ultimately, in order for auditing to be truly
useful, we will need to allow richer queries of varied types, such as those posed
in data mining applications such as clustering or decision tree classification.

As mentioned in Section 17.3 checking for perfect privacy violations of
the forbidden view for a very simple kind of probability distribution is ΠP

2 -
complete even just for conjunctive queries and views. While, auditors have
been developed for various subclasses of conjunctive queries, weakening the
requirement of “perfect privacy” may go a long way in enabling the design
of efficient auditors for larger classes of queries. There has already been some
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effort in this direction, where assumptions are imposed on the distribution from
which the data is drawn.

Collusion: Collusion is a largely unaddressed issue in most interactive data
sharing mechanisms today. In the absence of any obstacles to collusion, the on-
line auditors from Section 17.2 would need to pool together aggregate queries
posed by all users in the past in order to determine potential privacy breaches.
This could result in a user receiving more than his fair share of denials. On
a related note, online auditors might need to maintain a large audit trail of
queries posed in the past. While the auditors we saw in this chapter were able
to maintain a query history of bounded size, or even no query history at all,
this need not be true in general, and with the possibility of collusion, larger
query histories may need to be stored for longer periods of time. The notion
of perfect privacy (17.10) is so strong that past queries need not even be con-
sidered in determining privacy breaches — a set of queries leak information
about a forbidden view only if some query in the set leaks some (potentially
negligible) amount of information about the view. However, strengthening the
privacy definition in this way, results in only more denials, and is not a satis-
factory solution to the collusion problem.

Utility: While there have been some initial analyses on the utility of online
auditors, utility is a dimension that is not well understood. How should we
even define utility? One line of work attempts to study the expected number of
denials in a random sequence of aggregate queries. However, it is unlikely that
users would be able to pose aggregate queries over arbitrary subsets of the data
and queries are likely to come from a non-uniform distribution. Furthermore,
there might be some important, fairly generic queries, that should always be
answered, such as the total number of HIV-positive people in the country. An
auditor that would deny such a query could be construed as providing weak
utility.

In general, we would like to ensure that a database will not be rendered
useless with too many denials. To this end, it might well be worthwhile to
sacrifice some privacy for greater utility.

17.5 Reading

A general, though somewhat dated, overview of disclosure control methods
for statistical databases can be found in [1]. Some of the representative work
in offline auditors for aggregate queries and full disclosure can be found in [4,
8, 106, 12]. [4] describes offline auditors for sum and max queries over real-
valued data. [8] considers auditing subcube queries, [19] considers the case of
auditing average and median queries, while [12] considers the case when
the private attribute is boolean. Most of the above work treats online and of-
fline auditing interchangeably — the difference is not made explicit — and
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in [11] the issue of denials leaking information is uncovered. [11] proposes the
simulatable auditing paradigm as a solution, and [10] and [18] construct online
simulatable auditors for different kinds of queries and different kinds of data
distributions. Chapter 2 in [10] is an extended and refined version of [11]. Al-
gorithms for uniform sampling from convex polytopes and from log-concave
distributions can be found in [13, 3, 7, 9, 14]. [18] also contains an initial analy-
sis of the utility of online auditors. The earliest examples of online auditors that
restrict the size and overlap of queries can be found at [6].

The work on auditing select-project-join queries presented in this chapter
can be found in [16]. [15] contains algorithms for auditing specific classes
of conjunctive queries to check for perfect privacy violations of the forbidden
view. [5] considers a data distribution that is a variant of that considered in [16]
where tuples are drawn independently of one another, but the expected size of
the database is a constant. The authors show that privacy violations for con-
junctive queries and views can be determined algorithmically in this situation
as the size of the domain of the tuples grows to infinity. [2] builds a practi-
cal system for detecting “suspicious” select-project-join queries, however the
privacy guarantees of their definition of suspiciousness are not made explicit.
[17] suggests other notions of suspiciousness that lie in between those of [16]
and [2] both in terms of their disclosure detection guarantees and the ease of
auditing under them.
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Abstract Most privacy-transformation methods such as k-anonymity or randomization
use some kind of transformation on the data for privacy-preservation purposes.
In many cases, the data can be indirectly identified with the use of a combination
of attributes. Such attributes may be available from public records and they may
be used to link the sensitive records to the target of interest. Thus, the sensitive
attributes of the record may be inferred as well with the use of publicly available
attributes. In many cases, the target of interest may be known to the adversary,
which results in a large number of combinations of attributes being known to
the adversary. This is a reasonable assumption, since privacy attacks will often
be mounted by an adversary with some knowledge of the target. As a result,
the number of attributes for identification increases, and results in almost unique
identification of the target. In this paper, we will examine a number of privacy-
preservation methods and show that in each case the privacy-preservation ap-
proach becomes either ineffective or infeasible.

Keywords: High dimensional privacy, dimensionality curse for privacy.

18.1 Introduction

With increasing ability to collect data, the dimensionality and size of the
available data has increased considerably in recent years. Numerous data trans-
formation methods have been proposed which try to preserve the privacy of
the data from adversarial attacks. One of the key adversarial attacks is with
the use of public information. We note that the straightforward approach of
simply removing the identifier fields is not sufficient from a privacy point
of view. This is because many attributes such as age, sex or zip-code are
available from public records. Consider a data set which contains both pub-
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lic and sensitive fields. For example, a medical data set will typically contain
information about the individual such as zip code or sex (which is public), and
will also contain information about diagnosis, which is sensitive or private. In
this case, one can use the public fields in order to identify individual, even if
unique identifier keys such as the name or social-security number have been
removed. Therefore, the public fields can be used in order to make an identifi-
cation of the sensitive fields. Such public fields are also referred to as pseudo-
identifier fields. Many privacy-transformation methods such as k-anonymity or
l-diversity have been specifically designed to preserve the privacy of identifi-
cation in the presence of public information.

We note that the definition of a pseudo-identifier field has been treated rather
conservatively in the privacy literature. Typically, only attributes which are
available from public records are referred to as pseudo-identifiers. A key prob-
lem in privacy is that of background knowledge. Typically, an adversary is
familiar with the target of interest, and may know far more about an individual
than is available from public information. In such cases, the boundary between
a pseudo-identifier and a sensitive attribute is blurred. For example, consider
a database which contains salary information about an individual. While this
field is clearly sensitive, it can also be considered a pseudo-identifier with re-
spect to the organization where the individual is employed.

The problem of high dimensionality arises in the context of records in which
the adversary may have partial or background knowledge [12] about various at-
tributes of the record. Since we do not know in advance which attributes the
adversary may know, we may not have a choice but to include all fields in
the anonymization process. In such cases, the number of fields available for
anonymization increases greatly. In such cases, we will show that the privacy-
preservation problem becomes increasingly difficult for the different defini-
tions of privacy. This difficulty may show up in different ways; in some cases
such as condensation, it may show as a huge degradation in the quality of the
transformed data, in cases such as randomization, it may show up as a privacy
breach, and in cases such as l-diversity it may become difficult to design any
feasible solution at all. Nevertheless, in all cases, the problem encountered in
high dimensionality seems to be quite fundamental, and it cannot be easily
resolved with the use use of better algorithms or techniques.

This paper is organized as follows. In the next section, we will discuss the
dimensionality issues for k-anonymization. In section 3, we will discuss the
dimensionality issues in the context of the condensation based approach. In
section 4, we will explore the randomization technique in the context of dimen-
sionality. In section 5, we will explore the l-diversity technique in the context
of dimensionality. Section 6 contains the conclusions and summary.
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18.2 The Dimensionality Curse and the k-anonymity
Method

It is well known that increasing dimensionality makes the k-anonymization
problem more difficult from a computational perspective [7, 13]. For ease in
exposition, we will assume that any dimension in the database is a potentially
identifying quasi-identifier. This assumption can be made without loss of gen-
erality, since we can restrict our analysis only to such identifying attributes.
We will further assume the use of quantitative attributes. This assumption can
also be made without loss of generality. The results can be easily extended to
categorical data, since both the quantitative and categorical data domains can
be represented in binary form.

We note that all anonymization techniques depend upon some notion of spa-
tial locality in order to perform the generalization. However distance functions
begin to show loss of intra-record distinctiveness in high dimensional space. It
has been argued in [8], that under certain reasonable assumptions on the data
distribution, the distances of the nearest and farthest neighbors to a given target
in high dimensional space is almost the same for a variety of data distributions
and distance functions. In such a case, the concept of spatial locality becomes
ill defined, since the contrasts between the distances to different data points do
not exist. Generalization based approaches to privacy preserving data mining
are deeply dependent upon spatial locality, since they use the ambiguity of dif-
ferent data points within a given spatial locality in order to preserve privacy.
We will see that privacy preservation by anonymization becomes impractical
in very high dimensional cases, since it leads to an unacceptable level of infor-
mation loss.

In Figure 18.1, we have illustrated two cases of generalization of data points
intoarangealongeachdimension.InFigure18.1(a),2-anonymizationisachieved
by simple discretization without much optimization. In Figure 18.1(b), more
careful clustering methods are utilized to achieve 2-anonymity, so that the
sizes of the bounding rectangles are reduced. The latter is also an example
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Figure 18.1. Some Examples of Generalization for 2-Anonymity
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of optimized axis-parallel generalizations. It is not necessary to generalize
using axis-parallel ranges only. In general, the problem of finding the optimal
k-anonymous representation is known to be NP-hard [13].

In order to analyze the behavior of anonymization approaches with increas-
ing dimensionality, we consider the case of data in which individual dimen-
sions are independent and identically distributed. The resulting bounds provide
insight into the behavior of the anonymization process with increasing implicit
dimensionality. We construct a bounding box around a target point Xd in order
to generalize it. The value of the data point Xd in this grid cube is generalized
to the corresponding partially specified range of this bounding box. For data
point Xd to maintain k-anonymity, this bounding box must contain at least
(k − 1) other points. First, we will consider the case when the generalization
of each point uses a maximum fraction f of the data points along each of the
d partially specified dimensions. Thus, data points which do not satisfy this
condition may need to be suppressed [14]. It has been suggested [14], that
suppression of a larger percentage of the data leads to an unacceptable aggre-
gate change in the statistical characteristics of the data for mining purposes. In
the following analysis, we will show the difficulty of preserving k-anonymity
using the approach of partial range masking.

Lemma 18.1 Let D be a set of N points drawn from the d-dimensional
distribution Fd in which individual dimensions are independently distrib-
uted. Consider a randomly chosen grid cell, such that each partially masked
dimension contains a fraction f of the total data points in the specified
range. Then, the probability P q of exactly q points in the cell is given by

N !
q!·(N−q)! · f

q·d · (1− fd)(N−q).

Proof: We note that the probability of a data point in a grid cell with range
specificity of f along each of the d dimensions is given by x = fd. Then,
the probability that a given grid cube contains exactly q points is given by
the binomial distribution with parameters N and x. Therefore, we can use the
binomial distribution formula to define the corresponding probability P q:

P q =
N !

q! · (N − q)! · x
q · (1− x)(N−q) (18.1)

A direct corollary of the above result is the following:

Corollary 18.2 Let Bk be the event that the grid cell corresponding to the
partially specified dimensions contains k or more data points. The correspond-
ing probability P (Bk) is given by:

P (Bk) =
N∑
q=k

N !
q! · (N − q)! · f

q·d · (1− fd)(N−q) (18.2)
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Proof: We note that P (Bk) =
∑N

q=k P
q. By substituting x = fd from

Equation 18.1, we get the corresponding result.
We note that a set of partially specified dimensions violates the conditions of

k-anonymity, when the corresponding set of partially specified ranges contain
at least one data point, but less than k data points. Therefore, we need to find
the conditional probability denoted by P (Bk|B1). The value of this conditional
probability is defined by the Lemma below.

Lemma 18.3 LetBk be the event that the set of partially masked ranges con-
tains at least k data points. Then the following result for the conditional prob-
ability P (Bk|B1) holds true:

P (Bk|B1) =

∑N
q=k

N !
q!·(N−q)! · f

q·d · (1− fd)(N−q)

∑N
q=1

N !
q!·(N−q)! · f q·d · (1− fd)(N−q)

(18.3)

Proof: We know from elementary probability theory that:

P (Bk|B1) = P (Bk ∩B1)/P (B1) (18.4)

However, the eventBk is a special case ofB1. This is because if a set of masked
ranges contain at least k points, the corresponding set of ranges must also be
non-empty. Therefore, we have:

P (Bk ∩B1) = P (Bk) (18.5)

Therefore, we have:

P (Bk|B1) = P (Bk)/P (B1) (18.6)

By substituting for the value of P (Bk) and P (B1) in Equation 18.2, we get
the desired result.

We note the following simple observation:

Observation 18.2.1 For all k > 2, we have P (Bk|B1) ≤ P (B2|B1).

The above observation is true because the event Bk is subsumed by the event
B2 for any value of k larger than 2. Therefore, by finding an upper bound on
P (B2|B1), we can also find a upper bound on the probability that k-anonymity
is achieved on a randomly chosen (non-empty) set of non-empty grid changes.
Next, we observe the following:

P (B2|B1) =
1−N · fd · (1− fd)(N−1) − (1− fd)N

1− (1− fd)N (18.7)
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The above observation can be easily verified by substituting the values of
k = 2, P (Bk) and P (B1) in Equation 18.3 of Lemma 18.3. We are sim-
ply expressing the events P (B2) and P (B1) in the complementary form1 of
the binomial expression. Next, we will show that the probability of achiev-
ing 2-anonymity in a non-empty grid cell is zero for the limiting case of high
dimensionality. We formalize this result as follows:

Lemma 18.4 The limiting probability for achieving 2-anonymity in a set of
partially specified ranges, each containing a fraction f < 1 of the data points
is zero. In other words, we have:

limd→∞P (B2|B1) = 0 (18.8)

Proof: By substituting x = fd in Equation 18.7, we get:

P (B2|B1) = 1− N · x · (1− x)N−1

1− (1− x)N (18.9)

We note that as d→∞, we have x→ 0. This is because f < 1. Consequently,
we get:

limd→∞P (B2|B1) = 1− limx→0
N · x · (1− x)N−1

1− (1− x)N (18.10)

Since both the numerator and denominator tend to zero in the limiting case,
we can use L’Hopital’s rule to differentiate the numerator and denominator.
Therefore, we have:

P (B2|B1) =

1− limx→0
N · (1− x)(N−1) −N · x · (1− x)(N−2)

N · (1− x)(N−1)

It is easy to verify that this expression evaluates to zero.
The following result follows directly:

Corollary 18.5 The limiting probability for achieving k-anonymity in a
non-empty set of masked ranges containing a fraction f < 1 of the data points
is zero. In other words, we have:

limd→∞P (Bk|B1) = 0 (18.11)

1Another way of deriving this would be to simply use the fact that the event of k or more data points
occurring in the unit cube is the complementary event to that of less than k points in the unit cube.
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Figure 18.2. Upper Bound of 2-anonymity Probability in an Non-Empty Grid Cell

This result follows because of our earlier observation that P (Bk|B1) ≤
P (B2|B1). In order to derive a further practical understanding of this bound,
let us consider some practical values of f . While it is clear that larger values
of the population size (denoted by N ) and f result in increased privacy, it is
interesting to analyze some practical limits on these numbers. Therefore, we
will set f and N to the largest practical values possible and calculate the vari-
ation of privacy probability with increasing dimensionality. Therefore we will
set f = 0.5, and N to the values of 3 ∗ 108 and 6 ∗ 109. The latter two val-
ues represent the populations of the United States and the earth respectively.
In Figure 18.2, we have plotted the 2-anonymity bound with increasing value
of the dimensionality d. It is clear that even for modest values of the dimen-
sionality between 25 and 35, the probability of achieving 2-anonymity within
a non-empty grid cell fall off rapidly. Furthermore, we note that these are up-
per bounds for very liberally set values, and represent the probability of 2-
anonymity preservation in each non-empty cell. In order for privacy to be pre-
served over the entire data set, the privacy of each non-empty cell must be
preserved. Consequently, the overall probability for 2-anonymity preservation
would be much lower than that predicted by Figure 18.2. We note that while
these results are derived for uniformly distributed data, they conceptually rep-
resent the behavior of the privacy preservation process with increasing implicit
dimensionality of the data set. In the empirical section, we will also illustrate
the cases when correlations are present in the data and show that a very large
fraction of the records would continue to violate the privacy requirements. This
would require a large level of suppression.

We will illustratean analysis of the technique on a family of synthetic data
sets. The synthetic data sets were generated as Gaussian clusters with ran-
domly distributed centers in the unit cube. The radius along each dimension of
each of the clusters was a random variable with a mean of 0.075 and standard
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Figure 18.3. Fraction of Data Points Preserving 2-Anonymity with Data Dimensionality
(Gaussian Clusters)

deviation of 0.025. Thus, a given cluster could be elongated differently along
different dimensions by varying the corresponding standard deviation. Each
data set was generated with N = 10000 data points in a total of 50 dimen-
sions. Finally, the data set was normalized such that the variance along each
dimension was 1 unit. We generated the data sets with different numbers (1,
2, 5 and 10) of clusters in order to test the effectiveness of the method with
data skew. A larger number of clusters lead to a greater amount of skew in
the data. We tested the two measures on the bounds for the privacy preserva-
tion process using projections of different dimensionality from the generated
data set. Since the original data set was 50-dimensional, projections up to 50
dimensions could be generated. In Figure 18.3, we have illustrated the behav-
ior of a generalization approach in which each attribute is divided into only
two ranges. The number of dimensions on the X-axis represents those which
are partially specified using these two ranges, whereas all other dimensions
are fully suppressed. On the Y -axis, we have illustrated the percentage of data
points which maintain 2-anonymity using this generalization. We note that all
other data points (which violate the 2-anonymity condition) would need to be
suppressed. A high percentage of suppression is never acceptable from a data
mining point of view [14]. It is interesting to see that while a greater number of
clusters (and corresponding skew) in the underlying data helps the anonymiza-
tion, the percentage of data points which continue to preserve privacy falls off
rapidly with increasing data dimensionality. When the data sets contained more
than 45 dimensions, almost all the data points violated the 2-anonymity condi-
tion. Another interesting characteristic of the results of Figure 18.3 is that for
the case of 1 cluster, the shape of the corresponding curve resembles that of
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Figure 18.1. The main difference is that in this case, the rate of privacy preser-
vation falls off much more rapidly. This is because the results in Figure 18.1
only represent upper bounds on the true probability of privacy preservation.

18.3 The Dimensionality Curse and Condensation

In the previous discussion, we analyzed the privacy requirements for the
case of randomly chosen masked attributes. Next, we will analyze the case
where the masking can be performed in a more effective way with optimiza-
tion techniques such as clustering. An example is the anonymization approach
of [4] which uses the technique of multi-group cluster formation without the
use of bounding rectangles. In the following discussion, we will try to find
a lower bound on the information loss for achieving 2-anonymity using any
kind of optimized group formation. We will show that in this case, the pri-
vacy preservation process requires an unacceptably high loss of information in
order to satisfy the anonymity requirements. In order to facilitate further dis-
cussion, we will establish certain notations and definitions. We assume that all
points are distributed in the unit cube. In Table 18.1, we have introduced some
notations and definitions, which we will use throughout this paper.

We assume that a set S of k data points are merged together in one group for
the purpose of condensation. Let M(S) be the maximum euclidian distance
between any pair of data points in this group. We note that larger values of

Table 18.1. Notations and Definitions

Notation Definition

d Dimensionality of the data space
N Number of data points
F 1-dimensional data

distribution in (0, 1)

Xd Data point from Fd with
each coord. drawn from F

distk
d(x, y) Distance between (x1, . . . xd)

and (y1, . . . yd) using Lk metric
=
∑d

i=1[(x
i
1 − xi

2)
k]1/k

‖ · ‖k Distance of a vector
to the origin (0, . . . , 0) using
the function distk

d(·, ·)
E[X], var[X] Expected value and

variance of a random variable X
Yd →p c A sequence of vectors

Y1, . . . , Yd converges in probability
to a constant vector c if:
∀ε > 0 limd→∞P [distd(Yd, c) ≤ ε] = 1
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M(S) represent a greater loss of information, since the points within a group
cannot be distinguished for the purposes of data mining. Similarly, let M(D)
represent the corresponding measure for the global database D. This provides
us a global base for the overall contrast between different data points. Then,
we define the relative condensation loss L(S) for that group of k entities as
follows:

Definition 18.6 The relative condensation loss L(S) for the group S is
defined as the following ratio:

L(S) = M(S)/M(D) (18.12)

Intuitively speaking, the above definition measures how much of the relative
contrast between the data points (in a group) is lost with respect to the base
contrast of the remaining data set. A value of L(S) which is close to one im-
plies that most of the distinguishing information is lost as a result of the privacy
preservation process. We further note that L(S) represents the very minimum
level of information loss that any anonymization or condensation technique is
likely to be achieve. This is because a particular algorithm for condensation
or anonymization may use domain specific considerations [14], which are not
always optimal from the information preservation perspective. In the following
analysis, we will show how the value of L(S) is affected by the dimensionality
d.

In order to provide a better understanding of the results, we will first analyze
the behavior of a uniform distribution of N = 3 data points, and deal with the
particular case of 2-anonymity. For ease in analysis, we will assume that one
of these 3 points is the origin Od, and the remaining two points are Ad and
Bd which are uniformly distributed in the data cube. We also assume that the
closest of the two points Ad and Bd need to be merged with Od in order to
preserve 2-anonymity of Od. Later, we will generalize the results to the case
of N = n data points. Since the information loss L(·) depends upon relative
distances among data points, we will start by establishing some convergence
results about the distances between Ad, Bd, and Od in high dimensionality.

Lemma 18.7 Let Fd be uniform distribution of N = 2 points. Let us assume
that the closest of the 2 points toOd is merged withOd to preserve 2-anonymity
of the underlying data. Let qd be the Euclidean distance of Od to the merged
point, and let rd be the distance of Od to the remaining point. Then, we have:
limd→∞E [rd − qd] = C , where C is some constant.

Proof: Let Ad and Bd be the two points in a d dimensional data distribution
such that each coordinate is independently drawn from the data distribution
F . Specifically Ad = (P1 . . . Pd) and Bd = (Q1 . . . Qd) with Pi and Qi being
drawn from F . Let PAd = {

∑d
i=1(Pi)

2}1/2 be the distance ofAd to the origin
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Od, and PBd = {
∑d

i=1(Qi)
2}1/2 the distance of Bd from Od. The difference

of distances is PAd − PBd = {
∑d

i=1(Pi)
2}1/2 − {

∑d
i=1(Qi)

2}1/2.
It can be shown2 that the random variable (Pi)2 has mean 1

3 and standard

deviation
(

2
3

)√(
1
5

)
. This means that (PAd)2/d →p 1/3, (PBd)k/d →p

1/3 and therefore we have:

PAd/d
1/2 →p (1/3)1/2 , PBd/d

1/2 →p (1/3)1/2 (18.13)

We intend to show that |PAd − PBd| →p C
′′′ for some constant C ′′′. We can

express |PAd − PBd| in the following numerator/denominator form:

|PAd − PBd| =
|(PAd)2 − (PBd)2|

(PAd) + (PBd)
(18.14)

Now, we will analyze the convergence behavior of the numerator and denom-
inator individually. By dividing numerator and denominator on RHS by the
same value, we get:

|PAd − PBd| =
|((PAd)2 − (PBd)2)|/

√
d

PAd

d1/2 + PBd

d1/2

(18.15)

Consequently, using Slutsky’s theorem3 and the results of Equation 18.13 we
obtain (

PAd
d1/2

)
+
(
PBd
d1/2

)
→p 2/

√
3 (18.16)

Having characterized the convergence behavior of the denominator of the right
hand side of Equation 18.15, let us now examine the behavior of the numerator:
|(PAd)2 − (PBd)2|/

√
d = |

∑d
i=1((Pi)

2 − (Qi)2)|/
√
d = |

∑d
i=1Ri|/

√
d.

HereRi is the new random variable defined by ((Pi)2−(Qi)2) ∀i ∈ {1, . . . d}.
This random variable has zero mean and standard deviation which is

√
2 · σ

where σ is the standard deviation of (Pi)2. The sum of different values of Ri
over d dimensions will converge to a normal distribution with mean 0 and stan-
dard deviation

√
2 · σ ·

√
d because of the central limit theorem. Consequently,

the mean average deviation of this distribution will be C · σ for some constant
C . Therefore, we have:

limd→∞E

[
|(PAd)2 − (PBd)2|√

d

]
≤= C ′′ (18.17)

2This is because E[P 2
i ] = 1/3 and E[P 4

i ] = 1/5.
3Slutsky’s Theorem: Let Y1 . . . Yd . . . be a sequence of random vectors and h(·) be a continuous

function. If Yd →p c then h(Yd) →p h(c).
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Here C ′′ is a new constant defined by a product of the above mentioned con-
stants. Since the denominator of Equation 18.15 shows probabilistic conver-
gence to 2/

√
3, we can combine the results of Equations 18.15, 18.16 and

18.17 to obtain the following result for some constant C ′′′=C ′′ ·
√

3/2.

limd→∞E [|PAd − PBd|] = C ′′′ (18.18)

We can easily generalize the result for a database of N = n uniformly
distributed points. The following corollary provides the result.

Corollary 18.8 Let Fd be uniform distribution of N = n points. Let
us assume that the closest of the n points is merged with Od to preserve
2-anonymity. Let qd be the Euclidean distance of Od to the merged point,
and let rd be the distance of the furthest point from Od. Then, we have:
C ′′′ ≤ limd→∞E [rd − qd] ≤ (n− 1) · C ′′′, where C ′′′ is some constant.

Proof: This is because if L is the expected difference between the maximum
and minimum of two randomly drawn points, then the same value for n points
drawn from the same distribution must be in the range (L, (n − 1) · L).

A further corollary of the above results is as follows:

Corollary 18.9 LetFd be uniform distribution ofN = n points. Let us as-
sume that the closest of the n points is merged withOd to preserve 2-anonymity.
Let qd be the Euclidean distance of Od to the merged point, and let rd be the

distance of the furthest point from Od. Then, we have: limd→∞E
[
rd−qd
rd

]
= 0,

where C ′′′ is some constant.

Proof: This result can be proved by showing that rd →p

√
d. Note that the

distance of each point to the origin in d-dimensional space increases at this
rate. Combining the result with Corollary 18.8, we see that both the lower and
upper bounds on the expression converge to 0.

Let S be the two point set represented by Od and the closest point to Od.
We note that the information loss M(S)/M(D) for 2-anonymity can be ex-

pressed4 as 1 − E
[
rd−qd
rd

]
. It is easy to see that the value of the information

loss converges to 1 in the limiting case in order to achieve 2-anonymity. We
also note that the bounds for 2-anonymity also provide lower bounds for the
general case of k-anonymity. Therefore, the following result holds:

Theorem 18.10 For any set S of data points to achieve k-anonymity, the
information loss on the set of points S must satisfy:

limd→∞E[M(S)/M(D)] = 1 (18.19)

4Here we are approximating M(D) to rd since the origin of the cube is probabilistically expected to
be one of extreme corners among the maximum distance pair in the database.
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Figure 18.4. Minimum Information Loss for 2-Anonymity (Gaussian Clusters)

Thus, these results show that with increasing dimensionality, all the discrimi-
natory information in the data is lost in order to achieve k-anonymity. In the
next section, we will experimentally examine the behavior of these privacy
metrics over a variety of data domains and distributions.

As in the case of the k-anonymity method, we used the same family of syn-
thetic data sets in order to illustrate the effects of dimensionality on the conden-
sation technique. In Figure 18.4, we have illustrated the minimum information
loss for data sets of different dimensionalities. This corresponds to the loss
L(·) as defined earlier in this paper. It is easy to see from Figure 18.4 that the
level of information loss increases rapidly with increasing dimensionality. As
in the previous case, the data sets with a smaller number of clusters were more
difficult cases. Therefore, the information loss is higher in these cases as well.
This is because the presence of greater number of closely clustered regions in
the data helps in creating masked groups of anonymized data with lower infor-
mation loss. However, the overall trends show that even the clustered behavior
of the data cannot compensate for the sparsity effects in high dimensionality.
This means that either a large portion of the attributes have to be completely
masked in such cases, or the effectiveness of the anonymization process needs
to be compromised. On the other hand, the complete suppression of a large
number of attributes reduces the effectiveness of data mining algorithms on
the anonymized data.

Thus, the results show that the anonymity model is open to inference attacks
when a large number of concepts exist in the data. This also corresponds to a
high implicit dimensionality of the underlying data. The behavior of privacy
preserving data mining algorithms with increasing dimensionality is similar to
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that of other data mining algorithms, which fail to perform effectively in the
high dimensional case because of data sparsity. This sparsity also makes the
data more susceptible to inference attacks.

18.4 The Dimensionality Curse and the Randomization
Method

In this section, we will explore the effects of the curse of dimensionality on
the randomization method. In randomization [1, 2], we add a perturbing distri-
bution to the original data. Even though individual record values are distorted,
it is possible to accurately reconstruct aggregate distributions and design data
mining algorithms which work with these distributions. One nice characteristic
of the k-anonymity model is that it is specifically designed to guarantee privacy
in the presence of public information. This is not true of randomization, since
the added noise is drawn from a fixed distribution. This paper is designed to
introduce the analytical effects of public information into the analysis of ran-
domization. Earlier work on randomization [9, 10] uses spectral analysis to
approximately reconstruct attribute values without the use of public informa-
tion. However, attribute value approximation is a subtly different goal from
personal identification with the use of linkage to public databases. We explore
the following issues:

(1) We use a public-information sensitive methodology to analyze the random-
ization approach.
(2) As in the case of k-anonymity [3], the effectiveness of randomization de-
grades rapidly with increasing dimensionality. We quantify the required per-
turbation to achieve a given privacy level as a function of dimensionality.
(3) The use of public information makes the choice of perturbing distribution
more critical than previously thought. We analyze two widely used perturbing
distributions (gaussian and uniform) and show that gaussian perturbations have
overwhelming advantages in high dimensional cases.
(4) The use of public information in the analysis exposes the susceptibility of
the randomization method to many natural properties of real data sets such as
clusters or outliers.
(5) We demonstrate that the inclusion of public information makes the ran-
domization method vulnerable in unexpected ways. Thus, the goal of privacy
preservation may be more elusive than previously thought for the randomiza-
tion method.

18.4.1 Effects of Public Information

In this section, we will introduce the concepts of likelihood fit and
k-randomization which quantify the ability to re-identify the data in the
presence of public information. This creates an analogous randomization
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framework to that of k-anonymity. We assume that the database D contains
N records and d dimensions. The random perturbations for the different di-
mensions have distributions denoted by fY1(y) . . . fYd

(y). The corresponding
standard deviations of these distributions are denoted by σ1 . . . σd. Without
loss of generality, we may assume that each of the perturbing distributions
has zero mean. Let us consider a record X = (x1 . . . xd) to which the per-
turbation Y = (y1 . . . yd) is added. Then the perturbed data is denoted by
Z = (z1 . . . zd) = (x1 + y1, . . . xd + yd). Now let us consider an adversary
who has access to the publicly available database Dp. Since the perturbing
distribution is publicly known, the adversary can calculate the potential pertur-
bation of the record Z with respect to each record in the public database Dp.
This can be used to calculate the probability that these set of d-dimensional
perturbations fit the set of distributions denoted by fY1(y) . . . fYd

(y). The nat-
ural way of calculating the fit of a set of models to a set of observations is the
log-likelihood fit. In the event that one of the records in the public database has
an unusually high degree of fit, this allows the adversary the ability to guess
whether the current record truly corresponds to any particular record in the
public database.

Let us consider the public record X = (x1 . . . xd). We would like to cal-
culate the likelihood that the perturbed record Z = (z1 . . . zd) corresponds to
this publicly available record. In order to do so, the adversary can compute the
potential fit of the perturbed record to the public database record X. Next, we
define the potential perturbation of a given record Z to the public database
record X.

Definition 18.11 The potential perturbationQ(Z,X)of a perturbed record
Z = (z1 . . . zd) with respect to the public database record X = (w1 . . . wd)
is denoted by Q(Z,X) = (q1(Z,X) . . . qd(Z,X)) = Z − X = (z1 −
x1 . . . zd−xd). The ith component of Q(Z,X) is denoted by qi(Z,W ) =
zi − xi.
The above definition simply states that in order for the public database record
X to correspond to the perturbed record Z , the perturbation for the ith di-
mension would need to be qi(Z,X) = zi − xi. What is the likelihood
that the publicly known perturbing distributions fYi(y) generate these po-
tential perturbations over the d different dimensions? We note that the log-
likelihood that the model fYi(y) fits the potential perturbation qi(Z,X) is
given by log(fYi(qi(Z,X))) = log(fYi(zi − xi)). We define the correspond-
ing potential fit of the dimensions in Q(Z,X) to the distributions denoted by
fY1(y) . . . fYd

(y) as the sum of the log-likelihood fits over the different dimen-
sions.

Definition 18.12 The potential fit F(Z,X) of the perturbed data Z to the
record X is given by

∑d
i=1 log(fYi(qi(Z,X))).
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The higher the value of the log-likelihood fit, the greater the probability that
the public database record X corresponds to the perturbed data Z . For a given
public database Dp, an adversary can try to match the record in Dp which
has the highest level of fit to the perturbed record Z . We observe that the log
likelihood fit is an indirect representation of the Bayes a-posteriori probability
that the perturbed data record fits a particular record X:

Observation 18.4.1 Consider a database Dp which is known to contain
the true representation of the perturbed record Z with equal a-priori probabil-
ity. Then the posterior probability B(Z,X,Dp) of a particular record X ∈ Dp
to correspond to Z is given by:

B(Z,X,Dp) =
eF(Z,X)∑

V ∈Dp
eF(Z,V )

(18.20)

The above observation is easy to verify, since the perturbations over different
dimensions are independent and the value of eF(Z,X) is simply equal to the
product of the corresponding probability densities. By applying the Bayes for-
mula in conjunction with equal a-priori probability, we get the desired result.
Thus, the log likelihood is an indirect representation of the Bayes probability,
and the use of this particular representation is chosen for the sake of numerical
and algebraic convenience.

In many cases, the log likelihood fit can provide considerable insights to an
adversary in including or excluding particular database records. For example,
the log likelihood fit may be a significantly better fit to one record in the public
database compared to any other record. In such a case, the corresponding Bayes
probability B(Z,X,Dp) may approach 1, and the said record can be identified
to a high degree of probability. Therefore, anonymity is lost. Another extreme
case is one in which the perturbing distribution has a finite range (such as
the uniform distribution), and the value of fYi(qi(Z,X)) to be zero. In such a
case, the corresponding log likelihood fit is −∞, and it is possible to exclude
the record X as a fit with Z .

In general, we would like the perturbation to be sufficient, so that at least
some other spurious records in the data set have a higher fit to the correct pub-
lic database record than the true record. Larger perturbations reduce the log-
likelihood fit of the true record X ∈ D corresponding to Z , and increase the
probability that another spurious record in D may have a higher log-likelihood
fit than X by chance. This is desirable from the point of view of privacy preser-
vation. When there are at least k records in D which have higher (or equal) log
likelihood fit than X, then the record X is said to be k-randomized. In such a
case, no public database can be used to distinguish X from the k other records
within D which are a better fit to the randomized representation of X. Now,
we will define the concept of k-randomization formally.
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Definition 18.13 A (randomized) record Z ∈ D with original repre-
sentation X is said to be k-randomized when there are at least k records
{X1 . . . Xk} ∈ D for which the following is true:

F(Z,X) ≤ F(Z,Xi) (18.21)

This means that the randomized record Z cannot be used to distinguish its
true representation X from the k records X1 . . . Xk in D. By performing
k-randomization of every record in the database D, it is possible to achieve
an equivalent level of k-anonymity for the randomization approach. However,
since the randomization approach does not use a trusted server and can be per-
formed at data collection time (without knowledge of other records), the exact
level of randomization may not be known or precisely controlled a-priori. This
is different from the k-anonymity model which performs the privacy transfor-
mation in a controlled way so as to explicitly engineer k-anonymity. Here, our
aim in defining the randomization level of a record is to use it as an analyti-
cal tool for judging the effectiveness of a given level of perturbation. The only
a-priori control parameter is the perturbation standard deviation, and the ran-
domization level is computed a-posteriori. Thus, the calculated randomization
level of a point X is denoted by kr(X) and is equal to the number of random-
ized points in the database which fit the randomized version of X at least as
well as (the randomized representation of) X itself. We make the following
observation about the expected value of kr(X):

Observation 18.4.2 Let X = (x1 . . . xd) be a d-dimensional point from
the database D. Let Z = (z1 . . . zd) represent the randomization of X. Then,
the expected randomization level E[kr(X)] is as follows:

E[kr(X)] =
∑
X′∈D

P (F(Z,X ′) ≥ F(Z,X)) (18.22)

As in the case of k-anonymity, this value is at least 1 to account for the case
when X ′ = X. Next, we generalize the point specific randomization level to
the entire database.

Definition 18.14 The average randomization level of the database D is de-
fined as the average value of kr(X) over all points in D.

Since the calculated randomization level kr(X) may vary with data point X,
we also define a worst-case quantification. In this context, we define the ran-
domization level at quantile q.

Definition 18.15 The randomization level of database D at quantile q is
computed as the lowest quantile q of the randomization level array kr(·).
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18.4.2 Effects of High Dimensionality

In this section, we will analyze the effect of different perturbing distribu-
tions on the effectiveness of randomization. We will also analyze the effects of
dimensionality on the effectiveness of randomization. The two most common
distributions used for perturbation are the uniform and the gaussian distribution
[1]. In this section, we will analyze the effects of both.

18.4.3 Gaussian Perturbing Distribution

The gaussian perturbation with standard deviation σi on the ith dimension
is defined as follows:

fY (y) =
1√

2 · πσi
e
− y2

2·σ2
i (18.23)

Let us consider the record X = (x1 . . . xd) which is perturbed to the random-
ized record denoted by Z = (z1 . . . zd). Then, the log likelihood fit F(Z,X)
is given by F(Z,X) =

∑d
i=1 log(fYi(qi(Z,X))) =

∑d
i=1 log(fYi(zi − xi)).

By substituting the value of fYi(y) according to Equation 18.23, we get:

F(Z,X) = −(d/2) · log(2 · π)−
d∑
i=1

log(σi)−
d∑
i=1

(zi − xi)2
2 · σ2

i

(18.24)

Let us now consider another record X ′ = (x′1 . . . x
′
d) ∈ D which is in the

neighborhood of X. We would like to calculate the probability that the like-
lihood fit F(Z,X ′) is at least equal to that of F(Z,X). As evident from
Observation 18.4.2, this probability P (F(Z,X ′) ≥ F(Z,X)) plays a key role
in defining the expected randomization level E[kr(X)]. Therefore, our future
analysis will quantify the value of P (F(Z,X ′) ≥ F(Z,X)). We will show
the following result about this probability:

Lemma 18.16 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be the two d-

dimensional points from the database D, such that ∆ = (δ1 . . . δd) = X −X ′.
Let Z = (z1 . . . zd) represents the randomization of X and σ2

i be the variance
of the gaussian perturbation along the ith dimension. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) = P

(
d∑
i=1

δ2i /(2σ
2
i ) ≤

d∑
i=1

−δi · yi/σ2
i

)
(18.25)

Here yi is the random variable representing the gaussian perturbation along
the ith dimension.

Proof: By substituting the values of F(Z,X) and F(Z,X ′) from Equation
18.24, and canceling the common terms, we get:
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P (F(Z,X ′) ≥ F(Z,X)) =

=P
(∑d

i=1−(zi − x′i)2/σ2
i ≥

∑d
i=1−(zi − xi)2/σ2

i

)

=P
(∑d

i=1(zi − xi + δi)2/σ2
i ≤

∑d
i=1(zi − xi)2/σ2

i

)

The last relationship is obtained by replacing X ′ = X −∆, and reversing the
sign of the inequality by negating both sides. Now, we note that zi−xi is sim-
ply the value of the random perturbation yi which is derived from a gaussian
distribution. Therefore, let us replace zi − xi by yi for algebraic convenience.
Therefore, we have:

P (F(Z,X ′) ≥ F(Z,X)) = P

(
d∑
i=1

(yi + δi)2/σ2
i ≤

2∑
i=1

y2
i /σ

2
i

)
(18.26)

= P
(∑d

i=1 δ
2
i /(2 · σ2

i ) ≤ −
∑d

i=1 δi · yi/σ2
i

)

The last relationship is obtained by simple algebraic expansion of (yi + δi)2

and subsequent simplification.
While the above lemma provides an algebraic expression for this bound,

a more intuitive interpretation with respect to dimensionality and distribution
needs to be constructed. In order to do so, we will make use of the well known
Chebychev inequality. First, we will prove a simple lemma which we will need
in a later section.

Lemma 18.17 Let yi be the gaussian perturbation along the ith dimension
with variance σ2

i . Let V = −
∑d

i=1 yi · δi/σ2
i . Then, we have:

E[V 2] =
d∑
i=1

δ2i /σ
2
i (18.27)

Proof: We note that y1 . . . yd are independent perturbations along the d dimen-
sions. Therefore, by expanding the expression for V 2, and using independence
to simplify expectation of products of random variables, we get:

E[V 2] =
d∑
i=1

δ2i ·E[y2
i ]/σ

4
i + 2 ·

d∑
i=1

d∑
j=i+1

δi · δj · E[yi] · E[yj ]/(σ2
i · σ2

j )

(18.28)

Since yi is a gaussian with variance σ2
i about a mean of zero, we have E[yi] =

0 and E[y2
i ] = σ2

i . By substituting this in Equation 18.27, we get the desired
result.

Theorem 18.18 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be two d-

dimensional points from the database D, such that ∆ = (δ1 . . . δd) = X −X ′.
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Let Z represent the randomization ofX and σ2
i be the variance of the gaussian

perturbation along the ith dimension. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ 4/(
d∑
i=1

δ2i /σ
2
i ) (18.29)

Proof: As in Lemma 18.17, let us define V = −
∑
yi · δi/σ2

i . From Lemma
18.16, we get:

P (F(Z,X ′) ≥ F(Z,X)) = P

(
d∑
i=1

δ2i /(2 · σ2
i ) ≤ V

)
(18.30)

≤ P
(
V 2 ≥ (

∑d
i=1 δ

2
i /(2 · σ2

i ))
2
)

(squaring both sides and

recognizing that δ2i /(2 · σ2
i ) is always positive)

≤ E[V 2]/(
∑d

i=1 δ
2
i /(2 · σ2

i ))
2 (Chebychev Inequality)

By substituting the expression for E[V 2] from Lemma 18.17, we get the de-
sired result.

We note that the variance of the perturbing distribution along each dimen-
sion is typically chosen proportional to the corresponding variance of the
original data. This is a natural choice in order to provide a similar level of
perturbation over the different dimensions.

Assumption 18.4.1 Proportionality Assumption: If the variance of the
original data along the ith dimension is denoted by σoi , then the perturbing
variance σi is chosen such that C1 · σi ≤ σoi ≤ C2 · σi for some constants C1

and C2.

The proportionality assumption automatically helps us reword the results of
Theorem 18.18 as follows:

Theorem 18.19 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be two d-

dimensional points from the database D, such that ∆ = (δ1 . . . δd) = X −X ′.
Let Z = (z1 . . . zd) represents the randomization of X. Let σ2

i be the variance
of the gaussian perturbation along the ith dimension, and (σoi )

2 be the vari-
ance of the original data along dimension i. Then, under the proportionality
assumption, for some constant C3, we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ C3/(
d∑
i=1

δ2i /(σ
o
i )

2) (18.31)

We note that denominator of the right hand side of the relationship of
Theorem 18.19 contains the term

∑d
i=1 δ

2
i /(σ

o
i )

2. This is simply the distance
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between X and X ′, when the original data is normalized by the variance
along each dimension. Therefore, it is intuitively clear that a data point X ′

which is spatially close to X has a higher chance of satisfying the requirement
F(Z,X ′) ≥ F(Z,X) which increases the randomization level of X. How-
ever, with increasing dimensionality, the concept of spatial locality becomes
more problematic. According to [8], the sparsity of high dimensional data en-
sures that the distance to other points in the data

∑d
i=1 δ

2
i /(σ

o
i )

2 grows with
d∗ in high dimensional space, where d∗ is the implicit dimensionality of the
data. Therefore, even ifX ′ is chosen to be the nearest neighbor of X, the value
of P (F(Z,X ′) ≥ F(Z,X)) tends to zero with increasing value of d. From
Observation 6.1, the expected randomization level E[kr(X)] is critically de-
pendent upon this probability, and therefore, the randomization level of X also
reduces with increasing dimensionality. We summarize this result as follows:

Conclusion 18.4.1 The expected randomization level reduces with in-
creasing dimensionality for a fixed level of perturbation.

How strong is this revealing effect of high dimensionality? We note that
the Chebychev inequality is extremely weak in practice. Therefore, the above
results represent a fairly weak bound. In practice, it is possible to get much
tighter bounds with the use of a few approximations on Lemma 18.16. We
note that the right hand side of Lemma 18.16 contains V = −

∑d
i=1 yi · δi/σ2

i .
Since each yi is independent, the variance of V is equal to the sum of the
individual variances. This works out to σ2(V ) =

∑d
i=1 δ

2
i /σ

2
i . We further

note that E[V ] = 0. Now, we make the approximation that V is normally
distributed. This may be fairly close to the truth for large values of d, since
each component of V (which is−yi ·δi/σ2

i ) is a unit normal distribution scaled
by δi/σi.

The right hand side of Lemma 18.16 can be expressed as P (V ≥∑d
i=1 δ

2
i /(2 ·σ2

i )) = 1−Φ((
∑d

i=1 δ
2
i /(2 ·σ2

i ))/σ(V )). Here Φ(·) is the cumu-

lative normal distribution. Since σ(V ) =
√∑d

i=1 δ
2
i /σ

2
i , we can summarize

as follows:

Approximation 18.4.1 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be two

d-dimensional points from the database D, such that ∆ = (δ1 . . . δd) = X −
X ′. Let Z = (z1 . . . zd) represents the randomization of X. Let σ2

i be the
variance of the gaussian perturbation along the ith dimension. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) = 1− Φ((

√√√√ d∑
i=1

δ2i /σ
2
i )/2) (18.32)

Here Φ(·) is the cumulative normal distribution. The corresponding ex-
pected randomization level of the data point X is obtained by summing
P (F(Z,X ′) ≥ F(Z,X)) over all points X ′ �= X in the database D.
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We note that the cumulative normal distribution Φ(·) is approximately equal to
1 for an argument value greater than 3. Therefore, the expression

∑d
i=1 δ

2
i /σ

2
i

needs to be at most 36 in order for the probability P (F(Z,X ′) ≥ F(Z,X))
to not be (nearly) zero. Consider the case of a uniformly distributed data set in
which we pick σi = C · σo. In such a case, we can show [8] that the distance
value

∑d
i=1 δ

2
i /σ

2
i grows as d/C2. This means that C must grow with

√
d in

order for the probability P (F(Z,X ′) ≥ F(Z,X)) to be significantly larger
than zero. Since Observation 6.1 ties the probability P (F(Z,X ′) ≥ F(Z,X))
to the expected randomization level E(kr(X)], this indicates that the value
of C should grow with

√
d for the randomization level to be constant with

increasing dimensionality. While the result of [8] is true for the case of uniform
distribution of the original data, it provides the intuition that the perturbing
standard deviation along each dimension should grow as the square root of the
implicit dimensionality of the data. We summarize this result as follows:

Conclusion 18.4.2 Under the proportionality assumption, the perturbing
gaussian distribution along each dimension should have a standard deviation
which grows with the square root of the implicit dimensionality of the underly-
ing data in order to retain the same level of randomization.

In practice, only a small number of data points X ′ (which lie in the locality
of X) are likely to have dominant values for P (F(Z,X ′) ≥ F(Z,X)) in the
right hand side of Observation 6.1. The value of each of these terms depend
inversely upon the normalized distance

∑d
i=1 δ

2
i /(σ

o
i )

2 between X and X ′.
Thus, for data sets with the same global variance, the expected randomization
level E[kr(X)] is likely to be higher when non-empty localities of the data are
dense and highly clustered. This provides the following result:

Conclusion 18.4.3 The presence of clusters is helpful in increasing the
randomization level for data sets with similar global variance.

This is a nice property of the randomization method, since most real data sets
exhibit clustered behavior. We further note that while Approximation 18.4.1
provides an understanding of the randomization level of each data point, it may
often be more desirable to examine the worst-case randomization behavior of
the entire data set. As discussed earlier, the local magnitudes of the normalized
distances

∑d
i=1(δi/σ

o
i )

2 have a strong inverse relationship with the expected
randomization level E[kr(X)]. Therefore, for data sets with the same global
variance, a variation in the local density distribution can affect the worst-case
randomization more sharply.

Conclusion 18.4.4 A data set with varying density distribution is likely to
have a significantly lower worst-case randomization level than the average
randomization level.
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The presence of outliers is the extreme case, since the density within the local-
ity of an outlier is significantly lower than the average case density.

Conclusion 18.4.5 The presence of outliers may reduce the worst-case
randomization level without significantly affecting the average-case random-
ization behavior of the data.

These results show that the randomization approach is susceptible to the pres-
ence of the density variations and outliers. The intuition for this is that unlike
methods such as k-anonymity, the current methods for randomization of indi-
vidual data points are applied without assumption of knowledge about the rest
of the data. This is an issue which needs to be addressed in future research on
randomization.

18.4.4 Uniform Perturbing Distribution

We assume that the perturbation along the ith dimension is uniformly dis-
tributed with range [0, ai], and the corresponding standard deviation σi is equal
to ai/

√
12. For simplicity, we assume that the range of the perturbation ai is

larger than the range of the non-perturbed data along dimension i. This is not
really restrictive, since it is needed to preserve a minimum level of privacy
along the ith dimension. Therefore, if ∆ = (δ1 . . . δd) = X − X ′, we must
have |δi| ≤ ai.

Theorem 18.20 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be two

d-dimensional points from the randomized database D, such that ∆ =
(δ1 . . . δd) = X − X ′ and Z = (z1 . . . zd) represents the randomization of
X. Let [0, ai] be the range of the uniform perturbation along the ith dimen-
sion. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) = πdi=1(1− |δi|/ai) (18.33)

Proof: Since the distribution is uniform with density 1/ai, the value of
F(Z,X) is simply d · log(1/ai). Now we note that the value of F(Z,X ′)
is defined as follows:

F(Z,X ′) =
d∑
i=1

log(fY (zi − x′i)) = (18.34)

=
∑d

i=1 log(fY (zi − xi + δi)) =
∑d

i=1 log(fY (yi + δi))

Here yi is the uniformly distributed perturbation in the range [0, ai]. We note
that each of the d terms on the right hand side is either log(1/ai) or −∞
depending upon whether or not (yi + δi) lies in the range [0, ai]. Therefore
F(Z,X ′) can never be larger than F(Z,X). The value of F(Z,X ′) can at
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most be equal to F(Z,X), if and only if for each and every dimension i, yi+δi
lies in the range [0, ai]. Since yi is uniformly distributed in the range [0, ai], it
is easy to verify that the probability of (yi + δi) lying in the range [0, ai] is
(1−|δi|/ai). By using the independence of the different values of yi, the result
follows.

A simple corollary of the above result is as follows;

Corollary 18.21 Let X = (x1 . . . xd) and X ′ = (x′1 . . . x
′
d) be two

d-dimensional points from the randomized database D, such that ∆ =
(δ1 . . . δd) = X − X ′ and Z = (z1 . . . zd) represents the randomization of
X. Let [0, ai] be the range of the uniform perturbation along the ith dimen-
sion. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ (1−
d∑
i=1

(|δi|/(d · ai)))d (18.35)

Proof: This corollary simply follows from Theorem 18.20 and the fact that
the geometric mean of a set of non-negative values is at most equal to the
arithmetic mean.

As in the previous case, let us examine what happens in a uniformly dis-
tributed data set, when the range ai is chosen to be C · σoi for some constant
C using the proportionality assumption. In this case, the results of [8] indicate
that in the high dimensional case,

∑d
i=1 |δi|/σoi is expected to increase asB ·d

for some constant B. Then, we can use the result of Corollary 18.21 to derive
the following;

P (F(Z,X ′) ≥ F(Z,X)) ≤ (1−B/C)d (18.36)

Note that when the value of C is chosen to be B · d, the value of the above
expression is (1− 1/d)d. This is bounded above by 1/e, where e is the base of
the natural logarithm. By choosing C smaller than B · d, it is possible for this
probability P (F(Z,X ′) ≥ F(Z,X)) to fall off rapidly to zero. This would
result in lower randomization levels. We summarize as follows:

Conclusion 18.4.6 Under the proportionality assumption, the perturbing
uniform distribution along each dimension should have a range (or standard
deviation) which grows at least linearly with the implicit dimensionality of the
underlying data.

Recall that the in the case of the gaussian distribution, the required standard de-
viation grows proportionally only with the square-root of the dimensionality.
Therefore, a greater level of randomization (and hence information loss) may
be sustained when the uniform distribution is used. We also emphasize that
unlike the case of the gaussian distribution, the above intuition on the choice
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Figure 18.5. Randomization Level with Increasing Dimensionality, Perturbation level = 8 ·σo

(UniDis)

of the perturbing distribution is only a lower bound. This is because of the use
of the inequality between the geometric and arithmetic mean. This inequality
can be extremely loose in practice, when the values of |δi|/ai are very differ-
ent from one another over the different dimensions. Therefore, even the lower
bound on the standard deviation of the perturbing distribution for the uniformly
distributed case is significantly higher than the required standard deviation for
the gaussian distribution. We summarize as follows:

Conclusion 18.4.7 In the high dimensional case, gaussian perturbations
provide higher randomization than the uniform perturbation.

In Figure 18.5, we have illustrated the effect of increasing dimensionality on
the UniDis data set. These results were obtained by applying the technique to
projections of the data of different dimensionality. The X-axis on each chart
illustrates the data dimensionality, whereas the Y -axis illustrates both the aver-
age and worst case randomization levels AR(D) andWR(D) respectively for
different perturbing distributions. Since the randomization level varied widely
for different data sets, distributions, and dimensionalities, we made it a point to
use a logarithmic scale on the Y -axis. As pointed out earlier, the base data sets
were normalized so that the variance along each dimension was σo = 1. The
corresponding perturbation variance was set of 8 · σo in each case. Since the
variance of the original data set was always the same, this set of charts helps us
compare the relative behavior of different data sets and perturbing distributions
with varying dimensionality.

One immediate observation from each of the (logarithmically scaled) charts
in Figures 18.5 was that both the average and worst case randomization levels
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reduced rapidly with increasing dimensionality for different data sets. For ex-
ample, in Figure 18.5, the average randomization (with uniform perturbations)
for the 1-dimensional data set was 9646.1, whereas the average randomiza-
tion level for the 100-dimensional case was 151.7. This means that for the
1-dimensional case, 96.46% of the original 10,000 points fit a given data point
as well as the true point. On the other hand, this number reduced to only 1.51%
in the 100-dimensional case. Even more interesting behavior was observed by
examining the lowest 1% quantile of the data. This corresponds toWR(D). In
this case, the randomization level was 2907 for the 1-dimensional case. How-
ever, for any instantiation of the data set beyond 64 dimensions, the random-
ization level was only 1 for the entire lower 1% quantile of the data, when
uniform perturbations were used. We note that a randomization level of 1 de-
notes no privacy, since the data point itself contributes to a randomization level
of 1. This behavior was specific to the uniform perturbing distribution, and
happened in spite of a high perturbation level of 8 · σo for each dimension.

As evident from Figure 18.5, the behavior of the gaussian perturbing distri-
bution was much more robust with increasing dimensionality, even though the
uniform perturbation turned out to be superior for the lower dimensional cases.
For example, for the 1-dimensional case in Figure 18.5, the average randomiza-
tion level for the gaussian perturbing distribution 4552.2 which was less than
half the randomization level of the uniform distribution. However, when the
dimensionality increases to 100, the average randomization level was 1824.4,
which was more than an order of magnitude higher than the randomization
level 151.7 for the uniform perturbations. An even more interesting case was
the behavior of the worst 1%-quantile of the data. While the uniform perturba-
tion had no privacy of the worst 1% quantile for dimensionalities beyond 64,
the gaussian perturbation had a randomization level of between 5 and 10 for
dimensionalities higher then 64. Thus, the results show that while the curse of
dimensionality results in a reduction of privacy with increasing dimensional-
ity, the effect was more pronounced in the uniformly distributed case. Since a
better choice of perturbing distribution seems to moderate the effects of the di-
mensionality curse, this underlines the importance of judiciously choosing the
perturbing distribution in the randomization method. A more detailed analysis
of the randomization technique with different kinds of data sets may be found
in [5].

18.5 The Dimensionality Curse and l-diversity

We will also briefly study the effect of dimensionality on the l-diversity
method. Clearly, while k-anonymity is effective in preventing identification of
a record, it may not always be effective in preventing inference of the sensitive
values of the attributes of that record. For example, if the sensitive values of
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an attribute take on the same value within an anonymized group, one can infer
the value of the corresponding sensitive value. Therefore, the technique of l-
diversity was proposed which not only maintains the minimum group size of
k, but also focusses on maintaining the diversity of the sensitive attributes.
Therefore, the l-diversity model [11] for privacy is defined as follows:

Definition 18.22 Let a q∗-block be a set of tuples such that its non-
sensitive values generalize to q∗. A q∗-block is l-diverse if it contains l “well
represented” values for the sensitive attribute S. A table is l-diverse, if every
q∗-block in it is l-diverse.

When there are multiple sensitive attributes, the concept of l-diversity needs to
be maintained separately for each sensitive attribute. With increasing number
of sensitive attributes it becomes increasingly infeasible to construct a feasible
solution. This is because different sensitive attributes may behave indepen-
dently of one another and large group sizes may be required in order to main-
tain l-diversity across every attribute. The practical difficulty of maintaining l-
diversity across a large number of sensitive attributes has been discussed in [11]
in the experimental section of the paper. We make the following observation.

Observation 18.5.1 In order to maintain l-diversity across r sensitive at-
tributes, a block of records with minimum size of O(l · r) may be required in
the worst case.

This is easy to verify, since all the diverse values for one attribute may be
homogeneous in the next attribute and so on. Such group sizes can be very large
with increasing diversity and dimensionality. For example, in order to maintain
5-diversity over 100 sensitive attributes, this may require group sizes as large
of 500. It may often be difficult to preserve locality in such large groups, as a
result of which the generalizations across pseudo-identifiers will be very large.

18.6 Conclusions and Research Directions

In this paper, we examined the effects of the dimensionality curse on a
variety of privacy-preservation methods such as l-anonymity, condensation,
randomization and l-diversity. The results seem to suggest that the curse of di-
mensionality may be a fundamental one from the point of view of privacy,and
cannot be easily solved using more effective algorithms and techniques. The
true situation may not be quite as bleak in many cases when the data sets have
spacial structure which can be exploited in order to design effective privacy-
preservation methods. For example, in [6], the special structure of text and
market basket data sets was used in order to design privacy-preservation meth-
ods for two data domains which are inherently high dimensional.
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Abstract Unlike conventional methods that exert the same amount of privacy control over
all the tuples in the microdata, personalized privacy preservation applies vari-
ous degrees of protection to different tuples, subject to the preferences of the data
owners. This chapter explains the formulation of personal preferences, and the
computation of anonymized tables that fulfill the privacy requirement of every-
body. Several theoretical results regarding privacy guarantees will also be dis-
cussed. Finally, we point out the open research issues that may be explored in
the future.

Keywords: Personalized, k-anonymity, l-diversity.

19.1 Introduction

In earlier chapters, we have seen several principles, such as k-anonymity
[12] and l-diversity [9], for determining the degree of privacy preservation in
data publication. A common feature of those principles is that, they impose
an identical amount of privacy protection on all the tuples in the microdata.
In other words, they cannot be deployed to achieve various degrees of privacy
preservation on different tuples.
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Ideally, a data owner should be allowed to specify how much protection is
necessary for her/his tuple. This is reasonable because, for example, a flu pa-
tient would typically demand weaker protection than a person that contracted
HIV. In fact, personalization is an inherent notion in privacy preservation,
whose objective is to guard the privacy of individuals anyway. By applying
a “universal” privacy standard, the data publisher would be offering insuffi-
cient protection to some tuples while exerting excessive privacy control on
other tuples. Note that although “excessive control” poses no harm on privacy,
it reduces the utility of the resulting dataset.
k-anonymity and l-diversity can be extended to accommodate personal pref-

erences in a straightforward manner. Take k-anonymity for example (the ratio-
nale extends to l-diversity in a straightforward manner). We can permit every
person to pick a tailored k to indicate the smallest size that the QI-group con-
taining her/his tuple should have. As a result, if the microdata has cardinality
n, there are totally n personalized k-values: k1, k2, ..., kn, each associated with
a tuple. We will discuss this approach in more detail later in Section 19.6.

In this chapter, we focus on another, more sophisticated, form of person-
alization, which allows a data owner to formulate semantically-richer privacy
preferences. To clarify the motivation, let us first see a defect of k-anonymity
and l-diversity. Figure 19.1a demonstrates a microdata table, where Age, Sex,
Zipcode are the QI-attributes, and Disease is the sensitive attribute. Column
row-# is not part of the microdata, but is included for row referencing. The col-
umn guarding-node will be explained later. Figure 19.1b shows a 2-anonymous
version of Figure 19.1a. Since Andy’s record appears in a QI-group containing
gastric-ulcer and dyspepsia, an adversary is able to learn that Andy has con-
tracted either of these two diseases. While this is acceptable according to 2-
anonymity, Andy may not want anyone to think (with high confidence) “Andy
must have some stomach problem”. Such a requirement cannot be guaranteed
in Figure 19.1b, since both gastric-ulcer and dyspepsia are stomach diseases.
On the other hand, it is possible that Linda regards flu as a common disease,

Figure 19.1. Microdata and generalization
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Figure 19.2. The taxonomy of attribute Disease

and agrees to release her true diagnosis result (to enhance the effectiveness of
research). In this case, it is not necessary to apply any generalization on tuple 7.
Such preference variations cannot be captured, even if data owners are allowed
to select their own “k-values”. Although k-anonymity is used in the example,
the same defect applies to l-diversity as well.

The above defect can be remedied through a “guarding node” approach [15],
which requires a taxonomy on the sensitive attribute. Figure 19.2 demonstrates
a simple taxonomy on attribute Disease, which is accessible by the public, and
organizes all diseases as leaves of a tree. An intermediate node carries a name
summarizing the diseases in its subtree. Some part of the tree is omitted since
it is not relevant to our discussion. A personal preference is formulated through
a node in the taxonomy. As an example, for tuple 1 in Figure 19.1a, Andy may
specify node stomach-disease, i.e., the guarding node for his privacy (which
will be formalized in the next section). Thus, nobody should be able to infer,
with significant confidence, that he suffered from any disease (i.e., gastric-
ulcer, dyspepsia, or gastritis) in the subtree of the node. In other words, in
Andy’s opinion, allowing the public to associate him with dyspepsia or gastri-
tis is as serious as revealing his true disease. On the other hand, for tuple 7 in
Figure 19.1a, Linda may specify ∅, which is an implicit node underneath all the
leaves of the taxonomy. The empty-set preference implies that she is willing
to release her actual diagnosis result flu; therefore, tuple 7 can be published
directly.

Next, we will discuss the guarding-node technique in more detail. Specially,
Section 19.2 formalizes the underlying concepts. Section 19.3 elaborates the
process of a privacy attack carried out by an adversary. Section 19.4 clarifies
the derivation of privacy breach probabilities. Section 19.5 explains an algo-
rithm for computing a generalized table which fulfills the requirements of all
guarding nodes. Section 19.6 reviews two other forms of personalized privacy
protection in the literature. Finally, Section 19.7 concludes this chapter with a
discussion of future work.

19.2 Formalization of Personalized Anonymity

Let T be a relation storing private information about a set of individuals. The
attributes in T are classified in 4 categories: (i) an identifier attribute Ai which
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uniquely identifies a person, and must be removed when T is released to the
public, (ii) a sensitive attributeAs (e.g., Disease in Figure 19.1a), whose values
may be confidential for an individual (subject to her/his preferences), (iii) d
quasi-identifier (QI) attributes Aqi1 , ..., Aqid , whose values can be published,
but may reveal a personal identify with the aid of external information (Age,
Sex, Zipcode in Figure 19.1a), and (iv) other attributes that are not relevant to
our discussion.

We require that As should be categorical, whereas the other attributes
can be either numerical or categorical. All the attributes have finite domains.
Following a common assumption in the literature [3, 4, 7–9, 11, 12, 14], we
assume that each categorical attribute A is accompanied by a taxonomy (as in
Figure 19.2 for Disease), which indicates the publicly-known hierarchy among
the possible values of A.

Our objective is to compute a generalized table T ∗ such that (i) it contains all
the attributes of T except Ai, (ii) it has a generalized tuple for every tuple in T ,
(iii) it preserves as much information of T as possible, and (iv) its publication
does not cause any privacy breach, as formulated in the next section.

19.2.1 Personal Privacy Requirements

We start by defining a subtree in the taxonomy of As.

Definition 19.1 (As Subtree) For any node x in the taxonomy of As,
we represent its subtree as SUBTR(x), which includes x itself, and the part of
the taxonomy under it.

A tuple t ∈ T defines an association between an individual o (identified by
t.Ai) and a sensitive value v = t.As. We denote the association as {o, v}. To
formulate her/his privacy preference, o specifies a guarding node as follows:

Definition 19.2 (Guarding Node) For a tuple t ∈ T , its guarding
node t.GN is a node on the path from the root to t.As in the taxonomy
of As.

Through t.GN , o indicates that s/he does not want the public to associate
her/him with any leaf As value in SUBTR(t.GN ). Specifically, assume that
SUBTR(t.GN ) contains x leaf values v1, v2, ..., vx. The privacy requirement
of t.GN is breached if an adversary thinks that any of the associations {o, v1},
..., {o, vx} exists in T .

Definition 19.3 (Breach Probability) For a tuple t ∈ T , its breach
probability Pbreach(t) equals the probability that an adversary can infer
from T ∗ that any of the associations {o, v1}, ..., {o, vx} exists in T , where v1,
..., vx are the leaf values in SUBTR(t.GN ).
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The published table T ∗ should guarantee that, for all t ∈ T , Pbreach(t) is at
most pbreach, which is a system parameter specifying the amount of confiden-
tiality control.

Figure 19.1a demonstrates the guarding nodes selected by the individuals
involved in the microdata. For example, let t be tuple 3 (t.Ai = Ken and t.As
= pneumonia). The guarding node respiratory-infection of t indicates that no-
body can infer, with high confidence, that Ken suffered from a disease under
respiratory-infection in the taxonomy of Figure 19.2. Pbreach(t) is the proba-
bility that an adversary can infer that any of the following 3 associations exists
in T : {Ken, flu}, {Ken, pneumonia}, {Ken, bronchitis}.

On the other hand, Ken does not care if somebody conjectures, with any
probability, that he contracted gastric-ulcer (not in SUBTR(t.GN )), since it is
very different from his true diagnosis result. In general, the higher t.GN is in
the taxonomy, the stronger privacy must be guaranteed.

Guarding nodes depend entirely on personal preferences, and are not deter-
mined by the sensitive values. For instance, Joe and Sam (who, as with Ken,
contracted pneumonia) set their guarding nodes simply to pneumonia (tuples
5, 6 in Figure 19.1a), implying that they do not mind being associated with flu
or bronchitis. Specially, if a patient believes that disclosing t.As to the public
does not violate her/his privacy, s/he may simply set t.GN to ∅.

19.2.2 Generalization

We first clarify two fundamental concepts.

Definition 19.4 (PARTITION / GENERAL DOMAIN) If attribute A is nu-
meric, a partition is a continuous interval in the domain of A. Otherwise, a
partition consists of all the leaves in the subtree of a node in the taxonomy
of A. In any case, a general domain of A is a set of disjoint partitions whose
union forms the original domain of A.

By a simple transformation, we can use the interval representation for
the general domains of both numeric and categorical attributes. Notice that,
when A is categorical, a general domain is determined by a set of nodes in
the taxonomy of A, whose subtrees do not overlap, but cover all the leaves.
(For instance, in Figure 19.2, nodes respiratory-system-problem and digestion-
system-problem decide a general domain of Disease.) Clearly, A can be con-
verted to a numeric attribute by imposing a 1D ordering on the leaves of its
taxonomy: the left-most leaf is mapped to value 1, its neighbor to 2, and so on.
Thus, a partition of A can be denoted as an interval. For example, the parti-
tion corresponding to respiratory-system-problem in Figure 19.2 is an interval
of [1, 6].
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Definition 19.5 (Generalization) A general domain of an attribute A
uniquely decides a generalization function. Given a value v in the original
domain ofA, the function returns the only partition in the general domain that
contains v. The partition is the generalized value of v.

Clearly, A can have many generalization functions, since its values can be
partitioned into numerous general domains.

For each tuple t ∈ T , we use t∗ to represent its generalized tuple in T ∗. The
generalization is performed in two steps. The first step, the QI-generalization,
is identical to conventional generalization in [3, 4, 7, 14]. Specifically, we
choose a generalization function for every QI attribute Aqii (1 ≤ i ≤ d), and
obtain the generalized value t∗.Aqii for all tuples t ∈ T (t∗ retains the sensitive
value of t at this step). Then, the generalized tuples are divided into QI-groups,
defined as follows.

Definition 19.6 (QI-group) After QI-generalization, a QI-group con-
sists of the tuples with identical values on all the QI attributes. The i-th QI-
value (1 ≤ i ≤ d) of the QI-group equals t.Aqii , where t is an arbitrary tuple
in the QI-group.

In the second step, SA-generalization (SA stands for “sensitive attribute”),
we consider each QI-group in turn, and select a tailored generalization function
on As. Note that, unlike the previous step where all tuples are processed with
identical generalization functions, SA-generalization uses a different function
for each group. This strategy achieves less information loss, by allowing each
group to decide the amount of necessary generalization.

Figure 19.3 shows a possible result of our entire generalization scheme for
Figure 19.1a. The table contains 5 QI-groups: the first one includes tuples 1-
4, the second involves tuples 5-6, the third only tuple 7, the fourth tuples 8-
9, and the fifth group consists of the last tuple. Note that the sensitive value
flu of tuple 7 is retained directly, while the same disease of tuple 10 is gen-

row # Age Sex Zipcode Disease

1 (Andy) [1, 10] [10001, 20000] gastric ulcer

dyspepsia

respiratory infection

respiratory infection

respiratory infection

respiratory infection

flu

gastritis

pneumonia

respiratory infection

[10001, 20000]

[10001, 20000]

[10001, 20000]

[20001, 25000]

[20001, 25000]

58000

[35001, 40000]

[35001, 40000]

33000

M

M

M

M

M

M

F

F

F

F

[1, 10]

[1, 10]

[1, 10]

[11, 20]

[11, 20]

21

[26, 30]

[26, 30]

56

2 (Bill)

3 (Ken)

4 (Nash)

5 (Joe)

6 (Sam)

7 (Linda)

8 (Jane)

9 (Sarah)

10 (Mary)

Figure 19.3. A possible result of our generalization scheme
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eralized to respiratory-infection. This is legal because, as mentioned earlier,
SA-generalization may choose a different generalization function for each QI-
group.

None of the existing methods permits SA-generalization. In fact, SA-
generalization may produce a table that allows more accurate analysis about
the correlation between the sensitive attribute As and other attributes. The rea-
son is that, although SA-generalization results in less precise values on As, it
retains more information on the QI attributes.

19.3 Combinatorial Process of Privacy Attack

Consider an adversary who attempts to infer the sensitive data of an indi-
vidual o from T ∗. In the worst case, s/he has all the QI values o.Aqi1 , ..., o.Aqid
of o. Therefore, s/he inspects only those tuples t∗ ∈ T ∗ whose QI value t∗.Aqii
covers o.Aqii , for all i ∈ [1, d].

These tuples must form a QI-group. That is, if t∗ and t′∗ are two such tuples,
then t∗.Aqii = t′∗.Aqii for all i ∈ [1, d]. Actually, if, for instance, t∗.Aqi1 �=
t′∗.Aqi1 , the two values are different partitions in the general domain ofAqi1 that
both contain o.Aqi1 , violating the requirement that all partitions are disjoint.

Definition 19.7 (ESSENTIAL QI-GROUP / Sreal). Given an individual o,
the essential QI-group EG(o) is the only QI-group in T ∗ whose i-th QI-value
covers o.Aqii , for all i ∈ [1, d]. We use Sreal(o) to refer to the set of individu-
als, who have tuples in T generalized to EG(o).

Note that Sreal(o) is unknown to an adversary. To derive Sreal(o), the ad-
versary must resort to an external dataset, and retrieve a set Sext(o) of persons
that may be concerned in EG(o). Sext(o) is defined as follows.

Definition 19.8 (External Individual Set Sext) Given an essen-
tial QI-group EG(o), and an external database DBext, Sext(o) consists of
the people o′ ∈ DBext, such that o′.Aqii (1 ≤ i ≤ d) is covered by the i-th
QI-value of EG(o).

To illustrate the above concepts, assume that an adversary tries to infer the
disease of Ken from Figure 19.3, having his age 6, sex, and zipcode 18000.
The essential QI-group EG(Ken) consists of tuples 1-4, i.e., Sreal(Ken) equals
{Andy, Bill, Ken, Nash}. Sreal(Ken) is unknown to the adversary. Attempting
to derive it, s/he accesses an external database, which is the voter registration
list in Figure 19.4, and contains all the QI attributes in Figure 19.3. From the
external database, the adversary obtains Sext(Ken) = {Andy, Bill, Ken, Nash,
Mike}.

In general

Sreal(o) ⊆ Sext(o) (19.1)
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Figure 19.4. The voter registration list

This is a reasonable condition underlying all the previous work. For instance,
if Ken does not appear in the voter registration list, his privacy is trivially pre-
served. In fact, under the circumstances where an arbitrary number of individ-
uals in T may be missing in the external source, the adversary can infer little
information, because all tuples of the essential QI-group may actually corre-
spond to the missing individuals.

Next, the adversary adopts a combinatorial approach to infer the As value
of individual o. We elaborate the approach by distinguishing two cases in Sec-
tions 19.3.1 and 19.3.2, respectively. The subsequent discussion uses m, n to
represent the sizes of EG(o) and Sext(o), respectively. Also, we denote the tu-
ples in EG(o) as t∗1, ..., t∗m, whose original versions in the microdata are t1, ...,
tm, respectively.

19.3.1 Primary Case

We first consider the case where T.Ai is the primary key of T , i.e., each
individual has at most one tuple in T .

Definition 19.9 (PRIMARY POSSIBLE RECONSTRUCTION). In the Pri-
mary Case, given an individual o, a possible reconstruction of the essential
QI-group EG(o) includes

m distinct persons o1, ..., om, who constitute a subset of Sext(o), i.e., oj
(1 ≤ j ≤ m) is taken as the owner of tj;

m leaf sensitive values v1, ..., vm, such that vj (1 ≤ j ≤ m) is in
SUBTR(t∗j .As), i.e., vj is taken as the real sensitive value of tj .

Example 19.10 We explain the definition by continuing our example,
where the adversary has derived Sext(Ken) = {Andy, Bill, Ken, Nash, Mike}.
As mentioned earlier, m = 4, n = 5, and t∗1, ..., t∗4 are tuples 1-4 in Figure 19.3,
respectively.
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To obtain a possible reconstruction, the adversary first assigns o1, ..., o4 to
4 different persons in Sext(Ken). As a possible assignment, o1 = Mike, o2 =
Nash, o3 = Andy, and o4 = Ken. Then, the adversary sets v1 to gastric-ulcer,
which is the only potential value of v1, because t∗1.As = gastric-ulcer is a leaf
node in the Disease-taxonomy. For the same reason, v2 must be dyspepsia. On
the other hand, v3 (v4) can be any of the 3 leaf diseases under t∗3.As (t∗4.As) =
respiratory-infection. The possible reconstruction is completed by assuming,
for instance, v3 = flu and v4 = bronchitis.

According to the reconstruction, the adversary thinks that Mike, Nash,
Andy, Ken contracted gastric-ulcer, dyspepsia, flu, and bronchitis, respec-
tively. Note that a reconstruction most likely is not equivalent to the microdata
(where Mike does not even exist); instead, it is only a conjecture by the adver-
sary. Nevertheless, the previous reconstruction violates the privacy requirement
enforced by the guarding node of tuple 3 in Figure 19.1a (i.e., Ken does not
want people to think that he had any respiratory infection). Interestingly, the
breach happens when Ken is associated with tuple 4, instead of his original
tuple 3 in the microdata.

It is important to understand the probabilistic nature of possible reconstruc-
tions. In fact, o1, ..., o4 can be decided in Permu(5, 4) = 120 ways1. For each
decision, by the reasoning explained earlier, v1 and v2 are fixed, but 32 = 9
choices exist for setting v3 and v4. Hence, there exist totally 120 × 9 = 1080
possible reconstructions.

432 reconstructions breach the privacy requirement of tuple 3 in Figure 19.1.
Specifically, a reconstruction is breaching if and only if either o3 or o4 equals
Ken. If o3 = Ken, then there are Permu(4, 3) = 24 choices to formulate o1,
o2, o4, and 9 possibilities to determine v1, ..., v4, leading to 24 × 9 = 216
reconstructions. Symmetrically, if o4 = Ken, there exist another 216 breaching
reconstructions.

Without further information, the adversary assumes that each reconstruction
happens with identical likelihood. Hence, the breach probability of tuple 3 in
the microdata equals 432/1080 = 2/5.

19.3.2 Non-primary Case

We proceed to analyze the case where T.Ai is not the primary key of T ,
namely, each individual can appear an arbitrary number of times in T .

Definition 19.11 (NONPRIMARY POSSIBLE RECONSTRUCTION). In the
Non-primary Case, given an individual o, a possible reconstruction of the
essential QI-group EG(o) includes

1Permu(x, y) equals the number of permutations by taking y objects out of a set of x objects.
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a multi-set of individuals {o1, ..., om} (perhaps with duplicates), where
the distinct elements constitute a subset of Sext(o);

m leaf sensitive values v1, ..., vm, such that vj (1 ≤ j ≤ m) is in
SUBTR(t∗j .As).

Example 19.12 Let us revisit the situation where the adversary has obtained
Sext(Ken) = {Andy, Bill, Ken, Nash, Mike}. The values of m, n, t∗1, ..., and t∗4
are the same as in Example 19.10.

In a possible reconstruction, the adversary may set all of o1, ..., o4 to Ken
(which is not allowed in the Primary Case). The way that v1, ..., v4 are decided
is identical to that in Example 19.10; let us again assume v1 = gastric-ulcer, v2
= dyspepsia, v3 = flu, and v4 = bronchitis. By this reconstruction, the adversary
thinks that Ken contracted all the 4 diseases. Evidently, the conjecture does
not correctly reflect the microdata, but it causes a privacy breach for tuple 3 in
Figure 19.1a.

Since each of o1, ..., o4 can independently be any of {Andy, Bill, Ken, Nash,
Mike}, 54 = 625 choices exist for deciding o1, ..., o4. Given each decision, due
to the reasons presented in Example 19.10, there are 9 ways to formulate v1, ...,
v4. Therefore, the total number of possible reconstructions equals 625 × 9 =
5625.

A reconstruction breaches the privacy constraint of tuple 3 in the microdata,
if and only if Ken is assigned to o3 or o4. If o3 = Ken, o1, o2, o4 may be
any person in Sext(Ken), and hence, can be assigned in 53 = 125 manners.
Regardless of the assignment, v1, ..., v4 may be set in 9 ways, resulting in
125 × 9 = 1125 different reconstructions. Similarly, another 1125 exist if o4
= Ken, but some of them (where o3 = o4 = Ken) have been counted twice.
Specifically, if o3 = o4 = Ken, there are 25 possibilities for determining o1 and
o2, whereas, for each possibility, 9 choices exist for deciding v1, ..., v4. Hence,
the number of double-counted reconstructions equals 25 × 9 = 225.

Therefore, totally 1125 + 1125 − 225 = 2025 reconstructions breach the
privacy of tuple 3 in Figure 19.1a. Thus, the breach probability of the tuple
equals 2025/5625 = 9/25.

Deriving a breach probability through the above procedures is quite cum-
bersome. In the next section, we present closed formulae that return the proba-
bility directly. Then, it will become simple to verify that publishing the table of
Figure 19.3 allows no tuple in Figure 19.1a to be breached with a probability
more than 50%.

19.4 Theoretical Foundation

In this section, we solve the probability Pbreach(ttar) formulated in Defin-
ition 19.3, where ttar is an arbitrary tuple in T (the subscript means “target”).
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Obviously, if the guarding node ttar.GN of ttar is ∅, Pbreach(ttar) = 0, i.e.,
no privacy control is required. Next, we focus on ttar.GN �= ∅.

Section 19.4.1 first clarifies the notations and their properties, which will be
used in our derivation. Then, Section 19.4.2 solves Pbreach(ttar) into closed
formulae.

19.4.1 Notations and Basic Properties

Following the notations in Section 19.3, we use otar to denote the person
identified by ttar.Ai, and t∗tar for the generalized tuple of ttar . Furthermore,
let m be the size of the corresponding essential QI-group EG(otar) (Defini-
tion 19.7), whose tuples are represented as t∗1, ..., t∗m (one of which is t∗tar),
respectively. Sreal(otar) refers to the set of individuals whose records (in the
microdata T ) are generalized to EG(otar). Finally, we deploy n for the cardi-
nality of Sext(otar) (Definition 19.8).

As a direct corollary of Formula 19.1, we have:

n ≥ |Sreal(otar)| (19.2)

In the Primary Case, |Sreal(otar)| always equals m, since every tuple in
EG(otar) is owned by a distinct person. In the Non-primary case, however,
|Sreal(otar)| may be any value in [1,m]. Furthermore, regardless of the size of
EG(otar), |Sreal(otar)| can take the minimum value 1, which happens if all the
tuples in EG(otar) belong to the same person.

We introduce b as the number of tuples t∗j (1 ≤ j ≤ m) in EG(otar),
such that SUBTR(t∗j .As) overlaps SUBTR(ttar.GN ). For example, assume
that ttar is tuple 1 of Figure 19.1a, i.e., ttar.GN = stomach-disease. Thus, in
Figure 19.3, EG(otar) involves tuples 1-4, and m = 4. Since SUBTR(ttar.GN )
overlaps the subtrees of the As values of tuples 1 and 2 in EG(otar), we have
b = 2.

We define two functions Fsubsize and Fpercent related to the tuples t∗ ∈ T ∗.
Specifically, Fsubsize(t∗) equals the number of leaf values in SUBTR(t∗.As)
(e.g., Fsubsize(t∗) = 3 if t∗.As = respiratory-infection). On the other hand:

Fpercent(t∗, ttar) equals the percentage of the leaf values in
SUBTR(t∗.As) that are also in SUBTR(ttar.GN ).

Thus, it follows that:

Fpercent(t∗, ttar) = 1, if t∗.As is in SUBTR(ttar.GN );

Fpercent(t∗, ttar) = 0, if SUBTR(t∗.As) is disjoint with
SUBTR(ttar.GN ).

We illustrate Fpercent assuming ttar.GN = respiratory-infection. If t∗.As =
respiratory-system-problem, then Fpercent(t∗, ttar) = 50%, because t∗.As has



472 Privacy-Preserving Data Mining: Models and Algorithms

6 leaf diseases, and half of them lie in SUBTR(ttar .GN ). As another example,
if t∗.As is flu, which is in SUBTR(ttar .GN ); therefore, Fpercent(t∗, ttar) =
100%. Finally, given t∗.As = stomach-disease (whose subtree is disjoint with
SUBTR(ttar.GN )), Fpercent(t∗, ttar) = 0.

Lemma 19.13 For all tuples t∗j (1 ≤ j ≤ m) in EG(otar), Fpercent(t∗j , ttar)
equals 0 or a constant.

Therefore, in the sequel, we avoid the notation of Fpercent by using c to
represent the non-zero value of Fpercent(t∗1, ttar), ..., Fpercent(t∗m, ttar).

19.4.2 Derivation of the Breach Probability

As clarified in Section 19.3, to infer the As value of otar , an adversary re-
constructs EG(otar) according to Definition 19.9 (or 19.11) in the primal (or
non-primal) scenario. In any case, we use nrecon to capture the total number of
possible reconstructions, and nbreach for the number of reconstructions violat-
ing the privacy constraint enforced by ttar.GN . It follows that

Pbreach(ttar) = nbreach/nrecon (19.3)

The next two theorems solve Pbreach(ttar) for the primal and non-primary
cases, respectively.

Theorem 19.14 In the Primary Case, Pbreach(ttar) =
{
b/n if t∗tar.As is in SUBTR(ttar.GN )
b · c/n otherwise

Example 19.15 We illustrate the theorem using Figures 19.1a, 19.1b, and
19.3. Assume ttar (or t∗tar) to be tuple 3 in Figure 19.1a (or Figure 19.3). Thus,
t∗tar.As = ttar.GN = respiratory-infection, and EG(otar) involves the first 4
tuples of Figure 19.3. According to Figure 19.1b, Andy, Bill, Ken, Nash, Mike
are potentially involved in EG(otar), rendering n = 5. Furthermore, b = 2,
because the subtrees of the As values in tuples 3, 4 (Figure 19.3) overlap
SUBTR(ttar.GN ). Since t∗tar.As is in SUBTR(ttar.GN ), by Theorem 19.14,
Pbreach(ttar) = b/n = 2/5, confirming the analysis in Example 19.10.

To demonstrate the second case of the theorem, let ttar (or t∗tar) be tuple
5 in Figure 19.1a (or Figure 19.3). Namely, t∗tar.As = respiratory-infection,
ttar.GN = pneumonia, and EG(otar) consists of tuples 5, 6 of Figure 19.3.
Only Joe and Sam in Figure 19.1b can be involved in EG(otar), leading to
n = 2. Furthermore, b = 2, because the As values of both tuples in EG(otar)
have subtrees overlapping SUBTR(ttar.GN ). In particular, the subtree of the
sensitive value in tuple 5 (or 6) of Figure 19.3 has 3 leaf diseases, one of
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which is in SUBTR(ttar.GN ). Hence, c equals 1/3. Since t∗tar.As is not in
SUBTR(ttar.GN ), Pbreach(ttar) = b · c/n = 1/3.

Theorem 19.16 In the Non-primary Case, Pbreach(ttar) ={
1−(1−1/n)b if t∗tar.As is in SUBTR(ttar.GN )
1−(1−c/n)b otherwise

Example 19.17 Let ttar be tuple 3 of Figure 19.1a. As explained in Exam-
ple 19.15, n = 5, b = 2, and t∗tar.As is in SUBTR(ttar.GN ). Theorem 19.16
shows that Pbreach(ttar) is 1 − (1 − 1/5)2 = 9 / 25, which is consistent with
the derivation in Example 19.12.

To demonstrate the second case, assume ttar to be tuple 5 in Figure 19.1a.
As mentioned in Example 19.15, n = 2, b = 2, c = 1/3, and t∗tar.As is not in
SUBTR(ttar.GN ). Thus, Pbreach(ttar) is 1− (1− 1/(3 × 2))2 = 11/36.

19.5 Generalization Algorithm

Let v be a value in the domain of attributeA. We use ILvalue(v∗) to capture
the (amount of) information loss in generalizing v to v∗, which is a partition in
the corresponding general domain of A (Definition 19.5). Formally,

ILvalue(v∗) =
(the number of values in v∗)− 1

the number of values in the domain of A (19.4)

For instance, if the domain of Age is [1, 60], generalizing age 5 to [1, 10] has
information loss ILvalue([1, 10]) = (10 − 1) / 60. Similarly, since the taxon-
omy of Disease has 12 leaves, generalizing flu to respiratory-infection results
in ILvalue(respiratory-infection) = (3−1)/12, where 3 is the number of leaves
under respiratory-infection. Obviously, if v is not generalized (i.e., v = v∗),
ILvalue(v∗) equals 0, i.e., no information is lost.

The overall information loss ILtuple(t∗) of a generalized tuple t∗ equals

ws · ILvalue(t∗.As) +
d∑
i=1

wqii · ILvalue(t∗.A
qi
i ) (19.5)

where wqi1 , ..., wqid , and ws are positive system parameters, specifying the
penalty factor of sacrificing precision on each attribute. Obviously, SA-
generalization can be easily disabled by setting ws = ∞, i.e., even the least
generalization on As entails infinite information loss.

The total information loss ILtable(T ∗) of the entire (generalized) relation
T ∗ is given by

ILtable(T ∗) =
∑

∀t∗∈T ∗

ILtuple(t∗) (19.6)



474 Privacy-Preserving Data Mining: Models and Algorithms

Algorithm Greedy-Personalized-Generalization
Input: the microdata T , and the guarding nodes of all tuples
Output: the publishable relation T ∗

1. for every QI-attribute Aqi
i (1 ≤ i ≤ d)

2. initialize a generalization function fi with a single partition
covering the entire domain of Aqi

i (see Definitions 19.4 and 19.5)
3. T ∗ = the relation after applying QI-generalization on T

according to S = {f1, ..., fd}
4. G′ = the only QI-group in T ∗

5. SA-generalization (G′) //Figure 19.6
/* at this point, T ∗ becomes publishable */

6. while (true)
7. T ∗

best = T ∗; Sbest = S
8. for every possible S′ = {f ′

1, ..., f ′
d} obtained from S with a

“single split” (see the explanation in Section 19.5.1)
9. T ′∗ = the relation after applying QI-generalization on T

according to S′

10. for each QI-group G′ ∈ T ′∗

11. SA-generalization (G′) //Figure 19.6
/* at this point, T ′∗ becomes publishable */

12. if ILtable(T
′∗) < ILtable(T

∗
best)

13. T ∗
best = T ′∗; Sbest = S′

14. if (T ∗
best = T ∗) then go to Line 17 //no next round

15. else
16. T ∗ = T ∗

best; S = Sbest //prepare for the next round
17. return T ∗

best

Figure 19.5. Algorithm for computing personalized generalization

Next, leveraging the findings of the previous section, we propose an al-
gorithm for computing a generalized table T ∗ with small ILtable(T ∗) which
guarantees Pbreach(t) ≤ pbreach for each t ∈ T .

19.5.1 The Greedy Framework

As elaborated in Section 19.2.2, our generalization scheme includes two
steps. The first phase applies QI-generalization on T , using a set of general-
ization functions S = {f1, ..., fd} on the d QI-attributes, respectively. Then,
the second step produces the final T ∗ by performing SA-generalization on the
resulting QI-groups, employing a specialized generalization function for each
QI-group. Hence, the quality of T ∗ depends on (i) the choice of S, and (ii) the
effectiveness of SA-generalization. We provide a solution for settling the first
issue in this subsection, and deal with (ii) in Section 19.5.2.

A generalization function fi (1 ≤ i ≤ d) is decided by a general domain
of Aqii (Definition 19.5), which, in turn, is determined by a set of partitions in
the original domain of Aqii (Definition 19.4). Therefore, selecting S is equiv-
alent to finding the appropriate partitions of each fi. Figure 19.5 presents a
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greedy algorithm for achieving this purpose (the pseudocode also explains the
framework of calculating T ∗).

At Lines 1-2, we obtain the simplest fi (1 ≤ i ≤ d), which contains a
single partition, covering the entire domain of Aqii . Using such f1, ..., fd, Line
3 carries out QI-generalization on T , which, apparently, results in a single QI-
group. Next, the algorithm invokes SA-generalization (elaborated in the next
section) on the QI-group (Lines 4-5), which yields a publishable T ∗.

The subsequent execution proceeds in rounds. Specifically, each round
slightly refines one of f1, ..., fd, and leads to a new T ∗ with lower informa-
tion loss. Before explaining the details, we must clarify the refinement of a
function, e.g., f1, without loss of generality.

Refining a generalization function. Refining f1 means splitting one of its
partitions once. For instance, assume that f1 is on a numeric attribute Age with
domain [1, 60], and is determined by partitions [1, 30] and [31, 60]. Partition
[1, 30] may be split into [1, x] and [x + 1, 30], for any x ∈ [1, 29], i.e., [1, 30]
can be split in 29 ways. Similarly, there are also 29 options for splitting [31, 60].
Therefore, by a single split, f1 can be refined into 58 possible generalization
functions.

The situation is different, if f1 concerns a categorical attribute, e.g., Disease
(strictly speaking, Disease is not a QI-attribute in Figure 19.1c; but no confu-
sion should be caused by borrowing it to illustrate the refinement of f1). For
example, suppose that respiratory-system-problem is one of the partitions (in
the taxonomy of Figure 19.2) deciding f1. Using the transformation stated in
Section 19.2.2, we can represent respiratory-system-problem with an interval
[1, 6] (by converting the leaf nodes under the partition to values 1-6, respec-
tively). Note that, it is not possible to split the partition into, for instance, [1, 2]
and [3, 6]. As formulated in Definition 19.4, each partition of a categorical at-
tribute must be a node in the corresponding taxonomy. Here, [1, 2] cannot be
mapped to any node in Figure 19.2. In fact, there is only one possible split
for respiratory-system-problem, i.e., breaking its interval [1, 6] to sub-intervals
[1, 3] and [4, 6].

In general, the number of possible refinements for a categorical f1 equals
exactly the number of non-leaf partitions of f1. For example, assuming that
f1 is determined by respiratory-system-problem and digestive-system-problem,
we can refine it into 2 different generalization functions with a single split.

A round of the greedy algorithm. We are ready to elaborate each round of
the algorithm in Figure 19.5. Before a round starts, the algorithm has obtained
a publishable table T ∗, with a set of QI-generalization functions S = {f1, ...,
fd}. At the beginning of the round, we duplicate T ∗ and S into T ∗

best and Sbest,
respectively (Line 7).
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Next, the algorithm examines (Line 8) all possible sets of refined functions
S′ = {f ′1, ..., f ′d}, obtained by performing one split over a single function in
S (i.e., S′ shares d − 1 identical functions with S). Given an S′, Lines 9-
11 perform QI- and SA-generalizations to calculate a publishable T ′∗, in the
same manner as Lines 3-5, except that multiple QI-groups may be produced
after the QI-generalization. If T ′∗ incurs smaller information loss (computed
with Equation 19.6) than our current best solution T ∗

best (Line 12), T ′∗ and S′

replace T ∗
best and Sbest respectively (Line 13).

We provide a heuristic to reduce computation time. Since S′ differs from S
in only one element, the QI-generalization based on S′ can be computed incre-
mentally from that based on S (which is available from the previous round).
Furthermore, if the same QI-group G results from both QI-generalizations, its
SA-generation does not need to be re-computed. Similarly, in deriving the in-
formation loss ILtable(T ′∗), the contribution of the tuples in G needs not be
re-calculated, either.

The round finishes, after all S′ has been considered. Line 14 checks if a
better solution (compared to the one discovered prior to this round) has been
found. If not, the algorithm terminates by returning T ∗

best. Otherwise, another
round is executed, after setting T ∗ (or S) to T ∗

best (or Sbest) at Line 16.

19.5.2 Optimal SA-generalization

Let G′ be an arbitrary QI-group output by performing QI-generalization on
T . Without loss of generality, assume that G′ contains m tuples t′1, ..., t′m. We
use G to denote the set of corresponding tuples {t1, ..., tm} in the microdata T .
Specifically, for each j ∈ [1,m], t′j.As = tj.As, whereas t′j .A

qi
i generalizes

tj .Aqii (1 ≤ i ≤ d).
We aim at applying SA-generation on G′ to derive G∗ ={t∗1, ..., t∗m}, which

achieves two objectives. As discussed in Sections 19.2.2 and 19.4, Pbreach(tj)
(1 ≤ j ≤ m) depends only on G∗ (which is the essential QI-group of the
individual that tj belongs to). Hence, as the first objective, G∗ must ensure
Pbreach(tj) ≤ pbreach.

The second objective is to minimize

m∑
j=1

ILvalue(t∗j .As) (19.7)

where ILvalue is given in Equation 19.4. Given the fact that the QI-values of t∗1,
..., t∗m have been finalized (before the SA-generalization), fulfilling the second
objective essentially minimizes

∑m
j=1 ILtuple(t∗j ), where ILtuple is defined

in Equation 19.5. Therefore, after carrying out SA-generalization on all the
QI-groups (produced by QI-generalization) in the same manner, the resulting
publishable T ∗ minimizes ILtable(T ∗) of Equation 19.6.



Personalized Privacy Preservation 477

Lemma 19.18 For any tuples tx and ty (1 ≤ x, y ≤ m), if tx.GN is
in SUBTR(ty.GN ), then Pbreach(tx) ≤ Pbreach(ty) regardless of the SA-
generalization applied.

Therefore, in searching for the optimal SA-generalization, we can avoid
checking the breach probabilities of the tuples like tx in Lemma 19.18, be-
cause they must be adequately protected once the privacy information of the
other tuples is secured.

Lemma 19.19 For any tuple tj (1 ≤ j ≤ m), if Pbreach(tj) > pbreach
before SA-generalization, then t∗j .As must be an ancestor of tj .GN after SA-
generalization.

Based on the above properties, Figure 19.6 shows an algorithm that finds
the optimal SA-generalization for the given QI-group G′. Line 1 initializes
two sets G and G∗.G collects all tuples t1, ..., tm in T generalized to G′, while
G∗ = G′. Line 2 creates a set Sprob as follows. For each tuple t ∈ G, if its
guarding node t.GN is not in SUBTR(t′.GN ) of any other tuple t′ ∈ G, t is
added to Sprob. By Lemma 19.18, once the privacy requirements of the tuples
in Sprob are satisfied, the requirements of the other tuples are also fulfilled.

For each tuple t ∈ Sprob, the algorithm calculates Pbreach(t) according to
Theorem 19.14 or 19.16 (based on the current, non-generalized, As values in
G∗). If Pbreach(t) is larger than pbreach, t is placed in a set Sbad (Line 3), that
is, Sbad includes the tuples in Sprob whose privacy constraints have not been
satisfied after QI-generalization.

Next, we consider each tuple t ∈ Sbad in turn (Line 4). Let t∗ be its cor-
responding tuple in G∗. According to Lemma 19.19, we can immediately set
t∗.As to the parent of t.GN (Line 5). After this, t∗.As may become an ances-
tor of t′∗.As of another tuple t′∗ ∈ G∗. This is not allowed because, otherwise,
t∗.As and t′∗.As become two overlapping partitions in the general domain of
As. To remedy this problem, we must also generalize t′∗.As to t∗.As (Lines
6-8).

The algorithm terminates (Line 9) if Pbreach(t) does not exceed pbreach for
any tuple t ∈ Sprob. Otherwise (Pbreach(t) > pbreach for some tuple t), we
must decrease Pbreach(t) by generalizing t∗.As further (t∗ is the tuple in G∗

corresponding to t). If t∗.As is already the root of the taxonomy (Line 10),
the algorithm returns, reporting that no appropriate SA-generalization can be
found (Line 11). In fact, in this case, the As values of all tuples in G∗ have
been generalized to the root, so that no more generalization is possible.

If t∗.As is not the root, we raise t∗.As “one level up” in the taxonomy,
by replacing it with its parent (Line 12). After this, the As values of some
other tuples may also need to be raised, due to the reasoning for Lines 6-8.
These changes may increase the breach probabilities of some tuples. Hence, the



478 Privacy-Preserving Data Mining: Models and Algorithms

Algorithm SA-generalization (G′)
Input: a QI-group G′ with tuples t′1, ..., t′m after QI-generalization
Output: a set G∗ of tuples t∗1, ..., t∗m in the final publishable T ∗

1. G = the set of tuples t1, ..., tm in T generalized to G′;
G∗ = {t′1, ..., t′m}

2. Sprob = the set of tuples t ∈ G such that t.GN is not in the
subtree of the guarding node of any other tuple in G

3. Sbad = the set of tuples t ∈ G satisfying Pbreach(t) > pbreach

/* In the Primary Case, Pbreach(t) is computed from Theorem 19.14,
replacing n with the size of G. In the Non-primary Case, the
computation is based on Theorem 19.16, replacing n with the
number of distinct individuals involved in G. */

4. for each tuple t ∈ Sbad

5. t∗.As = the parent of t.GN
//t∗ is the tuple in G∗ corresponding to t

6. for each tuple t′∗ ∈ G∗ such that t′∗ = t∗

7. if t′∗.As is in SUBTR(t∗.As)
8. t′∗.As = t∗.As

9. while there is a tuple t ∈ Sprob satisfying Pbreach(t) > pbreach

10. if t∗.As is the root of the taxonomy
11. return NULL //no possible SA-generalization
12. t∗.As = the parent of t∗.As

Lines 13-15 are identical to Lines 6-8

Figure 19.6. Algorithm for finding the optimal SA-generalization

algorithm returns to Line 9 to check whether any probability is above pbreach.
If yes, the above procedures are repeated.

The computation of Pbreach(t) deserves further clarification. The value of
n in Theorems 19.14 and 19.16 is unavailable when T ∗ is being computed
(i.e., we do not know which external database will be consulted by an adver-
sary). Hence, as a conservative approach, we replace n with its lower bound
|Sreal(otar)| (Inequality 19.2). If the breach probability computed with this
lower bound is at most pbreach, then the actual breach probability derived by
an adversary will definitely be bounded by pbreach.

The following theorem proves that Figure 19.6 produces an SA-
generalization that minimizes Equation 19.7.

Theorem 19.20 Let t∗1, ..., t∗m be the tuples returned by the algorithm in
Figure 19.6, and t′∗1 , ..., t′∗m be the tuples obtained by any alternative SA-
generalization that prevents privacy breach. For any j ∈ [1,m], t∗j .As must
be in SUBTR(t′∗j .As), namely, ILvalue(t∗j .As) ≤ ILvalue(t′∗j .As).

19.6 Alternative Forms of Personalized Privacy
Preservation

This section reviews several other methods that allow data owners to spec-
ify their preferences of privacy protection. Section 19.6.1 analyzes a natural
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extension of k-anonymity. Then, Section 19.6.2 discusses preservation of lo-
cation privacy.

19.6.1 Extension of k-anonymity

At the beginning of this chapter, we mentioned an approach to augment k-
anonymous generalization with personalization features. Without loss of gen-
erality, consider that the microdata T contains n tuples. The owner of the i-th
(1 ≤ i ≤ n) tuple t selects an integer ki as the k-value of t. This value signi-
fies her/his intention that, in the published table T ∗ (obtained by generalizing
T ), t must be included in a QI-group with size at least ki. The objective is
to find a T ∗ that satisfies the requirements of all the owners, and at the same
time, minimizes the amount of generalization (according to a certain metric to
be discussed shortly). Note that, here generalization is performed only along
the QI-attributes of T , namely, every sensitive value in T is published in T ∗

directly.
For simplicity, assume that all the QI-attributes A1, ..., Ad are numeric.

As a result, for every tuple t∗ in T ∗, its value on Ai (1 ≤ i ≤ d) is an interval
covering a set of consecutive values in the domain ofAi. In other words, t∗.A1,
..., t∗.Ad can be regarded as the extents of a rectangle, in the d-dimensional QI-
space whose axes are A1, ..., Ad.

Apparently, all the tuples in a QI-group G of T ∗ have the same rectangle
representation in the QI-space, which we define as the QI-rectangle of G. In-
tuitively, the larger the rectangle is, the more information is lost, with respect
to the original data of G in T . In the sequel, we measure the “amount of gener-
alization” as the largest perimeter of the QI-rectangles in T ∗, i.e., ideally, the
optimal T ∗ should minimize that perimeter. This metric is chosen, as it allows
us to visualize the quality of generalization easily. The following discussion,
however, is general, and readily extendible to other metrics as well.

A straightforward solution to computing T ∗ is to first set k to the highest of
k1, ..., kn, and then invoke any existing algorithm for k-anonymous general-
ization. Although such T ∗ fulfills the requirements set forth by all data owners,
it entails excessive generalization, and hence, its usefulness for data analysis
may be rather limited. As a slightly more complex solution, we may take a
partitioning approach. Specifically, T is partitioned into disjoint subsets, such
that tuples in the same subset have an identical k-value. Then, for each parti-
tion, we independently obtain its k′-anonymous generalization, where k′ is the
k-value of the tuples in that partition.

The partitioning approach also has two obvious drawbacks. First, a partition
may not have enough tuples to make even a single QI-group. For example, sup-
pose that the partition contains tuples whose k-values equal 100, whereas the
partition has only 50 tuples. In this case, no generalization from this partition
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partition with k-value 4

partition with k-value 3

(a) Generalization of the partitioning approach (b) Better generalization

Figure 19.7. Personalized k-anonymous generalization

is possible, and therefore, all the tuples in it must be discarded. When there are
many such undersized QI-groups, the number of discarded tuples would be too
large for T ∗ to be useful for data analysis.

Another drawback of the partitioning solution is that, it never leverages the
opportunity of placing tuples of different partitions into the same QI-group, in
order to reduce the group’s perimeter. To illustrate this, consider Figure 19.7a,
where the black (white) points have the same k-value 4 (3), and hence, con-
stitute a partition. The rectangles correspond to the QI-rectangles produced by
the partitioning approach. Figure 19.7b demonstrates an alternative generaliza-
tion that satisfies the privacy requirements of all points. Note that a black point
is grouped together with the white points, which leads to significant decrease
in the perimeter of the QI-rectangle on the other black points.

Based on this idea, Aggarwal and Yu develop an algorithm for finding a
good generalized table T ∗ that achieves small QI-rectangles. We refer the in-
terested readers to [2] for details. It is worth mentioning that this algorithm is
originally developed for a condensation approach developed in [1]. Neverthe-
less, it can be easily adapted to k-anonymity.

19.6.2 Personalization in Location Privacy Protection

In recent years, we have witnessed significant improvements in location-
tracking and wireless-communication technologies. These technologies have
enabled numerous spatiotemporal applications that require monitoring the lo-
cations of moving objects continuously. An example is the intelligent traffic
control system, where each vehicle transmits its location periodically (e.g.,
every 5 minutes) to a server, which provides public services such as conges-
tion warning, travel time estimation (given a source and a destination), etc.
Unfortunately, drivers may not necessarily always be happy to disclose their
locations precisely. For example, when a driver wishes to hide the place that
s/he is visiting, s/he may choose to switch off her/his location-reporting device.
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Obviously, such intermittent “incorporation” may cast enormous adverse influ-
ences on the quality of the services provided by the underlying application. For
instance, the server would no longer be able to ensure the accuracy of the num-
ber of vehicles in a district, and hence, be unable to provide reliable congestion
analysis.

It is thus clear that the success of many spatiotemporal applications depends
on a privacy preserving location reporting mechanism. In particular, the mech-
anism should convince each individual that, even if s/he sends her/his location
continuously, no adversary is able to identify her/his position down to a certain
precision. This is the motivation of a growing research area called “location
privacy protection”.

The purpose of preventing accurate position pinpointing is in conflict with
transmitting precise object locations. Fortunately, many spatiotemporal appli-
cations do not really demand precise data, but instead, they work fairly well
even with “fuzzy” locations. For example, congestion in the Manhattan area
can be detected as long as the number of vehicles in that area can be estimated
with reasonable accuracy. Imagine that, instead of representing each vehicle’s
position as a point, we adopt a small rectangle that covers its position. This
fuzzier representation achieves two objectives. First, it does not bias the esti-
mation of traffic volume considerably (due to the fact that each rectangle is
significantly smaller than the Manhattan area). Second, it does not allow an
adversary to know exactly where a vehicle is.

The above idea is the rationale of the cloaking technique, which is com-
monly adopted in preserving location privacy. The process (as mentioned ear-
lier) of transforming a point to a rectangle is called spatial cloaking. Spatial
cloaking, however, hides only geographic information, but does not conceal
the time when an individual visits a place. Time concealment leads to tempo-
ral cloaking, which replaces a timestamp with an interval. Formally, an exact
spatiotemporal location can be represented as a ternary tuple (x, y, t), where
(x, y) denote the 2D coordinates of an object, and t corresponds to the time
when this object is located at that position. Spatial cloaking converts (x, y)
into a rectangle R and temporal cloaking changes t into an interval I . Note
that R and I together define a 3D box, which is called the cloaking box of
(x, y, t).

Most location-preserving solutions adopt a three-layered architecture: ob-
jects, a cloaking server, and an application server. Specifically, each object
transmits its spatiotemporal location (x, y, t) to the cloaking server, which is
trustable, and responsible for converting the location to a cloaking box. Then,
the cloaking server relays the box to the application server, which provides
public services based on the cloaking boxes received. The objective is to disal-
low the application server to recover any exact spatiotemporal location.
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As with the privacy-preserving publication scenario (c.f. Section 19.6.1), a
principle is required also in location-privacy preservation to measure the degree
of privacy protection. k-anonymity can once again be adopted, by simply treat-
ing x, y, and t as three QI-values, and a cloaking box as the generalized form.
Specifically, the effect of applying k-anonymity is to ensure that the cloaking
box of every spatiotemporal location is the same as those of k − 1 other spa-
tiotemporal locations. Obviously, a higher k promises stronger privacy protec-
tion. Unlike the publication problem, however, the data in the location-privacy
context are not known in advance, but continuously arrive and are appended to
the database along the time dimension. This difference prevents the generaliza-
tion algorithms in the publication scenario from being applied directly. Several
adapted algorithms have been developed in [6, 5, 10].

Gedik and Liu [5] propose a personalized approach to preserve location
privacy. Their main idea is to allow each individual to specify, for every spa-
tiotemporal location that s/he reports, (i) a tailored-made k-value, and (ii) a size
limit for the extent of the corresponding cloaking box on every geographic or
temporal dimension. Gedik and Liu also provide an algorithm to obtain cloak-
ing boxes subject to these personal requirements.

19.7 Summary and Future Work

This chapter introduced several techniques that incorporate personal pref-
erences in privacy preserving data publication. Particular attention was paid
to a guarding-node approach, which permits the formulation of complex con-
straints that require guarding individual sensitive values. We analyzed the pri-
vacy guarantees of that approach, and discussed its algorithm for generating
anonymized datasets. As a second step, we also explained the rationales of two
alternative personalization solutions.

Despite its significant importance in practice, personalized privacy preser-
vation has received only limited attention in the literature. There remain nu-
merous interesting research topics awaiting to be explored. We conclude the
chapter by listing some of those topics.

Greater flexibility in formulation. The guarding-node solution has an ob-
vious drawback: a person cannot request guarding against an arbitrary set
of sensitive values. For instance, assume that, concerning the hierarchy in
Figure 19.2, Ken wishes to prevent the public from associating him with pneu-
monia and bronchitis. For this purpose, he must set his guarding node to “res-
piratory infection”, which disallows associating Ken with an extra disease: flu.
Although such an additional prevented association causes no harm to Ken’s
privacy, it is redundant, and would most likely trigger unnecessary data distor-
tion in the published relation. This problem is especially serious if Ken would
like to protect himself from being suspected of having diseases that scatter in
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mutually distant parts of the hierarchy. As an example, in additional to his pref-
erences stated before, Ken may not want the public to guess that he contracted
gastritis (even though his actual disease is drastically different from gastritis),
which requires setting the guarding node to the lowest ancestor of pneumonia,
bronchitis, and gastritis. Due to the vast dissimilarity of the three types of ill-
ness, the ancestor would be a node (any-illness in Figure 19.2) at a fairly high
level in the taxonomy, leading to a huge number of redundant associations.

Non-categorical attributes. The guarding-node approach demands a hi-
erarchy on the sensitive attribute. Hierarchies, however, are typically absent
(or difficult to define) on numeric and transactional data, whose protection
must be achieved in alternative manners, and is an important problem due
to the abundance of such data in practice. Consider the scenario where the
government wants to release tax data to social scientists, involving a numeric
private attribute (monthly) Salary. A tax-payer would be reluctant to have
her/his income released, unless s/he knows that her/his amount cannot be “ac-
curately” derived by analysts. Here, the notion of “accuracy” is subject to per-
sonalization, e.g., people with higher remuneration may give more stringent
constraints. To enable personalization, we could leverage the guarding-node
solution mentioned earlier, after transforming Salary into a categorical attribute
and manually building a hierarchy over the new attribute. Unfortunately, while
categorization may be easy (e.g., we could regularly divide the Salary domain
into a large number of intervals with identical lengths), building the hierarchy
is not. To understand why, assume that Salary has a domain of [0, $100k], dis-
cretized into 1000 ranges with length $100. No hierarchy is able to preserve
the proximity of all pairs of adjacent ranges. For instance, imagine that every
10 leaf-ranges are grouped as the subtree of a node at the higher level; e.g.,
the first node at this level corresponds to range [0, $1k], and is the parent of
leaf-ranges [0, $0.1k), [$0.1, $0.2k), ..., [$0.9k, $1k). Then, leaf-ranges [$0.9k,
$1k) and [$1k, $1.1k) are placed into two different subtrees, even though they
encompass consecutive salary amounts.

Transactional data usually emerges in a database that requires frequent
itemset mining. For example, a tuple collected at Amazon.com may have the
form “Age = 30, Gender = female, Shipping-address = ..., Items-purchased =
{Toshiba 42HP66 HDTV, Dolce 5-piece Dining Set, ...}”. To enable market
research, the company may release such tuples to a third party, after ensuring
adequate preservation on customers’ purchase history (i.e., Items-purchased is
sensitive). It is not clear how to extend the guarding-node technique to per-
mit personal preferences in such an environment, since concealing individual
items may result in substantial information loss about their combination. For
example, suppose that electronic-product (furniture) has 100 child nodes in
the item taxonomy, one of which is HDTV (dining-set). If a person specifies
{electronic-product, furniture} as the guarding node, the effect is to hide the
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original itemset {HDTV, dining-set} into 10000 different (2-sized) itemsets,
where 10000 is the cardinality of the cartesian product of the children sets of
electronic-product and furniture. In general, if an item set contains m items
i1, i2, ..., im, it may not be feasible to replace them even with their immedi-
ate parents p1, p2, ..., pm in the taxonomy — in this case, no accurate mining
would be possible, because the itemset {i1, i2, ..., im} would become indistin-
guishable with any other itemset in the cartesian product of the children sets of
p1, p2, ..., pm, respectively (the cardinality of the cartesian product increases
exponentially with m).

Automatic guarding node formulation. Sometimes expecting every indi-
vidual to provide an appropriate privacy constraint may not be realistic. For
example, the medical records collected in the old days do not bear any per-
sonal preference; it would be intractable to contact all the corresponding own-
ers for preference submission. Even worse, in certain applications, asking a
customer for privacy constraints may “back-fire”, harming the business itself.
For example, a customer shopping at Amazon.com would be confused about
such a request, and even discouraged from using the service again after being
alerted with privacy concerns. As mentioned earlier, if no personal preference
is given, we could at least set a guarding node to the sensitive value itself, thus
achieving the same extent of protection as in a conventional non-personalized
approach. Nevertheless, a good privacy preserving solution should be able to
automatically identify the “rare” sensitive values, and offer greater protection
to them. For instance, HIV apparently deserves better protection than the com-
mon illness flu. This observation suggests that, given a sensitive value that is
statistically insignificant, we could manually set its guarding node to one of its
ancestors in the taxonomy, such that the joint frequency of all the leaf values
underneath this ancestor is sufficiently high. The real situation, unfortunately,
is far more complex, due to the correlation among various attributes. In partic-
ular, even though a sensitive value itself has a reasonably high frequency, its
combination with a QI-value may be rare. In this case, stronger privacy preser-
vation is needed on the combination. How to achieve this with guarding nodes
is a challenging issue.

Alternative forms of personalization. So far our discussion has used
“guarding nodes” as the primary means for specifying personalized require-
ments, but certainly this is not the only means. A good formulation should be
based on the needs of individuals involved in different applications, for de-
veloping new forms of personal constraints. We are particularly interested in
constraints that forbid analysts from discovering sensitive data patterns (e.g.,
association rules, decision trees, clusters, etc.), in contrast to specific values.
Examples of these constraints are: “prevent the discovery of the association
rule {Occupation = Lawyer, Gender = Male, Salary = $100k} → Marital-
status = Divorced/Single”, “do not allow an analyst to tell the gender of an
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individual from her/his other attributes”, or “conceal the cluster of wealthy
clients”. A pioneering attempt towards this goal has been made in [13].
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Abstract In a wide range of applications, multiple data streams need to be examined to-
gether in order to discover trends or patterns existing across several data streams.
One common practice is to redirect all data streams into a central place for joint
analysis. This “centralized” practice is challenged by the fact that data streams
often are private in that they come from different owners. In this paper, we focus
on the problem of building a classifier in this context and assume that classifica-
tion evolves as the current window of streams slides forward. This problem faces
two major challenges. First, the many-to-many join relationship of streams will
blow up the already fast arrival rate of data streams. Second, the privacy require-
ment implies that data exchange among owners should be minimal. These con-
siderations rule out all classification methods that require producing the join in
the current window. We show that Naive Bayesian Classification (NBC) presents
a unique opportunity to address this problem. Our main contribution is to adopt
NBC to solve the classification problem for private data streams.

Keywords: Privacy, data streams, classification, Naive Bayesian classification.

20.1 Introduction

With today’s information explosion, data not only are stored in large amount
but also grow rapidly over time. Data streams are such examples, including in-
ternet traffic streams, stock trading streams, and telephone call streams. Data
streams are characterized as being unbounded, continuously arriving at a high
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rate, and typically being scanned once (6). To benefit from the information and
knowledge contained in data streams, often several related data streams need
to be examined together to discover trends or patterns that exist across different
data streams. For example, stock streams and news streams are related, traffic
report streams and car-accident streams are related, sensor readings of differ-
ent types are related. In this paper, we focus on building classification models
from such data. Our insight is that classification patterns may be jointly de-
termined by the co-occurrence of certain conditions in several related streams.
We illustrate this point by a simplified example.

20.1.1 Motivating Example

In stock markets, “favorable trading” refers to stock transactions that are
favorable to the engaging party, i.e., selling before a stock plunges or buying
before a stock goes up. In order to build classification models to identify “fa-
vorable trading”, the stock trading stream that records all trading transactions
must be examined. However, stock transactions are not isolated or independent
events; they are related to other data streams, e.g., phone calls between deal-
ers and managers/staffs of public companies. Thus it is necessary to consider
related data streams together.

For example, a classification algorithm may need to look at the following
related data:

Trading stream: T (τ , Dealer, Type, Stock, Class)
Phone call stream: P (τ , Caller, Callee)
Company table: C (Company, Stock)
Person table: S (Name, Org)
where τ is the timestamp, “Type” is either “sell” or “buy”, “Class”

(“yes”/“no”) refers to the class label of being favorable trading or not. To com-
pute the training set, a SQL query can be used to extract information from the
above data as follows:

SELECT *
FROM P, S, T, C
WHERE S.Name=P.Caller AND P.Callee=T.Dealer

AND P.τ <T.τ AND T.Stock=C.Stock

Essentially, this query performs a join on the related data and each joined tuple
represents a connection between a phone call and the trading ensued from this
call. The join result is then used to train the classifier.

Figure 20.1 shows a snapshot of data. The join relationship is indicated by
the arrows connecting the join attributes. Note that the join between P and T
is ”many-to-many”. For example, “Albert” was called twice and traded twice,
generating four tuples in the join stream in Figure 20.2 (The timestamps for
each join record are ignored because of the space.), the rule “Org=Company→
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Figure 20.2. The join stream

Class=Yes” holds in 3 out of 4 tuples that have “Org=Company”, i.e., with 75%
confidence. This suggests that after getting a call, the trading on the caller’s
company stock tends to be more favorable.

This example illustrates that sometimes classification of certain behaviors
(i.e., favorable trading) depends on information contained in several correlated
streams and examining such streams together likely produces more accurate
classifiers than examining any single input stream alone. The join is a com-
mon operation to combine several input streams into a single stream and the
training data for classification is defined by this “join stream”. Moreover, clas-
sification rules evolve as data streams evolve. New favorable trading rules may
emerge as a reaction to evade from being identified by existing rules. In order
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to capture this change, the classifier needs to adapt quickly to the changed data
distribution. A solution to this problem faces two major challenges.

Privacy preservation. In the above example, as trade and phone call
streams involves trading secrets and individual’s privacy, apparently nei-
ther the trading company nor the phone service company is willing to
disclose their local sensitive data. The common approach of redirecting
all streams into a central place immediately violates this privacy con-
straint. In the literature, privacy-preserving data mining and stream data
mining have been studied separately. The traditional privacy-preserving
data mining techniques focus on static data and are not applicable to data
streams with unbounded data size and continuous arrival of new data. On
the other hand, most prior work on stream data mining assumes either a
single stream or several streams but no privacy issue, and focuses on the
processing speed of stream data. More details in Section 2.

Blow-up of the join stream. As input streams arrive in a fast pace, the
classifier must evolve quickly when new structures emerge and old ones
are out-of-date. However, the join of multiple input streams is an expen-
sive operation, in fact, much slower than the arrival rate of input streams.
Furthermore, the “many-to-many” join relationship, as shown in Table
1, could generate the result join stream that is much larger than input
streams. Any method that explicitly generates the join stream will suffer
from thid blow-up of data arrival rates and is unlikely to be able to keep
pace with the incoming source streams.

20.1.2 Contributions and Paper Outline

We consider several private data streams owned by different sites. One data
stream, called target stream, contains class labels. The current window of the
training data is defined by the join of input streams in their current window.
Such joins are called sliding-window join (6) and the join result defines a new
stream called join stream. The specification of window can be either tuple-
based or time-based (6). As the window of input streams slides forward, so
does the window of the join stream and the classifier must be updated to adapt
to the change of window. In practice, only some portion of the data is labeled
whereas the remaining is not. For each window, the unlabeled portion will be
classified by the classifier built in the previous window, and at the same time,
the labeled portion will be used to train the classifier in the current window (1).

Due to the privacy requirement and blow-up of join, however, the join stream
cannot be generated explicitly. Hence, the problem we study is to build and
update the classifier based on the never-generated join stream, given several
private input streams. The construction and update of the classifier must not



Privacy-Preserving Data Stream Classification 491

reveal private information to other sites. This problem is referred to as the se-
cure join stream classification (Secure-JSC) hereinafter. Existing classification
methods (35)(9)(1) cannot be applied to the Secure-JSC problem because they
deal with a single stream and requires the join stream to be explicitly given.

Our insight is that the independence assumption of Naive Bayesian Classi-
fier (NBC) (19) provides a unique opportunity to address the requirements for
Secure- JSC: for a given class label, variables are assumed to be independent
of each other. Research shows that NBC is reliable even when this assumption
is violated (17)(31)(25). The reason for this reliability is that the most likely
class label predicted by NBC is typically correct though the estimated prob-
ability may be distorted by the independence assumption. In other words, the
top ranked class label often is correct though the estimated probability for rank-
ing them was distorted. This reliability has been echoed by the popularity and
success of NBC in both research works and practical applications. For most
data stream applications, some degree of inaccuracy is tolerable, especially so
because the data arrive very fast and there is only the time to scan the data
once.

To adopt NBC to Scure-JSC problem, however, we must compute the in-
formation required by NBC on the join stream without generating the join and
exchanging private information across sites. Our insight is that this can be ob-
tained by computing some “blow-up summary” from examining each input
stream and exchanging this summary with other sites. The “blow-up summary”
can be computed by examining each input tuple in the current window twice,
independent of the number of tuples it joins in other streams. The benefit is
twofold: eliminate the need of collecting private data streams in a central place
and avoid the expensive join. Though we consider NBC, the idea of “blow-up
summary” is applicable to other classification algorithms that require similar
statistics such as decision trees.

The rest of this paper is organized as follows. In Section 2, we review related
works. In Section 3, we define the problem and discuss core concepts of NBC.
In Section 4, we present our algorithm. We evaluate our method in Section 5.
Section 6 concludes the paper.

20.2 Related Works

Privacy preserving data mining was first introduced in (3) and (28). These
works opened up a rapidly growing area and various privacy preservation tech-
niques have emerged since then. Most works on privacy preserving data mining
assume static data. On the other hand, there is a large body of works on stream
data management and mining. But this body of works does not deal with pri-
vacy issues. The novelty of our work lies in addressing privacy preservation,
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data streams and the training data defined by a general join of several streams.
Below, we focus on related works which address one ore more of these aspects.

In data stream management (6), sliding-window join is proposed to answer
queries involving the join of multiple data streams, such as the join size, sum
(5)(15), join-distinct (21). Their focus was on how to compute these statistics
of the join under resource constraints and techniques such as sampling (11)
or load- shedding (10)(32) are used to reduce the cost of join. These works
assume either a single stream or multiple streams but no privacy issue. In the
Secure- JSC problem, as we explained in the previous section, it is prohibited
to first compute the join of multiple streams and then build the classifier. Thus
these techniques cannot be applied.

Most stream mining algorithms consider a single stream and simple statis-
tics such as average and standard deviation. Classification on data streams was
considered in (16)(20)(35)(9)(1). Other mining problems that involve multi-
ple streams are clustering (24)(7), correlation analysis (37), sequential patterns
(13). None of these works consider the privacy issue. Neither do they involve
a general join among streams; thus, they do not deal with the blow-up of data
arrival rates caused by a many-to-many join.

(18) presents a secure construction of decision tree classifiers from verti-
cally partitioned data, where the join is given by the one-to-one relationship
implied by the common key identifier for all partitions. This is not applicable
to the general many-to-many join relationship. Recently, (36) proposed a se-
cure construction for decision tree classifiers over distributed tables with the
general many-to-many join relationship. Both works consider static data, not
stream data.

There are few studies that cover both data streams and privacy preservation.
Some prior works (8)(30) focus on the problem of private search over data
streams. However, their goal is to protect the privacy of the query over data
stream, not the data stream itself. The more related work is (27). It preserves
the privacy of data streams by adding randomized noises. No join relationship
is involved among streams. This approach cannot be applied to the Secure-
JSC problem since the data obfuscation does not preserve the join relationship
among streams. In addition, (4) claims its condensation approach can also be
applied to the data stream problem because of its support on incremental up-
dating. However, the anonymized data stream appears in a form of aggregate
statistics instead of the original records, which makes infeasible to perform
join relationships among anonymized streams.
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20.3 Problem Statement

20.3.1 Secure Join Stream Classification

Consider n data streams S1, ..., Sn, distributed among n sites. Secure Join
stream classification refers to the problem where a classifier needs to be built
such that (1) the training instances are defined by a sliding-window join over
all data streams; (2) no site learns private information about other data streams.
The sliding-window join over S1, ..., Sn is specified by a join condition, a
window specification and window update specification (6)(22).

In this paper, we consider a join condition in the form of a conjunction
of equality predicates Si.A = Sj .B(i �= j), where each of Si.A and Sj.B,
called join attributes, represents one or more attributes from Si and Sj . Since
Si.A and Sj .B are allowed to contain more than one attribute, we need to
consider at most one predicate Si.A = Sj.B between each stream pair Si and
Sj . In the join graph, there is an edge between Si and Sj if there is a predicate
Si.A = Sj.B in the join condition. We consider join conditions for which the
join graph is connected and contains no cycle. Many joins in practice are in fact
acyclic, such as chain joins and star joins over the star/snowflake schemas (26).

The window and update specification can be time-based or tuple-based. Our
method only depends on the set of tuples in the current window, not on how
the window is specified and updated. The term “window” refers to the collec-
tion of current windows of all input streams. One of S1, ..., Sn, called target
stream, contains the class column. The task is to build a classifier each time
the window updates. This means that the classifier must be rebuilt whenever
the window on any input stream slides forward. The speed of fastest-sliding
window determines the rate of classifier updates.

In the current window, the training set is the set of tuples defined by the
sliding-window join. Importantly, the training set is not explicitly given, rather,
is specified by the input streams and the sliding-window join. Some tuples
in the input streams do not contribute any tuple in the join. Such tuples are
dangling. We do not assume that dangling tuples are removed beforehand; in
fact, the removal of dangling tuples is not straightforward due to the privacy
requirement.

We assume all sites are assumed to be honest, curious, but not malicious
(23). This means that a site may collect intermediate information received from
other sites, but will follow the computation correctly. Our privacy model can
be described by three types of attributes in each window:

Non-private class column: the class column can be revealed to all sites.
This assumption was made previously in (18). When all sites collaborate
to build a classifier, we assume these sites are willing to share the infor-
mation on class labels.
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Semi-private join attributes: for a join predicate Si.A = Sj.B, the join
attributes Si.A and Sj.B, are semi-private in that the sites of Si and Sj
are willing to share their join values that they both have, i.e., Si.A∩Sj.B,
but not any other join values, i.e., (Si.A ∪ Sj.B)− (Si.A∩ Sj.B). This
model was adopted in the literature for secure join and intersection in
(2).

Private non-join attributes: the values of all non-join attributes must
not be revealed to any other sites.

In short, any join values known to the joining sites are not private, but every-
thing else is.

20.3.2 Naive Bayesian Classifiers

Consider a single table T (X1,...,Xn, Class). “Class” denotes the class col-
umn whose domain is a collection of class labels C1, ..., Cm. Xi is a categori-
cal variable. To classify a tuple x = (x1, ..., xn), the Naive Bayesian Classifier
(NBC) assigns x to the class Ci that maximizes the conditional class probabil-
ity P (Ci|x) based on the following maximum a posteriori (MAP) hypothesis:

argmaxCi∈ClassP (Ci|x) = argmaxCi∈ClassP (x|Ci)P (Ci) (3.1)

where P (Ci) is the class probability and P (x|Ci) is the conditional probability
of x given the class label Ci. Under the independence assumption that variables
X1, ..., Xn are independent given the class label, NBC estimates P (x|Ci) by
P (x|Ci) =

∏n
j=1 P (xj |Ci). Once P (xj |Ci) and P (Ci) are collected from the

training data, NBC is able to assign a class label to a new tuple x. NBC requires
the variables Xi to be categorical (having a small number of distinct values).
Continuous attributes can be first discretized (such as equi-width or equi-depth
binning) into a small number of intervals before applying NBC.

To compute P (xj |Ci) and P (Ci), we only need to compute the class count
matrix of the form (xk, < N1, ..., Nm >) for each distinct value xk of Xj ,
where Nj (1 ≤ j ≤ m) is the number of tuples that has the value xk and
the class label Cj . This data structure has a size proportional to the number of
distinct values in Xj .

The above discussion assumes a single table T. For Secure-JSC, T will be
the join result of the input streams S1, ..., Sn in the current window. Generating
T would violate the privacy constraint. The challenge is to compute P (xj |Ci)
and P (Ci) on the joined table T without generating T. In the next section, we
present such a method.
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20.4 Our Approach

We assume that the current window of each input stream can fit in the local
memory. The join relationship among streams forms an acyclic join graph,
which is a rooted tree. Any stream may be regarded as the root. As our method
involves propagation of information along the edges of the tree, we call this
tree propagation tree.

Let us consider the site for an input stream Si. Instead of generating the
join stream, the site maintains an entry of (Cls,Count) for each tuple t in the
current window of Si. Cls is a class vector in the form of < N1, ..., Nm >
where m is the number of classes and Ni records the number of occurrences of
t associated with the class label Ci in the never-generated join stream. Count
is the number of occurrences of t in the join stream. Intuitively, the entry
(Cls,Count) for t stores all information about t in the current window of
the join stream. Thus, instead of keeping every join tuple involving t, we keep
t only once and store its number of occurrences and class labels in those oc-
currences. The size of this data structure is proportional to the window size of
Si. Importantly, having Cls for each tuple t in the current window, the site of
Si is able to compute P (xj|Ci) and P (Ci) for the all values xj in the current
window. The challenge is computing Cls without performing the join.

To compute the class vectors Cls, we propagate the “blow-up effect” of
join. The propagation proceeds in two phases. In the phase of bottom-up prop-
agation, Cls and Count are propagated from the leaf nodes to the root. The
propagation along an edge blows up Cls and Count according to the join con-
dition on the edge. The detail will be presented shortly. On reaching the root,
the Cls for the root reflects the join of all input streams. Next, in the phase
of top-down propagation, we propagate Cls from the root to all leaf nodes.
When reaching all leaf nodes, Cls in each stream have reflected the join effect
of all streams. The algorithm is distributed in that each node (site) in the tree
performs the propagation as described; there is no central place to collect all
data. This approach circumvents the computation of the sliding-window join,
thus addresses both the privacy and efficiency requirements.

Now we explain the propagation at each site in details. First, we extend
arithmetic operations to class vectors Cls: given an operator ⊕ and two Cls’s
V1 =< a1, ..., am > and V2 =< b1, ..., bm >, V 1⊕ V 2 =< a1⊕ b1, ..., am ⊕
bm >. For example, < 4, 3 > / < 2, 3 >=< 2, 1 >.

20.4.1 Initialization

Initially, for each tuple in the target stream, its Cls, < N1, ..., Nm >, is
determined as follows: Ni=1 if the class label is Ci or otherwise Nj=0. Count
is initialized to 1. For any tuple in any other stream, its Cls is initialized to
all zeros < 0, ..., 0 > and Count is 1. This initialization does not require a
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Figure 20.3. Example with 3 streams at initialization

separate scan of streams and can be combined with the bottom- up propagation
discussed in the following subsection.

Example 1. Consider an example with 3 streams with initial Cls and Count
shown in Figure 20.3. The join relationships are specified by the arrows: S1

and S3 join on J1, and S2 and S3 join on J2. S1 is the target stream containing
two classes. S3 is the root of the propagation tree. The root can be arbitrarily
selected. We will show later that choosing the input stream with largest window
size as the root can optimize the cost of scan of input streams.

20.4.2 Bottom-Up Propagation

This is the phase where the information of Cls and Count are propagated
from leaf nodes to the root in a bottom-up order. Consider a parent node SP
and a child node SC with the join predicate SP .J1 = SC .J2. The propagation
from a child to the parent is based on the following observation.

Observation 1: Given a tuple t in SP , if t joins with k tuples in SC , t
will occur k times in the join between SP and SC . These occurrences can be
represented by blowing up Cls and Count of t using the aggregated Cls and
Count of the k joining tuples in SC . And if SP has n child nodes (n > 1), the
Cls and Count of t in SP will be blown up by all children to reflect the join
with all children streams.

Following Observation 1 precisely, we define the blow-up summary from
SC to SP as the set (v,ClsAgg,CountAgg). v is a distinct join value in SC ,
ClsAgg =

∑
Cls and CountAgg =

∑
Count, where

∑
is over all tuples

in SC containing the value v. Since the target stream can be anywhere in the
tree, there are two cases in the bottom-up propagation from children to a parent
node SP :
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If the target stream is not in SP ’s subtree, we blow up only Count at
SP since ClsAgg is always zero for all child nodes of SP (recall Cls is
initialized to all-zero for a non-target stream);

If the target stream is in SP ’s subtree, exactly one of the child of SP has
non-zero ClsAgg and we blow up both Cls and Count at SP .

The following lemma gives exactly the computation for blow-up following
the above observation and discussion.

Lemma 1. Assume that a parent node SP has n child nodes. For each tuple
t in SP with the join values v1,...,vn, where vi is the join value between SP
and the ith child, let (vi, ClsAggi, CountAggi) denote the blow-up summary
from ith child. Then

t.Count =
n∏
j=1

CountAggj (4.1)

If some ClsAggi(1 ≤ i ≤ n) is non-zero,

t.Cls = ClsAggi ×
∏

j=1..n,j �=i
CountAggj (4.2)

To compute Count and Cls at SP , each child node SC propagates its blow-
up summary to the parent SP . After receiving blow-up summaries from all
child noes, SP scans its tuples once and updates Count and Cls of each tuple
t as in Lemma 1. SP also creates the blow-up summary from SP to its own
parent (if any) in the same scan.

Example 2. The bottom-up propagation for Example 1 is shown in Figure
20.4. S1 and S2 are scanned (locally) to produce blow-up summaries to prop-
agate to S3. On receiving the summaries, S3 blows up Cls and Count of its
tuples. For example, consider the tuple t in S3 as gray scaled in Figure 20.4
(with J1=b, J2=d). t has two corresponding summary entries: (b,< 0, 1 >, 1)
from S1 and (d,< 0, 0 >, 2) from S2. t.Count = 1× 2 = 2, t.Cls =< 0, 1 >
×2 =< 0, 2 >. These results indicate that t occurs in the join twice, both
having the class label C2, which is exactly the same information as in the join
stream.

20.4.3 Top-Down Propagation

At the end of bottom-up propagation, Cls in the root stream reflects the join
of all streams. However, Cls in other streams has not reflected the joins per-
formed at their ancestors. Thus we need to propagate in the top-down fashion
to push the correct join information to all non-root streams. The propagation is
based on the following observation.
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Figure 20.4. After bottom-up propagations

Observation 2: For a parent node SP and a child node SC , if a tuple t in
SC joins with some tuple in SP that has the join value v, so do all tuples in
SC that have this join value v. We can view all such tuples as an “equivalence
class” on the join value v in SC , denoted as SC [v]. Similarly, SP [v] contains
all tuples in SP that have the join value v. Cls of the SC [v] tuples must be
rescaled to reflect all joins not reflected so far at SC . The rescaling must satisfy
the following properties: (1) the relative share of any tuple in SC [v] remains
unchanged because every tuple in SC [v] will join every tuple in SP [v], (2) the
aggregated

∑
Cls in SC [v] after rescaling is the same as the aggregated

∑
Cls

in SP [v].
To perform the top-down propagation, we define the rescaling summary

from SP to SC as the set (v,ClsAgg), where v is a join value in SP and
ClsAgg is the aggregated class vector of all SP [v] tuples.

Lemma 2. Let t be a tuple in SC [v] and let (v,ClsAgg) be a rescaling
summary entry from SP . t.Cls is rescaled as follows:

t.Cls = ClsAgg × t.Count

SC [v].CountAgg
(4.3)

where SC [v].CountAgg is the aggregated
∑
Count over all SC [v] tuples.

The ratio t.Count/SC [v].CountAgg represents t’s share in SC [v]. To com-
pute Cls at SC , the parent node SP propagates its rescaling summary to SC .
On receiving the rescaling summary from SP , Cls in SC are updated as in
Lemma 2. In the same scan, the rescaling summary from SC to its own chil-
dren (if any) is computed.

Example 3. The top-down propagation is shown in Figure 20.5. At the
root S3, the rescaling summaries to S1 and S2 are generated while scanning
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S3 in the bottom- up propagation. On receiving these summaries, S1 and S2

rescale their Cls. For example, for the tuple t in S1 as gray scaled in Figure
20.5, t.Cls =< 0, 1 > is rescaled to < 0, 2 > ×(1/1) =< 0, 2 >, where
(b,< 0, 2 >) is the summary entry corresponding to b, and (1/1) is the share
of t in its own equivalence class for J1=b. The result captures exactly the same
information about t as in the join stream: t occurs twice having the class la-
bel C2.
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Figure 20.5. After top-down propagations

20.4.4 Using NBC

We now consider classifying a new instance t =< t1, ..., tn >, where tj is
the sub- record from Sj . At each site j for Sj , let tj =< x1, ..., xm >. The
site j computes P (tj |Ci) =

∏
P (xk|Ci) for k=1,...,m, and sends P (tj |Ci)

to a coordinator, which could be any of the participating sites or a third
party. After receiving this information from all sites, the coordinator computes
P (t|Ci) =

∏
P (tj |Ci)×P (Ci) for j=1,...,n. The class label Ci that yields the

maximum P (t|Ci) is assigned to t. P (Ci) is available to every participating
site. No private information, as per our privacy model, is revealed by sending
P (tj |Ci) to the coordinator because P (tj|Ci) is just a numerical value. If an
attribute value xi in a new instance t is not found in the training data, this value
is simply ignored in the posterior computation.
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20.4.5 Algorithm Analysis

Privacy. In the bottom-up and top-down propagation, only summaries
are passed between parent/child pairs. For non-join attributes, no site trans-
mits their values in any form to other sites. For the join attributes, con-
sider a parent node SP and a child node SC with the join predicate
SP .J1 = SC .J2. The blow-up summary from SC to SP contains entries
of the form (v,ClsAgg,CountAgg), where v is a join value in SC .J2 and
ClsAgg/CountAgg contains the class/count information. Since ClsAgg and
CountAgg are the aggregate-level information and the class column is non-
private, ClsAgg/CountAgg does not pose a problem. SP .J1 and SC .J2 are
semi-private, thus v can be exchanged between SP and SC if v ∈ SP .J1 ∩
SC .J2. This can be ensured by first performing the secure intersection (2) to
get SP .J1∩SC .J2. Then the blow-up summary from SC to SP needs to contain
only entries for the join values in the intersection. As for the rescaling summary
from SP to SC , no secure intersection is needed because all dangling tuples are
removed at the end of bottom-up propagation.

Privacy Claim. (1) No private attribute values are transmitted out of its
owner site. (2) Semi-private attribute values are transmitted between two join-
ing sites only if they are shared by both sites.

Scalability. In the bottom-up and top-down propagation, one summary is
passed between each parent/child pair and each stream (window) is scanned
once. At any time, only the summaries for the edges being examined are kept
in memory. The size of a summary is proportional to the number of distinct
join values, not the number of join tuples. A summary lookup operation takes
a constant time in an array or hash table implementation. Therefore, the whole
propagation is linear in the window size, thus, independent of the join size.
This property is important because the join size can be arbitrarily large com-
pared with the window size, due to the many-to-many join relationships. An
additional cost is secure intersection, which is performed once during bottom-
up propagation. According to (2), it is loglinear to the number of distinct join
values, again, independent of the join size.

Scalability Claim. On sliding each window, the cost of rebuilding NBC is
proportional to the window size, not the join size.

The algorithm scans each input stream twice, once at the bottom-up propa-
gation phase and once at the top-down propagation process. The only excep-
tion is the root stream, where the bottom-up and top-down propagations meet
and two scans can be combined into one. Therefore, choosing the input stream
of the largest window size (i.e., the most number of tuples) as the root will
minimize the cost of scans, as it saves one scan on the largest stream window.
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20.5 Empirical Studies

Our approach aims at two goals, namely, privacy preservation and fast
processing of join stream classification. The privacy goal is delivered by limit-
ing the information exchanged among sites, as claimed in Section 4. Therefore,
in this section we focus on the performance goal. We would like to answer two
questions: (1) whether the formulation of Secure-JSC defines a better training
space compared with a single stream alone; (2) whether our algorithm scales
up to handle high-speed data streams.

We denote our algorithm as NB Join, as it builds a NBC classifier whose
training set is defined on the join of multiple streams. We compared it with
following alternatives:

NB Target: NBC based on the target stream alone. In this case, all non-
target streams are ignored.

DT Join: the decision tree classifier (C4.5) on the join stream. To build
the decision tree, the join stream is first computed by actually joining the
input streams. Note that his approach does not meet the privacy require-
ment.

DT Target: the decision tree classifier on the target stream alone.

For each window, we train the classifier using the first 80% of stream tu-
ples within this window and evaluate the classifier using the remaining 20% of
stream tuples in the same window. The testing data are generated by the join
of the testing samples from all streams.

We measure performance by “time per input tuple”, i.e., time spent on each
window divided by the number of input tuples in the window. The “input tu-
ples” refers to the tuples in the input streams, not the join stream. This measure
gives an idea about the data arrival rate that an algorithm is able to handle. For
DT Join, because it has to generate the join stream before building the classi-
fier, we measure the join time only and ignore the classifier construction time
since the join time dominates. Most of sliding-window join algorithms in liter-
ature are not suitable for generating the join stream for DT Join because they
focus on fast computing special aggregates (15)(21), or producing approximate
join results (32) under resource constraints; not the exact join result. We im-
plemented the nested loop join algorithm. This choice should not have a major
effect because all tuples in the current window are in memory. All programs
were coded in C++ and run on a PC with 2GHz CPU, 512M memory and
Windows XP.
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20.5.1 Real-life Datasets

For experiments on real-life dataset, we obtained UK road accident data
from the UK data archive1. It contains information about accidents, vehicles
and casualties, in order to monitor road safety and determine policies to reduce
the road accident casualty toll. There are three tables: “Accident”, “Vehicle”
and “Casualty”. The characteristics of year-2001 data are shown in Figure 20.6
where arrows indicate join relationships: each accident involves one or more
vehicles; each vehicle has zero or more casualties. Each table can be regarded
as a stream that is timestamped by “date of accident”. On average, about 600
“Accident” tuples, 700 “Vehicle” tuples and 850 “Casualty” tuples are added
every day. The join stream is specified by the equalities between all common
attributes among the three input streams. “Casualty” is the target stream with
two casualty classes — class 1: “fatal/serious” (13% of all tuples) and class 2:
“slight” (87% of tuples).

Classification Accuracy. Figure 20.7 shows the accuracy of all classifiers
being compared. For all methods, the window size is the same and ranges from
10 to 50 days with no window overlapping.

It is apparent that classifiers built on multiple streams are much more ac-
curate. This result confirms that examining correlated streams is advantageous
compared with building the classifier on a single stream. In fact, the accuracy
obtained by examining the target stream alone is only about 80%, even lower
than that obtained by a naive classifier which simply classifies every tuple as
belonging to class 2, since 87% of tuples belong to this class.

On the other hand, the results also show that, with the same training set,
naive Bayesian classifier has a performance comparable to that of the decision
tree. Keep in mind that our method NB Join runs directly on the input streams,

(313309 tuples)
(size: 14.3MB)

VEH_ID

CS3_9 (class)

CAS_ID

Casualty

ACC_ID

VEH_ID

Vehicle

ACC_ID

Accident

(274109 tuples)
(size: 19.6MB) (250619 tuples)

(size: 20.6MB)

Figure 20.6. UK road accident data (2001)

1http://www.data-archive.ac.uk/
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while the decision tree is built on the join stream. The latter does not meet the
privacy requirement and has a high join cost. We will examine the efficiency
of these two methods in the next set of experiments.

Time per input tuple. Figure 20.8 compares the time per input tuple. For
example, at the window size of 20 days, the join takes about 9.83 seconds
whereas NB Join takes only about 0.3 seconds. Therefore, the join time per
input tuple is 9.83×106/43,900=224 microseconds, where 43,900 is the total
number of tuples that arrived in the 20- day window. In contrast, NB Join takes
only 0.3×106/43,900=6.8 microseconds per input tuple. This means that any
method that requires computing the join will be at least 33 times slower than
NB Join. As the window size increases, the join time increases quickly due to
the increased join cardinality in a larger window; whereas the time per input
tuple for NB Join is almost constant. In other words, our approach is linear in
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the window size, independent of the join stream size. This property makes our
approach particularly suitable for multiple correlated streams.

Therefore, though both NB Join and DT Join classifiers exhibit a similar
classification accuracy, NB Join is much more efficient than DT Join.

20.5.2 Synthetic Datasets

To further verify our claims, we also conducted experiments on synthetic
datasets with various data characteristics. Similar to the experiments on real-
life datasets, we want to examine whether the correlation of multiple streams
yields benefits for classification under different data characteristics. We also
want to evaluate if NB Join can deal with streams with high data arrival rates.
As we are not aware of existing data generators to evaluate classification span-
ning correlated streams, we designed our own data generator.

The data generator. We consider the chain join of k streams S1, ..., Sk,
where S1 is the target stream. An adjacent pair Si and Si+1 have one join
predicate and a non-adjacent pair have no join predicate. All streams have the
same number of tuples denoted |S|. All join attributes are categorical and have
the same domain size D. In addition, all streams have N ranked attributes and
N categorical attributes (excluding the join attributes and the class attribute).
Categorical values are drawn randomly from a domain of size 20. All ranked
attributes have the ranked domain 1,...,10.

Since our goal is to verify that the classifier built on the join stream is more
accurate when there are correlations among streams, the dataset must contain
certain “structures” for the class label rather than random tuples. We construct
the dataset in which the class label in a join tuple is determined by whether
at least q percentage of the ranked attributes have a “high” value. A ranked
value is “high” if it belongs to the top half of its ranked domain. Since the
ranked attributes are distributed among multiple input streams, to ensure the
desired property of the class label, the input streams S1,...,Sk are constructed
as follows.

Join values. Each stream Si consists ofD groups: from 1st toDth group.
All tuples in the jth (1 ≤ j ≤ D) group of Si join with all tuples
in the jth group of Si+1, but not any other tuples. The jth join group
refers to the set of join tuples produced by the jth groups. The size Zj of
the jth group is the same for all streams S1,...,Sk, and follows Poisson
distribution with the mean λ = |S|/D. The jth join group has the size
Zkj , with λk being the mean. The blow-up ratio of the join is defined as
λk/λ = λk−1, i.e., the ratio between the mean of group size on the join
stream and that on input streams.



Privacy-Preserving Data Stream Classification 505

Ranked values. We generate ranked attributes such that all join tuples in
the jth join group have the same class label. In particular, we ensure that
all join tuples in the same group have “high” values in the same number
of ranked attributes, say hj. To this end, we distribute the number hj
among S1,...,Sk randomly, say hj1,...,hjk, such that hj = hj1+...+hjk ,
and all tuples in the jth group for Si are “high” in hji ranked attributes.
hj follows uniform distribution in the range [0, k ×N ], where k ×N is
the total number of ranked attributes.

Class labels. If hj ≥ q × k × N , for some percentage parameter q,
we assign the “Yes” class label to every tuple in the jth group of S1,
otherwise, assign the “No” class label.

Finally, to simulate the “concept drifting” in data streams, we change the
parameter q every time after generating W tuples. In particular, for every W
tuples we randomly determine a q value in the range [0.25, 0.75) following the
uniform distribution. W is called the concept drifting interval. Usually W is
larger than the window size because not every window leads to a change in
classification. A dataset generated as above can be characterized by the para-
meters (N, |S|,D, λ,W ), where λ = |S|/D is the mean of group size and
determines the blow-up ratio of join.
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Accuracy. We generated three streams S1, S2 and S3 with the parameter set-
ting N=10, |S|=1,000,000, D=200,000, λ=5, W=100,000. Figure 20.9 shows
the accuracy vs the window size with 50% window overlapping. DT Join and
NB Join are more accurate than their counterparts on the single stream, while
both having similar accuracies.

Figure 20.10 shows another experiment, where we fixed the window size
w at 20,000 and decreased W from 100,000 to 20,000. Since the previous
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experiments have confirmed that classifiers built on the join stream have a bet-
ter accuracy, in this experiment we only show the accuracy of NB Join and
DT Join. As expected, the accuracy drops slowly as W decreases, since the
structure for the class label changes more frequently.

Time per input tuple. Figure 20.11 shows the time per tuple on the same
dataset as in Figure 20.9. The join time is much larger than the time of NB Join.
As the window size increases, the join time increases due to the blow-up effect
of join, while NB Join spends almost constant time per tuple for any window
size.

Figure 20.12 shows time per tuple vs. blow-up ratio of join. The parameters
are fixed as N=10, |S|=1,000,000, D=200,000, W=100,000. For the join of
three streams, the blow-up ratio is λ2. By varying λ from 2 to 7, the blow-up
ratio varies from 4 to 49. The window size is fixed at 20,000. Again, NB Join
shows a much better performance and is flat with respect to the blow-up of join.
This is because it scans the window exactly twice, independent of the blow-up
ratio of the join. On the other hand, the join takes more time per tuple with a
larger blow-up ratio because much more tuples are generated.

Figure 20.13 shows time per tuple vs. number of streams. All parameters are
still the same as in Figure 20.11. The window size is fixed at 20,000 tuples. We
vary the number of steams from 1 to 5. The blow-up ratio for k-stream join is
determined by 5k−1. The comparison of the results is similar to Figure 20.12.
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Figure 20.12. Time per input tuple vs.
blow-up ratio

20.5.3 Discussion

On both real life and synthetic datasets, our empirical studies showed that
when the features for classification are contained in several related streams, the
proposed join stream classification has significant accuracy advantage over the
conventional method of examining only the target stream.

The main challenge is how such classification can be performed in pace with
the high-speed input streams, given that the join stream has an even higher data
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Figure 20.13. Time per input tuple vs. number of streams

arrival rate than that of the input streams. To this end, our experiments showed
that our proposed algorithm has a cost linear in the size of input streams, in-
dependent of the join size. This feature makes our algorithm superior to other
alternative methods.

It is worthy of noting that the classifier must be rebuilt each time the window
on any input stream slides forward. This is reasonable when there is no overlap
or only small overlaps between windows. However, when windows are sig-
nificantly overlapped, this strategy tends to repeat the work on the overlapped
data. In this case, a more efficient strategy may be incrementally updating the
NBC by working only on the difference due to the window sliding. We did
not pursue in this direction further because even overlapped tuples still need to
be joined with new tuples in other streams, which means that the scan of over-
lapped tuples cannot be avoided. Since our algorithm scans the current window
only twice, the benefit of being incremental is limited, especially considering
the overhead added.

20.6 Conclusions

Motivated by real life applications, we considered the classification problem
where the training data are several private data streams. Joining all streams vi-
olates the privacy constraint of such applications and suffers from the blow- up
of join. We presented a solution based on Naive Bayesian Classifiers. The main
idea is rapidly obtaining the essential join statistics without actually computing
the join. With this technique, we can build exactly the same Naive Bayesian
Classifier as using the join stream without exchanging private information.
The processing cost is linear in the size of input streams and independent of
the join size. Empirical studies supported our claim that examining several re-
lated streams indeed benefits the quality of classification. Having a much lower
processing time per input tuple, the proposed method is able to handle much
higher data arrival rate and deal with the general many-to-many join relation-
ships of data streams.
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